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ABSTRACT 
 
Interleukin-34 is a cytokine sharing functional similarities with the macrophage-colony 

stimulating factor (M-CSF). It is responsible for the proliferation/differentiation/survival 

of myeloid cells. Upregulation of IL-34 contributes to disease progression and growth of 

osteosarcoma. IL-34 is therefore a novel prognostic biomarker, and a target for therapeutic 

intervention of osteosarcoma. This study aimed to investigate the role of IL-34 and its 

signalling/communication with the tumour stroma via extracellular vesicles, and in 

development and function using a zebrafish model. To determine the therapeutic effect of 

IL-34 targeting in osteosarcoma murine pre-clinical models where used. METHODS: 
Extracellular vesicles were isolated from osteosarcoma cells and mesenchymal stem cells. 

Proliferation, differentiation of lineage abilities and protein contents were assessed. In the 

second part of the study, anti-IL-34 monoclonal blocking antibodies were used in xenograft 

and allograft murine models, at 4mg/kg and administered (i.p) three times weekly. The 

effects on tumour growth and histological markers were investigated. We also evaluated 

the potential therapeutic benefit of combining the IL-34 blocking agent, in combination 

with doxorubicin as a combination treatment. Finally, using CRISPR/Cas9 system a loss 

of function model of IL34 was developed. Expression of the cytokine was determined by 

RT-qPCR and in-situ hybridization, while tail-fin injury assays were used characterize the 

expression of IL-34 in response to inflammation. RESULTS: Exosomes from 

osteosarcoma cells induced the commitment of mesenchymal stem cells towards 

adipogenesis whilst exosomes isolated from mesenchymal stem cells induced the 

proliferation of osteosarcoma cells indicating a tumour supportive role. In murine models, 

administration of blocking IL-34 antibody, inhibited tumour progression in both syngeneic 

and xenogeneic models. The treatment had no effect on bone associated remodelling after 

analysis by microCT. IHC analysis showed an increase in F4/80 infiltrates, and a tendency 

towards lower vascularisation as marked by CD31. CRISPR/Cas9 created a stable loss of 

function zebrafish mutant line deficient of IL-34. Investigation of IL-34 expression 

revealed low expression of the cytokine in larval development, that becomes upregulated 

in response to inflammation. A decrease in the number of macrophages in IL-34 morphants 

was also seen. CONCLUSION: This study represents the first characterization of IL-34 

function and expression in zebrafish by a loss of function model. In osteosarcoma, the 

inhibition of IL-34 specific blocking antibodies demonstrates that the therapeutic benefit 

to abrogate IL-34.  
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CHAPTER 1 

GENERAL INTRODUCTION AND THESIS OUTLINE 
 
The biological importance of the skeleton has in the last few decades been revealed as more 

than just a protective framework for organs. Bone has been shown to contain some 

remarkable properties (e.g. mechanical, endocrine) with a myriad of genetic factors, stem 

cells, cytokines, transcription factors, growth factors and hormones all amenable to study 

bone development. The skeleton is also the most important site of metastatic disease and 

bone metastasis has a devastating impact on the quality of life. Knowledge on the 

pathogenesis of bone tumours has seen considerable progress over the last two decades 

with the identification of key regulators of bone remodelling (such as the RANK/RANKL 

system), and a better understanding of dialogs between tumour cells and their 

microenvironment. By extension, research on bone sarcomas has highly benefitted from 

this progress with the interactions between tumour cells and the bone microenvironment at 

the heart of research on bone sarcomas. 

 

1.1 Classification of Bone Sarcomas 
 

Bone tumours can be classified into two major categories; benign and malignant tumours. 

Amongst the malignant tumours, are bone sarcomas and bone metastases. Malignant bone 

tumours can originate from either sarcomas or carcinomas. These differ in the origination 

of their tissues. Sarcomas develop from mesodermal tissues such as bone or muscle, while 

carcinomas originate from epithelial tissues (endodermal or ectodermal origin) such as the 

lining of the breast, colon or prostate. Malignant primary bone tumours, named bone 

sarcomas, originate from mesenchymal tissues (bone marrow, cartilage, bone) whilst bone 

metastases (or secondary tumours) mainly originate from carcinomas even if sarcoma cells 

can induce bone metastatic foci. Carcinoma cells can metastasize to bone through the 

lymphatic or blood circulation (Ferrari et al., 2016). 
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The two main types of sarcomas are soft tissue sarcomas and bone sarcomas. Soft tissue 

sarcomas develop from cells that support, surround, and protect extremities and organs of 

the body including fat, muscle, connective tissue, nerves and blood vessels. Primary bone 

tumours are composed of heterogeneous histological entities (Brown et al., 2018). The 

three main types of bone sarcomas are: osteosarcoma (OS), Ewing sarcoma and 

chondrosarcoma. OS and Ewing sarcomas are associated with the development of 

metastases to the bone, or more frequently to the lungs, whereas chondrosarcomas are 

characterized by a high risk of local recurrence and metastases depending on their grading 

(Brown et al., 2017). Primary bone tumours are exceptionally rare and account for only 

0.2% of all malignant tumours. In 2010, 443 patients were diagnosed with bone sarcomas 

in England (Francis et al., 2013). OS and Ewing sarcomas pre-dominate in children and 

teenagers, (mostly OS and Ewing sarcoma, whilst chondrosarcoma is more common at the 

4th decade). Soft tissue sarcomas increase in the middle age group.  

 

1.2 Osteosarcoma Epidiemology 
 

OS has an annual worldwide incidence of 3-5 per million in males, and 2-4 per million in 

females (Grimer et al., 2013). It exhibits a bimodal age distribution primarily affecting 

children and young adults at a peak incidence of around 18 years. The second peak 

incidence is observed in older adults following radiotherapy or in association with Paget 

disease. Despite their rarity, osteosarcomas are the most common form of primary 

malignant bone tumours, representing around 56% of bone cancers in children. Incidence 

is higher in males than in females (male to female ratio of 1.5:1). This difference may be 

related to the skeletal growth period, which is longer in males than females. However it 

peaks earlier in females (12 years for females versus 16 years for males), due to the 

relatively earlier growth spurt experienced by girls (Longhi et al., 2006).  
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1.3 Characteristics of Osteosarcoma 
 
OS generally develops within the metaphysis of long bones, in particular the distal femur, 

proximal tibia and proximal humerus, as these regions undergo rapid growth phases (Figure 

1). Sixty percent of cases originate in the knee, however they can also occur in the axial 

skeleton (<10% of cases in pediatric age group), most commonly in the pelvis. 

Conventional OS is characterized as a high-grade malignant tumour of spindle-shaped 

mesenchymal cells that produce an osteoid matrix (Heymann & Rédini, 2011) (Figure 2). 

OS cells express osteoblastic markers such as osteocalcin (OC), Alkaline phosphatase (AL-

P) and bone sialoprotein (BS) (Brown et al., 2017). OS tumours are generally locally 

aggressive, and tend to produce early systematic metastasis. Around 25% of patients 

present with detectable metastatic disease usually after 36 months from diagnosis. The most 

frequent site for metastases is the lung, with some also developing into other bones and soft 

tissues sites (Luetke et al., 2014).  

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram 
of a human skeleton showing 
common sites for distribution 
of osteosarcoma. The primary 
sites for development of 
osteosarcoma include the jaw, 
proximal humerus (shoulder) 
pelvis, distal femur and 
proximal tibia.   
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Figure 2: Representative X-ray and histological view of osteoblastic osteosarcoma. A) A 
computed tomography of an OS in a 15-year old patient. The tumour tissue is composed of 
mineralized component (indicated by *) and is associated with the vasculature (indicated by 
arrows). B) Typical histological view of OS showing osteoid extracellular matrix produced by OS 
cells (*), tumour tissue is vascularized (black arrow head). Adapted from “Bone Cancer” 1st 
Edition, Ed. Heymann D., Academic Press, 2009). 

 
 
The type of OS is subdivided on tumour cell morphology and organisation, including the 

components of the extracellular matrix. There are three major subtypes: osteoblastic, 

chondroblastic and fibroblastic (Luetke et al., 2014). The main difference between these 

subtypes is attributed to the origin of the disease according to the oncogenic events 

occurring during cell differentiation. Apart from these subtypes, other subtypes include; 

telangiectatic, small cell, parosteal, periosteal, and low-grade central OS. Telangiectatic OS 

constitutes blood filled cystic spaces separated by thin septa, while small cell OS is 

characterized by sheets of round cells that produce an osteoid matrix which is often 

confused with Ewing sarcoma (Marina et al., 2004).  
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The 5-year survival rate for patients with localized forms of sarcomas are 70-75%. Survival 

rates become significantly lower around 30% for pulmonary disease. (Stiller et al., 2001). 

Tumour resection together with chemotherapy allows for successful management of 

localized OS, however metastatic disease still poses as one of the main challenges for 

clinicians and researchers, thus highlighting the need to develop new therapeutic strategies.   

 

1.4 Origin of  Osteosarcoma Cells  
 

Mesenchymal stem cells (MSCs) are stromal cells progenitors of osteoblasts (bone cells), 

chondrocytes (cartilage cells), adipocytes (fat cells), smooth muscle cells and striated 

muscle cells. To date, the majority of studies report that OS originates from MSCs located 

in the bone marrow, trabecular bone or periosteum. This has been demonstrated in 

transgenic mouse models and in comparisons of gene expression between malignant cells 

and MSCs (Lin et al., 2009; Chan et al., 2013). However these authors also report that 

MSCs show lack of specificity and may give rise to other types of sarcomas such as poorly 

differentiated soft-tissue sarcomas. Additionally, they also report that on deletions of p53 

and RB1, the incidence of OS drops to 29% whilst poorly differentiated soft-tissue 

sarcomas dominate. 

 

Evidence is emerging that OS may arise from mutations occurring in MSCs committed to 

the osteoblastic lineage (Mutsaers & Walkley, 2014) Osteoblasts are specialized cells that 

regulate the formation of bone by depositing new bone tissue through the production of 

matrix proteins. Osteoblasts develop from MSCs through a series of intermediate pre-

cursor cell populations called pre-osteoblasts. These acquire osteoblast-specific properties 

as they differentiate, and express several transcription factors known to regulate the 

differentiation such as Runx2 and Osterix-1 (Rodda & McMahon, 2006). Malignant 

transformation of these precursor cells by at least two or more oncogenic events, leads to 

the initiation of OS (Figure 3). Evidence comes from mouse studies whereby deleting p53 

at different points along the osteoblast lineage, increased the occurrence of OS (Walkley et 

al., 2008). Further in vivo work by deleting promoter genes highly expressed in the 

osteoblastic lineage, such as Osterix, Col1a1 and Osteocalcin, resulted in mouse models 

with a relatively high incidence of OS (Nakashima et al., 2002).  
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Figure 3: Schematic representation of the cell of origin in osteosarcoma. Specific sub-types of 
OS arise from cells undergoing differentiation in the lineage hierarchy from mesenchymal stem 
cells to osteoblasts. Oncogenic events in pre-osteoblast cell populations, give rise to subtypes of 
OS, thus the stage of differentiation within the osteoblastic linage at which the transformation 
occurs determines the subtype. Adapted from Mutsauers and Walkley 2014, and Brown et al., 2017. 
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Altogether, this data supports the hypothesis that the cellular origin of OS comes from cells 

committed to the osteoblastic lineage and not from MSCs. Furthermore, the data also 

suggests that the stage of cellular differentiation where the mutations occur might 

determine the resulting OS sub-type (Mutsaers & Walkley, 2014). Further studies are 

required to confirm this hypothesis using more purified populations of pre-osteoblasts than 

those used in the studies carried out to date. 

 

1.5 Genetics of Osteosarcoma 
 

Despite this increasing evidence, the origin of OS remains enigmatic in part due to its rarity. 

OS is a genetically unstable tumour  characterized by multiple chromosomal translocations, 

amplifications and deletions. Recently, human sarcomas have been found to contain fusion 

genes associated with cellular motility, thus highlighting the high genetic instability that is 

characteristic of OS. Transcriptome sequencing identified two recurrent fusion genes, 

LRP1-SNRNP25 and KCNMB4-CCND3, known to be associated with cancer progression 

and where seen to promote OS cell migration and invasion (Yang et al., 2014).   

 

Genome wide association studies have also led to progress in understanding the genetic 

origins of OS. A number of alterations and inactivating mutations have been found to play 

a role in initiating OS tumour development. These include mutations in the tumour 

suppressor genes Tp53 and retinoblastoma (RB1), as well as mutations in c-MYC and 

RECQL4 oncogenes, and down-regulation of the Wnt signaling pathway (Broadhead et al., 

2011). These mutations lead to specific and rare syndromes associated with a predisposition 

to developing OS: inherited syndromes including hereditary bilateral retinoblastoma 

(mutation of RB1 gene), Li–Fraumeni syndrome (germline mutations of the p53 tumor 

suppressor gene), Bloom syndrome (mutation of BLM gene coding for a DNA helicase), 

and Rothmund–Thomson syndrome (mutation of  the RECQL4 gene encoding a DNA 

helicase). These syndromes then identify several master genes regulating the pathogenesis 

of OS. OS may also develop in association with multiple exostoses and Paget’s disease.  
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Despite the recent advances in understanding the genetic origins associated with OS, the 

majority occur without any familial predisposition, and the number of cases associated with 

germline mutations is approximately 3% (Martin et al., 2012) It should be noted that these 

data were drawn from analysis of small cohorts of tumour samples, and that none of the 

mutations are recurrent or specific therefore their use in diagnostics is limited.  

 

OS tumours have also been linked to BRCAness signature in a study by Kovac et al. In this 

exome sequencing study, 123 OS were analysed for driver gene mutations, and 14 genes 

were identified as the main drivers. However none of the drivers were found to be 

responsible for the majority of tumours. The authors however report that over 80% of OS 

show large-scale instability signatures characteristic of BRCA1/2 deficient tumours. The 

findings therefore imply that during the evolution of OS, several oncogenic pathways drive 

chromosomal instabilities leading to the acquisition of BRCA-like traits (Kovac et al., 

2015).  
 
A number of studies have reported difficulties in differentiating low-grade OS from benign 

lesions, as both present with similar radiographic appearances. Low-grade OS constitutes 

between 5–7% of all osteosarcomas, and is subdivided into two subgroups subject to its 

location to the bone cortex, parosteal OS and low-grade central OS. Inability to correctly 

diagnose these lesions may lead to inappropriate treatment (Mackall et al., 2002). Low-

grade OS is characterised by supernumerary ring chromosomes encompassing the 

amplification of chromosome 12q13–15, in conjunction with cyclin dependent kinase 4 

(CDK4) and murine double-minute type 2 (MDM2) gene region. The incidence of these 

amplifications is more prevalent in low grade OS rather than high-grade classical OS and 

thus MDM2 and CDK4 immunohistochemistry is the current technique used to 

differentiate between low grade OS and benign fibrous and fibro-osseous lesions, 

especially in patients with atypical radio-clinical presentation and/or limited biopsy 

samples (Dujardin et al., 2011).  

 

Although several studies have been performed to determine the events leading to the 

development of OS, its pathogenesis still remains unclear. However, rather than looking at 

the genetic origin of OS, its pathogenesis can be viewed in terms of its cellular origin, and 

how oncogenic events in its precursor cells lead to malignant transformation and initiation 

of the tumour. To date, the most accepted theory is that initially, a mutational event (most 
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probably in p53 or RB) results in clonal population with chromosomal instability, that leads 

to further chromosomal alterations and additional mutational events, ultimately resulting 

in a polyclonal populations of cells. Within tumour sites, the local environment then helps 

it to survive and proliferate thus contributing further to the survival and propagation of the 

tumour.  

 

1.6 Conventional Therapy  
 

Complete surgical resection termed as resection en-bloc-large (resection until healthy 

margins) remains the cornerstone for treatment of OS, however, surgery alone is not 

enough to cure patients, and most die as a result of metastasis. As a result, adjuvant 

chemotherapy was established by Rosen et al in the late 70’s, and this approach is still 

applicable nowadays (Longhi et al., 2006).  

 

Following staging investigations and a diagnostic biopsy, initial treatment usually consists 

of intensive polychemotherapy with combinations of doxorubicin (adriamycin), cisplatin 

(CDP), ifosfamide (IFO) and high-dose methotrexate (HDMTX). Together these drugs are 

known as neoadjuvant chemotherapy (Rosen et al., 1975) and are administered prior to 

surgical resection. Following surgery, post- operative chemotherapy is given, and is known 

as adjuvant chemotherapy. The goal of the adjuvant chemotherapy is the eradication of 

micro-metastases that have already spread at the time of diagnosis.  

 

On the other hand, the goal of neoadjuvant chemotherapy besides the eradication of micro-

metastases, is the destruction of primary tumour cells with reduction of tumour burden and 

the possibility to evaluate the histological response to preoperative chemotherapy. The 

level of bone tumour necrosis after preoperative chemotherapy is a prognostic factor that 

correlated with disease free and overall survival of OS (ESMO, 2014). The resected tumour 

is thus scored on the percentage number of residual viable tumour cells according to the 

Huvos scale (grade I > 50%, grade II from 11-50%, grade III from 1-0%, grade IV: no 

detectable viable cancer cells) (Huvos, 1991). In practice, patients are divided into good 

responders if <10% of viable tumour cells are found, and poor responders if >10% of viable 

tumour cells are present. A recent international EURAMOS-1 study was carried out to 

determine the effect on survival of changing post-operative chemotherapy based on this 
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histological response. Poor responders were randomized between continuing MAP 

(methotrexate, doxorubicin and cisplatin), and MAPIE (addition of ifosfamide and 

etoposide). Results showed that there was no significant difference in the outcome between 

the regimens of drugs administered and therefore post-operative chemotherapy is not 

adapted according to response (Whelan et al., 2015). Radiotherapy is also administered 

when surgery is not possible (such as neck, head, spine), or when resection margins are 

considered as inadequate, however osteosarcomas are usually considered as radioresistant 

(Brown et al., 2017).  

 

1.7 The Local Microenvironment in Osteosarcoma 
 
Several other theories have been proposed to explain the development of cancer cells in 

bone. One such is based on the ‘seed and soil’ theory initially proposed by Stephen Paget 

in the late 19th century and focuses on the local environment of OS (Paget, 1989). When 

tumour cells invade bone, a cycle is established between the tumour cells and their 

microenvironment, where the functional equilibrium between osteoblasts (bone forming 

cells) and osteoclasts (bone resorption cells) is deregulated. OS cells dysregulate the 

microenvironment by activating osteoclast differentiation and resorption, which in turn 

stimulate tumour growth by releasing proliferative factors stored in the extracellular matrix. 

An inflammatory environment that promotes the growth of tumour cells is therefore 

established (Heymann et al., 2011). This leads to the development of the ‘bone niche’, in 

which the bone microenvironment promotes the progression of cancer initiating cells and 

provides the right conditions for their survival and development. Cancer initiating cells are 

defined as cells with self-renewal ability, tumour-initiating capacity, and ability to give rise 

to more differentiated progeny (Zhang et al., 2003). This not only occurs in primary 

sarcomas, but also during the development of secondary bone metastases (Figure 4).  

 

The niche is a highly complex environment and is not only restricted to bone related cells. 

Other types of cells including endothelial cells, and macrophages are also present. These 

set up niches of their own, a ‘vascular niche’ and an ‘immune niche’, which contribute to 

the tumour microenvironment by modifying the vascularization and altering the local 

immunity respectively (Andersen et al., 2009; Heymann et al., 2017). Other more specific 

niches are also present, such as muscles and lung parenchyma for invading and metastatic 
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cells. This bilateral dialogue established between cancer cells and their neighbours is a 

central aspect of the development of bone sarcomas. There are several ways by which cells 

communicate such as by direct soluble factors (chemokines and cytokines), direct cell to 

cell communication for example through gap junctions, as well as by extracellular vesicles 

(Melzer et al., 2016). Extracellular vesicles are small membrane bound vesicles loaded with 

proteins, miRNA, and mRNA. Studies have demonstrated that OS cells can become 

chemoresistant through the transfer of resistance factors via exosomes (Torreggiani et al., 

2016). Recently, Baglio et al described how EVs secreted by highly malignant OS cells 

selectively incorporate TGFβ, which induces proinflammatory IL-6 production by MSCs. 

IL-6 is associated with tumour growth, establishing a cycle between MSCs and OS cells 

(Baglio et al., 2017).  

 

The niches play a role in keeping cancer cells dormant and triggering the development of 

tumours both locally or to distant organs. This has been demonstrated in studies of OS that 

developed from benign lesions after patients underwent bone curettage and grafting, 

following long periods (7-28 years) of being disease free (Picci et al., 2011). To explain 

the development of these secondary-induced primary bone tumours, the authors suggest 

that tumour growth was promoted by MSCs in the inserted scaffold. Perrot et al., also 

reported a delayed local reappearance of OS. This came after 13 years from initial 

diagnosis, and 18 months following a lipofilling procedure. Perrot et al. investigated the 

relationship between tumour growth, fat injections, and mesenchymal stem/stromal cell 

like cells present in fatty tissue. Results showed that fat grafts and progenitor cells promote 

tumour growth, indicating that dysregulation of tumour niches may reactivate tumour 

proliferation (Perrot et al., 2010; Avril et al., 2016).  
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Figure 4: Diagram showing the tumour niches in osteosarcoma. The bone microenvironment is 
composed of a diversified cell population forming specific niches (vascular, immune, bone, 
muscular and pulmonary niches (metastatic niche). A dynamic relationship between sarcoma cells, 
and the bone microenvironment is established, where the cancer cells create favourable conditions 
for the growth and dissemination of the tumour including modifications in local immunity, 
vascularisation and bone cell function. Adapted from Brown et al., 2017 

 

The immune infiltrate of OS comprises one of the most important niches. This immune 

environment is composed of several types of immune cells including T-lymphocytes, 

macrophages, as well as sub-populations of B-lymphocytes and mast cells. OS cells are 

able to control the differentiation and recruitment of immune infiltrating cells to establish 

a local immunosuppressive environment that is able to promote tumour growth and 

metastasis, and increase drug resistance (Heymann et al., 2017). Macrophages are one of 

the most important immune infiltrates in the microenvironment, followed by T-

lymphocytes. These cellular sub-types and their role in OS will be described in the 

following sections.  
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1.8 Tumour Associated Macrophages  
 

Macrophages were originally thought to generate anti-tumour activities by recruiting helper 

T-cells. However, clinical and experimental data have shown that certain macrophage 

phenotypes are correlated with enhanced tumour progression, induction of angiogenesis 

and promotion of immunosuppression (Sica et al., 2008; Coffelt et al., 2010).  

 

Macrophages demonstrate functional plasticity as a result of signals generated from stromal 

cells and tumour cells. They can differentiate into M1 or M2 type macrophages. M1 

macrophages induce inflammatory responses and anti-tumour immunity, whilst M2 type 

induces anti-inflammatory responses and pro-tumorigenic properties through the induction 

of neo-angiogenesis (Knowles & Harris, 2007).  Macrophages that infiltrate tumours are 

known as tumour associated macrophages (TAMs). They resemble closely M2 type 

macrophages and are recruited to tumours as a result of overexpression of growth factors 

such as macrophage colony stimulating factor (M-CSF), CC Chemokine ligand 2 (CCL-2) 

and vascular endothelial growth factor (VEGF) (Chockalingam & Ghosh, 2014). The M2 

subtype has been seen to promote the tumour growth and minimize the efficacy of therapy 

using a combination of mechanisms. Primarily, they reinforce the presence of cancer cells 

by inhibiting anti-tumour responses and stimulate cell proliferation. Secondly, TAMs 

regulate angiogenesis by enhancing the angiogenic switch (the phenotypic switch to 

angiogenesis), and promoting the proliferation of endothelial cells. TAMs contribute to 

tumour progression by assisting in cancer cell invasion, seeding, extravasation, survival 

and proliferation of cancer cells at metastatic sites (Sica et al., 2008). Additionally, TAMs 

accumulate in conditions of hypoxia within the tumour and up-regulate the expression of 

hypoxia-inducible factors, which in turn triggers transcription of various growth factors 

including VEGF (Lewis & Murdoch, 2005). Classical cell surface markers for M1 type 

macrophages include IBA1, iNOS and MHCII, whereas ARG1, CD163, IL-10 and CD23 

are some of the markers used for identification of M2 subtypes.  

 

In many cancers, the presence of TAMs leads to poor prognosis (Knowles & Harris, 2007). 

However, Buddingh et al., recorded that the expression of TAM-associated genes in pre-

treatment biopsies of OS, correlated with a lower risk of metastases. The authors observed 

an expression of macrophage-associated genes in hematopoietic cells and not in OS tumour 

cells. They also found that TAMs in post-chemotherapy resections and metastatic lesions, 
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led to improved survival. The authors reported a heterogenous population of M1 and M2 

phenotypes in OS tumours, and that there was an association between macrophage 

infiltration and higher micro-vessel density. This suggests that the influx of macrophages 

may support certain aspects of tumour growth. However overall, in OS, direct or indirect 

anti-tumour activity of macrophages outweighs their possible tumour supporting effects 

(Buddingh et al., 2011).  

 

Dumars et al., demonstrated (Dumars et al., 2016) the association of TAM to a better 

overall survival of OS patients. These authors observed a dysregulation of the macrophage 

balance in favour of M1 cells in non-metastatic patients. The above findings are backed by 

a clinical trial of 662 OS patients using muramyl tripeptide (MTP), a macrophage-

activating agent. (Mori et al., 2008). Addition of this peptide to chemotherapy regimens of 

doxorubicin, cisplatin, and methotrexate resulted in a statistically significant improvement 

in 6-year overall survival, from 70% to 78% (p = 0.3, hazard ratio = 0.71, 95% CI, 0.52 to 

0.96) (Meyers et al., 2008). It is therefore possible that the M1 and M2 macrophage ratio 

may regulate metastasis in OS, and that once a threshold of either phenotype is reached, 

the tumour microenvironment may be changed to one that favours metastasis. However, 

results from this study are considered controversial due to beneficial effect of LMTP-PE in 

a non-adapted control group. Thus MTP for OS has not been universally adopted and 

further investigation into this mechanism is needed.  

 

In 2006, a phase 3 trial (OS2006) of zoledronic acid, did not improve outcome for patients 

with OS. To investigate this, infiltrating tumour cells were investigated in the pre-

therapeutic biopsies. The authors report that CD163 positive macrophages although usually 

associated with an M2 macrophages sub-type, were associated with Th1 responses – 

(proinflammatory and tumoricidal activity), whilst CD8-positive tumour infiltrating 

lymphocytes played a major role in delaying OS metastases. Thus reporting a correlation 

between the presence of CD8 positive lymphocytes at the time of diagnosis, and a better 

overall survival for patients treated with zoledronic acid. Thus in the microenvironment the 

balance between M1/M2 can be variable and associated with increased survival (Gomez-

Brouchet et al., 2017). 
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Based on these observations, a number of therapies targeting macrophages have been 

developed. Most notable is the liposome-encapsulated muramyl tripeptide (L-MTP-PE) 

which acts as an immunoregulator by triggering macrophages and T-cell reactions (to be 

discussed in more detail in Chapter 3).  

 

1.9 Tumour Infiltrating Lymphocytes 
 

Lymphocytes are the second most abundant cell types in OS infiltrates. Tumour infiltrating 

lymphocytes (TILs) are detectable at around 75% in OS patients, which increases to 86% 

in metastatic conditions (Muthana et al., 2013). The key role played by TILs in the tumour 

microenvironment was demonstrated by Fritzsching et al. (2015). The authors 

demonstrated that a CD8+/FOXP3+ ratio in biopsies prior to chemotherapy, is correlated 

with prolonged survival. From 150 included cases, patients with complete treatment were 

identified and assigned to the discovery (diagnosis before 2004) or the validation cohort 

(diagnosis 2004–2012). Highly standardized immunohistochemistry of CD8+ and FOXP3+, 

which was validated by methylation-specific gene analysis, was performed followed by 

whole-slide analysis and clinical outcome correlations. Osteosarcoma patients with higher 

(above the median- 3.08) intratumoral CD8+/FOXP3+ ratios at time of diagnosis where 

shown to have a much better outcome than patients with lower (below median) 

CD8+/FOXP3+-ratios. No patients with a CD8+/FOXP3+-ratio above the third quartile died 

within the observation period (median follow-up 69 mo). Patients with a ratio higher than 

3.08 showed improved survival strengthening the key role of TILs in OS (Fritzsching et 

al., 2015). T-lymphocytes express PD-1 and/or B7-1 which bind to PDL-1 expressed on 

the surface of OS cells. The binding of PDL-1 to PD-1 is associated with inhibition of their 

cytotoxic properties and associated downstream signalling. This negatively regulates the 

activating signal initiated by T-cell receptor after the presentation of tumour peptides 

associated with the MHC system. This leads to enhanced local immunosuppression and 

then tumour progression (Maekawa et al., 2016). The expression of PD-1 by TILs led to 

the development of therapeutic benefits in the PD-1 and PD-L1 interaction in OS. Three 

clinical trials using anti PD-1 antibody are currently undergoing for patients with metastatic 

OS (to be discussed in more detail in chapter 3).  
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1.10 Macrophage Colony-Stimulating Factor 
 

The macrophage colony-stimulating factor (M-CSF or CSF-1) is a cytokine required for 

proliferation, differentiation and survival of cells from the hematopoietic lineage including 

monocytes, macrophages, and osteoclasts (Yoshida et al., 1990). The effects of M-CSF are 

regulated through a type III tyrosine kinase receptor called MCSF-R (also known as c-fms, 

CD115 and CSF-1R) which is encoded by the proto-oncogene c-fms. The importance of 

M-CSF in bone has been demonstrated in vivo using mutant osteopetrotic (op/op) mice 

(Wiktor-Jedrzejczak et al., 1991). The mice exhibited a number of skeletal abnormalities 

(e.g. stunted growth, domed skull, stubby appearance of the tarsals, metatarsals, femur and 

humerus), a toothless phenotype, and deficiencies in macrophages and osteoclasts. This 

phenotype resulted from a null mutation in the CSF-1 gene by insertion of a single base 

pair, and led to a deficiency in the production of osteoclasts (Yoshida et al., 1990).  A 

similar but more severe phenotype was also obtained when the CSFR-1 gene was 

inactivated leading to Csf1-/Csf1- (Dai et al., 2002). Preliminary experiments indicated that 

the above effects might be restored by injecting the recombinant form of human M-CSF to 

the op/op mice. This resulted in correction of the observed osteopetrotic phenotype, as well 

as restoration of the number of macrophages and osteoclasts (Wiktor-Jedrzejczak et al., 

1991). However it did not overcome all the defects observed, indicating that other variants 

of M-CSF or other cytokines, might be acting in combination to regulate the activity of 

osteoclasts.  

 

1.11 M-CSF in Cancer 
 

Lymphocytes, osteoblasts, stromal cells and tumour cells secrete M-CSF in order to sustain 

the continuous proliferation of the tumour by a direct or indirect effect depending on the 

expression of M-CSFR in cancer cells. M-CSF can act as an autocrine, paracrine and 

endocrine factor. Increased expression of M-CSF has been found in a number of cancers 

including breast, pancreatic and colorectal cancer. High expression levels of M-CSF in 

ovarian cancer correlate with increased tumour aggressiveness and poorer prognosis 

(Chockalingam & Ghosh, 2014).   
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M-CSF has also been suspected in the process of tumour metastasis in breast cancer. A 

recessive null mutation of CSF-1 gene resulted in delayed lung metastasis and tumour 

progression in a murine breast cancer model. This reduction was explained by the authors 

as arising due to lack of TAMs (M1 type). Restoring local concentrations of M-CSF, 

resulted in the promotion of tumour development. These pro-tumoral actions are exerted 

through macrophages, suggesting that lack of macrophages in tumours of Csf1op/Csf1op 

mice is primarily due to the systematic loss of CSF-1, and that other chemo attractants are 

present in mice to recruit macrophages into the tumour site (Lin et al., 2001). Other studies 

have reported that M-CSF has the potential to bring about anti-tumour responses as well. 

Rat T9 glioma cells transfected with membrane bound isoforms of macrophage M-CSF 

(mM-CSF; a non-secreted isoform of M-CSF) were killed by macrophages in a dose 

dependent manner. Killing of mM-CSF expressing tumour cells by macrophage in vitro 

occurred through phagocytosis (Jadus et al., 1996). Although these reports are 

contradictory, the tumour promoting actions of M-CSF are well documented, and overall 

it is regarded as a “pro-tumour” cytokine. Another cytokine with a high functional 

selectivity represented by stimulating monocyte survival in a CSF-1R-dependent manner, 

is interleukin-34 (IL-34). The discovery of IL-34 emerged much later than that of M-CSF 

rendering the actions of M-CSF as currently known partially redundant.  

 

1.12 Interleukin-34 
 
In 2008, Lin et al discovered a novel cytokine IL-34 by producing recombinant forms of 

proteins from cDNA’s encoding both secreted proteins and extracellular domains of trans-

membrane proteins. They transfected these cDNAs into HEK 293T cells and screened the 

biological activities of cell supernatants through a number of cell-based assays (e.g. 

monocyte proliferation, signalling assays). They identified a new soluble factor called IL-

34 that transduced signaling pathways through the M-CSF receptor, and also showed that 

IL-34 induced the formation of colony forming unit macrophages in human bone marrow 

cultures with the same effectiveness as M-CSF (Lin et al., 2008). In light of this study, it 

was hypothesized that IL-34 shared common features with M-CSF and thus a functional 

overlap between both cytokines was revealed.  
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1.13 Structure of IL-34, M-CSF and Their Receptor 
 

IL-34 is a 27.5 KDa secreted dimeric glycoprotein consisting of 242 amino acids. The gene 

encoding IL-34 is located on human chromosome 16q22.1 and is organized into 11 exons. 

Human IL-34 shows sequence identity of 71%, 72% and 99.6% with mouse, rat and 

chimpanzee respectively, thus showing that it is highly conserved across species (Zhou et 

al., 2016). IL-34 is evolutionary distant but structurally related to M-CSF in that they are 

both N-glycosylated proteins. (Nakamichi et al., 2013).  

 

Functional studies demonstrated that both M-CSF and IL-34 stimulate macrophage 

differentiation and up-regulate monocyte activity (Wei et al., 2010) (Lin et al., 2008). 

However several phenotypic differences were observed in the resulting macrophages. 

These differences predicted that IL-34 uses an alternative binding mode from M-CSF on 

binding to the MCSF-R receptor. Further structural analysis showed that IL-34 and M-CSF 

bind to the extracellular domain of MCSF-R in a similar way, but through two distinct 

contact points (Figure 5). Binding of IL-34 or M-CSF to MCSF-R leads to receptor 

dimerization and differential auto-phosphorylation on its eight tyrosine residues (Garceau 

et al., 2010).  M-CSF/MCSF-R and IL-34/MCSF-R crystals have a  similar shape, but the 

IL-34/M-CSFR complex is more stable. Chihara et al. showed some differences in the 

kinetics of MCSF-R phosphorylations and in the nature and intensity of phosphorylated 

tyrosine residues after IL-34 binding, partly explaining the differences in the signalling 

pathways they elicit, and also revealing in part their functional overlap (Chihara et al., 

2010) 
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Figure 5: Schematic representation of IL-34 and MCSF-R cytokines A) The structure of IL-34 
showing an N-linked glycosylation region. Disulphide bridges are indicated by solid blue lines. B) 
The CSF-1 receptor is composed of five immunoglobulin-like domains (D1-D5). The interdomain 
flexibility between D2 and D3 is the main feature allowing the receptor to bind to both IL-34 and 
M-CSF. IL-34 binds to the cleft between D2 and D3 leading to autophosphorylation of specific 
tyrosine kinases within the intracellular domain. Adapted from Nakamichi et al., 2013 
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1.14 Expression of IL-34 
 

In human and murine tissues, IL-34 is widely expressed in the brain, heart, liver, kidney, 

mammary glands and prostate, but most notably in the spleen; consistent with a role in 

myeloid cell regulation. An interesting observation comes from the study of Wei et al. 

(2010) which provides new insights on the expression patterns of M-CSF and IL-34. When 

studying the expression levels of these two cytokines during mouse development, they 

showed that their expression levels differ substantially in a spatiotemporal manner. Thus 

IL-34 although it has overlapping functions with M-CSF, it could be considered as a local 

molecular effector according to the spatial and temporal situation rather than at the systemic 

level. For example to coordinate the cellular communication network between osteoblasts, 

macrophages and osteoclasts at the microenvironment level (Wei et al., 2010). The authors 

found that while M-CSF mRNA levels were increased in embryos and placenta, IL-34 

mRNA levels were low and did not increase. Additionally, IL-34 mRNA was differentially 

more expressed then M-CSF mRNA in adult brains. However, this aspect needs to be 

elucidated further since it might have further implications on the bone niche and how IL-

34 plays a role in maintaining the survival and proliferation of sarcoma cells.  

 

1.15 Receptors of IL-34 
 

IL-34 is highly expressed in post-natal and adult brains. MCSF-R is also highly present in 

early development, but dramatically decreases, almost undetected, in adult brains. This 

high expression of IL-34 in adult brains without expression of its receptor, suggested that 

other receptors for this cytokine exists (Nandi et al., 2012). Indeed, the receptor protein 

tyrosine phosphatase (RPTPβ/ζ) has been identified on the glioblastoma cell line U251, as 

another receptor for IL-34 through its cell surface chondroitin sulphate (CS) chains. By 

using IL-34 affinity chromatography of solubilized mouse brain membrane followed by 

mass spectrometric analysis, Nandi et al reported that IL-34 selectively binds to cell surface 

RPTP-ζ and initiates downstream signalling leading to inhibition of cell proliferation and 

motility. They also showed that IL-34 binding to RPTP-ζ is dependent on the presence of 

CS chains (Nandi et al., 2013).  
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Similarly, syndecan-1, also a proteoglycan with CS chains, was able to modulate IL-34-

induced M-CSFR signalling pathways. Syndecan-1 also increases the migration M2 

macrophages induced by IL-34. In addition, it was proved that IL-34 induced myeloid cell 

migration, is dependent on syndecan-1 (Segaliny et al., 2015).  Therefore in addition to 

MCSF-R, RPTPβ/ζ and syndecan-1 are key regulators of IL-34 activity, and may play a 

role in bone inflammatory diseases and bone sarcoma development (Figure 6).  

 

 
 
Figure 6: Schematic representation of the receptors of IL-34. Diagram showing the three 
proposed receptors for IL-34. (A) MCSF-R Receptor; IL-34 and M-CSF bind to the MCSF-R 
receptor by two distinct contact points. Binding induces the auto-phosphorylation of different 
tyrosine residues (red for M-CSF and green for IL-34) and subsequently different biological 
responses (B) Syndecan-1; a proteoglycan with CS chains, able to regulate IL-34-induced M-CSFR 
signalling pathways. Syndecan-1 also increases the migration of M2 macrophages induced by IL-
34. (C) RPTPβ/ζ; Binding of IL-34 to PTP-ζ is dependent on the presence of CS chains.  IL-34 
selectively binds to cell surface PTP-ζ and initiates downstream signalling leading to inhibition of 
cell proliferation and motility. MCSF-R, RPTPβ/ζ and syndecan-1 are key regulators of IL-34 
activity, and may play a role in bone inflammatory diseases and bone sarcoma development. 
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When IL-34 binds to the extracellular domain of MCSF-1R, autophosphorylation of 

specific tyrosine residues within the intracellular domain occurs. These phosphorylated 

residues recruit other kinases and adaptor proteins, to activate several signaling pathways 

including ERK1/2, PKB/AKT, focal adhesion kinase (FAK), STAT3, and NF-!B (Figure 

7).  Together these signaling pathways play major roles in proliferation, differentiation, 

survival, cell migration, adhesion as well as cytokine and chemokine expression. Activation 

of such signaling pathways can be observed in cells expressing the MCSF-1R such as 

myeloid cells, epithelial cells, fibroblasts, and cancer cells (Baghdadi et al., 2018). A recent 

study has also reported that activation of CSF-1R by IL-34 activates signaling pathways 

related to autophagy and caspase by the increased expression of AMP-activated protein 

kinase (AMPK)-1 and UNC-51 like autophagy activating kinase 1 in monocytes 

(Boulakirba et al., 2018).  

 

As for activation of RPTP-", this induces the tyrosine phosphorylation of FAK and paxillin, 

resulting in inhibition of proliferation, clonogenicity, and motility in specific cellular 

targets such as glioblastoma cells (Figure 7). On the other hand, IL-34 induced activation 

of signalling pathways is importantly modulated by the interaction between IL-34 and 

chondroitin sulphate chains of syndecan-1. Low to moderate expression of syndecan-1 may 

result in limited activation of IL-34 and MCSF-1R signals, whereas on increased 

expression of syndecan-1 activation of IL-34 through MCSF-1R could be enhanced 

(Segaliny et al., 2015) 
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Figure 7: Diagram of the signalling networks of IL-34. IL-34 binds to the extracellular domains 
of its receptors (MCSF-1R, RPTP-" and chondroitin sulfate chains of syndecan-1) to elicit the 
activation of a number of signalling pathways. These are involved in the regulation of several major 
functions including proliferation, differentiation, survival, adhesion and migration (Baghdadi et al., 
2018).  
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1.16 Role of IL-34 in Bone Biology and Monocyte Differentiation 
 

M-CSF and IL-34 play a central part in bone remodelling through osteoclastogenesis, the 

process by which osteoclasts break down bone. Osteoclastogenesis and the differentiation 

of osteoclasts are mainly dependent on M-CSF and RANKL. In association with RANKL, 

IL-34 can replace M-CSF to induce osteoclast formation by stimulating the proliferation 

and adhesion of osteoclast precursors. IL-34 can completely substitute for M-CSF during 

this process, thus defining a novel pathway for osteoclastogenesis. IL-34 was highly 

expressed in osteoclast-like cells found in giant cell tumours of bone. In contrast to 

osteoblasts, osteoclasts showed very strong staining for IL-34, suggesting a potential role 

in the pathogenesis of bone sarcomas by promoting osteoclast formation (Baud’Huin et al., 

2010). The role of M-CSF in osteoclastogenesis, as demonstrated in the osteopetrotic op/op 

mice, was previously described (Wiktor-Jedrzejczak et al., 1991). Similarly IL-34 can 

contribute to osteoclastogenesis. The effects of IL-34 in op/op mice, was studied by Wei et 

al. in 2010 and they demonstrated that IL-34 expression was able to recover the main 

defects observed in op/op mice. Using in vitro murine and human models of osteotogenesis, 

Baud’Huin et al. 2010) showed that IL-34 was able to support RANKL-induced 

osteoclastogenesis in the absence of M-CSF. IL-34 stimulated RANKL-induced 

osteoclastogenesis by promoting the adhesion and proliferation of osteoclasts progenitors, 

solidifying further the hypothesis that M-CSF and IL-34 exhibit a functional overlap.  

 

Similar to M-CSF, IL-34 was shown to promote the differentiation of monocytes into 

immunosuppressive M2 macrophages. It was shown that IL-34 gives rise to macrophages 

with an IL-10high and IL-12low phenotype, suggestive of a typical M2 phenotype. Moreover 

these macrophages are immunosuppressive similar to that induced by M-CSF (Foucher et 

al., 2013). Moreover, IL-34 induces M2 macrophages via the M-CSF receptor and 

independently of M-CSF. Furthermore,  GM-MCSF and IFNy prevented their generation, 

and that IFNg skews established IL-34 driven macrophages into an immunostimulatory IL-

12high and IL-10low phenotype.  
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In the placenta, IL-34 contributes to the local immune tolerance of the microenvironment 

due to M2 macrophage polarisation. IL-34 was found at the foetal-maternal interface in 49 

women, in both the foetal placenta and maternal decidua and it was able to polarize 

monocytes in macrophages of the decidual phenotype (Lindau et al., 2018).  

 

Further studies demonstrate that both IL-34 and M-CSF have the ability to promote the 

survival and differentiation of monocytes into macrophage phenotypes with some 

differences. For example the study by Barve et al., which compared downstream 

transcriptional profiles and pathways of IL-34 and M-CSF and found differences in the 

expression of the differentiation marker C-C chemokine receptor type 2 (CCR2) (Barve et 

al., 2013). Furthermore, IL-34 but not M-CSF was demonstrated to be involved in the 

follicular dendritic cell-induced monocytic cells in vitro (Yamane et al., 2014). All this 

data collectively demonstrates that a vital role for IL-34 and MSCF-R in cell regulation and 

differentiation.  

 

1.17 Regulation of IL-34 Expression 
 

Since the functions of IL-34 and M-CSF are similar, this would indicate that similarly to 

M-CSF, the production of IL-34 from osteoblasts could potentially be induced by 

inflammatory cytokines.  Eda et al. (2011) showed that pro-inflammatory cytokines such 

as IL-1b and TNF-a stimulate IL-34 mRNA expression in osteoblasts. Among four 

inflammatory cytokines (IL-1b, IL-6, IL-17, and tumour necrosis factor-a (TNF-a), IL-34 

mRNA expression level was dramatically induced by IL-1b (17- fold) and TNF-a (74-

fold). On investigating the involvement of the intracellular mitogen-activated protein 

kinases (MAPKs) in IL-1b and TNF-a mediated induction of IL-34 mRNA expression, the 

authors found that IL-1b and TNF-a activated p44/42 MAPK, c-Jun N-terminal kinase 

(JNK) as well as nuclear factor- B (NF-kB) but not p38 (Eda et al., 2011).  

 

IL-1b and TNF-a mediated induction of IL-34 mRNA expression was decreased by JNK 

inhibitor. Interestingly, although treatment of MEK-1/2 inhibitor showed no reduction in 

the increase of IL-34 mRNA expression by cytokines, combination of MEK-1/2 inhibitor 

and JNK inhibitor significantly inhibited IL-1b and TNF-a mediated IL-34 mRNA 

expression level compared to those by each inhibitor alone. In comparison, IL-1b and TNF-
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a mediated induction of M-CSF mRNA was not affected by p38, JNK, and MEK-1/2 

inhibitors. However, NF-kB inhibitor completely inhibited the elevation of M-CSF mRNA 

expression by these cytokines. These results therefore show that pro-inflammatory 

cytokines, IL-1b and TNF-a, induced the expression of IL-34 mRNA via JNK and p44/42 

MAPK but not p38 in human osteoblasts while p38, JNK, and p44/42 MAPK were not 

involved in the induction of M-CSF mRNA expression by these cytokines (Eda et al., 

2011). How this differential regulation between M-CSF and IL-34 underlies the differences 

in IL-1b and TNF-a induced signalling pathways in osteoblasts still remains to be clarified.  

Other studies also showed the activation of IL-34 by inflammatory cytokines such as that 

reported by Yu et al. In this study, MC3T3-E1 mouse osteoblastic cells, produced IL-34 in 

response to TNF-a through the NF-kB signalling pathway in a dose and time dependent 

manner (Yu et al., 2014). Some recent data suggests that other than inflammatory 

cytokines, an active metabolite of vitamin D known as 2MD, enhances expression of IL-

34 in mouse spleen and bone via vitamin D receptor mediated signalling. Splenectomy and 

knockdown of IL-34 inhibited the 2MD-induced osteoclastogenesis (Covaleda et al., 

2010). Further studies, also revealed an association between IL-34 and microRNAs. 

Overexpression of miR-28-5p leads to suppression of IL-34 in hepatocellular carcinoma 

(Zhou et al., 2016).  
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1.18 Inflammation and IL-34 
 

Most of the cytokines previously described (TNF-a, IL-1b, IL-6 and IL-17) are reported to 

stimulate the generation of osteoclasts through the induction of M-CSF production by 

osteoblasts. Therefore, this indicates that IL-34 may also be induced in the site of bone 

destruction in degenerative bone diseases such as rheumatoid arthritis and periodontal 

inflammation.  

 

Rheumatoid arthritis is an autoimmune disorder characterized by inflammation of the 

synovial joints, and cytokines play a role in driving the synovial cell activation that leads 

to joint destruction. The role of IL-34 in rheumatoid arthritis has been confirmed by several 

studies. IL-34 is produced by synovial fibroblasts in response to stimulation by the 

inflammatory cytokines TNF-a and IL-1b as already described and is released into the 

synovial fluids of patients. IL-34 was in fact found in significantly higher levels in the 

synovial fluids of rheumatoid arthritis patients in comparison to osteoarthritis patients, and 

correlated with leucocyte number and inflammation intensity (Chemel et al., 2012). IL-34 

levels also correlated with disease activity index (DAS28), inflammation parameters, auto-

antibody production as well as concentration of other inflammatory mediators (IL-6, IL-17 

and MMP-3) (Tian et al., 2013; Chemel et al., 2017). Upon treatment with DMARDs or 

TNF-a antagonist therapy (infliximab or eternacept) a significant decrease of IL-34 serum 

levels was observed (Hwang et al., 2012).  

 

Given that IL-34 and M-CSF are both simultaneously expressed in synovial fluids of 

patients with RA, blocking the activity of both, or blocking the MCSF-R would be needed 

to produce a therapeutic benefit. To determine the effect of blocking either IL-34 or M-

CSF or else their receptor (MCSF-R) in RA synovial explants, Garcia et al. tested this in 

intact synovial biopsy samples. Single blockade of either cytokines, did not effect the 

secretion of IL-6 by synovial tissue. However, treatment with anti MCSF-R antibody 

(huAB1) reduced levels of IL-6 compared with samples treated with isotype control (Garcia 

et al., 2016). Moreover, treatment with huAB1 suppressed the production of chemokines 

CCL-2, CCL-7, CXCL-8 as well as secretion of IL-1b, TNF-a and MMP-2. These results 

therefore suggest that inhibition of the M-CSF receptor may be an effective therapeutic 

target for the treatment of RA.  

 



The Role of IL-34 in Inflammation and Osteosarcoma 
________________________________________________________________________ 

___________________________________________________________________________
Chapter 1 – General Introduction and Thesis Outline  

28 

In periodontal inflammation, IL-34 was found to be expressed in gingival fibroblasts, and 

its expression also enhanced by TNF-a and IL-1b. They also confirmed once more that IL-

34 was able to support RANKL-induced osteoclastogenesis of bone marrow macrophages 

independently of M-CSF (Bostrum & Lundberg, 2013). IL-34 has also been associated with 

other autoimmune disorders linked to its role in monocyte proliferation. IL-34 is 

overexpressed in inflamed salivary glands in patients with Sjorgen’s syndrome, an immune 

disorder affecting exocrine glands (Ciccia et al., 2013). An important component of 

Sjorgen’s syndrome lesions are macrophages, and their levels are increased in areas with 

severe lesions. Expression of IL-34 was associated with an increase of inflammatory 

cytokines, and pro-inflammatory monocytes (CD14bright and CD16+) suggesting a potential 

regulation of monocyte and macrophages by IL-34 in SS. Il-34 has also been associated 

with inflammatory bowel disease (IBD) where a positive correlation was seen between 

levels of inflammation and overexpression of IL-34 in inflamed mucosa of Crohn’s disease 

and ulcerative colitis, as well as level of monocytes. This suggests a role for IL-34 in 

amplifying the immune inflammatory response in patients with IBD (Zwicker et al., 2015).   

 

A positive correlation has been documented between insulin-resistant type II diabetes and 

overexpression of IL-34. Serum IL-34 levels are significantly elevated in such patents in 

comparison to controls. Finally in obesity, IL-34 is expressed by adipocytes and increased 

in serum of obese patients as IL-34 increases insulin resistance (Baghdadi et al., 2018) 

 

1.19 IL-34 and Cancers 
 
IL-34 is expressed in a number of cancers such as breast, ovarian, colorectal, lung, skin, 

and brain and plays an important role in the tumour microenvironment through alternations 

of the niches (Zins et al., 2018) IL-34 expression correlates with tumour progression as 

observed in OS and lung cancer as well as metastasis and angiogenesis. In lung cancer, IL-

34 was seen to correlate with tumour progression and poor survival. High co-expression of 

both IL-34 and M-CSF, was associated with the poorest survival compared to patients in 

which these cytokines where absent or present at low levels (Baghdadi et al., 2018). 

Recently, Franze et al. (2018) showed that IL-34 was able to support pro-tumourigenic 

signal in colon cancer. 
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This study unveils how two ligands of the same receptor can co-exist and exert their 

function in the same microenvironment. Even though it would be expected for these ligands 

to act as competitors, Il-34 and M-CSF have the ability to exhibit additive effects on 

proliferation and viability at certain conditions. Il-34 has the potential to interact with M-

CSF and form a heteromeric cytokine to induce specific activation on MCSF-R (Segaliny 

et al., 2015). Therefore, in tumours that naturally express both ligands, or have the ability 

to produce both cytokines, Il-34 can potentially interact with M-CSF and consequently the 

M-CSF receptor and bring about unique functions in cancer cells and myeloid cells. Based 

on these observations, co-expression of both IL-34 and M-CSF, naturally or induced under 

therapeutic conditions, can characterize malignancies with an enhanced aggression pattern 

and has an impact on the clinical outcome of cancer therapy.  

 

IL-34 expression in tumours may therefore be a critical prognostic biomarker correlating 

with tumour malignancy. In light of the pro-tumourigenic functions described above, Il-34 

makes an attractive therapeutic target. Inhibition of CSF-1 targeting alone, will be 

insufficient to block the signaling of IL-34 since IL-34 binds to several other receptors 

including syndecan-1 and RPTPβ/ζ which are frequently expressed in various cancers. 

Thus targeting the signaling pathway that controls the production of IL-34 in the tumour 

microenvironment may be effective in multi-agent chemotherapy. 

 

1.20 The Role of IL-34 in Osteosarcoma 
 

Il-34 is expressed by OS cells as determined by qPCR and immunohistochemistry of 12 

human biopsies osteosarcoma, as well as through a series of transcriptomic data. The 

expression of IL-34 was also assessed in four conventionally used OS cell lines (HOS, 

U2OS, MG63 and SaoS2) and proven positive in all of these cell lines. Additionally, IL-34 

was upregulated in a dose response manner on induction by TNF-a and IL-1b as previously 

determined (Segaliny et al., 2015). Since an inflammatory environment is established 

during tumour development, Il-34 produced by tumour cells would facilitate the 

recruitment of macrophages and formation of blood vessels within the tumour 

microenvironment.  
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The potential involvement of IL-34 in the pathogenesis and progression of OS was 

therefore then demonstrated both in vitro and in vivo. In vitro, analysis on human umbilical 

vascular endothelial cells (HUVEC) and endothelial cell precursors (ECFC) were 

performed to assess the role of Il-34 in angiogenesis and adhesion of myeloid cells. IL-34 

stimulated the proliferation of endothelial cells and vascular cord formation in cultures of 

ECFCs, and increased the number of adherent monocytes in co-cultures with HUVECs. 

The authors also showed that IL-34 modulated FAK, Src, Akt and ERK1/2 signalling 

pathways in endothelial cells proving that these signalling molecules are involved in IL-34 

mediated angiogenesis (Segaliny et al., 2015). 

 

More importantly were the results from in vivo studies using mouse models inoculated with 

OS cells overexpressing IL-34. In comparison to control OS cells, OS cells overexpressing 

IL-34 resulted in larger primary tumours and increased number of lung metastases. In vivo, 

IL-34 increased the recruitment of M2 TAMs into the tumour tissue as demonstrated by 

immunohistochemical staining of Arginase-1 in OS tumours. This data is in agreement with 

previous in vitro studies showing that like M-CSF, IL-34 is involved in macrophages 

survival, migration and polarization. In vitro IL-34 drives the differentiation of 

macrophages towards an immunosupressive M2 sub-type and thus strengthen the role of 

IL-34 in inflammation and associated cancer development. IL-34 can maintain the 

inflammatory process associated with cancer by facilitating the extravasation of 

mononuclear phagocytes and drive their differentiation towards an M2 phenotype. 

Consequently, the pro-angiogenic effect of IL-34 related to M2 macrophage polarization 

and/or recruitment will come into play to increase tumour vasculature as demonstrated in 

vivo. IL-34 acting in this paracrine manner at the tumour microenvironment is one of the 

main pathways to promote tumour progression.  

 

A paracrine effect for IL-34 is also associated with chemoresistance. It is well documented 

that chemoresistance is enhanced when chemotherapeutic agents increase the frequency of 

M2 macrophages, which in turn limit the efficacy of chemotherapy. In lung cancer, IL-34 

secreted by chemoresistant cells enhanced monocyte differentiation into the M2 type and 

additionally, humanized mouse models of OS chemoresistant tumours producing IL-34, 

were highly infiltrated with M2 macrophages and suppressing anti-tumour responses under 

conditions of chemotherapy (Baghdadi et al., 2016) The authors also reported that under 

conditions of chemoresistance, IL-34 can function in an autocrine manner by acting on 
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CSFR-1 expressing tumour cells and TAMs. IL-34 induces the phosphorylation of CSFR-

1 which in turn leads to activation of C/EBPb via the AKT mediated pathway. This 

enhances the pro-tumourigenic and immunosuppressive functions of TAMs which 

consequently contribute to therapeutic resistance in cancers. This helped overcome strict 

conditions of chemotherapy, and identifies IL-34 as a promising target to help overcome 

chemoresistance in future therapeutic treatments.  
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1.21 Thesis Outline  

 

The work presented in this thesis investigates the role of IL-34 in the pathogenesis of 

osteosarcoma, as well as its role in the inflammatory response. The studies summarized in 

this introduction indicate a central role for IL-34 in myeloid cell survival, differentiation as 

well as in the progression of OS by modifying the “bone niche”, promoting the formation 

of new tumour blood vessels, and attracting immune cells to tumour sites. IL-34 thus acts 

as a key regulator in OS tumour cells, and in the tumour microenvironment.  

	
In Chapter 2, the aim was to investigate the dialog established between OS cells and their 

microenvironment. The functional role of extracellular membrane vesicles as mediators of 

intracellular communication for modulating OS tumour development are explored. The 

work aims to better characterise extracellular vesicles in cell-to-cell interactions, as well as 

the communication between OS cells and other cells in the tumour microenvironment, with 

a focus on the contribution of IL-34 in this dialog. Specific aims:  

 

1. To isolate and characterise exosomes derived from OS cell lines as well as 

exosomes from mesenchymal stem cells (bone marrow derived, and adipose 

derived) 

2. To assess the biological functions of OS derived exosomes on mesenchymal stem 

cells including specifically proliferation, and differentiation of lineage abilities.  

3. To determine whether IL-34 is present in vesicles isolated from OS cell lines, and 

whether it is involved in cell-to cell dialog between OS cells.  

4. To gather more information and study the roles of mesenchymal stem cell derived 

exosomes, and their biological contributions on OS cells with particular focus on 

their protein cargo, proliferation and uptake by OS cells.  
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To study the potential of IL-34 as a therapeutic target for the treatment of OS, in-vivo 

murine models were used. The setting up of these models and the work done to determine 

the therapeutic effect of blocking IL-34 are described in Chapter 3. By using a rat anti-

mouse blocking antibody, the effect of IL-34 blockade on OS development and the 

potential mechanisms by which this is achieved was investigated. Specific aims 

 

1. To set up allograft and xenograft models of OS using mouse (MOS-J) and human 

(MNNG-HOS) OS cells respectively.  

2. To perform a dose-response analysis of IL-34 blocking antibody and evaluate the 

response on tumour growth.  

3. To investigate the treatment effectiveness of anti-murine and anti-human IL-34 

blocking antibody on tumour progression. 

4. To evaluate the impact of combining anti-murine IL-34 with the chemotherapeutic 

agent doxorubicin. 

5. Using a combination of immunohistochemistry and analysis of bone architecture, 

the effects of the treatments and any potential mechanisms on tumour physiology 

are to be investigated.  

 

To study the role of IL-34 in inflammation and its role in the innate immune phenotype, a 

zebrafish knockout model deficient for IL-34 was developed. Chapter 4 includes the 

development and use of CRISPR/Cas9 to generate a zebrafish IL-34 knockout line, and the 

subsequent analysis on the immune phenotype so to establish to role of IL-34 as an 

inflammatory cytokine. Specific aims:  

 

1. To generate an il34 loss of function model and stable mutants using the 

CRISPR/Cas9 mechanism. 

2. To assess the resulting loss of function phenotype in terms of the development and 

function of il34 in larval zebrafish, including the effect on the bone phenotype.  

3. To extend further the knowledge about the expression patterns of il34 in wild type 

zebrafish.  

4. To investigate the effects of il34 deficiency on inflammatory responses and innate 

immune cell populations in larval zebrafish. 
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In a conclusive Chapter 5, the findings from this work are summarized and discussed.  

This chapter also includes the future perspectives for the continuation of the work presented 

here, and possible avenues that can be considered to continue to increase our knowledge 

on the role of IL-34. 
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CHAPTER 2 

EXOSOMES AS COMMUNICATORS IN OSTEOSARCOMA 
AND IN THE TUMOUR MICROENVIRONMENT 
  

2.1 INTRODUCTION 
 

Tumour progression is correlated with a number of molecules released by tumour 

cells into the extracellular space. These target other cells in an autocrine or paracrine 

manner, to induce changes in cells from the same tumour, or to other neighbouring cells 

such as stromal or endothelial cells within the metastatic niche (Jerez et al., 2017). On 

characterisation of the secreted proteome, studies have confirmed that this secretome 

contains molecules supporting cell proliferation, cell migration, survival, angiogenesis, 

immune system evasion and metastasis. These events occur through a set of complex 

mechanisms and a number of pathways, including a “non-classical” mechanism of 

exporting molecules via exosomes and extracellular vesicles (EV’s) (Miller & Grunewald, 

2015). Exosomes are a sub-type of extracellular membrane bound vesicles. The term 

extracellular vesicles (EVs), is a term used to cover different heterogeneous classes of 

membrane-bound vesicles with sizes ranging from 30-2000nm, whereas the term exosomes 

is used to those vesicles restricted to 40-100nm in diameter 

 

The three main types of EVs are; exosomes, microvesicles and apoptotic bodies (Min et 

al., 2016). Exosomes are defined and separated from other vesicles based on their source, 

method of isolation, size and surface markers. Exosomes are thus specifically restricted to 

those vesicles being 40-100 nm diameter. They can be secreted by a wide-range of cell 

types including lymphocytes, platelets, red blood cells and tumour cells, as well as in 

several body fluids such as urine, saliva and blood. They consist of a lipid bilayer 

surrounding a cytosol devoid of organelles, that contains proteins, lipids and nucleic acids 

originating from the cell source and type (J. Liu et al., 2017).  Exosomes are formed by the 
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endocytic pathway, where inward budding of multivesicular bodies occurs, which then fuse 

with plasma membrane to release exosomes into the extracellular space (Figure 8).  

 

 

 

 
 

Figure 8:  Illustration of the biogenesis of exosomes and their composition.  The left panel 
shows a representation of EV biogenesis in which exosomes arise from the inward budding of 
endosomal multivesicular bodies (MVB). MVBs can be degraded upon fusion with the lysosome 
or can release intraluminal vesicles (ILVs) into the extracellular space upon fusion with the plasma 
membrane, being designated as exosomes. On the right, an enlarged exosome showing the 
components in particular, nucleic acids (DNA and RNA species) and they can also harbour a 
plethora of proteins (e.g. adhesion molecules, tetraspanins, cytosolic proteins and endosomal 
sorting complexes required for transport (ESCRT) components). Adapted from Colombo et al., 
2014) 
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2.1.1 Isolation, Detection and Analysis of Exosomes 
 

Exosomes have been successfully isolated from cell culture media, and several body fluids. 

There are several methods by which they can be isolated, however this field is particularly 

challenging due to their small size, high heterogeneity and different sources from which 

they originate. Some of the main considerations that need to be taken into account when 

choosing a method for isolating exosomes are a) high recovery b) purity – should not be 

contaminated and c) integrity – should be kept intact (Rupert et al., 2017). Sample 

collection and processing for exosome isolation is therefore a complex process that 

ultimately depends on the starting material. Due to the nature of the data presented in this 

thesis, only the processing of cell culture medium by differential centrifugation, and 

quantification by TRPS analysis will be covered. Differential centrifugation is regarded as 

the “gold standard” technique for isolating vesicles, at it involves a series of sequential 

centrifugation steps, with increasing force. The popularity of differential centrifugation as 

an isolation technique may be due to its simplicity and short preparation time. Typical 

differential centrifugation of EVs from culture media is shown in Figure 9.  
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Figure 9: Workflow of ultracentrifugation. The scheme represents the workflow for exosomal 
purification by differential centrifugation. Three low to medium-speed centrifugation steps deplete 
the supernatant of cells, debris and contaminating vesicles. Exosomes are then purified and washed 
by ultracentrifugation at 100,000 x g.  

 

 

This method however has several drawbacks, mainly that it produces low yields, and that 

it increases the risk of contamination with proteins and nucleic acids (Théry et al., 2006) . 

As a result, several other techniques have been developed, aimed to improve the isolation 

process and include size exclusion techniques, precipitation methods, affinity binding 

techniques, and microfluidics.  
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At present, exosomes can be detected by a number of methods most common being; a) 

electron microscopy; used to determine their ultrastructure, b) flow cytometry; to analyse 

surface phenotypic markers, and c) western blotting. The major proteins used as markers 

for the detection of exosomes include tetraspanins (CD9, CD63, CD81 and CD82), heat 

shock proteins (HSP70 and HSP90), ESCRT- associated proteins (TSG101), adhesion 

molecules (integrins) and fusion proteins (Annexins) (Min et al., 2016).  

 

The characterisation of exosomes is an area of great contention in the field of EV research, 

that is currently undergoing development. Due to their small size and often complex 

environment, several technical challenges arise when it comes to characterising and 

quantifying exosome samples. Due to this, and added with the limitations of isolating pure 

exosomes, there is no exclusive approach to detected EVs and their characterisation 

requires a combination of techniques. Usually, quantification methods are an added 

measure, especially important when it comes to comparing samples.  
 

Methods for the quantification of EVs rely on both optical or non-optical techniques, and 

are used to quantitate both the size and concentration. This thesis describes the use of 

tunable resistive pulse sensing (TRPS) technology for the quantification and size profiling 

of exosomes. Currently the only platform available for TRPS is the qNano instrument (Izon 

Science, Christchurch, New Zealand). TRPS consists of a non-conductive membrane, 

separating two fluid cells and punctuated with a nano-sized pore. One of the fluid cells is 

filled with particle free electrolyte, and the other with the sample of interest (Figure 10A). 

By applying a combination of voltage and pressure, an electric current is established. When 

the particles transfer through the pore (Figure 10B), the current becomes altered. The 

particles create a  ‘resistive pulse’ or ‘blockade signal’ that is detected and measured by the 

application software. The resistive pulse is proportional to the particle volume (Figure 

10C). The rate at which these blockade signals occur, results in particle concentration. 

Since concentration and rate of blockade are linearly proportional, by using a simple 

calibration sample of a known concentration and size, the concentration and size 

distribution of an unknown sample can be measured (Maas et al., 2014).  
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Figure 10: The qNano instrument and mode of operation  (A) Photograph of the instrument 
showing a nanopore. A shielding cap protects the fluid cells from environmental electrical 
interference. (B) Illustration of tunable resistive pulse sensing (tRPS). A non-conductive elastic 
nanopore separates two fluid cells. Once a voltage is applied, an electric current is established 
through the pore and as EVs pass through the nanopore, the ionic flow is altered and detected as a 
resistive pulse. (C) Example of resistive pulses. The magnitude of a resistive pulse is proportional 
to the volume of the particle (Maas et al., 2014). 

 

 

2.1.2 Role of Extracellular Vesicles in Cancers 
 

The main function of exosomes is to transport their bioactive molecules from donor cell to 

recipient cell for the exchange of genetic material and re-programming of recipient cells.  

This intracellular communication between tumour cells through EVs is a mechanism that 

tumour cells utilise to promote tumour survival and progression. Compiling evidence 

suggests that exosomes play these vital roles through evasion of the immune system, 

modulation of the microenvironment and promotion of angiogenesis and metastasis (Min 

et al., 2016). Each of these mechanisms will be discussed in short below.   
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Tumourigenesis: Tumour cell EVs assist in tumour progression by enhancing stromal re-

modelling. EVs from cancer cells drive the transition of stromal fibroblasts towards a 

myofibroblast phenotype, via the transfer of TGF-b and induction of a-smooth muscle 

actin expression (Liu et al., 2018) (Figure 11). In OS, EVs have been reported to be 

associated with the Wnt/β-catenin signaling pathway. A pathway known to be associated 

with the progression of OS when aberrantly activated driving cell proliferation and 

tumourigenesis. Chen et al. demonstrated that activation of autocrine Wnt/β-catenin 

signaling in the tumor cell-derived EVs would enhance the development and survival of 

OS cells in vitro (Chen et al., 2015).  

 

Immunosupression and/or immunomodulation: Exosomes can lead to immune escape by 

supressing antigen specific responses, or by upregulating immunosuppressive cell 

differentiation. Tumours use EVs to evade immune recognition by shedding the ligand for 

natural killer receptor (NKG2D) thus avoiding the destruction of immune cells by cytotoxic 

NK cells and CD8+ T cells (Clayton et al., 2008) (Figure 11).Transfer of TGF-b by tumour 

derived EVs, additionally, prevents antigen presentation by dendritic cells and promotes 

the transition of CD8+ cytotoxic T cells towards a regulatory T cell phenotype (Clayton et 

al., 2007).  

 

Angiogenesis: Exosomes are also implicated in the induction of neo-angiogenesis and help 

tumours to grow by increasing their metastatic potential. EVs facilitate tumour-mediated 

angiogenesis by targeting expression of VEGF. Breast tumour EVs harbour VEGF as well 

as notch ligand D114 to stimulate local angiogenesis (Figure 11). Alternatively, EVs can 

carry a mutated version of EGFR that is transferred to other tumour cells increasing 

expression of VEGF and oncogenic activity in these cells (Cho et al., 2012). EVs are also 

highly secreted in hypoxic cancer cells and enriched with angiogenic proteins in a hypoxia-

inducible factor (HIF)- dependent manner. As a result, further stimulating tumour-mediated 

angiogenesis in vivo. In OS, Bhattacharya et al. found that TGF-β1-containing EVs 

promoted tumour development and metastasis via angiogenesis (Bhattacharya et al., 2008). 
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Metastasis: As one of the major hallmarks of malignant tumours, metastasis is a complex 

process that involves optimisation of the microenvironment to one that favours both local 

and distant metastasis. Evidence suggests that cancer derived exosomes, selectively 

transfer signals to neighbouring cells to modify the local environment in favour of local 

metastatic conditions, as well as to distant sites via the circulation, assisting in the formation 

of the pre-metastatic niche (Liu et al., 2018).  In melanoma, exosomes have been confirmed 

to accumulate in lymph nodes, to induce recruitment of tumour cells, and remodelling of 

the extracellular space in favour of metastasis. Interchangeably, stromal cells can produce 

exosomes that stimulate cancer cell motility and metastasis by the activation of several 

pathways. Exosomes from bone-marrow derived mesenchymal stem cells induced the 

dormancy of breast carcinoma cells with the effect of reducing proliferation and their 

chemosensitivity to facilitate their survival in the metastatic niche (Ono et al., 2014).  

 

Modulation of microenvironment: Exosomes can modulate and manipulate the 

microenvironment via intracellular communications, and additionally by modulating 

adjacent stromal cells. The consequences of such modifications lead to enhanced tumour 

growth, invasion, and a more malignant phenotype. Stimulating surrounding fibroblast with 

cancer derived EVs towards a myofibroblast-like phenotype, has been shown to be one of 

the major mechanisms by which cancer cells achieve this (Webber et al., 2015). TGF-b 

from EVs, have been reported to trigger the SMAD-dependent pathway to promote 

myofibroblast differentiation with angiogenic responses. For example as seen in breast 

cancer derived exosomes, where adipose derived mesenchymal stem cells stimulated the 

differentiation into myofibroblast like cells that secrete VEGF and stromal derived factor-

1 (SDF-1) to promote tumour progression (Cho et al., 2012). Similarly the transmission of 

the oncogenic protein tyrosine kinase (KIT) in gastrointestinal stromal tumours via vesicles 

to adjacent stroma, has been shown to enhance tumour promoting properties of smooth 

muscle rich stromal cells downstream of KIT. The end result is supported tumour 

invasiveness, and thus further contribution towards the metastatic spread (Atay et al., 

2014).  
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The interplay between tumour and its microenvironment is also described by the actions of 

EVs produced by stromal cells, which can themselves secrete vesicles to contribute to 

changes in the microenvironment. For example fibroblast exosomes promotes the 

migration of breast cancer cells via the uptake of CD81+ exosomes by cancer cells and 

interaction of Wnt11 (Valcz et al., 2018).  

 

 

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 
Figure 11: Diagram illustrating the role of EVs in cancer. The diagram depicts the role of EVs 
in the tumour microenvironment depicting roles in ECM-remodelling, angiogenesis and immune 
evasion. TGF-b = Transforming growth factor-b, VEGF = vascular endothelial growth factor, HIF 
= hypoxia inducible factor, EGFR = endothelial growth factor receptor, D114 = delta-like 4, MSC 
= mesenchymal stem cell, DC = dendritic cell 
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2.1.3 Role of Mesenchymal Derived Extracellular Vesicles  
 
Since exosomes are involved in cell to cell communications, there has been much focus on 

research about exosomes derived from mesenchymal stem cells and their effects on 

diseases, as well as on tumour cells and their microenvironment. This, however comes with 

contrasting views in the literature as both tumour promoting properties, and tumour 

inhibiting effects by MSC derived vesicles have been reported (Yu et al., 2014).  

 

One mechanism associated with tumour promoting effects in vivo, is the ERK1/2 mediated 

promotion of tumour derived VEGF. MSC exosomes in conjunction with tumour cells, 

resulted in increased breast tumour incidence and growth in vivo, via stromal 

myofibroblasts and promotion of angiogenesis (Zhu et al., 2012). In myeloma, a similar 

effect was observed whereby myeloma educated MSC’s release exosomes with a different 

profile of adhesion molecules, oncogenic proteins, and contents capable of promoting 

tumour growth (Roccaro et al., 2013). Contrastingly, bone marrow derived MSC vesicles 

were reported to impair myeloma growth by down-regulating VEGF expression in tumours 

both in vitro and in vivo. Mir-16, a miRNA enriched in MSC derived exosomes and known 

to target VEGF, is responsible for this angiogenic effect (Lee et al., 2013). Also, depending 

on the type of stem cell, the effect on tumour proliferation can be different. Del Fattore et 

al demonstrated that exosomes from bone marrow MSC’s, supressed cell proliferation, 

whilst adipose stem cell derived vesicles exerted the opposite effect. These properties, 

taken together demonstrate the importance of exploring stem cell derived exosomes, and 

thus aim to bridge the gap in the knowledge of how MSC derived vesicles exert their 

biological functions in OS and it’s microenvironment (Del Fattore et al., 2015). 
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2.1.4 Rationale  
 

The roles of exosomes in the biological and pathophysiological processes of OS, are still 

not yet fully understood. Some studies have reported that exosomes derived from OS 

supernatants, are enriched with proteins associated with angiogenesis, cell adhesion, 

immune evasion and cell migration, in comparison to proteins in exosomes from non-

malignant cells (Bracha et al., 2018; Garimella et al., 2014; Ruby et al., 2017)However, 

despite this, there is still a large gap in the knowledge about OS derived vesicles, with the 

molecular mechanisms of how they assist in tumour progression and metastasis needing 

further investigation.  

 

Similarly, although literature on mesenchymal derived exosomes and their biological 

functions in tumours are increasing, there is still nothing known about the interactions of 

MSC derived exosomes with the microenvironment in OS. Much still needs to be 

elucidated about this dialogue, especially in the transfer of contents between host cell and 

recipient cell. Intercepting the environmental factors sustaining OS pathogenesis and 

progression, may therefore increase our knowledge of the field and will be beneficial for 

providing novel therapeutic options.  

 

2.1.5 Aims and Objectives 
 

The general focus of this chapter was to explore extracellular vesicles from OS as a novel 

mechanism of signalling in vitro whilst learning about the current limitations of the field. 

The aims of this chapter where to characterize OS derived vesicles, and determine their 

biological effect on recipient cells. The goal was to better characterize the functional 

communications between OS cells and mesenchymal stem cells, through the contribution 

of exosomes in this dialog.  

 

Specific aims:  

1. To isolate and characterise exosomes derived from OS cell lines as well as 

exosomes from mesenchymal stem cells (bone marrow derived, and adipose 

derived) 



The Role of IL-34 in Inflammation and Osteosarcoma 
________________________________________________________________________ 

___________________________________________________________________________
Chapter 2 – Exosomes as Communicators in OS and in the Tumour Microenvironment 

46 

2. To assess the biological functions of OS derived exosomes on mesenchymal stem 

cells including specifically proliferation, and differentiation of lineage abilities.  

3. To determine whether IL-34 is present in vesicles isolated from OS cell lines, and 

whether it is involved in cell-to cell dialog between OS cells.  

4. To gather more information and study the roles of mesenchymal stem cell derived 

exosomes, and their biological contributions on OS cells with particular focus on 

their protein cargo, proliferation and uptake by OS cells.  
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2.2 METHODS  
 
 
This chapter was carried out in collaboration with the School of Clinical Dentistry under 

the supervision of Dr. Stuart Hunt (School of Clinical Dentistry, Sheffield UK). Thanks to 

this collaboration regular access to qNano system for measurement was possible. 

 

2.2.1 Materials, Reagents and Equipment used 
 
 

A. MATERIALS & REAGENTS 

0.22 µm Vivaspin 500 Filters; VS0161 Sartorius 

96-well plate; 3595 Costar 

Pierce BCA Protein Assay Reagent A; 23221 Thermo-Fischer 

Pierce BCA Protein Assay BCA Reagent B; SZBF3500V  Fluka Analytical 

BSA Protein Standard; P08343 Sigma-Aldrich 

Cell Tracker CM-Dil C7000 Kit Thermo- Fischer 

DMSO; D2650 Sigma-Aldrich 

Dulbecco’s Modified Eagle’s Medium (DMEM), High Glucose 

GlutaMax, pyruvate; 31966 

Gibco 

Foetal Bovine Serum; 10270-106 Gibco 

Hoeschst Solution; 33342  Thermo- Fischer 

Penicillin-Streptomycin (PenStrep), P0781 Thermo-Fischer 

Performaldehyde (PFA); 158127 Sigma- Aldrich 

Phosphate Buffered Saline (PBS);  Gibco 

Pore membrane; NP100A Izon Science 

RIPA Buffer; R0278 Sigma-Aldrich 

Round bottomed 35mm dishes with No 1.5 coverslip; P35G-1.5-20C  Mattek 

SuperSignal West Pico Chemiluminescent Substrate; 34580  Thermo- Fischer 

Cell culture multi-flasks T175; 353143 Falcon 

Trypsin; T4174 Sigma-Aldrich 

Ultra-Clear polycarbonate tubes; 362305 Beckmann Coulter  

VivaSpin 100 kDA MWCO Polyethersulfone tubes; GE28-9322-37 GE Healthcare 

XTT Cell Titer 96Ò Proliferation Assay  Promega 
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B. ANTIBODIES 

Mouse secondary; P0260 DAKO 

Rabbit monoclonal Anti-CD9 Antibody; AB92726 Abcam 

Rabbit monoclonal Anti-Vinculin Antibody;  

AB129002 

Abcam 

Rabbit polyclonal Anti-CD63 Antibody; SC15363 Santa Cruz 

Biotechnology 

  

C. KITS 

Human IL-34 ELISA Kit; P1659 Diaclone 

Proteome Profiler XL Human Cytokine Array; ARY022B  R&D Systems 

  

D. EQUIPMENT 

ChemiDoc XRS Imager; 1708265 Bio-Rad 

Confocal Laser Scanning Microscope; LSM510 Zeiss 

High speed centrifuge ; Avanti J-26 XPi Beckmann Coulter 

Micro-plate reader ; SpectraMax M5 Molecular Devices 

MSE Sanyo Harrier top-bench centrifuge 18/80R Sanyo 

qNano System Izon Science  

Sanyo CO2 Incubator; MCO-20AIC Richmond Science 

Ultracentrifuge; Optima TL-100 Beckmann Coulter 

  

E. SOFTWARE 

GraphPad Prism Version 7 Graph Pad 

Software 

Image Lab Software V5.2.1 Bio-Rad 

Izon TRPS Software (Check version) Izon Science  

Zen Lite Imaging Software  V Zeiss 

 
 
For the duration of this chapter and for any part of the thesis relating to exosomes, the term 

extracellular vesicles (EVs), is used to refer to membrane-bound vesicles with sizes 

ranging from 30-2000nm, whereas the term exosomes is used for those vesicles restricted 

to 40-100nm in diameter 
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2.2.2 Cell Lines 
 
For the following part of the work, exosomes where isolated from four cell lines. Two 

human OS cell lines; MG63 and KHOS, and two primary cell cultures bone marrow derived 

mesenchymal stem cells (BMSCs) and adipose derived mesenchymal stem cells (ASCs). 

Their characteristics and can be summarised in the table below (Table 1) 

 
 

Table 1: Table outlining the cell-lines used for isolation of exosomes.  

 
 MG63 

overexpression 

of Il-34 or 

GFP (control) 

KHOS* 
overexpression 

of Il-34 or GFP 

(control) 

Adipose 
mesenchymal 

stem cells 

(ASCs) 

Bone marrow 
mesenchymal 

stem cells 

(BMSCs) 

Source 14 year-old 

male, OS 

13 year old, 

female, OS 

Human  fat 

samples 

Human bone 

marrow 

aspirates 

Morphology Osteoblast-like Epithelial Spindle shaped, 

fibroblast like 

Spindle 

shaped, 

fibroblast like 

Acquired 

From 

Originally 

ATCC,  

Modified cells 

established by 

Segaliny et al., 

2015; 

Heymann Lab:  

(INSERM, FR) 

Originally 

ATCC,  

Modified cells 

established by 

Segaliny et al., 

2015; Heymann 

Lab:  (INSERM, 

FR) 

STROMALab 

INSERM, 

University of 

Toulouse,  

France  

STROMALab 

INSERM, 

University of 

Toulouse, 

France 

Media for 

culturing  

DMEM + High 

GlutaMax 

(Gibco) and 

10% FBS 

(Gibco) 

DMEM + High 

GlutaMax and 

10% FBS 

a-MEM +  
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*KHOS cells: Cell line derived from HOS by transformation using Kirsten murine sarcoma virus 
(Ki-MSV). Properties are similar to parent HOS and are tumourigenic in mice. This cell line is 
different from MNNG-HOS which is transformed by MNNG (a carcinogenic nitrosamine) and 
is tumourigeneic in nude mice.  
 
 
 

2.2.3 Cell Culturing 
 
Cells were maintained in adherent monolayers in tissue culture flasks T175 flasks, 

(Corning, UK) for production of exosomes in their respective medium. For exosome 

isolation, the medium was supplemented with foetal calf serum (FBS) depleted of 

exosomes by overnight ultracentrifugation. FBS was depleted of exosomes by overnight 

centrifugation at 100,000g at 4 oC, followed by filter sterilisation. For primary cell lines, 

culture media were supplemented with 1% Penicillin-Streptomycin solution (Thermo-

Fischer) to prevent bacterial growth. All cells were grown in humidified 37oC, 5% CO2. 

 

2.2.4 Isolation of Exosomes by Ultracentrifugation 
 

Exosomes were purified from cell culture media following a protocol consisting of 

successive rounds of centrifugation (Figure 9, Figure 12). Cells were first grown to a sub-

confluent state (80%) in exosome-depleted FBS for 72 hours. Conditioned media was then 

collected, and centrifuged at 300 g for 10 minutes in 50 mL centrifuge tubes, followed by 

a centrifuge at 2,000 g for 20 minutes to remove any residual cells (Top-bench centrifuge, 

Sanyo). The supernatant was collected, and centrifuged at 10,000 g for 30 minutes in a 

high-speed centrifuge (J-26 XPi, Beckmann Coulter). This step was to eliminate and 

residual debris in the media.  

The remaining supernatant was then concentrated using 100 kDA MWCO viva protein 

concentrator columns (GE Healthcare) and subjected to centrifugation at 3,500rpm for 

15mins.  To pellet exosomes, the concentrated media was transferred into polycarbonate 

tubes (Beckmann Coulter), and centrifuged at 100,000 g for 60 minutes using a TL-100 

ultracentrifuge (Beckmann Coulter). The pellet was washed once with cold sterile PBS, re-

centrifuged at 100,000 g for 60 minutes and re-suspended in 50 µL of PBS. For long-term 

storage exosome pellets were stored in -80°C. All centrifugations were performed at 4°C. 
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Figure 12: Workflow for isolating exosomes from cell culture media by ultracentrifugation.  

 

 

2.2.5 Sizing and Quantification of Exosomes 
 
Size distribution analysis was performed using the qNano system (Izon Science, New 

Zealand). Samples were diluted (1:5 in PBS) and passed through a 0.22 µm filter 

(Sartorius). TRPS was operated using an NP100A pore membrane (Izon Science), applied 

pressure of 10cm, and voltage of 0.5V. The sample was recorded for a minimum of 600 

blockade events. Sample size distributions were calibrated by Izon Control Suite 2.2 using 

beads of known size, diluted in PBS and measured at identical settings. Data was analysed 

with TRPS software (Izon Science) to calculate the size and concentration of the particles.  
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2.2.6 Estimation of Protein Concentration by BCA Assay 
 

The BCA protein assay was used to measure the amount of proteins present in the purified 

exosomes, thus giving an idea of the total amount of exosomes secreted by the cells. 

Isolated exosomes were re-suspended in lysis buffer in the presence of protease inhibitors 

(5x RIPA Buffer, Sigma Aldrich), sonicated for a few seconds to permeabilise the vesicles, 

and left on ice for about 15 minutes.  

For the standard curve, serum albumin was diluted to concentrations ranging between 0-

1000 µg/mL. Exosome samples were diluted with lysis buffer and made into working 

solutions of not larger than 20 µL. BCA reagent was prepared by mixing 50 parts of BCA 

reagent A, with 1 part of BCA reagent B. Following that, 20 µL of standards and diluted 

samples were pipetted out on a 96-well plate, and 200 µL of reagent was added to each. 

The plate was incubated at 37oC for 30 minutes after which the absorbance was measured 

at 540 nm by a plate reader (SpectraMax M5, Molecular Devices).  

 

2.2.7 Immunodetection by Western Blotting 

Exosomal surface markers CD63 and CD9 were examined by western blot analysis. Based 

on the BCA estimate of protein concentrations, around 5 µg of exosome sample, was 

resolved by 12% SDS-PAGE and transferred to a polyvinylidene difluoride (PVDF) 

membrane. To prevent unspecific antibody binding, the membrane was blocked for 1h with 

5% dry milk. After blocking, the membrane was incubated with the primary antibodies 

diluted in 2.5% milk over night at 4o C. CD9 antibody (Abcam, Ab 92726) was incubated 

at a dilution of 1:2000, whereas CD63 antibody (Santa Cruz Biotechnology SC: 15363) 

was used at a dilution of 1:200. Vinculin antibody (Abcam, Ab129002) was used as a 

loading control (1:2000) The following day, membranes were incubated for 1 hour with 

horseradish peroxidase (HRP)- conjugated secondary mouse antibody at 1:2000 (Dako). 

Immunoreactive protein bands were visualized using the Super signal west-pico 

chemiluminescence detection kit (Thermo Scientific), and imaged using a ChemiDoc 

XRS+ Imager (Bio-Rad).  
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2.2.8 Proliferation Assays 

Proliferation assays were used to study the biological effects of cellular communication 

and interaction between stem cells and tumour cells via exosomes. To set up the assays, 

cells were seeded in 96-well plates and cultured to 50-60% confluency. For cell densities, 

ASC cells were seeded at 2,000 cells/well, MG63 cells (parental cell line) seeded at 2,000 

cells/well and KHOS (parental) cells seeded at 1,000cells/well. The next day, media was 

removed and exchanged with fresh media containing the purified vesicles. Each of the 

following experiments were performed in triplicate. 

• Experiment 1 – Adipose derived stem cells (ASCs) treated with OS exosomes from 

MG63-IL-34 and MG63-GFP (ctrl) (3 serial dilutions 1:1, 1:2 and 1:4 for each) – 

also treated with respective conditioned media (prepared over 24hrs) 

• Experiment 2 - Adipose derived stem cells (ASCs) treated with OS exosomes 

coming from KHOS-IL-34 and KHOS- GFP (ctrl) (3 serial dilutions 1:1, 1:2 and 

1:4 for each) - also treated with respective conditioned media (prepared over 24hrs) 

• Experiment 3 – KHOS cell line treated with ASCs derived exosomes (5 serial 

dilutions 1:1, 1:2, 1:4, 1:8 and 1:10) 

• Experiment 4 – OS cell line MG63 treated with ASCs derived exosomes (5 serial 

dilutions 1:1, 1:2, 1:4, 1:8 and 1:10) 

For all experiments cells where serum starved 24hrs prior to treatment. Cells cultured with 

no vesicles, (only 2% FBS) served as a control, whereas cells in 10% FBS were used as 

positive control. 5% DMSO was used as an additional control. XTT assay (Promega) was 

done and read at 24hrs, 48 hrs and 72hrs. The XTT assay is based on the cleavage of a 

tetrazolium salt XTT, in the presence of an electron coupling reagent, to produce a soluble 

formazan salt. A conversion that occurs only in viable cells. Absorbance was measured at 

570 nm using SpectraMax M5 (Molecular Devices) plate reader.  
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2.2.9 ELISA 

Enzyme-linked immunosorbent assays (ELISA) was used to quantify the levels of IL-34 in 

MG63 and KHOS derived exosomes, in comparison with their respective cell lysates, and 

conditioned medium. Exosomes were derived from KHOS and MG63 cell lines 

overexpressing IL-34 and GFP as previously described. Isolation of exosome contents was 

performed by addition of lysis buffer and sonication as previously outlined.  

The human IL-34 cytokine sandwich ELISA was purchased from Diaclone (France). All 

experiments were performed in triplicate, and according to the manufacturer’s protocol. 

Briefly, samples and standards were added into the plate and incubated at room temperature 

for 2 hours. Wells were then washed with wash buffer, and left with biotinylated anti-IL-

34 antibody for 1 hour at room temperature. Streptavidin - horse radish peroxidase (HRP) 

was then used for detection by adding 100 μL to each well, and left to incubate for 30 

minutes. For detection, the substrate solution was added and samples were left to incubate 

with it for 25 minutes (away from any direct light). At the end, the colour-change reaction 

was halted by adding 100 μL of stop solution.  

Plates were subject to measurement of absorbance at 450 nm and 650 nm (for wavelength 

correction) using the SpectraMax M5 (Molecular Devices) plate reader. Wavelength 

correction adjusted results to account for any optical imperfections in the plate. All 

measurements occurred within 10 minutes from completion of the assay. Cytokine 

standards provided with each kit were used to produce standard curves and determine 

unknown concentrations. The standard curve was generated by plotting the log of mean 

absorbance for each standard against the log of its known concentration (to produce 

linearized data).  
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2.2.10 Internalization of Exosomes  

 

2.2.10.1 Fluorescent staining of exosomes  
 

Imaging of in vitro transfer of adipose stem cell derived exomes to either KHOS or MG63 

OS cells was performed so as to visualize the internalization of exosomes. To achieve this, 

the exosomes were fluorescently labelled using a lipophilic membrane dye that 

incorporates within the lipid membrane of the vesicles.  

 
ASCs derived exosomes were labelled using the Cell Tracker™ CM-DiI C7000 Kit 

(Thermo-Fischer), according to the manufacturer’s recommendations. In brief, 1mg/ml of 

dye solution was resuspended in PBS to make the stock solution. 2 µl of the stock labelling 

solution was then mixed with 1mL of exosome suspension (exosomes re-suspended in 

sterile PBS) and transferred to an eppendorf tubes, covered with foil to keep light away, 

and incubated for 10 minutes at 37°C. After labelling, samples were washed with PBS and 

centrifuged at 100,000 g for 1hour at 4°C. A control was prepared by adding CM-Dil 

solution to PBS. Controls were prepared in parallel with exosomes. The exosomes were 

then resuspended in 200 µL of exosome depleted media. To remove any un-bound dye, 

labelled solutions where filtered through 100K MWCO centrifugal exosome filters (GE 

Healthcare).  

 

2.2.10.2 Co-culturing stained exosomes  
 

The MG63 and KHOS cells were plated in round-bottomed 35 mm dishes with No 1.5 

coverslip  (Matek) (seeded at 5,000 cells per dish) 24 hours prior to exosome addition. The 

cells were incubated in DMEM media supplied with exosome depleted FBS. After cells 

were allowed to settle, the media was replaced with 200 μL of labelled exosome 

suspension, and left to settle for 1 hour. The dishes where then topped up with more media 

and left to incubate for the time required (6 hours or 24 hours) after which they were 

labelled with a nuclear stain and fixed.  

For fixing, the media was first removed and the cells were washed with PBS after which 

they were fixed with 4% paraformaldehyde for 15 min at room temperature. The cover slips 

were then mounted on a cover glass using Hoechst Solution (1:10 dilution) (Thermo 
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Scientific). Pictures were taken using a confocal laser microscope Zeiss LSM510 (Zeiss 

MicroImaging GmbH) with 40x/1.3 oil immersion objective.  

 

2.2.11 Cytokine Profile of Exosomes  

The Proteome Profiler Human XL Cytokine Array Kit (R&D systems), was used to 

simultaneously analyse the cytokine content in the exosomes. These nitrocellulose 

membranes are pre-embedded with capture antibody spots that bind to specific target 

proteins present in the sample. Captured proteins can then be detected with biotinylated 

detection antibodies, and visualised using chemiluminescent detection reagents. The signal 

produced is proportional to the amount of protein bound.  

Exosomes derived from BMSCs and ASCs were purified and permeabilised, and protein 

content measured by BCA assay. The cytokine array procedure was performed according 

to manufacturer’s protocol. As per its consideration, 50 μg of total exosomal protein, was 

loaded onto each membrane. Samples were prepared by diluting the desired quantity 

(according to results of BCA assay) to a final volume of 1.5 mL with array buffer 6. 

Membranes were then incubated (on a rocking platform) in sample solutions overnight at 

2-8°C. Following this incubation, membranes were washed with wash buffer and incubated 

with detection antibody cocktail buffer for 1 hour. After another set of washes, membranes 

were covered with streptavidin-HRP followed by coverage in chemiluminescent reagent, 

spread evenly only to membrane, and incubated for 1 minute.  

Membranes were imaged using a ChemiDoc XRS+ Imager (Bio-Rad). Intensities of 

samples on the membrane (pixel density) were quantified using Image Lab Software (Bio-

Rad) Raw output was given as mean pixel density. Assays were normalised to the pixel 

density of the reference spots for consistency between membranes.  
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2.2.12 Differentiation of Mesenchymal Stem Cells  
 

This part of the project was done in collaboration with Dr. Frederic Deschaseaux and Jean-

Gerard Descamps from STROMALab (https://www.stromalab.fr/) at the French National 

Institute for Health and Medical Research (Inserm),  University of Toulouse, France.  

 

To identify the potential effects of OS derived exosomes on stem cells, the phenotype of 

undifferentiated mesenchymal stem cells following the addition of OS exosomes was 

studied. Exosomes derived from MG63 and KHOS were added to the cultures and lineage 

markers were evaluated by RT-PCR at day 3 or day 7 (RT-qPCR method outlined in 

Zebrafish section 4.2.4.5). The transcript analysed (see Table 2), were associated with 

osteoblastic, chondroblastic, and adipocytic phenotypes, that is characteristic of their 

differentiation abilities.  

 

2.2.13 Statistical Analysis 
 

Data were analysed using GraphPad Prism (version 7.0) software (Graphpad). N numbers 

for all experiments donated by the prefix n and all errors bars shown denote the mean ± 

Standard error of the mean. All data analysed with either T test, or a two-way ANOVA 

with Dunnett’s multiple comparison test, for parametric data..  Significance values denoted 

as follows: Non-significant (ns): p > 0.05, *: p<0.05, **: p<0.01, ***: p<0.001 and 

****:p<0.0001.  
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Table 2: List of primers to analyse the differentiation of mesenchymal stem cells by RT-
qPCR.  

 Forward Primer Reverse Primer 

Osteoblastic 

RUNX2 5’-GGC CCA CAA ATC TCA 

GAT CGTT-3’ 

5’ -CAC TGG CGC TGC AAC 

AAG AC-3’ 

DLX5 5’-GCC ACC AAC CAG CCA 

GAG AA-3’ 

5’-GAC GAG AAG AAT TAC 

CAG GGA AAC A-3’  

PTHR1 5’-ACA TCT GCG TCC ACA 

TCA GGG-3’ 

5’-CCG TTC ACG AGT CTC ATT 

GGT G-3’ 

SP7 (osterix) 5’-CTC CTG CGA CTG CCC 

TAA T-3’ 

5’-GCC TTG CCA TAC ACC TTG 

C-3’ 

BGLAP 5’-GAG GGC AGC GAG GTA 

GTG AAG A-3’  

5’ -CGA TGT GGT CAG CCA 

ACT CG-3’ 

Chondroblastic 

COL2a1 5’ – CTG CAA AAT AAA ATC 

TCG GTG TTC T – 3’ 

5’ – GGG CAT TTG ACT CAC 

ACC AGT- 3’ 

COL10 5’- GGT ATA GCA GTA AGA 

GGA GAG CA-3′ 

 

5’- AGG ACT TCC GTA GCC 

TGG TTT-3′ 

 

Sox9 5’ -CAA GAC GCT GGG CAA 

GCT CT-3’ 

5’ -TCT TCA CCG ACT TCC TCC 

GC-3’ 

Aggrecan 5’- CCT CTG GAC AAC CAG 

GTG TT-3’ 

5’- AAA CCA GCT CAG GGA 

CTC CT-5’ 

Adipocytic 

AP2 5′-GGC ATG GCC AAA CCT 

AAC AT-3′ 

 

5′-TTC CAT CCC ATT TCT GCA 

CAT-3′ 

 

PPARG2 5’ -AAG GCG AGG GCG ATC 

TTG AC-3’ 

5’ -GCA GGG GGG TGA TGT 

GTT TG-3’  
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2.3 RESULTS 
 

The aim of this chapter was to characterize OS derived exosomes and better study the 

functional communications between OS cells and their environment with a specific focus 

on the contribution of mesenchymal stem cell derived vesicles in this dialog. The work 

detailed in this chapter was conducted at the beginning of my PhD as I was learning about 

the practicalities of working with extracellular vesicles and the field-wide lack of 

standardization. The lab was fortunate to have regular access to the qNano system at the 

School of Clinical Dentistry (University of Sheffield). This presented a good opportunity 

to not only to make use of a novel technique in the field of EVs, but also to learn about the 

relative benefits and weaknesses related to this emerging field. These results are therefore 

preliminary and focused towards methodological aspects and considerations of processing 

EVs. 

 
 

2.3.1 Cell Origin  
 

The EVs investigated in the initial part of the study were isolated from human MG63 and 

KHOS cell lines. The cells were cultured in exosome-depleted serum, since FBS contains 

high levels of naturally occurring exosomes. This would otherwise be problematic on 

analysing the vesicles as background signal from exosomes in FBS would make it difficult 

to distinguish which vesicles are being secreted by the cells of interest, and which are 

secreted by FBS, and could thus lead to skewed results. Cells were cultured in exosome 

depleted FBS 28-48 hours prior to EV harvest (depending on initial seeding density). EVs 

were also isolated from human BMSCs and ADSCs (See section 2.3.9). Similar culture 

conditions were applied, with the difference that incubation in exosome depleted FBS was 

longer (24-72 hours) owing to the slower growth rates of these primary cells.   
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2.3.2 Isolation of Extracellular Vesicles and Associated Limitations 
 

Cell culture media was collected and processed as explained in the materials and methods 

section. The approach used for isolation of exosomes was based on ultracentrifugation, and 

the procedure was optimised throughout the study. The main steps however were a series 

of low-speed serial centrifugation steps to remove dead cells and debris, followed by high-

speed ultracentrifugation to pellet the vesicles. Based on several reports, this method can 

increase the risk of contamination and can have a negative impact on the integrity of the 

vesicles collected (Rupert et al., 2017; Théry et al., 2006). This is because the sample may 

also contain soluble proteins and protein aggregates that deposit with the vesicle pellet. 

Therefore some regard this method as less reliable for obtaining vesicles. There is still a 

lack of standardisation in this field due to the variety of biological resources from which 

EVs can be derived. Despite this, it was decided to use this conventional method for ease 

of comparison to the literature.  

 

Another major limitation when it comes to characterising the exosomes, is the storage and 

processing of the samples. Again, a lack of standardisation makes comparisons between 

studies difficult. Therefore, for these steps of the experiments, we aimed to tackle some of 

the issues encountered with sample preparation and storage in relation to exosome size and 

concentration. 

 

Since exosomes are classified as being submicron, a 0.22 μm filter was used to remove any 

potential contaminants from the suspension prior to TRPS analysis. On analysis, an 

NP100A pore membrane was used. The choice of nanopore for the TRPS analysis was 

based on previous experiments by the team of Dr. Stuart Hunt (Peacock et al., 2018). Other 

than pore size, other factors affecting the yield and concentration of samples are freezing 

and filtering prior to analysis. Freezing was found to greatly reduce the concentration, and 

so did filtering. However unfiltered and fresh exosomes could not be detected due to 

frequent pore blocking, so filtering had to be performed.  
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2.3.3 Size and Concentration Analysis of Exosomes by TRPS 
 
Since different types of EVs can have a wide range of sizes, their size was utilized as a 

means for their identification and classification. Typical analysis generated by TRPS for 

EVs derived from IL-34- or GFP- overexpressing MG63 and KHOS cells, are illustrated in 

Figure 13. TRPS analysis gave measurement of the size distribution (nm) and concentration 

of EVs (particles/mL). This data shows that the vesicles isolated from both cell lines have 

a similar particle diameter ranging from 50-300nm, with the majority falling within the 

range of 50-100 nm, which is equivalent to the classification size for exosomes. 

 

The average size distribution profiles of isolated exosomes as determined by TRPS, is 

shown in Figure 14. There was no significant difference between the size of exosomes 

isolated from GFP-overexpressing KHOS (KHOS-GFP) and IL-34-overexpressing KHOS 

(KHOS-IL-34) cells (78 nm vs 80 nm, p=0.4380, SD = 3.6 Fig.14a). In contrast, the mean 

particle diameter for control MG63 was slightly higher than the exosomes from IL-34 

overexpressing cells  (64 nm vs. 75 nm, p value = 0.0181, SD = 2.5 Fig.14b).  

 

Next, the concentration of the isolated exosomes per cell after 24 hours was determined for 

each cell line. An estimation of the maximum amount of exosomes that can be produced 

from these cells was required, so that these values can then be used for future work, for 

example when using these exosomes to treat other types of cells. Conditioned media 

following 24 hours of incubation in exosome-depleted serum was collected, and the yield 

was calculated by TRPS as illustrated in the figure below.  The data sets reveal that the 

highest yield of exosomes was generated from KHOS-IL34 cells with 1742 extracellular 

vesicles/cell compared to 628 vesicles/cell for KHOS-GFP (p = 0.0265, SD = 320.4, Fig 

14c). In comparison, the MG63-IL34 cells yielded 447 particles per cell while MG63-GFP 

cells had 1010 particles (p = 0.0025, SD= 48.64 Fig14d). As shown in this data the presence 

of IL-34 did to some degree interfere with the concentration of the exosomes.  
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Figure 13: TRPS analysis of exosomes isolated from OS cell lines. EVs were isolated from cell 
culture media of (A) KHOS-GFP, (B) KHOS-IL-34  (C) MG63-GFP and (D) MG63-IL-34. 
Histograms are the result of the analysis of a minimum of 500 individual EV events. The size 
distribution is correlated to the concentration (particles / mL) of that sized particle in the sample. 
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Figure 14: Size distribution and concentration profiles of exosomes. Panel A-B : Scatter plots 
for mean diameter in nanometers (nm) of exosomes isolated from KHOS and MG63. Panel C-D: 
Scatter plots for yield of exosomes showing the number of EVs/cell for HOS and MG63 after 24 
hours in culture. Data is presented as ± SEM and n=3. Analysis by paired t-test, * p < 0.05, ** 
p<0.01 and ns = not significant.  
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2.3.4 Analysis by Western Blot 
 

Following identification of size by TRPS, samples were next analysed by western blotting 

for well characterised exosomal markers CD63 and CD9. These tetraspanins are known to 

be specific, and present on the surface of most exosomes. Results are shown in Figure 15 

confirming that CD63 and CD9 positive exosome populations were recovered with 

ultracentrifugation. Taken together, these results demonstrate that the protocols used, 

successfully isolated CD9+, CD63+ exosomes of 50-100 µm diameter from human OS cell 

lines.  

 

 

 
 

 
 

 

 
 

 
 
 

Figure 15: Western blot of CD63 and CD9. MG63 and KHOS derived exosomes expressed 
exosomal markers CD63 and CD9 as shown by Western blot.  
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2.3.5 Quantification of Exosomes 
 

To measure the total amount of exosomes (proteins) present in the prepared exosome 

suspensions, the Bradford protein colorimetric assay was used. This gave an estimate of 

the amount of exosomes secreted by the cells, and needed as a quantitative measure for 

when preparing exosome samples for immunoblots. This method is currently the most 

common way of quantifying EVs in the literature (Théry et al., 2006), and is used to also 

quantify vesicles before they are added to other cells, in several activity assays 

(proliferation, migration, survival etc). 

 

This method however, may have bias as EV samples may also contain soluble proteins and 

other protein aggregates, leading to errors in the quantification. This is an area of great 

contention in the EV field, where lack of standardisation makes comparisons difficult to 

interpret. Therefore, for the following experiments exosomes were quantified in terms of 

their concentration (vesicles/ml) as determined from the TRPS analysis, rather than as total 

protein content. 

 

 2.3.6 Osteosarcoma Derived Exosomes and Their Effect on the Proliferation of 
ADSCs 
 
Given the relationship between tumour and stromal cells in tumour microenvironment, we 

aimed to determine whether exosomes from the OS cell lines, are able to influence the 

proliferation of adipose stem cells.  We examined the effects of treating ADSCs with OS-

derived exosomes; GFP- and IL-34-MG63 and KHOS overexpressing cells. Proliferation 

of adipose stem cells was measured in the presence of three different dilutions of exosomes 

(1:1, 1:2, 1:4), and conditioned media (C.M.) from the respective cell line prepared over 24 

hours. Additionally, we examined the effect of proliferation of the ADCS treated with 5% 

DMSO for negative control, 10% FBS for positive control and no EVs (CTRL, 2% FBS) 

to assess proliferative effects in serum deprived conditions.  
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From the graphs presented in Figure 16, exosomes from OS did not modulate the 

proliferation of ADSCs at any of the concentrations applies. A two-way ANOVA with 

Dunnett’s multiple comparison test, showed no significance between the optical density 

reading for either KHOS GFP/IL-34 or MG36 GFP/IL-34 derived exosomes (Figure 16). 

A significance was observed for the positive control (10% FBS) for each time point – 24, 

48 and 72 hours indicating that as expected ADSCs with supplemental media proliferate at 

a higher rates than those supplied with normal media (No EVs). 

 

However, OS cell conditioned media, effectively proliferates the adipose stem cells. 

Conditioned media from respective cell lines, had a positive effect on the proliferation 

rates, with the highest increase in optical density 24 hours after the media was added. This 

result suggests that conditioned media contains stimulatory factors to proliferate ADSCs, 

and in fact this effect has also been observed and reported in a similar study (Palumbo & 

Li, 2012
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Figure 16: Effect of OS derived exosomes on proliferation of ADSCs. ADSCs were exposed to 
exosomes from osteosarcoma cell lines (A) MG63 GFP (B) MG63 Il-34 (C) HOS GFP and (D) 
HOS IL-34 in three decreasing dilutions (1:1, 1:2, 1:4) and conditioned media from respective cells. 
ADSCs were also supplemented with media containing no exosomes, 10% FBS (positive control), 
and 5% DMSO (negative control). Cell proliferation was assessed at different time points (0, 24, 
48 & 72 hrs) by XTT assay and quantified by a microplate reader. Data is presented as mean ± 
SEM, and n=3. P values calculated by two-way ANOVA with Dunnett’s multiple comparison tests. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

 
 

2.3.7 Detection of IL-34 in Exosomes by ELISA 
 

Despite the fact that knowledge on the involvement of IL-34 in the pathogenesis of OS is 

expanding, little is known about the functional communications of this cytokine in the 

microenvironment of OS or of any other cancer types. In parallel, since vesicles are 

emerging as some of the main protagonists in this dialog, the next step was to investigate 

whether the exosomes obtained from OS cells contained IL-34. For this a human enzyme-

linked immunosorbent assay (ELISA) was used.  

 

Exosomes purified from MG63 and KHOS cell lines overexpressing IL-34 or GFP, were 

assessed. For comparison, we used lysates from each of the respective cell lines, as well as 

lysates from parental MG63 and KHOS (not overexpressing) and HOS-GFP cell lines. 

Based on the ELISA results, there was no detectable IL-34 in the exosomes derived from 

OS cells overexpressing IL-34. In comparison, as expected, the lysates from their cell lines, 

marked positive for IL-34 with MG63-IL-34 having 160 pg/mL of IL-34 and IL34-KHOS 

having a mean of 580 pg/mL (Figure 17). This data indicates that internalisation of 

cytokines and associated proteins, is far from random, but is a complex event dependent on 

cell source, biogenesis and culturing conditions.  

 
Following the results from this analysis, any plans to study the role of EVs and the 

contribution of IL-34 in this dialog were put on hold, and instead the focus was shifted on 

the role of primary cells in the cross communication between their exosomes and the 

microenvironment  in OS.  
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Figure 17: ELISA of IL-34 from osteosarcoma derived exosomes. To determine concentration 
of IL-34, 100ul of GFP/IL-34-KHOS and GFP/IL34-MG63 exosomes were subject to ELISA. In 
comparison, cell lysates from the respective cell lines were also tested. (A) Standard curve of known 
concentrations of human IL-34 (B) ELISA results showing concentration of IL-34 in exosomes and 
lysate samples. Data were normalised for total protein content. Results represent the mean ± SEM 
obtained from n=3 exosomes or lysate samples.  
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2.3.8 Exosomes Isolated from OS cells, Induced the Commitment of BMSCs and 

ADSCs Towards Adipogenesis 
 
Based on the previous ELISA results, IL-34 did not seem to be present in the exosomes 

isolated from KHOS or MG63 Il-34 overexpressing cells. Therefore the experiments that 

followed from this point forward, were more focused on the relationship between 

osteosarcoma cells and their microenvironment rather than on the role of IL-34 and 

extracellular vesicles in osteosarcoma.  

 

In the next analysis, the influence of OS derived exosomes on the differentiation of BMSCs 

was examined. Exosomes were purified from KHOS cells and cultured with naive BMSCs, 

with or without KHOS exosomes for 7 days. Gene expression of factors associated with 

MSC differentiation- osteogenic, chondrogenic and adipogenic factors were assessed at 

days 3 and 7 by RT-qPCR (Figure 18). This experiment was performed by Dr. Frederic 

Deschaseaux and Jean-Gerard Descamps from STROMALab (https://www.stromalab.fr/) 

at the French National Institute for Health and Medical Research (Inserm),  University of 

Toulouse, France.  

 

Data shows that the exosomes increased differentiation into adipocytes by upregulating 

gene expression of adipogenic factors. AP2 and PPARG2 were evaluated after 7 days of 

stimulation by the exosomes (Figure 18C). This indicated that EVs derived from OS 

promote adipogenic differentiation on MSCs. On the other hand, no effects were noted for 

chondroblastic differentiation whereas for osteoblastic differentiation, it can be noted that 

the osteogenic markers decreased on day 7 when treating with OS derived vesicles.  
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Figure 18: RT-qPCR of MSC lineage markers after co-culture with OS derived exosomes. 
Exosomes from KHOS cells were added into cultured MSCs, after differentiation into (A) 
osteoblastic, (B) Chondroblastic and (C) Adipogenic lineages. Exosomes were added (+) or not (-) 
into the cultures and lineage markers were evaluated by RT-qPCR at day 3 or day 7.  
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The next part of the results, are preliminary investigations on the two-way communication 

between OS and its microenvironment through exosomes derived from BMSCs and 

ADSCs. Human mesenchymal stem cells were isolated from human bone marrow aspirates, 

while adipose derived stem cells were obtained from human fat samples removed from 

patients who underwent abdominal liposuction in the plastic surgery department (Dr 

Frédéric Dechaseaux, Toulouse, FR). These cells were cultured and harvested for 

exosomes, with the methods described in previous section. The influence of BMSCs and 

ADSCs derived exosomes on the proliferation of OS cells, as well as their trafficking and 

protein composition are presented below.  

 

2.3.9 Isolation of Exosomes From BMSCs and ADCSs  
 

Similarly to previous experiments, exosomes were isolated from cell culture supernatants 

of BMSCs and ADSCs after incubation in exosome free serum for 72 hours. Following 

purification of the media by ultracentrifugation, the exosome pellet was analysed by TRPS 

for confirmation of size and concentration of exosomes (Figure 19). It could be noted that 

in comparison to OS cells, these primary cells secrete less exosomes, probably due to the 

lower proliferation rates that is characteristic of these cells.  
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Figure 19: TRPS analysis of exosomes isolated from ADSCs and MSCs. TRPS results for  (A) 
Adipose derived mesenchymal cells and (B) bone marrow derived mesenchymal stem cells. 
Histograms are the result of the analysis of a minimum of 500 individual EV events. The size 
distribution is correlated to the concentration (particles /mL) of that sized particle in the sample. 
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2.3.10 Exosomes from ADSCs Are Incorporated Into Osteosarcoma Cells. 
 

To investigate whether exosomes from ADSCs can interact with OS cells, purified ADSC 

derived exosomes were labelled with a fluorescent dye (CM-Dil) prior to incubation with 

MG63 and KHOS cells. The cells were labelled with DAPI to visualize the nuclei, and 

cellular uptake of the exosomes was performed by confocal laser microscopy. CM-Dil 

labelled exosomes, were internalised by both OS cell lines, whereby exosome 

internalisation was observed from 6 hours, up until 24 hours from incubation, implying that 

exosomes derived from primary cells can be internalised by OS tumours (Figure 20 and 

Figure 21). 
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Figure 20: Exosome mediated communication between ADSC’s and osteosarcoma cells. Exosomes isolated from culture supernatants of ADSCs were 
labelled with CM-Dil dye (red) and incubated with OS cells MG63 and KHOS for 24 hours. Nuclei were counterstained with DAPI (blue). Original 
magnification: x40 
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Figure 21: Confocal images of ADSC exosomes after incubation with OS cells. ADSC 
exosomes were co-cultured for 24hours with A) KHOS and B) MG63 cells. Blue: nuclei observed 
by DAPI staining, Red : exosomes. Magnification x40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A) KHOS + ADSCs exosomes B) MG63 + ADSCs exosomes 
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2.3.11 Mesenchymal Derived Exosomes and Their Effect on the Proliferation of 
Osteosarcoma Cells 
 
Next, to study the role of exosomes derived from primary stem cells on OS proliferation, 

we added preparations of these vesicles to MG63 and KHOS parental cell lines, and 

monitored proliferation rates by XTT assay. Proliferation was measured without exosomes 

present (No EVs) and in the presence of different dilutions of exosomes (1:1, 1:2, 1:4, 1:8 

and 1:10). Additionally, we examined the effect of proliferation of the OS cells treated with 

5% DMSO for negative control, 10% FBS for positive control.  

 

Exosomes from ADSC cells, significantly increased the proliferation of MG63s in a timely 

(increase from 0 till 72 hours) (Figure 22A). This result can be examined in comparison to 

when no vesicles were supplied (control), confirming that the increase detected was an 

effect of exosomes. On the other hand, no difference in KHOS proliferation rates were 

observed between treatment with ADSCs derived exosomes in comparison to control 

(treatment with no exosome) (Figure 22B).  These data demonstrate the involvement of 

exosomes in stem cell induced promotion of OS proliferation, and the cross-communication 

involved between these cell types 
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Figure 22: Effect of ADSCs derived exosomes on the proliferation of osteosarcoma cells. OS 
cells (A) MG63 and (B) KHOS were exposed to exosomes from ADSC cells in five decreasing 
dilutions (1:1, 1:2, 1:4, 1:8 and 1:10) OS cells were supplemented with media containing no 
exosomes (No EVs, CTRL) 10% FBS (positive control), and 5% DMSO (negative control). Cell 
proliferation was assessed at different time points (0, 24, 48 & 72hrs) by XTT assay and quantified 
by a microplate reader. Data is presented as mean SEM, and n=3. P values were obtained by two-
way ANOVA with Dunnett’s multiple comparison test, ****p < 0.0001 
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2.3.12 Analysis of Exosomes Content from BMSCs and ADSCs 
 

Previous studies have shown that EV cargo is loaded with specific protein, mRNA, 

miRNAs, and lipids that may be transferred to target cells. The composition of these 

exosomes is still understudied, especially with regards to mesenchymal stem cells derived 

vesicles. To identify and characterise cytokines and chemokines that may play roles in the 

cross-communication in the tumour microenvironment, or by autocrine ways a human 

cytokine array was utilised.  

 

Exosomes were purified from cell culture supernatants of BMSCs and ADSCs, and treated 

with RIPA buffer, to permeabilise their membranes and release the contents. The BCA 

assay was then used to quantify the protein content. The resulting supernatants were 

assayed for cytokine/chemokine levels, using a human cytokine array kit. Pixel densities 

for the different array proteins were defined and plotted (Figure 23). Both bone marrow 

and adipose derived mesenchymal stem cells released measurable levels of Serpin E1, 

Thrombospndin-1, Endoglin, Pentraxin-3, IGFBP-3, Osteopontin, IL-8, IL-6, IL-17A and 

FGF19 (Table 3). These results indicate that mesenchymal stem cells contain a specialised 

cargo and are able to exchange cytokines through exosome secretion and uptake. Refer to 

appendix for full list of cytokines.  
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Figure 23: Cytokine and chemokine profile of exosomes released from BMSCs and ADSCc 
Exosomes from primary cell lines were purified by ultracentrifugation and 50ug of total exosomal 
protein was harvested for immune cytokines using the Proteome Profiler Human XL Cytokine 
Array. (A) Cytokine array comparing content between ADSCS and BMSCS (B). The pixel densities 
for each spot were calculated using Image J software and plotted. (see supplemental Table 1 for 
arrangement of ABS on the array, and appendix for full list of cytokines).  
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Table 3: Table highlighting the characteristics of the cytokines found in BMSCs and ADSCs 
exosomes by cytokine profile array  

 
Serpin E1 Serine protease inhibitor, often found upregulated in 

migratory cancer cells (Humphries et al., 2019) 
Thrombospondin-1 A glycoprotein with anti-angiogenic functions. In OS, 

TSP-1 overexpression inhibited angiogenesis and 
tumour growth (Jian et al., 2019) 

Endoglin Membrane glycoprotein with a central role in 
angiogenesis, therefore important for tumour growth, 
survival and metastasis (Tian et al., 2017) 

Pentraxin-3 Glycoprotein induced by pro-inflammatory cytokines 
thus a modulator of inflammation in tumours, correlated 
with grade and severity of tumours (Giacomini et al., 
2018) 

Insulin-like growth factor-
binding protein 3 
(IGFBP-3) 

Stimulates cell proliferation but also inhibits apoptosis. 
A combination of these mitogenic and antiapoptotic 
effects has a profound impact on tumour growth (Yu & 
Rohan, 2018) 
 

Osteopontin Extracellular matrix glycoprotein implicated in the 
pathogenesis of a variety of disease states, including 
cancer, and several chronic inflammatory diseases (Lund 
et al., 2009) 
 

Interleukin-8 
(IL-8) 

Cytokine that is a mediator of inflammation and acts as 
a chemoattractant for neutrophils and T-cells, also 
associated with cancer stem-cell like properties (Corrò et 
al., 2019) 

Interleukin-6 
(IL-6) 

A pro-inflammatory cytokine associated with 
tumorigenesis and metastasis (Taniguchi & Karin, 2014) 

Interleukin 17-A 
(IL-17A) 

A pro-inflammatory cytokine. Upregulated during 
inflammation and contributes to disease severity 
including cancers by enhancing neutrophil infiltration 
and the production of pro-inflammatory chemokines 
(Fabre et al., 2018) 
 

Fibroblast growth factor-19  
 
(FGF-19) 

Fibroblast growth factor implicated in the pathogenesis 
of several cancers (Somm & Jornayvaz, 2018) 
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2.4 SUMMARY  
 
In this first chapter, we investigate the role of extracellular vesicles, specifically  exosomes, 

derived from OS cells – MG63 and KHOS.  Exosomes were successfully isolated using a 

series of centrifugation techniques, followed by size analysis and quantification by TRPS 

analysis using the Q-Nano platform. On estimation of the amount of exosomes that these 

cells produce, it was found that compared to MG63, KHOS cells produce higher yields of 

exosomes. Characterisation by Western blotting, revealed classical surface membrane 

markers CD9 and CD63 present on these isolated vesicles. Exosomes from these two OS 

cell lines, did not seem to have any proliferative effect on mesenchymal stem cells, however 

they induced the commitment of these cells towards adipogenesis. From these results it can 

therefore be proposed that OS exosomes can have an effect on differentiation and lineage 

abilities of stromal cells in tumour microenvironment.  

 

Similarly, exosomes were also purified from bone marrow and adipose derived 

mesenchymal stem cells. Assays to study the functional role of these exosomes revealed 

that they are incorporated into OS cells - determined by confocal microscopy, and that they 

are able to induce proliferation of OS cells when compared to cells grown under serum-

deprived conditions alone. Characterisation of the components of these vesicles by cytokine 

arrays showed that these exosomes contain a number of proteins associated with several 

biological processes including those related to tumour progression. Taken together, these 

data indicate a tumour supportive role for MSC derived exosome
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CHAPTER 3 

IL-34 AS A POTENTIAL THERAPEUTIC TARGET FOR 
OSTEOSARCOMA  
 

3.1 INTRODUCTION 
 

3.1.1 Mouse Models of Osteosarcoma 
 
 

Mouse models of sarcoma have been highly important for investigating the 

mechanisms of tumorigenesis and metastasis, as well as for testing various possible 

therapeutic regimens. Models to represent primary bone tumours are numerous and can be 

generated via several ways (Uluçkan et al., 2015). Injecting cell suspensions of either 

human (xenograft) or murine cells (allograft), is the most common method used to establish 

pre-clinical models of OS in mice. The cells are injected into either immunocompetent or 

immunodeficient animals, with the main advantage being that these models allow the 

growth of tumours whilst still keeping the original tumour architecture (Jacques et al., 

2018).  

 

Orthotopic models: Establishing syngeneic or xenogeneic models is achieved by two 

methods of cell-injections. The first, is injecting cells close to the bone, usually in close 

proximity to the tibia or femur, and is termed as “para-osseous inoculation”. The second 

method is by injecting directly into the bone termed as “intra-osseous inoculations” with 

the latter being more technically difficult to perform. The advantages of these orthotopic 

models is that the original site for tumour development is reproduced (Jacques et al., 2018).  

 

Induction of primary bone tumours by para-osseous cell injections are commonly used with 

MOS-J cells for the set up syngeneic models, or with human MNNG-HOS cells to generate  

xenogeneic models (Gobin et al., 2013; Lamoureux et al., 2014). Similarly, induction of 

bone sarcomas by intra-osseous injection of cancer cells can be achieved by human 143B 
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or K7M2L2 OS cells in SCID or nude mice. This model is able to reproduce highly 

metastatic conditions with the formation of lung nodules (Meier et al., 2017).  

 

Heterotopic models: Other models for directly inoculating cancer cells include those where 

cells are injected into heterotopic sites. These include subcutaneous cell injections, or 

intraperitoneal into the muscle, renal capsule or kidney (Jacques et al., 2018). Human 143B, 

as well as c-Fos transgenic mouse OS cells have been successfully injected subcutaneously 

to form tumour masses containing bone (Grigoriadis et al., 1993; Zhou et al., 2017). An 

added approach to subcutaneous injections has been developed in which cells are 

incorporated into a Matrigel based matrix providing a scaffold of active bio-molecules that 

is able promote cell engraftment. This was successfully performed by Duan et al., using 

KHOS OS cells in a 1:1 Matrigel matrix ratio (Duan et al., 2017) and similarly also Saos-

2. Cell inoculation into heterotopic sites was also achieved intraperitoneally by injection of 

Saos-2 in nude mice, and resulted in the induction of xenograft models of OS (Chen et al., 

2017).  

 

The main advantage of heterotopic inoculations is the ease of execution coupled with the 

large variety of cancer cells and diverse injection sites. This method can also be used to 

explain whether cells have the potential to form tumours in vivo in a cell-autonomous way, 

in the absence of a bone environment. Despite these advantages, these models lack a 

fundamental property, in that they fail to reproduce the bone microenvironment and the 

vicious cycle established in this dialog, and therefore do not emulate fully the steps of 

tumour development (Cherrier et al., 2005; Grimaud et al., 2002).  

 

The model of choice ultimately depends on the aim of the study, with each model having 

both advantages and limitations. Models should aim to address the issue of genetic 

heterogeneity, in that they should be close to human tumours as much as possible, and to 

imitate the natural characteristics of the disease with an adapted tumour microenvironment 

(Guijarro et al., 2014). 
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Tumour transplantations: Transplantation of tumour fragments from a donor to a recipient 

addresses these issues by maintaining cellular heterogeneity and genetic background 

(Guijarro et al., 2014). Primary bone tumours induced by this method can be achieved by 

injecting cells subcutaneously or in close contact to the bone. Tumour fragments from 

HOS-osteosarcoma cells were successfully transplanted into the rear flank of nude mice 

(Westrøm et al., 2016) and similarly, murine POS-1 cells were inoculated in the hind 

footpath of C57BL6 mice (Lamoureux et al., 2007). 

 

Genetically engineered models: Genetically engineered mouse models of OS address some 

of the limitations present with orthotopically induced models; mainly the possible 

instability of cell lines with repeated passages, and difficulty in assessing whether 

metastasis originates from the primary tumour mass, or is a result of escape from injections 

at the time of inoculations. In these models, spontaneous formation of OS is genetically 

provoked (Grigoriadis et al., 1993). The mice have genetic mutations in tumour suppressor 

genes leading to OS forming as a secondary malignancy and thus forming tumours very 

close to the human context. The main disadvantage of such models is that they cannot 

reflect the high molecular heterogeneity of the disease (Botter et al., 2015).  

 

3.1.2  Immunotherapy as a Therapeutic Approach for Osteosarcoma.  
 

As stated in the introductory chapter, there is an urgent need for new therapeutic options 

for the treatment of OS and mostly for patients that are in high risk groups i.e.- patients 

who are poor responders, patients with high metastatic disease, or patients in relapse. 

Various new therapeutic approaches are emerging that target not only tumour cells directly, 

but also the tumour niche by acting on signalling molecules involved in apoptosis, drug 

resistance and cell proliferation (Luetke et al., 2014). For the purpose of this thesis, a brief 

overview of current immunotherapies and immunomodulators will be given.  

 

The local immune tolerance and immune cells recruited by cancer cells in the tumour, is a 

major key component of cancers. A promising avenue of treatment is the use of checkpoint 

inhibitors/immune modulators. These target molecules serving as the “checks and 

balances” of the immune responses. By activating stimulatory molecules and/or blocking 
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inhibitory molecules, these treatments show promising anti-cancer immune response 

(Brown et al., 2017; Heymann et al., 2016).  

 

One such molecule that has become strategic in targeting the immune response, is 

programmed cell death ligand 1 (PDL-1). PDL-1 is a cell surface protein that represses 

cytotoxic CD8+ T-cell mediated immunity, and is frequently expressed in numerous cancers 

including OS (Miwa et al., 2019). Increased expression of PDL-1 and infiltration of T 

lymphocytes has been shown to be correlated with metastatic high grade OS (Sundara et 

al., 2017). Two major anti-PD-1 antibodies are currently in progress in OS. A phase II 

study of Prembozilumab (NCT02301039) in patients with advanced sarcoma, and a phase 

I/II of Nivolumab (NCT02304458) in younger patients with recurrent or refractory sarcoma 

(Tawbi et al., 2017).  

 

Infiltration of macrophages contributes towards the progression of OS, and therefore 

several strategies have been developed to target this aspect. One such agent is mifamurtide 

(L-MTP-PE) which activates the production of macrophages. Administration of 

mifamurtide in combination with chemotherapy resulted in improved overall survival by 

10% (Meyers et al., 2008).  There is however controversy on the execution and design of 

the above study, and therefore this agent is not universally admitted. A phase II/III clinical 

study of mifamurtide (NCT01459484) administered post-surgery in combination with 

chemotherapy to overall 200 patients, is currently underway (NIH Clinical Trials, 2019).  

 

Another major avenue of immunotherapy for OS is adoptive T-cell therapy. In this 

treatment, T-cells are removed from the patient and genetically modified to enhance their 

activity, after which they are re-introduced into the patient with the aim to bring about 

improved anti-tumour response (Brown et al., 2017).  A phase I trial of the chimeric antigen 

receptor (CAR) T cells genetically modified to express a protein receptor that recognises 

GD2, a protein found on most OS cells, is currently underway for both children and adults 

with OS (NCT019553900, NCT02107963). Similarly, a phase 1 trial of T-cells engineered 

to recognise and target several tumour antigens (NY-ESO-1, MAGEA4, PRAME, SSX and 

survivin) is currently underway for patients with solid tumours of OS, synovial sarcoma 

and rhabdomyosarcoma (NCT02239861) (NIH Clinical Trials, 2019). 
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Preparation of other immune cells such as natural killer (NK) cells and dendritic cells are 

in evaluation for phase I/II clinical trials, with the main aim of re-activating the immune 

response against cancer cells thus improving the local immune tolerance. Example is 

clinical trial NCT02409576 in which activated, haploididentical NK cells are administered 

and the effect on clinical response is analysed (Heymann & Heymann 2017).   

 

The use of monoclonal antibodies to target specific antigens in tumours is another major 

therapeutic approach based mostly on targeting the immune niche. A phase II trial to target 

RANKL and associated bone remodelling, called denosumab (NCT02470091) is underway 

in children with OS (Miwa et al., 2019). A second major therapy using monoclonal 

antibodies are two phase II clinical trials of dinutuximab which targets GD2, a marker of 

cancer stem cells found on OS cells, in patients with recurrent OS (NIH Clinical Trials, 

2019) (Brown et al, 2017).  

 

3.1.3 Rationale 
 

Based on recent studies on the role of the immune system in OS development, it is evident 

that the immune niche comprises several new potential therapeutic biomarkers and targets 

for the treatment of OS. The survival rates of sarcoma patients have not been improved 

over the last four decades, and there is therefore an urgent clinical need to identify new 

therapeutic targets, and develop new therapeutic approaches in order to improve patient 

survival rate. 

 

The cytokine IL-34 has been proposed to be a major protagonist in the immune niche and 

based on previous work (Chemel et al., 2012; Segaliny et al., 2015) it could be a potential 

new candidate for immunotherapies in patients. The goal is to target this cytokine by anti-

cytokine treatment, and translate our pre-clinical investigations into clinical applications, 

with the final goal being to improve survival rates and quality of life (development of drugs 

with less toxicity and side effects) to patients with this malignancy.  
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3.1.4 Aims and objectives 
 

The main objective of this chapter is to investigate IL-34 as a potential new therapeutic 

target by the use of pre-clinical in vivo mouse models of OS. By using an anti-cytokine 

antibody, the effects of IL-34 blockade on OS tumor development and progression will be 

investigated.  

 

Specific aims 

 

6. To set up allograft and xenograft models of OS using mouse (MOS-J) and human 

(MNNG-HOS) OS cells respectively.  

7. To perform a dose-response analysis of IL-34 blocking antibody and evaluate the 

response on tumour growth.  

8. To investigate the treatment effectiveness of anti-murine and anti-human IL-34 

blocking antibody on tumour progression. 

9. To evaluate the impact of combining anti-murine IL-34 with the chemotherapeutic 

agent doxorubicin. 

10. Using a combination of immunohistochemistry and analysis of bone architecture, 

the effects of the treatments and any potential mechanisms on tumour physiology 

are to be investigated.  
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3.2 METHODS 

 

3.2.1 Materials, Reagents and Equipment Used 

 

A. CELL CULTURE REAGENTS  

DMEM Medium + GlutaMAX, 2026753 Gibco  

Fetal Bovine Serum, 10270-106 Gibco  

Phosphate Buffered Saline, 10010023 Gibco  

RPMI 1640 Medium + GlutaMAX, 11879020 Gibco  

Trypsin Solution (10x), 59427C Gibco  

  

B. IN-VIVO REAGENTS 

Doxorubicin; 141210070 ITH Pharma  

Ethylenediaminetetraacetic acid (EDTA); 6381-92-6 Fisher Scientific  

Mouse anti-human (Clone: B-T34) IL34; RSP-R160513 Diaclone (france) 

Rat anti-murine (Clone: Sheff5) Il-34; 160719-Sheff5 Diaclone (France) 

Isofluorane ; 6064291 Zoetis  

Performaldehyde; 30535-89-4 Fisher Scientific  

  

C. IMMUNOHISTOCHEMISTRY REAGENTS 

Bovine Serum Albumin (BSA); SLBR0417V Sigma-Aldrich  

DAB Peroxidase Substrate Kit; SK4100 Vector Labs  

DPX Mountant for Histology; BCBH4393V Sigma-Aldrich 

Eosin; E6003 Sigma-Aldrich  

Ethanol, Absolute 99.8%; 64-17-5 Fischer Scientific  

Goat serum blocking solution; S1000 Vector Labs  

Gills Haematoxylin No 2; GHS216 Sigma-Aldrich  

Hydrogen Peroxide; 7722-84-1 Fisher Scientific 

Methanol, 99.9% Analytical reagent Grade; 67-56-1 Fisher Scientific  

Paraffin; SL9176 Leica  

PBS Tablets; BR0014G Oxoid  

Paraformaldehyde; 30525-89-4 Fisher Scientific  

Rabbit serum blocking solution; S5000 Vector Labs  
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Target Retrieval Solution, Citrate pH6 ; S1699 DAKO 

Tris Base; BCBL6643V Sigma-Aldrich  

Triton-X; T9284 Sigma-Aldrich 

Tween-20; 9005-64-5 Fisher Scientific  

Vectastain Elite ABC HRP Kit; PK-6100 Vector Labs 

Xylene (Analytical Reagent Grade); 1330-20-7 Fisher Scientific  

  

D. ANTIBODIES 

Biotinylated goat anti-rabbit IgG antibody; BA-1000 Vector Labs  

Biotinylated rabbit anti-rat (mouse adsorbed) IgG antibody;  

BA-4001 

Vector Labs  

Rabbit monoclonal (EPR19518) anti-CD163 antibody; Ab182422 Abcam  

Rabbit monoclonal (SP6) anti-Ki67 antibody; Ab16667  Abcam 

Rabbit polyclonal (ASP175) anti-caspase-3 antibody; 9661 Cell Signalling  

Rat monoclonal (CI: A3-1) anti- F4/80 antibody; MCA497R Bio-Rad  

Rat monoclonal (SZ31) anti-CD31 antibody ; DIA-310 Dianova 

  

E. SOFTWARE 

Graph Pad Prism Version 7 Graph pad software 

QuPath OmicX 
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3.2.2 Animal Investigations 

 

Animals were housed at the University of Sheffield Biological Services Unit. All 

experiments were conducted according to the institutional ethical guidelines under the 

Home Office project licence P4C7433CD, and personal licence number IO6008638.  

 

3.2.3 Set-up of Osteosarcoma Models 

 

To study the effects of inhibiting IL-34 on OS growth, metastasis, and bone associated re-

modelling, xenograft and allograft models were set up. Tumour cells were inoculated into 

immunocompromised mice for xenogeneic models, and immunocompetent mice for 

syngeneic models. The different cell lines used for the paratibial in vivo models are 

described in the table below (Table 4). 

 
Table 4: Table outlining the cell lines used for setting up in vivo osteosarcoma models 

Model Cell Line 
(Species) 

Origin Mouse strain 

Xenogeneic 
Model  

HOS-MNNG 
(human) 

HOS from ATTC and 
transformed with MNNG (a 
carcinogenic nitrosamine) 
(Lamoureux et al., 2014) 

BALB C/Nude 

Syngeneic Model MOS-J 
(mouse) 

Murine osteogenic cell line 
from spontaneous 
chondroblastic OS  
(Lamoureux et al., 2014) 
Provided by Prof Len Schultz, 
Jackson Lab, USA (Joliat et 
al., 2002) 

C57BL/6J 
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3.2.4 Paratibial Injections of Osteosarcoma Cells  

3.2.4.1 Preparation of cells 
 
Five-week old mice were purchased from Charles River (UK) and allowed to acclimatize 

for a week after arrival. Mice were maintained under pathogen free conditions throughout 

the duration of the experiment. Animals were no older than 6 weeks on the day of tumour 

cell inoculation. On the day of injection, MNNG-HOS or MOS-J cells were trypsinized, 

washed two-times with PBS to remove serum residues, spun down and resuspended in PBS 

before inoculation. Mice were anesthetized by inhalation of isofluorane/air mixture (2%, 1 

L/min). Complete anaesthesia was assessed by pinch reflex, and the procedure was only 

carried out if animals did not withdraw the paw.  

 

3.2.4.2 Paratibial inoculations 
 
The anaesthetised mice were slowly injected with the cell suspension by maintaining the 

legs outstretched between the thumb and the index finger, and then applying the needle 

perpendicular to the tibia. Before injecting the cells, the bone was scratched with the tip of 

the needle in order to activate the periosteum. Twenty microliters of cell suspension 

containing up to 250,000 MNNG-HOS cells or 125,000 MOS-J were injected per mouse 

in close contact to the activated periosteum. The animals were then monitored closely post 

injection and placed into an incubator at 33°C to recover. The weight of the mice was 

measured before they were injected, and monitored twice a week throughout the duration 

of the experiments.  

 

3.2.4.3 Tumour volumes 
 

The above way of inoculating tumour cells, known as paratibial inoculations, leads to rapid 

tumour growth in the soft tissue with secondary contiguous bone invasion. Tumours 

appeared at the injection site 10 days later, and the tumour volumes were measured 3 times 

weekly using calipers for the duration of the experiments. Tumour volumes were calculated 

by measuring two perpendicular diameters (mm) on each tumour, using the following 

formula: V=0.5 x L x (S)2 in which L and S are the largest and smallest perpendicular 
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diameters respectively (Lamoureux et al., 2014). The mean diameter of the tumours was 

not allowed to exceed 1.5 cm. 

3.2.5 Preparation of Injectables 

 

3.2.5.1 PBS injections 
 

PBS served to function as a vehicle control. 0.1 mL of sterile PBS was injected using a 1 

mL sterile syringe and a 25-gauge needle. All vehicle control injections where given 

intraperitoneal.  

 

3.2.5.2 IL-34 antibodies injections  
 

Anti Il-34 blocking antibodies where provided by Diaclone (France). Such antibodies are 

currently not commercially available, with Patent number WO 2016/097420 AI. Anti-

murine IL-34 (SHEFF-5) was supplied at 2.48 mg/mL, whilst anti-human IL-34 (B-T34) 

was supplied at 1.5 mg/mL. Each antibody was made up to a stock solution of 1 mg/kg 

diluted in PBS and stored at 4°C until use. The antibody was administered accordingly, 

depending on the dose required, using a 1 mL sterile syringe and a 25-gauge needle, via 

the intraperitoneal route.  

 

3.2.5.3 Doxorubicin injections 
 

Doxorubicin was purchased from ITH Pharma (London) at a stock concentration of 2 

mg/kg. The required concentrations (1 mg/kg, 2 mg/kg and 3 mg/kg) where prepared by 

diluting DOX in sterile PBS and administering the drug at 0.1 mL increments using a 1 mL 

sterile syringe and 23-gauge needle. The drug was given by intravenous injections weekly 

or bi-weekly (depending on dose needed to be administered).  
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3.2.6 Evaluating the Impact of Injecting Different Cell Concentrations of MOS-J 

Cells, on Tumour Growth and Lung Metastasis 

 

The aim of the initial in vivo experiment was to assess kinetics of tumour growth upon 

injecting different cell concentrations of MOS-J cells for setting up a syngeneic model. The 

objective was to determine the ideal cell concentration for use in future experiments, and 

assess the impact of such concentrations on lung metastasis.  

 

Six-week old immunocompetent C57BL/6 mice were used. Three groups of 3 mice were 

formed, one for each different cell concentration; (Group 1: 125,000 cells/mouse, Group 2: 

250,000 cells/mouse and Group 3: 500,000 cells/mouse). The mice were monitored for 21 

days and tumour growth was measured three times weekly.  

 

 
Figure 24: Experimental design of tumour kinetics in an allograft model of osteosarcoma.  
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3.2.7 Evaluating the Dose-response of Anti-murine IL-34 Antibody on Tumour 

Growth in a Syngeneic Osteosarcoma Model 

 

Following the determination of the optimal cell concentration for MOS-J cells, we 

proceeded to perform a dose response analysis of the antibody in order to determine the 

optimal dose and best efficacy. Anti- IL34 antibody was given at three different doses with 

an intermediate dose set as 4 mg/kg. Two additional doses were given:  a lower dose (1 

mg/kg) and a higher dose (8 mg/kg). Intra-peritoneal injections were given three times 

weekly, as previous experiments.  

 

 
 
Figure 25: Experimental design of a dose response analysis of anti-Il34 antibody (doses: 1 
mg/kg, 4 mg/kg and 8 mg/kg, intraperitoneal, three times/week) in an allograft model of OS.  
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3.2.8 Evaluating the Treatment Effectiveness of Anti-murine IL-34 Antibody in a 

Syngeneic Osteosarcoma Model 

 

The previous in vivo study showed that the dose of antibody used had a positive impact on 

tumour reduction, and therefore this was established as a potential working dose. For the 

next experiment, we proceeded to determine the effectiveness of the anti-murine IL-34 

antibody for an allograft model. Mice (n=12) where treated with 4mg/kg of anti-murine IL-

34, three times weekly, and PBS as control. Tumour growth kinetics was assessed as 

previously described.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Experimental design of a syngeneic model of osteosarcoma.  
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3.2.9 Evaluating the Efficacy of Anti-murine and Anti-human IL-34 Antibody on 

Tumour Growth in a Xenogeneic Osteosarcoma Model 

 

The aim of the next in vivo experiment was to establish a xenogeneic model and  (i) assess 

the therapeutic efficacy of anti-IL-34 antibodies on OS tumour growth, and (ii) to determine 

which is the most effective way to potentially block IL-34 i.e. blocking tumour derived IL-

34 (treating with anti-human IL-34) or blocking IL-34 in the tumour microenvironment 

(treating with anti-murine IL-34).  

 

Six week old, female Balb/C nude mice were each injected with 250,000 MNNG-HOS 

cells. The mice where then randomly divided into three groups (n=6) and treated 

intraperitoneally with either anti-mouse IL-34 antibody or anti-human Il-34 antibody, at 

100 µg/mouse, three times weekly for 3 weeks. PBS and control isotypes were used as a 

vehicle controls. Tumour growth was monitored by measuring tumour volumes twice 

weekly, whilst tolerance to the treatment was assessed once a week by measuring weight.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 27: Experimental design of a xenogeneic model of osteosarcoma. Anti-IL34 antibodies 
(anti-mouse and anti-human IL-34, intraperitoneal, 4 mg/kg, three times/week) where given to 
asses their therapeutic efficacy on tumour growth and metastasis.  
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3.2.10 Tolerance and Effectiveness of Doxorubicin in the Mouse MOS-J 

Osteosarcoma Model  

 

Following the results from the previous experiments and having established that blocking 

IL-34 in the microenvironment of OS delays tumour growth, the potential of treating with 

anti-IL34 antibody in combination with a chemotherapeutic drug was investigated.  

 

In order to choose the optimal chemotherapy dose for the MOS-J model, we aimed to 

compare the effect on tumour growth when treating with different doses of the 

chemotherapeutic agent doxorubicin. Three groups of 3 mice each (n=3) where set up and 

125,000 MOS-J cells where injected per mouse. Each group received different doses of 

doxorubicin: 2 mg/kg, 3 mg/kg and 4 mg/kg weekly, plus a control group.  

 

 
Figure 28: Experimental design of a dose response analysis of doxorubicin in allograft 
model of osteosarcoma.  
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3.2.11 Evaluating the Impact of Combining Anti-murine IL-34 and Doxorubicin on 

Tumour Growth in the Syngeneic MOS-J Osteosarcoma Model 

 

After establishing the optimal doses for both doxorubicin and anti-IL34, we aimed to 

investigate the potential of treating with anti-IL34 antibody in combination with 

doxorubicin, and whether this could enhance the efficacy of both treatments.  

 

A syngeneic model with six-week old female mice was set up as previously outlined. Mice 

were randomly assigned into 4 groups (n=8): control (PBS, intraperitoneal, 3x weekly), 

anti-murine IL-34 (4 mg/kg, intraperitoneal, 3x weekly), doxorubicin (3 mg/kg, 

intravenous, 1x weekly) and anti-murine IL-34 + doxorubicin (combined therapy). Tumour 

volumes were measured three times weekly for 28 days. 

 

 
 
Figure 29: Experimental design for combination therapy in an allograft model of OS. Anti- 
IL-34 antibody was administered intraperitoneal (4 mg/kg, three times/week) and doxorubicin 
administered intravenously, (3 mg/kg, one time), plus their combination and PBS as control.  
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3.2.12 Processing of Samples 

3.2.12.1 Blood samples 
 
Blood was collected at the end of each study in order to establish a biological cohort. For 

sacrificing, the mice were injected with by 0.5 mL of pentabarbiturate. Animals were 

monitored after injection and deep anaesthesia was confirmed by pinch reflex. A fresh 1ml 

syringe and 25-gauge needle was used to retrieve blood from the heart before cervical 

dislocation. The blood was then placed into a 1.5 mL Eppendorf tube after removing the 

needle to reduce sheer stress. Blood was left on ice until further processing. The blood 

samples were centrifuged at 10,000 g for 20 minutes at 4°C in order to separate serum and 

cellular components. The clear serum was carefully collected into fresh Eppendorf and 

stored at -80°C. 

 

3.2.12.2 Tissue samples 
 
On the day of sacrifice, lungs, spleen and liver tissues were removed and immediately 

placed into 4% PFA in PBS into labelled bijou tubes.  These where left to fix in 4% PFA 

for 48-72 hours, on rotation at 4°C. After fixation, the tissues were placed into labelled 

histology cassettes, and into a solution of 70% EtOH and sent for processing into wax. All 

tissue samples were processed by the bone analysis laboratory at the University of Sheffield 

(See section 3.2.14)  

 

3.2.12.3 Bone samples 
 

A. Histology assessment 
 
Tumour legs, as well as contralateral legs (excised and stripped) were placed in 4% PFA in 

PBS at 4°C for 48-72 hours as described above. In some cases micro-computed tomography 

(MicroCT) was performed at this stage (See section below). After fixation, the solution was 

changed to a decalcifying solution (0.5M EDTA, 0.5% PFA in PBS, pH8). The solution 

was changed three times weekly for two weeks whilst all samples were kept on rotation at 

4°C. Bone samples were then placed into labelled histological cassettes, and washed in 

PBS three times for 1 hour before being processed and embedded in paraffin (See section 

3.2.14)  
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B. Micro-computed tomography analysis 
 

Legs were scanned using a high-resolution microcomputed tomography (SkyScan 1272, 

bruker) at 50 kV and 200 mA, 0.5 mm aluminium filter and a resolution of 4.3um for both 

trabecular and cortical analysis. After obtaining the X-Ray Scans, the SkyScan Necron 

Program was used to reconstruct the images with a thresholding of 0.009 to 0.09 and a 

beam hardening correction of 20%. Trabecular, cortical and ectopic bone formation were 

analysed using the SkyScan Ctan program and calculated according to the 

recommendations published in Journal of bone and mineral research (Bouxsein et al., 2010) 

 

C.  Trabecular analysis 
 
For the proximal tibia and the distal femur, the mineralised cartilage bridge was used as a 

reference point. Trabecular structures positioned 0.2 mm below the growth plate were 

quantified over a length of 1mm. Bone Volume (BV) and Tumour Volume (TV) of tumour 

legs and contralateral legs were measured.  

 

D. Cortical analysis 
 
Similar to the trabecular analysis, cortical analysis was performed at on offset of 1.00 mm 

from the mineralised cartilage bridge and quantified over a length of 1 mm. Cortical bone 

Volume (BV), Trabecular Number (Tb.N), Trabecular Spacing (Tb.Sp) and Trabecular 

Thickness (Tb.Th). 

 

E. Ectopic bone analysis 
 
Ectopic bone (also referred to as ectopic ossification), refers to the spontaneous formation 

of bone in soft tissue (Segaliny et al., 2015; Lamoureux et al., 2014, Gobin et al., 2015) 

Ectopic bone analysis was performed in the tibia and fibula at a resolution of 8 µm. Two 

points of reference were used, firstly the mineralised cartilage bridge in the tibia, and the 

secondly the merging of the fibula with the tibia. Tumour bearing tibia and fibulae were 

analysed separately and compared to their contralateral non-tumour bearing tibia and 

fibulas.  
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3.2.13 Embedding and sectioning of tissues 
 
Tissue embedding was performed by the bone analysis laboratory at the University of 

Sheffield. Legs and tissues were paraffin embedded with a tissue processor. Samples 

underwent various stages of dehydration in ethanol solutions, clearing in butanol and 

embedding in paraffin. Tissues were cut on a Leica microtome, and sections of 3 µm were 

mounted on microscope slides.  

 

3.2.14 Immunohistochemistry  
 

3.2.14.1 Dewaxing and dehydrating of paraffin embedded sections 
 

Paraffin embedded tissue sections were first de-waxed prior to applying any staining 

procedures. This was carried out as follows:  

 

1. Sections dewaxed in fresh xylene twice for 5 minutes each 

2. Sections were incubated in 100% ethanol for 5 minutes and 3 minutes respectively 

to remove the xylene 

3. Sections incubated in 95% ethanol for 3 minutes. 

4. Sections rinsed in tap water for 1 minute 

 

Sections of tumour bearing legs were then stained with a number of different stains (See 

sections below). Following staining sections were dehydrated prior to mounting in the 

following steps: 

5. Sections incubated in 70% Ethanol for 3 minutes 

6. Sections incubated in 90% Ethanol for 3 minutes 

7. Sections incubated in 95% Ethanol for 3 minutes 

8. Sections incubated in 100% Ethanol twice for 3 minutes each.  

9. Sections incubated in Xylene twice for 5 minutes each 

10. Mount coverslips with DPX mounting fluid 
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3.2.14.2 Haematoxylin and eosin staining 
 

Haematoxylin and eosin staining is a dye used generally in histology based on its ability to 

clearly demonstrate a difference between different tissue structures. Haematoxylin stains 

cell nuclei blue, whilst eosin stains cell cytoplasm and most connective tissues pink. To 

stain for H&E, slides were dewaxed, stained with Gill’s haematoxylin solution for 90 

seconds followed by a wash in tap water for 5 minutes. Next, slides were incubated in 1% 

eosin in 1% (w/v) calcium carbonate solution for 5 minutes, washed in tap water for 2 

minutes and dehydrated before mounting.  

 

3.2.14.3 Immunohistochemistry  
 

Immunohistochemistry for five different stains marking cell proliferation (Ki67), cell-death 

(Caspase-3), total macrophages (F4/80), M2 macrophages (CD163) and vascularisation 

(CD31) was carried out on a minimum of three non-serial sections at 3 µm each. An outline 

of the methodology used for each marker studied is described below. Each stain was 

modified for antigen retrieval and dilution of primary antibodies as described in Table 5.  

 

Slides were first dewaxed and then blocked in endogenous peroxidase with 3% H2O2 in 

methanol for 30 minutes at ambient temperature, followed by washes in PBS-T (0.1%), 

twice for 5 minutes each. Antigen retrieval was then achieved with the respective method 

for each stain (Table 5), followed by two-5 minute washes in PBS-T (0.1%). Unspecific 

binding sites were blocked by incubating slides in serum prepared in 1% BSA/PBS-T for 

1 hour at room temperature. This was then followed by an overnight incubation in the 

primary antibody at a made up in 2% serum. For a negative control, slides were incubated 

with serum only.  

 

The next day, sections were washed in PBS-T (twice for 5 minutes each) followed by 

incubation in secondary antibody at a dilution of 1:200 made up in 2% serum, for 1 hour at 

room temperature. Slides were washed in PBS-T (twice for 5 minutes each) prior to 

incubation in ABC solution (made up at least 1 hour prior to use: 1 drop of A, 1 drop of B 

in 2.5 mL PBS) for 30 minutes at ambient temperature and further washes and incubation 

in DAB. Finally slides were washed in water to stop the DAB reaction, counterstained in 

haematoxylin for 30 seconds, and dehydrated and mounted in DPX. 
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Table 5: Table summarising the immunohistostaining stains and techniques used for the preparation of immunohistochemical slides. 

 Stain Antigen  
Retrieval 

Primary  
Antibody 

Secondary 
Antibody 

Serum 

Ki67 Nuclear antigen present in 
mid G1, S, G2 and all the 
M-phase of the cell cycle 
and thus a marker for cell 
proliferation (Scholzen & 
Gerdes, 2000). 

PT Module, 80°C for 
45 minutes 
with 10 mM Citrate 
Buffer, pH6 
 

Rabbit monoclonal 
antibody (SP6) 
(Abcam - 
AB16667). Reacts 
with both human 
and mouse Ki67. 
 
Dilution 1:100 
 

Biotinylated goat 
anti-rabbit  IgG 
Antibody (Dako) 

Goat 

Caspase3 Cleaved Caspase-3 is 
associated with the 
initiation of the ‘death 
cascade’ and therefore 
marks the cell’s entry 
point into the apoptotic 
signalling pathway. 
(Inwald et al., 2013) 

PT Module, 80°C for 
1 hour 
with 10mM Citrate 
Buffer, pH6 
 

Rabbit monoclonal 
antibody (ASP175) 
(Cell Signalling – 
AB9661). Reacts 
with human and 
mouse Caspase -3. 
 
Dilution 1:200 
 

Biotinylated goat 
anti-rabbit  IgG 
Antibody (Dako) 

Goat 

F4/80 F4/80 protein is restricted 
to mouse macrophages 
involved in the regulation 
of antigen specific 
efferent regulatory T 
(Treg) cells to suppress 
antigen-specific immunity 
(Lin, H et al., 2005) 

Pressure cooker for 2 
hours (30 sec at 
121°C cycles plus 
cooling time).Target 
retrieval solution 
(DAKO), pH6 at 
1/10 dilution.  

Rat monoclonal 
antibody that 
recognises the 
murine F4/80 
antigen (CI: A3-1) 
(Bio-Rad, 
MCA497R). 
 

Biotinylated rabbit 
anti-rat IgG 
Antibody (Dako) 

Rabbit  
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Dilution: 1:50 
 
 

CD31 Known as platelet 
endothelial cell adhesion 
molecule (PECAM-1), is 
expressed on the surface 
of endothelial cells. 
Interactions of endothelial 
cells with each other, as 
well as receptors that 
mediate such interactions, 
are fundamental in the 
process of angiogenesis 
(Naeem & Hassan, 2018). 

PT Module, 80°C for 
45 minutes 
with 10 mM Citrate 
Buffer pH6 
 

Monoclonal rat 
antibody (SZ31) 
(Dianova, DIA-
310) that detects 
mouse CD31. 
 
Dilution 1:50   
 

Biotinylated rabbit 
anti-rat  IgG 
Antibody (Dako) 

Rabbit  

CD163 Cell surface glycoprotein 
receptor highly expressed 
on subsets of tissue 
resident macrophages 
(Yang et al., 2015). Used 
to identify macrophages 
of the M2 subtype.   

TRIS-EDTA solution 
pH 9 (10 mM Tris 
base, 1 mM EDTA 
solution). Slides 
immersed in boiling 
buffer solution for 5 
mins, followed by 
immediate washings 
in cold PBS-T.  
 

Monoclonal rabbit 
antibody 
(EPR19518)  
(Abcam 182422) 
detecting mouse 
CD163. 
 
Dilution 1:200 

Biotinylated goat 
anti-rabbit IgG 
Antibody (Dako) 

Goat 
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3.2.14.4 Scoring of histological slides 

 
Three non-serial sections per tumour sample were stained for Ki67, Caspase-3, CD31, 

CD163 and F4/80. Slides were first scanned using a digital slide scanner (Panoramic 250 

Flash III, 3DHistech UK). Analysis of the IHC stained slides was performed using QuPath 

(Version 0.1.2, OmicsX), an open-source image analysis software.  

 

All x40 scanned slides were imported into the programme. The region of interest equating 

to the tumour area was chosen by drawing a region of interest around the area, excluding 

any tissue folds. Positive staining was defined as the presence of any discernible DAB 

positivity localised in the membrane and/or cytoplasm. Quantitation was conducted as 

recommended in (Bankhead et al., 2017). Briefly, intensity thresholds were set for cellular 

DAB detection. Percentage positive data was extracted from each slide and averaged across 

replicates. 

 

3.2.15 Statistics 

 
Data were analysed using GraphPad Prism (version 7.0) software (Graphpad). N numbers 

for all experiments donated by the prefix n and all errors bars shown denote the mean ± 

Standard error of the mean. All data analysed with either T test, one-way ANOVA with 

Dunnett’s multiple comparison test or a two-way ANOVA. Significance values denoted as 

follows: Non-significant (ns): p > 0.05,*: p<0.05, **: p<0.01, ***: p<0.001, 

****:p<0.0001 
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3.3 RESULTS 
 

3.3.1 Development of Osteosarcoma Models in-vivo 
 

3.3.1.1 Paratibial inoculation of tumour cells 
 

Injection of a murine or human cancer cell line in close contact to the bone, i.e. at an 

orthotopic site, is one of the most frequently used methods to induce bone sarcomas in mice 

for the development of allograft and/or xenograft models (Guijarro et al., 2014; Jacques et 

al., 2018; Uluçkan et al., 2015) In such models, cells are inoculated close to the bone 

generally into the femur or tibia diaphysis. These models have been previously shown to 

be highly effective with 80% tumour take rate and high reproducibility, with the para-tibial 

procedure being less invasive than intraosseous cell inoculations. These models, result in 

rapid tumour growth in the soft tissue with secondary contiguous bone invasion, and 

spontaneous pulmonary metastasis.  

 

Two OS pre-clinical mouse models were set up for this part of the PhD. First, an allograft 

model using the mouse chondroblastic MOS-J cell line. These cells formed solid tumours 

when injected into immunocompetent syngeneic hosts (C57BL/6J mice), mimicking 

endochondral bone development. Histological assessment of decalcified tumour legs by 

H&E, revealed high  grade tumours with multiple cells of varying size, with a highly 

osteoblastic phenotype. The transplantable tumours destroyed and invaded existing bone, 

as well as vessels in close proximity to the tumour (Figure 30A). These in vivo tumours are 

characterised by regions of necrotic areas towards the centre of the tumours and an area of 

highly proliferative cells located on the outside circumference.  

 

Secondly, a human OS model by inoculation of MNNG-HOS cells was developed. This 

xenograft model induced the development of primary bone tumours in nude mice as 

confirmed by histological analysis of decalcified tumour legs stained by H&E (Figure 

30B). The tumours formed are close to undifferentiated OS and induce bone associated 

remodelling and osteolytic lesions.  
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Figure 30: Haematoxylin and eosin staining of allograft and xenograft models of 
osteosarcoma. Two osteosarcoma in-vivo models were set up A) a mouse osteosarcoma model 
using 125,000 MOS-J cells. Image shows tumour mass (indicated by dashed lines) after 28 days 
from cell inoculation,  and ** indicate position of growth plates. B) a human osteosarcoma models 
using 250,000 HOS-MNNG cells. Image shows tumour mass after 21 days from cell inoculations. 
In both cases, the tumour cells were injected in close contact to the tibia after activation of the 
periosteum. C and D) Immunohistochemical H&E stains of allograft and xenograft tumours with 
20x and 40x fields showing representative sections. Scale bar = 100µm 
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3.3.1.2 Establishment of syngeneic osteosarcoma model and analysis of tumour 
growth 
 

The first objective was to set up a working syngeneic model, and to determine the optimal 

cell concentration of cells to inject. To achieve this, a titration experiment using increasing 

number of MOS-J cells was performed and a kinetic of tumour growth were assessed.  

 

Immunocompetent C57BL/6J mice (n=3 per group) where injected with the following 

MOS-J cell concentrations: 1.25 x 105, 2.5 x 105 and 5.0 x 105 per mouse. All the mice 

injected formed palpable tumours within 5-10 days of cell inoculation. The higher cell 

concentration (5.0 x 105 cells/mouse) displayed the larger tumour volumes with a mean of 

280 mm3. These mice had to be sacrificed at day 15 as the maximum limit of tumour size 

according to the project licence in place, was reached (1.5 cm). The data indicates that a 

lower cell number, that of 1.25 x 105 cells/mouse would be an ideal cell concentration to 

use in future experiments, in order for the mice to last for a duration of four weeks of more, 

thus giving ample time to asses treatment responses. All other mice where sacrificed when 

limits of tumour size was reached (Figure 31) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Mean tumour volumes of tumour kinetics in allograft model of OS. Following 
injection of three different concentrations of MOS-J cells into immunocompetent mice, mean 
tumour volumes were obtained for 23 days as measured by calipers.  
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With regards to setting up a similar preliminary titration study for the development of a 

xenograft model a previous experiment undertaken by Dr. Hannah Brown (University of 

Sheffield, UK) was successful in determining the optimal number of MNNG-HOS cells to 

set up a xenogeneic model in nude mice. Female Balb/C nude mice were injected with three 

different cell concentrations (100,000, 250,000 and 500,000 cells per mouse). Tumours 

were then left to grow for 28 days. The end result showed that inoculating 250,000 cells 

per mouse would be the ideal cell concentration, and therefore data from this study was 

used to set up the xenogeneic model.  

 

The next objective of the in vivo investigations, was to determine the relevance of IL-34 as 

therapeutic target. The effects of anti-IL34 blocking antibodies on the progression of OS 

(e.g. tumour growth and pulmonary metastasis) were investigated in two pre-clinical 

models of OS described above. We investigated two newly available IL-34 blocking 

monoclonal antibodies; an anti-murine (SHEFF5) and an anti-human (B-T34).  

 

3.3.2 Blocking Murine IL-34 in an Allograft Model of Osteosarcoma 
 

3.3.2.1 Evaluation of a dose-response analysis of anti-murine IL-34   
 

An in vivo dose-response experiment was carried out so as to decide the effective dose of 

anti-murine IL-34 antibody, and assess its ability to inhibit tumour growth. Treatment was 

administered three times weekly at three increasing doses 1 mg/kg, 4 mg/kg and 8 mg/ kg. 

A control group was injected with a PBS solution of the same volume. All mice showed 

palpable tumours after around 7-10 days of cell inoculation. Following the initial 15 days 

of tumour transplantation, differences in tumour sizes could already be observed. The 

1mg/kg dose did not modulate the tumour growth, with an ANOVA between this group 

and the control showing no significant differences in tumour volumes. Tumour growth was 

seen to slow down with higher doses. Tumour growth slowed down by around 40% 

compared to control group after around 15 days. The blocking antibody inhibited tumour 

growth at a dose of 4 mg/kg 25 days post cell injection with a highly significant difference 

of (p = 0.005, One-way ANOVA). For the 8 mg/kg dose group, this also slowed down 

tumour growth in comparison to control (p = 0.03, One-way ANOVA) however, not as 

effectively as the 4 mg/kg dose (Figure 32). Taken together, this data shows that from the 
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doses administered, the 4 mg/kg dose was considered to be the most effective dose for 

inhibiting tumour growth, thus providing the first evidence that blocking anti IL-34 is a 

potential target for the treatment of OS.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 32: Mean tumour volumes for dose response analysis of anti- IL-34 antibody in an 
allograft model of osteosarcoma. Immunocompetent 6 week old, female mice were injected with 
1.25 x105 cells by paratibial injections. Graph shows the mean tumour volume for each dose 
administered from day 2 after cell inoculation till day 25, as measured by calipers. Error bars are 
shown as mean ± SEM, n=5, p values calculated by One-way ANOVA *p < 0.05, **p < 0.01.  

 

 

Next, the therapeutic potential of anti-murine IL-34 administration on lung metastasis, bone 

associated re-modelling and the resulting impact on tumour physiology by 

immunohistochemical analysis.  
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3.3.2.2 Effect of blocking anti-murine IL-34 on tumour growth and lung metastasis 
 

Anti-murine IL-34 (4mg/kg, three times weekly) was administered in 6 weeks old female 

mice (n= 6 per group), 2 days after the local para-tibial injection of MOS-J cells (1.25 x 

105) and continued until day 23. All animals treated with the antibody exhibited a 

significant decrease of tumour volume compared with control mice starting at day 10 (116 

mm3 for CT  compared to 270 mm3 for treated group ) and after 23 days (tumour volume 

of 440 mm3 for control and 190 mm3 for treated) (p value = 0.0003). (Figure 33B). Animals 

were sacrificed at day 23 as the limit of the tumour size (1.5 cm) was reached and thus had 

to be ended in accordance with Home Office Regulations. When each animal is considered 

individually, the incidence of mice progressing with a tumour volume of less than 500 mm3 

was diminished by day 23 in treated animals (0/6), in comparison with controls (6/6) 

(Figure 33C). This data again reinforces the hypothesis that targeting IL-34 significantly 

delays OS tumour growth. 

 

The presence of microscopic metastasis in the lungs was then examined by histology. At 

the time of necropsy, lungs were preserved in 4% paraformaldehyde and processed, cut 

into serial sections of 3µm and stained with H&E for the detection of pulmonary metastatic 

nodules. All of the mice, both in control and treated groups, showed no presence of 

metastatic nodules evidencing that the duration and timing of the experiment, in addition 

to the cell concentration used, were insufficient for metastasis to develop. 
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Figure 33: Anti-murine IL-34 antibody delays osteosarcoma growth in MOS-J allograft 
model. (A) Mice were treated with 4 mg/kg anti-murine IL-34 antibody via the intraperitoneal 
route, three times a week starting 2 days after paratibial cell inoculations, up until day 23 and tumour 
volumes measured by calipers. The mean (B) or the individual (C) tumour volumes of mice treated 
was compared with control group ± SEM, n=6, p values were calculated by One-way ANOVA, 
***p > 0.001.  
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3.3.2.4 Effect of anti-murine IL-34 antibody on tumour associated bone lesions 
 

Since OS-associated alteration of bone remodelling plays a central role in the development 

and progression of bone tumours, the ability of the antibody to alter tumour-associated bone 

remodelling was analysed. The bone microarchitecture in legs bearing tumours was 

examined at the end of the study (Day 23) using a high-resolution X-ray micro-CT system.  

 

While tumour volumes were reduced following treatment with the antibody, analysis of 

bone architecture showed that the treatment failed to prevent tumour associated osteolysis. 

This is demonstrated in a number of analysis of bone morphometric parameters of both 

cortical and trabecular bone. (Figure 34B, 34D and 34E). Total bone volume also failed to 

show any differences between control and treated groups. Additionally, it was also 

examined whether the treatment would have any effect on the formation of ectopic bone. 

As shown in Figure 34C, no significant differences in bone volume (BV%) of either tumour 

bearing tibia or fibula was observed. 
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Figure 34: Effect of anti-murine IL-34 on tumour associated bone lesions in syngeneic osteosarcoma model. (A) 3D reconstruction of tibia and fibula 
of each group (control and treated) at the end of the experiment – day 23 (B) graphs showing bone volume  (BV) of cortical bone in each of the groups as 
well as bone volume of trabecular bone (BV/TV). (C) graphs showing ectopic bone volume (BV%) in the tumour bearing tibia and fibula (D) total bone 
volume (BV), (E) trabecular thickness (Tb.Th), Separation (Tb. S) and Number (Tb.N) for tumour bearing tibia per group. Data area mean ± SEM, N=6 
per group.  T-test for all data sets showed no level of significance.   
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3.3.2.5 Immunohistochemical analysis  
 

In order to analyse the mechanisms involved in the inhibition of tumour growth observed, 

the effects were studied by staining tumour biopsies with a number of markers mainly Ki67 

for proliferation, caspase-3 for marked cell death, F4/80 for macrophages, CD31 as a 

marker of endothelial cells reflecting the amount of vascularisation, and CD163 for M2 

type macrophages.  

 

IHC analysis showed no difference in the proliferation rate between treated and non-treated 

groups, as determined by the proliferation marker Ki67 (Figure 35D). This is probably due 

to the high aggressiveness of the MOS-J tumours, as well as the method of action of 

blocking antibodies. Blocking antibodies, do not act directly on the proliferation of tumour 

cells (in contrast with cytotoxic drugs where the mechanism of action is to stall cellular 

growth). Similarly, the rate of apoptosis was not affected by the treatment (Figure 35H). 

Caspase-3 analysis is collected from tumours at the end-point of the experiment (around 4 

weeks) and would have probably already undergone significant apoptosis.   

 

A slight tendency towards a decrease in CD31 for treated groups was seen (Figure 35L). 

This could be explained given the role of IL-34 in mediating angiogenesis in OS by 

regulating the proliferation of endothelial cells (Segaliny et al., 2015). Despite this 

however, the difference was not significant as can be observed in Figure 33L. This 

demonstrates once more that the aggressiveness of this model is responsible for the high 

SD observed, and the absence of significant differences.  

 

An increase towards F4/80+ macrophage infiltrates was detected in treated groups in 

comparison to control (Figure 35P). This higher incidence of macrophages can be attributed 

to high inflammation in the local environment of the tumour, and other cytokines which 

were non efficient before. This would lead to a dysregulated balance between M1/M2 

macrophages, in favour of M1 phenotype and thus an increase in F4/80 marker.  
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CD163 was detected around the tumours, and in connective tissue at the periphery. The 

low number of CD163 positive cells in general, could be attributed to a dysregulation in 

the balance of M1/M2 macrophages favouring the M1 sub-population. Also, taking into 

consideration the low numbers detected in non-treated group (control) a further reduction 

in the treated group is possibly occurring but difficult to detect by IHC (Figure 35T) 

 

Overall, the above immunohistochemical analyses indicate that the syngeneic model was 

highly aggressive, as can be seen by its high tumour volumes. This high variability and 

small animal numbers in each group could explain the high standard deviation obtained, 

and the absence of significant differences.  
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Figure 35: Immunohistochemical analysis of tumour biopsies in an allograft model of osteosarcoma. Images showing staining of tissues from MOS-
J syngeneic mouse model for: Ki67 (Panel A-D), Caspase-3 (Panel E-H), CD31 (Panel I-L), F4/80 (Panel M-P), and CD163 (Panel Q-T). 1st column: 40x 
objective and scale bar = 100 µm, 2nd column: 20x objective and scale bar = 50 µm, 3rd column: negative control, 4th column graphs showing data from all 
specimens scored and estimated as percentage of positive cells. Data are expressed as mean ± SEM and n=6 per group. T-test for all data sets showed no 
level of significance.  
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3.3.3 Blocking Human and Murine IL-34 in a Xenograft Model of Osteosarcoma 
 

After determining the outcome of blocking IL-34 in a syngeneic model, the effect of 

blocking IL-34 in a MNNG-HOS model was next analysed. In addition to investigating 

whether blocking IL-34 in the surrounding tumour microenvironment would show similar 

effects in nude mice, it was investigated whether blocking IL-34 produced by tumour cells 

would have any effect on slowing down tumour growth.  

 

The anti-human Il-34 antibody used in this experiment, is able to block the biological 

activity of IL-34 by inhibiting the interaction of IL-34 with M-CSFR. Indeed IL-34-

dependent cell proliferation is blocked by this antibody. In addition intra-cellular signal 

transduction triggered by IL-34 binding to its receptor is inhibited. In such a manner, 

therefore this antibody is useful to target Il-34 produced by tumour cells. According to the 

antibodies patent (WO 2016/097420) the present antibody has a high affinity for IL-34 () 

and therefore the dose used for this experiment was similar to the one used for the syngeneic 

model.  

 

3.3.3.1 Effect of blocking IL-34 on tumour growth and lung metastasis  
 

An experimental model of OS induced by MNNG-HOS cells was set up as previously 

described. Anti-murine and anti-human IL-34 (4 mg/kg, three times weekly) were 

administered in 6 week old female mice (n= 6 per group), 2 days after the local para-tibial 

injection of MNNG-HOS cells (2.5 x 105) and continued until day 20. PBS was injected 

for the control group. Data for tumour volumes were collected by calipers as previously 

described. As plotted in the graph (Figure 36B), tumours treated with anti-human IL-34 

showed no significant effect on the tumour volumes when compared to the control group. 

On the other hand, treatment with murine IL-34 antibody, showed a significant decrease of 

tumour volumes compared to control as previously seen in the allograft model (p = 0.009). 

When animals were taken individually, all the mice in the anti-murine treated group, 

progressed with a tumour volume of less than 50 mm3, whereas those in the other two 

groups did not (6/6 control and anti-human treatment) (Figure 36C)  
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As in the previous model, the presence of lung metastasis was assessed by histological 

assessment of paraffin embedded sections of lungs collected at the end-point of the 

treatment (Day 21). None of the mice developed pulmonary nodules of metastasis, due to 

the short timing of the experiment and small tumour volumes. 

 

3.3.3.2 Effect of blocking IL-34 antibody on tumour associated bone lesions  
 

Similar to the previous model, the effect of the treatment on the bone microarchitecture of 

tumour bearing tibia was analysed using micro-CT. Visual inspection of the 3D 

reconstructions of the tibia suggests that the treatments did not alter the tumour-associated 

bone formation in the MNNG-HOS model (Figure 37A). Indeed, the total bone volume in 

mice injected with either anti-murine or anti-human antibodies, showed no significant 

change in either cortical bone or trabecular bone, neither in total bone volume when cortical 

and trabecular bone were analysed together (figure 37D). Bone osteolysis was further 

evaluated by evaluating the trabecular number (Tb.N), trabecular thickness (Tb.Th) and 

Trabecular Spacing (Tb. Sp) and neither of these parameters exhibited any differences. The 

treatment showed no effect on ectopic bone formation. Complementary with previous 

results ectopic bone formation was neither altered or improved in either tibia or fibula 

(Figure 37C).   
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Figure 36: Mean tumour volumes following treatment with anti-human and anti-murine IL-
34 in a xenogeneic osteosarcoma model. (A) Immunocompromised Balb C/ nude mice were 
injected with MNNG-HOS cells (2.5 x 105). Treatment with IL-34 blocking antibodies (4 mg/kg 
for each SHEFF5 and B-T34) was initiated 2 days after paratibial cell inoculations, and given 3 
times weekly via intraperitoneal route for a duration of 21 days. (B) Mean tumour volumes were 
measured by calipers and calculated from day 1 to day 21 for each group (C) Individual tumour 
volumes of mice treated with each antibody compared with control group. Data area mean ± SEM, 
n=6 per group. P values calculated using Two-way ANOVA  **p < 0.01.  
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Figure 37: Effect of blocking IL-34 on tumour associated bone lesions in xenogeneic osteosarcoma model. (A) 3D reconstruction of tibia and fibula 
of each group (control, anti-murine and anti-human) at the end of the experiment – day 21 (B) graph showing bone volume  (BV) of cortical bone in each 
of the groups and bone volume (BV/TV) for trabecular bone (C) trabecular thickness (Tb.Th), Separation (Tb. S) and Number (Tb.N) for tumour bearing 
tibia per group (D) graph showing total bone volume (i.e. cortical and trabecular) (E) graphs showing ectopic bone volume (BV%) in the tumour bearing 
tibia and fibula. Data area mean ± SEM, N=6. One-way ANOVA for all data sets showed no level of significance.
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3.3.3.3 Immunohistochemical Analysis 
 
Immunohistochemical analysis showed no difference in Ki67 or Caspase-3 expression after 

treatment with either anti-human IL34 or anti-mouse IL-34 blocking antibodies (Figure 

38D and 38H). A significant decrease of CD31 expression in animals treated with anti-

mouse blocking antibody in comparison to both the control or anti-human antibody was 

observed. This suggests that inhibition of tumour progression may result from a decreased 

rate of endothelial cell proliferation, resulting in a decrease of blood vessels and  solidifying 

the role of IL-34 in angiogenesis (Figure 38L).  

 

With regards to immunohistochemical analysis of macrophages in this model, there was an 

increase in F4/80 macrophages (Figure 38P) but no difference in the expression of CD163 

(Figure 38T). Taken together this shows that there was no difference in the M2 population 

between treated and control, resulting in an increase of M1 macrophages. Although the 

xenograft model is less aggressive than the allograft, similar to previous results, the small 

animal numbers in each group could explain the high standard deviation obtained, and the 

absence of significant differences.  
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Figure 38: Immunohistochemical analysis of tumour biopsies in a xenograft model of osteosarcoma. Images showing staining of tissues from MNNG-
HOS xenogeneic mouse model for: Ki67 (Panel A-D), Caspase-3 (Panel E-H), CD31 (Panel I-L), F4/80 ( Panel M-P), and CD163 (Panel Q-T). 1st column: 
40x objective, 2nd column: 20x objective, 3rd column: negative control, 4th column graphs showing data from all specimens scored and estimated as 
percentage of positive cells. Data are expressed as mean ± SEM and n=5 per group. P values calculated using One-way ANOVA  *p < 0.05 **p < 0.01, 
****p < 0.0001.  
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3.3.4 Assessment of Tumour Necrosis  
 

Histological analysis by H&E was used to measure levels of necrosis in both tumour 

models. MOS-J model was characterised by small necrotic foci distributed in the tumour 

mass while MNNG-HOS model was characterised by a significant and larger necrotic area 

at the centre of the tumour mass. No significant difference in necrosis rates was observed 

in either model, as well as no difference between treatments (Figure 39).  

 
 
 
 

 
 
Figure 39: Quantification of necrotic areas from H&E sections. Representative tumour sections 
showing discolouration associated with necrosis in the central areas of the tumour and 
quantification of these areas for (A) HOS-MNNG model and (B) MOS-J model treated with Il-34 
blocking antibodies Data are mean ± SEM (n=5 for xenogeneic model and n=6 for syngeneic 
model) Scale bar = 100um 
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3.3.5 Effect of Bi-therapy with IL-34 Blocking Antibody and Doxorubicin on Tumour 

Growth in Allograft Model of Osteosarcoma  
 

On consideration of the data from both the allograft and xenograft models, the results 

demonstrate that targeting IL-34 in the microenvironment is effective at significantly 

inhibiting tumour growth and promoting tumour shrinkage. As a result, it was hypothesized 

that administering murine IL-34 in conjunction with other treatments already known to 

delay OS growth, would be a potential treatment regimen aimed at delaying OS tumour 

development.  

 

In this respect, although several studies have already demonstrated the use of a single dose 

of doxorubicin to inhibit primary tumour growth in mouse models of OS, the aim was to 

evaluate the optimal dose of doxorubicin that was well tolerated without any possible 

toxicities in the MOS-J allograft models currently set up.  

  

3.3.5.1 Evaluation of a dose-response analysis of doxorubicin  
 

The tolerance and effectiveness of different doses of doxorubicin was evaluated in the 

MOS-J allografts model. Models were set up as previous, and mice were treated with three 

doses of doxorubicin all administered via the intravenous route: i) 2 mg/kg (2 x weekly of 

1 mg/kg doses), ii) 3 mg/kg (1 x weekly of 3 mg/kg dose), and iii) 4 mg/kg (2 x weekly of 

2 mg/kg doses). The efficacy of the drug was assessed by monitoring the primary tumour 

growth with digital calipers twice a week, until tumour diameter limits were reached (1.5 

cm). No significant weight loss due to this chemotherapy was observed.  

 

For this chemotherapy, two of the doses were effective at delaying tumour growth: 3 mg/kg 

and 4mg/kg (p = 0.01 for 3 mg/kg and p= 0.002 for 4 mg/kg) (Figure 40). This mean 

decrease in tumour volume although showing that both doses are effective, the 3mg/kg 

would be better suited so as to make sure that tumours are not completely diminished by 

the end of the biotherapy treatment.  
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Figure 40: Dose response analysis of doxorubicin in a MOS-J model of osteosarcoma. Mice 
were injected with 1.25x105 MOS-J cells and treated with 3 different doses of the chemotherapeutic 
agent doxorubicin via intraperitoneal route till day 21. Treatment was initiated 2 days after cell 
injections. Graph indicates mean tumour volumes for each dose and control treated mice as 
measured by calipers. Data are shown as mean ± SEM, n=3 per group. P values calculated using 
One-way ANOVA *p < 0.05 **p < 0.01 
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3.3.5.2 Effect of bi-therapy with IL-34 blocking antibody and doxorubicin on tumour 

growth  

 

Thus, the next step was to evaluate whether the combination of IL-34 blocking antibody 

with doxorubicin, would have a synergistic effect. In addition to exhibiting a good 

therapeutic effect on tumour growth, whether combining the two treatments would prevent 

any tumour associated osteolysis. This bi-therapy study was conducted in the MOS-J 

model.  

 

A total number of 32 immunocompetent mice (n=8/treatment group) were injected with 

MOS-J cells and assigned randomly into four treatment groups: i) PBS as control, ii) anti-

murine blocking IL-34 (4 mg/kg i.p, 3 times weekly), iii) doxorubicin (3 mg/kg i.v, one 

time weekly), iv) bi-therapy of anti-murine IL-34 and doxorubicin (4 mg/kg i.p and 3 mg/kg 

i.v). Treatment was initiated 2 days post tumour cell injection.  

 

The mean tumour volumes for IL-34 and doxorubicin monotherapy, indicate that when 

each of these therapies are administered individually, a significant decrease in tumour 

progression is observed (p value = 0.01 for IL-34 and p value = 0.0002 for Doxorubicin, 

Two-way ANOVA with Dunnett’s multiple comparison test) This is in consistency with 

previous results obtained in this thesis (Figure 41). On the other hand, the combination of 

blocking antibody with doxorubicin, failed to act synergistically to prevent tumour growth. 

Slight decrease in mean tumour volumes when compared to the control group can be 

observed, however this is not at an improved rate than administering either of the 

monotherapies. This unexpected result could have been due to poor administration of the 

doxorubicin. These could be eluded from the individual graphs as seen in Figure 41, 

whereby a high discrepancy of tumour volumes between individual mice can be seen.  

 

Taken together the data suggest that although individually the treatments are effective at 

slowing down OS tumour growth, when given together they did not completely prevent 

tumour growth. Administration of a combination treatment induced a slow but sustained 

reduction in tumour growth, and improvements to the therapeutic regimen, in terms of both 

doses and timing, will be required. 
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Figure 41: Mean tumour volumes for combination therapy (anti-IL-34 and doxorubicin) in 
an allograft model of osteosarcoma. Mice were treated three times a week with 4mg/kg anti-
murine IL-34 antibody and one time weekly with 3mg/kg of doxorubicin starting 2-days after 
paratibial inoculation of tumour cells. (A) Mean tumour volumes and (B) individual tumour 
volumes compared between the four groups. Data is shown as mean ± SEM, n=8 per group. p values 
were calculated using Two-way ANOVA *p < 0.05,  *** p < 0.001.  
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3.3.5.3 Immunohistochemical analysis  
 

Consistent with the results obtained, immunohistochemical analysis showed that 

combination treatment failed to delay tumour progression as demonstrated by no effect on 

proliferation rates (Ki67), apoptosis (Caspase3), or vascularisation (CD31) (Figure 42A, 

42B and 42C respectively). Macrophage populations (i.e. both M1 and M2 sub-types) were 

not affected by the treatment possibly due to dose timing. Similar to previous models, the 

expression of CD163 was detected more around tumours than in the tumour stroma.  
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Figure 42: Immunohistochemical analysis of tumour biopsies for combination therapy. Data was obtained at the end-point of the study (Day 25) 
Graphs of A) cell proliferation with Ki67, B) cell death with caspase-3, C) vascularisation with CD31, D) number of pan macrophages with F4/80, E) 
number of M2 sub-type macrophages as CD163 all expressed as percentage of positive number of cells. Data expressed as mean SEM, n=8 per group 
(Control, 4mg/kg anti-murine IL-34, 3mg/kg doxorubicin, bi-therapy of IL-34 antibody and doxorubicin). P values obtained by One-Way ANOVA with 
the following threshold of significance: *p > 0.05, **p > 0.01.
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3.4 SUMMARY 
 
The present study aimed to determine the therapeutic effect of IL-34 targeting in OS by 

using murine pre-clinical models and anti-IL34 blocking antibodies. Two OS models were 

set up, a syngeneic mouse model in immunocompetent mice using the mouse MOS-J cell 

line, and a xenogeneic model in immunodeficient mice by the human MNNG-HOS cell 

line . In both cases, paratibial inoculations of tumour cells were used for the development 

of tumour growth in soft tissue. This involved injecting tumour cells in close contact to the 

tibia diaphysis following activation of the periosteum.  

 

Firstly, a dose-response analysis was carried out to determine the optimal dose and best 

efficacy of the IL-34 blocking antibodies. After establishing that a 4mg/kg dose, three times 

weekly, is the optimal dose, the antibody was administered, in both models, for 3-4 weeks. 

The resulting effect was a reduction of tumour volume and growth compared to the control 

groups. In parallel, an antibody blocking human IL-34 was tested in the xenogeneic model, 

but no reduction of tumour growth was observed, concluding that the development of IL-

34 appears to be mainly produced by the murine tumour microenvironment.  

 

Next, microCT analysis was used to assess whether this treatment had any effects on bone 

associated remodelling, including formation of ectopic bone. Analysis of bone 

michroarchitecture of both cortical and trabecular parameters, revealed that the treatment 

had no significant effect on bone alterations. As a result, tumour histology by 

immunohistochemistry was studied. Analysis revealed a reduction in vascularisation by the 

marker CD31, and increase in pan macrophage marker F4/80. No differences in tumour 

proliferation or cell death by caspase-3 were detected possibly due to the high variability 

and/or the small animal number in each group.  

 
 
We then evaluated the potential therapeutic benefit of IL-34 blocking agent, and 

doxorubicin as a combination treatment in these preclinical models. The effects of anti-

murine IL-34  (4 mg/kg) and doxorubicin (3 mg/kg) were investigated in the syngeneic 

mice model. These two treatments administered together, failed to act synergistically as 

determined by clinical (tumour growth) and histological levels (immunohistochemical 

analysis). Most likely, problems in the administration of the DOX led to these unexpected 
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results. Macrophage populations, both for overall macrophages and macrophages of the 

M2 sub-type were not affected at the tumour site despite the treatment, possibly due to dose 

timing. A better strategy for testing this combination therapy would be needed.  

 

In conclusion, IL-34 appears mainly produced by the murine tumour microenvironment. 

The inhibition of IL-34 specific blocking antibodies demonstrates that the therapeutic 

benefit to abrogate IL-34 in OS and thus IL-34 may be a novel therapeutic target in bone 

associated disease
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CHAPTER 4  

ZEBRAFISH AS A MODEL TO STUDY THE ROLE OF IL-34 
IN THE IMMUNE RESPONSE 
 

4.1 INTRODUCTION 
 

To extend our findings on the role of IL-34 in steady state conditions, a murine knockout 

model for IL-34 is currently being developed. The work being carried out on this model 

and some of the initial data are being presented in sub-chapter 3.5 (Refer to appendix) in 

order to strengthen the relevance of this model in relation to the work carried out in this 

PhD.  

 

 

4.1.1 The Zebrafish as a Model Organism 
 

The zebrafish (Danio rerio) is a tropical freshwater fish established as a major 

model of human disease over the past 15 years. Even though the zebrafish is less closely 

related to humans than rodents, it offers several advantages as a model in biomedical 

research. These advantages allow the zebrafish model to be used as an addition to already 

existing models.  

 

The popularity of the zebrafish as a model comes from the fact that zebrafish embryos 

develop rapidly and are transparent. Embryos develop from a single cell to a whole 

organism by 24 hours post fertilisation (hpf), with the entire body plan and major organs 

fully established. By 5-days post fertilisation (dpf), all major developments are complete 

(White et al., 2013). Sexual maturity is reached by 2.5 months of age, making generation 

time small compared to other models, and therefore allowing for mutant colonies to be 

established quickly (Lieschke & Currie, 2007).  
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The fertilised egg develops external to the mother. This offers a significant advantage over 

mammalian models. The optical clarity of the embryo allows for direct imaging and 

visualisation of embryogenesis (Brown et al., 2017; Chico, 2008). When coupled with the 

use of fluorescent reporter lines, real-time imaging of pathologies and cellular interactions 

can be performed.  

 

Due to their small size, zebrafish are cost effective. They are capable of producing large 

numbers of progeny, with a single female able to produce hundreds of eggs per week and 

can therefore be housed in large numbers (Lieschke & Currie, 2007). Breeding is easily 

controlled by a light cycle (14 hours light, 10 hours dark) and as a result, manipulation of 

embryos is easily achievable (Nasiadka & Clark, 2012). 

 

Despite obvious differences between humans and zebrafish, over 70% of human genes have 

been recognised in zebrafish orthologues, and the sequencing of its genome is currently in 

its 11th version (Howe et al., 2013). Zebrafish are classified as a ‘lower vertebrates’, and 

play an important role when implementing the 3Rs. The 3Rs aim to limit the number of 

animals used in research purposes by replacement, reduction and refinement. There is also 

less rigorous oversight of studies when using early embryos in contrast with rodent 

embryos, making the zebrafish an attractive model for researchers (Seth et al., 2013).  

 

Despite the above aforementioned qualities of the zebrafish as a suitable model for 

research, it also has some disadvantages. Fixing and sectioning of embryonic larvae is 

difficult owing to their small size. Histological analysis is also challenging, since only a 

few antibodies against zebrafish proteins are currently validated (although this is 

improving). Additionally, imaging can be applied only to embryos at early stages, and often 

requires the prevention of pigmentation by the use of Nacre or Casper mutant lines. As the 

animal becomes larger and more opaque, penetration of the tissue for imaging becomes 

more difficult, making the model disadvantageous at this point. An added complication, is 

that zebrafish possess more than a single orthologue of a human gene, (a genome 

duplication that occurred in teleosts after their divergence from mammals) and thus it is 

difficult to achieve consistency in parity of function (Brown et al.,  2017)  
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Overall, the zebrafish model offers a good compromise between practical simplicity and 

intricacy making it an ideal intermediate between rodent models that is a better option than 

using invertebrate models. 

 

4.1.2 Zebrafish Genetic Tools 
 

A number of genetic tools are now available to generate genetic models of disease using 

the zebrafish. Targeted genome modifications and RNA interference strategies are used to 

study the consequences of loss of function mutations. RNA interference strategies include 

the use of Morpholinos to generate transient knockdown of protein coding and miRNA 

genes making them ideal in genetic inhibition studies. Stable mutants can be generated by 

large scale N-ethly-N-nitrosurea (ENU) mutagenesis screens that create random mutations. 

The generated mutants are then characterised and the responsible gene identified 

(Kettleborough et al., 2013) 

 

More recent techniques have now been developed for precise genome editing including 

zinc-finger nucleases (ZFIN), transcription activator-like effector nuclease (TALEN) and 

the clustered-regularly-interspaced-short-palindromic-repeats (CRISPR) with associated 

protein 9 (Cas9) system. These are used to generate knockout mutant zebrafish lines 

relatively easily and quickly. They can also be used to generate knock-ins and specific point 

mutations through homology directed repair (Auer & Del Bene, 2014). In this thesis, the 

CRISPR/Cas9 system was utilized and therefore only this mechanism will be explained in 

more detail.  

 

4.1.3 The CRISPR/Cas9 Mechanism 
 
The mechanism of CRISPR/Cas9 is based on the adaptive immunity of bacteria, in which 

specific DNA sequences are recognized by an RNA-dependent recognition mechanism and 

a Cas9 nuclease (Bauer et al., 2015). This system has been modified to be used as a genomic 

engineering tool, and has made CRISPR one of the most popular approaches to generate 

knock-outs, activate or repress genes of interest.  

The CRISPR/Cas9 system consists of two main constituents: a ‘guide’ RNA (gRNA) and 

Cas9 endonuclease. The gRNA is a synthetic RNA made of a ‘scaffold’ sequence that is 
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required for the binding of the Cas9, and a ‘target’ sequence that is specific and 

complementary to the genomic target of interest (Figure 52). The target region is around 

20bp long, and should be present upstream of a Protospacer Adjacent Motif (PAM) 

sequence. This PAM sequence is needed for target binding of the endonuclease, and the 

exact nature of the sequence is dependent upon the species of the bacteria (5′ NGG 3′ 

for Streptococcus pyogenes Cas9) (Ablain et al, 2015). Once injected, the guide RNA and 

Cas9 protein form a riboprotein complex that goes through a conformational change from 

an inactive state, to a DNA-binding complex. When the Cas9-gRNA complex binds to the 

target DNA, the nuclease domains of the Cas9, cleave the strands of the DNA. This results 

in a double strand break (DSB) mediated by Cas9, within the target DNA (3-4 nucleotides 

upstream of the PAM sequence). These double strand breaks are repaired via homologous 

recombination or non-homologous end-joining, thus resulting in indels (insertions and/or 

deletions) or frameshift mutations. Ideally, the end result is a loss-of function mutation 

within the target gene (Bauer et al., 2015). Early exonic sequences are frequently targeted 

since this leads to gene disruption through frame-shifts or non-sense mutations. 

 

 

 

 

 

 

 

 

Figure 43: Schematic diagram of the CRISPR/Cas9 system. The CRISPR/Cas9 is composed of 
a Cas9 endonuclease and a single stranded guideRNA. The gRNA is designed to target a genome 
sequence of 19-23bp at the 5’ side of a PAM motif.  (Adapted from Ablain et al., 2015) 
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In zebrafish, injection of gRNAs and Cas9 mRNA into the one-cell stage embryo yields 

deletions/insertions at target sites with relatively high frequencies. Mutations are 

inheritable due to mosaic targeting of the germline, allowing rapid establishment of mutant 

strains. Gene inactivation by CRISPR/Cas9 is permanent, providing an effective and 

complementary approach to morpholinos (Chang et al., 2013). In this study, CRISPR-Cas9 

was used to generate a knockdown of IL-34 so as to investigate the effects of its loss on 

bone development and immune phenotype. 

 

4.1.4 Zebrafish as a Model of Immunity 
 

For decades, research has relied heavily on mouse models for experimental designs to study 

immunology. With the realisation that the innate immunity plays an important role in 

coordinating immune responses, further models (also including invertebrates) have been 

added. The zebrafish is both a powerful and versatile vertebrate model useful for 

immunological research.  

 

The innate immune response forms the first line of defence against pathogens. In zebrafish, 

the innate immune system is functional by 2 dpf, and includes an extensive and 

heterogenous system similar to that of higher vertebrates including cytokines, neutrophils, 

macrophages, and interferons. The features of a multi-lineage myeloid system have been 

retained, with monocyte/macrophage cells capable of phagocytosis from 28 to 30 hpf, and 

granulocytic lineages that appear 32-48 hpf. One major difference is that zebrafish lack 

bone marrow and lymph nodes, and instead hematopoiesis occurs in the head kidney as in 

all other teleosts. Immune cells and blood cells arise from the hematopoietic, pluripotent 

stem cells in the whole kidney marrow. These cells then differentiate into either the myeloid 

or the lymphoid lineage (Trede et al., 2004).  

 

The zebrafish is an excellent model to study the development of immune cells due to their 

external development and optically transparent embryos. Following fertilisation, larvae 

survive with only the innate immune responses because the adaptive immune system is 

morphologically, and functionally mature at 4-6 weeks post fertilisation. This temporal 

separation therefore provides a suitable model to study the innate immune response in vivo 

(Novoa & Figueras, 2012). The use of zebrafish in vivo studies can also be used in parallel 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

141 

with human in vitro experiments to help study immune cell function and  immune cell 

interactions.  

 

One of the most important advantages of using the zebrafish as a model of immunity, is the 

establishment of transgenic zebrafish. Specific cells, organelles and structures can be 

fluorescently labelled to track cells and study cell morphologies and cell-to-cell 

interactions. The use of fluorescent tags coupled with the transparency of the larvae, allow 

for ease of visualisation of the whole organism as inflammation is initiated and 

subsequently resolves (Feng et al., 2010). In vivo imaging in zebrafish has allowed for a 

better understanding of the development of cellular components, insights into their 

distribution, and identification of tissue locations as well as migratory behaviours. The 

detailed visualisation in real-time allows for the detection of intracellular damage and cell 

death with minimal interference (Henry et al., 2013). 

 

Genetic manipulation offers a way to understand the molecular controls and functions of 

the cellular components of both the adaptive and innate immune counterparts. The 

zebrafish can be genetically manipulated, using a wide variety of techniques, as discussed 

in section 4.1.2, making it an ideal model for genetic studies. Several lines of evidence 

suggest that the zebrafish have a complete set of genes for the establishment of a fully 

functional immune system similar to the mammalian immune system. Many protein and 

gene families involved in the innate mechanisms have been described, showing that several 

signalling pathways in mammals are conserved in teleost fish. This includes several 

cytokines that arise from macrophages, lymphocytes, granulocytes, DC’s and mast cells 

(Traver et al., 2003, Abo-al-ela et al., 2018).  Cytokines are secreted proteins with growth, 

differentiation, and activation functions that regulate the nature of immune responses. They 

are the earliest mediators of infection and are involved in several steps of the immune 

response from induction of the innate response to generation of cytotoxic T-cells, and 

production of antibodies. Cytokines modulate the immune response through autocrine or 

paracrine manner upon binding to the corresponding receptors (Reyes-Cerpa et al., 2012).  

In the zebrafish, several cytokines have been identified and studied such as IL-1b, TNF-a, 

IL-18, Interleukin-2, Interleukin-4, Interleukin-6, Interleukin-8, Interelukin-11, etc (Bird & 

Tafalla, 2015; Zou & Secombes, 2016).  
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4.1.5 Interleukin-34 in Zebrafish  

In zebrafish IL-34 was first identified and sequenced by Wang et al. They identified IL-34 

from five teleost fish, and showed that they had similar gene organisation with loci 

syntenically conserved (Wang et al., 2013). Using comparative expression studies, they 

demonstrated that IL-34 is differentially expressed in tissues, suggesting a homeostatic role 

of IL-34 for the macrophage lineage in fish. Later in 2018, a study by Wu et al., reported 

that IL-34 is a driver of the migration of microglial precursors to the brain, and that its 

overexpression enhanced microglial colonisation (Wu et al., 2018).  

 

4.1.6 Rationale  
 
Since its initial identification, there has been little development on the role of il34 in 

zebrafish. Its expression pattern, biological processes and molecular functions have not yet 

been fully investigated. Moreover, the effect of IL-34 on macrophages in vivo is still in 

initial stages, and is not yet understood. For these reasons, and in view of the importance 

of this cytokine in the monocyte/macrophage lineage, we sought to identify, characterise 

and describe the expression of il34 in zebrafish.  

 

4.1.7 Aims and objectives  
 

The general focus of this chapter was to develop a zebrafish knockout model to study the 

role of il34 in terms of its contribution towards the immune phenotype. The main objective 

was to develop and characterise a loss of function mutant. Following that, the focus was to 

study the  

contribution and role of il34 in the immune environment.  

 
 

Specific aims:  

 

1. To generate an il34 loss of function model and stable mutants using the 

CRISPR/Cas9 mechanism. 

2. To assess the resulting loss of function phenotype in terms of the development and 

function of il34 in larval zebrafish, including the effect on the bone phenotype.  
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3. To extend further the knowledge about the expression patterns of il34 in wild type 

zebrafish.  

4. To investigate the effects of il34 deficiency on inflammatory responses and innate 

immune cell populations in larval zebrafish. 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

144 

4.2 METHODS  

 
This chapter was carried out in the zebrafish facility at The Bateson Centre, at the 

University of Sheffield. The work was conducted as a collaboration with Professor Stephen 

Renshaw. Thanks to this collaboration, access to the zebrafish facility and use of zebrafish 

project licence was possible.  

 

4.2.1 Materials, Reagents and Equipment Used  
 
 

A. MATERIALS & REAGENTS 

2 X BioMix Red Bioline 

Agarose  Sigma Aldrich  

Ammonium acetate Ambicon 

Anti-dig Antibody Sigma Aldrich 

BCIP Thermo Fischer 

Bovine Serum Albumin (BSA)  Sigma Aldrich 

Cas9 Protein  NEB 

Chloroform Fisher Scientific  

Ethanol Fisher Scientific 

Ethidium Bromide Thermo-Fisher 

Formamide Fisher Scientific 

Glycerol Sigma Aldrich 

Heparin Thermo-Fisher 

Isopropanol Acros Organics 

Magnesium Chloride  Sigma Aldrich 

Methanol Fisher Scientific 

Methylene Blue Sigma Aldrich  

NBT Sigma Aldrich 

NTP-DIG-RNA-Mix Roche 

Paraformaldehyde Fisher Scientific 

Phenol Red Sigma Aldrich 

Phosphate-Buffered Saline Tablets Fisher Scientific 

Proteinase K  Sigma Aldrich 
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RNAse inhibitor  Agilent Biotechnologies 

Sheep Serum  Sigma Aldrich 

Sodium Chloride  Fluka Analytical 

Sodium Citrate  Sigma Aldrich 

Sodium Hydroxide  Fisher Scientific 

SP6 polymerase  Promega 

SYBR Green Sigma Aldrich  

T7 Polymerase  Promega 

TAE Buffer Life Technologies 

Taq Polymerase  Promega 

Transcription Buffer Promega 

Tricaine  Life Technologies 

Tris Sigma Aldrich 

Trizol Life Technologies 

tRNA Sigma Aldrich 

Tween-20  Sigma Aldrich 

  

B. KITS 

DNA-Free Kit  Invitrogen, Life Technologies 

Megashortscript T7 Transcription Kit  Invitrogen, Life Technologies 

One Shot Competent Cells Kit  Invitrogen, Life Technologies 

QIAquick PCR Purification Kit  Qiagen  

SuperScript II First-Strand Synthesis Kit  Thermo Fisher Scientific  

TOPO TA Cloning Kit Invitrogen, Life Technologies 

 

 

 

C. RESTRICTION ENZYMES 

Bsi1 NEB 

BSR1 NEB 

MWo1 NEB 

 

 

 

D. PRIMERS & ULTRAMERS 

Primers for genotyping and for RT-qPCR Integrated DNA Technologies 

Ultramers for guideRNA’s Sigma-Aldrich  
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E. EQUIPMENT  

Spectrophotometer ND-1000 Nanodrop 

Thermal Cycler Touch C1000 Bio-Rad 

Prism Centrifuge Lab-Net 

Inverted Microscope – Eclipse TE2000 Nikon 

SMZ1500 Stereomicroscope Nikon 

Bio-Doc Gel Imaging System  UVP 

RT-PCR System HT7900 Agilent Biosystems 

Gel Pack   Bio-Rad 

Stereo Microscope MZ9.5 Leica 

  

F. SOFTWARE 

Elements Software  Nikon  

Graph Pad Prism V7 Graphpad 

Snap Gene Viewer  GSL Biotech 

Ap-E Plasmid Editor  University of Utah 
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4.2.2 Generation of il-34 Mutant Zebrafish by CRISPR/Cas9 
 

4.2.2.1 Identification of Interleukin-34 gene in zebrafish 
 

A BLAST search for Interleukin-34 zebrafish (Danio rerio) protein on both ENSEMBL 

and NCBI databases led to the identification of a single zebrafish orthologue of human and 

mouse IL-34 (ENSDARG00000091003.2).  

 

4.2.2.2 Identification of sequences to target with the CRISPR/Cas9 
 

The exons chosen as CRISPR targets were Exon 2, Exon 3 and Exon 5. Early exons were 

chosen so as to increase the chance of full loss-of-function occurrence. Each exon sequence 

was inputted into the software SnapGene viewer to locate CRISPR sites. To identify sites, 

PAM sites (NGG or CCN) were located within each of the exon sequences. Sequences with 

a built-in restriction site were chosen, so that once a mutation is generated, the restriction 

site is disrupted and restriction digest can be used to screen for mutants. Since restriction 

enzymes are used to monitor the occurrence of a cleavage, it was crucial that the restriction 

enzyme chosen presented only once within the CRISPR target. The chosen sequence (20 

bp upstream of the PAM site) was noted and placed into a guideRNA (gRNA) template 

(underlined sequences in Table 6. The remaining part of the template contained a sequence 

for the guide RNA to recruit the Cas9 and the T7 promoter (shown in bold). The sequences 

were ordered as single stranded ultramers from Sigma Aldrich.  
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Table 6: Target sequences designed for CRISPR mediated knockdown of il34 in zebrafish. 
Highlighted regions are target sequences, bold sequences are T7 promoter regions. 

 
gRNA Enzyme Sequence 

Exon 2 – gRNA1 BSi1 5’-AAAGCACCGACTCGGTGCCACTTTTTCAAGTT 

GATAACGGACTAGCCTTATTTTAACTTGCTATTTC

TAGCTCTAAAACCCAGCATTCGGACTGGACCATG

GCTATAGTGAGTCGTATTA -3’ 

Exon 3 -gRNA 2 BsrI 5’-AAAGCACCGACTCGGTGCCACTTTTTCAAGTT 

GATAACGGACTAGCCTTATTTTAACTTGCTATTTC

TAGCTCTAAAACCCAGTGTGCAGTAGTGCAGCTC

CCTATAGTGAGTCGTATTA -3’ 

Exon 5 –gRNA 3 Mwo1 5’- AAAGCACCGACTCGGTGCCACTTTTTCAAG 

TTGATAACGGACTAGCCTTATTTTAACTTGCTATT

TCTAGCTCTAAAACCCAGTGCTGCCGAGAGATCT

CCCCTATAGTGAGTCGTATTA-3’ 

 

 

4.2.2.3 Transcription of gRNA 
 

Transcription of the gRNAs from the oligonucleotide templates was performed using the 

MEGAshortscript T7 kit (Life Technologies). The transcription reaction mixture was 

assembled as follows: 1 μL oligonucleotide, 1 μL enzyme, 1 μL each dNTP, 1 μL buffer 

and 3μL nuclease free water. The mixture was incubated at 37°C for at least 4 hours. 

Following this incubation period, 1 μL of DNAse was added in order for any remaining 

nucleotides to degrade. Nuclease-free water was added to top up the reaction volume to 

100 μL. 15 μL of cold 10 M ammonium acetate solution, and 300 μL ice cold ethanol were 

then added to the mixture and mixed so as to purify the RNA. The RNA was precipitated 

for at least 30 minutes at -20°C. To pellet the RNA, the mixture was centrifuged for 15 

minutes at 13,000 g at 4°C. The supernatant was removed, and the pellet air-dried and 

resuspended in 10 μL of nuclease-free water. The RNA concentration was measured using 

a nanodrop spectrophotometer and stored at -80°C until further use.  
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4.2.2.4 Zebrafish husbandry 
 

All zebrafish used for this project were located in the aquaria at The Bateson Centre, at the 

University of Sheffield. Zebrafish were present in tanks at a density of no more than four 

zebrafish per litre, with a 14 hour light and 10 hour dark cycle, at a temperature of 28°C. 

All experimental procedures were carried out in accordance with the Animals (Scientific 

Procedures) Act 1986 under the authority of UK Home Office Project Licence PPL70/8178 

and Personal Licence IO6008638.  

 

4.2.2.5 Maintenance and collection of zebrafish embryos 
 

For collection of zebrafish embryos, a marble tray was placed in the fish tank the night 

before. This stimulates mating at the beginning of the light cycle in the morning. If careful 

staging was to be done, zebrafish were pair mated by pairing. To pair mate, a male and 

female zebrafish were placed on either side of a divided tank overnight. The divider was 

then removed in the morning at the desired time and the zebrafish were allowed to mate for 

collection of embryos. Embryos and larvae were kept at a temperature of 28ºC in 1X E3 

media (containing 2 drops of methylene blue antifungal agent). Zebrafish were placed in 

10 cm petri dishes, with no more than 60 fish in one plate. Larvae were not kept past the 

point of legal protection at 5.2 dpf unless they were being raised to adulthood. To cull, live 

embryos were terminally anaesthetised in tricaine (0.016%). 

 

 

 

 

 

 

 

 

 
 
 
 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

150 

4.2.2.6 Microinjection of gRNAs into zebrafish embryos  
 

Prior to injection, it was made sure that embryos did not develop past the four-cell stage, 

as this is not ideal for injection of genetic constructs; ideally they should be at the one cell 

stage. Eggs were lined up against a microscope slide for ease of injection, whilst the needle 

was lowered toward the eggs, piercing the surface of the chorion and entering the yolk sac 

in one stroke. Each gRNA was injected together with Cas9 protein. The injection mixture 

was made up of the following; 1 μL of Cas9 protein, 1 μL of gRNA and 0.5 μL phenol red. 

1 nanoL of this mixture was injected into the yolk of each embryo. Several uninjected 

embryos were kept as a control (Figure 53).  

  

 

 

 
Figure 44: Figure showing microinjection of zebrafish embryos. (A) An illustration of a 
zebrafish embryo at the one-cell stage (B) Alignment of one-cell stage embryos prior to injection 
(C) image showing needle and injection of construct directly into the yolk as marked by the red 
phenol. Adapted from (Rosen et al., 2009) 
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4.2.2.7 Testing of CRISPR efficacy 
 

Twenty-four hours post injection, the DNA of eight injected embryos and un-injected 

embryos were collected. Each sample was subjected to PCR with primers for each of the 

CRISPR targets and PCR products were then digested with the relevant restriction enzymes 

(Table 6). If the CRISPR was successful, the restriction site would be disrupted, and an 

undigested band was visible. Embryos that showed a mutant band on the gel were raised. 

This was required for germline integration of the transgene. Screening for founder fish (F0) 

that carry the il34 mutation in their germ cells was performed when they reached sexual 

maturity (see section 4.2.3.2). 

 

4.2.2.8 Primers for PCR 
 

A forward and a reverse primer were designed for each of the target sequences using primer 

3 (http://primer3.ut.ee/). Primers were supplied by Integrated DNA Technologies Ltd 

(Belgium). Upon arrival, the primers were re-suspended in dH2O, to a final concentration 

of 100 μM. The primer sets for each of the guide RNA’s injected are listed in the table 

below (Table 7).  

 
 

Table 7: List of PCR Primers for each target sequence 

Guide RNA Sequence 

gRNA 1  Fw Primer     5’- GATATTTTTTGCAGGTGTTTAATA - 3’ 

Rv Primer     5’- CATCTGACATTTTGTCATTTTTA - 3’ 

gRNA 2 Fw Primer    5’- TCAGCCAATAAATATCAGATCCA- 3’ 

Rv Primer    5’- CGTCTCCTTAAGGTTGCATTT - 3’ 

gRNA 3 Fw Primer  5’ - GCGAACCACAAAAAGTTGAA- 3’ 

Rw Primer   5’- TGGTCTTCGTGATTCCCTTC- 3’ 

Fw: forward, Rv: reverse 
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4.2.2.9 Nucleic acid extractions  
 

Genomic DNA was extracted from whole embryos by boiling them in sodium hydroxide. 

100  μL of NaOH was added to one embryo, and heated at 95°C for 5 minutes. This was 

followed by vigorous vortexing. 10 μL of 1 M Tris HCl pH8, was added for neutralization 

of the solution, and the sample was then centrifuged at 1,000 g for 1 minute to pellet any 

large debris. The supernatant was collected for further analysis.  

 

4.2.2.10 Polymerase Chain Reaction 
 

Amplicons were amplified with the primer sets in a 10μL PCR reaction (5 μl Biomix Red 

(Bioline), 1 μl each forward and reverse primer, 2 μL dH2O, and 1 μL ultramer). The PCR 

cycle was as follows: 95°C for 3 minutes, 35 cycles of 95°C for 30 seconds, respective 

annealing temperatures for 30 seconds, and 72°C for 20 seconds.  The reaction was then 

incubated for 5 minutes at 72°C. 2 μL of the PCR reaction was electrophoresed on an 

agarose gel to confirm that the PCR was successful. The amplified ultramer was then stored 

at -20°C until needed. 

 

4.2.2.11 DNA gel electrophoresis  
 

To visualise the PCR and restriction digest products, DNA gel electrophoresis was used. A 

1.5% agarose gel was made by dissolving agarose in TAE buffer (20 mM acetic acid, 40 

mM Tris, 1 mM EDTA). 4μL ethidium bromide was added per 50mL of agarose and mixed 

by swirling the molten agarose gel. Samples were run at 150 V for 15-30 minutes. DNA 

bands were visualised with UV light using the BIODOC ITTM imaging system (UVP). 
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4.2.2.12 Screening for stable founders and identification of mutation by sequencing 
 

To identify founders with germline transmission of il34 mutation, F0 adult fish (at 3 months 

of age) were outcrossed with wild-type AB fish. Embryos at 1-2 dpf from such matings, 

were screened for il34 heterozygous allele (il34 +/-). Following the identification of such 

mosaic founders (F0), these where outcrossed to wild-type adults. The resultant offspring 

of founder fish, termed the F1 generation, are either WT or else carry the heterozygous 

alleles of the transgene in their genome (Figure 54). Following an additional 3 months, F1 

fish were outcrossed to wild-type and their embryos used to sequence the mutation. Cloning 

was performed for direct insertion of Taq polymerase- amplified PCR products into a 

plasmid vector for sequencing.  
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Figure 45: Strategy and timeline for generating a stable il34 mutant line. The DNA construct 
(gRNA with Cas9) is first injected into one-cell stage wild-type zebrafish embryos, where the 
transgene is allowed to integrate into the fish genome. This integration is required in order to 
generate a stable mutant line where both individuals and their offspring carry the il34 mutation. 
After reaching sexual maturity, F0 generation fish are outcrossed to wild-type to screen for founders 
with the germline transmission. The offspring of such founder fish, will be the F1 generation, and 
these carry the heterozygous allele in their genome. The F1 generation is then outcrossed to wild-
type for the continuation of the mutant transgenic line (ideally outcrossed until F3 is reached), or 
crossed to other transgenics (termed a in diagram) to create transgenic lines mutated for il34. 
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4.2.2.13 Cloning and transformation 
 

To perform molecular cloning, the TOPO TA cloning® kit (Invitrogen, Life technologies) 

was used. The PCR product was first purified using the QIAquick PCR purification KIT 

(Qiagen). Following this, 4 µl of purified freshly purified DNA, 1 µl of TOPO vector and 

1 µl of salt solution were mixed together and left to incubate at room temperature for 30 

minutes. In the meantime, chemically competent DH5β (NEB) cells were defrosted on ice 

for a few minutes. To initiate the transformation, the cloning products were added to the 

cells, and incubated on ice for 30 minutes. Cells were then heat shocked at 42ºC for 30 

seconds followed by an additional 5 minutes on ice. 900 µl of SOC media (Sigma) was 

then added, and left to incubate on a shaker for 1 hour at 37°C. While incubation occurs, 

agar plates with ampicillin at a concentration of 0.1 mg/ml were left in the incubator to dry. 

100 µl of the transformation reaction was plated onto the agar plates and distributed evenly 

using a cell spreader. The plate was then incubated overnight at 37 ºC. In order to determine 

whether the TOPO cloning was successful, colony PCR was performed.  

 
 

4.2.2.14 Colony PCR 
 

After the transformation plate was incubated overnight, the colonies were picked for 

analysis. A PCR master mix was made up using M13 primers from TOPO TA cloning® 

kit. For the DNA portion of the reaction, a single colony was picked using a sterile p10 

pipette tip and dabbed into the PCR reaction. PCR was performed on all reactions and gel 

electrophoresis was then performed. Reactions positive for PCR cassette were sent for 

sequencing with M13 primers. 
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4.2.3 Genotyping and Maintenance of il-34 Mutant Line 
 

4.2.3.1 Fin Clipping 
 

In order to genotype, adult fish were anesthetised in a solution of tricaine (80 μg/mL).  

Using sterile surgical scissors, a small portion of the caudal fin was removed. The clipped 

fish were moved to individual tanks, until the genotype was established. 

 

4.2.3.2 Genotyping  
 

Genotyping was performed by extracting DNA from the caudal fins by the sodium 

hydroxide method. This was followed by a PCR and subsequent DNA electrophoresis. The 

il34 50 bp deletion was genotyped using the following primer pair for the whole duration 

of the project: 

 

Forward Primer    5’-TCAGCCAATAAATATCAGATCCA- 3’ 

Reverse Primer    5’-CGTCTCCTTAAGGTTGCATTT- 3’ 

 

A product of size 300 bp was WT (il34 +/+). A product of size 250 bp was homozygous 

(il34 -/-) for 50 bp deletion. Two products of both these sizes were heterozygous (il34 +/). 

 

Following the identification of a (heterozygous) allele in the F1 generation containing a 50 

pb deletion (il34 +/-), the F1 generation was outcrossed to WT until the F3 generation was 

reached. Zebrafish homozygous for this 50 bp deletion (il34 -/-) used for all experiments, 

were generated from an incross of F3 heterozygotes il34+/- 
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4.2.3.3 Combination of il34 mutant line with other transgenic lines  
 

Since il34 is hypothesised to be involved in the generation and proliferation of myeloid 

cells, combining the mutant line with other transgenic lines where myeloid cells (namely 

macrophages and neutrophils) are fluorescently labelled would be beneficial. This would 

allow imaging and examination of the individual contributions these cells play during 

inflammation without the presence of il34. We therefore crossed il34 mutant zebrafish to 

two other transgenic lines:  

 

1. Tg(mpx:GFP)i114 : a transgenic zebrafish line that expresses GFP under the 

neutrophil-specific myeloperoxidase (mpx) promoter (Renshaw & Loynes, 2006) 

2. Tg(fms:GFP)SH377: a transgenic zebrafish line that expresses GFP under the control 

of csf1r receptor (Dee et al., 2016) 

 

Zebrafish heterozygous for il34 allele (il34+/-) were crossed with zebrafish homozygous 

for the respective line to generate transgenics mutated for il34. Following the crossings, 

embryos positive for GFP fluorescence, where selected and raised. Adults were genotyped 

for il34 mutations and heterozygous individuals were identified and kept for further 

experiments.  
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4.2.4 Characterising il-34 Expression in Wild Type Zebrafish 
 

4.2.4.1 Spatial expression of il34  
 

To characterise il34 in WT zebrafish, we assessed the level of expression through 1-5dpf 

larvae, and adult organs (head kidney, brain, gut, spleen, liver, and heart) by conventional 

Q-PCR as well as RT-PCR. Additionally we performed whole mount in situ hybridisation 

on 3dpf larvae to determine site expression of this orthologue.  

 

4.2.4.2 RNA extractions 
 

To extract RNA required for cDNA generation; 20 larvae and/or organs, were collected 

and placed in an eppendorf tube. All E3 media was removed and samples were washed in 

PBS. 300µl of TRIzol® (Life Technologies) was added and the larvae homogenised with 

a mechanical pestle (approx. 15 pulses per sample), followed by incubation on ice for 5 

minutes. At this stage, homogenised samples were put put into liquid nitrogen for snap 

freezing and stored at -80 ºC until further use. Otherwise RNA extractions where performed 

immediately after this step.  

 

60 µl of Chloroform were added; the tube was inverted a few times, then left to incubate 

for a further 5 minutes at room temperature and vortexed to ensure chloroform is mixed. 

Samples were then centrifuged for 15 minutes at 13,000 g at 4ºC. 100 µl of the supernatant 

were removed and placed into a new sterile microcentrifuge tube. 150 µl of isopropanol 

were added, the tube was inverted to precipitate the RNA. Samples were then incubated 

overnight at -20ºC. Following overnight incubation, samples were centrifuged again using 

the same settings. All supernatant was discarded, and the RNA pellet washed with 70% 

ethanol and centrifuged for 5 minutes at 7,000 g at 4°C. The supernatant was discarded 

again, and the RNA pellet air dried for 3 minutes, followed by re-suspension in 20 µl DEPC 

treated H2O.  

 

For embryos at 1-5dpf, 20-30 larvae were used per sample, and for organs, 2-3 of each 

organ was pooled. These experiments where repeated three times to achieve three 

biological repeats.  
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4.2.4.3 DNase treatment 
 

The DNA-Free KIT ™ (Invitrogen™) was utilised to remove DNA from purified RNA . 

10 µl buffer and 1 µl DNase were added to the RNA, and incubated for 30 minutes at 37 

ºC. 2 µl DNAse inactivation solution were added, mixed and incubated at room temperature 

for 2 minutes. The contents were then centrifuged at 10,000 g for 2 minutes. The RNA 

supernatant was then transferred to a fresh tube. 

 

4.2.4.4 Reverse transcription 
 

Purified RNA was firstly quantified by a Nanodrop (Thermo scientific). The First-Strand 

cDNA Synthesis Using Superscript II RT kit (Thermo Scientific) was utilised for the 

reverse transcription reaction. 1000 ng RNA per sample, 1 µl of Oligo (dT)12-18, and 1 µl 

dNTP mix were assembled in a sterile Eppendorf and made up to 12 µl with DEPC treated 

H2O. The mixture was heated to 65ºC for 5 minutes and quick chill on ice. 4 µl 5X cDNA 

buffer and 0.1 MDTT mix were added and incubated for 2 minutes at 42ºC. 1 µl of 

SuperScript II RT enzyme was then added. The mixture was incubated for 50 minutes at 

42ºC followed by a last incubation for 15 minutes at 70ºC. 

 

4.2.4.5 Real time-polymerase chain reaction 
 

For RT-PCR reactions, primers were optimised for concentration, annealing temperature 

and efficiency. All primers used for RT-PCR are listed in Table 8. GAPDH was used as a 

reference gene to which data was normalised. SYBR green master mix was utilised. 

Reactions (10 µl each well) where assembled as follows: 5 µl SYBR Master mix, 0.5 µl of 

FW and RV primer (each at 10 µm), 2 µl of cDNA (at appropriate dilution), and 2 µl of 

H20. The following cycling protocol was used: 95ºC for 7 minutes as the initial denaturation 

step, 40 cycles of 95ºC for 15 seconds and 60ºC for 30 seconds. Followed by 95ºC for 30 

seconds and 65ºC for 10 seconds. Reactions were performed by real-time PCR machine 

ABI 7900 (Agilent Biotechnology). 
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Data analysis: To set the threshold, data was viewed on a log scale. The threshold level was 

set in the log region of amplification, where all amplification plots were parallel and above 

the background noise of the baseline. It was also checked that a single peak was obtained 

for the melting curves. For quantification of samples, this was determined as the ratio 

between quantities of day 0 versus all other days (day 1-5), mutant versus wild type (See 

Section 4.3.5) or knockout versus wild-type for inflammation assays (see section 4.3.7).  

 

Normalised values were calculated by (Nolan et al., 2006):  

 

1. Delta Cq (wild-type) =  Cq (wild-type) – Cq(Wild-type GAPDH)  

2. Delta Cq (mutant) = Cq (mutant) – Cq (mutant GAPDH)  

 

Then:  

 

3. Deltadelta Cq = delta Cq (wild-type) – delta Cq (mutant)  

 

The expression of the gene = 2^-deltadeltaCq 

 

Therefore expression is = 2^ (3(=1-2)) 
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4.2.4.6 High resolution in situ hybridisation of il34 in zebrafish embryos.  
 

A. Probe design and synthesis  
 

To generate RNA probes for whole mount in-situ hybridisation (WISH), the il34 cDNA 

sequence was first obtained through the ENSEMBL database. The il34 coding sequence is 

642 bp long and therefore all of it was utilised (usually a 700-1000 bp in length, is desirable 

for generation of probes). Primer 3 was used to design primers that would amplify this 

region of cDNA. Primers where chosen away from the coding sequence and into UTRs, in 

order to make sure that all the cDNA is copied and included in PCR. The PCR product was 

amplified and subcloned into a TOPO TA. Colonies positive for the cassette were sent off 

for sequencing and the orientation was determined (sense and anti-sense strands).  

 

To synthesize the probe, the plasmid was first linearized by cutting at the opposite end of 

the cassette to transcription using a restriction enzyme. The cassette was also checked not 

to have a restriction site at the same site as the digesting enzyme by analysing the sequence 

with NEBcutter V2.0. The restriction digest was constructed of 20 µg of plasmid DNA, 3 

µl restriction enzyme and 20µl appropriate buffer. The reaction was made up to 200 µl H2O 

and incubated at 37ºC for 2 hours. The cut plasmid was purified by phenol/chloroform 

extract, and re-suspended in H20. 2 µl of uncut plasmid and 5 µl of cut plasmid were 

electrophoresed on a 1.5% gel to determine if linearization was complete.  

 

To generate the riboprobe, 2000 ng cut plasmid, 4 µl transcription buffer, 4 µl DIG labelling 

mix, 2 µl of transcription enzyme (either T7, T3 or Sp6) and 2µl RNAase inhibitor were 

made up to 40 µl with H2O, then incubated for 2 hours at 37ºC. Following incubation, 4µl 

DNAse was added and the mixture incubated for a further 15 minutes. 10 µl 7.5 M 

NH4C2H3O2 (ammonium acetate) and 60 µl Ethanol (both ice cold) were added to the 

transcription reaction and inverted to mix. The reaction was then centrifuged in a micro-

centrifuge (13,000 g, 4ºC, and 15 minutes). The supernatant was discarded and the pellet 

washed with 100 µl ethanol (70%) and centrifuged again for 5 minutes. The supernatant 

was again discarded, the pellet air dried for 3 minutes and re-suspended in a 100 µl mixture 

of formamide and H2O (70:30 respectively) then stored at -80ºC. 
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B. Embryo fixation 
 

Larvae at 3dpf were utilised for whole mount in situ hybridisation (WISH). To fix larvae, 

they were first dechorionated and put into 1.5 ml microcentrifuge tubes in groups of 20. 

All E3 media was removed and 500 µl 4% PFA solution was added. The larvae were 

incubated on a rocker at room temperature for 2 hours. PFA was removed and replaced 

with 500 µl of 100% methanol, incubated at room temperature for 15 minutes and then 

stored at -20ºC until needed.  

 

 
C. Whole Mount in In-Situ Hybridisation (WISH) 

 

Day 1: Fixed larvae were rehydrated through a series of methanol washes each for 5 

minutes: 75% methanol: 25% PBS, 50% methanol: 50% PBS, 25% methanol: 75% PBS, 

and 4 washes with 100% PBS-T (PBS + 0.1% Tween 20). Larvae were then digested with 

10 µg/ml proteinase K, at room temperature for 40 minutes. The larvae were then fixed 

again in 4% PFA and incubated at room temperature for 20 minutes. Samples were then 

washed with PBS-T for 5 minutes, 5 times each. Samples were then cleared of the PBS-T 

and incubated in pre-heated PreHyb buffer (50% formamide, 5 x SSC solution, 0.5 mg/ml 

tRNA, 0.1% tween 20, 50 µg/mL Heparin, pH was adjusted to 6.0 with 1M citric acid) for 

2-5hours at 70ºC. Samples were kept in a water bath. Following this incubation, PreHyb 

buffer was discarded, and replaced with ProbeHyb buffer (same as PreHyb with additional 

1:200 dilution of probe in formamide). Samples were left to incubate overnight in a 

horizontal position on a heating blocking at 70ºC.  

 

Day 2: Samples were briefly washed with WashHyb Buffer (PreHyb without tRNA and 

Heparin) at 70 ºC followed by washes (also at at 70 ºC) for 15 minutes each with a series 

HybWash as follows: 75% HybWash: 25% 2 x SSC, 50% HybWash: 50% 2xSSC, 25% 

HybWash: 75% 2 X SSC then 100% 2 x SSC. Samples were then washed twice with 

0.2XSSC for 30 minutes at 70ºC. Samples were then given sequential washes of decreasing 

concentrations of 0.2 x SSC for 10 minutes at room temperature. Starting with 75% 0.2 x 

SSC: 25% PBS-T, then 50% 0.2 x SSC: 50% PBS-T, then 25% 0.2 x SSC: 75% PBS-T, 

followed by a final 10 minutes PBS-T wash. For blocking, each sample was incubated in 

blocking solution (2 mg/mL BSA), 2% sheep serum, all dissolved in PBS-T) for 2-5 hours 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

163 

at room temperature. Each sample was then incubated in 500 µl Blocking buffer with a 

1:5000 dilution of anti-dig antibody (Roche) and protected from light at 4 ºC overnight.  

 

Day 3: The following day, samples were discarded of antibody solution and given a brief 

wash in PBT. This was followed by 6 additional washes for 15 minutes each. All larvae 

where then transferred to a 24-well plate on the last wash in order to start staining 

procedure. For staining, 3 x 5 minutes washes with NTMT buffer (0.1 M Tris HCl pH 9.5, 

50 mM Mg Cl2, 0.1M NaCl, 0.1% Tween 20) at room temperature. Buffer was then 

exchanged for staining solution (3.5 µl and 4.5 µl, BCIP and NBT respectively, per ml of 

NTMT, Roche). Samples were monitored every 15 minutes for development of stain. Once 

stain had developed, the samples were washed 3 times with PBS-T. In order to remove any 

background, each sample was washed with 50% methanol, followed by incubation in 100% 

methanol, until all background had been cleared. Samples were then washed again with 

50% methanol, then twice with PBS-T. 4% To re-fix larvae, PFA was added for 20 minutes 

at room temperature. Samples were washed 3 times with PBS-T, and placed into 75% 

glycerol and stored at 4 ºC. 

 
Images: Photographs of larvae with WISH staining where taken using the SMZ1500 

stereomicroscope, with a DS-Fi1 camera (both Nikon), at 20x magnification and Nikon 

Elements software.  
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4.2.5 Characterising the Expression and Inflammation of il34 in Mutants 

 

4.2.5.1 il34 expression in mutant adults 

In order to determine loss of function in il34 mutants, brains from 8-month old il34-/-

individuals were collected and processed for cDNA. RT-PCR analysis on il34-/- and their 

il34+/+ siblings was performed.  

 

4.2.5.2 Inflammation assays  
 

The zebrafish was used as a model to study the role of il34 as an inflammatory cytokine, 

through characterising its expression in response to injury and inflammation by caudal fin 

amputations. We also investigated the expression of its potential receptor csf1ra (colony 

stimulating factor 1 receptor) and the competing ligand csf1a. Additionally, we investigated 

the attenuation of two other common inflammatory signals TNF-a and IL-1b.  

Amputation of the caudal fin was performed on 3 dpf larvae of homozygous (il34-/-) 

individuals. The caudal fin was amputated with a sterile scalpel, posterior to the muscle 

and notochord under anaesthesia with 0.016% tricaine in zebrafish water (Figure 55). 

Injured larvae, as well as uninjured ones (serving as control) were collected at various time 

points post-injury (2 hours, 4 hours, 8 hours and 24 hours).  Following injury, larvae (20 

for each condition; injured and uninjured, as well as for each time timepoint) were pooled 

and processed for RNA extractions as described in section 4.2.4.2. RT-PCR was then 

performed using SYBR green dye (refer to section 4.2.4.5). The list of primers used for 

RT-PCR can be found in the table below.  
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Figure 46: Schematic representation of caudal fin amputations in zebrafish. Caudal fins of 
homozygous (il34-/-) from an F2 heterozygous (il34+/-) in-cross, were amputated at 3dpf as shown. 
Injured and un-injured larvae were collected at several time points: 2hrs, 4hrs, 8hrs and 24hrs, and 
assessed for expression of the following :Il34, csf1ra, csf1a, TNF-a and IL-1b.  

 

Table 8: List of primers for RT-qPCR of tail-fin injury assays.   

 Forward (5’-3’) Reverse (5’-3’) 

Il34 TCAGACTGCGAAACATCAGC TAATGCCCTGTTGACTCACG 

EF1a CAGCTGATCGTTGGAGTCAA 
 

TGTATGCGCTGACTTCCTTG 
 

GAPDH GTGGAGTCTACTGGTGTCTTC GTGCAGGAGGCATTGCTTACA 

TNF-a GCGCTTTTCTGAATCCTACG TGCCCAGTCTGTCTCCTTCT  

IL-1b TGGACTTCGCAGCACAAAATG GTTCACTTCACGCTCTTGGATG 

Csf1a Gene expression assay Dr03432535_m1 (Applied biosystems) 

Csf1ra Gene expression assay Dr03125175_m1 (Applied biosystems)  
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4.2.5.3 Assessment of neutrophil and macrophage number  

For analysis of macrophages and neutrophils in il34 genotypes, the transgenic reporter lines 

described in section 4.2.3.3 were used. Heterozygotes from the F1 generation for each 

respective line were incrossed, and 3 dpf larvae were anesthetized by immersion in E3 with 

0.016% tricaine. Complete transection of the tailfin was performed using a microdissection 

scalpel in accordance with United Kingdom Home Office approval as previously described.  

Larvae recovered for the time interval indicated (4 hours for neutrophil counting, and 8 

hours for macrophage counting).  

Imaging: For imaging larvae were anesthetized in 0.016% tricaine and positioned in 24-

well plates (Corning, Sigma), and covered with 1-2 mL of embryo water containing 

tricaine. Imaging was performed using a Nikon inverted microscope (Eclipse, TE2000) 

using a X1 objective, DS-Ri Camera at X20 magnification, and a GFP filter set. The 

number of fluorescent neutrophils and macrophages at the site of inflammation was counted 

by eye. Following counting, each individual embryo was genotyped. 
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4.2.6 Assesment of Cartilage and Bone Phenotype in il34 Mutant Zebrafish 

 

4.2.6.1 Von Kossa Stain 

Von Kossa (calcium) staining is a technique used in histology to visualise calcium deposits. 

This technique uses the ability of calcium salts to transform into silver salts. Tissues are 

first treated with a solution of silver nitrate, which turns into silver phosphate when 

facilitated by a light source. These phosphates in turn bind to calcium present in the tissue, 

and silver is deposited. Staining is then visualized as metallic grey/brown deposits. We 

aimed to use this technique to visualise any abnormal development of bone in il34 mutants 

versus their wild-type siblings.  

For staining, 5 dpf larvae (around 20 per sample) were fixed in 4% PFA for around 2 hours 

at room temperature. After fixation, samples were rinsed three times in H20 and 0.01% 

Tween. 1 mL of silver nitrate solution was added, and samples were left to incubate under 

a 60 W light bulb for 1 hour. Rinsing with H20 and 0.01% tween was repeated to wash 

away any silver nitrate solution. Embryos were fixed in 2.5% sodium thiosulfate for around 

10 minutes, and then rinsed again (3X) in H20 and tween. This was then followed by fixing 

in 4% PFA for 30 mins at room temperature, and preservation in sequential glycerol 

solutions (25%, 50%, 75% and 100%). Embryos were kept at room temperature and 

covered in foil until images were taken.  

 

4.2.6.2 Alcian Blue Staining  

Alcian blue staining is a technique used to observe embryonic development of cartilaginous 

structures in embryos and complete larvae. In fish, Alcian blue can be used to observe 

cartilage from 2dpf onwards. The principal aim of carrying out this staining was to 

determine whether mutations in il34 had any effects on cartilage development in 

homozygous embryos compared to their wild-type siblings.  

5dpf larvae were fixed overnight in 4% PFA at 4ºC. The next day the larvae were washed 

twice in 0.1% PBS-T, and washed with sequential washes of methanol: 100%, 60% and 

30% for 5 minutes each. Specimens were then transferred into Alcian blue staining solution 
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(0.1% Alcian Blue, 70 ethanol, 1% concentrated hydrochloric acid) and left to stain 

overnight at room temperature. Following overnight incubation in the stain, embryos where 

first rinsed in PBS-T and then bleached in 30% hydrogen peroxide for 10 minutes and on 

a hot plate at 37ºC. 30% saturated borate was then used to wash samples and help eliminate 

and residues of bleaching solution. Embryos were put into digestion solution (trypsin in 

30% saturated borate solution) for 30 minutes at 37ºC until brains and eyes appeared 

translucent. Finally re-hydration through methanol series (5 minutes each) was performed 

and samples were put through a glycerol series (25%, 50%, 75% and 100%). Embryos were 

kept in room temperature in glycerol until images were taken. Zebrafish were imaged for 

both stains using the SMZ1500 stereomicroscope, with a DS-Fi1 camera (both Nikon), at 

20 X magnification and Nikon Elements software.  

 

4.2.7 Statistical Analysis 
 
 
Data were analysed using GraphPad Prism (version 7.0) software (GraphPad). The 

numbers of experimental subjects for all experiments are donoted by the prefix n. Data is 

shown as the mean ± Standard error of the mean. All data analysed by t-test or one way 

ANOVA depending on the number of experimental groups.  Significance values denoted 

as follow: Non-significant (ns): p > 0.05; *: p<0.05; **: p<0.01; ***: p<0.001; 

****:p<0.0001 
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4.3 RESULTS  
 
The aim of this chapter was to develop a zebrafish model to understand the role of IL-34 

in both the development and function of the zebrafish. To achieve this, a zebrafish line 

deficient of IL-34 was generated by the CRISPR/Cas9 genome editing tool. The phenotype 

of the resulting individuals was assessed by investigating the spatial and temporal 

expression of the cytokine in larval individuals. Additionally, the contribution of Il-34 in 

the innate immune response was also analysed in both wild-type and loss of function 

mutants.   

 

At the time the work was conducted, no other loss of function mutants for il34 existed in 

the literature. As a result this study represents the first characterisation of a loss of function 

mutant in zebrafish as well as the role of il34 in the innate immune response. The data 

presented here is therefore still in early stages, and further investigations need to be 

conducted to add to this repertoire.  

 

4.3.1 Zebrafish Possess a Single Orthologue of Human IL-34 
 
A search for the il34 protein of zebrafish (Danio rerio), in both ENSEMBL and NCBI 

databases, identified a single zebrafish orthologue of the human IL-34 

(ENSDARG00000091003). The BLAST online tool was used to align both sequences, 

which showed that the zebrafish sequence has 30% protein and DNA identity to the human 

gene (Figure 56). 
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Figure 47: Clustal alignment of human and zebrafish IL-34. The human protein sequence 
(ENSG00000157368) aligned via clustal to its zebrafish orthologue (ENSDARG00000091003). 
The zebrafish sequence has 30% homology with that of humans.  

 

The zebrafish il34 gene encodes a single protein of 213 amino acids, is present on 

chromosome 18 (18, 527, 170-18, 543, 358), and is made up of 7 exons. The human IL-34 

gene is present on chromosome 16 (70, 579, 895-70, 660, 682), contains 6 transcripts, 4 of 

which are protein coding and are also made up of 7 exons. It appeared that the gene has a 

general 7 exon/6 intron structure with an intron in the 5’UTR region, across both zebrafish 

and humans (Figure 57). Despite the conservation in the number of exons, exon size was 

different between both species. Additionally, compared to the zebrafish, the human IL-34 

genes have a large untranslated region at the first coding exon (exon 2) and a large coding 

region in the last exon.  

 
 
 

KEY 
 
*      Fully conserved residue  
:      Conservation between strongly similar properties 
.      Conservation between weekly similar properties  
 

RED                 Hydrophopic (including aromatic-Y) 
BLUE           Acidic 
GREEN            Hydroxyl + Sulfhydryl + amine + G 
MAGENTA      Basic –H 
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Figure 48: Exon alignment of human and zebrafish IL-34. Gene organization of human and 
zebrafish IL-34 molecules. Grey and white boxes represent amino acid coding regions and 
untranslated regions respectively. Bars represent introns, while exon sizes (bp) are numbered in the 
boxes.  

 

Another important indicator of conserved function between orthologues, is gene synteny 

between the genomic loci of the gene of interest. The genomic loci of human and zebrafish 

il34 were compared. A 500 kb stretch of zebrafish genomic locus was compared to a 900 

kb stretch of human genomic locus, revealing gene synteny between them. The genes 

MTSSIL, SF3B3, N4PB1, S1AH1, and LONP2 appear in both human and zebrafish loci. 

Although the gene order is reversed, il34 is close to SF383 in both species. This 

demonstrates that il34 of zebrafish is a true orthologue of human. Figure 58 shows a 

graphical representation outlining the similarities and differences of both loci.  
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Figure 49: The genomic loci of  IL-34 in human and zebrafish. Zebrafish and humans share 
conserved gene synteny with five genes (MTSSIL, SF3B3, N4PB1, S1AH1, and LONP2) remain 
localized within the same radius. This demonstrates that zebrafish il34 gene, is a true orthologue of 
the human IL-34. Arrows indicate transcriptional directions. 

 

Taken together, the above factors indicate that homology between zebrafish and human IL-

34 gene is relatively low, however the gene appears to be highly conserved across species. 

A similar pattern is observed for M-CSF (CSF-1). The M-CSF gene is highly conserved 

between zebrafish and humans with gene function in both species related to the 

mononuclear phagocyte system (Wang et al., 2013). As a result, given the relationship 

between M-CSF and Il-34 in the human monocyte/macrophage lineage and function, the 

zebrafish is a good model for the investigation of the role of il34 in immune and bone 

development.  
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4.3.2 Using the CRISPR/Cas9 System to Create an il34 Mutant Line 
 

4.3.2.1 Design and construction of il34 target sites 
 

In order to generate a stable mutant line deficient of il34, the CRISPR/Cas9 system was 

utilised. To allow mutations caused by the CRISPR/Cas9 system to be identified easily, 

PAM sites close to large restriction sites were chosen. These are optimal sites to use for 

CRISPR as they are large and easily disrupted. Three restriction sites were chosen: Mwo1, 

Bsl1 and Bsr1. The sites are GCNNNNNNNGC, CCNNNNNNNGG, ACTGGN, 

respectively with BSl1 site containing natural PAM sites to which gRNA’s can be targeted. 

Il34 contained a number of these sites, and three guide RNA’s were designed around these 

restriction sites. The aim was to generate a large deletion to eliminate, or cause a disruption 

in the coding sequence.  

 

 

4.3.2.2 Testing the efficacy of CRISPR/Cas9  
 

Any indels created by the CRISPR/Cas9 system and guide RNA will mutate the restriction 

site and prevent digestion. As can be seen from Figure 59, Guide RNA 2 induced a 

mutation.  PCR products from un-injected single embryos were completely digested by 

Bsr1 (Lanes 5-7). Digested PCR product from CRISPR/Cas9 injected samples (Lanes 8-

17) showed incomplete digestion with the presence of uncut products, demonstrating that 

the CRISPR had medium efficacy. This confirms that the BSrI restriction site within il34 

exon 3, was disrupted and therefore the DNA fragment could not be digested. Figure 59 

shows the restriction digest agarose gel image. Guide RNA’s 1 and 3 did not induce any 

mutations and where thus eliminated as possible target sites or mutagenesis of il34.  

 

Once the efficacy of the CRISPR was confirmed, 100 embryos were injected with gRNA– 

2 and Cas9, and raised to breeding age. In order to determine whether CRISPR mutations 

were transmitted to the germline, these F0 mosaic adults were crossed with wild-type and 

8 embryos from each cross were analysed by PCR and analytical gel. Each digest was 

compared to a wild-type individual. Figure 60 shows representative digest for founder 

identification.  
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Figure 50: Design and efficacy of il34 gRNA-2 by CRISPR/Cas9 System. A) Schematic 
representation of il34 exon 3, with the guide RNA (gRNA2) designed complementary to the target 
site. The forward and reverse primers used to amplify the location of the target site are labelled as 
Primer 1 and Primer 2 respectively. B) The  restriction site for BsrI is shown in detail. The 
restriction site is highlighted with a blue line, and its cut site labelled with a red line. The PAM site 
is shown in green with an arrow indicating the site where Cas9 will potentially cut the DNA. C: 
Analytical gel to test efficacy of CRISPR. PCR products of the target site from gDNA-2 from single 
embryos 24 hours post injection, were subjected to digestion by BsrI. The uncut PCR product of 
approximately 300 bp is shown in lanes 1-4. Un-injected controls cut with BsrI gave complete 
digestion, leaving two products of similar sizes at 250 bp mark (Lanes 5-7). CRISPR-injected 
embryos (Lanes 8-17) resulted in incomplete digestion in all embryos examined, implying BsrI site 
had been mutated by the CRISPR at medium efficacy. 
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Figure 51: Analytical gel showing the identification of founders, F0 adults were outcrossed to 
wild-type to determine which individuals carry the heterozygous allele to their offspring. Two 
possible deletions were identified. PCR products from these where cloned into a vector and sent for 
sequencing to determine the exact nature of the mutations.  

 

Although a deletion or insertion of 1bp is only required for a frameshift mutation to produce 

a premature stop codon, a large deletion or insertion would allow the resulting allele to be 

genotyped by analysing the PCR product size, without the need for restriction digests. 

Genotyping by PCR, is also considerably cost and time effective. The restriction digest 

identified two founders. The rest were non-transmitting individuals. One of the founders 

showed PCR products of two different sizes, possibly multiple deletions, implying that the 

founder transmitted an allele to the germ line containing a large deletion. The identified 

founders were outcrossed to wild-type fish and grown to adulthood producing the F1 

generation.  

 

In order to determine the mutations caused by this CRISPR, individuals from the F1 

generation were out-crossed to wild-type. Embryos were collected 24 hpf to extract DNA, 

and PCR was performed to amplify the regions. Cloning was then performed by inserting 

the PCR products into the TOPO TA vector, and 20 samples were sent for direct 

sequencing. Table 9 shows the mutations generated by injection of gRNA2 and Cas9 

protein and the resulting altered protein sequences. Two mutations were generated; a 25 pb 

deletion termed as MUTANT 1, and a 50 bp deletion/6 pb insertion termed as MUTANT 

2. Since larger deletions are more likely to disrupt the protein function, this mutant was 

chosen for subsequent studies. This will also ensure time and cost-effective screening for 

mutations in the future.  
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Table 9: Table showing the mutations caused by the CRISPR/Cas9 system. Both the disrupted 
exon and resulting changes in protein sequences are shown for each. Red sequences indicated 
deletions, whilst blue sequences indicate insertions.  

 
 
 

WT Sequence Mutation  

Exon 3 GTTTTATTTGTCTATTACCAGTGTGCAGTAGTGC 

AGCTCCAGATCTCTGTGGACCTCTGAAAACAGTC 

CAAGACAGTCTAAATGCAACCTTAAGGAGACGTT 

ATATG 

 

 

Protein MVQSECWLLRGLLGFICLLPVCSSAAPDLCGPLKTV 

QDSLNATLRRRYMKMHFPINYTVQVRYEEVFRLRN 

ISRLVNTSNEEEPVLPRDLQDLWLYVSQQGIKKVLR 

VLPERHPTRRKYLSDLENLFKKFETVFKEGNHEDQE 

NVRERPESLQTIWDHLTEQDYKGWKSVTPKSILDNC 

YRTMLCLFKECFTKEDDNYDYCEVYNRRKERKTT 

 

 

 

Mutant 1 Sequence 

Exon 3 GTTTTATTTGTCTATTACCAGTGTGCAGTAGTGCA 

GCTCCAGATCTCTGTGGACCTCTGAAAACAGTCC 

AAGACAGTCTAAATGCAACCTTAAGGAGACGTTA 

TATG 

 

23bp 

deletion 

Protein MVQSECWLLRGLLGFICLLPSLWTSENSPRQSKCNLKE 

TLYENALSH 

 

 

Mutant 2 Sequence 

Exon 3 GTTTTATTTGTCTATTACCAGTGCAACCCTGCAGTA 

GTGCAGCTCCAGATCTCTGTGGACCTCTGAAAACA 

GTCCAAGACAGTCTAAATGCAACCTTAAGGAGACG 

TTATATG 

 

6bp 

insertion, 

50bp 

deletion 

Protein MVQSECWLLRGLLGFICLLPVQPKCNLKETLYENALSH 
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4.3.3 Raising CRISPR Injected Zebrafish and Management of il34 Mutant Line 
 
Zebrafish homozygous for this deletion, (il34-/-) used for all experiments in this thesis, were 

generated from an in-cross of F2 heterozygotes (il34+/-). In-crosses of generations were kept 

to assess the phenotype of the homozygous mutant. Figure 61 shows a representative gel 

of genotyping for il34 50 pb deletion/6 bp insertion mutation. A product size of 300 bp was 

WT, whilst a product size of around 250 bp was a homozygous mutant. Products of both 

sizes were heterozygous. This method of genotyping the mutant line was used for 

subsequent generations and experiments.   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Gel illustrating il34 50bp deletion genotyping. Gel generated by genomic PCR of  
il34 50 bp deletion allele primers situated around the CRISPR targeted site. WT individuals produce 
a product of 300 bp (Lane 1), individuals homozygous for 50bp deletion (il34-/-) show a product of 
250 bp (Lane 3), while heterozygous 50 bp deletion ( il34-/+)  individuals produce products of both 
sizes (Lane 2).   
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Embryos from each cross were monitored to check for any potential deformities or 

mortality. The following are some observations of each:  

1. Heterozygous outcross - All individuals from a heterozygous outcross developed 

normally, with no apparent altered phenotype or mortalities.  

2. Heterozygous  in-cross – The embryos from a heterozygous in-cross, showed no 

apparent differences. However, the resulting homozygous adults appeared to be 

smaller in size than their wild-type siblings (43mm in length wild-type vs 28mm 

for homozygous) (Figure 62). The homozygous adults also appeared to have some 

difficulties in producing embryos, as embryo numbers were low when both pairing 

or marbling. All other wild-type or heterozygous adults appeared normal.  

3. Homozygous in-cross- On the other hand, embryos from a homozygous in-cross 

exhibited some differences. Embryos showed a mortality rate of around 50% at 3 

dpf, with only a few surviving individuals making it past day 5. Individuals also 

showed some deformities, including enlarged hearts or lack of circulation (Figure 

62). 
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Figure 53: Photographs of morphological deformities in il34 mutants. (A) Representative 
Photographs of 50dpf individuals demonstrating that wild-type individuals do not display any gross 
morphological deformities, but il34-/- individuals exhibit a reduction in size. (B) 3dpf larvae 
showing defective development of homozygous embryos with visible heart aneurysm. Scale bar = 
100 µm 
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4.3.4 The il34 Transcript Undergoes Non-Sense Mediated Decay 
 
Based on sequencing data, the il34 allele (Mutant 2) underwent a frameshift mutation. A 

frame-shift mutation would change the reading frame and cause a change in the translation 

from the original. Thus a non-functional polypeptide would arise. Otherwise, a frame-shift 

mutation could also lead to a premature stop-codon altering the folding of the protein.  

 

To investigate whether the mutation results in decreased il34 mRNA levels, il34 RT-qPCR 

was carried out in il34-/- and WT brains. Approximately 65% reduction in the transcript 

compared to WT controls (P<0.0001), was observed (Figure 63). This suggests that NMD 

is occurring in the homozygous fish and supports the assumption that the mutation results 

in loss of il-34 protein expression.  

 

 

 
 
 

 

 

 

 

 

 

Figure 54: Expression of il34 in mutant vs wild-type zebrafish brains by RT-qPCR. 
Homozygous individuals have reduced il34 transcript levels in brain tissue compared to WT. **** 
p < 0.001 Unpaired T-test). Gapdh was used as a reference gene. Error bars represent ± SEM of 
n=3 triplicated samples.  
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4.3.5 Expression of il34 in Wild-Type Zebrafish  
 

4.3.5.1 Temporal expression of il34 in wild-type zebrafish.   
 

Since no previous literature was available on the expression of il34 in wild-type zebrafish, 

to assess the temporal expression during development, RT-PCR was used to amplify a 

region of il34 cDNA from 1 to 5 dpf as well as a selection of adult tissues. Expression of 

il34 in WT embryos was detected as early as day 1 post fertilization, and at low levels for 

day 1-5 of embryogenesis (Figure 64).  

 
Expression was similar in organs including brains from 3 months up to 24 months and 

organs such as spleen, liver, and heart (Figure 65) Some increased expression was observed 

for the gut and head kidney in adults.  

Figure 55: Expression of il34 through development in wild-type zebrafish by PCR. Transcript 
levels of il34 were measured throughout development from Day 1 to Day 5 by RT-PCR. Il34 
expression was also confirmed in adult brains from 3 months to 24 months. Ef1a was utilised as a 
loading control. 
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Figure 56:  Expression of IL-34 in adult tissues of wild-type by RT-PCR. Expression was low 
throughout all tissues with higher levels seen in gut and head-kidney. Tissues were pooled from 3 
individual fish at 18 months old. Ef1a  was utilised as a loading control. 

 

The expression of il34 in the developmental stages was further investigated by RT-qPCR. 

cDNA from wild-type individuals was used to assess the temporal expression of il34. The 

data is presented as relative gene expression from day 1 to day 5 (Figure 66A) and as fold 

change compared with day 1 (Figure 66B).  Results shows that the expression increases 

from day 1 till day 4, and is reduced again at day 5.  
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Figure 57: Expression of il34 in wild-type larvae from 1-5 dpf as determined by RT-qPCR. 
(A) Data shown as relative expression from day 1 to day 5and (B) data shown as fold change 
compared to day 1. Values were normalised to gapdh Error bars show ± SEM of triplicate samples 
(N=3). Analysis done by one-way ANOVA ** p<0.01, *** p < 0.001, **** p<0.0001. 
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4.3.5.2 Spatial expression and localization of il34 in wild-type zebrafish 
 

Although both RT-PCR and RT-qPCR confirmed that il34 is present within the first five 

days of development, these do not confirm the spatial expression. Therefore, to visualise 

the location and expression of il34 in development of wild-type zebrafish, whole-mound in 

situ hybridisation (WISH) was utilised.  

 

The design principles of WISH probes are described in detail in section 4.2.4.6. Since il34 

is a relatively small gene consisting of only 7 exons a WISH probe for il34 was designed 

to target the whole protein coding region of the gene. Forward and reverse primers were 

designed to amplify the whole coding region of gene tagged with the T7 or SP6 promoter 

respectively (Figure 67). From this PCR product an antisense and sense control probe can 

be transcribed. Staining developed within 3 hours using the antisense WISH probe 

transcribed from the PCR product described. Within the same time scale, WISH performed 

with the sense control probe did not produce any staining, therefore indicating that staining 

produced with the antisense probe is specific for il34. 

 

 

 

 

 

 

Figure 58: Design of WISH probe for il34. The gene and cDNA sequence of il34 are shown in 
this schematic. The location of the primers amplifying a region of the cDNA are also shown (T7 
primer and SP6 primer). The resulting PCR product is used as a template from which the WISH 
probe is transcribed. Orange represents UTR and blue represents protein coding regions.  
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WISH was performed at 3 dpf larvae. From these observations, il34 did not appear to be 

spatially restricted but rather appeared to be widespread and ubiquitously expressed. No 

other staining was detected using the control sense probe. Some marked expression 

appeared in the head of both control and experimental probes, but this was probably 

background staining which is characteristic, and often observed in zebrafish brain tissue. 

Dorsal views of the brains, did not reveal any site specific staining (Figure 68) 

Additionally, since this was the first synthesised probe for il34, and no literature was 

available on the expression pattern of this cytokine in fish by WISH, an L-plastin WISH 

probe was added to serve as an additional control. L-plastin is a marker for the 

monocyte/macrophage lineage in zebrafish. The aim was to assess whether expression 

would follow a similar pattern. L-plastin could be seen in the posterior part of the embryo 

with enrichment in the posterior blood island (PBI).  

 

 

 

 

 

 

 

 

 

 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

186 

 

Figure 59: Whole-mount in-situ hybridization of il34 expression in wild-type larvae at 3 dpf. 
A: Lateral view of 3dpf embryos stained with il34 experimental probe (anti-sense), B:  il34 control 
probe (sense) and C: L-plastin probe (added control). D and E show dorsal views of the head/brain 
region for il34 anti-sense and sense probes respectively. The sense control probe for il34 showed 
no staining, indicating that the staining shown in the anti-sense strand is specific to il34. 
Abbreviations: FB – Fore-brain, MB – Mid-brain, HB-hind-brain, E- eyes, IN- intestine  
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4.3.6 Effect of il34 Knockdown on Bone and Cartilage Development  
 

To evaluate the effect of il34 knockdown, on skeletal development, we assessed bone and 

cartilage formation in developing embryos. We used histological procedures to follow the 

development of the zebrafish skeleton by Von Kossa stain for detecting calcium deposition 

and mineralised structures, and Alcian blue stain for cartilage formation by proteoglycans. 

Specimens of zebrafish larvae collected at 5dpf were used. 

 

No abnormal deposition or lack thereof was seen in the zebrafish by the Von Kossa stain. 

Ossification of branchio maxilla (MX), branchistegal ray (BS), opercle (OP), cleithrum 

(CL), and phargyneal teeth (PT), (Figure 69) do not show any significant changes. Cartilage 

deposition as seen by Alcian blue staining, was seen to be less reduced in mutant zebrafish. 

This was also determined by the intensity staining (Fig 69E) between wild-type and mutant 

fish. It must also be mentioned that at 5dpf, cartilage and bone mineralisation is still 

undergoing development and therefore any changes in colour or intensity observed, could 

be attributed to this. Additionally, mutant il34 -/- fish, survived for over 12 months at the 

time these experiments were conducted, suggesting that IL-34 mutation did not induce any 

detrimental changes that could have affected the survival of the mutants. However more 

data needs to be collected to better characterise the bone phenotype in both juvenile and 

adult zebrafish, to fully determine the effect of loss of Il-34.  
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Figure 60: Von-Kossa and Alcian blue staining. A,B: Lateral views of wild-type and il34-/- 
embryos at 5 days post fertilization stained with Von-Kossa stain. Abbreviations: mx- branchio 
maxilla, bs- branchistegal ray, op- opercle, cl- cleithrum, pt -phargyneal teeth. C,D: Ventral view 
of stained with Alcian blue from wild-type (C) and il34-/- embryos at 5 dpf. Cartilage elements 
corresponding to the second and posterior arches (marked 1-5) appear to be reduced. E: 
Quantification of Alcian blue staining using Q-path as a measure of pixel density. Error bars show 
± SEM of triplicate samples (N=3). Analysis done by unpaired T-test * p<0.1. Abbreviations: m – 
Meckel’s cartilage, pq – palatoquadrate, ch – ceratohyal, ep – ethmoid plate 

E 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

189 

 

4.3.7 il34 is Associated With the Inflammatory Environment in Zebrafish  
 

After having assessed the expression of il34 in developing zebrafish by both PCR and RT-

qPCR, we conclude that il34 mRNA is present at low levels in unstimulated larvae. 

Additionally, in situ hybridisation of wild-type larvae, did also not reveal any specific 

spatial expression of the gene at 3 dpf. As a result, we hypothesised that the expression and 

regulation of il34 may be modulated in response to inflammatory stimulus, as already 

observed in the mammalian systems. In order to modulate inflammation in the zebrafish, 

we used a well-established tissue injury assay; the adult zebrafish tail (caudal) fin assay. 

This was chosen as the model of choice to study the role of immune cells in injury, as well 

as the signalling pathways controlling this regenerative process.  

 

4.3.8 il34 and its Association to Inflammation in Caudal Fin Assays 

 

We first addressed the expression of il34 at different time points in 3 dpf wild-type larvae 

under acute inflammatory conditions using the tail-fin model and quantitative PCR. We 

found that the mRNA levels of il34 were not statistically significant between these time 

points, however, a slight trend towards upregulation was observed, peaking after 4 hours 

from the amputation. In unwounded embryos, there was no upregulation of gene 

expression, indicating that similar to mammalian counterparts, il34 could also be a pro-

inflammatory cytokine in the zebrafish (Figure 70A and 70B). In light of these results, we 

hypothesised that il34 could be acting as an inflammatory cytokine showing early onset in 

the inflammatory response, and that its expression could be modulated by other 

inflammatory cytokines.  
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4.3.9 Expression of TNF-a and IL-1b is Upregulated in Wounded Zebrafish Tail-

Fin. 

 
This led us to investigate the expression of two genes encoding major pro-inflammatory 

molecules, namely TNF-a and IL-1b. These two cytokines were chosen as they are the 

main cytokines associated with initial response to inflammation, and are also linked to 

several major inflammatory diseases. Upon injury, mRNA levels of both cytokines 

increased with a peak expression at 4 hours post tail-fin amputation (Figure 70D and 70F). 

The expression appeared to increase significantly when compared to the uninjured 

zebrafish (Figure 70C and 70E) and appeared to resolve 24 hours from injury, consistent 

with a pattern seen in the caudal fin model.  

 
 

4.3.10 Involvement of csf-1 and csf1-R in Tail-Fin Injuries 
 

Having determined that an inflammatory environment is established in response to tail fin 

injuries, we further addressed whether other molecules are involved. We investigated the 

macrophage colony stimulating factor 1 (csf-1) and its receptor csf1-R, given the major role 

played by these two in regulating and signalling macrophages, as well as owing to the fact 

that csf1-r, might potentially be the receptor for il34. Both cytokine and receptor appeared 

to be upregulated in response to injury with a peak expression at 8 hours for csf1, and a 

peak expression at 4 hours for csf1-R (Figure 70H and 70J). No increased expression was 

seen in uninjured zebrafish (Figure 70G and 70I). 
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Figure 61: Expression of il34 and associated cytokines by zebrafish tail fin injuries. Tail fins 
from 3dpf wild-type and morphant larvae were injured, and mRNA levels of the indicated genes 
were determined by RT-qPCR of whole embryos at 2, 4, 8 and 24 hours post injury (30 embryos 
per time point), in comparison with uninjured embryos. Gene expression was normalized against 
gapdh. Each bar represents mean ± SEM of triplicated samples. To compare expression between 
time points, a Two-way ANOVA with Dunnett’s multiple test was used. To compare relative gene 
expression between wild-type and knockout at each time point, a T-test with Mann-Whitney test 
was performed. For the t-test all p values were non-significant.. *p < 0.05, **p < 0.01, *** p < 
0.001, **** p < 0.0001 
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In view of these observations, peak expression of both il34 and csf1-R at 4 hours indicates 

that signalling of il34 could be acting through csf1-R as already documented in humans and 

mice models. On the other hand, csf1 which is known to signal through csfl-R does not peak 

at 4 hours but rather at 8 hours, suggesting that il34 might be the primary pro-inflammatory 

molecule acting at the site of injury through the csf1-receptor before csf1, (or showing a 

greater affinity to the receptor). After observing this modulation of major pro-inflammatory 

cytokines, the recruitment of inflammatory cells at the site of injury was next analysed. The 

two main inflammatory cells are neutrophils and macrophages.  

 

4.3.11 Neutrophils are Recruited During Fin Regeneration in Wild-Type Zebrafish  
 
 
To study the response of neutrophil recruitment in response to an inflammatory stimulus, 

the established tail fin regeneration assay was again employed. The aim of this experiment 

was to compare neutrophil recruitment in wild-type and mutant zebrafish. However due to 

some technical complications encountered in the development of the il34 transgenic line, 

the mutant zebrafish could not be used for this analysis and as a result, only data for wild-

type zebrafish is presented at this stage.  

 

Tg(mpx:GFP)i114 embryos at 3dpf, were subject to tail-fin amputations from the end of the 

circulation. The injured embryos were viewed under a confocal microscope for 24 hours. 

Results showed that similar to previous studies, myeloid cells responded immediately and 

migrated to the wound via the circulation. However, the initiation of inflammation was 

faster than that observed for macrophages. Neutrophils show a higher motility than 

macrophages and are the first myeloid cells recruited to the site of injury, peaking at 4-6 

hours before numbers decline by 24 hours. As expected, neutrophils migrated to the site of 

injury via the circulation with a peak accumulation at 4 hours, followed by a resolution 

complete by 24 hours from injury. Counting the fluorescence cells in individual fish that 

participated in the inflammatory response, confirmed that a neutrophil influx occurred in 

response to injury and was resolved within 24 hours (Figure 71).  
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Figure 62: Time course of inflammation in Tg(mpx:gfp) neutrophil transgenic line. A) Tailfins 
of transgenic wild-type fish were transected at 3 dpf. At the time points indicated, individual fish 
where anesthetized and imaged as described. The number of fluorescent neutrophils at the site of 
injury (neutrophils counted after circulatory loop). Data points are shown for 30 individual fish per 
group in addition to mean ± SEM (n=30, 3 independent experiments). B: Images showing a single 
transgenic zebrafish larvae at the time points indicated following amputation of the tailfin and 
control. The accumulation and subsequent removal of fluorescent neutrophils can be seen. Scale 
bar = 150µm 

 
 
 

 

 

 

 

 
 

 
 
 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

195 

4.3.12 Macrophage Recruitment is Altered in the Absence of il34  
 

Since in mammalian systems IL-34 directs the differentiation and survival of monocytes 

and macrophages, (Foucher et al., 2013; Ségaliny et al., 2015) I wanted to investigate the 

effect of il34 knockdown on the inflammatory response and macrophages in mutant 

zebrafish. To achieve this, caudal fin amputations were performed on 3 day embryos from 

a heterozygous (+/-) in-cross of the double transgenic line tg(fms: GFP). This line contains 

the heterozygous mutant il34 allele, and GFP expression of macrophages is driven by the 

fms promoter. To visualize these inflammatory cells throughout injury, live images of the 

amputated caudal fins were taken at 8 hours post fin injuries (Figure 72). The 8 hour time-

point was chosen as this is the optimal time for recruitment of macrophages to the site of 

injury.  

In addition to characterizing the general inflammation throughout fin injury, we compared 

the inflammatory response by counting the number of macrophages at the site of injury, 

and determined how this correlated to the genotype of the fish. Macrophage numbers were 

counted from the end of the circulation, near the injured edge.  

Consistent with a role in response to injury, accumulation of macrophages was observed at 

the wound. We demonstrate that the number of macrophages is altered depending on 

genotype with il34-/- individuals having the lowest number of macrophages at the site of 

injury in comparison to il34 +/- or il34 +/+. This result clearly reveals a direct association 

between knockdown of il34 and recruitment of macrophages in response to an 

inflammatory environment.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Chapter 4 – Zebrafish as a Model to Study the Role of IL-34 in the Immune Response 

196 

-/- +/- +/+
0

2

4

6

8

10

N
um

be
r 

of
 M

ac
ro

ph
ag

es
****

*

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63: Knockdown of il34 reduces macrophage number in the transgenic line 
Tg(fms:GFP). (A) Tailfins of il34: fms:gfp transgenic larvae were amputated at 3 days post 
fertilization. Following 8 hours from injuries, individual fish where anesthetized and imaged as 
described. The number of fluorescent macrophages participating in the inflammatory response was 
assessed. Macrophage numbers where counted near the injured edge, after the circulatory loop. 
Individual larvae were then genotyped. The number of resulting fish per genotype is as follows: 
WT (+/+); 20, heterozygous (+/-); 30 and homozygous (-/-); 13. Data indicates mean ± SEM (n=3), 
P< 0.0001 for One-Way Anova. (B) Inverted microscopy images of single transgenic zebrafish 
larvae 8 hours after tailfin injury, comparing il34 WT (+/+), heterozygous (+/-) and homozygous (-
/-) individuals. GFP labelled macrophages can be seen at the site of injury. Images are shown as 
projections of brightfield, GFP channel and summed Z-stacks. Scale bar = 200µm 
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4.4 SUMMARY 
 

This study represents the first characterisation of il34 expression in wild-type zebrafish as 

well as an analysis of il34 loss of function model. A few loss of function in vivo models are 

currently present, however these only focus on the effect of il34 on microglia deficiency. 

This is the first study attempting to investigate the deficiency of il34 in relation to myeloid 

cells and inflammatory signalling.  

 

Zebrafish were found to possess a single il34 orthologue, with conserved gene synteny, 

whose expression was low, but consistent and not spatially restricted, at least during early 

development. CRISPR/Cas9 was employed to create a stable loss of function mutant. The 

resultant allele produced loss of protein function through non-sense mediated decay. 

Knockdown of il34 did not lead to severe phenotypic defects, however juvenile 

homozygotes showed marked heart defects and early lethality.  

 

We then aimed to investigate the role of il34 in response to an inflammatory stimulus by 

tail fin injury assays. We describe the upregulation of il34, its potential receptor and other 

associated pro-inflammatory molecules in the cellular microenvironment in comparison to 

wild-type and mutant model. Furthermore, we report the first characterisation of il34 in 

relation to macrophages in an inflammatory lesion. We document a decrease in the number 

of macrophages in homozygous mutants, elucidating the role of il34 as a regulator of 

myeloid cells
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CHAPTER 5  

GENERAL DISCUSSION AND CONCLUSIONS 

5.1 DISCUSSION 
 

Following a decade from its discovery, IL-34 has been introduced as a newcomer into the 

family of interleukins with critical potential involvement in several diseases including 

autoimmune diseases or cancers. Il-34 is therefore emerging as a cytokine with promising 

clinical applications in diagnosis and treatment. In this thesis, the role of IL-34 in 

inflammation and in the progression of OS was investigated. The results highlight the 

importance of its signalling networks, and present new opportunities for therapeutic 

strategies.  

 
Figure 64: Schematic representation of the role of IL-34 in Inflammation. IL-34 expression 
can be induced by several stimuli including inflammatory cytokines, viral infection and pathogen 
associated patterns. IL-34 can act on a variety of cell types including synovial fibroblast and 
peripheral blood mononuclear cells (PBMC). IL-34 is associated with elevated expression of 
inflammatory cytokines inducing positive autocrine loops in amplifying the immune inflammatory 
response. IL-34 stimulates the proliferation of macrophages and their differentiation towards the 
M2 phenotype. Inflammatory process and the impact on macrophage differentiation lead to an 
increase of  osteoclastogenesis and thus to an upmodulation of bone resorption. Adapted from 
Baghdadi et al., 2018.   
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SECTION I 
 

Many aspects of the functions of IL-34 have so far been elucidated especially with regards 

to its role in myeloid biology. Despite this, there is still a lack of information about the 

secretory pathways and signals regulating the secretion of IL-34. The trafficking of this 

cytokine and its regulation both temporally and spatially to orchestrate responses is still 

unknown. Over recent years, extracellular vesicles are gaining attention as mediators of 

communication by regulating intracellular biological processes. Moreover, emerging 

evidencing is showing that extracellular vesicles play a role in supporting the tumour 

microenvironment niches by the transfer of oncogenic cargo between tumour cells or to 

neighbouring cells (Miller & Grunewald, 2015; Min, et al., 2016). Studies have shown that 

mesenchymal stem cells can modulate the proliferation of OS cells (Avril et al., 2016, 

Perrot et al., 2010) however the authors failed to identify any significant soluble factors 

produced by MSCs explaining the pro-proliferative effects on OS cells, leading to the 

conclusion that the effects observed might be due to EVs. These observations are 

strengthened by a study of Gabriel et al. who reported that undifferentiated MCSs and OS 

were not able to communicate via gap junctions therefore showing that direct cell to cell 

communication between these two cell types is not occurring (Tellez-Gabriel et al., 2017). 

EVs are consequently an additional mode of communication between OS cells and MSCs.  

Additionally, given the role of IL-34 in the pathogenesis of OS, our goal was to investigate 

whether IL-34 can be delivered by exosomes as part of the signalling and trafficking 

mechanism of OS, and how OS derived vesicles may impact stromal cells in the tumour 

microenvironment and consequently the tumour growth.  

 

Exosomes were isolated and characterised from MG63 and KHOS osteosarcoma cell 

lines using ultracentrifugation. By using this method there were some differences in 

product yield from batch to batch, and quantification of exosomes presented some 

limitations throughout the studies. This highlights the problem in the field of EV research 

regarding the lack of standardization in current methodologies. For future studies it might 

be worth considering more rapid isolation techniques, such as ultrafiltration or size 

exclusion methods, so as to improve the efficacy of the preparation process, and optimize 

the quality of the finished material.  

The use of TRPS allowed for the quantitative determination of sample size, size range and 

concentration. TRPS is a highly reliable technique for determining the size distribution of 
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cell-derived vesicles, due to its calibrated and consistent measurement. In TRPS the 

concentration is measured as a function of an already designated size range, this makes 

results standardisable and comparable (Maas et al., 2014). The detection of extracellular 

vesicles by TRPS showed a size range of 50-150 nm. Together with the presence of 

exosome specific markers CD9 and CD63, this demonstrates that OS cells release 

exosomes.  

 

These observations are generally consistent with other studies that have reported the 

presence of exosomes from OS cell lines. OS derived vesicles have been so far isolated 

from canine OS cells; POS and HMPOS (Bracha et al., 2018; Ruby et al., 2017) and human 

OS; 143B and KHOS (Garimella et al., 2014). Only a limited number of studies on 

exosomes derived from OS are currently present in the literature. To this date, these studies 

have focused on the content of the vesicles, showing that similar to other cancer types, they 

contain a pro-tumourigenic cargo, but the main mechanisms by which these function, still 

remain unexplored (Baglio et al., 2017; Garimella et al., 2014; Kovac et al., 2015; Xu et 

al., 2017).  

 

Osteosarcoma derived exosomes promote the differentiation of mesenchymal stem 

cells towards adipocytes. Since stromal cells are a major component of the tumour 

microenvironment and known to modulate the growth and metastasis in OS, we 

investigated the role of OS derived exosomes on the differentiation of MSCs. Exosomes 

purified from KHOS, stimulated the differentiation of MSCs towards the adipogenic 

lineage, by upregulating the gene expression of AP2 and PPARG2. On the other hand, no 

effects were noted for chondroblastic differentiation whereas for osteoblastic 

differentiation, it was observed that the osteogenic markers decreased on day 7 when 

treating with OS derived vesicles. The significance of this observation is yet unknown and 

need to be investigated further. However previous studies have shown that this could be 

related to bone regeneration (Ekstrom 2013, Graneli 2016) 

 

Mesenchymal stem cells differentiate into adipocytes through the two stages of 

adipogenesis, driven by transcription factors PPARG2 and the C/EBP family. Initially 

mesenchymal stem cells commit to the adipocyte lineage forming preadipocytes, which 

become mature adipocytes through terminal differentiation (Arimochi et al., 2016). Both 
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preadipocytes and mature adipocytes play numerous roles in tumour formation and 

progression of OS. They have been shown to provide pro-tumorigenic signals that promote 

cancer cell proliferation and  

 

invasiveness by increasing STAT3 signalling mediated by matrix metalloproteinase 2/9 

(MMP2/9) expression in tumour cells (Wang et al., 2017). KHOS cells could therefore 

facilitate the adipogenic differentiation establishing a cycle between adipocytes and OS 

tumour cells in favour of tumour promoting properties (Basu-Roy et al., 2016). These 

results highlight the properties of OS exosomes and their role as the main communicators 

for modulating the tumour microenvironment through modifications of the stroma. 

 

How exosomes cause these significant changes in target cells remains an area of intensive 

research. More recently, one in vivo study described the generation of a preclinical mouse 

model of OS with exosome-mediated interactions between tumour cells and MSCs. The 

authors show that systemic injection of OS derived exosomes, educated MSCs in mice 

bearing OS xenografts to promote cancer growth and metastasis by activating the IL-

6/STAT3 signalling pathway (Lagerweiji et al., 2018). These findings are relevant since 

immune modulation and tumour immune evasion are key mechanisms in malignant 

progression, and therefore suggest that cancer exosomes might directly or indirectly (via 

MSCs) influence the innate or adaptive immune components.  

 

MSC derived exosomes can modulate the biological functions of OS. Our results show 

that MSC derived exosomes promoted the proliferation of OS cells in vitro, demonstrating 

the role of exosomes in cell-to-cell communication on tumour cell viability and 

progression. Proliferation was increased after treatment with BMSC on both KHOS and 

MG63 cells. We then observed the exchange of exosomes between MSC and cancer cells 

by monitoring their uptake over 24 hours using confocal microscopy. The functional 

properties of the mesenchymal derived exosomes on cancer, was investigated by looking 

into the cytokine profile of adipose and bone marrow derived stem cells. We demonstrated 

that several cytokines and chemokines such as Serpin E1, endoglin, IL-6, and FGF-19 were 

found. These data suggest that exosomes selectively carry certain cytokines and transfer 

them to recipient cells to bring about anti-tumour or pro-tumour effects. Such effects have 
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already been reported in breast cancer (Vallabhaneni et al., 2015) and colon cancer (Zhu et 

al., 2012).  

 

There are three major mechanisms to explain how exosomes adhere to recipient cells to 

release their contents and bring about the desired effect. Exosomes first utilize the 

interaction of their various surface proteins and cellular receptors to adhere to target cells. 

Once bound, the exosomes may a) elicit signal transduction via the induction of 

intracellular signalling pathways, b) fuse with the cellular membrane to transfer the protein 

content into the cytoplasm of the recipient cells, or c) be endocytosed via phagocytosis 

(Zhang et al., 2015). The complexity of these mechanisms is only beginning to emerge, 

and represents a significant area of exosome research that still needs to be refined.  

 

To summarize, the results presented here indicate that despite the initial hypothesis, IL-34 

may not be present in osteosarcoma derived vesicles and therefore it does not take 

participate in the pathogenesis of OS. Taken collectively however, the results suggest the 

hypothesis that cross-talk between OS cells and their microenvironment by secretion of 

exosomes is a crucial mechanism that can generate a specific sequence. First, cancer cells 

interact with MSCs via exosomes to modulate them, and in response, the modified MSCs 

participate in cancer progression through their own exosomes. Additionally, this may imply 

that the recipient MSCs may be employed for therapeutic use to improve bone regeneration 

(Chu et al., 2018)  
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SECTION II 
 

Based on previous work that demonstrated that IL-34 plays a key role in tumour 

development and chemoresistance (Baghdadi et al., 2016; Segaliny et al., 2015) we 

investigated the potential of targeting IL-34 in mouse model of OS using an IL-34 blocking 

antibody. There are currently no approved therapies based on the inhibition of IL-34. We 

hypothesised that using an IL-34 inhibitor, may have a therapeutic effect in treating 

cancers. By targeting IL-34, the communications between cancer cells and the tumour 

microenvironment can be hindered with the resulting functional impact being the inhibition 

of tumour proliferating cells, and/or the surrounding microenvironment through 

modulation of immune cells, and endothelial cells. 
 

Blocking IL-34 had a therapeutic efficacy on the progression of osteosarcoma. On 

performing a dose response analysis, the results revealed that blocking IL-34 using a mouse 

monoclonal antibody significantly reduced tumour progression in allograft models of OS. 

Out of the four doses administered, the 4 mg/kg dose was the most effective. A higher dose 

failed to inhibit tumour growth with the same efficacy. This could mean that: i) an immune 

reaction is precluding the efficacy of the treatment, but this is probably unlikely as a slow 

inhibition of tumour growth was still observed, or ii) a more plausible explanation could 

be related to the pharmacodynamic properties of the antibody including its half-life, 

antibody degradation and elimination, or the equilibrium point between binding and release 

was reached.  
 

In both syngeneic and xenogeneic models, a significant reduction in tumour volumes was 

observed following treatment with anti-Il-34 for 3-4 weeks (depending on the model).  In 

parallel, an anti-human-IL-34 antibody was tested in the xenogeneic model, but in this case, 

no reduction of tumour growth was seen. This observation is in favour of a production of 

IL-34 by the tumour microenvironment. IL-34 blockade may be an effective approach to 

slow down tumour growth.  
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Figure 65: Schematic representation of how IL-34 can act as a therapeutic target in 
osteosarcoma. Using a blocking antibody, to block the interaction of IL-34 with its receptors can 
prevent the progression of osteosarcoma. A) Blocking IL-34 can reduce the infiltration of tissue 
associated macrophages into the tumour niche to bring about anti-tumour activities. B) In bone, IL-
34 can facilitate osteoclastogenesis resulting in reduced formation of osteoclasts. (C) In 
osteosarcoma targeting the production of IL-34 in the tumour microenvironment may be effective 
against multi-agent chemotherapy and can lead to anti-tumour effects including a reduction in 
tumour growth, metastasis and angiogenesis.  

 
 

On immunohistochemistry analysis, there were no significant effects on tumour cell 

proliferation (Ki67) or rate of apoptosis (Caspase-3) in either of the models. A few 

hypothesis could be proposed to explain this lack of a difference. Primarily, the tumours 

investigated in this study have a highly aggressive nature, (with MOS-J being more 

aggressive than MNNG-HOS), and therefore this would have had a limited effect on the 

proliferation rate.  

 

A reduction in tissue vasculature was observed as marked by a decrease of the endothelial 

cell marker CD31. This highlights the critical role that Il-34 plays in promoting tumour 

angiogenesis (Segaliny et al., 2015). This difference was observed mostly in the MNNG-

HOS model, with only a slight tendency detected in the MOS-J model, probably due to the 

aggressiveness of the tumours. It can be hypothesised that blocking IL-34 leads to a 
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reduction in angiogenesis by reducing the proliferation of endothelial cells or/and 

endothelial precursors.  

 

Il-34 is known to modulate the FAK, Src and Akt and ERK1/2 signalling pathways in 

endothelial cells (Zhou et al., 2016) Indeed FAK is a critical mediator of integrin signalling 

with FAK knockout mice demonstrating its critical role in development of embryos and 

cancer progression (Sulzmaier et al., 2014). FAK also mediates the phosphorylation of Src 

and subsequently Src modulates the endothelial phenotype and angiogenesis (Pan et al., 

2014). Similarly, Akt and ERK1/2 play critical roles in the regulation of endothelial cells 

and vascular homeostasis (Somanath et al., 2006). Therefore given the association of IL-

34 to endothelial cells, this may explain the therapeutic benefit of treating with anti-IL-34.  

 
Blocking IL-34 in osteosarcoma induced a dysregulation in M1/M2 macrophage 

subsets. A higher incidence of M1 macrophages was observed in treated groups compared 

to the control for both models. This increased infiltration and activation of anti-tumour M1 

macrophages, can be attributed to high inflammation in the local environment of the 

tumour. Within the tumour cell microenvironment, several types of immune cells are 

present including T-lymphocytes, macrophages (M1 and M2), as well as sub-populations 

of B-lymphocytes and mast cells. OS cells are able to control the differentiation and 

recruitment of immune infiltrating cells to establish a local immunosuppressive 

environment that is able to promote tumour growth and metastasis, and increase drug 

resistance (Heymann et al., 2017). 

 

The resident NK cells may secrete immune-activating cytokines such as IL-2, IFN-γ, and 

macrophage inflammatory protein (MIP)-1α, resulting in macrophage activation (Khawar 

et al., 2015) This may also lead to release of further cytokines from already activated 

macrophages present in the tumour tissue, such as TNF-α and IL-6. Additionally, 

immunosuppressive cytokines secreted by OS tumour cells such as TGF-β and IL-10 may 

be decreased, thus shifting the balance towards an activated immune response. This may 

attract more infiltrative NK and macrophages at the localized tumour site, thus increasing 

their migration and proliferation, and enhanced anti-tumour function (Bellora et al., 2010).  
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Buddingh et al., demonstrated that in OS, macrophages have both M1 anti-tumour, and M2 

pro-tumour characteristics, and that the M2 macrophages are associated with bad prognosis 

(Buddingh et al., 2011). As previously described, increased IL-34 expression was found to 

facilitate the extravasation of mononuclear phagocytes and orient their polarisation towards 

an M2 phenotype (Segaliny et al., 2015). To determine the impact of blocking IL-34 on 

M2 macrophage subtypes, an M2 marker CD163 was utilised. Surprisingly, low numbers 

of CD163 infiltrating the tumour tissue were present in both control and treated groups. 

The CD163 analysed were not detected in the tumour mass but in connective tissue at the 

periphery. Tumour-associated macrophages (TAM) located in the periphery, of the M2 

type and expressing CD163, but still in contact with the tumour have also been described 

in other tumours (Shabo et al., 2008). One plausible explanation for this low detection, is 

that low numbers of tumours were analysed, and therefore a bigger cohort would be needed 

for future experiments. Considering the low number of CD163 macrophages in the control 

groups, more data is required at this stage to fully elucidate the effect of anti-il34 on M2 

macrophages. Another explanation is that changes in the microenvironment with the 

presence of e.g. IL-10 and TNF-a, both known to upregulate and downregulate CD163 

respectively (Yang et al., 2015), may also play a role, and this would therefore merit further 

investigation.  

 

At this stage these findings are clinically relevant and they indicate that anti-IL-34 

antibodies may show promise in the treatment of patients with OS. Overall, the major 

challenge of these results is the aggressive nature of the models used, which consequently 

may have limited the effect of the treatment. The small animal numbers and high 

heterogeneity of OS tumours, could also explain the absence of significant differences. 

Thus further testing with an increase in animal numbers, as well as assessment of 

intermittent and continuous dosing of anti-IL34 antibody is needed.  

 

Anti-Il34 antibody had no effect on bone remodelling, while its effect on metastasis is 

unknown. Due to the association between OS and development of metastasis, we aimed to 

assess the therapeutic effect of anti-IL-34 on inhibiting lung metastasis. Due to restrictions 

in the project licence, the short timing of the in vivo experiments did not allow for the 

assessment of the metastatic process. To provide a definitive conclusion on the efficacy of 
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blocking IL-34 as a therapeutic target, future studies should primarily aim to test the effect 

of blocking IL-34 on the development and progression of lung metastasis.  

 

In this context, since associated alterations of bone remodelling play a central role in the 

development and progression of OS, we studied the effect of the blocking antibody on bone 

remodelling. The results indicate that the anti-IL-34 blocking antibody had no effect on 

bone architecture. The explanation for this could be attributed to two factors. The first is 

that tumour sizes investigated in the models where relatively small and not enough to 

induce OS associated bone remodelling. Secondly, bone mediated osteoclastogenesis 

occurs independently of IL-34, with the other major cytokine responsible being M-CSF. 

Together with RANKL and NF-κB, these cytokines induce osteoclastic differentiation 

(Baud’Huin et al., 2010). MCS-F is also highly expressed in tumours with several tumour 

promoting functions (Chockalingam & Ghosh, 2014).   

 
A bi-therapy treatment of anti-il34 and doxorubicin failed to act synergistically on 

tumour progression. Based on the results obtained, the combined therapy of anti-IL-34 

with doxorubicin was evaluated. A combination of therapeutic regime would represent an 

additional therapeutic option, as both agents target different complementary pathways: 

anti-IL-34 targets mainly macrophages and vascular formation, while doxorubicin targets 

the proliferation of cancer cells.  

 

The aim was to investigate whether combining both would induce a synergistic inhibition 

of primary tumours. The results show that a combination treatment had no significant 

synergistic effect on tumour progression than administering DOX or anti-IL-34 

individually. While administering anti IL-34 alone had similar effect to previous 

experiments, there was a high variation in tumour volumes on administering the DOX. This 

high discrepancy can be attributed to problems when administering the DOX. This led to 

the unexpected results observed, and thus would need to be repeated in future experiments.  

Such analyses can also be rendered complicated due to several factors, including the high 

heterogeneity of tumours, the tumour microenvironment, and the host’s immune system. 

An important factor for consideration at this stage is the dose timing of the treatment. In 

such studies, the timing of the treatment is highly important, and predicting how tumours 

will respond is currently elusive. Studies in the literature about administering more than 
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one drug for cancer treatment have demonstrated the importance of dose timing. A study 

by Ottewell et al., investigated the anti-tumour effect by administering zoledronic acid and 

doxorubicin in breast cancer subcutaneous tumours in vivo. This study supports the notion 

that initial priming of cells by one treatment, renders them more sensitive for subsequent 

exposure to a further treatment, when such treatments are administered time apart. Thus 

effects of combined treatments may manifest themselves over a few hours apart, increasing 

the anti- tumour effect when given in sequence. They also showed that administration of 

drugs in a particular treatment schedules initiated specific changes in gene expression of 

the tumours (Ottewell et al., 2008). Thus depending on the timing, the treatment outcomes 

can be vastly different even within the same tumour model. 

 

Moreover, it is likely that populations of tumour infiltrating lymphocytes (TILs) and 

myeloid derived suppressor cells (MDSCs) are being modulated by these therapies, and 

understanding the underlying mechanisms behind this modulation are key to predicting the 

outcome (Bremnes et al., 2016). Therefore, further investigation with modulations in dose-

timing is required. Apart from dose timing, the dose administration could need further 

adjustment. As already mentioned, the affinity of the antigen to the antibody, as well the 

amount of ligand present within the tumour tissue are two parameters that could affect the 

efficacy of the treatment.  

 

 

Comparison of IL-34 conditional knockout mice with IL-34 mutant mice.  
 

An IL-34 murine conditional knockout model was published by Wang et al., in 2014. In 

this model, the authors report that IL-34 expression was found mainly in the skin and the 

CNS and that it was produced mainly by keratinocytes. A deficiency of IL-34 resulted in 

impaired epidermal Langerhans Cells and microglia cell numbers (Wang et al., 2014). 

Based on the early data from the knockout model currently being developed, findings 

indicate that our preliminary results are in line with what was observed in the conditional 

model. Similarly, we also observed a decrease of Langerhans cells in the skin. Additionally 

we also report a decrease in number of immune cell populations in four major organs but 

most notably in the spleen.  Our experiments also report a severe delay in bone mineral 

density that resulted in delayed growth of the mice. This phenotype was not reported in the 
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conditional knockout model, and therefore it is being hypothesised that IL-34 could be 

playing a role in in early very early development that is yet to be determined (Schiavone et 

al., unpublished).  

 

SECTION III 
 

To study the role of IL-34 in bone development and the immune response, an il-34 

mutant zebrafish line was generated. Up to date only a few studies on il34 in zebrafish 

have been published. These studies mainly focus on the role of il34 in microglia and their 

early development. Two studies have shown that il34 is required for early seeding of 

microglial progenitors in the brain (Kuil et al., 2018; Wu et al., 2018). Taken together, 

these studies as well as the mouse model of KO IL-34, establish an essential role for il34, 

csf1, and csf1r axis in zebrafish development.  
 

Using the CRISPR/Cas9 system, a zebrafish line mutated for il34 was developed. The 

mutation was a 6 bp insertion and 50 bp deletion, that generated a frame-shift mutation 

resulting in non-sense mediated decay of il34 protein. The generation of a stable mutant 

il34 line using the CRISPR/Cas9 system highlights its importance as a highly efficient 

genome editing tool. Outcrossing two F0 founders for the generation of the F1 generation, 

and subsequent genotyping identified a 23 and 50 bp deletion. The 50 bp del allele was 

preferred due to the capacity to genotype by PCR alone, which eventually proved to be 

extremely cost and time effective. The time taken to generate heterozygous adults that 

could be utilised for in-cross experiments was between 6-9 months. The F1 adults then 

required direct sequencing to ascertain their mutation as F0 founders can still produce F1 

individuals with different mutations if their germ line is a mosaic harbouring multiple 

mutations. One limitation of CRISPR/Cas9 system is off-target effects. Therefore the allele 

had to be outcrossed to remove any background mutations. Mutant alleles have traditionally 

been outcrossed to WT individuals until the F5 generation is reached. At this point, any 

confounding mutations are deemed to have been removed from the line, and therefore the 

adults can be utilised for experiments (Varshney et al., 2016).   
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To determine the expression of IL-34 in steady state conditions, expression in wild 

type zebrafish was investigated. Expression analysis of WT tissue confirmed il34 

expression occurs at consistent levels throughout development, with earliest expression 

detected at 1 dpf. Expression in adult zebrafish was confirmed in several organs, including 

the brain and head kidney which are key tissues for pathology seen in KO mouse studies. 

Expression was additionally monitored through development by WISH. The staining for 

expression seemed overall ubiquitous with the majority of it concentrated in the head and 

skin, thus keeping in line with the observed expression pattern for microglia. As for the 

skin, il34 could be implicated in the development of colour pattern formation as observed 

in pigment models of zebrafish.  

 

In the zebrafish D. rerio pattern development has been intensively studied. The general 

patterns are dark stripes comprising melanophores, with alternate light inter-stripes of 

yellow-orange xanthophores and abundant iridiophores. Collectively these three 

chromatophores are located in the hypodermis between the skin and the myotome, and are 

crucial pigments for the development of the skin pattern (Singh & Volhard, 2015). Csf1r 

mutants are deficient in xanthophores and have disorganised melanophores. These mutants 

fail to develop the normal stripe pattern characteristic of Danio rerio leading to impaired 

stripe formation in the trunk, as well as unstriped fins (Patterson et al., 2014). The skin 

phenotype for zebrafish deficient of csf1 has been so far only studied in homologues of 

csfl-a including kit and fms mutants. These mutants encode genes for nuclear zinc protein 

that is required for stripe formation but not directly in pigment cells themselves; they 

regulates csf1-a expression that is necessary for the survival and migration of melanophores 

and xanthophores. Similarly, these mutants also show reduced expression of melanophores 

and xanthophores (Parichy, 2003; Rawls & Johnson, 2000). 

 

This highlights the critical role of csf1a and csf1r cellular interactions in skin and stripe 

development in the zebrafish, and given their close similarity to il34, it could be possible 

that il34 could play a role in the development of skin pigments. This is not the first time 

il34 has been implicated in the skin. IL-34 mutant mice showed expression of il34 in the 

skin and authors confirmed that it was produced by keratinocytes (Wang et al., 2012). At 

this stage however, more detailed studies are required to elucidate the role, if any, of il34 

in the skin phenotype of zebrafish. 
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The phenotype of il-34 mutants showed that il34 is required for development of the 

zebrafish. Heterozygote and homozygote adults showed a decrease in overall size. This 

reduction could be related to delayed development resulting in the observed growth 

difference, however at this stage more investigations would be required.  
 

The KO mouse develops several bone complications with lack of mineralisation and severe 

osteopenia, leading to spontaneous spine fractures and eventually their early death  

(Schiavone et al, unpublished data). Given the lower weight-bearing demand on the 

skeleton in aquatic animals, it was hypothesised that the zebrafish would be a more suited 

model to assess the bone phenotype. Moreover, since zebrafish develop ex utero they are 

far easier to study than KO mice. Bone and cartilage phenotypes were evaluated at 5 dpf, 

but no major differences in structures were observed. This could be due to the fact that at 

day 5, bone mineralisation is still in the early stages and therefore later stages, post day 20 

would be more ideal to investigate. Also if the mutation is causing a delay in development 

or an effect on vasculature, bone development is delayed even further resulting in the slow 

onset of ossification (Spoorendonk et al., 2009). Adult stages should therefore be 

investigated in the future by either microCT analysis and/or histological assessment.  
 

The mutant line was used to investigate the role of il34 in inflammation. By using the 

tail-fin injury assay we induced temporal induction of il34 and other inflammatory 

cytokines, and subsequently compared their expression in wild type and mutant embryos. 

Expression of il34 in wild type zebrafish peaked at 4 hours and resolved within 24 hours 

from tissue injury, providing the first evidence that il34 is involved in the inflammatory 

response. This pattern of expression is consistent with that of other major inflammatory 

cytokines in contributing towards the initiation the immune response (Novoa & Figueras, 

2012) Some expression was also detected in mutated individuals, indicating that perhaps at 

this stage the allele is only partially inactivated. Given the early time point analysed, there 

is the issue that it could be maternally expressed leading to residual WT transcript in the 

morphant. To further evaluate the status of il34 expression in mutants, western blotting 

could be utilised, however this would require a functional antibody that is selective for il34 

in zebrafish and currently there are no antibodies of this specificity commercially available.  
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To demonstrate the onset of inflammation in this model, two other major pro-inflammatory 

cytokines were analysed. Upregulation of TNF-α and IL-1β in response to tissue injury 

confirms the role of these cytokines in initiating inflammation and in line with results of 

similar studies documenting the upregulation of these cytokines in the zebrafish injury 

model (Nguyen-Chi et al., 2015). TNF-α and IL-1β have been shown to upregulate the 

expression of il34 in both mice and humans through the induction of NF-κB and JNK 

pathways (Chemel et al., 2012; Eda et al., 2011).  

 

Having established that il34 is involved in the immune response, we demonstrate that 

expression of its competing ligand csf1, was upregulated after 8 hours from injury, while 

csf1-R expression was heightened at 4 hours in wounded embryos of both WT and il34 

mutants. In view of these observations, peak expression of both il34 and csf1-R is at 4 hours 

thus suggesting that signalling of il34 could be acting through csf1-R as already 

documented in human and mice models. On the other hand, csf1 which is known to signal 

through csfl-R does not peak at 4 hours but rather at 8 hours, suggesting that il34 might be 

the primary pro-inflammatory molecule acting at the site of injury through the csf1-receptor 

before csf1, (or showing a greater affinity to the receptor). Collectively, these results 

support the structural conservation of il34 signalling between mammals and teleosts, 

alongside the induction of pro-inflammatory cytokines following injury and their ability to 

attenuate inflammation.  

 

il34 deficient zebrafish were used to study the macrophage and neutrophil dynamics. 
We used transgenic zebrafish lines and the tail fin infection model to study the interactions 

of macrophages and neutrophils at the onset of inflammation and its subsequent resolution 

on tissue injury. In zebrafish, neutrophils can be identified as early as 48 hours post 

fertilisation. During the first several hours of fin amputation, neutrophils are the first group 

of cells to reach the wound. At this stage they are the predominant functional phagocytes, 

and the primary initiators of the immune response (Renshaw et al., 2006). Zebrafish tail fin 

injuries were performed on 3 days post fertilisation larvae. The visualisation of neutrophils 

migrating to the injury site was possible by the use of a transgenic neutrophil line tg 

(mpo:gfp). These cells can exit the vasculature and enter into the tailfin showing that their 

principal route of administration is through the circulation. Counting of GFP-labelled 

neutrophils at different time points enabled the quantification of the inflammatory response. 
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The counting of fluorescent cells confirmed the wave of neutrophil influx that resolved 

within 24 hours. Unfortunately at this stage the effect of il34 deficiency on neutrophilic 

inflammation in the tailfin assay still needs to be determined, and will certainly be a priority 

for future work on the il34 mutant line.   

 

Using the same strategy, tracking of macrophages and their quantification was analysed in 

wild type and il34 mutants using the transgenic line Tg (fms: gfp). Recruitment of 

macrophages occurs over a longer period than that of neutrophils. Macrophages become 

the dominant cells at around 6-8 hours from injury, with their main role being to resolve 

inflammation and facilitating tissue remodelling and regrowth (Petrie et al., 2014). Here, 

for the first time, evidence is presented that a deficiency of il34 resulted in decreased 

macrophage numbers collecting at the site of the wound. This reinforces the role of il34 in 

the myeloid lineage and its direct relationship as a cytokine in the inflammatory response. 

Further work to better identify the events leading up to the observed effect, would have to 

look into the properties of these macrophages so as to improve our understanding of the 

behaviour and interaction of these cell populations in the absence of il34. 

 

5.2 CONCLUSIONS  
 

The objective of this thesis was to assess the role of IL-34 in terms of its functional role as 

a mediator of inflammation and in the pathogenesis of osteosarcoma. To better understand 

the functional role of the cytokine at the cellular level, we looked at extracellular membrane 

vesicles as mediators of intracellular communication. From here the role of these vesicles 

in modulating OS and the bone microenvironment was investigated. Following this, two 

animal models were used, a murine preclinical model to assess whether there is a 

therapeutic benefit of targeting IL-34 in osteosarcoma, and a knockout zebrafish model to 

study its role in activation/regulation of the immune system.  
 

In this first chapter, we investigate the role of extracellular vesicles, derived from OS cells. 

Exosomes from OS cell lines did not contain any IL-34 but they induced the commitment 

of mesenchymal stem cells towards adipogenesis, therefore suggesting that OS exosomes 

can have an effect on differentiation and lineage abilities of stromal cells in tumour 
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microenvironment. Similarly, exosomes were also purified from bone marrow and adipose 

derived mesenchymal stem cells, and were able to induce the proliferation of OS cells. 

Characterisation of the components of these vesicles showed that these MSC derived 

exosomes contain a number of proteins associated with several biological processes 

including those related to tumour progression. Taken together, this chapter demonstrates 

that there is a cross talk occurring between OS cells and their microenvironment, via 

extracellular membrane vesicles, with the potential of modulating tumour associated 

responses. 

 

In the second chapter, we used xenogeneic and syngeneic murine preclinical models of OS 

and showed that by using an anti-IL-34 blocking antibody, OS tumour growth was reduced, 

thus providing the first evidence of the therapeutic benefit of targeting IL-34 in the 

microenvironment of OS. Immunohistochemistry was used to investigate the tumour 

associated mechanisms of IL-34. Analysis revealed a reduction of vascularisation by the 

marker CD31, and increase in the M1 sub-type macrophages.  

 

We then evaluated the potential therapeutic benefit of IL-34 blocking agent, and 

doxorubicin as a combination treatment in these preclinical models.  These two treatments 

administered together, failed to act synergistically as determined tumour growth and 

histological analysis possibly due to dose timing. A better strategy for testing this 

combination therapy would be needed. In conclusion, the inhibition of IL-34 specific 

blocking antibodies demonstrates that the therapeutic benefit to abrogate IL-34 in OS and 

thus IL-34 may be a novel therapeutic target in bone associated diseases. 

 

To study the role of il34 in terms of its contribution towards the immune phenotype, a 

knockout zebrafish line deficient of IL34 was generated. The generation of this line and 

subsequent phenotyping of IL-34 in wild type and mutant zebrafish are shown in Chapter 

4. In this chapter the role of il34 in response to an inflammatory stimuli was investigated. 

Upon inducing a wound, il34 was seen to become upregulated, in addition to other 

associated pro-inflammatory molecules TNF-α and IL-1β, its competing cytokine csfl-a 

and its potential receptor csfla-R, thus confirming its role in the inflammatory environment 

in a new animal model. Furthermore, we report the first characterisation of il34 in relation 
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to macrophages in an inflammatory lesion, where we document a decrease in the number 

of macrophages in morphants, elucidating the role of il34 as a regulator of myeloid cells.  

 

The work presented in this thesis has demonstrated how the use of animal models, have 

been extremely useful tools to highlights the relationship of IL-34 in inflammation and the 

pathogenesis of osteosarcoma. And even though such models were technically developed 

in parallel, together they have undoubtedly provided an excellent framework for 

understanding the connection between the inflammatory response and cancer. The 

zebrafish has proved to be a suitable study system to elucidate and visualise the 

physiological significance of IL-34 in inflammation. Whilst on the other hand, the mouse 

model has been a key tool to demonstrate how inflammation also comes into play in 

malignant tissue and the resulting therapeutic benefit of inhibiting IL-34 in a mouse model 

of OS.  

 

5.3 FUTURE WORK  
 

5.3.1 Extracellular vesicles in osteosarcoma  
 

The work presented in the initial chapter of this thesis, although preliminary, sets the 

foundation for the role of extracellular vesicle mediated communication between tumour 

cells and the microenvironment. Further work on elucidating the mechanisms of these 

exosomes will be needed to establish their physiological role in OS. A comparison of other 

extracellular vesicles derived from additional OS cell lines will be firstly added to this 

study. These vesicles will be used to study the intracellular communication network 

between the tumour cells. Using analysis of cell proliferation, analyses of cell death; either 

by flow cytometry or caspase activity assay, and cell migration using scratch assays, the 

mechanistic basics of how the vesicles induce tumour progression and metastasis. 

Additionally, further work on how exosomes support the tumour microenvironment niches 

should be aimed at investigating other cell population found in the tumour 

microenvironment including monocytes and macrophages, osteoblasts and osteoclasts. 

Similarly, to better characterise the role of mesenchymal derived stem cells on 

osteosarcoma, additional work on the proliferation abilities, apoptosis, migration, invasion 
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and drug resistance should be carried out. The primary aim should be to investigate how 

healthy stromal cells are triggered to release exosomes that promote the malignant 

behaviour of cancer cells.  

 

A significant addition to the work presented here, would be transcriptomic (miRNA and 

or/mRNA) and proteomic analysis (phosphorylated and non-phosphorylated proteins) on 

the exosomes content in order to compare profiles and determine the cargo content. Since 

EVs are considered as a direct derivative of their donor cells, cancer EV proteomics may 

reveal important information at the translational level, thereby significantly improving the 

accuracy of cancer diagnosis, as well that of patient prognosis. 

 

5.3.2 IL-34 as a therapeutic treatment for osteosarcoma 
 
The work presented in this thesis has shown that inhibition of IL-34 in the tumour 

microenvironment, appears to be a promising strategy for the treatment of osteosarcoma. 

Further work is needed to demonstrate the value of this therapeutic approach. In vivo 

experiments should primarily seek to investigate whether this treatment has any effect on 

the development of lung metastasis, therefore proof of concept should ideally be obtained 

in both models. Following that, further in vivo studies with an increased number of subjects 

should be carried out, so as to better define the mechanisms by which blocking Il-34 

reduces tumour growth. Better characterization of the immune population in the resulting 

tumours, by a combination of histological analysis and flow cytometry should be 

considered. To determine at to what extent the treatment is efficient within the tumour 

environment, the levels of IL-34 in blood serum and/or specific tissues should be 

monitored.  

 

The results, also strengthen the potential interest to enumerate and characterize the effect 

of anti-IL34 on circulating tumour cells (CTCs). CTCs play a key role in the metastatic 

process and could reflect the therapeutic response, thus leading to a strong clinical interest 

for OS patients. If treating with anti-IL34 continues to prove to be successful, a follow-up 

on the treatment regimen with respect to administering the antibody on its own, or as 

attempted here, in combination with chemotherapeutic agents will need to be carried out. 

A comprehensive study on the dose administration, binding characteristics and ultimately 

the pharmacokinetics of anti-IL-34 antibody, would allow further development for better 
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anti-tumour efficacy. Another key aspect to consider, is the combination of this treatment 

with other immune checkpoint inhibitors. Interaction with other immunotherapeutic 

treatments such as for example anti-PD-L1, could provide better efficacy in activating an 

anti-tumour immune response (Heymann et al., 2019)  

 

5.3.3 Development of il34 mutant zebrafish  
 
The mutant zebrafish described in this thesis has proven to be a viable loss of function 

model for il34. The cytokine was identified as a participant in inflammation and a regulator 

of tissue resident macrophages, primarily affecting macrophage numbers at the site of 

injury. 

 

Future work should focus on analyzing further wild type and mutant phenotypes in both 

juvenile and adult zebrafish. Analysis for morphological differences by histology at 

different timepoints, will elucidate more information on any pathological changes caused 

by the mutation. To address how the mutation affects the viability and development of the 

larvae, standard growth and survival curves can be implemented. Homozygous individuals 

showed a lack of circulation at 3 dpf. For this reason, development of vascularization in 

mutants should be elucidated in more detail.  

 

To further demonstrate the loss of function of il34, immunoblotting and immunostaining 

(with/or without fluorescence) in mutant larvae would need to be performed.  Up to date, 

there is no commercially available antibody specific for zebrafish il-34, and therefore 

developing such an antibody should be considered. This would also allow for the validation 

of tissue specific expression in organs for example in brain, head-kidney and spleen, and 

for expression following injury. Analysis of the bone phenotype should be extended to 

embryos at later stages including adults. Additional bone staining by for example alizarin 

red, immunohistochemistry by H&E and in-situ hybridization of juvenile embryos can be 

carried to identify the effect of loss of il34 on bone development and mineralization. In 

adults radiography and microCT can be utilised to look for any bone abnormalities. 

Additionally expression of key bone-related markers, such as runx2b and col1a1, can be 

investigated.  
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In terms of the immune phenotype, the effect of il34 deficiency on neutrophil biology 

should primarily be demonstrated. Given the role of il34 as a regulator of myeloid 

precursors, it is plausible that similarly, il34 plays a role in neutrophilic inflammation. 

Understanding the morphological and functional features of inflammation and its 

resolution would help elucidate further the role of IL-34 in the innate immune system. For 

macrophages classical parameters analysed are the distribution, resolution, recruitment and 

shape of the cells, whilst for neutrophils there is also the added effect on phagocytosis, 

acidification and tracking. Unravelling these features would be key to obtain a 

comprehensive analysis of the role of IL-34 in inflammation and associated diseases. Gene 

to gene interactions in the inflammatory environment could be further elucidated by over 

expressing and inhibiting other members of the IL-34 pathway. RNA sequencing and 

transcriptome profiling could be used for expression profiles between wild type and mutant 

lines.  

 

Macrophage transgenic lines would make it an ideal model for infection by bacteria. The 

zebrafish is an optimal model to study infectious diseases, by causing systemic invasive 

infection resembling human infections. An infection model (such as for example infection 

by Staphylococcus or Cryptococcus) would allow the analysis of bacterial and immune cell 

interactions during infection.  

 

As zebrafish larvae have proven to be suitable for cancer studies, the mutant line could be 

used as a xenotransplantation model to study the behaviour of OS or other cancer cells. 

Cells can be injected into zebrafish larvae, to study their behaviour in the absence of Il34. 

This model could be used to investigate tumour-induced angiogenesis, intravasation and 

extravasation of tumour cells, metastatic potential and evaluation of cancer 
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APPENDIX  

Template of the image array for coordinate reference, followed by a table showing the 

human cytokine array coordinates.  

 

 

Coordinate	 Analyte/Control	 Entrez	
Gene	ID	 Alternate	Nomenclature	 

A1,	A2	 Reference	Spots	 N/A	 RS	 
A3,	A4	 Adiponectin	 9370	 Acrp30	 
A5,	A6	 Apolipoprotein	A-I	 335	 ApoA1	 
A7,	A8	 Angiogenin	 283	 ______	 
A9,	A10	 Angiopoietin-1	 284	 Ang-1,	ANGPT1	 
A11,	A12	 Angiopoietin-2	 285	 Ang-2,	ANGPT2	 
A13,	A14	 BAFF	 10673	 BLyS,	TNFSF13B	 
A15,	A16	 BDNF	 627	 Brain-derived	Neurotrophic	Factor	 

A17,	A18	 Complement	
Component	C5/C5a	 727	 C5/C5a	 

A19,	A20	 CD14	 929	 ______	 
A21,	A22	 CD30	 943	 TNFRSF8	 
A23,	A24	 Reference	Spots	 N/A	 RS	 
B3,	B4	 CD40	ligand	 959	 CD40L,	TNFSF5,	CD154,	TRAP	 
B5,	B6	 Chitinase	3-like	1	 1116	 CHI3L1,	YKL-40	 
B7,	B8	 Complement	Factor	D	 1675	 Adipsin,	CFD	 
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B9,	B10	 C-Reactive	Protein	 1401	 CRP	 

B11,	B12	 Cripto-1	 6997	 Teratocarcinoma-derived	Growth	
Factor	 

B13,	B14	 Cystatin	C	 1471	 CST3,	ARMD11	 
B15,	B16	 Dkk-1	 22943	 Dickkopf-1	 

B17,	B18	 DPPIV	 1803	 CD26,	DPP4,	Dipeptidyl-peptidase	
IV	 

B19,	B20	 EGF	 1950	 Epidermal	Growth	Factor	 
B21,	B22	 Emmprin	 682	 CD147,	Basigin	 
C3,	C4	 ENA-78	 6374	 CXCL5	 
C5,	C6	 Endoglin	 2022	 CD105,	ENG	 
C7,	C8	 Fas	Ligand	 356	 TNFSF6,	CD178,	CD95L	 
C9,	C10	 FGF	basic	 2247	 FGF-2	 
C11,	C12	 FGF-7	 2252	 KGF	 
C13,	C14	 FGF-19	 9965	 ______	 
C15,	C16	 Flt-3	Ligand	 2323	 FLT3LG	 
C17,	C18	 G-CSF	 1440	 CSF3	 
C19,	C20	 GDF-15	 9518	 MIC-1	 
C21,	C22	 GM-CSF	 1437	 CSF2	 
D1,	D2	 GROα	 2919	 CXCL1,	MSGA-α	 
D3,	D4	 Growth	Hormone	 2688	 GH,	Somatotropin	 
D5,	D6	 HGF	 3082	 Scatter	Factor,	SF	 
D7,	D8	 ICAM-1	 3383	 CD54	 
D9,	D10	 IFN-γ	 3458	 IFNG	 
D11,	D12	 IGFBP-2	 3485	 ______	 
 

APPENDIX	CONTINUED	 

Coordinate	 Analyte/Control	 Entrez	Gene	ID	 Alternate	Nomenclature	 
D13,	D14	 IGFBP-3	 3486	 ______	 
D15,	D16	 IL-1α	 3552	 IL-1F1	 
D17,	D18	 IL-1β	 3553	 IL-1F2	 
D19,	D20	 IL-1ra	 3557	 IL-1F3	 
D21,	D22	 IL-2	 3558	 ______	 
D23,	D24	 IL-3	 3562	 ______	 
E1,	E2	 IL-4	 3565	 ______	 
E3,	E4	 IL-5	 3567	 ______	 
E5,	E6	 IL-6	 3569	 ______	 
E7,	E8	 IL-8	 3576	 CXCL8	 
E9,	E10	 IL-10	 3586	 ______	 
E11,	E12	 IL-11	 3589	 ______	 
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E13,	E14	 IL-12	p70	 3593	 ______	 
E15,	E16	 IL-13	 3596	 ______	 
E17,	E18	 IL-15	 3600	 ______	 
E19,	E20	 IL-16	 3603	 ______	 
E21,	E22	 IL-17A	 3605	 IL-17,	CTLA8	 
E23,	E24	 IL-18	Bpa	 10068	 ______	 
F1,	F2	 IL-19	 29949	 ______	 
F3,	F4	 IL-22	 50616	 IL-TIF	 
F5,	F6	 IL-23	 51561	 IL-23A,	SGRF	 
F7,	F8	 IL-24	 11009	 C49A,	FISP,	MDA-7,	MOB-5,	ST16	 
F9,	F10	 IL-27	 246778	 ______	 
F11,	F12	 IL-31	 386653	 ______	 
F13,	F14	 IL-32	 9235	 ______	 
F15,	F16	 IL-33	 90865	 C9orf26,	DVS27,	NF-HEV	 
F17,	F18	 IL-34	 146433	 C16orf77	 
F19,	F20	 IP-10	 3627	 CXCL10	 
F21,	F22	 I-TAC	 6373	 CXCL11,	SCYB9B	 
F23,	F24	 Kallikrein	3	 354	 PSA,	KLK3	 
G1,	G2	 Leptin	 3952	 OB	 
G3,	G4	 LIF	 3976	 ______	 
G5,	G6	 Lipocalin-2	 3934	 NGAL,	LCN2,	Siderocalin	 
G7,	G8	 MCP-1	 6347	 CCL2,	MCAF	 
G9,	G10	 MCP-3	 6354	 CCL7,	MARC	 
G11,	G12	 M-CSF	 1435	 CSF1	 
G13,	G14	 MIF	 4282	 ______	 
G15,	G16	 MIG	 4283	 CXCL9	 
 

APPENDIX	CONTINUED	 

Coordinate	 Analyte/Control	 Entrez	Gene	ID	 Alternate	Nomenclature	 
G17,	G18	 MIP-1α/MIP-1β	 6348/6351	 CCL3/CCL4	 
G19,	G20	 MIP-3α	 6364	 CCL20,	Exodus-1,	LARC	 
G21,	G22	 MIP-3β	 6363	 CCL19,	ELC	 
G23,	G24	 MMP-9	 4318	 CLG4B,	Gelatinase	B	 
H1,	H2	 Myeloperoxidase	 4353	 MPO,	Lactoperoxidase	 
H3,	H4	 Osteopontin	 6696	 OPN	 
H5,	H6	 PDGF-AA	 5154	 ______	 
H7,	H8	 PDGF-AB/BB	 5154/5155	 ______	 
H9,	H10	 Pentraxin	3	 5806	 PTX3,	TSG-14	 
H11,	H12	 PF4	 5196	 CXCL4	 
H13,	H14	 RAGE	 177	 ______	 
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H15,	H16	 RANTES	 6352	 CCL5	 
H17,	H18	 RBP-4	 5950	 ______	 
H19,	H20	 Relaxin-2	 6019	 RLN2,	RLXH2	 
H21,	H22	 Resistin	 56729	 ADSF,	FIZZ3,	RETN	 
H23,	H24	 SDF-1α	 6387	 CXCL12,	PBSF	 
I1,	I2	 Serpin	E1	 5054	 PAI-I,	PAI-1,	Nexin	 
I3,	I4	 SHBG	 6462	 ABP	 
I5,	I6	 ST2	 9173	 IL-1	R4,	IL1RL1,	ST2L	 
I7,	I8	 TARC	 6361	 CCL17	 
I9,	I10	 TFF3	 7033	 ITF,	TFI	 
I11,	I12	 TfR	 7037	 CD71,	TFR1,	TFRC,	TRFR	 
I13,	I14	 TGF-α	 7039	 TGFA	 

I15,	I16	 Thrombospondin-
1	 7057	 THBS1,	TSP-1	 

I17,	I18	 TNF-α	 7124	 TNFSF1A	 
I19,	I20	 uPAR	 5329	 PLAUR	 
I21,	I22	 VEGF	 7422	 BEGFA	 
J1,	J2	 Reference	Spots	 N/A	 RS	 
J5,	J6	 Vitamin	D	BP	 2638	 VDB,	DBP,	VDBP	 
J7,	J8	 CD31	 5175	 PECAM-1	 
J9,	J10	 TIM-3	 84868	 HAVCR2	 
J11,	J12	 VCAM-1	 7412	 CD106	 
J23,	J24	 Negative	Controls	 N/A	 Control	(-)	 
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SUB-CHAPTER 3.5  

DEVELOPMENT OF IL-34 KNOCKOUT MICE  
 

The data presented in this chapter was obtained in an experiment carried out by Dr F. Lézot 

and at the university of Nantes, France. The preparation and execution of the experiment, 

the data analysis and interpretation are entirely the work of Dr F. Lézot and his colleagues. 

Any contributions from colleagues in the collaboration, such as diagrams or calibrations, 

are explicitly referenced in the text. Flow cytometry analyses have been carried out in 

collaboration with Dr S. Dion and Dr M. Samson (IRSET, Inserm Unit 1085, Rennes, 

France). Skin analysis has been performed in collaboration with Prof. J.C. Lecron, 

University of Poitiers, France. The work presented here is currently still undergoing and is 

therefore still unpublished data (Unpublished, Schiavone et al).  

 

3.5.1 METHODS 
 
 

Il34 mutant mice were generated from embryonic stem cells carrying the targeted Il34 
tm1a(EUCOMM)Wtsi allele designed to allow generation of either a null, LacZ reporter allele or 

a conditional floxed allele for subsequent Cre-mediated deletion. Clones carrying the 

targeted allele were introduced into C57BL/6J mice, and bred to CMV-Cre transgenic mice 

to remove the neo gene and generate Il34LacZ/+ reporter mice in which exons 3-5 are deleted 

and replaced by an IRES-LacZ gene. Alternatively, mice could be bred to CAG-FLPe 

transgenic mice to remove the IRES-LacZ/neor cassette and generate mice carrying a 

conditional Il34 allele in which exons 3-5 are flanked by loxP sites (Il34f/+). Offspring were 

intercrossed to generate homozygote Il34LacZ/LacZ or Il34f/f mice (Wang et al., 2012). 

Phenotyping of the model is currently focused on three main aspects: the immune 

phenotype, bone phenotype and skin phenotype. 
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3.5.2 RESULTS 
 

3.5.2.1  Analysis of Immune Phenotype  
 
Characterisation of immune cells in KO and WT mice was performed by FACS analysis  

from four organs: bone marrow, thymus, spleen and liver. For each organ, the analysis of 

total cell population, as well as of myeloid cells and lymphoid cells was performed.  

 

Analysis of bone marrow cells showed no significant differences in the total cell population 

between wild-type and KO mice. (Figure 43A) However, IL-34 deficiency induced a 

significant decrease in the number of CD19+ B lymphocytes, and a significant increase in 

Gr1int CD11b+ monocytic lineage precursors. No difference was observed for Ter119+ pro-

erythroblast like cells myeloid precursors (MP), Lin- hematopoetic stem cells and early 

lymphoid-committed precursors (LSK) (Figure 43B) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 66: Immune characterisation of bone marrow cells in IL-34 KO mice. A) Quantification 
of the total immune cell populations in WT vs KO mice, and B) analysis of bone marrow cells 
CD19 (antigen for B-lymphocytes), CD3 (marker of T-cells) Ter119 (erythroid-specific marker), 
Lin (hematopoietic stem cells), MP (myeloid progenitor marker), LSK (lymphoid progenitor cell 
marker), CD11b+ (marker of monocytes, dendritic cells and neutrophils).  

In the thymus, a significant reduction in the total number of immune cells was present for 

KO mice. On further analysis, a decrease in thymocytes (pre T-lymphocytes) was detected 

by the marker CD3 (Figure 44) 
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Figure 67: Immune characterisation of the thymus in IL-34 KO mice. A) Quantification of the 
total immune cell populations in WT vs KO mice, and B) analysis of CD19 (antigen for B-
lymphocytes), CD3 (marker of T-cells), NKT (natural killer T-cells) and NK (natural killer cells).  

 
 
 
The liver of IL-34 KO mice also showed a marked decrease in the total number of cell 

populations. Additionally, a decrease in dendritic cells (CD11c+ cells), natural killer cells 

(NK) and B-cells surface marker (LB), as well as a tendency towards a decrease in resident 

macrophages (KC) was present in the KO mice in comparison to WT mice (Figure 45) 
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Figure 68: Immune characterisation of liver cells in IL-34 KO mice. A) Quantification of the 
total immune cell populations in WT vs KO mice, and B) analysis of myeloid cells including 
neutrophils, monocytes, KC (resident macrophages) and DC CD11c+ (marker of dendritic cells). C) 
analysis of lymphoid cells including LT(marker of T-cells), LB(marker of B-cells), NKT (natural 
killer T-cells) and NK (natural killer cells).  

 
 
 
The most notable difference in the immune cell populations however, was obtained in the 

spleen. In the spleen, a decrease for most cell populations was observed including natural 

killer cells (NK cells), natural killer T-cells (NKT), B-lymphocytes (CD19+ cells), as well 

as a tendency towards a decrease in tissue resident macrophages (KC) and neutrophils 

(Figure 46).  
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Figure 69: Immune characterisation of spleen cells in IL-34 KO mice. A) Quantification of the 
total immune cell populations in WT vs KO mice, and B) analysis of myeloid cells including 
neutrophils, monocytes, KC (resident macrophages) and DC CD11c+ (marker of dendritic cells). C) 
analysis of lymphoid cells including LBCD19 (marker of B-cells), LT8 (marker of T-cells), LT4 
(marker of T-cells,) NKT (natural killer T-cells) and NK (natural killer cells).  
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3.5.2.2 Analysis of Bone Phenotype  
 
 
Analysis of the bone phenotype carried out by microCT on 15-18 day old WT and KO 

mice, revealed a deficiency in mineralization of the skull in IL-34-/-. (Figure 47). This delay 

in bone mineral density can be regarded as osteopenia, where the reduction in bone mineral 

content resulted in delayed growth of the mice, modification to head shape and fragile 

bones. Subsequently, this then resulted in spontaneous fractures in the spine.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 70: Analysis of craniofacial development in IL-34 knockout mice. A) MicroCT of 10 
day old mouse showing lack of bone mineralisation in the skull as marked by the red arrow. B) 
Lateral and dorsal views of 15 day old mice skulls comparing wild-type and homozygous. Asterix 
indicate areas with loss of bone density.  

 
 
Further analysis of the craniofacial phenotype in IL-34-/- knockout mice, showed that 

skeletal development was impaired. MicroCT analysis of horizontal growing as defined by 

the upper maxillary of the skull, vertical growth as determined by the cranial vault and 

defects in sagittal growing as observed in the zygomatic root width can be seen in Figure 

48.  
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Figure 71: MicroCT images and 
quantification of craniofacial 
parameters in IL34 knockout 
mice. 15 day and 18 day old 
knockout mice were analysed in 
comparison with wild-type 
individuals for A) Total skull upper 
maxillary, B) middle cranial vault 
and C) inner zygomatic root width 
 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Appendix 

248 

To better understand the biological process associated with the bone loss observed in IL-

34 KO mice, osteoclasts and osteoblasts were analysed by co-immunostaining: 

TRAP  (staining of osteoclasts) and Osterix (staining of osteoblast precursors and mature 

osteoblasts) (Figure 49). A marked difference between IL-34 deficient and WT mice was 

observed, with an increase of both TRAP and OSX staining and a disappearance of the 

growth plate. This reason for this marked increase in osteoclasts and osteoblasts, is 

currently unknown and needs further evaluation, but it could be due to a dysregulation in 

bone remodelling. It is hypothesised that IL-34 may modulate the function of M-CSF. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 72: Immunohistological staining of TRAP (indicated in red arrow) and Osterix 
(indicated in yellow arrow) in IL-34-/- deficient and wild-type mice. Red bracket denotes the 
localisation and disappearance of the growth plate respectively.  

 
 

Il34
+/+

 

Il34
-/-
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3.5.2.3 Analysis of Skin Phenotype  
 
On analysis of skin phenotype, there was no difference in the thickness of the epidermis or 

the dermis as determined by histology (Figure 50a-c). A significant decrease in the number 

of Langerhans cells was observed in the KO, as determined by immunohistochemistry and 

RT-qPCR for marker of langerin CD207 (Figure 50d-e).  

 

 

 
 

Figure 73: Analysis of skin phenotype for IL-34 knockout mice. A) Histological analysis of 
epidermal thickness B) dermal thickness and C) skin thickness. D) Immunohistochemistry analysis 
of CD207 in the epidermis  E) RT-qPCR analysis of relative CD201 to GAPDH expression in the 
skin. +/+: IL-34+/+; +/-: IL-34+/-; -/-: IL-34-/-. 
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Next genes responsible for epidermal differentiation (Keratin 1, Filaggrin and Involucrine) 

and dermal fibrosis (a-SMA, coll-a1 and coll-a3) were analysed by RT-qPCR. Results show 

that there was no difference in expression between wild type and heterozygous mutants, 

whereas for 1 out of every 3 homozygous mice investigated, there was an increased 

expression for each of the genes analysed. Therefore at this stage more repeats are required 

to obtain a complete cohort (Figure 51) 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 74: Analysis of skin phenotype for IL-34 deficient mice. A) RT-qPCR for markers of 
epidermal differentiation (Keratin 1, Filaggrin and Involucrine). B) RT-qPCR for markers of dermal 
fibrosis (a-SMA, coll-a1 and coll-a3). All relative gene expression was determined compared to 
GAPDH.  

 
 
 
 
 
 
 
 



The Contribution of IL-34 in Inflammation and Osteosarcoma 
______________________________________________________________________________ 

___________________________________________________________________________
Appendix 

251 

3.5.3 SUMMARY 
 

The experiments reported here provide evidence that IL-34 has a considerable functional 

role in major cellular functions, including the development and maintenance of myeloid 

cell subsets, as well as possibly providing the first line of evidence for a de-regulation of 

lymphoid cells. The marked bone loss observed as a result of a delay in mineralization, 

rendered these mice non-viable thus strengthening the evidence consistent with a role for 

IL-34 in bone development.  

 

These results led to the development of a zebrafish knockout model, as an additional model 

to address the limitations currently presenting with the mice knockouts. Most notably was 

the early lethality of the mice due to the spine fractures which did not allow for a longer 

time frame to assess the immune populations. Also, given the lower weight-bearing demand 

on the skeleton in aquatic animals, it was hypothesised that the zebrafish would be a more 

suited model to assess the bone phenotype, and thus by-pass the severe bone phenotype 

observed in these mice. 


