
The
University
Of
Sheffield.

Uncertainty Propagation in

Nonlinear Systems 

by
Daley Chetwynd

A thesis submitted for the degree of Doctor of 

Philosophy in the Faculty of Engineering

Department of Mechanical Engineering

December 2005



A cknow ledgem ents

Thanks to Graeme and Keith for all their help. Thanks to Davide Vige and David Storer at 

Centro Ricerche Fiat.

.
■ . . i : h



A bstract

This thesis examines the effects of uncertainty on a variety of different engineering 

systems. Uncertainty can be best described as a lack of knowledge for a particular system, 

and can come from a variety of different sources. Within this thesis the possibilistic branch 

of uncertainty quantification is used.

A combination of simulated and real-life engineering systems are studied, covering some of 

the most popular types of computational models. An outline of various background topics is 

presented first, as these topics are all subsequently used within the thesis. The most 

important of these is the transformation method, a possibilistic uncertainty approach 

derived from fuzzy arithmetic.

Most of the work here examines uncertain systems by implementing Ben-Haim's 

information gap theory. Uncertainty is deliberately introduced into the parameters of the 

various computational models to use the concept of “opportunity”. The basic rationale is 

that if some degree of tolerance can be accepted on a model prediction of a system, it is 

possible to obtain a lower value of prediction error than with a standard crisp-valued model.

For the use of interval-valued computational models there is generally a trade-off to be 

made between minimising the prediction error of the model and minimising the range of 

predicted outputs, to reduce the tolerance on the solution. The studied models all use a 
“degree of uncertainty” parameter that allows any user to select the suitable trade-off level 

for their particular application.

The thesis then concludes with a real-life engineering study, undertaken as a nine month 
placement on a European Union project entitled MADUSE. The work was done at Centro 

Ricerche Fiat, and examined the dynamic effects of uncertainties related to automotive spot 

welds. This study used both finite element modelling and experimental modal testing of 

manufactured specimens.
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1. In troduction

1.1 Overview

This thesis looks at a variety of different ways of modelling uncertainty within 

engineering systems. A number of different systems are examined, some of them 

simulated by computational routines, and others given by real-life industrial processes. 

The characteristics of the different systems also vary here; between linear and nonlinear; 

also between the time and frequency domains.

The first question that arises is why is uncertainty important to consider? How does it 

justify the study that has been undertaken here?

Uncertainty was best defined by Oberkampf (2001). It can be separated into two distinct 

types -  aleatory uncertainty (often referred to as “variability”) and epistemic 

uncertainty. Aleatory uncertainty is described as the inherent variation of a particular 

model property, such as the differences in a specific measured quantity within a number 

of nominally identical specimens. Epistemic uncertainty originates from incorrect or 

incomplete measured data, overly simplistic system models or lack of knowledge about 

a system. It can be reduced by obtaining additional knowledge of the system, such as 

finding additional data, or using a more suitable model to represent the system.

Uncertainty is very important to consider, not just in engineering systems, but in all 

systems. In a given situation, there can be a large number of uncertainties present, and 

of differing types. These uncertainties can come from a variety of different sources and 

their effects on the system may differ in magnitude. It is unwise, however, to simply 

ignore these effects. Examples of uncertainties on a typical engineering system are 

uncertainties in the parameters of the system, uncertainties in the loading/operating 

conditions, uncertainties in the material or geometric properties, measurement 

uncertainties and uncertainties relating to lack of knowledge about the system.

In the past, the approach has often been to use a nominal model, where all uncertainties 

within a system are viewed as being fixed at their mean values. This has the danger that 

the model is then not designed to deal with all operating regimes that the system is 

likely to encounter in its real-life usage. Many designers simply use a factor of safety 

for the system, where the system is shown not to fail at some operating regime far from
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its original design regime. The disadvantage of this approach is that it can be 

excessively conservative. The system may never be likely to approach the point where 

the calculations have been made, meaning that the system has been over-designed. For 

an engineering component, this would generally mean that it is much heavier/stronger 

than it needs to be, leading to a corresponding increase in costs.

A more efficient method would be to consider the uncertainties associated with the 

system in its operation, and calculate the effect that these would have on the output. A 

range prediction could be made for the system, showing the possible variation of the 

output in relation to the uncertainties that are present. This prediction would be less 

conservative than that arising from the use of a safety factor, with a subsequent 

reduction in costs for the system.

Uncertainty within engineering systems is a reasonably active field of research, and 

therefore a large number of approaches have been proposed in the past. These generally 

separate into two groups - possibilistic methods and probabilistic methods. Probabilistic 

methods use statistics regarding the distributions of the uncertain quantities, so 

frequently involve the use of probability density functions (PDFs). They therefore 

usually depend on having some prior knowledge of the system, which can be estimated. 

The predictions obtained from this method also take the form of distributions, so it can 

be seen where the ’’most likely’' response is to fall. Probabilistic methods are often quite 

computationally expensive, and examples are Bayesian statistics and the Monte Carlo 

method.

Of these two different uncertainty sub-groupings, the majority of past research in the 

literature has been done on the probabilistic approach. This thesis concentrates on using 

possibilistic methods, where there is more opportunity for fresh work to be attempted.

Following this introductory chapter, chapters 2-6 of this thesis can be classed as theory 

sections. Together these outline the computational and mathematical techniques that 

will be used within the remainder of the thesis. Chapter 2 describes interval techniques, 

and in particular, interval arithmetic. Interval arithmetic is one of the most well known 

possibilistic modelling methods, and its basic operation is explained in this chapter. The 

main purpose of the chapter is to illustrate the deficiencies that interval arithmetic and 

the other included interval techniques have, and why they are unsuitable for the 

applications undertaken here.
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Chapter 3 then details a number of methods that are all based on the design of 

experiments methodology, grouped together under the loose heading of "‘possibilistic 

sampling methods”. The first of these methods is the vertex method. This then leads on 

to the transformation method, a possibilistic approach that is used heavily within this 

thesis. The transformation method was proposed as a means of conducting fuzzy 

arithmetic, so this branch of mathematics is briefly outlined beforehand.

Chapter 4 examines evolutionary computation, an umbrella term for a number of 

different algorithm types that mimic the process of natural selection. The well known 

genetic algorithm type is introduced first, and its characteristic features are explained. 

This chapter serves to introduce the differential evolution algorithm, an evolutionary 

strategy that is used several times within this thesis.

Chapter 5 introduces autoregressive models for representing discrete time systems. 

Many of the subsequent thesis chapters examine problems within the time domain, and 

this type of computational model forms a significant part of the modelling. The 

pseudoinverse approach is also introduced within this chapter; a mathematical technique 

for minimising a time series regression error with respect to certain parameters.

Chapter 6 gives an outline of artificial neural networks, with a brief description of their 

origin and methodology. It then goes on to outline the two most popular types of neural 

network -  the multilayer perceptron and the radial basis function network, as well as 

information on how they can be trained using a particular set of data. Both of these two 

neural network types will be used in subsequent thesis chapters.

Chapters 7-11 then apply the theory introduced up to that point. In each of these 

chapters, a different uncertain computational model is used to represent a particular 

simulated system. Between them, a number of the most popular models for time series 

regression are used. The models used in these chapters successively increase in 

complexity and detail.

Chapter 7 uses one of the simplest kinds of time series regression model -  the ARX 

model. This model is used with uncertain parameters to represent a simulated SISO 

linear system with added output noise. Chapter 8 then introduces the NARX model, the 

successor to the conventional ARX model. In this chapter, a nonlinear model (given by



an NARX model) is replaced by an uncertain linear ARX model. The system being 

represented is a SISO simulation of a Duffing oscillator.

Chapters 9 and 10 both involve the use of artificial neural networks, and between them 

they feature the two most common types of neural network -  the multilayer perceptron 

and the radial basis function network. In both chapters an inverse representation of a 

SISO pre-sliding friction system is modelled. Due to the hysteresis exhibited by this 

data set, ARX inputs are used for these two models. In chapter 9, interval numbers are 

used for the adaptive weight parameters of the multilayer perceptron network. In 

chapter 10, the output layer weights of the radial basis function network are set as 

interval numbers. These two chapters also enable a comparison to be made between the 

multilayer perceptron and radial basis function networks, for the case of the studied data 

set.

Chapter 11 uses an interval-valued NARX model to represent a nonlinear system 

susceptible to bifurcation. The system in question was a harmonically-driven discrete- 

time Duffing oscillator where an additional steady-state limit cycle was seen to appear 

within a particular range of forcing frequency.

Chapter 12 then presents a real-life example of uncertainty modelling, with an 

application to automotive spot welds. This work was done at Centro Ricerche Fiat in 

Turin, as part of a European Union research and training network entitled MADUSE 

(Modelling Product Variability and Data Uncertainty in Structural Dynamics 

Engineering). A spot-weld component based upon an actual automotive component was 

designed and a number of specimens were manufactured. These specimens include 

differences in certain parameter values, to represent uncertainties. An uncertain dynamic 

response of the component is calculated using finite element modelling, and the results 

from this computational model are compared to experimental modal testing results.

Chapter 13 then groups together the conclusions from chapters 7-12, followed by a 

discussion of these results and the work undertaken here as a whole. This discussion 

includes an assessment of the work done here, with suggestions for improvements and 

future work. Much of the work in this thesis has been presented at academic 

conferences, the details of which are given in appendix A.



1.2 Background

Possibilistic uncertainty modelling approaches can be traced back to the 19th century, 

with the first use of design of experiments by Sir John B. Lawes. That study used the 

design of experiments methodology to examine the effects of different factors on 

growing crops at the well-known Rothamsted agricultural research institution. Sir 

Ronald A Fisher then released a book entitled "The Design of Experiments” (1935), 

considered to be very important from a retrospective point of view.

The interval technique of Interval Arithmetic (1966) was first introduced by Ramon 

Moore as his PhD thesis, and is well used within the field of uncertainty analysis. The 

third main area of possibilistic methods, fuzzy set theory, was introduced by Zadeh 

(1965). This is also a widely used technique, and tends to use subjective measures for 

uncertain quantities, as opposed to the objective approach used in probabilistic methods.

For previous related work that the author is aware of, interval arithmetic has been used 

with neural networks by Drago and Ridella (1998). That application was for a 

classification problem though, unlike the regression applications used for neural 

networks here. The differential evolution algorithm outlined in Chapter 4 has been used 

to train neural networks by several people, including Abbas (2002), Masters and Land 

(1997), and Plagianakos et al (2001), although not in the case of interval-valued 

networks.

1.3 Information-gap Decision Theory

Information-gap theory was proposed by Ben-Haim (2001), and is an alternative 

uncertainty modelling approach. It is specifically designed for decisions made under 

severe uncertainty, i.e. where there is a large information gap between the information 

that is required to undertake a given task, and the information that is actually known. It 

is therefore not intended as a replacement for the conventional probabilistic uncertainty 

modelling approaches, but as an alternative approach for problems where a probabilistic 

approach would be unsuitable.

Probabilistic and possibilistic uncertainty modelling approaches can be described as 

“distribution-based”, since they usually rely on the generation of probability density 

functions or fuzzy membership functions for the uncertainty quantities present.
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Information-gap theory is generally used for problems where there is insufficient 

information available for these distributions to be estimated.

An information-gap model can be defined as U (a,u), where a is called the 

“uncertainty parameter” and u is the nominal model for the uncertain system. The 

above model can be thought of as the set of all possible models u that differ from the 

nominal model w by less than a. The info-gap model U (a,u) is therefore described as

being “centred around u ”. There are many different forms of info-gap model available, 

depending on the type of system that is being modelled.

The performance of the uncertain system can be obtained by specifying some “reward” 

function R(q,u), where q is a decision vector representing the choices made by the user, 

and u is the system info-gap model U(a,lu). If the system is assessed by several 

different performance measures, each of these measures will have its own individual 

reward function Rt(q,u).

The two principal tools of information-gap theory are the two “immunity” functions of 

robustness and opportunity. It is recognised that uncertainty can be either favourable or 

adverse, i.e. it can provide behaviour that is either worse or better than that anticipated 

by the user. The robustness and opportunity functions take these two contrasting factors 

into account, and are often the measures by which an uncertain system is assessed.

Robustness is the immunity of the uncertain system to failure, where failure is the 

inability of the system to satisfy some minimum level of performance. This minimum 

performance level is specified by the user as some critical value rc of the reward

function R(q,n) . The robustness value a  for a given system is:

In other words, robustness is the maximum level of ambient uncertainty that the system 

can tolerate so that the specified failure criteria rc is never breached. A high level of 

robustness is preferable.

Opportunity is the immunity of the uncertain system to a “windfall success”, i.e. some 

user-defined performance level that is significantly better than the level that the user

0 .1)



would be prepared to accept. This windfall success is specified by the user as some 

value rw of the reward function R(q,u). By definition, rw > r . The opportunity value

ft for a given uncertain system is:

maxueU(a,u)R(q,u)>rw\ ( 1.2)

In other words, opportunity is the minimum level of ambient uncertainty that is needed 

for the windfall success rw to be attainable. Opportunity therefore assesses the

favourable aspects of the system ambient uncertainty, and a low opportunity level is 

preferable.

An indication of the behaviour of an uncertain system can therefore be given by its 

robustness and opportunity attributes. A system with a high value of robustness and a 

low value of opportunity can tolerate a large amount of uncertainty without the output 

becoming extremely bad, and has the possibility of producing an exceptionally good 

result when only a small amount of uncertainty is present.

Chapters 7-11 of this thesis use an approach similar to that of the opportunity concept 

within information-gap theory. In these chapters, uncertainty is deliberately introduced 

into the parameters of an initially deterministic computational model. These 

uncertainties mean that a whole range of results are now possible from the models, so 

that the model outputs are now themselves uncertain. If the user of the model is 

prepared to accept some level of tolerance on the prediction obtained, then the 

prediction error of the model in relation to the true target outputs can be lower. In 

almost all real-life engineering applications there is some degree of output tolerance that 

can be accepted, so it makes sense to use this tolerance to best advantage.

1.4 Computational Information

A number of different computer workstations were used for the work here. These 

included:

• A 1.6GHz Dell 4300 Windows XP PC with 768MB RAM

• A 3.2GHz Packard Bell Windows XP laptop with 512MB RAM
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• A 2.8GHz Windows 2000 desktop PC with 1024MB RAM, later converted to a 

Fedora core 3 Linux workstation

• An IRIX64 Unix workstation

• A HP-Unix workstation

The finite element models at Centro Ricerche Fiat were solved with dedicated IBM 

servers, each containing four processors.

The majority of the computational work in this thesis was done by self-written Java 

routines, using Java SDK 1.4.2 and the Eclipse 3.0 IDE. Source code is available upon 

request. Matlab 6.1 was also used on occasions, particularly for the calculation of 

pseudoinverse solutions, and for plotting of results. Chapter 10 used the NETLAB 

neural networks toolbox for MATLAB, a free source code package available online.

Chapter 12 used Hypermesh 6.0 as a finite element pre-processor and post-processor, 

and Nastran 2004 as the finite element solver. Specialist Centro Ricerche Fiat software 

packages were also used for the calculation of certain modal analysis results.
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2. Interval T echniques

Interval techniques are used for handling uncertain quantities, where only the possible 

range of each quantity is known. The most basic interval technique is interval arithmetic, 
proposed by Ramon Moore (1966).

2.1 Interval Arithmetic

Interval arithmetic stores each uncertain quantity that it uses in the form [low , high]. It 

considers the extreme values of the uncertain quantities, and is an inclusive approach, so it 

states the entire range of values that the variable can take.

Unlike a PDF, there is no information about the probability or likelihood of the variable 
taking a particular value within the interval range. The interval range cannot be viewed as 

being a uniform distribution of that variable, since there is no information available with 

which to make that statement. It is simply a case that nothing is known about the variable, 

except the extreme values that it can take.

Within the original interval arithmetic definition by Ramon Moore, a set of rules were also 

defined for all the standard mathematical operations on interval numbers with interval

arithmetic, and some of these are given below:

[a, h ] + [cy d] = [(a + c \ (h + d )] (2.1)

[a, b]~ M  = [{a - c i \  (/> -  c)} (2.2)

min (ac, ad, be, bd), max(«c, ad, be, bd)] (2.3)

C*[a,b] = [Ca, Cft]VC > 0 (2.4)

F([a,h\) = [/=•(«), F(b)} ,F is non-decreasing within [a,h\ (2.5)



F is non-increasing within [a,h] (2.6)

Interval numbers are both associative and commutative, i.e. for the interval numbers X, Y 

and Z

Y + (r  + Z )=(Y  + T)+Z (2.7)

X  + Y = Y + X (2.8)

X * Y = Y * X (2.9)

Interval arithmetic can be used to give an interval result for a series of calculations 

involving interval numbers. In the case of a mathematical model with interval-valued 

parameters or uncertain inputs, this cumulative calculation ability would initially appear to 

be beneficial, as it could potentially be used to estimate the range of model outputs subject 

to these uncertainties.

Interval numbers are not distributive, however. For example:

I(J + K ) * I J  + IK (2.10)

They do exhibit sub-distributivity though:

I(J + K ) q IJ + IK (2.11)

The lack of distributivity leads to an inherent conservatism. It is the well-known and 

serious deficiency of interval arithmetic, and is generally known as "dependency" or "the 

bound explosion effect". Consider, for example, the interval number

z  = [-i,i]

The simple arithmetical expression Z - Z is evaluated by interval arithmetic as:



Z -  Z = [-1.1]- [-1,1] = [(-1 -  0,(1 + 0] = 1- 2,2]

However, basic mathematical knowledge states that any number subtracted from itself 

equals zero, so the range of the expression has been significantly overestimated. The 

problem is that interval arithmetic considers all quantities that it uses to be completely 

independent of each other, which is untrue in situations such as the above arithmetic 

expression. In the above expression, interval arithmetic does not recognise that the two 

operands of the expression are the same number, but views them as being separate numbers 

which just happen to take the same interval range. This bound explosion effect becomes an 

issue when dealing with recursive models, i.e. any model in which outputs from the model 

are in some way "fed back" into the model as inputs. The consequence of this recursion is a 

continual, progressive widening of the interval result, to the point where the calculated 
range becomes useless for a real-life application. An example of this behaviour is shown in 

Figure 2.1.

x 10‘4
1---------1---------1--------- r  ' -— t  ~  —
-------- Interval Arithmetic Bounds

True Target Outputs

2 -

-2-I

-3 - |

. 4  _ ! ---------1------ -------1------------- 1-------------1------------- 1-------------L -....J____________ I-------------L -_--------
0 50 100 150 200 250 300 350 400 450 500

Sample Number
Figure 2.1: Interval arithmetic long-range ARK prediction hounds

Figure 2.1 shows a time series prediction from an interval-valued ARX model, the 
operation of which is defined later in Chapter 5. The target output data is also displayed for 

comparison. It can be seen that for each discrete time step, the predicted output range by
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interval arithmetic becomes successively wider, with the overall effect of exponentially 

diverging output bounds. This divergence will continue until the bounds reach the limits of 

machine precision. Even if the initial ranges of the uncertain quantities are kept very 

narrow, this bound explosion is still shown to occur lor a recursive model. The logical 
conclusion is, therefore, that interval arithmetic simply isn't suitable for modeling any kind 

of recursive model, so an alternative approach is needed.

2.2 Affine Arithmetic

Affine arithmetic was proposed by Comba and Stolfi (1993) with an application to 

computer graphics. The technique is also designed for uncertain quantities and, like interval 

arithmetic, can give the total uncertainty after a series of calculation steps. Affine 
arithmetic uses a different calculation approach though, to try and overcome the 

dependency issues that plague interval arithmetic.

Each source of uncertainty within the system is considered separately and assigned its own 

index. Any uncertain quantity A is denoted as a linear sum of its mean or "central" value a<> 
and all of the uncertainty sources that the quantity is subject to, weighted by their respective 

magnitudes Each uncertainty source is denoted by e,.

For example,

A -  2.3 + 0.46, -  0.6f 2 + 0.56’,

indicates that the uncertain quantity A has a central value of 2.3, and is subject to the 

uncertain sources 1, 2 and 3, with respective magnitudes of 0.4, (-0.6) and 0.5. Each 
coefficient can take a value between -1 and 1. Hence,

A niax = 2 3  + 0.4 + 0.6 + 0,5 = 3.8 

Amm = 2 3 -0 .4 -0 .6 -0 .5  = 0.8

This affine form gives much more information about A than the corresponding interval

12



arithmetic form of

A = [0.8,3.8]

As with interval arithmetic, the original affine arithmetic definition by Comba and Stolfi 

also provided rules for arithmetic operations with affine numbers:

A + B -  {aQ +bQ)+(a{+ />,)£, + (a2 + bn +... (2.12)

A - B  = (a0 - h 0)+(al-  />, )é', + (a2 -  b2 )t'2 +... (2.13)

Multiplication of two affine numbers is more complex. Affine arithmetic only considers 
linear uncertainty terms, whereas any multiplication has the ability to generate second order 

uncertainty terms, i.e. e, £j. This is circumvented at the end of each affine multiplication by 

summing the absolute values of any second order terms that are present, and adding a new 

uncertainty source with that magnitude to the result.

A*B = a0b0 + (r/0/), + a \  )f, + (,a0b2 + a2b0 )e2 + (2.14)

+ («<A + " A k +  X Z |aA
l ' - 1 M J

'»* 1

There are in fact two modifications that can be added to this original affine arithmetic 

multiplication definition, in order to reduce conservatism on the result. The first of these 

modifications relates to the appearance of squared uncertainty terms in a calculated

quantity. In equation (2.14), atey is considered to take the range [-£/,,«.]. Although e, 

symbols within affine arithmetic can vary between -1 and 1, £(2can only vary between 0 

and 1, so a(ef has the true range of This can be overcome by writing a squared

uncertainty term as

a.e] (2.15)
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prior to summing the moduli of the second order terms, so that the true range of the term is 

maintained.

The second modification that can be made regards the cancellation of second order 

uncertainty terms arising from a product of two different linear terms, i.e. aey£2. In 

equation (2.14) the absolute values are taken and the summation is made without any 

collection of similar terms, so bej£J -c £ i£j becomes (b + c)ei£ j . In this second

modification, all similar second order uncertainty terms are collected together and 

simplified before being summed. Both of these two modifications to the original affine 

arithmetic multiplication definition can reduce conservatism of the result obtained.

Affine arithmetic is useful for considering any interactions between two uncertain terms. If 

two affine numbers share one or more uncertainty sources then there is a correlation 

between the two, and the technique takes this correlation into account. If the quantity Z in 

section 2.1 is rewritten as

Z = 0 + £,

Then,

Z - Z  = 0 - 0  + (l-l)£ , =0

which is the true result.

The additional information stored by affine arithmetic leads to it being significantly more 

computationally expensive than interval arithmetic. Any multiplication of two affine 
quantities will generate a new uncertainty tenn, so a large calculation can end up with 

thousands of these terms. Trigonometric functions (including hyperbolic functions) can be 

represented within affine arithmetic by using the Chebyshev approximation, but each of 

these operations also generates a new uncertainty tenn for the approximation error.

Although affine arithmetic attempts to overcome the dependency problems present in 

interval arithmetic, for a recursive model the same “bound explosion” behaviour can be
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seen to occur. This divergence of the prediction bounds is dependent on the ranges of the 

uncertain parameters however, as for small uncertainties the bounds can remain stable.

Figure 2.2 shows an affine arithmetic prediction for the same interval ARX time series 
model as used in Figure 2.1. The interval arithmetic bounds are superimposed on the same 

axis for comparison purposes. It can be seen that although the affine arithmetic prediction 

bounds are not expanding at the same rate as the interval arithmetic bounds, they are still 

expanding.

x 10'4

Figure 2.2: Interval and affine arithmetic long-range ARX prediction hounds

Figure 2.3 shows the width of each predicted sample range for successive discrete time 

instants. The increase in bound width is not monotonic, but there is an undeniable widening 

effect with time. The unpredictability of knowing when the predicted output range of the 

model will become unstable, coupled with the computational expense of the method means 

that, as with interval arithmetic, affine arithmetic is also unsuitable for predicting an 

uncertain recursive model.
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Figure 2.3: Affine arithmetic long-range output widths

2.3 Quadratic Arithmetic

In an attempt to overcome these dependency problems, affine arithmetic can be taken one 

step further to give what is termed "quadratic arithmetic". Quadratic arithmetic works on a 

similar basis to affine arithmetic, but stores linear and quadratic uncertainty terms as 

opposed to just linear terms. An example of a quadratic variable is

C — CQ 4- C,£, + C 2£ 2 "b Cj 2f|^2 "b C\,\€\ ~b C2,2&2 (2.16)

where C has a central value of c0, and is susceptible to uncertainty sources 1 and 2. Just as

moving from interval to affine arithmetic gives a large increase in computational effort, 

going from affine to quadratic arithmetic means an even larger increase, often to beyond 

the realms of practicality.

Not only is quadratic arithmetic hugely computationally expensive, but it is also still 
susceptible to the unstable “bound explosion” behaviour exhibited by interval and affine 
arithmetic, albeit at an even slower rate of divergence.
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3. Possibilistic Sampling Methods

This chapter outlines the theory behind several different possibilistic sampling methods for 

modelling uncertainty. These methods are all used to calculate a system output value when 

it is subject to one or more uncertain parameters, and are based on the design of 

experiments methodology. In each case, the uncertain parameters of the system form a 

multi-dimensional hypercube within the parameter space. A number of sample points are 

deterministically selected from within this hypercube, each one representing a different 

crisp set of parameter values. From the set of points that are calculated, the maximum and 

minimum output values are returned as an estimate for the system output range.

The sample points can be denoted as

fc} , ] (3.1)

where N is the total number of points used. If the function or system output value is denoted 

by/, the set of sampled values is given by:

{/(c,)} , 1 < i < N  (3.2)

An estimate F  for the possible output range of the function or system is then given as:

F = [min{/(c,)},max{/(c,)}] , 1 < i < N  (3.3)

Equations (3.1), (3.2) and (3.3) are used in all of the possibilistic sampling methods that 

will be described here. These methods differ only in the number of sampling points used, 
and how they are distributed within the uncertain parameter hypercube.

3.1 Vertex Two-Level Full Factorial Method

This is the simplest of the possibilistic methods used here, and was originally proposed by 

Dong and Shah (1987). It is analogous to a design of experiments test with full factorial



level 2. The method states that if the function/system output in question is monotonic over 

the parameter hypercube being used, the output range can be calculated by considering only 

the extreme points of the hypercube, i.e. the vertices. These vertex points are illustrated in 

red on Figure 3.1 for the case of three uncertain parameters. For a system with n uncertain 

parameters, the number of sample points used in this method will be 2".

Figure 3.1: Vertex two-level full factorial hypercube sampling points

If the function being modelled is not monotonic over the parameter range, the two-level 

vertex method can incorrectly estimate the range of the result. For example, consider the 

function:

f ( x )  -  2x2 -  x , 0 < * < 1

The function is plotted in Figure 3.2, along with the sampling points of the method. Basic 
calculus can be used to ascertain the minimum point at x = 0.25. However, the two-level 

vertex method only considers the points x = 0 and x ~ l:

/(0 )  = 0 

/ (  D = 1
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Figure 3.2: Vertex two-level sampling points for f (x)  = 2x2 - x

The range of the function f(x) over the interval [0, 1] is thus estimated as [0 , 1], At the 

minimum point, f(0.25) = -0.125, so the true range off(x) is [-0.125 , //. The two-level 

vertex method has overlooked the minimum point at * = 0.25, and therefore incorrectly 

estimated the range of the function.

The original paper suggested placing extra sample points at the location of local maxima 

and minima, in order to correct this behaviour. This can only be applied if the function is 

known, however. For a problem that estimates the outputs of a particular system subject to 
uncertain parameters, the output function of the system will not be known, and hence, 

neither will the locations of any extremum points in the parameter space.

3.2 Vertex Three-Level Full Factorial Method

This method is analogous to a design of experiments approach with full factorial level 3. 

Figure 3.3 shows the sample points in red for a problem with three uncertain parameters.

For a problem with n uncertain quantities, the number of sample points used for the three- 

level vertex method will be 3n. For an equal number of uncertain parameters, this three- 

level vertex method increases the number of sample points when compared to the two-level
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method by a factor of 1.5". If only a few uncertain parameters are present, this difference is 

not particularly significant, but for a large number of these parameters it can mean a huge 

increase in computational expense.

___________ _______— -------
•

’
•

.

• .
•

—
• •

____________________ —

Figure 3.3: Vertex three-level full factorial hypercube sampling points

3.3 Fuzzy Arithmetic

Fuzzy arithmetic and fuzzy sets are not directly used within this thesis. The transformation 

method technique however (which will be outlined in sections 3.4 - 3.6), was developed as 

a practical means of conducting fuzzy arithmetic, so some explanation of fuzzy set theory is 

needed here.

Fuzzy set theory was originally proposed by Zadeh (1965). Fuzzy arithmetic subsequently 

arrived, and forms one of the main areas within the possibilistic branch of uncertainty 
quantification. The original mathematical concept of set theory defines a set A as:

A = {jc|z1(jc)} , x e X  (3.4)

A(x) can be thought of as a truth operator, where a true or false value (l or 0) is returned 
with no ambiguity. Each .v value is assessed for belonging to set A by the characteristic 

function p  , (x) . This is defined as:
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/ v  {■*«*}-> M (3.5)

Although classical set theory is a well established branch of mathematics, there are certain 

applications where it can be ineffective. For example, consider the linguistic variable “x is 

around 5”. This is clearly a subjective quantity, containing a large amount of ambiguity. 

The definition of “around 5” is likely to vary between different people, so the characteristic 

function ¡iA (x) is no longer suitable.

Fuzzy set theory was proposed to overcome these shortcomings. It extends the concept of 

classical set theory to allow a "subjective belief" for a given value x fulfilling some 

condition/criterion. Gradations of membership are used, to allow for different beliefs that 

the set criterion has been satisfied. The characteristic function becomes a membership 

function, so for a fuzzy set B:

Mb : {xe A"} [0,1] (3.6)

Figure 3.4 shows one particular fuzzy set representation B(x) of the statement “x is around 
5”.

Figure 3.4: Fuzzy membership function for “x is around 5 "

An important concept in fuzzy arithmetic is that of an a-cut. An a-cut is the interval range
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of values for which the membership function is greater than the specified value a. Aa 
denotes an a-cut for fuzzy set A, and is given by:

Aa ={xe X \nA{x)> a\ (3.7)

Figure 3.5: a-cut o f 0.5 for fuzzy set A(x)

Figure 3.5 shows an a-cut of 0.5 for the fuzzy set A(x). A convex fuzzy set is one for which 

any level of a-cut will always give a continuous interval number. Figure 3.6 is an example 

of a non-convex fuzzy set A(x), as illustrated by taking an a-cut of 0.5.



Another important concept in fuzzy arithmetic is the extension principle, also introduced by 

Zadeh. The extension principle is designed for calculating the output of a function f  where 

the arguments of the function are fuzzy numbers, i.e.

c ( y )  = f ( A  f a  ) . A  f a  )> A  f a  ) .......... . f a  ) ) (3.8)

The extension principle defines the membership function of the resulting fuzzy set C(y) as:

In short, the extension principle constructs an output fuzzy set C(y) for the given input 

fuzzy numbers and function/ Each output valuer is assessed for its degree of belonging to 

the set C and assigned a related membership value. For a given value of y , the entire n-

dimensional input domain is sought for any input vectors (*,,*,,.... , xn) that producey  as

the response from function f  Where several of these input vectors exist, a single vector is 

deterministically selected by considering all choices within the sup-min assessment of 

equation (3.9). Where no such suitable input vectors exist, a value of 0 is returned for

/ 'c O ') -

The main drawback of the extension principle is that for the elementary mathematical 

operations, continuous input fuzzy sets give an infinite number of possible combinations to 

obtain a given output value. The extension principle can therefore only be realistically 

implemented for the case of discrete fuzzy sets containing a finite number of values.

One way of implementing the extension principle is to discretise the input domain, as 

shown in Figure 3.7. The alternative approach is to discretise the membership value range 

and take a selection of a-cuts at these discrete membership levels. This membership 
discretisation is shown in Figure 3.8, and the fuzzy number A(x) can then be given by a set 
of interval numbers representing the ranges of the different a-cuts.

y *  f i x  j .JT j,....... , * „ )

(3.9)
0 otherwise
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Figure 3.7: Discretising a fuzzy number by its input domain

Figure 3.8: Discretising a fuzzy number by its membership function

For the case of systems with uncertain parameters, a fuzzy output can be given for a 

number of fuzzy inputs that are present in the system. This use of fuzzy arithmetic has the 

same drawbacks as interval arithmetic, in that all uncertain quantities present are 
considered to be completely independent of each other. As with interval arithmetic, this can 
lead to significant widening of the predicted output bounds.

The transformation method (Hanss, 2002) works by combining the principles of the 

membership discretisation approach with the theory behind the vertex method. Whereas the 
vertex method considers only the hypercube at the limits of the multi-dimensional uncertain 

variable space, the transformation method also uses a number of hypercubes contained
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within it. In relation to fuzzy numbers, the centre of an uncertain parameter hypercube 

corresponds to the point within each input dimension where the membership value equals 
unity (called the “core” in fuzzy arithmetic terminology).

Using the transformation method, each fuzzy input variable is discretised into m a-cuts. In 

the parameter space this gives m hypercubes of increasing size, including the outermost 

limits of the hypercube. This is illustrated in Figure 3.9 for three uncertain variables.

Figure 3.9: Discretising a hypercube into inner hypercubes by a-cuts

In the original paper Hanss proposed two variants of the transformation method, termed the 
reduced and general transformation methods. In this thesis a third variant is also used, 

referred to here as the modified reduced transformation method.

3.4 Reduced Transformation Method

For this transformation method variant, the vertices of each of the m hypercubes are used as 

calculation points. For the a-cut level ol 1, the corresponding hypercube is actually just the 

central point of the parameter space, leaving another (m ~ 1) hypercubes to consider. For a 

problem with three uncertain variables, Figure 3.10 shows the distribution of sample points 

in the reduced transformation method. 1 he various a-cut levels are in different colours, 
with the sample points shown in yellow. For m a-cut levels and n uncertain variables, the 

number of points k to calculate is given by:
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k  = 1 + (/?! -1)2 (3.10)

Figure 3.10: Reduced transformation method sampling points in three dimensions

If the function is non-monotonic over any of the n input variable ranges, it cannot be 

guaranteed that the true range of the function output will be returned. Some extrema points 

of the function may fall between the hypercube sample points, and therefore be overlooked. 

The effect of this oversight will be much less severe than with the use of the two-level full 

factorial method, since many more sample points have been used within the uncertain 

variable hypercube and not just on the outermost hyperplanes.

The effect of missing extrema of the function is minimised by using a greater number of a- 

cut levels m, since this will mean a greater density of sample points within the hypercube. 

Increasing the value of m has an almost linear effect on the number of calculations that 

need to be made, and thus the overall computational time.

3.5 General Transformation Method

The general version of the transformation method is significantly more computationally 

expensive than the reduced version described previously. The overall uncertain variable 

hypercube is still divided into m embedded hypercubes, defined by incremental a-cut levels 
of the n fuzzy number inputs. The distribution of sample points over successive inner 

hypercubes is no longer constant though.

Starting from the a-cut level of 1, this corresponds to a single crisp value within the overall
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uncertain hypercube. For each incremental decrease in the a-cut level, the number of 

sample points in each hypercube dimension is increased by one, shown in Figure 3.11.1'his 

distribution of sample points is shown for the three-dimensional case in Figure 3.12, with 

some of the points on the near face omitted for clarity.

Figure 3.11: Distribution o f general transformation method sampling points by fuzzy a-cuts

Figure 3.12: General transformation method sampling points in three dimensions

The general transformation method differs from the reduced version in that as well as using 

the vertices of the various embedded «-dimensional hypercubes, points are also taken on 
their («-/)-dimensional hypersurfaces. For a triangular fuzzy number, this has the effect
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that on any a-cut level within the overall region, the sample points in a given dimension are 

always separated by the same distance. This equidistant effect is not true for a non- 

triangular fuzzy number (i.e. one with arbitrary L-R shape (Dubois and Prade, 1978, 1979) 

), but the general transformation method still gives a much more even distribution of 
sample points than the reduced version.

The number of sample points k for the general transformation method is given by

p=i
(3.11)

For a large number of uncertain variables, the number of calculations can be several orders 
of magnitude greater than with the reduced transformation method.

3.6 Modified Reduced Transformation Method

Figure 3.13: Modified reduced transformation method sampling points in three dimensions

The approach outlined here, termed as the modified reduced transformation method, is a 
compromise between the reduced and general versions, with respect to computational 
expense. As with these two original versions, the membership function range of each fuzzy 
input variable is divided by m a-cuts, giving m embedded hypercubes within the uncertain 

region. Whereas the reduced transformation method considers the end points of each



hypercube dimension for a given a-cut, this modified version considers the centre and end 

points. This distribution of modified reduced transformation method points is shown for the 
three-dimensional case in Figure 3.13.

The number of sample points k for this modified version of the reduced transformation 

method is given by:

k = l + (w-l)3" (3.13)

As shown in chapter 2, the interval methods of interval arithmetic, affine arithmetic and 

quadratic arithmetic all have dependency problems. In contrast, the possibilistic sampling 

methods in this chapter do not suffer from these bound explosion effects. The uncertain 

output range they predict, however, is not guaranteed to be the true range with respect to 

the uncertain variables used. If the output quantity is monotonic in all directions over the 

multi-dimensional variable hypercube, the predicted output range will be the true range, but 

in many cases this monotonicity will not exist.

Without this monotonicity, it cannot be known for sure if a particular output surface 

extremum has been missed by the hypercube sample points, one which would give an 

output value outside the predicted bounds. The general, reduced, and modified reduced 

versions of the transformation method make it less likely that one of these features has been 

missed, but it still cannot be known with any certainty. The true range could only be stated 

for definite if the entire output surface topology was known in advance. This however, 
would completely eliminate the need to use these sampling methods in the first place.

Figure 3.14 shows a prediction from the interval-valued ARX model of Figures 2.1 and 2.2, 

with the interval bounds calculated by the three-level vertex method. It can be seen that the 

output bounds do not explode as with the interval techniques in Chapter 2, but remain at 

sensible and practical widths.
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Figure 3.14: A RX long-range output bounds by the vertex three-level method

The transformation method is thus used here as a way of circumventing the dependency 

problems of other interval techniques, for the case of recursive models. The general 

trans format ion method uses a higher frequency of sample points at lower levels of fuzzy 

number a-cuts, i.e. more sample points towards the exterior faces of the uncertain variable 

hypercube. In practice, it is often too computationally expensive to use in many 

applications.

The reduced and modified reduced versions of the transformation method both use 

embedded inner hypercubes within the original uncertain variable hypercube, in order to set 

the positions of the deterministic sample points. The sizes of these respective hypercubes 

were set here by discretising the input variable space.

The choice of which vertex method or transformation method variant to use for a problem 

is principally dependent on the complexity of the problem, and is usually constrained by the 

available computational time and power. For a system with a large number n of uncertain 

parameters, changing from two-level to three-level in the vertex method can have a huge 

increase in the computational effort, as it is the difference between 2n and 3n sample points. 

Likewise, an increase in the number of a-cut levels for the reduced or modified reduced 

transformation methods will also increase the required computational time, although this 
will be by a linear factor.



4. Evolutionary Computation

Evolutionary computation is a subset of artificial intelligence, and is generally used as an 

umbrella term for genetic algorithms, evolutionary strategies, genetic programming and 
similar methods. These methods are all global optimisation approaches that are based on 

the "survival of the fittest" principle within nature.

4.1 Genetic algorithms

Genetic algorithms were the first type of evolutionary computation method, proposed by 

John Holland (1975). They can be used for virtually any kind of application where the 

parameters of a system need optimising to obtain the best result. These parameters need to 

be suitably represented within the algorithm, and an objective function is required to 

appropriately quantify the problem at hand. If these two challenges are met correctly, 

genetic algorithms are capable of giving effective solutions to a problem.

Genetic algorithms were inspired by the principle of natural selection, and are stochastic 

algorithms. The standard gradient descent optimisation method (or one of its numerous 

variants) considers only a single solution point within the entire parameter space, and is 

highly susceptible to local extrema. For a problem where the output surface is high- 

dimensional and multi-modal (i.e. a nonlinear problem), this can lead to difficulties in 

finding the global optimum. Simulated annealing (Metropolis et al, 1953) improves upon 

the gradient descent technique by its ability to avoid local minima, and is therefore a global 

optimization approach, but still only considers one solution point at a time.

In contrast, genetic algorithms simultaneously consider a whole group of solution points, 

known as a "population". In keeping with the genetic allegory, this population can be 

viewed as a "gene pool", and each solution is a "chromosome", or "genome". By scattering 

these solutions through the parameter space, a range of local regions can be explored 

simultaneously. The rationale behind genetic algorithms states that although the global 
optimum solution may not exist in the population at a given time, its constituent parts may 
be scattered amongst the genetic material of the solutions that are present. The task is 

therefore to find the global optimum by rearranging this genetic material, which is done by



the genetic operators of selection, mutation and recombination. The population solutions 
are encoded within the algorithm as binary strings.

Genetic algorithms use an iterative methodology, where each iteration is called a 
"generation", and the first phase of each iteration is the calculation of fitness values. The 

fitness of a solution is a measure of its quality (in relation to the problem at hand), and is 

the score obtained from the objective function of the problem. Viewing the fitness values of 

an entire population gives an instant guide as to which are the superior problem solutions, 

and which ones are inferior.

The first of the three genetic operators to be used in each iteration is the selection operator. 

This determines which current solutions are to be used for the subsequent mutation and 

recombination operations, analogous to choosing which animals are to breed in a natural 

environment. The solutions with higher fitness values are those which contain the better 

genetic material, and it is therefore more beneficial for these to be selected. If only the best 

solutions are selected at each iteration, however, the population as a whole will quickly 

converge to their values, losing the population diversity that is so essential for the algorithm 

to have. For this reason it is important that the selection operator retains a stochastic aspect. 

Of the numerous selection schemes that are available, the one that best achieves this is 

"roulette wheel selection", where the likelihood of a solution being selected is proportional 

to its fitness value.

0 0 1 0 1 1 0 1 1

\V'/

0 0 1 0 1 0 1 1 1
Figure 4.1: A bit-flipping mutation scheme

Once a number of population solutions have been selected, the mutation operator follows. 
As with selection, there are a variety of different mutation schemes available for use. Some



of these adjust the length of the solution vectors (destructive and generative schemes), 

whereas others modify elements of the vectors whilst keeping the length unchanged ("bit- 

flipping" schemes). An example of a bit-flipping mutation scheme is shown in Figure 4.1. 

The purpose of the mutation operator is to introduce randomness into the search process, 
which the subsequent recombination operator is not able to give.

Recombination (also known as crossover) combines the genetic material of two “parent” 

solution vectors to produce “child” vectors. Crossover schemes generally produce two child 

vectors from two parent vectors, although sometimes the operation may be used to produce 

only a single child vector. The most popular crossover schemes are one point crossover, 

two point crossover and uniform crossover.

One point crossover involves randomly selecting a position index for the two selected 

parent vectors. All elements beyond this point are then “switched”, to produce two new 

child vectors. This operation is illustrated graphically in Figure 4.2. Two point crossover 

selects two random position indices for the parent vectors, then switches all elements 

between these two position limits. Uniform crossover exchanges individual parent vector 

elements with a given probability, as opposed to the segment exchange that takes place 

with one point and two point crossover. All three of these crossover schemes maintain the 

length of the population vectors, although there exist other crossover schemes that do not.

Figure 4.2: One point crossover

After the recombination phase is completed, the final step of the iteration is the replacement 

phase. In this part, the newly generated child vectors are inserted into the population at the 
expense of certain existing solutions, as the population size always remains constant. A
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number of schemes exist for specifying how this replacement operation is to be done. The 

two most common of these schemes are to replace the current solutions with the lowest 

fitness values, or to replace those that are most similar to the child vectors (generally their 

parent vectors). The former scheme helps to improve the overall fitness of the population, 
whereas the latter helps to maintain population diversity. A genetic algorithm where the 

number of generated child vectors equals the population size is called a “simple state” 

implementation, or if less children are generated than the population size, is called a 

"steady state" or "overlapping populations" implementation. The latter is the more 

commonly used of the two types.

It needs to be noted that in a genetic algorithm there is no rejection of child vectors, they 

are always inserted into the population at each step. It may be that a child vector actually 

gives a worse fitness value than its parents, especially if the algorithm is nearing 

convergence. Genetic algorithms are therefore capable of "uphill moves", i.e. the overall 

population fitness may actually decrease between two successive iterations (known as 

generations). A convergence criteria needs to be devised for the algorithm, and this is 

usually either a maximum number of iterations being exceeded, or the growth rate over a 

number of iterations (eg ten) falling to below an arbitrarily specified level.

Not only are genetic algorithms able to avoid local sub-optimal extrema, but they can also 

be used where the output surface contains discontinuities, whereas a gradient descent-based 

algorithm could not be. Although genetic algorithms are global optimisation algorithms, 

their stochastic methodology means that they are not guaranteed to find the global 

optimum. For this reason it is recommended to run a genetic algorithm application several 

times, to increase the chance of the global optimum being found.

More general information on genetic algorithms can be found in the book by Goldberg 

(1989), considered a seminal publication in the evolutionary computation field.

4.2 Differential Evolution

In this thesis the global optimisation algorithm of differential evolution was used; an 

example of an evolutionary strategy. The technique was proposed by Stom and Price 

(1996). Evolutionary strategies share a common origin with genetic algorithms and operate
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on the same natural selection principle, but there are differences in methodology between 

the two.

The first of these differences relates to how parameter values are stored. Within genetic 

algorithms the parameters are usually encoded binary strings, whereas in differential 

evolution real number values are used throughout. This avoids decoding the binary 

representations to calculate the objective function value, and then re-encoding them 

afterwards. It also gives the parameters to a much higher precision. Although differential 

evolution still uses the three genetic operators of selection, mutation and recombination, 

they are applied differently than in standard genetic algorithms, and in a different order.

The three parameters that define the operation of the differential evolution algorithm are the 

population size NP, the weighting factor F, and the crossover constant CR. A general 

heuristic is that NP should be 5-10 times greater than the number of parameters being 

trained by the algorithm. A value of between 0.4 and 1.2 is recommended for F, and CR 

takes a value between 0 and 1 inclusive.

Within differential evolution the existing population solutions are called target vectors, and 

the child vectors are termed trial vectors. The number of child vectors generated at each 

iteration is equal to the population size, analogous to a simple state implementation of a 

genetic algorithm.

The algorithm is initialised by randomly generating a population of target vector solutions. 

As with genetic algorithms, each iteration starts by calculating the fitness values of all the 

population solutions. The mutation operator is then the first genetic operator to be used. For 

each current target vector in turn, three other solution vectors are randomly selected from 

the target population. The vector difference between the first two of these vectors is 

calculated, and then multiplied by the weighting factor F. The third random vector is then 

added to this weighted difference vector to give a ’’noisy vector". One noisy vector is 

therefore generated for each solution in the target population. The algorithm name 

originates from this use of vector differentials during the mutation process.

The use of vector differentials for mutation has benefits for the search process. The first of 

these benefits is that it allows differing ranges for different parameters, i.e. different



dimension lengths in the multi-dimensional parameter space. The second benefit is that the 

range of the mutation operation will decrease as the solution approaches convergence. At 

the start when the solutions are further apart, the differences between them will be greater, 

so the mutation will cause a greater "jump" in the solution space. Towards the end of the 
algorithm, the solutions should be gathered together in smaller local regions, so mutations 

are likely to stay close to these regions.

CROSSOVER VECTO R

Figure 4.3: Crossover (recombination) within differential evolution

The next genetic operator to be used in the iterative process is recombination. Each target 
vector and its respective noisy vector are combined to make a single child (trial) vector, 

where the crossover process is governed by the value of the crossover constant CR. One 

randomly selected element of the trial vector is automatically taken from the noisy vector, 

to ensure that each trial vector is in someway different from its parent target vector. The 

remaining elements of the trial vector are then filled by uniform crossover operations 
between the corresponding elements of the target and noisy vectors. For each of these 

element positions, a random number is uniformly generated between 0 and 1. If this number
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is greater than CR, the trial vector value is taken from the noisy vector, otherwise it is taken 

from the target vector. This recombination operation is illustrated graphically in Figure 4.3.

The CR parameter therefore has the duty of specifying the variation between target and trial 

vectors. For a low CR value, the trial vector elements are more likely to come from the 

noisy vector, meaning that each trial vector will tend to be significantly different from its 

parent target vector. Conversely, a high CR value means that each trial vector will tend to 

be very similar to its target vector. CR can hence be thought of as determining the 

exploration rate of the solution space.

In genetic algorithms it is often stated that recombination is a much more important 

operator than mutation, in relation to finding optimum solutions. In differential evolution 

this statement is less true; it is the combination of the mutation and crossover parameters F 
and CR that determines the effectiveness of the algorithm.

Once a trial vector has been generated for each existing target vector, the fitness values of 

this new trial population are calculated. The selection operator then follows to conclude the 

iteration, but this is used with a significant difference to its genetic algorithm counterpart. 

Whereas in genetic algorithms the selection operator chooses which solutions to use for 

breeding, in differential evolution all of the solutions are allowed to breed, and the selection 

operator chooses which child vectors should be kept in the next generation.

Unlike the replacement phase in genetic algorithms, where child vectors always survive to 

the next generation, trial vectors in differential evolution only advance if they have a higher 

fitness than their parent target vector. Hence differential evolution does not feature "uphill 

moves", as the populations can only be improved over successive generations, or at worst, 

remain the same. This selection operation is illustrated graphically in Figure 4.4.



TARGET POPULATION TARGET TRIAL TRIAL POPULATION

Figure 4.4: The selection operation within differential evolution

As with genetic algorithms, differential evolution needs some form of convergence 

criterion to terminate the algorithm. This is generally either an arbitrary maximum iteration 
limit being exceeded, or the growth in overall population fitness over a number of iterations 

falling to below some specified value.
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5. Autoregressive Models-------------------- --------------------------  -------- ------

Figure 5.1 shows a general representation of a discrete time system. This system can be 
physical, such as a car engine, or completely theoretical, such as a predictive model for 

simulating trade dynamics of the stock exchange. u(tt) is the system input signal, y(tt ) is

the measured output signal, and e(tj) is the disturbance signal, often assumed to be a zero- 

mean white noise process.

u(t,)------ A >y(t.)

Figure 5.1: A genera1 representation o f a discrete time system

5.1 ARMAX and ARX Models

Autoregressive models are often used in system identification, with the most general form 

being the ARMAX model (Auto Regressive Moving Average with exogenous Inputs). The 

ARMAX model estimates the value of the system output at a given time instant by a linear 

combination of previous system values. These values are referred to as "lags", and an 

arbitrary number of them can be used within a model. The form ol an ARMAX model is

y(t) = a,y(t - l)+ a2y(t -  2) + .....+ aMy(t -  na)+ bQu(t -  nk) + bxu[t - n k - \ )  (5.1)

+ .....+ bnhu{t - n k -  nb) + e(t) + c, e(t- l )+  c2e(t -  2) + cnde{t -  nd)

where na is the number of output lags used, nk is the system delay between input and 
output, nb is the number of input lags, and nd is the number ol disturbance lags. The 

coefficient sets {at}, {bi }and {c‘( }are real number sets.



The output lag terms are referred to as autoregressive terms and the disturbance lags as 

moving average terms, hence the origin of the ARMAX name, with “exogenous inputs” 

referring to the system input lags. A model with nb = 0 (no input lag terms) is called an 

ARMA model, and with nd = 0, is called an ARX model. With nb = nd = 0, the model is 

simply an AR model. The individual RHS terms in (5.1) are also often called "regressor 

terms"

An ARX model can be written as

y(t) = a\y(* “  0+ a2y{t -  2 )+ .....+ aMy{t -  na)+b0u(t -  nk) (5.2)

bxu ( t - n k - 1)+.....+ bnhu(t -  nk -  nb)

where y(t) is the estimated output from the model. As eft) is zero-mean, the relationship

y(t) = y{t)+e(l) (5.3)

shows that the model is equally likely to underestimate or overestimate the true measured 

output at a particular time instant.

In relation to the standard transfer function form, na gives the number of system poles and 

nb is the number of system zeros. The number of output lags na is also called the order of 

the model. The previous “lagged” values used by autoregressive models make them 

particularly suitable for systems that exhibit hysteresis.

5.2 One-step-ahead and Long Range Prediction

For an autoregressive model, the output lag terms can either be taken directly from the data 

set of measured system values or from previously estimated outputs by the model itself. 

The former is called the one-step-ahead prediction, and the latter is known as the long range 

prediction, or the model predicted output. In terms of minimising eft% the one-step-ahead 
prediction is much the easier of the two to use, since any incorrectly estimated system 
outputs by the model will not affect the subsequent time intervals. If the model is to be used 

in a real-life application, however, it needs to be shown that it can accurately predict the



given system without the need for a reference output, so the long range prediction error is 
the one on which the quality of the model should be assessed.

When used in the one-step-ahead prediction mode, an autoregressive model is linear-in-the- 
parameters with respect to the regressor coefficients, but in the long range prediction mode 

it is not. For the linear-in-the-parameters case, the optimum regressor coefficients can be 

found very easily by using the pseudoinverse approach

5.3 NARX Models

The NARX model was originally proposed by Leontaritis and Billings (1985), and is a type 

of autoregressive model specifically for nonlinear systems. NARX stands for Nonlinear 

AutoRegressive with exogenous inputs, and is a subset of the more general NARMAX 

model. Its general form is given by:

y ( ')= Y ja‘Ti

u n iv e r s it y
Of  SHEFFIELD 

LIBRARY (5.4)

where R is the number of terms used in the model. Whereas the regressor terms within an 

ARX model are linear, the {7]} terms in (5.4) are nonlinear functions of previous time input 

and output lags. The standard approach is to use polynomial functions up to a particular 

order, eg. >>(>-1), w(/)w(/-l), u{t)2y ( t - \ )  or u (t)\  although any nonlinear function can 

be selected. As with the ARX model, the set of regressor coefficients {at} are real number

values. For the one-step-ahead prediction case, the NARX model is therefore linear-in-the- 

parameters with respect to the regressor coefficients.

As the NARX model uses nonlinear regressor terms, it is therefore much more effective 

than the ARX model at representing discrete time systems that have nonlinear components. 

It is consequently more difficult to train, however. Along with the NARX model, 

Korenberg and Billings proposed an algorithm for training such a model, called the forward 
regression orthogonal estimator (FROE) algorithm (Korenberg et al 1988, Billings et al, 

1989). For a maximum specified number of input and output lags and an upper limit on the 
complexity of the regressor terms (usually a maximum polynomial order), the FROE can



return the optimum set of regressor terms and coefficients for a given data set.

The regressor terms in an NARX model are not generally orthogonal, since these terms all 

use the same data values and several terms can share one or more input or output lags. 

From the regressor terms available for selection within the model, the FROE transforms 

these into an equivalent set of orthogonal regressor terms, and finds the optimum set of 

coefficients for these terms. The algorithm uses an iterative procedure to successively add 

new regressor terms into the model, using the one-step-ahead prediction error as an 

objective function to be minimised. At each iteration, the algorithm examines the remaining 

unused regressor terms, to see which one best minimises the one-step-ahead error when 

added to the model. If none of these terms can improve the model, the algorithm is seen to 

be converged. The resulting orthogonal solution is then transformed into its equivalent set 

of the original non-orthogonal regressor terms and their associated coefficients.

As the FROE algorithm only considers one-step-ahead prediction errors, the results 

obtained can be sub-optimal. As the long range prediction error of the model is not being 

considered, the algorithm is in danger of overfitting the data, since a good one-step-ahead 

error does not always correspond to a good long range prediction error. In order to 

overcome this, the simulation error minimisation with pruning (SEMP) algorithm was 

proposed by Piroddi and Spinelli (2003).

The SEMP algorithm also uses an equivalent orthogonal representation of the NARX 

model, but minimises the long range prediction error. It uses the same iterative 

methodology of the FROE algorithm, but also includes a "backward step" at each iteration. 

Therefore as well as seeking to add a new regressor term to the model at each step, it is also 

examined if the removal of one of the existing regressor terms can improve the long range 

prediction error.

Both the FROE and SEMP algorithms exponentially increase in computational effort if the 

maximum number of input and output lags or the order of regressor term complexity are 

increased, since at each iteration there will be many more possible regressor terms to 

consider. However, if the regressor terms within an NARX model are fixed at a particular 
set, the optimum coefficients can be found for these regressors (in respect to the one-step- 

ahead outputs) by the pseudoinverse approach.
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5.4 The Pseudoinverse Approach

The model error for a given time instant is given by

e{t)=y{t)-y(t)(5.5)

If all of the model inputs at each time instant are arranged into a matrix X , called the system 

matrix, and the vector of regressor coefficients is given by /?, the least squares error is given 
by:

E = ~ ( Y - X f t f  
N v (5.6)

where Y is the vector of measured system outputs and N  is the number of data samples

Differentiating (5.6) with respect to the regressor coefficients /?:

_ 2X 
d/3~ N

O'-AV ) (5.7)

Setting —  = 0 gives the optimum regressor coefficients ft* for minimising the least
dft

squares error:

2X
N

( y - x f t ' ) =  o (5.8)

X TY = X TXft' (5.9)

ft* = {XT X)~X X T Y (5.10)

(5.10) can be calculated quickly and easily in any maths software package, such as

m a t l a b
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5.5 Training an Autoregressive Model

For the general case of training an autoregressive model to a particular set of data» the 
convention is to use three separate data sets, labelled as the training, validation and test sets. 

This in line with the recommended best practice by Tarrashenko (1998). Initially the model 

hyperparameters need to be found. In the case of an ARX model, the hyperparameters only 

consist of the number of input and output lags for the model, although other types of 

computational model have additional hyperparameters.

Once the optimum hyperparameters have been selected, the optimum parameters of the 

model are then found. In the case of an ARX or NARX model, these parameters are the 

coefficients of the individual regressor terms. The solution model from this phase is then 

tested on the previously unseen test set. The use of a computational model on unseen data 

from the same process is to test for generalisation, an important requirement of any time 

series simulation model.

A frequently used measure for assessing the quality of a time series prediction is the mean 

squared error (MSE):

I t o - A ) 2
MSE = 100 * —

Nv
(5.11)

where y. and y i are the respective predicted and true output values for a given data

sample, N  is the total number of samples, and v  is the variance of the target output data. 

The mean squared error is simply the conventional least squares error measure normalised 

by the target data variance, so using that mean as a constant predicted output value would 

give a MSE value of 100%. A general heuristic is that 5% MSE is a good model prediction, 

and 1% MSE is a very good prediction.
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6. Artificial Neural Networks

6.1 Introduction

Artificial neural networks are a collection of computational models that were inspired by 

the operation of the human brain, and in particular, by its ability to leant adaptively. The 

applications of neural networks can principally be grouped into two different areas -  

classification and regression. Classification is the more popular of the two, and covers areas 

such as pattern recognition, medical diagnosis and damage detection. In this thesis only 

regression applications are encountered however, so neural network classification usage 

will not be covered here.

Artificial neural networks can be used when it is necessary to deduce a relationship 

between a set of system inputs and outputs, for the case where the system is nonlinear and 

an analytical solution is not possible or practical. Neural networks are often described as 

“black box” models, due to them predicting a set of system outputs from a given set of 

inputs without explicitly giving the relationship between the two.

Neural networks consist of a selection of processing nodes arranged together in a particular 

structure. The original concept of a neural processing node was inspired by the operation of 

an individual neuron within the human brain (McCulloch and Pitts, 1943). Bach neuron is 

connected to a number of adjacent neurons by synaptic connections of varying strengths. If 

the summed electrical signals into the neuron exceed a particular threshold value, the 
neuron “fires” and generates a new electrical impulse of its own. The operation of the brain 

at any one time is defined by the electrical activity present and the strengths of all the 

synaptic connections.

The human brain is able to adapt to new experiences and, through practice, improve a 

person's proficiency at performing the given task. This is done by forming new synaptic 

connections and adjusting the strengths of existing connections. Neural networks can be 

“trained” to a particular system by a similar process. A data set is required of measured 
system values, but this data has to meet certain constraints, otherwise the resulting neural 

network model will be poor. The data must be representative of the system being modelled,



there must be enough data available, and it must be of a suitable quality, i.e. without 

excessive measurement noise, incorrectly recorded values and omissions.

By using the measured data set, the parameters of the neural network model are continually 
adjusted until the network model is suitably able to predict the system outputs in question. 

This type of training procedure, where the true system outputs are available as a reference, 

is called supervised learning. It is important, however, that the network model is able to 

represent the general system in question, and not just the measured data. The latter case is 

known as “overfitting”.

Based on this, neural network applications always involve separating the measured data 

into at least two sets; sometimes three. The parameters of the neural network are trained 

iteratively, for which there are a number of different algorithms available, and by using 

only the first of the data sets. The resulting solution network model is then used on the 

second “unseen” data set, in a process known as generalisation. If the network is able to 

effectively model this unseen data set then it has mapped the underlying relationship of the 

system, and not just fitted to the initial training set.

Inputs

Figure 6.1: A single-layer perceptron network

The earliest type of neural network was called a perceptron (Rosenblatt, 1962), and is 

shown in Figure 6.1. The functions <t>i are processing elements that transform raw input

data into a more usable form, and the parameters {vvj are adjustable weights. The function



g is called the activation function, and is analogous to the assessment that determines 

whether a brain neuron should fire. The activation functions used in these early neural 

networks were simply anti-symmetric step functions. The predictive capabilities of the 

perceptron were poor however, and so improved neural network models were necessary.

By using additional layers of processing nodes the multilayer perceptron network was 

created; one of the two main types of neural network in use today. The second type is the 

radial basis function network, which differs in operation to the multilayer perceptron and is 

the lesser used of the two types.

6.2 Multilayer Perceptron Networks

Figure 6.2: A multilayer perceptron neural network

The multilayer perceptron (MLP) network arose because it was observed that single layer 

networks were limited in the range of functions that they could represent. The general form 

of an MLP network is shown in Figure 6.2. The number of network inputs and outputs is 

detennined by the problem being modelled, and information passes through the network in 
a forward direction only. An arbitrary number of hidden row nodes can be selected for use, 
although excessive amounts are likely to be limited by computational expense. An MLP 

network is often referred to by the number of adjustable weight layers that it uses; for 

example, the MLP network in Figure 6.2 is a two-layer MLP.
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The operation of a two-layer MLP network is given by:

M
y> y-O V i=0

(6.1)

where M  is the number of hidden row nodes, is the number of network inputs, is a 

second layer weight and w f  is a first layer weight. Equation (6.1) assumes that the network 

does not use nonlinear output layer activation functions. Each of the hidden row and output 

nodes are subject to additional bias parameters, given by w ^andw ^ respectively, where 

the inputs to these biases are permanently set to I.

Each hidden row node uses an activation function g to transform its summed inputs, which 
are themselves weighted versions of the network inputs. Although this type of network still 

uses the perceptron name, the hidden row nodes generally use sigmoidal activation 

(unctions, as opposed to the step activation functions of the original perceptron networks. 

The output node may use an activation function, but usually does not lor regression 

applications, so simply calculates a weighted sum of the hidden node outputs and bias node.

All layers of network weights are completely adjustable, and take the form of real number 

values. The network in Figure 6.2 has two layers of network weights, although additional 

layers can be used if necessary. A seminal paper by Homik et al (1989) showed that two- 
layer MLP networks with sigmoidal hidden node activation functions can represent any 

continuous function to an arbitrary degree of accuracy if a sufficient number of hidden row 

nodes are used. Based on this, two layer multilayer perceptron networks are frequently used 

for a wide range of modelling problems.

The most common way of training MLP network weights by the error back-propagation 

algorithm, proposed by Rumelhart et al (1986). This can be described as the standard 

gradient-descent optimisation technique implemented for neural networks. Error back- 

propagation operates by differentiating backwards through the network, so cannot be used 
if the hidden node activations are step functions. Other training methods can be used to find 

the optimum weights set, however, including the use of genetic algorithms. The first use of 

genetic algorithms to train neural networks was by Montana and Davis (1989).
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6.3 Radial Basis Function Networks

The radial basis function neural network was originally proposed by Broomhead and Lowe 
(1988). It is based on the concept of a generalised linear discriminant, where the input 
variables are transformed by nonlinear functions, then the model output is given by a linear 

sum of these transformed inputs. An example of a radial basis function network is shown in 

Figure 6.3

Inputs Nodes

Figure 6.3: A radial basis function neural network

The network takes its name from the basis function nodes used in the hidden row. A 

number of different functions can be used by these nodes, but the Gaussian function is 

usually the most popular choice. Whereas the hidden node activations in a multilayer 

perceptron operate on a weighted sum of the network inputs, the basis function activations 

here use the distance between the network input vector*and some specified “centre” 

vector ju . Each basis function node output is given by:

f

<pj = exp ■
v

x - P j  

2 a 2j
(6 .2)
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where o . is a width parameter.

Unlike the multilayer perceptron, no weights are used prior to the hidden basis function 
nodes. The network outputs are therefore given by:

M
y t ='L<t>,w, +w« (6-3>

j-i

where M  is the number of basis function nodes. As with the multilayer perceptron, each 

output node uses a bias w((, where the input to this weight is permanently set to 1.

The main advantage of a radial basis function over a multilayer perceptron is that it can be 

trained much faster. The training phase generally takes place in two steps, the first of which 

finds the optimum basis node parameters by generating a mixture model for the input data. 

This is an example of unsupervised network learning, and one of the most popular choices 

for this first training phase is to use the Expectation Maximisation algorithm (Dempster et 

al, 1977).

The Expectation Maximisation (EM) algorithm was proposed as a solution for incomplete 

data problems. Approximating the probability density function of a given data set by a 

mixture model is an example of an incomplete data problem, since for each data sample it 
is not known which component density function the sample can be attributed to. The EM 

algorithm is an iterative algorithm where each iteration consists of two separate steps -  the 

expectation step and the maximisation step, ft enables the optimum parameters to be found 

for the Gaussian mixture model, in relation to minimising the error function of the model.

The second training stage for a radial basis function network then trains the output layer 

weights {w, }. By using the basis function parameters already found with the EM algorithm, 

the optimum output layer weights can simply be found by the pseudoinverse approach for 

the training data set.
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7. Uncertain ARX Modelling of a Linear System

7.1 Initial Crisp ARX Model

In this first piece of work, an interval-valued ARX model was used to represent a linear 

system. The system in question was a simple SISO time series representing a SDOF 

vibrating structure, and was defined by:

mx + cx + kx = F(t) = = 2 0 ^ ,  * = 10000-^ (7.1)

where F(t) was a broadband random excitation. 24000 measured samples were

recorded from the system at a sampling frequency of 500Hz. The resonance of the 

system was at a frequency of 16Hz. In line with section 5.5, the data was divided 

equally into training, validation and test data sets, in preparation for fitting a discrete­

time model to the input-output data.

As the ARX model is linear-in-the-parameters (for the one-step-ahead prediction case), 

the optimum coefficients for a given number of input and output lags can be found by 

using the pseudoinverse approach. For each combination of input and output lags up to 

four of each, the optimum regressor coefficients were found with respect to the training 

data set. Each of these models was then used in a long range prediction on the 

previously unseen validation set, the MSE results of which are shown in Table 7.1 .

Output Lags

1 2 3 4

1 92.0916 0.9583 0.0490 0.0083

2 96.4519 0.0100 0.0056 0.0057

3 99.6925 0.0062 0.0052 NaN

4 103.6112 0.0058 Infinity NaN

Tabic 7,1: Long-range ARX MSE values for original crisp data set

As can be seen from Table 7.1, for the use of at least two output lag terms it was 

relatively easy to obtain an extremely good prediction for the data. A small number of 

these models gave unstable long range predictions however, as can be seen by the NaN 

and infinity values returned. NaN is a quantity used in Matlab and Java to denote “not a 

number”, and in this case indicates that the solution has become unstable and thus



unable to return a real number for the model error value. In order to make the system 

more of a challenge, noise was added to the measured outputs in different amounts. This 

noise was Gaussian distributed with zero mean, and so a number of new data sets were 

generated for the system. n% output noise signifies that the noise added to the measured 

outputs had a standard deviation that was n% of the original data standard deviation.

Table 7.2 shows the long range validation MSE results for 6% added output noise. As 

with the original “clean” data sets, the regressor coefficients of the models were found 

by using the pseudoinverse approach for the training set one-step-ahead outputs.

Input 
Lags

Table 7.

For the interval modelling done here, a crisp ARX model was initially required for the 

data. After consulting Table 7.2, the model with two input lags and four output lags was 

selected. At 6.6%, the long range validation set MSE of this model was reasonably close 

to the threshold that could be considered as “good”, so the system was a suitably 

challenging one to use. The exact form of this model was:

Output Lags
1 2 3 4

1 90.9277 63.7377 36.3432 29.8930
2 92.8368 58.0626 21.2457 6.5752
3 95.3397 57.0087 21.4767 5.8002
4 98.6355 56.1415 21.4902 6.0170

2: Long-range ARX MSE values for 6% added output noise

j>. = 9 .8 3 x 10"7«( +2.77x10 6mm -4 .1 4 x 10 +9.79x10 'y,-i (7-2)

+ 4.15x 10~V,-2 -  8.87 xlO-V,-, -3 .9 7 x 1 0 - '^

where u refers to a system input term, y  refers to a system output term, and each 

subscript regressor index relates to a particular time instant.

A time series plot of the validation set long range prediction from this optimum crisp 

ARX model is shown in Figure 7.1, alongside the target data for comparison. For ease 

of viewing purposes, only the first 500 of the 8000 data samples are shown.



Figure 7.1: Long-range crisp ARX model prediction and target data

An uncertain ARX model was then created by using interval numbers for the regressor 

coefficients, with the same regressor terms as in equation (7.2). Whereas the 

conventional interval form is:

X  = [a,b\ , a< b (7.3)

here each interval number was stored in an alternative “centre and radius” form. This 
can be illustrated by:

, a< b  (7.4)

The centre of each interval regressor coefficient was held fixed at its original crisp value 

in equation (7.2), so that only the interval radii values were being trained. As the widths 

of the ARX regressor coefficients become wider, this means that more uncertainty is 

being introduced into the model. Intuitive reasoning states that this will lead to a wider 

range of possible outputs from the model, so the predicted output bounds will also 
become wider.

The ideal interval model solution is one for which all of the target data is contained 

within the predicted model bounds, and the range between these bounds is of the
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minimum possible width. For Figure 7.1, this corresponds in graphical terms to 

increasing the width of the output prediction at all the points where the predicted curve 

strays from the true data, i.e. generally at the target data peaks.

By holding the centres of the interval coefficients fixed at their original crisp values, this 

can be viewed as “expanding” an interval prediction about the initial crisp model 

prediction. The ranges of the various interval regressor coefficients will form a 

hypercube region within the parameter space, where the point at the very centre of this 

hypercube corresponds to the original crisp solution. It can therefore be expected that 

when using this approach, the predicted crisp solution will lie at the centre of the 

bounded region given by an interval model.

To calculate the prediction error from an interval-valued autoregressive model, an 

alternative approach is needed to the conventional MSE measure in equation (5.11). The 

error per sample for an interval model can be given by:

0 » yi,low ~ yu ~ y¡.high

( y u m - y t f » yit ^ y¡.¡aw (7.5)

G,rf—y  ¡Mg*) » yn ^ y¡.High

where v and v . , are the respective predicted lower and upper bounds for that 

sample, and y „is the target sample output. This interval error fiinction is analogous to 

the error function used in support vector machines (Cristianini & Shawe-Taylor, 2000).

Using equation (7.5), the MSE for an interval model can then be given by:

n

MSE = 100 * _sL
N v

(7.6)

where N is the number of samples and v  is the variance of the target output data.
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In order to obtain the best set of regressor coefficient interval radii there are two 

different approaches that can be used -  the “proportional radii expansion” approach or a 

differential evolution training approach.

7.2 Proportional Radii Expansion

Each interval regressor coefficient within the model can be written in the form.

Wj = wjc wjr (7.7)

where w and wjr are the respective centre and radius values of the interval.

In the proportional radii expansion approach, every interval coefficient radius in the 

model is set as the same relative proportion/? of its respective central value, i.e:

Wj=wjc± pw ic (7.8)

Using this proportional radius form maintains the relative magnitudes of the coefficients 

with respect to each other. From viewing equation (7.2) it can be seen that the regressor 

coefficients of the initial crisp ARX model differ by several orders of magnitude. If the 

same absolute quantity was used for the radius of each interval regressor coefficient, 

this radius would mean a far greater relative width for some inteiwal coefficients than

for others.

After a suitable initial crisp model has been found for the data, this proportional radii 

expansion approach increases the value of the radius proportion/? by successive regular 

increments. All of the interval regressor coefficients in the model are therefore being 

widened (or “expanded”) together, and by the same relative proportion. For each 

different p  increment the bounds of the interval ARX model can be calculated, along 

with the long range prediction MSB on the relevant data set. As described in chapters 2 

and 3, the long range bounds for an uncertain autoregressive model can only be 

calculated using one of the described possibilistic sampling methods.

When used on the test data set, the original crisp ARX solution gave a long range MSB 

value of 7.0%. Four different methods were used to calculate the output bounds for each



proportional expansion increment of the radii values. These were the two-level full 

factorial vertex method, the three-level full factorial vertex method, the reduced 

transformation mediod and the modified reduced transformation method, all described 

in chapter 3. For the two transformation methods, an arbitrary ten a-cut levels were used 

to discretise the parameter space, excluding the original central crisp solution point. For 

each of these four different possibilistic sampling methods, the same set of proport ional 

radius increments was used.

7.3 Differential Evolution Radii Training

The proportional radii expansion approach of section 7.2 is relatively quick to 

implement, although this is dependent on the number of uncertain parameters in the 

model and the type of possibilistic sampling method used to calculate the interval model 

bounds.

The disadvantage that the approach has, however, is that it does not consider the relative 

importance of each individual regressor coefficient. Although a crisp ARX model may 

have a low prediction error, the majority of this error may be due to one particular 

incorrectly valued regressor coefficient. In order to reduce the error to a suitable value, 

the other regressor coefficients would have to be widened enough to overcome the 

contribution of this “bad” coefficient. They may therefore be widened more than is 

necessary, leading to wider model output bounds than could be obtained otherwise.

A more beneficial approach would be to train the interval regressor coefficient radii

independently of each other, through the use of an optimisation algorithm. The

differential evolution algorithm of section 4.2 would be ideal for this. It is designed for

real number values, which the regressor coefficient radii are, and is a global

optimisation approach, so is able to avoid local minima in the parameter space. As the

goal here is to obtain an interval-valued ARX model with a low error, this is a
. . . . , ,  , „ maximisation one. The aim is therefore to minimise theminimisation problem and not a maximisauuu u

cost of the solution population, not to increase its fitness.

As with all optimisation algorithms, an objective function is needed to assess the quality 

of each solution point. A good solution for an interval-valued ARX model is one which 

suitably satisfies the trade-off between minimising the prediction error of the model and 

minimising the widths of the output bounds, to reduce the tolerance on the solution. The



differential evolution objective function used here needs to take this trade-off into 

account.

If this objective taction  was solely to consider the long range MSE of the interval 

network, the model bounds would deliberately be set very wide so that all the target data 

was contained within, and a zero error value would be returned. Once a particular 

coefficient radii solution was found with a zero MSE value, it could never be improved 

within the population, and would therefore remain there forever. It is likely that this first 

instance of a zero solution for each population vector would not be a very tight fit to the 

target data. The end result would be a population of radii solutions with wide bounds, 

and thus very vague predictions for the data.

The addition of a width penalty term to the objective function solves this problem. As 

the width of the output bounds is directly linked to the widths of the interval regressor 

coefficients, an additional term can be used to penalise these coefficient widths. As with 

the proportional radii expansion approach, it is the relative proportion of the interval 

coefficient radii that is important, and not their absolute values. Incorporating the width 

penalty term, the cost of a particular population solution k for a model with M  regressor

terms can be given as:

M
Cost l = MSEjNTEnyAi'k T

7=1

n y (7.9)

The width penalty term therefore uses the sum of the relative coefficient radii 

proportions. /? is a positive real number value that alters the magnitude of the width 

penalty term. It allows the user of the model to specify the emphasis placed on 

minimising the widths of the output bounds.

As interval-valued ARX models such as these could conceivably be used for any SISO 

time series application, (his variable width penalty is important. Certain applications of 

an uncertain ARX model may require a high solution precision, so a high fi value would 

be recommended. For other applications a much higher tolerance on the solution may be

sufficient, so a lower value off! can be used.

„ . . .  • ,.f ,he reeressor coefficient radii, the algorithmFor differential evolution training ot me regie»»
„ c r o  _ n ,  „ a  m » = 35 were used. This corresponded to using a parameters F -  0.5, CE = 0.5 ana 7vr
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population size equal to five times the number of parameters to be trained; a general rule 

of thumb for differential evolution.

The width penalty coefficient /? was varied in regular increments. Due to the stochastic 

nature of the differential evolution algorithm, ten tests were ran for each ¡1 value, 1 wo 

different criteria were used to terminate the algorithm in each test, one of which was a 

maximum iteration number of 1000. The second termination criterion involved the 

decay of the total population cost. As the algorithm uses floating point numbers, the 

total population cost would take an exceptionally long time to decay to constant for all 

decimal places. To all intents and purposes it may be considered as converged well 

before this. The second criterion therefore used the relative decay rate of the total 

population cost over ten successive iterations. If this rate fell to below 0.0001, the 

algorithm was terminated and the best solution selected.

The problem with differential evolution interval radii training is the large computational 

expense that it requires. It would be much more beneficial to train the interval-valued 

ARX model based on its long range predictions, but due to computational expense this 

is simply not possible. As outlined in chapters 2 and 3, a possibilistic sampling method 

has to be used to calculate long range interval bounds. For this particular small ARX 

model with 7 uncertain parameters, the two level vertex method (the simplest of these 

methods) uses 128 hypercube sample points. This gives 128 predictions of an 8000 

sample time series for each population target vector, 35 of these target vectors per 

iteration, an additional 35 similar trial vector predictions per iteration, and hundreds of 

iterations per test. There are then 10 tests for each ft increment, and a suitably large 

number of these increments are needed to generate the results. In regard to the required 

computational time, this is well beyond practical limits. This excessive computational 

time therefore limits the differential evolution algorithm to the optimisation of interval 

one-step-ahead outputs only, with the use ot interval arithmetic.

For each different incremental value of fi, the ten tests were used to optimise the one-
. , , .  , _  . • injunction with the width penalty term. Each convergedstep-ahead interval outputs in conjunction wm. r  o

_  , . for a long range prediction of the validation datacoefficient radii solution was then used tor a iung h t
set, returning the interval MSB only. This error value was calculated separately using 

the same four possibilistic sampling methods used previously in the proportional radii 

expansion approach. For each different possibilistic sampling method, the solution with
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the lowest value of validation set interval MSE was selected as the best solution, and 

then used for a long range model prediction of the test data set.

7.4 Results and Discussion

For the proportional radii expansion approach, Figure 7.2 shows the relationship 

between the proportional expansion coefficient p and the long range test set interval 

MSE, for each of the four different possibilistic sampling methods used here. The 

curves for the three-level vertex method and the modified reduced transformation 

method are extremely similar, to the point where the former is masked by the latter.

Figure 7.2: Proportional expansion long-range MSE values

. -_ _ , . . „ ^  :ntprvai aRX regressor coefficients are expanded aboutAll four curves show that as the interval lcs
their crisp values, the long-range prediction error of the model falls monotonically.

Increasing the width of the regressor coefficients introduces more uncertainty into the
j increase in the widths of the model output bounds,model, and creates a corresponding me

_  .  ̂ target output data, and so the prediction error ofThese bounds then contain more ot the target output

the model falls.

... . . ,  „ „ „ « o r  coefficient expansion is kept small, the resultingIf the proportion p of regressor
t. -„„-a «  a local region of the parameter space around the parameter hypercube can be viewed as a local reg v

caution The four different possibilistic sampling original crisp ARX coefficient solution.
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methods used have different capabilities in detecting non-monotonicity of the output 

surface. As the four curves of Figure 7.2 are relatively similar, this suggests that at each 

different coefficient expansion increment, there is very little output surface non­

monotonicity over that specific parameter hypercube. Within the parameter hypercubes 

generated here at each step, the output surface is almost monotonic.

Figure 7.3 shows an interval model prediction obtained from the proportional expansion 

approach. The interval bounds were estimated by the reduced transformation method 

with 11 a-cut levels, and this prediction has a long range interval MSE value of 1% on 

the test set. For clarity of viewing, only the first 500 samples of the full 8000 are shown.

x 10'“

Figure 7.3: 1% long-range M SE solution obtained from proportional expansion

For the differential evolution coefficient radii training, Figure 7.4 shows the relationship 

between width penalty coefficient fi and long range test set interval MSE, for the two- 

level vertex method. It can be seen that this plotted cutve is very erratic. At low/i values 

the prediction bounds become unstable and the model returns an error value of NaN, as 

can be seen by the absence of the plotted curve in this region.

U
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Figure 7.4: Long-range interval MSE values for differential-evolution-trained models

At high p  values the curve tends towards the crisp solution MSE, as could be expected 

beforehand. Prior intuitive reasoning would also suggest that the prediction error of an 

interval ARX model should not be greater than that of its original crisp model, but this 

is clearly not the case. When using the two-level vertex method, the long range test set 

MSE in Figure 7.4 becomes significantly greater than the original crisp model error, 

which completely violates the reason for using an interval model in this way.

This behaviour illustrates a deficiency of the basic two-level full factorial vertex 

method. Of the four possibilistic sampling methods used here, it is the only one that 

does not use the crisp solution (i.e the hypercube centre) as a sampling point. Whereas 

the bounds produced by the other three possibilistic methods are guaranteed to contain 

the original crisp model prediction, this is untrue for the two-level vertex method.

A low width penalty coefficient P means that a low penalty is placed on the widths of 

.he interval regressor coefficients. The coefficient radii values returned by the
, -.L thus he relatively large here, and hence so will bedifferential evolution algorithm will thus be reiauvc y *

, • hvnercubes. The outer vertices of these hypercubesthe resulting uncertain parameter hypercuocs.
i firvr. noint so the corresponding model prediction curves will be far from the crisp solution point, so me c f

_ i , iW n t frnm it Thus for a low fi value with the two-level will likely be significantly different irom «.
, i j tu  model prediction bounds not contain the crisp vertex method, not only could the moaei pie

„rtlll/i h<- nlso located far from this crisp prediction. A solution prediction, but they could be also iom
, • uiKitina ibis behaviour is shown in Figure 7.5. particular interval solution exhibiting



Figure 7.5: Vertex two-level ARX long-range bounds fo r a differential-evolution-
trained model with value

The relationship between the differential evolution width penalty coefficient and the 

interval long range MSE of the model on the test set is shown for the remaining three 

possibilistic sampling methods in Figure 7.6. For the reduced and modified reduced 

transformation methods, an arbitrary 11 a-cut levels were used for each, including the 

crisp central point. The predicted curves for these two transformation methods are very 

similar, so they cannot be distinguished from one another on Figure 7.6.

Figure 7.6: Differential-evolution-trained long-range MSE values
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As with the two-level vertex method in Figure 7.4, these three possibilistic methods are 

also all unstable at low p levels. Unlike the two-level vertex method however, the 

prediction error of the interval ARX model does remain below the crisp solution value 

for all three of these methods. For the three-level vertex method, the relationship 

between /? and interval model error is not monotonic however, which would be the ideal

situation.

As already mentioned in section 7.3, an important feature of interval-valued 

autoregressive models is that they allow a trade-off between model prediction error and 

the prediction width. A monotonically increasing relationship between [1 and model 

error leads to a unique error value for each selected fi value, enabling any user of the 

model to easily select a suitable trade-off level for their application. For this reason, the 

reduced or modified reduced transformation method seems appropriate for assessing the

differential evolution solutions obtained here.

The differences between the curves in Figures 7.4 and 7.6 suggest that, unlike the 

proportional expansion approach, the output surfaces here are non-monotonic with 

respect to the uncertain parameter ranges returned. The three level vertex method is 

more effective at detecting surface non-monotonicity than the two level method, but still 

only considers the hypercube central point and a number of points on the outer surfaces. 

The reduced and modified reduced transformation methods consider a large number of
, . . nf the hvnercube, which affects the bounds that aresample points within the interior 01 me nypei^u ,

predicted and hence the interval error of the prediction. Due to the extreme similarities 

between the results of these two methods, as shown in Figure 7.6, the modified reduced 

transformation method offers no significant advantage over the reduced method in this

particular case.

. tvir,Hf4 nrediction obtained from differential evolution Figure 7.7 shows an interval model preuicuu..
training As with Figure 7.3, the interval bounds were estimated by the reduced 

transformation method with 11 a-cut levels, and this prediction has a long range interval

MSE value of 1% on the test set.



x 10'4

Figures 7.3 and 7.7 allow a direct comparison to be made between the proportional 

expansion approach and differential evolution training for this particular problem. It can 

be seen from these two figures that there is a staggering difference between the widths 

of the predicted model bounds. The bounds in Figure 7.3 are reasonably tight in relation 

to the target data, but this certainly does not apply to Figure 7.7. The differential 

evolution bounds in Figure 7.7 are very wide and do not fit the target data with any

reasonable degree of precision.

Figure 7 7 is therefore the first indication that the differential evolution approach has not 

been effective for this studied system. Figure 7.6 shows that there is a monotonic 

relationship between the width penalty coefficient and the interval prediction error when
. d but gives no indication of the prediction bound the transformation method is used, dui

widths in each case.

As outlined in section 7.3, it is not possible to conduct differentia, evolution training of

the coefficient radii based on the model long range outputs because of the computational
.. therefore initially made here that optimising the expense involved. The assumption was tnereiorc

• „ arithmetic would also optimise the long rangeone-step-ahead predictions using in
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predictions using a possibilistic sampling approach. Figure 7.7 shows that this 

assumption does not hold for this uncertain ARX system, as the differential evolution 

training has failed to provide a tight set of long range prediction bounds in relation to 

the target data.

Both the proportional radii expansion approach and the differential evolution training 

approach used here can be viewed as implementations of the opportunity concept in 

Ben-Haim's information gap theory. In both cases, the windfall reward is the desired 

long range interval MSE of the model prediction. The opportunity level is the minimum 

uncertainty that needs to be introduced into the model (in the form of interval regressor 

coefficients) for this windfall reward to be obtained.

Figure 7.2 and the two transformation method variants in Figure 7.6 all show that there 

is a continuous monotonic trade-off available between the long range prediction error of 

the model, and the widths of the model output bounds. By selecting a suitable value of 

either the expansion proportion p or the width penalty coefficient p, the user of these 

techniques can select the correct level of this trade-off for their particular application of 

an uncertain ARX model. As shown in Figures 7.3 and 7.7, however, the proportional 

expansion approach is the more effective of the two in this case, despite being much less 

computationally expensive than the differential evolution training method.



8. On Replacing a Nonlinear System with an Uncertain Linear

Model

8.1 Introduction

Within control engineering, equivalent linearisation of a nonlincat system is a well- 

known and long-established technique. Real-life systems are generally nonlinear, but 

many controllers require a linear model in order to be used. Linearisation provides this 

model by giving a linear approximation to (he system in the local region of a particular 

operating point. The disadvantage of the approach is that the model is only effective 

close to this operating point. If the system operating conditions stray significantly from 

this regime, the model predictive capabilities will progressively worsen.

In this chapter, the concept of equivalent linearisation is advanced by using an uncertain 

linear model. A nonlinear model is able to give a good prediction for the system over a 

wide range of operating points, so is not subject to the local constraints of a linear 

model. The aim here is to obtain a model that has the same potential range of operation 

as a nonlinear model, but with the modelling simplicity associated with a linear model. 

Using an uncertain linear model enables this to be achieved.

The system being modelled here is a simulation of a symmetric Duffing oscillator, given 

by:

m y+ cy+ ky+ k^yy ~ k(t)  (8-1)

\r NNs ._. 0< £Land = 5 x I (T — . This type of system is alsowith m = \kg , c = 20 » K 1 m m
m m
, .  cc evstem and its operation is well known. It has beenoften referred to as a cubic stiffness system, anu t

* n nnnlinear component - the cubic stiffness term, but chosen here because it contains a nonlinear comp
. , j mmnlexitv If this nonlinear term is removed, thedoes not have too high a degree of complexity.

result is the standard mass-spring-damper system.

Tie dec w „ M i d  by « W
imeeretio, seben,. i d  .  M l* *  * « « “ »' » ' 2S° H i inP“
RMS velue of ,he M  »  be specked-A O M k . » t o  » «  « t o * »  w ., be,
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then low-pass filtered to ensure that the integration scheme remained stable. Several 

different Duffing data sets with varying levels of input RMS were generated, where 

each data set contained 24000 sample points. These sets were each equally divided into 

a training, validation and test set, in line with the standard practice for training time 

series models.

8.2 Crisp Models

The work here examined the effects of varying the operating point for time series 

models, where this operating point was given in terms of the system input RMS value. 

A ’'base" operating point was needed for use as a reference point. By using the Fortran 

routine, a base data set was generated with an input RMS value of 2.37, after filtering of 

the data had taken place.

An initial nonlinear model was given for the system in the form of an NARX model, 

and this was then subsequently replaced by a linear ARX model. For an NARX model 

the base data set was not a particularly challenging system to model, so it was not 

necessary to use the FROE or SEMP algorithms. A number of arbitrary regressor 

combinations were selected, and their optimum coefficient values were found for the 

base training set by using the pseudoinverse approach. Each of these models was then 

tested on the previously unseen base validation set. Several very good models were 

found, and the one selected for the work here was.

y, = I.97x 10~6w, +1.1 7x HT5mm +1.84x1 + l.77.v,_,

-0.92jv2 -70619.0^., -2669 .0^

(8.2)

„  , , . .  finll this NARX model gave a long range validationWhen used on the base validation set, tms
, nrediction value. This, of course, raises theset MSE of 0.04%, an extremely good prcmcuon

. linear model is necessary here, when an NARX model question as to why an uncertain linear moaei
„  A in tin n  The ourpose of this chapter is to illustrate the usecan give such an excellent prediction. 1 ne purpu

r . v for a simple example system. The technique can then beof an uncertain linear model tor a i
where the presence of much greater nonlinear applied to other nonlinear systems, where m i

. • •,:„t nnnlinear model doesn't give such a low predictioncomponents means that the initial nonhnca. m

error.



The approximate linearisation of the system here was achieved by removing the final 

two cubic terms from equation (8.2). The regressor coefficients were retrained on the 

training set using the pseudoinverse approach, to give the crisp ARX model:

y = 1.97x 10'6w + 1.17x 10~5wm  +1.82x 10 6uh2 +1.76j>m  - 0 .92y ^ 2 (8.3)yt

As could be expected, this linear model was less effective at representing the system 

than the original nonlinear NARX model. When used on the base validation set, the 

model gave a long range prediction error of 3.1%. The work then splits into two distinct 

sections, labelled as "crisp ARX input scaling" and "uncertain ARX modelling".

8.3 Crisp ARX Input Scaling

In this section, the crisp ARX model in equation (8.3) was used to model the system. A 

large number of data sets were generated by the Fortran routine, covering a large range 

of input RMS values. Using a scaling technique for the system inputs, the effects of 

changing the system input RMS value were examined.

For each different data set A used, the inputs of that SISO set were scaled by the factor 

p, where

RMS ̂  
RMSlkJt(,

(8.4)

. j jnn„t RMS value equal to that of the original base The resulting data set then had an input kivp v*.u h b
, . * ir\no range model outputs had been calculated, thesedata set. Once the entire set of long range muuci >

i nf u and the MSE value was calculated. Over anoutputs were scaled by the reciprocal oi //,
r . d x/iQ values the long range prediction errors of the model incremental range of input RMS vali »

were calculated when this input scaling approach wa

8.4 Uncertain ARX Modelling

. « fQ ^  was then transformed into an interval-valued 
The crisp ARX model in equatio (

, ofAr cnme or all of the regressor coefficients, lhe model, by using interval numbers lor some
. . .. „ c, me As in the previous chapter, each of these interval

regressor terms remained the sam .
„ _  . . ,  . the ccntre and radius form given in equation (7.4).
coefficients was written in the ct
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Two different capabilities of interval-valued ARX models were then assessed here. The 

first of these was the robustness of the model to changes in input RMS value, and the 

second was robustness to system output noise.

8.4.1 Variable Input RMS

Changing the system input RMS value is analogous to changing the operating point of 

the linear model. It was wished to examine the robustness of an interval-valued linear 

model to changes in system operating point, as opposed to the conventional crisp linear

model.

The input RMS value of the data was changed by adjusting the input parameters of the 

Fortran routine, so this also affected the measured outputs of each data set. As changes 

in input RMS value therefore affected every one of the five regressor terms in the crisp 

ARX model of equation (8.3), it was decided to introduce uncertainty into all of the

regressor coefficients for these terms.

The centre of each interval regressor coefficient was held fixed at its original crisp value 

in equation (8.3), and the proportional radius fonn of equation (7.8) was used. The 

radius proportion pwas increased in regular successive increments, which had the effect 

of widening the interval regressor coefficients of the model. The long range prediction 

bounds of the model were calculated using the modified reduced transformation method 

with 11 a-cut levels, since the model only contained five input variables. The MSB of 

this long range prediction was given by the interval error function in equations (7.5) and

(7.6).

For each P expansion increment, a number of different Duffing data sets were used by 

the model each with a differing value of input RMS. It was calculated the range of 

input RMS that could be tolerated by each proportional coefficient expansion p, in order 

to give an interval long range prediction error of up to 1% on the respective test data set. 

As already stated in section 5.5, 1% MSB can be judged as a very good model

prediclion.



8.4.2 Variable Output Noise

As stated in section 8.2, the “base” input RMS level here was considered to be 2.37. 

When examining the effects of varying output noise, zero-mean Gaussian noise was 

added to the outputs of this base data set, so that the inputs remained unchanged. This 

therefore only affected the final two regressor terms in the crisp ARX model of equation 

(8.3). n% output noise refers to the added Gaussian output noise having a standard 

deviation that is n% of the base set output standard deviation.

Due to only two uncertain regressor coefficients being used here, the computational 

expense was much lower. This enabled the general transformation method to be used; 

the operation of which was detailed in section 3.5. 11 a-cut levels were used for each of 

the two uncertain regressor coefficients, including the crisp central point corresponding 

to a = 1.

As with section 8.4.1, the centres of the two uncertain regressor coefficients were held 

fixed at their crisp values in equation (8.3), and the proportional radius form of equation 

(7.8) was used. The two coefficient radii were expanded in successive increments using 

the expansion proportion p.For each different increment, different percentage levels

of Gaussian noise were added to the outputs of the base test data set. The percentage 

level of added noise was calculated that could be tolerated by each p increment in order 

to still give an interval MSB of up to 1%. The interval MSB function of equations (7.5) 

and (7.6) was again used here.

8.5 Results and Discussion

Figure 8 1 shows the relationship between the input RMS value of the data, and the long 

range test set MSB of the model prediction when using with the crisp ARX input scaling 

technique. When used on the base test set, the crisp ARX model gave a long range MSB
, J *ntnA standard crisp linear model becomes less effective as value of 1.9%. As already stated, a stanaaru

,. ., r frnm its original linearisation point. This agrees with its operating point moves further irom us oi ib.
• ■ ™ i„_„ rnnoe nrediction error of the model lies close to theFigure 8.1, where the minimum long range pi emeu

, , ,.- , 7 a „  interesting feature of the curve is that its minimumbase input RMS value ot 2.37. One interesimb
. ■ e n u o  vaiUe however, but at an input RMS value of 2.12. is not exactly at this base RMS value nowe

*' • I r%i in 1* 1 il 1 ai • •

Therefore, by using the crisp
ARX model at an input RMS slightly lower than its



linearisation RMS value, the prediction error of the model can actually be improved 

slightly.

Figure 8.1: Input RMS vs long-range MSEfor "crisp ARX input scaling ”

technique

Figure 8.2: Crisp ARX prediction from "crisp ARX input scaling " technique
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Figure 8.2 shows a model prediction for an input RMS value of 1.34, where a long 

range test set MSE of 4.0% was obtained. It shows that by using this crisp ARX input 

scaling method, a good model prediction can still be obtained if the input RMS is within 

a reasonable distance of the linearisation RMS value. Here the input RMS of the system 

differs from the operating point by approximately a unit RMS value, but a long range 

prediction error of 4% MSE is still able to be obtained by the model.

Figure 8.3 shows the long range test set MSE values obtained from the NARX model in 

equation (8.2), for the same range of system input RMS values as in Figure 8.1. For this 

NARX model, no scaling of the model inputs or subsequent unsealing of the model 

outputs was used. As stated previously, a nonlineai model is able to give a good 

prediction over a range of input RMS values, so does not have the same local 

requirements as a linear model. Even at the upper limit oi the operating range in figure 

8.3, the model is still able to give an exceptionally good long range prediction error of 

approximately 0.3% MSE.

Figure 8.3: Input RMS vs long-range MSE for crisp NARX model with no input
scaling

For the uncertain ARX mode! of section 8.4.1. the relationship between coefficient 

expansion proportion p and tolerable system input RMS range is shown in Figure 8.4. 

This tolerable RMS range is the system input RMS for which the interval ARX model is 

able to give a long range MSE of up to 1% on the test data set.
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Figure 8.4: Interval ARXexpansion proportion vs tolerable input RMS range for
l%o MSE

The original crisp ARX model gave a test set long range MSE value of 1.9%, so some 

expansion of the regressor coefficients was necessary to obtain a prediction error of 1% 

MSE. Figure 8.4 shows that if the coefficient expansion proportion/) is less than 8x104, 

it is not possible to obtain a 1% MSE model prediction, regardless of what the input 

RMS value is. The remainder of the figure then shows that as the expansion of the 

regressor coefficients increases, a greater range of system input RMS can be tolerated 

by the interval-valued ARX model.

0 0.5 1.5 2.5 3.5 4.5 5

Coefficient Expansion rroporaun x 10

Figure 8.5: Interval ARX expansion proportion vs tolerable output noise for 1% MSE



Figure 8.5 shows the relationship between p and maximum tolerable output noise from 

section 8.4.2. The figure shows the level of added Gaussian output noise that can be 

tolerated by the interval model in order to still obtain an interval MSE of up to 1%. As 

with Figure 8.4, some initial level of regressor coefficient expansion is necessary for 1% 

MSE to be obtained, as the long range MSE of the initial crisp model is 1.9% on the lest 

data set. It can be seen from Figure 8.5 that as the coefficients of the two output lag 

regressor terms are expanded further, a greatei range ol added output noise can be 

tolerated.

Figures 8.4 and 8.5 are both examples of the “opportunity” concept in Ben-Haim’s 

information-gap theory. The degree of uncertainty parameter here is the regressor 

coefficient expansion proportion p ,and the windfall reward is a long range interval 

prediction MSE of 1%. Figure 8.5 illustrates that it is not obligatory for all of the ARX 

regressor coefficients to be uncertain; some of them may be kept as fixed crisp values.

As in chapter 7, increasing the widths of the ARX regressor coefficients introduces 

more uncertainty into the model, which means a greater range of possible model 

outputs, and thus wider output bounds. These output bounds will contain more of the 

target output data, and thus the prediction error of the interval model will fall. Although 

Figures 8.4 and 8.5 show that introducing more uncertainty into the interval model 

allows a greater robustness against both input RMS variation and output noise variation, 

this comes at the cost of wider prediction bounds. The trade-off between minimising the 

prediction error of the interval model and minimising the prediction widths has to be 

considered at all times. The user of this approach will need to assess the suitable level 

for this trade-off in relation to their particular application.

This chapter has therefore shown that it is possible to satisfactorily replace a nonlinear 

time series model with an uncertain linear model. As with a nonlinear model, the 

uncertain linear model is able to be used over a much wider range of system operating 

points than a crisp linear model. This operational range can be increased by introducing 

more uncertainty into the model coefficients, although this will cause a corresponding 

increase in the widths of the model prediction bounds.



9. A n A pplication o f Interval-V alued N eural N etw orks to a

R egression Problem

9.1 Background work

In this chapter an interval-valued neural network was used to obtain a regression model for 

an engineering system. The work here uses results from a background paper by Parlitz et al 
(2004), in which a number of different modelling approaches were used for a pre-sliding 

friction process. A specifically designed experimental setup was used to represent the 

friction process, and this setup was used to generate expel ¡mental data. Some of the 

modelling approaches were physics-based and others used a black box approach, 
including the use of NARX models and NARX multilayer perceptron (MLP) neural 

networks. It is the results from the NARX MLP network that are used here.

Pre-sliding friction refers to the contact regime where an applied tangential force causes 

relative motion between two surfaces, but where some ol the surface asperity contacts 

remain intact. It therefore occurs prior to gross sliding, and within the pre-sliding regime a 

fixed force will provide a fixed displacement, which is untrue for gross sliding. When the 

applied force is removed, the relative displacement between the two surfaces will not return 

to its original zero value, signifying a hysteretic loss. Whilst in the pre-sliding regime, the 
friction force between the two surfaces is a function of the displacement, and the 

relationship between the two is highly hysteretic.

Figure 9.1 shows a schematic of the experimental setup used in the background paper to 

obtain the pre-sliding friction data. The moving and fixed mirrors acted as a displacement 
sensor, and were located in line with the contact line. 24000 measured data samples were 
taken from this setup at a sampling frequency of 250Hz. This data took the form of a simple 

S1SO time history of force vs displacement data pairs. Due to the hysteretic displacement- 

dependent force however, the aim was to obtain an inverse representation of the system, so 

that the force that created a given displacement value could be calculated.

75



Figure 9.1: Schematic o f experimental setup used in the background paper

Figure 9.2 shows the input-output relationship of this inverse system, where the hysteretic 

relationship between displacement and friction force can clearly be seen. As mentioned in 

section 5.1, autoregressive models can be effective for systems that exhibit hysteresis, and 

therefore the selected MLP neural network model used autoregressive input nodes.

Displacement (mm)

Figure 9.2: Hysteretic input-output relationship o f the inverse system

In line with the recommended best practice for neural network training, the measured data 

in the background paper had been equally divided into three sets of 8000 samples,
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respectively called the training, validation and test sets. After a suitable training procedure, 

the optimum architecture for this multilayer perceptron was found to be a two layer 

network with two input lags, three output lags and two hidden row nodes using hyperbolic 

tangent activation functions. This procedure considered only the training and validation 

sets, and a subsequent long range prediction of the network model on the previously unseen 

test set gave a MSE value of 6.5%.

One of the principal aims of this chapter is to see if the NARX ML? model front the 

background paper can be improved by the use of an interval-valued neural network.

9.2 Introduction

The training procedure for a multilayer perceptron network generally involves finding the 

optimum network architecture as well as the optimum adjustable weight parameters. In this 

work, however, the same network architecture was used as for the crisp NARX MLP 

network in the background paper. As with the background paper, the measured 

experimental data was equally divided into three sets here, labelled as the training, 

validation and test sets. Both the input and output values of the data were normalised, in 

order to improve the performance of the neural network model.

Although the architecture of the crisp NARX MLP network was unchanged from the 

background work, the weight parameters of that network were not automatically assumed 

to be optimal. Using the differential evolution algorithm, tests were undertaken to see if an 

improved weights solution could be found. These parameters were trained on the one-step- 

ahead outputs from the training data set, with algorithm parameters of population size 
NP-85, weighting factor F-0.5 and crossover constant CR-O.L After several hundred 

training runs, an optimum weights solution was found that gave a long-range prediction on 

the validation set of 4.1% MSE, an improvement on the crisp NARX MLP network with 

6.5% MSE from the background work.

At stated in section 5.5, 4.1% MSE is below the threshold that can be considered as a good 

model prediction. The rationale behind the work in this chapter was to see if the use of an 

interval-valued network could reduce this model error even further, possibly beyond the 1% 

threshold for a very good prediction.
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Each network weight in the model was hence transformed into an interval number, where 

the centre and radius form of equation (7.4) was used. The centre of each weight was held 

fixed at its value within the optimum 4.1% MSE crisp solution, so that only the weight radii 

values were being trained here. By using interval numbers for the MLP network weights, 

this allowed uncertainty to propagate through the model, and an interval range was thus 

predicted as a model output. This used the same reasoning as chapters 7 and 8; that 

deliberately introducing uncertainty into a model can allow an improved model prediction 
to be obtained.

As with chapters 7 and 8, although the uncertain model parameters here took the form of 

interval numbers, interval arithmetic was not used to calculate the long range prediction 

bounds of the interval model. This is due to the bound explosion behaviour of interval 

arithmetic when used for any kind of uncertain autoregressive model, as detailed in section 

2.1. Therefore a possibilistic sampling method was needed to estimate the output bounds 

from the interval network.

Chapters 7 and 8 both used versions of the transformation method to calculate the output 

bounds from uncertain time series models, but the models in those two chapters were both 

much smaller than the NARX MLP network used here. This network model contains 17 

weights which, for the case of the interval training here, requires 17 interval weight radii to 

be trained. In relation to available computational time, this ruled out all possibilistic 

sampling methods except for the two-level full factorial vertex method. As detailed in 

section 3.1, this possibilistic method uses only the 2n vertices of an n-dimensional uncertain 

parameter hypercube.

9.3 Interval Weight Radius Training

The most common way of training a multilayer perceptron network to a particular set of 

data is by the error back-propagation algorithm. For the case of an interval MLP network 

however, the network prediction error for a given sample cannot be differentiated 

backwards due to the interval weights, so the error back-propagation algorithm cannot be 

used here.

The prediction error of the uncertain MLP model was given by the same interval MSE
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function used in chapters 7 and 8, where the error for a single sample is:

0 y U** -  -  y  i w

(9.1)

The total prediction error is then given by:

N

MSE = 100* (9.2)
Nv

As with the uncertain ARX regressor coefficients in chapter 7, two different methods were 

used to train the interval network weight radii values here. The first of these was the 

proportional radii expansion approach, where each weight radius is given as the same 

proportion p of its respective central value, and this proportion is increased in successive 

incremental steps. This proportional expansion approach equates to expanding an uncertain 

hypercube around the point in the network weight space corresponding to the initial crisp 

MLP solution.

The proportional expansion approach is not computationally expensive since no actual 

optimisation of the interval weight radii is taking place. Its disadvantage, however, is that it 

does not consider the relative effects of each individual network weight. It may be that 

certain network weights are much more important than others in obtaining a good network 

solution. An optimisation approach may thus be advantageous in finding the optimum 

weight radii values for the interval network.

The second interval network training approach therefore used the differential evolution 

algorithm to optimise the weight radii values of the MLP network. As in chapter 7, the 
objective function of this algorithm needed an additional width penalty term for the interval 

weights, in order to minimise the width of the network output bounds. The same differential 

evolution objective function was used as in chapter 7, where the cost of a particular interval
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weights solution is given by:

(9.3)

where M  is the number of network weights, p  is referred to as the width penalty coefficient, 

and allows different emphasis to be placed on minimising the widths of the MLP network 
output bounds.

For the proportional expansion approach, the interval network weights were expanded 

about the original crisp MLP solution at regular increasing p increments. For each 

increment, the long range prediction error of the interval network was calculated on the test 
data set.

For the differential evolution training, a number of different width penalty coefficient 

values were used. Ten different runs of the algorithm were undertaken for each of these fi 

values on the training data set. As with chapter 7, the computational expense of this 

approach meant that the network could only be trained on its one-step-ahead outputs by 

using interval arithmetic.

Each of the interval weight radii solutions for each ft value were then used for a long range 

prediction on the previously unseen validation set. Each of these predictions was assessed 
only on the interval MSE contribution, so the width penalty term of equation (9.3) was not 

used in the second phase. The weight radii solution with the lowest long range validation 

set MSE was selected as the best solution, and then used in a long range prediction on the 

test data set.

9.4 Results and Discussion

For the proportional radii expansion approach, Figure 9.3 shows the relationship between 

the weight expansion proportion p and the test set long range interval MSE of the MLP 

network. As with the same method in chapter 7, it can be seen that expanding the interval 

network weights about the initial crisp solution causes the prediction error of the model to

Costk = MSE
M

INTERVAL,k +m
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fall monotoni cal ly.

Figure 93: Weight expansion proportion vs long-range MSE

Increasing the widths of the network weights introduces more uncertainty into the MLP 

network. This uncertainty propagates through the network, with the effect of increasing the 

output bound widths. As these output bound widths become wider they therefore contain 

more of the target data, and the prediction error of the model falls.

The two-level vertex method uses to estimate the network output bounds here is not 

guaranteed to return the true bounds, since the true relationship between the network 

weights and predicted outputs is not known in its entirety. By definition, however, the true 

network output bounds can only be wider than those estimated by the two-level vertex 

method, since all possibiiistic sampling points are taken from within the uncertain weights 

hypercube. Wider network output bounds will give a lower prediction error, so the interval 

network errors obtained here can be viewed as upper bounds on the true error values.

Figure 9.4 shows an interval network prediction obtained by the proportional expansion 
approach, with a long range interval MSE of 1% on the test data set. Figure 9.5 shows an 

alternative 1% test set network prediction also obtained by the proportional expansion 

approach, but starting from a different crisp MLP solution with 9.4% validation set MSE.
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By comparing these two figures it can be seen that if an inferior initial crisp weights 

solution is used for the interval network, the proportional expansion bounds to obtain a 

given interval MSE will need to be wider.

Predicted Network Outputs and True Target Values

Figure 9.4: 1% long-range MSE proportional expansion bounds from 4.1% MSE crisp
solution

Predicted Network Outputs and True Target Values

Figure 9.5: 1% long-range MSE proportional expansion bounds from 9.4% MSE crisp
solution

82



For the differential evolution training approach, Figure 9.6 shows the relationship between 

the width penalty coefficient P and the long range test set MSE of the interval network, it 

can be seen that as the width penalty coefficient increases, the prediction error of the 

interval MLP network increases monotonically. Increasing p causes a larger penalty to be 
placed on the interval weight widths during training, so narrower bounds will be obtained 

from the differential evolution algorithm. These bounds will thus contain less of the target 

data, and so the network prediction error increases. As p  tends to high values, the prediction 

error of the interval network tends to that of the original 4.1% MSE crisp solution.

Model Predicted MSE vs Width Penalty Coefficient

Figure 9.6: Differential-evolution-trained long-range MSE values

Figure 9.7 shows an interval network prediction obtained from differential evolution 
training, where the long range prediction MSE is 1% on the test data set. By comparing 

Figure 9.7 with Figure 9.4 it can be seen that for the same value of long range prediction 

error, the differential evolution training approach is able to give output bounds marginally 

narrower than those from the proportional expansion approach.



Figure 9.7: 1% long-range MSE differential-evolution-trained interval network

This is in contrast to the results from chapter 7, where the studied uncertain model in that 

chapter was also trained by both the proportional expansion approach and the differential 

evolution algorithm. In that chapter the prediction bounds from differential evolution were 

much wider than from proportional expansion, even though proportional expansion is the 

simpler of the two approaches. In both chapter 7 and here, the initial assumption was made 

that optimising the uncertain parameter radii by one-step-ahead interval arithmetic would 

also optimise the long range bounds obtained from a possibilistic sampling approach. In 

chapter 7 that assumption appeared not to hold, but in this chapter it appears to be true, as 
the long range prediction bounds in Figure 9.7 are tight in relation to the target data. It can 

be argued, however, that as the differential evolution algorithm has provided only a 

marginal improvement over the proportional expansion approach in return for a significant 
increase in computational expense, its use is not totally justifiable here.

Both of the two interval network training methods used here are examples of the 

“opportunity” concept in Ben-Haim's information gap theory being implemented. The 

“degree of uncertainty” parameter is given by the expansion proportion p and the width 

penalty coefficient /? respectively. The windfall reward in this case is the acquisition of an 

interval network with a long range prediction error of 1% MSE, a value that can be
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considered to be a very good prediction. Figures 9.3 and 9.6 show the required level of 

network uncertainty to obtain this error, or indeed any other arbitrarily selected MSB value.

As already discussed in chapter 7, interval-valued models such as the NARX MLP network 
used here allow a trade-off to be made between minimising the prediction error of the 

model and minimising the widths of the predicted output bounds. The level for this trade­

off is application dependent, since some regression network applications may require a 

much higher solution precision than others.

Based on this, the p and ft parameters allow a suitable level to be selected for this trade-off, 

in relation to the particular application of the interval MLP network. The monotonicity of 

Figures 9.3 and 9.6 means that a continuous relationship is available for this trade-off.
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10. U ncertainty Propagation  through R adial B asis Function

N etw orks

10.1 Introduction

This chapter examines how uncertainty can propagate through radial basis function (RBF) 

neural networks for a regression application. As detailed in section 6.3, the radial basis 

function network is the second main type of neural network in general use, along with the 

multilayer perceptron network used in chapter 9.

The system being modelled here is the same pre-sliding friction process examined in 

chapter 9, where the data was obtained from a specially constructed experimental rig. This 

data takes the form of two SISO time histories with 24000 samples in total, and examines 

the dependence of the friction force on the measured displacement whilst within a pre­

sliding friction contact regime. The data set inputs are therefore displacement values, and 

the aim is to predict the friction force at each time instant. The experimental data was once 

again equally divided into three separate sets, labelled as the training, validation and test 
sets.

As with chapter 9, an interval-valued RBF network is to be created by setting some of the 

network parameters as interval values. The effect of introducing this uncertainty into the 

network is to give a range of possible outputs, so the predictions from the model will take 

the form of interval ranges. Besides examining the effects of uncertainty within RBF 

networks, this chapter also provides an opportunity to compare the performances of MLP 

and RBF networks for the same data set.

An initial crisp RBF network solution was required here prior to interval network training 

taking place, and this was found with the help of the NETLAB neural network toolbox for 

MATLAB (Nabney, 2001). Unlike chapter 9, there was no prior information available for 
the optimum architecture of the radial basis function network, so this also formed part of 
the training process. Due to the hysteretic relationship between displacement and friction 

force within the data set, the RBF network used autoregressive input nodes.
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Different arrangements of input lags, output lags and number of basis functions were 

systematically tested for the RBF network, with the optimum network parameters found for 

each individual arrangement. As detailed in section 6.3, the training process for each 

network architecture involved two separate stages. The first stage was to determine the 

optimum basis function parameters, and this was done by using the Expectation 

Maximisation algorithm.

The Expectation Maximisation algorithm created a Gaussian mixture model for the set of 

autoregressive input nodes used by that particular network architecture, thus determining 

the centre vector for each different basis function node. A diagonal covariance matrix was 

used for the basis nodes, so that each node used only a single width parameter a. The 

largest squared Euclidean distance between any two basis centre vector elements was 

calculated, and all of the basis function width parameters were set to this value.

The second training stage then found the optimum network output layer weights by using 

the pseudoinverse approach. As autoregressive nodes were being used by the network, this 

pseudoinverse was therefore taken using the network one-step-ahead outputs. Radial basis 

function networks use an additional bias weight for each network output, so for this single 

output network application, the number of output weights equalled the number of basis 

nodes plus one.

After a systematic network training process, the optimum network input arrangement was 

found to be one input lag, one output lag and an additional input for the current time data 

input value. The optimum number of basis function nodes was found to be 11, giving a total 

of 56 adjustable parameters for the crisp RBF network. The training phase was done using 

the training set one-step-ahead outputs, and a subsequent long range prediction on the 

previously unseen validation set gave an error oi 10.2% MSE.

10.2 Interval Network Training

The RBF network used here differs from the models in chapters 7, 8 and 9 in that it has 

significantly more adjustable parameters, in relation to computational expense it is not 

possible to train a network with 56 interval parameters. A single long range prediction 

using only the two-level vertex method would mean 2s6 hypercube sample points, which is
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not feasible with the available computational power

Based on this, uncertainty could only be introduced into some of the network parameters 

here, with the remainder staying as crisp values. It was decided to set the network output 
layer weights as interval values, giving a total of 12 uncertain parameters in the network. 

For the interval-valued MLP network in chapter 9, the 17 uncertain parameters present 

there meant that only the two-level vertex method could be used to calculate the interval 

network output bounds. As the RBF network here has less uncertain parameters than that, 

available computational time and power allow the reduced transformation method to be 

used with 6 a-cut levels. The three-level vertex method and modified reduced 

transformation method are both still too computationally expensive however.

As in previous chapters, the interval output weights of the network were given in the centre 

and radius form of equation (7.4). The centre of each weight was held fixed at its original 

crisp RBF solution value, so that only the output weight radii values needed to be trained 

here. The prediction error was once again calculated by the interval MSE function of 

equations (7.5) and (7.6)

The interval network training was done using two separate approaches -  the proportional 

weight expansion approach and differential evolution weight radii training. Proportional 

weight expansion consisted of setting each output layer weight radius as some proportion p 

of its respective central value, and then successively increasing this proportion in regular 

increments. For each different expansion increment, the long range MSE of the interval 

RBF network was calculated on the test data set.

The second interval network training approach used the differential evolution algorithm as 
an optimisation technique for the output weight radii values. Like the previous differential 

evolution training approaches in chapters 7 and 9, an additional width penalty term was 

used in the objective function of the algorithm. The cost for a given population solution k 

was thus given by:

Af

C0Stk -  MSE¡M'ERYAL'k +
M

WJr

Jc
( 10. 1)
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where Mis the number of output layer weights. As in previous chapters, the width penalty 

coefficient p allows the user to specify the emphasis placed on minimising the network 
output bound widths.

For a number of different p increments the radii values of the interval output layer weights 

were trained by the differential evolution algorithm. Time constraints were more severe for 

this piece of work than that of chapters 7 and 9, so only five separate algorithms runs were 

undertaken for each p value. This still took into account the stochastic nature of the 

differential evolution algorithm. Each training run used interval arithmetic to calculate the 

network one-step-ahead outputs on the training data set, and the resulting solution was then 

used in a long range prediction on the validation set. From each set of five runs, the 

solution with the lowest validation set interval MSE was judged to be the best solution, and 

then used in a long range prediction on the test data set.

10.3 Results and Discussion

As stated in section 10.1, this chapter and the previous one allow an interesting opportunity 

to compare the performances of MLP and RBF networks for the same data set. The initial 

crisp MLP network in chapter 9 gave a long range prediction error of 4.1% MSE on the test 

data set; whereas the initial crisp RBF network in this chapter had an inferior test set MSE 

of 10.2%. The 17 adjustable parameters of the crisp MLP network were also significantly 

less than the 56 adjustable parameters of the corresponding RBF network. Of the two 

neural network types, the multilayer perception can therefore be judged as the more 

appropriate for the pre-sliding friction system studied here.

The training time for the crisp RBF network was significantly shorter however, even 

considering that the optimal architecture of the crisp MLP network was known in advance. 

The 4.1% crisp MLP solution came after hundreds of separate differential evolution 

training runs, and the solutions from these runs were very different to one another. By 

contrast, for each specific architecture of the crisp RBF network, the Expectation 

Maximisation algorithm tended to converge to the same Gaussian mixture model for the 
input data, and thus the same basis function parameters.

For proportional expansion of the network output layer weights, Figure 10.1 shows the
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relationship between the expansion proportion p and the long range test set MSE of the 

network. An expansion proportion of zero simply corresponds to the original crisp RBF 
solution.

Figure 10.1: Proportional expansion long-range MSE values

As with the proportional expansion approach in chapters 7 and 9, there is a monotonically 

decreasing relationship between p and the network prediction error. Increasing the 

proportional width of the output layer weights corresponds to introducing more uncertainty 

into the network, and thus there is a wider range of possible network outputs. Although 

uncertainty has only been introduced into some of the network weights here, the 
relationship between expansion proportion and network error is still the same as previously 

seen in chapters 7 and 9.

Figure 10.2 shows a long range test set prediction from the interval RBF network of 5% 
MSE, obtained by the proportional expansion approach. Figure 10.3 shows an alternative 

proportional expansion test set prediction, this time with 1% MSE. It can be seen that the 

output bounds in Figure 10.3 are significantly wider. As shown in Figure 10.1, to decrease 

the network long range prediction error from 5% MSE to 1% MSE requires a much greater
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expansion of the output layer weights, and thus the prediction bounds of the network are 
much wider.



For differential evolution training of the network output weight radii, Figure 10.4 shows the 

relationship between width penalty coefficient p  and the test set long range prediction error. 

It can be seen that there is a non-decreasing relationship between the network prediction 

error and p. Increasing the value of p used in the differential evolution output radii training 
increases the penalty placed on the width of the output weights, and thus forces the network 

output bounds to become narrower. These output bounds then contain less of the target 

data, and so the prediction error of the network increases. As the value of p tends to high 

values, the prediction error eventually reaches that of the original crisp RBF solution. It can 

also be seen that the form of the curve in Figure 10.4 is similar to the corresponding 

differential evolution MLP error curve in Figure 9.6 of the previous chapter.

Figure 10.4: Differential-evolution-trained long-range MSE values

Figure 10.5 shows a long range test set RBF prediction of 5% MSB, with output layer 

weight radii obtained by the differential evolution algorithm. A direct comparison between 

this and Figure 10.2 shows that there is very little difference between the proportional 

expansion and differential evolution approaches here, in relation to the prediction bound 

widths. Using all 8000 samples in Figures 10.2 and 10.5 the average sample bound width 

was found to be 0.2% lower for the proportional expansion approach than for differential 

evolution.
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Figure 10.5: 5% long-range MSB solution obtained from differential evolution training

The differential evolution algorithm is therefore marginally worse than the proportional 

expansion approach for minimising the prediction bound widths here, even though the 

proportional expansion approach is a much less computationally expensive technique. The 

initial assumption was made here, as with chapters 7 and 9, that optimising the intcival 

arithmetic one-step-ahead outputs of the network with differential evolution would also 

optimise the long range predictions using a possibilistic sampling method. The light 

interval bounds in Figure 10.5 show that this assumption was valid, but the differential 

evolution approach does not offer superior results to justify its significantly greater 
computational expense, so the proportional expansion approach is the more effective of the 

two training approaches used here.

The use of an interval-valued RBF model allows a trade-off between minimising the 

prediction error of the network and minimising the widths of the predicted output bounds, 

as with the interval models used in previous chapters. Due to the continuous monotonic 

relationships shown in Figures 10.1 and 10.4, in each of the two different interval RBF 

training approaches, the respective uncertainty parameters p and /I allow this trade-off to be 

implemented effectively. As interval-valued RBF networks such as this one could
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conceivably be used for any time series regression application, the ability to implement the 

aforementioned trade-off is an important one. Different network applications may require 

different levels of precision on the predicted outputs, and this is a choice to be made by the 

network user.

This is once again an example of the opportunity concept in Ben-Haim’s information gap 

theory. The desired windfall reward is given by a particular value of long range prediction 

error from the interval network, in this case either 5% or 1% MSB. The level of uncertainty 

is given by either p or /?, depending on the interval network training method that is used. 

The opportunity is thus given by the value of p or /? that allows the desired windfall reward 

to be achieved.



11. Interval-Valued Regression Models of Bifurcating

Nonlinear Systems

11.1 Introduction

This chapter examines the effects of bifurcation on an interval-valued discrete-time 

Duffing oscillator. It extends on the work of a paper by Worden et al (2005) in which 

bifurcation of a conventional crisp-valued Duffing oscillator was studied.

Bifurcation is an important issue for nonlinear systems, and its effects can be 

unpredictable. The Duffing oscillator has been chosen here because it is one of the very 

simplest of nonlinear systems, and therefore suitable as a starting point for representing 

bifurcation with interval-valued models.

In this work a harmonically-driven Duffing oscillator is studied. It can be shown that 

within a particular range of forcing frequency, the system bifurcates to create two 

different stable limit cycles of oscillation. The choice of limit cycle settled upon by the 

crisp-valued Duffing oscillator is dependent on the initial conditions given to the 

system. Outside the bifurcation frequency range there exists only a sole stable limit 

cycle. The Duffing oscillator coefficients initially take crisp values obtained from the 

background paper, and a NARX model was then used to represent the discrete-time 

system. It is shown that by introducing uncertainty into the system NARX coefficients 

within a region local to their initial crisp values, an interval-valued model can be 

obtained with predicted output bounds that incorporate both of the two possible limit 

cycles. This interval-valued model therefore indicates the behaviour that the Duffing 

oscillator is capable of, in relation to the studied bifurcation.

11.2 The Crisp System

The Duffing oscillator is one of the simplest and most well-known of nonlinear systems. 

It was also studied in chapter 8 of this thesis, although that was for the case of a white 

noise excitation. The harmonically-driven Duffing oscillator of this current chapter is 

given by:



my + cy + ky + k^y* = X  cos (tot) ( 1 1 . 1 )

In the background paper by Worden et al, the continuous-time Duffing oscillator was 

integrated with the MATLAB ODE solver ode45. In this work, however, the system 

was represented as a discrete-time system with a fixed sampling frequency. This 

discrete-time system was given by:

my, + cy, + ky, + k^y] = X  cos cot, (11.2)

with m = \kg , c -  20— ,k = 104 — , k2 = 5x\0° and X  = 10. Note that with the
m m m

exception of Xy these are the same system property values as were used for the Duffing 

oscillator in chapter 8. A range of different to values were tested. The following two 

relations were also used:

v ~ Zì±lz3Zl±>Vi 
y * ~ A/2

(11.3)

X /
x, “ X-i

At (H.4)

Using the abbreviation x,. = Xcoscot,and substituting equations (11.3) and (11.4) into 

equation (11.2), the following NARX model can be obtained:

X, - m

\ f  Ate -  m \ A/2'' A i % \
Xm +

)
X ,~ 2  + Xi~ 1l m ) l m J I m )

yU (ii.5 )

The system response is given by:

y(tj ) = Y cos(ùJti - 0 ) ( 11.6)

In the background paper, a harmonic balance approach was used to find the response 

amplitude for the case k ^  0. This gave the following cubic equation in Y2:
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X 1 = Y 2 (11.7)
“ |2

ma)2+k + - k j : 
4 3

+ c 2(02

Figure 11.1 shows the positive real roots of equation (11.7) for a range of forcing 

frequency co. It can be seen that within a particular frequency range there are three 

possible response amplitudes, although the middle one of these three is unstable. This is 

an example of bifurcation. Outside this frequency range, however, there only exists a 

single response amplitude solution for each co value.

x 10'3

Figure 11.1: Multiple steady-state amplitude solutions in Duffing oscillator FRF

Wilhin the bifurcation frequency range there are thus two steady-state response 

amplitudes for each value of <u, corresponding to two distinct limit cycles. The limit 

cycle settled upon is dependent on the initial conditions provided to the system. It was 

found that this bifurcation frequency range lies between 152 rad/s and 190 rad/s. 

Figures 11.2 and 11.3 examine the relationship between system initial conditions and 

steady-stale limit cycle reached.
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Figure 11.2: Steady-state behaviour vs initial conditions, co = 155 rad/s
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Figure 11.2: Steady-state behaviour vs initial conditions, co = 185 rad/s

Figure 11.2 is for a forcing frequency of 155 rad/s, so is at the lower end of the 

bifurcation frequency range. For a range of initial system conditions, the plot indicates
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the limit cycle that the system will settle upon (referred to as “basins of attraction”), 

with the two limit cycles themselves superimposed onto the plot in blue and red. It can 

be seen from the plot that all tested initial condition values settle on either one limit 

cycle or the other. For the range of initial conditions used in Figure 11.2, a sampling 

frequency of 1000Hz was sufficient to represent the discrete-time system, it was 

observed, however, that for larger initial condition values, a higher sampling frequency 

was needed.

Figure 11.3 also examines the obtained steady-state limit cycle in relation to the system 

initial conditions, but this time for a forcing frequency of 185 rad/s, i.e. at the upper end 

of the bifurcation frequency range, it can be seen that for figure 11.2, the higher- 

amplitude limit cycle dominates the plot, whereas tor Figure 11.3 it is the lowei- 

amplitude cycle that dominates. From both Figures 11.2 and 11.3, it can be seen that 

initial conditions lying on a particular limit cycle do not automatically mean that the 

system will converge to that cycle at steady-state.

The changing limit cycle basins of attraction observed in Figures 11.2 and 11.3 can be 

explained by consulting Figure 11.1. Below 152 rad/s only the higher-amplitude limit 

cycle exists, and above 190 rad/s only the lower-amplitude cycle exists. Between these 

two frequency limits, therefore, there must be a transition between the two limit cycles. 

Figures 11.2 and 11.3 suggest that this will be a gradual transition, involving the basins 

of attraction shrinking for the higher-amplitude limit cycle and expanding for the lower- 

amplitude cycle.

11.3 An Interval-Valued Model

Within this work the crisp-valued coefficients of the NARX model in equation (11.5) 

arc to be replaced by inteival-valued coefficients. As shown in chapter 2, interval 

arithmetic is unsuitable for long-range predictions of any interval-valued autoregressive 

model because of its excessive conservatism. For interval-valued NARX coefficients in 

equation (11.5), the uncertain output bounds can be estimated through the use of the 

modified reduced transformation method of section 3.6.

As shown in Figures 11.2 and 11.3, the limit cycle settled upon for a forcing frequency 

within the bifurcation range is dependent on the system initial conditions. The aim of



this work is to show that by using interval-valued coefficients for a discrete-time NARX 

Duffing oscillator, an output prediction can be obtained that contains both possible 

steady-state limit cycles.

The NARX regressor coefficients in equation (11.5) can be rewritten as interval 

numbers. As in previous chapters, these interval coefficients are written in the “centre 

and radius” form of equation (7.4). Uncertainty can then be introduced into these 

coefficients through the use of the proportional expansion approach, where the 

expansion proportion is given by p. The NARX coefficients of equation (11.5) are 

therefore being “expanded” around their original crisp values.

Three different forcing frequencies were used here: 160 rad/s, 170 rad/s and 180 rad/s. 

For each of these three, the steady state behaviour of the system was examined over a 

range of different initial conditions, as in Figures 11.2 and 11.3. A different set of initial 

conditions was chosen for each of these three different forcing frequencies which would 

lie at a boundary between the higher-amplitude and lower-amplitude limit cycle basins 

of attraction. This meant that for these initial conditions, a very small change in initial 

condition would completely change the steady-state behaviour.

5 .4 .3 -2 -1 0 1 2 3 4 5

Initial Displacement (m) x 101

Figure 11.4: Steady-state behaviour vs initial conditions, a) -  160 rad/s
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Figure 11.4 shows the steady-state limit cycle vs initial conditions behaviour for a 

forcing frequency of 160 rad/s. The two limit cycles are superimposed onto the plot, as 

with Figures 11.2 and 11.3. Also added is the specific initial condition point used for the 

subsequent interval-valued analysis, shown by the small yellow circle.

Figure 11.5 shows two displacement time-histories of the system in Figure 11.4, with 

respective initial conditions very close to the highlighted point in Figure 11.4, and on 

either side of the basins of attraction boundary. 24000 time samples were used in total, 

and the first 800 samples are shown in Figure 11.5.

Figure 11.5: Displacement time-histories fo r  near-identical initial conditions, co = 160

rad/s

Figure 11.6 shows the steady-state behaviour vs initial conditions for a forcing 

frequency of 170 rad/s, and Figure 11.7 shows the same plot for a frequency of 180 

rad/s. On both of these two plots are marked small yellow circles to denote the initial 

condition sets used for the interval-valued analysis.
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Figure 11.6: Steady-state behaviour vs initial conditions, u = 170 rad/s

-4 -3 -2 -1 0 1 2 3 4 5

Initial Displacement (m) x 10-3

Figure 11.7: Steady-state behaviour vs initial conditions, co = 180 rad/s
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11.4 Results and Discussion

Figure 11.8: Interval coefficient expansion, p = lx l  O'5, œ = 160 rad/s

Figure 11.9: Interval coefficient expansion, p = Jxl0 4, a) = 160 rad/s

Figures 11.8 and 11.9 both show displacement predictions from interval-valued models 

of equation (11.5), with a forcing frequency of 160 rad/s. The proportional expansion 

approach was used to generate the interval NARX coefficients, and the system initial 

conditions were those indicated by the small yellow circle on Figure 11.4. The interval 

bounds were estimated by the transformation method with 20 hypercube levels
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(excluding the crisp central point), as detailed in section 11.3. Figure 11.8 used an 

expansion proportion of p -  IjcIO-5, and Figure 11.9 used p -  lxlO^4. Both of these 

two figures show only the first 800 of the 24000 time samples.

Figure 11.10 shows two displacement time-histories for a forcing frequency of 170 

rad/s. The two sets of initial conditions for these two curves are taken at near-identical 

points very close to the highlighted yellow circle on Figure 11.6, where these two points 

were deliberately chosen to lie on opposite sides of the boundary for the steady-state 

limit cycle basins of attraction.

Figure 11.10: Displacement time-histories for near-identical initial conditions, co = 170

rad/s

Figures 11.11 and 11.12 show displacement predictions from interval-valued models of 

equation (11.5), with a forcing frequency of 170 rad/s. These two predictions are for 

initial conditions given by the small yellow circle on Figure 11.6, and the proportional 

expansion approach was used for the interval NARX coefficients. Figure 11.11 is for an

expansion proportion p  = W 0 5 and Figure 11.12 is for p  1x10
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Figure 11.11: Interval coefficient expansion, p = lxlO'5, co = 170 rad/s

Figure 11.12: Interval coefficient expansion, p -  lx l  O'4, (o -  170 rad/s

Figure 11.13 shows two displacement time-histories for a forcing frequency of 180 

rad/s. The two curves have almost identical initial conditions, both close to the small 

yellow circle on Figure 11.7. These two curves were chosen to lie on opposite sides of a 

basins of attraction boundary for the steady-state limit cycles.
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Figure 11.13: Displacement time-histories for near-identical initial conditions, (o = 180

rad/s

Figures 11.14 and 11.15 show displacement predictions from interval-valued models of 

equation (11.5), with a forcing frequency of 180 rad/s. The initial conditions for these 

two interval plots are given by the small yellow circle on Figure 11.7, and once again 

the proportional expansion approach was used for the interval-valued coefficients. 

Figure 11.14 is for a coefficient expansion proportion p  = lx l0 '5 and Figure 11.15 is 

for p  -  lxl Ô 4.

Figure 11.14: Interval coefficient expansion, p = lx l  O'5, co -  180 rad/s
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Figure 11.15: Interval coefficient expansion, p -  lx l  O'4, co = 180 rad/s

Figures 11.2, 11.3, 11.4, 11.6 and 11.7 relate the steady-state behaviour of the system to 

the initial condition values that are used. Each of these figures is for a different value of 

co. It can be seen that the “basins of attraction” of the two limit cycles change 

significantly as co passes through the bifurcation frequency range. At the lower end of 

this frequency range it is the higher-amplitude limit cycle that dominates the plot* as can 

be seen from Figure 11.2. Towards the upper end of the bifurcation frequency range, 

however, it is the lower-amplitude limit cycle that has the largest basins of attraction, as 

shown in Figure 11.3. Figures 11.4,11:6 and 11.7 show that there is a gradual transition 

between those two extreme cases, with each figure showing a different intermediate co 

value.

For the interval-valued analysis, three different values of forcing frequency were 

considered individually. This was to show that the technique is valid over the whole 

bifurcation range. In each of these three co cases, an initial condition was chosen to lie 

very close to a basins of attraction boundary for the two steady-state limit cycles.

The reasoning behind this was that the introduction of a relatively small amount of 

uncertainty into the NARX model coefficients would create an interval range prediction 

that would cross both zones of attraction. The interval bounds should therefore contain 

both of the limit cycles but yet remain relatively narrow, as the level of coefficient 

expansion is still small.



Figures 11.5, 11.10 and 11.13 show the effects of slight differences in system initial 

conditions for the three different forcing frequencies. For each of these three plots it can 

be seen that the two displacement histories remain near-identical for a small handful of 

oscillations, before diverging to the two alternative steady-state limit cycles. The 

sensitive dependence of the system on initial conditions can clearly be seen from these 

three figures. The figures also each demonstrate the levels of their two respective 

amplitude cycles for the subsequent interval analysis.

Figures 11.8 and 11.9 show interval coefficient expansions of the model for a forcing 

frequency of 160 rad/s. The initial condition was chosen to lie just inside the basin of 

attraction for the lower limit cycle, at the yellow point indicated on Figure 11.4. Figure

11.8 shows that for a coefficient expansion proportion of p  = 1*1 O'5, the interval model 

only includes the lower-amplitude limit cycle after the transients have decayed. This 

level of p is therefore insufficient for detecting both limit cycles.

Figure 11.9 then shows that if the expansion proportion p is increased to 1*10 4, the 

prediction bounds from the interval model include both limit cycles. It can be seen that 

once the steady state is reached, these bounds contain the two alternative limit cycles 

with the minimum necessary width. This interval-valued NARX model is therefore 

effective for illustrating distinct cases of steady-state behaviour. It can also be seen from 

Figure 11.9 that the largest range of the interval bounds is in the region of sample 

numbers 300-500. This is the region where alternative displacement histories have 

already begun to diverge from one another, but where steady-state behaviour has not yet 

been reached.

The forcing frequency was then changed to 170 rad/s and a different set of system initial 

conditions was chosen. As with the 160 rad/s case, the set of system initial conditions 

was chosen to lie very close to a basins of attraction boundary for the steady-state limit 

cycles, and just inside the lower-amplitude cycle region.

The same behaviour was observed for the interval-valued models as with co=160 rad/s. 

Figure 11.11 shows that a small coefficient expansion proportion of —1*10~5 is 

insufficient to represent both steady-state limit cycles, so only includes the lower- 

amplitude cycle. The larger expansion of /? = 1*1(T* in Figure 11.12, however, is



enough for the interval prediction bounds to contain both limit cycles. As with Figure 

11.9, the interval bounds contain the two steady-state limit cycles without any excessive 

prediction width, and the largest range of system behaviour is before the transients have 

decayed.

Adjusting the forcing frequency to to 180 rad/s still led to the same behaviour of the 

interval-valued models. Figure 11.13 shows a pair of displacement time-histories for 

near-identical initial conditions. These two initial conditions both lay very close to the 

small yellow circle indicated on Figure 11.7, and were chosen to lie on opposite sides of 

the basins of attraction boundary. As with Figures 11.5 and 11.10, it can be seen that 

these two displacement plots are almost identical for the first few oscillations of the 

system, before diverging to the two different steady-state limit cycles.

Figures 11.14 and 11.15 show displacement plots for interval-valued models with 

£0=180 rad/s. Both of these two plots used an initial condition set that lay just inside a 

basin of attraction for the lower-amplitude limit cycle, as shown by the yellow circle on 

Figure 11.7. Figure 11.14 shows that for an interval coefficient expansion with 

expansion proportion p  = 1*10-5, the interval bounds only contain the lower-amplitude 

limit cycle after the steady state has been reached. Figure 11.15 then shows that if p is 

increased to 1*10“4, the interval bounds are wide enough to include both steady-state 

limit cycles with the minimum required width. As with Figures 11.9 and 11.12, the 

largest range of outputs in Figure 11.15 is found in the transient region.

This work has therefore used interval-valued models to indicate the potential behaviour 

of a harmonically-driven Duffing oscillator capable of bifurcation. The interval-valued 

models were all used in regions where the system showed a high sensitivity to initial 

conditions. Despite the existence of two distinct steady-state behaviours, these two 

behaviours were both predicted simultaneously through the deliberate introduction of 

uncertainty into the NARX model coefficients. These interval NARX coefficients were 

“proportionally expanded” around their original crisp values, so that the studied system 

coefficient ranges were local to these original values. The expansion parameter p 

allowed the level of the uncertainty introduced into the model to be controlled.

The system studied here was only a simple nonlinear system with a bifurcation whose 

effects were relatively minor. This interval-valued technique could also potentially be
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used, however, for indicating the possible behaviour of a more complex and severe 

bifurcation of a nonlinear system.



12. The Dynamic Effects of Uncertainties within Automotive

Spot Welds

12.1 Introduction

The work in this chapter examined the effects of uncertainties on the dynamic response of 

an automotive spot-welded component. The work was conducted during a nine-month 

industrial placement at Centro Ricerche Fiat in Turin, Italy, as part of a European Union 

research and training network entitled MADUSE (Modelling Product Variability and Data 

Uncertainty in Structural Dynamics Engineering).

The technique of resistance spot welding is ubiquitous within the automotive industry. A 

typical car can contain thousands of spot-welded joints, so their effect on the dynamic 

performance of the car is significant. Spot welding is much cheaper and less time- 

consuming than using continuous welds to join together panels in a car. Spot welds have a 

large effect on the overall stiffness of the car, and also play a significant role in its vibration 

damping characteristics.

The work here used a possibilistic uncertainty modelling approach to represent the response 

of the spot-welded component, where this component was based on an actual automotive 

component with some modifications. The original part was not symmetrical, although the 

design was modified so that symmetry was present. Previous empirical experience has 

shown that symmetry can amplify certain dynamic effects, so this made the modelling 

process more of a challenge. Three different cross-sectional designs were initially 

generated, in order to suggest possible modifications for reducing the subsequent 

manufacturing costs of the component.

The spot-welded component was represented both by a computational approach, in the 

form of finite element modelling, and by an experimental approach, using manufactured 

test specimens. The intention was to generate a finite element model of the system 

response, taking into account any relevant parameter uncertainties, and then obtain results 
from this computational model. These results could then be validated by modal testing of 

the manufactured specimens, with the use of a suitable experimental setup. A good
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correlation between the finite element and experimental modal testing results would verify 

that the computational model was accurate.

By analysing any discrepancies between the two sets of results, any weaknesses or 

deficiencies of the finite element model could be deduced. This would be an effective 

method for suggesting improvements in the work, especially if it were to be repeated at 

some future time.

12.2 Resistance Spot Welding

The technique of producing automotive spot welds is generally referred to as resistance 

spot welding, since it utilises the resistance of a metal sheet interface to a high electrical 

current. The process uses two electrodes to join the two metal sheets in question, and these 

electrodes can be assembled in the form of a hand-held tool to be used by a production 

operative, or can be utilised by an automated production-line robot.

The two metal sheets are joined at a small ellipsoidal area or “spot”, and the welding 

process has four distinct steps, the first of which is called the squeeze cycle. The two sheets 

to be welded are placed together, and the two electrodes are added to their respective outer 

surfaces. A load is applied to the electrodes in order to press the two sheets together.

t

1

Figure 12.1: The "weld cycle " for a resistance spot weld 

The second step is called the weld cycle. A high electrical current is passed through the
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electrodes, and resistance to the current at the interface between the two sheets causes the 

material at this point to become plastic. The metal at the interlace between the electrodes 

fuses together to form a small ball joining the tw;o sheets, known as the spot weld nugget. 

This step is illustrated graphically in Figure 12.1.

The third step is called the hold cycle. The electrical current through the surface electrodes 

is turned off, but the load from the electrodes to the sheet surfaces is maintained. The 

pressure arising from this load allows the molten nugget to cool and solidify. The fourth 

step is called the off cycle, and simply consists of the electrodes being removed from the 

metal sheet surfaces.

Figure 12.2: Cross-sectional photograph o f a spot-welded joint

The end result is a small metal nugget connecting the two metal sheets together. Figure

12.2 shows a cross-sectional photograph of a spot-w'elded joint, albeit a poor quality one 

with weld porosity. As with many other types of welded joints, immediately adjacent to the 

joint is a heat affected zone, where the material properties will be different from those of 

the base metal. In the region close to the spot weld there will be no physical link between 

the two metal sheets, but these sheets are likely to be frequently in contact with each other. 

During vibrations of the system, the friction losses at these contact interfaces will cause a 

large amount of energy to be dissipated. In a typical car which may contain thousands of 
spot-welded joints, this energy dissipation is the principal source of vibration damping prior
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to any damping treatment being added.

12.3 The Spot-Welded Component

Three different initial designs were originally considered for the spot-welded component 

here. This was to suggest possible reductions in the cost of manufacturing the design at a 

later date, for use as test specimens. All three of these designs had a constant cross section, 

an axial length of 500mm and a sheet thickness of 1mm. The designs show the sheet 

midplanes.

Figure 12.3: First design for the spot-welded component

A cross section of the first design is shown in Figure 12.3. This design has the dimensions
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of the original automotive part on which the component is based, but adjusted to give 

symmetry about the vertical axis.

The second design replaced the two interior angles of the specimen with a single angled 

section, as shown in Figure 12.4. This would require a single ply operation for each angle, 

as opposed to two, so was thought to save on manufacturing costs. Although both of the 

designs in Figures 12.3 and 12.4 are symmetrical about the vertical axis, neither of them 

have horizontal symmetry. The second design was adjusted to have this horizontal 

symmetry, giving the third design shown in Figure 12.5.

Figure 12.4: Second component design Figure 12.5: Third component design

After consultation with workshop operatives, it was found that replacing the two interior 

component angles with a single angled section offered no real saving in manufacturing
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costs, so the second and third component designs were scrapped. It was decided that the 

specimen needed to have vertical and horizontal symmetry, however, so the first design 

was adjusted to give the design shown in Figure 12.6. This design was thus decided upon as 

the final design of the spot-welded component, and was used as the nominal model for the 
work here.

Figure 12.6: Final design for the spot-welded component

initially it was planned to use 24 spot welded joints within the design in Figure 12.6. These 

were to be arranged into two groups of 12 spot welds, and each arranged symmetrically on 

the 17mm vertical faces at the top and bottom of the design. When arranged in regular 

increments along the axial component length, the spacing between each spot weld would 

have been approximately 40mm.

Preliminary FE testing was conducted with Nastran for the use of these 24 spot welds. A 
number of different finite element weld types were used, including RBE2 rigid elements, 

linear solid elements, and the new Nastran CWELD element. Parameters such as the FE
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mesh density and spot weld diameter were adjusted, as well as small changes to the number 

of spot welds used. For each of these adjustments the finite element model was solved, and 

modal analysis was conducted on the result. Ignoring the first six rigid body modes of the 

model, the frequencies of the following ten modes were recorded in each case.

These initial changes to the model did not lead to a great variation in the measured modal 

frequencies. The conclusion was reached that the nominal 24 spot welds being used was too 

many, and therefore needed to be significantly reduced. After consideration, it was chosen 

to use only 10 spot-welded joints in the model, to be equally divided amongst the top and 

bottom edges of the design. Figure 12.7 shows a side view of the selected design in Figure 

12.6, and highlights the location of these 10 spot welds in yellow.

50mni100mmlOOiran100mm50mm 100mm

8.5 mm

Figure 12.7: Side view o f the spot-welded component

12.4 Spot Weld Uncertainties

The component design introduced in section 12.3 was viewed as being the nominal design 

for the work here. The task was then to consider how uncertainties could be introduced into 

this design, and how these uncertainties could be represented. There were a large number of 

possibilities for uncertainty within the spot-welded component. The options initially 

considered here were:

• Spot weld diameter

• Differences in spot weld positions

• Number of missing spot welds

• Spot weld stiffness
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• Contact area around a spot weld

• Residual pressure distribution around a spot weld

• Operational loads on the component

• Component dimensions

• Sheet thickness

• Surface quality of the sheets prior to spot welding

As with any engineering modelling exercise, computational time and effort was an issue 

here, so it simply wasn't possible to examine the effects of all these uncertainties. For a 

variety of reasons, many of the uncertainty sources listed above were viewed as less 

important or difficult to model, and therefore were not selected.

It was decided to consider the effects of just three uncertainty sources, these being:

• Sheet thickness

• Differences in spot weld positions

• Number of missing spot welds

The latter part of this work was to involve experimental testing of manufactured specimens. 

Whereas computational finite element modelling does not involve any physical 

components, this manufacture of experimental specimens is subject to production costs and 

lead time. The quantity of experimental specimens to be manufactured therefore needed to 

be within practical limits, whilst simultaneously giving a suitable distribution for the spot 

weld uncertain parameters.

It was thus decided to use three levels for the sheet thickness, three levels for the difference 

in spot weld positions, and two levels for the number of missing spot welds. This would 

give 18 possibilities in total, including the nominal design, and hence 18 different 

manufactured specimens. For the sheet thickness, a uniform thickness was assumed for 

each design. In reality, any manufactured component is likely to exhibit distributions in 

sheet thickness over the entire component, but this uniform thickness simplification was 

necessary for the modelling to take place. The three levels of sheet thickness used were 

0.9mm, 1.0mm and 1.1mm.
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The levels for the differences in spot weld position uncertainty can be illustrated by Figure 

12.8, which shows an enlarged view of two spot welds in Figure 12.7 with the central 

section of the component removed. Note that compared to previous diagrams, Figure 12.8 

is no longer to scale. The three points A, B and C show the three possible levels for this 

parameter, where B corresponds to the nominal design. As with the sheet thickness, a 

simplifying assumption was also made for modelling the differences in spot weld positions. 

Allowing the ten spot welds to be displaced independently of each other would give far too 

many possibilities to be adequately represented, so it was assumed that the component spot 

welds would be displaced together.

Figure 12.8: The three levels for the difference in spot weld positions uncertainty

For situation A, the model spot welds were all displaced outwards from the component 

central axis by a vertical distance of 2.5mm, i.e. the 5 spot welds at the top edge of Figure 

12.7 were displaced upwards, and the 5 lower spot welds were displaced downwards. For 

situation C the opposite was true, so that all ten spot welds were displaced inwards, moving 
together towards the central axis of the component. For situation B, all spot welds remained

119



at their original positions given by the nominal model.

As with the two previous uncertain parameters, a modelling simplification was also made 

for the missing spot welds parameter. The first level for this parameter was to have all ten 

spot welds present, as in the nominal model in Figure 12.7. The second level was for two 

missing spot welds, but the assumption was that it would always be the same two spot 

welds that were absent. This is shown in Figure 12.9, where positions 2 and 8 give the 

locations of these two missing spot welds.

In a simplified design such as this one, with only a small number of spot welds, it is 

unlikely that any of these spot welds would be omitted during production. For the case of a 

full automobile however, where there are thousands of spot weld locations, it is likely that a 

very small number of these spot welds would be accidentally missed by a production 

operative, therefore this study of missing spot welds is justified. Table 12.1 shows the 

entire arrangement of uncertain parameters for all 18 manufactured specimen designs.
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Test Number Sheet Thickness Spot Weld Positions
Missing Spot Weld 

Positions
1 l.lmm C -

2 1.1mm C 2 & 8
3 1mm c -

4 1mm c 2 & 8
5 0.9mm c -

6 0.9mm c 2 & 8
7 l.lmm B -

8 l.lmm B 2 & 8
9 1mm B -

10 1mm B 2 & 8
11 0.9mm B -

12 0.9mm B 2 & 8
13 l.lmm A -

14 l.lmm A 2 & 8
15 1mm A -

16 1mm A 2 & 8
17 0.9mm A -

18 0.9mm A 2 & 8
Table 12.1: Arrangement o f uncertainties for the 18 manufactured test specimens

12.5 The Finite Element Mode!

Altair Hypermesh 6.0 was used as a pre-processor here, along with MSC Nastran as the 

finite element solver. Hypermesh was also used in the post-processing phase for viewing 

modal analysis results, although the majority of the post-processing operations were done 

by Veiprod, a specialist piece of dynamic analysis software created by Centro Ricerche 

Fiat.

The spot-welded component was represented by CQUAD4 shell elements with an average 

element size of 2.5mm. This corresponded to 28430 nodes and 27860 elements in the FE 

model. For representing the spot welded joints, the available options were to use RBE2 

Nastran rigid bar elements, linear solid elements, or the new Nastran CWELD element. The 

latter is a point-to-point weld that is able to link the centre of one mesh element to the 

centre of another, so does not rely on the finite element meshes being congruent at the weld 

faces. CWELD elements allow the diameter and material type of the weld to be specified, 

and the weld is modelled elastically. This is in contrast to the RBE2 element, which is 

simply a rigid connection between two nodes. The linear solid (brick) weld element also 

treats the welds elastically, but does not represent the true cross-sectional shape of a spot
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weld nugget. For these reasons, it was decided to use the CWELD element for the spot 
welds here.

Whereas the number of manufactured specimens is limited by material and production 

costs, these constraints do not apply for finite element models. The only things to consider 

are the computational time and available processing power. As the model here is relatively 

small by finite element standards, neither of these two considerations should be an issue 

here. This enables far more tests to be done in the finite element modelling than for the 

experimental testing.

Based on this, it was decided to conduct a more exhaustive finite element investigation of 

missing spot welds than for the experimental specimens. Up to two spot welds were to be 

omitted from the finite element model. As already stated, the spot-welded component is 

symmetrical in all three principal orthogonal directions, and this symmetry can be used to 

best advantage.

For all ten spot welds present in the model, there is obviously only one possible 

arrangement for achieving this. For one missing spot weld, there initially seems to be ten 

possibilities for this, i.e. any weld from index 1-10 on Figure 12.9 not present. However, 

due to the symmetry of the model, weld number 1 missing is the same as weld numbers 5, 6 

or 10 missing. Similarly, weld number 2 missing is the same as weld numbers 4, 7 or 9 

missing, and weld number 3 missing is the same as weld number 8 missing. Thus there are 

only truly three possibilities for one missing spot weld -  index position 1, 2 or 3.

By a similar procedure, there are 15 different possibilities for two missing model spot 

welds, listed in Table 12.2. With one possibility for zero missing spot welds and three 

possibilities for one missing spot weld, there are thus 19 possibilities for up to two missing 

model spot welds. When used in conjunction with the same three sheet thickness levels and 
three spot weld position levels of section 12.4, there are 171 different finite element models 

to be used here. Although this number may seem excessive, each model can be run in under 

five minutes, so the testing schedule is well within practical limits.
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Test Number
Missing Index 

Positions
1 1 2
2 1 3
3 1 4
4 1 5
5 1 6
6 1 7
7 1 8
8 1 9
9 1 10
10 2 3
11 2 4
12 2 7
13 2 8
14 2 9
15 3 8

Table 12.2: Potential arrangements o f any two missing spot welds (with symmetry) 

12.6. Modal Analysis of the Spot Welded Component

Modal analysis is the study of the resonant vibration for a given system, where resonance 

can be described as excessive, sustained oscillatory motion. Modal analysis is conducted in 

the frequency domain, so involves searching for the natural frequencies of the system in 

question. It can be done either computationally, with finite element packages such as 

Nastran, or experimentally through the use of accelerometers and impact hammers or 

electrodynamic shakers. Modal analysis is a very well-known tool within structural 

dynamics, having been in use for decades, and is used extensively by industry.

12.6.1 The Modal Assurance Criterion

The modal assurance criterion (MAC) is a well-known and long established modal analysis 

technique, and was proposed by Allemang and Brown (1982). It is used to compare two 

different estimates of a modal vector for consistency.

The modal assurance criterion is generally used in conjunction with the modal scale factor 

(MSF), so this must also be explained in any outline of the technique. For a test with n 

output degrees of freedom (DOFs) and m input DOFs, the system can be written in Laplace 

notation as:
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where X(s) is the displacements vector, H(s) is the (n x m) transfer function matrix and F(s) 

is the forcing vector.

The transfer function matrix can then be written as the partial fraction expansion:

f ^ s - p ( r )  s - p  (r)
( 12.2 )

where the (n x m) matrix A[r] is known as the residue matrix.

This residue matrix can be rewritten as:

[A{r)} = k{r)U0UT{r)UIN{r)r (12.3)

where k(r) is a scaling constant, (/ow(/')is the modal coefficients vector for the system 

output DOFs and V,N(r)is the modal coefficients vector for the system input DOFs.

Any two rows or columns c and d of the residue matrix A(r) for a given mode are thus 

proportional to each other. The constant of proportionality is given by the modal scale 

factor:

(12.4)

The modal scale factor is a complex scalar, and can be rewritten as:

MSF(c, d, r) -
A(c\r)A* (d,r) 
A(d,r)A'(d,r)

(12.5)

where A(c,r) and A(d,r) are two rows or columns of the residue matrix A(r) .



The modal scale factor can thus be thought of as the ratio between two modal vector 

estimates c and d, where d is the reference vector. Modal vector c can be viewed as having 

two parts -  one part which is correlated with reference vector d, and the other part which is 
not.

The modal assurance criterion is a measure of the consistency between modal vector 

estimates c and d. It is given by:

MAC(c%d)
| A(c,r)A'(d,r)~

A(c, r)A'(c, r)A(d, r)A* (d , r)
( 12.6 )

The value of the MAC will always be a real number between 0 and 1 inclusive. Two modal 

vector estimates that are completely consistent with each other will have a MAC value of 

unity, and two estimates with absolutely no consistency between them will have a zero 

MAC value.

The MAC can be used in several different ways. One is to compare two different modal 

vector estimates from the same source, for example, from different rows or different 

columns of a frequency response function matrix. A second approach is to compare two 

modal vector estimates from different sources, so a finite element modal vector could be 

compared for similarity with an experimental modal vector. A third application is to 

compare a set of modal vectors for orthogonality, commonly known as the “auto-MAC”.

The auto-MAC compares a set of modal vectors against themselves. For p measured modes 

within the frequency range of interest, this gives a {p x p ) comparison matrix, where each 

element is an individual MAC value between 0 and 1. The leading diagonal of this matrix is 

made up of unity values, since the MAC of a modal vector with itself will always give a 

value of one. For a completely orthogonal set of modal vectors, the auto-MAC will give the 

identity matrix, so that all off-diagonal terms are zero. In reality this ideal situation is likely 

to be unattainable, but the user often settles for low off-diagonal terms, indicating near­

orthogonality of the modal vectors.



12.6.2 The Frequency Domain Assurance Criterion

One of the deficiencies of the MAC is that it is only designed to be used with modal

vectors. To obtain modal vector estimates often requires significant post-processing of 

results after the modal testing phase has been completed. In certain situations, modal vector 
information may not be available.

Frequency response functions from modal testing are much simpler to obtain. Based on 

this, the frequency domain assurance criterion (FDAC) was proposed by Pascual et al 

(1997). This technique allows two different frequency response matrices to be compared 

for similarity, on a frequency-by-frequency basis. The end result is a matrix that enables 

any frequency increment in one frequency response matrix to be compared with any 

frequency increment in the second frequency response matrix. Regions of similarity 

between the two frequency response matrices can then be observed.

If (&>)] is the frequency response matrix for an analytical model and [Hx (¿y)] for an 

experimental test, then the FDAC can be defined as:

where a)u and cox are specific analytical and experimental frequencies respectively, and j  is 

for a specific column of the frequency response matrix.

As with the modal assurance criterion, the FDAC returns a value between 0 and 1, where 1 

indicates complete consistency and 0 signifies absolutely no consistency between the two 

frequency response matrices at the two given frequencies.

One of the advantages of the FDAC is that it uses entire columns of the frequency response 

matrix, so considers all response DOFs together. It may be that particular modes are 

observable at certain output DOFs but not at others, so this feature takes this into account.

[H.fafjWM)}/ (12.7)
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12.6.3 Modal Testing

The aim of this work was to examine the effects of the selected spot weld uncertainties on 

the dynamic response of the component, and thus modal analysis was used here. The 

frequency range of interest was 0 -  1024 Hz.

The modal testing of the component was to be done by a standard hammer testing process, 

with the response to be measured by accelerometers. Ten accelerometers were to be used, 

as this was deemed in advance to be a sufficient quantity. Using Nastran, three different 

finite element versions of the nominal specimen design were tested. Two of these models 

included additional concentrated masses at ten arbitrarily selected accelerometer locations, 

and the third model was unchanged. One of the two concentrated mass models featured 

masses of 2.5g each, to represent uniaxial accelerometers, and the other used masses of 

12.5g for triaxial accelerometers. Figure 12.10 shows an inertance plot taken at the same 

point for these three models, for a free-free loading arrangement.

Frequency (Hz)

Figure 12.10: Effects o f added accelerometers on the finite element model response

It can be seen that the addition of ten triaxial accelerometers noticeably changes the 
response of this nominal hE model, w'hereas ten uniaxial accelerometers have a much 

smaller effect. For this reason, it was decided to use uniaxial accelerometers in the modal
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testing here, and measure the response in each orthogonal direction separately.

The ten accelerometer locations in Figure 12.10 were chosen completely arbitrarily, and for 

the sole purpose of examining the effects of the added accelerometer masses onto the 

specimen during testing. Prior to any modal testing taking place, the final locations of the 

accelerometers needed to be chosen. It was decided to use an optimisation procedure for 

this task, in conjunction with the auto-MAC. For the work here, the optimum ten 

accelerometer locations will be a set of points that are able to detect each mode in the 

frequency range of interest with no ambiguity. The quality of each accelerometer position 

set can be assessed by two measures -  the sum of the off-diagonal auto-MAC matrix terms 

and the maximum off-diagonal term.

An optimisation software package called Mode Frontier was used to implement this 

procedure. An alternative finite element model of the nominal specimen was generated with 

an increased element size of 15mm and solved in a single Nastran solution run, with the 

response at each model node stored in an output file. The Mode Frontier software initially 

generated 33,000 different random combinations of the ten accelerometer positions, and 

calculated the auto-MAC matrix for the responses at these points. For each different test 

arrangement the off-diagonal sum and maximum off-diagonal term of the MAC matrix 

were calculated.

Figures 12.11 and 12.12 show in yellow the locations of the optimum ten accelerometer 

positions found by the optimisation procedure. It can be seen that all ten of the 

accelerometers have been placed in the regions close to the component spot welds, with 

none located on the large flat sections running parallel to the Z axis of the component. 

Concentrated masses of 2.5g were added to the finite element models at these 

accelerometer locations, in order to ensure parity between the finite element and 

experimental results.

In Figures 12.11 and 12.12, the two halves of the component are shown in the orientation in 

which they are to be suspended during the subsequent experimental modal testing. Two 

suspension holes were drilled in each manufactured specimen in order to facilitate the 
modal testing process, and elements corresponding to these holes were removed from the 

finite element models. These missing elements can be observed by close examination of the
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top of Figure 12.12. The blue point shown 100mm from the base of Figure 12.11 

corresponds to the hammer excitation point, used in both the experimental and finite 
element modal testing.

Figures 12.11 and 12.12: Optimal accelerometer locations on the two halves o f the
component

Preliminary finite element testing of the nominal model also showed that the Z direction 
response (i.e. along the axial length of the specimen) was much less significant than in the 

X and Y directions. Frequency response plots taken at several different points showed that 

the Z direction responses were relatively featureless, with specimen modes giving only 

small rises in the FRF amplitude. Based on this, and also taking into account time 

constraints, only the X and Y direction responses of the spot welded components were 
considered here, for both the finite element models and manufactured test specimens.
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The experimental modal testing was done using a HP-Unix workstation with a spectral 
analyser and software by LMS International. Figures 12.13 and 12.14 show photographs of 

the test setup. For the nominal manufactured specimen, two different excitation points were 

initially tested. The accelerometer responses from these two different excitation points did 

not exhibit a great deal of difference however, so only the single excitation point shown in 

Figure 12.11 was used. Excitations in both the X and Y directions were originally 

examined, but did not exhibit a great deal of difference in the measured FRFs. For this 

reason, all excitations in both the finite element models and manufactured specimens were 

made in the X direction at the sole excitation point.

Figure 12.13: Experimental testing setup Figure 12.14: Experimental testing setup

initially the test specimens were suspended by a thick elastic cord with small hooks at each 

end to fit through the drilled suspension holes. After a number of specimens had been 

tested, it was suspected that the elastic cord was too stiff to capably represent a free-free 

test arrangement. The thick elastic cord w’as thus replaced by a much thinner cord and 

instead of using hooks; the ends of the cord were knotted through the suspension holes.

Figure 12.15 compares the frequency response function at the same accelerometer point 

and response direction for these tw'o dilièrent suspension types. 1 owards the higher end ol
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the frequency range it can be seen that the responses are significantly different. This 

suggests that this region of the original thick cord response exhibits modes of the 

suspension hooks, as opposed to modes of the actual specimen. The earlier modal testing 

results were thus disposed of, and all manufactured specimens were suspended by the 

thinner elastic cord with no attached hooks.

Figure 12.15: Comparison o f suspension types for experimental modal testing

12.7 Results

Figures 12.16 and 12.17 examine the differences in measured response at each of the ten 

different accelerometer points, for the case of the finite element model. Both of these 

figures are for the nominal model design. These two figures show all ten accelerometer 

FRFs in the X and Y response directions respectively. Figures 12.18 and 12.19 also 

examine the differences in measured response at each accelerometer location, but this time 

for the nominal manufactured test specimen. Figure 12.18 shows all ten accelerometer 
FRFs in the X response direction, and Figure 12.19 shows the same ten FRFs, but for the Y 

response direction.
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Figures 12.16 and 12.17: X  and Y direction finite element responses for all ten

accelerometers

Figures 12.18 and 12.19: X  and Y direction experimental responses for all ten
accelerometers

In all finite element and experimental tests conducted here, the nominal design was always 

the design with all ten welds present, a sheet thickness oi 1 .Omm and spot welds located in 

their central positions. Figure 12.20 compares the X direction FRF for both the nominal 

finite element model and nominal manufactured specimen at the same accelerometer point. 

It can be seen that the correlation between these two curves is reasonably good, but there 

are certain regions of difference. The general convention for finite element modelling is to 

undertake model updating, where parameters of the finite element model are continually 

modified to improve the correlation of the computational model results with measured 

experimental data. In this case however there was simply not time available to undertake 

any model updating. It may be that a suitably thorough model updating procedure could
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improve the correlation between the two responses in Figure 12.20. Figure 12.21 then 

shows the same comparison between computational and experimental results of the 

nominal specimen design, but for the Y direction response at the same accelerometer 

location.

Frequency (Hz) Frequency (Hz)

Figures 12.20 and 12.21: Comparison o f nominal model responses for finite element and

experimental results

The work here examined the effects of the three studied uncertainties by two different 

measures -  the range of FRF amplitudes and the range of nominal modal frequencies. The 

range of FRF amplitudes approach was undertaken graphically through the use of an FRF 

envelope. For each different combination of uncertainties, this corresponded to a number of 

different finite element models or manufactured specimens. FRFs were taken from this 

collection of models/specimens at the same response point, and a convex hull was created 

to contain all of these curves within the minimum possible area. The width of the FRF 

envelope indicates the degree of uncertainty on the measured outputs.

For the second approach, the nominal finite element model had 16 modes within the 

frequency range of interest (0-1024Hz), and the nominal manufactured specimen had 22 

modes in the same range. For both the finite element and experimental testing regimes, it 

was wished to see if all of these nominal modes were present for a given arrangement of the 

uncertain parameters, and if so, at what modal frequencies.

Initially this was attempted by visual inspection of the measured FRFs. For the finite 

element models, the X and Y direction FRFs at a particular response point were compared
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to those of the nominal model. For certain modes it was very easy to see which nominal 

modes they corresponded to, but this was less true for other modes. Certain models 

exhibited more modes than the nominal model, and it was often not possible to tell which 

modes had appeared anew.

Within a short while it became obvious that the changes in modal frequencies could not be 

done by visual FRF inspection alone. This method was a very subjective and unreliable 

approach, so it was chosen to use the FDAC instead. The FDAC generally requires the 

selection of a particular complete column from the frequency response matrix [H(w)]. Here, 

however, the use of a single excitation DOF meant that the frequency response matrix only 

had a single column, so the need for this choice was eliminated.

Observing all FRFs of the nominal models simultaneously, it could be seen that the 

frequency of each mode varied slightly over the different response DOFs. For both the 

nominal finite element model and manufactured specimen the modal frequencies were 

therefore recorded relative to one specific response location. Certain modes could be seen 

in the X direction FRF but not the Y direction FRF, and vice versa.

For each model/specimen other than the nominal ones, the FRF responses in both the X and 

Y directions were observed simultaneously at the same specific response location. The 

frequencies were recorded for every point of the plot which looked like it could be a mode, 

however unlikely; often resulting in many more modes than shown lor the nominal models. 

The entire FDAC matrix was calculated for all response DOFs of the sample model against 

those of the nominal design.

The appearance of the nominal modes in the model was decided solely based upon the 

FDAC index at that point. For the situation where there were several candidates for the 

nominal mode, the one was chosen with the highest index. A measured mode was only 

considered to be a candidate for a nominal mode if its respective FDAC index was at least 

0.5, so that weak mode correlations were ignored. It a suitable match could not be found, 

that nominal mode was judged not to have appeared in the relevant model/specimen. 

Within the numerous tables of modal frequency results that follow, mode correlations with 

an FDAC index less than 0.5 are shown in these tables, but these correlations were not used 

in subsequent calculations of the ranges ot the nominal mode frequencies.
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For the case of possible missing spot welds from the component, this could be divided into 

four distinct situations -  all welds present, any single weld missing, welds 2 and 8 missing, 

any two welds missing. These four situations were therefore considered separately.

12.7.1 All Welds Present

Initially all ten spot welds were used in the testing process, so that the only uncertainties 

present were the three different spot weld positions and three different sheet thicknesses. 

This corresponded to nine different model designs in total, which were available as both 

finite element models and manufactured test specimens.

Figures 12.22 -  12.27 show the effects of uncertainties on the measured FRF amplitudes, 

but for the case of no missing spot welds, i.e. all ten spot welds present. In each of these 

figures the respective uncertain amplitude ranges from the finite element models and 
experimental specimens are compared directly, and each figure is for the same response 

point. Figures 12.22 and 12.23 respectively show the X and Y direction FRFs for 

differences in spot weld positions only. The specimen thicknesses were thus held fixed at 

their nominal values of 1.0mm, which corresponded to using three different specimen 

designs.

0 100 200 300 400 500 600 700 000 900 1000 0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0  700 8 0 0 9 0 0  1000

Frequency (Hz) Frequency (Hz)

Figures 12.22 and 12.23: Finite element and experimental results for all ten welds present,
differences in weld positions only

Figures 12.24 and 12.25 respectively show the X and Y direction FRFs for differences in 

specimen thickness only. The spot weld positions were held fixed at their central locations
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in Figure 12.8, so this also corresponded to three different specimen designs.

Figures 12.24 and 12.25: Finite element and experimental results for all ten welds present,

differences in sheet thickness only

Figures 12.26 and 12.27 then show the X and Y direction FRFs for differences in specimen 

thickness and spot weld positions. This corresponded to nine different specimen designs.

100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
100 200 300 400 500 600 700 800 900 1000 

Frequency (Hz)

Figures 12.26 and 12.27: Finite element and experimental results for all ten welds present, 
differences in spot weld positions and sheet thickness

For the ranges of the nominal modal frequencies, the finite element and experimental 

testing results are presented separately.
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12.7.1.1 Finite Element Modelling

The finite element modelling was undertaken first, with nine different models in total. As 

detailed previously, the FDAC was used to deduce the frequencies of the 16 nominal modes 

in each different model. Table 12.3 shows the entire set of finite element results for the case 

of all ten spot welds present. The colour coding represents the quality of the correlation 

between the nominal model and studied model for that particular mode, with respect to the 

FDAC index. A high FDAC value signifies with a high degree of confidence that this is the 

same mode as seen in the nominal model.

Mode
Number

0.9
Central

0.9
Inwards

0.9
Outwards

1.0
Inwards

1.0
Outwards

1.1
Central

1.1
Inwards

1.1
OutwardsNominal

1 221.25 199.75 214.25 185.25 237.25 206.25 242.5 260 225
2 227.75 205.75 220.25 191.25 244 213 249.75 267.25 232.25
3 256 230.5 230.75 230.25 256.25 257.25 281 281.5 280.5
4 325.75 293 293.25 293 325.75 327 358.25 358 25 358.25
5 422.25 392 392 392 421.75 423 450.25 450 450.5
6 500.75 455.25 455 455 500.5 500.75 544.5 544.25 543.75
7 534.75 486 486.75 4 ¿T 0K\ - 535.75 533.75 582.5 583.75 583.25
8 552.75 498.75 498.5 - 552.25 601.75 606 605.5 658.75
9 589 531.25 561.5 497.25 622.75 555.75 646.25 683.25 604.5
10 654.75 589.5 589.5 589.5 654.5 658 719.75 719.75 719.75
11 672 606 605.25 606.5 671.25 672.5 738 737 739
12 756 682 682 682 756 756.25 - - •• 8S2.5
13 796.5 774.75 782.25 765.5 804.25 792.25 814 822 5 803.25
14 846.75 798.5 796 799.75 845.75 854.5 896 891
15 915 823.25 819.25 824 910.5 930.75 -

__ 16 988.25 891.25 891.25 891.5 988.25 988.5 n-tfi nU4C D 945.25 :

0.75 < FDAC <1.0
0.5 <FDAC <0.75

■ ■ ■ FDAC < 0.5
- No match found

Table 12.3: Entire finite element modal frequency t esults foi all ten welds pi esent

Table 12.4 examines the effects of difference in spot weld positions only, so that the sheet 

thickness is held at the nominal value of 1.0mm. This corresponded to three different finite 

element models, and the FDAC was once again used. A range was calculated for each of 

the sixteen nominal modes when subject to this position uncertainty.
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Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 206.25 -6.78 237.25 7.23
2 227.75 213 -6.48 244 7.14
3 256 256 0 257.25 0.49

4 325.75 325.75 0 327 0.38

5 422.25 421.75 -0.12 423 0.18

6 500.75 500.5 -0.05 500.75 0

7 534.75 533.75 -0.19 535.75 0.19

8 552.75 552.25 -0.09 601.75 8.86

9 589 555.75 -5.65 622.75 5.73

10 654.75 654.5 -0.04 658 0.50

11 672 671.25 -0.11 672.5 0.07

12 756 756 0 756.25 0.03

13 796.5 792.25 -0.53 804.25 0.97

14 846.75 845.75 -0.12 854.5 0.92

15 915 910.5 -0.49 930.75 1.72

16 988.25 988.25 0 988.5 0.03

Table 12.4: Finite element modal frequency variations for all ten welds present, differences

in spot weld positions only

Table 12.5 examines the effects of differences in sheet thickness only, so that the spot weld 

positions were held fixed at their central values in Figure 12.8. This once again 

corresponded to three different finite element models.

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

221.25
227.75 

256
325.75
422.25
500.75
534.75
552.75 

589
654.75 

672 
756

796.5
846.75 

915
988.25

199.75
205.75
230.5 
293 
392

455.25 
486

498.75
531.25
589.5 
606 
682

774.75
798.5

823.25
891.25

-9.72
-9.66
-9.96

-10.05
-7.16
-9.09
-9.12
-9.77
-9.80
-9.97
-9.82
-9.79
-2.73
-5.70

-10.03

-9.82

242.5
249.75 

281
358.25
450.25
544.5
582.5 
606

646.25
719.75 

738 
756 
814

895.5 
915

988.25

9.60
9.66
9.77
9.98
6.63 
8.74
8.93
9.63 
9.72
9.93 
9.82

0
2.20
5.76

0
0

Jdbje 12.5: Finite element modal frequency variations )br ten welds present, differences
in sheet thickness only

Table 12.6 then examines the combined effects of both differences in sheet thickness and 

differences in spot weld positions, corresponding to nine different finite element models.

138



Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 185.25 -16.27 260 17.51

2 227.75 191.25 -16.03 267.25 17.34

3 256 230.25 -10.06 281.5 9.96

4 325.75 293 -10.05 358.25 9.98

5 422.25 392 -7.16 450.5 6.69

6 500.75 455 -9.14 544.5 8.74

7 534.75 486 -9.12 583.75 9.16

8 552.75 498.5 -9.81 658.75 19.18

9 589 497.25 -15.58 683.25 16.00

10 654.75 589.5 -9.97 719.75 9.93

11 672 605.25 -9.93 739 9.97

12 756 682 -9.79 832.5 10.12

13 796.5 765.5 -3.89 822.5 3.26

14 846.75 796 -5.99 896 5.82

15 915 819.25 -10.46 999 9.18

16 988.25 891.25 -9.82 988.5 0.03

Table 12.6: Finite element modal frequency variations for all ten welds present, differences

in weld positions and differences in sheet thickness

12.7.1.2 Experimental Testing of Manufactured Specimens
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0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

No match found

Table 12.7: Entire experimental modal frequency results for all ten welds present

For the nominal manufactured test specimen there were 22 modes within the frequency 

range of interest (0 -  1024Hz). Table 12.7 shows the complete set of results from the nine 

manufactured specimens with all ten spot welds present.

Table 12.8 examines the effects of differences in spot weld positions only, corresponding to 

three manufactured specimens.

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 229 222 -3.06 252 10.04

2 248.75 237.5 -4.52 279 12.16

3 256.5 256 -0.19 256.5 0

4 321 321 0 321.5 0.16

5 335.75 334.5 -0.37 344.75 2.68

6 422.25 421.75 -0.12 422.5 0.06

7 502.5 502 -0.10 503 0.10

8 532.25 532.25 0 679.75 27.71

9 560.25 557.5 -0.49 560.25 0

10 605.25 605.25 0 614 1.45

11 615.75 607.75 -1.30 766.25 24.44

12 626.25 626.25 0 674 7.62

13 639.25 618 -3.32 639.25 0

14 654.25 651.5 -0.42 654.25 0

15 674.25 674.25 0 677 0.41

16 678 656.25 -3.21 682 0.59

17 685.5 685.5 0 879 28.23

18 766.25 610.25 -20.36 769.25 0.39

19
20 
21 
22

806.75 
871

880.25
996.75

803.25 
679.75
880.25
770.25

-0.43
-21.96

0
-22.72

820.25
874.5

929.75
1000

1.67
0.40
5.62
0.33

Table 12.8: Experimental modal frequency variations Jot all ten welds present, dijjerences

in weld positions only

Table 12.9 examines the effects of differences in sheet thickness only, also coiresponding 

to three manufactured specimens.
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Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 229 197 -13.97 269 17.47

2 248.75 220.5 -11.36 299.25 20.30
3 256.5 226.25 -11.79 309.75 20.76

4 321 283.75 -11.60 383.25 19.39

5 335.75 329.75 -1.79 346.5 3.20

6 422.25 386.75 -8.41 619.5 46.71

7 502.5 445 -11.44 599.5 19.30

8 532.25 488.75 -8.17 726 36.40

9 560.25 491.75 -12.23 678.25 21.06

10 605.25 536.25 -11.40 733 21.11

11 615.75 615.75 0 818.25 32.89

12 626.25 574.75 -8.22 741.25 18.36

13 639.25 548.5 -14.20 639.25 0

14 654.25 654.25 0 793.5 21.28

15 674.25 589.75 -12.53 821 21.76

16 678 674 -0.59 824 21.53

17 685.5 567.75 -17.18 829.75 21.04

18 766.25 766.25 0 933.5 21.83

19 806.75 766.75 -4.96 862 6.85

20 871 596.5 -31.52 871 0

21 880.25 619.75 -29.59 880.25 0

22 996.75 743.5 -25.41 996.75 0

Table 12.9: Experimental modal frequency variations for all ten welds present, differences

in sheet thickness only

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 229 181.75 -20.63 333 45.41

2 248.75 197.25 -20.70 299.25 20.30

3 256.5 226.25 -11.79 309.75 20.76

4 321 283.75 -11.60 383.75 19.55

5 335.75 329.75 -1.79 364.75 8,64

6 422.25 386.75 -8.41 619.5 46.71

7 502.5 445 -11.44 599.5 19.30

8 532.25 477 -10.38 726 36.40

9 560.25 491.75 -12.23 678.25 21.06

10 605.25 536.25 -11.40 740.25 22.30

11 615.75 607.75 -1.30 833 35.28

12 626.25 507.25 -19.00 923 47.39

13 639.25 517 -19.12 817.25 27.85

14 654.25 581.25 -11.16 873.25 33.47

15 674.25 589.75 -12.53 825 22.36

16 678 582.75 -14.05 826.75 21.94

17 685.5 567.75 -17.18 892.5 30.20

18 766.25 610.25 -20.36 933.5 21.83

19 806.75 757 -6.17 862 6.85

20 871 596.5 -31.52 925.5 6.26

21 880.25 585 -33.54 933.5 6.05

22 996.75 686 -31.18 1000 0.33

Table 12.10: Experimental modal frequency variations for all ten welds present, differences

in weld positions and deferences in sheet thickness
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Table 12.10 examines the combined effects of differences in spot weld positions and 

differences in sheet thickness, corresponding to nine different manufactured specimens.

12.7.2 Any Single Weld Missing

The effects of one missing spot weld were then examined. As the manufactured specimens 

considered only zero or two missing spot welds, all results given in this section were 

obtained from finite element modelling only. From consulting Figure 12.9 and using the 

previously mentioned symmetry of the model, any one missing spot weld corresponds to 

any one of the spot welds at positions 1, 2 and 3 not being present.

Position 1 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 201.75 170.75 223.5 240 188.75 245 263.25 227.5
227.75 . • 187.5 207.5 : 459 ..205.25

256 213.75 ¡214.25 213.25 233.5 234.25 233 252.5 253.5 252

325.75 288 288 288 318.25 318.25 318.5 349 349 349.25

422.25 368.75 305. . 427,75 >.91 425. 454.5 4 Î 1:6 ■K» :

500.75 544 544.5. . 559 oU2.5, . 503.20 » Ö S  V 55; 543.5

534.75 486.25 487.5 558.5 537 618.25 583.5 662 583.5

552.75 530 560.25 495.75 587.5 621.25 549.75 644.75 681 75 603

589 553 F)9‘A 484.75 602.75 580, 5 7 535.25 661.25 •'.35.25 589

654.75 588.75 588.75 588.5 654 654 653.75 719 719 718.75

672 605.25 605 606 671.25 670.75 672.25 735.75 736.75 736

756 776 vk I S S P S H 758.5 758:5 ' 758'6 | r o f t - 7:':

796.5 658 75 713.5 ; 719.75 708 763.25 769.25 756.75

846.75 795.5 794.5 795 842.5 843.5 839.25 890.25 892 886

915 821.5 818.5 839.25 914 909 915.25 945.75 1000 >.i-i 0 '

_ 988.25 891.25 891.5 888.75 987.5 988.25 984.5 995.2s8 946.25 . • ■

0.75 < FDAC <1.0
0.5 <FDAC <0.75

FDAC < 0.5
- No match found

Table 12.11: Entire finite element modal frequency results for weld position l missing

Tables 12.11 -  12.13 give the complete set of modal frequency results for any one missing 

spot weld. Taking into account the three different spot weld position levels and the three 

sheet thickness levels, these three tables are comprised of 27 different finite element model 

results. The responses used to calculate the uncertain FRF amplitudes in Figures 12.28 -
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12.35 were all taken at the same response point; this being a different point to that used in 

section 12.7.1.

Position 2 Missing

0.9
Inwards

0.9
Outwards

1.0
Central

1.0
Inwards

561.25 

589
605.25 
681.5 
771.75
798.25 

I 818.25 
1 754.751

229.25
242.5
255.5
324.5
421.5
498.5 
572

550.75
622.25 
654 25

I 672 I 671.25 |
. 7 5 5 . 5

776.75 791
849.75 J 854 
914.5 I 909.75

[988,25. I 8 1 6 .7 5 1

1.0
Outwards

1.1
Central

198.5
204.5 

254.75
324.5 
422

k & afl
550.75
515.25
537.25
654.25 

|72;5

768.75
845.5 
916

988.25

234.5
241.75
280.25
356.75 

450
541.75
582.75
604.75
645.75
719.25 

738
tisB
797.75 
897

1.1
Inwards

1.1
Outwards

251 25
265.75
280.75
356.75
449.75
541.75
582.75 
603.25
682.75 

719

217.75
224.25
279.75
356.75 

450 
40.7

658.25
563.25 

604
719.25

738.5

Table 12J2: Entire finite element m o d a l  frequency results for weld position 2 missing
—

0.75 < FD AC <1.0
0.5 <FDAC <0.75

FDAC < 0.5

No match found

3 Missiri

1.1
Outwards

1.1
InwardsCentralOutwards

Nominal
0.9

Central
0.9

Inwards
0.9

Outwards

221.25 194.75 208.75 180.5

227.75 205.75 220.25 191.25

256 230.25 230.75 230

325.75 292.25 292.25 292.25

422.25 390.75 391 389.75

500.75 455 454.5 454.75

534.75 485.75 486.75 t « i
552.75 498.25 497.75 ,"4,: -

589 531.5 k ä s m 497.25 I

654.75 589.5 589.25 589.5

672

796.5
46.75
915

88.25
823 819

1.0
Central

1.0
Inwards

215 6 231

227.75 244

255.75 256

324.5 324.5

420.75 420.5

500.25 500

534.5 535.75 1
551.75 551.25

i 5S&25
[ 654.75 654.5

671.251
• ‘‘5* ¡/-O'

792

[ J 9 1 5 " ¡ ¡ o H
I J /71 J 1 8 0 8 :® |

515
551.25
654.75 I
672.75 I

774.25 
843

988

604.5

646*75
719.75

799

253.25
267.25
281.25
356.75
448.25
543.5

583.75 
604 

sm i
719.5

857.5

219.25
232.75
280.25
356.75
448.75 
543.5

m a i
563 

604 7!
719.75

mm
791

■ Ä

Table 12.13: Entire finite element
^ ___  —
modal frequency results for weld position 3 missing
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Firstly the sole effects of any one missing spot weld were examined, so the specimen 

thickness and spot weld positions were held fixed at their respective nominal values of 

1.0mm and the central position. This corresponded to three different specimen designs. 

Figures 12.28 and 12.29 show the X and Y direction uncertain FRFs for these tests. Added 

to these two figures are the responses for the nominal model with all ten welds present, so 

that the effect of one missing spot weld can be compared to the original case, fable 12.14 

gives the range of finite element modal frequencies for the sole case of any one missing 

spot weld.

Figures 12.28 and 12.29: Finite element results for any single weld missing only

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 214 -3.28 223.5 1.02

2 227.75 226.5 -0.55 227.75 0

3 256 233.5 -8.79 255.75 -0.10

4 325.75 318.25 -2.30 324.5 -0.38

5 422.25 420.75 -0.36 421.75 -0.12

6 500.75 498.75 -0.40 500.25 -0.10

7 534.75 534.5 -0.05 536.75 0.37

8 552.75 551.75 -0.18 587.5 6.29

9 589 588.75 -0.04 602.75 2.33

10 654.75 654 -0.11 654.75 0

11 672 671.25 -0.11 672 0

12 756 - - • -

13 796.5 776.75 -2.48 776.75 -2.48

14 846.75 842.5 -0.50 849.75 0.35

15 915 914 -0.11 915 0

__ 16 988.25 987.5 -0.08 988.25 0L I | ------ ■ - ■ ------ . . |

Table 12.14: Finite element m o d a l  frequency variations for any single weld missing only
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The effects of any one missing spot weld were then examined in conjunction with 

differences in weld positions. The specimen thicknesses were held fixed at their nominal 

values, so this corresponded to nine different specimen designs. Figures 12.30 and 12.31 

show the X and Y direction uncertain FRFs for these tests, and Table 12.15 gives the range 

of nominal modal frequencies.

Figures 12.30 and 12.31: Finite element results for any single weld missing, differences in

weld positions only

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 188.75 -14.69 240 8.47

2 227.75 204.5 -10.21 244 7.14

3 256 233 -8.98 256 0

4 325.75 318.25 -2.30 324.5 -0.38

5 422.25 420.5 -0.41 422 -0.06

6 500.75 498 -0.55 500.25 -0.10

7 534.75 534.5 -0.05 618.25 15.61

8 552.75 515 -6.83 621.25 12.39

9 589 535.25 -9.13 623 5.77

10
11

654.75
672

653.75
670.75

-0.15
-0.19

654.75
672.75

0
0.11

12 756 755.5 -0.07 755.5 -0.07

13 796.5 768.75 -3.48 792 -0.56

14 846.75 839.25 -0.89 854 0.86

15
16

915 909 -0.66 916.25 0.14

988.25 816.75 -17.35 988.25 0

Table 12.15: ih u le  element modal Jrequency variations jor any single « eld missing,

differences in weld positions only

Following this, the effects ot any one missing spot weld were examined in conjunction with
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differences in sheet thicknesses. This time the spot weld positions were held fixed at their 

central positions, and this once again corresponded to nine dilierent specimen designs. 

Figures 12.32 and 12.33 show the X and Y direction uncertain FRFs for these tests, and 

Table 12.16 gives the range of nominal modal frequencies.

Figures 1232 and 1233: Finite element results for any single weld missing, differences in

sheet thickness only

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

221.25
227.75 

256
325.75
422.25
500.75
534.75
552.75 

589
654.75 

672 
756

796.5
846.75 

915
988.25

193.25
204.5

213.75 
288

390.75
453.75
485.75
498.25 

531
588.75
605.25
701.5 
762

795.5
821.5

891.25

- 12.66
- 10.21
-16.50
-11.59
-7.46
-9.39
-9.16
- 9.86
-9.85

-10.08
-9.93
-7.21
-4.33
-6.05

- 10.22
-9.82

10.73
9.66
9.67 
9.52 
6.57
8.64 
9.12
16.64 
12.27 
9.93 
9.82 
-7.21 
0.31 
5.96

0 
0

any single weld missing,

245
249.75
280.75
356.75 

450 
544

583.5
644.75
661.25
719.75 

738
701.5 
799

897.25 
915

988.25

Table 12.16: Finite element modal frequency variations for
differences in sheet thickness only

The combined effects of any one missing spot weld, differences in specimen thickness and 

differences in spot weld positions were then examined. In total this corresponded to 27
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different finite element models. Figures 12.34 and 12.35 show the X and Y direction Mil's 

for these tests, and Table 12.17 gives the range of nominal modal frequencies.

Figures 12.34 and 12.35: Finite element results for any single weld missing, differences in
weld positions and sheet thickness

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

221.25
227.75 

256
325.75
422.25
500.75
534.75
552.75 

589
654.75 

672 
756

796.5
846.75 

915
988.25

170.75 
190

213.25 
288

389.75
453.25
485.75
466.25
484.75
588.5 
605

681.5 
749

794.5
818.25
754.75

-22.82
-16.58
-16.70
-11.59
-7.70
-9.49
-9.16

-15.65
-17.70
- 10.12
-9.97
-9.85
-5.96
-6.17

-10.57
-23.63

263.25
232.75
281.25
356.75 

450 
544 
662

681.75
683.75
719.75
738.5
755.5

811.75 
906 
1000

988.25

18.98
2.20
9.86
9.52
6.57
8.64

23.80
23.34
16.09
9.93
9.90 
-0.07
1.91 
7.00 
9.29

0
Table 12.17: F M e  d e m e n t  variations for single weld missing,

differences in weld positions and sheet thickness

12.7,3 Welds 2 and 8 Missing

ti „ K> -nncidered the case of two specific missing spot welds,* he manufactured specimens only consider
- a q on Figure 12.9. A direct comparison between finite given by weld index positions 2 and 8 on Mgure e

, , w  tAX/n missin2 welds could therefore only be made forelement and experimental results lor two missing
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these particular two welds, not for any two welds.

Figure 12.36 examines the effects of removing welds 2 and 8 on the finite element response 

at a particular accelerometer in the X response direction. Figure 12.37 makes the same 

comparison, but in the Y response direction.

Frequency (Hz) Frequency (Hz)

Figures 12.36 and 12.37: Effects on the finite element response o f removing welds 2 and 8

Figures 12.38 and 12.39: Effects on the experimental response o f removing welds 2 and 8

Figures 12.38 and 12.39 then examine the effects on the experimental response of removing 

welds 2 and 8 These two figures are again for the X and Y response directions 

respectively, and were calculated a. the same response point as for Figures 12.36 and 12.37.

Figures 12.40 -  12.47 then compare the finite element and experimental uncertain FRF
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amplitude results for the case of weld positions 2 and 8 absent. All oi the FRFs shown in 

these figures are for the same response point, this being a different response point to those 

used in sections 12.7.1, 12.7.2 and Figures 12.36 -  12.39. Figures 12.40 and 12.41 directly 

compare the nominal finite element and nominal experimental FRFs in the X and Y 

directions respectively. These two figures can be compared to the nominal comparisons 

made in Figures 12.20 and 12.21, where all ten component spot welds were present.

Figures 12.40 and 12.41: Comparison offinite element and experimental responses for

welds 2 and 8 missing

d- „ , Y and Y direction uncertain FRF amplitudes forFigures 12.42 and 12.43 then compare the A ana i r
o»w welds and differences in spot weld positions, the combined effects of the two missing spot weias ana umc. f f

t u  . . u „ ih  f ix e d  at their nominal values of 1.0mm. Thisthe specimen thicknesses were held tixea ai u»*
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corresponded to three different specimen designs. Figure 12.44 and 12.45 examine the 

combined effects of the two missing spot welds and differences in sheet thicknesses, so 

now the spot weld positions were held fixed at their nominal values. This once again 

corresponded to three different specimen designs.

Figures 12.44 and 12.45: Finite element and experimental responses for welds 2 and 8 

missing, differences in sheet thickness only

missing, differences in weld positions and sheet thicbtess

Figures 12.46 and 12.47 then compare the finite element and experimental uncertain FRFs 

for the combined effects of the two particular missing spot welds, differences in weld 

positions and differences in specimen thicknesses, corresponding to nine different models. 

These two figures show the X and Y direction responses respectively.
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For the ranges of the nominal modal frequencies, the finite element and experimental 

results for welds 2 and 8 missing are given separately.

12.7.3.1 Finite Element Modelling

Table 12.18 gives the complete set of finite element modal frequency results for welds 2 

and 8 missing. Table 12.19 shows the range of nominal modal frequencies for differences

in spot weld positions only.

—
Positions 2 and 8 Missing

Nominal
0.9

Central
0.9

Inwards
0.9

Outwards
1.0

Central
1.0

Inwards
1.0

Outwards
1.1

Central
1.1

Inwards
1.1

Outwards

221.25
227.75 

256
325.75
422.25
500.75
534.75
552.75 

589
654.75 

672 
756

796.5
846.75 

915

_988.25

188.75
204.25
229.75
291.5

390.75
453.5

486.25
390.75
529.5

588.75 
IfiQ S JS l

707 25

202.25
218.5

230.25
291.5

390.75
453.25
486.75
496.5
559.5
588.5

605.25 
681 75

175
189.75
229.5
291.5
389.5

453.25
473.25

544.25 ••
495.5

588.75 
606

209
226
255

323.5
420.5 

498.25
535.75
525.75 

587
653.5

671.75

224
242

255.25
323.5
420.5 
498 
536

549.5
620.25
653.5

671.25

194
210.25
254.5
323.5
420.5 

497.75

229
247.75
279.75
355.25 
448.5
541.25 

584 
604

245.25
265.25
280.25
355.25 

448
540.75
582.75
601.75
680.75 

718 
737

212.5
230.5

279.25
355.25
448.5
540.5

523.75

663,5

673.5 
. K ,d.5

549
653.75
672.25

644
718.25
737.75

602.25 
722.5

738.25

661 Î ? 5 5 g Ì 755.5 802.25 962 945 718,25

754.75 j 744 740
800 

824 75

766.75
793.25
915.25

782.75 
818

903.75

758.75
843.25

l l f l

786.75
849.5

800.25
866

765.25
885.75

825.25

767
817

891.5 810.5 988
90̂ 2. t)

0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

- No match found

Table 12.18: Entire finite element modal frequency results for welds 2 and 8 missing
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Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 194 -12.32 224 1.24

2 227.75 210.25 -7.68 242 6.26

3 256 254.5 -0.59 255.25 -0.29

4 325.75 323.5 -0.69 323.5 -0.69

5 422.25 420.5 -0.41 420.5 -0.41

6 500.75 497.75 -0.60 498.25 -0.50

7 534.75 535.75 0.19 536 0.23

8 552.75 525.75 -4.88 549.5 -0.59

9 589 549 -6.79 620.25 5.31

10 654.75 653.5 -0.19 653.75 -0.15

11 672 671.25 -0.11 672.25 0.04

12 756 755.5 -0.07 755.5 -0.07

13 796.5 758.75 -4.74 782.75 -1.73

14 846.75 793.25 -6.32 843.25 -0.41

15 915 903.75 -1.23 915.75 0.08

16 988.25 988 -0.03 988 -0.03

Table 12.19: Finite element modal frequency variations for welds 2 and 8 missing,

differences in weld positions only

Table 12.20 gives the nominal modal frequency ranges for differences in sheet thickness 

only. Table 12.21 examines the combined effects of differences in spot weld positions and 

differences in sheet thickness on the nominal modal trequencies.

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15

16

221.25
227.75 

256
325.75
422.25
500.75
534.75
552.75 

589
654.75 

672 
756

796.5
846.75 

915
988.25

188.75
204.25
229.75
291.5

390.75
453.5

486.25
390.75
529.5

588.75
605.75
707.25
754.75
793.25
825.25

-14.69
-10.32
-10.25
-10.51
-7.46
-9.44
-9.07

-29.31
- 10.10
-10.08
-9.86
-6.45
-5.24
-6.32
-9.81

229
247.75
279.75
355.25
448.5
541.25 

584 
604 
644

718.25
737.75
707.25
786.75
849.5

915.25

3.50
8.78 
9.28 
9.06 
6.22 
8.09 
9.21 
9.27 
9.34 
9.70
9.78 
-6.45 
- 1.22 
0.32 
0.03

y o o .c o  __________ _______;-;----—
Table 12.20: Finite element modal frequency variations for

differences in sheet thickness only

welds 2 and 8 missing,
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Mode Number Nominal Lower Bound % Difference Upper Bound % Difference
1 221.25 175 -20.90 245.25 10.85
2 227.75 189.75 -16.68 265.25 16.47
3 256 229.5 -10.35 280.25 9.47
4 325.75 291.5 -10.51 355.25 9.06
5 422.25 389.5 -7.76 448.5 6.22
6 500.75 453.25 -9.49 541.25 8.09
7 534.75 486.25 -9.07 584 9.21
8 552.75 390.75 -29.31 604 9.27

9 589 495.5 -15.87 680.75 15.58

10 654.75 588.5 -10.12 722.5 10.35

11 672 605.25 -9.93 738.25 9.86

12 756 681.75 -9.82 755.5 -0.07

13 796.5 740 -7.09 800.25 0.47

14 846.75 767 -9.42 885.75 4.61

15 915 817 -10.71 915.75 0.08

16 988.25 891.5 -9.79 988 -0.03
Table 12.21: Finite element modal frequency variations for welds 2 and 8 missing,

differences in weld positions and sheet thickness

12.7.3.2 Experimental Testing of Manufactured Specimens

Nominal 2 4 6
229 272.75 242 251.75

248.75 315 278.25 230.25
256.5 306.75 256.75 229.25
321 382.25 321.75 289

335.75 349.75 338.75 333.25
422.25 mm 420.75 390.25
502.5 594.75 501.5 452

532.25 _ 532.75 335
560.25 668.5 558 497
605.25 722.75 608 540
615.75 - 681
626.25 682 -

639.25 785 - 886.75
654.25 790.25 655.25 780
674.25 - - 778

678 815 - 604.25
685.5 _ 723.5 897.25

766.25 924 - 543.25
806.75 879.25 819.75 588.25

871 - - 1022
880.25 9 '• • 771.25 858.25 a

_ 996.75 733.5 685

8 10 12 14 16 18

268.5 225.75 188.75 346 203.25 181.75
305.75 250.25 220.75 298 229 203.75
309.75 256 226 304 256 226.25

382.25 319.5 283 376.25 319.5 286
346.5 334.25 328,75 - 332 476.25

577.75 475.25 387.5 618 513. 389

595 502 446 589.25 502.25 449.75
726.5 532.25 520.25 667.25 534.5 -

670.25 558 491.75 816.75 611.25 495.5
603 537 777.5 589.51 544.25

561.75 800.75 - 843
612.75 577.25 787.75 570.25 523

772.5 628 765.5 812.75 560.75 508

792.25 656.25 571.5 ■ 3 1 653.5 575.25

818.5
819.5

675 753.5 - 679 605.25
677.5 672 816.75 682.5 607

824.5 633.75 589.5 821 880 834.25

786.75
854.5

765.25 - - 770.75 684.5
801.25 596.5

1005.5
834.25 1 779.5

658.5
750.5
777.5

949.25 900.75 827.25 921.25 723.25 « 8 4 3
573.75 733 1000 1022.256 75 733 5 685 i 928.5 l - j— — l

Table JZ22™ntire experimental modal frequency results jor welds 2 and 8 missing
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Table 12.22 gives the complete set of experimental modal Irequency results for the case of 

welds 2 and 8 missing. Table 12.23 gives the nominal modal Irequency ranges for 

differences in spot weld positions only, and Table 12.24 examines the ellects of differences 

in sheet thickness only.

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 229 203.25 -11.24 242 5.68

2 248.75 229 -7.94 278.25 11.86
3 256.5 256 -0.19 256.75 0.10
4 321 319.5 -0.47 321.75 0.23

5 335.75 332 -1.12 338.75 0.89

6 422.25 420.75 -0.36 475.25 12.55

7 502.5 501.5 -0.20 502.25 -0.05

8 532.25 532.25 0.00 534.5 0.42

9 560.25 558 -0.40 611.25 9.10

10 605.25 589.5 -2.60 608 0.45

11 615.75 - - - -

12 626.25 570.25 -8.94 682 8.90

13 639.25 560.75 -12.28 628 -1.76

14 654.25 653.5 -0.11 656.25 0.31

15 674.25 675 0.11 679 0.70

16 678 677.5 -0.07 682.5 0.66
17 685.5 633.75 -7.55 880 28.37

18 766.25 765.25 -0.13 770.75 0.59

19 806.75 779.5 -3.38 819.75 1.61

20 871 658.5 -24.40 658.5 -24.40

21 880.25 723.25 -17.84 900.75 2.33

22 996.75 1000 0.33 1000 0.33

Table 12.23. Experimental modal frequency variations for welds 2 and 8 missing,

differences in w e ld  positions only



Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 229 188.75 -17.58 268.5 17.25

2 248.75 220.75 -11.26 305.75 22.91

3 256.5 226 -11.89 309.75 20.76

4 321 283 -11.84 382.25 19.08

5 335.75 328.75 -2.08 346.5 3.20

6 422.25 387.5 -8.23 475.25 12.55

7 502.5 446 -11.24 595 18.41

8 532.25 520.25 -2.25 726.5 36.50

9 560.25 491.75 -12.23 670.25 19.63

10 605.25 537 -11.28 603 -0.37

11 615.75 561.75 -8.77 561.75 -8.77

12 626.25 577.25 -7.82 612.75 -2.16

13 639.25 628 -1.76 772.5 20.84

14 654.25 571.5 -12.65 792.25 21.09

15 674.25 675 0.11 818.5 21.39

16 678 672 -0.88 819.5 20.87

17 685.5 589.5 -14.00 824.5 20.28

18 766.25 765.25 -0.13 786.75 2.68
19 806.75 596.5 -26.06 854.5 5.92

20 871 1005.5 15.44 1005.5 15.44

21 880.25 827.25 -6.02 900.75 2.33

22 996.75 573.75 -42.44 928.5 -6.85

Table 12.24. Experimented modal frequency variations for welds 2 and 8 missing,

differences in sheet thickness only

Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 229 181.75 -20.63 346 51.09

2 248.75 203.75 -18.09 315 26.63

3 256.5 226 -11.89 309.75 20.76

4 321 283 -11.84 382.25 19.08

5 335.75 328.75 -2.08 476.25 41.85

6 422.25 387.5 -8.23 618 46.36

7 502.5 446 -11.24 595 18.41

8 532.25 335 -37.06 726.5 36.50

9 560.25 491.75 -12.23 816.75 45.78

10 605.25 537 -11.28 777.5 28.46

11 615.75 561.75 -8.77 843 36.91

12 626.25 523 -16.49 787.75 25.79

13 639.25 508 -20.53 886.75 38.72

14 654.25 571.5 -12.65 792.25 21.09

15 674.25 605.25 -10.23 818.5 21.39

16 678 604.25 -10.88 819.5 20.87

17 685.5 589.5 -14.00 897.25 30.89

18 766.25 543.25 -29.10 786.75 2.68

19 806.75 588.25 -27.08 879.25 8.99

20 871 658.5 -24.40 1022 17.34

21 880.25 723.25 -17.84 921.25 4.66

22 996.75 573.75 -42.44 1022.25 2.56

Table 12.25: Experimental modal frequency variations for welds 2 and 8 missing,

differences in weld positions and sheet thickness
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I able 12.25 gives the combined effects of differences in spot weld positions and 

deferences in sheet thickness on the nominal modal frequencies.

12.7.4 Any Two Welds Missing

I he symmetry of the model design could once again be used here for the case of any two 

missing spot welds. As given in Table 12.2, there are 15 different arrangements for the case 

of any two missing spot welds. The results for any two missing welds were obtained from 

finite element modelling only, since the manufactured specimens only omitted the same 

two weld positions. With the three different spot weld position arrangements and the three 

different levels of sheet thickness, this gave 135 different finite element models in total. 

There is insufficient space to show the complete set of modal frequency results from these 

135 models here, but they are given in Appendix B.

The uncertain FRFs given in Figures 12.48 -  12.55 were all taken at the same response 

point, this being a different point to the four locations used previously. Figures 12.48 and 

12.49 show the X and Y direction uncertain FRFs for any two missing spot welds, but with 

the same specimen thickness and spot weld positions, i.e. their nominal values. This 

therefore corresponded to 15 different finite element models. The nominal modal frequency 

ranges for any two missing welds only are given in Fable 12.26.

Figures i 2.48 and 12.49: Finite element responses for any two welds missing only
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Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 198.75 -10.17 224 1.24

2 227.75 195.75 -14.05 227.75 0
3 256 216 -15.63 255.5 -0.20

4 325.75 315.25 -3.22 323.75 -0.61

5 422.25 419.5 -0.65 421.5 -0.18

6 500.75 486.75 -2.80 503 0.45

7 534.75 524.5 -1.92 612.5 14.54

8 552.75 516.25 -6.60 588.5 6.47

9 589 535.75 -9.04 611.25 3.78

10 654.75 602.5 -7.98 654.75 0
11 672 669.25 -0.41 672.25 0.04

12 756 685.25 -9.36 757.25 0.17

13 796.5 689.25 -13.47 768.75 -3.48

14 846.75 781.75 -7.68 852.25 0.65

15 915 862.5 -5.74 953 4.15

16 988.25 749 -24.21 988.75 0.05

Table 12.26: Finite element modal frequency variations for any two welds missing only

Figures 12.50 and 12.51 are X and Y direction uncertain FRFs for the combined effects of 

any two missing spot welds and differences in spot weld positions, but with the nominal 

specimen thickness. This corresponded to 45 different finite element models. 1 he 

corresponding range of nominal modal frequencies tor these 45 models is given in 1 able 

12.27.

Figures 12.50 and 12.51: Finite element responses for any two welds missing, differences

in weld positions only



Mode Number Nominal Lower Bound % Difference Upper Bound % Difference
1 221.25 183.75 -16.95 240 8.47
2 227.75 180 -20.97 244 7.14
3 256 215.5 -15.82 255.75 -0.10
4 325.75 315.25 -3.22 323.75 -0.61
5 422.25 419.25 -0.71 421.5 -0.18
6 500.75 485.25 -3.10 503 0.45
7 534.75 511.75 -4.30 620.25 15.99
8 552.75 516.25 -6.60 642 16.15
9 589 522 -11.38 646.25 9.72
10 654.75 602.5 -7.98 657.5 0.42
11 672 669 -0.45 686.25 2.12
12 756 657.75 -13.00 757.5 0.20
13 796.5 678.75 -14.78 784.25 -1.54
14 846.75 781.75 -7.68 852.25 0.65
15 915 812.75 -11.17 953 4.15

16 988.25 749 -24.21 989 0.08

Table 12.27: Finite element modal frequency variations for any two welds missing,

differences in weld positions only

The combined effects of any two missing spot welds and differences in sheet thickness 

were then examined, so the spot welds were held fixed at their central positions. This once 

again corresponded to 45 different finite element models. Figures 12.52 and 12.53 show the 

uncertain FRFs for these models in the respective X and Y response directions, and Table 

12.28 gives the range of nominal modal frequencies.

<bo
c(0■£4)c

Figures 12.52 and 12.53: Finite element responses for any two welds missing, differences
in sheet thickness only
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Mode Number Nominal Lower Bound % Difference Upper Bound % Difference

1 221.25 179.75 -18.76 245.5 10.96

2 227.75 177.5 -22.06 249.75 9.66

3 256 200 -21.88 280.5 9.57

4 325.75 277.5 -14.81 355.5 9.13

5 422.25 389.75 -7.70 449.5 6.45

6 500.75 446 -10.93 546 9.04

7 534.75 478.25 -10.57 671.75 25.62

8 552.75 390.75 -29.31 681.5 23.29

9 589 496.25 -15.75 670.5 13.84

10 654.75 583.25 -10.92 720 9.97

11 672 603.5 -10.19 737.75 9.78

12 756 595.25 -21.26 831 9.92

13 796.5 623.75 -21.69 787 -1.19

14 846.75 781.75 -7.68 898.75 6.14

15 915 775.5 -15.25 953.75 4.23

16 988.25 681.5 -31.04 988.75 0.05

Table 12.28: Finite element modal frequency variations for any two welds missing,

differences in sheet thickness only

Finally the combined effects of any two missing spot welds, differences in specimen 

thickness and differences in spot weld positions were examined. 1 his coiresponded to a 

huge 135 different finite element models, figures 12.54 and 12.55 show the X and Y 

direction uncertain FRFs for these tests, and lable 12.29 gives the lange ol nominal modal 

frequencies.

Figures 12.54 and 12.55: Finite element responses for any two welds missing, dijfeiences

in weld positions and sheet thickness



Mode Number Nominal Lower Bound % Difference Upper Bound % Difference
1 221.25 166.5 24.75 263 18.87
2 227.75 150.75 33.81 267.25 17.34
3 256 199.5 22.07 281 9.77
4 325.75 277.5 14.81 355.75 9.21
5 422.25 358.25 15.16 449.75 6.51
6 500.75 401.75 19.77 546 9.04
7 534.75 436.25 18.42 676 26.41
8 552.75 390.75 29.31 708.25 28.13
9 589 418.25 28.99 683.75 16.09
10 654.75 522.5 20.20 722.5 10.35
11 672 539.25 19.75 797.75 18.71
12 756 591.5 21.76 831.25 9.95
13 796.5 620.25 22.13 993 24.67
14 846.75 757.5 10.54 898.75 6.14
15 915 730.25 20.19 1013 10.71
16 988.25 681.5 31.04 993.25 0.51

Table 12.29: Finite element modal frequency variations for any two welds missing,

differences in weld positions and sheet thickness

12.8 Discussion and Conclusions

In this chapter an extensive study was conducted of the effects of uncertainties within a 

spot-welded component. This component itself was a basic “double omega” beam with 

symmetry in all three orthogonal directions, so was a somewhat idealised structure. I he 

spot-welded joints introduced nonlinearity and complexity into the design, however, to give 

a more substantial problem.

In contrast with the previous five thesis chapters, the uncertainty approach used in this 

chapter was much more straightforward, consisting of a simple design-of-experiments 

approach. The advantage of this chapter though is the range ol tests that were conducted, 

both numerical and experimental. 171 different finite element models weie used here and 

18 different manufactured specimens, so that all the selected uncertainties were able to be 

examined thoroughly. The experimental tests conducted here were also in contrast to the 

simulated problems of the previous live chapters, and allowed a direct comparison between 

numerical and experimental results, something that had not been possible in the pievious 

chapters.

This chapter presented a sizeable body of results, beginning with Figures 12.16 12.19.

I hese four figures examined all ten responses simultaneously, foi both the X and \
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directions, and lor the finite element and experimental tests. All four of these figures show 
that, in general, the specimen modes can be seen at all of the response locations.

Figures 12.20 and 12.21 show that the agreement between the nominal finite element model 

and nominal manufactured specimen responses is reasonably good, but could be improved. 

Unfortunately there was not time available for any model updating, as this could have led to 
an improved agreement between the two.

The nominal manufactured specimen exhibited many more modes than that of the nominal 

finite element model, with 22 compared to 16. These two sets of modes were compared to 

one another with the FDAC, in order to see which 16 of the experimental modes 

corresponded to the finite element modes, and which could be ignored. The correlation 

between modes with the FDAC was very poor, however, with no pair of modes giving an 

index greater than 0.5. For this reason, an unequal number of modes had to be used for the 

nominal finite element and experimental models.

In relation to the presence of welds in the component, four different sets of circumstances 

were examined; all welds present, any single weld missing, welds 2 and 8 missing, and any 

two welds missing. Finite element models were tested for all four of these situations, but 

only two of the situations were verified by experimental results -  all welds present and 

welds 2 and 8 missing.

Figures 12.22 -  12.27 examined the range of FRF amplitudes for different combinations of 

uncertainties with all ten welds present. In Figure 12.22 the agreement between the finite 

element and experimental uncertain ranges is good, especially below 500Hz. In Figure 

12.23 the match between these two ranges is not quite as good, but still of a reasonable 

quality. In Figure 12.22 the actual ranges of the finite element and experimental predictions 

are similar, whereas for Figure 12.23 the experimental range appears to be the wider of the 
two.

For Figures 12.24 and 12.25 the uncertain FRF ranges are wider than in Figures 12.22 and 

12.23, suggesting that differences in sheet thickness is a more significant uncertainty than 

differences in spot weld position. As with Figures 12.22 and 12.23, the finite element and 

experimental X direction responses in Figure 12.24 match better than the V direction

161



responses in Figure 12.25.

In Figures 12.26 and 12.27 the uncertain FRFs are noticeably wider than previously, for the 

case of both the experimental and finite element tests. This implies that a combination ol 

spot weld position and sheet thickness uncertainties has a greater ettect on the response 

than either of the two individually, a result that could be deduced intuitively. Once again 

the finite element and experimental X direction responses are matched better than the Y 

direction responses. This may be related to the excitations only being made in the X 

direction.

Table 12.3 gives the complete set of finite element modal frequency results lor the case o! 

all ten spot welds present. It can be seen that lor each different combination of sheet 

thickness and spot weld positions, the correlation between the sample modes and those of 

the nominal model is good. There are very few poorly correlated modes or modes where a 

match was not possible, and these tend to be for the same few nominal modes. The 

correlations in general are very good, with FDAC indices greater than 0.75.

Table 12.4 examines the effects ol differences in spot weld positions for the finite element 

model. It can be seen that some modal frequencies are susceptible to the positions of the 

spot welds (modes 1, 2 and 9), but others are very insusceptible to them. This is in contrast 

to Table 12.5, where virtually all of the nominal modes are susceptible to a change in sheet 

thickness. These results are in agreement with Figures 12.22 -  12.27, where sheet thickness 

uncertainties had a greater effect on the FRF responses than weld position uncertainties. 

Table 12.6 then shows that in every case, the combined effects of differences in spot welds 

positions and sheet thickness is greater than either of the two individually. This is in 

agreement with the finite element uncertain FRF plots in Figures 12.26 and 12.27, where 

the same conclusion can be drawn.

Table 12.7 gives the complete set of modal frequency results for experimental tests with all 

ten welds present. Although the correlation of the various specimen modes with the set of 

nominal modes is still good, in comparison with the corresponding finite element case in 

Table 12.3, the results are slightly poorer. There are many more nominal modes that cannot 
be matched, even considering that there are more nominal experimental modes than 

nominal finite element modes. There are also more average quality correlations, where the
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FDAC index is between 0.5 and 0.75. This poorer nominal mode correlation for the 

experimental case may be related to the wider experimental FRF bounds in Figures 12.22 -  
12.27, especially the Y direction responses.

As with the finite element results, there are some nominal modes that are susceptible to 

changes in spot weld positions alone, but other modes that are virtually unaffected by it. 

Also as with the finite element results, all nominal mode frequencies are aflected by a 

change in sheet thickness, and the combined effects of changes in sheet thickness and spot 

weld positions is greater than either of their effects individually. I his is once again in 

agreement with the experimental uncertain FRF bounds in figures 12.22 — 12.27.

1 he second situation for weld availability was then examined, with any single missing spot 

weld. This situation was studied by finite element modelling only, and the complete set of 

modal frequency results is given in Tables 12.11 -  12.13. As explained previously, this 

corresponded to one of three spot welds absent, and it can be seen from the tables that the 

quality of correlation with the nominal modes is generally dependent on which weld index 

is missing.

Of the three missing weld positions, the correlation between specimen modes and nominal 

modes is best when position index 2 is missing (see Figure 12.9). 1 he modal correlations 

become worse if the missing weld is at position 3, and are even worse if position numbei l 

is omitted. The results for position 1 or 3 missing also show a poor correlation is almost 

always found for particular nominal modes; mode numbers 5, 6, 12 and 13 for position 1 

absent; mode number 12 for position 3 missing. This is most likely due to those paiticulai 

modal vectors being especially dependent on the spot welds that have been removed, i.e. as 

nodes of vibration. Without these welds present, the modal response is much less 

significant, and therefore the correlation with the nominal model FRhs becomes woise.

Figures 12.28 and 12.29 examined the sole effects of any one missing spot weld on the 

finite element responses. In both the X and Y direction responses it can be seen that the 

range of FRF amplitude is very small, and that the correlation with the nominal model is

very good. The conclusion from this is that the individual effect of a single missing weld is

small. This is reinforced by modal frequency results in Table 12.14, where the frequency 

,unges of the nominal modes are small.



Figures 12.30 and 12.31 then suggest that the combined effects of any single missing weld 

and differences in spot weld position are much more significant than those ol any single 

missing weld alone. This is confirmed by comparing the nominal modal frequency ranges 

in Table 12.15 with those in Table 12.14. Comparing Figures 12.32 and 12.33 with figures 

12.30 and 12.31, or the modal frequency ranges in Table 12.16 with those in fable 12.15, 

these results suggest that differences in sheet thickness is more significant than differences 

in spot weld positions, as had also been found with all ten component spot welds present. 

Figures 12.34 and 12.35, and Table 12.17 show that, as with all ten welds present, 

differences in sheet thickness and spot weld positions have a greater effect on the response 
than either of the two individually.

1 he third examined situation for weld availability was welds 2 and 8 absent, and this also 

enabled a comparison between finite element and experimental results, figures 12.36 and 

12.37 examine the effects on the response of removing welds 2 and 8 from the nominal 

finite element model. Although the amplitude of the FRF plots changes with the removal of 

these two welds, it can be seen that many of the modal frequencies remain virtually the 

same. The same can be seen for the removal of welds 2 and 8 from the nominal 

experimental specimen in Figures 12.38 and 12.39; that the modal frequencies remain much 
the same.

f igures 12.40 and 12.41 then compared the finite element and experimental responses in 

the X and Y directions for welds 2 and 8 missing. If these two figures are compared with 

figures 12.20 and 12.21 where all ten welds were present, it can be seen that the removal of 

welds 2 and 8 has made the correlation between the finite element and expeiimental results 

worse, especially in the X response direction.

figures 12.42 and 12.43 compared both the finite element and experimental uncertain fRfs 

Tor differences in spot weld positions and the two missing spot welds. These two figures 

can be compared with Figures 12.22 and 12.23 when all ten spot welds were present, and it 

can once again be observed that the correlation between finite element and experimental 

'"csults has become worse. This is again truer in the X response direction than the \ 
direction.

,^ures 12.44 and 12.45 compare the finite element and experimental uncertain FRFs for
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the two missing welds and differences in sheet thickness. It can be seen that the range of the 

uncertain FRFs is greater than in Figures 12.42 and 12.43. This suggests that as previously 

with all ten welds present and any single weld missing, the sheet thickness uncertainty has a 

greater effect on the results than the spot weld positions uncertainty. Figures 12.46 and 

12.47 reinforce that, as observed previously for other weld availability situations, the 

combined effects of differences in weld positions and differences in sheet thickness is 
greater than either of the two individually.

Table 12.18 gave the complete set of finite element modal frequency results for welds 2 and 

8 missing. If this table is compared to Table 12.3 where all ten welds are present, it can be 

seen that the FDAC correlation indices between the measured and nominal modes have 

become worse, with many more poor correlations. This reinforces the behaviour observed 

in Figures 12.36 and 12.37, where removing welds 2 and 8 changed the measured FRFs of 

the nominal finite element model.

The nominal modal frequency ranges in fables 12.19 and 12.20 show that dilierences in 

spot weld positions are less significant on the finite element response than differences in 

sheet thickness, which is in agreement with Figures 12.42 -  12.45, and has been observed 

in other results here. Comparing fable 12.21 with lables 12.19 and 12.20 shows that the 

combined effects of differences in spot weld positions and dilierences in sheet thickness is 

greater than either of the two individually, which is in agreement with Figures 12.46 and 

12.47.

"fable 12.22 gives the complete set of experimental modal frequencies for welds 2 and 8 

missing. A direct comparison with Table 12.7 where all ten welds were present shows that 

the removal of the two welds has made the FDAC correlation indices with the nominal 

experimental modes worse. This is as with the finite element modal frequencies in I able 

12.19. The difference however is the extent ol the nominal mode correlations. II lables

12.3 and 12.19 are compared with Tables 12.7 and 12.22, it can be seen that the correlation 

with the nominal modes has deteriorated more for the Unite element models than the 

experimental specimens. In other words, removing welds 2 and 8 Ironr the finite element 

model seems to have had a greater effect than removing them from the experimental 

specimens. This can be confirmed by re-examining Figures 12.36 -  12.39. There are 

appears to be a greater change between the nominal and measured FRFs for the finite



element responses in Figures 12.36 and 12.37 than for the experimental responses in 

Figures 12.38 and 12.39.

Tables 12.23 -  12.25 then restate the conclusions made from the finite element modal 

frequency ranges in Tables 12.19 -  12.21, i.e. that differences in sheet thickness are more 

significant than differences in spot weld positions, and that the combined effects of these 

two uncertainties are greater than either of the two individually.

The fourth and final examined situation for weld availability was then any two welds 

missing. These results were obtained from finite element modelling only, as the 

manufactured specimens only dealt with a specific pair oi missing spot welds. As given 

previously in Table 12.2, the symmetry of the component design gave 15 different 

arrangements for two missing spot welds. Combined with the spot weld position and sheet 

thickness uncertainties this gave 135 different finite element models, so the majority ol the 

171 finite element models were with two missing spot welds.

Figures 12.48 and 12.49 gave the sole effects of any two missing spot wields on the FRF 

responses. If these two figures are compared with the sole effects ol a single missing weld 

in Figures 12.28 and 12.29, it can be seen that the range of FRF amplitudes for any two 

missing welds is much greater. The uncertain FRFs in Figures 12.48 and 12.49 weie 

calculated from 15 different models, however, compared to the tlnee models used in 

Figures 12.28 and 12.29. Table 12.26 gives the modal frequency ranges for any two 

missing welds only. If this table is compared with Table 12.14 for any single missing weld, 

it can be seen that the modal frequency range lor two missing welds is greater, which 

reinforces the uncertain FRF observations made for Figures 12.48 and 12.49. Thus, 

removing a greater number of spot welds from the model leads to a greatei vaiialion of the

model response

Figures 12.50 and 12.51 gave the combined effects ol any two missing welds and 

differences in spot weld positions on the finite element uncertain I R1 s. I he iange ol 1 K1 

amplitudes is greater here than in Figures 12.48 and 12.49. Table 12.27 also shows that 

differences in spot weld positions give an additional increase in the modal frequency ranges

when compared to Table 12.26.
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As with many previous results, Figures 12.52 and 12.53 show that differences in sheet 

thickness have a greater effect on the FRF responses than differences in spot weld 

positions. Table 12.28 confirms this for the nominal modal frequency ranges. Figures 12.54 

and 12.55 then show that the combined effects of differences in spot weld positions and 

differences in sheet thickness for any two missing spot welds arc greater than either of the 

two individually. By this point, however, the amount of uncertainty within the models is so 

great that the uncertain FRF plots in Figures 12.52 -  12.55 give results that are not actually 

very meaningful, other than to illustrate the amount of uncertainty that is present in the 

predicted responses. This is also true for the nominal modal frequency ranges in Table 

12.29, where the variation of these modal frequencies is now quite high in relative terms.

The technique of estimating FRF amplitude ranges by using a prediction envelope worked 

reasonably well here. This was a simple technique that could be implemented quickly and 

efficiently. For a high number of uncertainties, however, i.e. any two welds missing, the 

amplitude ranges predicted by this approach are very wide, giving vague results where 

individual modes in the uncertain FRF plots cannot be distinguished.

The use of the FDAC to calculate the modal frequency variations proved to be an effective 

technique here. A method was needed to detect the appearance of the nominal modes in 

each different Unite element model or manulactured specimen that was tested, and as stated 

previously, attempting this solely by visual FRF inspection was much too subjective an 

approach. The majority of finite element models and experimental specimens examined had 

more modes than those of the nominal cases, so the FDAC enabled the pruning of these 

new surplus modes.

For the frequent problem where several ol the measuied sample modes were possible 

matches for the nominal modes, the FDAC indices ot these matches enabled a quick 

decision to be made on the correct mode to select. All 20 ot the response DOhs (X and V 
responses at 10 different accelerometer locations) were used in the calculation oi the 

1T)AC, so there was no redundant information in the multitude oi FRFs that were 

measured.

As already oullined in section 12.4, simplifications were made for both the spot weld 
positions and sheet thickness uncertainty. Although these two uncertainties were somewhat



unrealistic for a real-life case, they were necessary for the uncertainty study undertaken 

here to be practical. It has been suggested in the past that there are more effective 

modelling representations of Unite element spot weld joints than the Nastran CWELD 

element. Complex arrangements involving several rigid bar connectors can be used for each 

separate weld, but this leads to more time needed for mesh generation.

For the work here, the 2.5mm displacement in spot weld positions was exactly equal to the 

mesh element size. One Finite element model was initially created with no weld elements, 

and this was used as a template for all of the finite element models used here. The use of 

the CWELD element meant that the weld positions could be changed very quickly for each 

different model, and the sheet thickness uncertainty involved a simple change of the overall 

material parameters.

1 his chapter has seen an extensive investigation into the dynamic eiiects ol three selected 

uncertainties for a spot-welded steel component, using both numerical and experimental 

tests. The overall conclusions that can be made from the results obtained are:

• Of the three uncertainties studied here, the sheet thickness is the most important 

in relation to the effects on both the FRF amplitudes and the nominal modal 

frequencies.

• The spot weld positions uncertainty is less important, and the numbei ot missing 

welds parameter is the least important ot the three.

• Combinations of parameter uncertainties have a greatei el led on the model 

response than using them individually.

• In relation to the FDAC, the finite element FRF correlation with the nominal 

model is worse for any one missing spot weld than for all welds piescnt

• For the finite element models, the range of the nominal modal frequencies is 

greater for any two missing welds than lor any one missing weld

• The effect of removing welds 2 and 8 on the FDAC FRF correlation with the 

nominal model is worse for the finite element case than the experimental case.
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13. Conclusions and Further Work

13.1 Conclusions

The title of this thesis was chosen to be deliberately broad, in order to incorporate a wide 

range of work. Uncertainty propagation and quantification is an important topic to consider 

within structural dynamics, although it also crosses over to a number ol other academic 

disciplines. This thesis has thoroughly examined the effects ol uncertainty, both in 

simulated problems and real-life examples.

As outlined in the thesis introduction, uncertainty can be categorised into two different 

types: aleatory uncertainty (often called “variability ) and epistcmic uncertainty. Aleatory 

uncertainty is the inherent variation of a quantity; epistemic uncertainty arises ft om a lack 

of knowledge of the studied system or process. Both of these two different types can have a 

significant effect on the behaviour of a system, so need to be considered carefully. The 

traditional “factor of safety” design approach involving a nominal model is often overly 

conservative for engineering applications, so it is more beneficial to model the eifects of 

the uncertainties present in the system.

An important feature of this thesis is the use of the information-gap uncertainty theory, and 

this was outlined in the thesis introduction. The earliest and most popular method of 

representing uncertainty is the “probabilistic” approach, but information-gap theory takes a 

very different approach to this. It was proposed for problems with “severe” uncertainty, 

where there is a large gap between the information that is needed to model the system, and 

the information that is actually available. Information-gap theory proposes that uncertainty 

may be either favourable or detrimental, and provides measures for assessing both of these 

two characteristics. In this thesis it is the favourable aspect that is examined.

After the thesis introduction there followed five “theory” chapters, all of which were 

necessary for the remainder of the thesis. The first of these was entitled “Interval 

techniques”, and concentrated on the uncertainty techniques of interval arithmetic, affine 

arithmetic and quadratic arithmetic. Although the methodologies of all three of these
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techniques were outlined (especially interval arithmetic), the main purpose of the chapter 

was to highlight why these techniques were unsuitable for the subsequent thesis work.

Interval arithmetic is highly conservative and often provides excessively vague predictions 

for an uncertain system. This is also referred to as “dependency” or “the bound explosion 

eifect”, and is especially true if the uncertain system is autoregressive, which many oi the 

simulated examples here were. Affine and quadratic arithmetic both exhibit this same 

conservative behaviour to a lesser extent, but at the cost of a significant increase in 
computational expense.

Continuing this line of thought, chapter 3 then proposed a number of methods that weie 

suitable for modelling the uncertain autoregressive systems to be encountered here. The 

title “Possibilistic sampling methods” was chosen as an umbrella term to incorporate all ol 

the work presented in the chapter. Possibilistic modelling is an alternative branch of 

uncertainty quantification, as opposed to the older and more popular probabilistic methods. 

All of the methods within chapter 3 used a methodology similar to design-of-experiments.

Chapter 3 concluded by introducing the transformation method, a possibilistic uncerta 

approach used frequently within this thesis. The transformation method was developed as a 

Practical means of conducting fuzzy arithmetic, and is used for simulating systems with 

uncertain parameters. Three different versions of the transformation method were outlined, 

where these versions differed in computational expense.

Chapter 4 then gave a guide to evolutionary computation methods, beginning with genetic 

algorithms. This was in preparation for an introductory section on the differential e 

algorithm; an evolutionary strategy that was used several times in this thesis. Differential 

ev°lution is a global optimisation algorithm using the principles of natural sec 

lhe optimum parameters of a system. Solutions are stored in real-number format and vector 

differentials are used to mutate existing solutions.

As many 0f  the systems in subsequent chapters were to be represented by autoregressive 

models, chapter 5 gave an introduction to this type of model. This began wit an 

mtroduction to the ARX model, then described the differences between one step a
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long-range predictions. The NARX model (an extension of the linear ARX model to 

nonlinear systems) was then also described. Chapter 5 concluded with an explanation of the 

pseudoinverse approach (a simple matrix-inversion training approach for systems that are 

linear-in-the-parameters) and the recommended process for training autoregressive models 

from scratch.

Chapter 6 then gave an introduction to artificial neural networks, which were to be used in 

two of the subsequent thesis chapters. Following a brief section on the theory and origin of 

neural networks, the two most popular neural network types were presented individually. 

These were the multilayer perception (MLP) and radial basis function (RBF) networks. The 

operation and training approaches for these two networks were covered, in preparation for 

the later work.

Once the five “theory” chapters had been completed, the emphasis then shifted onto the 

new and original work within the thesis. Chapters 7-12 each presented a different example 

of an uncertain system, where the predictive models used in these chapters tended to 

successively increase in complexity. Each of these chapters presented its methodology and 

results individually within that chapter, although, where relevant, the chapters occasionally 

referenced one another also.

Chapters 7-11 were all computational problems, although chapters 9 and 10 used pre­

sliding friction data obtained experimentally. In each of these five chapters a crisp-valued 

model was initially used to represent the system in question. Uncertainty was then 

deliberately introduced into the parameters of these crisp-valued models, so that the model 

outputs became interval ranges. This was analogous to the information-gap concept of 

“opportunity”, where the favourable aspect of uncertainty is assessed.

Chapters 7, 9 and 10 all used the same methodology to train their respective interval-valued 

models, although the type oi model and the data were different. Chapter 7 used one of the 

simplest kinds of model — an ARX model for a linear system. Simulated data was generated 

for this linear system, but this original data was much too simplistic to provide a true, 

challenging problem to study. Zero-mean Gaussian noise was therefore added to the 

outputs of this data set, so that, in truth, the system was now no longer linear.
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An initial crisp ARX model was found for this noisy data set by using the pseudoinverse 

approach. Different combinations of input and output lags were systematically tested so 

that the optimum arrangement of ARX regressor terms could be found. As would also 

follow in chapters 9 and 10, the uncertain model for this system was trained by two 

different approaches: proportional expansion and the differential evolution algorithm.

Proportional expansion simply means that each element of a crisp solution vector is 

expanded by the same proportional value p into an interval number centred around its 

original value. This maintained the relative magnitudes of the interval coefficients in 

respect to each other, and was computationally simplistic. It was argued, however, that this 

approach did not take into account the individual contribution of each solution vector 

element, so did not consider the possibility that the crisp solution contained a number of 

“bad” elements.

The differential evolution algorithm was therefore used as a second interval training 

approach in order to train the interval model coefficients/weights independently of one 

another. It was recognised that minimising the width of the interval model prediction 

bounds was equally important as minimising the model prediction error, so a “width 

penalty term” was incorporated into the objective function of the differential evolution 

training algorithm. This term was preceded by an adjustable coefficient /i, so that differing 

emphasis could be placed on minimising the widths of the model bounds.

For these two different interval training methods, the coefficients p and (i therefore 

controlled the amount of uncertainty introduced into the network. The rationale behind 

using these two different training approaches was that the differential evolution method 

should give tighter prediction bounds as it optimised the interval model coefficients 

individually, as opposed to the proportional expansion approach which did not.

As shown early in the thesis in chapter 2, interval arithmetic cannot be used for long range 

predictions from any kind of uncertain autoregressive method, due to its excessive 

conservatism. One of the possibilistic sampling methods from chapter 3 therefore had to be 

used, but this led to an issue of computational expense for the differential evolution 

algorithm. An autoregressive model should be assessed on the quality of its long-range
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predictions, since these are representative of the future use of the model once it has been 

trained. It therefore makes sense for the differential evolution algorithm to train the interval 

model on its long-range predictions. If this is done using a possibilistic sampling method, 

however, it is simply not possible due to computational expense, so a key assumption was 

made in chapter 7. It was assumed that optimising an uncertain autoregressive model on its 

interval arithmetic one-step-ahead predictions with the differential evolution algorithm 

would also optimise the long-range predictions using a possibilistic sampling method. 

Chapters 7, 9 and 10 all used this assumption, so the results were awaited to see how valid 

the assumption was.

As chapter 7 was the first chapter of original work, it was viewed as a good opportunity to 

directly compare many of the possibilistic sampling methods from chapter 3. The long- 

range prediction errors of the uncertain ARX model were estimated with four of these 

methods for both the proportional expansion and differential evolution approaches, over a 

range of/; and p values respectively.

Figure 7.2 gives the proportional expansion results for the four different possibilistic 

sampling methods. It can be seen that these four curves are very similar, and all show a 

continuous monotonic relationship between the long-range prediction error of the interval 

models and the level of uncertainty introduced. This raises the issue of a “trade-off’ 

between prediction error and solution precision; a theme that resurfaces in subsequent 

thesis chapters.

Figures 7.4 and 7.6 gave the differential evolution results for the four different possibilistic 

sampling methods. Unlike the proportional expansion curves in Figure 7.2, some of these 

curves are significantly different from one another, and not all ol them show a monotonic 

relationship between long-range prediction error and level of uncertainty introduced. This 

shows that different possibilistic sampling methods can give different results, so the choice 

of which method to use is important. The reduced and modified reduced transformation 

method curves do show a continuous monotonic relationship between long-range prediction 

error and level of uncertainty introduced, so these are the two methods that are 

recommended for use here.
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The central conclusion from chapter 7 was therefore that if some degree of tolerance can be 

accepted on the predictions from a model, it is possible to reduce the prediction error. The 

continuous trade-offs in both Figure 7.2 and the transformation method variants of Figure 

7.6 are useful here, because this is very much an application-dependent and user-specific 

problem. Some problems may require a much higher solution precision than others, and a 

higher error may be tolerable on some problems than others. The use of the coefficients p 

and /? allows a user of this method to choose a suitable trade-off level relative to their 

particular application.

Chapter 8 then examined replacing a nonlinear system with an uncertain linear model. 

Equivalent linearisation of a nonlinear system is a very well-known control technique, to 

the point where it is taught within an undergraduate degree syllabus. The approach here 

differs from that, however, in that an interval-valued linear model is used, as opposed to a 

conventional crisp linear model. The Duffing oscillator was used here as it is one of the 

simplest nonlinear systems available.

Nonlinear predictive models are able to give a good prediction over a wide range of system 

operating points, as was shown in Figure 8.3. A linearisation of the system gives an inferior 

prediction quality, however, and this prediction quality deteriorates rapidly as the operating 

point deviates from the linearisation point, illustrated in Figure 8.1. The aim of chapter 8 

was therefore to create a model that had the operating range of a nonlinear model, but the 

computational simplicity of a linear model. This was achievable with an uncertain linear 

model, given here as an interval-valued ARX model.

As in chapter 7, an initial crisp-valued model was generated for the system. Only the 

proportional expansion approach was used to generate the interval models here though, so 

the differential evolution algorithm was not required in chapter 8. The operating point of 

the interval ARX model was represented separately by two different measures: system 

input RMS and additional system output noise. 1% long-range MSE was used as the 

desired prediction error of the model.

Figures 8.4 and 8.5 give the interval model performances in relation to the two specified 

measures. Figure 8.4 gives the range of system input RMS than can be tolerated in order to
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give an interval long-range MSE of up to 1%, with respect to the expansion proportion p of 

the regressor coefficients. The long-range MSE of the initial crisp ARX model at the 

linearisation point was 1.9%, so for a small value of p it is not possible to obtain 1% 

interval MSE, regardless of the input RMS. The remainder of Figure 8.4 then shows that as 

more uncertainty is introduced into the ARX model coefficients, a greater range of input 

RMS can be tolerated. As with Figure 8.4, Figure 8.5 shows that for small values of p it 

isn’t possible to obtain 1% interval MSE, so the results curve is not plotted in that region. 

The remainder of Figure 8.5 then shows that as the ARX regressor coefficients are 

expanded further, a greater level of additional output noise can be tolerated to still obtain an 

interval MSE of up to 1%.

Figures 8.4 and 8.5 also exhibit the trade-off behaviour experienced in chapter 7. As more 

uncertainty is introduced into the ARX model, this model can then tolerate a greater range 

of operating conditions, but this will inevitably come with the price of wider model 

prediction bounds. The measures assessed in Figures 8.4 and 8.5 are both continuous with 

the expansion proportion which enables a decision to be more easily made on the 

optimum trade-off level. As with chapter 7, this trade-off is application dependent and user- 

specific. Although the Duffing oscillator studied in this chapter was only a simple nonlinear 

system, this technique could also potentially be used for more complex nonlinear systems.

Chapters 9 and 10 then increased the complexity of the computational model used; moving 

from the ARX models of chapters 7 and 8 to artificial neural networks. The two most 

popular neural network types were used: the multilayer perceptron in chapter 9 and the 

radial basis function network in chapter 10. The data set used here was pre-sliding friction 

data obtained experimentally in a background paper from a specially constructed test rig.

As with chapters 7 and 8, an initial crisp-valued model was found for chapter 9, although 

the architecture of this MLP network was taken directly from the background paper. This 

two-layer network had a sufficiently small number of weights for uncertainty to be 

introduced into all of them. As in chapter 7, the uncertain weights were trained by both the 

proportional expansion approach and the differential evolution algorithm, where these two 

methods were respectively governed by the adjustable parameters p and ft.
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The long-range interval MSE values of the network were found over a wide range of p and 

P values, where these results are shown in Figures 9.3 and 9.6. As with Figure 7.2 and the 

transformation method variants in Figure 7.6, Figures 9.3 and 9.6 show that there is a 

continuous monotonic relationship between the level of uncertainty introduced into the 

network (given by p or /?) and the interval prediction error. This once again allows a trade­

off between these two quantities, where the level for this trade-off is application-dependent 

and user-specific. For the proportional expansion approach, Figures 9.4 and 9.5 show that if 

an inferior initial crisp solution were used for the MLP network, the bounds would need to 

be wider in order to obtain the same value of interval MSE. This is a result that could be 

deduced intuitively.

Unlike chapter 9, the optimum architecture for the radial basis function network in chapter 

10 was not originally available, so this had to be deduced as part of the training phase. An 

initial crisp-valued RBF network was found for the data, although this had a significantly 

greater number of adjustable parameters than the MLP network in chapter 9, with 56 in 

total. This was too many for uncertainty to be introduced into all of them, so the decision 

was therefore made to only set the network output layer weights as interval numbers. As 

with chapters 7 and 9, these uncertain parameters were trained by both the proportional 

expansion approach and the differential evolution algorithm.

The uncertain network output weights were trained for a variety of different p or p  values 

respectively, and these results are shown in Figures 10.1 and 10.4. There is once again a 

monotonic continuous relationship between the level of uncertainty introduced into the 

network and the interval MSE. Introducing uncertainty into the network output weights 

causes the predicted output bounds to become wider, leading to a trade-off between 

minimising the network prediction error and minimising the widths of the predicted 

bounds. As in chapters 7 and 9, the continuous relationships in Figures 10.1 and 10.4 allow 

this trade-off to be made more easily by the user. The optimum level for this trade-off is 

application-dependent and user-specific. Figures 10.2 and 10.3 show that to obtain a lower 

value of interval MSE from the same initial crisp solution with the proportional expansion 

approach, the proportion of expansion p needs to be greater. This is in agreement with the 

proportional expansion curve in Figure 10.1, and is also a result that could be deduced 

intuitively.
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As the same data set was used in chapters 9 and 10, this gave an interesting opportunity to 

directly compare the MLP and RBF neural network types for the same problem. In chapter 

9 the optimum crisp MLP network had 17 adjustable weight parameters and gave a long- 

range MSE of 4.1% on the test set. The crisp RBF network in chapter 10 had 56 adjustable 

weight parameters and gave a long-range MSE of 10.2% on the test set. In the case of this 

pre-sliding friction data therefore, the MLP network is able to provide a much better 

prediction with a simpler model structure. Even considering that the training phase for this 

MLP network was much longer than for the RBF network in chapter 10, the MLP network 

is still the superior of the two types here.

A direct comparison can also now be made for the proportional expansion approach and the 

differential evolution approach, based on the results obtained in chapters 7, 9 and 10. It can 

be seen that the proportional expansion curves in Figures 7.2, 9.3 and 10.1 all have very 

similar shape, showing an exponential-like decay of the interval model MSE as the 

expansion proportion p is increased. The proportional expansion approach therefore works 

in much the same way here, regardless of the type of computational model.

In chapter 7, Figures 7.3 and 7.7 directly compare the proportional expansion and 

differential evolution approaches for the same value of long-range interval MSE. It can be 

seen that the bounds from the proportional expansion approach are significantly narrower, 

even though this is a much simpler method for obtaining an interval-valued model. In 

chapter 9, Figures 9.4 and 9.7 make the same comparison between the two different interval 

training methods. Here the differential evolution bounds in Figure 9.7 are very slightly 

narrower, but this is barely visible on these two figures. In chapter 10, Figures 10.2 and

10.5 also compare the two different approaches. In this case the average sample bound 

width over the whole 8000 samples of the test set is 0.2% lower for the proportional 

expansion approach than the differential evolution training approach, so the proportional 

expansion approach produces marginally narrower prediction bounds.

It was hypothesised early on in this thesis that the differential evolution training approach 

would produce narrower prediction bounds than the proportional expansion approach, due 

to it training the uncertain quantities independently of one another. Based on the above 

comparisons between these two methods in chapters 7, 9 and 10, this hypothesis appears
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not to be true. Even though the differential evolution training approach first introduced in 

chapter 7 is much more computationally expensive than the proportional expansion 

approach, it gives inferior results. This raises the question as to how its use can be justified.

As stated earlier, it was assumed that optimising an uncertain autoregressive model on its 

interval arithmetic one-step-ahead predictions with the differential evolution algorithm 

would also optimise the long-range predictions using a possibilistic sampling method. It is 

likely that this assumption is the problem here, not the idea of training uncertain parameters 

independently of one another.

One-step-ahead and long-range predictions for an autoregressive model are not the same, 

and although it could be estimated that minimising the former would also minimise the 

latter, this is certainly not guaranteed to be true. Interval arithmetic also differs from the 

possibilistic sampling methods introduced in chapter 3, so assessing outputs on these two 

methods is also likely to generate different values. This could explain why the differential 

evolution algorithm does not predict tighter long-range bounds than the simpler 

proportional expansion approach. It is possible that if the computational power was 

available to train the uncertain model parameters on their long-range outputs with 

differential evolution, this minimisation of output bound widths could be achieved. With 

the computational power available for this thesis, however, this was impractical to attempt.

Chapter 11 then changed direction slightly, with a look at a simple nonlinear system 

capable of bifurcation. This system was a harmonically-driven symmetric Duffing 

oscillator modelled in discrete-time, where the coefficients of this system were the same as 

for the Duffing oscillator used in chapter 8. The steady-state response amplitudes were 

calculated over a range of different forcing frequencies and it was found that within two 

particular forcing frequency limits, an additional steady-state limit cycle appeared. The 

steady-state limit cycle that the system settled upon was dependent on the initial conditions 

provided to the system.

Unlike the previous four chapters, the aim of chapter 11 was not to model the system, but 

merely to show the behaviour of which the system was capable. Bifurcation of a nonlinear 

system can lead to significant changes in the system behaviour, as was the case here.
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Figures 11.2 -  11.4 and 11.6 -  11.7 show how the basins of attraction change for the two 

limit cycles as the forcing frequency is changed. Figures 11.5, 11.10 and 11.13 then show 

that very small changes in initial conditions can give significant changes in output 

behaviour; a characteristic that is well known for chaotic nonlinear systems.

Three different forcing frequencies were chosen within the bifurcation range in chapter 11. 

In each of these three different cases, a different set of initial conditions was chosen that lay 

very close to a basins of attraction boundary on the phase portrait, so that a very small 

change in initial conditions would give different steady-state system behaviour. As with 

chapters 7-10, an initial crisp model was obtained for the system. This took the form of a 

NARX model, where the regressor coefficient values were given in terms of the specified 

system parameters.

The proportional expansion approach was used in chapter 11 to transform the initial crisp 

NARX model into an interval-valued model for the three different forcing frequencies. As 

this was once again an uncertain autoregressive model, a possibilistic sampling method had 

to be used to approximate the long-range prediction bounds. Figures 11.8 and 11.9 give 

uncertain output bounds for two different expansion proportions />, in the case of the first 

forcing frequency g>=160 rad/s. Figure 11.8 shows that a small p value was unable to detect 

both steady-state limit cycles of the system, but the larger p value in Figure 11.9 was able 

to do this.

The uncertain output bounds in Figure 11.9 therefore indicate both steady-state behaviours 

that the bifurcating discrete-time system is capable of, but without excessively wide output 

bounds. Figures 11.11 and 11.12 then show similar behaviour for the second forcing 

frequency of <y=170 rad/s, where the uncertain prediction in Figure 11.12 shows both 

steady-state behaviours without overly-conservative output bounds.

Figures 11.14 and 11.15 then give uncertain output predictions for the third forcing 

frequency of cu=180 rad/s. As with the previous two forcing frequency increments, the 

expansion proportion in Figure 11.14 was insufficiently large to represent both steady-state 

limit cycles. The larger p value in Figure 11.15 gave prediction bounds that contained both 

steady-state limit cycles for that co value, but that were not unnecessarily wide to achieve
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this task. Comparing the uncertain model predictions in Figures 11.9, 11.12 and 11.15 with 

the displacement histories in Figures 11.5, 11.10 and 11.13, it can also be seen that the 

largest ranges of output from the interval models occur in the transient region, which is 

something that could have been deduced intuitively.

Chapter 11 therefore showed that an interval-valued model could be used to illustrate the 

possible behaviour of a bifurcating nonlinear system. Bifurcation is often a problem for 

nonlinear systems, and its effects can be severe. The deliberate introduction of uncertainty 

into the NARX model here allows the user to better understand how the system is likely to 

behave when bifurcation is a possibility, so this chapter is another example of the 

favourable aspects of uncertainty.

Chapter 12 was the largest chapter in this thesis, and presented the findings from nine 

months of research. This chapter is a contrast to the remainder of the thesis, as it gives 

many results obtained experimentally from an industrial environment, as opposed to the 

simpler simulated problems in chapters 7-11. Another feature of chapter 12 is that it 

presents work conducted in the frequency domain, as opposed to the time domain work in 

the previous five chapters.

Unlike chapters 7-11, where uncertainty was deliberately introduced into adjustable 

coefficients of various different computational model types, chapter 12 instead looked at 

the effects of existing uncertainties. The system in question was an automotive spot-welded 

component with symmetry in all three orthogonal directions. The effects on the component 

dynamic response were examined for three different selected uncertainties: component 

sheet thickness, differences in spot weld positions and varying numbers of missing spot 

welds. These were considered as uncertainties that the component was likely to experience 

in a real-life situation. It was chosen to use spot welds in this chapter because they are very 

widely used in the automotive industry, and they exhibit nonlinear behaviour.

In chapter 12 the system was represented by both computational modelling (in the form of 

finite element analysis) and experimental modal testing. This enabled a direct comparison 

between these two approaches. A design-of-experiments approach was used for the 

uncertainty modelling, to continue the possibilistic uncertainty theme running through this
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thesis. The three selected uncertainties were investigated quite intensively, with 18 

manufactured specimens and 171 different finite element models used in total.

The ten accelerometer locations for the component were selected using an optimisation 

routine, and the additional weight from these was included in the finite element models. 

The component was always excited at the same point and in the same direction, and only 

two of the three orthogonal response directions were studied, as the third was shown to be 

much less significant. The uncertainty in the component response was assessed by two 

different measures: the range of FRF amplitudes and the variation of the nominal modal 

frequencies. The appearances of the nominal modes in other specimens were judged using 

the frequency domain assurance criterion (FDAC), a frequency-domain equivalent of the 

well-known modal assurance criterion (MAC).

The ten welds in the nominal component design were assigned numerical indices 

corresponding to their locations. Four different situations were examined for the number of 

missing spot welds parameter: all ten welds present, any single weld missing, welds 2 and 8 

missing, any two welds missing. The manufactured experimental specimens only had either 

all ten welds present or welds 2 and 8 missing, so a finite element-experimental comparison 

was not possible for all four situations.

After calculating and inspecting all of the results from chapter 12, the following set of 

conclusions were drawn:

• Of the three uncertainties studied, the sheet thickness is the most important in 

relation to the effects on both the FRF amplitudes and the nominal modal 

frequencies.

• The spot weld positions uncertainty is less important, and the number of missing 

welds parameter is the least important of the three.

• Combinations of parameter uncertainties have a greater effect on the model 

response than using them individually.

• In relation to the FDAC, the finite element FRF correlation with the nominal 

model is worse for any one missing spot weld than for all welds present
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• For the finite element models, the range of the nominal modal frequencies is 

greater for any two missing welds than for any one missing weld

• The effect of removing welds 2 and 8 on the FDAC FRF correlation with the 

nominal model is worse for the finite element case than the experimental case.

Unfortunately it had not been possible for any finite element model updating to be done in 

this work, due to time constraints. This widely-used modelling procedure could have 

improved the comparison between the finite element and experimental results, as the 

comparisons in Figure 12.20 and 12.21 were not ideal, although reasonably good.

Chapter 12 showed that the dynamic effects of three different uncertainties could be 

adequately modelled with a design-of-experiments uncertainty approach, and that predicted 

results obtained from computational and experimental procedures were largely in 

agreement. Although the spot-welded component was a somewhat idealised structure due to 

its orthogonal symmetry, chapter 12 still showed that uncertainty modelling can be used 

just as effectively in an industrial environment as for simulated computational problems.

Uncertainty propagation and quantification have therefore been extensively studied within 

this entire thesis. A number of different computational model types have been studied, 

along with finite element and experimental modal testing in an industrial environment. The 

thesis has concentrated on possibilistic uncertainty modelling techniques, as the work in 

chapters 7-12 has been more suited to this approach. All the uncertainties present here, 

whether the deliberate uncertainty introductions in chapters 7-11 or the existing 

uncertainties modelled in chapter 12, took interval forms. No information was available as 

to the distributions of these uncertainty quantities, so although the more popular 

probabilistic uncertainty approaches could have been used, possibilistic approaches were a 

better choice.

The various possibilistic sampling method applications in chapters 7-11 were used here as a 

way of circumventing the conservatism problems of interval arithmetic, as interval 

arithmetic is unsuitable for the long-range predictions of any uncertain autoregressive 

model. In chapters 7-11 all of the different possibilistic sampling methods described in
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chapter 3 were used, with the choice of method being dependent on the required 

computational expense.

Uncertainty was deliberately introduced into all of the computational models in chapters 7- 

11, and it was shown that the effects of this uncertainty could be favourable. Chapters 7-10 

showed that if some degree of tolerance could be accepted by the user on the predicted 

outputs, it was possible to obtain a lower prediction error when compared to the original 

crisp models. Chapter 11 showed that introducing uncertainty into a discrete-time 

representation of a bifurcating nonlinear system could illustrate all potential effects of this 

(albeit simple) bifurcation.

Another common theme in chapters 7-11 was the concept of a trade-off between the level 

of uncertainty introduced into the model and the level of precision obtained on the result. 

As already stated earlier, the idea of deliberately introducing uncertainty into a model to 

exploit the favourable aspects of that uncertainty originates from information-gap theory, 

and within this theory there also exists the idea of a “trade-off’ for both the opportunity and 

robustness immunity functions.

As already hinted upon, available computational power and time acted as limiting factors 

on much of the work done in this thesis. The idea of using differential evolution to 

independently train the uncertain parameters of interval models was good in theory, but the 

necessary compromise required for practical computational time meant that the proposed 

precision benefits did not materialise. Totally independent uncertain parameter training 

may be realisable in the cases of parallel computing power or the use of a “supercomputer”, 

but was not feasible for the stand-alone von Neumann-style computers used in this work. 

Increased time and computational power could also have permitted a greater investigation 

of spot weld uncertainties for the finite element models in chapter 12, or for a greater 

number of experimental specimens to have been manufactured and tested.

In summary, this thesis has studied the effects of uncertainty of a number of different 

systems, and has given several examples of how the information-gap theory can be applied 

to actual problems. It has shown that uncertainty can often be favourable, and has 

highlighted the application-dependent trade-off that frequently occurs between the level of
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uncertainty present in a model, and the level of solution precision. The thesis has shown the 

importance of modelling uncertainty within engineering applications, and has presented an 

alternative to the traditional “factor of safety” design approach.

13.2 Future Work

Chapters 7-11 deliberately introduced uncertainty into the adjustable parameters of various 

different crisp-valued computational models, and showed the beneficial effects of these 

uncertainties. This is analogous to the “opportunity” concept in Ben-Haim’s information- 

gap theory. Opportunity is only one of the two information-gap immunity functions, 

however. The second of these immunity functions, robustness, has not been considered at 

all within this thesis.

This is therefore a suggestion for future work. Time could be spent examining both the 

opportunity and robustness characteristics of introducing uncertainty into computational 

models. Robustness, however, is more suited to quantifying the effects of existing 

uncertainties, for example incomplete or noisy training data. This poor data could be 

represented by interval data, to indicate the severity of the data flaws. After selecting a 

nominal form for the computational model, uncertainty could then be introduced into the 

coefficients of this model, and the model could be assessed on both the opportunity and 

robustness performances simultaneously. This may lead to an optimum uncertainty level; 

one which best balances out the favourable and detrimental aspects of uncertainty for the 

model.

Another suggestion is to increase the complexity of the computational models used. From 

chapters 7-11, the highest degree of nonlinear model complexity reached was the neural 

networks in chapters 9 and 10. There are more complex nonlinear models available than 

these, however, either for the number of adaptive parameters used, or the processing 

operations. The techniques presented in chapters 7-11 could also be used for one of these 

models. In theory, any nonlinear model with adjustable coefficients/weights could be 

transformed into an uncertain model by the introduction of uncertainty into these adjustable 

quantities.
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A further suggestion is to study more complex nonlinear systems. Chapter 7 modelled a 

linear system with added output noise, and chapters 8 and 11 examined the Duffing 

oscillator, one of the simplest nonlinear systems available. Chapters 9 and 10 represented a 

hysteretic pre-sliding friction data set, which was the most complex of the systems in 

chapters 7-11. There are countless nonlinear systems that are more complex than these 

though, giving a much more challenging problem to attempt.

This call for more complicated nonlinear systems especially applies to chapters 8 and 11. 

The replacement of a nonlinear model with an uncertain linear model in chapter 8 has great 

potential for further use, as an uncertain linear model with operational range approaching 

that of a nonlinear model is a tempting prospect. In order to be credible though, the 

technique must be used on more difficult nonlinear systems than the Duffing oscillator. 

Likewise in chapter 11, using an uncertain model to demonstrate the potential behaviour 

range of a bifurcating nonlinear system is also an attractive proposition. As with chapter 8 

though, it needs to be implemented on more substantial bifurcations in the future.

All of the uncertainties introduced in chapters 7-11 were modelled using possibilistic 

uncertainty quantification techniques. This is only one of the two main branches of 

uncertainty quantification though, the other being the older and more widely used 

probabilistic branch. Probabilistic uncertainty quantification was not used at all within this 

thesis, as possibilistic modelling was considered to be the more suitable of the two 

approaches. An interesting idea for future work could be to see if the favourable uncertainty 

behaviour observed here would also occur for uncertainties introduced with probabilistic 

distributions. The uncertain model outputs would then also have probabilistic distributions, 

and an alternative interval MSE function would be needed to that of equations (7.5) and 

(7.6).

For the MADUSE work in chapter 12, there are a number of suggestions that can be made 

in relation to future work. The use of finite element model updating would have made a 

difference here, as the correlation between the nominal finite element and experimental 

responses is not exact. This could be a reason why the removal of 2 welds has a greater 

effect on the finite element response FRFs than for the experimental responses.
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One suggestion for future work in chapter 12 is to eliminate the simplifications used in the 

spot weld position and sheet thickness uncertainties. If the spot weld were displaced 

independently of one another, or local regions of sheet thickness variation were used, this 

could give a study that was more akin to a real-life industrial application.

A second suggestion is to use a more intricate representation of a finite element spot 

welded joint. Finite element joint models have been proposed in the past that take into 

account contact friction, residual pressure distributions and other factors. If experimental 

tests were again used, a model updating phase could specifically target the simulation 

parameters relating to these weld models.

A third suggestion is to examine uncertainties relating to material properties, i.e. mass, 

stiffness and damping, as opposed to the uncertain parameters that were chosen here. A 

fourth choice could be to use attempt an advanced uncertain modelling technique such as 

the transformation method, although this would require a much greater number of tests to 

be undertaken.

Another suggestion is to select a small number of modes that are most important in regard 

to the operation of the studied component, as opposed to the wide frequency range 

examined here. The effects of uncertainties on these specific modes could be studied, 

possibly including a figure for the maximum allowable uncertainty on a given parameter, 

considering its effect on the component as a whole.

A final suggestion is to study a more detailed model than the spot welded component used 

in chapter 12. This could be a built-up system consisting of several constituent parts, each 

with their own respective uncertainties, but still capable of being recreated in both a 

laboratory environment and by an engineering simulation software package.

At the time of writing this thesis there is in excess of two years remaining on the MADUSE 

project, so it is likely that some of these suggestions for future work arising from chapter 12 

are presently being implemented by the current MADUSE researcher at Centro Ricerchc 

Fiat.
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Appendix B

Presented here are additional results from chapter 12. Given are the complete set of 

modal frequency results for any two missing spot welds, corresponding to 15 different 

combinations of two missing weld positions.

Positions 1 and 2 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
..Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 200.5 213.5 166.5 221.5 234.25 206.25 242 : 254.5.; 226
227.75 213.5 221.5 187.25 233.25 243.25 225:5 253.75 265.5 .245.25 ■

256 155 155.5 143.25 166:75 170.75 166.5 178:5 180:5 178
325.75 357.25 357.25 243,5 393.75. 393.75 394 430,5 . .430,75. 430,5
422.25 391.5 391.75 358.25 421.5 421.25 421.25 '4 4 9 .2 5 449 449.5
500.75 446 446.5 401.75 486.75 487.5 485.25 524.5 525.25 522.75
534.75 478.25 559.5 496.5 526.5 620.25 533.5 573 579.5 671
552.75 496.75 544.75 441 550 596.5 548.75 602.5 652.75 602

589 529.25 487.25 418.25 535.75 537.5 522 583.5 585.5 573.5
654.75 587.5 587.5 522.5 652.25 652 652.25 714.75 714.25 715

672 605.5 605.25 539.25 669.5 669.5 669.75 737.5 736..75.; . : 738.25
756 683.25 683.5 693 914.5 757 75 863:5 830; ; 827.25 ¡  830.5 .

796.5 641.5 641.75 847 689.25 689 688 726 . .726 724.5
846.75 799 799.75 667 854.5 820.25 843.75 89B.75 866.75 885.75

915 819.75 816.25 730.25 953 907 914.75 947 996.75 946.25'

J288.25 892.25 771.25 94S 988.25 989 986 848 Q 9 9 r' t  811

0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

- No match found
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Positions 1 and 3 Missino

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
.Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 179.75 192.75 166.5 198.75 213.25 183.75 217 233 201.25
227.75 200.75 - 185.5 221.5 236.75 205.25 242.25 260 225

256 211 212.25 210.25 230.25 231.75 229.25 248.5 250.25 247.25
325.75 288 287.75 288 318.25 318 318.5 349 348.75 349.25
422.25 497 351 394.75 213.25 243.5 424.5 237.5 269 452
500.75 462.5 499.25 458.2b 504.75 . 552,25 500.75 546 550 : , 542
534.75 486.5 487.5 543 535.75 537 599.5 583.75 585.25 . 666.76 ,

552.75 525 554.5 554 582.25 614.75 612.5 638.75 , 674.5 670
589 501 518.5 476.25 554 575.25 546.5 .. . go?:,.;,' 631.75 599.5

654.75 586 585.25 585.5 649.5 648.5 648.75 711.75 711.25 : 710.. 25
672 603.75 603.75 604 669.75 669.5 670 ■ 946.25 . 736 935
756 808 808 5 776.25 863.25 982.75 863 - 948 .945'

796.5 635.75 643.75 978,5 848.5 861.25 683.5 895.75 751.75 733.75
846.75 796.5 797.25 794.25 755 816.25. 838 824.5 867 881.25

915 821.75 816.75 821.25 911.25 907.25 912.5 . 998 994:25
^988.25 724.75 757.5 890.25 787 75 7 rp . 986 829.75 929.25 ; 832.75

0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

- No match found

Positions 1 and 4 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
^Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 183.25 196.5 169.75 202.5 217.25 1.87,75 221.25 237:5 219
227.75 194.75 208.75 180.5 215 227,26 200 235.75 458.75 205,25

256 213.5 214.25 213 233.5 234.25 232.75 252,25 253.5 251.75
325.75 286.75 286.75 286.5 316.5 316.25 317 346.5 346.25 347
422.25 398.5 367.75 394.75 427-5 390:25 424.75 454 25 411 ,2 452.26
500.75 498.75; 523,5 460:2.5 552 * 630,5 500 25 604-5 . m 539.5
534.75 553 486.5 556.25 612.5 535.75 . . o :6 671.75 583.75 . . 67-..8.
552.75 516.25 545.5 500.5 572.25 604.5 553.5 627.75 663.25 605.75

589 504 541.75 487.25 558.25 552 ,. 539.25 612.75 >'37,1,26;,. 591.25
654.75 583.5 582 583.75 602.5 646.5 647 706.25 J 708.5 706.75

672 605,5 60.5.25 606 671.75 671.25 672.25 7 36.5 735.5 , 735.5
756 595.25 596.5 : 682.75' 757.25' 757.5 330.5 532 ' 834.76 2

796.5 656 5 662.7.5 0j5u. I u 710 '716.75 y r : - i  ->r. 757.75 764.5 750.25
846.75 795.75 797 ft A 4 845 824.5 841 890 876.5 884.5

915 953.75 946 821.5 862.5 935 946.5 Qdg 946.26 '

J388.25 891.25 888.75 988 988.75 984.5 995.75 qOQ i Q4S 5̂ 5
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Positions 1 and 5 Missing

.Nominal
0.9

Central
0.9

Inwards
0.9

Outwards
1.0

Central
1.0

Inwards
1.0

Outwards
1.1

Central
1.1

Inwards
1.1

Outwards

221.25 187.75 - 174 207.5 222.75 192.5 227 243.75 210.5
227.75 177.5 190.75 164 195.75 210.75 180 213.75 230.25 196.25

256 200.75 201.5 200 75 217.5 218.5 217.5 233.5 234.5 233.25
325.75 277.75 278 277 75 304 304.5 ... : 402 479.25 483 '4 /6  75 '■
422.25 166.25 426.75 160.5 186.75 203.5 - 207 226 449.25
500.75 403.75 409 4ÜQ.& 855.75 ,855.75 : . .  m  , 891.75 ._ 4ÊiimM « 5 8 2 ,25 J
534.75 508.25 545.25 483.25 604.25 555.75 . 6j.7:7;5 j 585.25 608.25
552.75 7 1 Û 5 487.25 502.75 535.75 536.75 534.25 583.75 662.5 587

589 496.25 515.5 450.5 550.5 571.5 4855 604.5 627.75 619 /6
654.75 450 451 25 323.25 î4 lÜ 7 5 i 484 343:75 516.75 51(5 25 357.25

672 776.75 603.75 467.25 669.5 670.5 965 735.75 946.25
756 681.5 681.25 681.5 371.75 755.75 756.25 ' .390 •• 1 421 831125

796.5 623.75 628.25 620.25 669.75 686.25 678.75 738.75 742.25 735,25
846.75 794.25 794.25 793.25 840 841.5 837.25 883.5 886 878.5

915 815.75 876.25 876.5 907.75 907.25 778 995.75 996.5 1013
.988.25 891.25 891.75 891.75 987.75 988.25 985.5 946 993.25

0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

No match found

___ Positions 1 and 6 Missing

.^¡orninal
0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1

Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 - 216.75 187 224 240 207.25 245.5 263 227.25
227.75 160 180.25 155.5 , 185.5: i 96 26 . M Æ . 202.6. .'21.7,75 187.25

256 200 201 199.5 216 217.25 215.5 230.75 232.5 230.25
325.75 285.25 285.25 285.5 316 316 316 346.5 346.5 346.75
422.25 355.25 366;75 406 ; 378.25 41Ô 435 400,5 4185 41.2 ■■
500.75 460,25 463.25 457.5 503 . 806 499:5 , 543.75 547 540
534.75 530 500.76: 485.75 602.25 602.5 534.75 670.75 661.5 676
552.75 500 560.75 496 587.75 621.5 547.5 644.75 681.75 603.25

589 527,5 488 47-1-76 - . r/w'-r Ot;•-> . V- \J 542,5. 614.25 660.75 .« 7 . 6
554.75 589.25 589.25 654.5 654.5 654,5 719.5 719.5 719.5

672 603.5 603.25 617.5 669.25 669 686.25 734.75 734.5 754.75
756

796.5
683 

460.25 
799 75

683.25
535.75

683 685.25 757.5 757.25
'■ i ,J l . j

753.25 751.75 ■ 734 %
' ;J-vi

846.75 795 797.75 841.25 842.25 839.25 888.25 889.75 882.25
915 775.5 775.5 775.5 914.75 910 915.5 947 1001

L§88.25 891.25 891.75 889.25 988 988.25 985.25 977 f * : 978.25 9 74 . v
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Positions 1 and 7 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 202 218 • 164 . 210 2 244.5 207.25 244.75 270.75 1 227.25
227.75 190 - 187.25 223.25 239 - 240.75 263.5 m  |

256 213.25 213.75 212.75 232.75 233.5 232.25 251.5 254.75 251
325.75 287.25 287.25 287.25 317.25 317 317.75 348 349 348.5
422.25 498.75 368.75 39445 427 424.25 4:53.5 421.25 451.76
500.75 485.75 486.75 651 535 565.75 501 ,j 544.5 629.5 54!
534.75 491.75 559.25 558.75 545.25 620.25 617.75 598.75 658.25 67675,
552.75 529.25 540.75 495.75 586.75 599.5 549.5 643.75 687 602.75

589 543.25 198.5 473.5 601.75 536 521.5 659.5 .082,6 3 584
654.75 587.25 587 587.5 652 651.75 652.25 716.5 719.75 716.5

672 605.5 605.25 605.5 671.5 671.25 671.25 735 735.25 966-'!,
756 821.5 776 810 75 - 757.75 8b3 854.25 945,5

796.5 656 661 75 459.25 710.25 716 704.5 759,55 770 . 752.762
846.75 800.25 794.5 944 845.25 Q 5 1  C 840.25 890.25 945 25 883.5

915 870.5 818.5 823 862.5 908.75 915 946 832 988

_988.25 891.5 892.25 889.75 988 988.75 985.75 995.25 914.75 830.75

0.75 < FDAC <1.0
0.5 <FDAC <0.75

FDAC < 0.5
- No match found

Positions 1 and 8 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
J^ominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 180.75 194 167.5 199.75 214.25 184,75 218.25 234.25 202.25
227.75 200.25 - 185.25 221.25 - 205.25 242 259.25 224.75

256 213.5 214.5 213.25 233.25 234.25 233 252.25 253.25 251.75
325.75 287.25 287 287.25 317.25 317 317.5 347.5 347.5 348
422.25 776.5 3.68.5 - 426.25 240:25 - 423.26 : . 452.7-5 268.6 . m y>
500.75 543.5 7 ' 4872/5 4.61 ¿0.2 ... .....53-/.. . 502 5 54.6 • 543

534.75 486.5 554.5 2.. j 535.75 614.75 6(32 75 584 674.5 579.35
552.75 525 536.75 560.25 582 594.25 • . 621- ■ 638.5 651 66 ! , ;

589 501.5 519 493 611.25 575.5 646.25 670.5 632 599.25
654.75 585.75 584.5 586 650 649 650 713.5 712.75 713.5

672 605.25 604.75 605.5 671.25 670.75 671.5 737,5 736.75 737

756 817/52 591.5 S12.2S i ' 862:25 657.75 •862.7:5- - 723 W56 6:, :

796.5 658 75 664.5 993 713.5 71S-.5 ' J ycçj y r 762.75 769 756.25

846.75 729.5 755.25 794.25 852.75 809.5 837.5 898 25 867.5 879,25

915 876 808.25 821.5 951 906.75 913.25 99p; 5 ' • 996.75 990:75

J988.25 892 816 75 890.75 988.75
-- . " i 

881 987 ■ 946 .9.47.25 945 ?5
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Positions 1 and 9 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
^Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 183.25 196.5 159.75 202.25 217.25 187.5 221.25
-

237.5 ;.:;205.25
227.75 195.25 208.75 150.75 215.75 227.75 200 236 458.75 219.25

256 213.5 214 209.75 233.25 234 232.75 252 253.25 251.5
325.75 287 287 285.75 316.75 316.75 317.25 347 347 347.25
422.25 192 207 392.25 427.5 227.75 424.75 464,25 441.25' 452:25 >
500.75 498.75 523.5 424 552. .580,5 È 501 75 604:75 637 541.5
534.75 485.75 545.75 436.25 534.75 604.75 617 582.75 663.25 580
552.75 516.5 542 431 572.5 60°.25 553.75 628 658 606.25

589 504 487 . 463 558.5 536 25 . 538.25 613 . 956,7.5 • 590
654.75 583.25 583.25 581 646.25 646^25 646.5 708.25 708.2 5 ~ 708.75

672 605.25 604.75 605.25 671 670.75 671.75 737.5 736.75 735.5
756 683.25 880 25 754 • 757.25 757.75 ' 863 964.25 8.31,25 . 831

796.5 658.25 664 920.25 712 v r i m .. 705.5 759 765.75 751.5
846.75 746.75 8,00.5 790. a 845 824 841 890.25 890 884.25

915 868.75 767.25 804 923.75 944.25 912.5 825.5 |  993.25 I j p s M  1
^988.25 891.5 QtQA R 901.25 988 988.75 985.25 • 9I 5.5 • 945,5

0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

- No match found

Positions 1 and 10 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 186.75 200.25 173 206.5 221.75 191.25 225.75 243 209.25
227.75 180 193 166.75 198.5 213.25 183 216.5 199.5

256 201.25 202.25 201 I 218.25 219.25 217.75 234 235.25 233.75

325.75 277.5 277.5 277.5 303:75 304 304 ■- 328.5' •329, ' . 328.75
422.25 172 425.75 . 161.75;. 192 461 183 211,75 485:5 455.75
500.75 485.5 500.5 544.5 . 524.75 .553,25 1 , 5 1 3 , ...Ü62.25, -, 6 0 5 :5 .. . . : 555
534.75 544.5. 577 466.25 563.5 605 - 584.25 663.5 m m m
552.75 526 546 553.5 603:5 ' 642 536 : 681.5 708.25 588

589 497 515 483.5 551.25 571.5 603.5 608.5 627.5 455.75

654.75 372.75 415.25 ' 356 393.25 ■44.i..75- 373,25 410 466:25 : 899.
672 617 604 615:75 1 iSiSi 669.75 .4-28; 75 459:5 " m Êm .455.70 ,

756 . 683,5 777.25 683.5. - 757.25 '7575 757.25 831 831 831.25

796.5 636.25 658 641.75 K i a i  g  / 4 0 . J .718,25 705.25 757 763 750.75

846.75 812.5 ; 811 ' • 943.75 839 i 840 2 5 ' 836.251 885.25 888.25 880.5

915 777.25 795.25 777.25 878.25 873.75 881 942.75 1010

^988.25 891 891.25 889 987.5 988 985.25 990.25 989 : , - 9 3 9  :-
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Positions 2 and 3 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
^Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 187 200.5 173.5 207 221.75 192 226.75 243 210.25
227.75 204.25 218.75 189.75 226.25 242.25 210.25 248 265.5 230.5

256 229 229.25 228.75 253.75 254 253.5 278.25 278.75 278
325.75 285.5 285.5 285.75 315.25 315.25 315.5 344 344 344.25
422.25 383 385 '¿77.75 . 411.25 413.5 405 437.75 440 25 . 43U 6
500.75 472.75 449.25 451.75 494J5 758.5 496 535,75 .133 ,25  j 538
534.75 491 - 530.75 • 542.25 604.25 . 541.25. 511.75 583.75 581.75 658
552.75 543 - 466.5 516.25 523.5 549.25 663.25 575.75 576

589 529.75 559.75 495.5 587.25 620.75 542.75 644.25 681 602.5
654.75 589.25 589 589.25 654.25 654 654.25 719 718.75 719.25

672 606 605.5 606.5 672.25 671.5 673 737.76 737 76 (Æ
756 776.25 776.75 . 776.25 875 75 - 758.5 082.25 832.5 : ' 832

796.5 683.25 688 661.25 715.25 727 705.25 759.25 769 750.5
846.75 795.75 794.25 795 841.5 841.5 839.5 885.5 886.75 880.75

915 820.75 815.75 822.75 912.5 908.25 914.5 996.75 998.5 993.75

_?88.25 891.25 891.25 891 988 988 864.25 945 O 1 O ,  O 94.  q

0.75 < FDAC <1.0
0.5 <FDAC <0.75

FDAC < 0.5
- No match found

Positions 2 and 4 Missing

0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1
^Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 188.75 202.5 175.25 209.25 224.25 194 229.25 245.5 212.75
227.75 201 215 186.75 222.5 238.25 207 244 261 226.75

256 229.25 229.5 228.75 254.25 254.5 253.75 278.75 279.25 278.25
325.75 291.75 291.75 291.75 323.75 323.75 323.75 355.5 355.75 355.5
422.25 390.5 391.5 390.5 421.5 421.25 421.5 449.5 449.25 449.75
500.75 452.75 452.5 452 497 496.75 496 539.5 539.5 538
534.75 486.5 486.25 475 : 530 534.5 526 580.5 581.25 v/t> y.
552.75 478.25 495.5 498.5 535.5 548 552 603 599.5 604.75

589 523 551.5 490.25 579.75 611.5 542.75 636 671 595
654.75 585 585 592.25 648 648 657 710.25 710.25 721.5

672 605.5 605.25 606 671.75 671.25 672.25 737.75 787 738.75
756 681.5 681.5 682 75575. " 755.5 8 0 « , : >J'3Q7v,' - 99715

796.5 7 52 I f 763.25 735.5 768.75 78175 754 786.75 800 766
846.75 801 799.5 799 851.75 825.5 844.5 . 878.25 888.75

915 833.25 839.75 827 917.75 918 916.25 - 9 3 f2 5  • 946.‘25

„988.25 891.25 y o l . ( 0 891 945 5 0 04 y r
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0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

- No match found

Positions 2 and 8 Missing

^Nominal
0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1

Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards

221.25 188.75 202.25 175 209 224 194 229 245.25 212.5

227.75 204.25 218.5 189.75 226 242 210.25 247 .75 265 .25 230.5

256 229.75 230.25 229.5 255 255.25 254.5 279 .75 280 .25 279.25

325.75 291.5 291.5 291.5 323.5 323.5 323.5 355.25 355 .25 355.25

422.25 390.75 390.75 389.5 420.5 420.5 420.5 448 .5 448 448.5

500.75 453.5 453 .25 453 .25 498.25 498 497.75 541.25 540.75 540.5

534.75 486.25 486 .75 4 73 26 535.75 536 623.75 584 582.75

552.75 390.75 496.5 544 ££ 525.75 549.5 • ...803.5 604 601.75 U '4 u  §
589 529.5 559.5 495.5 587 620 .25 549 644 680.75 602.25

654.75 588.75 588.5 588.75 653.5 653.5 653 .75 718.25 718 722.5

672 605.75 605.25 606 671.75 671 .25 672 .25 737.75 737 738.25

756 707.25 681.75 •f;n1 . 755 75 755.5 '962 7.18 25.: •
796.5 754.75 l A A  | 740 766.75 782.75 758.75 786.75 800.25 765.25

846.75 767 800 793.25 818 843.25 849.5 866 885.75
915 825.25 817 824.75 915.25 903.75 915.75 - - -

^988.25 719 ¡ 9 0 2 ; 5 | 891.5 988.7$ 810 5 988 -

2 0 0



Positions 2 and 9 Missing
0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1

„Nominal Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards
221.25 189.5 203 175.75 209.75 224.75 194.5 229.75 246.25 213.25
227.75 200.75 214.75 186.5 222.25 237.75 206.75 243.75 260.75 226.5

256 229.5 229.75 229 254.5 255 254 279.25 279.75 278.75
325.75 291.25 291.25 291.5 323.25 323.25 323.25 355 355 355.25
422.25 391.5 391.5 390.5 421.5 421.25 421.5 449.5 449.25 449.75
500.75 452.5 452.25 451.75 496.75 496.5 495.75 539.25 539 537.75
534.75 485.75 486 941.25 524.5 562 .,525.5 574.25 581.5 : ■ 57*i,5
552.75 498.25 496.25 498.75 551.5 549 552.25 604 601.25 605.25

589 522.5 551.5 488.75 579.5 611.5 541.75 635.75 671 594
654.75 586.25 586.25 586.25 650 650 657.5 720 713.25 721.75

672 605.5 605.25 605.75 671.5 671 671.75 737.25 797.75 737.25
756 707.5 742 681:5 755.5 755,5 862.5 .964.5 ■ 703; 831 25

796.5 751.25 681.5 735.25 767.25 780.5 753.5 784.5 797.75 765.25
846.75 544.75 780.25 800.75 852.25 825.25 845.5 898.75 874.25 889.25

915 803.75 750 824 922.75 812.75 914.75 946.75 82 /. 5 1000
L988.25 891.5 892.25 988.5 you.5 988.25 811.5 865.75 Q O H  -71Z

0.75 < FDAC <1.0
0.5 <FDAC <0.75
FDAC < 0.5

- No match found

Positions 3 and 8 Missing

^Nominal
0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1

Central Inwards Outwards Central Inwards Outwards Central Inwards Outwards
221.25 189.75 203.5 176 210 225.25 195 230.25 246.75 213.75
227.75 205.75 220.25 191.25 227.75 244 211.75 249.75 267.25 232.25

256 230.25 230.5 229.75 255.5 255.75 255 280.5 281 280
325.75 291.5 291.5 291.5 323.5 323.5 323.5 355.25 355.25 355.25
422.25 389.75 390.25 388.5 419.5 419.5 419.25 447.25 446.75 447.25
500.75 454.5 454 454.75 500 499.25 500 543.5 542.75 543.5
534.75 485.75 486.75 476.25 535 535.75 526 582 583.75 • 5/6:25
552.75 475.75 497 54-1.25 • 527.5 550 603 587.75 602.5 . . Q01-..C-!;

589 531.5 562 497.25 589.5 623 551.25 646.75 683.75 604.75
654.75 589.5 589.5 589.5 654.75 654.5 654.75 719.75 719.5 719.75

672 605.75 605.25 606.25 671.75 671.25 672.5 737.5 736.75 - 739:36
756 838.25 681.75 714 7.5 ' o*44 n x r  r.

. i V v  . W .361 5 ■ 706:5 • 7Q6 ■ ■: 945.25
796.5 759.25 7 7 9  *•% 744.75 77 5,75 784.25 759.25 787 801.25 - ' 78|>76 :
646.75 709 ( 5 757.5 799.25 800.75 840.75 817.5 849.75 881.25

915 823 819 825 915 910.5 917 946.5 ■947:5 ■ . c c q

L988.25 681.5 744.5 4681.75 1 749 828.75 QÀR ^ 856.75 893.75 • -831 ; ■

2 0 1


