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BSTRACT

This thesis presents the research undertaken on a novel fault-tolerant cellular
architecture with reconfiguration properties inspired by mechanisms found
in natural multicellular systems. The architecture is called Embryonics
(Embryology + Electronics). Embryonics proposes the application of
mechanisms that take place during the embryological development of
multicellular organisms to improve the reliability of 2-D silicon-based
programmable cellular architectures. The basic embryonic cell performs a
selection function. Logic functions are implemented in embryonic arrays by
constructing networks of selectors that represent them. Three examples of
the application of embryonic arrays are presented. To formally verify
embryonic array's fault tolerance, mathematical reliability models for
different embryonic reconfiguration strategies are derived. It is
demonstrated that embryonic distributed systems possess, in the majority of
cases, better reliability characteristics than equivalent centralised systems.
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INTRODUCTION
,

Electronic systems, particularly computers, have become common companions of everyday

life. We can find computers in banks, at school, in our desks and even in places where they

are not completely apparent like, for example, microwave ovens or vending machines.

Children from new generations are growing up taking these devices for granted, for them

computers have always been part of the world, computers are part of their lives. As time

passes, advanced societies will more and more depend on computers for their every day

functioning. Electronic money, electronic mail, virtual shopping, virtual school,

teleconferencing, entertainment on-demand, travelling arrangements on-line and automated

nearly autonomous manufacturing processes are options today. Tomorrow, they will be the

one and only alternative.

Nowadays, computers are used not only to simplify trivial and unimportant activities.

Nuclear power plants, expensive satellite and space probes, life-supporting medical

equipment, fly-by-wire aeroplanes, and telephone switching systems are applications where

computers are indispensable, either because of the amount of processing required or because

there is no chance for human operators to participate [Avi87]. For these applications a

computer failure could cost immense amounts of money, or even human lives. Therefore, for

these critical applications, computers cannot stop providing their services; they should work

"perfectly" for at least a predetermined period of time. This period is application dependent

and can span from seconds to tens of years.

To achieve this level of availability there are two possible approaches: either to build fault-

free hardware and software systems (the fault-avoidance approach), or to build hardware and

software systems capable of deliver their services even in the presence of faults (the fault-

tolerance approach) [Lee90]. Experience has demonstrated that the idea of building perfect

systems, although attractive, is impossible to achieve. Hardware deteriorates with time, and

software systems have become so complex that design faults are difficult, if not impossible,

to avoid. Hence, the more viable alternative is to implement systems capable of tolerate

faults, i.e. fault-tolerant systems.



INTRODUCTION

All fault-tolerant systems imply the use of redundancy to achieve resilience to faults;

however, the cost associated with redundancy is generally high. Cost is probably the only

factor that has prevented fault-tolerant systems from being widely used, however the ratio

cost/complexity of electronic systems is decreasing by the day, opening an opportunity for

highly redundant systems to be extensively used.

The aim of this project is to propose a line of research where technologies from different

fields of study can co-exist and give birth to a new paradigm for the design and construction

of hardware fault-tolerant systems.

It is undeniable that features of biological organisms such as, for example, healing, growth,

evolution and self-diagnosis would be extremely beneficial if applied to electronic circuits.

In particular, fault-tolerant systems would be greatly improved if donated with such

characteristics. Although direct transfer of the aforementioned biological mechanisms to

silicon is impossible, recent advances in various key technologies will allow the design and

implementation of bio-inspired fault-tolerant systems.

Embryonics is a nascent science that combines the latest developments in fields such as

electronics, molecular biology and theory of complexity, to propose a new approach to

hardware design. It departs from the observation that one of the most interesting features of

biological mechanisms at cellular level is their ability to self-repair: cells are continuously

killed and created. However, at higher levels of organisation, e.g. organs, limbs and bodies,

the organism continues to function as if all of its original cells were still active. The basis of

this robustness is the continuous replacement of old cells for brand-new cells. Cells

reproduce by following a "set of instructions" stored in their DNA. These instructions,

formally known as the genome of the organism, are passed from mother to daughter cells

during cellular reproduction. Embryonics adopts the concept of genome and transports it to

the 2-D realm of integrated circuits. The result is a family of programmable devices able to

autonomously change their configuration when a fault arises in one of their components.

Hypothesis

This thesis presents the work carried out during three years of doctoral work. The aim has

been to find out whether or not the following hypothesis is correct:

"Embryonic systems are viable alternatives for the design

and implenzentation of fault-tolerant systems"

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System
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INTRODUCTION

Contribution of the Research

The work reported in this thesis offers four main contributions as described below.

1. A novel approach for the design of fault-tolerant systems [Ort97a, Ort97b].

(Chapters 1, 4 and 5)

2. An alternative Field-Programmable Gate Array Architecture inspired by

Biology [Ort98a, Ort98c]. (Chapters 2 and 3)

3. An original memory structure for the MUXTREE embryonic architecture

[Ort98d]. (Chromosomic approach in chapter 4)

4. A novel reliability analysis that can be used to model reliability in

embryonic architectures and other cellular structures as well [Ort99b].

(Chapter 5)

In addition to these main contributions, six other contributions are worthy of inclusion here:

• A survey of the field of fault tolerance from the point of view of hardware

design (chapterl).

• A survey of the field of bio-inspired systems and evolvable hardware

(chapter 2).

• A review of biological topics such as the embryonic development of

multicellular organisms and the central dogma of Molecular Biology

(chapter 3).

• A survey of Field-Programmable Gate Arrays (FPGA) technology,

emphasising their internal organisation (chapter 3).

• A novel application of Ordered Binary Decision Diagrams (OBDD) and its

implementation using networks of multiplexers (chapters 3 and 4).

• An original application for embryonic arrays namely, the implementation

of a programmable frequency divider.

The work reported in this thesis has provided contributions for, at present, a total of ten

journal, conference or colloquia papers. The complete list can be consulted on page 6.

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System
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Chapter 3
Embryonics: A Confluence of Ideas

• Embryonic development in
multicellular organisms

• The Central Dogma of Molecular
Biology

• Introduction to cellular architectures

• Field-programmable gate arrays
(FPGAs)

• Binary Decision Diagrams

Chapter 4
Architecture of an Embryonic System

• The embryonics architecture

• Error detection and error handling mechanisms

• Application examples

Chapter 5
Reliability Analysis of the Embryonics Architecture

• Brief introduction to reliability analysis

• System reliability modelling

• Reliability analysis of embryonics reconfiguration
strategies

• Application of proposed models to compare
different embryonic architectures

Chapter 6
Conclusions and Future Work

• General conclusions

• The future of embryonics

• The future of bio-Inspired systems

Chapter 1
Fault Tolerance

• The need for fault
tolerance in modern
electronic systems

• Basic concepts in fault
tolerance and reliability

• Bio-inspired fault
tolerance

Chapter 2
Bio-Inspired Systems

• Bio-inspired systems
and Artificial Life

• The POE model to
classify bio-inspired
systems

• Evolvable hardware

INTRODUCTION

Structure of the Thesis

Figure 0.1 shows, in a diagram, the structure of the present document.

Figure 0.1 Structure of the thesis
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INTRODUCTION

Chapter 1 introduces the subject of fault tolerance in the context of electronic systems

design. A review of the evolution of fault tolerance from its beginnings in the late 40's to the

present day is given. Concepts and notations commonly used in the field of fault tolerance

are defined in chapter 1. Particular emphasis is given to the problem of hardware fault

tolerance. To conclude the chapter, a novel approach to solve the problem of hardware fault

tolerance by drawing inspiration from mechanisms found in biological systems is proposed.

Chapter 2 is an introduction to the area of bio-inspired systems. Bio-inspired systems are

defined as those systems whose design or behaviour finds a correspondent mechanism in

nature. Bio-inspired systems are currently studied in the general framework of Artificial

Life; hence the most relevant works in this area are briefly described in this chapter. The

Phylogeny-Ontogeny-Epigenesis (POE) model for classifying bio-inspired systems is given

particular attention. Chapter 2 concludes with an introduction to a particular set of electronic

circuits whose behaviour is "evolved" rather than designed. It is proposed that evolvable

hardware offer new alternatives to solve the problem of implementing fault-tolerant systems.

Chapter 3 gives a brief introduction to the fundamental ideas that give shape to the

embryonics architecture. Embryonics is a proposal for a bio-inspired cellular architecture

with inherent fault tolerance properties. The two biological fields where embryonics draw

inspiration from are the development of embryos and the central dogma of molecular

biology. However, other technological resources are required to implement embryonic

systems, namely cellular architectures, field programmable gate arrays and ordered binary

decision diagrams. A general introduction to these fields is also presented in chapter 3.

Chapters 1, 2 and 3 are self-contained and can be read in any order. The content of these

three chapters provides the knowledge framework from which the embryonics architecture is

derived.

Chapter 4 presents a detailed description of the MUXTREE embryonic architecture. A block

diagram of a generic embryonic cell, along with a description of each one of its constituent

blocks is presented. The built-in self-test techniques employed to donate the cell with fault

tolerance, and the cost associated with it are discussed. The chapter concludes with three

examples of the use of embryonic arrays. Resilience to faults is verified by means of

simulation.

Chapter 5 provides a formal demonstration of embryonic aiTays' fault tolerance. First, a

review of the basics on reliability is given. Next, mathematical reliability models of well-

known structures (series, parallel, k-out-of-m) and some combinations of them are presented.

System reliability models for embryonics' reconfiguration strategies are obtained by

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System 	 17
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recursively applying the models for the simple structures presented before. To demonstrate

that the methodology proposed can be applied to analyse other reconfiguration strategies, the

reliability analysis of the MICTREE architecture is achieved. Chapter 5 concludes by

demonstrating that the mathematical models proposed can be used to compare either

different reconfiguration strategies or different alternatives of a particular one.

The main contributions of this work are summarised in chapter 6, along with some proposals

for future work in the fields of embryonics, evolvable hardware and artificial life.

The embryonic cell was implemented using Viewlogics'0 CAD suite WorkView°. The

design was captured in the form of schematic diagrams. The detailed schematic diagrams of

the MUXTREE cell have been included in Appendix A at the end of the document. The

schematics are sufficiently detailed so as to allow the implementation of the embryonic cell

in other CAD suites different to WorkView.

During the development of the research presented in this work a number of books and

journal articles have been consulted. Every effort has been made to give credit where it

corresponds to authors whose concepts and ideas have been used to support this research. A

list with all the references cited throughout the main body of the thesis is found at the end of

the thesis, after the appendix.

This research has being developed within the Bio-Inspired and Bio-Medical Engineering

Group, in the Department of Electronics, University of York. Any comments or further

inquiries should be addressed to:

Prof. Andy Tyrrell
Group Leader

Dept. of Electronics
University of York

York, Y010 5DD, UK
Tel: +44-(0)1904-43-2340
Fax: +44-(0)1904-43-2335

e-mail: amt@ohm.york.ac.uk
http://www.amp.york.ac.uk/external/media/cal/welcome.html
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This chapter presents the subject of fault tolerance in the context of
electronic systems design. In section 1.2 a review of the evolution of fault
tolerance from its beginnings in the late 40's to the present day is given.
Section 1.3 presents some common concepts and notations used in the
field of fault tolerance. Particular emphasis is given to the problem of
hardware fault tolerance. Section 1.4 introduces a novel approach to solve
the problem of hardware fault tolerance by drawing inspiration from
mechanisms found in biological systems.

CHAPTER 1

FAULT TOLERANCE

1.1 Introduction

When a system (natural or man-made) reaches a certain level of complexity, it becomes very

difficult to grasp all of its underlying dynamics, and therefore, it becomes less controllable

and less reliable [Pau96]. However, the needs of the modern individual are fulfilled using

extremely complex systems. What would our society be without computers, satellites,

aeroplanes, mega-software and free market? Complex systems are the foundation of our life-

style but they have become very unreliable and difficult to design. Therefore, it is necessary

to look for new methodologies and strategies to deal with complex systems. One approach is

the refinement of traditional design techniques, but the techniques themselves are becoming

too complex to be considered error-free. Evidently, we have to look somewhere else for

answers [Avi97].

There are two fundamentally different approaches that can be taken to increase the reliability

of complex computing systems. The first approach is called fault prevention and the second

fault tolerance. In the traditional fault prevention approach the objective is to increase the

reliability by a priori elimination of all faults. Since this objective is practically impossible

to achieve, the goal of fault prevention is to reduce the probability of system failure to an



CHAPTER 1	 Fault Tolerance

acceptably low value. In the fault tolerance approach, faults are expected to occur during

computation, but their effects are automatically counteracted by incorporating redundancy,

i.e. additional facilities, into a system, so that valid computation can continue even in the

presence of faults. These facilities consist of more hardware, more software, more time, or a

combination of all these; they are redundant in the sense that they could be omitted from a

fault-free system without affecting its operation.

Fault tolerance is not a replacement but rather a supplement to the most important principles

of reliable system design, i.e. (a) use the most reliable components and (b) keep the system

as simple as possible consistent with achieving the design objectives.

The effectiveness of fault tolerance for enhancing computing system reliability is much more

pronounced in a system composed of basically reliable components than in a system of

unreliable components. In other words, while fault tolerance can be used to increase

significantly the reliability of an already reliable system, it is of little use, and can even bnve

a detrimental effect, if the original system is unreliable in the first place.

This chapter presents a historical review of fault tolerance since its beginnings, and a

revision of the techniques currently available. The present chapter provides the conceptual

framework upon which the remaining chapters of this thesis are sustained.

1.2 Evolution of Fault Tolerance

Fault tolerance is not a new idea. The first digital computers made extensive use of error

detection and fault tolerance techniques to overcome the low reliability of their basic

components. Some of the early Bell Relay Computers (BRC), for example, had two central

processing units; one unit would begin executing the next instruction when the other unit

encountered an error [Pro48]. Later versions of the BRC used a retry mechanism to repeat an

operation immediately after an error was detected. The IBM 650, UNIVAC, and the

Whirlwind I computers incorporated parity to check the results of data transfers. The

EDVAC computer designed in 1949, is generally considered to have been the first computer

to completely duplicate the Arithmetic Logic Unit (ALU) and compare the results obtained

by each unit; the processing continued as long as the two ALUs agreed.

The advent of the transistor, along with its increased reliability, led to a temporary decrease

in the emphasis on fault-tolerant computing. For many designers, the major thrust was to

increase computer performance and speed and to depend on the improved reliability of the

transistor to guarantee correct computations. It was not until computers began performing

much more critical tasks that fault tolerance again surfaced as a crucial issue [Avi78].
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The first theoretical work in fault-tolerant computing is generally credited to John von

Neumann. In 1956 von Neumann wrote an article entitled "Probabilistic Logics and the

Synthesis of Reliable Organisms from Unreliable Components", in which he presented the

concept of majority voting and analysed the impact that such arrangements could have on the

probability of a system producing erroneous results [Neu56].

Since about 1970, the field of fault tolerant computing has been rapidly developing. Several

journals such as Computer, IEEE Micro, the Proceedings of the IEEE, the Journal of Design

Automation and Fault Tolerant Computing, and the IEEE Transactions on Computers

regularly present special issues that deal solely with fault-tolerant computing.

In addition, the International Symposium on Fault-Tolerant Computing (FTCS) has been

held each year since 1971. Its proceedings present the results obtained by researchers in

industry, academic institutions and government laboratories all around the world. The topics

covered include reliability modelling, architectural concepts, fault detection methodology,

and recovery techniques among others.

In recent times, some research has been focused on the fault tolerant attributes of massively

parallel processing element networks, such as artificial neural networks. In this approach the

"knowledge" is distributed throughout the multiple processing elements, therefore, if one or

a relatively small part of the processors fails, the overall functionality could be maintained

[Bar89] [Che90] [Dye95] [0ar96].

1.3 Basic concepts and definitions

As the community of Fault Tolerance researchers is growing all around the world, a common

vocabulary becomes necessary. In [Lap92] Laprie proposes informal but precise definitions

characterising the various attributes of computing systems dependability. The majority of the

scientific and technical community working on reliable and fault tolerant computing has

accepted this nomenclature.

In [Lap92] dependability is defined as the trustworthiness of a computer system such that

reliance can justifiably be placed on the service it delivers. For different users (human or

physical), the concept of dependability can vary depending on the properties of the service

delivered by the system:

With respect to the readiness for usage dependable means available.

With respect to the continuity of service dependable means reliable.

With respect to the avoidance of catastrophic consequences dependable means safe.
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With respect to the prevention of unauthorised access and/or handling of information,

dependable means secure.

A system failure occurs when the delivered service no longer complies with the

specification. The specification is an agreed description of the system's expected function

and/or service. An error is that part of the system's state which is liable to lead to subsequent

failure. The adjudged or hypothesised cause of an error is a fault.

Summarising: A fault leads to an error, which leads to a failure.

The development of a dependable computing system calls for the combined utilisation of a

set of methods. These methods can be classed into:

Fault prevention: how to prevent fault occurrence or introduction.

Fault tolerance: how to provide a service complying with the specification in spite of faults.

Fault removal: how to reduce the presence of faults.

Fault forecasting: how to estimate the present number, the future incidence, and the

consequences of faults.

Fault prevention and fault tolerance may be seen as constituting dependability procurement,

i.e. how to provide the system with the ability to deliver a service complying with the

specification. Fault removal and fault forecasting may be seen as constituting dependability

validation, i.e. how to reach confidence in the system's ability to deliver a service complying

with the specification. Figure 1.1 shows the dependability tree. The dependability tree

summarises the concepts introduced up to now [Lap92].

Figure 1.1 The dependability tree
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Fault Tolerance

Faults and their sources are extremely diverse. They can be classified according to three

main viewpoints: their nature, their origin and their persistence. Figure 1.2 summarises the

classification of faults according to [Lap92].

Figure 1.2 Classification of Faults

In the previous discussion the notion of system has been taken for granted, but a more

rigorous definition must be given in order to understand the following sections.

A system is any identifiable mechanism that maintains a pattern of behaviour at an interface

between the mechanism and its environment. An interface is simply a place of interaction

between two systems. The environment is another system that receives a service from the

first system. The external behaviour can be described in terms of a finite set of states. The

specification must clearly indicate the valid states of a system. A failure is said to occur

when the system reaches a state that was not considered by the specification.

From the internal structure point of view, a system is defined to consist of a set of

components that interact under the control of a design. A component of a system is another

system. This recursion continues up to the point when a system whose internal structure

cannot be discerned or is not of interest if reached.

The internal state of a system is defined to be the ordered set of the external states of its

components. The design defines and controls system's parts interaction and the flow of

inputs and outputs into and from subsystems.

Imposing structure is the basis for controlling complexity, and hence it is the basis of

methodologies for designing and constructing both hardware and software for reliable

computing systems [Lee90].
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1.3.1 The phases of fault tolerance

Given the impossibility of designing fault-free systems, it is necessary to incorporate fault

tolerance to improve their reliability. Fault tolerance techniques, either software or hardware,

always imply the use of redundancy. Redundancy can be either static or dynamic. In the

first case redundant components are opetative all the time, and the result delivered by the

system is a function of the results given by both the main and redundant components. In the

second case, spare components are kept inactive until a fail in the active component is

detected, then one of the spares (there can be several) is activated and updated with the most

recent valid system information in order to substitute the failing one. In general, fault-

tolerant system should be able to implement the following phases [Lee90]:

i) Error detection.

ii) Damage confinement and assessment.

iii) Error recovery

iv) Fault treatment and continued system service

In practice there can be considerable interplay between the various phases, which tends to

blur their identification in a particular system. Phases ii), iii) and iv) can be used in any order

depending on the system, and nor necessarily must all three phases be present. This is the

case when, for example, the repair of faults relies on manual intervention.

Error detection

In this phase the objective is to detect the presence of errors before they propagate

throughout the system and provoke a failure. Once the error is detected, either an exception

can be signalled so that other parts of the system can handle it, or the error is handled or

masked in the same module that detected it. In theory, if all errors were detected and

handled, no failure would occur, at the expense perhaps, of some system performance

deterioration. But to achieve this level of error manipulation is impractical due to cost

limitations and overheads.

There are a variety of error-checking techniques that can be applied; some of them are

described next. [Lee90]

Replication checks.- Probably the best technique but the most expensive. It detects possible

errors better than any other technique. This technique implies the complete replication of the

system whose state is being monitored. It follows the static redundancy approach. For error
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detection only two replications are needed. To mask errors, Triple Module Redundancy

(TMR) or N-Module Redundancy (NMR) is needed.

Timing checks.- Uses "time-outs" to detect the presence of a fault, but not its absence.

Watchdog timers are used in hardware and/or software to warrant that the system will not

stuck on an infinite loop. This technique is widely used in real-time applications.

Reversal Checks.- Used when the relationship between input and output is one-to-one. The

basic principle is to recalculate the input from the output and compare the result with the

actual input. The main problem with this technique is the overhead imposed to recalculate

the input. This process often takes more time to be completed than the original calculation.

Reversal checks must be an independent part of the system in its design and implementation.

Coding Checks.- Are based on redundancy in the representation of an object in use in a

system. Non redundant data are associated to the redundant data in a fixed relationship that

must be kept. Examples of the most commonly used coding techniques are: Parity checks,

Hamming codes, M-out-of-N codes, cyclic redundancy codes, signature instruction streams

and arithmetic codes. Coding checks need little redundancy but are at best a limited form of

acceptability check.

Reasonableness Checks.- Based on a knowledge of the internal design and construction of

the system. Applicable when the complete set of valid outputs is known. Examples: Range

checks, change-rate check, consistence with other objects in the system, type checking in

software. Explicit checks for reasonableness included in software systems are sometimes

termed assertions (assert statements), they evaluate to false if the state is erroneous. Run-

time checks in software add too much overhead to the system. They are included only during

testing.

Structural Checks.- Applied to data structures in software systems. They can check

semantic integrity or structural integrity. Structural checks are particularly applicable to lists,

queues and trees. Examples: Duplicated pointers, information elements in the structure.

Diagnostic checks.- Concerning specifically with checking the behaviour of the components

of which the system is constructed. These kinds of checks exercise the component with

inputs and check the outputs. They are applied periodically (at start-up time) or in the

background because of their expensiveness in terms of time and resources required for their

execution.
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Damage confinement and assessment

To protect critical system resources and minimise recovery time, errors must be confined to

the module in which they originate. Typically, error-containment boundaries are

hierarchically defined, with errors confined at the lowest level to single replaceable or

repairable modules, and additional boundaries set around subsystems containing this

modules. Containment boundaries can be established in two ways: Each module can check

its own outputs, or each can check all incoming information. The most common approach is

to require each module to suspect all incoming information and correct or contain faulty data

at the module interface. Voters are extensively used for this purpose.

If a module is to be responsible for its own output, it needs an error-containment boundary.

An error detection or correction circuit, such as a voter, a comparator, or a code checker, is

placed at the interface between the module and the system bus or communications channel,

along with a circuit capable of disabling the module's output. If error correction is not

possible, a faulty module must be isolated to prevent error propagation. A disadvantage in

this configuration is that the module interface often cannot protect the system from failures

of the interface circuits themselves [Ne190].

Strategies for damage assessment rely on the structure that the designer assumes will be

present in the operational system. Hence, damage assessment (often involving subjective

decisions) will be system specific.

Error recovery

The damage an error can generate could be anticipated or unanticipated. Forward and

Backward Error Recovery are the respective techniques applied to recover a system once

error have been detected.

Forward error recovery is always system specific and the success of this approach depends

upon the accuracy with which damage can be predicted (and assessed). Redundant data and

forward error recovery form the basis of error correcting codes which are used to recover

from faults in memory units. Error correcting codes utilise redundancy to enable the position

of the erroneous bit(s) to be calculated.

When backward error recovery is applied, the entire state of the system is replaced by a prior

state known as not erroneous in an attempt to simulate the reversal of time. The replacement

of the entire state of a system is called a reset of the system. The most basic reset is to place

the system in some predefined state (initial). This kind of reset is called "cold start". If the

reset can be done to several states different from the initial, this reset is referred to as "warm
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reset". If the system can be restored to a state which it occupied prior to the manifestation of

a fault, and if the fault was a temporary one, then all errors resulting from that fault must

have been removed.

A flexible backward error recovery facility will permit more than one recovery point to be

available; hence recovery data must be available for each of them. A recovery point is a

fault free state to which the system is taken when errors occur. A recovery point is said to be

active from the time at which it is established until it is discarded. That is called the recovery

region for the recovery point.

Fault treatment and restoration of service

To ensure reliability it is not enough to remove errors and return the system to a safe state, it

is also necessary to eradicate those faults that provoked the errors; otherwise errors can

manifest over and over again.

Fault treatment techniques commonly are system specific and difficult to implement, in fact

so difficult that sometimes the minimal approach is taken: Ignore the fault and hope for the

best [Lee90]. This approach could be successful if:

1. Error recovery is powerful enough to cope with recurring faults.

2. Future operation of the system fortuitously avoids the fault

3. The fault is transient.

Hardware faults are often transient, but software faults are always permanent because they

are design faults. Hence, for software systems without variants (redundant software modules

designed independently from the original program), backward error recovery will not work

since it would be futile to restore a prior state and try again with exactly the same program.

In general, fault-treatment techniques require two stages: fault location and system repair.

Fault Location

Automatic repair of the system will only be possible if the failure exception provides an

accurate guide to the location of the fault. The most important exploratory technique used to

locate faults is that of diagnostic checking, either in hardware or in software. In diagnostic

checking a component is invoked with a set of inputs for which the correct outputs are

known. Fault location usually precedes system repair, but a pessimistic and cautious

alternative defers fault location until system repair is under way. In this pessimistic approach
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all but a small set of trusted components are assumed to be faulty. Only components that

pass the diagnostic checks are accepted as not being faulty.

System repair

Techniques for system repair are based on some reconfiguration of the system so that the

characteristics of use of suspect components are modified to some extent. Reconfiguration

techniques have been classified as [Lee90]:

Manual: All actions are performed by an agent external to the system (usually human)

Dynamic: Actions are performed by the system in response to instructions from its

environment.

>- Spontaneous: All actions are initiated and performed by the system itself.

Dynamic and spontaneous techniques are only found in inaccessible or highly available

systems. These techniques use switching networks to reconfigure interconnections or

components. Components suspected of being faulty are replaced by stand-by spares. In

hardware systems identical designs are used. In software systems different designs are

needed because all faults are design faults. As mentioned before, spares do not necessarily

have to be idle, they can be used to do some work and the elimination of any module results

in a graceful degradation in the standard of service provided.

The size of replaceable components is important. Large components are easier to be detected

faulty but they impose large redundancy overhead on the system. Small components have

lower MTBF but the switching network to interconnect them becomes to complex. Dynamic

reconfiguration is preferred over spontaneous because sometimes faults cannot be located

automatically and if they can, manual confirmation must be given before the system is

allowed to reconfigure.

Resuming Normal Service

If recovery can be achieved by means of a fixed reset then this technique would probably be

adequate. For hardware systems a retry is frequently attempted. Retry is the cheapest form of

redundancy in every commodity except time. In software systems there is flexibility of

action. Control can be transferred to an appropriate location or the exception handler should

terminate by signalling a failure exception.
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1.3.2 Software Fault Tolerance

In general terms, the major proportion of complexity of most systems is to be found in the

software. There are two main methods to provide software fault tolerance: Recovery Blocks

[Hor74] and N-version programming [Lap90]. Neither of these provides an absolute

guarantee that the fault tolerance provided will be successful.

The Recovery Block Scheme

For this technique there is a software module designed and tested to satisfy a specification -

the primary module-, but it is likely to contain design faults. In the event of primary

module failing an alternate module, sometimes referred to as a variant [Lap90], will be

used as a stand-by spare. The alternate module must have a different design so that it will not

suffer from the same fault. There can be multiple stand-by spares, or even nested ones.

The N- Version Programming Scheme

For this technique N variants are executed and its results compared. A voter eliminates

erroneous results and pass on the (presumed to be correct) results generated by the majority

to the rest of the system.

To implement N-version programming a driver program is needed to control the N versions.

This driver invokes each of the versions, waits for the versions to complete its execution and

compares and acts upon the N sets of results to give an output.

When results are integers or textual sets, exact agreement can be expected. When using

floating point, inexact voting is required, e.g. averaging, thresholding, ignoring bits. Voters

can be classified as follows [Bas95]:

Majority voters- Agreement if (N+1)/2 variants give similar results.

Plurality voters- Agreement if 2-out-of-N results are similar.

n-• Median voters- Takes the result closest to the median.

n Weighted averaging voters- Increases differences between results using weights.

The first two are voters that only generate an output if agreement is reached among variant's

results. The other two always deliver a result no matter how deviant the results are.
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1.3.3 Hardware Fault Tolerance

Essentially all modern hardware fault-tolerant systems achieve fault tolerance by using

redundant components in one form or another. Error detection and recovery can be

performed either by an external element (e.g. central processor or dedicated hardware), or by

the system itself depending on the complexity of the modules to be replicated and the level

of fault tolerance required. However, a central agent constitutes a single point of failure for

the system and therefore, in ultra-high reliability applications, self-testable and self-

reconfigurable modules should be preferred.

Retry Strategy

It has statistically been shown that the majority of hardware faults are transient [Tas77].

Cross talk, electromagnetic discharges, instant variations in the power supply and a-particle

radiation are some of the phenomena that can provoke a temporary malfunction in electronic

equipment. Hence, the simplest technique to achieve fault tolerance in hardware is to repeat

the operation that was detected in error. Redundancy is needed only to detect the fault;

neither error masking nor error-correction is achieved. However, if a higher level of

dependability is expected from the system, a different technique must be used.

Backup Computers

The earliest form of hardware fault tolerance was for the computing centre to provide a

complete backup or spare system, including memory, CPU and I10 processors. In case of

computer failure, personnel transferred all work to the backup system, which then took over

until repair personnel could fix the main system. This form of redundancy was the standard

for critical operations, such as military defence and space exploration systems [Bar92].

Reconfigurable duplication, similar to the backup computer technique except that it occurs at

the component level, is the ability of a system with redundant components to reconfigure

itself dynamically. Components are duplicated and their results compared in a separate

circuit. When the results do not match, the comparator generates an error signal. The

operating system then determines which component failed and uses the other. Notice that the

comparator and switch are critical components in this configuration.

Watchdog Timers and Heartbeats

When two or more systems operate concurrently, each one needs some way of notifying the

others that it is still functioning. One mechanism is for each process to periodically notify the

others that it is operational; such notification is called a heartbeat. If a processor does not
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receive a heartbeat from another processor when it expects to, the first assumes the second

has failed and operates accordingly. For example, if two processors are designated main

processor and backup and the backup does not receive a heartbeat from the main processor,

the backup then takes control and operates as the main processor.

Pair-and-Spare

The pair-and-spare strategy uses redundancy both for error detection and reconfigurable

duplication at the system level. At the component level the designer uses a pair of identical

components to build a unit that detects its own errors. The two components receive exactly

the same inputs and simultaneously perform the same operation on those inputs. Comparison

circuitry checks the outputs and generates an error signal if a mismatch occurs.

At the system level of organisation, the designer builds a computer using a pair of the error-

detecting units just described. One pair operates as the main unit and the other as a spare

unit. Thus there are four copies of the system components. In general, each main unit and

spare unit operate in a tightly synchronised mode. If either the main unit or its spare

generates an error signal, a control unit disables it and automatically switches operation to

the spare if the main unit fails, so the computer continues to operate using the functional unit

as the main unit. After the faulty unit has been repaired, the system brings both units into

synchronous operation again.

N-Modular Redundancy with Voting

Pair-and-spare logic pairs two identical components as a way of detecting faults. N-modular

redundancy is similar, but with N components (N 3). Special voting logic compares the

outputs and accepts the majority output as correct. Thus the system not only detects an error

but also masks it. Units of this type are particularly useful in systems that cannot be repaired,

such as on-board computers for guidance control [Bar92].

Built-In Self-Test

Advances in VLSI technology have led to the fabrication of chips that contain a very large

number of transistors. The task of testing such a chip to verify correct functionality is

extremely complex and often very time consuming. In addition to the problem of testing the

chips themselves, the incorporation of these into systems has caused the cost of test

generation to grow exponentially [La197]. For example, the approximate cost of detecting a

fault at the board level is 10 times as high as detecting a fault at the chip level, and the cost

increases by about 10-fold from board level to system level [Wi186].
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A widely accepted approach to deal with the testing problem at the chip level is to

incorporate built-in self-test (BIST) capability inside a chip. The internal state of a circuit

incorporating BIST logic is continuously monitored, making the test generation and fault

detection easier.

Ideally, a BIST scheme should be easy to implement and must provide high fault coverage

[La197]. One way of achieving self-checking design is by means of error-detecting codes,

where for every valid system input there is a valid code associated to the corresponding

output. A code checker detects the presence of fails when its input is not a member of the set

of valid codes. Figure 1.3 shows the block diagram of a totally self-checking circuit. It

consists of a functional circuit and a checker, both are supposed to be totally self-checking.

Figure 1.3 Totally self-checking circuit

By observing the output of the checker it is possible to detect any fault in the functional

circuit or the checker itself. A totally self-checking checker must have two output lines and,

hence, four output combinations. Two of these output combinations are considered as valid,

namely (01,10). By choosing these combinations where both bits change their value, it is

easy to detect faults that stuck these lines to either logic zero or one. A non-valid checker

output, 00 or 11, indicates either a non-code word at the input of the checker or a fault in the

checker itself [La185].

1.4 Bio-Inspired Fault-Tolerance

Nature offers to us some remarkable examples of how to deal with complexity and its

associated unreliability. For example, the human body is one of the most complex systems

ever known. Local failures are common, but the overall function of our organism is highly

reliable because of the self-diagnosis and self-healing mechanisms that work ceaselessly

throughout our bodies. These mechanisms are the result of millions of years of our genes'
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evolution. Evolving instead of designing seems to be an attractive alternative when dealing

with complexity [San96a].

During the past few years the work done on bio-inspired systems has generated some

remarkable results [San96a, Hig97, Sto99]. Genetic algorithms, neural networks, artificial

brains and evolvable hardware are just a few examples of this novel approach. What is in

nature that is so attractive for hundreds of engineers and scientists? The answer can be found

in the characteristics that biological organisms possess. Characteristics such as evolvability,

multi-cellular structures, auto-regulation, and learning that allow them to adapt to changes in

their environment.

A recent approach to fault tolerance is that of borrowing from nature the main principles that

make living beings so resilient to faults. Mechanisms such as self-diagnosis, self-healing,

reproduction and adaptation are being transported to the arena of Computer Science and

Electronics. All these characteristics seem to be a natural consequence of the massively

parallel arrays of cells that constitute every living being. In the following chapters the design

of a fault tolerant cellular architecture inspired by biological processes will be presented.

1.5 Summary

Modern societies rely on computers and electronic systems for their correct functioning. As

these systems grow and become more complex their reliability tends to decrease. To cope

with the fact that all systems will eventually fail, fault tolerance has to be incorporated in our

designs. Incorporating fault tolerance into a system implies the use of redundancy with its

associated cost. However, recent developments in VLSI manufacturing conjugated with the

constant drop in semiconductor prices, are allowing fault tolerance to be again an alternative.

This chapter presented the evolution of fault tolerance, from the early days after the Second

World War to the present day. Also, the main concepts and techniques used to donate

software and hardware systems with fault tolerant properties have been exposed. They

constitute the conceptual framework over which the remaining of this thesis is sustained.
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This chapter is an introduction to the area of bio-inspired systems, i.e.
systems whose design or behaviour finds a correspondent mechanism in
nature. Section 2.2 presents Artificial Life as the general framework to
study bio-inspired systems. Section 2.3 introduces the POE model for
classifying bio-inspired systems. Section 2.4 presents a particular set of
electronic circuits whose behaviour is "evolved" rather than designed.
Evolvable hardware offers new alternatives to solve the problem of
implementing fault-tolerant systems.

CHAPTER 2

BIO-INSPIRED SYSTEMS

2. 1 Introduction

In chapter 1 it was argued that fault tolerance is a necessary feature of modern electronic

equipment. It was concluded that drawing inspiration from nature could generate a new

paradigm for the design of fault-tolerant systems. This chapter presents Artificial Life

(ALife) and bio-inspired systems as the scientific disciplines that study man-made systems

whose behaviour reminds of processes typically found in nature.

Section 2.2 introduces the main ideas sustaining bio-inspired systems and Artificial Life. It is

argued that although the interest in constructing machines able to mimic biological

characteristics has been present since ancient times, the technology available at that time did

not allow any realistic implementation. Nowadays computers and their ever-growing

processing power allow the simulation of bio-inspired systems. Future technologies might

allow, in the not-so-far future, the physical implementation of artificial living beings.

Section 2.3 presents the POE model as a classification framework for bio-inspired systems. It

is shown that by evolving, growing and learning, adaptation to changes in the environment

and hence, fault tolerance, can be achieved.
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Section 2.4 introduces evolvable hardware (EHW); i.e. hardware able to autonomously

adapt to changes in its environment. This feature might turn EHW into the ideal physical

substrate of future ALife implementations.

2. 2 Bio-Inspired Systems and Artificial Life

Living beings have always inspired the imagination of inventors and scientists throughout

history. For example, according to Greek mythology, Daedalus invented a pair of wings

made out of waxed feathers so that he and his son Icarus could escape from the labyrinth of

Crete. They succeed, but Icarus flew so close to the sun that the wax melted and his wings

dismantled, with tragic consequences. In renaissance Italy, Leonardo da Vinci invented

flying machines and submarines inspired by birds and fish more than 500 years ago, but his

inventions never came into real practice. These attempts failed not because there was

something wrong with the design itself, but mainly because the available technology was far

too primitive for any realistic implementation of such projects.

During the past few years, we have been witnesses to a merging of innovative ideas with

powerful technologies, breathing life into the old dream of constructing machines able to

mimic some of the mechanisms that make inanimate matter come alive. This topic, in its

modern form, was first raised almost fifty years ago, during the post war era, by the founding

fathers of cybernetics, most notably John von Neumann. Central to his final work were the

concepts of self-reproduction and self-repair; unfortunately, the technology available at the

time was far removed from that necessary to implement his ideas [Neu66].

The years that followed have seen the rise, fall, and eventual resurgence of artificial neural

networks, along with the recent advent of artificial life, spearheaded by Christopher Langton

[Lan89]. Central to artificial life research is the application of mechanisms that sustain

natural evolution to artificial systems. Pioneered most notably by John Holland, this concept

is slowly making headway, finding its place in the more traditional engineering disciplines as

well as within the artificial intelligence community [Ho192].

The remarkable increase in computational power and, more recently, the appearance of a

new generation of programmable logic devices, have made it possible to put into actual use

models of genetic encoding and artificial evolution. This has led to the simulation and

ultimately the hardware implementation of a new brand of machines. We have crossed a

technological barrier, beyond which we no longer need content ourselves with traditional

approaches to engineering design; rather, we can now evolve machines to attain the desired

behaviour. This novel approach has been quite appropriately named evolutionary
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engineering: "The art of using evolutionary algorithms to build complex systems" [Gar96].

Although we are just taking our first steps, it promises to revolutionise the way we will

design our future machines; we are witnessing the nascence of a new era, in which the terms

'adaptation' and design will no longer represent opposing concepts [San96a].

The term Artificial Life literally means, "life made by humans rather than by nature"

[Lan95]. Natural evolution implies populations of individuals, each possessing a description

of their physical features, the genotype. A new generation of individuals is created through

the process of reproduction, in which genotypes are transmitted to the descendants, with

modifications due to crossover and mutation. These genetic operations take place in an

autonomous manner within each entity, that is, within the genotype; the resulting physical

manifestation of an individual, known as the phenotype, is then subjected to the surrounding

environment, which, through a culling process, preserves only the best-adapted individuals.

The evolutionary process has neither a central controller nor an ultimate goal toward which it

strives; an individual's fitness is implicitly determined by its ability to survive and reproduce

in the surrounding environment [San96a].

Natural life on earth is organised into at least four fundamental levels of structure [Tay95]:

n Population-Ecosystem level

Organism level

Cellular level

Molecular level

Understanding life in any depth requires knowledge at all the four levels. Biological sciences

are using artificial life systems to understand natural life. Hardware systems are used to

study the organism level. Cellular and population levels are studied through the use of

software systems. The molecular level is studied through experiments with RNA molecules

(Wet ware).

Artificial life work can be divided into the design of systems with "biological properties" to

accomplish a particular task, artificial neural networks for example; and systems meant to

accurately model biological systems in order to test biological hypotheses, like genetic

engineering. Research on Artificial Intelligence has been carried out in Computer Science

laboratories for more than forty years; but research in Artificial Life is more modern and still

in its infancy. Therefore, it is important to make a clear distinction between artificial

intelligence and this novel paradigm called artificial life. Table 2.1 presents some important

differences between the two disciplines [Dye95]:
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Artificial Intelligence (AI) Artificial Life (ALife)

- Focus on individuals

- Cognition as operations of logic

- Cognition independent of perception

- Starts with human level cognition

- Mainly top-down approach: Engineer
complex systems

- Direct specification of cognitive
architecture

- Human level mental tasks

- Time span up to hours

- Focus on a group or population

- Cognition as operation of nervous systems

- Situated cognition with sensory/motor experiences

- Starts with animal level cognition

- Mainly bottom-up approach: rely on evolution, development
and learning

- Indirect specification of cognitive architecture via genotype
to phenotype mapping

- Survivability in complex environments is the overriding task

- Evolutionary, generational and individual life spans.

Table 2.1 Differences between Artificial Intelligence and Artificial Life.

A very long-term goal of Artificial Life is to gain insight ultimately into the evolution and

nature of human intelligence, through modelling the evolution of communication and co-

operative behaviour in lower life forms.

The ALife modelling approach involves the specification of:

1. Environments.- Simulated worlds whose conditions match, at some level of abstraction,

those selecting pressures in which a variety of animal behaviours may evolve or develop.

2. Processes of genetic expression.- Mapping from artificial genomes to phenotypes that

control behaviour.

3. Learning and development.- Methods under genetic control for modifying or growing

the nervous systems of artificial animals during their lifetimes.

4. Evolution.- Recombination and mutation of parental genomes to produce variation in

their offspring.

It is important to keep in mind while designing any form of artificial life that it took only I

billion years or so for the first cells to form on earth, but about 3 billion more years for these

to evolve into metazoans (multicellular organisms). Hence, success in any form of life,

natural or artificial will require, most certainly, long periods of time.

One distinctive characteristic of bio-inspired systems is that of their complexity. Systems are

so complex that a complete description or design of their functionality is practically

impossible. Instead, a rudimentary quasi-random configuration is encouraged to evolve and,

after some iteration with the environment, some kind of order begins to appear from the

original configuration. Apparently, that has been the secret of natural life success [Kau96].
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2. 3 The POE Model

If one considers life on earth since its very beginning, then three levels of organisation can

be distinguished [Man98]: Phylogeny (P), Ontogeny (0), and Epigenesis (E). In analogy to

nature, the space of bio-inspired systems can be partitioned along these three axes. This is

called the POE model [Sip97b]. Figure 2.1 shows the model as three orthogonal axes.

Figure 2.1 The POE model and its associated adaptive processes

For example, consider the following three paradigms, each one positioned along one axis:

▪ Evolutionary algorithms are the (simplified) artificial counterpart of Phylogeny (P) in

nature.

• Self-reproducing automata are based on the process of Ontogeny (0), where a single

mother cell gives rise, through multiple divisions, to a multicellular organism.

• Artificial neural networks embody the Epigenesis (E) process, where the system's

synaptic weights and perhaps topological structure change through interactions with the

environment.

Within the domains collectively referred to as soft computing, characterised by ill-defined

problems coupled with the need for continual adaptation or evolution, the above paradigms

yield impressive results, rivalling those of traditional methods.

2.3.1 Phylogeny

Phylogeny concerns the temporal evolution of genetic programs (genomes). The hallmark of

phylogeny is the evolution of species. The "multiplication" of living beings is based upon the

reproduction of the genome, subject to an extremely low error rate at the individual level, so
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as to ensure that the identity of the offspring remains practically unchanged. This error rate is

higher at the group or species level. It is precisely these copying errors, due to mutation

(asexual reproduction) or mutation along with recombination (sexual reproduction), that

gives rise to the emergence of novel species or new organisms. The phylogenetic

mechanisms are fundamentally non-deterministic, with the mutation and recombination rate

providing a major source of diversity. Diversity is indispensable for the survival of living

species, for their continuous adaptation to a changing environment, and for the appearance of

new species.

The phylogenetic axis admits a number of qualitative sub-divisions, where different

implementations of the paradigm can be accommodated This is shown in figure 2.2 [San97].

Figure 2.2 The phylogenetic axis

At the bottom of this axis, we find what is in essence evolutionary circuit design, where all

operations are carried out in software, with the resulting solution possibly loaded onto a real

circuit. Though a potentially useful design methodology, this falls completely within the

realm of traditional evolutionary techniques. As examples one can cite the works of

[Hem96], [Hig96] and [Kit96].

Moving upward along the axis, one finds work in which a real circuit is used during the

evolutionary process, though most operations are still carried out offline, in software. An

example is the work of [Tho96b], where fitness calculation is carried out on a real circuit.

Still further along the phylogenetic axis, one finds systems in which all genetic operations

(selection, crossover, mutation and fitness evaluation) are carried out online, in hardware.

The major aspect missing for a completely evolvable hardware concerns the fact that
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evolution is not open-ended, i.e., there is a predefined goal and no dynamic environment. An

example is the work of [Goe97].

The top of the phylogenetic axis represents a population of hardware entities evolving in an

open-ended environment. There is no work reported at this level of the axis (yet!).

2.3.2 Ontogeny

Upon the appearance of multicellular organisms, a second level of biological organisation

manifests itself. When biological multicellular organisms reproduce, the new individual is

formed out of a single cell (the fertilised egg). During the weeks that follow the time of

conception, the egg divides itself by a mechanism called mitosis. The result of mitosis is two

cells with identical genetic material (DNA). The new cells continuously repeat mitosis,

passing to every offspring a complete copy of its DNA. During this reproductive process

cells differentiate to shape the tissues, organs and limbs that characterise a complete healthy

individual of a particular species. Differentiation takes place according to "instructions"

stored in the DNA (bio-chemical medium containing the genome). During differentiation

different parts of the DNA (genes) are interpreted depending on the position of the cell

within the embryo. Before differentiation cells are (theoretically) able to take over any

function within the body because each one possess a complete copy of the DNA. Ontogeny

is therefore the developmental process of a multicellular organism; this process is essentially

deterministic: an error in a single base within the genome can provoke an ontogenetic

sequence that results in notable, possibly lethal, malformations. The fundamental principle of

embryology in real life is illustrated in figure 2.3, which covers a period of two generations

preceded and followed by an indefinite number of generations [San97].

Figure 2.3 The embryonic process in nature
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The first condition so that the complete process keeps going is that there must be replicators,

i.e. entities capable of self-replication, like DNA molecules. The second condition is that

there must be an embryonic process. The developed organism or phenotype, and the

replicators must be able to wield some phenotypic power over their world, such that some of

them are more successful at replicating themselves than others.

It is important to understand that genes, the basic constituents of the genome, act on two

quite different levels: they participate in the embryonic process, influencing the development

of the phenotype in a given generation, and they participate in genetics, having themselves

copied down the generations (reproduction). This is epitomised by an empirical separation

between the disciplines of genetics and embryology. Genetics is the study of the vertical

arrows in figure 2.3, i.e. the relationship between genotypes in successive generations; while

embryology is the study of the horizontal arrows, i.e. the relationship between genotype and

phenotype in any one generation.

Research into self-reproducing machines, inspired by the ontogeny of living beings, began

with von Neumann in the late 1940s. This line of research can be divided into five stages,

placed along the ontogenetic axis.

1. Von Neumann [Neu66] and his successors Banks, Burks [Bur70], and Codd [Cod68]

developed self-reproducing automata capable of universal computation (i.e., able to

simulate a universal Turing machine) and of universal construction (i.e., able to

construct any automaton described by an artificial genome). Unfortunately, the

complexity of these automata is such that no physical implementation has yet been

possible, and only partial simulations have been carried out to date [Sig89, Pas95].

2. Langton [Lan84] and his successors Byl [By189], Reggia et al. [Reg93], and Morita et al.

[Mor97] developed self-reproducing automata which are much simpler and which have

been simulated in their entirety. These machines, however, lack any computing and

constructing capabilities, their sole functionality being that of self-reproduction.

3. Tempesti [Tem95] and Perrier et al. [Per96] developed self-reproducing automata

inspired by Langton's work, yet endowed with finite or universal computational

capabilities.

4. Mange et al. [Man96a] and Marchal et al. [Mar96] proposed a new architecture called

embryonics, or embryonic electronics. Based on the three features usually associated

with the ontogenetic process in living organisms (multicellular organisation, cellular

division and cellular differentiation), they introduced a new cellular automaton, complex
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enough for universal computation, yet simple enough for a physical implementation

through the use of commercially available digital circuits. In addition to self-

reproduction, this multicellular "organism" also exhibits self-repair capabilities, another

bio-inspired phenomenon.

5. All the above machines are characterised by an asexual reproductive process; the

genome is therefore haploid. Hikage et al. have discussed the use of a diploid genome

[Hik97]. This idea, coupled with the recombination of genetic material from two parents,

could be introduced within the embryonics framework, representing an ultimate phase

with respect to reproducing machines.

2.3.3 Epigenesis

The ontogenetic program (genome) is limited in the amount of information that can be

stored, thereby rendering the complete specification of the organism impossible. A well-

known example is that of the human brain with somel 0 1 ° neurones and 10 14 connections, far

too large a number to be completely specified in the four-character genome of length 3x109.

Therefore, upon reaching a certain level of complexity, there must emerge a different process

that permits the individual organism to integrate the vast quantity of interactions with the

outside world. This process is known as epigenesis, and primarily includes the nervous

system, the immune system and the endocrine system. These systems are characterised by

the possession of a basic structure that is entirely defined by the genome (the innate part),

which is then subjected to modification through interactions of the individual with the

environment (the acquired part). The epigenetic process can be loosely grouped under the

heading of learning systems.

The nervous and immune systems have already served as inspiration for engineers. The

nervous system has received the most attention, giving rise to the field of artificial neural

networks. The immune system has inspired systems for detecting software errors [Xan95], as

well as immune systems for computers [Kep94]. Immunity of living organisms is a major

domain of biology; it has been demonstrated that the immune system is capable of learning,

recognising, and, above all, eliminating foreign bodies that continuously invade the

organism. This feature leads us to surmise that the immune system, if implemented as an

engineering model, can provide a new tool suitable for confronting dynamic problems,

involving unknown, possibly hostile, environments. Tyrrell proposes the term

inznzunotronics to name those electronic systems capable of self-diagnosis and self-healing

by applying mechanisms equivalent to those found in the immune system [Tyr99].
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2. 4 Evolvable Hardware

A careful examination to the work carried out to date under the heading 'evolvable

hardware' makes evident that this has mostly involved the application of evolutionary

algorithms to the synthesis of digital systems [San96a]. From this point of view, evolvable

hardware is a sub-domain of artificial evolution, where the final goal is the synthesis of an

electronic circuit.

Taken as a design methodology, evolvable hardware offers a major advantage over classical

methods; the designer's job is reduced to that of specifying the circuit requirements and the

basic elements, whereupon evolution "takes over" to "design" the circuit. Currently, most

evolved digital designs are sub-optimal with respect to traditional methodologies, however,

improved results are continuously attained. By examining the work carried out to date, it is

possible to derive a rough classification of current evolvable hardware, in accordance with

the genome encoding, i.e. the circuit description, and the calculation of a circuit's fitness.

2.4.1 Classification of evolvable hardware by genome encoding

High-level languages. The first works used a high-level functional language to encode

the circuits in question, a representation far-removed from the structural (schematic)

description. The work presented in [Hem96] uses a high-level hardware description

language (HDL) to represent the genomes. In [Kit96] Kitano used the rewriting

operation, in addition to crossover and mutation, to enable the formation of a hierarchical

structure.

Low-level languages. The idea of directly incorporating within the genome the bit string

representing the configuration of a programmable circuit was expressed early on by

[Gar96], though without demonstrating its actual implementation. As a first step one

must choose the basic logic gates (e.g., AND, OR, NOT), and suitable codify them,

along with the interconnections between gates, to produce the genome encoding. An

example of this approach is the work presented by Thompson in [Tho96a]. Higuchi et al.

used a low-level bit string representation of the system's logic schema to describe small-

scale PALs, where the circuit is restricted to a logic sum of products [Hig96]. The

limitations of PAL circuits have been overcome to a large extent by the introduction of

FPGAs, as used by Thompson in [Tho96b].

The use of a low-level circuit description that requires no further transformation is an

important step forward since this potentially enables placing the genome directly in the
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actual circuit, thus paving the way toward truly evolvable hardware. However, up until

recently, FPGAs had introduced their own share of problems:

The genome's length was on the order of tens of thousands of bits, rendering evolution

practically impossible using current technology.

One still had to extend the genome into a logic schema, a phase for which automatic

methods do not exist.

Within the circuit "space", consisting of all representable circuits, a large number were

invalid, e.g. containing short circuits.

With the introduction of new families of FPGAs, like Xilinx 6200, these problems have been

attenuated [Tho96b]. As with previous FPGAs families, there is a direct correspondence

between the bit string of a cell and the actual logic circuit, however, this now always leads to

a viable system. Moreover, as opposed to previous FPGAs where one had to configure the

entire system, the new families permit the separate configuration of each cell, a markedly

faster and more flexible process. Thompson has employed this latter characteristic to reduce

the genome's size while introducing real-time, partial system reconfigurations [Tho96b].

Unfortunately Xilinx has withdrawn the 6200 family from the market. Its successor, the

Virtex family, also offers partial reconfiguration characteristics, but its architecture does not

satisfy the necessities of the evolvable hardware community, as well as the 6200 family.

Details about FPGAs' architecture will be given in the next chapter.

2.4.2 Classification of evolvable hardware by fitness calculation

)- Offline evolvable hardware. The use of a high-level language to represent the genome

implies some transformation of the encoded system in order to evaluate its fitness.

Fitness evaluation is carried out by simulation, with only the final solution found by

evolution actually implemented in hardware. This form of simulated evolution is known

as offline evolvable hardware [San96b].

Online evolvable hardware. As noted above, the low-level genome representation

enables a direct configuration (and reconfiguration) of the circuit, thus entailing the

possibility of using real hardware during the evolutionary process. This approach has

been referred to as online evolution in the works presented in [San96a].

Examining work carried out to date it is possible to identify a number of common

characteristics that span both online and offline systems, which often differ from biological

evolution:
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+ Evolution pursues a predefined goal: the design of an electronic circuit, subject to precise

specifications; upon finding the desired circuit, the evolutionary process terminates.

• The population has no material existence; at best, in online evolution, there is one circuit

available, onto which individuals from the (offline) population are loaded one at a time,

in order to evaluate their fitness.

+ The absence of a real population in which individuals coexist simultaneously entails

notable difficulties in the realisation of interactions between "organisms". This results in

a completely local fitness calculation, whereas nature exhibits a co-evolutionary scenario.

+ In solving a well-defined problem, like the search for a specific combinatorial or

sequential logic system, there are no intermediate approximations. Fitness evaluation is

achieved by consulting a lookup table that contains the complete description of the circuit

in question. This casts some doubts into the utility of using an evolutionary process, since

one can directly implement the lookup table in a memory device, a solution which may

often be faster and cheaper.

+ The evolutionary mechanisms are carried out outside the resulting circuit. This includes

the genetic operators (selection, crossover and mutation) as well as fitness calculation. As

for the latter, while online evolution uses a real circuit for fitness evaluation, the fitness

values themselves are stored elsewhere.

+ The different phases of evolution are carried out sequentially, controlled by a central

software unit.

These differences demonstrate that, although inspired by nature, bio-inspired systems do not

have to strictly adhere to nature's solutions. As an example, consider the issue of

Lamarckian evolution, which involves the direct inheritance of acquired characteristics.

While the biological theory of evolution has shifted from Lamarckism to Darwinism, this

does not preclude the use of artificial Lamarckian evolution. Thus, "deviations" from what is

strictly natural may definitely be of use in bio-inspired systems.

In the future, radical new technologies, like nanotechnology [Dre90], will allow the physical

implementation of 3-D microscopic machines able to perform adiabatic computation

(computation without heat generation), at speeds beyond the limits of today's

microelectronics [Gar96]. Such capabilities combined with the knowledge that today is being

generated through simulation, might be the crucial missing elements needed to achieve the

so longed goal of creating an artificial living being.
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Artificial organisms will have fault tolerance as an inherent characteristic, therefore any

effort directed towards the creation of artificial life will, indirectly, contribute to the

development of highly reliable systems. Once artificial organisms become a reality, our

world will never be the same. Certainly, it will be much better [Ke194].

2. 5 Summary

Fault tolerance is a common attribute of biological organisms; therefore drawing inspiration

from nature is a promising alternative for the design of human-made fault-tolerant systems.

The study of bio-inspired systems was practically born with science itself, but the lack of

appropriate technologies made impossible the implementation of the ultimate bio-inspired

system: an artificial organism. Modern technologies allow more serious investigations in this

area; an effort consolidated under the name of Artificial Life of ALife.

The POE model classifies bio-inspired systems according to their level of organisation.

Phylogeny (P) deals with the evolution of populations, Ontogeny (0) deals with the

development of multicellular individuals, and Epigenesis (E) deals with learning

mechanisms that help individuals to adapt to the environment. All the work done in ALife

can be classified in one or several of these categories. It is expected that an artificial

organism will include sub-systems from all the divisions in the POE model.

Bio-inspired electronic systems are being developed under the name of Evolvable Hardware

or EHW. These systems are evolved rather than designed in the traditional way. If a system

evolves continuously, then it can autonomously adapt to changes in the environment, for

example variations in temperature or faults in one or some of its components. This

adaptability turns EHW into a promising approach to the design of bio-inspired fault-tolerant

electronic systems. The following chapters present the implementation of a system governed

by these principles.
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Embryonics is a proposal for a bio-inspired cellular architecture with
inherent fault tolerance properties. This chapter gives a brief introduction
to the fundamental ideas that give shape to the embryonics architecture.
The biological inspiration comes from the development of embryos and
the central dogma of molecular biology. The technological resources
employed to implement embryonics are cellular architectures, field
programmable gate arrays and ordered binary decision diagrams. Each one
of these subjects is treated in a separate section.

EMBRYONICS:

A CONFLUENCE OF IDEAS

3.1 Introduction

In previous chapters it has been established that nature can inspire new ways of achieving

fault tolerance in electronic systems. This chapter introduces Embryonics, a bio-inspired

reconfigurable cellular architecture that offers a simple yet effective solution to the problem

of incorporating fault tolerance in electronic digital systems.

The hypothesis of this work is that embryonic arrays can be considered an attractive

alternative for improving the fault tolerance of cellular architectures [Ort97b, Ort9813].

In the context of the POE model, embryonics belongs to the ontogeny class because it is a

family of fault-tolerant field programmable processor arrays (FPPAs) inspired by the

mechanisms involved during the development of embryos [Man96a]. By adopting certain

features of cellular organisation, and by transposing them to the two-dimensional world of

integrated circuits on silicon, embryonics shows that properties unique to the living world,
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such as self-reproduction and self-repair can also be applied to integrated circuits. Hugo de

Garis coined the word embryonics as an acronym for embryological electronics [Gar93].

Any bio-inspired system must have a biological as well as a technological support.

Embryonics is not the exception. A multitude of disciplines and techniques converge to give

shape to the embryonics project. On the biological side, both embryology and the central

dogma of molecular biology inspired the main features of embryonic arrays. These ideas are

supported by a technological backbone that includes 2-D cellular systems and field

programmable gate array design. Both elements are combined in the embryonics

architecture. Finally, embryonics arrays are proposed to solve a particular problem namely,

the hardware implementation of ordered binary decision diagrams. Figure 3.1 shows the

convergence of ideas giving rise to embryonics and the particular problem that embryonics

can solve. Numbers in parenthesis indicate the sections in this chapter that introduce the

corresponding subject.

Figure 3.1 Embryonics: A confluence of ideas

The following sections expose the concepts and ideas involved in the embryonics project.

They are independent from each other; therefore it is possible to read them in any order.

Embryo development and the central dogma of molecular biology are presented in sections

3.2 and 3.3 respectively. These sections do not cover any of the subjects exhaustively, only

the central ideas and mechanisms involved are discussed. However, the references given

cover the subjects thoroughly. Sections 3.4 and 3.5 introduce the technological background

needed to understand the physical implementation of embryonic arrays. Cellular arrays

architectures, including cellular automata, systolic arrays and wavefront arrays are treated in

section 3.4. Modern microelectronics allows the integration of these arrays in one chip and,

if programmability capabilities are added to these components, the result is a field

programmable processor array (FPPA). The precursors of FPPAs are the field

programmable gate arrays (FPGA), i.e. programmable arrays where the basic elements

perform simple logic functions. Section 3.5 presents current FPGA architectures as the point
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of departure for the implementation of embryonic arrays. A practical application of

embryonic arrays is the physical implementation of Ordered Binary Decision Diagrams

(OBDD). They are covered in section 3.6.

3.2 Embryo development

The embryonic development of multicellular organisms is one of evolution's greatest

achievements. The process by which organisms as complex as human beings are constructed

from a single cell amazes even the most specialised embryologist. The ultimate details of

how this complex, yet reliable mechanism is carried out are still a mystery; but the overall

picture has been revealed over the years by dedicated and imaginative researchers like

Wolpert and Ntisslein-Volhard, to mention just two.

Cells are the basic units of life. Animals are made up of specialised cells, such as blood cells,

cartilage cells, fat cells, muscle cells, nerve cells. Humans have about 350 different cell

types. All the cells in an organism are created by the successive division of a single cell, the

fertilised egg [Wo191].

The embryo's development starts with cell divisions that cleave the egg and result in a

hollow spherical structure: the blastula. The blastula is then moulded by cellular activities

into all the shapes that emerge during development. The blastula gives no visible indication

of the organism it will develop into. It is only after the next stage, gastrulation, that the form

of the organism begins to emerge.

Gastrulation occurs in the development of all animals. It is the process that occurs when the

cells of the blastula rearrange and move so that the simple and often spherical or flat embryo

is transformed into something approaching the form from which the animal will develop. It

is only after gastrulation that the organs, like limbs, liver, and eyes, begin to develop.

Contractions, changes in adhesion, cell movement, and growth, are the cellular activities that

go to mould the form of the embryo. These cell activities are used again and again, and what

makes organs different is how these activities are organised in space and time. That is the

problem of pattern formation.

All vertebrates have basically the same building blocks but they are put together in different

ways. The principle of different spatial patterning accounting for the differences in animals

applies right across the vertebrates. There are some differences in the cell types that make up

fish, frogs, birds, and humans; nevertheless, the main difference lies in the spatial

organisation of the cells.
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Cells differentiate in the early embryo according to their relative position with respect to the

other cells. By means of chemical gradients cells can acquire positional information within

the embryo. In addition, each cell has a set of instructions, analogous to genetic information,

which lists what every cell must do in every position. The cells just look up their position in

this set of instructions and behave accordingly. Following these simple mechanisms it is

possible to generate any pattern that is required, from faces to limbs.

The "co-ordinate system" just described allows another remarkable property of the early

embryo to emerge: the process known as regulation. Regulation is the ability of the embryo

to develop normally even when some portions are removed or rearranged. In general, if cells

of vertebrate embryos are moved from one part to another of the early embryo they develop

according to their new location and not from where they were taken. Their fate is dependent

on their new position in the embryo: they respond to their new set of co-ordinates. For

example, in the mouse egg and at least up to the 16-cell stage all the cells seem equivalent

with no fixed fate. It is possible to rearrange the cells of the early mouse embryo in

numerous combinations and normal development will still occur. In humans, identical twins

rarely arise from the separation into two cells at the two-cell stage. Instead, the separation

occurs much later when the embryo is made up already of many hundreds of cells. This

means that in human embryos even when there are several hundred cells present the fate of

the cells is not fixed and if divided into two, two normal embryos can still develop [Wo191].

The fate of the cells becomes, with time, more and more restricted until it is effectively

fixed. The cells acquire an autonomous developmental programme and no longer respond to

new positional cues. The process by which cells have their fate fixed is known as

determination. Determination involves subtle chemical changes that turn on and off genes,

making cells different.

Once the cells in an embryo have been differentiated messages are spread by timed releases

of chemicals that tell a cell which type of cell it should be. Each cell has a look up library,

the code of DNA, to control its actions. A cell also has a chemical plant and chemical

responses that act as its input and output devices. Different doses of chemicals and in

different combinations cause a cell to act in different ways. Sometime small changes in

chemical density can lead to radical changes in cell formation. This is, for example, how cell

barriers are formed. It is by this mixture of co-operation and competition that complex

structures, like a human baby, can be built up [Ste97].
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3.3 The Central Dogma of Molecular Biology

A human being consists of approximately 60 trillion (60x10 12) cells. At each instant, in each

of these 60 trillion cells, the genome, a ribbon of 2 billion characters, is decoded to produce

the proteins needed for the survival of the organism. This genome contains the ensemble of

the genetic inheritance of the individual and, at the same time, the instructions for both the

construction and the operation of the organism. The parallel execution of 60 trillion genomes

in as many cells occurs ceaselessly from the conception to the death of the individual. Faults

are rare and, in the majority of cases, successfully detected and repaired [Man96a].

This process is remarkable for its complexity and its precision. Moreover, it relies on

completely discrete processes: the chemical structure of DNA, the chemical substrate of the

genome. DNA is a sequence of four bases (nucleotides) usually designated with letters A

(adenine), C (cytosine), G (guanine), and T (thiamine). Each group of three bases (a codon)

is decoded in the cell to produce a particular amino acid, a future constituent of the final

protein.

As mentioned, the DNA encodes the ensemble of the genetic inheritance of the individual

and, at the same time, the instructions for the construction and operation of the complete

organism. In this sense DNA can be both information and physical medium.

DNA is a very long string-like molecule and it is packaged, with special proteins, in the form

of chromosomes within the nucleus of the cell. Humans have 46 chromosomes, 23 from the

father and 23 from the mother, each of which can be matched with its partner from the other

parent. Each chromosome contains just one DNA molecule so there are exactly 46 molecules

of DNA in the fertilised egg and all normal body cells.

In any living being every one of its constituent cells performs the same basic operation

regardless of the particular function it is involved with; namely, each cell interprets the DNA

strand allocated in its nucleus to produce the proteins needed for the survival of the

organism. Proteins are particular sequences of amino acids; such sequences are stored in the

DNA as successions of nucleotide triplets (codons). The DNA contains not only the

instructions for making all the proteins but is also involved in the controlling of which

protein should be made when and where.

Protein synthesis implies two mechanisms: transcription and translation of the DNA. During

transcription, the sequence stored in the DNA is copied by the enzyme RNA polymerase into

messenger RNA (mRNA). During translation, mRNA is bound to ribosomes inside the cell

where transfer RNA (tRNA) carrying amino acids are attached to the mRNA. The ribosome
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catalyses the bond between amino acids to build a molecule of the corresponding protein.

When a cell reproduces, the offspring get a copy of its mother's DNA so that the complete

process can be ceaselessly repeated. The flow of information from DNA to protein and from

DNA of the parent to DNA of the offspring is known as the central dogma [Mur89]. Figures

3.2 and 3.3 show the processes of DNA's transcription and translation.

Figure 3.2 Transcription of DNA

Figure 3.3 Translation of DNA into proteins

Although the DNA is identical in all the cells, only part of the strand is interpreted depending

on the cell's function: red blood cells produce haemoglobin while liver cells produce

albumin. Differentiation of cells will depend on the physical location of the cell with respect

to its neighbours in the early embryo [Nus96, Wo191 ]. Control of protein synthesis is the

central issue in cell differentiation and development.
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Control of protein synthesis can occur at several different points in the sequence of steps that

leads from the DNA code to a fully formed protein. The first step, transcription, is

considered the most important. Control of transcription is done in two main ways. Proteins

can bind to sites on the DNA at the beginning of the gene, known as the promoter, and so

initiate transcription. On the other hand, there are proteins that bind near the promoter

preventing its transcription. The control of transcription (turning on and off of genes), and so

controlling the synthesis of specific proteins, involves signal molecules that enter the cell

nucleus from the cytoplasm.

Figure 3.4 represents the way DNA's information is organised. Arrows indicate the direction

in which complexity increases, e.g. a set of nucleotides forms a codon.

DNA
Nucleotides	 Codons	 Genes	 Chromosomes	 (Genome)

Figure 3.4 Structure of DNA's information

The aim of Embryonics is to transport this basic structure to the 2-dimensional world of

cellular arrays using specifically designed FPGAs as building blocks. Figure 3.5 shows an

equivalent representation of the architecture of field-programmable processor arrays.

Transistors,	 Configuration	 Columns in	 Genome
resistors, etc. 	 Flip-flops	 Registers	 the array	 Memory

Figure 3.5 Structure of a field-programmable processor array

3.4 Cellular Architectures

It appears that the basic laws of physics relevant to everyday phenomena are now known.

Yet there are many everyday natural systems whose complex structure and behaviour have

so far defied even qualitative analysis. For example, the laws that govern the freezing of

water and the conduction of heat have long been known, but analysing their consequences

for the intricate patterns of snowflake growth has not yet been possible. Many complex

systems can be broken down into identical components, each obeying simple laws, and the

interaction of components that makes up the whole system gives foith very complex

behaviours. In some cases these complex behaviours may be simulated in software with just

a few components; but in most cases the simulation requires too many components, and this

approach becomes impractical.

Another alternative is to distil the mathematical essence of the processes that generate

complex behaviour. The hope in such an approach is to identify fundamental mathematical
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mechanisms that are common to many different natural systems. Such commonality would

correspond to universal features in the behaviour of very different complex natural systems.

However, in order to discover the mathematical basis for the generation of complexity, one

must identify simple mathematical systems that capture the essence of the process, a task that

has been proven successful in very few cases. Chaos theory and non-linear systems analysis

are common tools utilised in this approach [Kau96].

A third approach is the implementation of cellular systems in hardware. The throughput of

these systems can easily be at least one order of magnitude better than that of software

simulation. Cellular automata, systolic arrays and wavefront arrays are architectures that

have been proposed for the implementation of hardware cellular systems.

3.4.1 Cellular automata

Cellular automata are discrete dynamical systems. The meaning of discrete is that space,

time and the automaton's properties can have only a finite, countable number of states. The

basic idea is not to describe a complex system from "above" using difficult equations, but

simulating this system by interaction of cells following easy rules. In other words: Not to

describe a complex system with complex equations, but let the complexity emerge by

interaction of simple individuals following simple rules [Wo183]. Typical digital computers

process data serially, cellular automata process a large number of bits in parallel.

The name von Neumann is now strongly associated with the old-fashioned, single-CPU

computer architecture. Nevertheless, John von Neumann was also the major pioneer in

parallel computing and self-reproducing artificial organisms via his research on arrays of

computers or cellular automata (CA).

In 1944, von Neumann was introduced to electronic computing via a description of the

ENIAC. Shortly after, he formed a group of scientists to work on problems in computers,

communications, control, time-series analysis, and the communication and control aspects of

the nervous system. In 1946 this group designed the EDVAC, which was the first design of a

stored-program machine [Neu451.

By 1947, under the influence of the ideas on automata developed by Post and Turing, von

Neumann had commenced his studies on the complexity required for a device or system to

be self-reproductive. These studies also included work on the problem of designing a reliable

system from unreliable parts; a field of study known today as "fault tolerant computing". At

first, von Neumann investigated a continuous model of a self-reproducing automaton based

on a system of non-linear partial differential equations. He also pursued the idea of a
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kinematic automaton, which could, using a description of itself, proceed to mechanically

assemble a duplicate from available pieces [Pre84].

At about the same time, mathematician Stanislaw Ulman was researching into pattern games

for computers [Bru97]. Given certain fixed rules, the computer would print out ever-

changing patterns. Many patterns grew almost as if they were alive. A simple square would

evolve into a delicate coral-like growth. He called his patterns recursively defined geometric

objects. Ulman's games were cellular games. Each pattern was composed of square (or

triangular, or hexagonal) cells and the games were played on limitless chessboards. All

growth and change of patterns took place in discrete jumps. From moment to moment, the

fate of a given cell depended only on the states of its neighbouring cells.

Ulman suggested to von Neumann to construct an abstract universe for his analysis of

machine reproduction. It would be an imaginary world with self-consistent rules, as in

Ulman's games. It would be a world complex enough to embrace all the essentials of

machine operation, but otherwise as simple as possible. Von Neumann adopted an infinite

chessboard as his universe. Each square cell could be in any of a number of states

corresponding roughly to machine components. A "machine" was a pattern of such cells.

The first cellular automaton was conceived by von Neumann in the late forties. By 1952 he

had put his ideas in writing and in 1953 described them more fully in his Vanuxem lectures

at Princeton University. Unfortunately, his premature death in 1957 prevented him from

completely achieving his goals. Nevertheless, the details of von Neumann's cellular

construction were completed and published after his death by A.W. Burks [Bur70], who

worked with von Neumann on the logical design of EDVAC.

Von Neumann's original construct for a self-reproducing cellular automaton required that

each computer in the array support a set of 29 states. The array itself required some 200,000

computers performing functions such as: tape reading arms, "pulsers", clocks, encoders and

decoders. This degree of complexity was needed since von Neumann wanted to design his

automaton as a universal computing system or Turing machine, i.e. a construct capable of

performing any desired calculation [Pre84]. Of course, the more complex the machine which

is to accomplish the construction, the more complex the algorithm for building that machine

will be, and, therefore, the longer the tape which contains the description of the machine.

Thus, there was a genuine incentive for finding "simple" machines that are nonetheless still

capable of self-reproduction.

For his doctoral research at the University of Michigan, E.F. Codd [Cod68] set out to reduce

the complexity of von Neumann's machine. He was able to design a construction universal
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configuration that requires just 8 states per cell. Although simpler than von Neumann's,

Codd's machine is still as complex as a modern digital computer, and as far as is known,

neither Codd's nor von Neumann's machines have actually been run under real simulation

on a computer, only partial simulations have been reported [Sig89, Pas95, Hae97].

The next significant event in the history of self-reproducing automata was the development

of the automaton commonly referred to as "Langton's loop" [Lan84]. By dropping the

requirements of computational and construction universality, Langton created an automaton

capable of non-trivial self-replication, i.e. an automaton where the replication is actively

directed by the automaton itself, rather than being a mere consequence of the transition rules.

Langton's research was followed by a series of works attempting either to further simplify

Langton's loop [Reg93] or to modify it in such a way that it would be capable of performing

some useful work, beyond that of self-reproduction [Tem95].

All the work on self-reproducing cellular automata share a characteristic that must be found

in any self-reproducing system (and is certainly found in molecular self-reproduction): the

configuration treats its stored information in two different manners: interpreted, as

instructions to be executed (translation), and uninterpreted, as data to be copied

(transcription). In nature, each biological cell keeps the information of how to construct the

being of which it belongs to in the DNA strand allocated in its nucleus. When reproduction

takes place RNA copies the DNA from the mother cell to the descendants; this is the

transcription process. Once copied, the ribosomes interpret each part of the DNA in order to

build the proteins needed for the development of the complete organism; this is the

translation process [Zif83].

Cellular automata have five fundamental defining characteristics:

1. They consist of a discrete lattice of cells.

2. They evolve in discrete time steps.

3. Each cell takes on a finite set of possible values.

4. The value of each cell evolves according to the same deterministic rules.

5. The rules for cell evolution depend only on a local neighbourhood of cells around it.

With these characteristics, cellular automata provide rather general discrete models for

homogeneous systems with local interactions. They may be considered as idealisations of

partial differential equations, in which time and space are assumed discrete, and dependant
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variables taken on a finite set of possible values. These considerations allow a mathematical

treatment of systems based in cellular automata.

Different definitions of neighbourhood for a cell are possible; all of them consider the cell

itself as part of its neighbourhood. Considering a two dimensional lattice the following

definitions are commonly accepted:

Von Neumann neighbourhood. Only the cells on the cardinal points (North-South-

East-West) are considered therefore, the number of cells involved to calculate the next

state of any cell is 5. The radius of this definition is 1, since only the next layer is

considered. (Fig.3 .6a)

Moore neighbourhood. The Moore neighbourhood is an enlargement of the von

Neumann neighbourhood containing the diagonal cells too. In this case the number of

cells considered for calculating the next state is 9, and the radius is 1. (Fig.3.6b)

Extended Moore neighbourhood. In this instance the radius can take any value greater

or equal to 2, therefore, the neighbourhood reaches over the distance of the next adjacent

cells. (Fig.3.6c)

Margolus neighbourhood. A completely different approach: considers 2x2 cells of a

lattice at once. In this case the rules for assigning the next state become more complex

and difficult to express in mathematical language [Mar84].

Figure 3.6 Different types of neighbourhood for cellular automata

Cellular Automata Applications

Besides the aforementioned application of designing self-reproducing systems, some

research has been done to exploit the properties of cellular automata. Here are some of the

most representative works.

Game of Life

The game of Life was one of the first applications showing that cellular automata are capable

of producing dynamic patterns and structures. Life is played on a two dimensional lattice
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with binary cell states, Moore neighbourhood and arbitrtry border conditions. A cell in state

1 is said to be alive, while a cell in state 0 is dead. J. Conway introduced the following rules:

I. A cell that is dead at time step t, becomes alive at time t+1 if exactly three of the eight

neighbouring cells were alive at time t.

2. A cell that is alive at time t dies at time t+1 if at time t less than two or more than three

cells are alive, i.e. the cell dies of either isolation or overcrowding.

Though these rules are rather simple, a vivid set of occurring patterns can be observed. Some

patterns flicker infinitely between two states, like blinkers; some are static blocks, snakes

and ships; others move over the lattice and vanish into the infinity of the lattice.

Ising Model

A different application is the CA-ising model that can be used to simulate ferro-magnetism.

Every cell stands for the spin of a small magnet, where the state 1 may represent an "up"

vector and the state 0 the "down" vector. The orientation of the spin is variable and depends

on the local neighbourhood. Temperature plays an important role in this model; two

conditions can be named:

• If temperature T > Curie-temperature, then the second law of thermodynamics is

dominating creating disorder (chaos).

• If T < Curie-temperature, then the force between spins is dominating and spins tend to

build order.

CAs can be used to simulate this system with the additional difficulty that the spin (energy)

of the whole system has to remain constant [Tof87].

Billiard and gas models

The dynamic of cellular automata can be used to simulate the behaviour of particles (gas

molecules or billiard balls). The construction of a gas model is similar to the so-called

billiard automaton. These kinds of systems use a Margolus neighbourhood to simulate the

process. The rules are based on 2x2 parts of the lattice. A selection of rules is shown in

figure 3.7.

Figure 3.7 Some rules for a Margolus neighbourhood
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3.4.2 Systolic and Wavefront Arrays

Modern circuit manufacturing techniques allow the construction of million-transistor chips

and with this the integration of highly parallel computing structures has become viable. Such

computing systems have structural properties that are suitable for VLSI implementation.

Parallel structures imply a basic computational element repeated perhaps hundreds or

thousands of times. This architectural style immediately reduces the design problem by

similar orders of magnitude because of its simplicity and regularity.

The choice of an appropriate architecture for any electronic system is very closely related to

the implementation technology. This is especially true in VLSI. The constraints of power

dissipation, I/O pin count, relatively long communication delays, difficulty in design and

layout are much more critical in VLSI than in other technologies. However, VLSI offers very

fast and inexpensive computational elements with some unique and exciting properties

[Hwa85].

Properly designed parallel structures that need to communicate only with their nearest

neighbours gain the most from VLSI. Precious time is lost when modules that are far apart

must communicate. For example, the delay in crossing a chip on polysilicon, one of the three

primary interconnect layers on an NMOS chip, can be 10 to 50 times the delay of an

individual gate. Two architectures that are particularly well suited to be implemented in

silicon are systolic arrays and wavefront arrays.

Systolic arrays

Systolic arrays belong to the generation of VLSI/WSI (Very Large-Scale Integration/Wafer

Scale Integration) architectures for which regularity and modularity are important to area-

efficient layouts. Kung and associates at Carnegie-Mellon University developed the systolic

architectural concept [Kng82]. Since its introduction many versions of systolic processors

have been designed by universities and industrial organisations.

A systolic system consists of a set of interconnected cells, each capable of performing some

simple operation. Cells in a systolic system are typically interconnected to form a systolic

array or a systolic tree using simple, regular communication and control structures. These

simple interconnection and control schemes have substantial advantages over more complex

designs and implementations. Information in a systolic system flows between cells in a

pipeline fashion, and communication with the outside world occurs only at the boundary

cells.
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Systolic arrays took their name from an analogy with the human circulatory system where

the heart sends and receives a large amount of blood through the veins and arteries. The

phase during which the heart contracts itself to pump the blood through the arteries is called

the systole phase. In this context the heart can be viewed as a source and destination of data,

a sort of global memory, and the network of arteries and veins as an array of processors and

links. Similarly, systolic algorithms schedule computations in such a way that a data item is

not only used when it is input but also is reused as it moves through the pipelines in the

array. In systolic arrays pipelined computations take place along all dimensions of the array

and result in very high computational throughput. As a consequence, the processing and

input/output bandwidths can be balanced, especially in compute-bound problems that have

more computations to be performed than they have inputs and outputs [For87].

Figure 3.8 shows the basic principle of a systolic array [Hwa85].

11111---Memory Memory

—91 PE PE PE PE PE PE 1--PE

a) The conventional processor b) A systolic processor array

Figure 3.8 The systolic array principle

Figure 3.8 shows how by replacing a single processing element (PE) with an array of

processing elements (e.g. linear, 2-D and 3-D), a higher computation throughput can be

achieved without increasing memory bandwidth. The function of the memory in the diagram

is analogous to that of the heart: it "pulses" data through the array of PEs. The essence of this

approach is to ensure that once a data item is brought out from the memory it can be used

effectively at each cell it passes. This is possible for a wide class of compute-bound

computations where multiple operations are performed on each data item in a repetitive

manner [Hwa85].

In addition to data pipelining, systolic arrays are also characterised by computational

pipelining, in which information flows from one PE to another in a pre-specified order. This

information can be interpreted by the receiver as data, control, or a combination of both.

Each output is computed by the execution, at different times and in a pre-determined

sequence, of several operations in a number of PEs. The execution is performed in such a

way that the output generated by one PE is used as an input by a neighbouring one. While

operations can occur as data flow through each processor, the overall computation is not a
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dataflow computation, since the operations are executed according to a schedule determined

by the systolic array design. Correct timing is a critical issue when designing algorithms for

systolic arrays.

Wavefront arrays

The burden of synchronising an entire systolic computing network becomes heavy for very

large arrays. A simple solution is to take advantage of the dataflow -computing principle,

which is natural to signal processing algorithms and which leads the designer to wavefront

array processing. The wavefront array combines the systolic pipelining principle with the

dataflow computing concept. The wavefront arrays can be viewed as a static dataflow array

that supports the direct hardware implementation of regular dataflow graphs. Exploitation of

the dataflow principle makes the extraction of parallelism and programming for wavefront

arrays relatively simpler. Conceptually, the requirement for correct timing in the systolic

array is now replaced by a requirement for correct sequencing in the wavefront array

[Kun87].

There are two approaches to deriving wavefront array algorithms: one is to trace and pipeline

the computational wavefronts; the other is based on a data flow graph (DFG) model.

"Computational wavefront" means smooth data movement in a localised communication

network. The computing network serves as a data-wave-propagating medium. A wavefront

in a processor array corresponds to a mathematical recursion in an algorithm. Successive

pipelining of wavefronts through the array will accomplish the computation of all recursions.

The computational wavefronts are similar to electromagnetic wavefronts, since each

processor acts as a secondary source and is responsible for the activation of the next front.

This means that the computation is data-driven.

Note that the major difference between a wavefront array and a systolic array is the data-

driven property. In a wavefront arrays there is no global timing reference, and yet the order

of task sequencing is correctly followed. In the wavefront architecture the information

transfer between a PE and its immediate neighbours is by mutual convenience. Whenever

data is available, the transmitting PE informs the receiver, and the receiver accepts the data

whenever required. It then communicates with the sender to acknowledge that the data have

been consumed. This scheme can be implemented by means of a simple handshaking

protocol, which ensures that the computational wavefronts propagate in an orderly manner

instead of crashing into one another [Kun82]. Since there is no need to synchronise the entire

array, a wavefront array is truly architecturally scalable. Another advantage of wavefront

arrays is the low power consumption associated to its asynchronous mode of operation. In
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asynchronous systems, power is only consumed where it is needed, whereas in synchronous

designs the global clock continuously drives the switching logic [Ho182].

On the other hand, a wavefront array and a systolic array are identical in terms of regularity,

modularity, local interconnection, and pipelinability. They both consist of modular

processing units with regular and local interconnections. Their computing networks may be

extended indefinitely. They exhibit a linear-rate speedup; i.e. they achieve a speedup, in

terms of processing rates, proportional to M, where M is the number of PEs.

In summary, a simple way to relate the wavefront array to its systolic counterpart is:

Wavefront array = Systolic array + Dataflow computing [Kun87]

Systolic and Wavefront Arrays Applications

Both wavefront and systolic arrays share the important common feature of using a large

number of modular and locally interconnected processors for massively pipelined and

parallel processing. Table 3.1 presents a list of applications for which systolic and wavefront

designs are available [For87].

Signal and Image Processing and Pattern Recognition

• FIR, IIR filtering and 1-D convolution	 •	 2-D convolution and correlation

• Discrete Fourier Transform	 •	 Interpolation

• 1-D and 2-D median filtering	 •	 Geometric warping

• Feature extraction	 •	 Order statistics

• Minimum-distance classification	 •	 Covariance matrix computation

• Template matching	 •	 Seismic signal classification

• Cluster analysis	 •	 Syntactic pattern recognition

• Radar signal processing	 •	 Curve detection

• Dynamic scene analysis 	 •	 Scene matching

Matrix Arithmetic

• Matrix-matrix multiplication	 •	 Matrix triang,ularisation

• QR decomposition	 •	 Sparse-matrix operations

• Solution of triangular linear systems

Non-Numeric Applications

• Data structures: stacks and queues sorting 	 •	 Connected componenls

• Graph algorithms: Transitive closure, 	 •	 Language recognition
minimum spanning trees 	 •	 Arithmetic arrays

• Dynamic programming	 •	 Algebra
• Relational database operations

Table 3.1 Applications of systolic and wavefront arrays
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3.4.3 Fault Tolerance in Cellular Systems

The parallel structures mentioned in the previous sections are good candidates to be

implemented in silicon because of their regularity and the relative simplicity of the

processing unit. In recent years the idea of parallel computers on a chip has become feasible

thanks to the advances in VLSI and WSI technologies. Nevertheless, production yields of

VLSI circuits are far from being optimum; therefore, reconfiguration techniques have been

explored for the past few years in order to provide VLSI processor arrays with fault tolerance

[Neg89, Lei85, Lom89].

All fault tolerance techniques for hardware systems rely on the use of spare components to

substitute failing elements. In the past, the cost associated with this redundancy has

prevented the widespread use of fault-tolerant hardware. However, in the case of VLSI

processor arrays, redundancy comes for free because not all the cells available in the array

are used on every application.

Fault tolerance in processor arrays implies the mapping of a logical array into a physical

non-faulty array; i.e. every logical cell must have a correspondent physical cell [Gro94].

When faults arise, a mechanism must be provided for reconfiguring the physical array such

that the logical array can still be represented by the remaining non-faulty cells. All

reconfiguring mechanisms are based on one of two types of redundancy: Time redundancy

or hardware redundancy [Che90b].

In time redundancy the tasks performed by faulty cells are distributed among its neighbours.

In this scheme the application must allow graceful degradation in performance. When

reconfiguration takes place, processors dedicate some time performing their own tasks and

some performing faulty cells' functions. Nevertheless, the algorithm being executed must be

flexible enough so as to allow a simple and flexible division of tasks.

In hardware redundancy physical spare cells and links are used to replace the faulty ones.

Therefore, reconfiguring algorithms must optimise the use of spares. In the ideal case a

processor array with N spares must be able to tolerate N faulty cells but, in practice,

limitations on the interconnection capabilities of each cell prevents this goal from being

achieved. Some prevalent strategies used to reconfigure cellular systems are Cell-

elimination, Row/Column-elimination and Embryonics.

Most hardware redundancy reconfiguration techniques rely on complex algorithms to re-

assign physical resources to the elements of the logical array. In most cases these algorithms

are executed by a central processor, which also performs diagnosis functions and co-
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ordinates the reconfiguration of the physical array [For85]. This approach has demonstrated

to be effective, but its centralised nature makes it prone to collapse if the processor in charge

of the fault tolerance functions fails.

An alternative approach is to distribute the diagnosis and reconfiguration mechanisms among

all the cells in the array. In this way no central agent is necessary and the time response of

the system improves. This mechanism resembles that found in biological cellular systems

and will be explained in the next chapter.

3.5 Field-Programmable Gate Arrays

In recent years a new approach to hardware fault tolerance is being explored: The use of

programmable logic to implement self-testable and self-reconfigurable circuits. To reach this

point technology has mainly evolved in two areas: Design of high-density programmable

circuits and improvement of CAD programs to assist the design and verification of the user's

applications. Field Programmable Gate Arrays (FPGA) and the VHDL language are the

corresponding prime technologies.

FPGAs resulted from the evolution of previous forms of programmable logic. PALs and

PLDs were the dominant technologies in the 70s and 80s respectively. The design engineer

was no longer constrained by the standard functions offered by standard 'TTL products. If a

logic chip was not available for a specific function the designer could take a PAL device and

create his own chip with the required logic function for a specific application. PAL's

architecture consisted of an AND-OR array and some inverters. The inputs to the ANDs

were the programmable bits.

Programmable Logic Devices (PLD) improved the architecture of PALs adding registers and

feedback lines form the outputs to the AND-OR array [San96b]. Having these programmable

chips, a programming machine and support software, the digital designer could create a

customised logic system. The advantage to the user was a reduction of approximately 3 to 1

in the chip count of a finished design. Other advantages were the cover up for errors in

printed circuit board layout, simpler PCB layout, and shorter time to market of final products

[.Iay93a]. There still remained a problem, though, the PLDs were limited in the amount of

input and output buffers, on chip logic and registers.

Xilinx Inc. addressed the deficiencies in the PAL product by offering a static RAM based

FPGA with a larger amount of input and output resources and on chip registers. Even with

the early Xilinx devices six or seven PAL devices could be absorbed into one Xilinx chip.

There are additional advantages in an SRAM based product, such as the capability of being

reprogrammed to change the logic function in circuit. For example, a host processor could
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configure an FPGA with a diagnostic function and reconfigure the device as a bus interface

at a later time, thus removing the need for logic duplication.

3.5.1 FPGAs Architecture

From the architectural point of view, complex PLDs are based on EPROM technology.

Consequently, the configuration data are non-volatile and erasable. The devices comprise a

small number of coarse logic blocks, based on the PAL macrocell, and employ simple, fast

interconnect that is relatively easy to route. In contrast, FPGAs usually have a large number

of simple logic blocks that communicate via complex and fragmented interconnect that often

detracts significantly from system performance. There are three architectural styles [Yor93]

referred to as Red Square, Terraced and Manhattan, as shown in figure 3.9.

Figure 3.9 Architectural styles for progratnmable devices

All complex PLDs employ Red Square architectures. These are characterised by a small

number of large logic blocks surrounding an expanse of fast, direct interconnect. In contrast,

all of the FPGAs based on embedded registers employ a Manhattan architecture. Terraced

architectures are employed in the one-shot FPGA devices from Actel and Crosspoint. FPGA

devices conventionally employ small cells that are connected by sophisticated, and often

fragmented, routing resources.

Granularity is an issue that attracts considerable debate. Manufacturers of complex PLDs,

having relatively coarse blocks, argue that the simple and direct routing that is possible

between a relatively small number of large logic blocks is fast and predictable. It also

imposes minimal demands on automatic layout tools and therefore modest tools achieve

successful routing in short periods of time. This is in contrast to the situation that is

encountered for the complex and fragmented interconnection resources that are necessary for
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fine-grained architectures. Also the high functionality of large blocks ensures that most

functions can be realised in two levels of logic, and this provides a performance advantage.

Alternatively, the vendors of FPGAs, characterised by many fine-grained blocks, argue that

they offer higher logic densities and better utilisation of the available resources. In addition,

small blocks are preferred for implementing register-intensive designs and therefore offer

improved flexibility. Some of the most recent FPGA architectures address these conflicting

requirements by providing hybrid logic blocks having a mixed medium/coarse-grained

nature. Clearly there is no consensus of opinion and one technology will not be the most

appropriate for all applications.

Generally the style of reconfiguration falls into two groups: Static reconfiguration and

dynamic reconfiguration.

Static reconfiguration means that a system loads the programming data to the FPGA while

the system is not actually operating. The static reconfiguration is referred as a compile-time

reconfiguration. In this style, the programming data are loaded into the FPGA only once, in a

phase previous to normal operation, this phase is called the configuration phase. Because

configuration time can normally be ignored, the configuration circuit is simple; i.e.

simplicity is preferred over speed.

On the contrary, dynamic reconfiguration can swap the logic contents of an FPGA during

system operation without disturbing the operation of the overall system. There are two types

of dynamic reconfiguration depending on the FPGA configuration circuitry. One is Full

Chip Reconfiguration, in which the system reprograms the entire FPGA even if the new

configuration data differs only slightly from the original one. The other is Partial

Reconfiguration, in which the system reprograms only the section of the FPGA that

requires changes while the rest of the circuit remains the same. Table 3.2 summarises the

reconfiguration styles.

Static Reconfiguration
(Full Chip)

Dynamic Reconfiguration
Full Chip Partial

When Compile time During system operation

Time to Reprogram Don't care Milliseconds Nano to microseconds

Reprogram Area Entire FPGA Entire FPGA Portion of FPGA

Purpose

•	 Definitive system
alteration

•	 Hardware upgrade

•

•

Logic swap

Performance
enhancement

•	 Time-multiplexing
arwareof hardware

•	 Evolvable HW

Table 3.2 Reconfiguration styles for FPGAs
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3.5.2 FPGAs Applications

With the development of FPGAs there are now opportunities to implement systems quite

different from those designed with other technologies. Some of these new opportunities,

especially those of multi-FPGA systems, will he discussed next.

When FPGAs were first introduced they were primarily considered to be just another form of

gate array. While they had lower speed and capacity, and had a higher unit cost, they did not

have the large start-up costs and lead times necessary for ASICs. Thus, they could be used

for implementing random logic and glue logic in small volume systems with non-aggressive

speed and capacity demands. If the capacity of a single FPGA was not enough to handle the

desired functionality, multiple FPGAs could be included on the board, distributing the

functionality between these chips.

With the advances in technology, FPGAs are nowadays more than just slow, small gate

arrays. The critical feature of SRAM-based FPGAs is their in-circuit reprogrammability.

Since their programming can be changed quickly, without any rewiring or refabrication, they

can be used in a much more flexible manner than standard gate arrays. One example of this

is multi-mode hardware. For example, when designing a digital tape recorder with error-

correcting codes, one way to implement such a system is to have separate code generation

and code-checking hardware built into the tape machine. However, there is no reason to have

both of these functions available simultaneously, since when reading from the tape there is

no need to generate new codes, and when writing to the tape the code checking hardware

will be idle. Thus, it is possible to have an FPGA in the system, and have two different

configurations stored in ROM, one for reading and one for writing. In this way, a single

piece of hardware handles different functions. There have been several multi-configuration

systems based on FPGAs, including the tape machine, generic printer and CCD camera

interfaces, and pivoting monitors with landscape and portrait configurations [Hau97, Xi194,

Cas97, Tem94].

While the previous uses of FPGAs still treat these chips purely as methods for implementing

digital logic, there are other applications where this is not the case. A system of FPGAs can

be seen as a computing substrate with somewhat different properties than standard

microprocessors. The reprogrammability of the FPGAs allows downloading algorithms onto

the FPGAs, and changing these algorithms just as general-purpose computers can change

programs. This computing substrate is different from standard processors in that it provides a

huge amount of fine-grain parallelism. The instructions are quite simple, in the order of a

single five bit input, one bit output function. Moreover, while the instruction stream of a
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microprocessor can be arbitrarily complex, with the function computed by the logic changing

on a cycle by cycle basis, the programming of an FPGA is in general held constant

throughout the execution of the mapping (exceptions to this include techniques of run-time

reconfigurability described below). Thus, if a variety of different functions in a mapping are

needed, a microprocessor executes them temporally, i.e. with different functions executed

during different cycles; whereas an FPGA-based computing machine achieves variety

spatially, i.e. letting different logic elements compute different functions. This means that

microprocessors are superior for complex control flow and irregular computations, while an

FPGA-based computing machine can be superior for data-parallel applications, where a huge

amount of data must be acted on in a very similar manner.

There have been several computing applications where a multi-FPGA system has delivered

the highest performance implementation. An early example is generic string matching on the

Splash machine [Gok90]. Here, a linear array of Xilinx 3000 series FPGAs was used to

implement a systolic algorithm to determine the "edit distance" between two strings. The

edit distance is the minimum number of insertions and deletions necessary to transform one

string into another, so the strings "flea" and "fleet" would have an edit distance of 3 (delete

"a" and insert "et"). A dynamic-programming solution to this problem can be implemented

in the Splash system as a linear systolic circuit, with the strings to be compared flowing in

opposite directions through the linear array. Processing can occur throughout the linear array

simultaneously, with only local communication necessary, producing a huge amount of fine-

grain parallelism. This is exactly the type of computation that maps well onto a multi-FPGA

system. The Splash implementation was able to offer an extremely high performance

solution for this application, achieving performance approximately 200 times faster than

supercomputer implementations.

Table 3.3 presents a list of applications where a multi-FPGA system has offered the highest

performance solution:

• Long multiplication • Travelling salesman problem • Speech recognition

• Real-time pattern
recognition

• Genetic optimisation • Genetic database
searches

• Stereo matching in
stereo vision

• Region detection and
labelling

• Differential equations
solvers

• Monte Carlo algorithms • Cryptography • Modular multiplication

Table 3.3 High-performance applications of FPGAs
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One of the most successful uses for FPGA-based computation is in ASIC logic emulation.

The idea is that the designers of a custom ASIC need to make sure that the circuit they

designed correctly implements the desired functionality. Software simulation can perform

these checks, but does so slowly. In logic emulation the circuit to be tested is instead mapped

onto a multi-FPGA system, yielding a solution several orders of magnitude faster than

software simulation.

An emerging application of FPGA-based computing is the training and execution of neural

networks [Dye95]. A neural network is a powerful computational model based on the

structure of neurons in the brain. These systems have proven effective for tasks such as

pattern recognition and classification. Neural network implementations take advantage of

FPGA's reprog,rammability by changing the chip's programming over time, much as a

standard processor context-switches to a new program. However, it is possible to make more

aggressive use of this ability to develop new types of applications.

The FPGA can be viewed as a demand-paged hardware resource, yielding "virtual

hardware" similar to virtual memory in today's computers. In such systems (usually

grouped under the term "dynamically reconfigurable" or "run-time configurable"), an

application will require many different types of computations, and each of these

computations has a separate mapping to the programmable logic. For example, an image

processing application for object thinning may require separate pre-filtering and thresholding

steps before running the thinning operation, each of which could be implemented in a

separate FPGA mapping. Although these mappings could be spread across multiple FPGAs,

these steps must take place sequentially, and in a multi-FPGA system only one mapping

would be actively computing at a time. Run-time configuration saves hardware by reusing

the same resource. Because of these advantages, there has been a significant amount of work

on run-time reconfig,urable systems, applications, and support tools, e.g. [Bli91, Cas97,

Gok90, Jay93].

Researchers at the MIT have proposed an FPGA that stores multiple configurations in a

series of memory banks. In a single clock cycle, which is of the order of tens or hundreds of

nanoseconds, the chip could swap one configuration for another configuration without

erasing partially processed data [De1195].

At Brigham Young University configurable computing has been used to build a dynamic

instruction set computer (DISC), which effectively marries a microprocessor to an FPGA

and demonstrated the potential of automatic reconfiguration using stored configurations. As

a program runs, the FPGA requests reconfiguration if the designated circuit is not resident.
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DISC allows a designer to create and store a large number of circuit configurations and

activate them much as a programmer would initiate a call to a software subroutine in a

microprocessor [Hut95].

The Colt Group of Virginia Polytechnic Institute and State University, is investigating a run-

time reconfiguration technique called Wormhole that lends itself to distributed computing.

The unit of computing is a stream of data that creates custom logic as it moves through the

reconfigurable hardware [Ath97].

Researchers at the University of California at Berkeley are developing systems that combine

a microprocessor and an FPGA. Special compiler software would take ordinary program

code and automatically generate a combination of machine instructions and FPGA

configurations for the fastest overall performance. This approach takes advantage of

opportunities to integrate a processor and an FPGA on a single chip.

In recent years FPGAs have become the cornerstone of Evolvable Hardware. Adrian

Thompson and his team at Sussex University have used Xilinx FPGAs to evolve digital

circuits [Tho96b]. By using the configuration bits of an FPGA as the population of a genetic

algorithm, Thompson was able to "evolve" a frequency discriminator [Tho97]. This work is

of particular importance because, for the first time, the parasitic characteristics of electronic

circuits were used to provide useful work. However, the behaviour of the evolved circuit

remained beyond explanation until recently [Tho99].

Another remarkable use of FPGAs in the field of evolvable hardware can be found in the

work done by Moshe Sipper from the EPFL, Switzerland. Sipper succeeded in intrinsically

evolving the behaviour of a linear cellular automaton [Sip97a]. Intrinsically means that both,

the aiming task and the genetic algorithm were running concurrently in the FPGA.

The Logic Systems Laboratory in Lausanne, Switzerland originally proposed Embryonics as

a new family of fault-tolerant FPGAs inspired by nature. The main idea is to have

reconfigurable systems with the ability to perform self-diagnosis and self-reconfiguration

with no assistance from an external agent. This architecture will be extensively revised in the

next chapter.

3.5.3 The future of configurable computing

Configurable computing is still an extremely young field. Although this approach was

proposed since the late 1960s, the first demonstrations did not occur until a few years ago

and current FPGAs with up to 100,000 logic elements still do not come close to exploiting
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the full possibilities of the technique [Vi197]. Future FPGAs will be much larger. As with

many other integrated circuits, the number of elements on a single FPGA has doubled

roughly every 18 months. Before the decade of the 1990's is out, it is expected to see FPGAs

that have a million logic elements. Such chips will have much broader application, including

highly complex communications and signal-processing algorithms.

Academic researchers and manufacturers are overcoming numerous other design limitations

that have hindered the adoption of configurable computing. Not all computations can be

implemented efficiently with today's FPGAs: they are well suited to algorithms composed of

bit-level operations, such as pattern matching and integer arithmetic, but they are ill suited to

numeric operations, such as high-precision multiplication of floating-point numbers.

Dedicated multiplier circuits such as those used in microprocessor and digital signal chips

can be optimised to perform more efficiently than multiplier circuits constructed from

configurable logic blocks in an FPGA. Furthermore, FPGAs currently provide very little on-

chip memory for storage of intermediate results in computations; thus, many configurable

computing applications require large external memories. The transfer of data to and from the

FPGA increases power consumption and may slow down the computations.

FPGAs will never replace microprocessors for general-purpose computing tasks, but the

concept of configurable computing is likely to play a growing role in the development of

high-performance computing systems. The computing power that FPGAs offer will make

them the devices of choice for applications involving algorithms in which rapid adaptation to

the input is required.

In addition, the line between programmable processors and FPGAs will become less distinct:

future generations of FPGAs will include functions such as increased local memory and

dedicated multipliers that are standard features of today's microprocessors; there are also

next-generation microprocessors under development whose hardware supports limited

amounts of FPGA-like reconfiguration. Indeed, just as computers connected to the Internet

can now automatically download special-purpose software components to perform particular

tasks, future machines might download new hardware configurations, as they are needed.

Computing devices 10 years from now may include a strong mix of software-programmable

hardware and hardware-reconfig,urable logic [Vi197].

Finally, while existent FPGA cells execute basic logic operations, research is being done to

design FPGAs whose cells can execute mathematical operations; e.g. adders or multipliers

[Tis99]. These circuits require fewer resources, while facilitating the hardware

implementation of complex operations [Mar99].
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3.6 Binary Decision Diagrams

Boolean algebra forms a cornerstone of computer science and digital system design. Many

applications in digital logic design and testing, artificial intelligence, and graph analysis can

be expressed as a sequence of operations on Boolean functions. Such applications would

benefit from efficient algorithms for representing and manipulating Boolean functions

symbolically. Unfortunately, many of the tasks one would like to perform with Boolean

functions require solutions to NP-complete or co-NP-complete problems. For example,

testing whether there exists any assignment of input variables such that a given Boolean

expression evaluates to 1 (satisfiability), or two Boolean expressions denote the same

function (equivalence) [Bry86]. Consequently, all known approaches to perform these

operations require, in the worst case, an amount of computer time that grows exponentially

with the size of the problem. This makes it difficult to compare the relative efficiencies of

different approaches to represent and manipulate Boolean functions. In the worst case, all

known methodologies perform as poorly as the naïve approach of representing functions by

their truth tables and defining all of the desired operations in terms of their effect on truth

table entries. In practice, by utilising alternative representations one can often avoid these

exponential computations.

A variety of methods have been developed for representing and manipulating Boolean

functions. Those based on classical representations such as truth tables, Karnaugh maps, or

canonical sum-of-products form are quite impractical; every function of ii arguments has a

representation of size 2.

More practical approaches use representations that, at least for many functions, are not of

exponential size, e.g. reduced sum of products. These representations suffer from several

drawbacks. First, certain common functions still require representations of exponential size,

e.g. the even and odd parity functions serve as worst case examples in all these

representations. Second, while a certain function may have a reasonable representation,

performing a simple operation, such as taking the complement, could yield a function with

exponential representation. Finally, none of these representations are canonical forms, i.e. a

given function may have many different representations. Consequently, testing for

equivalence or satisfiability can be quite difficult.

Due to these characteristics, most programs that process a sequence of operations on Boolean

functions have rather erratic behaviour. They proceed at a reasonable pace, but then suddenly

"blow up", either running out of storage or failing to complete an operation in a reasonable

amount of time [Bry86].
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A binary decision tree or diagram (BDD) is a model of the evaluation of a Boolean

function, wherein the value of a variable is determined and the next action (to choose another

variable to evaluate or to output the value of the function) is chosen accordingly. BDDs find

many applications in fields such as: decision table programming [Met77], databases

[Han77], pattern recognition [Be178], taxonomy and identification [Pay80], machine

diagnosis [Cha70], switching theory [Lee59], and analysis of algorithms [Wei77]. Due to

this broad applicability, results about BDDs are dispersed throughout the literature in fields

such as biology, computer science, information theory, and switching theory.

BDD notation was introduced by Lee [Lee59] and further popularised by Akers [Ake78].

Bryant placed restrictions on the ordering of decision variables, which enabled the

development of algorithms for manipulating the representations in a more efficient manner.

Bryant representation was called the Ordered BDD or OBDD, and offered the advantage of

being canonical. This property has several important consequences [Bry92]: Functional

equivalence can be easily tested. A function is satisfiable if its OBDD representation does

not correspond to the single terminal vertex labelled 0. Any tautological function must have

the terminal vertex labelled 1 as its OBDD representation. If a function is independent of

variable x, then its OBDD representation cannot contain any vertices labelled by x. Thus,

once OBDD representations of functions have been generated, many functional properties

become easily testable.

3.6.1 Construction of a Binary Decision Diagram

A BDD represents a Boolean function as a rooted, directed acyclic graph. As an example,

figure 3.10 illustrates a representation of the function f(xh x2,x3) defined by the truth table

given on the left, for the special case where the graph is actually a tree.

, , ID
, , III)	 ID

II	 I) 0
0	 0	 ,	 0	 1

x, x2 x3
0 0 0
00 1 0
0 , 0 0
0 , , ,
1000
, 0 , 1
, . . 0
1 1 1_I

Figure 3.10 Truth table and decision tree of a Boolean function
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Each non-terminal vertex v is labelled by a variable var(v) and has arcs directed toward two

children: lo(v) (shown as a dashed line) corresponding to the case where the variable is

assigned 0, and hi(v) (shown as a solid line) corresponding to the case where the variable is

assigned 1. Each terminal vertex is labelled 0 or 1. For a given assignment to the variables

the value yielded by the function is determined by tracing a path from the root to a terminal

vertex, following the branches indicated by the values assigned to the variables. The function
,

value is then given by the terminal vertex label. Due to the way the branches are ordered in

figure 3.10, the values of the terminal vertices, read from left to right, match those in the

truth table, read from top to bottom.

In order to construct an Ordered Binary Decision Diagram (OBDD) a total ordering over the

set of variables is imposed, and require that for any vertex u, and non-terminal child v, their

respective variables must be ordered var(u) < var(v). In the decision tree of figure 3.10, for

example, the variables are ordered x l < x, < x3 . In principle, the variable ordering can be

selected arbitrarily because the algorithm will operate correctly for any ordering. In practice,

selecting a satisfactory ordering is critical for an efficient symbolic manipulation.

Three transformation rules are defined such that the function represented by these graphs is

not altered [Bry92]:

1. Remove Duplicate Terminals. Eliminate all but one terminal vertex with a given label

and redirect all arcs into the eliminated vertices to the remainingu one.

2. Remove Duplicate Non-terminals. If non-terminal vertices u and v have var(u)= var(v),

lo(u)= lo(v), and hi(u)= hi(v), then eliminate one of the two vertices and redirect all

incoming arcs to the other vertex.

3. Remove Redundant Tests. If non-terminal vertex v has lo(v)= hi(v), then eliminate v

and redirect all incoming arcs to lo(v).

Starting with any BDD satisfying the ordering property, we can reduce its size by repeatedly

applying the transformation rules. The term OBDD refers to a maximally reduced graph that

obeys some ordering. For example, figure 3.11 illustrate the reduction of the decision tree

shown in figure 3.10 into an OBDD.

Applying the first transformation rule to figure 13.10 reduces the eight terminal vertices to

two (Fig.3.11a). Applying the second transformation rule eliminates two of the vertices

having variable x3 , and the arcs to terminal vertices with labels 0 (lo) and 1 (hi) (Fig.3.11b).

Applying the third transformation rule eliminates two vertices: one with variable x l and one
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with variable x2 (Fig.3.11c). In general, the transformation rules must be applied repeatedly,

since each transformation can expose new possibilities for further ones.

Figure 3.11 Reduction of decision tree into OBDD

As figures 3.10 and 3.11 illustrate, it is possible to construct the OBDD representation of a

function given its truth table by constructing and reducing a decision tree. However, this

approach is practical only for functions of a small number of variables, since both the truth

table and the decision tree have size exponential in the number of variables. The form and

size of the OBDD representing a function depends on the variable ordering. Most

applications using OBDDs choose some ordering of the variables at the outset and construct

all graphs according to this ordering. This ordering is chosen manually or by heuristic

analysis of the particular system to be represented. For example, several heuristic methods

have been devised that generally derive a good ordering for variables representing the

primary inputs [Mor82]. Others have been developed for sequential-system analysis [Jeo91].

State of the art techniques propose the use of evolutionary methods to find an optimal

variable ordering for a given function [Sak97]. Note that these heuristics do not need to find

the best possible ordering since the ordering chosen has no effect on the correctness of the

results. As long as an ordering can be found that avoids exponential growth, operations on

OBDDs remain reasonably efficient.

3.6.2 Implementation of Binary Decision Diagrams

BDDs and OBDDs can easily be programmed. Lee called the result decision programs

[Lee5911, and has suggested a universal instruction type which implements the evaluation

process taking place at an internal node:

L:i,gO gj,

Where L is a label, i identifies variable xi, and gk (used only when xi=k) is either a value (if

the restriction for xi=k is a constant) or a label. Such an instruction is executed by testing

variable xi and upon finding its value, say xi=k, taking the corresponding action gk ; that is,
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Start: 1,A,B

A: 2,0,B

B: 3,0,1

a) Decision program for figure 11c b) Equivalent multiplexer network

either transferring control to the instruction labelled gk, or assigning to the function the value

gk. Thus, to each node of the diagram there corresponds one instruction in the program.

Cerny has investigated a special architecture for the execution of such programs [Cer79].

OBDDs can also be implemented in hardware as multiplexer trees and networks [Cer79]. In

a multiplexer tree, each internal tree node is represented as a 2-1 multiplexer controlled by

the node variable, and each leaf is implemented as a constant logical value (wired at 0 or

wired at 1); the interconnection scheme is that of the OBDD. The evaluation of a function

then proceeds from the "leaves" (the constant values) to the root multiplexer. The function

variables, used as control variables, select a unique path from the root to one leaf, and the

value assigned to that leaf propagates along the path to the output of the root multiplexer.

Consider the OBDD of figure 3.11c. Its diagram can be implemented either by a decision

program (figure 3.12a) (where letters are used for labels to distinguish them from values), or

by a multiplexer network (figure 3.12b).

Figure 3.12 Decision program and multiplexer network for figure 3.11c

Note that the number of multiplexers used in a network is precisely the number of

instructions of an equivalent decision program. Similarly, the maximum delay though a

network is proportional to the maximum execution time of an equivalent program, both

being dependent upon the length of the longest path through the diagram.

3.6.3 Application of OBDDs

The use of OBDDs in digital-system design, verification and testing has gained widespread

acceptance. In this section a few areas of application are described.

Verification

OBDDs can be applied directly to the task of testing the equivalence of two combinational

logic circuits. This problem arises when comparing a circuit to a network derived from the
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system specification, or when verifying that a logic optimiser has not altered the circuit

functionality [Bry86].

Design error correction

Going further to simply detect the existence of errors in a logic design, researchers have

developed techniques to automatically correct a defective design. This involves considering

some relatively small class of potential design errors, such as a single incorrect logic gate,

and determining if any variant of the given network could meet the required functionality

[Mad89]. This analysis demonstrates the power of the quantification operations for

computing projections, in this case projecting out the primary input values by universal

quantification.

Sensitivity analysis

A second class of applications involves characterising the effects of altering the signal values

on different lines within a combinational circuit. That is, for each signal value s, the Boolean

difference for every primary output with respect to s is computed. This analysis can be

performed symbolically by introducing "signal line modifiers" into the network, i.e. for each

line that would normally carry a signal value s, this value is selectively altered to be the

complement of s (s') under the control of a Boolean value P by computing s'= s XOR P. The

conditions under which a particular output of the circuit is sensitive to the value on a signal

line can be determined by comparing the outputs of the original and altered circuits. One

application of this sensitivity analysis is automatic test generation. A second application is in

the area of combinational logic optimisation [Cho89].

Probabilistic analysis

Recently, researchers have devised a method for statistically analysing the effects of varying

circuit delays in a digital circuit. This application of OBDDs is particularly intriguing, since

conventional wisdom would hold that such an analysis requires evaluation of real-valued

parametric variations and hence could not be encoded with Boolean variables. Consider a

logic gate network in which each gate has a delay given by some probability distribution.

This circuit may exhibit a range of behaviours, some of which are classified as undesirable.

The yield is then defined as the probability that these behaviours do not occur. One simple

analysis would be to treat the waveform probabilities for all signals as if they were

independently distributed. The behaviour of each gate output can be computed according to

the gate function and input waveforms. To solve this problem through symbolic Boolean

analysis two restrictions must be made. First, all circuit delays must be integer valued, and
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hence transitions occur only at discrete time points. Second, the delay probabilities for a gate

must be multiples of a value l/k, where k is a power of 2. Given a Boolean function

representing the conditions under which some event occurs, we can compute the event

probability by computing the density of the function, i.e. the fraction of variable assignments

for which the function yields 1.

Other applications

Historically, OBDDs have been applied mostly to tasks in digital-system design, verification

and testing. However, their use has recently spread into other application domains. For

example, the fixed-point techniques used in symbolic-state machine analysis can be used to

solve a number of problems in mathematical logic and formal languages, as long as the

domains are finite. Researchers have also shown that problems from many application areas

can be formulated as a set of equations over Boolean algebras that are solved by a form of

unification.

In the area of artificial intelligence, researchers have developed a truth maintenance system

based on OBDDs [Mad91]. They use an OBDD to represent the database, i.e. the known

relations among the elements. They have found that by encoding the database in this form,

the system can make inferences more readily than with the traditional approach of simply

maintaining an unorganised list of known facts. For example, determining whether a new

fact is consistent with or follows from the set of existing facts involves a simple test for

implication.

3.7 Summary
The ideas and technologies that give shape to the embryonics project have been presented in

this chapter. Like any other bio-inspired system, embryonics has both biological and

technological foundations and, although many of these ideas are quite dissimilar to each

other, every effort has been made to present them in a clear and ordered manner.

Embryonics applies mechanisms that take place during the development of embryos to the

design of field-programmable processor-arrays. The result is a fault-tolerant cellular

architecture capable of implementing, in its present stage, any logic function represented as

an ordered binary decision diagram.

The concepts and technologies presented in this chapter constitute the background

information that supports the embryonics project. The following chapter proposes a detailed

implementation of an embryonic architecture.
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This chapter presents a detailed description of the MUXTREE embryonic
architecture. Section 4.2 presents the block diagram of a generic embryonic
cell as well as a description of each one of its constituent blocks. Section
4.3 discuses the built-in self-test techniques employed to endow the cell
with fault tolerance, and the cost associated with it. Section 4.4 presents
three examples of the use of embryonic arrays. Resilience to faults is
verified by means of simulation.

CHAPTER 
A 

I

ARCHITECTURE OF AN

EMBRYONIC SYSTEM

4.1 Introduction

Previous chapters presented the biological and technological background that sustains the

embryonics project. During the development of the project several implementations of the

embryonics architecture have been proposed [Man98a, Ort99a]. In this chapter MUXTREE,

a particular implementation of the embryonics architecture, is presented.

MUXTREE designates an embryonic cell whose processing element is a selector or

multiplexer [Ort98a, Tem97]. Multiplexers have the characteristic of being able to

implement any node from an ordered binary decision diagram (OBDD), which in turn can

represent any combinational or sequential logic function [Ake78, Cer79, Lia92].

A top-down methodological approach was followed during the design of the cell, while a

bottom-up approach was followed for implementing the functional blocks. The cell was

implemented and simulated in the Viewlogic's WorkviewO suite. The resulting architecture

resembles that of Actel's commercial FPGAs [Act951.
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In section 4.2 the general block diagram of MUXTREE's fundamental cell is presented.

Every constituent module of the block diagram will be described in the subsections that

follow. The schematic diagrams of the MUXTREE cell can be found in appendix A.

Section 4.3 presents the built-in self-test techniques employed to provide the MUXTREE

with self-diagnosis capabilities. The cost associated with these improvements is discussed in

subsection 4.3.4. The reconfiguration mechanisms that are activated when a fault is detected

in any of the cells are explained in section 4.3.5.

Section 4.4 introduces a methodology to implement logic applications using embryonic

arrays. This methodology is used in three simple applications: a voter circuit, a 3-bit up-

down counter, and a programmable frequency divider. Simulations showing the resilience to

injected faults are presented for each example.

4.2 The Embryonics Architecture

An embryonic array is a regular array of interconnected embryonic cells. In resemblance to

natural cellular systems, every cell in an embryonic array performs the same basic operation

regardless of the particular logic function it is involved with. Each cell interprets one of the

configuration registers allocated in its memory (genome) to perform the logic operations

needed for the correct implementation of the system's specification. The configuration

register that is selected depends on the position of the cell within the array, distinguished by

a set of co-ordinates. The co-ordinates are calculated locally from those of the nearest

neighbouring cells.

Figure 4.1 shows the basic architecture of a generic embryonic system.

Figure 4.1 Basic Components of an Embryonic System
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In the MUXTREE architecture, each cell is distinguished by one co-ordinate. The processing

element is a multiplexer whose functionality and input/output routing are controlled by a

configuration register that is selected by the cell's co-ordinate.

Digital data are transmitted from one cell to its neighbours through a direct North-East-West-

South (NEWS) connection. The I10 router also propagates information over the entire array

by means of a routing network that acts as a "virtual bus". The I10 router is controlled by one

section of the corresponding configuration register.

Embryonic cellular arrays share the following properties with their biological counterparts

[Mar96]: Multicellular organisation (every cell has a unique set of co-ordinates), cellular

differentiation (each cell performs a unique function), and cellular division (the genome is

copied from mother to daughter cells).

The architecture shown in figure 4.1 presents the following advantages:

It is highly regular, which simplifies its implementation on silicon.

The actual function of the processing element is independent from the function of the

remaining blocks. This modularity has been exploited to produce families of embryonic

field programmable arrays, each one offering different functionalities and complexity.

For example, the MUXTREE architecture implements a binary selection function

[Tem97], whereas the MICTREE family follows a microprogrammed approach

[Man98a].

Provided the architecture of the processing element is kept simple, it would be possible

to include built-in self test (BIST) logic to provide self-diagnosis without excessively

incrementing the silicon area [La185, Tur90].

The following subsections describe the blocks that make up the MUXTREE cell.

4.2.1 Memory Architecture

Each cell must have enough memory to maintain a copy of the configuration registers of all

the cells in the corresponding column for the row-elimination strategy to be achieved. One

extra register must be provided to allocate the configuration that is selected when faults are

detected (transparent configuration).

MUXTREE cells require 17 bits to be fully configured. The definition of these bits is given

in section 4.2.5. In order to simplify the genome's downloading process, memory is designed

using a serial-input parallel-output shift register. During downloading external logic enables

one column in the array at one time so that information flows into all the cells in that column
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simultaneously. This approach offers the possibility during normal operation of re-loading

the configuration registers of any column without interfering with the configuration stored in

other columns. Following the DNA resemblance, columns in the array can be considered as

chromosomes. This chromosomic approach is particularly attractive if the architecture is to

be evolved using genetic algorithms.

For an array where columns have n cells each, the total amount of configuration bits required

on each embryonic cell is:

(11+1 registers per cell) * (17 bits per register) + (2 bits for diagnosis) = (17n + 19) bits

Figure 4.2 shows the memory structure for an array containing 16 cells per column. Note that

the size of the memory is independent of the number of columns utilised for a particular

application.

Figure 4.2 Embryonic cell's memory architecture

4.2.2 Co-ordinate Generator

Each cell in an embryonic array has a co-ordinate that is unique in the corresponding

column. Co-ordinates are received from the south neighbours. Cells in the south edge of the

array are hard-wired to co-ordinate 0. If one of the cells self-diagnoses faulty through the

mechanisms exposed in section 4.3, then it becomes transparent and propagates its co-

ordinate without increment. Therefore, the north neighbour takes the faulty cell's co-ordinate

and consequently its function.

Each cell must generate a co-ordinate for its north neighbour. The value of the co-ordinate

issued depends on the status of the cell that generates it. If the cell is non-faulty, then its co-

ordinate is incremented by 1 and the resulting value propagated north. If the cell self-
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diagnoses faulty, then it becomes transparent and propagates the input co-ordinate to the

output. Figure 4.3 illustrates the process of co-ordinates generation.

Figure 4.3 a) Co-ordinates generator and b) Co-ordinates generation

No "code" is being communicated around the array when reconfiguration takes place, only

Boolean signals are passed between cells. These actions are carried out by combinational

logic, therefore, the time required to reconfigure a complete array is very short, depending

only on the number of cells per column and the propagation delays of the gates involved.

Setting-up an embryonic array implies two phases: the configuration phase, in which the co-

ordinates are calculated and the genome is downloaded; and the operational phase, in which

the array performs the desired function. During the configuration phase, co-ordinates are

ignored and no output in the whole array is valid. When the last configuration bit has been

shifted into the array the operational phase begins, each cell in the array selects a

configuration register and outputs become valid.

4.2.3 Processing Element

The processing element in the MUXTREE performs a 2-1 multiplexer function. This is

basically a 2-input selector, where each input can be selected from one of 8 possible sources.

The output can be registered and fedback so that the implementation of sequential logic is

possible. Figure 4.4 shows the architecture of this block.

The selection element shown in figure 4.4 allows many input-output combinations by

programming the configuration bits (labels in bold). This selection capability, in conjunction

with the I10 router, allows the implementation of Ordered Binary Decision Diagrams

(OBDDs) of any size, provided the number of cells in the array is sufficient [Lia92].
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Figure 4.4 Architecture of processing element inside MUXTREE cell

There are two types of data input for this module: those that are propagated naturally, i.e.

without any kind of routing configuration; and those whose source and destination are

selected via the configuration register and the I/O router module. EIN, WIN, SIN, NOUT,

WOUT and EOUT belong to the first group, while EOBUS, EIBUS, SIBUS and SOBUS

belong to the second group. Controlled signals allow the interchange of information between

non-neighbouring cells. Prefixes N, E, W and S indicate which neighbour is either receiving

or transmitting the corresponding signal, for example NOUT is the non-controlled output

going to the north neighbour, while EIBUS means the controlled input coming from the

neighbour on the east.

L2:0 and R2:0 select one input out of eight on their respective multiplexers. It is possible to

select 0 or 1 as the signal to be propagated in order to facilitate the implementation of the

terminal nodes of the OBDDs. Notice that the registered output Q is fedback on input A5 of

each multiplexer, this allows the implementation of sequential circuits. The REG bit in the

configuration register will determine if the output is combinational or sequential. The

selection input for the main multiplexer element (marked with a star in figure 4.4) can also

be selected from four of the signals controlled by the I10 router. The value of bits EBUS1:0

on the configuration register determine whether EOBUS, EIBUS, EIN or WIN will select the

block's output. The south input SIN is propagated through both EOUT and WOUT outputs.
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It is necessary to bear in mind that during the operational phase each cell is part of a cellular

array, therefore complexity is achieved not by the function performed by a single cell but by

the simultaneous interaction of all cells in the array [Lan84].

4.2.4 Input/Output Router

In a conventional cellular array communications among cells are restricted by the NEWS

interconnection, i.e. the output generated by a particular cell can only be propagated to the

nearest neighbours. To overcome this limitation the I10 router provides additional paths so

that information can be propagated not only to the nearest neighbours, but also to more

distant ones. Figure 4.5 shows the way information is routed in this block. Labels in bold

represent the selection bits stored in the configuration register.

Figure 4.5 I/O Router

Figure 4.5 shows the various paths any input can follow. Configuration bits N1:0, S1:0,

E1:0 and W1:0 select one of 4 possible outputs on the corresponding selector.

Inside every router in the array, NOUT is the output coming from the corresponding

selection element. If necessary, this signal can be propagated simultaneously through all

output virtual buses. I10 router inputs can be sent to any direction except the one they came

from, e.g. NIBUS cannot be returned through NOBUS. The I10 router allows fast long-

distance interconnections between cells.

When a fault is detected and reconfiguration takes place, the I10 router assumes a default

configuration in which data propagate following a straight line; e.g. SIN is routed to NOUT.
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4.2.5 Configuration register

Figure 4.6 shows the contents of the configuration register.

Figure 4.6 Configuration register

EBUS1:0- Determines whether the selection input for the main multiplexer will be taken

from EOBUS (EBUS= 0), EIBUS (EBUS= 1), EIN (EBUS= 2) or WIN (EBUS= 3).

L2:0, R2:0- The left (L) and right (R) inputs for the main multiplexer are selected according

to the value of these bits. There are eight possible input signals and one is selected by the

combination of these bits.

REG- If this bit is 1, the output of the logic block becomes the registered output of the main

multiplexer element. If it is 0, the direct non-registered output is selected.

N1:0, E1:0, W1:0, S1:0- These bit-pairs select the input that will be propagated on the

outputs of the I/O router, they control the output on NOB US, EOBUS, WOBUS and SOBUS

respectively.

Once loaded, the value of the configuration registers remains unchanged. At the end of the

configuration process the contents of all the cells in a column are identical. It is the cell's

position within the array that determines which configuration register is interpreted. At this

level the embryonic array is a static entity. The ability to detect and overcome faults is given

by a further mechanism.

4.3 Error Detection and Error Handling

Fault tolerance in processor arrays implies the mapping of a logical array onto a non-faulty

physical array; i.e. every logical cell must have a correspondent physical cell. If faults arise,

a mechanism must be provided for reconfiguring the physical array so that the remaining

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System
	 86



CI !AFTER 4	 Architecture of Embryonic Systems

non-faulty cells can still represent the logical array. All reconfiguring mechanisms are based

on one of two types of redundancy: time redundancy or hardware redundancy [Che90b].

In time redundancy the tasks performed by faulty cells are distributed among its neighbours.

When reconfiguration occurs, processors dedicate some time performing their own tasks and

some performing the faulty cells' functions, resulting in some degradation of system's

performance. In addition, the algorithm being executed must be flexible enough to allow a

simple and flexible division of tasks in real time [For85].

In hardware redundancy physical spare cells and links are used to replace the faulty ones. For

this instance, reconfiguring algorithms must optimise the use of spares. In the ideal case an

array with N spares must be able to tolerate N faulty cells but, in practice, limitations on the

interconnection capabilities of each cell prevent this goal from being achieved.

The majority of hardware redundancy reconfiguration techniques rely on complex algorithms

to re-assign physical resources to the elements of the logical array [Neg89]. In most cases,

these algorithms are executed by a central processor that performs diagnosis and executes the

reconfiguration algorithm [Dut97, For85]. This approach has been demonstrated to be

effective, but its centralised nature makes it prone to collapse if the processor in charge of

the fault tolerance functions fails. These mechanisms also rely on the designer making a-

priori decisions on reconfiguration strategies and data/code movement, which are prone to

error and may in practice be less than ideal. Furthermore, the time required by the central

controller to perform all these tasks is often prohibitively long and therefore, unsuitable for

real-time fault tolerance [A1190].

An alternative approach is to distribute the diagnosis and reconfiguration algorithms among

all the cells in the array. In this way no central agent is necessary and consequently the

reliability and time-response of the system should improve. However, this decentralised

approach does tend to increase the complexity of the reconfiguration algorithm and the

amount of communication within the network.

The main attractiveness of embryonic arrays resides in their bio-inspired self-reconfiguration

abilities, taking away from the designer the need to take complex design decisions. In order

to achieve distributed diagnosis and fast reconfiguration in embryonic arrays, every cell must

perform both tasks. But cells should also be simple in order to maintain a low failure rate.

Therefore a balance between versatility and simplicity must be found. Complex cells would

be able to perform more and better diagnosis tasks at the expense of high failure rates. On the

other hand, simple cells would have long mean time between failures (MTBF), but their

diagnosis and processing capabilities had to be necessarily restricted.

Embryonics: A Bio-lnspired Fault-Tolerant Multicellular System
	 87



Memory element

(Shift register)

$

17 Configuration bits

Serial input Flip-flop
	

Flip-flop

CHAPTER 4	 Architecture of Embryonic Systems

The following sections describe the self-testing mechanisms of the MUXTREE cell.

4.3.1 Testing the Memory Sub-System

In section 4.2.1 it was established that the memory element of embryonic cells is in fact a

long shift-register whose content must remain unchanged during all the operational life of

the array. This fact facilitates the task of testing the structure. The fault model assumed here

is the well-known and commonly used "stuck-at" fault model. In this model all faults are of

the stuck-at-0 and stuck-at-1 type [La196]. Under this assumption it is possible to test the

integrity of the shift register during the configuration phase by appending 2 flip-flops and a

gate at the end of the memory element, as shown in figure 4.7.

Figure 4.7 Self-test in memory element

If any of the bits in the memory element were stuck to a logic value, then the shift register

would be filled with that value from that position onwards. The sequence 1,0 must be

inserted at the beginning of the configuration frame of each column in order to set the

diagnostic flip-flops to the adequate values. If one or more bits in the register were faulty,

then both diagnosis bits would have the same value and the output of the gate would take the

value 0, activating the reconfiguration process described in section 4.3.5.

The testing procedure just described detects memory faults only during configuration phase.

There is no test procedure to verify the integrity of memory's content during the operational

phase. To overcome this limitation, one alternative is to periodically re-load the genome.

This solution implies a system stop while the new configuration bits are being downloaded.

If the system is being evolved by means of a genetic strategy, then the genome would be

continuously updated and the testing procedure proposed would be sufficient to thoroughly

test the cell even during the operational phase.

4.3.2 Testing the Processing Element

Testing the processing element of the MUXTREE involves a very different set of problems

from those involved in testing the memory [Tem97]. There are two facts that influence the

design of the self-test strategy to be implemented:
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• The selection element is too simple to allow a very sophisticated self-testing mechanism

such as error-detecting codes [La185]. Such solution would imply additional logic that

would certainly surpass the logic needed for the selector itself.

• The function of the self-test scheme is exclusively that of error-detection. Neither error

masking nor error correction is needed; these functions are performed at a higher level.

Taking these facts into account, the test strategy that seems more 'appropriate is module

redundancy; i.e. components are duplicated and the outputs of both elements checked for

equality using an XOR gate. This technique signals a fault when the outputs of replicated

units mismatch.

The components tested following this method are the five multiplexers and the flip-flop that

make up the processing unit shown in figure 4.4. Figure 4.8 shows the generic

implementation of this strategy.

Figure 4.8 Testing of processing element. Generic diagram.

The six OK signals generated during the test of the multiplexers and the flip-flop are OR-ed

together so that when any of these signals indicates a fault, a global OK signal is propagated

to the reconfiguration logic in a higher level of the design.

4.3.3 Testing the Input/Output Router

It has been demonstrated that testing interconnection resources on FPGAs and VLSI systems

is a complex and challenging task [Neg89, Tem97]. MUXTREE's reconfiguration strategy

relies on its ability to re-route signals in order to avoid failing cells.

Since routing resources are just transmission paths for data ("wires"), the simplest way of

testing them is by duplication or triplication (if error masking is desired) of all the lines, a

very expensive approach in terms of the additional silicon area required. It was decided that

any attempt to test the correct functioning of the I/O router would result in an unreasonable

large and complex structure. Therefore no mechanism is incorporated and it is assumed that

all the interconnection lines and logic were tested during manufacturing and they work
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correctly throughout the lifetime of the MUXTREE. This assumption is in accordance with

the present state of the art [Be192, 0ro94, Kun89, Tem97].

4.3.4 Cost of Built-In Self-Test Logic

Incorporating BIST logic in every cell of the embryonic array increases the silicon area

needed for its implementation; nevertheless, for applications demanding high levels of

reliability this cost is justifiable [Lee90].

Table 4.1 compares each one of the constituting elements of the embryonic cell with and

without BIST. Comparisons are based on the number of modules, nets and equivalent nets

reported by Viewlogic's Workview® synthesis tools. FPGA libraries from Actel® were used

during schematic capture.

Version without BIST logic I Version including BIST logic
•	

Component Modules Equivalent Nets Modules Equivalent nets
Incr.
(%)

I10 Router 56 184 56 184 0.0

Processing
element

50 219 142 528 141.1

Memory
element

1470 3661 1482 3695 0.9

Complete cell 1591 4244 1706 4592 8.2

Table 4.1 Cost of incorporating BIST in the embryonic cell's design

The logic in Table 4.1 is calculated using the number of equivalent networks reported by the

synthesiser. This figure has no meaning with regard to the physical implementation of the

design because it does not take into account the routing, which is device-dependent;

nevertheless, it is useful for comparing the relative complexity of circuits.

The relatively high increment in the complexity of the processing element due to BIST logic

(141%) is absorbed by the low overhead incurred for testing the memory element (0.9%),

which is by far the largest component in terms of silicon area required. It is clear from these

results that further efforts in minimising the BIST logic for the processing element would

have little impact on the overall size of the cell.

However, any effort in reducing the size of the memory block would improve cell reliability

by reducing the number of logic gates needed to implement a complete cell.
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4.3.5 Reconfiguration Strategies

When a fault is detected in one cell, a reconfiguration mechanism is triggered so that the

array can reach a state in which it can still perform its functionality. Two strategies have

been studied in this work: row-elimination and cell-elimination. The following sections

explain the reconfiguration strategies. A formal analysis of embryonic arrays' reliability will

be presented in chapter 5.

Row- / Column-elimination strategy

Row- and column-elimination are equivalent strategies. In the following discussion only

row-elimination will be analysed, however, similar results apply for column-elimination.

In row elimination, the failing of one cell provokes the elimination of the corresponding row,

which is substituted by the contiguous row to the north. Cells are logically shifted upwards

until a spare row is reached and a new functional array is achieved. Figure 4.9 shows an

example of row elimination in an array with one spare row.

Figure 4.9 Reconfiguration by row-elimination in an embryonic array

When a fault is detected in any of the cells of the array, a non-OK signal is transmitted to all

the cells in the row with the faulty cell. Cells receiving a non-OK signal become transparent

for both the propagation of data and calculation of co-ordinates. Data signals are propagated

from one side of cells to the other. Co-ordinates for cells above the row being eliminated are

recalculated and new configuration registers are selected accordingly. No information is

communicated around the array when reconfiguration takes place, only Boolean signals are

passed between cells. The change in functionality of cells is achieved by simply using a

different local memory location on each one.

-I
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It is important to note that when a failure occurs, the complete array loses one row. This

strategy is far from being optimal with respect to the use of spare resources, but the short

time needed to recover from a failure makes it attractive to implement real-time systems

[A1190]. A reliability analysis for this strategy is presented in section 5.4.1.

Cell-elimination strategy

By increasing the complexity of embryonic cells, it is possible to implement more

sophisticated reconfiguration strategies. To achieve cell-elimination each embryonic cell is

defined by two co-ordinates and donated with enough memory to contain the configuration

registers of the entire array. This definition differs from the embryonics architecture

described in previous sections where every cell is defined by one co-ordinate and stores only

the configuration registers of the corresponding column.

In cell-elimination, spare cells replace faulty cells in two stages. First, spares located in the

same row replace faulty cells. When the number of faulty cells in a row surpasses the

number of spare cells, then the whole row is eliminated and cells are logically shifted

upwards so that a spare row takes over the function of the failing one. Figure 4.10 shows an

example of cell elimination in an array with one spare column and one spare row.

Figure 4.10 Fault-tolerance by cell elimination

The reliability analysis for the cell-elimination strategy is presented in section 5.4.2.

The basic embryonic cell can be designed so that it is possible to implement other

reconfiguration strategies. However, more complex reconfiguration strategies imply

increasing also the complexity on the cell, with the associated detriment in overall reliability.

An alternative approach called the MICTREE architecture has been followed by Mange and

his research team [Man98a]. In the MICTREE architecture, a simplified version of the

MUXTREE is used as the basic block to construct a hierarchical structure with embryonic

characteristics at the highest of its levels. Details of the MICTREE architecture are given in

section 5.4.3, along with its reliability analysis.
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4.4 Application Examples

To verify the fault tolerance characteristics of embryonic arrays, three practical applications

were implemented. The simplicity of the corresponding logic circuits allows a thorough

inspection of embryonic arrays' internal behaviour. The logic circuits were mapped onto

embryonic arrays following a methodology that is summarised in figure 4.11.

Figure 4.11 Methodology to map logic functions onto embryonic arrays.

4.4.1 Voter Circuit

The first example presents a combinational circuit that performs a voter function. Voters are

used in fault-tolerant redundant systems to compare the output of replicated elements in

order to detect and mask erroneous values [Bas95, Joh89]. In general, a voter receives n

inputs and generates one output. The value at the output is the same as that received in at

least (n/2) + 1 inputs. In a 3-input voter, the output is high or low if at least two of the inputs

are high or low, respectively. The logic function that represents a 3-input voter is,

f(A,B,C)= AB + AC + BC
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The voter function is also called the majority function because it delivers the value held in

the majority of its inputs. Figures 4.12a and 4.12b show the OBDD for the voter function and

the corresponding implementation using multiplexers. Figure 4.12c shows the voter

implemented in a 3 x 2 embryonic array.

Figure 4.12 3-inputs Voter implemented in embryonic array

Figure 4.12 shows that three multiplexers are sufficient for a non-redundant implementation

of the voter. To provide fault tolerance, one spare row is added to the embryonic array. If a

fault is self-detected on one of the cells, then reconfiguration by row-elimination takes place;

i.e. co-ordinates are shifted upwards until a spare row is reached.

One advantage of embryonic systems over conventional implementations is that outputs can

be routed through several cells so that their value is presented in more than one output pin.

The implementation shown in figure 4.12c is one of many possible mappings. Other ways

for routing signals or distributing the function among cells are possible.

Figure 4.13 shows simulation results for the voter circuit. In this example, signals OK1,

0K2 and 0K3 indicate with logic zero that the corresponding physical cell in the array has

failed, i.e. OK signals are related to cells in the array, not to the network of multiplexers.

OK1

OK2

OK3

A

f

D

i

i

1

T(C1k) 10u	 2 lu	 30u
Tune (St conds)

Figure 4. 13 Simulation of an embryonic array implementing a voter circuit
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In figure 4.13 labels correspond with those of figure 4.12. A, B and C are the inputs to the

voter and f is the output. All possible input combinations were tested and in every case the

output of the system was consistent with the expected results when faults were simulated.

4.4.2 2-Bit Up-Down Counter

The second example is the implementation of a sequential circuit: a 2-bit up-down counter.

The counter is driven by the system's clock CLK. Two outputs 'A and B maintain an

increasing or decreasing binary count, in accordance to the logic value of input U/D'. If
U/D' is high the counter increments, otherwise the counter decrements. Figure 4.14 shows

the development of the counter from its transition table specification to its final

implementation in a 4x4 embryonic array. Numbers in the cells of the array correspond to

those of the multiplexers

Figure 4.14 2-bits up-down counter

Figure 4.15 shows simulation results for the counter. Signal U/D' is the ascending/

descending control input. 0K4 is a simulation signal that injects a fault into the cell with

multiplexer 4. Notice that when 0K4 goes to logic 0, there is a time interval on which the

output of the counter is not reliable just before returning to normal behaviour. This is due to
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the row-elimination process being carried out. The cirLuit settles after a number of clock-

cycles that is proportional to the number of active rows involved in the reconfiguration. The

process of co-ordinates re-calculation is carried out in the time-scale of nano-seconds;

therefore spurious behaviour during this period cannot be seen in Figure 4.15.

CLK

OK 4

1111111111111101

UlD

g

1B :A IIIIIIIIIMPPIMMAIII1114,11404140800004114,
14111171111"6 11117111114"1

T(c1k) 8u	 9u	 10u	 I lu I2u
Ti,,, , (Seconds)

Figure 4.15 Simulation of 2-bit up-down counter implemented in an embiyonic array

To prevent sequential designs from being "trapped" in spurious states during reconfiguration,

it is responsibility of the designer to observe design rules to avoid such states [Eic65].

4.4.3 Programmable Frequency Divider

The design of a programmable frequency divider is presented next. This third example

combines both combinational and sequential logic. A frequency divider receives a reference

clock signal as input and generates a signal equal to the reference, divided by a constant

factor specified by the user. A circuit that complies with the stated specification is composed

of a 3-bit synchronous selector that latches either the division factor n, or the next state of a

3-bit down-counter, selected by a zero-detector. The signal used for reference is the system

clock F. In this way, a 1-cycle wide pulse will be generated every n cycles of the reference

frequency F. The output of the circuit is taken from the output of the zero-detector. It will be

high during one cycle of F when the down counter reaches the 000 state. Figure 4.16 shows

the circuit's block diagram.

Figure 4.16 Programmable frequency divider
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Figure 4.17 shows the OBDDs for the combinational down counter and zero-detector. A, B,

C are the outputs of the 3-bit down counter, C being the most significant bit.

Figure 4.17 OBDDs for frequency divider

Figure 4.18 shows the hardware implementation of the OBDDs shown in Figure 4.17. Note

that the OBDD for A+ is repeated in the diagrams for B+ and C+; hence the final circuit has

been simplified. Multiplexers 1, 2 and 3 implement the selector block in figure 4.16.

Figure 4.18 Hardware implementations of OBDDs for frequency divider

In figure 4.18 multiplexers 1, 2 and 3 operate in synchronous mode; i.e. their outputs are

updated on the rising edge of F. External signals DS2, DS1 and DSO set the value for n.

The circuits in figure 4.18 were mapped onto a 6x4 embryonic array. Figure 4.19 shows the

final distribution of multiplexers. The numbers on each cell correspond with the numbers

assigned to multiplexers in Figure 4.18.

Figure 4.19 Frequency divider implemented in embryonic array
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In figure 4.19, cells labelled S are spare cells, two rows for this example. Cells labelled R are

routing cells. Routing cells are needed to propagate signal between non-neighbouring cells.

The clock signal (F) is common to all the cells in the array.

Figure 4.20 shows typical simulation results obtained for the frequency divider. Labels

correspond with those of figure 4.16. Although Figure 4.20 only shows reconfiguration in

the divide-by-two region, thorough simulation was done in all other cases. 0K4 and 0K8

simulate faults in cells with multiplexers 4 and 8, as shown in Figures4.19b and 4.19c.
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Figure 4.20 Functional simulation of frequency divider

Notice that when OK signals go to logic 0, there is a time interval on which the output of the

circuit is not reliable; however, after some clock-cycles, it returns to normal operation. This

behaviour is due to the reconfiguration process being carried out and is considered the

healing period of the system. The signals that propagate the internal state of the array (OK

signals) could be used by an external mechanism to mask the effects of unreliable outputs

during reconfiguration. Such mechanisms are beyond the scope of this thesis.

4.5 Summary

A detailed description of the MUXTREE embryonic architecture has been presented in this

chapter. Simplicity in the number of components was sought after during the implementation

of the blocks that make up the MUXTREE cell, working on the premise that a simple

architecture is more reliable than a complex one. In the reliability analysis presented in

chapter 5, the importance of simplicity will be thoroughly justified.

The examples that have been presented in this chapter have demonstrated that embryonic

arrays possess fast fault-tolerant properties due to the uniqueness of their reconfiguration

mechanisms. When a fault occurs only status signals are propagated, no configuration data is

moved among cells.

Simulations of three examples have demonstrated that embryonic arrays achieve fast

recovery from faults in combinational and sequential circuits. This characteristic is

particularly useful for real-time applications where recovery time is a critical factor.
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This chapter provides a formal demonstration of embryonic array's fault
tolerance. First, a review of the basics on reliability engineering is given in
section 5.2. Section 5.3 presents reliability models of well-known system
structures: series, parallel, k-out-of-m, and some combinations of them. In
section 5.4, reliability models for the different reconfiguration strategies
implemented in embryonics are obtained. In section 5.5 it is demonstrated
that the models proposed can be used to compare reconfiguration
strategies or different alternatives of a particular one.

RELIABILITY ANALYSIS OF THE

EMBRYONICS ARCHITECTURE

5.1 Introduction

Embryonic arrays are proposed as a viable alternative to implement fault tolerance in

processor arrays because of the autonomous and automatic reconfiguration mechanisms that

are triggered when a fault is detected. This chapter presents the derivation of mathematical

reliability models for different embryonic reconfiguration strategies. The models presented

can be used both to evaluate different alternatives of a particular strategy, and to

quantitatively compare different reconfiguration strategies.

Section 5.2 presents a succinct introduction to the subject of reliability engineering.

Particular emphasis is given to the concepts of failure rate and Mean Time Between Failures.

An important assumption taken throughout this work is that electronic components present a

constant failure rate during their useful life. To support this assumption, a review of some

widely used reliability-prediction procedures is presented.
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Section 5.3 presents the basics of system reliability modelling. First, reliability models of

systems whose elements are connected in series or parallel are derived. Next, it is

demonstrated that by combining those simple models, reliability expressions for more

complex systems can be obtained. Of particular importance is the k-out-of-in reliability

model because it describes the behaviour of systems with spare units (hardware redundancy).

In section 5.4 the reliability models of the reconfiguration strategies explained in section

4.3.5 are presented. The reliability model for the MICTREE architecture proposed by Mange

et al. [Man98] is also derived following the proposed methodology. The MICTREE

architecture implements a reconfiguration strategy more complex than row- or cell-

elimination. A discussion on the results drawn from the different system reliability models is

presented in section 5.5.

5.2 Basic Definitions on Reliability

A fundamental problem in estimating reliability is whether a system will function according

to its specification, in a given environment for a given period of time. This depends on

factors such as the design of the system, the parts and components used, the complexity of

the system, and the environment. Performance of a given system, under given conditions, for

a given period of time can be considered a chance event, i.e. the outcome of the event is

unknown until it has actually occurred. Hence it is natural to consider the reliability of a

system as an unknown parameter which is defined to be the probability that the system will

perform its required function under the specified conditions for a specified period of time.

According to the International Electrotechnical Commission (IEC), reliability has been

defined as follows [IEC74]:

"Reliability is the capability of a product to perform its expected job under the

specified conditions of use over an intended period of time"

The formal study of reliability is a field on its own and a great deal of textbooks and

periodical publications about the subject are printed every year. The following sections

present a review of some important reliability concepts. It is not intended to be an exhaustive

study, but aims to provide a theoretical background for the formulation of embryonics

reliability models, later in this chapter.
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5.2.1 Reliability and the Failure Rate

Consider the degradation of a sample of N identical components under stress conditions (e.g.

temperature, humidity, vibration or radiation). Let S(t) be the number of surviving

components, i.e. the number of components still operating at time t after the beginning of the

experiment, and F(t) the number of components that have failed up to time t. Then the

probability of survival of the components, also known as the reliability R(t), is

R(t)=
S(t)

N

The probability of failure of the components, also known as the unreliability Q(t), is

F(t) 
Q(t)=

N

Since S(t) + F(t)= N, then R(t) + Q(t)=- 1.

The failure rate Z(t) is defined to be the number of failures per unit time compared with the

number of surviving components:

1  dF(t)
Z(t)=

S(t) dt

Studies of electronic components show that under normal conditions the failure rate varies as

indicated in figure 5.1. Because of its shape, figure 5.1 is commonly known as the bathtub

curve [Mis92].

Figure 5.1 The bathtub curve

According to figure 5.1, in the life of any electronic component there is an initial period of

high failure (region I). This is due to the fact that in any large collection of components there

are usually some with defects and these fail immediately after they are put into operation.

(5.1)
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dR(t) = 1 dF 	
or

(t)	 dF (t)	 dR(t)

dt	 N dt	 dt = N dt
Therefore (5.3)
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For this reason, the first region is called the burn-in period of defective components. The

middle phase is the useful life period (region II). In this region the failure rate is relatively

constant and failures are random in time. The useful life is, under normal conditions, much

longer than the other two phases. The final phase is the wear out period (region III), when

the failure rate begins to increase rapidly with time. This is due to ageing of the components

and accumulated stress.

In the useful life period the failure rate is constant, and therefore

Z(t) =2 (a constant)	 (5.2)

With the previous nomenclature,

	

R(t) = —
S (t)

-
 N - F 	

1
(t)	 F (t) 

=

	

N N	 N

Substituting equations (5.2) and (5.3) in equation (5.1)

N dR(t)	 1  dR(t)	 S (t)
A = -	 =	 since R(t) =

S (t) dt	 R(t) dt	 N

dR(t) 
or	 A • dt =

R(t)

The above expression may be integrated giving

r

AS dt = 

R(r)

 

f dR(t) 

i dt

The limits of the integration are chosen in the following manner: R(t) is 1 at t= 0 and, by

definition, at time t the reliability is R(t). Integrating the last expression,

41'0 =11n R (t )17 )

At = -11n R(t) - ln(1)1

-At = ln R(t)

Therefore

R(t) = e-At
	

(5.4)

o	 1
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Expression 5.4 is generally known as the exponential failure law. The constant X, is usually

expressed as failures per unit time, for example failures per hour or failures per 10 6 hours.

System failures, like component failures, can also be categorised into three regions of

operation. The early system failures such as wiring errors, faulty interconnections and dry

joints are normally eliminated by the manufacturer's test procedures. System failures

occurring during the useful life period are supposed to occur because of component failures.

If a system contains k types of component, each with a failure rate k k, then the system failure

rate kov , is

where there are Nk of each type of component.

5.2.2 Mean Time Between Failures

Reliability R(t) gives different values for different operating times. Since the probability that

a system will perform successfully depends upon the conditions under which it is operating

and the time of operation, the reliability figure is not the ideal for practical use [La185]. More

useful to the user is the average time a system will run between failures; this time is known

as the mean-time-between-failures (MTBF). The MTBF of a system is usually expressed

in hours and is given by,

-
MTBF = Rs(t)dt
	

(5.6)

According to expression (5.6) the MTBF is the area underneath the reliability curve R(t)

plotted versus t; this result is true for any failure distribution. For the exponential failure law,

MTBF =	 dt = el =1

-

o	
o1	 - (5.7)

Expression (5.7) demonstrates that, assuming an exponential failure law, the MTBF of a

system is the reciprocal of the failure rate. If X, is the number of failures per hour, the MTBF

is expressed in hours. A graph of reliability against time is shown in figure 5.2.
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Figure 5.2 Reliability curve

Figure 5.2 shows that as time increases the reliability decreases and when t= MTBF, the

reliability is only 36.8%. Thus a system with a MTBF of, for example, 100 hours, has only a

36.8% chance of running 100 hours without failure.

5.2.3 Reliability-prediction procedures

The term reliability-prediction has historically been used to denote the process of applying

mathematical models and data for the purpose of estimating field-reliability of a system

before empirical data are available for the system [Den98]. Reliability predictions are used in

several important activities, for example:

• Feasibility evaluations,
• Comparing competing designs,
• Identifying potential reliability problems,
• Planning maintenance and logistic support strategies,
• Input to other studies such as life-cycle cost analysis or product selection.

Several reliability-prediction procedures have emerged as the field of reliability engineering

developed into a mature subject. The six reliability-prediction procedures most widely used

are [Bow92]:

1. United States Department of Defence Mil-Hdbk-217, Reliability Prediction of Electronic
Equipment (MH-217) [Mi186].

2. British Telecom Handbook of Reliability Data for Components Used in
Telecommunications Systems (BT-HRD4) [Bth84].

3. Bellcore Reliability Prediction Procedure for Electronic Equipment [Be1188].

4. Nippon Telegraph and Telephone Corporation Standard Reliability Table for
Semiconductor Devices (NTT Procedure) [NTT85].

5. French National Centre for Telecommunications Studies Recueil de Donnees de Fiabilite
du CNET (CNET Procedure) [CNE83].

6. Siemens Reliability and Quality Specification Failure Rate of Components [Sie86].
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Although there is much discussion among reliability experts about which reliability-

prediction procedure is the most accurate [Bow92, Lut90, Wat92], there is one common

characteristic in the models proposed by all the procedures. All of them assume the

exponential failure law to predict the reliability of a system; i.e. they predict reliability in the

useful-life region of the bathtub curve (constant failure rate).

The constant failure rate (k), is given by the device model. The device model is a function of

parameters that describe its physical and operating characteristics, and the environment in

which the device operates. Each reliability prediction procedure uses different environmental

and quality factors to calculate X,. For example, in Mil-Hdbk-217, tables for use with a parts-

count analysis give values of the generic failure rate, 4, for various microelectronic devices.

Values for different environments are given, assuming nominal operating conditions and

temperature for that environment.

Table 5.1 shows the values for X, and MTBF of a 64K DRAM memory according to the

reliability prediction procedures mentioned above ([Bow92]).

Procedure X (Failures per 10 9 hours) MTBF (years)

MIL-HDBK-217 (Parts count) 219 521

BT—HRD4 8 14,260

Bellcore RPP 140 815

NTT 138 827

CNET Procedure (simplified) 1950 59

Siemens 96 1188

Table 5.1 Predicted Failure-Rates and MTBF for a 64K DRAM

Table 5.1 shows that different reliability prediction procedures can compute very different

values for the MTBF. These differences arise because the parameters chosen by each

procedure to model a given environment and manufacturing conditions yield different values

for X. Much care must be taken when selecting a reliability prediction procedure to avoid

misguiding results with either positive or negative connotations. It is also important to stress

that although reliability predictions have been used successfully as a reliability engineering

tool for five decades [Den98, Eva98], they are only one element of a well-structured

reliability program and, to be effective, must be complemented by other elements.

For the purposes of this study, the relevant aspect of the reliability prediction procedures

presented here is the fact that they all assume a constant failure rate for their analysis. The

same will be assumed throughout the following sections.
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5.3 System Reliability Modelling

Mathematical models are necessary to predict the behaviour of a system under certain

specified conditions of use and operation. This section aims to develop reliability models for

systems whose input-output conditions are specified and the conditions of use are known in

advance. The following conditions will be assumed throughout:

1. Only catastrophic failures will be considered, i.e. failures are sudden and complete.

2. The states of all elements are statistically independent; i.e. the failure of one element
does not affect the probability of failure of other elements.

3. Each element may be represented as a two-terminal device.

4. All the elements are initially operating.

5. Interconnections between elements are perfect.

6. The state of an element and of the system can be either good (operating) or bad (failure),

i.e. there is not intermediate state.

Of the various models based on the functional interaction that two of more elements in a

system can have, the following will be analysed: series, parallel, series-parallel, parallel-

series and k-out-of-m.

5.3.1 Series model

A series model is the most common and the simplest reliability model. Such a model results

if all the components in a system must operate successfully for the system success. Figure

5.3 shows the block diagram and the reliability logic diagram of a system whose elements

are all connected in series. The reliability logic diagram shows all the possible

interconnections between elements that make the system work. A combination is active if all

its elements are working correctly at the same time. When more than one combination of

elements satisfies the functionality of a system, at least one of the combinations must be

active for the system to provide its service.

Figt re 5.3 Block and reliability logic diagrams for the series model
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(5.8)

MTBF, = e -'12% dt	
1

0

(5.10)
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Since all the units in a series system must function correctly, and given that the failures of

the units are independent, then the reliability of the complete system would be given by the

multiplication of the individual reliabilities,

Where pi is the reliability of the ith component in the system.

Equation (5.8) shows that system reliability of the series configuration is much less than the

reliability of any of its components. Hence, in order to design reliable systems, as few

components connected in series as possible must be used.

If all units are identical and their reliabilities are given by equation (5.4) (exponential failure

law for electronic components), then the reliability of a series system would be,

11

R,(t) =Fie 
Ai 
=e " A`	 (5.9)

Using the definition for MTBF given in section 5.2.2, it is possible to determine the MTBF

of a series system, whose reliability is given by expression (5.9),

It is interesting to note that, if the constituent elements have exponential failure distribution,

the system failure distribution also remains exponential.

In conclusion, the following observations can be made for a series model:

•:• A series model provides a lower limit of system reliability. The reliability is worse than

the worst element.

Given that if any one of the units fails, the system fails, the dependency or independence

of failures would make no difference in the series reliability model.

5.3.2 Parallel model

A parallel reliability model results if all the components in a system must fail for the system

to fail. Success of any one component (or more) in the system implies system success. The

parallel model is shown in figure 5.4.
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Unit 1
Unit 1

Unit 2
Effect 

•	 Cause
Cause

Effect

Unit in

a) Block Diagram	 b) Reliability Logic Diagram

Figure 5.4 Block and reliability logic diagrams for the parallel model

The mathematical formula to represent the parallel model is developed through computation

of probability of system failure. System failure occurs if all the system units fail. If all units

were identical, the probability of system failure would be given by

Where qi is the probability of failure for unit i.

Given that Rs = 1-Qs, and qi = 1-p i , then

Rs =1-1-1q; =1-1-1(1— p i)
i=1	 i-1

For identical units following the exponential failure law,

Rs ( ).14-0_e-A,).14-e-kyz
	

(5.11)

Expression (5.11) can be used to determine the MTBF of the parallel model. For example, in

a parallel system with two units having failure rates k i and X.2 respectively, system reliability

would be,

R,(t) =1—(1— e	 '311 )(1— e '12- ` )=. 21` + e -12` — e2)`

11 1
And	 MIBF,	 Rs(t)	 +

21 	22 2 + 22

Similarly, system MTBF for 3-units parallel model is,

1	 1	 1	 1	 1
MTBF

1 1
= — +—+— —

s	 /1,2	 /13	 + /12 23 22 + 23 Al + 22 + /1.1
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If failure rate is the same for all units (X i= X) then,

1	 1	 1	 1 ( 1	 1	 r	 ii
MTBF =— +—+— = — — +—+— =

A, 2/1 3/1 2i 2 3	 /1	 i
1

This result can be generalised to obtain the MTBF of a system with in units connected in

parallel

It is interesting to observe how the system MTBF improves as the number of parallel

redundant units (m) increases. Table 5.2 provides the system MTBF of a parallel model for

various values of in from 1 to 10.

m System MTBF

1 1/A,

2 1.5/X

3 1.833/X

4 2.083/X

5 2.283/k

6 2.45/X

7 2.593/X

8 2.718/X

9 2.829/A,

10 2.929/X

Table 5.2 MTBF for parallel system

Figure 5.5 shows the graph of MTBF versus the number of units in a parallel system.

MTBF
4/X

'''.X -- 
x-.X-x-x-x

3.5/k
...X."-X ....X 

ox ..,,x ..-X

.....x.X".X3/X
...X

...x
2.5/A.

IX
2/k /

1.5/k /
)(1/k

I	 3	 5 7	 9	 11	 13	 15	 17	 19

Number of units connected in parallel

21 23	 ' 25

Figure 5.5 MTBF of parallel model

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System
	 109



CHAPTER 5	 Reliability Analysis

Table 5.2 and figure 5.5 show how the contribution to system reliability from each new unit

that is added decreases as the total number of units increases. The graph in figure 5.5 shows

that the MTBF of a parallel system with 25 units is less than 4 times longer than the MTBF

of a single unit. In general, a parallel structure provides an upper bound for the reliability of

a system consisting of m units; i.e. system reliability is better than the reliability of the best

element.

5.3.3 Series-Parallel model

This structure consists of elements in parallel to form a subsystem, and there are n such

subsystems in series to constitute a complete system. For the system to work correctly, all its

subsystems must function correctly. Figure 5.6 shows the block diagram of such structure.

Figure 5.6 A series-parallel structure

Although the series-parallel structure is complex, it can be decomposed into, and analysed

with, the basic series and parallel models. Assuming an exponential failure law for all its

identical components, the reliability of the series-parallel model can be given by

,	 \\
R s (t)= n 1 _ fp_ e -'11 ) =(1—(1— e -At )")n	 (5.13)

j1

The MTBF is obtained by integrating expression (5.13) [Mis92]. Integration is achieved by

substituting for x =1— C A' and transforming the variable from t to x.

1 1 (1— xm)" 
dxMTBF = f

A, 13  1—x

But (1-x"')= (1-x)(1+x+x2+. .+x 1"), therefore,

m I

	

1 r 1 — X 	
(1

	 I	 II —1	 1 "
,	 I

Nt	 .
=	 1 x 111 )	 =	 x"' )	 dx =	

i I

x ) x i (IxMTBF
	jo 1 — x	 11" o	 j-0	 j 0 0

This integral can be solved by using the transformation 'cm = y,
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1 „,	 (0+1)
MTBF =	 "' ) (1—	 dy

0 0

By comparing the above expression with the Beta function defined as

13(a, /3)= ix" 1 (1-	 dx = F(a)F(/3) = (a, —1" —1)!

0 F(a+P)	 la+ fi —1)!

It is possible to write MTBF expression as

j +1 
1)!

MTBF =  (n —1)1•Vin 	
m2, Li_o j +1

+ n— I)!

Where (x) means the largest integer not exceeding x.

For the case when m=1, equation (5.14) becomes equal to equation (5.10).

(5.14)

5.3.4 Parallel-Series model

This structure consists of n elements in series that form a chain or path, and there are in such

paths in parallel to form a system. The system delivers its function as long as there is at least

one path with all its elements working correctly. Figure 5.7 shows the block diagram of a

parallel-series model.

Figure 5.7 A parallel-series structure

Similarly to the series-parallel structure, the parallel-series can be analysed with the basic

series and parallel models. Assuming that all the elements are identical and follow an

exponential failure law, the reliability of the series-parallel model can be given by

(	 n in

	

Rs (t) = i_ ll 1_ 11	 = 1—	 e " 1 )= 1— (1— e -" At	 (5.15)
j=1	 1-1
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-

The system MTBF would be MTBF	 1— (1— e ) dt

The integral can be solved by substituting y	 e-"A` as

MTBF = 1 1—	 Ym dy =
ti2, 0 1 — y	 n2,	 j

1	 •	 .

(5.16)

Equation (5.16) can be interpreted as the MTBF of in parallel units, where each unit has a

failure rate of nk.

5.3.5 k-out-of-m model

In many situations, a system functions properly if any k out of m units function properly. The

reliability logic diagram will have	 ) paths, and each path will have k elements in series.

Figure 5.8 shows the block diagram and the reliability logic diagram of a system that

performs correctly as long as three out of five of its units work correctly. The reliability logic

diagram shows all the combinations of three units that make the system work. A combination

is active if all its units are working correctly at the same time. At least one of the

combinations must be active for the system to provide its service.

Figure 5.8 3-out-of-5 system

If all units are identical and p is the success probability of every unit, then the probability of

exactly k units working correctly out of in is given by the binomial distribution,

B(k,m, p)=(':)p k (1— p)llIk

For the general case, the system remains functional as long as k, k+1... m-1 or m units

function correctly. Therefore, the probability of system success is obtained by adding up the

probability of all possible successful configurations,
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II?

1, ( 1," ) P 0- - p
i=k

If all the units follow the exponential failure distribution, then

R (t) = 
In

 

e r—i

i=k

(5.17)

Figure 5.9 shows the graphic representation of equation (5.17) for m=1024, 2=0.2 and

different values of k.
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Figure 5. 9 Reliability of k-out-of-1024 system for different values of k

Figure 5.9 reveals that in a row with m cells an exponential increment in the number of

active cells implies a linear decrement of reliability.

Figure 5.10 shows the behaviour of a 25-out-of-100 system for different failure rates.

Figure 5.10 Reliability of 25-out-of-100 system for different failure rates
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Figure 5.10 shows the high reliability of systems with small failure rates. Small

improvements in the failure rate have an important positive impact in overall reliability,

however decreasing the value of A, requires an improvement in the quality of the system's

components and, in the majority of cases, the cost associated is too high.

The MTBF of a k-out-of-m system is obtained by recursion as follows [Mis92]:

Let R(km) and MTBF(k,m) denote the reliability and MTBF of a k-out-of-m system

respectively. Then it can be observed that

R(k —1,m) = (1;ti\e -'11(k-1) (1- e -11 
)
m5k+1	 R(k, in)

From to this equation, it is possible to write a recursive expression for the system MTBF as

-
MTBF (k - 1,m) f(k"-I	) (1— CAI 

)ri—k+1
dt + MTBF (k,m)

k+1m— 1 ( m	(nz kl-i)(	 	 +MTBF(k,m) = 	
1 	

+ MTBF (k,m)k-1

j=0 k —1+ j	 (k/1. — 1)

Using the identity that

recursively, starting with

yi („j )( 0 	 1 	 n!(a —1)! 
= 	  for a�1, MTBF(km) can be solved

, o	 a+ j	 (n+a)!

1 	 1
MTBF (1,m) = _E-, as follows:

MTBF ( 2, 171 ) 7112-47m	 2,(21- 1) -IN;
, 1	 1	 1	 =	 _ and so on1	 1MTBF (3,1n)	 j- /1(3-1)

1 "' 1
MTBF (k ,m)

Ajki

(5.18)

Table 5.3 provides MTBF of k-out-of-in systems for in=5 elements that are identical and

have exponential failure distribution.

nri
k 1

1 2 3 4 5

1 1/21. 3/221. 1 I/6X 25/1221. 137/6021.

2 x 1/271. 5/621. 13/1221. 77/6021.

3 x x 1/3X 7/1221. 47/60X,

4 x x x 1/421. 27/60X
5 x x x x 1/5X

Table 5.3 MTBF of k-out-of-m system with identical elements
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Figure 5.11 shows a set of graphs of the MTBF of the k-out-of-m model for different values

of k and in. Note that when k=1, the system is equivalent to a parallel model, whereas when

k=m, the system is equivalent to a series model. In fact, the parallel and series models set the

upper and lower limits of the set of graphs.

Figure 5.11 Graphs for the MTBF of k-out-of-m systems

In figure 5.11, all systems with a MTBF below the line corresponding to 1/2, have

reliabilities worse than the reliability of a single unit. The graphs in figure 5.11 can be used

to determine the minimum number of spare units needed to improve the reliability of a

system above that point. For example, if a system requires 6 units to operate (k=6) then,

according to the graph, a minimum of 9 spares are needed (m=15) to obtain a MTBF longer

than 1/2,. Any value of in below 15 would negatively impact system reliability.

5.4 Reliability Models of Embryonics Reconfiguration Strategies

In order to propose a reliability model for the reconfiguration strategies of embryonic arrays,

the reliability models presented in section 5.2 will be applied to analyse the reliability of

two-dimensional arrays. To achieve fault tolerance embryonic arrays exploit the fact that

integrated processor arrays have a fixed number of cells and in the majority of cases not all

the cells are used. In embryonic arrays, those unused cells are used as spares.
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In the following analysis, an array of size n X in will rcquire at least a sub-array of size r x k

working correctly in order to be considered in perfect working order. Figure 5.12 illustrates

these assumptions.

Figure 5.12 Cellular system with spares

In figure 5.12, active cells are the minimum number of cells needed to perform a required

function. Spare cells are powered-up, but do not contribute to the normal operation of the

system, they only become active when substituting faulty cells (i.e. hot sparing). Under this

mode of operation the reliability of a spare cell is the same as that of any active cell;

therefore, a failing spare cell can also trigger the reconfiguration mechanisms described in

the following sections.

Cells in the array are the basic elements in the models to estimate reliability. According to

embryonics fundamentals all cells are assumed identical; therefore, a constant failure rate X,

is associated to all the cells (i.e. exponential failure law).

5.4.1 Row-elimination

Row- and column-elimination are equivalent cell-replacement strategies. In the following

discussion only row-elimination will be analysed, however, similar results apply for column-

elimination.

In row elimination, the failing of one cell provokes the elimination of the corresponding row,

and cells are logically shifted upwards until a spare row is reached. After reconfiguration, the

array continues delivering its function [Neg89]. Figure 5.13 shows an example of row

elimination in an array with one spare row.
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Figure 5.13 Fault tolerance by row-elimination

Even though this strategy eliminates many good cells when a fault occurs, the algorithm to

carry it out is very simple and therefore, fast and easy to implement in hardware. In addition,

figure 5.14 shows how as a square array becomes larger (more than 100 cells); the

percentage of cells lost during reconfiguration decreases dramatically.

Figure 5.14 Percentage of cells lost during row-elimination

In figure 5.14:

n = Number of cells per side on a square array.

T(n) = Total number of cells in the array = n2

F(n) = Number of cells that are eliminated when one cell fails = n

, „ 100
%= Percentage of cells lost during reconfiguration by row elimination =  

F(n)  
xl UU = —

T(n)

Arrays with a large number of cells are particularly well suited for ALife applications where

the emergent behaviours of multicellular systems are to be observed.
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For the purpose of reliability analysis, cells in a row are connected in series; therefore, the

reliability for a row R,.,(t), would be given by the multiplication of the reliability distributions

for all the cells in the corresponding row (equation 5.9),

R,.,.(t )
i

pi (t) = lle_ARt = e—mARt

=1	 i=1

In (5.19), XR is the failure rate of an individual cell.

(5.19)

With the row's reliability determined, the array can be considered an r-out-of-n system, with

r being the number of active rows needed for a particular application and n being the total

number of rows in the array. Reliability of the whole array Rat), would be given by (5.17),

„
R,(t)= E imARt (1_ e—mARt)f—i

j=r

(5.20)

Figure 5.15 shows the graphs for equation (5.20) corresponding to an embryonic array of

size 11 X in = 100 x 25, where r rows are needed to perform some function. The reliability of

a 25-cell row with no redundancy is shown to allow a direct comparison against system

reliability. Note how the shape of the graphs becomes steeper as the number of active rows

increases.

Figure 5.15 Reliability for row-elimination strategy

Figure 5.15 reveals that the reliability of the system is improved by the use of spare cells,

and that long MTBF can only be achieved by using a large number of spare rows.
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5.4.2 Cell-elimination

In cell-elimination, spare cells replace faulty cells in two stages. First, spares located in the

same row replace faulty cells. When the number of faulty cells in a row surpasses the

number of spare cells available, then the row-elimination strategy is adopted. Figure 5.16

shows cell elimination in an array with one spare cell per row and one spare row.

Figure 5.16 Fault-tolerance by cell elimination

During the first stage of reconfiguration each row of the arrays is itself a k-out-of-m system;

therefore, the reliability for each row R,,(t), would be given by (5.17)

„
R (t)= ;Act (1_ et )Jit-i

rc

i=k

(5.21)

Where Xc is the failure rate of one individual cell in the array performing cell-elimination.

To analyse the second stage of reconfiguration, the array performing cell-elimination is

considered a k-out-of-m system, where the basic element is one complete row. System

reliability R(t), is obtained by recursively substituting the reliability of rows R„(t) in (5.17).

„
R„. (t)= Er; rc (t) j (1 — R,(t))n-J	 (5.22)

= r

Figure 5.17 shows the reliability of a system requiring r rows out of 100 to accomplish its

function. Rows are 25-out-of-50 systems.

Figure 5.17 Reliability for cell-elimination strategy
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Cell-elimination provides a very efficient use of spare cells, but the complexity of cells

increases due to the extra logic needed to re-route data after reconfiguration. Therefore, the

failure rates of the individual cells used in arrays performing row- and cell-elimination (kR

and kc, respectively) should be different. In accordance with the reliability prediction

procedures outlined in section 5.2.3, it is possible to assume the increase in kc linearly

proportional to the extra resources (i.e. logic cells, gates or transistors) used to route data. An

exact model that relates failure rate and the complexity of a cell is technology-dependant

and, therefore, must be empirically estimated for each particular case.

5.4.3 Reliability of MICTREE architecture

Mange and his research group at the Federal Polytechnic of Lausanne in Switzerland have

applied the MUXTREE cell to construct a hierarchical cellular architecture [Man981. In this

approach, a simplified version of the MUXTREE cell is called a molecule. Molecules can

perform the selection function, but they do not contain the configuration registers of their

neighbours. Section 4.3.4 showed that memory is the biggest element of the embryonic cell

(up to 90% of the logic is used to implement the memory block), therefore molecules are

extremely simple and consequently have very low failure rates (small A.

An array of molecules is used to construct cells called MICTREE. MICTREE cells have

embryonic characteristics; i.e. they have self-diagnosis capabilities and are also able to

replace their neighbours by changing their co-ordinates. To construct a cell, an array of

MUXTREE molecules implements a Turing Machine that is able to execute a set of

microprogrammed instructions. Calculation of co-ordinates and implementation of logic

functions are achieved by executing a micro-program inside each cell. A copy of the micro-

program (genome) is passed to each cell during a configuration phase immediately after

power-up.

Summarising, a MICTREE organism is composed by a linear array of MICTREE cells

where every cell is itself an array of MUXTREE molecules. Figure 5.18 shows the

hierarchical architecture of MICTREE organisms.

Embryonics: A B io-Inspired Fault-Tolerant Multicelluhu. System	 1 20



CI IAPTER 5 Reliability Analysis

•
Molecular level
(MITXTREE)

V

Active Active Active Spare
cell cell cell

•	 • •
cell

Organism

Spare cells

Organism level
(X MICTREE)

Spare columns

IdOrAM,PAPMPAIIIPAIIIV"

A00:iwidrnorr

'

JIM I I I
• op IA iink • II I. v

n111PV

•

, Cellular level
(1 MICTREE=
E MUXTREE)

Figure 5.18 Hierarchical implementation of MICTREE array

Reliability of the MICTREE architecture

A generic MICTREE organism is made out of g MICTREE cells from which only f cells will

perform the desired function. The remaining g - f cells are spares that replace faulty cells

when a fault is detected. Figure 5.19 shows the structure of a MICTREE organism under

these assumptions.

Figure 5.19 MICTREE organism

Every cell is itself a two-dimensional array of MUXTREE molecules. There are x x y

molecules in a cell. A number of spare columns defined by the user can be inserted in a cell

to provide a higher level of fault tolerance. Figure 5.20 shows the internal structure of a cell.
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Figure 5.20 Internal structure of MICTREE cells

To analyse the reliability of the MICTREE architecture a bottom-up approach will be

followed. Firstly, the reliability of one cell will be calculated; followed by the reliability of a

complete organism. In the following analysis A.m is the failure rate of a single MUXTREE

molecule.

Reliability of cells

To analyse their reliability, cells are divided into sub-arrays of size in X y molecules, where

every sub-array has one spare column. There are it = xlm of such sub-arrays of molecules

inside each cell, and all of them must provide their service successfully for the complete cell

to be considered in working order. The reliability of one sub-array is given by the reliability

of a set of in molecules organised as an (in-1)-out-of-m system, repeated y times. The

reliability of one molecule is assumed to follow the exponential law given by R(t) = e-Ami

Therefore, the reliability of one sub-array would be,

''I-i

-iAmt — CA"' ) =[
—"Ay' 	mt	 , Y

e	 A — + i)]	 (5.23)

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System
	 122

4



m= 4
y= 30
X= 0.01 faults/106 hours

CHAPTER 5
	

Reliability Analvsig

In equation (5.23), 2\4,4 is the failure rate of one molecule.

The reliability of one cell can be expressed as the series connection of n sub-arrays.

Therefore, the reliability of one cell with n sub-arrays would be given by,

R„ 11 (t)=1e -ni2mt (me 2m ' — m+1)10, (5.24)

Figure 5.21 shows the graphic representation of equation (5.24) fOr arrays with different

values in the parameter x (width of the array). The following conditions have been assumed:

• Array's height (y) is 30 molecules

Failure rate (41 ) is 0.01 failures / 10 6 hours.

Number of molecules per block (in) is 4

For the purpose of comparison, the reliability of a 30 x 50 molecules array with no spare

columns is also shown in figure 5.21. The benefits of adding redundancy are evident.

Figure 5.21 MICTREE cell's reliability for different array's widths

Figure 5.22 is a 3-D reliability graph of a cell with 30 rows (y) and 50 columns (x). The

graphs for different values of in are shown. As before, in is the number of active columns

between spare columns plus one, and the failure rate is set to 0.01 faults/10 6 hours.
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Figure 5.22 MICTREE cell's reliability for different values of in

Figure 5.22 shows that the larger the number of spare columns in the array, the longer the

cell will function correctly. It also shows that the relative improvement in reliability with

respect to the number of spare cells increases as the number of spare cells increases. For

example, the improvement in reliability when passing from 6 to 7 spare columns is bigger

than the improvement when passing from 2 to 3 spare columns.

Reliability of organisms

For the purpose of reliability analysis, the MUXTREE organism is a system with g cells

from which, f cells must function correctly in order to consider the organism in working

order. Therefore, the organism's reliability can be modelled as an f-out-of-g system where

the reliability of the constituent elements is given by the reliability of a MICTREE cell

(equation 5.24) instead of the exponential law. Substituting (5.24) in (5.17) yields,

g	 g

R„ rg (t) =

	

	 )1?cal(t)i (1 — R 11 (t))

J = f

pi,
)1e -"1  (ine 2"` —	 +11 .

S /

1—[ -"zam ' (me am ` — +1)]
,1

(5.25)

Parameters in (5.25) correspond to those shown in figures 5.19 and 5.20. Figure 5.23 shows

the graphical representation of (5.25) for different number of active cells (f) in a 48-cells
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organism. Each cell is assumed to be of size 30 rows (y) x 50 columns (x), with one spare

column every two active columns (in = 3).

Figure 5.23 Reliability of 48-cells MICTREE organism for different number of active cells

In figure 5.23, the case when f = 48 represents an organism with no spare cells.

Figure 5.24 shows in detail the improvement of reliability in a 48-cells organism when

adding eight spare cells one by one.

Figure 5.24 Reliability of MICTREE organism with different number of spare cells

Figure 5.24 reveals how the relative improvement in system reliability decreases as the

number of spare cells increases. This is because spare cells have the same probability of

failing as any other active cell.
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Figure 5.25 shows the reliability of an organism with 40 active cells and 8 spare cells. Each

graph corresponds to different number of spare columns at the cellular level. Cells are of size

30 x 50 molecules and the failure rate of each molecule is 0.01 failures/10 6 hours.
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Figure 5.25 Reliability of MICTREE organism for different number of spare columns

Figure 5.25 shows that the relative improvement in cell's reliability increases as the number

of spare columns increases. This is because the number of columns inside the cell remains

constant and cell's reliability is mainly determined by the number of spare columns.

Figure 5.26 shows system reliability curves for a MICTREE organism with the following

characteristics: 30 molecules x 50 molecules within cells, one spare column every two active

columns (nz= 3) in cells, molecule's failure rate = 0.01 failures/10 6 hours. At organism level

the ratio of active cells over the total number of cells is kept constant, i.e. f I g --= 0.667.
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Figure 5.26 Reliability of MICTREE organism with different number of cells
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Figure 5.26 shows that for a given active/total cells ratio the reliability curve becomes

steeper as the total number of cells in the organism increases. The reliability graph of

organisms with large number of cells approximates a step-shaped curve. In these cases, the

Mean Time Between Failures (MTBF) of the system could be approximated to the time at

which the reliability graph makes the transition from one to zero.

5.5 Discussion

It is clear that adding spares in parallel to a system will improve its reliability and its MTBF.

A natural strategy to improve system's reliability would be to incorporate as many spares as

possible; nevertheless, in some cases, the cost of spares can be very high. Therefore a tool

that allows the quantitative comparison of different alternatives is needed. The reliability

models presented in this chapter can auxiliate this decision-making process.

In the case of embryonics, graphs of the reliability expressions obtained for the

reconfiguration strategies allow direct comparisons between different architectures. For

example, consider a fixed array of size n X in = 50 X 50 MUXTREE cells (see figure 5.12).

In which, the following architectures need to be compared:

1. An array performing row-elimination, i.e. no spares on rows.
2. An array performing cell-ellimination.

In order to make the comparison, the array's reliability for different number of spare rows is

shown in figure 5.27

Figure 5.27 Comparison between row- and cell-elimination in a 50x50 embryonic array
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Figure 5.27 shows that the improvement in reliability for adding a single spare cell per row

in the cell-elimination strategy is remarkable (dark lines). It is interesting to observe that the

graphs for row-elimination with 25 spare rows and cell-elimination with 5 spare rows are

almost equivalent. Nevertheless, the array using cell-elimination uses 295 spare cells,

whereas the array using row elimination uses 1250 spare cells out of 2500; over 4 times the

number of cells used in cell-elimination.

Figure 5.28 shows, for the array used in the previous example, a comparison between an

array using row-elimination and several alternatives using cell-elimination, each one with

different number of active cells per row (k). In all the arrays, 10 spare rows per array have

been considered (r=40). The graph for the reliability of the array without redundancy, i.e.

2500 cells connected in series, is also shown to allow a complete comparison of alternatives.

Figure 5.28 Reliability graphs for arrays with row- and cell-elimination

In figure 5.28, every graph of the cell-elimination strategy implies an increment of 50 spare

cells in the array. Nevertheless, the number of cells in the array remains constant on every

alternative, therefore, instead of considering an increment in the number of spare cells, a

decrease in the number of active cells within the array must be assumed. According to this

statement, the array using row-elimination will have 2000 active cells and 500 spare cells (10

spare rows of 50 cells each), whereas the arrays with one, two, three and four spare cells per

row will have 1960, 1920, 1880 and 1840 active cells out of 2500, respectively. The number

of active cells is given by

Active _cells = rxk	 (5.25)
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To calculate reliability, the same failure rate for both row- and cell-elimination has been

assumed in the preceding example. Nevertheless, in a real implementation, the cells on both

arrays might not be equivalent in complexity. For example, the extra logic needed to perform

cell-elimination will have a negative impact on the cell's failure rate. In order to make a fair

comparison between different arrays the failure rate must be escalated to reflect differences

in complexity. By equating the reliability of rows in each strategy (equations (5.19) and

(5.21)), and solving for the failure rate in the cell-elimination strategy (20, it is possible to

determine the failure rate for which cell-elimination yields the same MTBF as a row-

elimination with failure rate X.R. Figure 5.29 illustrates values of X,, for varying numbers of

redundant cells within an architecture.

Figure 5.29 Equivalent failure rates for row- and cell-elimination

In figure 5.29, the graph for one active cell per row gives an upper bound to the complexity

of cells in the cell-elimination strategy. Values of X,c larger than these will produce cell-

elimination architectures with lower overall reliabilities than the equivalent row-elimination

architecture. Figure 5.29 allows a quantifiable measure to be made between two different

design strategies. For example, a 100-column system using row-elimination will have better

reliability than a 100-column system with 60 spares (40% of cells are active), if the failure

rate 2L., is larger than 1002,11.

Another criterion to compare the failure rates of different architectures is to assume the

failure rate proportional to the number of equivalent gates or transistors that constitute a cell.

A detailed calculation of the failure rate is beyond the scope of the present work, but is an

area that must be covered in future research.

Embryonics: A Bio-Inspired Fault-Tolerant Multicellular System
	 129



CHAPTER 5	 Rellabilit) Anal) sts

5.6 Summary

Embryonic arrays exploit hardware redundancy to achieve fault tolerance. Spare elements

are incorporated at different levels of the embryonics hierarchy, achieving resilience of

organisms to faults in their constituent cells. Mathematical models that represent reliability

of embryonic arrays have been derived in this chapter. These models allow the reliability

analysis of the embryonics architecture for different combinations of spare cells and

molecules.

The reliability models presented have been derived by recursively applying the reliability

models of series, parallel and k-out-of-m systems. The row- and cell-elimination

reconfiguration strategies have been analysed following this methodology. It has been

demonstrated that the reliability curves derived from the analysis can be used to compare the

reliability of arrays with different parameters such as number of constituent cells, number of

spare cells and different failure rates.

A special case of the embryonics project, called the MICTREE architecture, has also been

analysed. By obtaining reliability models for the MICTREE hierarchy, it has been

demonstrated that the methodology proposed can be extrapolated to analyse other cellular

architectures with spares.

It has been verified that system reliability is improved by adding spare cells to the system.

However, the rate of improvement in reliability is reduced as the number of spare cells

increases. A point is reached where adding more spare cells to a system will not have a

significant effect on system reliability. Therefore, a cost/benefit analysis based on the models

proposed must be carried out to determine the optimum number of spare cells for a given

application The models proposed can simplify this task.
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CONCLUSIONS AND FUTURE WORK

6.1 General Conclusions

This thesis has presented a novel paradigm for constructing fault-tolerant digital systems.

The new paradigm, named embryonics, is the result of combining ideas and concepts

borrowed from different fields. It has been shown that by providing cellular automata with

biological attributes such as genome, reproduction, self-diagnosis and healing, the resulting

system presents fault tolerance properties. The hypothesis that was stated in the introduction

of this work has been confirmed: embryonic systems are viable alternatives for the design

and implementation of fault-tolerant systems.

In chapter 1, the importance of fault tolerant computing systems was demonstrated by

discussing to what extent modern societies depend on the use of computers for their stable

functioning. A review of the development of fault tolerant computing since the early 40's

allows us to conclude that the field has reached a point where new paradigms are needed in

order to deal with the complexity and size of modern systems. Nature, through thousands of

millions of years of evolution, has found a solution to the problem of fault tolerance in

complex systems. Multicellularity, autonomous mechanisms to detect and combat infections,

healing, inheritance of genetic information through DNA, embryonic development and

learning are some of the mechanisms that guarantee, to certain extent, the survival of

biological organisms. This thesis has demonstrated that by using Biology as an inspiration, it

is possible to innovate in the field of fault-tolerant computing.

Bio-inspired systems and evolvable hardware were covered in chapter 2. Embryonics is a

ramification of a broader field known as evolvable hardware (EHW). Although EHW deals

mainly with circuits evolved, rather than designed, by means of genetic strategies, it is

possible to regard embryonics as an evolvable architecture since an embryonic array
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autonomously changes its configuration according to changes in the environment. The

environment in this case is the internal state of the array, measured by the number of active

cells. Autonomous reconfiguration by means of a genome is what distinguishes embryonic

arrays from conventional array reconfiguration strategies.

Evolvable hardware is itself a branch of the research undertaken in Artificial Life (ALife).

ALife pursues the creation of systems that recreate all, or at least some, of the features that

characterise life. ALife investigates life not only as it is, but also as it cpuld be.

Bio-inspired systems are classified according to the POE model. Embryonics belongs to the

ontogenetic category, i.e. systems inspired by the development of multicellular systems in

nature. Large hardware cellular systems are good platforms to investigate, in real time, the

emergent behaviours characteristic of bio-inspired systems. Embryonics offers a good

alternative for this kind of research.

In chapter 3 the technologies involved in the embryonics concept were outlined. The main

ideas come from Biology. The embryonic development of multicellular organisms and the

central dogma of molecular biology are at the core of the embryonics paradigm. Cellular

automata provide the technical framework to transport multicellularity to the engineering

domain and the latest generations of Field Programmable Gate Arrays (FPGAs), rapidly

approaching the million-gate devices, provide the physical medium where embryonic arrays

can be tested and applied. However, the ultimate goal is to integrate embryonic arrays in

silicon and present them as a new family of bio-inspired FPGAs. Only then, all the benefits

of the embryonics architecture will be truly exploited.

Chapter 4 presented a detailed description of the embryonic cell's architecture known as

MLJXTREE. The basic cell performs a selection function whose inputs and outputs are

controlled by a configuration register. The regularity of the architecture makes it suitable to

be implemented using state of the art FPGAs or WSI circuits. Furthermore, time to

reconfiguration in MLIXTREE arrays is determined by hardware, therefore embryonic arrays

can be used in real-time applications where response time is a critical constraint. Embryonic

arrays can also be used as a general-purpose tool to investigate the properties of cellular

automata and array-based systems. Being a nascent discipline; much research must be

undertaken to investigate in depth the real-time fault-tolerant properties of embryonic

systems.

The penalty for gaining autonomous fast reconfiguration is, as in any fault-tolerant system,

the amount of redundant resources required. Further work is needed to optimise the

architecture of the basic cell and the reconfiguration process, in order to minimise both, the

complexity of the cell and the amount of spare resources needed.
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In this work two reconfiguration strategies were simulated and implemented: row-

elimination and cell-elimination. These strategies are very efficient in terms of complexity

and speed. However, the embryonics architecture can be extended to support more complex

reconfiguration strategies. This effort would be justifiable only if the complexity of the

processing unit was also increased; otherwise the complexity of the hardware supporting the

reconfiguration mechanism would surpass that of the processing unit, becoming an overhead

rather than a solution.

Three examples of the application of embryonic arrays were presented: A 3-input voter, an

up-down 2-bit counter and a programmable frequency divider. These examples demonstrated

that embryonic systems achieve fault tolerance by reconfiguring themselves using

mechanisms found in biological embryonic systems. During the embryonic development of

multicellular organisms, the failure (death) of one cell does not impact on the overall

functionality of the tissue, organ or limb affected because of the tremendous amount of

redundant elements available. If a cell or small group of cells die, healthy neighbours take

over the missing function. Embryonic arrays are capable of successfully mimicking this

mechanism.

Using embryonic arrays implies the mapping of a particular application onto the cells of the

array, i.e. assigning a physical cell to every logical one. A methodology to systematically

achieve this task was conceived during the development of this work. In this methodology

the algorithm used to assign physical cells has to be different depending on the

reconfiguration strategy implemented. For row-elimination, the algorithm must minimise the

number of unused cells per row so that the number of spare rows can be maximised. For cell-

elimination the maximum number of spare cells per row should be sought after.

The ultimate goal of incorporating fault tolerance into a system is to improve its reliability,

i.e. the capability of the system to perform its expected job under the specified conditions of

use over an intended period of time. To formally demonstrate fault tolerance in embryonic

arrays, mathematical reliability models for the reconfiguration strategies presented were

developed in chapter 5.

To set a theoretical framework, chapter 5 begins with an introduction to the main concepts in

reliability analysis. For example, formal definitions for reliability and Mean Time Between

Failures were given to support the mathematical analysis. The chapter continues with the

development of reliability expressions for well-known system configurations, namely series,

parallel, k-out-of-m and some combinations of them. Models for row-elimination and cell-

elimination are derived by following a methodology that combines the mathematical models
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of well-known structures. The graphs of the reliability models derived are useful to analyse

and compare different configurations of arrays with spare components.

The methodology used to obtain reliability models for row- and cell- elimination was

employed to analyse a third embryonics architecture called MICTREE. MICTREE is an

embryonic hierarchical architecture with spare elements at different levels of the hierarchy.

The reliability models presented in this work allow the analysis of the MICTREE

architecture for different combinations of spare cells and molecules, the basic components of

the MICTREE hierarchy.

It was verified that, in terms of reliability, the best way of colonising an array of molecules is

to allocate active molecules column-wise. In this way, the number of spare columns can be

maximised, with the corresponding improvement in reliability. At the organism level,

reliability improves proportionally to the number of spare cells, but as the number of spare

cells increases, the contribution to system reliability decreases. Therefore, a cost/benefit

analysis must be carried out to determine the optimum number of spare cells for a given

application.

The distributed automatic reconfig,urability characteristic of embryonic arrays offers

considerable advantages over more conventional reconfiguration strategies where, in most

cases, a centralised agent, e.g. operating system or central processor, must solve the routing

of information problem. For reliability analysis purposes, the effects that this central router

imposes to the system must be taken into account. The central agent should be considered to

be connected in series to the array, i. e. both must perform their functions correctly in order to

consider the whole system in working order. Since the reliability model for a system whose

components are connected in series involves the multiplication of the reliability expressions

of each component, system reliability will always be lower than that of the element with the

lowest reliability. This is true because the maximum value for reliability is 1, and from there

it always decreases. Therefore, the centralised approach should be avoided for the design of

highly dependable applications.

The reliability models presented in chapter 5 can be adapted to cellular systems other than

embryonics. Further research must carried out in order to determine to what extent the

models proposed hold for any fault-tolerant cellular system with spares.

The research will continue extending the present model towards the analysis of embryonic

arrays with hundreds of thousands or even millions of cells. Large hardware cellular systems

will be ideal platforms to investigate in real time the emergent behaviours characteristic of

bio-inspired systems.
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6.2 The Future of Embryonics

Embryonics is essentially an experiment, in the sense that the project was conceived for

much more than to achieve a specific goal, but rather to look for insights by applying new

concepts to a known field. One of its objectives was to investigate if interesting results can

be obtained by applying concepts usually associated with biological processes to the design

of computer hardware. However, the following points must be addressed if a practical

application is to be implemented. 	 ,

• There is a remarkable imbalance between the resources needed to implement the

processing element (the selection function) and the resources needed to implement

the reconfiguration mechanism (e.g. address calculation, memory and BIST). The

reconfiguration mechanism occupies a large percentage of the silicon area required to

implement the cell; hence the integration of several cells in one integrated circuit

becomes impractical. Further research is needed to improve this balance.

• The BIST logic proposed in this work was selected giving preference to simplicity.

However, if the complexity of the processing unit is increased, then the self-test

mechanisms can be improved. For example, in the MICTREE architecture, where the

processing unit is a microprogrammed Turing machine, self-test routines could be

incorporated as part of the genome of each cell.

• The size, in silicon, of the memory needed in each cell is considerably bigger than the

rest of the logic needed to implement an embryonic cell. To solve this imbalance it is

necessary to optimise the storage of the genome on each cell. One possibility is to

design a programmable look-up table (LUT) that receives the cell's co-ordinates as

inputs and generates the corresponding configuration register (gene) in its outputs.

This approach matches very well the internal architecture of some LUT-based

commercial FPGAs.

Daniel Mange and his team at the Logic Systems Laboratory have followed an academic

approach and have designed different versions of the original MUXTREE cell (their first

embryonic implementation). They migrated from a completely static architecture based in a

multiplexer, to a microprogrammed approach, the MICTREE architecture. The functionality

remains that of a selector, however, instead of having different functional blocks to perform

address calculation, reconfiguration and selection; they have designed a molecular-based

Turing machine which, controlled by a microprogram, can execute all these functions. The

result is that the new approach requires less silicon space, although the ratio configuration

logic/functional logic (C/F) still remains too high. Their goal is to increase the complexity of
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the functional block in order to simplify the reconfiguration and address calculation

functions.

Pierre Marchal and his team at the Swiss Centre of Electronics and Microtechnique are also

investigating the embryonics architecture. They have migrated towards a more complex

architecture. In their proposal the functional block resembles a small microprocessor and the

memory block consists only of the configuration register needed to program the

corresponding cell. The global effect is that the ratio C/F is dramatically reduced, and

therefore, physical implementation of the cell in silicon becomes feasible. The near future

objective is to design a chip with several tens of cells, which can be used in applications

involving parallel algorithms. They respond more to commercial and engineering demands

rather than to a scientific interest.

Taking into account the work done by the Swiss, there are several alternatives for the

continuation of this project. It is clear that the Configuration/Function ratio must be

dramatically reduced in order to permit the physical implementation of the designs in a

commercial FPGA. One alternative is to migrate towards microprogrammed architectures,

i.e. design a data path and control unit that perform address calculation, logic functions and

self-diagnosis. This approach seems to be very efficient in terms of C/F ratio, but has the

disadvantage of requiring a complete redesign of the architecture for each application.

Following nature, it would be interesting to investigate different levels of cellular

organisation in embryonic arrays. For example, solve a simple function using some basic

cells and call that a cluster. Then, design a more complex function using clusters of cells as

the basic building block and even design a higher level application relying on clusters of

clusters of cells. The subsumption architecture model provides a framework to study this line

of research [Ke194].

Biological multicellular systems work, with the exception of some specialised organs like the

heart, asynchronously. Cells are autonomous and communication and synchronisation with

other cells is carried out using chemical and electrical "hand shakings". Further research is

needed to investigate asynchronous embryonic architectures. Asynchronous design is clock-

free, therefore clock propagation problems are eliminated and power consumption is

reduced. Throughput improves in most cases, because processing takes place at the

maximum speed that the manufacturing technology allows.

All the embryonic arrays presented in this work use the von Neumann neighbourhood for

calculating the following state of every cell. Using different neighbourhoods, e.g. Moore

neighbourhood, is another interesting avenue to examine. However, considering more

neighbours increases the complexity of the interconnection network and the reconfiguration
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mechanisms. Optimisation of the C/F ratio is a prime objective of every embryonics

proposal; therefore research must be done giving this goal a high priority.

Future work can apply the ideas presented in this work to larger problems and to incorporate

other aspects of natural science into engineering design. The embryonics project is still in its

infancy, however the results obtained from the "baby" are encouraging. The application of

biological concepts to the design of fault-tolerant engineering systems will continue to

evolve and grow, and more results are expected as the baby moves into adolescence.

6.3 The Future of Evolvable Hardware

Progress in evolvable hardware, in its present state, is constrained by the following facts:

FPGAs remain as "the platform" to explore evolvable hardware. However,

commercial FPGAs are not designed having evolvable hardware in mind. This fact

was clearly manifest when Xilinx retired from the market the 6200 family of partial-

reconfiguration devices, which were, at that moment, the alternative that every EHW

researcher was choosing. New families of devices that allow partial reconfiguration

on-line have appeared, like the Virtex® family from Xilinx or the 10K family from

Altera, but the structure of the programming bitstreams has been kept secret,

preventing the implementation of any realistic intrinsic evolution in hardware.

- The characteristics of CAD tools available today do not match the needs of the

evolvable hardware community. Available tools like Foundation® from Xilinx,

MAX+II® from Altera or WorkView® from ViewLogic, were created to assist the

implementation of non-modifiable digital circuits using FPGAs. Modification of

bitstreams by means of genetic algorithms is not supported.

The market dictates the development of new families of FPGAs. The only chance of having

one of the big FPGA manufacturers mass-producing a family of FPGAs specially designed

for EHW applications, is to develop an application that clearly expose evolvable hardware's

mercantile potential. The search for such "killer" application has become the Holy Grail of

the evolvable hardware community. A careful reading of the works presented in the EHW

events that regularly take place around the world suggests that the search for the Holy Grail

of evolvable hardware could be accomplished in the near future. The world of digital

electronics is going to change when that happens.
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6.4 The Future of Artificial Life

Any progress in Artificial Life requires the joint effort of researchers from areas as dissimilar

as Mathematics, Biology, Psychology, Computer Science, and Electronics. In practice,

however, this interaction is far from ideal. Research groups very rarely have experts in more

than two areas. One reason for this lack of interaction could be the discrepancies in the

language used within different fields. For example, the concept , of evolution acquires

different meanings when used by a biologist, a computer scientist and a mathematician. The

differences in language reflect the differences in the goals that every specialist pursues. As

the different disciplines advance toward their particular goals, there has to be a point where

the differences between sciences begin to disappear. It is then, when true interdisciplinary

collaboration will not be an option, but a necessity. Before that moment, ALife will remain

an "interesting" field of study.

6.5 Final Thoughts

It is true that the idea of creating artificial life has accompanied men since the very beginning

of history. However, it was not until the end of the 20 th century that technology reached a

point where artificial organisms could become something more than a blueprint. Advances in

fields like Nanotechnology, Microelectronics, Micromechanics, Molecular Biology and

Neuroscience are laying the foundations of the first truly artificial organism. Once achieved

this objective, what the next step should be is not clear.

The first artificial being will not be intelligent, of course. Artificial intelligence is much

harder to achieve than artificial life. Therefore, a possible next long-term goal could be the

search for the artificial intellect. However, this quest implies moral and philosophical issues

much deeper than those sparked off by artificial life. Will artificial individuals have rights?

What will the ontological relationship between the creator and the created be? Are we

destined to be slaves or gods of our own creations?

Whatever the physical features of the first artificial organism, it will represent the beginning

of a new era where the natural and the artificial will co-exist. Are our societies up to the

challenge of granting the category of "alive" to a system created by a group of men? Will

fear and ignorance overpower science and technology? Will new generations of Nintendo

kids accept the idea of an artificial being with the same indifference they receive what their

parents call technological marvels? The answers to these questions will be found in the

future which, in most of cases, is more amazing than our imagination.
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