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Abstract

Diffuse Optical Imaging is relatively new set of imaging modality that use

infrared and near infrared light to characterize the optical properties of biological

tissue. The technology used is less expensive than other imaging modalities such

as X-ray mammography, it is portable and can be used to monitor brain activation

and cancer diagnosis, besides to aid to other imaging modalities and therapy

treatments in the characterization of diseased tissue, i. e. X-ray, Magnetic

Resonance Imaging and Radio Frequency Ablation.

Due the optical properties of biological tissue near-infrared light is highly

scattered, as a consequence, a limited amount of light is propagated thus making

the image reconstruction process very challenging. Typically, diffuse optical image

reconstructions require from several minutes to hours to produce an accurate

image from the interaction of the photons and the chormophores of the studied

medium. To this day, this limitation is still under investigation and there are

several approaches that are close to the real-time image reconstruction operation.

Diffuse Optical Imaging includes a variety of techniques such as functional

Near-Infrared Spectroscopy (fNIRS), Diffuse Optical Tomography (DOT), Flu-

orescence Diffuse Optical Tomography (FDOT) and Spatial Frequency Domain

imaging (SFDI). These emerging image reconstruction modalities aim to become

routine modalities for clinical applications. Each technique presents their own

advantages and limitations, but they have been successfully used in clinical trials

such as brain activation analysis and breast cancer diagnosis by mapping the

response of the vascularity within the tissue through the use of models that relate

the interaction between the tissue and the path followed by the photons.

One way to perform the image reconstruction process is by separating it in



two stages: the forward problem and the inverse problem; the former is used

to describe light propagation inside a medium and the latter is related to the

reconstruction of the spatio-temporal distribution of the photons through the

tissue. Iterative methods are used to solve both problems but the intrinsic

complexity of photon transport in biological tissue makes the problem time-

consuming and computationally expensive.

The aim of this research is to apply a fast-forward solver based on reduced

order models to Fluorescence Diffuse Optical Tomography and Spatial Frequency

Domain Imaging to contribute to these modalities in their application of clinical

trials. Previous work showed the capabilities of the reduced order models for real-

time reconstruction of the absorption parameters in the brain of mice. Results

demonstrated insignificant loss of quantitative and qualitative accuracy and the

reconstruction was performed in a fraction of the time normally required on this

kind of studies.

The forward models proposed in this work, offer the capability to run three-

dimensional image reconstructions in CPU-based computational systems in a

fraction of the time required by image reconstructions methods that use meshes

generated using the Finite Element Method. In the case of SFMI, the proposed

approach is fused with the approach of the virtual sensor for CCD cameras to

reduce the computational burden and to generate a three-dimensional map of the

distribution of tissue optical properties.

In this work, the use case of FDOT focused on the thorax of a mouse model

with tumors in the lungs as the medium under investigation. The mouse model

was studied under two- and three- dimension conditions. The two-dimensional

case is presented to explain the process of creating the Reduced-Order Models. In

this case, there is not a significant improvement in the reconstruction considering
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NIRFAST as the reference. The proposed approach reduced the reconstruction

time to a quarter of the time required by NIRFAST, but the last one performed

it in a couple of seconds. In contrast, the three-dimensional case exploited

the capabilities of the Reduced-Order Models by reducing the time of the

reconstruction from a couple of hours to several seconds, thus allowing a closer

real-time reconstruction of the fluorescent properties of the interrogated medium.

In the case of Spatial Frequency Domain Imaging, the use case considered

a three-dimensional section of a human head that is analysed using a CCD

camera and a spatially modulated light source that illuminates the mentioned

head section. Using the principle of the virtual sensor, different regions of the

CCD camera are clustered and then Reduced Order Models are generated to

perform the image reconstruction of the absorption distribution in a fraction of

the time required by the algorithm implemented on NIRFAST.

The ultimate goal of this research is to contribute to the field of Diffuse Optical

Imaging and propose an alternative solution to be used in the reconstruction

process to those models already used in three-dimensional reconstructions

of Fluorescence Diffuse Optical Tomography and Spatial Frequency Domain

Imaging, thus offering the possibility to continuously monitor tissue obtaining

results in a matter of seconds.

9



.



Contents

1 Introduction 1

1.1 Introduction to Diffuse Optical Imaging techniques . . . . . . . . 2

1.2 Diffuse Optical Tomography . . . . . . . . . . . . . . . . . . . . . 5

1.3 Fluorescence Diffuse Optical Tomography . . . . . . . . . . . . . . 6

1.4 Spatial Modulated Light Imaging . . . . . . . . . . . . . . . . . . 7

1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Aims and contributions . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Organization and structure of the thesis . . . . . . . . . . . . . . 11

1.8 Published articles and posters . . . . . . . . . . . . . . . . . . . . 12

2 Diffuse Optical Imaging instrumentation 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Types of Diffuse Optical Imaging Systems . . . . . . . . . . . . . 18

2.2.1 Continuous Wave systems . . . . . . . . . . . . . . . . . . 18

2.2.2 Time-Domain systems . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Frequency-Domain systems . . . . . . . . . . . . . . . . . 23

2.2.4 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Diffuse Optical Imaging geometries . . . . . . . . . . . . . . . . . 27

2.3.1 Single-point measurements . . . . . . . . . . . . . . . . . . 27

2.3.2 Topographic mapping . . . . . . . . . . . . . . . . . . . . . 29

i



2.3.3 Tomographic imaging . . . . . . . . . . . . . . . . . . . . . 30

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Light transport models and image reconstruction 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Formulation of the forward problem . . . . . . . . . . . . . . . . . 36

3.2.1 Modeling light propagation using stochastic methods . . . 37

3.2.2 Analytical methods for modeling light propagation . . . . 39

3.2.3 Describing light propagation using numerical methods . . . 40

3.3 Mathematical models of light transport in biological tissue . . . . 42

3.3.1 Radiative Transfer Equation . . . . . . . . . . . . . . . . . 43

3.3.2 Diffusion Approximation to the Radiative Transfer Equation 44

3.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Modelling sources and detectors . . . . . . . . . . . . . . . 47

3.3.5 Solution of the diffusion equation using the Finite Element
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Light transport model for Fluorescence Diffuse Optical Tomography 51

3.4.1 Simplified fluorescence transport model . . . . . . . . . . . 53

3.4.2 Finite Element Method formulation for FDOT . . . . . . . 54

3.5 Image reconstruction approaches . . . . . . . . . . . . . . . . . . 56

3.5.1 Perturbation approach to the inverse problem . . . . . . . 57

3.5.2 Iterative image reconstruction . . . . . . . . . . . . . . . . 59

3.5.3 Jacobian calculation . . . . . . . . . . . . . . . . . . . . . 63

3.6 Regularization methods and a priori information implementation 66

3.7 Image reconstruction in Fluorescence Diffuse Optical Tomography 69

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Reduced-order models of light transport in tissue 73

ii



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Procedure to estimate polynomial Reduced Order Models . . . . . 77

4.2.1 Estimation of Reduced Order Models numerical simulation 81

4.2.2 Formulation of Reduced-Order Models using a numerical
simulation example . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Effects of mesh density and model precision in the performance of
Reduced-Order Models . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Fluorescence Diffuse Optical Tomography with Reduced Order
Models 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Image reconstruction with fluorescent Reduced-Order Models . . . 101

5.2.1 Two-dimensional mouse thorax numerical model . . . . . . 102

5.2.2 Fluorescence forward ROM formulation for a mouse thorax
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 Image reconstruction evaluation for the 2D mouse thorax
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.4 Noise effects on the reconstructions . . . . . . . . . . . . . 106

5.3 Three-dimensional image reconstruction in a mouse model . . . . 108

5.3.1 Three-dimensional mouse thorax model with three tumours 111

5.3.2 Image reconstruction of three static tumours in the lung of
the mouse model . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.3 Image reconstruction of a time-varying fluorescent concen-
tration in the lung’s tumours of the mouse . . . . . . . . . 113

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Diffuse optical tomography using spatial frequency domain
imaging 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

iii



6.3 Light propagation model considering a spatial modulated light source124

6.4 Image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Reduced order models with spatial modulated light source . . . . 125

6.5.1 Human head simulation model . . . . . . . . . . . . . . . . 126

6.5.2 Reduced Order Models formulation . . . . . . . . . . . . . 127

6.5.3 Image reconstruction for static optical parameters . . . . . 131

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions 137

iv



List of Figures

2.1 Data acquisition for continuous wave instrumentation. . . . . . . . 17

2.2 Data acquisition for continuous wave instrumentation. . . . . . . . 18

2.3 Data acquisition for time domain instrumentation. . . . . . . . . . 20

2.4 Data acquisition for frequency domain instrumentation. . . . . . . 24

2.5 Diagram of a single-point measurements set-up in a scattering
medium that produce a probability density function (PDF) with a
distinctive "banana-shape" profile. . . . . . . . . . . . . . . . . . 27

2.6 Single-point measurement: a) reflectance and b) transmission
methods with their corresponding banana-shape structures. . . . . 28

2.7 Examples of source-detector arrays used for optical topography . . 30

2.8 Tissue geometries used for tomographic studies of breast and brain
tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 Schematic of the different source-detector configurations for the
slab and the circle geometries. . . . . . . . . . . . . . . . . . . . . 32

3.1 Schematic of light propagation considering stochastic methods . . 37

3.2 Interaction between the light and a scattering medium. . . . . . . 42

3.3 Model Based Iterative Image Reconstruction scheme (MOBIIR)
based based on perturbation methods. . . . . . . . . . . . . . . . 60

3.4 Model Based Iterative Image Reconstruction scheme (MOBIIR)
based based on conjugated gradient methods. . . . . . . . . . . . 63

3.5 Circular geometry of 43mm radius with 16 sources and detectors. 66

3.6 Sensitivity of a homogeneous medium due to a) absorption and b)
diffusion changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



4.1 Iterative image reconstruction based on the Finite Element Method 75

4.2 Iterative image reconstruction scheme based on Reduced Order
Models (ROM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Inverse and forward meshes used in the formulation of the reduced
order models approach in DOT . . . . . . . . . . . . . . . . . . . 84

4.4 Sample of uniform distributed random absorption coefficients. . . 84

4.5 Photon Measurement Density Function from a single source-
detector pair used for the estimation. . . . . . . . . . . . . . . . . 85

4.6 Reconstruction of the absorber inside the medium using a) NIR-
FAST and b) ROM approach. . . . . . . . . . . . . . . . . . . . . 87

4.7 Vertical profile of the image reconstruction using NIRFAST and
ROM approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Different meshes and source-detectors combinations to analyse
ROM approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 (a) Reconstruction of quasi-periodic signal, (b) ICC for each time
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Example of the reconstruction of an absorption using (a) NIRFAST
and (b) ROM approaches. (c) Vertical profile comparison from
both reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.11 Comparison of the effect of the number of source-detector pairs
and mesh density on the ICC. . . . . . . . . . . . . . . . . . . . . 93

4.12 (a) FWHM in the direction of the x-axis, the values of FWHM in
the direction of the y-axis are very similar (Not shown). (b) Area
under the curve (AUC). . . . . . . . . . . . . . . . . . . . . . . . 94

4.13 (a) Overall ICC considering the time series as a whole. Similarly,
the absolute error is displayed in panel (b) . . . . . . . . . . . . . 95

4.14 (a) Time required to calculate the absorption changes due to a
quasi-periodic signal for each time point. (b) Improvement in the
speed of the reconstruction for each time point. . . . . . . . . . . 96

5.1 Numerical model of a mouse thorax segmented in four regions . . 101

5.2 Mouse thorax absorption target used for the reconstruction . . . . 102

5.3 Data required for the image reconstruction and ROM generation:
a) inverse mesh with a priori structural information and b) the
Photon Measured Density Functio (PMDF) used to guide the
system identification process. . . . . . . . . . . . . . . . . . . . . 103

vi



5.4 Sample of the random absorption values used for ROM estimation. 104

5.5 Image reconstruction of the fluorescent concentration inside the
lungs. a) Using NIRFAST as reference and b) results from the
proposed ROM approach. . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Vertical profile comparison of the reconstructions. . . . . . . . . . 106

5.7 Results of reconstructions considering noise. . . . . . . . . . . . . 107

5.8 Inverse mesh and data required for generating ROM . . . . . . . . 109

5.9 Target medium with anomalies and location of source-detector pairs110

5.10 Image reconstructions from a) NIRFAST three dimensional view,
b) NIRFAST top view, c) ROM three dimensional view and d)
ROM top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.11 Noise effects on 3D reconstructions. . . . . . . . . . . . . . . . . . 113

5.12 Dynamic image reconstruction of the fluorophore concentration
from. a) Top tumour, b) middle tumour and c) bottom tumour. . 114

6.1 Schematic of a spatial frequency domain imaging system . . . . . 123

6.2 Human head section model: a) tissue regions considered in
the numerical simulation and b) distribution of the absorption
coefficient along the medium. . . . . . . . . . . . . . . . . . . . . 126

6.3 Light propagation with spatial frequency fx = 0.18 and α = 2/3π. 127

6.4 Random absorption values used as inputs used to generate the
polynomial models. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Example of the virtual sensor approach used for measuring the
reflectance from the numerical model. . . . . . . . . . . . . . . . . 129

6.6 Three dimensional image reconstruction of the absorption value
with initial guess close to the expected values. a) Using NIRFAST
and b) with the ROM approach. . . . . . . . . . . . . . . . . . . . 132

6.7 Vertical profile comparison between the target medium and the
reconstructions from NIRFAST and ROM approaches with het-
erogeneous initial guess. . . . . . . . . . . . . . . . . . . . . . . . 133

6.8 Three dimensional image reconstruction of the absorption value
with an homogeneous initial for the absorption value. a) Using
NIRFAST and b) with the ROM approach. . . . . . . . . . . . . . 134

6.9 Vertical profile comparison between the target medium and the
reconstructions from NIRFAST and ROM approaches with homo-
geneous absorption initial guess. . . . . . . . . . . . . . . . . . . . 134

vii



.

viii



List of Tables

4.1 Parameters of the proposed forward model. . . . . . . . . . . . . 86

5.1 Optical properties for the mouse thorax model. . . . . . . . . . . 102

5.2 Optical properties for the 3D mouse thorax model. . . . . . . . . 108

6.1 Optical properties for the head model. . . . . . . . . . . . . . . . 126

6.2 Parameters for one output of the forward reduced order models
with spatial frequency modulated illumination. . . . . . . . . . . . 130

6.3 Initial guess of optical properties for reconstruction algorithm. . . 132

ix



.



Chapter 1

Introduction

The first medical imaging modalities to achieve great success were based on

the use of X-rays. Techniques such as projection radiographs and fluoroscopy

were extensively used before the advent of the digital computer that allowed the

development of imaging modalities such as X-ray Computed Tomography (X-ray

CT), Magnetic Resonance Imaging (MRI) and Ultrasound.

Magnetic Resonance Imaging (MRI) uses radio-frequency waves to reconstruct

anatomic images based on the different susceptibility properties of tissue. Unlike

X-ray imaging that uses dangerous ionizing radiation, MRI use non-ionizing

radiation with the disadvantage that a scan can last up to 90 minutes and also

patients with pacemakers or metal objects can not be examined. Ultrasound

imaging uses high frequency sound waves to visualize internal body structures.

Its instrumentation is compact, mobile, inexpensive and exhibits very low risks

compared to X-ray that produces ionizing radiation and has the potential risk of

harm healthy tissue [1, 2].

The use of light to interrogate tissue is an alternative to the aforementioned

imaging modalities, either in the visible or near-infrared spectrum, with the

current technology is possible to visualize the interaction of the photons with
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Chapter 1. Introduction

biological tissue. Unlike X-rays, photons do not present a straight path in

biological tissue and hence light distribution is modelled using sophisticated

methods, such as Monte Carlo simulations [3, 4], the Radiative Transfer Equation

(RTE) [5], the Diffusion Approximation (DA) [6, 7].

The models used to describe light propagation and the methods used to

perform the reconstruction depend on the application, i.e. it is not recommended

to use the Diffusion Approximation in small samples or void-like mediums due

to it is unable to predict light propagation on those mediums. In these cases,

Monte-Carlo models and the Radiative Transfer Equation are recommended to

be implemented, although the solution is expected to be complex and time-

consuming. To solve the limitations imposed by each DOI reconstruction method,

hybrid techniques have been proposed such as the radiative-diffusion models

proposed by Tarvainen et. al., 2005 [8] and Ren et. al., 2004 [9].

1.1 Introduction to Diffuse Optical Imaging tech-

niques

Over the last three decades, Diffuse Optical Imaging (DOI) techniques have

emerged as a new medical imaging modality that provides a cheaper alternative

to functional MRI, to aid in the diagnosis and detection of cancer, analyse

wounds recovery and develop. It uses harmless Near-Infrared (NIR) light to

analyse biological tissue [10, 11, 12]. With the time, Diffuse Optical Imaging

techniques has been able to perform complex test such as breast cancer diagnosis

and fetal brain activation using spectroscopy and Diffuse Optical Tomography

[13]. Furthermore, with the aid of fluorescent markers and bioluminescence it has

been possible to understand biological underlying processes from deep tissue [14].
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1.1. Introduction to Diffuse Optical Imaging techniques

Near-infrared spectroscopy (NIRs) is an imaging technique that is sensitive

to tissue function and composition. This technique is used to quantify blood

composition, water and adipose content, and epithelial tissue [15]. In principle,

NIRs has a poor spatial resolution because it recovers both superficial and internal

information. By adding more measurement positions, it is possible to obtain

topograms from the areas where the biological activity is occurring and obtain

temporal and spatial images of them. This imaging technique is known as NIR

topography [16] and it could be considered the base reference to more advanced

optical imaging techniques.

Diffuse Optical Tomography (DOT) is an imaging method that enhances

the capabilities of NIR topography by spatially quantifying the absorption and

scattering optical properties of a medium. Typically, the absorption parameter is

used to characterize physiological changes from a specific tissue volume, such as

brain activity [17]. This due to the strong dependence of absorption to changes

to blood oxygenation [18].

To improve DOT imaging capabilities it is possible to use external fluorescent

markers in a technique known as fluorescence diffuse optical tomography (FDOT).

In most cases, the fluorescent marker increase the absorption by concentrating it

in areas with high vascularity, such as tumoral tissue. In other cases, the marker

is excited and the fluorescent reaction is reconstructed such as the studies carried

out by Sevick-Muraca&Burch, 1994 [19] and Chang, et. al., 1997 [20] that studied

the response of both absorption and re-emitted photons from a fluorescent marker

injected into the tissue, furthermore providing mathematical descriptions of the

absorption and the fluorescent response.

The advantages that optical imaging methods offer over other imaging modali-

ties are: fast data acquisition, portability, compactness and very significantly, the

3



Chapter 1. Introduction

technology is non-invasive, which allows in vivo functional imaging of important

biological processes such as muscle oxygenation and brain activation, several DOT

techniques and applications were compiled in the review offered by Gibson et. al.,

2005 [11, 21].

An insight of mathematical models used to successfully simulate light

propagation and perform image reconstructions through the software package

NIRFAST given by Dehghani, et. al., 2008 [22]; an alternative package to

NIRFAST is TOAST++ described in the paper of Schweiger&Arridge, 2014

[23]..Both packages consist of a set of libraries for Finite Element computation

and different inverse solvers to perform image reconstructions.

The large set of available Diffuse Optical Imaging technologies and recon-

structions techniques allow the visualization of light tissue interactions through

the scattering, absorption and fluorescence from endogenous and exogenous tissue

elements. These optical properties are used to reveal information of the structure,

molecular function, physiology and biochemistry of tissue [24].

Is important to note that NIR light is highly scattered in biological tissue,

as a result, light propagation does not follow a straight line from sources to

detectors. Therefore, traditional back-projection algorithms, used in CT have

limited application. Furthermore, the image reconstruction process is known to

be non-linear and ill-posed; consequently, sophisticated reconstruction methods

are required [25].

Several approaches have been proposed to model light transport in tissue,

such as Monte Carlo simulations [26, 27], the radiative transfer equation (RTE)

[28] or the diffusion approximation (DA) [29]. MC and RTE models are

considered the most accurate methods to describe light propagation; however,

4



1.2. Diffuse Optical Tomography

they are computationally expensive and time-consuming being necessary the

use of supercomputer to model light propagation and then perform the image

reconstruction from [3, 8].

The diffusion approximation is less computationally demanding than RTE

and MC simulations, and it is widely employed for biological tissue image

reconstructions [30, 31]. The disadvantage of using DA is that it fails to accurately

describe light propagation on small geometries, regions near to the sources and

in the presence of void-like domains such as the Cerebrospinal Fluid (CSF) in the

brain, or the synovial liquid in finger joints [5].

1.2 Diffuse Optical Tomography

Diffuse optical tomography is a biomedical imaging modality that reconstruct

the intrinsic optical properties, such as absorption and scattering, from a highly

scattering medium. Rather than using X-rays, magnetic fields or radio waves,

DOT uses light to obtain 3D images of the optical properties from deep tissue

[32, 29].

Due to the natural optical contrast between abnormal and normal tissue,

DOT has a great potential in medical diagnosis areas, for example in oncology and

neurophysiology [33, 34, 35]. With the new advances of computational capabilities

and progresses made in sensing components, DOT applications have started to

spread and to generate other sub-modalities such as High-Density DOT which

considers a larger number of sources and detectors that not long ago was not

even possible due to technological limitations [36].

As mentioned before, DOT applicability tends to be limited by the computa-

tional capabilities that the user accounts for to perform the image reconstruction.
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Chapter 1. Introduction

A trade-off between image quality, reconstruction accuracy, size resolution and

time is necessary to define prior to start the reconstruction process. For this

reason, research groups around the globe actively work in suitable ways to

outcome the intrinsic limitations that DOT presents.

1.3 Fluorescence Diffuse Optical Tomography

The use of molecular probes to target biological events made it possible

to quantify clinical images with high resolution and specificity [37], ranging

from molecular level to whole tissue samples [38]. Moreover, fluorophore

interactions with tissue allowed 3D image reconstructions over time, known as

four-dimensional imaging [39].

Fluorescence Diffuse Optical Tomography (FDOT) has received particular

attention due to the development of fluorescent dyes, enabling non-invasive

studies of gene expression, protein interactions and cellular processes with

microscopic and molecular resolution levels [40]. FDOT has been used in small

animal experiments to monitor the progression of diseases and biological processes

[10, 41, 42].

Fluorescence Diffuse Optical Tomography (FDOT) exploits the presence of

fluorophores inside a medium. This allows depth biological tissue examination

with an enhanced contrast compared to standard DOT [43]. It has been used in

brain imaging studies [44, 45] and breast cancer studies [46, 47, 48].

Compared to DOT, the use of a fluorescent marker allowed to improve the

signal-to-noise ratio of the background and the absorption parameters. Besides,

it exploited other features given by the intrinsic properties of the exogenous

markers allowing analyse specific biological interactions. But FDOT shares
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1.4. Spatial Modulated Light Imaging

similar limitations with DOT related to the performance and time required for

reconstructions.

1.4 Spatial Modulated Light Imaging

Spatial modulated light imaging or spatial frequency-domain imaging is a novel

approach that can perform fast, wide-field non-invasive spectroscopy and DOT

reconstructions. This approach uses spatial frequencies and angular shifts to

improve the capabilities of continuous wave illumination sources [49, 50]. This

technique offered the advantage to allow the generation of wide-view images due

to the use of CCD cameras and wide sources of illumination.

Clinical applications of this imaging method involve tissue characterization to

aid monitoring burn wounds [51], assessing vascular abnormalities [52] among

other experiments carried out to characterize tissue considering topographic

imaging. Planar imaging and look-up tables are normally used to describe

depth tissue, with limited information about the precise location of the events

investigated, although some attempts to perform 3D reconstruction have been

carried out on small animals [53]. and tissue-like models known as "phantoms"

[54] with results that demonstrated the clinical applicability of this novel imaging

modality.

1.5 Motivation

Diffuse optical imaging techniques have the potential to aid in the detection

and monitoring of vascular related diseases and oncology. In addition, optical

imaging instrumentation is harmless, portable, easy to use and inexpensive.

However, several limitations hinder their clinical application; such as the

relatively low spatial resolution and the complex reconstruction process which
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is computationally expensive and time-consuming.

The algorithmic approaches to accelerate computation have focused on the use

of adaptive meshing schemes [55, 56, 57] and multigrid meshes [58, 59] have been

proposed. But these approaches require careful design in the interface tissue

regions, making it difficult their application. Alternatively, model reduction

schemes have been employed to simplify the high-dimensional simulation models

obtained after FEM discretization [60] by using B-splines [61] and wavelets to

compress the stiffness matrix [62, 63].

To speed-up the reconstruction time, Vidal-Rosas [64, 65] developed a real-

time 3D image reconstruction technique based on the reduced order models

approach for Diffuse Optical Tomography. The proposed method generate

numerical models based-on information gathered from the target medium. The

models make use of signal processing and system identification techniques to

create a reduced-order model that describe the light propagation into the tissue.

The reduced-order model generated is loaded into an iterative reconstruction

technique, thus the application of reduced order models derived from data to solve

the forward and inverse problems in DOT has been demonstrated and validated

using both numerical and experimental studies involving complex 3D geometries.

The results obtained were similar to those obtained using the standard approach

that considers light propagation through a Finite Element Method (FEM) mesh,

but in a fraction of the time.

Extending the reconstruction capabilities of the reduced order models method

could benefit other optical imaging modalities, such as FDOT where the

computational burden is even higher due to the light propagation model used in

the image reconstruction process. In order to accurately resolve the fluorescent
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properties of a fluorescent marker injected into depth tissue, it is important to

first resolve the endogenous optical properties of the target medium. Neglecting

these optical properties is possible, but further operations are required to prepare

the signals prior to the reconstruction process adding more complexity to the

problem.

In the same way, spatial frequency domain imaging (SFDI) require precise

models to describe the path followed by the photons inside the tissue but being

recorded by the pixels of a CCD camera, thus making it a complex task if we

consider that each pixel of the camera is a sensing position. Models that could

potentially describe this behaviour could be too complex to solve, thus limiting

the applicability of SFDI for real-time three-dimensional reconstructions.

We aim to contribute to overcome the aforementioned limitations by the use

of the reduced-order models approach in both optical imaging modalities FDOT

and SFDI. The proposed approach is intended to be used in 3D application where

the precise location of anomalies, either fluorescent or due to the absorption

parameters, from depth tissue is a requirement. In the specific case of SFDI we

generate the models considering a virtual sensor technique that is intended to

further reduce the complexity without compromising the quality of the image.

1.6 Aims and contributions

The aim of this research project was to develop and apply advanced tomographic

image reconstruction algorithms for diffuse optical imaging techniques that reduce

the reconstruction time without compromising the quality of the image, the

accuracy of the objects reconstructed and further enhance the applicability of

this imaging modality.

9



Chapter 1. Introduction

The main contribution is the development of the reduced-order models (ROM)

approach as an alternative light propagation model to typical iterative image

reconstruction schemes based on the Finite Element Method that typically

consider the mesh of the whole medium to perform the reconstruction. This

approach maps directly the optical properties to the measured light which

drastically reduces the reconstruction time.

Two diffuse optical imaging modalities were selected for the development of

ROM approach: Fluorescence Diffuse Optical Tomography (FDOT) and Spatial

Frequency Domain (SFD) imaging. These two imaging modalities are considered

emerging techniques with enormous potential in the aid of neurological and

oncology studies, as well as in the monitoring of post-surgical procedures and

small animal research.

For the FDOT case, the proposed ROM approach is formulated to avoid the

coupled diffusion equations used to describe the fluorescent light propagation

through biological tissue which require the solution of the endogenous optical

properties, thus reducing the reconstruction process by only focusing in the

remitted light generated by the fluorescent marker.

To implement the Reduced-Order models approach into SFDI, it was also used

the concept of virtual sensor in order to image reconstruct the optical properties

of a 3-Dimensional medium using a CCD camera and a spatially modulated light

source. The idea behind the virtual sensor considers that several camera pixels

can be considered to form a single measuring point. Otherwise, each pixel on

the CCD camera works as a measuring position, thus making it too complex to

perform 3D reconstruction. The use of the virtual sensor avoids this difficulty,

thus aiding another contribution to the present work.
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In both cases, the main contributions are in the reduction of the time required

for the 3D image reconstruction and that the simplicity of Reduced-Order models

can be implemented directly over already existent image reconstruction packages

such as NIRFAST.

1.7 Organization and structure of the thesis

The present chapter introduced the motivation and the importance of the research

stated in the present work. The remaining chapters are organized as follows:

Chapter 2 depicts the literature review of diffuse optical imaging instrumenta-

tion including frequency domain, time-domain and continuous wave. This chapter

provides an overview of source-detector configurations available and generally

used in optical imaging applications with their advantages and limitations.

Chapter 3 formulates the forward and inverse problems for Diffuse Optical

Tomography (DOT) and Fluorescence Diffuse Optical Tomography (FDOT),

summarizing the key mathematical models used on light propagation and the

algorithms that perform optical image reconstructions. This chapter mainly

focuses in the Diffusion Approximation (DA) to the Radiative Transfer Equation

(RTE) due to the present work focuses on relatively large tissue volumes for the

experiments.

Chapter 4 introduces the method to train a numerical model based on the

Reduced-Order Models (ROM) approach for DOT applications using data gener-

ated by numerical simulations. The trained model is a simplified representation

of how the light propagated through the tissue. The estimated models are then

used to perform the image reconstruction of the absorption parameter from an

anomaly contained within a highly scattered medium.

11



Chapter 1. Introduction

Chapter 5 presents the extension of the ROM approach in the reconstruction

of anomalies targeted with a fluorescent agent. The numerical model is trained to

target the fluorescence from the marker contained within depth anomalies instead

of the endogenous absorption parameters of the medium. It is demonstrated

the imaging capabilities for reconstructing in a fraction of a time the anomalies

embedded within a complex three-dimensional medium.

In Chapter 6 is presented the ROM reconstruction capabilities for the

characterization of tissue using a spatial frequency modulated light source and

the theory of virtual sensor when using a CCD camera instead of optical fibres.

In this case, the numerical model is trained to consider several layers of tissue

to further recover the optical properties from depth tissue volume. The target

medium is the section of a human head consisting of skin, muscle, bone and then

brain. In this case, the successful application of the ROM approach was achieved

due to the use of the virtual sensor that further reduced the number of models

to be trained.

Chapter 7 provides the conclusions for the thesis which summarizes the

benefits that the proposed method has to offer within the Diffuse Optical

Imaging field. Specifically its implementation within the NIRFAST package with

application in Fluorescence Diffuse Optical Tomography and Spatial Frequency

Domain Imaging.

1.8 Published articles and posters

Vidal-Rosas, A., Vidal-Rosas, E.E., Coca, D., Fluorescence image reconstruction

of lung tumours in a mouse model, congress paper Innovation Match MX, 6-8 of

April, 2016.
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Chapter 2

Diffuse Optical Imaging instrumentation

2.1 Introduction

First clinical studies involving light transillumination were reported by Richard

Bright in 1831 for hydrocephalus (build-up of fluid in the brain) and intra-

ventricular haemorrhage studies. In 1843, Thomas B. Curling used the same

transillumination principle and published a treatise of fluid in testis disease known

as hydrocele [21].

Further transillumination studies were performed by Cutler in 1929 who

observed breast lesions by projecting light from an electric lamp to the breast

[66]. Although it was demonstrated the valuable aid light imaging could offer

for clinical diagnosis, this technique was difficult to interpret and it caused

overheating on the patient’s skin and was later abandoned [67].

Early in the 1970s, technological advances and the use of near-infrared illu-

mination allowed the introduction of diaphanography (light scanning) for optical

mammography studies [68]. Later in 1977, Jobsis published the paper that intro-

duced near infrared spectroscopy to study brain oxygenation and haemodynamics

[69], thus opening the road to the appearance of a variety of Diffuse Optical
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Imaging techniques that ranged from the analysis to microscopic level to whole

tissue examinations.

Several optical equipment started to be used for diagnosis and research

applications during the 90s [70]. These offered non-invasive, easy examination and

cost-effective instrumentation; however, technical limitations, poor resolution and

the lack of physical models to describe and quantify light propagation, prevented

these devices from reaching clinical practice. But those limitations didn’t stop

the growing research community in attempting to take optical imaging equipment

to clinical applications being mammography [71] and brain imaging [72] the main

fields of interest.

Although clinical applications were severely limited, during this decade

progresses made in both computational and near-infrared (NIR) technologies

[73]. Improved light sources and detectors that enhanced the light generation and

measurement process. In the same way, advanced computers gave to researchers

the opportunity to implement more demanding algorithms [5, 31, 74].

Besides, researchers explored alternative solutions to simplify light propa-

gation models by understanding the physics that govern the path followed by

photons, as an example, Egger et. al., 2010 [75] proposed a set of coupled

diffusion equations to model fluorescence-tissue interaction that neglected the

intrinsic fluorescence that a highly scattered medium presents, thus reducing the

complexity of the light propagation model.

The above mentioned improvements on data collection, and the combination

of computers with advanced mathematics and algorithms allowed great advances

of Diffuse Optical Imaging (DOI) methods such as functional NIR spectroscopy

(fNIRS) by enhancing the analyses wavelength to improve tissue characteri-
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zation [76], Diffuse Optical Tomography (DOT) allowing the study of more

complex mediums [11] and Fluorescence Diffuse Optical Tomography (FDOT)

by developing new fluorophores and instruments to precisely describe re-emission

interactions [77, 78].

Figure 2.1: Data acquisition for continuous wave instrumentation.

In general, DOI instrumentation consists of an illumination source, a detection

unit, an imaging platform, a hardware controller and a signal processor system, as

shown in Fig. 2.1. It is widely accepted that the light source, the imaging platform

and the detection unit are independent instruments [79]. The signal processor

is a system with software capabilities for measurement filtering, calibration,

light propagation modeling and image reconstruction algorithms. The hardware

controller is either part of the computer or an independent specific instrument

[80].

Other design consideration could be used to describe DOI instrumentation,

but still the different modules described in Fig. 2.1 are potentially assumed to

remain. For instance, if an external hardware controller or the signal processor

are outside of the main computer, they still would require signals coming from

the computer to match the operation required.

Diffuse Optical Imaging instrumentation can be classified in two ways. The
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first class, referred as imaging domains, focuses on the type of illumination source

and the corresponding detection method. The second class, defined as geometry

measurements, considers the arrays of sources and detectors placed on a target

medium regarding the illumination technology used [80].

2.2 Types of Diffuse Optical Imaging Systems

Depending on the type of sources and detectors used to produce intensity

measurements and the type of processing applied to the information obtained,

DOI instrumentation is classified in three domains: Continuous Wave (CW),

Time Domain (TD) and Frequency Domain (FD) systems.

If a system is coupled with another medical imaging modality or is the result of

the combination of two optical systems, the obtained instrumentation is called an

hybrid optical system, which could offer several advantages but also is expected

to increase the complexity and the costs of such implementation.

2.2.1 Continuous Wave systems

Continuous wave systems, or steady-state domain (SSD) systems, use a continu-

ous light source to illuminate a target medium and then measure the transmitted

or reflected light intensity. The detected light is attenuated by absorption and

scattering events inside the medium. Figure (2.2) shows a schematic of the CW

operation.

Figure 2.2: Data acquisition for continuous wave instrumentation.
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CW instrumentation provides the highest data acquisition rate among DOI

systems allowing real-time studies of haemodynamic changes in tissue with high

temporal resolution [81]; it is widely used in clinical applications due to its

simplicity in terms of its electronics, easier construction and the associated cost

is lower, compared with the other two modalities [82, 83].

Limitations associated to CW measurement of intensities are [11]:

• Measurements are more sensitive for tissue immediately below the surface,

making it difficult to reconstruct depth tissue, for example, brain image

reconstructions are highly contaminated with skin systemic response and

also affected by skull thickness and cerebrospinal fluid (CSF) [84, 85].

• Intensity measurements are affected by optode-tissue coupling effects from

the presence of hair, skin color variation, changes in position and pressure

from the optode against the target medium [11], these two statements are

also true for the Frequency Domain (FD) and Time Domain (TD), but due

to the additional information it is possible to reduce these effects [86].

• Theoretical studies demonstrated that absorption and scattering param-

eters can’t be decoupled due to cross-talk effects [87], although Pei et.al.

[88] experimentally found that using a normalized-constraint algorithm and

a priori information it is possible to separate both coefficients using CW

measurements,

• One major limitation of CW instrumentation is the difficulty to perform

fluorescence lifetime reconstruction [74], but several alternatives have been

proposed such as the introduction of a normalization of the fluorescence

with excitation measurements as suggested by Corlu et. al. [47].

Theoretical demonstration of the cross-talk effect showed that simultaneous

reconstructions of absorption and scattering parameters were not possible using
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only intensity information [87]. However, it was demonstrated by Pei et. al., 2001

[88] that this limitation could be overcome by the use of a normalized-constraint

algorithm that used relative measurements based on the use of the normalized

difference method [89]. The proposed method assumes that the anomalies are

small anomalies close to the background values, thus limiting its application to

larger anomalies. However, it offered several advantages when a single parameters

is targeted, for example: the reconstruction is less sensitive to tissue-probe effects,

minimize the impact of quality differences among measurements and inaccurate

model considerations.

Despite the above mentioned limitations, CW systems became a powerful

and widely used imaging modality, this due to computational advancements and

improvements in the reconstruction algorithms such as the use of constrained

solutions, incorporation of a priori information through regularization and

normalization techniques [88]. Besides, its lower cost and reduced complexity

allows the development of systems with numerous sources and detectors [90].

Figure 2.3: Data acquisition for time domain instrumentation.

2.2.2 Time-Domain systems

The temporal point spread function (TPSF) is the distribution of photons from

a short duration pulse of light transmitted through a scattering medium [72].

Time-domain (TD) use pulsed light delivered to the medium in the order of

picoseconds. After traveling deeper inside the tissue, the TPSF is broadened to
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a few nanoseconds before it is measured by the detectors as illustrated in Fig.

2.2.1 [10].

TD systems provide better depth sensitivity and a higher spatial resolution

compared to CW systems, due to the capability of TD instrumentation to

suppress early arriving photons allowing to exploit the late arriving photons

with depth information, opposite to CW instrumentation that only measures

the intensity of transmitted/reflected light [91].

By applying a Fourier transform, the TPSF can be converted into the

frequency domain (FD), where the amplitude and the phase are the equivalent

to intensity and photons time of flight. This conversion is useful in the

implementation of simpler image reconstruction techniques due to data types

and the FD diffusion equation [92]. However, FD platforms are limited by the

number of modulation frequencies used, thus the full content of the time-domain

system is not exploited. In consequence, by using the information of higher-order

moments of the TPSF improve the quality over FD instruments [93].

Laser technology is frequently used in TD instrumentation because it gener-

ates stable and narrow width pulses of light, but they are complex to implement

and costly. More recently, the use of commercial high-performance LEDs have

increased the interest and the applications of TD systems, due to the simplicity

and low cost related to LED technology, compared with laser set-ups [80].

In both cases, the light is measured using a photon multiplier tube (PMT)

or for more sensitive applications, multi-channel photon multiplier (MCH-PMT).

PMTs/MCH-PMT provide high sensitivity, short rise time and excellent linearity,

but also have a complex circuitry, bulky size and noticeable aging effects.

Temperature control is required on applications that require PMT to reduce
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"black noise" generated by the heat of the PMT and to increase the operation

and life-time of the sensing elements.

An alternative to PMT is the avalanche photo-diode (APS), also known

as solid-state PMT, which is mainly used in limited space and low power

consumption applications, with a trade-off in the sensitivity obtained [80, 94].

Applications that require a high spatial resolution frequently make use of either

an intensified coupled charge device (ICCD) or an electron-multiplication CCD

(EMCCD) [94].

Time-domain applications that require a high spatial resolution frequently

make use of either an intensified coupled charge device (ICCD) or an electron-

multiplication CCD (EMCCD). Both ICCD and EMCCD basically consist of an

amplification stage that intensifies the detected light that is later passed to a

CCD camera which records the enhanced image [94].

First applications of TD systems were in the study of fluorescence reported by

Hundley in 1967 [95]. Late in the 1980s, TD systems were used in spectroscopy to

estimate concentrations of oxygenated haemoglobin (HbO2) and de-oxygenated

haemoglobin (Hb) [96], also in the estimation of myoglobin by fitting the measured

reflectance decay to the Beer-Lambert law [97]. An important contribution from

TD systems was demonstrating that the diffusion equation accurate predicts light

propagation in a scattering medium [98].

Time-domain systems clinical application include mammography and cancer

studies [99, 71, 100], adult brain imaging [101, 102], study of functional infant

brain activity [103], fluorescence DOT aiming to improve signal-to noise ratio

by reconstructing the emitted time of flight of the fluorescent agent [104, 105,

106] and small animals research for the development of new TD hardware and
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algorithms [32]. These applications were related to the study of oxygenated and

de-oxygenated blood, but other pilot experiments include the study of main tissue

components such as lipid, bone and collagen [107].

The disadvantages related to TD systems are their elevated cost and complex

implementation, compared with FD and CW domains [108]. In addition, TD

measurements are noisier and exhibit chromatic aberration effects, which is a

failure to focus all the light from the same point and is caused by the refractive

index of the lens elements that varies with the wavelength. This effect results in

further distortion of objects close to the boundaries [31], thus requiring extensive

and careful calibrations to obtain accurate reconstructions [93].

Furthermore, PMTs require their own cooling and power supply system,

making them cumbersome and increasing their cost. Another limitation is the low

measurement speed due to the single-photon counting of photons that requires a

large-area, low noise and efficient detectors. Thus limiting the number of clinical

and real-time application [90].

2.2.3 Frequency-Domain systems

Frequency domain (FD) instrumentation is a variation of TD technology which

acquires data using an amplitude modulated source, in the order of megahertz.

Figure 2.4 shows the operation of FD instrumentation that exploits the effects

produced by absorbers and scatterers in the amplitude and the phase from the

transmitted light through a medium to obtain the optical property distribution.

Temporal resolution of FD reconstructions strongly depends on the frequency

chosen, contrary to TD systems that achieve the highest resolution by considering

all the available frequencies due to the photon counting capabilities of TD
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instrumentation [109]. Whereas TD measurements can be equivalently expressed

in the frequency domain, the latter has the advantage that sources and detector

are less expensive [11].

Numerical models fitted using FD measurements have a better chance in

determining global distributions of absorption and scattering than in a CW case.

However, FD is less robust than CW due to its reduced signal-to-noise ratio (SNR)

at high frequencies [110]. In the other hand, FD image reconstructions are more

straightforward than TD, frequently requiring only one modulation frequency in

the measurements for the image reconstruction [41].

Figure 2.4: Data acquisition for frequency domain instrumentation.

The development of FD instrumentation was possible due to the advances

made on fluorescence spectrometers, known as fluorometers [111]. The progress

of fluorometers towards tissue spectrometers came after the development of laser

technology and techniques for signal processing, allowing the use of the Fast

Fourier Transform (FFT) to analyses modulated measurements [112].

After the demonstration that the diffusion equation described light prop-

agation in tissue accurately, analytical solutions in different geometries were

obtained and optical properties were calculated by fitting the analytical solution

to modulation and phase measurements from tissue-like models (phantoms) and

in-vitro experiments [113, 114, 115].

FD systems became popular thanks to the use of LEDs, instead of more
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expensive lasers or arc lamps, LEDs offered a wide spectral distribution (from

500nm to 900nm), easy modulation, a stable output, safety (low optical power)

and reduced cost [116]. A comparison in the performance of LEDs and lasers

showed that both technologies produce similar results with small variations in

their baseline and stability [117]. LED technology has revolutionized the way

how light is generated and offer a low cost solution to DOI applications that can

be rapidly constructed on lab conditions and further passed into a line production,

different to laser technology that require certifications and permits that further

limit is applicability.

Typically, a modulation frequency of 100 MHz is used in FD instruments,

corresponding to the Fourier spectrum of time-domain measurements at one

frequency. This operation limits the content information available in FD systems

and reducing the quality of the image reconstruction. This limitation can be

overcome by using several modulation frequencies, up to at least 1 GHz, which

increase the information content of FD instrumentation and becoming comparable

to TD systems [118].

Clinical applications of frequency-domain instrumentation include: planar and

tomographic optical mammography that improve the visibility of vasculature and

breast lesions [119, 120], functional brain imaging ranging from small animals to

human adults [35, 121, 122] and fluorescence diffuse optical tomography where

FD instrumentation aims to improve the image reconstruction resolution [56, 123,

124]. Frequency domain offer a trade-off between TD and CW instrumentation

attracting researchers and commercial investors, but it is still required a high

specialization to operate such equipment, also is expensive, compared with CW,

thus FD systems are used as a reference more than a front-end application.
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2.2.4 Hybrid systems

In order to enhance the capabilities of DOI instrumentation different groups

created multi-modal or hybrid systems. These hybrid systems can make use

of other imaging modalities such as MRI, X-ray, ultrasound or be a combination

of the above DOI domains.

Examples of hybrid systems coupled to other imaging modalities are: fluorescent-

ultrasound device used for prostate guided-biopsies [125, 126], fluorescent-MRI

equipment developed for in vivo atherosclerosis studies, in vitro experiments

to characterize tissue and to perform small animals studies [127, 128, 129].

Fluorescence DOT has also presented some hybrid systems, as an example,

the fluorescence-X-ray system proposed by Ale et. a. [130] used to target

subcutaneous and lung tumors using high spatial sampling of photons over

complete angle projections.

In contrast, examples of hybrid system which combine other domains are

a frequency/continuous wave device used for three-dimensional breast imaging,

such as the one proposed by Culver et. al. [131] that uses a CW system able to

operate as a frequency domain, thus adding the capabilities of FD or TD to the

simplicity of a CW instrument [132]. Another examples is the FD-CW system

proposed by Madsen et. al. that offered the capability to study the optical

properties of the uterus [133].

These hybrid systems, although more complex with respect to single optical

imaging devices, offer the capability to experimentally exploit the physical limits

that a single instrumentation or technique has to offer. The strongest use that the

research community has with respect to these systems is when they are combined

with other medical imaging modalities to obtain more information about tissue
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under investigation in a single test, instead of performing separated studies that

could change the expected results.

2.3 Diffuse Optical Imaging geometries

In this section, optical imaging is classified considering the source-detector

measurement setup used to acquire data measurements referred as the imaging

geometry. There are three main categories that can be used to generalize all the

possible source-detector arrangements:

• point measurements,

• Topographic mapping,

• Tomographic imaging.

Figure 2.5: Diagram of a single-point measurements set-up in a scattering medium that
produce a probability density function (PDF) with a distinctive "banana-shape" profile.

2.3.1 Single-point measurements

This is the simplest system design used to quantify changes in the underlying

tissue and involves a single source-detector set-up. Because of the limited number

of available measurements, this configuration can not determine the spatial

distribution of optical parameters. Figure 2.5 presents a single source-detector

pair and the sensitivity of intensity measurements to changes in the absorption

coefficient of the medium.
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The "banana-shape" structure presented in Fig. 2.5 is the result of changes in

the states of photons that propagate through a scattering medium. The position

and the likely outcome of these changes can be interpreted as a probability density

function (PDF) for the light entering and exiting the medium [134].

Figure 2.6: Single-point measurement: a) reflectance and b) transmission methods with
their corresponding banana-shape structures.

The banana profile strongly depends on the source-detector separation, the

shape of the medium and the optical property coefficients. Increased absorption

and scattering values, reduce both intensity measurements and penetration depth

which affect the quality of a reconstructed image [109].

Single-point measurements are used in near-infrared spectroscopy (NIRS)

for the estimation of oxy-haemoglobin and deoxy-haemoglobin concentrations in

brain, limbs [17] and breast tissue characterization [15, 135]. In brain studies,

the method is referred as functional near-infrared spectroscopy (fNIRS) because

it is used for the functional monitoring of brain haemodynamics due to stimuli

i.e., visual, motor or somatosensory stimulation [136].

Single point measurements are acquired either by reflection or transmission,

as depicted in Fig. 2.6 [17], with a typical source-detector separation of 3cm that

allows a light propagation within the tissue of approximately of 1.5cm, which is

the half of the distance separation of the source and the detector [137].
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In the case of fNIRS, it is recommended an inter-optode separation up to

4.5cm and no less than 2.5cm, this is because brain activity is about 2cm from

the surface [136, 138]. Although shorter inter-optode distances have been reported

for skin and subcutaneous studies [139].

2.3.2 Topographic mapping

By utilizing an array of multiple optodes in reflectance mode, the optical

property distribution of the volume under this array can be mapped. This

technique is known as optical topography (OT), or multichannel NIRS [140],

because it projects the optical property distribution from multiple source-detector

measurements, or channels, onto a two-dimensional (2D) plane.

OT offers a good temporal resolution due to the high data acquisition rate,

also near-infrared light depth penetration is approximately the half of the source-

detector distance separation [137]. Due to these capabilities, main clinical

application are in the imaging of neonatal and adult brain activation [141, 140].

This technique has a low spatial resolution due to source-detector separation

and the limited number of available channels [136]. To improve this limitation,

different source-detector arrays have been proposed as shown in Fig. 2.7, which

illustrates three source-detector configurations used for brain imaging.

Topographic measurements create better maps of optical properties in areas

where activation is expected. The grid [142] and rectangular [137] arrays, shown

in Fig. (2.7a) and Fig. (2.7b), respectively, have been used in the monitoring of

visual, dorsal frontal and inferior frontal cortical areas. The circle arrangement

in Fig. 2.7c was reported for imaging human cortex motor stimulation [143].

There exist other source-detector arrangements depending on the tissue under
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investigation and the considerations that the research group takes into account

for their experiments.

This technique is highly sensitive to optode-tissue coupling variations and

requires the calibration of each individual detector. Additionally, problems arise

depending on the acquisition protocol, i.e., serial acquisition (one source at a time,

all detectors) can produce a spatially varying image and simultaneous acquisition

(all sources on) requires information of each source contribution to each detected

signal [109].

Figure 2.7: Examples of source-detector arrays used for optical topography [142, 143]

.

2.3.3 Tomographic imaging

Tomographic techniques utilize source-detector arrays to measure the light that

has traveled deep into a medium in order to obtain an image of the optical

property distribution. Figure (2.8) presents two of the main tissue geometries

used by research groups for producing tomographic images.

The slab geometry, Fig. (2.8a), approximates the volume tissue to a slab or an
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infinite half-space and is used for fast image reconstructions. Clinical applications

using this geometry are breast diseased tissue characterization [144, 145, 146, 100],

cardiovascular studies [147], functional brain imaging and tissue monitoring [148,

149, 84, 150].

Figure 2.8: Tissue geometries used for tomographic studies of breast and brain tissues.

True tomography, Fig. (2.8b), provides the best spatial resolution by the use

of a dense array of probes and overlapping measurement combinations of the

sample. However, they are experimentally complex requiring additional probe

adjustments and quality assurance of the signals. Clinical applications include

brain and breast imaging [151, 152, 153], finger joint studies and small animals

research [154, 5, 39].

The accuracy of a tomographic reconstruction depends on the source-

detector configuration used to acquire data measurements, despite of the selected

geometry. For instance, slab geometries lack depth information from trans-

illuminated photons, thus affecting the accuracy of the reconstructed image.

Figure (2.9) illustrates the more common source-detector configurations used for

both the slab and the tomographic geometries.

A comparison of the effects of these configurations and the quality of the

reconstructions is presented in [155]. Systems that utilize all sources to illuminate
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simultaneously the medium can acquire data in parallel allowing higher frame

rates. However, attenuation effects for distances of 2.5 and 4.5 cm, also detectors

require good dynamic range and low noise characteristics [35].

Figure 2.9: Schematic of the different source-detector configurations for the slab and
the circle geometries. (a) Slab reflectance/transmission mimics x-ray mammography
allowing the use of less sensitive and more stable detectors [131], but tissue
characterization requires additional considerations due to lack of symmetry, (b) slab fan
beam normally allows the use of CCD cameras which are highly stable and robust, thus
providing image with a modest decrease of quality [72], (c) slab sub-surface reflectance is
the simplest arrangement and allows the use of analytic reconstruction, but provides the
lowest resolution [156], (d) circle reflectance/transmission provides the highest quality
image reconstruction and is one of the most used configuration for tomographic imaging
being used by several groups to imaging complex volumes [35, 39, 157, 158], (e) circle
sub-surface reflectance which is simpler, robust and less expensive, it provides accurate
images of tissue sections but has low resolution [82] and (f) circle fan beam is a simplified
version of the full reflectance/transmission with a slightly decrease in image quality and
has been normally used to experiments on small animals [154, 159, 160].
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2.4 Conclusions

The range of diffuse optical imaging instrumentation currently available is a

large array of imaging domains, geometries and source-detector configurations

that have been successfully used in clinical applications for mammography, brain

imaging, monitoring wounds recovery and also in the development of cancer

treatments by studies carried out on small animals. Although several of these

instruments are still under development, some DOI have reached commercial

applications ranging from molecular to organ size studies.

Which system domain between CW, TD and FD is better, there is not a

clear answer. CW systems are more affordable and easy to implement, but they

lack the sensitivity and spatial resolution that FD and TD systems can provide.

But due to the reduced complexity and lower cost that CW offers, this domain

has been widely used and improved by using models that better describe light

propagation or by being coupled with other imaging modalities. In contrast, TD

instrumentation offers the richest information for tissue characterization, but is

the more complex and expensive instrumentation to implement. In this sense,

FD could be considered the trade-off between cost and information quality, but

it is not as widely used as CW instrumentation. The selection of the correct

DOI instrument depends on the application, with important consideration in

the data type required, the target geometry, detection method, space constrains,

reconstruction process, complexity construction and costs.

From the point of view of the author, Continuous Wave has the advantages

over the other two modalities due to its simplicity and because the initial

investment is not as high as the other two modalities, this modality allows to

enthusiast researchers on the field of Diffuse Optical Imaging to have a real feel of
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its potential applications. Besides, considering the progresses of the computers,

optical devices and the capability to fuse CW with other modalities through

software of hardware, improve the chances of further implementation among

groups working with other imaging modalities or even research fields other than

the clinical applications here mentioned.
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Chapter 3

Light transport models and image

reconstruction

3.1 Introduction

The mathematical formulation for modeling light propagation is governed by

spatial and time scales. The spatial scale goes from Maxwell equations at the

microscopic scale, radiative transport equation in the mesoscopic level and the

diffusion equation, that neglects the interference effects of wave propagation, at

the macro-scale level [161].

To describe light absorption and scattering events in biological tissue is

important to consider the main components that affect light propagation:

chromophores such as haemoglobin, bilirubin, cytochrome and melanin pigments,

porphyrins and exogenous chromophores such as photosensitive markers used

for diagnostic and therapeutic trials [162, 163], resulting in that the tissue-light

interaction is a complex that requires an correct application of multiple disciplines

such as electronics, signal processing, data management, mathematical/statistical

modeling and some knowledge of biomedical practices.
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Another factor to consider for light propagation within tissue is the range

of temporal responses that go from femto/picoseconds (normally studied by

TD systems), through nanoseconds for diffuse photon waves (FD systems), to

milliseconds (CW systems) that allow less demanding hardware and lower costs

and also where most of the relevant physiological responses can be obtained [164].

This chapter provides an overview of the mathematical models used to

describe light propagation through biological tissue. Theoretical and numerical

methods used to solve the so called forward problem over two- and three-

dimensional geometries are depicted. The chapter guides the reader to the main

methods used to estimate light propagation and justifies the use of the Diffusion

Equation which is solved using the Finite Element Method which is the base for

the Reduced Order Models formulation.

3.2 Formulation of the forward problem

The forward problem involves the computation of the photon fluence function,

Φ(r) ∈ Ω, over a domain of interest Ω and the corresponding measurements,

y(ξ) ∈ ∂Ω, on the boundary ∂Ω for a given distribution of optical parameters

u(r) and light sources s(ξ).

Considering S source positions si ∈ ∂Ω (i = 1, ..., S) and D detector locations

dj ∈ ∂Ω (j = 1, ..., D) that produce a total of yi,j measurements. Then, the

forward problem is the relationship between the optical tissue properties and

measurements for each source-detector configuration described by

~y(i, j) = Pi,j(u(r)) (3.1)

where P (·) : U → Y is the operator from the space of optical parameters U into

the space of measurements Y [12]. A number of approaches have been used in

the past to solve the forward problem given by equations Eq. (3.1) is described

36



3.2. Formulation of the forward problem

in the following sections.

3.2.1 Modeling light propagation using stochastic methods

This kind of models utilize probabilistic algorithms to model light intensity

distributions inside a tissue volume. Considering that photon propagation

randomly depends on factors such as size and concentration of particles,

wavelength and refraction index, then absorption and scattering events can be

described using stochastic models and probability density functions.

Figure 3.1: Schematic of light propagation considering stochastic methods. a) Example
of the random path of photons with absorption and scattering events, b) stochastic
processes launched from a source that generates a probability distribution and c)
diffusion resulted from a stochastic simulation at t = tend

Stochastic models simulate the random path that photons take inside a target

medium. Each photon is "traced" as it travels through the medium; at every

interacting point the photon is assumed to deposit a fraction of its probabilistic

weight, as absorbed energy, to emerge from the interaction with a different

weighting factor. The scattering effect is represented by a change in the direction

of movement of the photon.

As is shown in Fig. 3.1, after several interactions a photon is either absorbed

or it leaves the medium where some of them are measured by a detector. It is

necessary to simulate numerous photons in the order of 106 to obtain the average
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distribution of the photons through the medium [165].

Monte-Carlo (MC) simulation is a stochastic method widely used to solve

various physical problems including light propagation through biological tissue.

The stochastic model is constructed from the expected values of certain random

variables that are equivalent to physical quantities to be determined. The

expected values are estimated by averaging multiple independent samples from

the random variables introduced [27, 166].

Due to Monte Carlos simulations accurately describe photon propagation

through tissue, this approach is used as a reference for validating other

approaches, such as light propagation models based on the diffusion equation

and the Radiative Transfer Equation [167].

Other stochastic approaches include the Random walk technique that uses

a lattice to discretize the medium and a random number algorithm with rules

to move from one sampling point to another point [168, 169, 170]. Markov

chain models is an stochastic approach which discretizes the medium using

pixels and uses a Markov property (probability of moving forward, backward,

rightway or leftway) to transition out of the pixel[171]. Stochastic methods are

highly accurate, but practical limitations arise due to these require simulating

photons in the order of millions to obtain meaningful information to describe

light propagation [172].

To allow the use of stochastic solutions, researches started developing methods

to accelerate them, for example the use of scaling methods that use baseline

simulations that are later scaled to fit a different medium, perturbation MC

methods which is similar to the previous one but assumes that optical properties

are close to the baseline, hybrid methods that use a diffuse approximation to
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reduce the computational load or parallel computation methods that benefit from

the advances in computer technology [3].

3.2.2 Analytical methods for modeling light propagation

This approach employs Green’s function to solve the diffusion equation (DE)

[173], it offers the best description for light propagation in an entire medium, but

its application is mostly limited to imaging simple and homogeneous geometries

with a single perturbation [174].

Geometries commonly utilized in analytical solutions are: the infinite medium,

used for light propagation on phantom and in vitro experiments, the semi-infinite

medium, employed in topographic imaging [143], and the slab geometry used in

layered tissue studies [175].

However, the DE has limitations to describe light propagation with short

source-detector separations (typically in the range of 20—40mm) given in the

CW configuration. Also, in the TD case: early arrived photons are discarded

because DE validity depends on photons that have suffered several scattered

events before their measurement.

Analytical solutions have been proposed to overcome DE limitations. Paass-

chens et. al. [176] presented an exact solution to the time-domain RTE using a

path-integral method for two and four dimensions and an interpolation for three

dimensions. This solution although accurate considered an infinite geometry that

was difficult to implement under practical conditions.

As an alternative RTE solution, and taking the work of Paasschens as the

starting point, Martelli, et. al. [177] proposed an heuristic analytical solution to

the RTE for practical applications in the biomedical field. This solution allowed
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its application on geometries such as slabs but it is limited to the use of matching

liquid to carry out correct measurements.

Theoretically, analytical solutions could be considered an accurate and direct

solution to obtain light propagation, but the complexity of biological tissue makes

difficult the formulation of analytical solutions.

3.2.3 Describing light propagation using numerical meth-

ods

Imaging techniques based on numerical methods have the potential to overcome

the limitations that analytical and stochastic models show, with an acceptable

balance between the quality and the time required to obtain the light distribution

within a medium.

Numerical models are widely used for biological tissue imaging because

they are suitable to model light propagation through complex, more realistic

geometries and heterogeneous media. Also, they facilitate the combination of

near-infrared imaging methods with other clinical imaging systems such as MRI

or X-ray, due to the possibility of discretize the latter into meshes that can be

used to describe light propagation.

Finite Difference Method (FDM)

This numerical method is used for the solution of Partial Differential Equations

(PDE) [178]. The method involves the discretization of the medium using a

regular grid where complex geometries are shaped considering the internal points

of the grid. Points outside of the desired shape are set to an absorption value in

the order of the thousands.
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This method has been demonstrated that its results agree in accuracy with

other approaches such as Monte Carlo and analytic solution [179]. But due to the

simplicity of the Finite Element Method when dealing with complex geometries,

the FDM is not to an approach commonly used in DOT applications. Although

it has been used to obtain light distributions in human brain [180] and rat’s head

[181].

Finite Element Method (FEM)

This is one of the preferred methods for solving the diffusion equation (DE) in

optical imaging applications. The method projects the PDE into a system of

differential equations on finite dimensional space using a set of basis functions,

or interpolation functions, on a mesh [182].

It has been used for solving both the RTE and DE models [182, 183, 184]. It

is widely use in DOT and FDOT image reconstructions because it enables easy

handling of irregular geometries [157].

Finite Volume Method (FVM)

This is a method used to represent and evaluate partial differential equations.

Similar to the finite difference and the finite element methods, this method

calculate values at discrete places within a meshed geometry. The name of the

method comes from the small volume surrounding each node in the mesh [178]

Due to the finite volume method conserve energy in a discrete sense it has

been widely used to solve the RTE in optical tomography reconstructions [185,

9]. It offers high degree of mesh adaptation which is useful to model complex

geometries; consequently, it is computational demanding [186].

41



Chapter 3. Light transport models and image reconstruction

Boundary Element Method (BEM)

It has showed better performance than FEM for large scale geometries [187, 188,

189], but it fails to model light propagation in complex heterogeneous domains

due to the complexity of the boundaries found between the interfaces of the tissue

[190].

In the following section is introduced the key models used to describe light

propagation through biological tissue. Also, is presented the discretization of the

diffusion equation using the Finite Element Method discretization, which is the

numerical method adopted in this thesis for solving the forward problem.

3.3 Mathematical models of light transport in

biological tissue

Light propagation models are representations of the interactions between the light

particles and the inhomogeneities of the medium. Any proposed model requires

the accurate estimation of changes in the inward, absorbed and emitted energy

fluxes and the resulted outward intensities.

Figure 3.2: Interaction between the light and a scattering medium.
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3.3.1 Radiative Transfer Equation

It is widely accepted that light propagation in turbid media can be precisely

described by the Radiative Transfer Equation (RTE), also known as Boltzmann

equation [12, 191].

In order to describe this model, consider a volume Ω and boundary ∂Ω

centered in ~r ∈ R
n (n=2,3), a light package with propagation direction ŝ ∈ S

n−1,

a time t ∈ R and a propagation speed c ∈ R, as illustrated in Fig. (3.2).

The change of radiance energy I(~r, ŝ, t) in the direction ŝ is equal to the loss

of energy due to absorption events and scattered light to other directions, plus

the inward energy from the scattered light from other directions ŝ′ and the energy

of a light source at position ~r at time t ∈ [0, T ]. The energy balance in the time

domain can be expressed as

1

c

∂

∂t
I(~r, ŝ, t) + ŝ · ∇I(~r, ŝ, t) + (µa + µs)I(~r, ŝ, t)

= µs

∫

Sn−1

p(ŝ, ŝ
′

)I(~r, ŝ′, t)d2ŝ
′

+ q(~r, ŝ, t) (3.2)

and in the frequency domain by [9]

iω

c
I(~r, ω, ŝ) + ŝ · ∇I(~r, ω, ŝ) + (µa + µs)I(~r, ω, ŝ)

= µs

∫

Sn−1

p(ŝ, ŝ
′

)I(~r, ω, ŝ′)d2ŝ
′

+ q(~r, ω, ŝ) (3.3)

where I(r, ŝ, t/ω) is the radiance or angular flux of photons, with units [W · cm−1

sr−1], at position r with direction ŝ at time t or modulation frequency ω, and

S
n−1, the unit circle when n=2 or the unit sphere when n = 3 [184, 192].

Other parameters in the RTE are the speed of light c, absorption coefficient µa

and scattering coefficient µs, both with units cm−1. q(r, ŝ, t/ω) is the source term

and p(ŝ, ŝ
′

) denotes the scattering phase function, which in DOT, it is usually
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given by the Henyey-Greenstein function [157, 193]

p(cos θ) =
1− g2

4π(1 + g2 − 2g cos θ)3/2
in (3.4)

where θ is the angle formed between ŝ and ŝ
′

. g is the anisotropy factor used to

characterize the angular distribution of tissue scattering.

From the angular density of photons I(~r, ŝ, t) it is possible to define two

quantities used to describe the behaviour of photons:

• The intensity or photon fluence, φ(~r, t), in units W · cm −2 given by

φ(~r, t) =

∫

Sn−1

I(~r, ŝ, t)dŝ. (3.5)

• The photon current, ~J , expressed as (~r, t)

~J(~r, t) =

∫

Sn−1

I(~r, ŝ, t)ŝdŝ, (3.6)

the photon current is the physical quantity measured at the tissue surface

with units W · cm −2 [5].

The RTE ignores the electromagnetic and particle properties from the light,

but it is sufficient accurate to to model light propagation through small geometries

and low scattering regions such as the cerebrospinal fluid. However, it is difficult

to solve in complex geometries and the time required can be equivalent as solving

a MC simulation [194].

3.3.2 Diffusion Approximation to the Radiative Transfer

Equation

The Diffusion Approximation (DA) to the RTE can be obtained from Eq. (3.3)

by assuming a scattering function f(ŝ, ŝ′) independent of the absolute angle, slow

changes in photon flux and an isotropic source [12, 11, 109]. In the frequency

domain it is given by

−∇ · κ(r)∇φ(r, ω) + µa(r)φ(r, ω) +
iω

c
φ(r, ω) = q0(r, ω) (3.7)
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where φ(r, ω) is the photon density at position r and direction ŝ, µa is the

absorption coefficient. The diffusion coefficient is κ =
1

3(µa + µ′

s)
where µ

′

s =

µs(1− g) is the reduced scattering coefficient that indicates the probability form

for the photon diffusion, µs the scattering coefficient and g is the anisotropic

factor.

Typical values found in biological found in biological tissue are 5 < µ
′

s <

20 cm−1, 0.01 < µa < 1 cm−1 and 0.7 < g < 0.9 [195]. The reciprocal of µ
′

s is

the transport mean free path (mfp) and represents the distance that a photon

can travel before losing all information regarding its entry direction.

The diffusion approximation predicts accurately light propagation for tissue

thickness greater than 10 mfp and µa/µ
′

s << 1 [17]; however, it fails to accurately

describe photon transport in regions close to sources, detectors, boundaries,

regions with low scattering and low absorption values, and void-like regions such

as cerebrospinal fluid [181].

3.3.3 Boundary conditions

The Robin boundary condition (RBC), also referred as partial-current or Type

III boundary condition, is the most widely boundary condition used in DOI. It

represents the physical model of a non-scattering medium (air) surrounding the

media and models the optical fluence at point ξ in the boundary ∂Ω on which

some fraction of the fluence exits and does not return.

The RBC is given by [183]

φ(ξ) + 2A(ŝ)κ(ξ) · ∇φ(ξ) = 0, ξ ∈ ∂Ω (3.8)

where (ŝ) is the unit vector normal to the surface and A is the refractive mismatch

coefficient which accounts for the air-tissue contact.

45



Chapter 3. Light transport models and image reconstruction

There are two algorithms to calculate parameter A in Eq. (3.8). Based on

Fick’s law, Groenhuis et al. [196, 197] derived the expressions

R ≈ −1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n (3.9)

A =
1 +R

1− R
(3.10)

where n is the refractive index of the medium. The refractive index at the external

boundaries is generally assumed to be equal to free space, then n2 = nair = 1

[22].

Based on Fresnel’s laws, Keijzer et al. [198] derived a solution given by

A =
2

1−R0

− 1 + | cos θc|3

1− | cos θc|2
(3.11)

where θc = arcsinn1/n2 is the angle of total internal reflection for photons moving

from a region with refractive index n1 to a region with refractive index n2 and

R0 =
(n1/n2 − 1)2

(n1/n2 + 1)2
. (3.12)

Considering a refractive index n1 = 1.4 for biological tissue [199, 200], it is

obtained AG = 3.25 and AK = 2.74 for the Groenhuis and Keijzer approaches,

respectively. Farrel et al. [201] compared both algorithms and found that the

Groenhuis method is slightly more accurate than the Keijzer method.

Exist other boundary conditions, such as the Dirichlet boundary condition

(Type I) that specifies the field Φ at an extended surface on the medium and the

Neumann Boundary Condition (Type II) that defines the flux at the boundary as

−D∇Φ·n̂ [183]. Both of these conditions are mathematically simple to implement,

but they are less realistic than the RBC [202].

The zero boundary condition, that equals to zero the total diffuse flux

inwardly directed at the surface by not considering reflection effects, and the

46



3.3. Mathematical models of light transport in biological tissue

extrapolated boundary condition in which the diffuse intensity is equal to zero

at an extrapolated boundary outside the turbid medium are other boundary

conditions used to describe light on the boundary of the medium [7, 203].

Hielscher et. al. [204] studied the importance of a good choice of boundary

conditions and stated that the partial-current and the extrapolated boundary

conditions presented a close agreement between their results. On the contrary,

the ZBC although been the simplest to implement is physically incorrect.

3.3.4 Modelling sources and detectors

The source term q0 in the DE is considered isotropic, which means it is

independent from the direction of ŝ, and there are two strategies for modelling it

[199]:

i Collimated source (CS): It models a collimated beam pencil produced by an

isotropic point source located at d = 1/µ
′

s below the surface as [201]

q0(r) = qδ(r − r0) (3.13)

where q0 is the intensity of the δ-shaped source located at point r0. A CS

produces accurate results at large mfp distances from the source (i.e. distances

> 0.5cm typically).

ii Diffuse source (DS): It describes a diffuse photon current illuminating the

boundary segment ∂ΩDS ⊂ ∂Ω where the source is located. It can be

incorporated directly into the boundary condition as [191]

φ(ξ) + 2An̂κ(ξ) · ∇φ(ξ) = −4qsw(ξ) (3.14)

where qs is the source intensity, w is a weighting function and n̂ is the outward

normal at ξ ∈ ∂Ω.

Considering a collimated source with RBC and ω = 0, Eq. (3.7) is reduced to
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the continuous wave diffusion equation

−∇ · κ(r)∇φ(r) + µa(r)φ(r) + φ(r) = q0(r) r ∈ Ω (3.15)

κ(ξ)
∂φ(ξ)

∂n̂
+

1

2A
φ(ξ) +

1

2A
φ(ξ) = 0 ξ ∈ ∂Ω (3.16)

where n̂ is the normal normal vector to the surface at the ∂Ω. Assuming a

refractive index n1 = 1.4 for photon migration at the air-tissue interface [205,

200, 206], it is found A = 3.25 using the Groenhuis algorithm.

The operator that describes detector measurements is given by [207, 208, 201]

Γ(ξ) = −κ(ξ)n̂ · ∇φ(ξ) (3.17)

this equation is also known as the Fick’s law and relates the measurable outward

flux Γ to the photon density φ inside the medium[209].

3.3.5 Solution of the diffusion equation using the Finite

Element Method

The Finite Element Method (FEM) is the most commonly numerical technique

used for the solution of the DE in diffuse optical imaging. This section introduces

the basis to one of the key approaches used on this work and in the diffuse optical

imaging methodology.

As stated in Section 3.2.3 there exist other numerical methods, but FEM offers

a good trade-off between flexibility to describe complex geometries and compu-

tational implementation with several programs used to generate FEM meshes

with biomedical applications such as ScanIP-FE [210], COMSOL multiphysics

[210, 211] and NIRFAST [22].

It consists of a continuous domain Ω discretized into E finite number of non-

overlapping elements joined by N vertex nodes. The weak form of the Galerkin
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method is used to solve Eq. (3.15) and proceeds as follows. A solution for φ

exists if exists a solution for
∫

Ω

Ψ(r)

{

∇ · κ(r)∇− µa(r)c−
∂

∂t

}

φ(r, t)dΩ = −
∫

Ω

Ψ(r)q0(r, t)dΩ (3.18)

where Ψ is a function from a test space that satisfies the same boundary condition

of φ. By integrating Eq. (3.18) by parts
∫

Ω

κ(r)∇Ψ(r) · ∇φ(r)+µa(r)Ψ(r)φ(r)dΩ

=

∫

Ω

Ψ(r)q0(r)dΩ+

∫

∂Ω

Γ(r)Ψ(r)d(∂Ω).

(3.19)

By assuming that Ψ and all its first derivative are integrable over Ω, Eq.

(3.19) can be solved considering that the photon fluence φ(r) and the outward

flux Γ can be approximated with the piece-wise polynomial functions

Φh(r) =

Nint
∑

j=1

φjψi(r) (3.20)

Γh(r) =

Nbnd
∑

j=1

Γjψi(r) (3.21)

where ψj are known basis functions. Further, the formulation in Eq. (3.21) only

considers the ψj centred on boundary nodes ordered as j = 1, 2, ..., Nbnd.

Then, the weak formulation is given by
∫

Ω

κ(r)∇ψj(r) · ∇Φh(r)+µa(r)ψj(r)Φ
h(t)dΩ

=

∫

Ω

ψj(r)q0(r)dΩ+

∫

∂Ω

ψj(r)Γ
h(r)d(∂Ω)

(3.22)

that can be expressed in matrix form as

[K(κ) + C(µa)]Φ = Q + β (3.23)

with entries

Ki,j =

∫

Ω

κ(r)∇ψj(r) · ∇ψi(r)dΩ (3.24)

Ci,j =

∫

Ω

µa(r)ψj(r)ψi(r)dΩ (3.25)

Qi,j =

∫

Ω

ψjq0(r)dΩ (3.26)
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βi =

∫

∂Ω

ψj(r)Γ(r)d∂Ω (3.27)

Φ = [Φ1,Φ2, ...,ΦN ]
T (3.28)

where i, j = 1, 2, ..., N and N is the number of nodes in the FEM mesh.

The matrices have been chosen to have limited support. Thus, matrices K

and C are sparse matrices since they have non-zero entries where Ni and Nj are

vertices of the same element. Matrix β has non-zero entries where a node is on the

boundary ∂Ω, these nodes are termed as boundary nodes, Nbnd and the remaining

are the internal nodes Nint [202].

FEM mesh resolution is important in the solution of both the forward and

inverse problems. Normally, dense meshes (high number of nodes) are used

to solve the forward problem in order to obtain numerical accuracy of light

propagation. Yalavarthy et. al. [212, 213] investigated the impact that the

number of nodes and showed that high resolution meshes provide the most

accurate and numerically stable solutions.

Inverse meshes are coarse (low number of nodes) and are designed to reduce

the number of unknowns, but they need to be designed with enough nodes in

order to produce good resolution. Yalavarthy et. al. [212] demonstrated that

2,000 nodes provide a good trade-off between mesh resolution and computation

time for DOT imaging.

For practical Finite Element Method (FEM) implementation, in this work is

used the software NIRFAST (Near Infrared Fluorescence and Spectral Tomogra-

phy), developed at Dartmouth College and University of Birmingham, dedicated

to DOI medical applications. It contains a set of toolboxes for Diffuse Optical

Tomography (DOT), Fluorescence DOT and NIR spectroscopy [214, 22].
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3.4. Light transport model for Fluorescence Diffuse Optical Tomography

A detailed explanation of FEM discretization and conditions required to

perform it is out the scope of this work, but in the work presented by Medina-

Vazquez [215] can be found the discretization of the diffusion equation to its FEM

representation. This could be used as a starting point to propose a different FEM

discretization by analysing the limitations of the basis function used on the study.

3.4 Light transport model for Fluorescence Dif-

fuse Optical Tomography

Fluorescence Diffuse Optical Tomography (FDOT) is an emerging image modality

which uses excitable fluorescent dyes. The emitted light from the fluorophores

is measured and then the spatio-temporal distribution of the fluorescent bolus is

reconstructed [216].

Calculation of fluorescence light transport in tissue requires the solution of

the following coupled diffusion equations [43, 75, 217]

−∇ · [κx(r)∇φx(r, ω)] +
[

µax(r) + µaf (r) +
iω

c

]

φx(r, ω) = −q0(r, ω) (3.29)

−∇ [κ(r)∇φfl(r, ω)] +
[

µam(r) +
iω

c

]

φfl(r, ω) = φx(r, ω)ηµaf(r)
1− iωτ(r)

1 + [ωτ(r)]2

(3.30)

where subscripts x and m indicate the excitation λx and emission λm wavelengths

[nm], respectively, and fl is the fluorescence emission at λm φx,fl(r, ω) are the

fluence rates, q0(r, ω) = qδ(r − r0) is the source term with intensity q and δ(r −

r0) the Dirac function at point r0, ω is the modulation frequency, µa(x,m) the

absorption coefficient and the diffusion equation is given by [75]

κx,m =
1

3(µa(x,m) + µaf + µ’

s(x,m))
(3.31)

where µ’

s(x,m) = µs(1 − g) is the reduced scattering coefficients, µs(x,m) is the

scattering coefficient and g is the anisotropy factor.
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The fluorescent parameters are the fluorophore absorption coefficient µaf(r),

the lifetime τ and the fluorescent yield ηµaf(r) which incorporates the fluorophore

quantum efficiency

η =
number of photons emitted
number of photons absorbed

.

The fluorophore quantum efficiency η depends on the type of fluorescent

agent used, the chemical environment and the fluorophore absorption. The latter

parameter depends on the fluorophore concentration

µaf = 2.3εCf (3.32)

where ε is the extinction coefficient with unit [µM−1 mm−1] and Cf is the

concentration of the fluorophore inside the medium in [µM] [217, 208].

The term (1− iωτ(r))/(1+ [ωτ(r)]2) on the right hand side of Eq. (3.30) was

derived from the Fourier transformation of a single exponential decay defined by

F (t) = F0
1

τ
et/τ (3.33)

where F0 = Cf(r)η is the initial fluorescent bolus with concentration Cf at

position r [108, 98]. The absorption coefficients in Eq. (3.29) and Eq. (3.29)

are assumed to be different at the excitation and emission wavelengths, due to

the tissue chromophore spectral absorption dependence [206].

The continuous wave form of the fluorescence diffusion equation is derived by

assuming ω = 0 in Eq. (3.29) and Eq. (3.30), this is expressed as

−∇ · κx(r)∇φx(r) + [µax(r) + µaf (r)]φx(r) = q0(r) (3.34)

−∇κm(r)∇φfl(r) + µam(r)φfl(r, ω) = −φx(r, ω)ηµaf(r), (3.35)

where the last term in Eq. (3.30) is neglected; as a result, CW measurements

cannot reconstruct the fluorescence lifetime τ .

52



3.4. Light transport model for Fluorescence Diffuse Optical Tomography

3.4.1 Simplified fluorescence transport model

The coupled partial differential equations given by Eq. (3.29) and Eq. (3.30)

accurately describe the interaction of light, tissue and the presence fluorescent

effects at both wavelengths. The problem with this model is presented when is

required a discretization due to the coupling effects of the fluorescent parameters.

One solution is by considering the fluorophore concentration Cf to be

sufficiently small, then, it is possible to neglect its effects on the diffusion equation.

With this assumption, the diffusion coefficient in Eq. (3.31) is reduced to

κx,m =
1

3(µa(x,m) + µ’

s(x,m))
. (3.36)

By neglecting Cf contribution in Eq. (3.29) and considering Eq. (3.36), the

excitation field φx becomes independent from the concentration. Therefore, the

fluorescent diffusion equation for the CW case is reduced to

−∇κx(r)∇φx(r) + µax(r)φx(r) = q0(r, ω) (3.37)

−∇κm(r)∇φfl(r) + µam(r)φfl(r) = φx(r)ηµaf(r), (3.38)

that produces accurate light propagation calculations and also facilitates the

treatment of the inverse problem [218].

Boundary condition and fluence measurements in FDOT

The RBC in the fluorescent case considering is given by [219, 55]

φx(ξ, ω) + 2An̂ · κx(ξ)∇φx(ξ, ω) + q0(r, ω) = 0 (3.39)

φm(ξ, ω) + 2An̂ · κm(ξ)∇φm(ξ, ω) = 0 (3.40)

where the parameters are equivalent to those formulated in Eq. (3.8) for DOT.

The term q0(r) in Eq. (3.39) accounts for the excitation light source at the

boundary.
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The outward flux is computed using the Fick’s law [207, 208, 201]

Γx,m = −κx,mn̂ · ∇φx,m(ξ). (3.41)

As mentioned before, the NIRFAST software package was used to solve

Eq.(3.37), Eq. (3.38) and Eq. (3.41). The main computation steps involved

in solving the excitation and emission equations are as follows: [219, 220]

1. Calculate light propagation using Eq. (3.37) with light source and optical

properties at the excitation wavelength λx.

2. Determinate the fluorescence photon field by solving Eq. (3.38) with optical

properties at the emission wavelength at λm and the excitation photon field

as the source.

3. Estimate boundary light measurements using Eq. (3.41).

3.4.2 Finite Element Method formulation for FDOT

The FEM formulation for FDOT light propagation is obtained by approximating

φx,fl by the piecewise continuous polynomial function φhx,fl =
∑N

j=1 φx,flψj . Then,

the FDOT coupled diffusion equation can be expressed as

(Kx(κ) +Cx(µax) + Fx)Φx = Q0 (3.42)

(Km(κ) +Cm(µam) + Fm)Φfl = −Qm (3.43)

where the entries for the matrices are

K(x,m)i,j =

∫

Ω

κx,m(r)∇ψi(r) · ∇ψj(r)dΩ

C(x,m)i,j =

∫

Ω

µax,m(r)∇ψi(r) · ∇ψj(r)dΩ (3.44)

F(x,m)i,j =
1

2A

∫

∂Ω

∇ψi(r) · ∇ψj(r)d∂Ω

with the source vector

Q0 =

∫

Ω

∇ψi(r)q0(r)dnr. (3.45)
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where the excitation source term is defined as a Gaussian distribution in order to

match the optical fibre at the source-tissue coupling point.

By assuming an isotropic source located one mfp inside the medium, the

fluorescence source at the emission wavelength is given by

Qmi
=

∫

Ω

Ni(r)[φx(r)ηµaf(r)] (3.46)

distributed throughout the domain.

Detailed information about the FEM discretization above presented can be

found in:

• The work of Schweiger et. al. 1993 [182] presents the solution of the

Diffusion Equation on time-domain using the Finite Element Method

(FEM) through piecewise-linear basis functions and the Galerkin method

for its implementantion. The proposed numerical solution is further used

in a modified Newton-Raphson approach to perform the reconstruction.

• In a later contribution from Schweiger et. al. 1995 [199] is analyzed the

FEM approach considering boundary effects by refining the mesh close to it

and comparing different boundary conditions by extending the work made

by Farrel et. al 1992 [201]. A further analysis is made to the use of

collimated and diffuse sources and how to model these in a numerical based

model.

• Davis et. al. 2007 [219] presented the discretization of the fluorescent

diffusion equation under a frequency domain framework expressed as a

system of linear algebraic equations. Sources are modelled using a Gaussian

and at one scattering distance inside the medium. In this work is also

considered the use of spatial prior in the model to spatially guide the

solution to improve the reconstruction.
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• In a later work, Zhu et. al. 2011 [221] extended the FEM model to describe

TD fluorescent light propagation with an error 0.22% compared to a MC

simulation. The FEM model has a similar structure than the FD and

CW models. The approach was proposed to properly track earl photon

arrivals and the exploit the advantages of TD systems on three-dimensional

geometries.

3.5 Image reconstruction approaches

Typically, image reconstruction techniques require a forward model used to

describe the geometry and a baseline or initial guess of optical properties. By

a proposed reconstruction approach, the optical properties in the forward model

are updated by an optimization process using experimental measured data. The

process ends once a solution is found or the optimization process is stopped by a

given condition.

In Diffuse Optical Imaging, the image reconstruction process is known as

solving the inverse problem, it involves the estimation of the optical parameters

for a given set of light sources q and measured data Γ detected on the boundary

of the medium ∂Ω. Essentially, the solution to the inverse problem is described

by

u(r) = P−1(Γ). (3.47)

where u(·) represents the optical properties of the medium and P−1 is the inverse

operator of P which describe the light propagation. The inverse problem is known

to be non-linear and ill-posed; traditional solution methods include singular value

decomposition (SVD) and iterative methods [149].

In the following section are presented some of the approaches used to solve

56



3.5. Image reconstruction approaches

the inverse problem, such as the perturbation method that introduces the use of

the Jacobian or sensitivity matrix J. Later, it is introduced the iterative scheme

that the present work uses for the image reconstruction process.

3.5.1 Perturbation approach to the inverse problem

This method proposed by Arridge et. al. [134, 209], assumes that the

optical properties of the target medium are the perturbations ∆µa and ∆κ

to the absorption, µa and diffusion, κ, parameters of the background. An

important consideration to use this approach is that the optical parameters of

the perturbation must be close to the values of the background medium [180].

Considering the following diffusion equation as the background medium

∇ · κ(r)∇φ(r)− µa(r)φ(r) = q(r), (3.48)

by assuming that the optical parameters of the target medium are close to the

background, light distribution of the target is equal to the light intensity of the

background medium plus a perturbation:

∇ · (κ(r) + ∆κ(r))∇(φ(r) + ∆φ(r))

−(µa(r) + ∆µa(r))(φ(r) + ∆φ(r)) = q(r) (3.49)

substrating Eq. (3.48 from Eq. (3.49) yields to

∇ · [κ(r)∇∆φ(r) + ∆κ(r)∇φ(r) + ∆κ(r)∇∆φ(r)] = 0.

Barbour, et al. [222] proposed a linearisation, which is valid for optical

parameters of a target medium that are close to a reference medium, that neglects

the second-order perturbation terms in Eq. (3.50), so that

∇ · κ(r)∇∆φ(r)− µa(r)∆φ(r) + [∆ · (∆κ(r)∇φ(r)− µa(r)φ(r)]

= ∇ · (κ(r)∇∆φ(r))− µa(r)∆φ(r) + q′(r). (3.50)

By considering ∆µa and ∆κ to be sufficiently small, it results that light
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propagation is still modelled by the diffusion equation. A formulation that

describes the difference in the measurements ∆Γ due to a perturbation is

∆Γ = J∆u (3.51)

where ∆u can be either ∆µa or ∆κ.

Equation (3.51) provides an image reconstruction formulation called perturba-

tion method which relates the measurement difference ∆Γ = Γtarget − Γbackground

between predicted and experimental measurements to the difference between

target optical parameters (unknown) and known optical parameters of a reference

medium.

Matrix J is usually constructed using numerical methods and is referred as

the Jacobian or sensitivity matrix of the forward problem [12]. Other approaches

for constructing J involve the use of an infinite space geometry in which an

analytical expression can be formulated or by a Monte Carlo simulations [223].

The formulation of the Jacobian using numerical models is normally used due to

the ability of being directly implemented on computational solvers.

Using a numerical image reconstruction, the aim is to find the inverse of

the Jacobian matrix given in Eq. (3.51). Approaches such as the Algebraic

Reconstruction Technique (ART), the Simultaneous Iterative Reconstruction

Technique [114] and the Simultaneous Algebraic Reconstruction Technique [222]

can be used for the inversion process.

Other approaches make use of subspace algorithms where Eq. (3.51) is treated

as a least square problem expressed as

E = ||∆Γ− Jδu||2, (3.52)

where conjugate gradient methods have been used to solve the inverse problem

with a superior performance in the estimation of both the spatial location and
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the magnitude of the optical properties [88, 224].

Image reconstructions based on the perturbation method are less time-

consuming and relatively easy to implement, but require that the target anomalies

need to be close to the background, otherwise, the error is expected to be large

due to the solution is made typically in one step.

3.5.2 Iterative image reconstruction

To improve the image reconstruction capabilities of perturbation methods, it

is formulated necessary the use of iterative schemes that minimize the error

between reconstruction steps. For these class of methods, the inverse problem

is formulated as an non-linear problem where an objective function given by

χ =
1

2

S
∑

j=1

M
∑

i=1

(Γi(j)− Γ̂i(j)) (3.53)

where Γ are the experimental measurements and Γ̂ the calculated data, i ∈ 1, ..., S

denotes the i-th measurement from source j ∈ 1, ...,M and S and M indicate the

number of sources and detectors, respectively.

Due to the ill-condition of the inverse problem and the complexity of the

geometries found in biological tissue, it is normally solved using iterative non-

linear optimization methods such as the Newton method [225] and the Levenberg-

Marquard (LM) [33, 226].

Model Based Iterative Image Reconstruction (MOBIIR) techniques are

iterative image reconstruction methods based on perturbation formulation [227,

181]. Thus assuming that the target optical properties, u = [µa, µ
′

s], are a small

perturbation to an estimated optical property distribution uest.

From the distribution of optical properties, predicted measurements ΓPred =
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Figure 3.3: Model Based Iterative Image Reconstruction scheme (MOBIIR) based based
on perturbation methods.

P (uest) are generated and then analysed considering experimental data Γ obtained

from the boundary of the target medium. It is important to consider a calibration

procedure due to a variety of parameters that might affect the experimental

measurements such as, source-detector separation, boundary imperfections,

changes in source intensities, gain of detectors or the presence of hair [11, 228].

If the estimated optical properties ue are close to the target distribution u,

the following Taylor’s expansion can be performed:

Γ = P [ue] + P ′[ue](u− ue) + (u− ue)
TP ′′[ue](u− ue) + · · · (3.54)

where P ′ and P ′′ are the first- and second- order derivatives of the forward model

for the optical parameters u. The matrix representation of P ′ is referred as the

Jacobian or weight function J and P ′′ is known as the Hessian H of the problem.
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By defining the difference between experimental and predicted measurements

as ∆Γ = Γ − ΓPred and the difference between the target and estimated optical

properties as ∆u = u− uest Eq. (3.54) becomes:

∆Γ = J[uest]∆u+∆uTH [uest]∆u+ · · · . (3.55)

If we neglect second-order terms in Eq. (3.55), the problem is reduced to the

solution of a set of linear equations for ∆u given by

∆u = J−1[uest]∆Γ, (3.56)

knowing ∆u and the reference medium uest allows the calculation of the target

optical properties u = ∆u+uest corresponding to the reconstructed image. Figure

(3.3) depicts the image reconstruction process where the continuous update of uest

is represented in the outer iteration.

The Jacobian matrix is ill-conditioned and performing its inverse is computa-

tionally demanding. Therefore, the inverse of the Jacobian is usually treated as

an optimization problem where the functional

χ(∆u) = ‖J[uest]∆u−∆Γ‖ (3.57)

is minimized. This minimization process is referred in Fig. (3.3)as the inner

iteration. Introducing a regularization term in the inner iteration constrains the

solution of ∆u by making the Jacobian matrix more diagonally dominant [180].

Other approaches used by MOBIIR are Conjugate Gradient (CG)-based

methods [180, 149], illustrated in Fig. (3.4). In a similar way as the perturbation

based approach, (CG)-based methods make use of a forward model to generate

predicted measurements ΓPred and an analysis scheme that compares this

predicted data with experimental measurements Γ.

In CG-based methods, the difference between the predicted ΓPred and

experimental Γ measurements is defined by an objective function χ, i.e. a least
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square error norm χ(u) ∼ (Γ − ΓPred(u))
2. It is necessary a regularization term

to reduce the ill posed form of the problem. By defining χ, no linearisation is

required [180].

The minimization of the objective function is divided in two stages:

1. The gradient of χ is calculated as dχ(u)/du, which is different to the

Jacobian used in the perturbation method.

2. An iterative minimization is performed in the direction given by the

gradient, which is labelled as the inner iteration in Fig (3.4). This step

is performed several times until a minimum of χ(u) is found and a new

optical distribution u is used to calculate a different gradient. The process

stops once a set of optical parameters u is found that produces the smallest

χ(u).

The conjugate gradient method is used because it is known to be efficient and

accurate for large dimensional problems, using a low and predictable memory

usage, requiring only the function and the gradient values at each iteration, and

it updates the optical values before calculating the Jacobian [229].

The procedures above mentioned use FEM to estimate the detector measure-

ments in each iteration, as a consequence, these methods are computationally

expensive and time consuming. Some efforts have been made to increase the speed

by reducing the mesh size, without compromising the accuracy [182, 230, 231].

Another problem regarding Jacobian-based methods is that they are highly

dependant on the initial guess, as a result, the image reconstruction solution tend

to converge to a local minimum instead to the true optical values. This problem

has been addressed by incorporating a priori information, for example, it has
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Figure 3.4: Model Based Iterative Image Reconstruction scheme (MOBIIR) based based
on conjugated gradient methods.

been shown that by incorporating anatomical information derived from MRI, the

quality of the image is significantly improved [232, 233].

3.5.3 Jacobian calculation

For inverse solvers based-on optimization such as Newton-Raphson or Conjugate

Gradient methods, the Jacobian calculation is an important task. The Jacobian

represents the sensitivity for a source-detector pair to changes of the optical

parameters at each node. For this reason, it is also known as the sensitivity

or weight matrix in diffuse optical tomography theory [157].

The Jacobian is calculated using numerical methods such as the Finite

Element Method, where the simplest procedure in to perturb each node or element
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and obtain the limit with respect of the perturbation, this involves the calculation

of the DE at each node which is time consuming [182]. Another approach is to

directly differentiate the FEM matrices after discretization with respect to the

optical parameters [183].

A more efficient and accurate approach for the calculation of the Jacobian is

by the use of the reciprocity theorem [209], which applied to light diffusion states

that the output flux of a detector at position r with a light source at r′ is equal

to the output flux measured at r′ with the same source at position r [234].

The Jacobian for absorption changes considering the reciprocity theorem is

[209]

Jµa(di, sj, r) =





∑

k|Nk∈τ(r)

φ
(i)
k (r)ψk(r)



×





∑

k|Nk∈τ(r)

φ
(j)
adj,k(r)ψk(r)



 (3.58)

and for diffusion changes

Jκ(di, sj, r) =
∑

k|ψk,ψm∈τ(r)

φ
(i)
k (r)φ

(i)
adj,k(r)∇ψk(r) · ∇ψm(r) (3.59)

where φ and φadj correspond to the solution of the direct and adjoint diffusion

equations, respectively; di is the i-th detector, sj the j-th source and ψ denote

the basis functions or polynomial approximation used for the densities φ and

φadj . In section 3.3.5 is presented the definition of variables and matrices for the

discretization.

The Jacobian structure can be expressed as [157]

J =























δ ln I1
δu1

δ ln I1
δu2

· · · δ ln I1
δuNn

δ ln I2
δu1

δ ln I2
δu2

· · · δ ln I2
δuNn

...
...

. . .
...

δ ln INm
δu1

δ ln INm
δu2

· · · δ ln INm
δuNn























, (3.60)

where δ ln Ii/δuj are sub-matrices that define a change in the amplitude of the

i-th measurement from changes in any of the optical properties.
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For example, depending on the optical properties defined by the FEM mesh,

the Jacobian could take several forms, such as the one presented by Chu and

Dehghani [235] constructed by absorption coefficient, scattering coefficient and

anisotropy factor that produced a Jacobian with three separate kernels:

J = [Jµa ; Jµ′s; Jg] (3.61)

where Jµa , Jµ′s and Jg are the sensitivity functions to changes in absorption,

scattering and anisotropy, respectively, with the following form

Jµa =

[

δlogI

δµa
;
δθ

δµa

]

(3.62)

Jµ′s =

[

δlogI

δµ′

s

;
δθ

δµ′

s

]

(3.63)

Jg =

[

δlogI

δg
;
δθ

δg

]

(3.64)

where δθ/δu denote changes in the phase due to changes in the optical properties

u = [µa, µ
′

s, g].

Due to the dynamic range of the measurements the use of the logarithm

of the signals have shown to improve the quality of the reconstruction and the

reduction of boundary artifacts [236]. Each row in Eq. (3.60) is known as the

Photon Measurement Density Function (PMDF) and each column correspond to

the perturbation in the data due to an heterogeneity at a certain node.

As an example, consider a circular geometry with radius of 43mm, 16 equally

spaced sources and detectors located as seen in Fig. 3.5. The optical properties

were set considering an homogeneous medium with µa = 0.01 mm−1, µs = 10

mm−1, g = 0.9 and refractive index nidx = 1.33.

The sources were placed at 1 mm inside the medium, corresponding to one

reduced scattering distance. A modulation frequency of 100 MHz was selected

for this experiment and the medium was discretized into a FEM mesh consisting
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Figure 3.5: Circular geometry with 43mm of radius, 16 sources and detectors were
equally located around it.

of 1785 nodes and 3418 triangular elements [235].

In Fig. 3.6a is presented the sensitivity of the amplitude from source 2 to

detector 11 due to changes in the absorption coefficient. Figure 3.6b presents

the sensitivity to the same source-detector pair due to diffusion changes. In

both cases, it is observed that the higher values are close to the sources and

detectors, decreasing towards the centre of the medium. Negative values in

Fig. 3.6a indicates that by increasing the absorption results in the reduction of

the measured intensity. For the scattering coefficient are also observed negative

values, but with a lower magnitude compared with the effects of the absorption

parameter [235].

3.6 Regularization methods and a priori infor-

mation implementation

Assuming that anatomical and/or physiological information is available from

other modalities, such as MRI or X-ray, it is possible to define a region of interest

(ROI) to reduce the ill posed condition of the Jacobian matrix and to solve the
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Figure 3.6: Sensitivity of a homogeneous medium due to a) absorption and b) diffusion
changes.

inverse problem more efficiently. Uncertainties in the prior information due to

low image resolution or tumour tissue can introduce errors an variations in the

solution by imposing incorrect model assumptions. There are two main prior

regularization approaches:

• Hard prior approach. Considering a nonlinear operator Γ = P (µa, κ), where

Γ is a complex vector which components are mapped to log amplitude and

phase measurements. Defining the image reconstruction as

(µ̂a, κ̂) = argmin
µa,κ

= ‖Γ− P (µa, κ)‖ (3.65)

a Levenberg-Marquard algorithm is used to repeatedly solve

(∆µa,∆κ) = JT (JJT + λI)−1∆Γ (3.66)

where J is the Jacobian and ∆Γ = Γ − P (µa, κ) is the difference between

the experimental data and model measurements [237].

This type of regularization prioritize the optical property distributions

according to the regions from the segmented image given by the a

priori information. The difficulty of this approach is the potential

introduction of errors and variations due to incorrect model considerations

and uncertainties in the prior information [231].

• Soft prior approach [231]. This regularization method uses the ℓ2-norm to
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spatially regularize the solution. It relates the optical parameter of a node

with the optical parameters of the surrounding nodes by minimizing the

objective function

χ = minimize
x

||yexp − ymod||+ λ||L(u− u0)|| (3.67)

where λ is the Tikhonov regularization parameter which balances the effect

of the prior with the model-data mismatch, u0 is the initial guess of the

optical parameters and L is a Laplacian-type regularization matrix which

relaxes the smoothness constraints between different tissue layers [238, 239].

In the case of FDOT, the parameters to be reconstructed are the fluorescent

yield ηµaf , product of the quantum efficiency η and the fluorescent absorption

coefficient µaf , and the lifetime τ of the fluorophore. Assuming that the

chromophores in the medium are known in both wavelengths (µa(x,m), κx,m),

a direct method to recover the fluorescent parameters u = (ηµaf , τ) is given by

the minimization of [240]

û = argmin
u

||P (u)− Γ||22 (3.68)

where P (u) and Γ represent the model and the experimental measurements,

respectively. Due to the ill condition of of Eq. (3.68), an ℓ2 regularization with

initial guess u0 is introduced in the form

un+1 = un argmin
δu

[||Jnδu− (Y − Jnδun)||22 + λ||δu||] (3.69)

where Jn is the Jacobian computed after the n-th iteration for the current

value un = (ηµaf , τ), δu is the change of fluorescent parameters and λ is the

regularization parameter.
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3.7 Image reconstruction in Fluorescence Diffuse

Optical Tomography

The image reconstruction in FDOT slightly differs from the standard DOT image

reconstruction. Essentially the objective function for the minimization in FDOT

is given by [219]

χ =
Nmeas
∑

i=1

(

ΓMeas
x,m − ΓCalcx,m

)

+ λ

Nnodes
∑

n=1

I (u0 − u)2 (3.70)

where ΓMeas
x,m are the experimental measurements, ΓCalcx,m are the measurements

calculated using a forward model such as the one given by Eq. (3.41), Nmeas is

the number of available measurements, Nnodes is the number of optical properties

to be reconstructed, corresponding to the total of number of nodes in the inverse

mesh, λ is the regularization term, I is the identity matrix, u0 is the initial guess

of optical properties and u represents the optical properties to be estimated.

Subindexes x andm indicate the excitation and emission wavelength, respectively.

Assuming that the endogenous optical parameters ux,m = (µa(x,m), µ
′

s(x,m))

are known, the fluorescence yield distribution ufl = ηµaf is estimated using the

update function [219, 241]

∆ufl = [JTJ + λI]JT (ΓMeas
fl − ΓCalcfl ) (3.71)

where λ is a penalty term multiplied by the maximum value on the diagonal of the

Hessian matrix JTJ which is updated at each iteration. The Jacobian matrix J

is calculated using the Adjoint method proposed by Arridge and Schweiger [209].

If the endogenous optical parameters are not known a priori, it is necessary to

perform the image reconstruction of these before the estimation of µaf . For the

excitation case, Eq. (3.70) and Eq. (3.71) are used with the term ux = (µa, µ
′

s)x

and a light source at the excitation wavelength.
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The same procedure is used at the emission wavelength considering the

term um = (µa, µ
′

s)m in Eq. (3.70) and Eq. (3.71) and a light source at the

emission wavelength.It is important to note that for FDOT image reconstruction

techniques require the information of the endogenous optical properties of the

medium at both wavelengths due to their presence in the diffusion equation.

Furthermore, in order to minimize the effects of unknown optical parameters,

source light intensities variations, detector gains and coupling effects it is

required a calibration procedure and some normalization such as the Born-

Ratio normalization (normalized emission intensities by excitation intensities)

[221, 160, 86] or the Normalized Difference method [88] which associates relative

measurement changes due to changes in the optical parameters as

Jr∆u = ∆Γ

=
(Γ1)i − (Γ2)i

(Γ2)i
(Γr)i (3.72)

where the quantity (Γr)i is the predicted data measurements from a known

mathematical model for test solution.

Software packages such as NIRFAST [22] and TOAST++ [23] already have

implemented several of the required algorithms to perform image reconstructions

from simulation models to real experimental data, and are great tools to start

working straight away with DOT, FDOT and NIR spectroscopy. In the case

of TOAST++, several of their functions written on C which speed-up the

reconstruction, but NIRFAST offer several functions directly on Matlab, which

make easier the implementation of proposed approaches.
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3.8 Conclusions

This chapter has introduced the mathematical background and the computational

methods used for image reconstruction and quantification of the optical properties

in biological tissue. There is a wide choice of light propagation models that can be

used to model light, from the accurate but computationally expensive radiative

transfer equation to simpler diffusion approximation models. Similarly, to this

day exist a variety of solutions to the inverse problem, some more complex that

allow greater accuracy but are typically time-consuming.

The diffusion approximation (DA)to the RTE is the light transport model

most commonly used in Diffuse Optical Tomography and Fluorescence Diffuse

Optical Tomography due to its simplicity and that can describe tissue light

interactions from relatively large tissue volumes. The typical approach used

to solve the DA is by the Finite Element Method which allows modelling light

propagation through complex geometries, that are commonly found in biological

tissues.

The description given in the present chapter for the different methods available

for estimating light propagation through tissue was to provide a general overview

of their applicability and limitations. In this sense, the selection of a forward

model to be used in a reconstruction scheme is the first step and needs to be

clearly stated before a reconstruction technique is defined due to the information

that is going to be passed to it.

The use of iterative solvers is currently the main approach used for the image

reconstruction because they are suitable to be implemented in computational

programs. Current advances on the hardware of computers such as high-speed

processors and GPUs have increased the capabilities of DOI techniques such as
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spatial resolution, accuracy of the target medium and reduced the time required

for the image reconstruction.

It is known in the field of Diffuse Optical Imaging that the main limitation for

it clinical applicability of imaging techniques is the time that the reconstruction

take, as was mentioned, the solution is at hand due to the progresses made in

processors and GPUs, but the use of high-spec computers also means that a great

investment is needed. In other words, although the goal of DOI is to be used as

cost effective imaging alternative to more expensive modalities, in order to bring

a DOI technique into operation it is required an expensive computer to perform

the reconstructions.

Then, there is clear need for computationally efficient models that can handle

the complexity of the image reconstruction with a reliable accuracy and to

perform it in a fraction of the time that normally is required without the necessity

of an expensive computer or even the need of GPUs to be installed in a normal

desktop.
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Reduced-order models of light transport in

tissue

4.1 Introduction

Modelling complex systems using data-based models offer several advantages

over traditional and formal methods that require equations of physical events

that sometimes are too complex to generate reliable estimates. The process of

obtaining simplified models generated by input-output data is known as system

identification which is a discipline in automatic control engineering [242].

The Reduced-Order Models approach, introduced in this chapter, comes from

the system identification theory and focuses on the correct structure detection and

parameter estimation using a polynomial representation to obtain an accurate

and simplified model of the system identified. Extending the nonlinear system

identification theory to DOI, Vidal-Rosas et. al. 2014 [243] proposed an

approach called Reduced-Order Models (ROM)to create light transport models

using data and then be used in an image reconstruction technique. The imporant

characteristic of ROM is that they are less computationally demanding with an

accuracy that can match with other reconstruction approach.
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The present chapter explains the formulation of the ROM approach to image

reconstruct the absorption parameters of a highly scattering medium. To evaluate

the advantages and limitations of ROM, the effect of mesh density and the

number of source-detector channels on the performance of the ROM approach

in the reconstruction of absorption changes. A similar study was conducted by

[212] were the authors showed that by increasing the number of source-detectors

channels, the sensitivity of the domain increases; and therefore, the quality of the

reconstruction also improves.

This idea has been exploited by High-Density DOT [151, 36] that has showed

comparable resolution to functional Magnetic-Resonance Imaging (fMRI) at the

cortex level [244]. On the other hand, increasing the number of channels requires

more computations, slowing down the reconstruction time.

Is important to mention that mesh density has an important effect on the

accuracy of the reconstruction. Normally, a coarse mesh will produce inaccurate

Jacobian matrices which will result in poor reconstructions [212]. On the other

hand, high-resolution meshes can model large variations of the Jacobian close to

the sources and boundaries correctly; however, the consumption of resources such

as memory and computational power is also large.

The use of graphical processing units (GPUs) offers a solution to perform

this kind of reconstructions. The reason is due to GPUs are well suited for

processing large data sets, besides GPUs can be added to scale the processing

power and further speed up the image reconstructions of endogenous optical

properties [245, 246, 247]. Furthermore, the use of GPUs has been also extended

to the FDOT applications to overcome the limitations related to depth tissue

light re-emission analysis [248]. However, GPUs are expensive and require further

technical expertise for their applicability.
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Despite that strategies to optimize the inverse processes are available, such as

the Jacobian reduction scheme [249] or the use of GPUs real-time reconstruction

is still not achievable taking several minutes to perform the reconstruction of a

single image [23, 250].

Therefore, it is desirable to evaluate the performance and limits of the ROM

approach as an alternative to achieve real-time reconstructions. A previous

study demonstrated the feasibility of the real-time tomographic reconstruction

of haemodynamic changes in the rat brain [243]; however, the effect of the mesh

resolution and source-detector channels has not been analysed. In this section,

these parameters are evaluated in the reconstruction of dynamic changes of the

absorption coefficient.

Figure 4.1: Iterative image reconstruction scheme that solves the forward problem using
a mesh based on the Finite Element Method (FEM) and later the measurements are
calculated.
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In Fig. 4.1 is presented an example of a traditional DOT reconstruction

scheme based-on FEM mesh. A FEM mesh is used to compute light propagation

in the medium and then to calculate fluence measurements. However, the use

of the Finite Element Method tends to increase the complexity of the inverse

solver, specially for three-dimensional geometries where a large number of nodes

are used to discretize the medium, thus solving the forward problem becomes a

bottleneck for the image reconstruction [60].

To address the real-time limitation of diffuse optical tomography reconstruc-

tions without compromising the quality of the image, a novel forward solver

denominated Reduced Order Model (ROM) approach has been proposed by

Vidal-Rosas, et. al. [65, 243, 65]. This approach estimates models directly from

data generated by a high-fidelity simulation, where the input-output relationship

between measurements and optical properties of the medium for different source-

detector configurations are approximated using polynomial expressions.

The ROM obtained are later used as the forward solver in an iterative image

reconstruction scheme as is depicted in Fig. (4.2). The proposed approach

includes a procedure for selecting, for each source-detector configuration, the

minimal subset nodes that influence significantly the amount of light measured

by the detectors.

The estimated models follow the parsimonious principle [251], which advo-

cates the choosing of a model with the minimum number or parameters that best

describes the system. Thus, resulting in a significant reduction in computation

time whilst maintaining similar level of accuracy. Due to the simplicity of the

models and the low computational power required to solve them, a 3-D image

reconstruction can be reduced by three orders of magnitude using a low-spec

computer [243].
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Figure 4.2: Iterative image reconstruction scheme based on Reduced Order Models
(ROM). Light propagation is directly mapped from the optical properties to the
measurement space.

4.2 Procedure to estimate polynomial Reduced

Order Models

As it was defined in Section 3.2, lets consider a domain Ω with boundary ∂Ω with

qi ∈ ∂Ω and dj ∈ ∂Ω that denote the locations of S sources and D detectors on

the boundary of the domain of interest. By considering only one source being

active in turn, this result in a total of S ×D measurements.

The forward problem is then defined as: given a source q and a set of optical

parameters u(r) ∈ U , and a mathematical model of light transport tissue, predict

the measurements [y1(j), ..., yD(j)]j=1,...,S ∈ ∂Ω. The corresponding input-output

relationship between parameters u and measurements y can be written as

yi(j) = Pju(r), j = 1, ..., S (4.1)
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where Pj : U → Y is the forward operator from the space of optical parameters

u(r) to the space of measurements yi(j) with i = 1, ..., S and j = 1, ..., D.

The forward operator Pj is the composition of a non-linear operator, from

the space of optical properties through the photon fluence and the space of

measurements expressed as P = U → Φ → Y , where Φ is the space of light

propagation solutions given by Eq. (3.15) and the space Y given by Eq. (3.17)

which relates the photon density φ to the outward flux.

The proposed reduced-order forward model involves estimating Eq. (4.1)

directly from input-output data. The estimated forward model is then used in an

iterative reconstruction scheme as is shown in Fig. (4.2). By mapping directly the

measurements from the optical properties considering the parsimonious principle,

offer the advantage of reducing the image reconstruction process [252].

In the present work, a polynomial representation is used for the creation of

light propagation models based on the Reduced Order Models (ROM) approach.

These type of models are commonly used in function approximations due

to polynomial functions and their derivatives are smooth, besides they are

computationally easy to use, manipulate and store.

The reduced order model of Eq. (4.1) in its component form is given by

ŷi(j) = fi,j(u1, ..., uK) + ei,j (4.2)

where ŷi(j) is the predicted measurement from the i-th detector and source j, fi,j

is a polynomial approximation for the source-detector pair with i = 1, ..., D and

j = 1, ...S. The term uk = uk(r) is the optical parameter value for the k-th node

at position r and ei,j is the approximation error.

A key step in the estimation of a polynomial model is the selection of a minimal
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set of polynomial terms. Therefore, expanding Eq. (4.2) in a multivariable

polynomial form yields

ŷi(j) =

M
∑

k=0

θk(i, j)pk(u) + ei,j (4.3)

where θk(i, j) are the coefficients with i = 1, ..., ND detectors and j = 1, ..., NS

sources, pk are multivariable monomial with degree of freedom equal or less than

the l input function u = [u1, ..., uK ] where K is the number of nodes in the FEM

mesh and ei,j is the approximation error.

The M terms of the polynomial representation in Eq. (4.3) grows exponen-

tially with the number of inputs u and the polynomial order. In practice, not

all the terms are required to obtain an appropriate representation of the optical

parameters and the detector measurements.

The Photon Measurement Density Function (PMDF) [209] is used to guide

the Orthogonal Forward Regression (OFR) algorithm in order to further reduce

the number of terms for each source-detector model. The PMDF characterize the

sensitivity of the measurements to variations of the optical properties inside the

medium.

Specifically, only those nodes that contribute above a given threshold (0.5

to 5%) to the PMDF are considered as the inputs for the candidate polynomial

terms in the OFR algorithm. It has been demonstrated [253, 243] that the terms

selected using this method correspond to the nodes within the region with the

highest sensitivity.

The selection of the minimal polynomial set of terms from a full set of

candidate terms in Eq. (4.3) corresponds to the structure detection. This process

determines the terms that should be included in the model and is performed

by the Orthogonal Forward Regression (OFR) algorithm [254]. Once a correct
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model with linear parameters is determined, the parameters are estimated using

a least square technique. The problem of structure identification and parameter

estimation considering polynomial terms, such as the representation of Eq. (4.3),

has been studied extensively and efficient algorithms can be found in the works

of Billings et. al. [254] and Chen et. al. [255].

In order to apply the OFR algorithm, it is required a set of input-output data

samples. The input set consists of N ×K uniformly distributed random values,

where N correspond to the number of samples and K the nodes of the FEM

mesh. The output data corresponds to the computed measurements obtained

from the input random data set. The total number of samples is divided in

two sets N = Nestimation + Nvalidation, where the set Nestimation is used for model

structure detection and parameter estimation, and the remaining set Nvalidation is

used to validate the model

The root-mean-square error (RMSE) is used to compare the output of the

estimated model and the data specified for validation, Nvalidation. Considering the

intensities between the estimated model ,ΓModel, and the measurements defined

for validation, Γvalidation, the RMSE is given by

RMSE(i, j) =

√

∑K
t=1(Γvalidation(j, t)− ΓModel(j, t))

2

K
(4.4)

where yval are the measurements not used during the estimation process and ŷ

are the measurements from the polynomial ROM. The present work focuses in

the development of absorption models. Functional activation and physiological

changes occur in the haemodynamics, a change in the absorption is obtained,

while scattering events are assumed to be constant [256].

So far, ROM has been used to reconstruct the spatial distribution of the

absorption coefficient for real-time brain haemodynamic variations [243]. In this
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work, ROM is extended to the reconstruction of the fluorophore distribution of

diseased tissue considering variations of the fluorophore concentration. Further-

more, ROM forward model is used to characterize deep tissue using the novel

Spatial Frequency Modulated Imaging technique proposed by Cuccia et. al. [49].

Both implementations consider three-dimensional geometries, which as stated

before, increase the complexity of real-time implementation of optical imaging

applications.

4.2.1 Estimation of Reduced Order Models numerical sim-

ulation

To perform the estimation of the Reduced-Order models, it is necessary to follow

the following steps proposed by Vidal-Rosas [243, 65, 64]:

1. Generate a reconstruction mesh with an adequate balance between the num-

ber of nodes and measurement accuracy with a minimum of approximately

2,000 nodes [212].

2. Generate 1,000 random absorption values at each node location with a

uniform distribution. The random values are the input data set.

3. Solve the diffusion equation considering the inverse mesh and the random

values. Records the corresponding measurements as the output data set.

4. Compute the Photon Measurement Density Function (PMDF) for each

source-detector pair as depicted in Section 3.5.3.

5. Select a minimal sub-set of candidate terms formulated in step 2 neglecting

the terms that contributions is less than 1% to 5% for each PMDF calculated

[249].

6. Apply the OFR algorithm to select nodes from Step 5 as follow:
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(a) Form all the potential terms pi(t), i = 1, ...,M . The polynomial terms

are multivariate monomials of degree less than or equal to two.

(b) For i=1 to M

w
(i)
1 = pi(t) (4.5)

g
(i)
1 =

∑N
t=1 w

(i)
i z(t)

∑N
t=1(w

(i)
1 (t)2)

(4.6)

[ERR]
(i)
1 = 100× (g

(i)
1 )2

∑N
t=1(w

(i)
1 (t))2

∑N
t=1 z

2(t)
(4.7)

end

(c) Find the maximum [ERR]
(i)
1 , then set w1(t) = w

(j)
1 (t), select Pj(t)

with g1 = g
(j)
1 , [ERR]i = [ERR]

(j)
1 and delete Pj(t) from the candidate

terms.

(d) For the n-th term, n = 2, ...,M for i = 1toM − n+ 1

α(i)
m,n =

∑N
t=1wm(t)pn(t)
∑N

t=1w
2
m(t)

, m = 1, ..., n− 1, αn,n = 1 (4.8)

w(i)
n = pn(t)−

n−1
∑

m=1

α(i)
m,nwm(t) (4.9)

g(i)n =

∑N
t=1w

(i)
n (t)z(t)

∑N
t=1(wm(t)

)2 (4.10)

[ERR](i)n = 100× (g
(i)
n )2

∑N
t=1(w

(i)
n (t))2

∑N
t=1 z

2(t)
(4.11)

end

(e) Find the maximum [ERR]
(i)
n , then set wn(t) = w

(k)
n (t) = pk(t) −

∑n−1
m=1 α

(i)
m,nwm(t) with αm,n = α

(k)
m,n, m = 1, ..., n−1, gn = g

(k)
n , [ERRR]n =

[ERR]
(k)
n and delete pk(t) from the set of candidate terms.

(f) Repeat steps (d) and (e) and stop at the Ms-th step when

[ERR]Ms < Cd, Ms < M, (4.12)

or when all the available terms are chosen. The range of the cut-off

term is 0.05 < Cd0.3, where smaller values increase the quality of the

models [65].
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(g) Compute the linear coefficients θi as follows

θ = gMs

θi = gi −
M
∑

k=i+1

αi,kθk, i =Ms − 1, ..., 1 (4.13)

The ERR indicates the contribution that each term offers to the reduction of

the mean square error. Also, it allows to know the significance of the term before

constructing the whole model.

It is required a minimum of 200 sample points to generate the reduced-

order models, less than that, the estimated models can not perform the image

reconstruction. Also, it takes around 2 hours for a 2-D domain to obtain the

models, and about 16 hours for a 3-D domain. It could be a limitation, but once

the ROM are obtained, they can be used to image reconstruct the target medium.

4.2.2 Formulation of Reduced-Order Models using a nu-

merical simulation example

This section illustrates the methodology for deriving a reducer-order model

through a simulation example. The performance of the approach is compared with

a state-of the-art conventional approach based of a full diffusion approximation

model.

The aim is to reconstruct absorption changes over a circular medium. The

mesh used for the image reconstruction and to generate the forward ROM has a

radius r = 43mm and is discretized into 341 nodes and 618 elements, shown in

Fig (4.3)a.

Around the medium 16 sources and 16 detectors were placed equidistantly

providing 240 measurements. The absorption and scattering coefficients were

µa = 0.01mm−1 and µ
′

s = 1mm−1.
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Figure 4.3: a) Coarse mesh for the inverse problem and b) structured symmetric mesh
used to generate measurements with an anomaly centred at position (x, y)=(0,15).

For this inverse mesh, 1000 uniform distributed random absorption values for

each node were generated. The mean value of the distribution was set to the

absorption background (0.01mm−1).

Figure 4.4: Sample of uniform distributed random absorption coefficients.

The absorption variation was selected based on the maximum absorption

change expected around the background. Then , to obtain a ∆µa < 50% the

variation of the absorption was set to 0.015. One sample of the random data is
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presented in Fig. 4.4 where can be observed the absorption values in the nodes

of the mesh.
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Figure 4.5: Photon measurement density function from source 1 to detector 9 used to
guide the estimation process to generate the Reduced-Order Models approach.

The number of first and second order polynomial candidate terms for the

inverse mesh with 341 nodes is 55,925, however this large search space is reduced

by selecting the nodes with the highest contribution to the PMDF. For example,

the PMDF for source 1 and detector 9 is shown in Fig. 4.5. For a 5% threshold,

the number of nodes is 119 and the number of second order potential polynomial

terms results in 13,923 where the best candidates are selected for the generation

of the estimated models.

Next, the Orthogonal Forward Regression (OFR) algorithm was used to select

the terms that contribute the most to the explained variance. The final model

for source 1 and detector 9 has only 51 terms with the coefficients shown in Table

4.1 where ui refers to the absorption coefficient µa(rk) of node k at position r and

θl are the coefficients calculated using the OFR algorithm. The model presented

in Table 4.1 is the smallest one obtained after the estimation, other models are

in the order of the hundreds.
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Table 4.1: Parameters of the proposed forward model.

θi Term θi Term

3.49e−4 -3.59e−3 u212u234

-2.16e−2 u13u34 -3.91e−3 u216u237

-8.58e−3 u13u33 -2.65e−3 u291u305

-8.10e−3 u33u54 -2.45e−3 u235u255

-1.12e−2 u34u55 -2.94e−3 u234u246

-7.25e−3 u34u56 -2.37e−3 u217u232

-7.82e−3 u54u64 -2.20e−3 u211u212

-7.86e−3 u55u77 -2.46e−3 u233u254

-7.45e−3 u54u76 -1.91e−3 u238u257

-7.91e−3 u55u76 -2.00e−3 u253u272

-8.57e−3 u76u98 -2.45e−3 u256u275

-8.54e−3 u64u85 -2.36e−3 u273u274

-8.45e−3 u77u99 -1.91e−3 u290u303

-8.18e−3 u13u115 -1.46e−3 u282u297

-8.19e−3 u122u146 -1.26e−3 u265u283

-6.87e−3 u106u129 -1.00e−3 u298u311

-6.16e−3 u147u171 -1.19e−3 u315u326

-4.69e−3 u170u175 -9.89e−4 u321u325

-4.37e−3 u192u214 -9.49e−4 u310u321

-4.46e−3 u175u196 -9.27e−4 u322u330

-4.25e−3 u193u215 -9.57e−4 u321u323

-4.48e−3 u140u166 -9.16e−4 u322u331

-4.50e−3 u165u188 -9.45e−4 u331u332

-4.21e−3 u189u212 -8.49e−4 u336u337
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Table 4.1: (continuation)

θi Term θi Term

-3.94e−3 u211u233 -8.47e−4 u323u332

-3.78e−3 u215u236

To validate the reconstruction capabilities of the proposed approach, a target

medium with an anomaly is used, it has a radius r = 43mm as shown in Fig. 4.3b

with absorption coefficient µa = 0.01mm−1 and reduced scattering µ
′

s = 1mm−1.

The medium is discretized into 1,741 nodes and 3,360 elements. A refined region

near the boundary was created to increase the accuracy of the measurements.

There are 16 sources and 16 detectors equally spaced around the boundary. The

anomaly is an absorber was incorporated at position (x, y) = (0, 15) with radius

r = 7.5mm and ∆µa = 0.015mm−1.

Figure 4.6: Reconstruction of the absorber inside the medium using a) NIRFAST and
b) ROM approach.

Performance comparison between ROM and NIRFAST

To compare the quality of the reconstruction with ROM approach, the recovered

absorption changes using NIRFAST and ROM approaches are shown in Fig. 4.6a

and Fig. 4.6b, respectively.
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Both approaches reconstruct the location of the absorber however, as it is

displayed in Fig. 4.7, NIRFAST shows oscillations around the anomaly and

overestimates its absorption value with a percentage error of ENIRFAST = 134%.

In contrast, ROM does not present oscillations but underestimates the

absorber value with a percentage error or EROM = 9.33%. It is important to

note that the time required for the reconstruction is decreased considerably, for

NIRFAST were necessary 27.3 seconds to reconstruct the inhomogeneity and for

ROM were only required 15.7 seconds.

Figure 4.7: Vertical profile of the image reconstruction using NIRFAST and ROM
approaches.

In the case of a three-dimensional real-time rat head simulation, Vidal-Rosas

[65] demonstrated that a polynomial ROM reconstructed an anomaly in the

brain in 0.47 seconds while a full diffusion approximation solver took over 1hr

considering. In [243] was reported the same numerical simulation but considering

radial basis functions instead of a polynomial terms. The image reconstruction

in this case was 2s for the ROM-based reconstruction scheme.
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In order to quantitatively assess both algorithms, the reconstructed image was

evaluated by the Image Correlation Coefficient (ICC) defined by [65]

ICC(A,B) =
1

(N − 1)

∑

i(x
i
A − x̄iA)(x

i
B − x̄iB)

√

∑

i(x
i
A − x̄iA)

√

∑

i(x
i
B − x̄iB)

(4.14)

where xiA, xiB denote the intensities of the i-th pixel in images A and B, x̄iA, x̄iB are

the mean intensities of the images evaluated. The original image is defined by A

and the reconstructed image as B. The highest value is ICC=1 which indicates a

perfect spatial match between both images. The corresponding image correlation

coefficient obtained was ICCNIRFAS = 0.88 and ICCROM = 0.67 for NIRFAST

and ROM-based reconstruction approaches, respectively.

Figure 4.8: Meshes with different resolution used in the simulation: (a) 325 nodes, (b)
541 nodes, and (c) 913 nodes. Several source-detector combinations were also simulated:
(d) 992 pairs, (e) 496 pairs, (f) 240 pairs, and (g) 56 pairs.

4.3 Effects of mesh density and model precision

in the performance of Reduced-Order Models

The medium consisted of a circle with radius d = 25 mm and optical properties

of µa = 0.01 mm−1 and µ
′

s = 1 mm−1. Three different meshes with 325, 541

and 913 nodes were simulated; these are displayed in Fig. 4.8a-c. Similarly,
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several source-detector combinations were tested for each mesh resolution, which

provided 992, 496, 240 and 56 source-detector channels (Fig. 4.8d-g). Simulated

measurements were obtained from a high-density mesh with 2209 nodes and 4278

elements. A circular perturbation with a radius of r = 4 mm was placed at (x,

y) = (10, 0), while the absorption coefficient varied according to a quasi-periodic

signal defined by the following equation:

squasi(t) =
1

2

(

cos
(π

8
t
)

+ sin

(√
π

4
t

))

. (4.15)

Two hundred time points were generated and for each one, 1% Gaussian noise

was added to the simulated data in order to avoid inverse crime.

For each mesh density and for each source-detector combination, second-order

polynomial reduced-order models with precisions ranging from 85% to 96% were

calculated. The percentage indicates the variance in the estimation data that can

be explained by the model. Model calculation required input and output data.

The former consisted of 1000 samples of uniformly distributed absorption values

at each node location; while the latter consisted of the outward flux due to those

absorption changes. The first 500 samples were used for model estimation and

the rest of the samples were used for model validation.

The absorption changes were reconstructed for each time point using the stan-

dard FEM and ROM-based approaches. The inverse problem for the FEM case

was solved using NIRFAST which employs an iterative Levenberg–Marquardt

procedure [22]. In the same manner the inverse problem using the ROM-approach

was solved using NIRFAST reconstruction algorithms, but the Jacobian and

the forward solutions of the diffusion equation were substituted for polynomial

models. Additionally, in order to assists in stabilizing the inversion process and

to produce robust solutions to noise, a mean filter was applied after each iteration
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of the inverse solver.

To evaluate the reconstructions from the different models, the following

qualitative and quantitative measures were evaluated:

• Image Correlation Coefficient (ICC) stated previously, where Eq. (4.14) is

applied to each time point of the quasi-periodic signal (Eq. (4.15)) and

also to the time series as a whole, in this case the image A is a 2D matrix

with size N × T where N is the total number of nodes and T is the total

number of time points containing the original changes of the absorption

coefficient. Similarly, he image B corresponds to the recovered absorption

changes obtained from either FEM or ROM-based approaches.

• Absolute error given by

error(A,B) =

√

∑

i

(xiA − xiB)
2 (4.16)

where xiA and xiB denote the intensities of the i-th pixel in the images A an

B, respectively. The absolute error was calculated for each time point and

also for the time series as a whole.

• Full-width-half-maximum (FWHM) along the x-axis and the y-axis

• Area under the curve (AUC)

• Reconstruction time

• Ratio of the reconstruction time. This ratio evaluates the speed improve-

ment by using the ROM-based approach and it is defined as

R =
Reconstruction time NIRFAST

Reconstruction time ROM approach
(4.17)
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Figure 4.9: (a) Reconstruction of quasi-periodic signal, (b) ICC for each time point.

Results and discussion

The original and recovered absorption change at the centre of the inclusion

(x, y) = (10, 0) mm is plotted in Fig. 4.9a, these results correspond for the mesh

with 325 nodes (594 elements) and 992 source-detector pairs. Both NIRFAST and

ROM-based approaches underestimated ∆µa; however, the recovered contrast

depends linearly on the original change; indicating that a calibration step can

minimised the difference [257].

The ICC also varies proportionally to the original contrast, achieving higher

quality reconstructions for large changes; on the other hand, the quality is

compromised for ∆µa < 1%. The reason is because the measured intensity due

small absorption changes is buried in noise and impossible to be recovered.

A typical reconstruction of the absorption change using NIRFAST and ROM-

based approaches is displayed in Fig. 4.10a and b, respectively. The original

location of the perturbation is represented with the black dotted circle. A cross-

section of the recovered contrast is shown in Fig 4.10c, where the underestimation

of the absorption change is clearly visible.
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Figure 4.10: Example of the reconstruction of an absorption using (a) NIRFAST and
(b) ROM approaches. (c) Vertical profile comparison from both reconstructions.

Figure 4.11 shows the ICC for all the mesh resolutions and source-detector

combinations. The coarse mesh consisting of 325 nodes and 594 elements achieved

the highest quality in the reconstruction. The quality of the reconstruction

decreased with the number of measurements, this is explained by the reduction

of the sensitivity to changes in the medium due to a decreased of the density in

the volumes sampled by the Jacobian functions [212].

Figure 4.11: Comparison of the effect of the number of source-detector pairs and mesh
density on the ICC.
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In a similar way, the quality of the reconstruction decreased as the number

of nodes (elements) increased. A column-wise comparison of Fig. 4.11 indicates

that the effect is larger for the ROM approach than for the FEM-based approach.

The reason is that an increase in the number of nodes implies an increase in the

number of dimensions (each node location represents one dimension) and since all

the reduced-order models were estimated using the same data size, it is possible

that higher-dimensional spaces (larger meshes) were under-sampled.

Figure 4.11 also shows that the difference in the performance between the two

methods decreases as the number of source-detector decreases. In the extreme

case, the fourth column in Fig. 4.11 shows the ICC between the two approaches

is undistinguishable. The results shown in Fig 4.12 for the reduced-order model

correspond to a second-order polynomial model with a precision of 96%; however,

the performance of the other models (85% to 95%) is very similar and is not shown

here for the sake of space.

Figure 4.12: (a) FWHM in the direction of the x-axis, the values of FWHM in the
direction of the y-axis are very similar (Not shown). (b) Area under the curve (AUC).

The effect of the mesh resolution and source-detector pairs on the ICC for the

whole time series is shown in Fig. 4.13a. Increasing the number of measurements

has a larger effect on the FEM approach; however, there is very little improvement
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after 496 source-detector pairs. For the ROM-approach, similar conclusions can

be reached but the effect is smaller.

Figure 4.13: (a) Overall ICC considering the time series as a whole. Similarly, the
absolute error is displayed in panel (b)

On the other hand, Fig. 4.13b indicates that the quantitative accuracy

depends strongly on the mesh resolution; with the best results obtained by the

coarse mesh (325 nodes, 594 elements). The effect of increasing the number

of measurements is less significant in the ROM-approach than the FEM-based

approach. One reason could be that since the perturbation is relatively large

and close to the boundary, only a few source-detector pairs (56 S-D pairs) are

enough to sample the target imaging space; possibly, the reconstruction of smaller

perturbations and more complex shapes can demonstrate the benefits of high-

density sampling; however, this topic is outside the scope of this study.

Finally, Fig. 4.14a shows the time required to recover the absorption changes

that varied according to a quasi-periodic signal. The inverse problem was solved

on a mesh with 325 nodes (594 elements) and 992 source-detector pairs. Fig.

4.14b shows that the proposed approach accelerates the reconstruction by a factor

of 1.7; and on average the reconstruction speed is of 2 Hz, which can be considered

as real-time.
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Figure 4.14: (a) Time required to calculate the absorption changes due to a quasi-
periodic signal for each time point. (b) Improvement in the speed of the reconstruction
for each time point.

4.4 Conclusions

This chapter introduced an approach to derive reduced-order models directly from

data obtained by simulating a high-fidelity finite-element approximation of the

diffusion equation. The reduced-order model provides a direct relation between

the photon fluence and the measured light in the image reconstruction process.

A major advantage of the approach is that the evaluation of the reduced

order model does not require to recalculate the solution of the diffusion equation

over the finite-element mesh, which results in a significant reduction of the

computation time, especially for complex 3D geometries.

The simulation results presented from a two dimensional geometry confirm the

advantages of ROM approach as an alternative to the direct use of the D.E. in an

iterative image reconstruction scheme. The major contribution of this approach

is the reduction in the computational burden and the resulting reconstruction

time.

In this section is also compared the effect of the mesh resolution and
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the number of measurements on the performance of the ROM-based and the

FEM-based approaches in the reconstruction of absorption changes. Results

demonstrated that the quantitative and qualitative accuracy is not compromised

by approximate models, and furthermore, despite that the meshes used have very

small number of nodes and elements, still the ROM-based method outperformed

the traditional FEM approach.

Although the time required for the model estimation is a limitation, once the

ROM models are obtained previous research demonstrated that the reconstruc-

tion speed in three-dimensins is dramatically accelerated with the use of reduced-

order models, and this method outperformed the standard FEM approach by

three orders of magnitude [243].

The previous work that inspired this research was focused mainly on the appli-

cation of the ROM approach reconstruct endogenous absorption parameters using

a continuous-wave. It considered two types of data-based system identification:

polynomial models and Radial-basis functions. It was demonstrated that the

latter method didn’t offer any advantages over polynomial models and added an

extra effort due to the process required to determine the centres of the functions

used. Thus, it was found that the use of polynomial models was accurate enough

to reconstruct the targeted absorption parameters.

Among the open research left to do on the previous work was the implications

for using a different source of illumination, increase the number of source-

detector pairs and generate models to target a different optical property to be

reconstructed. The present work for the first time cover the mentioned work to

further extend the applicability of data-based modelling to complex systems such

as the light propagation in tissue and the optical image reconstruction process.
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.
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Chapter 5

Fluorescence Diffuse Optical Tomography

with Reduced Order Models

5.1 Introduction

Fluorescence Diffuse Optical Tomography (FDOT) is a relatively new imaging

modality used to study molecular processes from cell culture, tissue samples and

in vivo subjects such as small animals or to quantify the concentration of a

fluorophore inside tumoral tissue.

The advantages of FDOT imaging modality are its high specificity, low cost

instrumentation, less invasiveness and non-ionizing procedure, compared with

other modalities such as Positron Emission Tomography and X-ray Computed

Tomography. However, the main limitations of FDOT are the low spatial

resolution achieved on large geometries and the time required to solve the image

reconstruction process normally attained to all Diffuse Optical Imaging (DOI)

techniques.

In this chapter is presented a methodology to speed up the image recon-

struction of FDOT to target the fluorescent properties of exogenous fluorescent
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markers using a light transport model based on the reduced-order models (ROM)

approach which was used to recover the absorption properties of brain tissue in

the work presented by Vidal-Rosas et. al 2014 [243].

The method proposed in this work directly maps the emitted fluorescent

light from fluorophores within the tissue to the measured light by detectors on

the boundary to recover the fluorescent optical properties. The reconstructed

parameters result immune to the surrounding absorption properties of the tissue

due to the emission is detected on a different wavelength, thus ROM only assess

the optical properties that generated a given re-emitted fluoerescent signal.

This is a novel way to model the emission of fluorescent light and to image

reconstruct and quantify the characteristics of a fluorescent marker. Typical

reconstruction approaches require prior information of the distribution of the

endogenous optical properties to further resolve the fluorescent emitted light. As

is going to be presented in this chapter, the only information that is required is

an initial guess of the background fluorescent and the maximum expected value

that can be reached by the fluorescent marker.

Along this chapter is explained the formulation ROM approach to target the

fluorescent marker optical properties. Besides are explored the limitations related

to the number of samples, noise level and accuracy of the models formulated. To

facilitate the explanation, ROM is first formulated in a two-dimensional slice

from a mouse thorax model. Later, the ROM approach is extended to a full

three-dimensional thorax of a mouse. In both cases, the target to reconstruct is

tumoral tissue inside the lungs of the mice models.

Is important to note that this is the first time that input-output data is used

to model fluorescent optical properties from the re-emitted light at the emission
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wavelength. In contrast to the ROM from Vidal-Rosas et. al 2014 [243] which

reconstructed the endogenous optical properties from a single wavelength. The

work here presented considered that the excitation light and the endogenous

optical properties are at a different wavelength that the fluorescent optical

properties being reconstructed.

5.2 Image reconstruction with fluorescent Reduced-

Order Models

In this section is shown the procedure to generate fluorescence forward reduced

order models for the image reconstruction of anomalies tagged with a fluorescent

marker. The ROM proposed approach is implemented in the fluorescent toolbox

on NIRFAST package. The light propagation model in NIRFAST is modified and

only is used its fluorescent inverse solver.

Light propagation and image reconstruction in FDOT are detailed in Section

3.4 and Section 3.7, respectively. In this section are only presented the results of

the image reconstructions.
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Figure 5.1: Numerical model of a mouse thorax segmented in four regions: muscle
(green), lungs (blue), heart (red) and bone (black) and discretized into 19,575 nodes
and 8,777 triangular elements.
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5.2.1 Two-dimensional mouse thorax numerical model

In this section is presented the implementation in a two-dimension domain. The

process of generating the fluorescent forward ROM is similar to the SFD imaging

approach presented in Chapter 4 and Chapter 6.

Figure 5.2: Target mouse thorax model used for the image reconstruction. a) Absorption
distribution for muscle, lung, heart, bone and tumoural tissue, and b) fluorescence
distribution with fluorescent concentration within the tumours.

Figure 5.1 is presented the thorax of a mouse model segmented in four

tissue regions: muscle, bone, lungs and heart. It was discretized into 19,575

nodes and 38,777 triangular elements. In Fig. 5.2a is presented the optical

property distribution of the target model with two inclusion in each of the lungs

representing tumoural tissue. Figure 5.2 presents the fluorescence distribution

where the two inclusions located within the lungs of the mouse model.

Table 5.1: Optical properties for the mouse thorax model.

Tissue µa(x,m) [mm−1] µ
′

s(x,m) [mm−1]
Muscle 0.0068 1.081
Lung 0.0233 1.974
Heart 0.0104 1.008
Bone 0.0001 0.060
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The optical property distribution is shown in Fig. 5.3a and it is detailed in

Table 5.1, these optical values are the average for each tissue structure within

the range of [450n, 750nm] and were proposed by Cong&Wang, 2005 [258].

These optical parameters just in this case are the same at both wavelengths.

This assumption is used due to fluorescent perturbations are predominant over

absorption changes and is consistent with most of the fluorescent markers used

in biological tissue [259].

The optical properties of the fluorescent agent for the background are the

absorption µaf = 0.005mm−1 and the quantum efficiency η = 0.16, considering an

uptake distribution of Indocyanine Green (ICG) dye [260]. There are 16 sources

and 16 detectors equally distributed around the medium, where the sources are

modelled one reduced scattering distance inside the medium.

Figure 5.3: Data required for the image reconstruction and ROM generation: a) inverse
mesh with a priori structural information and b) the Photon Measured Density Functio
(PMDF) used to guide the system identification process.
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5.2.2 Fluorescence forward ROM formulation for a mouse

thorax model

The inverse mesh used for the image reconstruction and for the generation of

the fluorescent ROM is shown in Fig. 5.3a. It consists of 1,501 nodes and 2,903

triangular elements.

A second order polynomial model was estimated for each source-detector (SD)

pair. To guide the search space of the OFR was analysed the Photon Measurement

Density Function (PMDF). All the nodes with less that 5% of contribution to the

PMDF were not considered for an specific SD pair, in Fig. 5.3b is presented an

example of a PMDF used to generate the ROM from source 1 to detector 9.

Figure 5.4: Sample of the random absorption values used for ROM estimation.

To generate the input and output data for the identification process was used

NIRFAST. A set of 1,000 uniform distributed random values were used as the

input for each node in the inverse mesh and the corresponding measurements

were recorded as the output data. Figure 5.4 shows one sample of the random

input data used.

Model structure detection and parameter estimation were performed consid-
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ering the first 500 input/output records. The remaining data was used for model

validation. After the system identification process, a total of 240 polynomial

models were obtained, one for each source-detector combination. The polynomial

structure of these equations are similar to the SFD imaging approach, thus, a

sample is omitted in this case.

Figure 5.5: Image reconstruction of the fluorescent concentration inside the lungs. a)
Using NIRFAST as reference and b) results from the proposed ROM approach.

5.2.3 Image reconstruction evaluation for the 2D mouse

thorax model

To validate the proposed approach in Fig. 5.5 are presented the image

reconstructions from NIRFAST and ROM. The black circle indicates the real

position and the size of the fluorescent concentration. For this reconstruction,

to the experimental measurements were added with a 1% of noise. The

regularization term in both algorithms was set to 0.5, which offered the best

reconstruction capabilities.

It is observed in Fig. 5.5a that NIRFAST presents a more uniform circular

shape close to the black circles representing the real location of the anomalies.

In contrast, the image reconstruction with ROM presents a non-uniform uniform
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reconstruction around the expected anomalies.

For a closer inspection of the image reconstruction, in Fig. 5.6 is presented the

vertical profile of the target and the reconstructions with their respective ICCs

values. It is observed that ROM is closer to real value but it produces an artifac

close to the centre of the medium. In contrast, NIRFAST produces a uniform

reconstruction, but its accuracy is lower compared with ROM.

It is important to mention that NIRFAST required 50 seconds and 37

iterations to obtain a single image, while ROM only took 5.7 seconds and 7

iterations to produce good trade-off between the accuracy of the final value and

the time required for the reconstruction. Although ROM estimation took over

two hours, the important contribution of the proposed approach is during the

image reconstruction process.
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Figure 5.6: Vertical profile comparison of the reconstructions.

5.2.4 Noise effects on the reconstructions

To test the limits of the proposed approach, different values of noise were

considered, in Fig. 5.7 are shown the most significant effects found for the

reconstruction. It is important to mention that for both algorithms the

106



5.2. Image reconstruction with fluorescent Reduced-Order Models

regularization parameter was set to λ =0.5. Other values were tested, but this

value probed to offer the best results.

Figure 5.7: Results of the reconstructions for 6% of noise: a) NIRFAST still reconstructs
the anomalies but b) ROM only resolves one of the anomalies correctly. At 10% of noise
c) NIRFAST slightly recover the location of the fluorescence and d) ROM is not able
to reconstruct the anomalies.

As is shown in Fig. 5.7, noise produces a degradation effect over the

reconstrucions with a high impact on ROM approach. This can be due to during

the estimation process, noise effects were not considered, and although ROM

resolved faster, after 6% of noise (Fig. 5.7a and 5.7b) ROM reconstruction failed

to recover the location of one of the anomalies, while NIRFAST recovered both

of them. In the case of 10% of noise both of the approaches failed to recover

the anomalies, but NIRFAST offered a glimpse of where they are located. The

reason why tends to fail could be due to noise effects are not considered during
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the model estimation, but due to random parameters are used in the formulation

they can operate when noise is equal or lower to 5%.

5.3 Three-dimensional image reconstruction in a

mouse model

Now is explored the capabilities of the proposed ROM approach to speed up

the image reconstruction in a three dimensional medium. The procedure to

generate the fluorescence ROM is illustrated using the heterogeneous thorax

model presented in Fig. 5.8a. This model is a cylinder with 30 mm in diameter

and 30 mm in height and is segmented in four regions: muscle, bone, lunngs and

heart tissues.

The optical parameters at both the excitation and emission wavelengths

are listed in Table 5.2 and the background fluorescence absorption was set as

µaf = 0.005mm−1 and quantum efficiency η = 0.16 considering the ICG optical

properties [258].

An array of 25 sources and 25 detectors in a honeycomb pattern [64, 108]

is located over the right lung region resulting in 600 source-detector pair

combinations where no measurements were considered from a source located at

the same place of a detector. The excitation light is modelled as isotropic point

sources located one reduced scattering distance 1/µ
′

s beneath the surface. The

medium was discretized into 16,972 tetrahedral elements and 3,261 nodes.

Table 5.2: Optical properties for the 3D mouse thorax model.

Tissue µa(x) µ
′

s(x) µa(m) µ
′

s(m)

Muscle 0.0052 1.08 0.0068 1.03
Lung 0.0133 1.97 0.0203 1.95
Heart 0.0083 1.01 0.0104 0.99
Bone 0.0024 1.75 0.0035 1.61
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Figure 5.8: a) Coarse mesh used for the image reconstruction and fluorescence forward
ROM formulation it is observed the location of the sources and detectors on onse side
of the thorax model. b) upper view of the medium showing the location of the sources
modelled at one reduced scattering distance inside the medium, c) three-dimensional
view of the random absorption values used as inputs to the ROM formulation and d)
PMDF used to guide the OFR algorithm.

To generate the forward ROM, a sequence of 1000 normally distributed

random fluorescent absorption values were used to compute fluorescence mea-

surements using the FEM approximation of the fluorescence diffusion equation.

A set of 500 records were used as data estimation and the remaining set for model

validation.

The minimum value of the random sequence corresponds to the background

fluorescent absorption value and the maximum value was set as µmaxaf considering

the optical response of ICG at 780nm and 830nm [261] One sample of the normally

distributed random data throughout the medium is presented in Fig. 5.8b and

Fig. 5.8c. A second order polynomial model was estimated for each source-
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detector pair using the OFR and the PMDF o guide the structure detection,

those nodes within a 5% threshold were selected as the input nodes to the model.

Fig. 5.8d hows the PMDF from source 1 to detector 15 indicating the region of

nodes to be considered in the model.

The proposed model considered 3,261 inputs and second order polynomial

functions, resulting in 534,640 candidate monomial terms. However, the resulting

model for each source-detector pair is smaller by the use of the OFR algorithm.

For example, the model estimated for source 1 and detector 15 consists only of

113 terms.

Figure 5.9: a) Target medium consisting of four main tissue regions and three anomalies,
b) Upper view of the medium showing the distribution of the anomalies. c) set of source-
detector (SD) pairs located on one side of the medium and d) upper view of the SD pairs
where the sources are located one reduced scattering coefficient inside the medium.
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5.3.1 Three-dimensional mouse thorax model with three

tumours

To test the above forward model was used a cylindrical mouse thorax numerical

model with three inclusions in the right lung as can be seen in Fig 5.9. It

was discretized in 99,750 tetrahedral elements and 11,490 nodes. Sources and

detectors were located at the same position of the inverse mesh, see Fig. 5.9c

and Fig. 5.9d, and the optical properties were set with respect to Table 5.2. To

the measurements a 1% of uniform distributed noise was added to test the ROM

capabilities.

Figure 5.10: Image reconstructions from a) NIRFAST three dimensional view, b)
NIRFAST top view, c) ROM three dimensional view and d) ROM top view.
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5.3.2 Image reconstruction of three static tumours in the

lung of the mouse model

As in the previous section, NIRFAST was used to implement the fluorescent

forward ROM and also as the reference to compare the image reconstruction. It

is observed in Fig. 5.5 that both algorithms located the three anomalies. The

regularization parameter was set to λ = 0.1 in both algorithms to have the same

conditions and a way to compare their performance. In this case, NIRFAST

required 75 seconds to perform the reconstruction meanwhile ROM performed

the reconsruction in only 8 seconds, although model estimation took around 16

hours.

To uncover the limits of ROM, the noise of the measured signal was increased

until ROM started to fail in the reconstruction of the anomalies. When the

noise reached the 4% NIRFAST recovered the location of the anomalies but

overestimated the size of the inclusions, see Fig. 5.11. ROM was able to recover

the region where the anomalies are present and offered an idea of the volumes

where the fluorescent marker presents a higher concentration.

In Fig. 5.11 the noise is further increased to a 6%, NIRFAST was able to

locate the region where the fluorescent marker is located, but no clear separation

of the tumours is provided. On the contrary, ROM was unable to recover the

information of the fluorescent marker that tagged the tumours.

As can be observed, the noise effects on the 3D reconstruction are more

drastic, compared with the 2D image reconstruction, one possible reason for this

behaviour is due to the complexity and the size of the target medium. Another

reason is that only one side of the mouse thorax is scanned, then no information is

obtained from the other side of the medium that could improve the reconstruction.
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Figure 5.11: Noise effects on 3D reconstructions. At 4% of noise, a) NIRFAST locates
the tumours but overestimated the size of the anomalies, b) ROM offered a glimpse of
where the fluorescent agent is more concentrated. At 6% NIRFAST detected the region
and d) ROM is not able to reconstruct the anomalies.

5.3.3 Image reconstruction of a time-varying fluorescent

concentration in the lung’s tumours of the mouse

To test the real-time capabilities of ROM, it is used a quasi-periodic signal for the

fluorescent absorption in the anomalies. The optical parameters are the same from

the mediums above explored, the regularization is λ = 0.1 and is considered 1%

of noise in the measurements. The result of 100 samples points of a quasiperiodic

signal is presented in Fig. 5.12. The quasiperiodic variation is injected in the

three anomalies to analyse the speed and the accuracy of each medium.
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Figure 5.12: Dynamic image reconstruction of the fluorophore concentration from. a)
Top tumour, b) middle tumour and c) bottom tumour.

In the three graphics presented in Fig. 5.12 the value tracked was the

higher one obtained within each reconstructed anomaly. It can be observed that

NIRFAST and ROM follow the behaviour of the fluorescent concentration, but

underestimate the expected value of the quasi-periodic signal injected in each

anomaly. Note that ROM obtained a higher value and also took 10 minutes

to reconstruct the full time series. In contrast, NIRFAST presented a lower

fluorescent absorption reconstruction and took over two hours to finalize the

reconstruction of the 100 samples.
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5.4 Conclusions

To the knowledge of the author, the work presented along this chapter correspond

to the first time that input-output data are used to create simplified models to

describe fluorescent re-emitted light to perform the image reconstruction from

exogenous optical properties at two different wavelengths of operation being the

excitation wavelength the one that excited the fluorescent marker to emit light

at a different wavelength where the ROM approach described the fluorophore

properties.

Previous work related to the ROM theory focused on the reconstruction of the

absorption parameters at a single wavelength of operation. Its main application

is related to functional reconstruction of brain activity. In contrast, this work

extended the ROM approach to target exogenous optical properties at a different

wavelength than the light source used to illuminate the medium.

Our results demonstrate that tomographic reconstructions for tracking fluo-

rescent perfusion can be performed in a fraction of the time using ROM approach

compared with the FEM solution presented by NIRFAST. In the study cases

above presented, all the anomalies were precisely located, although the fluorescent

estimated values were not accurately obtained the proposed ROM approach

showed a good trade-off between the quality of the image, the accuracy of the

estimated value and the time required for the reconstruction.

In the two-dimensional case, the image reconstruction based-on ROM was

reduced close to a tenth of the time required by NIRFAST, although the creation

of the models took around two hours, it is possible to run continuous tests over

the subject with no necessity of calibration due to the robust structure of the

models used consider uncertainties during their formulation.
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The main contribution of ROM to the FDOT modality is related to the re-

construction fluorescent target of relatively large 3D domains with heterogeneous

optical property distribution close to a real-time reconstruction using a personal

computer with no extra hardware or an expensive processor. This is demonstrated

by the image reconstruction presented in this chapter consisting on the thorax of

a mouse model with a diameter of 30cm and a height as well of 30cm and three

tumors inside the lung.

By using an array of 25 sources and 25 detectors, which could be considered

a large set of source-detector pairs, the image reconstruction of polynomial ROM

took only 8 seconds, while NIRFAST considering a full FEM mesh took 75 seconds

for a single image. Thus, the use of solvers that consider full meshes are not

able to perform real-time reconstructions using a personal computer. Although

ROM estimation takes time, once the models are obtained, they can be directly

implemented and be used between trials with the test subject due to the robust

capabilities of the estimated model. In other words, it is possible to monitor a

medical treatment or to detect physiological changes for a specific subject once

the ROM have been obtained for that subject.

With the above results, it has been demonstrated the capability of ROM

to perform close-to-real time image reconstruction without the necessity of

specialized computers or expensive GPUs. It is only required CPU processing

to perform the image reconstruction in a normal desktop. The main advantage is

the direct estimation of the fluorescence absorption from boundary measurements

at the emission wavelength, thus requiring only the sources to operate on the

excitation wavelength of the fluorescent marker, and then only measuring the

emitted light from the fluorescence generated to later estimate the location of the

fluorescent target.
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It is assumed that using a dense inverse mesh with a faster CPU and higher

RAM capacity the accuracy could be improved and the reconstruction time could

be reduced. But this solution also increase the costs of the system implementation

and commercialization. With the approach proposed in this work, there is no

necessity to invest on expensive computers or additional hardware.

One limitation that ROM presents is the time required for the estimation of

the model, taking several hours in a normal computer and using code wrote in

Matlab. One possible solution to overcome the limitation is the use of C/C++

coding which is an specialized language for iterative executions, being an iterative

process the way how the polynomial models are estimated. Another solution could

be the implementation of the estimation in FGPAs specifically programmed to

estimate the models and also to perform the image reconstruction process.
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Chapter 6

Diffuse optical tomography using spatial

frequency domain imaging

6.1 Introduction

Near-infrared spectroscopy (NIRS) and diffuse optical tomography (DOT) are

two of the main diffuse optical imaging (DOI) approaches used to characterize

biological chromophores such as oxy-hemoglobin HbO(2), deoxy-haemoglobin

(HbR), water content and lipids from the quantification of absorption and

scattering coefficient variations [262, 163].

NIRS uses a wide content from spectral and temporal domains with a limited

number of source-detector (SD) measurements. In principle, NIRS can’t provide

sensitive information from depth tissue, because of the SD configuration used that

limits depth information [138, 121, 21]. This is normally addressed by increasing

SD distance separation which leads to a reduction in the spatial resolution [263].

In contrast, DOT approaches utilize a limited number of wavelengths (4-6) and

a constrained temporal information with large SD arrays to obtain high resolution

images. However, DOT instrumentation is expensive and complex compared with
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NIRS equipment [263, 264].

Spatial frequency domain (SFD) imaging is a novel approach that can be

used to perform tomographic reconstructions without the need of a large array

of detectors with wide dynamic range. This approach measures the optical

properties of a high scattering medium by projecting structured light on the

medium and by measuring its spatial phase shift [265, 266, 49].

This approach exploits the fact that many biological tissues are made up of

layers (i.e. skin, skull and brain cortex) and that tissue optical properties do

not vary with the depth within each layer [267, 268]. The method resolves the

layers individually and is able to characterize the optical properties in an entire

field-of-view at once [269, 270].

Spatial Frequency Domain imaging has been mainly used in topographic image

reconstructions of human and animal skin [270, 271, 265, 272], rodents cortex [273,

50], to study tissue oxygenation [274, 265], postoperative tissue recovery [275],

skin burns [51], and in vivo and surgically resected breast tissue [276, 277, 262].

By creating a map of a planar image reconstructions, depth tissue information

from inner layers is projected at the surface of the medium, thus simplifying

optical property recovery, but limiting the tomographic capabilities.

One solution to improve depth optical property recovery is through a

calibration process that matches the reflectance between the target medium and

a multilayer simulation model [272]. The disadvantage of this method is that it

requires several calibrations which are further increased with the number of layers

considered and thus, increasing the complexity of the approach.

Three-dimensional applications of this approach include the profile character-
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ization of phantoms, in vivo tissue [278, 269] and the image reconstructions from

inclusions embedded in homogeneous mediums [279, 280, 281, 279]

The limitations of SFDI are related to the spatial characterization of depth

tissue and that it is unable to perform continuous image reconstructions from

varying signals. These are due to the lack of mathematical models used to

describe modulated light behaviour in depth tissue and the time required for

data acquisition and the demodulation process.

To address current challenges and limitations of this imaging technique,

researches have investigated:

• the use of mirrors, lenses and lasers around the target medium, but these

greatly increase the complexity and the cost of the system [54],

• alternative patterns of illumination from the more commonly used sinu-

soidal pattern [282, 283, 281],

• the effects of patterned light illumination for quantifying inclusions tagged

with fluorescent markers [284, 285, 286] and

• the application of a tomographic approach that exploits the theoretical

framework of diffuse optical tomography. [279].

This chapter introduces a new reconstruction method to obtain tomographic

images from biological tissue with a wide field-of-view using a spatially modulated

light source and a CCD camera. The proposed method makes use of the ROM

approach presented in Chapter 4 to describe light propagation within the tissue

layers. Then, this model is used within an iterative reconstruction algorithm to

update the initial guess of optical properties until a tomographic image of the

optical properties is obtained.
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A second contribution to the SFDI field is the use of the virtual sensor

theory for the CCD camera operation. This technique is norally used in CCD

cameras to simplify its operation and improve data processing. The virtual sensor

methodology assumes that a finite number of pixels on the CCD camera are used

as a single measurement point instead of using each pixel to measure reflected

light. With this approach is it possible to simplify the operation of a CCD camera

and to control the data that is measured.

As is going to be presented in this chapter, virtual sensor theory could be

considered an important contribution for both the SFDI imaging and to the ROM

approach. To the knowledge of the author and by the time this work was written

the use of the virtual sensor on CCD cameras was not used before in combination

with Spatial Frequency Domain Imaging or to formulate Reduced Order Models

in any other Diffuse Optical Imaging modality.

6.2 Instrumentation

It has been demonstrated that diffuse reflectance intensity decay depends upon

the optical properties of a medium [201]. The intensity decay is also referred as

the spatial Point Spread Function (s-PSF) and its measurement can be used to

estimate the optical properties of a target medium [287].

An alternative method to characterize the spatial dependant intensity decay is

by the spatial Modulation Transfer Function (s-MTF) [276], which is the Fourier

equivalent of the s-PSF in the frequency domain [262, 288]. The method measures

the AC-amplitude attenuation of a spatially modulated illumination projected to

a turbid medium [265].

SFD imaging instrumentation was first introduced by Dögniz in 1998 [289],
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Figure 6.1: Schematic of a spatial frequency domain imaging system proposed by the
group of Cuccia [49].

and to this day there have not been many changes from his proposed equipment.

The schematic of a SMLI instrument, presented in Fig. 6.1, consists of [270, 278]:

• a source of illumination from a xenon/tungsten-halogen lamp that is

spatially modulated,

• a set of bandpass filters ranging from 400-1050 nm,

• mirrors used to illuminate the sample at an angle of α = 7° to avoid specular

reflection,

• polarisers placed at the source and the detector device to further reduce

specular reflection,

• a tunable filter (λ = 650− 1100nm,∆Λ = 10nm),

• a CCD camera of 12 or 16 bits used to collect the reflected light

• and a computer used to control data acquisition and to perform image

processing.
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6.3 Light propagation model considering a spatial

modulated light source

To solve the forward problem considering a spatial modulated source the CW

diffusion equation is used in the form [272]

−∆ · κ(r)∆Φ(r) + µa(r) = S (6.1)

where the terms µa, κ and the corresponding boundary condition were defined

in Section 3.3.2. The source term S differs from the one presented in Eq. (3.15)

and is defined as a sinusoidal fringe pattern given by

S = S0[1/2 +Msin(2πfix+ α)] (6.2)

where S0 is the light intensity, M the modulation depth, fx the spatial frequency,

x is a point on the surface of the medium and α is the spatial phase angle. The

light source is assumed to be located at one reduced scattering distance from the

boundary.

The measured photon fluence at the surface is given by [201]

R(ξ) = −∆φ(ξ, z)|z=0. (6.3)

Each illumination pattern in Eq. (6.2) is three times phase shifted at α =

0, 2/3π, 4/3π rad. The resulting intesities, Rj,alpha are then demodulated using

Rac(x, y) =
21/2

3
[(Ri,0(x, y)− ri,2/3π)

2 + (Ri,2/3π(x, y)− ri,4/3π)
2

+ (Ri,4/3π(x, y)− ri,0)
2]1/2

(6.4)

where index i accounts for the i-th pixel measurement at the (x, y) position. This

demodulation allows to treat the reflectance at each pixel independently [49, 274].
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6.4 Image reconstruction

To recover the optical property distribution it is used the iterative image

reconstruction with regularization and structural prior information to improve

the accuracy of the reconstruction as depicted in Section 4.2.1.

The objective function is given by

χ = min
µ

{

Nmeas
∑

i=1

(lnRmeas
i − lnRcalc

i )2 + λ

Nnodes
∑

i=1

(µ− µ0)
2

}

(6.5)

where Nmeas is the number of measurements, Nnodes the number of unknowns,

lnRmeas
i and lnRcalc

i are the logarithmic of the experimental and model calculated

reflectance measurements, respectively [236], µ0 is an initial guess of the optical

properties and λ is the regularization term. In this work, it is defined µ = µa

due to physiological the absorption coefficient is affected by physiological changes

[21].

Minimizing Eq. (6.5) by setting the first derivatives with respect to µ to zero

and using a Levenberg-Marquardt (LM) regularization with δµ = µ − µ0 yields

to the update function

(JTJ + λI)(δµ) = JT (lnRmeas
i − lnRcalc

i ) (6.6)

where J is the Jacobian matrix, the regularization term λ reduced at each

iteration by a factor of 100.25 and scaled by the maximum of diag(JTJ) [290, 22].

6.5 Reduced order models with spatial modulated

light source

The necessity to record three angular shifts for each spatial frequency used at

each optical wavelength, yields to the SFD imaging approach to take up to
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Figure 6.2: Human head section model: a) tissue regions considered in the numerical
simulation and b) distribution of the absorption coefficient along the medium.

six times longer than diffuse optical topography image reconstructions [291].

Therefore, it is demonstrated in this work that the time required for tomographic

reconstructions is exponentially increased due to the number of nodes used in the

inverse mesh.

6.5.1 Human head simulation model

To speed up the image reconstruction process it is proposed the use of the

reduced order models (ROM) approach. To test the tomographic capabilities of

SFD imaging with ROM approach, a numerical model of a human head section

segmented in four tissue regions is used, see Fig. (6.2)a. The medium was

discretized in a fine mesh consisting of 17,107 tetrahedral elements and 3,491

nodes.

Table 6.1: Optical properties for the head model.

Tissue µa [mm−1] µ
′

s [mm−1]
Skin 0.02 0.50

Muscle 0.022 1.0
Skull 0.005 1.63
Brain 0.015 1.63

The optical properties of the model are presented in Table 6.1 and correspond

to real tissue parameters found in the near-infrared spectrum [243]. Figure 6.2b
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shows the distribution of the absorption coefficient for each tissue in the model.

Light reflectance measurements were generated by simulating the instrumental

set-up shown in Fig. 6.1 considering a 16-bit couple-charge device (CCD) camera.

Light propagation was calculated for six spatial frequencies ranging from 0 to 3

mm−1 projected at three phase angles: 0, 2/3π and 4/3π [292, 293].

Figure 6.3: Light propagation with spatial frequency fx = 0.18 and α = 2/3π.

The software NIRFAST was used to simulate the light propagation through

the human head section. The boundary condition was modified to account for the

spatial modulated light source projected over the surface of the domain, where

Fig. 6.3 shows one sample of the light propagation through the medium.

6.5.2 Reduced Order Models formulation

Typically, in reflectance diffuse optical tomography, deep tissue optical properties

are recovered using each pixel of a CCD camera, or a group of pixels, as a single

detector [228, 236, 294, 259, 295]. Once a set of measurements is obtained,

the image reconstruction scheme utilizes a two step iterative scheme in order

to recover the optical properties as shown in Fig. (3.3).

This iterative method has the drawback that calculates the light propagation
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and the light measurements in two stages. Besides, it uses all the available nodes

in the inverse mesh which increase the complexity of the inversion process and

the time required for the image reconstruction [64].

It has been demonstrated that use of ROM approach reduces the time required

in DOT reconstructions based-on fiber-optic instrumentation [65]. In this work is

extended the ROM approach to non-contact reflectance DOT. For this purpose,

one model is generated for a group of pixels that serve as a single detector in

order to map the optical properties from deep tissue.

NIRFAST software was used to generate the input and output data required

for the estimation of the polynomial approximation of the SFD forward model

given by Eq. (6.1), Eq. (6.2) and Eq. (6.2). The inverse mesh used consisted of

5,968 elements and 1,377 nodes and had the same spatial distribution as the fine

mesh used to generate the experimental measurements.

Figure 6.4: Random absorption values used as inputs used to generate the polynomial
models.

The input data were 1,000 uniform distributed random absorption values at

each node in the inverse mesh for each one of the spatial frequencies and each

angular shift, see Fig. 6.4 for one sample of the input data.

For the output data, the reflectance measurements were obtained by 16 virtual
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detectors. This technique combines the pixels on a CCD camera via averaging

to produce a single measurement [156, 296], see Fig. 6.5. Other approaches to

create CCD detectors include pixel binning and virtual detector in conjunction

with varying integration times. Details of these approaches can be found in

[297, 131].

Figure 6.5: Example of the virtual sensor approach used for measuring the reflectance
from the numerical model.

For each virtual detector, a polynomial reduced order model was generated in

the form

Ri,fx,α = f(Sfx,α, µa(k)) (6.7)

where f represent the forward reduced order models, indices i = 1, ..., 16 and

k = 1, ..., 1, 377 are the sources and the nodes in the mesh, respectively. Then, by

considering 16 outputs, six spatial frequencies, three angular shifts, 1,377 nodes
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from the inverse mesh and second order monomial terms, the total number of

candidate terms is 274,034,880.

Model structure detection and parameter estimation were performed using

the OFR algorithm that computed the Error Reduction Ratio (ERR) for each

candidate term with a cut-off value of Cd = 0.05 [64]. In Table 6.2

Table 6.2: Parameters for one output of the forward reduced

order models with spatial frequency modulated illumination.

θi Term θi Term θi Term

0.00942 -0.0233 u0317u0364 0.02 u0664u1213

-0.117 u0440u0512 -0.0411 u0447u0729 -0.0118 u0284u0428

-0.047 u0431u0441 -0.0528 u0431u0491 -0.0192 u0363u0448

-0.0497 u0396u0515 -0.0224 u0275u0523 -0.0305 u0331u1063

-0.124 u0291u0660 -0.0116 u0403u0967 -0.0367 u0415u0516

-0.134 u0395u0592 -0.0386 u0285u0430 -0.0201 u0638u1073

-0.144 u0401u0432 -0.0429 u0410u0780 0.0262 u0756u0952

-0.125 u0289u0429 -0.0398 u0277u0781 -0.0677 u0431u0515

-0.107 u0274u0391 -0.0361 u0312u0313 -0.0851 u0396u0396

-0.0501 u0399u0591 -0.0448 u0513u0762 -0.0929 u0399u0515

-0.0653 u0325u0390 -0.0273 u0330u0760 -0.0453 u0286u0591

-0.0936 u0516u0582 -0.031 u0366u0662 -0.0316 u0532u0666

-0.0537 u0287u0583 0.0199 u0904u0968 -0.0188 u0911u0965

-0.0886 u0407u0517 -0.0362 u0597u0721 -0.0564 u0287u0512

-0.104 u0397u0661 -0.061 u0292u0441 -0.0419 u0518u0583

-0.0661 u0393u0404 -0.0551 u0444u0512 -0.0269 u0395u1049

-0.0797 u0284u0728 -0.0406 u0521u1072 -0.0269 u0592u1267

-0.0537 u0169u0492 -0.0608 u0440u0590 -0.0195 u0442u0834

-0.0417 u0322u0662 -0.0402 u0323u0408 -0.0334 u0591u0838
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Table 6.2: (continuation)

θi Term θi Term θi Term

-0.0602 u0282u0665 -0.0261 u0314u1030 -0.0215 u0308u0674

-0.0635 u0324u0400 -0.0299 u0404u0593 0.0205 u0936u1373

-0.0671 u0279u0581 -0.0361 u0276u0591 -0.00814 u0867u0881

-0.0715 u0438u0522 -0.0696 u0431u0512 0.0189 u0415u0604

-0.0663 u0310u0402 -0.106 u0440u0441 -0.0288 u0865u1038

-0.0531 u0443u0664 -0.0411 u0321u0672 -0.0118 u0791u1217

-0.0452 u0437u0595 -0.0306 u0670u0727 -0.0198 u0403u0789

-0.0597 u0398u0634 -0.0218 u0509u0518 -0.062 u0325u0959

-0.0282 u0452u0518 0.0478 u0288u1153 -0.0575 u0390u0640

-0.0381 u0446u0519 -0.0356 u0494u0530 0.0364 u0640u0959

-0.0587 u0327u0779 -0.0374 u0589u1339 0.0337 u0963u1006

-0.06 u0514u0531 -0.0198 u0520u0671 0.017 u0919u1370

-0.0322 u0835u1225 -0.0324 u0278u1079 -0.0153 u0487u0732

-0.0692 u0288u0660 -0.0243 u0584u0663 -0.0198 u0367u1150

-0.0205 u0286u0783 0.0228 u0402u0739 -0.0218 u0429u1153

where θi are the estimated coefficients and uk = µa(k) are the selected nodes from

the inverse mesh to form the monomial terms for the polynomial approximation.

The model above presented is the shortest one obtained, other models consider

far more terms that for practical purposes are not shown in this work.

6.5.3 Image reconstruction for static optical parameters

Considering a priori structural information (anatomical boundaries between

tissues), two image reconstruction study cases are explored: i) initial guess close to

the expected values using the optical parameters in Table 6.3 and ii) homogeneous

absorption coefficient and known scattering coefficient.
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Reconstruction with initial guess close to expected values

In this case, the optical parameters in the inverse mesh are close to the values of

the target medium, see Table 6.3.

Table 6.3: Initial guess of optical properties for reconstruction algorithm.

Tissue µa [mm−1] µ
′

s [mm−1]
Skin 0.018 0.50

Muscle 0.02 1.0
Skull 0.004 1.63
Brain 0.01 1.63

The three-dimensional (3D) image reconstruction using NIRFAST and ROM

is shown in Fig. 6.6. As can be seen, both approaches reconstructed the inner

distribution of the head section.

Figure 6.7 presents a vertical cut from the target medium in Fig. 6.2b and

the reconstructions in Fig. 6.6. The increased direction of thex -axis indicates the

deepness of the tissue and the y-axis the absorption coefficient.

Figure 6.6: Three dimensional image reconstruction of the absorption value with initial
guess close to the expected values. a) Using NIRFAST and b) with the ROM approach.

It is observed that NIRFAST performed a better tissue separation between

skin and muscle tissues, but it underestimates the absorption distribution along

the medium. In contrast, ROM vertical profile shows a better estimation of

the final absorption value of brain tissue and a closer estimation of the bone
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Figure 6.7: Vertical profile comparison between the target medium and the
reconstructions from NIRFAST and ROM approaches with heterogeneous initial guess.

absorption value. The only value that it failed to recover the one related to the

muscle.

Quantitatively, it is used the Image Correlation Coefficient (ICC) criteria given

by Eq 4.14 to compare both approaches. NIRFAST presented an ICC value of

ICCNIRFAST = 0.89 while ROM obtained an ICCROM = 0.91. The maximum

values for the ICC criteria is ICC = 1 indicating a perfect match between the

evaluated and the target images.

Furthermore, ROM image reconstruction took 15 seconds, outperforming the

time required by NIRFAST which took over 50 seconds. The specifications of

the computer used in the reconstructions are as follow: intel i7-4700MQ, 8Gb

in RAM, hard-drive of 500Gb, graphic card NVIDIA k610m, operative system

Ubuntu 14.04 and Matlab 2017a.

Reconstruction with homogeneous absorption distribution

This study case explores if the proposed ROM approach and NIRFAST are able

to recover the absorption distribution with a homogeneous initial guess. The

133



Chapter 6. Diffuse optical tomography using spatial frequency domain imaging

selected value was µ0
a = 0.013mm−1, which is the average of the absorption

coefficients shown in Table 6.3, the scattering distribution remained as in the

previous example.

Figure 6.8: Three dimensional image reconstruction of the absorption value with an
homogeneous initial for the absorption value. a) Using NIRFAST and b) with the
ROM approach.

Figure 6.9: Vertical profile comparison between the target medium and the
reconstructions from NIRFAST and ROM approaches with homogeneous absorption
initial guess.

As can be seen in Fig. 6.8a and Fig. 6.8b, both approaches are unable to

reconstruct the absorption distribution correctly. In both cases, a different value

from the initial guess proposed was obtained.

The vertical profile comparison displayed in Fig. 6.9a offers an insight of the

absorption distribution estimated. In both cases, the estimation is similar to the

homogeneous distribution initial guess.
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A closer look to the vertical profiles, see Fig. 6.9a, shows that NIRFAST

attempts to estimate a different distribution from the initial guess proposed but is

unable to resolve the values from the target medium. In contrast, ROM remains

constant close to the initial guess. The ICCs obtained were ICCNIRFAST =

−0.566 and ICC = −0.275. The time required were 59 seconds for NIRFAST

and 25 seconds for the ROM approach.

6.6 Conclusions

This chapter presented the first results from the Reduced Order Models (ROM)

approach within a non-contact framework and a frequency modulated light source,

In contrast to the previous work for the monitoring of brain activity presented by

Vidal-Rosas et. al [243, 252] and the contribution made in this dissertation related

to the image reconstruction in Fluorescent Diffuse Optical Tomography that made

use of optical fibres to construct the models and to measure the transmitted light

within the tissue.

An important contribution to the Spatial Frequency Domain Imaging and also

for the Reduced Order Models to be extended to contact-less technologies is the

application of the virtual sensor theory used on CCD cameras. The principle of

reducing the number of detection positions, in this case pixels of a camera, greatly

improve data acquisition and allowed the proper formulation of the Reduced

Order Models approach.

Theoretically, an ideal Diffuse Optical Imaging technique would be a system

that considers thousands of source-detector measurements and a wide bandwidth

of wavelengths, but the engineering implications, such as the complexity of the

equipment and time of the reconstructions, limits the practical implementation

of such approach. If we consider that CCD cameras have thousands of pixels,
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then the only limitation is how to be able to reduce the burden of processing

each individual pixel.

By the application of the virtual sensor, this limitation is overcome because

it is possible to group pixels to work as a single measurement position, thus

exploiting the detection capabilities of a CCD camera with a reduced number

of final sensing positions that can be relatively easy to control. This was

demonstrated on this chapter by combining the Reduced Order Models with

sixteen sensing positions on the CCD camera.

Related to the SFDI reconstructions, it was observed that ROM outperformed

NIRFAST in the accuracy of the reconstruction and the reduced time required

to obtain the optical parameters. It is important to mention that the accuracy of

the image reconstruction strongly depends on the correct selection of the initial

optical parameters. More accurate values tend to further improve the quality

of the final image and reduce the reconstruction in both NIRFAST and ROM

reconstruction algorithms.

Another factor that affects the reconstructions is the quality of the inverse

mesh used for the image reconstruction. Fine meshes improve the quality but

tend to exponentially increase the time required for the image reconstruction

when considering a image reconstruction scheme that requires the whole mesh.

As has been mentioned on the previous chapters, the ROM approach has

the advantage that it does not work directly with the full FEM mesh during

the inverse process. It maps the measurements from the reduced order models,

generated by the system identification process to obtain an estimation of the

absorption parameters that interacted with the light within the medium and

then creates a 3D map of that distribution.
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Chapter 7

Conclusions

The work presented in this thesis addresses two specific problems that are

hindering the application of diffuse optical imaging in clinical settings, specifically

for Fluorescent Diffuse Optical Tomography and Spatial Frequency Domaing

Imaging: processing of high-density data and real-time image reconstruction of

the optical properties from biological tissue.

In summary, the imaging problem is cast into a non-linear mapping using

a data base model, which accelerates the inversion process by avoiding solving

the diffusion equation directly. Instead, the proposed method employs a highly

optimised reduced-order model (ROM) of the diffusion equation to describe light

propagation.

The model used in this work is based on polynomial functions; which are a

convenient choice since they are easy to store and manipulate; but they are by no

means the only choice because other functions such as neural networks, splines or

wavelets can also be implemented. Although a previous work of Vidal Rosas [252]

used Radial-basis functions to formulate ROM and showed that it was required

further analysis in order to select the correct parameters for the functions and

the results were similar to those obtained by polynomial models. Therefore, it

was concluded that polynomial models were a better option for ROM formulation
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and implementation.

Diffuse optical imaging has received a significant attention in recent years

because of the benefits it can bring in comparison with traditional imaging

modalities such as MRI, CT or PET. Those benefits include portability, non-

invasiveness, compactness, speed, continuous monitoring and safety [21, 298].

The technology is moving swiftly and recent progress includes ultra high-

density probes [151, 299], real-time imaging [256] and mobile/wearable devices

[300, 301]. The introduction of high-density (HD) data has shown to be decisive

for the success of DOT in brain imaging; which has demonstrated to approach

the performance of fMRI in accuracy and resolution at the cortex level [302].

Wearability can also bring important benefits, as allowing unrestricted imaging

of brain function in naturalistic environments.

However, the benefits are no problem-free, for example, wearability intensifies

movements artefacts (i.e. abrupt head rotations), systemic interference (increased

heart rate while walking in comparison to standing still) and also cofounding

effects (attention to multiple tasks simultaneously) [303, 304, 300].

On the other hand, high-density data requires sophisticated solution algo-

rithms and computational power in the form of GPUs for example [305]. In

addition, real-time imaging is not a trivial problem, since it requires a trade-off

between reconstruction speed and accuracy [256, 243].

This thesis introduces a new methodology for the reconstruction of optical

parameters in Diffuse Optical Imaging, in particular to Fluorescence Diffuse

Optical Tomography (FDOT) and Spatial Frequency Domain Imaging (SFDI).

The proposed approach accelerates the reconstruction process by a factor of
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approximately four in 2D FDOT and an improvement of a fifth of the time

required in 3D FDOT, while for SFDI the speed improved by a factor of two.

An important contribution made to Spatial Frequency Domain Imaging was

the use of the virtual sensor on CCD cameras. Previous to this work, there is

no work related of limiting the number of available detection points or pixels to

detect a spatially modulated light source. The implications of this contribution

is related to the possibility to have more control over the data collected over the

analysed area.

Furthermore, the use of the virtual sensor was the key point that allowed

the formulation of ROM using CCD cameras, which also is a work not reported

before. Is important to note that with the use of the virtual sensor and ROM

it is possible to perform contact-less experiments using CCD cameras instead of

only using optical fibres.

Moreover, the reconstruction speed has been improved without compromising

the quality of the images obtained. The results presented in this work

demonstrated the feasibility of the approach while running on a modest and

cheap PC. Using compiled C/C++ subroutines can further reduce these values,

potentially reaching real-time imaging.

In addition, considering the low computational cost of the proposed method

means that FDOT and SFD imaging can be solved in a personal computer with no

addition of a GPU or an expensive CPU. This opens new possibilities to further

miniaturise the devices, to increase portability and to achieve real-time imaging

using .

Furthermore, other diffuse imaging modalities can also benefit from the
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introduction of the methods presented in this thesis. For example, speckle

contrast optical tomography (SCOT) is a new modality that employs point

sources and a detector array (CCD) to quantify the spatial or temporal

speckle contrast [306, 307]. This technology produces ultra-large data density

(>50000 source-detector pairs) that prohibits the use of nonlinear solvers such

as NIRFAST. By using reduced-order models, the restrictions in memory and

speed can be minimized. Thus, ROM in combination with the proposed virtual

sensor approach could benefit the characterization high density optical imaging

approaches

Finally, the method that we advocate can also be used in conjunction with

the full model, i.e. reduced-order models can be used in an initial run; then the

solution produced can be used as an initial guess, which can be further refined

by the standard approach, that uses the full diffusion equation model.

Future work could be the implementation of the ROM into portable devices,

such as tablets or smart phones with enough computational power to run 3D

graphics. Also, explore other DOI modalities such as SCOT or exploit the

computational capabilities of ROM by training models using the Radiative

Transfer Equation as the input-output data source instead of the Diffusion

Equation further expanding the proposed approach to Fluorescence Molecular

Tomography or Optical Coherence Tomography which are out of the scope of the

diffusion approximation.
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