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Abstract 

This study aimed towards the investigation of using a novel atmospheric pressure 

plasma (APP) process to introduce carboxylic acid functional groups on carbon fibers 

(CFs), so the functionalized CFs can react with an ionomer-modified epoxy resin, 

which was developed in this study, to prepare a self-healing composite. The APP 

process, which was performed in a bespoke Pyrex chamber, was comprised of an APP 

surface activation and a subsequent acrylic acid (AAc) vapour grafting. The effects of 

various APP functionalization parameters, such as grafting time and working gas, on 

surface wettability, stability and chemical composition, were first investigated on 

silicon wafers before applying them to CFs. The healing efficiency of the ionomer-

modified epoxy resin network, and functional group reactions between the ionomer 

healing agent and the functionalized silicon and CF surfaces, were also studied to 

estimate the self-healing function. 

 

Contact angles of the silicon wafers with water were initially 56.1±0.8° and after APP 

activation with air and argon 8.2±0.2° and 4.6±0.2°, respectively, and increased to a 

range between 4.8° to 16.1° after AAc vapour grafting, suggesting the capability of the 

APP process to control surface wettability and to potentially perform surface deposition.  

 

By observation of the binding energy peak at 289.2 eV in the C1s core level spectrum 

from XPS, the results indicated the presence of carboxylic acid groups on the surfaces, 

which was also confirmed by 2,2,2-trifluoroethanol derivatization. A 19.72% atomic 

percentage of carboxylic acid functional groups was achieved, which is higher than the 

result from a conventional APP process (13.36% by a 60-second APP treatment with 

AAc vapour directly being injected into the activating zone during the process), 

compared with the theoretical percentage of pure AAc (33.3%).  

 

For the investigation of the ionomer healing system, a healing efficiency of 31.07% 

was observed on the ionomer-modified epoxy resin network. The functional groups on 

the ionomer healing agent were proved to be able to react with APP/AAc-grafted 

carboxylic acid functional groups. 
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In summary, a novel, rapid APP process, which utilizes APP activation and AAc vapour 

grafting in a bespoke Pyrex chamber, was developed in this study. The APP process 

was capable of not only tailoring surface wettability but also introducing carboxylic 

acid functional groups. Combining this novel APP process with the ionomer self-

healing system, a self-healing composite material with potentially enhanced load 

carrying capacity can be envisaged. 
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Chapter 1 Aims and Objectives  

1.1 Introduction 

Over the past fifty years, there has been great interest in carbon fibers (CFs) due to the 

excellent properties they exhibit, including superior specific strength and modulus, 

which are larger than for other fibers, including glass, steel and alumina. CFs also have 

good thermal and electrical conductivity and a low (negative in the axial direction) 

linear coefficient of thermal expansion in the fiber direction [1]. 

 

As an effective reinforcement system, the development of CF-reinforced composite 

materials have attracted considerable attention. CFs possess properties such as a tensile 

modulus of 200-600 GPa and a strength of 2.5-7.0 GPa, depending on the precursor 

and temperature of carbonization and graphitization (400-600 °C for dehydrogenation 

and 600-1300 °C for denitrogenation (PAN-based CFs)) during their preparation 

process [2], making them suitable for CF-reinforced composites. Among polymer 

composites, epoxy systems have the potential to prepare composite materials with high 

strength, light weight and multifunctionality; therefore, they have played an important 

role in, for example, aircraft, space shuttles and electrical products. 

 

Creating a strong fiber-matrix composite requires several features, which depend not 

only on the properties of the fibers and matrices but also on the characteristics of fiber 
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surface and the quality of the interface, which is formed in the cured composite and 

responsible for the load transfer mechanism at the interface between the fiber and the 

matrix. The interface between the fiber and the matrix needs to be optimized because 

with a low interfacial bond strength, the load bearing capacity is limited by debonding 

at low loads. With a strong bond, the composite fractures like a monolith, losing the 

toughness associated with multiple matrix fractures. With optimal interfacial 

interaction, fiber-matrix composites possess superior efficiency at carrying loads and 

make it possible for materials to bear weight evenly. 

 

However, due to the crystallized graphitic basal structure of CFs, the non-polar nature 

makes them difficult to chemically bond with matrices. Furthermore, surface 

lipophilicity, smoothness and low adsorption characteristic of CFs results in the 

chemical inertness [3, 4], which limits their bonding with matrices and leads to weak 

interfacial interaction between filaments and matrices in the composites. 

 

To solve these issues, surface functionalization of CF has been widely investigated. The 

general goal of the modification is to improve the chemical compatibility between the 

CF surface and the polymer through chemical methods, therefore to enhance CFs 

adhesion and dispersion with and in the polymer. Chemical methods include employing 

nitric acid, KMnO4, H2SO4, chromic acid and electrolytic NH4HCO3. 
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Research on chemical functionalization of CFs has focused on introducing acidic 

functional groups to the surface of CFs through oxidation methods such as aqueous 

electrochemical treatment [5-7]. King et al. [6] oxidized pitch-based CFs in ammonium 

sulfate electrolyte and found interfacial shear (IFSS) strength increased through single 

fiber tensile test. Fukunaga and Ueda [8] anodically oxidized pitch-based CFs in 0.1 M 

NH4HCO3 and a superior IFSS was also observed. However, CFs functionalizing 

processes with aqueous electrochemical treatment not only produce waste but also 

might cause surface degradation when using nitric acid as the electrolyte [9]. 

  

Among the methods for CFs treatment, plasma technology is of great interest because 

of the advantages of rapid treatment, scalability for high-quantity production and being 

non-polluting, which is highly desirable for industry. Several studies on surface 

functionalization of CFs through plasma modification technology have been reported 

[10, 11]. Lopattananon et al. [12] employed acrylic acid (AAc) and 1,7-octadiene as 

precursors to modify CF through plasma technology and produced composite materials. 

From their results with the polymer coatings, improved adhesion and an increased 

tensile strength and modulus over the untreated-unsized CF was measured. Among 

plasma technologies, the atmospheric pressure plasma (APP) process has received 

attention, since it operates effectively under atmospheric pressure and ambient 

temperature, providing a potential method for surface modification on thermal sensitive 

materials such as polymers. Bai et al. [13] developed an atmospheric plasma 
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polymerization route using AAc as precursor to enhance micromechanical adhesion 

between CFs and an elastomeric matrix by around 60%.  

 

During the research to improve interfacial adhesion between the fibers and the matrices, 

self-healing has also received a great attention in the study of advanced composite 

materials. Matrix cracking and delamination caused by external mechanical loading or 

impact have played critical roles in composite material degradation, which leads to 

failure and limits the application. The vulnerability of composite materials to impact 

damage results in a costly burden of maintenance and inspection for detecting and 

preventing the presence of damage. To solve this issue, a self-healing function of 

composite materials has been demonstrated through various methods, including the 

hollow fiber approach [14-16], the capsule-based healing system [17-19] and the 

application of intrinsic healing polymers [20-22]. Among these approaches, an intrinsic 

healing polymer offers a healing mechanism through reversible reactions, such as chain 

mobility and entanglement, ionic interaction, reversible polymerization and melting of 

the thermoplastic phase, which can be triggered by external impact or damage. 

Different from hollow fiber and capsule-based healing approaches, the intrinsic healing 

mechanism is capable of multiple crack healing events, since it does not consume the 

healing agents stored inside microcapsules or hollow channels [23]. An approach based 

on an intrinsic healing mechanism has been made by Varley et al. [24] utilising a 

diglycidyl ether of bisphenol-A (DGEBA) based ionomer healing agent. The ionomer 

healing agent, which kept its miscibility inside the epoxy resin matrix network by 
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controlling its concentration under 7.5 wt%, was connected to the epoxy resin network 

through hydrogen bonding. When the healing mechanism was triggered by heat, the 

healing agent decoupled from the epoxy resin network, diffused to the crack and 

ionically entangled together to close the fracture. Since the healing agent diffuses 

through nano-interspace in a material during the healing process, it promises the 

advantage of repairing micro-fractures before the fractures turn into catastrophic failure. 

Therefore, combining the ionomer healing system with CFs, a self-healing composite 

material, with the capability of fixing the debonding between the matrix and the fibers, 

can be envisaged.              

   

1.2 Aims and Objectives 

The main aim of this project is the surface functionalization of CFs using a novel APP 

with subsequent AAc vapour grafting to introduce carboxylic acid functional groups on 

the CFs, so the functionalized CFs can react with an ionomer-modified epoxy resin, 

which was developed in this study, to prepare a self-healing composite. This APP 

process produces little waste and is a possible rapid route to optimize the adhesion 

between the CFs and the resin. Furthermore, it provides a mechanism for the healing of 

the interface using the functional groups reaction between the carboxylic acid groups 

and the ionomer healing agent in the matrix. 

 

In this work, a Pyrex chamber was tailored to reduce precursor fragmentation during 
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plasma treatment and retain a higher percentage of functional groups. The effects of 

different parameters of APP treatment, especially working gas and grafting time, on 

surface wettability, stability, functional group labelling and chemical composition, were 

first investigated via water contact angle measurements and X-ray photoelectron 

spectroscopy (XPS) on silicon wafers before applying them to CFs. Silicon wafers have 

a flat, plane surface suitable for estimating the degree of surface functionalization. 

Subsequently, these parameters can be applied to the CF surfaces with confidence. The 

healing efficiency of the ionomer-modified epoxy resin network (via single-edge 

notched bending tests) and functional group reactions between the ionomer healing 

agent and the functionalized silicon and CF surfaces (via XPS), were also studied to 

estimate the self-healing function.   
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Chapter 2 Literature Review 

2.1 Introduction 

The literature review in this chapter presents a general introduction to carbon fibers 

(CFs), including its characteristics and properties, which attract attention from both 

academia and industry to apply CFs for composite materials. Some approaches made 

to prepare carbon fiber (CF) composite, and the main challenge these approaches have 

encountered, are also provided in this chapter. A survey of several solutions to the 

challenge, including CF sizing, oxidation treatment, plasma polymerization and 

atmospheric pressure plasma treatment, are provided here along with their advantages 

and limitations. This literature review also contains an overview of different concepts 

of designing a self-healing matrix, the advantage of using a self-healing polymer as the 

matrix in the composite material and a comparison between these concepts of design. 

Finally, after concluding the review of the materials, challenges, approaches and 

methods, the goals of this study are presented at the end of this chapter. 

 

2.2  Carbon fibers 

A CF is a fibrous bundle-like substrate, which contains at least 92 wt % of carbon and 

is composed of thousands of carbon filaments, each of diameter 5–10 μm. CFs are 

generally prepared by an adjusted pyrolysis of stabilized precursor fibers. A CF is 

mainly produced by initially converting a carbonaceous precursor into fiber form, 

heating the fiber to 200 - 300 °C in air and stabilizing the fiber by an oxidization process. 

The heated precursor fiber is then heated under 1200 to 3000 °C in an inert atmosphere 
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to eliminate the non-carbon elements, such as hydrogen, oxygen and nitrogen, and 

finally converting the precursor to a CF. Hence, CF properties are highly dominated by 

the precursor material and conditions during processing, including carbon content, 

crystallinity, molecular orientation and the amount of defects.  

 

The history of CFs dates back to 1878 when Thomas Edison converted bamboo into CF 

for one of the candidates for a lamp filament [2] . The first industrial scale manufacture 

was in 1959, when CFs were prepared from synthetic rayons through carbonization for 

missile development [25]. During the 1960s, high performance CFs were developed, 

which used polyacrylonitrile (PAN) as a precursor. PAN, which contains 68% of carbon, 

can be prepared from acrylonitrile via polymerization by utilizing peroxides as the 

initiators. The manufacturing of PAN-based CFs requires the participation of an 

oxidation process and thermal treatment and was summarized (Figure 2.1) into three 

steps: oxidative stabilization; carbonization under high temperature (1000 °C in 

nitrogen); graphitization (2500 °C in argon) [26, 27]. This offers a process with higher 

carbon yields (30% for rayon while 50% for PAN) and better physical properties than 

rayon-based methods [28, 29]. Later, a process was achieved by carbonizing pitches, 

which contains at least 80% of carbon, into CFs. Pitch can be obtained from the refining 

of petroleum and the gasification of coal or via the pyrolysis of synthetic polymers such 

as polyvinyl chloride. Although coal pitch (2/3 of its compounds are aromatic [30]) is 

more aromatic than petroleum pitch, it possesses a high content of carbon particles, 

which results in filament breakage during extrusion and thermal treatment [27]. Among 
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these kinds of pitches, mesophase pitches were applied as precursors due to their 

superior molecular orientation, which can be carbonized into a graphitic crystalline 

structure during the process, and became the most popular material for manufacturing 

ultra-high modulus CFs [31]. Compared to using PAN as a precursor, pitch precursors 

have lower material costs. However, the processes of pitch purification, mesophase 

formation and fiber spinning to achieve high performance CFs increase the costs 

significantly.  

 

 

Figure 2.1 Semi-batch production of CFs from PAN fiber [27] (SKEINER means 

winder).  

 

Similar to the structure of graphite, in CFs, carbon atoms are located on a hexagonal 

pattern with each basal plane as an aromatic ring. Preparing CFs from different 

precursors and manufacturing processes can lead to different arrangement of carbon 

atom layer planes in CFs, resulting in a graphitic or a turbostratic structure of them 

(Figure 2.2). 
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Figure 2.2 Schematics of turbostratic and graphite structures [32]. 

 

In the CFs with a graphitic structure, the hexagonal planes are stacked parallel to each 

other in a regular arrangement. The atoms in the same plane are bonded covalently via 

sp2 bonding, while those between different layers are bonded with Van der Waals forces. 

In contrast, in a turbostratic structure, the parallel graphene layers are stacked in a tilted 

or irregular order. Mainly, mesophase pitch-based CFs show a graphitic structure, while 

PAN-based CFs were observed in a turbostratic structure [33]. Figures 2.3 to 2.5 show 

the cross-sectional SEM images of three various based CFs [34]. 

 

It can be observed that the structure of PAN-based CFs is more folded and contains 

turbostratic layers of carbon. This structure is similar to that of the PAN precursor, 

which results in a lower degree of graphitization, compared to pitch-based CFs. The 

imperfectly aligned and misoriented structure however is responsible for the high-

strength property of PAN-based CFs. The strength of PAN-based CF is determined by 
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misoriented graphite planes since there are low forces between graphite planes. 

Misoriented crystals arrive from when graphitization around impurities in the PAN 

dope occurs. When a stress occurs paralleled to the axis of the PAN-based CFs, the 

layers align until their movement is limited by the disclination within the structure. As 

for pitch-based CFs, compared to the PAN-based CFs, a higher degree of alignment of 

the graphitic layers was observed, which makes them more flaw-sensitive but offers 

better lattice-dependent properties. Thus, PAN-based CFs exhibit a mechanical 

property of high tensile strength and low modulus, while pitch-based CFs are low 

tensile strength and high modulus. 

 

 

Figure 2.3 Cross-sectional SEM images of PAN-based CFs [34]. 

 

Figure 2.4 Cross-sectional SEM images of pitch-based CFs [34]. 
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Figure 2.5 Cross-sectional SEM images of rayon-based CFs [34]. 

 

The microstructure of a CF further affects its mechanical properties and thermal and 

electrical conductivities.  

 

Because of the high content of delocalized π electrons and the aligned graphene planes 

along the fiber axis, CFs exhibits excellent thermal (between 21–125 W/mK) and 

electrical conductivities, which are similar to those of metals [27]. Compared to PAN-

based CFs, a higher electric conductivity can be achieved by pitch-based CFs due to 

the higher crystal orientation they possess [35].  

 

CFs with high crystallinity and well alignment of crystals in the fiber direction tend to 

exhibit a higher modulus. Compared to PAN-based CFs, which mostly consist of 

turbostratic crystals, pitch-based CFs were found with a greater size of crystallites [36]. 

However, the larger crystallites in the microstructure of pitch-based CFs lead to higher 

stress concentrations on grain boundaries. Therefore, while pitch-based CFs generally 
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exhibit higher tensile modulus and better thermal and electrical conductivities along the 

fiber direction, PAN-based CFs possess a higher tensile strength due to the smaller 

turbostratic crystallites in their structures [37-40]. Table 2.1 illustrates the tensile 

properties of three major CFs categorized by various precursor applied during 

preparation [2].  

 

 

Table 2.1 Comparison of mechanical properties of CFs from different precursors. 

Precursor Tensile strength 

(GPa) 

Tensile modulus 

(GPa) 

Elongation at 

break (%) 

PAN 2.5-7.0 250-400 0.6-2.5 

Mesophase pitch 1.5-3.5 200-800 0.3-0.9 

Rayon ~1.0 ~50 ~2.5 

 

 

Although PAN-based CFs have been observed with superior tensile and compressive 

strength compared to pitch-based CFs, the compressive strength of both pitch- and 

PAN-based CFs are found to be reduced with increased modulus [34, 38]. It has also 

been demonstrated that compressive strength not only is highly related to shear modulus 

between basal planes [40], but also rises with reduced orientation, density and increased 

inter-planar space and void content [41]. In 1996, Miwa et al. [42] investigated the 

effects between compressive strength and fiber diameter and found that compressive 

strength grows with reduced diameter but maintains almost the same level when fiber 

diameter ranges smaller than 10 μm. These reports further give rise to the interest of 

preparing CF-reinforced composite materials, which is expected to utilize one or more 
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of CF’s intrinsic characteristics, such as high strength and stiffness, light weight, good 

fatigue and corrosion resistance and improved friction and wear qualities.  

 

 

2.3 Carbon fiber functionalization for composites  

Since the initiation of commercial CF products, investigators [27, 33, 35, 43] have 

studied and revealed the characteristic physical properties of CFs, such as electrical, 

mechanical and thermal (described in Chapter 2.2). To date, an increasing number of 

studies have focused on the development and understanding of fiber-reinforced 

composite materials in various load bearing applications [44]. Ideal reinforcing fibers 

include glass, carbon and aramid fibers. Considering their outstanding mechanical 

performance (high tensile strength up to 7 GPa and high modulus up to 800 GPa), it is 

very popular to use CFs as reinforcement in polymer matrices, which are either 

thermoplastic or thermoset. Thermoset polymer matrices include the application of 

epoxies, cyanates, polyesters and bismaleimides (BMI), while it is common to utilize 

high molecular polymers, such as aromatic polyimides, polyphenylene sulfide and 

polyarylene, for thermoplastic composite matrices [45]. 

 

Initial studies of CF/epoxy composites have put a lot of efforts into utilizing pristine 

CFs to reinforce the matrices [44, 46, 47]. However, lower than predicted tensile 

strength and interlaminar shear strength (ILSS) were found, as a result of inferior 

wettability due to the chemical inert nature of CFs in polymer matrices. 
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Although CF-reinforced composites have been widely utilised, the adhesion between 

filaments and matrices is still a critical element for composite performance. Therefore, 

surface functionalization of filaments has become an essential topic for optimizing the 

adhesion of CFs in polymer matrices. 

 

In order to optimize the adhesion of CFs in polymer matrices, several surface treatment 

approaches have been studied. Various techniques for augmenting the interfacial 

bonding in composites include, for example, gaseous or wet oxidation [48, 49], 

electrochemical methods [7, 50, 51], plasma treatment [11, 52] and polymer coating [53, 

54]. With elevated surface free energy and immobilized functional groups on the fibers, 

improved interfacial properties were observed [55-57]. 

 

2.3.1 Oxidation treatment 

To effectively transfer external tensile load from CFs to a polymer matrix and augment 

the handling of the fibers, optimum chemical bonding between each other is required 

[58]. A large amount of studies have been reported for the chemical functionalization 

of CFs.  

 

Li [59] employed an acid treatment for functionalizing CFs to improve interfacial 

reaction with polyimide matrices. XPS results indicated that the oxidation treatment not 

only raises the oxygen concentration but also converts hydroxyl-type oxygen on the 
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surface into carboxyl functional groups. Zhang et al. [60] oxidized pitch based CFs with 

65 to 68 wt% HNO3 under 90°C for 1.5 hours. An increased amount of functional 

groups (–O–C–, –C=O, –O–C=O) or sites on the fiber surface was achieved, which 

increased surface energy and polarity and contributed to interfacial adhesion between 

the filaments and polyimide matrix. However, functionalizing CFs through acid 

treatment not only produces polluted wastes but was also found to be complicated and 

time consuming in processes [61].  

 

Compared to acid (HNO3) treatment, electrochemical oxidation offers a faster, uniform, 

and mass production suited process. Electrolytes such as ammonium bicarbonate, 

ammonium sulfate, ammonium oxalate and sodium bicarbonate have been widely 

employed [5, 6, 62-64]. Liu et al. [64] functionalized PAN-based CFs via an 

electrochemical oxidation process using ammonium oxalate (0.5 M) as electrolyte with 

the electric current density of 0.6 mA cm-2. The functionalized CFs showed an 

improved (by 16.6%) tensile strength and exhibited an 8.6% increase on ILSS with 

epoxy matrix. Park and Park [62] electrochemically modified unsized PAN-based CFs 

using 5 wt% sodium bicarbonate as electrolyte and observed increased ILSS between 

fibers and DGEBA matrix. An increase of ILSS between CFs and DGEBA matrix from 

79 MPa to 93 MPa was reported by Denison et al. [65] after the CFs were modified by 

an electrochemical oxidation treatment using ammonium bicarbonate as the electrolyte. 

Liu et al. [66] employed a mixture of ammonium bicarbonate (0.6 mol/L) and 

ammonium oxalate monohydrate (0.5 mol/L) in a ratio of 1:1 as the electrolyte solution 
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to electrochemically oxidize the PAN-based CFs. Improvements of the tensile strength 

(by 17.1%) and the ILSS between the CFs and epoxy matrix (by 14.5%) were observed 

after the CFs electrochemical oxidation. Ryu et al. [63] have also reported improved 

ILSS between the DGEBA matrix and the unsized CFs, which were electrochemically 

treated with 5 wt% ammonium carbonate. However, the electrochemical process took 

a longer treatment time (from 60 to 90 minutes) and produced chemically polluted 

liquid waste, which is not environmentally friendly [9, 67, 68]. In light of these 

drawbacks as described above, researchers have turned their interests to plasma 

technologies.  

 

2.3.2 Carbon fiber sizing 

Sizing is commonly used by fiber manufacturers to “size” or coat their fibers, which 

can involve providing an acceptable surface coating to protect fibers from damage or 

fuzzing caused by yarning or contacts during manufacturing. Sizing materials, 

commonly applied around 0.5 to 1.5 wt%, not only offer protection to the filaments 

bulk but also improve the composite processibility and adhesion between fibers and 

matrices, which play a major role in the preparation of composites with tailored 

interface properties. The effect is mainly contributed by the chemical reactions between 

the polymer matrix and the covalently bonded functional groups on the surface of CFs 

[69].   

 

To achieve the optimal interaction, for different kinds of matrix and fibers, various 
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sizing agents are required [70]. Commonly applied sizing agents can be categorized 

into two types: the solution type (a sizing agent dissolved in an organic solvent) and 

emulsion type (an emulsified sizing agent dispersed in water) [71]. For the solution type 

of sizing, sizing agents such as polyvinyl alcohol, epoxy resin and vinyl acetate polymer 

are commonly utilized [72, 73]. Blackketter et al. [72] utilized epoxy-sized CFs (PAN-

based) and an epoxy resin (EPON 828) to prepare a CF-reinforced thermoset matrix 

composite. Compared to the composite made by unsized CFs, improved short beam 

shear (39.6 MPa to 73.1 MPa) and transverse flexural strengths (29.6 MPa to 78.2 MPa) 

were observed, indicating better unidirectional composite shear and transverse tensile 

strengths of the composite prepared with epoxy-sized CFs. Taking factors of economy, 

safety and hygiene into account, the emulsion type sizing agents are widely applied. 

However, the challenge for utilizing an emulsion type sizing agent is the ratio of the 

emulsifier to the sizing agent. As the emulsifier is a poor bonding agent and tends to 

limit reduce the bonding of the dried emulsion finish to the CFs, it is preferable to limit 

the amount of emulsifier during the process. A typical sizing process is schematically 

described in Figure 2.6 [71]. Generally, the sizing is first sprayed or dipped to the 

surface of CFs, then dried up to evaporate the solvent or water to leave the sizing agents 

on and fuses to the CFs surface. 
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Figure 2.6 Schematic diagram of a typical sizing process [71]. 

 

In a study by Liu et al. [74], emulsion type vinyl ester resin sizing agent (HMSA-1) 

was prepared through phase inversion emulsification and applied to CF sizing. A 

HMSA-1 sized CF/vinyl ester composite was observed with 20.7% improvement in 

ILSS as HMSA-1 offers reactive groups on the CF surface and possesses superior 

compatibility with vinyl ester matrix. 

 

Li et al. [75] reinforced phenolic resin matrices with CFs sized with phenol, m-

phenylenediamine or acrylic acid through electropolymerization. The composites 

exhibited an increase in impact strength, flexural strength and ILSS by 44 %, 68% and 

87% with m-phenylenediamine sized CFs, 66%, 100%, and 112% with phenol sized 

CFs, and 20%, 80 %, 100% with acrylic acid, respectively. Enhancement of ILSS was 

also reported in both woven CF/epoxy and CF/polyethersulfone when utilizing epoxy 

sized CFs as reinforcing fiber material [76, 77]. 
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However, an inferior interfacial performance between sizing and epoxy matrix was also 

monitored in epoxy composites reinforced by polyurethane and polyetherimide sized 

CFs. ILSS shows a decrease in both polyurethane (14 MPa) and polyetherimide (19 

MPa) sized CFs composites, compared to that using unsized CFs (28 MPa). The poor 

fiber/matrix adhesion may be due to the adsorption of polyurethane and polyetherimide 

sizing onto the CF surface, which limits the diffusion of sizing materials into the 

polymer matrix during composite fabrication. Since dissolving of sizing materials into 

matrices provides a chemical reaction between fibers and matrices and further benefits 

interface performance, the adsorption of sizing may diminish functional groups on the 

filament surface and within sizing materials and leads to weak interfacial bonding [78]. 

This is supported by a study of Yumitori et al. [76], which indicated that a reduction of 

interfacial shear strength may occur if the sizing layer existed as a distinct layer.  

 

It has been suggested that fiber/sizing compatibility plays a crucial role during 

composite development. Although sizing application contributes to the improvement 

of abrasion resistance and bending strength of CFs, the mechanical performance (e.g. 

ILSS) tends to decrease when the CF sizing shows lack of compatibility with the matrix 

[79-81].  
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2.3.3 Plasma polymerization 

First in 1920, Tonks and Langmuir [82] began to study the phenomenon of “plasma” 

and further used the term in 1929 to describe this process of gas ionization. When 

substrates are given energy by high temperature, accelerated electrons or ions, reactions 

such as excitation, dissociation and ionization occur, thus producing a mixture of 

molecules, atoms, excited species, electrons, positive ions, negative ions, free radicals 

and UV or visible light, which is called a plasma. Therefore, besides gas, liquid and 

solid, plasma is recognized as the forth state of matter.  

 

Plasma polymerization has been widely investigated and applied for the modification 

of surfaces through depositing thin films on them [83, 84]. In this process, gaseous 

monomers are introduced into the plasma as precursors. After collisions with high-

energy electrons in the plasma, most precursor molecules are fragmentized into reactive 

species and react with each other and eventually deposit a cross-linked polymer film on 

the surface. 

 

This technology exhibits several advantages. First of all, the thickness of the thin film, 

from approximately hundred nanometres to one micrometre, can be easily controlled. 

Conformal coatings with specific physical or chemical properties can also be prepared 

on nearly any substrate, such as polymers, metals, glass, ceramic and semiconductors. 

With the above-mentioned characteristics, surface modification of fibers through 

plasma polymerization to improve their adhesion to epoxy resin in fiber-reinforced 
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composite materials was achieved. By plasma coating, functional groups can be 

immobilized on the surface of fibers to create chemical bonds between them and the 

resin, resulting in a more effective load transfer and further prevent fiber damaged 

during handling. Dilsiz et al. [85] utilized a radio frequency (RF) plasma with xylene 

as monomer on PAN-based CFs. The interfacial adhesion between CFs and epoxy resin 

was found to be improved as the ILSS increased from 65.62±0.59 MPa (Untreated CFs) 

to 70.01±2.40 MPa (RF plasma treated with xylene). Feih and Schwartz [86] employed 

an RF plasma using a mixture of oxygen/acetylene (at a ratio of 1:2) as precursor for 

functionalization of PAN-based CFs. The interfacial performance between CFs and 

epoxy resin was observed to be improved as the ILSS was increased from 30 MPa 

(Untreated CFs) to 45 MPa (RF plasma treated with oxygen/acetylene). 

 

Reports have demonstrated improvement of single filament strength and modulus on 

plasma coated reinforcing fibers [87-89]. Precursors, including acrylic acid, allylamine 

and allyl alcohol, have been applied for plasma polymerization on CFs and glass fibers 

to introduce functional groups such as carboxylic acid and amine [12, 88-90]. Swait et 

al. [91] coated E-glass fibers through plasma polymerization with an acrylic acid/1,7-

octadiene copolymer as precursor. These fibers were used to fabricate unidirectional 

composite panels. From their results, the longitudinal tensile strength of the composites 

exhibited a 20% increase, while a further 30% increase of tensile strength was achieved 

with an optimal ratio of composition (40% acrylic acid) of the coating. The increased 

performance of plasma-polymerized fiber composites may be the result of the reduction 
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in the variability of fiber strength caused by the plasma polymer coating [89]. Another 

possibility is the improved stress transfer between the filaments and the matrix due to 

the mechanical properties of the plasma polymer (which exhibits a modulus slightly 

higher than that of the matrix, but much lower than that of the fibers).  

 

2.3.4 Atmospheric pressure plasma treatment 

Although some studies related to the surface modification of fibers through plasma 

polymerization have been previously reported [12, 87-90], all these processes were 

carried out at low pressure, which requires expensive vacuum systems (seals, transfer 

chambers and pumping) and is usually found with low deposition rates. In contrast, 

APP processes possess advantages such as rapid treatment times, environmental 

friendliness and lower production costs. Therefore, atmospheric pressure plasmas have 

received increasing attention recently to deposit plasma polymer films on various 

substrates [92-94].  

 

Atmospheric plasma processes can be classified into four major categories: 

Implantation (e.g., utilizing oxygen or nitrogen gas for –OH or –NH3 immobilization), 

etching (e.g., oxidation of organic polymer through oxygen or N2O gas), activation (e.g., 

applying argon or helium to introduce free radical) and deposition of polymers.  
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In a previous study, the author employed an atmospheric plasma system assembled by 

Chen et al. [95] in a V-type glass tube for surface activation and polymerization. With 

ethanol and helium mixed working gases, new grafted oxygen containing polar groups 

such as C-O and O-C=O and improved hydrophilicity were observed on the surface of 

a glass slide. The same effects have also been reported in this system as the author 

utilized He and N2 mixed working gases for polyurethane nonwoven treatment, while 

employing tetramethylsilane vapour enhanced hydrophobicity on a glass surface 

(Figure 2.7) [95-97]. 

 

Figure 2.7 Schematic diagram of atmospheric plasma treatment system and plasma 

glow in the V-type glass tube [95]. 

 

O’Hare et al. [98] prepared organic coatings with a rate of 40 nm/min by feeding an 

acrylic acid precursor into the post discharge of a radio frequency atmospheric pressure 

helium plasma torch. Nisol et al. [99] deposited acrylic acid films by introducing an 

acrylic acid vapour in an helium dielectric barrier discharge plasma (Figure 2.8).  
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Figure 2.8 Schematic of the atmospheric pressure plasma process using the RF torch 

[99]. 

A study has also been reported by Bai et al. [100], who employed an atmospheric 

pressure plasma with acrylonitrile as precursor to deposit a thin functional polymer 

layer on the surface of CFs, to improve their adhesion to an elastomeric resorcinol 

formaldehyde latex (RFL) matrix. The single fiber fragmentation test revealed that the 

adhesion between CFs and RFL was enhanced, as the interfacial shear strength 

increased by 30% for fibers with 4.2 min residence in plasma zone. In another research 

[13], they replaced the precursor by acrylic acid and utilized an atmospheric pressure 

plasma for CF functional coatings (Figure 2.9). The results of this study exhibited a 
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nearly 60% improvement in adhesion behaviour between the CFs and the elastomeric 

matrix. 

 

 

Figure 2.9 Schematic of continuous atmospheric plasma polymerization treatment set-

up for CFs [13]. 

In 2012, Carton et al. [101] deposited carboxylic group containing films on a substrate 

for biomedical application by using an atmospheric nitrogen plasma jet with acrylic 

acid as precursor (Figure 2.10). Two years later, to improve the water stability of 

deposited films, a precursor consisting of acrylic acid and a cross-linking agent 

methylene-bis-acrylamide was introduced for plasma polymerization through an 

atmospheric pressure air plasma jet [102]. In this study, higher deposition rates, ranging 

from 1 to 10 μm/min, compared to 1 μm/min in the previous study, as well as the 

retention of carboxylic moieties were reported.  
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Figure 2.10 Schematic of the atmospheric nitrogen plasma jet system [101].  

 

It can be summarized that plasma polymerized acrylic acid coatings have the potential 

to increase the interfacial bonding between fibers and matrices in composite materials, 

leading to a superior transfer of stress from matrix to fibers. Furthermore, the success 

of acrylic acid polymerization through atmospheric pressure plasma makes this process 

a promising method to enhance the mechanical properties of CF/epoxy composite 

materials. 

 

2.4 Self-healing matrices for composites 

CF-reinforced polymer systems, compared to steel, aluminium and wood, exhibit 

superior specific strength and modulus and offer a degree of variety in design and 

manufacture. These composite materials are promising for developing high strength, 
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lightweight and multi-functional composite materials and have been widely employed 

in various industrial applications including aerospace, civil engineering and electro-

optical industry [103].  

 

However, these composites are vulnerable to external impact, which results in 

microcracking in the matrices and further leads to various damages including 

fiber/matrix debonding and structural delamination [104, 105]. The delamination is 

difficult to observe as it occurs deep inside the structure. Therefore, to sustain the 

structural integrity, frequent inspection and maintenance are required. Currently, 

various methods have been proposed for delamination repair [106-108], including 

injection of resin to the crack through an access channel and bonding the composite 

structure with a reinforcing patch, though, all processes are time consuming and require 

a trained technician. Therefore, the application of a self-healing system on the matrix 

of composites has attracted an increasing worldwide interest as an achievement to 

enhance damage tolerance and durability.   

 

The idea of developing a remendable intelligent network, which is defined as self-

healing system, has been highly influenced by the bio-inspired materials system. The 

concept was originally inspired by the natural biological function of healing within the 

living organism, such as the capability of skin to heal the trauma autonomously after 

being triggered by injury. By utilizing the same concept of healing processes within 

living organisms into standard materials, it provides a prospective chance and benefit 
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to improve the performance of a material. A well-designed self-healing material 

promises the characteristic of initiating the healing process autonomously to response 

the crack or damage caused on it, which further recovers the function and prolongs the 

lifetime of the material.  

 

The main approaches for developing self-healing systems share a similar concept and 

general mechanism of the self-remendable process is showed in Figure 2.11. After the 

damage happened, the healing function is triggered by the crack or initiated by external 

stimuli such as heat. Unlike standard materials, self-remendable materials contain 

“mobile components”, called healing agents, which are able to flow or diffuse towards 

the crack of the damaged material. Then the healing is proceeded by closing the damage 

site via physical or chemical reactions performed by the healing agents, including 

entanglement or polymeric cross-linking. After the healing performance, this “mobile” 

healing agent becomes immobilized again. 
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Figure 2.11 General healing mechanisms of a self-healing material (a) the damage site 

occurs (b) healing agent responses to the damage site (c) the mobile healing agent fixes 

the crack (d) healing process accomplished and the healing agent become immobilized 

[109] (no scale bar shown in original source). 

 

To date, the approaches can be categorized into three aspects: capsule-based healing 

systems, vascular healing systems and intrinsic healing polymers.  

 

2.4.1 Capsule-based healing matrices 

In capsule-based healing systems, healing agents are encapsulated and embedded into 

a polymeric matrix. When damage takes place due to external force and breaches the 

capsules, a self-healing function is triggered as healing agents are released and react in 

the damage site (Figure 2.12). It is also common to enclose a catalyst in the matrix to 

initiate polymerization [110, 111]. White et al. [112] manufactured a self-healing 

polymer with microencapsulated dicyclopentadiene (DCPD) healing agent and Grubbs’ 

first-generation catalyst within an epoxy matrix and demonstrated about 75% recovery 

of the virgin fracture load. The healing mechanism is based on Grubbs’ catalyzed ring-
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opening metathesis polymerization of DCPD, which was activated when a crack 

propagated into the microcapsules, releasing the monomer and polymerization was 

initiated by contact with the embedded catalyst. Research employing encapsulated 

DCPD healing agent and wax dispensed Grubbs’ catalyst exhibited high healing 

efficiencies (90%) and extended fatigue life (213%), as discussed by Brown et al. [113-

115]. However, because the capsules containing healing agents at the damaged site 

were emptied and ruptured after the healing event, it can only be performed once per 

damaged site. 

.  

 

Figure 2.12 Capsule-based self-healing composite reported by White et al. [116]. 
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2.4.2 Vascular healing matrices 

In a vascular healing system, vascular mimic networks filled with healing agent are 

fabricated inside the matrix. After the healing function is triggered, it is possible to 

support the healing agent into the same damaged site from and through the connected 

channels inside the matrix, allowing for multi-healing events (Figure 2.13).  

 

Figure 2.13 In a vascular healing system, the hollow tubes inside the material contain 

healing agent. When a crack happens, these tubes will be ruptured and release healing 

agent [117]. 

 

Toohey et al. [118, 119] developed a 3D vascular healing system in an epoxy resin 

matrix by mimicking epidermal tissue structure. DCPD was applied as healing agent 

and stored in the 3D microchannel (~200 μm) network of the matrix, while Grubbs’ 

catalyst was introduced into the epoxy resin matrix. From the results of four-point 

bending, healing efficiencies between 38 to 70% were observed. For both capsule-

based and vascular healing systems, the disadvantage of these methods is the 
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requirement of introducing foreign bodies like microcapsules [116] or hollow fibers 

[120] for the storage of healing components.  

 

2.4.3 Intrinsic healing matrices 

The application of intrinsic healing polymers focuses on repairing damage through 

intrinsic reversible bonding of the matrices (Figure 2.14) and exhibits advantages such 

as being repeatable, which possesses the possibility to repair damage at the same 

location several times, and being able to stay dormant until required [121-123].  

 

 

Figure 2.14 Scheme of one of the approaches of intrinsic self-healing materials: The 

healing is carried out by melting and subsequent flow of the thermoplastic material into 

the damage site to entangle chains that span the crack surfaces [117].  

 

Compared to capsule-based and vascular healing systems, the introduction of a 

microencapsulate or hollow channel is not required. The introduction of microcapsules 

or hollow fibres and related systems introduces local stresses, which can reduce the 
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strength of the material. The fractured healing agent 'containers' add additional local 

stresses. These disadvantages can be mitigated by using a self-healing matrix. A 

thermal-triggered self-healing system based on Diels-Alder reaction was developed and 

applied on furan-maleimide polymers by Chen et al. [121, 124] and an 83% healing 

efficiency was observed. A similar system on furan-maleimide polymers was also 

studied by Plaisted and Nemat-Nasser [125] and increased healing efficiency 

(Maximum 100%) and repeatable healing ability of the polymer were reported. Self-

healing functionality was also established by Park et al. [126, 127] using a novel 

polymer (Mendomer 401) derived from cyclopentadiene through the Diels-Alder 

reaction. The developed self-healing polymer was applied as matrix in a CF composite, 

which exhibited a maximum 94% healing efficiency. Luo et al. [21] incorporated phase-

separated poly caprolactone (PCL) in a thermally remendable epoxy matrix. The PCL 

melted and initiated a volumetric thermal expansion to close the crack. By investigating 

the peak fracture load, it revealed a greater than 100% healing efficiency, as quantified 

healing measurement in the healed case is larger than the virgin case.  

 

Approaches to self-healing via molecular diffusion have also been illustrated [128, 129]. 

In this approach, the healing agent, which is hydrogen bonded to the matrix, is able to 

diffuse to the damage site through the matrix after thermal stimulation and activate 

healing function. This mechanism is illustrated in Figure 2.15.  
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Figure 2.15 Schematic of diffusional solid-state healing showing the role of a linear 

polymeric healing agent [130]. 

 

Yamaguchi et al. [131, 132] reported an autonomic self-healing mechanism through 

inter-diffusion and aggregation of dangling chains in a polyurethane gel. Healing 

efficiency was estimated by tear experiments, which revealed that for healed specimens, 

those with longer dangling chains showed about 80% tear strength recovery. 

 

A solid-state repair system has been reported by Hayes et al. [20], where a DGEBA 

combined with poly(bisphenol-A-co-epichlorohydrin) is capable of repeated thermal 

healing, and a healing efficiency between 50% and 70% was reported.  
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Rahmathullah et al. [133] elevated molecular diffusion through thermal treatment 

(185°C for 1 hour) of an epoxy–amine matrix (DGEBA and 4,4’-methylene 

biscyclohexanamine) with excess amine curing agent and observed a healing efficiency 

of over 100% from the results of compact tension tests, which may be due to the 

covalent bonds formed by polyetherification or homopolymerization reactions of 

unreacted epoxy groups at the damaged interface.  

 

Varley et al. [24] demonstrated a mendable DGEBA matrix with ionomer mechanism 

(Figure 2.16). Glycidyl end-capped poly (bisphenol A-co-epichlorohydrin) was end-

capped 4-amino-sodium salicylate and employed as a healing agent in this paper. The 

healing agent is soluble and originally attached to the polymer network via hydrogen 

bonding and as healing temperature is achieved (185°C), it can uncouple from the 

matrix and diffuse to the damage for healing. The DGEBA matrix with the presence of 

healing agents exhibited significant load recovery even after 3 healing cycles, while 

that without healing agents were found decayed with 2 healing events. It also indicated 

that when the healing agent reacted with carboxylic acid or sodium neutralized 

carboxylic acid groups, an even better mendability, compared to high-molecular-weight 

phenoxy healing agents, could be reached, suggesting the potential for employing 

ionomer healing system to composite matrices.  
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In light of these advantages, the DGEBA-based self-healing system presented by 

Varley et al. [24] was modified, then utilized with the APP-functionalized CF in this 

study to offer a novel and rapid method for preparing CF self-healing composite. 

 

Figure 2.16 Triggered by heat, ionomer systems offer remendability through hydrogen 

bonding, ionic clustering and molecular diffusion in polymers. 

 

 

2.5 Summary  

The literature review in this study describes:  

1. CF’s structure and intrinsic characteristics, such as high strength and stiffness, light 

weight, good fatigue and corrosion resistance, and improved friction and wear qualities. 

 

2. The approaches and benefits of preparing CF-reinforced composite materials, which 

are suitable for applications where strength, stiffness, lighter weight and excellent 
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fatigue characteristics are requirements. 

 

3. The challenges encountered during development of CF-reinforced composite 

materials, which are poor adhesion and bonding between the chemically-inert CF 

surface and the matrix. Therefore, surface functionalization of CFs is required. 

 

4. The advantages of utilising atmospheric pressure plasma with acrylic acid for surface 

functionalization. Compared to other methods, including employing nitric acid, 

KMnO4, H2SO4, chromic acid and electrolytic NH4HCO3, atmospheric pressure plasma 

possesses advantages as a rapid treatment process, showing good scalability for high-

quantity production and being non-polluting. 

  

5. Self-healing composites exhibit benefits and potentials, including reducing 

expenditure on maintenance and prolonging service life. Various self-healing systems 

and their applications to composite materials have been studied. Among these systems, 

the ionomer self-healing system shows advantages such as repeatability, which 

possesses the possibility to repair damage at the same location several times, and being 

able to stay dormant until required.  

 

In light of these points from the review, this research aims towards the employment of 

an atmospheric pressure plasma using an acrylic acid precursor for surface 

functionalization of CFs. The functionalization process provides carboxylic acid groups 
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on the CFs to improve their adhesion to ionomer-modified epoxy resin, which is also 

developed in this research, to further enhance the load carrying capability of and 

provide self-healing function to CF/epoxy self-healing composites. 
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Chapter 3 Materials and Methods 

3.1 Materials 

CFs (Figure 3.1) used in this work were provided by Carbon Nexus (Geelong, 

Australia) in an untreated and unsized form of high performance CFs produced from a 

polyacrylonitrile (PAN) precursor. The 7 μm CFs are composed by 12000 filament 

tows, with reported values of the modulus and strength of 238 GPa and 3.4 GPa, 

respectively. Silicon wafers (n-type), which were purchased from San Chih 

Semiconductor Co., Ltd, Taiwan, were cut into a size of 1 cm2 and used as specimens. 

The substrates were cleaned ultrasonically in 99.5% isopropanol solvent (Purchased 

from Aldrich Chemical Company, UK, HPLC grade) and distilled water (Purchased 

from Fisher Scientific, UK, HPLC grade) for 15 min and left to dry in an oven (40°C, 

1 atm) to remove contaminants and organic matters from the surface. The precursor for 

plasma polymerization was acrylic acid purchased from Aldrich Chemical Company, 

UK, with 99% purity. The epoxy resin and hardener under the trade name of Araldite 

LY 5052 and Aradur 5052, respectively, were purchased from Mouldlife, UK. For 

preparing the healing agent, diglycidyl bisphenol A-co-epichlorohydrin (DGEBA) with 

a viscosity average molecular weight of 1075 g mol-1 and 4-amino-sodium salicylate 

were purchased from Sigma-Aldrich. For surface carboxyl derivatisation, 2,2,2-

trifluoroethanol (TFE), di-tert-butylcarbodiimide (Di-tBuC) and Pyridine were 

purchased from Aldrich Chemicals (all reagents 99% purity). 
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Figure 3.1 Images of (a) the unsized high performance CF bundles and (b) the 

diameter of the CF bundles provided by Carbon Nexus.  

 

3.2 Atmospheric pressure plasma functionalization 

3.2.1 Design of the atmospheric pressure plasma chamber 

A V-shape atmospheric pressure plasma chamber has been designed and utilized in 

other studies by the author [95-97] for tailoring surface wettability and introducing 

functional groups. This design based on the fundamental concept of creating 

atmospheric pressure plasma, which is composed of two electrodes (a cathode and an 

anode) and a plasma working gas injection system. This concept has been widely 

applied in different atmospheric pressure plasma nozzle models, such as arc plasma 

torches, corona discharge devices, RF atmospheric pressure plasma jets, RF cold 
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plasma torches (with RF cathode and grounded anode) (Figure 3.2) [134] and 

OPENAIR® Plasma System (Plasmatreat GmbH), which was employed in this study.  

 

 

Figure 3.2 Principle structure of (a) an arc plasma torch (b) a corona discharge device 

(c) an atmospheric pressure plasma jet and (d) a cold plasma torch [134].  

 

The V-shape atmospheric pressure plasma chamber exhibited the capability of 

improving both the hydrophilicity (e.g. using helium/ethanol mixture working gas) 

and hydrophobicity (e.g. using helium/tetramethoxysilane mixture working gas). In 

the works utilizing the V-shape chamber, the precursor was blended with and 
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introduced into the chamber by helium working gas and a pair of copper conduction 

wires was placed in the V-shape glass column separately to act as electrodes to create 

plasma at the tip of the chamber. In this case, the reaction is closer to the idea of 

plasma polymerization, which means some bonds of the precursor (e.g. C-C, C-H) 

were broken, turned into free radicals and at the end cross-linked on the surfaces of 

the substrates.  

 

However, in this project, an APP nozzle was purchased for surface modification of 

CFs. Therefore, the focus and tasks have turned from designing an APP nozzle into a 

chamber for APP functionalization.  

 

As mentioned in Chapter 2, for CF-reinforced composites, the interface between CFs 

and the matrix plays an important role on the performance of mechanical properties. 

Therefore, when an atmospheric process is utilized to introduce functional groups, it 

is beneficial to limit the influence from the atmospheric gas and retain the monomer 

structure of the precursor. Taking these two points into account, a cylindrical Pyrex 

chamber (details were described in a published paper) was manufactured and 

combined with an APP nozzle to create a remote atmospheric plasma system. The 

chamber stands vertically with the nozzle installed at the top, a sample platform 
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downstream and an AAc vapour inlet, which is 52 mm from the end of the plasma 

nozzle and 25 mm from the sample platform, on the chamber wall. 

 

This system is categorized as a remote atmospheric plasma system as it not only has a 

glass chamber to prevent the process from being affected by atmospheric gas but also 

a distance of 52 mm between the plasma nozzle and precursor vapour inlet to prevent 

the precursor from monomer fragmentation. However, the diameter and dimension of 

the chamber have limited the potential for continuous functionalization of large fabric 

rolls or continuous CFs, which is popular for industrial application. 

 

Thus, another cylindrical Pyrex chamber was prepared for and utilized in this study. 

Compared to the chamber described above, this chamber aims towards offering the 

possibility to treat a short bundle of CFs (fixed on the sample platform and shifted via 

the rails, for purpose of fundamental studies) or continuously a long length of CF 

bundle (where the CFs are pulled from one side through the chamber for treatment 

and collected on the opposite side after treatment using a roller feed system). The 

same concept of preventing the precursor from monomer fragmentation was also 

considered, thus the distance between the plasma nozzle and the precursor vapour 

inlet was set at 100 mm, which is almost a twofold increase of that in the previous 

chamber (52 mm). Since the length of atmospheric pressure plasma glow of argon 
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(0.6 mm) is different with air (1.2 mm), a certain amount of flexibility (e.g. 10 mm) 

for the distance between the plasma nozzle and the sample is essential.  

 

To sum up, this chamber was designed to cover ideas including: 

1. Flexibility for adjusting the distance between the plasma nozzle and the sample 

(after measured the atmospheric pressure plasma glow length of argon and air).  

 

2. Reducing the effects of atmospheric gas on the process without using a complex 

device/design (As keeping the APP process as a simple and rapid method is the main 

advantage of using it and popular for industrial application). 

 

3. Limiting the monomer fragmentation of the precursor, which retains the structure 

of the precursor to potentially obtain a more homogeneous surface with a higher 

atomic percentage of desired functional groups (As this chamber is designed for 

carrying out an APP surface activation followed by surface grafting, instead of plasma 

polymerization). 
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In light of the concept and ideas discussed in this chapter, this Pyrex chamber was 

designed and then applied in this study. Details and setup will be given and described 

in the next chapter.  

 

3.2.2 Atmospheric pressure plasma setup 

The system designed in this study was built with an atmospheric pressure plasma 

system and a bespoke chamber, as schematically shown in Figure 3.3. The plasma 

nozzle (OPENAIR® Plasma System), which was purchased from Plasmatreat GmbH, 

Germany, is equipped with a DC pulsed plasma source and a plasma nozzle for 

treatment/activation (Figure 3.4).  

 

The chamber was constructed with a Pyrex column, custom-made by the glassblower 

in the Department of Chemistry, University of Sheffield. The chamber is 250 mm in 

length, 50 mm in outer diameter and 46 mm in inner diameter, with a pair of 8 mm 

Pyrex glass rods in the middle of the glass column to act as rails for the mobile 

specimen holder, which provides the platform for the atmospheric plasma treatment 

of the flat specimen (e.g., silicon wafer in this study) or fibers (e.g., CF bundles) for 

estimating the effects of surface grafting of functional groups. The Pyrex chamber has 

two holes on top of it, one for the atmospheric plasma nozzle to fit in, which offers 

surface activation, another one for introducing the precursor (e.g., acrylic acid vapour 

in this research) for grafting, and a hole at the bottom of it for releasing gases (Figure 
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3.5). The hole for fitting in the atmospheric pressure plasma nozzle is 28 mm in inner 

diameter and 32 mm in outer diameter, with a height of 10 mm to offer the 

availability for adjusting the distance between the sample platform and the plasma 

nozzle. Another hole on top of the chamber, which was designed for introducing the 

precursor, is 10 mm in outer diameter with a rippled surface for tube connection. 

These two holes on top of the chamber are separated by a distance of 100 mm, with a 

hole in the middle to release gases from the bottom of the chamber. Built by a 4-mm-

thick Pyrex, the gas releasing hole, which is 30 mm in outer diameter and 26 mm in 

inner diameter, is able to be connected with a ventilation system if necessary. The 

purpose of separating the precursor and plasma nozzle holes is to prevent precursor 

monomers from fragmentation, which may be caused by the atmospheric pressure 

plasma. By reducing precursor fragmentation, it is expected to obtain a higher 

percentage of functional groups from the precursor, which is beneficial for this work 

and further applications, including continuously functionalization of CFs. By utilizing 

this bespoke chamber, it not only minimizes the effect of atmospheric gas on the 

treatment but also promises a rapid process for surface activating and grafting. 
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Figure 3.3 (a) Schematic diagram (b) image of the atmospheric pressure plasma 

system. 
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Figure 3.4 Atmospheric pressure plasma nozzle. 

 

Figure 3.5 Schematic diagrams of (a) the bespoke Pyrex chamber and (b) combination 

of the atmospheric pressure plasma nozzle and the Pyrex chamber. 
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3.2.3 Atmospheric pressure plasma functionalization 

In this study, samples were first activated by argon (Ar-APP) or air atmospheric 

pressure plasma (Air-APP) (Figure 3.6) and then exposed to acrylic acid (AAc) vapour 

for surface grafting by moving the samples downstream to the precursor hole. AAc 

(Figure 3.7) was applied as precursor in this process and was expected to introduce 

carboxylic acid functional groups on the specimen surface. Argon or compressed air at 

a flow rate of 35 standard litres per minute (SLM) was fed into the plasma nozzle as 

plasma working gas and AAc vapour was introduced by argon (20 SLM) from a bubbler 

into the reactor chamber as precursor, respectively. 

 

 

Figure 3.6 Plasma glow of (a) argon and (b) air atmospheric pressure plasmas. 
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Figure 3.7 Chemical structure of acrylic acid. 

 

 

The n-type silicon wafers (1 cm2) were mounted on the mobile specimen holder and 

placed in the chamber at a distance of 6 mm (Ar-APP) or 12 mm (Air-APP) from the 

tip of the plasma nozzle. 

 

For the functionalization of CF bundles, two versions (Version-1 and Version-2) of 

sample platforms were developed. In the Version-1 sample platform, CF bundles (45 

mm in length, 3 mm in width and 1 mm in thickness) were fixed on a customized steel 

frame. As shown in Figure 3.8, one side of the CF bundles (70 mm in length, 3 mm in 

width and 1 mm in thickness) was fixed on the table by tape and the other side was 

pulled vertically by a force of 0.014 N to keep the bundles straight before fixing them 

on the steel frame with a length of 45 mm. The CF bundles, which were fixed on the 

steel frame, were separated from the original part of the bundles, which were taped on 

the table. The Version-1 platform (with CF bundles on it) was then mounted on the 

mobile specimen holder and placed in the chamber at a distance of 6 mm (Ar-APP) 

from the tip of plasma nozzle. The Version-1 platform offers the advantage of being 
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easy to transfer the aligned CF bundles to moulds for sample preparation for further 

mechanical tests. However, mounting CF bundles on the Version-1 platform is time-

consuming. Moreover, due to the APP and strong plasma working gas, damage (broken 

CFs) was observed on the activated CF bundles. Although increasing the distance 

between the nozzle and CF bundles to 8 mm was able to address this problem, the 

maximum effective distance between the nozzle and the sample for APP activation is 

6 mm, according to the studies on silicon surfaces in this work.  

 

To address these issues, the Version-2 sample platform, which was a cleaned (same 

protocol as Si-wafer cleaning) slide glass of 75 mm x 25 mm x 1 mm, was utilized in 

this study. Both sides of the CF bundles (60 mm in length, 11 mm in width and 1 mm 

in thickness) were taped on the platform without any typical pulling force to keep them 

strictly aligned, which is beneficial for load bearing under plasma and APP penetration 

for activating the backside of the bundles on this slide glass (Version-2 platform). The 

Version-2 platform (with CF bundles on it) was mounted on the mobile specimen 

holder and placed in the chamber at a distance of 6 mm (Ar-APP) from the tip of the 

plasma nozzle. Although fiber damage may occur, a larger amount of CF bundles gives 

a higher flexibility for sample selection for further studies. 
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Figure 3.8 (a) Schematic diagram and (b) image of Version-1 sample platform for CF 

bundles. 

 

 

As illustrated in Figure 3.9, the silicon wafers or CFs were activated by argon 

(activating time: 5 or 10 seconds) or air plasma (activating time: 5 seconds) first and 

subsequently grafted by acrylic acid vapour (grafting time: 1, 3, 5 or 10 minutes) for 
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immobilizing high-concentration carboxylic acid groups on the surface. For the purpose 

of comparison, a conventional Ar-APP process using the same OPENAIR® Plasma 

System nozzle and parameters, however, introducing the AAc precursor gas in direct 

contact with the plasma glow, was employed to treat silicon specimen for 60 seconds.  

 

 

Figure 3.9 Schematic diagram of the APP activation/AAc vapour grafting process 

developed in this study. Free radicals and peroxide groups were first created on the 

surface via APP activation, then reacted with AAc vapour to deposit carboxylic acid 

functional groups on the surface. 

 

3.3 Surface characterisation 

Before treating CFs with the APP functionalization developed in this study, flat silicon 

wafers (n-type) were treated by this process to estimate the effects of the APP on surface 

properties.  
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3.3.1 Surface wettability  

Prior to XPS analysis, the wettability of the silicon wafers with/without plasma coatings 

was evaluated with water contact angle (WCA) measurements as a preliminary step to 

confirm the effect of plasma deposition. A Dino-Lite digital microscope was set up for 

observing water contact angles (WCAs) (Figure 3.10). Data was collected as the 

average of 5 readings with the 0.03-ml sessile drop method and calculated by the 

Dinocapture 2.0 software.  

 

Figure 3.10 Dino-Lite digital microscope for contact angle measurement [96]. 

 

3.3.2 Surface stability of functionalized silicon specimens 

The WCAs of silicon specimens were recorded 2, 4 and 8 days after treatment. By 

observing the change of the contact angle of a specimen, the stability of the surface can 

be examined. A smaller change in the contact angle over time suggests a more stable 
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surface.  

 

3.3.3 X-ray photoelectron spectroscopy 

The chemical composition of the coatings was obtained by XPS using an AXIS Supra 

or Ultra DLD spectrometer with a monochromatic Al Kα radiation (1486.6 eV) source 

at a power of 225 W (Supra) or 150 W (Ultra) and a take-off angle of 90 degrees relative 

to the specimen surface. The X-ray analysis area was 700 μm by 300 μm. All 

measurements were carried out in the fixed analyzer transmission mode with the 

pressure of the instrument below 5•10-9 mbar. The spectra of survey scans were 

recorded over a binding energy range from -5 eV to 1200 eV with an energy resolution 

of ΔE = 1.000 eV. For measurements of C1s core spectra, a binding energy range from 

270 eV to 292 eV with an energy resolution of ΔE = 0.100 eV was employed. The pass 

energies used for survey scans and high resolution scans were 160 eV and 20 eV, 

respectively. To prevent the specimen surfaces from being affected, neither an 

ion/electron neutralizer nor an argon sputtering cleaning process was performed during 

the measurements. The acquisition time to obtain the C1s core spectra was 5 minutes. 

The C1s core spectra of the surfaces were fitted using Gaussian-Lorentzian product 

lineshapes GL(30) via CasaXPS software (version 2.3.16), Shirley background 

subtraction was utilized and sample charging was considered by referencing all peaks 

relative to the hydrocarbon peak at 285.0 eV. 

 

Specimens were enclosed in aluminum foils, transported and analyzed by XPS 
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immediately after preparation to limit their exposure to atmosphere.  

 

Silicon wafer specimens were directly mounted on the sample holder covered with 

double sided carbon tape.  

 

For CFs analysis, the process of mounting CF samples were initiated by putting a long 

piece of double sided tape on the sample holder and then a small piece of indium foil 

in the middle of the tape. The CF samples were then draped across the indium foil and 

adhered to the exposed sticky tape (on either side of it). All analyses were recorded 

from the CFs above the indium foil and the direction of the X-ray was parallel to the 

longitudinal axis of the CFs. In this way, the samples should be electrically isolated to 

avoid any differential charging, and the signal amount that has not come from the CFs 

but instead from exposed substrate will be indicated by a strong indium signal in the 

survey scan. 

 

 

3.4 Carboxyl derivatization 

In this study, XPS was utilized to estimate the present of carboxylic acid functional 

groups on the APP process modified surface. However, the energy peak at 289.2 eV in 

the C1s core level presents both COOR/COOH functional groups. Therefore, to further 

confirm the presence of the 289.2 eV peak that stands for carboxylic acid functional, 

which is desired in this process, the 2,2,2-trifluoroethanol (TFE) derivatization 
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technique in conjuction with XPS analysis was employed. TFE reacts only with 

carboxylic acid groups, thus, promises advantages on the analysis of surfaces that are 

not amenable to be investigated directly by XPS.  

 

The mechanism of TFE on a carboxylic surface is shown in Figure 3.11. The specimens 

were fixed on a microscope slide and placed inside a glass jar. TFE (0.9 mL), pyridine 

(0.4 mL, as catalyst) and di-tert-butylcarbodiimide (Di-tBuC, 0.3 mL, as drying agent) 

were sequentially introduced into the glass jar (below the microscope slide) at 15-min 

intervals [135].  

 

Figure 3.11 TFE derivatization reaction with carboxylic acid groups. 
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3.5 Design of the healing agent 

The design of the ionomer self-healing network in this research was inspired by the 

concept reported by Hayes et al. [20, 129]. With the participation of the ionomer 

healing agent, a thermo-induced healing event can be executed.  

 

This research proposed an ionomer healing agent synthesized by end-capping 

DGEBA with 4-amino-sodium salicylate. The most commonly used DGEBA 

possesses a high molecular weight of 44000 g/mol, which results in the difficulty for 

the healing agent to diffuse during the healing event due to an increased viscosity. 

Jones et al. [136] addressed this issue by using a low-molecular-weight (6100 or 4000 

g/mol) DGEBA to prepare the healing agent. However, the DGEBA with a molecular 

weight of 6100 or 4000 g/mol has been discontinued from the product line. Therefore, 

DGEBA with a molecular weight of around 1075 g/mol was utilized in this work. 

 

This low-molecular-weight DGEBA-based ionomer healing agent was designed to be 

blended into LY 5052 epoxy resin, which acts as the matrix for the self-healing 

composite. In the cured epoxy resin, the ionomer healing agents bond with the 

polymer network via hydrogen bonds or with each other due to ion agglomeration, 

which creates a higher molecular size of the healing agent and further reduces the 

impact on the mechanical properties of the epoxy resin matrix.  

 

When fracture or debonding occurs, the healing event can be triggered by raising the 
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temperature, which results in uncoupling the ionomer healing agents from the rigid 

epoxy resin network and each other, then diffusing and migrating to the fracture or 

debonding site, finally reacting with each other or functional groups on the fiber 

surface, for repairing fracture or debonding, respectively. 

 

The feature of the ionomer healing agent is that it assembles reversibly so that the 

diffusion of a low-molecular-weight healing agent during healing event is more 

efficient, but for the stable healed resin it reassembles to a higher molecular weight 

and ensures molecular entanglement across the crack or debonding. 

 

3.6 Synthesis of the ionomer healing agent 

The healing agent designed in this study was prepared by end-capping DGEBA with 4-

amino-sodium salicylate (Figure 3.12). The concept for designing this ionomer healing 

agent has been described in Chapter 3.5 and the process for the ionomer healing agent 

synthesis was inspired from studies of Jones et al. [136, 137]. The DGEBA was blended 

with the 4-amino-sodium salicylate in a 1:2 stoichiometric formulation and ground into 

fine powder using mortar and pestle. The mixture was then placed in a vacuum oven at 

130°C for 45 minutes to react and grinded into fine powder again after reaction.  
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Figure 3.12 Preparation of ionomer: 4-amino-sodium salicylate end-capped DGEBA 

[137]. 

 

 

3.7 Sample preparation for testing 

3.7.1 Preparation of epoxy resin samples 

To prepare unmodified epoxy samples, Araldite LY 5052 resin was blended with 

Aradur 5052 hardener to a 100:38 formulation. The blended resin was degased for 15 

minutes in a rotary evaporator at 23°C, then cast into silicone moulds for curing at 23°C 

for 1 day and post-cured for 4 hours at 100°C.  

 

3.7.2 Preparation of ionomer-modified epoxy resin samples 

For the ionomer-modified specimens, the healing agent (ionomer-modified DGEBA) 

was dissolved in Araldite LY 5052 resin, which was prepared by the process described 
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in Chapter 3.7.1, at a concentration of 7.5 wt% to maintain complete miscibility of the 

ionomer healing agent in the Araldite LY 5052. The mixture was heated in an oil bath 

(Figure 3.13) and stirred at 130°C for 3 hours, then removed from the oil bath and 

cooled down to room temperature. After being degassed for 30 minutes in a rotary 

evaporator, the ionomer-modified Araldite LY 5052 resin was blended with Aradur 

5052 hardener to a 100:38 formulation. 

 

 

 

Figure 3.13 Schematic diagram of the experimental setup for preparing ionomer-

modified epoxy resin.   

 

3.8 Single-edge notched beam test 

Before being applied as the matrix for the self-reassemble CF composite, the healing 

efficiency of the ionomer system, Araldite LY 5052 resin containing 4-amino-sodium 

salicylate end-capped DGEBA, was studied using a modified single-edge notched 

bending (SENB) test reported by Ma et al. [138]. Specimens (virgin and ionomer 
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modified) were prepared basing on ISO 13586 standard in a size of 11.0 mm (width), 

4.5 mm (thickness) and 68.0 mm (overall length), and a pre-crack was made by lightly 

tapping a razor blade in each sample. 

 

The ISO 13586 standard for preparing a conventional SENB specimen suggests 

manufacturing a notch on the specimen, then creating a pre-crack across the root of the 

notch by tapping a fresh razor blade into it. Compared to the conventional SENB 

specimen (Figure 3.14), the modified specimen does not require manufacturing a notch. 

This addresses the concern that the remaining width of the SENB specimen after notch 

preparation (which takes around 3 mm in this case) is not sufficient to accommodate an 

instantly sharp pre-crack initiated by the tapping.  

 

 

Figure 3.14 Geometry of the (a) conventional single edge-notch bending specimen (b) 

modified single edge-notch bending specimen.   

 

Specimens were mounted on the platform of a three-point bending machine, with a span 

of 44 mm, and loaded to failure by a Lloyd universal testing machine using a 500-N 

static load cell. The fractured surfaces of the tested specimens were placed and gently 

clamped together, then put into an oven at 120 °C for 2 h to trigger and perform healing 
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(1st healing event). The specimen after the 1st healing event was then loaded to failure 

again using the method described above and the failure load (N) was recorded. This 

healing process was employed on the same specimen one more time (2nd healing event), 

then loaded to failure again. Healing efficiency (%) was calculated by dividing the 

failure load of a sample after the 1st or 2nd healing event to that before healing.  

 

 

3.9 Simulation of potential interface healing using ionomer 

adsorption 

The mechanism of an ionomer healing system has been described in Chapter 2. Based 

on the ionomer mechanism, the approach of designing self-healable composite 

materials in this study is to develop an ionomer healing agent by end-capping DGEBA 

with 4-amino-sodium salicylate, which introduces sodium carboxylate functional 

groups on the two end groups of DGEBA. These sodium carboxylate functional groups 

can ionically react not only with each other for repairing crack(s) inside the matrix but 

also with carboxylic acid functional groups from APP/AAc-grafted CFs to repair 

debonding and heal interfaces between the matrix and the fibers.  
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Therefore, after examining the capability of thermo-induced self-healing on ionomer-

modified epoxy resin, the interaction of functional groups between the ionomer healing 

agent and the APP/AAc-grafted surface is also an important topic to investigate. 

 

As the sodium carboxylate functional groups are located on the 4-amino-sodium 

salicylate end-capped end groups, a neat or Ar-APP/AAc-grafted silicon specimen was 

immersed in 7.5 wt% of 4-amino-sodium salicylate in isopropanol. After a 5-minute 

immersion, the silicon surface was washed three times with isopropanol, dried at room 

temperature and then analysed by XPS. By observing the presence of sodium and 

nitrogen, which can only be obtained from the ionomer healing agent, the effects of 

functional groups reactions between the APP- functionalized surface and the ionomer 

healing agent can be evaluated. The result of the evaluation can further demonstrate the 

potential of applying the self-healing system and the APP process to the preparation of 

self-healing composites. 

 

After preliminary results had observed the performance of functional groups reaction, 

the same immersion procedure was utilized on: (a) neat or Ar-APP/AAc-grafted silicon 

specimens immersed in isopropanol (as control to estimate the effects of isopropanol 

on this experiment); (b) neat or Ar-APP/AAc-grafted silicon specimens immersed in 

7.5 wt% of ionomer healing agent in isopropanol; and (c) neat or Ar-APP/AAc-grafted 
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CF bundles immersed in 7.5 wt% of ionomer healing agent in isopropanol. Samples 

were then analysed via XPS to estimate the functional groups interaction between the 

functionalized surfaces (carboxylic acid groups) and the ionomer healing agents 

(sodium carboxylate groups).    

 

3.10 Interfacial healing performance 

To further examine the interfacial healing performance, APP-functionalized CF 

bundles were embedded into ionomer-modified epoxy resin to prepare self-healing 

composite samples (shown in Figure 3.15). The sample was in a size of 10 mm (width), 

5 mm (thickness) and 35 mm (overall length) and with a transverse bundle of CFs (3 

mm in width) in the middle of it. It was loaded to failure to create a debonding along 

the interface between the ionomer-modified matrix and the APP-functionalized CF 

bundle. The fracture surface (debonding site) of a tested sample was placed and gently 

clamped together, then put into an oven at 120°C for 2 h to trigger and perform 

interfacial healing (1st healing event). The sample was loaded to failure again and the 

same healing process was performed (2nd healing event). The interface between the 

APP-functionalized CF bundle and the ionomer-modified epoxy resin matrix was 

observed by a Dino-Lite digital microscope before and after every healing event.  
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Figure 3.15 Diagram of the observation of interfacial healing performance. 
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Chapter 4 Results 

4.1 Wettability 

4.1.1 Introduction 

The wettability was assessed by recording the contact angle with water to preliminarily 

indicate the effects of the functionalization. WCA measurements of specimens treated 

with different parameters, which are neat silicon wafer (control), silicon wafer with 

argon or air plasma activation only, and silicon wafer with argon or air plasma 

activation followed by AAc vapour grafting, were monitored. Table 4.1 and 4.2 

illustrate the parameters of specimen treatments and the abbreviations of them. 

 

 

Table 4.1 Parameters of argon atmospheric pressure plasma treatments. 
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Table 4.2 Parameters of air atmospheric pressure plasma treatments. 

 

 

4.1.2 Surface wettability of silicon specimens 

The images presented in Figure 4.1 exhibit an observable difference only between the 

neat silicon surface and the APP/AAc-grafted surface. However, a significant change 

of WCA after plasma activation and AAc vapour grafting can be observed in Figure 

4.2. The silicon surfaces became more hydrophilic after atmospheric pressure plasma 

activation. The APP-activated silicon surface was found to be more hydrophobic after 

AAc-grafting, which preliminarily confirmed the effects of the functionalization. 

 

Figure 4.1 Images of silicon surfaces (a) neat (b) activated by a 5-second argon plasma 

(c) activated by a 5-second argon plasma with 10-minute AAc-grafted (samples are 10 

mm x 10 mm). 
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Figure 4.2 Images of WCA on silicon wafers (a) neat (b) 5-second argon plasma 

activated (c) 10-second argon plasma activated (d) 5-second argon plasma activated 

with 10-minute AAc-grafted (e) 10-second argon plasma activated with 10-minute 

AAc-grafted. 

 

To further estimate the effects of plasma working gas, plasma treatment and AAc 

grafting time on the surface wettability of the silicon surface, more results were 

collected and illustrated for comparison.  

    

From Table 4.3, it can be seen that the WCA of the silicon wafers dropped from 56.1±

0.8° (neat) to 4.6±0.2° after a 5-second argon plasma activation, then rose to 10.5±0.4°, 

10.8±0.6°, 9.5±3.4° or 6.8±1.0° after AAc vapour grafting for 1, 3, 5 or 10 minutes, 

respectively. 

 



 

71 
 

Table 4.3 Summary of WCA measurement of Ar-APP (5s) and AAc grafted silicon 

specimens. 

Sample CTRL Ar-APP 
Ar-APP activation (5s)/AAc grafting 

Ar-1 Ar-3 Ar-5 Ar-10 

WCA 

(degrees) 
56.1±0.8 4.6±0.2 10.5±0.4 10.8±0.6 9.5±3.4 6.8±1.0 

 

Table 4.4 shows that the WCA of the silicon wafers decreased from 56.1±0.8 degrees 

(neat) to 4.1±0.3° degrees after a 10-second argon plasma activation and increased to 

5.4±1.0°, 6.9±0.8°, 4.8±0.3° or 6.1±0.3° degrees after AAc vapour grafting for 1, 3, 5 

or 10 minutes, respectively. 

 

Table 4.4 Summary of WCA measurement of Ar-APP (10s) and AAc grafted silicon 

specimens. 

Sample CTRL Ar-APP-10 
Ar-APP activation (10s)/AAc grafting 

Ar-1-10 Ar-3-10 Ar-5-10 Ar-10-10 

WCA 

(degrees) 
56.1±0.8 4.1±0.3 5.4±1.0 6.9±0.8 4.8±0.3 6.1±0.3 

 

As for silicon wafers activated by a 5-second air plasma, the WCA dropped from 56.1

±0.8 degrees (neat) to 8.2±0.2 degrees after a 5-second air plasma activation and 

elevated to 13.3±1.4, 13.7.±1.9, 14.5±0.7 or 16.1±0.2 degrees after AAc vapour grafting 

for 1, 3, 5 or 10 minutes, respectively (Table 4.5). 
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Table 4.5 Summary of WCA measurement of Air-APP (5s) and AAc grafted silicon 

specimens. 

Sample CTRL Air-APP 
Air-APP activation (5s)/AAc grafting 

Air-1 Air-3 Air-5 Air-10 

WCA 

(degrees) 
56.1±0.8 8.2±0.2 13.3±1.4 13.7±1.9 14.5±0.7 16.1±0.2 

 

4.1.3 Surface stability of functionalized silicon specimens 

The WCAs of silicon specimens were recorded 2, 4 and 8 days after the treatments. 

By observing the change of contact angle of a specimen, the stability of the surface 

can be examined.  

 

The contact angles with water from silicon specimen treated with different parameters 

are illustrated in Table 4.6. While the neat silicon surface exhibited a contact angle of 

56.1±0.8°, the WCA changed from 4.6±0.2° to 11.5±0.4°, then to 10.5±0.6° and to 

20.9±1.2° 2, 4 and 8 days after Ar-APP activation, respectively. Similar results were 

observed on the Air-APP activated silicon surface, as the WCA rose from 8.2±0.2° 

(Day 0) to 14.0±0.9° (Day 2), 14.6±1.0° (Day 4) and 21.3±0.6° (Day 8). The 

wettability change of the Ar-APP activated/AAc vapour grafted silicon surface with 

time was also monitored, which showed an increase of WCA from 6.8±1.0° (Day 0) 

to 16.4±1.9° (Day 2), 19.1±1.7° (Day 4) and 22.2±1.7° (Day 8). For silicon treated by 

Air-APP activation/AAc vapour grafting, its WCA altered from 16.1±0.2° (Day 0) to 

21.8±1.8° (Day 2), 30.4±2.3° (Day 4) and 26.6±1.3° (Day 8). 
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Table 4.6 WCAs of silicon specimens after different APP treatments. 

APP 

parameters 

Time After APP Treatment (Day) Decay of 

Hydrophlicity* 0 2 4 8 

Ar-APP 4.6±0.2° 11.5±0.4° 10.5±0.6° 20.9±1.2° 16.3° 

Ar-10 6.8±1.0° 16.4±1.9° 19.1±1.7° 22.2±1.7° 15.4° 

Air-APP 8.2±0.2° 14.0±0.9° 14.6±1.0° 21.3±0.6° 13.1° 

Air-10 16.1±0.2° 21.8±1.8° 30.4±2.3° 26.6±1.3° 10.5° 

*8 days after APP treatment. 

 

4.2 X-ray photoelectron spectroscopy 

4.2.1 Introduction 

In this study, XPS was utilised to identify the presence of carboxylic acid functional 

groups on the surface, which further indicates the effects of the functionalization. The 

peak at the binding energy of 289.2 eV was used to determine the contribution of the 

carboxylic acid groups deposited onto the surface because it not only fits into -COOH 

components in the C1s spectrum of poly-AAc [139] but also was absent in the C1s 

spectrum of the untreated silicon wafer.  

The intensity of the 289.2 eV peak in the C1s core level spectrum of silicon specimen 

treated with different parameters was summarized and compared in Table 4.7.  
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Table 4.7 Summary of surface carboxylic acid functional groups on silicon wafers 

modified by APP or AAc grafting (XPS: C1s 289.2 eV). 

Parameter 
Atomic percentage of 

carboxylic acid groups (%) 

CTRL (untreated)  

(Figure 4.3) 
0 

Ar- or Air-APP Activation  

(Figures 4.4 and 4.5) 
0 

Ar-APP activation (5s)/ 

AAc grafting  

(Figure 4.6) 

Ar-1     3.65 

Ar-3     13.89 

Ar-5     16.88 

Ar-10     19.72 

Ar-APP activation (10s)/ 

AAc grafting  

(Figure 4.7) 

Ar-1-10     8.75 

Ar-3-10     17.14 

Ar-5-10     17.33 

Ar-10-10     16.33 

Air-APP activation (5s)/ 

AAc grafting 

(Figure 4.8) 

Air-1     15.64 

Air-3     18.30 

Air-5     17.91 

Air-10     20.30 

Conventional Ar-APP Ar-60s-Mix     13.36 

 

 

4.2.2 Argon atmospheric pressure plasma activated silicon surfaces 

From the untreated silicon wafer surface, there was no retention of carboxylic acid 

groups as no peak at 289.2 eV was detected (Figure 4.3). After a 5-second (Figure 4.4) 

or 10-second (Figure 4.5) Ar-APP activation, similar to the neat silicon wafer, oxygen, 
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silicon and a small percent of carbon were identified on the surfaces. Compared to the 

neat silicon surface, peak intensities at 285.0 eV and 286.7 eV were similar after a 5-

second argon plasma activation (86.29% and 13.71%, respectively), but altered after a 

10-second argon plasma activation (75.79% and 24.21%, respectively). No peak at 

289.2 eV was observed after Ar-APP activation.   
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Figure 4.3 XPS survey scan (a) and C1s core level spectrum (b) from a neat silicon 

wafer surface. 
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Figure 4.4 XPS survey scan (a) and C1s core level spectrum (b) from a 5-second Ar-

APP activated silicon wafer surface. 
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Figure 4.5 XPS survey scan (a) and C1s core level spectrum (b) from a 10-second Ar-

APP activated silicon wafer surface. 
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For the 5-second Ar-APP activated silicon, after the subsequent AAc vapour grafting, 

the peak intensity at 289.2 eV increased from 0% to 3.65% (1 min grafting), 13.89% (3 

min grafting), 16.88% (5 min grafting) and 19.72% (10 min grafting) (Figure 4.6).  
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Figure 4.6 C1s core level spectra from silicon surfaces activated by the 5-second Ar-

APP with AAc vapour grafting for (a) 1 minute (b) 3 minutes (c) 5 minutes and (d) 10 

minutes. 
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A similar trend was observed on silicon after a 10-second Ar-APP activation and 

subsequent AAc vapour grafting. By increasing the AAc grafting time from 0 to 1 

minute, 3 minutes, 5 minutes and 10 minutes, the atomic percentage of 289.2 eV in C1s 

altered from 0% to 8.75%, 17.14%, 17.33% and 16.33%, respectively (Figure 4.7).  
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Figure 4.7 C1s core level spectra from silicon surfaces activated by the 10-second Ar-

APP with AAc vapour grafting for (a) 1 minute (b) 3 minutes (c) 5 minutes and (d) 10 

minutes. 
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4.2.3 Air atmospheric pressure plasma activated silicon surfaces 

In the case of silicon activated by a 10-second Air-APP activation, the peak intensity at 

289.2 eV was observed to increase from 0% to 15.64%, 18.30%, 17.91% and 20.30%, 

after the subsequent AAc vapour grafting for 1 minute, 3 minutes, 5 minutes and 10 

minutes, respectively (Figure 4.8). 
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Figure 4.8 C1s core level spectra from silicon surfaces activated by the 5-second Air-

APP with AAc vapour grafting for (a) 1 minute (b) 3 minutes (c) 5 minutes and (d) 10 

minutes. 



 

88 
 

4.2.4 Conventional argon atmospheric pressure plasma activated silicon surface  

For silicon treated by the conventional Ar-APP process, which exposed the AAc vapour 

directly under a plasma glow for 60 seconds, a 13.36% intensity of carboxylic acid 

group was identified (Ar-60s-MIX in Table 4.7). 

 

4.2.5 Argon atmospheric pressure plasma functionalized carbon fibers  

After the effects of the APP activation/AAc vapour grafting process on silicon were 

studied, the XPS analysis was also employed on CFs treated by the same process. As 

the analyses of CF samples were recorded from the fibers above the indium foil on the 

sample holder, the survey spectra of CF samples were checked and compared to the 

survey scan of the indium foil for the purpose of data selection to confirm the spectra 

are from CF samples, instead of the indium foil on the sample holder. XPS results (C1s 

core spectra) of the functionalized CFs after data selection are shown in Figure 4.9. For 

5-second Ar-APP activated CFs, the percentage of carboxylic acid functional groups 

(at around 289.2 eV) was observed to increase from 0% to 3.70%, 4.12%, 3.89% and 

4.92%, after the subsequent AAc vapour grafting for 1 minute, 3 minutes, 5 minutes 

and 10 minutes, respectively. The main peak at 285.0 eV corresponds to the graphitic 

peak of CFs. Other peaks in C1s spectra at binding energies around 286.5 eV, 287.9 eV 

and above 291.0 eV are assigned to the C-OR type groups, the C=O group and the π-

π* shake up satellite, respectively [140, 141]. 
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Figure 4.9 C1s core level spectra from CF surfaces activated by the 5-second Ar-APP 

with AAc vapour grafting for (a) 1 minute (b) 3 minutes (c) 5 minutes and (d) 10 

minutes. 
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4.2.6 2,2,2-Trifluoroethanol (TFE) derivatization 

To eliminate the concern that the peak at 289.2 eV in the C1s core level studied in this 

study might stand for -COOR group, a carboxylic derivatization test was also utilized 

to label the carboxylic acid groups on the surface.  

 

The results (Figure 4.10) show that after TFE derivatization, a small atomic percentage 

around 289.2 eV was detected on the neat silicon surface (3.90%) and the percentage 

increased to 10.20% after the surface was activated by the 5-second Ar-APP. No peak 

at around 293.0 eV was observed on both neat and Ar-APP activated silicon wafers. 

However, after TFE derivatization of the silicon wafer surface activated by the 5-

second Ar-APP with AAc vapour grafting for 10 minutes, the peak at the binding 

energy of 292.8 eV, which refers to CF3 and defines –COOH over –COOR, was 

observed, along with a 23.41% atomic percentage at 289.0 eV. The percentage of –

COOH functional groups introduced on the surface can then be evaluated (discussed in 

Chapter 5).  
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93 
 

 

Figure 4.10 C1s core level spectra after TFE derivatization (a) neat silicon surface (b) 

5-second Ar-APP activated silicon surface (c) silicon surface activated by the 5-second 

Ar-APP with AAc vapour grafting for 10 minutes. 

 

4.3 Ionomer-modified self-healing epoxy resin 

4.3.1 Introduction 

The concept of preparing a self-healing composite in this study focuses on using the 

functionalized CFs and ionomer-modified epoxy resin. The idea is that the sodium 

carboxylate functional groups in the ionomer-modified epoxy resin cannot only react 

with each other for repairing crack(s) inside the matrix but also with carboxylic acid 

functional groups on the APP-functionalized CFs to repair the debonding and heal the 
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interfaces between the matrix and the CFs. The effects of the APP functionalization 

on both silicon wafers and CFs and the stability of the functionalized surfaces were 

studied and confirmed via the results of wettability and XPS. In this chapter, the 

healing efficiency of the ionomer network, Araldite 5052 resin containing 4-amino-

sodium salicylate end-capped DGEBA, was recorded and compared to the unmodified 

network to examine its capability of self-healing. The interaction of functional groups 

between the APP-functionalized surfaces and ionomer healing agent was then studied 

via XPS. Finally, the interfacial healing performance was examined by observing the 

healing performance of a composite prepared by APP-functionalized CFs and the 

ionomer-modified epoxy resin.  

 

4.3.2 Healing efficiency of ionomer-modified epoxy resin 

Before embedding functionalized CFs into the ionomer-modified epoxy resin to 

prepare self-healing composites, the healing efficiency of the ionomer-modified epoxy 

resin was studied via the SENB test to evaluate the healing performance of the ionomer-

modified resin. The healing efficiency comparison between unmodified and ionomer-

modified systems was made to determine whether the formulation is suitable for self-

healing composites.  

 

The samples prepared with unmodified epoxy resin were made of Araldite LY 5052 

epoxy resin without any addition of an ionomer healing agent, while the ionomer-
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modified epoxy resin samples were prepared by using an ionomer-modified Araldite 

LY 5052 epoxy, which contains 7.5 wt% of ionomer healing agent (Figure 4.11).  

 

Figure 4.11 Images of (a) ionomer healing agent (b) the preparation of ionomer-

modified epoxy resin by heating the mixture in an oil bath at 130°C for 3 hours (c) 

ionomer-modified Araldite LY 5052 epoxy resin (d) SENB samples after the 1st healing 

event. 

 

The estimation of healing efficiency is described schematically in Figure 4.12. Samples 

were loaded to failure using the SENB test by a three-point bending machine, and the 

failure load (N) was recorded (101.30 N for unmodified epoxy resin sample and 91.06 

N for ionomer-modified epoxy resin sample). The fractured surfaces of the tested 

specimens were placed and gently clamped together, then put into an oven at 120 °C 

for 2 h to trigger and perform healing. This healing performance was defined as the 1st 

healing event. The samples, which were loaded to failure before, was then loaded to 

failure after the 1st healing event using the method described above, and the failure load 

was again recorded (15.44 N for unmodified epoxy resin sample and 28.29 N for 
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ionomer-modified epoxy resin sample). These samples were then healed using the same 

healing process (2nd healing event), then loaded to failure and recorded the failure load 

again (0 N for unmodified epoxy resin sample and 13.49 N for ionomer-modified epoxy 

resin sample). Healing efficiency (%) was calculated by dividing the failure load of a 

sample after the 1st or 2nd healing event to that before healing.  

 

Figure 4.12 Diagram of the healing efficiency evaluation. 
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For the unmodified epoxy resin sample, it required a force of 101.30 N to load it to 

failure. However, after the 1st healing event, only a force of 15.44 N is needed to break 

the sample. Thus, the healing efficiency was calculated and found to be 15.24%. After 

the 2nd healing event, no healing performance was observed. Therefore, the healing 

efficiency of the unmodified epoxy resin sample was 0%.  

For the ionomer-modified epoxy resin sample, a force of 91.06 N was required to break 

the sample. After the 1st healing event, a force of 28.29 N was sufficient to load the 

sample to failure. Noticeably, it still needed a load of 13.49 N to break the ionomer-

modified epoxy resin sample after the 2nd healing event. These results show the healing 

efficiencies of the ionomer-modified epoxy resin system after first (31.07%) and second 

(14.81%) healing events.   

Figure 4.13 represents the healing efficiency of unmodified and ionomer-modified 

epoxy specimens from SENB tests. The unmodified system exhibited a 15.24% healing 

efficiency, while the ionomer-modified system was observed with a 31.07% healing 

efficiency after the first healing event. After the second healing event, the unmodified 

system was not able to heal the fracture (0% healing efficiency), while the ionomer-

modified system showed a 14.81% healing efficiency.  



 

98 
 

 

Figure 4.13 Healing efficiency of unmodified and ionomer-modified epoxy specimens. 

 

4.3.3 Simulation of potential interface healing using ionomer adsorption  

The survey spectra from neat and AAc-grafted silicon surfaces after isopropanol 

immersion are presented in Figure 4.14. The presence of silicon, carbon and oxygen 

were spotted in the survey. Unlike the XPS results of the neat silicon surface, which 

was cleaned by isopropanol and distilled water with the process mentioned in Chapter 

3, a small atomic percentage of sodium was observed after isopropanol immersion. The 

peak assigned to sodium was also found on silicon specimens after immersing them in 

a 4-amino-sodium salicylate (7.5 wt% in isopropanol) solution.  

 

As shown in Figure 4.15, peaks assigned to silicon, carbon and oxygen were observed 

from the survey of neat and AAc-grafted silicon surfaces after 4-amino-sodium 
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salicylate immersion. The concentration of sodium on the neat silicon surface after 4-

amino-sodium salicylate immersion (0.08%, Figure 4.15 (a)) is similar to that after 

isopropanol immersion (0.19%, Figure 4.14 (a)). However, a higher atomic percentage 

of sodium (5.21%) and the presence of nitrogen were found on the AAc-grafted silicon 

surface after 4-amino-sodium salicylate immersion. 

 

The spectral survey of neat and AAc-grafted silicon surfaces after ionomer immersion 

(Figure 4.16) exhibited a similar trend to the XPS results from 4-amino-sodium 

salicylate immersion. The peaks related to silicon, carbon oxygen and sodium were 

spotted from the survey of both neat and AAc-grafted silicon surfaces, while higher 

atomic ratios of sodium (5.80%) and nitrogen (1.73%) were only observed on AAc-

grafted silicon surface after ionomer immersion.   

 

To further estimate the potential of employing both the Ar-APP/AAc grafting 

technology and ionomer system developed in this project to self-healing composite 

applications, the functional group reaction between the ionomer healing agent (sodium 

carboxylate groups) and the Ar-APP/AAc grafted silicon surface (carboxylic acid 

groups) was investigated (details were described in Chapter 3.10). 

 

Figure 4.17 shows the spectra survey of neat and AAc-grafted CF surfaces after 

ionomer immersion. Compared to the silicon surface, the CF surface exhibited a higher 
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percentage of carbon. The atomic percentage of carbon and sodium is higher on AAc-

grafted CF (77.23% carbon and 2.96% sodium) than on neat CF (74.49% carbon and 

0.50% sodium). Nitrogen was only detected on the AAc-grafted CF surface after 

ionomer immersion. 
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Figure 4.14 XPS survey spectra of silicon specimens after isopropanol immersion (a) 

neat silicon surface (b) silicon surface activated by the 5-second Ar-APP with AAc 

vapour grafting for 10 minutes. 
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Figure 4.15 XPS survey spectra of silicon specimens after 4-amino-sodium salicylate 

immersion (a) neat silicon surface (b) silicon surface activated by the 5-second Ar-APP 

with AAc vapour grafting for 10 minutes. 
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Figure 4.16 XPS survey spectra of silicon specimens after immersing in ionomer 

healing agent (a) neat silicon surface (b) silicon surface activated by the 5-second Ar-

APP with AAc vapour grafting for 10 minutes. 
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Figure 4.17 XPS survey spectra of CFs after immersing in ionomer healing agent (a) 

neat CF (b) CF activated by the 5-second Ar-APP with AAc vapour grafting for 10 

minutes. 
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4.3.4 Interfacial healing performance  

After the capability of functional group reactions between the APP-functionalized CFs 

and the ionomer healing agent and the healing efficiency of ionomer-modified epoxy 

resin were studied, healing performance on the interface between the APP-

functionalized CF bundle and ionomer-modified epoxy resin was investigated.  

 

It can be observed from Figure 4.18 that the crack site was healed after the 1st and 2nd 

healing events, suggesting the potential of interfacial healing between the APP-

functionalized CF bundle and the ionomer-modified epoxy resin after the healing 

events.  

 

Figure 4.18 Interfacial healing performance after the 1st and 2nd healing events.  
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Chapter 5 Discussion 

This study aims towards the development of a novel atmospheric pressure plasma 

process to functionalize CFs via retaining a high concentration of carboxylic acid 

functional groups, and further embedding functionalized CFs into an ionomer-modified 

epoxy resin, which was also developed in this research, to achieve a self-healing 

composite with improved mechanical properties. To estimate the effects of various 

parameters of the APP process on the surface, n-type silicon wafers were used for 

examinations of wettability and chemical composition via XPS. From the surface 

images in Figure 4.1, an observable difference can be seen on the silicon surface after 

Ar-APP/AAc-grafting, which suggests that AAc vapour was introduced on hydrophilic 

surface (Figure 4.1 (c)). This is further supported by wettability and XPS results.  

 

5.1 Surface wettability of silicon specimens 

The measurement of surface wettability is a preliminary method, prior to XPS analysis, 

to estimate the effect of the APP/AAc grafting functionalization, as the alternation of 

wettability reflects changes of the surface. A significant difference of surface 

wettability can be seen from Figure 4.2 and more detailed comparisons are illustrated 

in Figures 5.1 to 5.3. From the results of wettability, the contact angle with water was 

found to be the lowest after argon- or air-APP activation only. A similar result was also 

reported by Chen et al. [142], because of the free radicals or/and peroxide groups, which 

are introduced during APP activation. Argon-APP can form free radicals on the 
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substrate surface, which partially become peroxide groups after exposure to 

atmospheric gas. Air-APP offers free radicals and peroxide groups from both the APP 

working gas and exposing activated samples to the atmospheric gas. The free radicals 

or peroxide groups, which are introduced from the air-APP working gas, turn the 

surface hydrophilic and benefit the AAc vapour grafting. After APP activation with a 

subsequent AAc vapour grafting, it can be observed that the WCAs have increased. 

This is due to the fact that the Ar-APP /AAc vapour grafting process deposited a poly-

AAc like film containing non-polar groups on the surface, which are more hydrophobic 

than oxygen-contained polar groups produced by the APP activation. After treatment 

by different activation/grafting parameters, the WCAs of silicon surfaces decreased 

from 56.1±0.8° (neat silicon wafer) to between 4.1±0.3° and 9.5±3.4° (Ar-APP series) 

or 8.2±0.2° and 16.1±0.2° (Air-APP series), suggesting a preliminary effect of the APP 

activation/AAc grafting process on surface functionalization.  
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Figure 5.1 Comparison of the wettability of Ar-APP (5s) and AAc grafting. 

 

Figure 5.2 Comparison of the wettability of Ar-APP (10s) and AAc grafting. 
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Figure 5.3 Comparison of the wettability of Air-APP (5s) and AAc grafting. 

 

5.2 Surface stability of the functionalized silicon surfaces 

To investigate the functionalized surface stability, the WCAs of the silicon specimens 

were also measured 2, 4 and 8 days after treatment. By observing the change of WCA 

on a specimen, the stability of its surface can be evaluated. From the results illustrated 

in Table 4.3 and Figure 5.4, the increase of WCAs on silicon was observed with a longer 

time after treatment, which reflects a decrease of hydrophilicity. The decline of 

hydrophilicity is due to the interaction between the APP process treated surface and the 

atmospheric compounds. Therefore, for a silicon specimen, a lower degree on decay of 

hydrophilicity suggests that it possesses a more stable surface. Compared to the neat 

silicon surface (56.1±0.8°), APP process treated surfaces were found to be more 

hydrophilic even 8 days after treatments (between 20.9±1.2° and 26.6±1.3°). A higher 
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decrease of hydrophilicity is also observed on the APP-activated silicon surface, 

compared to that treated with APP activation/AAc vapour grafting. This indicates the 

high reactivity an APP-activated surface possesses, which not only proves the effects 

of the APP activation on the silicon surface but also supports the assumption that it is 

essential to perform an AAc-grafting process on the APP-activated surface, instead of 

using only APP-activation on silicon specimens or CFs. Although the decrease of 

hydrophilicity was observed to be higher on Ar-APP involved processes, it is not 

significantly different compared to processes using Air-APP. Since both Ar-APP and 

Air-APP processes developed in this work are capable of preparing a stable surface, 

silicon specimens treated by these processes were further examined by XPS to evaluate 

their effects on depositing carboxylic acid functional group. 

 

 Figure 5.4 WCAs of untreated and APP process treated silicon specimens 2, 4 and 8 

days after treatments. 
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5.3 X-ray photoelectron spectroscopy analyses of functionalized silicon 

surfaces 

In the C1s spectrum, the peak at 285.0 eV stands for C-C and C-H, 286.5 eV for C-OH 

and C-O-C functional groups, 287.8 eV for O-C-O and C=O groups and 289.2 eV for 

COOH/COOR groups. In this study, the focus was placed on the intensity of the peak 

at 289.2 eV to evaluate the carboxylic acid functional groups deposited on the surface, 

because it not only fits into -COOH components in the C1s spectrum of poly-AAc [139] 

but is also absent in the C1s core level spectrum of the untreated sample. There might 

be a concern that the peak at 289.2 eV, which may not only refer to carboxylic acid 

functional groups (-COOH) but also ester groups (-COOR), is from atmospheric gas as 

an atmospheric pressure plasma/vapour grafting process was employed in this study. 

However, the synthesis of ester groups (esterification) requires the reaction of alcohols 

and carboxylic acids, which requires carboxylic acids to be heated up, while the grafting 

process presented in this work is a room temperature process without the participation 

of alcohol groups. To further support this point, TFE derivatization, which is a process 

for labelling carboxylic acid functional groups, was employed to identify the functional 

groups after studying XPS results of the C1s core level on neat or APP/AAc-grafted 

specimens. 

 

XPS results showed that the peak at a binding energy of 289.2 eV was not observed on 

neat or APP activated silicon wafers but appeared on silicon wafers after APP activation 

and subsequent AAc vapour grafting. The concern that the peak intensity at 289.2 eV 
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may be due to the fragmentation of AAc during the plasma process was also considered, 

as for that reason the bespoke chamber was designed to prevent the precursor from 

fragmentation. The effect was proven as the silicon treated with AAc directly exposed 

to plasma glow exhibited a lower 289.2 eV peak intensity compared to silicon 

functionalized via the process developed in this thesis.  

 

For APP activated silicon, after AAc vapour grafting, the carboxylic acid percentage 

rose from 3.65% to 19.72% (5-second Ar-APP), 8.75% to 17.33% (10-second Ar-APP) 

or 15.64% to 20.30% (5-second Air-APP) with the increase of grafting time (Figure 

5.5). This showed the capability of this APP functionalization process for immobilizing 

high percentage of carboxylic acid functional groups, as the theoretical value of pure 

polyAAc is 33.33% [143].  

 



 

113 
 

 

Figure 5.5 Comparison of surface carboxylic acid groups on silicon modified by APP 

or AAc grafting (XPS: C1s 289.2 eV). 

 

To investigate the differences between this APP functionalization process and the 

conventional APP process, which exposed the precursor directly to plasma glow, a 

process was run to functionalize silicon wafers by exposing AAc vapour to Ar-APP. 

Unlike the process developed in this study, instead of running the APP nozzle for 5 or 

10 seconds, it required to operate the APP nozzle for 60 seconds to deposit 13.36% 

carboxylic acid groups on the silicon surface.  

 

As displayed in Figure 5.5, the Air-APP series were observed to be more efficient at 

introducing a higher fraction of carboxylic acid functional groups. A relatively higher 

plasma temperature, compared to Ar-APP, has limited their application on CFs or 



 

114 
 

polymer materials, which can not bear high temperature. On the other hand, the 5-

second Ar-APP series promised a carboxylic acid concentration after a 10-minute AAc 

grafting (19.72%), which is higher than that of the 10-second Ar-APP (16.33%) and 

similar to the value of the 5-second Air-APP series with a 10-minute AAc grafting 

(20.30%). Therefore, the process with a 5-second Ar-APP activation with subsequent 

10-minute AAc grafting was employed for the functionalization of CFs.  

 

5.4 X-ray photoelectron spectroscopy analyses of functionalized 

carbon fibers 

From the C1s spectra of functionalized CFs, the atomic percentage of carboxylic acid 

functional groups increase from 3.7% (1 min AAc grafting) to 4.92% (10 min AAc 

grafting). This is further supported by the change of the C1s peak pattern. For untreated 

CFs, due to the lack of functionality on their surfaces, the main C1s graphitic peak 

shows an asymmetric tailing towards high binding energy, which is referred to as 

conduction-band interaction and has also been observed on simple metal via XPS [144, 

145]. This tailing tended to decrease with an increase degree of CF surface 

functionalization because the graphitic rings of CFs were altered by oxygen-contained 

functional groups, which broke up the extended π-electron system which contributes to 

the conductivity in graphite [144]. Therefore, a decreasing atomic percentage of peaks 

at binding energies above 291.0 eV, which corresponds to π-π* shake up satellite, after 

increasing the AAc grafting time from 1 minute to 10 minutes was observed from the 
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C1s spectra results in this study, suggesting an increased degree of surface 

functionalization and further supporting the results concluded from the atomic 

percentage of peak at 289.2 eV. 

 

Compared to the XPS results on silicon surfaces treated under the same parameters, the 

percentage of carboxylic acid groups decreased on CFs activated by the 5-second Ar-

APP with AAc vapour grafting. This may due to the lack of free radicals on the surface 

due to the conductive nature of CFs, which limits the chance of AAc to react with free 

radicals or peroxides during AAc vapour grafting, therefore resulting in a lower 

percentage of carboxylic acid functional groups on the surface. 

 

5.5 TFE derivatization of functionalized surfaces 

Figure 4.10 (a) and (b) show the C1s core level spectra from TFE derivatized neat and 

Ar-APP activated silicon surfaces. From the TFE derivatized neat silicon surface, peaks 

at binding energies of around 285.0 eV, 286.9 eV and 289.0 eV were found. The 

intensity of the peaks at around 285.0 eV (79.32%) and 286.9 eV (16.78%) from the 

derivatized neat silicon surface is similar to the neat silicon specimen, which exhibited 

atomic ratios of 85.84% at 285.0 eV and 14.16% at 286.9 eV. The presence of a peak 

at 293.0 eV, which stands for CF3 and reflects the labelled carboxylic acid groups, was 

observed. This result proved the reliability of the TFE derivatization process utilized in 

this research as not only the process did not introduce a significant amount of additional 
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functional groups on the specimen but also no carboxylic acid groups, which should 

not exist on the neat silicon surface, was labelled and detected. However, a 3.90% 

atomic percentage at a binding energy of 289.0 eV, which stands for the presence of -

COOR group, was observed. The peak observation at 289.0 eV on the neat surface 

without carboxylic acid groups has also been reported [146], which might be due to 

contamination (e.g., stearates) from the solvent or the glass chamber.  

 

After the Ar-APP activated silicon surface was derivatized by TFE, increased atomic 

ratios at around 286.8 eV and 289.2 eV were spotted. The peak at 286.8 eV, which 

stands for the C-OH component, was contributed by 2,2,2-trifluoroethanol. The -COOR 

groups, as described in the case of the TFE-derivatized neat silicon surface, might be 

the contamination from the solvent or the glass jar. For the Ar-APP activated silicon 

surface, the presence of free radicals and peroxide groups has made the surface more 

hydrophilic (4.1±0.3°) than untreated silicon (56.1±0.8°), which has further retained 

more solvent, including 2,2,2-trifluoroethanol, on the surface after TFE derivatization. 

Therefore, a higher peak percentage at 286.8 eV and 289.2 eV was observed. Since 

AAc grafting was not performed here, it is reasonable that no peak at 293.0 eV was 

found. 

 

For the 5-second Ar-APP activated/10-min AAc-grafted silicon surface, a peak at a 

binding energy of 292.8 eV was observed after TFE derivatization. The presence of the 

peak at 292.8 eV indicates the labelled carboxylic acid functional groups, which further 
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proves that the atmospheric pressure plasma activating/AAc vapour grafting process 

developed in this project is capable of introducing carboxylic acid functional groups on 

the specimen surface. Noticeably, a 23.41% peak intensity at 289.08 eV was also 

detected. In this case, it is presumed that this is contributed by not only the 

contamination from the solvent/reaction chamber but also by/from carboxylic acid 

functional groups. Although the derivatization process using TFE/di-tBuC/pyridine is 

one of the most promising acid labelling techniques, the labelling efficiency, which 

reflects the percentage of carboxylic acid functional groups this technology is able to 

label, varies from research to research [135] and can be influenced by the reacting time 

and the size of reacting chamber. The labelling efficiency has been reported as 75% or 

87 ± 15% [147], and the size of the reacting chamber was not the same as used in this 

project. Moreover, from Figure 4.10 (b), a 10.20% intensity of the 289.19 eV peak can 

be observed on the carboxylic acid group free silicon surface. In the case of the Ar-APP 

activated/AAc-grafted silicon surface (Figure 4.10 (c)), assuming that 23.41% of the 

289.08 eV peak contains 10.20% of the contamination from the solvent/reaction 

chamber, the rest (13.21%) may be carboxylic acid groups. In addition to the labelled 

5.36%, 18.57% of carboxylic acid functional groups might be actually on the surface, 

which is similar to the XPS results of silicon surfaces activated by a 5-second Ar-APP 

with a subsequent 10-min vapour AAc grafting (19.72%), as shown in Figure 4.6 (d).  
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5.6 Healing efficiency of the ionomer-modified epoxy resin 

For the matrix of the self-healing composite, LY 5052 epoxy resin containing 7.5 wt% 

ionomer healing agent was used, as a higher percentage above 7.5 wt% may cause 

healing efficiency falling off due to phase separation [128]. The ionomer healing agent 

is a 4-amino-sodium salicylate end-capped DGEBA. Before being applied as the matrix 

for the self-reassemble composite, the healing efficiency of this ionomer-modified 

epoxy resin was examined by the SENB test. Compared to the neat LY 5052 epoxy 

resin, the ionomer-modified network showed a higher healing efficiency after the first 

healing event (31.07% to 15.24%) and the trend was more obvious after the second 

healing event. After the second healing event, the unmodified epoxy network lost the 

healing function, while the ionomer-modified system still exhibited a healing efficiency 

of 14.81%.  

 

The 15.24% healing efficiency monitored on the unmodified network after the first 

event may be due to some continued curing of the epoxy during the healing process, 

which is able to bind the fracture site of the specimen. However, after the first healing 

event, the unmodified system lost the healing ability because of the decreased 

concentration and availability of these reactive groups within the network. 

 

On the other hand, the healing performance of the ionomer-modified system is achieved 

since ionomer healing agents diffused and entangled on the fracture site. During the 
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thermo-induced healing event, the ionomer healing agent lost its attractions (hydrogen 

bonding) with the rigid LY5052 epoxy network, and migrated to the fracture surface. 

After the temperature started to drop to room temperature, the sodium carboxylate 

groups on the 4-amino-sodium salicylate end-capped end groups of the ionomer healing 

agent tended to cluster together and healed the fracture. The SENB results suggest that 

compared to the neat LY 5052 epoxy resin network, the superior mendable system, 

which was made in this study through the ionomer-modification, is a potential system 

to be applied to the matrix for self-healing composite usage. 

 

Although the ionomer-modified epoxy resin developed in this research has exhibited 

the capability of thermo-induced self-healing, the interaction between the matrix and 

the fibers is also an important topic to investigate. The approach of preparing a self-

healing composite in this study focuses on the ionic bonding between the functional 

groups of the ionomer healing agent and the fibers. These functional groups are the 

sodium carboxylate groups, which are at the two ends of the ionomer healing agent (4-

amino-sodium salicylate end-capped DGEBA), and carboxylic acid functional groups 

on the surface of the functionalized CFs. Therefore, this research also investigated the 

reaction between the Ar-APP/AAc-grafting process introduced carboxylic acid groups 

and the sodium carboxylate groups from the ionomer healing agent.  
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5.7 Simulation of potential interface healing using ionomer adsorption 

Since the functional groups of the ionomer healing agent are located on the two end-

capped groups of the DGEBA, which are end-capped by 4-amino-sodium salicylate, 

the first approach of examining the effects of the functional groups interaction was 

carried out by immersing neat or Ar-APP/AAc-grafted silicon specimen in isopropanol 

with 7.5 wt% of 4-amino-sodium salicylate. Prior to the 4-amino-sodium salicylate 

immersion, neat and Ar-APP/AAc-grafted silicon specimens were immersed in pure 

isopropanol and surface elements were identified via XPS to examine the influence of 

isopropanol on the immersion experiment. It is crucial to monitor the surface atomic 

percentage of sodium and nitrogen in the immersion experiment, as in this examination 

these elements only exist in 4-amino-sodium salicylate and the ionomer healing agent 

(4-amino-sodium salicylate end-capped DGEBA).  

 

The survey spectra of neat and Ar-APP/AAc-grafted silicon specimens after 

isopropanol immersion is shown in Figure 4.14. Comparing Figure 4.14 (a) to (b), it 

can be observed that the atomic percentage of carbon on the Ar-APP/AAc-grafted 

silicon surface (14.56%) is almost double to that on the neat silicon surface (7.96%), 

which is because of the carboxylic acid functional groups introduced by AAc grafting. 

The survey spectra of the neat silicon surface after immersion is almost the same as that 

of the cleaned neat silicon surface, but 0.19% of sodium was observed. It may be 

contamination from the solvent, because unlike the cleaned silicon wafer surface, which 

was ultrasonically washed by isopropanol and then subsequently rinsed twice with 
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HPLC grade water, the neat or Ar-APP/AAc grafted silicon sample was only immersed 

once in isopropanol and left to dry up before XPS analysis. The elemental percentage 

of sodium is higher (0.46%) on the Ar-APP/AAc grafted silicon sample than the neat 

silicon surface (0.19%). As described before, the contamination from the solvent may 

have contributed to the sodium atomic ratio. This result is reasonable as the Ar-

APP/AAc grafted surface is more hydrophilic than the neat silicon surface, which 

results in retaining more solvent on the surface, thus contains more sodium on the 

surface. The percentage of sodium on neat or Ar-APP/AAc-grafted silicon surface after 

isopropanol immersion is minor, but can be a reference for further experiments of 4-

amino-sodium salicylate immersion.  

 

Figure 4.15 illustrates the XPS survey spectra of neat and Ar-APP/AAc-grafted silicon 

surface after 4-amino-sodium salicylate immersion. Similar to the trend in Figure 4.14, 

the atomic percentage of carbon on the Ar-APP/AAc-grafted silicon surface (33.94%) 

is higher than that on the neat silicon surface (29.21%), due to the carboxylic acid 

functional group deposited via AAc-grafting. 0.08 % of sodium was found on the neat 

silicon surface. This percentage is not only low but also similar to the neat silicon 

surface immersed in only isopropanol (0.19%, Figure 4.14 (a)). Therefore, the sodium 

might be contributed not by the 4-amino-sodium salicylate but by the solvent. The 

survey spectrum of the Ar-APP/AAc-grafted silicon surface (Figure 4.15 (b)) exhibited 

not only a higher percentage of sodium (5.21%) but also the presence of nitrogen 

(3.24%). In comparison to the survey spectrum in Figure 4.14 (b), the atomic 
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percentage of sodium is around 10 times higher on the Ar-APP/AAc-grafted silicon 

surface after 4-amino-sodium salicylate immersion. Additionally, 3.24% nitrogen, 

which can only be contributed by the 4-aminosalicylic acid sodium salt in this 

examination, was observed only on the Ar-APP/AAc-grafted silicon surface. Because 

of the absence of carboxylic acid functional groups on the neat silicon surface, 4-amino-

sodium salicylate, which was not ionically bonded to the surface, was washed out after 

immersion. In contrast, 4-amino-sodium salicylate was retained and observed on the 

Ar-APP/AAc-grafted silicon surface, which contains carboxylic acid functional groups, 

suggesting that functional group reactions, which play an important role in self-healing, 

happened between the 4-amino-sodium salicylate and the carboxylic acid groups.  

 

To further support the hypothesis and concept of the self-healing mechanism in this 

study, another approach was executed to study the effects of functional groups reaction 

between the ionomer healing agent and the fiber for the simulation of potential interface 

healing. Previous results from this study have proven that carboxylic acid functional 

groups are capable of being ionically bonded to sodium carboxylate groups from 4-

aminosalicylic acid sodium salt. However, it is still necessary to estimate the effects of 

the binding when carboxylic acid functional groups react with the ionomer healing 

agent, as the backbone of the ionomer healing agent is DGEBA, and when it comes to 

the mechanical aspect, it is the ionomer healing agent (4-amino-sodium salicylate end-

capped DGEBA) that will be utilized. Thus, in the second approach, neat and Ar-

APP/AAc-grafted silicon specimens were immersed in isopropanol containing 7.5 wt% 
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ionomer healing agent, then washed by isopropanol and examined by XPS.  

 

Comparing the surface elements of the neat silicon to the Ar-APP/AAc-grafted silicon 

surface after ionomer immersion (Figure 4.16), much more carbon (43.66%) was 

observed on the AAc-grafted surface than on the neat surface (13.85%). Although this 

trend is similar to the survey spectra of the 4-amino-sodium salicylate immersion test 

(Figure 4.15), the difference in the percentage is larger after the ionomer immersion. 

From Figure 4.15, the percentage difference of carbon is 4.73%, as the result of 33.94% 

(Ar-APP/AAc-grafted silicon surface) - 29.21% (neat silicon surface), while in the case 

of ionomer immersion, is 29.81%, as the result of 43.66% (Ar-APP/AAc-grafted silicon 

surface) - 13.85% (neat silicon surface). This may be due to the retaining of the 

DGEBA-based ionomer healing agent, which contains a higher percent of carbon. The 

atomic percentage of sodium after ionomer immersion is 0.71% on the neat silicon 

surface and 5.80% on the Ar-APP/AAc-grafted silicon surface, which is similar to the 

4-amino-sodium salicylate immersion test. Noticeably, the survey spectrum showed 

1.73% of nitrogen, which was not identified on the neat silicon surface. Higher atomic 

ratios of carbon and sodium and the presence of nitrogen suggest that the potential of 

utilizing the plasma/grafting process developed in this study to manufacture a self-

healing composite material.  

 

This suggestion was further supported after estimating the effects of the functional 

groups reaction between the ionomer healing agent and the neat or Ar-APP/AAc-
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grafted CFs, as shown in Figure 4.17. A small percentage of sodium (0.50%) was 

spotted on the neat CFs, which may be due to contamination, as described before. 

Although this phenomenon has happened on the neat silicon wafer or the CFs after 

every immersion test, the atomic percentage of sodium was below 1.0% in each case. 

The Ar-APP/AAc-grafted CFs contain more carbon (77.23%) and sodium (2.96%) than 

the neat CFs (74.49% carbon and 0.50% sodium) after ionomer immersion. 

Furthermore, nitrogen (2.13%) has been observed only on the Ar-APP/AAc-grafted 

CFs after ionomer immersion. The signals of both nitrogen and sodium on AAc-grafted 

CFs were found similar but slightly weaker than that on the AAc-grafted silicon wafer 

(shown in Figure 4.16). This fits the trend of the carboxylic acid functional group 

percentage introduced on the surface, as under the same parameter (a 5-sec Ar-APP 

activation with a 10-minute AAc grafting), a higher percentage of the functional group 

was identified on the silicon wafer surface, as described before.  

 

Taking into account the higher atomic percentage of carbon, sodium and the presence 

of nitrogen, these results indicate that compared to the neat CFs, the functionalized CFs, 

due to the presence of carboxylic acid groups on them, are able to react with the 

functional (sodium carboxylate) groups from the ionomer.  
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5.8 Interfacial healing performance 

The capability of the functional group reactions between carboxylic acid groups (from 

APP-functionalized CFs) and sodium carboxylate groups (from ionomer healing agent) 

was proven from the results of ionomer adsorption. The ability of interfacial healing 

between the APP-functionalized CFs and the ionomer-modified epoxy resin in a 

composite was further demonstrated by observing the interface of the composite before 

and after healing events (Figure 4.18). It can be observed that after the healing event(s), 

the functionalized CF/ionomer modified epoxy resin matrix interface was healed. 

However, in this case, the healing performance might be dominated by the healing 

ability of the ionomer-modified epoxy resin matrix, which has been proved via 

estimating the healing efficiency. Therefore, although the results from the interfacial 

healing performance and simulation via XPS showed a strong potential of interfacial 

healing between the functionalized CFs and ionomer-modified epoxy resin, further 

study would be required to confirm the effects.   

 

These results indicate that the development of a novel and rapid APP process for CF 

functionalization, an ionomer healing system and a potential self-healing composite 

prepared by the APP-functionalized CFs and the ionomer-modified epoxy resin were 

achieved. As the carboxylic acid groups on the CFs have been reported to possess 

potential for improving interfacial adhesion, tensile strength and modulus when being 

utilized in composite material [12, 13], the preparation of a self-healing composite 
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material with enhanced mechanical properties can be envisaged via employing this 

novel Ar-APP/AAc-grafting technique and ionomer self-healing process developed in 

this study. 
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Chapter 6 Summary, Conclusions and 

Recommendations for Future Works 

6.1 Summary and conclusions  

This project aimed towards developing a novel atmospheric pressure plasma process 

for controlling surface functional groups on CFs, which can be applied to 

manufacturing self-healing composites with enhanced load carrying capacities. CFs 

and silicon wafers were functionalized via an APP and AAc vapour grafting to 

immobilize carboxylic acid functional groups on the surface, and the epoxy resin was 

modified by an ionomer system developed by end-capping DGEBA with 4-amino-

sodium salicylate. 

The study can be summarized into seven stages:  

1. Design of a bespoke plasma chamber. 

2. Examination of the effects of Ar- or Air-APP combined with AAc vapour grafting 

on the carboxylic acid functional group deposition.  

3. Estimation of the effects of introducing carboxylic acid functional group on CFs via 

the Ar-APP/AAc grafting process.  

4. Identification of carboxylic acid functional groups on the surface via TFE 

derivatization, which showed that –COOH are introduced without significant 

reorganization in –COOR. 

5. Preparation of a healing agent and examination of the healing efficiency.  
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6. Investigation of functional groups reaction between the grafted surface and the 

ionomer healing agent to estimate the interface self-healing mechanism designed in this 

study. 

7. Observation of potential interfacial healing performance between the APP-

functionalized CFs and the ionomer-modified epoxy resin matrix after healing events.  

 

The design of the chamber is based on the idea of separating the plasma activating and 

vapour grafting zones to prevent precursor fragmentation and further retain a higher 

percentage of functional groups. The idea was supported by the XPS results on silicon 

surfaces as an increasing atomic percentage of carboxylic acid group has been observed, 

compared to a conventional atmospheric pressure plasma which directly exposes the 

precursor to a plasma glow. Noticeably, a 19.72% carboxylic acid atomic percentage 

was achieved in this study, compared with the theoretical value of 33.3% [143].  

 

The Ar-APP, compared to the Air-APP, showed a lower temperature and a higher 

chance to keep the bulk properties of the specimens. Therefore, it was further employed 

with subsequent AAc vapour grafting for functionalizing of the CFs. The result 

indicated that this process can introduce carboxylic acid functional groups on not only 

the silicon surface, which was also identified via TFE derivatization, but also on the 

unsized CFs.  
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An ionomer self-healing system using 4-amino-sodium salicylate end-capped DGEBA 

as healing agent has also been examined. The results indicate that the functional groups 

on the two end groups of the healing agent can ionically bond not only to each other to 

heal the crack in the matrix, but also to the carboxylic acid functional group, suggesting 

the potential to repair the debonding and heal the interfaces between the matrix and the 

fibers. 

 

To sum up, in this work a novel, rapid process was developed, which utilizes APP 

activation and AAc vapour grafting in a bespoke Pyrex chamber, in order to introduce 

carboxylic acid functional groups on the surface. A thermo-induced ionomer self-

healing system was also used and the sodium carboxylate functional groups on the 

healing agent proved to be able to react with the APP/AAc-grafted carboxylic acid 

functional groups. Combining this novel APP process with the ionomer self-healing 

system, this study developed a potential self-healing composite material with enhanced 

load carrying capacity. 

 

6.2 Recommendations for future work 

As described in the literature review (Chapter 2), the chemically inert surface of CFs 

leads to weak interfacial adhesion between the CFs and the matrix, which results in 
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debonding and poor mechanical performance of a composite. To address this issue, 

surface functionalization on CFs is required to optimize the interfacial adhesion 

between the CFs and the matrices. This thesis reported a novel and rapid approach to 

this problem by introducing carboxylic acid functional groups on the CFs. The 

immobilized carboxylic acid functional groups were observed as being capable of 

reacting with the ionomer-modified epoxy resin to heal the interfacial debonding.  

 

Previous studies [12, 13] have reported that the presence of carboxylic acid functional 

groups on CFs improves interfacial adhesion, tensile strength and modulus when the 

CFs are utilized in a composite material. Therefore, it would be interesting to look 

into the effects of the APP-functionalization (introduction of carboxylic acid groups) 

and the ionomer-modification on tailoring the interfacial adhesion.  

 

As for the demonstration of the interfacial healing and adhesion performance of the 

APP-functionalized CFs (introduction of carboxylic acid groups) and the ionomer-

modified matrix, some studies have only been partially completed. Further work on 

short beam shear tests and transverse bundle tests are needed to confirm the results 

presented here. 
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6.2.1 Short beam shear test 

The interfacial shear strength can be evaluated via a short beam shear test to investigate 

the effects of APP functionalized CFs on controlling the adhesion property in the 

composite. Specimens were prepared according to ASTM D2344 with dimensions of 

16 mm x 16 mm x 48 mm. The dimensions of the samples were planned after taking 

the minimal span length of the universal tester and the access availability of the positive 

mould for preparing the negative mould for short beam shear tests in this work into 

account. The silicone mould for the short beam shear test, which was tailored for in this 

work, comprises an upper part (hollow) and a lower part (with a sealed bottom) (Figure 

6.1 (a)). Both the upper and the lower parts had a rectangular cavity with dimensions 

of 8 mm x 16 mm x 48 mm.  

 

CF bundles (60 mm in length, 3 mm in width and 1 mm in thickness) with/without 

functionalization were selected and put longitudinally into the middle of two silicone 

rubber moulds to ensure the bundle is in the central position of the specimen (Figure 

6.1 (b)), followed by pouring a resin mixture gently into the cavity (Figure 6.1 (c)), then 

placed into a vacuum oven at room temperature for 10 minutes to avoid bubbles 

forming inside the resin mixture. The details of preparing the resin mixture was 

described in Chapter 3.7. A comparison of the interfacial shear strength between 

composite samples made by different parameters (Figure 6.1 (c)), including neat 

CF/neat epoxy resin, neat CF/ionomer-modified epoxy resin, functionalized CF/neat 
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epoxy resin and functionalized CF/ionomer-modified epoxy resin should be studied in 

the future.  

 

Figure 6.1 The preparation diagram for short beam shear test samples. 

 

The interfacial shear strength of the CF composites should be recorded by a universal 

tester applying the ASTM D 2344 standard test for reinforced polymer specimens. 

Based on this standard, the loading speed should be determined to be 1 mm/min, while 

the span-to-thickness ratio is 4.0 to an accuracy of ±0.3 mm. During the test, it is very 

important to ensure: (1) The specimen is placed symmetrically on the support rollers. 

(2) The loading roller operates precisely with the route vertically to the centreline of 

the sample.  
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The interfacial shear strength can be calculated from:  

ILSS = 0.75 P/wt  

where w refers to the width of specimen cross-section (m), P to the maximum failure 

load (N), t to the specimen thickness (m). 

 

Figure 6.2 shows the images of the development of the silicone mould and the short 

beam shear test sample prepared by it. Both the upper and the lower parts had a 

rectangular cavity with dimensions 8 mm x 16 mm x 48 mm and were manufactured in 

round petri dishes with flat bottoms. Therefore, a plane short beam shear test sample 

surface was achieved.  
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Figure 6.2 Images of (a, b, c) the development of the silicone mould and (d) the short 

beam shear test sample prepared by it.  

 

The maximum load the universal tester employed in this study could offer was 500 N. 

However, the results of short beam shear test revealed that 500 N was not able to load 

the samples to failure. Therefore, the interfacial shear strength of the composites 
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prepared in this work were not collected and required a tester being capable to offer a 

higher load or a shorter span length. 

 

6.2.2 Transverse bundle test  

After the healing efficiency of the ionomer-modified network has been confirmed by 

the SENB test, transverse bundle tests should be utilized to demonstrate the effects of 

AP functionalized CFs on the interface healing with the ionomeric healing agents. 

Samples were prepared with dimensions of 2 mm x 25 mm x 75 mm, using four kinds 

of parameters (neat CF/neat epoxy resin, neat CF/ionomer modified epoxy resin, 

functionalized CF/neat epoxy resin and functionalized CF/ionomer modified epoxy 

resin) (Figure 6.3 and Table 6.1). CF bundles (2 mm in width) were placed transversely 

in the centre of the specimen and both ends of the sample were tabbed with glass fiber 

mats to prevent slipping between the grips and the specimens. 

  

The principle is to apply uniaxial tension to the composite to create a debonding 

between the bundle and the matrix. By monitoring the debonding site before and after 

the healing process and recording the tensile strength which leads to the first debonding, 

not only the healing function but also whether a better interfacial shear strength has 

been achieved can be studied by comparing neat and modified specimens.    

 

Tensile stress should be applied to the specimen via a universal tensometer (loading 
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speed: 10 mm/min) and stopped when the first debonding between the CF bundle and 

the matrix is observed under the microscope attached to the tensometer (Figure 6.4). 

The specimen with debonding should then be heated up in the vacuum oven under 

120°C for 4 hours to execute thermo-induced self-healing process. The specimen 

should be examined under the microscope again to see whether the debonding has been 

fixed.  

 

 

Figure 6.3 Images of (a) SENB sample preparation (b) SENB samples before surface 

polishing. 
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Figure 6.4 Image of the tensometer with microscope attached. 

Table 6.1 Parameters of sample preparation for transverse bundle test. 
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6.2.3 Further applications of the atmospheric pressure plasma functionalization 

process 

The APP functionalization process presented in this work could also be applied to the 

functionalization of carbon nanotubes (CNTs).  

 

CNTs have excellent mechanical properties, which make them ideal materials for 

reinforcing epoxy resin composites. However, because of certain characteristics of 

CNTs, including high aspect ratio and intrinsic van der Waals forces between CNTs, 

they are highly entangled bundles, which are difficult to be dispersed into a polymer 

matrix. Moreover, the chemically inert nature of CNTs limits their interfacial 

interaction with a polymer matrix. In order to solve this problem, surface 

functionalization of CNTs has been widely investigated. 

 

Similar to the functionalization of CFs, the oxidation of CNTs via treatment under 

strongly acidic conditions was used to functionalize them [148, 149]. The introduced 

carboxylic acid groups react with epoxide groups from an epoxy resin matrix to form 

a strong bond. This improves the interfacial interaction of the CNTs with an epoxy 

matrix, leading to efficient dispersion of the CNTs. However, the structure of the 

CNTs may be damaged by this acidic functionalization process due to etching of the 

graphitic surface of the material [150], which is also not environmentally friendly.  

 

Since the reason for and issues in the functionalization of CNTs share many 
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similarities with the functionalization of CFs, utilizing the APP process in the 

functionalization of CNTs would be a beneficial option.  

 

The APP process could be utilized to functionalize polymers for hydroxyapatite 

deposition. Hydroxyapatite has good biocompatibility and osteoconductivity and is 

suitable to be coated on the surfaces of medical implants. However, the inert surface 

of the polymer implant material has limited the deposition of hydroxyapatite on it. 

The presence of carboxylic acid groups on polymer surfaces has been shown to be 

beneficial for the adhesion between the hydroxyapatite and the substrates. By 

employing the APP process for introducing carboxylic acid functional groups on 

polymers, it is expected to improve the efficiency and the quantity (due to a higher 

percentage of carboxylic acid groups on the substrate) of hydroxyapatite deposition. 

 

Other than the deposition of hydroxyapatite, the immobilization of chitosan is also a 

popular method for improving surface biocompatibility. Because of the characteristics 

of chitosan, including its non-toxic, biocompatible and biodegradable natures, it has 

been applied to the preparation of cell scaffolds and drug delivery systems for cancer 

therapies [151]. It has been demonstrated by Chen et al. [152] that immobilized 

carboxylic acid groups covalently bonded with chitosan through 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide crosslinking agents, then 

an improved biocompatibility was observed from the results of the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In this study 
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[152], a 5-minute low-pressure plasma treatment and a 20-minute grafting process 

was applied to immobilize carboxylic acid groups, whereas by utilizing the APP 

process developed in this thesis, it is expected that the functionalization time for the 

immobilization can be shorten by a factor of 2.5.  

 

The idea of using the APP process to shorten the functionalization time for 

introducing carboxylic acid functional groups can be further utilized on 

environmental engineering aspects.  

 

Chen et al. [153] grafted carboxylic acid groups on bamboo charcoals to achieve the 

function of ammonia adsorption on them. Compared to an untreated sample, the 

ammonia adsorption ability of functionalized bamboo charcoal was found to improve 

from 61% to 98%. In that work, bamboo charcoals were treated by two low-pressure 

plasmas (to prepare a hydrophilic surface) and a UV grafting process to introduce 

carboxylic groups. By performing the APP process, functionalization of bamboo 

charcoals can be accomplished and made ready for further application in the sample 

chamber with a shorter treatment time.  

 

The APP/AAc-grafting process possesses not only the potential for use in composite 

materials but also prospective applications for bioengineering, biocompatibility 

improvement and environmental engineering. 
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The APP process developed in this thesis comprised of an APP nozzle for surface 

activation and a grafting process for introducing functional groups. The Ar- or Air- 

APP activation is capable of tailoring surface wettability, which improves surface 

hydrophilicity. For sterilization of medical tools (e.g., scalpels), the APP activation 

can be applied to clean the surfaces by introducing free radicals for anti-bacterial 

purposes. The process also has possibilities in the textile industry. For example, by 

performing the APP activation in the dyeing process, the dyeing efficiency on the 

linen is expected to be improved due to a more hydrophilic surface of the linen. By 

improving the hydrophilicity of polymer materials, their surfaces would be more 

suitable for spin-coating (e.g., of TiO2 on them to prepare an antibacterial function on 

them).  

 

To sum up, there are many possible applications for this technology and it is 

recommended to carry out further studies based on the APP process developed in this 

work. 
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Appendix - Supplementary studies using the 

atmospheric pressure plasma system    

 

In order to further estimate the capabilities of the APP system, some trials using this 

plasma system were also carried out and published in scientific journals with the 

following titles:     

i) Deposition of a stable and high concentration of carboxylic acid functional groups 

onto a silicon surface via a tailored remote atmospheric pressure plasma process. 

ii) Immobilization of carboxylic acid groups on polymeric substrates by plasma-

enhanced chemical vapor or atmospheric pressure plasma deposition of acetic acid. 

 

This chapter shows the full content of these two papers, then discusses and compares 

the results from these papers to the work within the PhD project.  

 

 

 

i) Published in Surface and Coatings Technology (SCT): Deposition 

of a stable and high concentration of carboxylic acid functional 

groups onto a silicon surface via a tailored remote atmospheric 

pressure plasma process 

The content of this paper has been published in journal Surface and Coatings 

Technology (SCT), Volume 336, 25 February 2018, Pages 67-71.  

https://doi.org/10.1016/j.surfcoat.2017.09.057 

https://doi.org/10.1016/j.surfcoat.2017.09.057
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ii) Published in Thin Solid Films (TSF): Immobilization of 

Carboxylic Acid Groups on Polymeric Substrates by Plasma-

enhanced Chemical Vapor or Atmospheric Pressure Plasma 

Deposition of Acetic Acid 

The content of this chapter has been published in journal Thin Solid Films (TSF), 

Volume 666, 30 November 2018, Pages 54-60. 

https://doi.org/10.1016/j.tsf.2018.07.051 

https://doi.org/10.1016/j.tsf.2018.07.051
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iii) Further discussion on the context of the Appendix papers in 

relation to the thesis 

As mentioned in Chapter 6, the PhD project comprised seven main stages. When the 

progress had reached stage 2, which suggested the potential of depositing a high 

concentration of carboxylic acid functional groups on the surface via the plasma 

system (plasma nozzle and tailored chamber), it attracted the author’s interest to 

further investigate the effect of introducing carboxylic acid functional group under 

various parameters, including chamber dimension, distance between the plasma glow 

and the precursor, and the selection of precursor. Although the aim of the PhD thesis 

was to develop a novel atmospheric pressure plasma process for controlling surface 

functional groups on carbon fibers, which can be applied to manufacturing a self-

healing composite with enhanced load carrying capacity, the process of depositing a 

carboxylic acid group on the surface is also an important topic to be examined due to 

the wide applications it promises, including biocompatibility improvement, 

biosensors, environmental engineering and composites (described in the Introduction 

chapter).  

 

The first paper assessed the effect of a remote atmospheric pressure plasma system 

using the same plasma nozzle as in this thesis but in a different bespoke Pyrex 

chamber. Compared to the chamber utilized in this PhD thesis, the chamber employed 

in the first paper exhibited a higher atomic percentage of carboxylic acid functional 

groups (19.72% from the thesis, while 27.6% from this paper), which is close to the 
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theoretical value of AAc (33.3%). In the first paper, the longer distance between the 

plasma nozzle and the specimen, compared to the thesis plasma system, also shows 

the potential of protecting specimen bulk properties. However, the shape and 

dimensions of the chamber in the first paper limited its application on fibers or 

specimens with a larger area. To sum up, both the APP/grafting system in the thesis 

and the remote APP process in the first paper promise rapid and novel methods for 

introducing higher concentrations, compared to the conventional AP process 

described previously, of carboxylic acid functional group via AAc deposition on the 

specimen surface.  

 

After the effects and capability of an APP process with AAc on carboxylic acid 

deposition were studied, the focus shifted to achieving similar results using other 

kinds of precursors and the comparison between this APP system and a low-pressure 

plasma PECVD system. Therefore, in the second paper, acetic acid was utilized as 

precursor to introduce carboxylic acid functional groups on polymer materials. The 

APP parameter, chamber setup and vapour grafting in the second paper followed the 

setting employed in this PhD project. Although in the case of using acetic acid as 

precursor, low-pressure plasma exhibited a higher percentage of carboxylic acid 

groups on the surface (18.5%) than the APP/acetic acid grafting treatment (7.7%), the 

APP process only required a 5-second plasma operation and saved time on evacuating 

the chamber, while the low-pressure plasma process ran the plasma for 10 minutes.   
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The effect of APP and low-pressure plasma processes on carboxylic acid functional 

group deposition is illustrated in Table A.1. These results further suggest that the 

APP/vapour grafting process designed in the PhD project promises advantages such 

as saving time on plasma operation, the capability of depositing carboxylic acid 

functional groups on not only silicon and carbon fibers but also on polymer materials. 

This also indicated that the parameter and setup of the APP activation/vapour grafting 

process developed in this PhD project is not limited to using AAc but also available in 

acetic acid, which widens the selection of precursors and broadens the application of 

this APP system. 

 

 

Table A.1 The effect of APP and low-pressure plasma treatments on carboxylic acid 

functional groups deposition.  

 Precursor Specimen Plasma operating 

time (second) 

Atomic percentage of 

carboxylic acid group (%) 

APP activation/vapour 

grafting 

Acrylic acid Silicon 5 19.72 

APP activation/vapour 

grafting 

Acrylic acid Carbon fiber 5 4.92 

Remote APP Acrylic acid Silicon 30 27.6 

APP activation/vapour 

grafting 

Acetic acid PET 5 7.7 

APP activation/vapour 

grafting 

Acetic acid PLA 5 6.9 

Low-pressure plasma Acetic acid PET 600 18.5 

 

 

 


