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Introductory notes 

 

The structure of this work is according to the the new alternative thesis format 

approved by the Faculty of Science at The University of Sheffield (more information 

can be found at https://www.sheffield.ac.uk/rs/code/altformat). The alternative format 

entails chapters be written as part of published or pre-published journal articles.  

The Introduction chapter includes a paper titled “N2-fixing tropical legume 

evolution: a contributor to enhanced weathering through the Cenozoic?” published in 

the peer-reviewed journal “Proceedings of the Royal Society: Biological Sciences” in 

July, 2017 (free-access to the article is available online at the Royal Society website: 

http://rspb.royalsocietypublishing.org/content/284/1860/20170370). Chapters 1, 2 and 

3 as well as the Discussion & Conclusions chapter include pre-publication work 

formatted according to chosen target journals and their specific requirements. 

All the laboratory experimental and computational work within this thesis was 

carried out by myself with the exception of fieldwork which included a certain amount 

of assistance from collaborators and my partner. The draft original version of each the 

five chapters were written by me with co-authors contributing to subsequent revisions 

during the editing process.  

To summarise the contents of this thesis briefly: the introduction discusses the 

evolution of the first legume-rich tropical forests in the early Cenozoic (58-42 Mya) 

and the effect they had on biogeochemical cycles in general and silicate rock 

weathering and climate in particular. This work puts forward a hypothesis that early 

Cenozoic forests rich in N2-fixing legumes caused enhanced weathering regimes 

globally, stimulating the drawdown of atmospheric CO2.  

Chapter 1 utilises a large-scale replicated weathering field study in Neotropical 

secondary forests in Panama rich in fixing legume trees demonstrating that N2-fixers 

exerted 2-fold greater silicate rock weathering than non-fixers linked to significant 

differences in soil acidity and belowground microbial community structure and 

function. 
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Chapter 2 summarises our findings from another tropical system along a 

secondary forest chronosequence in the Australian Wet Tropics, showing that N2-

fixing and ectomycorrhizal monodominant Acacia celsa drives greater P and K-

specific weathering dissolution from basalt silicate rocks throughout the 

chronosequence. Highly nodulated Acacia trees were also linked to greater total basalt 

and dunite weathering rates than non-fixers. Analyses from chapters 1 and 2 employ 

Next-Generation sequencing technology and omics-driven approach in demonstrating 

a consistent effect of N2-fixing legume trees on their belowground microbiome in 

tropical forests that is that high inputs of fixed N are a strong determinant in 

functionally entraining the microbial community to high levels of mineral weathering. 

Consequently, this work also highlighted target candidate microbial genes and 

metabolic pathways linking those differences to enhanced weathering.  

In order to test some of the highlighted candidate weathering genes in vitro, the 

next study, described in detail in Chapter 3 deployed the large transposon-mutant 

collection of the tropical soil β-proteobacterium Burkholderia thailandensis E264, 

selecting 11 mutant lines for further analysis. Data from replicated in vitro weathering 

experiments implicated several genes in the process of bacteria-mediated weathering. 

Further phylogenetic and taxonomic analyses of the soil pools of these genes indicated 

many elusive and uncultured bacterial lineages as carriers of those weathering genes 

thus highlighting their potential role in soil mineral weathering. This included the 

proposition and description of a new class within the Acidobacteria phylum, Ca. 

Acidipotentia, cl. nov.  

The final Discussion and Conclusion chapter covers meta-analyses of data from 

my original datasets as well as already published literature to establish the role of N2-

fixers in ecosystem succession beyond ther ecosystem N enrichment effects. The 

results from this chapter provide evidence for enhancements in acidification, soil 

lithotrophy, microbial respiration and anaerobic metabolism in soil beneath N2-fixers 

that may all converge in a second previously unrecognised ecosystem service carried 

by N2-fixers: that of enhanced weathering and subsequent increase in available nutrient 

stocks in such early successional systems. 
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Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced 

Late Cretaceous palm-dominated tropical forests across four continents during the early 

Cenozoic (58-42 Myr ago).  Tropical legume trees can transform ecosystems via their 

ability to fix atmospheric N2 and higher leaf N compared to non-legumes (35-65%) but 

it is unclear how their evolutionary rise contributed to silicate weathering, the long-term 

sink for atmospheric CO2.  Here we hypothesize that the increasing abundance of N2-

fixing legumes in tropical forests amplified silicate weathering rates by increased input 

of fixed N to terrestrial ecosystems via interrelated mechanisms including increasing 

microbial respiration and soil acidification, and stimulating forest net primary 

productivity.  We suggest the high CO2 early Cenozoic atmosphere further amplified 

legume weathering.  Evolution of legumes with high weathering rates was likely driven 

by their high demand for phosphorus and micronutrients required for N2-fixation and 

nodule formation. 
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1.  Introduction 

Biogeochemical weathering of silicate rocks (e.g., basalt, andesite, dunite) is a key process in 

the carbon cycle that acts as a long-term sink of atmospheric CO2 [1].  Consumption of CO2 

by weathering is small (0.10-0.12 Gt C yr-1) on an annual basis [2] compared to carbon 

transfers in photosynthesis or respiration.  However, net CO2 consumption by weathering is 

the dominant sink in the global carbon balance thus controlling atmospheric CO2 and climate 

patterns at scales of millennia or longer [2].   

Numerous field studies have shown that plants accelerate rock weathering through a suite of 

increasingly well understood processes [3] (Supplementary Figure 1).  By increasing the soil 

pools of H+ ions, carbonic (H2CO3, from plant or soil respiration) and chelating organic 

(RCOO-) acids, plants and their symbiotic partners cause the weathering release of base 

cations (Supplementary Figure 1) that ultimately lead to the formation of marine carbonates 

on the seafloor [2].  The rise of the first forests during the Devonian period (416-359 Myr 

ago) [4] likely accelerated silicate weathering, contributing to the drawdown of atmospheric 

CO2 and establishing the basic features of the modern land carbon cycle. Today, forests are 

thought to enhance rock weathering by a factor of 2-10 compared to unvegetated catchments 

[5].  

During the Cenozoic (last 65 million years), the global biome transformation from palm-

dominated late Cretaceous forests to the highly productive and carbon-rich tropical forests 

that exist today, discussed in more detail in the next section, included the rise of trees in the 

ecologically important legume family (Leguminosae, or “legumes”). Legumes dominate large 

areas of modern tropical forests in both total number of tree species and in abundance within 

local forests [6].  
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 Four lines of evidence suggest that the evolution of the N2-fixing rhizobial symbiosis 

(in which dinitrogen-fixing rhizobial bacteria are housed within specialized root nodules [7]) 

occured as legumes radiated and spread in the early Cenozoic [8]. First, a whole-genome 

duplication event in the Papilionoideae clade, molecularly dated to 58 Myr ago, likely created 

the gene copies necessary for nodulation and N2 fixation to evolve [9]. Second, many modern 

rainforest N2-fixing legume trees are nodulated by β-rhizobia in the Burkholderia group [10]. 

Horizontal transfer of symbiotic nod genes between α-rhizobia and South American 

Burkholderia is dated to 60-50 Myr ago [11], indicating that compatible N2-fixing host trees 

may have appeared at that time. Third, this molecular evidence is further strengthened by the 

presence of  fossil legume genera recorded in early Cenozoic deposits with present-day 

relatives that are capable of symbiotic N2 fixation (Supplementary Figure 2), with our 

synthesis indicating that the majority of fossil taxa identified at the genus level and recovered 

from the Palaeocene and Eocene belong to N2-fixing genera (25 taxa ) relative to non-fixing 

(16 taxa). Fourth, early Cenozoic sites in the Bighorn Basin show an increased proportion of 

legume fossil leaves recovered from 56 Myr old strata correlating with intensification of insect 

damage, a pattern consistent with the influx of fresh, fixed N into the ecosystem [12].  

Fossil genera, the symbiotic status of their nearest living relatives (Supplementary Figure 2), 

evidence of increased insect damage in the fossil record in likely response to high foliar N 

and molecular clock dating therefore appear to indicate that N2-fixation and diverse 

mycorrhizal symbioses have evolved in  legumes by the early Cenozoic.  

Here, we review the rise of N2-fixing legume-rich tropical forests early in the Cenozoic and 

propose a new testable hypothesis for how the evolution of this biome may have strengthened 

the long-term carbon cycle feedbacks that helped shape Earth’s CO2 and climate history in 

the Cenozoic and today.  
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2.  Global rise of nitrogen-fixing legume-rich tropical forests 

Late Cretaceous tropical floras were dominated by widely distributed palm communities from 

Africa to South America, a floristic region known as the Palmae Province [13],[14]. 

Communities in both the Paleo- and Neotropics contained abundant palms, including those 

similar to extant Nypa palms and suggestive of coastal intertidal habitats similar to mangrove 

forests, while other areas harboured palm-dominated dry forest communities. Unlike modern 

tropical forests, both of these communities were deprived of abundant dicot arboreal flora 

[13],[14].  In Africa, leaf fossil and pollen evidence indicate that the dominant palm lineages 

began to decline around the Cretaceous-Paleogene boundary [15] and completely disappeared 

in the fossil record after the late Miocene (23 Myr ago)[14].  Similarly, palm abundance in 

Neotropical areas decreased in the early Cenozoic, although palms remain an important 

element of these forests today [16]. The Palmae Province was replaced in Africa and 

assimilated in South America by the rise of modern tropical forests during the early Cenozoic. 

The earliest record of modern Neotropical forests – found in Colombia and dated to the late 

Palaeocene (58 Myr ago) – indicates that the flora resembled the current day composition of 

plant families with abundant fossilized dicot and palm leaves, including numerous legumes 

[17]. Pollen records from Africa similarly show the rise of modern families of dicot trees 

following the Palaeocene [14],[15].  

Pollen and leaf macrofossils indicate that legume taxa have comprised a key component of 

tropical forests since the early Cenozoic (Figure 1a, Supplementary Figure 2).  While it is 

difficult to translate a taxon’s abundance in the fossil record to abundance in a forest, the 

persistent recovery of legume pollen, leaves, flowers, fruits and wood indicate that legume 

trees were present and widespread in the flora of the Americas and Africa. The following 

observations can be drawn from early Cenozoic records: (1) legume leaves made up 21-73% 

of all fossilized leaves in South and North American forest assemblages[18],[19]; (2) legumes 
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comprised 14-33% of all recorded taxa across tropical forests (Figure 1)[20],[21],[22], (3) 

single legume tree species represented up to 7% of all fossil leaves (>200 leaves) in species-

diverse South American dry forests[23],[24]; (4) one legume tree species (the non-fixing 

Cynometra) formed a monodominant forest in Africa 46 Myr ago [21], with further 

monodominance indicated by the presence of Eocene fossils that belong to modern 

monodominant genera such as the non-fixing Brachystegia and Julbernardia (Eurasian 

deposits) and the non-fixing Peltogyne (South American formations) (Supplementary Figure 

2); (5) rainforests with abundant presence of caesalpinioid and mimosoid (many modern 

representatives of which are N2-fixing [25]) legumes were recorded in central Africa [14]; 

and, (6) tropical and temperate N2-fixing  legume trees may have coexisted during warm 

Eocene climates in higher latitude boreotropical forests (England, Hungary, North 

America)[26].   

Fossil evidence, therefore, indicates that early Cenozoic tropical forests (wet, dry and 

boreotropical) had evolved abundant legumes across continents as well as latitudes (Figure 

1a). The timing of the early Cenozoic assembly of legume-rich tropical forests (58 - 42 Myr 

ago) as documented by the fossil record is similar to the molecular clock dated 

diversification events in the legume clade (Figure 1b; for recent changes in legume 

taxonomy see [28]).Beneath these emerging tropical forests were substantial areas of 

unweathered rocks in tropical India [29], in South America, including the southeast part of 

the Amazon basin, and in the Amazon deltaic area [30] coinciding with peaks in terrestrial 

weathering (Figure 1b) as evident from the recovery of highly weathered palaeosols [31]. 

 

3.  Mechanisms of N2-fixing legume-driven enhanced weathering 

Here, we propose that the rise of N2-fixing legume trees enhanced weathering through a series 

of processes associated with three abilities especially well developed in this group of trees: 
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(1) to fix atmospheric N2, (2) to build disproportionately N-rich leaf tissue, and (3) to stimulate 

the primary production in ecosystems by redistributing fixed nitrogen to the soil and to 

neighboring trees.  

First, nitrogen-fixing legumes have the ability to fix nitrogen at high rates in natural 

ecosystems [32].  Over time, fixers bring in substantial quantities of nitrogen and can provide 

the largest natural source of new nitrogen to ecosystems [33]. Soil nitrogen is high and nitrate 

and denitrification losses large (exceeding or rivaling many temperate forests exposed to 

nitrogen deposition) in tropical forests that harbor nitrogen fixers [32]. In a survey across 55 

tropical forests, these systems naturally sustained loss rates of 4-6 kg N/ha nitrate, 6-10 kg 

N/ha of total dissolved nitrogen, and 4-5 kg N denitrified; when corrected for low levels of 

atmospheric nitrogen deposition, these rates could only be explained by fixation [34]. 

Second, N2-fixing legumes contain substantially higher leaf nitrogen than non-fixing tree 

species [35]. We performed a meta-analysis of 31 studies encompassing 561 tropical tree 

species (n = 680 measurements) to evaluate the nitrogen content of N2-fixing and non-fixing 

trees in natural forests and plantations across 22 different tropical regions (Figure 2a,b). Our 

analysis shows that, despite considerable variation across sites, N2-fixers exhibit higher mean 

leaf N content than non-fixers (by 35% in natural tropical forests and by 65% in tropical 

forestry plantations) and non-fixing legumes (by 21%). These findings are consistent with a 

study of leaf nitrogen across Amazonian tropical forests that also reported nitrogen-fixing 

legumes had higher leaf nitrogen content than both non-fixers as a whole and non-fixing 

legumes [36]. 

Third, this nitrogen-rich leaf tissue would cause increased input of N-rich compounds 

including proteins and amino acids to soils via litterfall.  Such increased N input, in turn, 

would enrich soils in N and likely cause higher rates of productivity for non-fixing as well as 

N2-fixing trees. Evidence for such a major ecosystem impact comes from recent field studies: 
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N2-fixing legumes provided ~50% of the nitrogen required for early growth of Panamanian 

secondary rainforests, supported rapid carbon accumulation in biomass of both fixers and 

non-fixers [37] and enhanced soil nitrogen [38] during periods of nitrogen limitation. Levels 

of N2-fixation in early Cenozoic fixers are hard to establish empirically but indirect evidence 

of greater insect damage from fossil leaves together with greater palatability and protein 

content of N2-fixing trees [12] support the assumption that ancient N2-fixers were capable of 

generating high N foliage. 

We suggest these three characteristics of N2-fixing legumes likely entrain a suite of direct and 

indirect mechanisms that can enhance rates of rock weathering, as discussed below. 

 

(a) N2-fixing legume litter decomposition and microbial respiration  

Litterfall and the decomposition of protein-enriched biomass would ultimately increase the 

flux of new fixed N into several linked soil processes (soil respiration, ammonification, 

nitrification) and pools (soil organic matter, dissolved organic nitrogen). The input of new 

nitrogen, in turn, would trigger several weathering-related mechanisms (Figure 2d).  

First, the low C/N ratio of N2-fixing  legume litter implies fast decomposition, greater 

microbial respiration, and greater CO2 production than non-legume litter [39],[40]. During 

decomposition, the majority of N-rich leaf tissue and its amino acids, amino sugars and other 

N-rich monomers will undergo ammonification and nitrification. Decomposition also 

generates organic acids and faster decomposition rates may facilitate passing the organic acid 

concentration threshold necessary to drive mineral weathering [41].  

Second, N-rich organic matter can itself stimulate soil microbial activity and respiration. 

Although C inputs would have similar effects regardless of whether derived from 

decomposition of leguminous N-rich or non-leguminous N-poor litter, the lack of sufficient 

N can ultimately downregulate microbial respiration specifically under high CO2 regimes 
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[42], such as those seen during the early Cenozoic (Figure 1b). Addition of N2-fixing legume-

derived N-rich litter may therefore have a dual function. First, it will fuel microbial respiration 

with the energy stored in the C-H and C-C bonds of its carbohydrate component. Second, 

because of its abundance in N and protein, it will promote microbial respiration by alleviating 

any existing N limitation over microbial metabolism. In situ studies in tropical soils confirm 

augmented rates of microbial respiration in the combined glucose and N treatment compared 

to the glucose treatment alone [43].  

Third, the dissolved CO2 generated by microbial respiration forms carbonic acid (H2CO3) 

which, in turn, acts as a major weathering agent [44](Supplementary Figure 1). Increased 

microbial respiration also positively correlates with the production of chelating organic acids, 

e.g., gluconic acid, a secreted by-product of microbial catabolism [45]. 

(b) N2-fixing legume-driven soil acidification  

Ammonia generated by ammonification during litter decomposition can undergo nitrification. 

In the process, each molecule of ammonia converted to nitrate generates three by-product H+ 

ions. Although these H+ ions are typically counterbalanced by plant secretion of anions 

(bicarbonate or organic acids) for each acquired NO3
-, nitrate leaching can uncouple this 

relationship and promote the buildup of H+ in the soil. High levels of N2-fixation can exceed 

the rates at which N is immobilized within the system, resulting in enhanced NO3
- leaching 

(as discussed above) and enhanced transport of H+ to deeper soil horizons (where contents of 

unweathered minerals may be high).  Tree ring data from tropical fossil woods indicate that 

climate seasonality was largely similar between early Cenozoic and modern tropical forests 

[46] supporting the view that nitrification patterns as affected by soil moisture/dryness [47] 

likely were comparable.  

During the leaching of NO3
- large amounts of counterbalancing cations (Ca2+, Mg2+, K+) 

released by cation exchange reactions with nitrification-generated H+ are leached too, 
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resulting in the decline of soil cation exchange capacity and soil pH buffering capacities. This 

phenomenon has been recorded for N2-fixing forests of Alnus rubra in which large inputs of 

fixed N caused leaching, decreased cation concentration and increased soil acidification [48].  

Despite the tight N budget of most tropical forest systems, substantial levels of nitrate leaching 

still occurs [32] suggesting that similar mechanisms likely operate in tropical forests rich in 

N2-fixing legumes. In addition, because of their N2-fixation, fixers tend to acquire lower 

relative amounts of negatively charged ions such as NO3
– and subsequently extrude greater 

amounts of H+ to balance increased internal relative concentration of positively charged ions 

[49].   

Consequently, pronounced soil acidification has been recorded in various N2-fixing species 

from herbs [49],[50] to trees and shrubs of temperate forest [51],[52] and tropical rainforest 

[38] areas. Recent analysis of tropical rainforests at four Neotropical locations revealed that 

forests rich in N2-fixers exhibited increased soil acidity (pH 4.1) and lower Ca2+ and Mg2+ 

concentrations than forests poor in N2-fixing  legumes (pH 5.2) [53].  N2-fixing legume-driven 

acidification can promote weathering by acid attack (acidolysis) of the mineral lattice 

(Supplementary Figure 1) but also by depleting soil cations through cation exchange, thus 

shifting the equilibrium towards further mineral dissolution.  

 

(c) N2-fixing legume-driven stimulation of net primary productivity (NPP)  

Ultimately, inorganic forms of fixed N are acquired from the soil solution by roots stimulating 

the N input into biomass, including that of neighboring non-fixing trees. For instance, the 

non-fixing tropical trees Peschiera, Psidium [54], Eucalyptus [55] and Terminalia [56] all 

exhibited increased foliar N levels in N2-fixing legume-rich neighbourhoods compared to 

legume-poor settings. As foliar N correlates with increased levels of crude leaf protein, 

including the photosynthetic enzyme RUBISCO [57], the photosynthetic rates of individual 
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trees and the NPP of such mixed fixer/non-fixer forests may be up-regulated. Indeed, N2-

fixing legumes exhibit up to 2-fold greater photosynthetic rates than the less N–rich leaves of 

non-fixing trees in Zimbabwe [58]. Similarly, non-fertilized mixed non-fixer/N2-fixer forestry 

plantations reveal augmented NPP rates compared to non-fixing forests in Brazil and Puerto 

Rico [59],[60].  

 Fossil evidence supports N2-fixing legume-driven N-fertilization on productivity of 

tropical ecosystems.  Presumed nitrogen-fixing legume-dominated assemblages exhibited 

insect damage (linked to higher leaf nitrogen content) spread across fossil taxa relative to 

systems with fewer legumes in which foliar damage was more concentrated on legume leaves 

[12]. This observation indicates that as legume domination was established, N redistribution 

triggered by the input of N-rich litter increased N levels of neighbouring non-legumes (as 

observed in modern systems). The source of this N buffering effect is better explained by 

legumes capable of N2-fixatio n than non-fixing legumes because the patterns are consistent 

with the influx of new fixed N to the system.  

Given that some canopy photosynthate from highly productive N2-fixing legume-rich forests 

will be allocated to symbiotic mycorrhizal fungi, the mycelial networks of these fungi that 

grow in intimate contact with mineral grains, may drive enhanced rock weathering and 

inorganic nutrient release via chelation, carbonation and acidolysis (Supplementary Figure 

1)[63]. Greater gross primary production (GPP) and its related NPP rates also correlate with 

greater root respiration (with associated production of carbonic acid) and organic acid 

leaching, which promotes further weathering [63] (Supplementary Figure 1). N2-fixing 

legume-enhanced forest NPP can also increase the demand for nutrients and thus further 

necessitate more extensive soil exploration via roots and mycorrhizal fungi and eventually 

enhanced rock weathering. Therefore, increased N inputs could indirectly increase rock 
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weathering via stimulation of rainforest NPP in legume-rich communities compared to Nypa 

and other late Cretaceous palm forests as well as to legume-poor early Cenozoic analogues.  

 

(d) Accessory mechanisms of N2-fixing legume-driven weathering  

The unique ability of legumes (including many rainforest N2-fixing  legume trees [64],[65]) 

to synthesize and exude isoflavonoids [66] may also have some impact on weathering rates.  

Isoflavonoids enhance P and Fe solubilization from the mineral vivianite by acting as soil 

chelators (Supplementary Figure 1) as well as by decreasing organic acid decomposition [67]. 

Comparison between the estimated low-molecular organic acid exudation by lowland tropical 

rainforest trees (~25 µg C g-1 DW root h-1) [68] and isoflavonoid exudation of the N2-fixer 

Lupinus albus (~31 µg C g-1 DW root h-1) [69] (see Supplementary Information for detailed 

calculations) suggests that isoflavonoids could contribute to the pool of plant-derived 

chelating agents in legume-rich forest soils.  

Isoflavonoids are crucial in establishing the N2-fixing  legume-rhizobial symbiosis by 

enabling both attraction and priming of rhizobial partners [70]. They attract larger soil 

rhizobial populations [71] of nodulation-competent strains of Burkholderia, Rhizobium, and 

Mesorhizobium – members of all of these genera have been shown to exert strong chelating 

activities [72]. Soil pH, C, N and C/N ratio are also important determinants of microbial 

community structure [73]. Finally, legume-mediated changes in soil chemistry may change 

microbial community of the mineralosphere selecting for nitrophilic and acidophilic 

bacterial taxa. 

 

4.  N2-fixing legume-rich forest responses to a CO2-rich early Cenozoic atmosphere  
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The rise of N2-fixing legume-rich tropical forests during the early Cenozoic coincides with 

elevated atmospheric CO2 concentrations, with potential feedbacks on primary production 

and weathering (Figure 1b, Figure 3).  Evidence for the mechanisms that may govern this 

potential feedback comes from Free Air CO2 Enrichment (FACE) experiments. In the Oak 

Ridge, Tennessee, FACE experiment the non-fixing, AM Liquidambar styraciflua trees 

showed a 24% increase in NPP during the first 6 years of exposure to elevated CO2 [74].  

However, over the next 5 years the positive CO2 enrichment effect decreased to +9% in 11-

year old stands as ecosystem N stocks declined [74], suggesting progressive soil N-limitation 

on tree NPP in the long-term under high CO2 [74],[75]. N2-fixing legumes may mitigate this 

N-limitation mechanism under a high CO2 atmosphere because N-limitation would favour 

recruitment of N2-fixing legumes and/or upregulate their fixation rates [76],[77].  Fossil 

evidence suggests that N2-fixing legumes may increase in abundance under such conditions. 

During the transient climate warming event across the Palaeocene-Eocene Thermal Maximum 

(PETM; 55.8 Myr ago) that is linked to a rise in atmospheric CO2 and continental weathering 

regimes [78], the abundance of fossilized leguminous leaf specimens increased to 73% and 

then declined to 21% post-PETM in the Bighorn Basin, US [20].  Further evidence from 

PETM sites dominated by legumes corroborates extensive N2-fixation capacity increasing 

nitrogen availability to the system (as discussed above) [12].  

Physiologically, elevated CO2 can promote nodulation and N2-fixation [79],[80],[81], 

mycorrhization [82] and photosynthetic rates, and therefore may allow N2-fixing legume 

productivity to increase proportionally more in response to CO2 than non-legumes [79],[81].  

Furthermore, nodules represent additional sinks exchanging the increased flux of assimilates 

for fixed N thus curtailing the photosynthetic acclimation to elevated CO2 when unconstrained 

by other factors [83], allowing higher photosynthetic rates to persist. Those effects could 

promote N2-fixer recruitment, up-regulated N2-fixation rates and greater dominance at high 
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CO2 concentrations [84]. A FACE experiment at Oak Ridge analyzed the CO2 response of 

over 2000 seedlings from 14 different temperate tree species.  After 5 years, the N2-fixing 

legume Robinia pseudoacacia exhibited an order of magnitude higher biomass response than 

all of the non-fixing angiosperm trees [85].  Controlled environment pot-based CO2-

enrichment experiments indicate that the photosynthesis and growth responses of nodulated 

N2-fixing Leguminosae rainforest trees were significantly greater than that of non-leguminous 

species investigated [86].  Although there are clear limitations in extrapolating from these 

studies to legumes of early Cenozoic tropical forests, the mechanistic basis of the CO2 

response – linked to alleviation of N-limitation – would still hold. 

Based on these findings, we conceptualize that different feedback loops operated between 

non-legume and N2-fixing legume forests, atmospheric CO2 and climate in the Cenozoic 

(Figure 3).  In non-fixing forests like those that existed prior to legume evolution or in legume-

poor tropical forests of the early Cenozoic, increased atmospheric CO2 would stimulate NPP 

until available soil resources – likely N and P in many locations – are exhausted (Figure 3a).  

Progressive N-limitation could therefore uncouple the ‘standard’ relationship between NPP, 

CO2 and weathering [87] in non-legume forests. In contrast, however, in legume-rich forests, 

progressive N limitation would likely further promote recruitment of N2 fixers and the up-

regulation of N2 fixation rates (Figure 3a), as observed in modern N-limited rainforests [37]. 

This could allow NPP to respond to increasing CO2 and help promote continued weathering 

(Figure 3b). Additionally, biological weathering processes are strengthened by inputs of N-

rich legume litter, and associated downstream processes. Combined this evidence indicate 

that in CO2-rich conditions, the significant role of legumes in maintaining enhanced 

weathering regimes in early tropical forests may be amplified.  

 

5.  Evolutionary drivers of enhanced weathering by N2-fixing legumes 
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Central to our feedback analyses (Figure 3) is the idea that N2-fixing  legumes are associated 

with higher weathering rates than non-legume trees. This effect, in turn, may have evolved in 

response to a disproportionately high demand for phosphorus (P), molybdenum (Mo) and iron 

(Fe) across legume taxa. P and Mo have been identified as potentially limiting factors of N2 

fixation within tropical forests [88],[89]. These limitations may occur because the most 

common type of nitrogenases involved in symbiotic N2-fixation requires a Fe/Mo complex 

acting as a cofactor [90] while high P intake accommodates for enhanced production of 

energy-rich metabolites (e.g., ATP) and membranes during nodule organogenesis [91]. 

Linked to the likely greater P demand driven by higher rates of growth, some but not all N2-

fixing legumes may have higher foliar P levels than non-fixing trees (Supplementary Table 

1). Fe is also required for production of leghaemoglobin in nodules for oxygen binding [92]. 

Fe is very abundant in tropical soils but it is highly insoluble. Most P in soils is also insoluble 

in complexes with Al- and Fe-bearing secondary minerals, and fresh Mo and P inputs 

originate from weathering of otherwise plant-unavailable mineral sources. Both the 

dissolution of insoluble P and Fe and the release of mineral-bound Mo rely upon the same 

weathering mechanisms that include chelation and acidolysis [93] (Supplementary Figure 1). 

Aluminium and iron phosphate minerals such as variscite and vivianite, respectively, dissolve 

faster at pH<6, a process exacerbated by organic acids[93],[94].  

Overall, the processes of N2 fixation and nodule formation require an array of sparingly 

soluble (P, Fe) or scarce soil minerals (Mo). This observation suggests that the mechanisms 

of enhanced weathering overlap with those driving acquisition of elements essential for N2-

fixing legumes. It provides a mechanism that would promote the evolution of adaptive 

strategies in tropical legumes leading to enhanced weathering and thereby unlocking sparingly 

soluble limiting nutrients. Our hypothesized mechanisms that relate N2-fixing  legume 

functioning to weathering rates are suitable for direct investigation in the field and lab and 
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future studies will hopefully further elucidate the relative importance of each of the 

mechanisms of the hereby proposed hypothesis.  

 

6. Conclusions 

Fossils and molecular dating suggest that a worldwide shift from palm-dominated 

communities to ‘modern’ tropical forests occurred early in the Cenozoic and involved the 

development of N2-fixing legume-rich and symbiotically diverse communities. Based on our 

analyses of potential effects on forest ecosystem biogeochemical C and N cycling, we propose 

that the increasing abundance of N2-fixing legumes in tropical forests amplified weathering 

rates through several inteconnected pathways. Firstly, N2-fixing legumes increased soil inputs 

of N-rich organic matter (by an estimated 35-65% based on modern analogues) which can 

promote microbial respiration and carbonation as well as progressive soil acidification 

resulting from leaching and compensatory H+ extrusion. Subsequently, increased N inputs 

may have fuelled greater N availability stimulating forest NPP thus driving further 

carbonation, organic acid chelation and rhizospheric weathering activities. Lastly, exudation 

of isoflavonoids unique to legumes could have provided an additional source of chelating 

activities that cause rock weathering. Together with soil acidification and decreasing C/N 

ratios these effects could have indirectly driven shifts in the weathering-potential of the soil 

microbial community.  

We suggest the global evolution of tropical forests rich in N2-fixing legumes in the early 

Cenozoic in concert with abiotic drivers, including reduced subduction of oceanic crust and 

the rise of the Himalayas/Tibetan plateau [29],[95], could have driven enhanced weathering 

regimes over large pantropical areas with consequent feedbacks on global climate 

stabilization. Furthermore, N2-fixing legumes help maintain the NPP response to atmospheric 

CO2 concentration. In an evolutionary context, tropical N2-fixing legumes appear to enhance 
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rock weathering as a possible adaptation to unlock previously unavailable P, Mo and Fe 

mineral sources, thus alleviating limitations on N2 fixation processes. 
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Figures (Epihov et al., 2017) 

 

Figure 1.  Global rise of legume-rich tropical forests during the early Cenozoic (58 – 42 

Myr ago).  a. Global map of the major legume fossil records plotted on the Eocene continental 

configuration.  Lines and their ball ends point to approximate locations. Caesalpinioids in the 

Wilcox flora are according the old pre-molecular taxonomy with a family status. 

Abbreviations: DTF = dry tropical forest, SubTF = sub-tropical forest, TRF = tropical 

rainforest, boreotropical or BTF = a forest with mixed tropical and temperate species which 

is sometimes referred to as boreotropical. b. Summary of the notable legume-rich fossil 

assemblages and all major molecular clock-dated crown nodes in the Leguminosae marking 

the rise of the legume-rich forests in the Palaeocene-Eocene plotted against atmospheric CO2 

records (light blue dots and red Loess curve) using data from [93] and ocean bottom water 

temperature (orange semi-transparent curve) using data from [94].  Peaks in terrestrial 

weathering (WTs = 55, 48, 35 Myr ago) are estimated as levels of lateritization and 

bauxitization in [30].  

Abbreviations: Cjn = Cerrejon rainforest formation, Wlx = Wilcox boreotropical flora, Wy = 

Wyoming flora, Pat = Patagonia dry forests, Mah = Mahenge dry tropical forest, Cyn = 

Cynometra-monodominant stands in Mwadui, Cam = Cameroon tropical rainforest, Bjm = 

putative Brachystegia-Julbernardia miombo (macrofossils but not assemblage). Crown nodes 

include the divergence of L = Leguminosae, Pa = Papilionoideae, G = Genistoids, D = 

Dalbergioids, N = Senna clade, U = Umtiza clade, A = Amherstieae tribe (contains the 

majority EM taxa) after [95], S = Swartzia clade, R = Robinioids, B = Mirbelioids, I = 

Indigoferoids, Cl = Cladrastis clade, M = Millettioids, Mi = Mimosoideae, O = Peltophorum 

clade, T = Trifolium (IRLC) clade, C = Cercis clade, P = Poeppigia clade, F = Fossil-not-

supported Brachystegia clade (because fossils of Brachystegia and Julbernardia found much 

earlier and new estmates show that this divergence occurred 52.1 Myr ago – here marked as 

clade Amherstieae).  Clock data references: all clade ages unless otherwise stated are after 

[96].  

 

Figure 2. Foliar N ratios between N2-fixing and non-fixing non-legumes in (a) tropical 

forests and (b) tropical forestry plantations and between the three functional groups and 

(d) pathways of the nitrogen-weathering feedback hypothesis. Red typeface depicts 
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factors stimulating weathering with specific weathering reactions associated to those factors 

in brackets. In tropical forests, N2-fixing legumes exhibit an average of 34.58% higher leaf 

crude protein content than non-fixing tree species. In forestry plantations, N2-fixing legume 

species reveal on average 64.50% (SEM=11.57%) higher leaf crude protein content than non-

fixing trees. Raw data and references are available in the Supplementary Information. 

 

Figure 3. Atmospheric CO2, NPP and weathering feedbacks.  (a) Ecosystem effects of 

elevated CO2 levels in legume-poor and rich forests; (b) differences in feedback relationships 

between rich and poor forests. In both forest types, high atmospheric CO2 levels (1) promote 

a proportional NPP increase (2) which transitions the system to low N-availability (3). 

Ultimately, in poor forests that would result in a negative feedback on NPP. In rich forests, 

however, low N availability (3) can up-regulate N2-fixation rates and recruitment of N2-fixers 

(4) thus alleviating N limitations and allowing for unchanged CO2-NPP relationship. Green 

arrows indicate positive relationships, whereas red ball-ending lines - negative relationships; 

N2F = N2-fixation. 
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Supplementary Figure 1. Illustrated glossary of weathering reactions  

The following processes are often enhanced by biological (biotic) systems such as root exudation, microbial physiology, soil 
respiration and organic matter decomposition and leaching and therefore represent the basis of biological weathering [1].   

Chelation (acido-complexolysis; complexation) – the reaction of complexing between metal ions from minerals/rocks with 

organic molecules (chelating agents; chelators) via the formation of coordination bonds. Important in biological weathering. 

Organic acids such as citric acid, oxalic acid, tartaric acid, acetic acid, lactic acid, gluconic acid and amino acids are major 

chelating agents. Chelating organic acids may also produce protons during their dissociation which can further attack minerals 

through acidolysis which is why some sources refer to chelation also as acido-complexolysis [2].  

 
Suggested example: Oxalic acid + olivine  [Mg2+ : oxalate] complex + weathered olivine + 2H+ 

 

Carbonation – CO2 in soil produced by biological activity such as respiration often dissolves in water forming the weak carbonic 
acid (H2CO3). Carbonic acid can react with silicate minerals producing metal carbonates. The process can be sped-up by the 
presence of the enzyme carbonic anhydrase [3].  

Suggested example:  

 

Acidolysis (simple acidolysis, acid attack, protonation) – a process in which protons (generated biologically or by acid 
dissociation) replace the metal cations from mineral surfaces and bring the mineral metals to solution.  

Suggested example:  

 

 

 

 

   

  Figure I. Basalt boulders in the tropical forests of Barro Colorado Island,  

  Panama – the presence of boulders (here seen with weathered surface of  

  altered colour) may indicate that high amounts of volcanic mineral materials at  

  different stages of weathering are contained within the soil horizons where chelation, 

  acidolysis and carbonation driven by forest processes can stimulate their dissolution.  

  Photo credit: Dimitar Z. Epihov.  
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Supplementary Figure 2. Functional symbiotic diversity within Leguminosae – coupling extant 
and fossil evidence  

Root microbial symbioses can be divided into 2 major groups - dipartite (that is symbioses between a plant host and a single symbiont 
group) and multipartite (that is symbioses between a plant host and two or more symbiotic partners). Plants with dipartite symbioses 
include arbuscular mycorrhizal (AM) plants, ectomycorrhizal (EM), ericoid mycorrhizal (ERM) etc. Plants with multipartite symbioses 
are the group of N2-fixing and arbuscular mycorrhizal plants (NAM), N2-fixing and ectomycorrhizal plants (NEM), and N2-fixing dual 
arbuscular-ectomycorrhizal plants (NAEM).  

Leguminosae is one of the most symbiotically-rich plant families with members known to exhibit AM, EM, NAM, NEM [4],[5] or 
NAEM  [6] properties. Symbiotic assignment to fossil taxa is based upon the symbiotic characteristics of extant members of that taxon 
as found in the Supplementary curated by Werner et al. in [7] (except Xylia - [8] and Maniltoa - [9]). Lists of ectomycorrhizal legumes 
are found in [10] and [11].   

 
Functional type  Palaeocene/Eocene Fossil Legume Taxa 

NAM  

 

Figure I. N2-fixing AM legumes of Neotropical 
rainforests: Inga cocleensis – an extant member of 
the ancient Inga genus with origins in the early 
Cenozoic. Shown here are flowers and leaves, 
canopy, Burkholderia root nodules and Trypan Blue-
stained intraradical AM hyphae. Photo credit: Dimitar 
Z. Epihov 

Inga [12],[13],[14], Prosopis [15],[16], 
Mimosa [15], Chamaechrista [12], Acacia 
[13],[16],[17],[18],[19], Swartzia [16],[20], 
Albizia [15],[16], Penthaclethra [15],[19], 
Adentanthera [15],[19] Ormosia [16], Sophora 
[13],[16], Robinia [16],[20], Diplotropis [16], 
Canavalia [13], Dalbergia [13],[20],  
Machaerium [16], Strongydolon [21], 
Pongamia [21], Neptunia [16], Derris [22],  
Desmodium [22] , Millettia [22], Maniltoa 
[23], Crudia [23],[24], Xylia [16] 
 

 

EM 

  

Aphanocalyx [17], Afzelioxylon/Afzelia 
[25],[26], Brachystegia [27],[28], 
Julbernardia [29] 

 

AM  Ablygonocarpus [15], Gymnocladus [20], 
Cladrastis [20], Senna [16], Calpocalyx [15], 
Cassia [30], Cynometra [31], Peltogyne [16], 
Bauhinia [20], Vouapa [21], Hymenaea [23], 
Caesalpinia [16] 

Modern analogues of Cenozoic fossil forests.  The occurrence of fossils of the above taxa at different sites suggests early Cenozoic 
forests exhibited compositional patterns analogous to major types of modern forests with Leguminosae as an important family in both 
species-rich NAM forests and monodominant forests of EM or AM legumes.  We suggest fossils of Inga, Swartzia, Machaerium and the 
AM legume taxa (Senna, Cassia) might be analogous to species-rich NAM legume tropical rainforests of modern Amazon, Panama and 
Costa Rica [32]. Fossils of Brachystegia and Julbernardia are suggestive of monodominant EM dry tropical forests like miombo 
woodlands in Africa [33]. Abundant Acacia fossil records are often interpreted as dry tropical forests analogous to savanna Acacia 
woodland communities currently found in Africa and Mexico [34].  Fossil assemblages of Cynometra- and pollen of Peltogyne-affinity 
might be analogous to the monodominant legume AM communities forming Cynometra alexandrii forests in Africa and that of 
Peltogyne gracilipes in Amazon [35].  Finally, we suggest that the presence of fossil EM Aphanocalyx and Afzelia might be indicative 
as accessory EM species found in modern monodominant EM rainforests like the EM legume Microberlinia bisulcata monodominant 
forests in Cameroon [11],[36]. 
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Legume trees form an abundant and functionally important component of tropical 

forests worldwide1,2,3 with many developing N2-fixing symbioses that promote higher 

growth and recruitment rates than non-fixers during early secondary succession4,5. 

However, it remains unclear how N2-fixers meet the elevated demands for inorganic 

nutrients that result from high rates of growth and biomass accumulation. Here we show 

that N2-fixing trees in secondary Neotropical forests have 2-fold higher weathering rates 

of in situ fresh silicate minerals than non-fixers. Sequencing and annotation of 12 full 

shotgun metagenomes from weathered minerals indicate distinctive mineral 

microbiomes of N-fixers that support the hypothesized roles6 of enhanced nitrogen and 

carbon cycling (carbohydrate metabolic and respiratory potential) in weathering by 

generating localized acidity. Mineral-associated metagenomes and microbial 

communities of soils beneath N2-fixers were linked to reductive conditions and 

fermentative acid products of fast-decomposing N-rich litter that favour phosphorus 

dissolution from minerals found in tropical soils. Furthermore, our analyses indicate the 

transfer of weathering benefits of N2-fixers to non-fixing neighbouring trees and 

therefore the wider biogeochemical functioning of tropical forest ecosystems.  

 

The legume family is the most numerous angiosperm family in Neotropics1,2. Successful 

deployment of the N2-fixing strategy of legumes in tropical forests2,3,4 depends on access to 

scarce inorganic nutrient sources, including bioavailable forms of phosphorus (P) and 

molybdenum (Mo)7, the latter being essential for synthesis of nitrogenases8.  However, P and 
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Mo are often occluded in highly insoluble iron (Fe) and aluminium (Al)-bearing minerals9,10 

and thus not available for immediate biological uptake.  This situation is exemplified by the 

secondary Neotropical moist forests in Panama, where soils are P-poor oxisols, which 

developed on Mo-poor basalt bedrock containing large amounts of P-adsorbing kaolinite and 

goethite secondary minerals (Supplementary Note 1).  Soil beneath N2-fixers in the 17-year 

old Panamanian secondary forests had significantly lower pH, total P and Fe than those 

beneath non-fixers (Supplementary Table 2).  Total soil P in these forests strongly correlated 

with total soil Fe (mainly goethite) and Al (mainly kaolinite) but not total soil organic C 

(Pearson test, P<0.001 for Fe and Al and P>0.10 for C; Supplementary Figure 3), suggesting 

that decline in total P in these forests is consistent with decline in Al and Fe-bearing minerals.  

These patterns raise the biogeochemical hypothesis that N2-fixing legume trees may employ 

enhanced mineral weathering to access occluded inorganic mineral nutrients6,11 and sequester 

carbon into biomass during secondary succession.   

Here we address this hypothesis by investigating (1) whether N2-fixers exert higher silicate 

mineral weathering rates than non-fixing trees, with depletion of elements important for N2 

fixation, (2) whether enhanced weathering rates and N2-fixing status are linked to functional 

differences in the structure and function of mineral microbiomes and metagenomes and (3) 

how N2-fixers affect the biogeochemical potential of soil microbiota.  We investigated these 

questions by undertaking a field study in Panama with replicated experimental plots (0.1 ha 

each, n = 6) representing a natural gradient in N2-fixer abundance (6-27% tree basal area) in 

secondary Neotropical moist forests.  This design allowed us to test whether N2-fixing trees 

influence the soil microbiome and weathering rates in a manner that favours their rapid 

growth, and also exert community effects on weathering rates and soil microbiomes of nearby 

non-fixing trees relative to non-fixers far from fixers in legume-poor forests.  We determined 

in situ weathering rates of trees in Panama by burying >500 mesh bags containing crushed 

dunite, an olivine-rich (>90%) silicate rock (Supplementary Table 2) in the rooting zone 

(~10 cm depth) of N2-fixing (5 species, n = 51 trees), non-fixing trees far from N2-fixers in 

legume-poor forests (NF-far) (5 species, n = 36 trees) and non-fixing trees near fixers in 

legume-rich forests (NF-near) (5 species, n = 39 trees).  After 8 months, recovered samples 

(n = 126 samples) were analysed to calculate olivine weathering rates relative to fresh 

unweathered olivine samples.   

X-ray fluorescence (XRF) revealed that the soil beneath N2-fixing legumes had double the 

olivine weathering rate than soil from non-fixers (Welch’s t-test, n=126, P=0.026; 
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Supplementary Note 4) (Figure 1a).  Community effects of N2-fixing trees on weathering 

rates were also apparent, with non-fixing trees near N2-fixing trees having weathering rates 

intermediate between N2-fixers and non-fixing trees located far from fixers (ANOVA P < 

0.05, Fisher’s LSD test) (Figure 1b). High olivine weathering rates were associated to 

significant decrease in mineral Mo% content (Spearman test, P<0.05, Supplementary Figure 

5) suggesting depletion of elements important for N2-fixation. Overall, olivine weathering 

rates were linked to declines in the pH of the soil (Spearman test, P<0.01; Supplementary 

Figure 5) and reacted olivine, notably with conditions beneath N2-fixing trees being 

significantly more acidic than beneath non-fixing trees, in-line with symbiotic nitrogen 

fixation6,12,13 (two-tailed t-test, P<0.05; Figure 1c).  Further production of N2-fixing root 

nodules (hereafter “nodulation”) was a significant factor affecting the nickel (Ni)% content 

of olivine (two-tailed t-test, P<0.05 and ANOVA, P<0.05 in Figure 1e-f, respectively). 

Increasing Ni% content of olivine is a hallmark of intensifying weathering converting olivine 

material into secondary nickiliferous clay minerals14. Olivine Ni% content indeed negatively 

correlated with weathering rates in our experiment (Spearman test, P<0.01; Supplementary 

Figure 5) suggesting that sites of active nodulation promote regimes of enhanced weathering 

in agreement to their H+-exuding activities15. Across the natural gradient in N2-fixer 

abundance in our field experiment, soil C:N, a parameter reflective of high N inputs16, was 

lower beneath N2-fixers and NF-near compared to NF-far, indicating a second community 

effect in addition to soil pH (Figure 1d).  Soil C:N ratios also correlated with weathering rates 

(Spearman test, P<0.01; Supplementary Figure 5) highlighting the importance of C and N 

cycling to weathering. 

To analyse the role of the microbiome in mineral dissolution and establish the biogeochemical 

conditions favouring weathering, we constructed and sequenced 12 shotgun metagenome 

libraries of reacted olivine mineral samples from beneath N2-fixers (n = 6), NF-far (n = 3) and 

NF-near (n = 3). Metagenomes provided information on the abundance of gene orthologues 

representing 195 functional metabolic pathways (Level 2 in Subsystem MG-RAST 

database17) that were combined with weathering rates and analysed using hierarchical 

clustering to objectively assess which pathways were associated with weathering, as 

expressed in a correlation heat-map (Figure 2a).  Results showed a single specific well-

supported cluster linking enhanced weathering rates with coordinated increases in gene 

abundance for pathways involved in microbial respiration, carbohydrate metabolism and N 

cycling (Figure 2a).  Analysis of these metagenomes normalized using single copy marker 
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gene (rpoC)18 reinforced this view, identifying significant correlations between in situ olivine 

weathering beneath N2-fixers, NF-far and NF-near and gene abundance representing lower 

level metabolic pathways for N and C cycling (Figure 2b) (for single gene correlations refer 

to Supplementary Table 7).  

Detailed analysis of the microbial N cycling pathways indicated the abundance of genes 

involved in nitrification, assimilatory and dissimilatory N reduction, denitrification and 

ammonia assimilation all correlate with weathering (Figures 2b,c). Mechanistically, this 

metabolic profile can be understood in terms of increased inputs of fixed N beneath N2-fixers 

stimulating N cycling and H+ generation promoted by nitrate leaching6,12,13 (Figure 2c).  For 

microbial C cycling, significant positive correlations occurred between weathering and gene 

abundance linked to (1) C storage pathways (glycogen and starch synthesis), (2) Krebs cycle 

enzyme-coding genes, (3) genes of the Entner-Doudoroff-type of glucose breakdown, (4) 

sugar-transporting machinery genes (Figure 2b, 2d; Supplementary Table 7) that are all 

indicative of high C availability19,20. Likely in response to high C flux to microbes, gene 

abundance in the microbial respiration (electron-transport chain) and Krebs cycle, pathways 

understood to drive respiratory CO2 fluxes and generate acidity, also correlated with 

weathering (Figure 2a,b,d). The tight coupling between N, C cycling, the availability of those 

two macroelements and weathering is revealed by genes linking the interconversion of amino 

acids to organic acid intermediates through the Krebs cycle (thus controlling N-C feedbacks 

on bacterial metabolism21), in particular their positive association with weathering rates 

(Figure 2e).  Overall, patterns of gene abundance relating to microbial N cycling, respiration 

and the Krebs cycle follow consistent trends of N2-fixers > NF-near > NF-far (Figure 2c) 

which supports N2-fixer-driven community effects on weathering rates (Figure 1b). 

A characteristic feature of the low C:N ratio of legume litter and its resulting soil organic 

matter6 (Figure 1d) is rapid decomposition and microbial activity22,23 that can result in 

localized depletion of available O2, formation of anaerobic microsites and anaerobiosis in soil 

and mineral aggregates24. Anaerobic conditions can lead to Fe reduction, generation of 

fermentative acid products and S cycle H2S corrosive species that can all contribute to 

weathering, and particularly the dissociation of P from its adsorbed sites on Fe oxides, 

particularly relevant in this P-limited soil matrix.  We therefore investigate interactions 

between weathering and gene abundance for major anaerobic processes and discovered 

correlations with marker genes for the microbial cycling of Fe and S as well as mixed acid 

fermentation (Figure 2b).  Moreover, our metagenomic analyses showed positive correlations 
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between the relative abundance of genes coding for Mo-containing enzymes and olivine 

weathering (Supplementary Figure 6), indicating that weathering supplies Mo for the 

necessary co-factors to synthesize anaerobic enzymes25.  Enhanced dissolution of Mo from 

minerals may therefore stimulate symbiotic N2-fixation and augment mineral weathering via 

positive feedbacks on anaerobic metabolic processes. 

To gain insights into microbial weathering processes allowing trees to access P occluded in 

insoluble Fe and Al-bearing minerals not present in olivine, we undertook determinations of 

the microbiome structure and function in soils beneath our three categories of trees (N2-fixers, 

NF-far, NF-near; n = 21, 12 and 13 samples, respectively), using Next-Generation 16S rRNA 

sequencing. Microbial profiling data show that for N and S cycling lineages, N2-fixers exhibit 

significant community effects on near-by neighbouring trees (NF-near) but not on NF-far 

trees (Figure 3a,b).  N-cycling microbial communities in NF-near and N2-fixers were 

enriched in ammonia oxidisers, particularly the archaeal genus of Nitrososphaera, which 

converts NH3 to NO2
- and generates acidity26,27. S-cycling communities were dominated by 

Thioalkalivibrio which oxidizes S to SO4
2- and also generates acidity (two protons per 

reaction)28. Fe cycling microorganisms appear to exhibit higher cumulative abundance in soils 

beneath N2-fixers and NF-near relative to NF-far, once again revealing apparent community 

effects (Figure 3c).  Changes in the microbial communities involved in Fe and S cycling can 

affect Fe-bound P by reducing the highly insoluble Fe(III)P to Fe (II) + P (Fe cycling)29 and 

Fe(II)S + P (S cycling)30,31.  Together, these findings indicate the rhizospheric soil 

microbiome of N2-fixers improves access to highly limiting P, a benefit that may also be 

shared with neighbouring non-fixers.  

We conclude that the functional soil microbial community of N2 fixing trees provides them 

with access to mineral resources to help meet their high demands for fast growth.  

Metagenomics indicates faster weathering of N2-fixing trees arises through upregulation of 

specific classes of metabolic pathways linking microbial energy metabolism with inorganic 

mineral nutrient cycling.  These lead to (1) acidification of the immediate matrix by CO2 

evolution and carbonic acid production, (2) the formation of anaerobic microsites conductive 

to reductive dissolution resulting from Fe and S cycling affecting the mineral lattice, (3) the 

acid attack by fermentative and Krebs cycle acid products and (4) generation of excess H+ by 

enhanced NO3
- leaching as consequence of greater N inputs and nitrification.  The formation 

of anaerobic niches appears under the control of Mo supply required for nodulation in legume 

trees and mineral weathering.  Further, we have shown community effects of N2-fixers on 
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weathering rates, soil physicochemical factors filtered down to community effects in 

metagenomes and soil microbiomes, highlighting previously overlooked roles (with most 

previous studies mainly focusing on rhizobia-legume interactions in microbiomes32,33) of 

these trees in tropical forest nutrient cycling and biogeochemistry.  
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Methods and Materials 

Sites and Location. The six sites used in our study are 0.1 ha transects, part of the Agua Salud 
secondary rainforest plots in the Panama Canal Area (9oN, 79oW) of Central Panama under the 
supervision of Smithsonian Tropical Research Institute (STRI). Rainforests have developed naturally 
from the existing seedbank following pasture abandonment. The region most likely consisted of 
primary rainforests prior their use for pastures. All selected transects were in 17 year old forests with 
standing biomass similar to that of other secondary forests worldwide34. The forests developed on the 
same basalt parent bedrock, exhibiting weathered P-poor oxisol soil profiles of considerable (equal to 
or greater than 15m) depth. Mineralogically, the soils are dominated by kaolinite, goethite and quartz 
but inclusions of primary minerals from the bedrock (or regolith) brought up by landslides and erosion 
were infrequently recovered (Supplementary Note 1). The six chosen sites represent a naturally 
occurring gradient in N2-fixer basal area (BA) with N2-fixing legumes occupying 6% (Sites A and B), 
9% (Site C), 18% (Site D), 23% (Site E) or 27% (Site F) of total tree BA.  

Tree Selection.  We selected commonly occurring tree species with the group of N2-fixers including 
Inga cocleensis, Inga thibaudiana, Abarema barbouriana, Swartzia simplex and Platymiscium 
dimorphandrum – all from the Fabaceae (Leguminosae).  The group of non-fixers included 
representatives of major tropical tree families including Miconia argentea (Melastomataceae), Xylopia 
frutescens (Annonaceae), Terminalia amazonia (Combretaceae), Lacistema aggregatum 
(Lacistemataceae) and the non-fixing legume Senna dariensis (Fabaceae). Each tree species was 
represented in n≥3 in all microbiome analyses and in n≥4 for pooled mineral samples (prior pooling). 
Specimens were selected by their diameter at breast height (DBH), with median DBH=61 mm and 
mean DBH=75 mm. Trees were arbitrarily classified by their vertical position as understory, mid-
canopy or canopy specimens with fixers and non-fixers having comparable canopy specimen 
proportions (32% and 35% canopy specimens, respectively).  

Soil analysis and Mineral weathering.  Four grams of crushed dunite rock (92% olivine; Åheim plant, 
Norway; grain diameter 250-500 µm / 500-1000 µm = 50 / 50%) were heat-sealed in 5x5x3 cm 
triangular mesh bags (pore diameter 30 µm). Two such mesh bags were buried 10 cm away from 
opposite sides of the main trunk at 10 cm depth for a total of four bags per tree. A total of 500 olivine 
rock bags were buried beneath 125 trees. Soil (0-10 cm depth) was collected from the sites of olivine 
bag deposition using a sterile hand spade. Collected soils were stored at 4oC for a week and analysed 
using nitric acid digests, ICP-OES and C/N analyser (for total C and N) at STRI Soil Lab. Sample pH 
was measured in 0.01 M CaCl2. After 8-months incubation time, bags were recovered and the contents 
of all four bags per tree pooled into a single sample of reacted olivine per tree. After taking a subsample 
for DNA extraction (see below), pooled samples were homogenized to fine powder using an agate 
ball-mill machine. The nutrient concentrations of resulting finely homogenized powder samples were 
analysed using portable X-ray fluorescence machine (Niton™ XL2 GOLDD XRF analyser) set at 
mining mode. Weathering rates were calculated as the change in Mg concentrations relative to fresh 
unweathered material over time. 

DNA extraction, amplicon and shotgun metagenome sequencing.  Total DNA was extracted from 0.50 
g of each reacted olivine sample pool prior to further homogenization and from 0.25 g of rhizospheric 
topsoil using the MoBio PowerSoil DNA isolation kit, using the manufacturers’ protocols. Amplicon 
libraries were constructed using a two-step PCR approach where the target region was first amplified 
using locus specific primers with Illumina sequencing primer adapters incorporated into their 5’ end 
(30 cycles), then a second round of PCR was done using forward and reverse primers that contain all 
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Illumina sequencing primer and flow cell binding sequences as well as a unique 8 bp barcode (6 
cycles).  In the first round of PCR, all samples were amplified in triplicate using the 515F/806R primer 
set that amplifies the V4-V5 region of the 16S rRNA for bacteria35. Triplicate reactions were then 
pooled and unique combinations of barcodes and Illumina adapters added via a second round of PCR. 
PCR products were purified and normalized using SequalPrep Normalization plates (Life 
Technologies), pooled into single libraries based on sample type (e.g. soil rhizospheric 16S, soil 
mineral 16S), concentrated using Agencourt AMPure XP beads, quantified on a Qubit fluorimeter, 
and quality checked using the High Sensitivity Agilent DNA kit on an Agilent Bioanalyzer. 
Subsequently, samples were adjusted to appropriate concentrations and sequenced on a total of two 
runs on an Illumina MiSeq sequencer (2x250 bp PE runs) at the Smithsonian Tropical Research 
Institute. Shotgun metagenome libraries were constructed using a total of 15 total DNA samples (12 
from reacted mineral and 3 from rhizospheric soil) using Nextera XT DNA Library Prep Kit and 
following protocols within and sequenced at 1 run of HiSeq 4000 sequencer (2x150 bp PE runs) at the 
Edinburgh Genomics Institute, UK.  

Operational taxonomic unit (OTU) picking and shotgun metagenomic annotation.  The resulting 16S 
rRNA amplicon libraries were submitted for taxonomic analysis through the MG-RAST pipeline17 and 
blast2go and the SILVA SSU and NCBI microbial 16S databases were used for taxonomy calling. N, 
S, Fe cycling activities are assigned to OTUs based on detailed literature searches identifying a total 
of 6 and 79 genera from the SILVA SSU database with function in the N and S cycle, respectively, 
and 59 species-level OTUs from the NCBI database with function in the Fe cycle. Shotgun 
metagenomes were also submitted through the MG-RAST pipeline17 and annotated according to 
default characteristics (1e-5, 40% similarity, representative hit). Annotated metagenomes are publicly 
available on the MG-RAST server under MG-RAST ID numbers found in Supplementary Note 8. 
Annotations are based on blat hits against MG-RAST Subsystem and KO databases. Excel 
spreadsheets containing OTU tables and shotgun metagenomic hierarchies are available as on request. 
Both metagenomic and 16S RNA hits were expressed in relative abundance dividing their number of 
reads by the total number of reads. Shotgun metagenome entries were also expressed in relative 
abundance based on the DNA-directed RNA polymerase beta’ subunit (rpoC) gene (reads/reads 
assigned to rpoC) to account for different number of genomes per sample as each genome contains a 
single copy rpoC. Further information on methods involved in molecular analyses can be found in 
Appendices 1-3.  

Statistical analyses.  All statistical analyses were carried out in the R environment or in GraphPad 
Prism 7. Sequencing libraries were not rarefied with all libraries (regardless of their number of aligned 
hits) were included in statistical comparisons. Comparisons between tree groups (N2-fixers vs. non-
fixers) were carried out as two-tailed t-tests or Welch’s t-test depending on whether the assumption 
for equal variances was met. In the case of community analyses, most species-level OTUs exhibit non-
normal distribution (Shapiro-Wilk normality tests) and as such comparisons between the microbiomes 
of N2-fixers and non-fixers were compared using Mann-Whitney t-tests. Pearson correlation tests were 
utilized for testing for co-variance between olivine weathering rates and metabolic and candidate genes 
(P<0.05). For comparisons between 3 or more groups of trees, one-way ANOVA and subsequent Post-
Hoc Fisher LSD tests were utilized. PERMANOVA analyses were carried out using the Adonis 
function in R (dissimilarity matrix method Bray-Curtis, replicates=999). Non-dimensional multiscale 
(NDMS) principal coordinates analysis (PCoA) analyses were carried out in R using the dissimilarity 
matrix method Bray. Hierarchical clustering of the correlation heat-map matrix (with each cell 
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containing a Pearson r value representative of the relationship between pathways X and Y on axes x 
and y) was performed in R using Manhattan dissimilarity index and complete clustering method. 
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Figures and Figure Text 

Figure 1. N2-fixers and nodulation are linked to greater mineral weathering in tropical forests 
correlated to lower soil C:N ratio and pH. a. N2-fixers reveal doubled weathering rates compared to 
non-fixers (Welch’s t-test, P<0.05); b. Non-fixers near N2-fixers (NF-near) show intermediate olivine 
weathering rates between non-fixers far from fixers (NF-far) and N2-fixers (ANOVA, P<0.05); c. Soil pH 
is significantly lower beneath N2-fixers and NF-near in comparison to NF-far (ANOVA, P<0.001) with 
similar pattern observed in the pH of weathered olivine; d. Soil C:N ratio is significantly lower beneath 
N2-fixers and NF-near relative to NF-far from fixers (ANOVA, P<0.001); e. Nodulation promotes 
increasing olivine Ni%, signature to weathering of olivine into secondary clay minerals (two-tailed t-test 
P<0.05); f. Nodulation is the main effect on olivine Ni% rather than the taxonomically-defined ability to 
fix N2 (ANOVA, P<0.05). Different letters indicate statistically different means using Fisher’s LSD post-
hoc test. Error bars reveal SEM. 

 

Figure 2. Metagenomics of the microbial community associated with weathered minerals in tropical 
forests link increased respiration, nitrogen and carbohydrate metabolic potential of the microbial 
community to enhanced weathering. a. Correlation heatmap matrix of gene abundance allocated to 
MG-RAST Subsystem-Level 2 pathways for the 12 sequenced metagenomes of reacted olivine at 
different weathering rates. The heatmap is constructed using R with Manhattan dissimilarity index, 
complete clustering method and Pearson test correlations (salmon colour indicates positive correlation, 
blue – negative and white – lack of strong correlation); b. Pearson r plot of rpoC-normalised MG-RAST 
Subsystem Level 3 pathways correlating with weathering rates and anaerobic characterisation; The 
asterisk shows P<0.05; c. High level pathways encompassing Respiration, Nitrogen Metabolism and the 
Krebs cycle all reveal patterns of increase following the order NF-far<NF-near<N2-fixers; d. 
Metagenomic reconstruction of the microbial N cycle in the mineral showing positive correlations (red 
asterisks, Pearson test, *<0.05, ^<0.10) with weathering rates; glutamine synthetase gene orthologue 
marked with blue asterisk negatively correlates with weathering as it is most required at low external 
NH4

+ concentrations; e. Enrichment in Krebs cycle genes correlating with weathering and links to N 
cycling revealing evidence for the combined role of high N and C availability. Error bars indicate SEM. 

 

Figure 3. N2-fixers impact the biogeochemical potential of soil as recorded by enrichment in N, S 
and Fe cycling lineages. a. N2-fixing legumes reveal enrichment in dominant ammonia oxidising 
archaeal lineages generating acidity through their conversion of ammonia to nitrite but not in nitrite 
oxidisers; this enrichment is also evident in NF-near neighbouring fixers relative to NF far from fixers; b. 
N2-fixers reveal greater cumulative abundance of S cycling genera in their associated soil microbiomes 
than NF-far linked to higher abundance of several phylogenetically distinct S cycling genera; we also 
observe community effects of N2-fixers on non-fixers with NF-near legumes revealing similarly enriched 
S cycling genera relative to non-fixers far from fixing legumes; c. N2-fixers and NF-near exhibit higher 
cumulative abundance of Fe(III) reducing genera. Microbial profiles in a-b. are constructed from 
taxonomy calling of the SILVA SSU database in the MG-RAST environment (with n=12, n=13, n=21 for 
NF-far, NF-near and N2-fixers, respectively). The Fe-reducing profiling is constructed using the NCBI 
16S microbial database in the Blast2GO environment as outlined in Appendix 1. Statistical tests include 
Kruskal-Wallis for community effects together with Dunn’s post-hoc test and Mann-Whitney test for 
differences between N2-fixers and non-fixers without community effects. Error bars show SEM.  
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Figure 1. (Epihov et. al, 2018) 
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Figure 2. (Epihov et. al, 2018) 
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Figure 3. (Epihov et. al, 2018) 
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Supplementary Information  

Supplementary Note 1│Soil chemistry and mineralogy in Panamanian tropical forests 

1.1 Soil mineralogy  

The average soil mineralogical composition was analysed using X-ray diffraction methods (XRD; X-ray Mineral 

Services Ltd, Colwyn Bay, UK). The report summarized in Supplementary Figure 1 shows that the main fraction 

is dominated by kaolinite (47.4%) bearing 

certain structural and chemical resemblance to 

the Mg-rich chlorite 

(Mg5Al)(AlSi3)O10(OH)8), followed by 

goethite (26.2%), quartz (24.1%), hematite 

(2.3%), and anatase (traces). The XRD data of 

our soil samples is comparable to other oxisols 

with a characteristic lack of primary minerals[1],[2]. 

However, weathered rock fragments (5-10 cm in length 

and ~5 cm in diameter) were recovered from several topsoil 

samples in plot D. Some of those were subsequently 

crushed and their elemental composition analysed using X-

ray fluorescence (XRF – Supplementary Table 1).  

 

Supplementary Table 1. Mean XRF oxide data (%) comparing soil rock fragments (partially weathered 
basalt) and fresh basalt rock  

Comparison SiO2 MgO Al2O3 FeO CaO TiO2 SrO P2O5 K2O CuO MoO3 MnO ZnO 

Soil rock fragments 45.30 10.26† 24.12 15.91 2.70 0.65 0.11 0.01 0.10 0.02 <D 0.20 0.01 

Fresh basalt 48.01 10.39 16.75 12.03 6.90 1.79 0.47 0.91 2.08 <D* <D 0.24 0.02 

*<D – below detection limit 
† - MgO decline in partially weathered soil rock fragments relative to fresh material is probably substantially 
underestimated due to the formation of secondary minerals between weathered Mg and pedogenic Al (e.g. 
chlorite of the type clinochlore) covering the partially weathering fragments  
n=3 weathered soil fragment from site D, n=3 fresh reference basalt material (from Oregon, USA)  
 

1.2 Soil chemistry and differences between under-crown total soil elements in non-fixers and N2-fixers  

The soils in the Agua Salud secondary rainforests are characterised as weathered oxisols derived from pre-

Cenozoic basalt parent material[3],[4]. Nitric acid digests and subsequent ICP-OES and C-N analysis 

(Smithsonian Soil Lab, Ancón, Panama) reveal that total soil C, N and P (Supplementary Table 1) are relatively 

low compared to similar tropical forest plots in Panama[5], while Cu (particularly in non-fixers – Supplementary 

Mg-rich kaolinite (Al2Si2O5(OH)4Mgx)
Quartz (SiO2)

Goethite (FeOOH)
Hematite (Fe2O3)

Anatase (TiO2) - only traces

Soil XRD

Supplementary Figure 1. XRD mineralogical 

profile of Agua Salud rainforest oxisols  
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Figure 4) is in the high end of its range[6]. Comparing the levels of Al, Fe and soil cations, we show that N2-

fixing status is a major factor determining lower concentrations of those elements (Supplementary Table 2). The 

solubilisation and translocation of clays and secondary iron minerals to lower soil horizons fits the observed 

pattern as during translocation cations also co-migrate with clay explaining the lower levels of almost all 

elements in N2-fixers (except K, Na, Mn). 

Supplementary Table 2. Differences between total soil elements in under-crown topsoil (0-10 cm) of N2-

fixers and non-fixers and fixer-poor and fixer-rich forests in 17-year old forest sites.  

Factor/Element Al B Ca Cu Fe K Mg Mn Na P Zn pH C N C/N Fe/P 

N2-fixing status ** ** * *** ** ns ** ns ns ** ** * ns ns ns ns 

Fixer richness ns ns ns ns ns ns * ns * ns ns *** ** * *** *** 

 

Two-way factorial ANOVA type II, ***P<0.001, **P<0.01, *P<0.01, nsP>0.05. No significant interaction 

effects were recorded.  

Red typeface indicates that the given element is significantly lower in soils of N2-fixers. Fixer richness 

differentiates between fixer- or legume-poor forest sites (n=3, fixer BA 6-9%) and legume-rich sites (n=2, fixer 

BA 23-27%). Numbers of replicates: n fixers=27, n non-fixers=27.  

 

 1.3. Evidence for decline in total soil P, K, Zn, Mn along the chronosequence  

The lower total P in soils of N2-fixers in 17-year old forests may indicate initial preference and competitive 

advantage under low P of that functional group during forest establishment in early secondary succession. 

Alternatively, that pattern may be caused by active decline due to higher solubilisation (release from Al- and Fe-

bearing mineral complexes) and increased P uptake and translocation to lower soil horizons. We compared total 

soil P along the forest chronosequence using site composite samples (each consisting of three pooled 10 cm soil 

cores from three random locations at sites) for 5- and 14-year old forests. Total soil P declined from 5 to 17 years 

old forests in N2-fixers but not in non-fixers 

(Supplementary Figure 2) suggesting that fixers 

may actively act to reduce P to a greater extent 

than their non-fixing counterparts. Similarly, K, 

Supplementary Figure 2. Total soil P, K, Mn and Zn 

decrease along the chronosequence with N2-fixers 

revealing the lowest levels. ANOVA test, ***P<0.001, 

**P<0.01, Benjamini-Hochberg False Discovery Rate 

(FDR) correction. Error bars indicate 95% confidence 

intervals. 
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Supplementary Figure 3. Topsoil (0-10cm) total Al inversely 
correlated with fixer BA% in older forests but not in young 
forests – all suggesting increased dissolution of Al clays and 
release of P  and correlation between Fe/Al and P but not organic 
C. Pearson correlation test (see text above for P and r values). 

Mn and Zn decreased suggesting that forests development may affect nutrient dynamics. Meta-analysis of the 

RAINFOR database containing 1388 entries for non-fixers and 148 for N2-fixers from tropical forests around 

the globe shows 7.9% higher foliar P in N2-fixing trees relative to non-fixers (Mann-Whitney test, P<0.01).  

1.4. Soil Al, Fe and P and evidence for weathering of Al clays and release of P 

Total soil phosphorus strongly correlated with total soil Fe (Pearson correlation test, df=55, P<0.001, df=55, 

r=0.78) and total soil Al (Pearson correlation test, df=55, P<0.001, r=0.77) but not with total soil C% (Pearson 

correlation test, df=55, P=0.25, r=0.15; Supplementary Figure 3). That suggests that the dominant fraction of P 

in our soils is not organic but inorganic bound to Al and Fe in either amorphous or crystalline forms (such 

kaolinite and goethite) – both insoluble and recalcitrant[7]. These results are in line with previous work in 

Panamanian lowland tropical forests, in which total organic P in topsoil (0-9cm) was only 16% from total soil 

P, with inorganic phosphorus accounting for the remaining 84%[8]. Interestingly, fixer basal area (BA%) 

correlate inversely with total soil Al in older sites (14-year old forest sites; Pearson test P<0.01, r=-0.96) but not 

in young sites (5-year old sites – Supplementary Figure 3). Total soil Al is a poor predictor of available Al3+ in 

the soil solution and thus of Al3+ toxicity thus ruling out preference in N2-fixers to low Al sites due to sensitivity 

to Al3+. Alternatively, soil acidification linked to N2-fixers during succession (Supplementary Table 2), similar 

to acid rain effects[9], may cause solubilisation and leaching (translocation) of poorly crystalline Al and  

 

 

 

 

 

 

 

 

 

 

 

Fe clay mineral phases deeper into the soil thus releasing P.  This would help to explain the pattern of decreasing 

P along the chronosequence in N2-fixers but not in non-fixers as seen in Supplementary Figure 2. The release of 

inorganic P may help to explain the greater foliar P levels in N2-fixers relative to non-fixers observed during our 
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Supplementary Figure 4. Meta-analysis of the RAINFOR 
database by paired fixer/non-fixer site comparisons shows 
significantly higher foliar P and no difference in foliar S 
(Paired two-tailed t-test). Sites containing n<3 for each of the 
two groups were excluded from the analysis. Consequently, the 
mean for N2-fixers and non-fixers for each site is based on n≥3. 
DM stands for dry biomass.  

Supplementary Figure 5. Olivine weathering rates correlates with declines in soil pH, soil C: N and enrichment in 
olivine Ni and depletion in olivine Mo% contents.  Spearman test **P<0.01, *P<0.05.  

meta-analysis of the RAINFOR dataset from the TRY database[10] encompassing a total of 1536 entries from 

tropical forest trees.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Note 2│Spearman correlations between weathering rates and olivine chemistry and soil 

physicochemical factors  
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Supplementary Table 3. Single gene correlations with weathering rates. The selection includes genes and pathways discussed in the Main Text.  

Supplementary Note 3│Correlations between metagenome gene abundance and weathering rates 

 
Level 3 pathways enriched in N2-fixers  

    

  
P-value r/rho Test Normalisation Database Name 

  
0.041596 NA Mann-

Whitney 
rpoC MG-RAST 

Subsystem 
Fructoselysine_(Amadori_product)_utilization_pathway 

  
0.024975 NA Mann-

Whitney 
rpoC MG-RAST 

Subsystem 
Glutamate_dehydrogenases 

        

Gene Orthologues correlating with weathering rates 
  

  
0.020815 0.654911 Pearson rpoC MG-RAST 

Subsystem 
Citrate synthase (si) (EC 2.3.3.1) 

  
0.045561 0.585327 Pearson rpoC MG-RAST 

Subsystem 
Aconitate hydratase (EC 4.2.1.3) 

  
0.029416 0.626066 Pearson rpoC MG-RAST 

Subsystem 
Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1) 

  
0.024998 0.639983 Pearson rpoC MG-RAST 

Subsystem 
Pyruvate:ferredoxin oxidoreductase, gamma subunit (EC 1.2.7.1) 

  
0.020035 0.657933 Pearson Total MG-RAST KO E6.4.1.1B, pycB; pyruvate carboxylase subunit B [EC:6.4.1.1] 

  
0.001224 0.815507 Pearson Total MG-RAST KO attA2; mannopine transport system permease protein 

  
0.00122 0.815626 Pearson Total MG-RAST KO attC; mannopine transport system substrate-binding protein 

  
0.033245 0.615179 Pearson Total MG-RAST KO E2.4.1.21, glgA; starch synthase [EC:2.4.1.21] 

  
0.047201 0.581802 Pearson Total MG-RAST KO glgB; 1,4-alpha-glucan branching enzyme [EC:2.4.1.18] 

  
0.009749 0.709546 Pearson Total MG-RAST KO glgC; glucose-1-phosphate adenylyltransferase [EC:2.7.7.27] 

  
0.013754 0.6861 Pearson rpoC MG-RAST 

Subsystem 
1,4-alpha-glucan (glycogen) branching enzyme, GH-13-type (EC 2.4.1.18) 

  
0.021 0.654207 Pearson rpoC MG-RAST 

Subsystem 
glgP; Glycogen phosphorylase (EC 2.4.1.1) 

  
0.029738 0.625113 Pearson rpoC MG-RAST 

Subsystem 
talA; Transaldolase (EC 2.2.1.2) 

  
0.020811 0.654928 Pearson rpoC MG-RAST 

Subsystem 
kdgK; 2-dehydro-3-deoxygluconate kinase (EC 2.7.1.45) 

  
0.002729 0.780666 Pearson Total MG-RAST KO PGLS; pgl; 6-phosphogluconolactonase [EC:3.1.1.31] 

  
0.046936 0.582367 Pearson rpoC MG-RAST 

Subsystem 
xfp; Fructose-6-phosphate phosphoketolase (EC 4.1.2.22) 

  
0.037444 0.604229 Pearson rpoC MG-RAST 

Subsystem 
xfp; Xylulose-5-phosphate phosphoketolase (EC 4.1.2.9) 

  
0.046052 0.584263 Pearson Total MG-RAST 

Subsystem 
pelW; Exopolygalacturonate lyase (EC 4.2.2.9) 

  
0.000426 0.852589 Pearson Total MG-RAST 

Subsystem 
uxaA; Altronate hydrolase (EC 4.2.1.7) 
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0.04819 0.57972 Pearson Total MG-RAST 

Subsystem 
exuR; Hexuronate utilization operon transcriptional repressor ExuR 

  
0.038451 0.601735 Pearson rpoC MG-RAST 

Subsystem 
GltD; Glutamate synthase [NADPH] small chain (EC 1.4.1.13) 

  
0.016861 0.671195 Pearson rpoC MG-RAST 

Subsystem 
ALT (alanine transaminase NCBI search); Uncharacterized PLP-dependent 
aminotransferase YfdZ 

  
0.024831 0.64054 Pearson rpoC MG-RAST 

Subsystem 
AspB (closest match in nBLAST); Phosphonoalanine aminotransferase 

  
 

0.000303 0.862786 Pearson rpoC MG-RAST 
Subsystem 

FdoH; Putative formate dehydrogenase iron-sulfur subunit (EC 1.2.1.2) 

  
0.017208 0.669661 Pearson rpoC MG-RAST 

Subsystem 
FdhF; tungsten-containing formate dehydrogenase alpha subunit 

  
0.036184 0.607419 Pearson rpoC MG-RAST 

Subsystem 
FdhO; Formate dehydrogenase-O, iron-sulfur subunit (EC 1.2.1.2) 

  
0.030197 0.623767 Pearson rpoC MG-RAST 

Subsystem 
Anaerobic dehydrogenases, typically selenocysteine-containing 

  
0.029025 0.627235 Pearson rpoC MG-RAST 

Subsystem 
Fumarate reductase subunit C 

  
0.014033 0.684664 Pearson rpoC MG-RAST 

Subsystem 
Molybdopterin oxidoreductase (EC 1.2.7.-) 

  
0.041476 0.594512 Pearson Total MG-RAST 

Subsystem 
Glycerol dehydrogenase (EC 1.1.1.6) 

  
0.024851 0.640473 Pearson rpoC MG-RAST 

Subsystem 
Pyruvate formate-lyase (EC 2.3.1.54) 

  
0.031527 0.619947 Pearson rpoC MG-RAST 

Subsystem 
quinoprotein alcohol dehydrogenase 

  
0.019298 0.660868 Pearson rpoC MG-RAST 

Subsystem 
Formate hydrogenlyase subunit 3 

  
0.012214 0.694424 Pearson rpoC MG-RAST 

Subsystem 
Formate hydrogenlyase subunit 4 

  
0.042004 0.593288 Pearson rpoC MG-RAST 

Subsystem 
Formate hydrogenlyase subunit 7 

  
0.044197 0.588326 Pearson rpoC MG-RAST 

Subsystem 
Formate hydrogenlyase transcriptional activator 

  
0.017293 0.669289 Pearson rpoC MG-RAST 

Subsystem 
L-lactate dehydrogenase (EC 1.1.1.27) 

  
0.013824 0.685735 Pearson rpoC MG-RAST 

Subsystem 
Phosphate butyryltransferase (EC 2.3.1.19) 

  
0.034844 0.610899 Pearson rpoC MG-RAST 

Subsystem 
3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 

  
0.005391 0.745421 Pearson rpoC MG-RAST 

Subsystem 
CoB--CoM heterodisulfide reductase subunit A (EC 1.8.98.1) 

  
0.020159 0.657447 Pearson rpoC MG-RAST 

Subsystem 
CoB--CoM heterodisulfide reductase subunit B (EC 1.8.98.1) 
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Supplementary Figure 6. Mo leaching from dunite 
correlates wit with several Mo-requiring Level 3 (as 
defined by the MG-RAST Subsystem database) pathways: 
those include many anaerobic pathways consisting of Mo-
containing enzyme-coding genes suggesting a tight feedback 
relationship between Mo leaching and availability resulting 
from weathering and microbiome anaerobiosis that can 
promote further weathering (see Main Text for comments).  

  
0.034531 0.611725 Pearson rpoC MG-RAST 

Subsystem 
CoB--CoM heterodisulfide reductase subunit C (EC 1.8.98.1) 

  
0.001814 0.799218 Pearson rpoC MG-RAST 

Subsystem 
CoB--CoM heterodisulfide reductase subunit D (EC 1.8.98.1) 

  
0.048978 0.57808 Pearson rpoC MG-RAST 

Subsystem 
Coenzyme F(420)H(2) dehydrogenase (methanophenazine) subunit FpoN 

  
0.007409 0.726831 Pearson rpoC MG-RAST 

Subsystem 
Energy-conserving hydrogenase (ferredoxin), subunit A 

  
0.017534 0.66824 Pearson rpoC MG-RAST 

Subsystem 
Energy-conserving hydrogenase (ferredoxin), subunit B 

  
0.003591 0.76715 Pearson rpoC MG-RAST 

Subsystem 
Energy-conserving hydrogenase (ferredoxin), subunit E 
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Abstract 

N2-fixing legumes are abundant and functionally important for alleviating N limitation 

during the re-growth of secondary forests1,2,3. Acacia celsa is a pioneering N2-fixing 

legume in the Australian Wet Tropics area often forming nearly monodominant forest 

stands4. However, what allows Acacia to form such communities relative to other non-

fixing pioneers as well as the exact contribution of its symbioses are unclear. Here, we 

utilize a forest chronosequence (12-48 years old Acacia stands and mature forests) and 

show that the transient peak in nodulation and symbiotic N2-fixation at 20 years of forest 

re-growth coincides with mirroring peaks in the weathering rates of basalt and dunite 

silicate rocks with Acacia exhibiting significantly higher total weathering. Next-

Generation sequencing of 34 full shotgun soil-mineral metagenomes showed significant 

increase in N cycling pathways upon high nodulation regimes. Consequently, 

correlational clustering analyses placed weathering enhancement together with multiple 

N cycling pathways linking fixer-driven changes in the N cycle to parallel increase in 

acidifying and redox dissolutive processes of the microbial carbohydrate, respiratory 

and anaerobic metabolism. Acacia rhizospheres also had the highest rate of P and K 

leaching from basalt throughout the chronosequence as well as significantly greater 

abundance of ectomycorrhizal fungi in roots and basalt communities. Our findings 

corroborate that patterns in mineral weathering in secondary succession are 
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temporally-specific and that Acacia trees affect weathering both directly (through 

mycorrhizal recruitment and root activity) and indirectly (through N-driven cascading 

effects on the free-living belowground microbiome) creating an improved supply of 

essential nutrients likely contributing to their monodominance in Australian Tropics 

and implicating the use of their fast growth and their characteristic microbial ecology 

in future reforestation efforts and sustainable forestry management.  

 

Introduction 

Tropical forests around the world are currently experiencing great reductions in area with 

deforestation activities advancing at rates of 9-12 million hectares per annum or 0.5% total 

loss of forest cover across the tropics5,6. Rates of naturally occurring forest re-growth during 

secondary succession can compensate for and recover 20-85% of the loss rate in forest area7. 

Reforestation also acts to increase the average size of forest fragments by 40% and reduce 

fragmentation (total number of forest fragments) by 15% globally6 showing the potential of 

fragments to eventually coalesce and form clusters of continuous forest cover.  

 The role of N2-fixing legume trees during this successional process is well 

established1,2. Young recovering forests are frequently limited by N creating conditions8 

favouring the recruitment and high fixation rates of N2-fixers1. Also, N2-fixers in such young 

N-limited re-growth forests are linked to higher mineral weathering accommodating their 

higher growth rates than non-fixers. Many such legume-rich communities represent a varied 

mixture of different N2-fixing legume species1,9 with early pioneering legumes typically 

receding in abundance in older, more mature forests once P limitation takes over N limitation8. 

In Australia, however, many such young secondary forests are dominated by a single legume 

species – Acacia celsa. Acacia-dominated forests were suspected to restrict forest 

advancement into mature forests but recent investigations show that they do in fact actively 

recruit late successional species provided there is a nearby fragment of mature forest acting 

as a seedbank4. However, the longevity of Acacia trees in such tropical forests assures 

persistence well into older forests with predicted rates indicating that succession into mature 

forest may take more than 200 years4. We hypothesized that this unusual for pioneering N2-

fixing legumes persistence may be invoked by Acacia celsa ability to form multipartite 

symbioses including partnerships with rhizobial bacteria, arbuscular mycorrhizal (AM) and 
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ectomycorrhizal (EM) fungi10 acting to alleviate N and P limitation and allowing access to 

nutrients derived from mineral weathering boosting Acacia growth and fitness relative to 

other non-fixing AM pioneering trees.  

 Here, we test this hypothesis in a secondary forest chronosequence in the Atherton 

Tableland, Queensland, Australia by investigating the growth dynamics and weathering rates 

and preferential leaching of limiting nutrients by depositing fresh rock material in the 

rhizospheres of Acacia and non-fixing trees along the chronosequence. Subsequently, we 

investigate the drivers of changes in weathering dynamics by coordinated analysis of (1) soil 

chemistry (n=54), (2) root and rock symbiotic status (through de novo assembly of root 

transcriptomes, n=11 and rock eukaryotic large ribosomal subunit metagenomic pulling and 

taxonomy assignment, n=34), (3) the functional profile of free-living microbiota in rock (by 

shotgun metagenomics and metabolic pathway assignment, n=34).  

 

Results and Discussion 

A. celsa exhibits faster growth than non-fixers and persistence into older secondary forests  

We used inventory data from 26 secondary forest sites encompassing species-level identified 

counts of over 2,700 tree stems and their diameter at breast height (DBH) forming a 

chronosequence (9-69 years post-abandonment) to establish the growth dynamics of the 5 

target tree species in our study. Acacia celsa, the major N2-fixer in these forests, grew at rates 

much faster than those observed for any of the target non-fixing species and faster than that 

of all non-fixers combined (Figure 1) allowing it reach an average diameter of 45.3 cm 

compared to 12.1 cm average for non-fixers in 48-year old forests. It is this high growth rate 

that supports near monodominance with some 15-30-year old and 30-48-year old forests 

displaying up to 57% to 64% of their basal area (BA) occupied by A. celsa, respectively 

(Table 1) – a range consistent with other cases of monodominant tropical forests11. However, 

the lack of trees of small DBH in older forests suggesting apparently absent seedling 

recruitment (Figure 1a), also reported in previous work4, suggests that unlike mature 

monodominant forests11, the monodominance of A. celsa is a transient successional event12 

carrying into older secondary but not into mature forests.  
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Age and tree symbiotic characteristics affect weathering patterns 

We deposited fresh samples of crushed (250-500 µm grain diameter) dunite and basalt silicate 

rocks enclosed in polyethylene mesh bags in the rhizosphere (10 cm depth) of 59 trees along 

the secondary forest chronosequence and under 18 trees in mature forests. After 10 months 

including a full wet season, bags were recovered and reacted rocks analysed for weathering 

rates relative to fresh material using X-ray fluorescence. The greatest declines in dunite Mg 

content and basalt product of weathering index (PWI)13 were found in younger (12.5 and 20-

year old) forests indicating intense total weathering, with rock weathering significantly 

decreasing in older successional (48-year old) and mature (120-year old) forests for both types 

of silicate rocks (Figure 2a,b; ANOVA, P<0.001 for both rock types).  

The lack of age replication makes it difficult to exclude the role of possible site effects 

resulting from differing soil conditions and vegetation composition. We carried out soil 

analyses and non-metric multidimensional analyses using all measured total elements 

showing that soil conditions are an unlikely driver of the observed differences 

(Supplementary Figure 1). Using vegetation composition data from sites of different ages 

(12,5, 20, 48-years old and mature forests, n=3, 4, 4, 8, respectively) and Chao clustering, we 

find that our target sites conform well with successional vegetation differences between 

forests of different age (Supplementary Figure 1), suggesting that differences in weathering 

likely result from genuine age-related successional changes.  

P leaching from basalt did not correlate with overall basalt weathering rates (measured by 

PWI) revealing incongruent (independent) leaching rates that were highest in 48-year old 

forests (Figure 2c). Minerals beneath A. celsa revealed significantly greater P decline than 

non-fixers suggesting higher P leaching rates (Mann-Whitney test, P<0.05; Figure 2d). 

Similarly, reacted basalt from the rhizosphere of this legume tree species also consistently 

exhibited significantly lower K levels (Mann-Whitney, P<0.01; Figure 2d). The highest 

weathering rates recorded for both dunite and basalt were those of mineral material beneath 

N2-fixers in the 20-year old forest site (Figure 2a,b). Interestingly, they also exhibited the 

highest levels of nodulation (Figure 3a) offering an intriguing link between symbiotic N2-

fixation, N cycling and weathering dynamics.  
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Symbiotic N2-fixation transitions the soil-mineral microbiome to enhanced weathering 

through cascading N input effects 

To further investigate the role of symbiotic N2-fixation on soil function and weathering, we 

extracted and sequenced 34 metagenomes from the soil-buried reacted minerals (subsequently 

referred to as soil-mineral metagenomes). Genes assigned to the N2-fixation pathways of free-

living microorganisms peaked in soil-mineral metagenomes from the 20-year old forests 

where nodulation was highest (Figure 3a,b; Supplementary Figure 2). Using root 

transcriptomics, we show that nodulated roots contained 4-fold greater abundance of 

Bradyrhizobium transcripts than non-nodulated roots (ANOVA, P<0.01; Figure 4a) 

confirming Bradyrhizobium as the main nodulating agent in Acacia celsa in agreement with 

previous nodulating reports for the closely related Acacia mangium14. Over 50% of all Fe-Mo 

nitrogenase beta subunit (nifK) gene copies in basalt were assigned to Bradyrhizobium with 

basalt beneath N2-fixers containing significantly greater bradyrhizobial nifK gene abundance 

than non-fixers (Figure 4b, two-tailed t-test, P<0.05). These findings corroborate that the 

peak in N2-fixation pathways in basalt and dunite of 20-year old forests is contributable to 

high nodulation rates and abundance of bradyrhizobia in the soil of these nodulating trees. 

Previous studies have found no relationship between Acacia tree diameter and abundance of 

unique reads assigned to the Bradyrhizobiaceae32. Our findings support this relationship by 

asserting that peak in bradyrhizobial nifK reads and N2-fixation genes occurs not in the largest 

48-year old trees but in 20-year old trees suggesting that not tree dimeter but N availability 

and tree-soil feedback relationships may control nodulation and niche construction instead. In 

the absence of compatible hosts, studies have revealed different species as dominants of free-

living N2-fixing communities including Burkholderia, Geobacter, Azotobacter, 

Rhodopseudomonas, Methylocella and Bradyrhizobium33. However, Bradyrhizobium 

dominance of free-living communities in the absence of host is associated with neutral soils33 

and not the highly acidic oxisols present at our sites suggesting that symbiotic attraction is an 

important driver of bradyrhizobial abundance at our sites.  

In addition to this symbiosis-driven effects on the microbial community, high N inputs 

resulting from legume litterfall rich in fixed N can also impact the microbiome. Nodulation 

co-occurred with mirroring increases in the abundance of ammonia monooxygenase gene in 

the soil-mineral metagenomes (Figure 3a). Ammonia monooxygenase is a key member of 

the microbial N cycle catalysing the oxidation of ammonia to nitrite, a process that generates 
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acidity and responds to high N loads suggesting up-regulation of N cycling activity in this 

highly nodulating forest.  

 To further dissect the apparent relationship between N inputs, N cycling and 

weathering dynamics, we constructed detailed Spearman correlation heat-map matrices for 

dunite and basalt soil-mineral metagenomes including all of the over 1,100 lower level 

metabolic pathways and weathering rates. Using complete Manhattan clustering, we show 

that weathering rates fell into a well-defined cluster of positive correlations (Figure 3b). The 

analysis identified two clusters 1 and 2 (sensu stricto) with similarly large positive Spearman 

rho correlation values with weathering (Figure 3c). Cluster 3 pathways also exhibited positive 

albeit significantly lower rho values (sensu lato cluster). In contrast, cluster 4 pathways were 

characterised by negative correlations with weathering. To establish the shared pathways 

linked to high weathering rates in both dunite and basalt metagenomes, we selected pathways 

found in clusters 1 and 2 from both rocks (a pathway was still considered if it was present in 

cluster 3 provided it was present in cluster 1 or 2 from the other rock).  

 Our cluster analysis highlighted a total of 17 pathways involved in N transformations 

and cycling (Figure 3d) that positively linked to weathering in both dunite and basalt 

metagenomes including ammonia monooxygenase (NH3 to NO2
-), denitrification (NO2

-/NO3
- 

to N2), dissimilatory nitrite reductase (NO3
-/NO2

- to NH3) and glutamate dehydrogenases 

(NH3 + α-ketoglutarate to glutamate). Metagenomically, high N transforming microbial 

activity is linked to high N inputs15 often accompanied by nitrate leaching. As a consequence 

of nitrate leaching, protons generated by nitrification cannot be compensated by OH- extrusion 

coupled to microbial and plant nitrate uptake, eventually causing the build-up of acidity16 

which can stimulate weathering rates.  

 Also in the positively correlating clusters are pathways involved in carbohydrate 

metabolism. Of particular interest are the adapted to high C availability Entner-Doudoroff 

glycolytic pathway17 and those pathways converting the labile C source glucose to the 

weathering potent gluconic and 2-ketogluconic acids18,19 including genes encoding the 

enzymes pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and gluconate 

2-dehydrogenase (Figure 3d). Another pathway sensitive to high C availability positively 

linked to weathering is that of glycogen synthesis and metabolism – a reserve polysaccharide 

in bacteria used to store C at high external supply20. Utilisation of maltose, a disaccharide 
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resulting from decomposition of starch, was also positively linked to weathering and other 

pathways in clusters 1 and 2 (Figure 3d). Together, these results paint a picture of high labile 

C loading resulting from either enhanced forest productivity in such forests of high fixed N 

supply or from rapid decomposition of the N-rich legume litter ultimately augmenting 

microbial activity and respiration.   

Microbial respiration generates by-product CO2, increases its concentration at the soil-mineral 

interface and stimulates weathering through formation of carbonic acid (H2CO3). In support, 

the gene encoding carbonic anhydrase (catalysing the reversible conversion of CO2 to H2CO3) 

in basalt metagenomes directly correlates with pathways encoding respiratory 

dehydrogenases, PQQ-dependent glucose dehydrogenase and N conversions 

(Supplementary Table 1) highlighting the relationship between microbial N, C cycling and 

respiratory CO2 evolution. In further support of this relationship, the major respiratory 

pathway components (respiratory complex I, CO dehydrogenase, H2:CoM-S-S-HTP 

oxidoreductase, cytochrome B6-F complex, terminal cytochrome C oxidases) are also 

contained within the positively correlating clusters of basalt and dunite metagenomes 

identified previously (Figure 3d).  

 High respiration rates would ultimately drive a decline in available O2 predicted to 

create multiple anaerobic microsites. In agreement, pathways involved in anaerobic microbial 

activities including fermentative processes (lactate fermentation, pyruvate:ferredoxin 

oxidoreductase), S reduction (sulfate reduction-associated complexes), Fe respiration (Fe(III) 

respiration – Shewanella type), methanogenesis (coenzyme F420-H2 dehydrogenase 

methanophenazine, particulate methane monooxygenase pMMO, methanopterin 

biosynthesis) are also found within the sensu stricto positively correlating weathering clusters 

of both dunite and basalt metagenomes (Figure 3d). The anaerobic food chain found in such 

microsites can be conceived to generate large quantities of fermentative organic acids 

including acetic, lactic, butyric, formic acids – all sources of acidifying and complexing 

activities towards enhanced weathering. Furthermore, S reduction and Fe respiration can both 

drive the redox dissolution of basaltic and dunitic Fe(III) to Fe(II)S or Fe(II), respectively, 

thus further corroding their consisting minerals21,22,23.  

 The complex relationship between high N inputs of low C/N ratio driving faster 

decomposition, enhanced microbial respiration and carbohydrate cycling which then reduces 
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available O2 favouring anaerobic metabolism can be described as cascading N input effects 

on the belowground microbiome function all separately contributing to enhanced weathering 

(Figure 3d). Interestingly, we have first hypothesized the existence of N-driven weathering 

feedback effects in regards to the impact that the evolution of legume-rich tropical forests had 

on weathering during the Cenozoic24. Then, we provided the first evidence that the 

hypothesized cascading N effects were observed in N2-fixing legume trees of Neotropical 

forests in Panama beneath which soil organic matter had lower C/N ratio, consistent with 

elevated N inputs, and weathering rates of dunite (olivine) were significantly higher than 

beneath non-fixing trees. Our combined findings from Panamanian forests reported before 

from Australian tropical forests reported here, suggest that the ability of symbiotic N2-fixing 

legume trees to impact belowground microbial communities and increase rock weathering 

through N inputs may be widespread. 

Multiple symbiotic recruitments in A. celsa provide improved access to basalt nutrients 

We assembled de novo root transcriptomes from both Acacia celsa (n=7) and Alphitonia 

petriei (n=3) using roots near the weathered rock samples (extracted within the same soil core 

as the collected weathered rock samples). In addition to the symbiotic recruitment of N2-fixing 

nodulating Bradyrhizobium spp. (Figure 4a,b; ANOVA, P<0.01 and two-tailed t-test 

P<0.05), roots and basalt communities of A. celsa also demonstrated higher recruitment of 

ectomycorrhizal fungi (Figure 4c,d; Mann-Whitney test, P<0.05). While no significant 

difference was found between fixers and non-fixers in their relative abundance of arbuscular 

mycorrhizal fungi, basalt metagenomes from Acacia contained a significantly greater 

cumulative abundance (sum) of mycorrhizal fungi (Mann-Whitney test, P>0.05; Figure 4d). 

Importantly, all 11 EM fungal genera found in the soil-mineral metagenomes of weathered 

basalt were also present in root transcriptomes supporting the existence of active physical 

mycorrhizal connections (links) between roots and rocks (Figure 4g).  

 A significantly greater abundance of ectomycorrhizal fungal LSUs was found in 

metagenomes of the P and K-containing weathered basalt (n=17) than in the P and K-lacking 

dunite samples (n=17, Wilcoxon’s paired ranked test, P<0.05; Figure 4e) providing a 

tantalizing link between basalt P and K leaching and ectomycorrhization, particularly in the 

light of the greater P and K leaching observed from basalt beneath Acacia trees (Figure 2d). 

Furthermore, we report that samples that had exhibited high P leaching rates were 
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significantly enriched in the ectomycorrhizal Pisolithus and Hebeloma (Mann-Whitney test 

P<0.01 and P<0.05, respectively; Figure 4h), implicating these fungal genera in P leaching 

and transfer to plant roots.  

 In support, transcriptome analysis of roots extracted from rooting zones of high basalt 

P leaching exhibited an up-regulated expression of P-dependent metabolic pathways (Table 

2). Those included carbohydrate phosphorylation, protein phosphorylation, phospholipid 

translocation, phosphorelay signal transduction system, adenosine triphosphate (ATP) 

synthesis coupled electron transport (Table 2), all signifying a root response to increased 

bioavailability of phosphorus. Furthermore, we found that high P leaching also correlated with 

transcript abundance of root defence responses and responses to biotic stimuli, likely outlining 

the interactions with P-transferring mycorrhizal fungi infecting the roots. Interestingly, proton 

transmembrane transport, involved in rhizospheric acidification and improved P nutrition, 

also positively correlated with P leaching (Table 2) suggesting an active role of roots in the 

basalt weathering processes. Similarly, symbiotic N2-fixation triggered a characteristic 

transcriptional response in nodulated roots consistent with improved exchange of N 

metabolites, protein synthesis and limiting O2 concentrations (Supplementary Table 2).  

 We find evidence for temporal trade-offs in the symbiotic recruitment patterns using 

our soil-mineral metagenome libraries. The basalt metagenomes peaked in bradyrhizobial 

nifK sequences in the profusely nodulated 20-year old forest which co-occurred with the 

lowest counts of mycorrhizal fungi (Figure 4h). In contrast, soil-basalt metagenomes from 

the least nodulating 48-year old forest exhibited the highest peak in ectomycorrhizal LSUs 

accompanied by a significant drop in bradyrhizobial nifKs (Figure 4h). Although the lack of 

replication at the forest age level makes it difficult to definitively differentiate between site 

and age effects, the observation of timing and trade-offs between nodulation and 

ectomycorrhization still holds. Previous work with tropical N2-fixers shows that symbiotic 

nodulation is under the control of external N supply, increasing during N-limiting conditions 

in young secondary forests. N-limitation observed in the initial stages of secondary forest re-

growth is often then replaced by P limitation in later successional stages providing a possible 

explanation for our observed patterns in symbiont abundances. Particularly, tree C 

photosynthates are only allocated to symbionts alleviating the current nutrient limitation – be 

it N (through nodulation and diazotrophy) or P (through P-mining ectomycorrhizae). In 
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further support, soil total P was the at its lowest concentration in the 48-year old forests 

(Supplementary Figure 1). 

 

Conclusions 

We report that Acacia celsa, a dominant legume native to secondary tropical forests in 

Australia, similar to its legume relatives of Panamanian Neotropical forests, regulates its 

nodulation in likely response to N limitation during secondary forest succession. High 

nodulation rates co-occur with higher basalt and dunite silicate weathering rates in Acacia 

celsa trees relative to non-fixing trees. We provide soil-mineral metagenomic data revealing 

that the high inputs of fixed N trigger a suite of cascading N effects resulting in enhanced N 

cycling, microbial respiration, carbohydrate metabolism and anaerobic activity, all positively 

clustering with weathering rates and stimulating various weathering mechanisms (redox 

dissolution, acidification, organic acid generation). Throughout the chronosequence, basalt 

material from beneath N2-fixing Acacia trees had significantly greater P and K leaching 

suggesting improved access to these key macronutrients. We report data revealing that in 

addition to N feedback effects, this ability of legumes may be due to their higher abundance 

of ectomycorrhizal symbioses in roots and basalt material.  

 The faster growth rates and monodominance of Acacia celsa in secondary tropical 

forests may be governed by its ability to timely recruit multiple root symbionts with 

corresponding changes in root expression patterns and microbial community function 

allowing improved access to highly insoluble mineral-derived products and atmospheric N2. 

Our findings carry implications to sustainable reforestation and agroforestry efforts 

worldwide, encouraging the use and further trials of native trees simultaneously forming N2-

fixing and multiple mycorrhizal symbioses (e.g. Acacia, Alnus, Casuarina) either on poorly 

developed soils with appreciable mineral component or on highly nutrient impoverished soils 

in combination with rock grain application. Because mineral weathering also enables C 

capture through the mineral-H2CO3 carbonation reaction, such strategic forestry practices may 

not only capture C by forest re-growth but also by the means of microbe-assisted enhanced 

weathering.  
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Methods and Materials 

Study sites 

The three secondary forest sites in our weathering dynamics study were each 20x50m plots, 

located near Tarzali (-17.40, 145.61) in Queensland, Australia and their age was estimated 

using detailed aerial photography as previously described25,26. Their soils were characterised 

as deeply weathered oxisols derived from basalt bedrock. The mature forest site (20x50m) in 

our study was part of Davies Creek National Park (-17.04, 145.61), Queensland, Australia 

and was characterised by deeply weathered soils derived from granite parent material (forest 

age was estimated using the straight line equation resulting from correlating tree DBH with 

age from our inventoried secondary and mature sites near Tarzali). The DBH statistics 

outlined in Figure 1 and in the Main Text result from an inventory tree species data from 26 

secondary and 7 mature sites near Tarzali. The climatic conditions are characterised by 

seasonally wet mild tropical climate with rainfall in the range of 1100 to 2240 mm and 

temperature with a mean minimum of 10oC in winter to a mean maximum of 29oC in summer. 

Nodulation estimates 

Nodulation was estimated by the means of collecting 5 soil cores (cylinders with dimensions 

10x10 cm) for each tree extracted 1 m away from the main tree trunk. This procedure was 

replicated for 8 Acacia celsa trees in each of the three secondary forest sites of our weathering 

dynamics study to a total of 24 tested trees and 120 cores. The 5 cores collected per tree were 

subsequently pooled and their roots separated through sieving. Nodules were carefully 

detached from roots using tweezers. Both collected nodules and roots were rinsed thoroughly 

to remove any remaining soil particles and dried for 30 min in a 70oC oven. The resulting 

nodule and root samples were separately weighed and nodulation was expressed as mg fresh 

nodule per g fresh root biomass.  

Weathering dynamics 

Six tree species of different families well represented in the Australian Wet Tropics flora were 

used to compare mineral weathering rates across the 12-48-year old forest chronosequence, 

namely N2-fixing and ectomycorrhizal Acacia celsa (Leguminosae) and non-fixing 

Alphitonia petriei (Rhamnaceae), Guioa lasioneura (Sapindaceae), Glochidion hylandii 

(Phyllanthaceae), and Neolitsea dealbata (Lauraceae). A total of 4 polyethylene 30 µm mesh 
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bags (2 x basalt, 2 x dunite) containing 3 grams of crushed rock material with grain size of 

250-500 µm were deposited in the immediate rhizosphere of each of the 59 tested trees (15 

cm away from the main stem) using a 10x10cm soil corer to a total of 236 mineral samples. 

Bags were collected after 10 months and a full wet season. The contents of each of the two 

bags of the same rock from each tree were pooled and well-mixed to a composite rock sample 

for that tree (1 basalt and 1 dunite) and were subsequently analysed through portable X-ray 

fluorescence (XRF) Olympus Vanta M series machine set at biogeochemistry mode (the 

machine was rented from Sercal Non-Destructive Test Equipment Ltd., UK). To eliminate 

any non-scanned light elements during XRF (presented by the machine as “LE”), the amounts 

of scanned weathered rock from pooled basalt and dunite samples were optimised and 

weighed to ~0.07 g and ~0.10 g, respectively, forming a thin layer on the top of the scanning 

screen (window). Each sample was processed three times through XRF and averaged to 

minimise machine drift with its mean used for further analyses. Weathering rates were 

estimated by Mg loss relative to fresh material for dunite (as Mg is the main principal 

component) and by the widely used Product of Weathering Index (PWI)13,27,28 for basalt due 

its more varied chemical composition. The equation for PWI is as follows:  

𝑃𝑊𝐼 = 𝑚𝑜𝑙
𝑆𝑖𝑂2

(𝑆𝑖𝑂2 + 𝑇𝑖𝑂2 + 𝐹𝑒2𝑂3 + 𝐴𝑙2𝑂3)
× 100 

We used all developed weathering indices and chose to use PWI on the following criteria: (1) 

number of chemical components used for calculation, (2) significantly lower (more 

weathered) values for weathered material than fresh unweathered rock, and (3) significantly 

correlating with dunite weathering (based on Mg loss relative to fresh material) as favourable 

weathering conditions for silicates are common between different rock types. Results are 

presented in Supplementary Table 3.  

Soil analyses  

Total soil chemistry was obtained through XRF of the soiled dunite-containing polyethylene 

mesh bags after the bags have been entirely emptied from their rock material. As the bags 

have spent sufficient time (10 months) in the soil environment their outer side was entirely 

covered in soil from the immediate vicinity. They were XRF scanned using the Olympus 

Vanta Alloy analysis mode. Soil for pH measurements was collected from topsoil sites (0-

10cm depth) near the mineral samples. The soil pH was measured with a portable Hannah pH 
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meter to the second decimal space directly applying the instrument to a soil paste containing 

1 g soil and 5 ml 0.1M CaCl2 after the paste was left shaking on a horizontal shaker at 250 

rpm for 1 hour. 

DNA extraction and shotgun metagenome sequencing  

DNA was extracted from 0.5 g of the pooled weathered rock samples that were stored at -

20oC after collection in the field and prior extraction. Extraction was carried out using the 

MoBio PowerSoil DNA isolation kit and protocol instructions therein with slight 

modifications. Firstly, the amount of material added was double the recommended 0.25 g. 

Secondly, samples in PowerBead tubes were shaken on a horizontal shaker at 2000 rpm for 

15 min to maximize extraction yield for any endolithic microorganisms. Following extraction, 

DNA samples were stored at -20oC before sending them for sequencing. All 34 total DNA 

extracts (n=17 dunite and n=17 basalt) were sequenced on one lane of the NovaSeq 150bp 

Paired Ends at the Edinburgh Genomics Institute, UK.  

 

Root RNA extraction, transcriptome sequencing and de novo transcriptome assembly 

Roots were collected in the field from the immediate vicinity of the weathered mesh bag 

samples from 10 target trees (n=8 Acacia celsa and n=3 Alphitonia petriei) using a soil corer 

(10x10cm) and were immediately flash frozen using liquid N2. Upon return from the field 

samples were stored in -80oC before further work. Frozen root samples were handled 

aseptically and weighed to 250 mg input amount in a -20oC walk-in freezer room. The 

weighed samples were then used to extract total RNA following the RNAzol protocol for field 

extraction of RNA29. The resulting total RNA extracts were sent in a dry shipper charged with 

liquid N2 to Edinburgh Genomics Institute where they were further performed quality checks 

with an Agilent Bioanalyzer RNA 6000 Pico kit. Samples had exhibited significant amount 

of degradation likely resulting from extensive transportation with average RIN value of 2.2. 

Regardless of the low RIN values, we pursued further polyA tail enrichment and library 

construction using Illumina TruSeq stranded mRNA-seq. Samples were sequenced on the 

NovaSeq 150 bp Paired Ends S2 lane together with the DNA samples which were sequenced 

on the S1 lane. The paired-end transcriptome sequences were fed into Blast2GO Premium 

software and assembled using the built-in de novo transcriptome assembly pipeline. 

Assembled transcriptomes were nBLAST-ed against the NCBI database using the Cloud 
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Blast2GO feature to establish taxonomic identity using top hit matching. Subsequently, hits 

were mapped and functionally annotated using the Gene Ontology (GO) database feature 

within Blast2GO. We performed 2 post-assembly analyses to independently assess the 

integrity of the obtained data due to the low RIN values. First, we confirmed that the root 

samples from beneath Acacia celsa trees (Leguminosae) mapped to 1.5-fold more legume 

species than root samples from beneath Alphitonia petriei (Rhamnaceae) as shown in 

Supplementary Figure 3. Secondly, we compared nodulated (n=3) with non-nodulated (n=5) 

Acacia roots and found that previously characterised nodulation-specific pathways were 

significantly enriched in the nodulated roots (Supplementary Table 2) and that nodulated roots 

(definitely leguminous) contained significantly greater hits taxonomically mapping to legume 

species than non-nodulated roots (of uncertain taxonomic affinity; Supplementary Figure 3).  

Shotgun metagenome assembly and annotation  

All 34 shotgun metagenomes were processed through the MG-RAST server30 using default 

parameters and are publicly available for download and analysis (their unique MG-RAST ID 

numbers and sequencing statistics can be found in Supplementary Table 4). The average size 

significantly differed with dunite metagenomes revealing significantly lower, 8.97 Giga base 

pairs (Gbp) mean, than basalt metagenomes with a mean of 11.05 Gbp (paired two-tailed t-

test, P<0.01). Annotation used in our analyses were against the RefSeq protein database and 

hierarchical clustering was achieved via the Subsystem database classifying functional reads 

into levelled pathways (Level 3, 2, 1). Comma-delimited table files at e-5, 40% similarity for 

all levels and functional reads were downloaded for further analyses. Further information on 

sequencing statistics can be found in Appendix 2.  

Correlation clustering analyses 

Correlation clustering was performed on Level 3 pathways with weathering rates inserted into 

the input table so that they cluster with their strongly correlating pathways and with pathways 

that strongly correlate with pathways strongly correlating with weathering revealing the 

metabolic conditions favouring or co-varying with enhanced weathering. Consequently, we 

constructed Spearman correlation test correlation matrix containing rho values. The resulting 

matrix and its constituents were clustered using complete Manhattan distance and the 

heatmap.2 function in the R environment.  

 

CHANGED! 
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Bradyrhizobial nifK and fungal taxonomic analyses  

Fe-Mo nitrogenase genes can be used to dissect the diversity of both possible free-living and 

nodulating diazotrophs. Similarly, the large ribosomal subunit (LSU) genes can be used for 

taxonomic analyses of eukaryotes. We downloaded the FASTA files for all the Fe-Mo 

nitrogenase beta subunit (nifK) annotated hits and the eukaryotic and archaeal LSU gene 

(Level 3 hierarchical cluster) hits from each of our metagenomes using MG-RAST interface. 

The FASTA files were fed into Blast2GO and nBLAST was performed against the NCBI 

database using the in-built Cloud computing. Next, we used the best matching hit (according 

to its e-value) for each of the sequences to assemble a species table for all hits for each sample. 

Species were clustered into genera and samples were merged together into one taxonomic 

analysis file. To distinguish ectomycorrhizal fungi within the list of eukaryotic and archaeal 

LSU genera, we used the detailed tabulated list of documented ectomycorrhizal fungal genera 

assembled by Tedersoo and Smith31. The sum of ectomycorrhizal fungi (as a proportion of all 

eukaryotic and archaeal LSU reads) were multiplied by the abundance of the eukaryotic and 

archaeal LSU gene within each metagenome to obtain a surrogate measure for the abundance 

of ectomycorrhizal fungi within each metagenomic microbial community. Similarly, nifK 

sequences that best matched to Bradyrhizobium nifK sequences were summed and then 

multiplied by the nifK gene abundance in their representative metagenome. The abundance of 

bradyrhizobial and ectomycorrhizal fungi within the root transcriptomes were derived by a 

similar approach based on nBLAST of all transcripts in the Blast2GO environment and 

subsequent use of the best matching taxonomic hits.  

Statistical analyses 

All statistical analyses and their P value and correlation r and rho results are presented in the 

Main Text and/or in the Figures and Figure Text. Generally, normally distributed data were 

tested with parametric tests, whereas data lacking normal distribution were tested with their 

non-parametric test equivalents. Binning into low and high P leaching categories was based 

on the median P leaching rate due to significant outliers preventing reliable correlational 

analyses. Due to their highly variable yields (several hundred transcripts to several thousand 

transcripts), root transcriptomic GO pathways correlations with basalt P leaching rates were 

achieved by excluding any transcriptomes that lacked the given GO pathway due to shallow 

sequencing – as such GO pathways were correlated based on 3, 4, 5, 6 or 7 entries with 
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different cut-off Pearson r values – essentially using GO term-specific rarefaction (n≥3). Only 

transcriptomes from roots beneath Acacia were correlated with P leaching to avoid species 

effects. One transcriptome was excluded due to a lacking P leaching rate (n=8-1=7).  
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Figures and Figure Text 

(Epihov et al., 2018) 

 

Figure 1. Diameter at breast height (DBH) data from >2,700 stems from 26 Australian wet 
tropical secondary forest sites of different post-abandonment ages reveal that the early 
pioneering N2-fixing A. celsa grows faster than all non-fixers combined and our target non-fixing 
trees: a. Acacia celsa (Leguminosae); b. all non-fixers; c. Alphitonia petriei (Rhamnaceae); d. Guoia 
lasioneura (Sapindaceae); e. Glochidion hylandii (Phyllanthaceae); f. Neolitsea dealbata (Lauraceae);  

 

Table 1. Patterns of abundance in A. celsa suggest that monodominance (based on % stem basal 
area>30%) occurs in later stages of secondary succession; N2-fixers in mature forests are not A. 
celsa but Archidendron and Austrosteenisia spp. R2 values are results from Pearson correlation test. 
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Figure 2. Dunite and basalt rock weathering rates are higher during early successional stages 
but decrease in later successional and mature forests with the successional monodominant N2-
fixer Acacia celsa exhibiting higher leaching of the macroelements P and K from basalt than 
non-fixers in secondary forests. a. Dunite Mg declines in weathered minerals with largest declines 
observed in early successional forests (ANOVA, P<0.001); b. Basalt Product of Weathering Index 
(PWI) declines relative to fresh basalt signifying greater weathering rates in young forests and lower 
ones in late successional and mature (120-year old) forests (ANOVA, P<0.001); c. P leaching patterns 
across the chronosequence shows consistently greater P leaching in the rhizosphere of A. celsa 
(Kruskal-Wallis test, P<0.05); d. A. celsa rhizospheres reveal significantly greater P and K declines 
from basalt rock material relative to non-fixing trees (Mann-Whitney test). Fisher’s LSD Post-Hoc 
test was applied to determine the significant differences between groups. 

 

Figure 3. Nitrogen-driven feedbacks resulting from increased inputs of symbiotically fixed N 
mediate metagenomic increases in acidifying and lithotrophic metabolic pathways clustering 
with enhanced weathering rates. a. The highest weathering rates observed in 20-year old forests co-
occur with peaks in symbiotic N2-fixation (nodulation) in Acacia celsa trees and the relative abundance 
of genes assigned to ammonia monooxygenase (catalysing the rate-limiting step in nitrification: NH3 
 NO2

-) and N2-fixation in the rock metagenomes suggesting tight link between N cycling and 
weathering dynamics; b. Spearman correlation rho heat-map matrices for abundance of metabolic 
pathways (n=1130) in basalt and dunite metagenomes (n=17 each) input together with weathering rate 
reveal three clusters (sensu stricto – 1&2 and sensu lato – 3) of pathways positively associated with 
weathering rates and one (4) of pathways broadly negatively associated with weathering rates. 
Clustering is based on complete Manhattan clustering method; c. Mean Spearman rho correlation 
values for each of the four identified clusters with rock weathering rates in comparison to the overall 
average for all pathways confirming that clusters 1&2 contain metabolic pathways positively 
associated with weathering rates (ANOVA, P<0.001 for both minerals; Post-Hoc Tukey HSD test); d. 
Proposed N-driven feedbacks affecting the function of rock-associated microbial communities using 
metabolic pathways from clusters 1&2 in both rock materials and their link to enhanced weathering 
through organic acids and H+ generation (red typeface). Pathways and/or genes in bold are of key 
importance to weathering and are discussed in the Main Text.  

Figure 4. Acacia celsa recruits multiple symbionts leading to improved access to mineral 
nutrients. a. Root transcriptomics reveal that nodulated Acacia roots have significantly higher 
Bradyrhizobium transcripts (ANOVA, P<0.01, Fisher’s LSD Post-Hoc test) suggesting that 
Bradyrhizobium spp. are the likely nodulating agents of A. celsa; b. Basalt metagenomics show 
significantly higher bradyrhizobial nifK (Fe-Mo nitrogenase beta subunit) gene abundance in A. celsa 
relative to the pioneering non-fixer Alphitonia petriei suggesting that symbiotic attraction may affect 
the microbial community of basalt (two-tailed t-test, P<0.05); c. Root transcriptomes reveal greater 
abundance of ectomycorrhizal (EM) fungal transcripts in Acacia roots compared to the roots of non-
fixer A. petriei (Mann-Whitney test, P<0.05); d. Paired comparison of metagenomics eukaryotic and 
archaeal LSU reveals significantly higher EM fungal abundance in basalt than dunite (Wilcoxon’s 
paired ranked test, P<0.05); e. Analysis of the  ribosomal large subunit genes (LSUs) of eukaryotes 
and archaea in basalt metagenomes indicate significantly greater abundance of EM fungi and overall 
cumulative abundance of mycorrhizal fungi (EM + arbuscular mycorrhizal (AM) fungi) in basalt from 
A. celsa rhizosphere than that beneath the non-fixer A. petriei (two-way ANOVA, fixer/non-fixer 
P<0.05, Sidak’s multiple comparison test); f. Successional dynamics in nifK, EM and AM LSUs from 
basalt reveal peaks in nifK matching that of nodulation (see Figure 3a) and peak in EM LSUs in the 
oldest 48-year forests with the highest P leaching (see Figure 2c); g. Mycorrhizal community profiling 
shows multiple EM and AM symbiotic recruits with specificities in roots, basalt and dunite rock 
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material; h. Greater abundance of Pisolithus and Hebeloma symbionts within the basalt EM 
community is linked to high P leaching (Mann-Whitney test, P<0.01 and P<0.05).  

 

Table 2. Root transcriptomics of Acacia celsa roots elucidate strong responses to basalt P 
leaching 
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Figure 1. (Epihov et al., 2018.)  

 

 

 

 

 

 

 

 

 

 
N2-fixers 

Forest age (n = number of 500 m2 plots) 
                   

 
12.5 (n=3) 20 (n=4) 23-32 (n=4) 34-48 (n=10) Mature (n=7) 

Maximum BA% 1.36 12.35 57.16 64.18 2.25 
Mean BA% 0.45 3.09 30.13 16.46 0.35 
Monodominance  
(>30% BA)  

No No Yes (2/4) Yes (4/10) No 

a b c 

d e f 

Table 1. (Epihov et al., 2018.) 
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Figure 2. (Epihov et al., 2018.)  
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Figure 3. (Epihov et al., 2018.) 
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Figure 4. (Epihov et al., 2018.)  

 

Table 2. (Epihov et al., 2018.)  

Positive correlations between abundance of GO pathways in root transcriptomes and basalt P leaching 

GO term Pearson 
test  
P-value 

No. of 
transcriptomes 
in which GO 
term present 

Stimulating 
P leaching 

Stimulated by 
P leaching 

Mechanism 

Proton 
transmembrane 
transport 

0.022† 7 yes 
 

proton extrusion enables P dissolution  

Oxidation 
reduction process 

0.058† 7 yes 
 

up-regulation of energy metabolism may 
generate more CO2, organic acids, protons 
etc.  

Aerobic electron 
transport chain 

0.011 3 yes 
 

up-regulation of energy metabolism may 
generate more CO2, organic acids, protons 
etc.  

ATP synthesis 
coupled electron 
transport 

0.0009 7 yes yes up-regulation of energy metabolism may 
generate more CO2, organic acids, protons 
etc.  

Signal 
transduction by 
protein 
phosphorylation 

0.063 6 
 

yes high P availability may promote this P-
dependent process 

Phosphorelay 
signal 
transduction 
system 

0.034 6 
 

yes high P availability may promote this P-
dependent process 

Protein 
phosphorylation 

0.010 7 
 

yes high P availability may promote this P-
dependent process 

Carbohydrate 
phosphorylation 

0.006 5 
 

yes high P availability may promote this P-
dependent process 

Phospholipid 
translocation 

0.031 4 
 

yes high P availability may promote this P-
dependent process 

Defense response 0.011 5 
 

yes high P leaching may trigger competitive and 
symbiotic interactions between plant roots 
and microorganisms in the rhizosphere 

Response to 
biotic stimulus 

0.007 5 
 

yes high P leaching may trigger competitive and 
symbiotic interactions between plant roots 
and microorganisms in the rhizosphere 

†Values excluding a single very high P leaching outlier  
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Supplementary Figure 1. Soil chemistry data and floristic composition suggest that the latter 
(typically a product of successional dynamics) is the more likely driver of weathering 
differences than the former with sites of high weathering rates (our 12.5 site and 20-year old 
site) exhibiting overlapping floristic composition distinct from that of 48-year old forests (our 
48-year old site revealed the lowest weathering rates). These findings support the view that 
differences in weathering between the sites used in our weathering studies (marked with “*”) are 
more likely age/successional effects rather than isolated site effects.  
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Supplementary Figure 2. Nodulation patterns in legumes of Australian tropical forests: a. 
highly nodulated roots from a 20-year old Acacia celsa tree in a secondary forest; b. nodulated aerial 
adventitious roots in a 48-year old Acacia celsa tree in a secondary forests; c. nodulation in a 
Archidendron sp. in a mature forest setting with its odd-pinnate leaf photographed in the upper right 
corner; d. nodules (not photographed) were also found on the underground roots of this legume liana 
found in mature forests. The legume liana was professionally ID-ed (Steve McKenna, botanist at 
Department of Agriculture and Water Resources, Queensland) as Austrosteenisia stipularis.  

 

 

Supplementary Table 1. Significant positive correlations between basalt metagenomic carbonic 
anhydrase gene abundance and Level 3 Subsystem pathways involved in respiration, C cycling 
and N conversions.  

 

Spearman correlation tests, ***P<0.001, **P<0.01, *P<0.05, ^P<0.10.  

 

 

 

 

Metagenomic pathway 

 

Spearman rho  

(Carbonic 
anhydrase) P-value 

   
Carbonic anhydrase  1.000 *** 

Respiratory_dehydrogenases_1 0.794 *** 

Pyrroloquinoline_Quinone_biosynthesis 0.691 ** 

Gluconate 2-dehydrogenase (EC 1.1.99.3), membrane-bound, 
flavoprotein 0.612 * 

Nitrogen_fixation 0.665 * 

Glutamine,_Glutamate,_Aspartate_and_Asparagine_Biosynthesis 0.591 * 

Glutamate_and_Aspartate_uptake_in_Bacteria 0.548 * 

Denitrification 0.546 * 

Aromatic_amino_acid_degradation 0.685 ** 

Tryptophan_catabolism 0.735 ** 

Nitrosative_stress 0.737 ** 

Nitrate_and_nitrite_ammonification 0.484 ^ 
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Supplementary Table 2. Validation of our de novo assembled root transcriptomes of Acacia 
celsa revealing enrichment in key GO pathways with known function in rhizobial infection and 
nodulation   

 

 

 

 

 

 

 

 

Up-regulated GO pathways in nodulated roots  

GO term Mann-
Whitney 
test  
P-value 

Non-nodulated 
roots 

Nodulated 
roots 

Role in nodulation 

Oxygen transport 0.010 0 0.0035 To limit O2 concentration allowing 
properly functioning nitrogenases1 

Spermidine 
biosynthetic process 

0.010 0 0.0032 Bioavailable form of fixed N2 

Arginine catabolic 
process 

0.010 0 0.0031 Bioavailable form of fixed N3 

Glutamine biosynthetic 
process 

0.081 0.0010 0.0034 Bioavailable form of fixed N4 

Translation 0.053 0.0253 0.0408 High protein synthesis in stage III 
and IV of the rhizobial infection5  

Translational 
elongation 

0.010 0 0.0075 High protein synthesis (as above) 

Transcription, RNA 
templated 

0.039 0.0005 0.0084 High protein synthesis (as above) 

RNA-dependent DNA 
biosynthetic process 

0.025 0.0071 0.01621 Division of cells (requiring DNA 
replication) within the symbiosomes 
or lateral meristem activity within 
the roots? 

Aerobic electron 
transport chain 

0.081 0.0014 0.0106 Up-regulated energy metabolism 
due to high N? 

Glutathione metabolic 
process 

0.010 0 0.0031 Anti-oxidant function important for 
nodulation by Bradyrhizobium6 

S-adenosylmethionine 
biosynthetic process 

0.010 0 0.0035 Metabolic product in nodules7 
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Supplementary Figure 3. Validation of root transcriptome analyses revealing more nBLAST 
hits mapping to leguminous transcripts, particularly in transcriptomes of nodulated roots. 
Three of the root samples from beneath Acacia contained nodulated roots, with the remaining 5 
samples from beneath Acacia showing no nodules. The non-nodulated root group includes the latter 
5 and those from beneath A. petriei. Two-tailed t-test, *P<0.05, ns P>0.05. nBLAST hits were 
obtained against the NCBI database through Blast2GO.  

 

 

 

Supplementary Table 3. Basalt weathering indices and related metrics.  

 

$PWI was selected as the main measure of basalt weathering due to: (1) its sensitivity in comparing fresh to weathered material, (2) its 
correlation with [Mg] dunite weathering signifying its sensitivity to environmental conditions favouring silicate weathering (regardless of 
rock type), and (3) its derivation as it is based on Si, Ti, Fe and Al measurements, whereas Ruxton’s index (R) is only using basalt Si and 
Al. The 

 exact equations for all weathering indices can be found summarised in 8and references therein.  

Weathering index Fresh 
basalt 

Weathered 
basalt:  
Non-fixers 

Weathered 
basalt:  
N2-fixers 

Correct 
pattern 

Test P-value Significance Fisher’s 
LSD 
test 

Correlation 
with [Mg] 
olivine 

Ruxton's  
index (R) 

6.735 6.114 5.967 Yes ANOVA P<0.05 Yes a/b/b Yes  
R=0.47*** 

Product of weathering  
index (PWI)$ 

81.158 79.499 79.061 Yes ANOVA P<0.01 Yes a/b/b Yes  
R=0.35** 

Weathering  
index of Parker (WIP) 

73.898 71.459 71.372 Yes ANOVA P>0.10 No NA No 

Weathering Potential 
Index (WPI) 

12.263 11.226 11.708 Yes ANOVA P>0.10 No NA No 

Vogt's Index 1.182 1.453 1.392 Yes Kruskal-
Wallis 

0.05<P<0.1 No NA No 

Chemical Index of 
Alteration (CIA) 

60.537 61.947 62.141 Yes Kruskal-
Wallis 

P>0.10 No NA No 

Chemical Index of 
Weathering (CIW) 

67.060 68.526 68.290 Yes Kruskal-
Wallis 

P>0.10 No NA No 

Plagioclase Index of 
Alteration (PIA) 

63.084 64.776 64.818 Yes Kruskal-
Wallis 

P>0.10 No NA No 

Silica-Titania Index (STI) 73.980 73.184 72.937 Yes Kruskal-
Wallis 

P>0.10 No NA No 
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Supplementary Figure 4. Basalt supports               
significantly higher metagenomic sizes despite 
the same extraction and prep-up procedures 
suggesting higher microbial biomass.  
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Abstract 

 

Mineral weathering in the soil environment can replenish diminishing nutrients stocks 

by unlocking highly insoluble mineral-bound elements. The role of soil bacteria as 

drivers of enhanced weathering is well-documented, but the genetic and environmental 

basis for the large variability existing in weathering potentials between different 

bacterial genera is not understood. Here, we show that several single gene mutations 

significantly impact the in vitro weathering potential of the tropical soil beta-

proteobacterium Burkholderia thailandensis. Our functional analyses identify target 

weathering genes from the Entner-Doudoroff pathway, acetate metabolism and 

siderophore biosynthesis. Phylogenetics of the soil pools of those genes provide evidence 

for the role of multiple previously undescribed and elusive bacterial lineages, including 

a new class of Acidobacteria – Ca. Acidipotentia cl. nov., in weathering dynamics. Using 

parametrisation from our in vitro results we established a model to calculate the 

estimated weathering capacity (EWC) of single bacteria and whole communities. EWC 

strongly correlated with weathering in vitro and in vivo and we demonstrate its utility 

for biome-specific analyses. Our findings provide functional genetic and metabolic basis 

of enhanced weathering in soil bacteria supplying marker genes for use in soil shotgun 

metagenomic and metatranscriptomic analyses as well as useful targets for 

biotechnological modification in industrial bioleaching of mineral ores.  

 

 Weathering of silicate minerals in the soil environment increases nutrient availability, 

decreases N2O emissions and increases CO2 capture by carbonation reactions1,2
 forming a key 
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part of biogeochemical cycling in the pedosphere. Soil bacteria are increasingly recognized 

as powerful agents of enhanced weathering3,4 unlocking minerals through several 

mechanisms. In natural systems, lithotrophic bacteria utilizing inorganic salts as source of 

electrons can exacerbate weathering by their effects on ecosystem nutrient cycling, 

specifically (1) enhanced nitrate (NO3
-) leaching and acidification through the activity of 

nitrifying prokaryotic consortia5,6, (2) iron (Fe) oxidation reactions dissolving Fe(II) from 

silicate minerals through Fe cycling bacteria7,8, (3) production of corrosive sulphur (S) species 

through S oxidizing lineages9,10. However, the majority of bacteria in soil are represented by 

organotrophic genera which may affect weathering by mobilizing metals from minerals 

through the combined action of organic acids11, siderophores8 and Fe(III) reductive 

dissolution12.  

Large natural variability in bacteria-driven weathering rates exist. For example, isolation of 

bacterial strains from the granite forefront of the Damma Glacier in the Swiss Alps revealed 

very high in vitro solubilisation of Fe from granite by actinobacterial isolates (Arthrobacter, 

Leifsonia) and beta-proteobacteria (Polaromonas, Janthinobacterium)13. Interestingly, other 

Damma Glacier isolates in the same classes of actinobacteria (Frigoribacter) and beta-

proteobacteria (Oxalobacter, Paucibacter) failed to trigger significant Fe dissolution13. That 

clearly demonstrates that class-level phylogenetic clustering does not correspond to 

weathering ability despite previously observed correlation between beta-proteobacteria and 

apatite weathering from community-profiling of soil-deposited mineral bags14. In supporting 

the presence of within-class variation in weathering capacity, another study found that 

members of the actinomycete class isolated from granite and assigned to Kibdelosporangium 

and Actinopolyspora exhibited the highest Fe solubilisation rates followed by intermediate 

rates in Kitasatospora with lowest rates observed in Streptomyces isolates15. In vitro analysis 

of >400 soil isolates from along a soil profile revealed that bacteria-driven weathering rates 

varied greatly from 4 to 175  µM dissolved Fe from biotite mineral16 and from 1 to 37 µM Fe 

solubilised from feldspar17. Variation in weathering dynamics has even been documented in 

different species within the same genus with rock phosphate weathering rates in solid cultures 

differing substantially between 3 different species from each of the alpha-proteobacterial 

genera Rhizobium and Bradyrhizobium18.  

Currently, the genetic and metabolic basis of this variation in weathering potential in bacteria 

is not fully understood. Gluconic acid production has been highlighted in several studies as 
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important driver of acidification and chelation activities fuelling weathering19,20. In two 

Pseudomonas species differing in their weathering efficiencies, high P solubilisation under P-

limiting conditions were linked to increased activity of the pyrroloquinoline quinone (PQQ)-

dependent glucose dehydrogenase (gdhPQQ) catalysing the oxidation of glucose to gluconic 

acid21. Similarly, transfer of PQQ synthase gene from the weathering efficient Erwinia 

herbicola to Pseudomonas and Burkholderia increased solubilisation haloes by 11-42%22. 

The gdhPQQ is part of the Entner-Doudoroff (ED) pathway (a metabolic alternative to the 

standard Embden-Meyerhof-Parnas/EMP glycolysis) in which glucose is oxidized to aldonic 

acids in the periplasm, subsequently transported into the cytosol and processed to 2-keto-3-

deoxy-phosphogluconate (KDPG). Ultimately, KDPG is converted into pyruvate and 

glyceraldehyde-3-phosphate which are then converted into acetyl-CoA through standard EMP 

pathway finally flowing into the Krebs cycle. These findings implicate the ED pathway as 

key in driving weathering but how the network of genes participating in this pathway as a 

whole affects weathering remains unclear.  

Microbially produced siderophores are known to provide bacteria with utilizable source of 

iron by binding to Fe(III) even at lower than yoctomolar (<10-24 M) concentrations. However, 

the binding and uptake of Fe(III) already in solution is unlikely to have any pronounced effect 

on weathering through equilibrium dynamics as bacterial uptake is relatively small compared 

to the vast quantities of Fe liberated by dissolution of Fe-rich minerals. Direct siderophore-

mineral interactions would stimulate weathering and such interactions have been recorded for 

Fe hydroxides and smectite23 but not for primary silicate rocks such as olivine/dunite, basalt 

etc. 

Here, we test for the direct silicate weathering effects of genes coding for (1) ED pathway and 

related pentose phosphate pathway enzymatic machinery (n=9 genes), (2) metal transporters 

(n=3 genes) and (3) siderophore production (n=1 gene) using a reverse genetics approach, 

utilizing knock-out (KO) mutants from the transposon mutant library available for the tropical 

soil beta-proteobacterium Burkholderia thailandensis E264 strain24. Bacteria were incubated 

in vitro in specifically designed sterile minimal liquid medium containing 5.6 mM glucose, 

salts and 0.1% w/v crushed olivine with the mineral representing the only source of Fe and 

micronutrients.  
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Results 

Wild type Burkholderia thailandensis cultures trigger a multi-elemental pattern of 

weathering in vitro stimulated by high N supply 

Initial screens (first experiment) with the wild-type (WT) Burkholderia thailandensis E264 

(BtE264) cultures using two different mineral grain sizes (60-90 µm and 90-106 µm) revealed 

that after a 10-day incubation period bacteria triggered multi-elemental weathering release 

from olivine that generated significantly larger concentrations of Fe (193-fold), cobalt (Co; 

124-fold), nickel (Ni; 26-fold), manganese (Mn; 18-fold), magnesium (Mg; 15-fold), silicon 

(Si; 10-fold) and chromium (Cr; 3-fold) in solution than the abiotic treatment, a pattern 

independent on grain size (n=6 for each grain size and treatment; two-tailed t-test, P<0.001; 

Figure 1a). In the rest of our experiments, those elements were considered the 5 principal 

components of olivine that are liberated as a result of bacterially-mediated weathering.  

We tested 3 different C:N ratios by increasing the levels of N available as ammonium sulfate 

supplied in the medium (C:N = 10,12,14). Weathering rates negatively correlated with 

medium C:N suggesting that increased N supply can stimulate weathering (Figure 1b). While 

the significantly more acidic final pH of all the BtE264 treatments at different C:N ratios 

(mean pH=3.91, n=18, SEM=0.04) may have stimulated weathering relative to their 

respective abiotic controls (mean pH=6.31, n=18, SEM=0.02), it was not responsible for the 

difference driven by decreasing C:N ratio as there was no significant pH difference between 

different C:N treatments, neither did the final pH of bacteria-inoculated samples correlate 

with their exerted weathering rates. However, bacterial culture density (absorbance at OD600nm 

or simply OD600 hereafter) revealed an opposite pattern with the greatest growth observed at 

the highest C:N ratio. Subsequently, we selected C:N = 14 and larger grain size for further 

mutant screening as to provide a more conservative view on any of the observed phenotypes.  

 

Transporter knock-outs do not affect weathering rates and bacterial growth  

In the second experiment, we utilized three transporter knock-out (KO) mutants including the 

magnesium transporter corA, a Fe:siderophore ABC transporter and the molybdenum/cobalt 

transporter modA. In each of the tests, the transporter mutants did not exhibit any significant 

differences from WT BtE264 in the concentration of their target elements (two-tailed t-test, 
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P<0.05) suggesting that membrane transport does not significantly affect weathering 

dynamics (Figure 1c). However, none of the transporter mutants exhibited any significant 

differences in their growth (OD600) than WT BtE264 suggesting that alternative transporting 

mechanisms must exist allowing the passage of those elements into bacterial cells.  

 

Entner-Doudoroff (ED) and pentose-phosphate (PP) metabolism significantly affects 

weathering potential 

We used the Uniprot database and in silico sequence-based predictions to establish the 

subcellular localisation of the protein products of the target genes involved in these pathways. 

Membrane localisation was suggested for the flavin dinucleotide (FAD)-binding glucose 

dehydrogenase (gdhFAD), 2-ketogluconate reductase (trkA), gluconokinase (gntK), altronate 

hydrolase (uxaA) with the rest of the tested knock-out gene products assigned to the 

cytoplasm (Figure 2). In our third experiment, we tested how inactivation at different spots 

within the ED/PP metabolic network would affect weathering rates.  

At the surface of the bacterial cell, glucose is oxidized to gluconic acid by gdhFAD. Mutation 

in the gdhFAD gene resulted in significant multi-elemental decline in weathering with the 

following elemental patterns: -12% in mobilised Fe and approximately -5% in Mg, Si, Mn, 

Co, and Ni relative to WT BtE264 (two-tailed t-test, P<0.001 for all but Si and Ni where 

P<0.01; Figure 1c). Once oxidised, the gluconic acid in the periplasm can either enter the cell 

or be further oxidised to 2-ketogluconic acid that also remains outside the cell with the 

reaction catalysed by the 2-ketogluconate reductase/gluconate 2-dehydrogenase (trkA). 

Mutation in the trkA gene resulted in a slight but significant decline of 3-4% in weathering 

yield of Mg, Si, Mn, Co, and Ni compared to WT BtE264 (two-tailed t-test, P<0.05; Figure 

1c). Any non-oxidised gluconic acid can penetrate the cell through gluconate permease. Upon 

entry, gluconate is immediately phosphorylated by gluconokinase (gntK) to 6-

phosphogluconate. Loss-of-function mutation in the gntK gene disabling the cell to 

successfully assimilate gluconic acid significantly stunted bacterial growth by 5-fold and 

further caused multi-elemental increase in weathering yield of ~68% in Fe and 28-33% in 

Mg, Si, Mn, Co and Ni in comparison to WT BtE264 (two-tailed t-test, P<0.001; Figure 1c).  

 In the cytoplasm, the 6-phosphogluconate can either enter the classic phosphorylative 

ED pathway and form 2-dehydro-3-deoxy-6-phosphogluconate (by the edd enzyme) or be re-
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routed to the standard EMP glycolysis stream by conversion to 6-phosphoglucose through the                    

6-phosphoglucose dehydrogenase (zwf). KO mutation in the zwf gene causes a slight 3% 

increase in Co yield (two-tailed t-test, P<0.05) and a more pronounced 22% rise in Fe 

dissolved from olivine relative to WT BtE264 (two-tailed t-test, P<0.01; Figure 1c). Mutation 

in the gene encoding the 6-phosphofructokinase further downstream in the EMP glycolytic 

pathway caused only insignificant increases in weathered Co and Ni (two-tailed t-test, 

P<0.06).  

 The 6-phosphogluconate not re-routed to glycolysis is converted to 2-dehydro-3-

deoxy-6-phosphogluconate (KDPG; Figure 2). KDPG can also be formed as a result of 

phosphorylation of 2-dehydro-3-deoxygluconate by the kdgK enzyme. Interestingly, mutation 

in the KDPG-generating kdgK gene causes a 6-7% decline in weathered Mg, Si, Mn, Co, and 

Ni (relative to WT BtE264, two-tailed t-test, P<0.001; Figure 1c), while loss-of-function 

mutation in the eda gene responsible for the breakdown of KDPG to glycolytic pyruvate and 

glyceraldehyde-3P significantly increases weathering yields in Mg, Si, and Co by 2-6% (two-

tailed t-test, P<0.01; Figure 1c). These suggest that KDPG may act as a regulatory 

intermediate in the ED pathway indirectly affecting weathering potential. Interestingly, we 

detected that the altronate hydrolase coded for by the uxaA gene and converting altronate (a 

product of glucuronate breakdown) to 2-dehydro-3-deoxygluconate also exhibited a negative 

effect on weathering because its KO mutants revealed greater concentrations of weathered 

Mn, Co, and Ni than WT cultures (two-tailed t-test, P<0.05 for Mn, P<0.01 for Co and Ni; 

Figure 1c). 

 Acetate is transported outside the cell during high C loading resulting in acetogenesis. 

In this process, the acetate kinase encoded in B. thailandensis by the ackA gene is key by 

converting acetyl-CoA generated by glycolysis to acetate which is then excreted with a 

counterbalancing H+. KO mutation in the ackA gene triggered a significant 3% decline in the 

Mg, Mn, Co, and Ni weathered from olivine relative to WT B. thailandensis (two tailed t-test, 

P<0.01).  

 

Siderophore biosynthesis is involved in bacterially-mediated silicate weathering 

The genome of Burkholderia thailandensis E264 only codes for the biosynthesis of the 

pyochelin class of siderophores also containing their related Fe-chelating salicylic acid and 



105 
 

dihydroaeruginoic acid. Key in this biosynthetic pathways is the pchD gene encoding a 

siderophore biosynthesis enzyme with a salicylate-AMP ligase activity25. Bt pchD mutants 

revealed a multi-elemental decrease in weathered elements including 12-17% decline in Mg, 

Si, Mn, Co, Ni as well as larger 35% reduction in dissolved Fe in comparison to wild type 

bacteria (two-tailed t-test, P<0.001; Figure 1c). Intriguingly, the pchD mutants also exhibited 

slightly yet significantly higher OD600 readings (+7%, two-tailed t-test, P<0.001) than their 

WT counterparts showing that those elemental reductions did not negatively impact growth. 

However, the mutants also generated less acidity at the end of the experiment with one-unit 

greater pH than in the media of their WT analogues after the 10-day incubation period.  

 Combined, our findings highlight the genes for siderophore biosynthesis, glucose 

dehydrogenases, 2-ketogluconate reductase/gluconate 2-dehydrogenase and acetate kinase 

(Figure 2) and their products as targets contributing to bacterial weathering potential.  

 

Correcting weathering effects for OD600 

Correcting weathering effects for OD600 of in vitro weathering systems involving 

bacterial cultures is not a common practice. None of 14 major scientific articles that have 

investigated the effects of different bacterial species on weathering (Supplementary Table 1) 

have compared and normalised weathering rates for growth measured by OD600. One reason 

for not doing so is that such studies are designed to test the effect each species has on rock 

weathering under the same set of conditions (medium, temperature, time, shaking rate etc.) 

despite inherent differences in growth rates and growth potential of different lineages. 

Another potential pitfall of this type of normalisation, particularly relevant to our case, is that 

mutations often carry deleterious effects causing a decline in bacterial growth compared to its 

wild type baseline. Consider this example: a bacterial mutant exhibits 2-fold decreased growth 

due to a deleterious mutation that disrupts a process with no mechanistic links to the 

weathering process (e.g. translational processing) and ion concentration in solution reveal no 

effect on weathering relative to wild type bacteria; if corrected, however, this mutant will 

reveal 2-fold greater weathering rates per unit OD600 than wild type despite its lack of effect 

prior to normalisation.  

For instance, gdhFAD mutants exhibit 38.6% significantly lower OD600 reading after 

10 days of growth compared to wild type cultures (two-tailed t-test, P<0.001) and prior to 
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normalisation they reveal 12% significant decline in weathered Fe relative to wild type (two-

tailed t-test, P<0.001). Consequently, because the effect on growth dwarfs that on weathering, 

after normalisation gdhFAD KO mutants reveal 23.9% greater weathering than wild type B. 

thailandensis. This assertion is mechanistically questionable because the gdhFAD protein 

partipates in the catalysis of glucose to gluconic acid oxidation process, with many previous 

studies implicating the production of gluconic acid as a principal agent of bacterial 

weathering19. Similarly, trkA mutants exhibit 9.5% significant reduction in OD600 (two-tailed 

t-test, P<0.001) compared to WT BtE264 and a 3% decline in weathering-generated Fe 

relative to WT (two-tailed t-test, P<0.01). Consequently, after normalisation trkA KO cultures 

appear to have significantly higher weathering rates than wild type by 6.2% (two-tailed t-test, 

P<0.01). The enzyme encoded by trkA catalyses the production of 2-ketogluconic acid – 

another agent of bacterial weathering45 thus making this finding illogical, too. The KO 

mutation in gntK causes the build-up of gluconic acid in the medium (Supplementary Note 2) 

which results in 68% increases in weathering-derived Fe in the medium. In terms of growth 

gntK exhibits 4.5-fold lower OD600 readings than WT bacteria and as such the increase seems 

even larger as it is spread among fewer OD units.  

Knock-out mutation in gntK significantly reduces pH relative to wild-type (down to a 

mean of pH 3.70; -0.70 units relative to WT; two-tailed t-test, P<0.001) owing the build-up 

of gluconic acid (Supplementary Note 2), whereas mutation in gdhFAD significantly 

increases pH (up to a mean of pH 4.65; +0.25 units relative to WT; two-tailed t-test, P<0.001) 

likely owing to reduced generation of gluconic acid and that of protons dissociating from it. 

These findings act to further contradict the weathering results reported after OD600 

normalisation in the case of gdhFAD. However, because the notion that the number of bacteria 

carries a quantitative effect on weathering cannot be ruled out, we compared the OD600 

readings of WT  bacteria grown over three separate times (batches) and their weathering rates 

(Supplementary Note 1) and found no statistically supported links between OD600 and 

weathering within the same genetic background (Pearson test, P>0.10) ruling out the 

possibility that the number of bacteria affects weathering rates. Nevertheless, however 

informative or disinformative, corrections of weathering to units weathering per unit OD600 

are, for those interested, can be found integrated within the main findings presented in Figure 

1 and Figure 2. Briefly, we find that after normalisation: (1) pchD, gntK, eda (no significant 

difference in OD600 between wild-type and this background; P>0.10) and zwf (no significant 
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difference in OD600 between wild-type and this background; P>0.10) show no change in their 

effects on weathering from before normalisation; (2) similarly, the lack of significance 

remains unchanged in all three transporter gene knock-out backgrounds; (3) trkA and gadFDH 

exhibit shifts in their effects from decline-to-increase in weathering; (4) the effects of ackA 

(no significant difference in OD600 between wild-type and this background; P>0.10) and ddgK 

(significantly lower OD600 in this background relative to WT; P<0.01) on weathering are no 

longer supported (Figure 1). Among those, ackA is the only background where growth did not 

significantly differ from WT and yet the relationship between ackA and weathering was absent 

after normalisation making it the only case where one could be ascertained that the deleterious 

effect of the mutation was not driving the apparent pattern the mutation had on weathering 

after normalisation. As such, readers are cautioned that any further discussions on 

unnormalised rates of weathering found below, particularly in the case of the ackA 

background, may be speculative.  

 

Phylogenetics of target weathering genes from soil metagenomes reveals highly 

abundant elusive lineages of strong weathering potential  

 We utilized 3 shotgun soil metagenomes from Neotropical forests in Panama, each 

containing an average of 18,792,525 sequences to characterise the phylogenetics of the 

weathering community in soil samples by assigning taxonomy to the target genes (gdhFAD, 

trkA, siderophore biosynthesis genes, ackA) we have established in our in vitro weathering 

experiments with the tropical soil bacterium B. thailandensis as well as the functional 

analogue of gdhFAD-encoded FAD-dependent glucose dehydrogenase – the gdhPQQ gene 

also encoding for glucose dehydrogenase but PQQ-dependent.  

Detailed search of the published literature summarised a total of 107 bacterial genera for 

which proof for active mineral weathering in vitro was available (Supplementary Table 1). 

We used those genera to estimate what percentage of soil lineages harbouring the target 

weathering genes were previously characterised or not (with or without weathering record, 

respectively).  

 The gdhFAD gene was only present in 20-30 copies representing an average of 

0.00014% of each soil metagenome. Taxonomic breakdown of the gene (Figure 3a) revealed 

that over 60% of all hits were assigned to genera of known weathering ability with the beta-
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proteobacterial (Burkholderia, Paraburkholderia, Caballeronia, Collimonas, Herbaspirillum 

and Ralstonia) and alpha-proteobacterial (Bradyrhizobium, Novosphingobium, 

Mesorhizobium, Caulobacter) contributing the highest proportion. Of those gdhFAD-

harbouring lineages of no previous weathering record, members of the hard-to-culture elusive 

Acidobacteria phylum contributed ~11% of all hits, uncultured uncharacterised groups – 6% 

and delta-proteobacteria – 6%.  

 A total of 4400-4900 reads from each soil metagenome library were characterised as 

gdhPQQ genes amounting to a mean of 0.025% of all metagenomic hits. Nearly 90% of all 

gdhPQQs were assigned to genera (Figure 3b) of no previous weathering record, with a major 

proportion, over a half of all sequences occupied by Acidobacteria (including the genera 

Sulfopaludibacter with 7%, Solibacter – 6%, Koribacter – 2%, Terriglobus – 1% and another 

8 named genera). The most abundant group among the Acidobacteria were uncultured 

acidobacterial genomes assembled from metagenomic hits composing a total of 31% of all 

hits. Other notable bacterial groups contributing to the soil gdhPQQ gene pool were the 

bacteroidetes classes of Cytophagia (2.8%) and Flavobacteriia (0.8%), the elusive groups of 

Verrucomicrobia (1.3%), Gemmatimonadetes (1.3%) and alpha-proteobacteria (29% split in 

18% and 11% for genera of no weathering and published weathering record, respectively), 

beta-proteobacteria (22% split in 3% and 19% of genera of no weathering and published 

weathering record, respectively), and gamma-proteobacteria (4% - all contributed by genera 

of known weathering activity).  

 Between ~3100 and 3900 metagenomic reads (a mean of 0.019% of the whole 

metagenome) were functionally annotated as trkA (2-ketogluconate reductase) or glucose 2-

dehydrogenase genes – both catalysing the reversible reaction of gluconic acid to 2-

ketogluconic acid at the cell surface. Approximately 56% of all hits were contributed by 

genera with previously published in vitro weathering activity (Figure 3c) – mainly consisting 

of alpha-proteobacterial sequences with nearest match to Bradyrhizobium (40.7%), 

Rhizobium (3.5%), Mesorhizobium (1.9%), the beta-proteobacterial Paraburkholderia-

Burkholderia-Caballeronia close taxonomic cluster (1.2%). Among the 44% of no 

weathering record, significant trkA-contributors were Acidobacteria (15% with 14% being of 

uncultured acidobacteria) and newly characterised yet largely uncultured Rokubacteria 

(1.7%).  
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 The ackA gene was present in 5900-7250 copies representing a mean of 0.036% of 

soil metagenomes. Around 74% of all of the ackA copies were assigned to genera of no 

weathering record with the Acidobacteria taking up 9%. The cluster of siderophore 

biosynthetic genes as defined by the KEGG Orthologues (KO) database amounted to 0.034% 

of all metagenomic reads in soil.  Of these 48% belonged to genera of known weathering 

record including Streptomyces (13.6%), Mycobacterium (7.3%), Bradyrhizobium (5.8%), 

Bacillus (4.6%), Burkholderia-Paraburkholderia-Caballeronia clade (2.8%), Paenibacillus 

(2.5%), Rhizobium (1.6%) and Pseudomonas (1.5%). The group of no-weathering record 

included 1.9% Acidobacterial sequences and those of dominant (>1%) genera namely the 

actinobacterial Nocardia (1.6%), Amycolatopsis (1.5%), uncultured actinobacteria (1.4%), 

Micromonospora (1.3%), the alpha-proteobacterial Rhodoplanes (2.8%), uncultured 

Rhizobiales (1.3%), and Methylobacter (1.0%), uncultured beta-proteobacteria (1.3%) and 

uncultured gamma-proteobacteria (1.1%).  

 Next, we ranked the genus-specific weathering potential using our detailed taxonomic 

breakdown of metagenomic weathering genes. We found that all weathering genes 

gdhFAD/gdhPQQ, trkA, ackA, and siderophore biosynthetic genes weathering genes were 

present in 44 genera, of which 19 were of known weathering potential (including 

Bradyrhizobium, Burkholderia-Paraburkholderia-Caballeronia, Streptomyces, Rhizobium, 

Pseudomonas, Bacillus, Collimonas, Cupriavidus, Frateuria, Dyella-like etc.). We also found 

that grouping according to number of weathering genes was significantly associated with the 

proportion of known weathering genera confirming that the more weathering genes present 

in a genus, the higher the likelihood of its being already reported as a weathering agent. 

Nevertheless, all weathering genes were also detected in uncultured and taxonomically-

undefined members of the Acidobacteria, Rhodospirillales, Rokubacteria, beta-

proteobacteria, gamma-proteobacteria, Bradyrhizobiaceae, Burkholderiales. In all of those, 

genes encoding the synthesis of the PQQ co-enzyme were also present suggesting that their 

gdhPQQ enzymes are active.  

 

Candidatus Acidipotentia, cl. nov. – a new class of the Acidobacteria phylum with 

pronounced acid-generating potential 
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Among the abundant and uncultured species within the Acidobacteria with genomes 

assembled from soil metagenomes26, we have identified 17 putative acidobacterial species 

that can convert glucose to gluconic acid, contributing a total of 14% and 8% of the soil pools 

of gdhPQQ and gdhFAD, respectively. Of those there were 11 species that were also able to 

further oxidize their periplasmatically generated gluconic acid to 2-ketogluconic acid via the 

trkA/gluconate 2-dehydrogenase gene pool to which they contributed 5% of all reads.  Of the 

18 gluconic acid-generating species there were 8 species that also harboured siderophore 

biosynthetic genes and 6 spp. were predicted to be able to produce all three – gluconic and 2-

ketogluconic acids and siderophores.  

Next, we used the DNA-directed RNA polymerase subunit beta’ (rpoC) genes of six of the 

uncultured species and aligned them with rpoC sequences of known acidobacterial lineages 

– representing all currently described Acidobacterial classes. Using the multiple alignment of 

the taxonomically reliable gene marker rpoC27, we constructed a Neighbour-Joining 

phylogenetic tree which showed that three of the environmental isolates (Acidobacteria 

bacterium 13_2_20CM_2_57_6, Acidobacteria bacterium 13_2_20CM_57_17, and 

Acidobacteria bacterium 13_1_40CM_2_60_7) formed a strongly supported cluster with a 

deep divergence node and outside all known acidobacterial classes (Figure 3d). Here, we 

named this new candidate class as Ca. Acidipotentia cl. nov. (‘acidi’ – from Latin N. m. pl. 

acids, ‘potentia’ – from Latin N. f. sing. ability, capacity; the etymology stems from the acid-

producing capacity of the bacteria in this class with members containing the genes to 

extracellularly generate gluconic acid, 2-ketogluconic acid, and acetic acid). In this new class 

we also describe a new genus Ca. Acidipotentia gen. nov. with two species – Ca. 

Acidipotentia major (‘major’ – from Latin f. sing. greater) with two strains G1 and G2, and 

Ca. Acidipotentia minor (‘minor’ – from Latin f. sing. lesser, smaller). Ca. A. major G1 

contains the gdhPQQ, trkA/gluconate 2-dehydrogenase and ackA genes contributing to each 

of the soil pools of those genes 1.5%, 1.1% and 0.3% of all reads, respectively. Ca. A. major 

G2 also contains the gdhPQQ, trkA/gluconate 2-dehydrogenase genes but not the ackA gene 

with 2.2% and 0.2% contributions, respectively. The genome of Ca. A. minor contains the 

gdhPQQ but not the trkA/gluconate 2-dehydrogenase and ackA genes, contributing 0.4% of 

all soil gdhPQQ copies. Both species contained the ability to synthesize the PQQ co-enzyme 

necessary for the activity of their PQQ-dependent glucose dehydrogenases with Ca. A. major 
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G1, G2 and Ca. A. minor containing 0.8%, 0.6% and 0.2% of all PQQ biosynthetic genes in 

the soil metagenomes.  

Another three uncultured acidobacterial species also formed a distinct phylogenetic cluster 

that appeared as sister to the acidobacterial classes Solibacteres and Acidobacteriia but at low 

bootstrap values and more recent divergence nodes within the group. Therefore, these three 

species may also be a part of another previously undescribed class but their phylogenetic 

positioning is less clear and we did not name them, although they also contributed 

significantly to the gene pools of gdhPQQ and trkA/gluconate 2-dehydrogenase.  

 

Discussion 

Our experiments with Burkholderia thailandensis E264 and mutants in key genes show that 

bacteria can mediate multi-elemental incongruent solubilisation from silicates resulting from 

(1) strong chelating agents (siderophores; L1 class28) and (2) weak chelating agents (organic 

acid anions; L2 class28) and (3) H+ generation, while ruling out any significant impact on 

differences in bacterial growth as measured by OD600 (Supplementary Note 1).  

 The genes gdhFAD and trkA appear central to the ability of Bt E264 to solubilize 

olivine. The gluconic acid and 2-ketogluconic acid produced through the enzymes encoded 

by these two genes, respectively, can promote dissolution by weak chelation (complexolysis) 

and by deprotonation of their carboxylic group at pH>3.86 for gluconic and pH>2.80 for 2-

ketogluconic acid generating acidity (acidolysis)29,30. Similarly, the negatively charged 

organic acid anion acetate generated by the ackA gene product intracellularly and exported 

into the medium can provide chelating activity as well as generate acidity by co-transport with 

counter-balancing positively charged H+ allowing the cell to maintain its electron potential31.  

  The significant decline in weathering yield triggered by the loss-of-function mutations 

in gdhFAD (-5% Mg) and trkA (-3% Mg) is much lower in its absolute value than the increase 

triggered by a KO mutation in the gntK gene (+33% Mg) causing a build-up of gluconic acid32 

and probably that of 2-ketogluconic acid. The explanation behind this phenomenon may be 

the combined mode of complexolysis and acidolysis in gluconic acid building up 

extracellularly in the gntK background compared to the WT state in which most gluconate is 

acquired and metabolized by the cell with little remaining as gluconate and converted into 2-
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ketogluconic acid outside the cell thus creating weathering conditions predominated by 

acidolysis.  

 Interestingly, the phenotype of gntK mutants is consistent with that of growth arrest 

typically detected in gntK mutant E. coli supplied only with gluconate as its sole C source32. 

That suggests that most of the glucose supplied in our minimal medium is converted into 

gluconate and acquired and metabolized through the semi-phosphorylative ED pathway33 

rather than being acquired through the phosphotransferase system and direct phosphorylation 

of glucose to 6-phosphoglucose in the classic ED pathway. This defines that the direction of 

reversible reactions catalysed by enzymes such as trkA will be mainly from gluconate to 2-

ketogluconic acid just like that of zwf will be mainly from 6-phosphogluconate to 6-

phosphoglucose. Interruption in the latter in the zwf mutant background will be expected to 

increase the availability of 6-phosphogluconate by preventing its re-routing to EMP 

glycolysis. 6-phosphogluconate is a key intermediate in the erythrose-generating pentose 

phosphate pathway. Erythrose is used as a precursor of aromatic amino acids which are in 

their own right precursors for chorismate in siderophore biosynthesis. Indeed, we have 

recorded that zwf mutants exhibit a modest 3% increase in Co but a much larger 22% increase 

in Fe consistent with rise in the production of siderophores.  

 Our weathering experiments revealed that accumulation of 2-dehydro-3-deoxy-6-

phosphogluconate (KDPG) in the eda mutant background and depletion in the kdgA 

background had opposite effects on weathering suggesting some regulatory function of KDPG 

within the ED pathway. Indeed, previous work indicates that KDPG positively regulates the 

ED pathway by binding to ED pathway repressor hexR and dissociating it from DNA allowing 

up-regulated expression of edd, glc and zwf34 as well as by binding and inactivating the 

pyruvate metabolism repressor RccR35.  While inactivation of the metabolic repressors hexR 

and RccR can stimulate overall bacterial metabolism and thus generate more CO2, acetate and 

Krebs cycle organic acids, it may limit the amount of 6-phosphogluconate by re-routing it to 

generation of 6-phosphoglucose metabolized in the EMP glycolytic pathway by the means of 

increasing the expression of zwf (Figure 2). Indeed, in our eda mutants accumulating higher 

levels of KDPG acting to alleviate the repression over metabolism – the Mg, Si and Co 

weathered from olivine increased 2-6% (two-tailed t-test, P<0.01) but Fe yields decreased by 

25% (two-tailed t-test, P=0.06).  
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 The decrease in olivine weathering caused by knock-out of the pyochelin biosynthetic 

gene pchD is substantial. As previously highlighted siderophore biosynthesis is dependent 

upon the PPP intermediate erythrose as a precursor for aromatic amino acids. Amino acid 

biosynthesis also requires adequate N supply. Therefore, it is plausible that the weathering-

promoting effects of lower C:N ratio that we recorded are due to increasing the N availability 

to siderophore biosynthesis. In addition, greater N supply may promote the production of 

Krebs cycle organic acids by positive regulation of the Krebs cycle36. Experiments with the 

gluconic acid-producing fungus Aureobasidium pullulans also demonstrated that higher N 

supply may promote the amount of generated gluconic acid37.  

 Our analyses (Figure 1c, Figure 2) implicate pchD (KO effect: -35% Fe, -13% Mg) 

or other siderophore synthesis genes, gdhFAD (-12% Fe, -5% Mg) or its functional analogue 

gdhPQQ, trkA (-3% Mg), and ackA (-3% Mg) as target genes with direct effects on weathering 

that can be deployed for estimating the weathering ability of single bacteria as well as that of 

whole microbial communities. To validate the predicting power of these genes we utilized a 

quantitative study18 on the ability of different legume-nodulating bacteria to dissolve insoluble 

phosphate mineral sources. This study was chosen because the bacteria used in it are obtained 

from a taxonomically curated collection and identified down to the strain level with 5 out of 

the 8 bacterial strains studied having fully sequenced publicly available genomes. Using the 

number of target genes (siderophore genes are counted as binary data – 0/1 for 

absence/presence) multiplied by the Mg weathering coefficients attained from our 

experimental data (0.520 for siderophores, 0.208 for gdh, 0.125 for trkA/gluconate 2-

dehydrogenase and 0.125 for ackA) we obtained estimated weathering capacity (EWC) 

values. The calculated EWC for the 5 bacteria (Figure 4a) significantly correlated with: (1) 

the recorded CaHPO4 solubilisation haloes in solid media (Pearson test, P<0.05, r=0.887), (2) 

the solubilised P weathered from CaHPO4 in liquid cultures (Pearson test, P<0.05, r=0.914) 

and with (3) the P dissolved from strengite minerals in liquid cultures – strongly insoluble 

iron phosphate minerals (FePO4.2H2O, Pearson test, P<0.01, r=0.968). EWC of whole 

microbial communities using coupled soil/mineral interfaces from our field experiments in 

Panama revealed a significant strong correlation with in vivo weathering rates (Figure 4b). 

Using publicly available metagenomes, we estimated the EWC of the soil communities of 4 

different biomes showing a descending pattern in weathering ability (Figure 4c) mirroring 
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latitudinal gradients in precipitation, temperature and net productivity pumping organics to 

the communities belowground. 

Highly weathered oxisolic soils in tropical forests contain little primary minerals 

(<1%) but most of their phosphate is present in highly insoluble mineral P forms, mainly as 

Al-P and Fe-P secondary minerals (such as strengite, variscite and their amorphous 

analogues)38,39. Because net primary productivity of tropical forests is limited by P 

availability39,40, the study of the EWC of the soil microbial community in such biomes is of 

high relevance. Our phylogenetic analysis of the target weathering genes in 3 tropical forest 

soil metagenomes demonstrated large phylogenetic diversity in weathering potent groups. 

Weathering potential in soil appears to be a function of the combined action of hundreds of 

bacterial species distributed among various bacterial phyla and classes including many poorly 

studied, uncultured and elusive lineages among the Acidobacteria, Rokubacteria, 

Glassbacteria, Verrucomicrobia etc. Although a certain level of functional redundancy exists, 

specialisation was also evident. For instance, some groups exhibited high EWC potential 

based on containing and contributing a disproportionate number of genes to the soil pools of 

gdhPQQ relative to that of siderophores (gluconic acid-based weathering agents) including 

acidobacterial candidate class of Acidipotentia (62:1), other acidobacteria such as Ca. 

Solibacter (21:1), Terriglobus (273:1), Ca. Sulfopaludibacter (26:1), the alpha-proteobacterial 

Phenylobacterium (81:1), Sphingobium (85:1), and Rhodopila (8:1). In contrast, other 

lineages had EWC mainly based on contributing a disproportionate number of copies to the 

soil pool of siderophore biosynthetic genes relative to that of gdhPQQ (siderophore-based 

weathering agents) such as the actinobacterial Streptomyces (317:1), Amycolatopsis (54:1), 

Actinomadura (gdhPQQ absent), Arthrobacter (gdhPQQ absent), the firmicute genus of 

Bacillus (125:1), uncultured Rhizobiales (93:1) etc. From the metagenomic analyses also 

becomes apparent that some dominant gdhPQQ-contributing lineages can synthesize their 

own internal supply of PQQ co-enzyme to activate their gdhPQQ apoenzyme (Ca. 

Acidipotentia, Terriglobus, Rhodopila), while others can only rely on external supplies of 

PQQ co-enzyme as they lack the necessary PQQ synthesis genes (Ca. Sulfopaludibacter, Ca. 

Solibacter, Phenylobacterium). Ecologically, these data present an interesting insight into the 

ability of moderate acidophiles such as Terriglobus41, Rhodopila42 and Acidipotentia 

candidate spp. (also likely acidophilic) to lower pH favouring their acidophilic lifestyle by 

producing gluconic acids dependent on sugar supply and of other acidophiles such as Ca. 
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Solibacter43 and Ca. Sulfopaludibacter44 by producing gluconic acids dependent on sugar 

supply and external PQQ co-enzymes thus enabling such moderately acidophilic lineages to 

dominate over more neutrophilic bacteria. Study on the wheat rhizosphere have concluded 

that 2-ketogluconic acid amounted for up to 22% all rhizosphere products45 suggesting that 

sugar limitation is unlikely and making N availability (as we have demonstrated) and PQQ 

synthesis and supply highly probable limiting factors.  

In conclusion, we have quantitatively characterised the effects of genetic knock-outs 

in a soil native bacterium in relation to the process of mineral weathering. Our analyses allow 

informed predictions of estimated weathering potential of single bacteria and whole microbial 

communities by using a combination of target genes and weathering coefficients. 

Consequently, this could enable the integration of the vast publicly available metagenomic 

datasets into biome-specific biogeochemical model estimates of weathering rates based on 

labile C supply. Furthermore, the large phylogenetic diversity existing in weathering potent 

microorganisms in soil can be used for targeted improvement of nutrient availability in 

agroecosystems by exploring the enormous resource of poorly characterised bacterial lineages 

and engineering improved PQQ supply. 

 

Methods and materials 

Handling of bacteria and generating inocula 

The tropical soil beta-proteobacterium Burkholderia thailandensis strain E264 – wild type 

(WT) and its mutants were purchased from the transposon mutant collection created by the 

Manoil Lab at University of Washington, US. Upon arrival bacteria were streaked on LB 

plates and inoculated in LB broth + 10% glycerol for long-term storage at -80oC. Overnight 

cultures in 15 ml LB were brought to absorbance reading (OD600) of 0.680 and diluted or 

concentrated as necessary. Resulting 1 ml initial inocula were centrifuged at 5000 rpm for 5 

min. Subsequently, the supernatant was removed and the pellet was washed with 1ml 

nuclease-free sterile H2O and re-suspended. The procedure was repeated 2 times to remove 

any remaining LB broth. A 10 µl aliquot of the resulting 1ml final fully re-suspended 

inoculum was used for inoculation in the in vitro weathering experiments.  

In vitro weathering experiments  
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We created a specifically-designed minimal medium (Dunite grain rock abbreviated DGrock) 

containing 1g/L D-glucose, 0.03 g/L K2HPO4, 0.05 g/L NaCl, 0.002 g/L MgSO4.7H2O and 

0.1347 g/L (NH4)2SO4 dissolved in double-distilled water (this is the recipe for C:N=14; for 

C:N=12 and 10 the (NH4)2SO4
 amount was amended to 0.1572 and 0.1885 g/L, respectively). 

The rationale behind the medium was to contain only miniscule amounts of Mg as to allow 

the initiation of growth before weathering of the Mg-rich olivine commenced (that added 

amount of Mg was deducted from the final Mg weathering rates). Also, the medium contained 

no soluble forms of Fe and micronutrients with those only available through dissolution of 

the olivine mineral. Olivine grains were through hammer-crushing of dunite silicate rock 

(92% olivine mineral) from Åheim, Norway. The resulting grain mixture was sieved to 

desired sizes (70-90 and 96-106 µm grain diameter) and washed in 0.1N ultra-pure HCl 

(Normatom®, VWR chemicals) to remove any exchangeable ions46 and dust attached to the 

surface of the grains and subsequently washed up to 10-15 times with double-distilled H2O to 

remove any remaining acid and until the solution was fully transparent with no cloudiness 

associated with dust and attached ions. The resulting grains were then fully dried for several 

hours in a 60oC oven, mixed thoroughly and used for experiments. To equalise the amounts 

of olivine added to each flask (replicate), 0.07 g of olivine was added to a 250 ml Erlenmeyer 

flask, autoclaved and then 70 ml of autoclaved medium was poured in (to a final amount of 

0.1% (w/w) olivine) using an autoclaved volumetric flask. The resulting 70 ml-filled flasks 

containing olivine were inoculated with 10 µl of the final bacterial inoculum and plugged with 

pre-autoclaved lid composed of aluminium foil and non-absorbing cotton wool. Each of the 

experimental flasks (replicates) were randomly placed on a horizontal shaker and incubated 

for 10 days, at temperature of 20oC and at 130 rpm. Abiotic controls were prepared as 

described but instead of 10 µl inoculum, they were mock-inoculated with 10 µl double-

distilled H2O. Growth assessment at the end of the experiment was spectrophotometrically 

assessed at OD600 using 3 ml of the final culture.  

 

Culture filtrates for ICP-MS 

An aliquot of 13 ml from each final 10-day culture were obtained in sterile 15 ml tubes, 

centrifuged at 4200 rpm for 5 min to pellet the bacterial cells. The supernatant was transferred 

to a fresh 15 ml tube by filtering with a 20 ml syringe fitted with a sterile 0.22 µm Millex®-
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syringe filter. 9.41 ml of the resulting cell-free filtrate was mixed with 0.59 ml 34% ultra-pure 

HCl to a final 2% HCl concentration (to prevent abiotic precipitation of Fe and Si46) and sent 

for ICP-MS analysis. The latter was carried out at the University of Nottingham, UK using 

Rh, Ge, Sc as internal standards to correct for any drift in light bivalent metals of low atomic 

weight. The remaining amount of cell-free filtrate was used for pH measurement.  

 

 

Soil metagenomes and metagenomic analysis 

Soil DNA was extracted from 0.25 g homogenized soil using MoBio PowerSoil DNA 

extraction kit and instruction therein. Soil was obtained from topsoil samples (0-10cm) 

collected in the rooting zones of young legume trees in secondary tropical forests as part of 

the Agua Salud Project managed by the Smithsonian Tropical Research Institute in Colón 

Province, Panama (latitude: 9.187, longitude: -79.79). Extracted soil DNA was prepared using 

the Nextera XT kit and protocol, and sequenced on 1 lane of the Illumina HiSeq 4500 150bp 

paired-ends (together with another 12 mineral-associated DNA libraries) at the Edinburgh 

Genomics Institute, UK. Next, mate pairs FASTA files were merged and submitted for 

automated shotgun metagenomic analysis in the MG-RAST server.  

Gene searching and taxonomic breakdown  

All reads from each of the identified target weathering genes were downloaded as FASTA 

files directly from the Subsystem database-annotated metagenomes using the MG-RAST 

website interface. The downloaded FASTA files were then submitted for further taxonomic 

breakdown using the Blast2GO 5.0 Pro and their Cloud-based BLAST server. All Blast2GO 

hits were defined at the species level without any higher taxonomic ranking. That was 

obtained manually using the Taxonomy Summary facility available at 

https://www.genome.jp/tools-bin/taxsummary.  

Sub-cellular localisation  

The sub-cellular localisation of gene products (as illustrated in Figure 2) were either found in 

the Uniprot database or predicted using the Cell-PLoc 2.1 software, and particularly its sub-
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domain Gneg-mPLoc designed specifically for in silico predictions in Gram negative bacteria 

such as B. thailandensis.  

Phylogenetic tree construction  

Multiple alignment of acidobacterial DNA-directed RNA polymerase beta’ subunit (rpoC) 

gene sequences was performed using MUSCLE in the MEGA7 software environment. The 

multiple alignments were then utilized to construct a phylogenetic tree with the following 

parameters: Neighbour-Joining method and Kimura-2-parameter distance with bootstrap 

n=5000 replicates. Taxonomic binning through the rpoC gene as a barcode has been 

previously successfully applied with the same parameters in the classification of Leuconostoc 

spp. and other related genera27 agreeing well with other popular markers such as 16S rRNA, 

gyrB, and dnaA27.   

Download of publicly available genome assemblies and EWC modelling 

Genomes required for rpoC gene phylogenetic analysis or for analysis of the estimated 

weathering capacity (EWC) were downloaded from the NCBI Genome Assembly database, 

whereas metagenomes were obtained through the MG-RAST database. EWC modelling in 

single bacteria was achieved by multiplying the number of weathering genes by their relative 

proportion of contribution to Mg weathering from olivine as shown by our in vitro 

experiments with their knock-outs relative to WT bacteria (weathering coefficient ratio was 

5:3:15:3 for the effects of gdhFAD/gdhPQQ : trkA/gluconate 2-dehydrogenase : siderophore 

genes : ackA; for single bacteria siderophore production was counted as binary data – 

presence/absence; the effect of gdhFAD we report here is assumed to be the same as that of 

gdhPQQ; the same goes for trkA and gluconate 2-dehydrogenase). For modelling the EWC 

of soil metagenomes, a similar method was used in which the proportion of each of those gene 

classes (normalized by rpoC copies in each metagenome because each bacterium contains 

only one rpoC thus surrogate for normalizing for the actual number of bacterial genomes in 

each metagenome) was multiplied by the aforementioned weathering coefficients. For 

establishing the metagenomic abundance of siderophores we used the Level 2 Subsystem 

database entry under the name of “Siderophores” available for each metagenome in MG-

RAST, all other target genes were defined as function (Level 4) entries for each metagenome 

in the MG-RAST server.  
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Figure 1. Reverse genetics analyses of the multi-elemental weathering potential of the soil 
bacterium Burkholderia thailandensis E264 highlights siderophores and Entner-Doudoroff 
pathway target genes. a. Establishing the in vitro BtE264 weathering potential relative to abiotic 
controls using different grain sizes; b. Weathering potential correlates with decreasing medium C:N 
ratio (increasing N supplied as ammonium sulfate) but not with pH in WT bacterial cultures; c. Positive 
effectors of weathering appear to be encoded by pchD, gdhFAD, trkA, ackA, kdgK while negative 
effectors include gntK, eda, zwf. The r values in b. are for Pearson correlation test; statistical tests in c 
(***P<0.001, **P<0.01, *P<0.05) are for two-tailed t-test comparing the mutant with its appropriate 
batch-specific wild type (WT) treatment. Abbreviations: ABctrl – abiotic control; KOs – genetic 
knock-outs from the transposon mutant library available for BtE264; gntK – gluconate kinase; eda – 
2-dehydro-3-deoxy-6-phosphogluconate aldolase; zwf – 6-phosphogluconate dehydrogenase; corA – 
magnesium transporter; modA –molybdenum/cobalt transporter; FeABC – Fe compound ATP-binding 
cassette (ABC) transporter; kdgK – 2-dehydro-3-deoxygluconate kinase; trkA – 2-ketogluconate 
reductase/gluconate 2-dehydrogenase; gdhFAD – FAD-dependent glucose dehydrogenase; pchD – 
pyochelin siderophore biosynthetic protein D. n=6 bacterial cultures in each experiment.  
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Figure 2. Pathway network effects in Burkholderia thailandensis reveals direct (gdhFAD, trkA, 
ackA, pchD, gntK) and indirect (kdgK, eda, zwf) mechanisms regulating weathering with the 
former involved in generating acidifying or chelating activity outside the cell and the latter 
modulating the response of the former from inside the cell.  
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Rhizobium leguminosarum bv. trifolii 
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Figure 3. Phylogenetics of the target weathering genes (a – gdhFAD, b – gdhPQQ, c – trkA) in 
tropical soil communities indicates multiple weathering potent lineages of unstudied, 
uncultured and/or elusive bacteria including Ca. Acidipotentia – cl. nov. and Ca. Granulicella 
gluconica sp. nov. within the Acidobacterial phylum with their exact phylogenetic positioning 
(d). ‘Weathering record’ or ‘no weathering record’ are based on a list of genera with recorded 
weathering activity in vitro (summarised from published literature in Supplementary Table 1). The 
phylogenetic tree is constructed using MUSCLE for multiple alignment, Neighbour-Joining method 
and Kimura-2-parameter distance. The numerical figures at each node represent Bootstrap values 
(n=5000). The taxonomic breakdown of candidate genes is based on three fully sequenced shotgun 
metagenomes of tropical soils in secondary Neotropical Panamanian forests.  
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Figure 4. Estimated weathering capacity (EWC) modelled using target weathering genes 
correlates with weathering rates (a) in vitro (by single bacterial species) and (b) in vivo (by the 
combined mineral+soil microbial communities) and can be utilised for whole-biome modelling 
of microbial weathering activity (c).  
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Supplementary Table 1. Bacterial genera that have been demonstrated to enhance the process 
of rock and mineral weathering in vitro with supporting references.  

Genus References 

Arthrobacter  

1 

Microbacterium 
Promicromonospora 
Pseudonocardia 
Nocardiopsis 
Dietzia 
Pseudomonas 
Actinopolyspora  

2 

Actinomadura 
Kitasatospora 
Nocardioides 
Kibdelosporangium 
Streptomyces 
Cabelleronia 3 
Pseudomonas  

 

 

 

4
 

Novosphingobium 
Microbacterium 
Acinetobacter 
Streptomyces 
Rhizobium 
Chitinophaga 
Pantoea 
Staphylococcus 
Leclercia 
Ensifer 
Arthrobacter 
Bacillus 
Lysinibacillus 
Comamonas 
Staphylococcus 
Acinetobacter 
Planococcus 
Microbacterium 
Paenibacillus 
Paracoccus 
Sporosarcina 
Ralstonia 
Bacillus 
Burkholderia 
Erwinia 5 

 

Burkholderia 
Rhizobium 
Staphylococcus 
Paenibacillus 

ADDED! 
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 Bacillus  

5 

Pseudomonas 
Arthrobacter 
Bacillus 
Lysinibacillus 
Rhodococcus 
Massilia 
Serratia 
Stenotrophomonas 
Curtobacterum 
Rhizobium 6 
Paenibacillus  

 

 

 

 

 

 

7 

 

 

 

 

 

 

 

 

 

Bacillus 
Arthrobacter 
Curtobacterum 
Ochrobactrum 
Acinetobacter 
Pantoea 
Pseudomonas 
Flavobacterium 
Ensifer 
Rhizobium 
Pantoea 
Stenotrophomonas 
Bacillus 
Novosphingobium 
Serratia 
Pseudoxanthomonas 
Solibacillus 
Agromyces 
Caulobacter 
Achromobacter 
Enterobacter 
Microbacterium 
Sphingomonas 
Exiguobacterium 
Paenibacillus 
Brachybacterium 
Curtobacterum 
Phyllobacterium 
Massilia 
Granulicatella 
Chryseobacterium 
Vogesella 
Mitsuaria 

Agrobacterium 8 
Sinomonas 
Microbacterium 
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Cupriavidus  

 

 

8 

 

Sphingobium 
Flavobacterium 
Variovorax 
Ensifer 
Pseudomonas 
Brevibacillus 
Acinetobacter 
Burkholderia 
Stenotrophomonas 
Bacillus 
Arthrobacter 
Klebsiella  

9 

Enterobacter 
Pantoea 
Agrobacterium 
Microbacterium 
Burkholderia 
Myroides 
Acidithiobacillus 10 
Acetobacter 
Burkholderia  

 

 

 

11 

Bacillus 
Ralstonia 
Cupriavidus 
Lysinibacillus 
Microbacterium 
Myroides 
Ochrobactrum 
Enterobacter 
Pseudomonas 
Enhydrobacter 
Leifsonia 
Cellulomonas 
Kocuria 
Providencia 
Arthrobacter 
Curtobacterium 
Agrobacterium  

12 

 

 

Aminobacterium 
Azospirillum 
Labrys 
Rhanella 
Rhizobium 
Sphingomonas 
Achromobacter 
Burkholderia 
Collimonas 
Janthinobacterium 
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Acinetobacter  

 

 

12 

 

Azotobacter 
Geobacter 
Acidithiobacillus 
Citrobacter 
Dyella 
Enterobacter 
Frateuria 
Pseudomonas 
Serratia 
Shewanella 
Arthrobacter 
Bacillus 
Mycobacterium 
Paenibacillus 
Staphylococcus 
Streptomyces 
Rhodococcus  

13 

Janthinobacterium 
Paenibacillus 
Pseudomonas 
Collimonas 
Sphingomonas 
Bacillus  

14
 

Paenibacillus 
Vibrio 
Xanthobacter 
Enterobacter 
Kluyvera 
Pseudomonas 
Chryseomonas 
Bradyrhizobium 15

 
Rhizobium 
Cupriavidus 
Burkholderia 
Escherichia 16

 

Arthrobacter  

17 

 

Janthinobacterium 
Leifsonia 
Paucibacter 
Polaromonas 
Pseudomonas 
Rhodococcus 
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Supplementary Note 1. The effect of bacterial culture density as measured by OD600 on 
in vitro olivine weathering rate 

The optical density (OD) of a bacterial culture measured at λ=600 nm (hereafter 
referred to as OD600) provides a reliable estimate of bacterial growth and number of cells for 
a particular species. In our study, the number of cells in turn is expected to affect mineral 
weathering, as more cells and greater metabolic activity may translate to additional output of 
weathering agents such as organic acids and siderophores and enhancement in bacteria-to-
mineral surface interactions.  
 To test for this hypothesis, we correlated the concentration of solubilised Mg in 
cultures by the OD600 readings across all single gene KO mutants and wild type B. 
thalaindensis cultures in our experiments. KO mutants exhibited non-parametric distribution 
and Spearman correlation test was applied in place of Pearson, revealing no significant 
correlation between OD600 and solubilised Mg (Spearman test P>0.10). The three single 
gene mutant backgrounds with largest effect sizes in terms of weathering – gntK-, gdhFAD- 
and pchD- also confirmed that pattern showing that both normal and low OD600 can co-occur 
with low levels of weathering (as measured by solubilised Mg concentration in gdhFAD- 
and pchD-) and that low OD600 can co-occur with both high weathering (as in gntK-) and low 
weathering (as in gdhFAD-).  
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
As already outlined in the Main Text, these observations can be explained by differences in 
the metabolism of these mutants. Knock-out gdhFAD- mutants are interrupted in their ability 
to oxidise glucose to gluconic acid thus unable to undergo their preferred mode of glucose 
assimilation through the semi-phosphorylative ED pathway. This may be the cause for a lag 
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in their exponential phase and lower OD600 readings until they shift their expression from 
the gluconic acid-producing semi-phosphorylative ED pathway to alternative routes of 
glucose catabolism such as the classic ED or EMP glycolysis. As a result, less gluconic acid 
is formed and weathering rates decline. In constrast, gntK- mutants will be able to oxidise 
the glucose (the only C source in our specially designed medium) to gluconic acid but will 
not be able to transport it inside the cytosol and metabolise it. Consequently, this causes the 
build-up of large unused and non-utilisable amounts of C substrate as gluconic acid in the 
medium stunting growth and triggerring proportional increases in olivine weathering. On the 
other hand, pchD- mutants uncapable of producing siderophores will be able to normally 
assimilate glucose and reveal normal OD600 readings. This indicates that although the lack 
of siderophores causes a substantial decline in mineral weathering, sufficient levels of Fe 
and other micronutrients must be generated by alternative weathering mechanisms (such as 
gluconic acid production) as to support bacterial growth. 
 The variation in growth in WT Bt bacteria also does not correlate with their ability to 
solubilise Mg from olivine (Pearson test, P>0.10) confirming once again that the effects of 
bacteria on weathering are due to qualitative (differences in metabolism) than purely 
quantitative (number of cells) factors.  

 
 
 
 
 
 
 
 

 

Supplementary Note 2. The amount of gluconic acid in culture filtrate from WT and 
gntK mutants 

 
 

gntK KO WT gdhFAD KO 

Gluconic acid* (mM) 3.02 (0.29)** not detected not detected 

pH 3.70 (0.03)*** 4.40 (0.04) 4.65 (0.02) 

   
 
*Gluconic acid was determined in syringe 0.22 µm filtrates of 10-day old cultures using the Megazyme D-gluconic acid/D-
glucono-δ-lactone kit.  
**The number in brackets represent S.E.M. n = 3 replicates in the case of both gntK, WT and gdhFAD cultures.   
***In the case of pH n = 6. 
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Notes: These results support the view that gntK mutants are unable to transport gluconic acid 
inside the cell causing the build up of gluconic acid and acidity in the medium causing futile 
cycles of glucose oxidation to gluconic acid without assimilation. In cells of WT bacteria 
gluconic acid is transported inside the cell, the cell assimilates it and gluconic acid does not 
build up in the medium generating less acidity. In gdhFAD cells glucose is acquired and 
assimilated directly without prior oxidation to gluconic acid thus eliminating the H+ 
generation step of glucose oxidation resulting in higher solution pH. It is somewhat puzzling 
that WT filtrates did not contain even slight traces of gluconic acid. Previous work has 
identified that gluconic acid accumulation in the solution is temporary specific, dependent 
upon the growth stage of bacterial cultures with more gluconic acid detected in the first couple 
of days of growth1. As such, future work should use more time points to establish the gluconic 
acid accumulation in WT BtE264 bacteria.  

 
 

1. Chen, W., Luo, L., He, L.Y., Wang, Q. and Sheng, X.F., 2016. Distinct mineral weathering behaviors 
of the novel mineral-weathering strains Rhizobium yantingense H66 and Rhizobium etli CFN42. Appl. 
Environ. Microbiol., 82(14), pp.4090-4099. 
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Abstract 

 The enrichment in ecosystem N stocks caused by the presence of diverse N2-fixing 

trees in successional settings is well-documented. However, other biogeochemical effects 

brought up by N2-fixers in such systems have been largely overlooked. Here, we 

summarise data from several field studies and show that N2-fixing trees cause a 

significant 52-60% increase in rock weathering rates accompanied by a release of key 

mineral nutrients. Utilising metagenomic and belowground microbial community data 

we show that these weathering enhancements are linked to substantial enrichments in 

microbial respiration, lithotrophy and gluconic acid production beneath N2-fixers likely 

driven by high inputs of fixed N as well as symbiotic attractions. Consequently, we argue 

that the ecosystem services provided by N2-fixing trees during successional and 

agroforestry scenarios are more far-reaching than previously realised.  

 

Introduction 

Symbiotic N2-fixing angiosperms are members of a diverse monophyletic clade within the 

rosids known as the Nitrogen Fixing Clade (NFC)1. Within the clade, only members of the 

Leguminosae (Fabaceae) and Cannabaceae (e.g. Parasponia) form symbiotic root nodules 

harbouring rhizobia (including α and β-proteobacteria), whereas N2-fixing members of the 

Betulaceae, Rosaceae, Rhamnaceae, Casuarinaceae among others are defined as actinorrhizal, 

forming root nodules sheltering members of the actinomycete bacterial genus of Frankia1,2. 

Within the NFC, the legume family is the most speciose, with very diverse geographic 
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distribution. Legume trees are prominent elements of many tropical forests worldwide3. 

Legume trees are also frequently planted by man with multiple examples from agroforestry 

systems4,5,6, urban parks and green areas7, reforestation projects and disturbed and degraded 

land management8. Highly praised factors contributing to their widespread presence in such 

systems are their characteristically fast growth, capacity to obtain atmospheric N2 through 

nodulating symbiotic partners and ability to perform well under unfavourable edaphic 

conditions. The same qualities may also account for some of legume’s prodigious capability 

to invade natural systems9,10,11.  

Symbiotic N2-fixers are also particularly important during ecosystem succession. Examples 

of highly abundant N2-fixers (leguminous and actinorrhizal plants) are well documented 

during both primary succession (Table 1) and secondary succession, particularly under N-

limited conditions (Table 2; Figure 1 and 2). Under these conditions, a commonly described 

phenomenon is that N2-fixers provide high amounts of fixed N enriching the soil and the 

aboveground biomass in N through redistribution of their N-rich litter (Tables 1 & 2). Here, 

we argue that N2-fixers modify ecosystem biogeochemical cycling beyond their effect on N 

stocks including weathering.  

 In our previous work, we have hypothesized that the evolution of legume-rich tropical 

forests in the early Cenozoic (58-42 Mya) triggered increases in silicate rock weathering 

(Introduction) via cascading effects of fixer-mediated increase in ecosystem N stocks. Here, 

we conclude our investigations into tropical legume trees and their soil-mineral microbiome 

in respect to biogeochemistry and routes to enhanced mineral access by comparing our 

findings to other studies and highlighting common fixer-effects in the biogeochemical cycling 

of fixer-rich ecosystems.  

 

1. Symbiotic N2-fixation increases weathering inputs during succession  

Our field experiments demonstrate that forest native N2-fixing legumes drive significantly 

greater silicate weathering rates in their rooting zones than non-fixing non-legume trees in 

both Panamanian (Chapter 1) and Australian (Chapter 2) post-abandonment secondary 

tropical forests (Figure 3a,b). Interestingly, this ability of legume trees coincides with 

legume-specific reduction in pH (Figure 3e,f) and peak in nodule biomass during secondary 

succession (Figure 3i,j). Although, our studies represent the only large-scale comparisons 
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specifically designed to test the differences in in situ silicate weathering between early 

successional tropical N2-fixers and non-fixers, other studies investigating the effects of 

temperate N2-fixing trees on soil and nutrient stocks during successional dynamics are scarce 

but nevertheless corroborate our findings. For instance, a study of the actinorrhizal Alnus 

rubra of secondary forests in USA shows substantially higher removal rates of Ca, Mg and K 

contributed to weathering of primary minerals (weathering fluxes) beneath the early 

successional Alnus stands relative to nearby mid-successional stands of the evergreen conifer 

Pseudotsuga menziesii on the same soil (Figure 3c). The authors also showed that weathering 

fluxes beneath A. rubra were among the highest recorded relative to other stands of deciduous 

angiosperm trees as diverse as Liriodendron tulipifera, Quercus montana and a mixed 

Quercus-Carya system (Figure 3c). Similarly, another study investigating primary 

succession following glacier recession in Alaska, USA reveals the highest rates of calcium 

carbonate (calcite) mineral weathering in soil beneath the N2-fixing actinorrhizal Alnus crispa 

and Dryas spp. relative to other early successional non-fixing trees such as Populus 

trichocarpa and Salix spp. (Figure 3d). Last but not least, plant-free soil mesocosms 

containing fermentative F layer soil from either an alder or a conifer stand incubated with 

phosphate rock for 30 days revealed that alder soil mesocosms drove 1.8-fold greater 

mineralization of PO4
3- from phosphate rock than did the conifer F layer soil mesocosms12 

with A layer soil showing no significant difference between conifer and alder soil 

treatments12.  

 A meta-analysis of weathering rates was performed using 8 studies of field 

experiments in which N2-fixer trees and non-fixers were tested simultaneously. Three of the 

studies included basalt bags deposited in topsoil in three biomes in Australia: tropical forest 

(Chapter 2), forest-savanna transition (unpublished author data) and savanna (unpublished 

author data). Likewise, the same studies were repeated using dunite. Another study was from 

secondary tropical forests in Panama (Chapter 1) and last was the study measuring carbonate 

weathering in the tundra in Alaska beneath primary successional species. The red alder (Alnus 

rubra)-Douglas fir (Pseudotsuga menziessii) study was not used as it measures weathering 

fluxes rather than weathering rates. For each study, weathering rates were equilibrated to the 

mean and measured in fold relative to the mean of the study (sample/mean). Data was 

categorised in tree species for both N2-fixers and non-fixers. Data are summarised in Figure 

4. Both paired t-test and unpaired Mann-Whitney tests unanimously revealed 52-60% 

significantly greater weathering rates in N2-fixers than non-fixers (Figure 4).  
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In addition, to greater weathering, another shared feature beneath successional 

leguminous and actinorrhizal N2-fixing trees is their more acidic soil (Figure 3e,f,g,h). The 

early successional peak in nodule biomass typical to pioneering legume trees (Figure 3i,j,l), 

coinciding with the highest inputs of N, also co-occurs with the highest recorded differences 

in weathering rates between N2-fixers and non-fixers (Figure 3b,f,j).   

 Fixer-mediated enhancement in weathering is likely to increase nutrient availability 

to plants and soil solution concentrations in the ecosystem. In support, we find that basalt 

from beneath Acacia celsa in Australian secondary forests sustained consistently greater P 

and K leaching rates throughout the secondary forest chronosequence (Chapter 2). 

Molybdenum (Mo) leaching from dunite was greatest in 20-year old sites where nodule 

biomass in soil and bradyrhizobial nifK (Fe-Mo containing nitrogenase) in weathered basalt 

were at their highest (Chapter 2). These observations are consistent with our hypothesis that 

high weathering traits evolved in legumes in response to the actively P and Mo demanding 

N2-fixation symbioses13. In the Alnus rubra-dominated systems that exhibited higher mineral 

weathering than Pseudotsuga menziesii, soil solution concentrations of Ca, Mg, K were also 

greater for all three soil horizons and leaf concentrations of Mg and K were significantly 

greater in Alnus than in Pseudotsuga14. Similarly, limed soils beneath Robinia pseudoacacia 

exhibited significantly greater soil solution concentrations of Ca than the limed soils beneath 

pine-hardwood mixed stands15 (Figure 3k). In another study, greater available K, Ca and P 

were observed in soil beneath Robinia pseudoacacia relative to a mixed Quercus-Pinus 

system on the same young soils with authors advocating increased primary mineral 

weathering as the likely driver16.  

On geologically young soils, apatite mineral weathering is the most important input source of 

P in the system17. Under such conditions, enhanced weathering of primary minerals by N2-

fixers may account for some boost in P availability to such fixing legume trees. Examples 

typifying this scenario would include forests on geologically young soils with high mineral 

content such as alfisols and cambisols dominating most of the forested landscapes in 

temperate areas or on soils resulting from recent volcanic activity such as the ones beneath 

some tropical forests in Hawaii18.  

However, many tropical soils, including the highly weathered oxisols from our Australian and 

Panamanian field sites are geologically old and contain little primary minerals with most P 

occluded in complexes with secondary iron and aluminium minerals19,17. Our observation that 
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legume trees promote the dissolution of primary silicates in such soils is likely transferable to 

secondary minerals as dissolution of secondary minerals follows the same set of rules as that 

of primary minerals – with the concentration of H+/OH-, organic acids and CO2, as well as 

precipitation and temperature playing important roles20,21. For instance, total soil 

concentrations of Al (mainly contained within kaolinitic secondary minerals) was 

significantly lower beneath N2-fixing trees in both of our tropical forest studies in Panama 

and Australia indicating increased weathering and leaching of kaolinite similar to lower 

exchangeable Al beneath Robinia pseudoacacia in temperate successional forests16. 

Therefore, it seems likely that the link between N2-fixers and high weathering rates would be 

valuable not only on geologically young but also geologically old soils. Consequently, it is 

conceivable that N2-fixers during successional scenarios do not only facilitate ecosystem 

development through their inputs of fixed N but may also supply greater availability of K, Ca, 

Mg, P and Mo plundered from their higher weathering yields.  

  

2. Metagenomic and biogeochemical evidence for the role of fixed N inputs, nitrification 

and nitrate leaching in weathering through cation removal and acidification 

Increased inputs of N resulting from N2-fixers can modify the biogeochemistry of an 

ecosystem resulting in (1) decline in soil C:N ratios, (2) increases in soil ammonia/nitrate, (3) 

increased nitrification rates and (4) elevated nitrate leaching. Ultimately, these processes drive 

acidification and removal of counterbalancing cations (Mg, Ca, K) which can stimulate 

weathering through acidolysis and through shifting the equilibrium to further dissolution, 

respectively.  

In the microbial community increased inputs of fixed N can be expected to trigger: (1) rise in 

N cycling microorganisms and (2) genes involved in microbial nitrification. 

Biogeochemical evidence from tropical forest legumes in Panama indicates that soil beneath 

N2-fixers contains lower C:N ratio characteristic to high N inputs. Non-fixing trees near N2-

fixers exhibit similarly low soil C:N ratio unlike non-fixers far from fixers with significantly 

higher C:N and receiving less inputs of fixed N. Similarly, lower soil C:N ratios are also 

observed in temperate N2-fixing trees such as the legume Robinia pseudoacacia and in 

actinorrhizal trees (Figure 5a-c). In support of the role of N inputs in driving weathering, the 

soil C:N ratio significantly correlated with weathering rates (Figure 5a) in the study of 
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weathering rates in Panamanian tropical forests. High N inputs increase nitrification that is 

the microbial transformation of NH3 to NO3
- which generates acidity and promotes cation and 

nitrate leaching – all factors understood to positively affect rock weathering.  

Meta-analysis of community sequencing-based profiling of soil beneath N2-fixing 

plants (including Panamanian tropical legume trees, pigeon pea Cajanus cajan, Mimosa 

debilis and Alnus spp.) reveal greater relative abundance of N-cycling microorganisms in soil 

of N2-fixers than in non-fixers within the same study (Mann-Whitney test, P<0.05; Figure 

5e,f). This is consistent with higher N inputs causing enrichment in N cycling microbial taxa 

in soil (Figure 5d). Meta-analysis coupling metagenomics of the mineral-associated 

communities of soil-deposited rock material to weathering rates indicates that the abundance 

of all four major nitrification genes (ammonia monooxygenase AMO, hydroxylamine oxidase 

HAO, nitrate reductase alpha subunit narG and nitrate reductase beta subunit narH) positively 

associates with silicate weathering rates (Figure 5g). These significant correlations between 

nitrification genes and weathering rates of deposited fresh silicate rock material complements 

biogeochemical evidence of greater nitrification rates and weathering fluxes beneath N2-

fixing trees of temperate areas such as Alnus rubra and Robinia pseudoacacia.    

 

3. Higher microbial respiration in stands rich in N2-fixing trees and its role in weathering 

 The high N litter of many N2-fixers decomposes faster22,23. In terms of microbial 

metabolism, fast decomposition translates into high respiration rates. A field study comparing 

the effects of invasive N2-fixers revealed significantly greater basal respiration rates per unit 

soil organic matter beneath a recent invasion by N2-fixing Acacia longifolia than the native 

non-fixing vegetation in sand dune ecosystems in Portugal24. Similarly, microbial respiration 

per unit soil organic matter beneath a stand planted to the N2-fixing legume tree Robinia 

pseudoacacia was 4-fold higher than that in the native secondary oak (Quercus liaotungensis) 

forest in the Loess Plateau in China25. Secondary forests in the Czech Republic dominated by 

the actinorrhizal N2-fixing trees Alnus glutinosa and Alnus incana revealed ~3- and 11-fold 

higher basal respiration rates than Quercus rubra and Pinus sylvestris-dominated forests, 

respectively26. To cross-validate the field observations of higher respiration rates beneath 

stands dominated by N2-fixing trees of temperate and Mediterranean latitudes to our field 
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trials in tropical forests, we utilized the large collection of sequenced metagenomes of soil-

mineral samples we have previously characterised and generated.  

Unfortunately, tropical forests are rarely as clear-cut as temperate forests in terms of dominant 

species and pure legume or non-legume natural stands are hard to come by. Our previous 

work clearly illustrates this problem: our community profiling in Panama revealed that non-

fixing trees neighbouring N2-fixing legumes exhibit lower soil C:N ratios and microbial 

communities more similar to those of N2-fixers than to those of non-fixers far from N2-fixers 

(Chapter 1). To circumvent this obstacle, we grouped our 46 metagenomic samples into highly 

fixing, highly nodulated forest samples in which N-rich litter is actively re-distributed 

between fixers and non-fixers and in forests of low N2-fixation and nodulation rates. The first 

group (“high-fixing forest samples”) contained soil-mineral metagenomic samples from 

fixers (n=6 dunite) and non-fixers near fixers (n=3 dunite) from highly nodulated 17-year old 

forests in Panama as well as soil-mineral samples from fixing (n=4 for dunite and 4 for basalt) 

and neighbouring non-fixing trees (n=2 for dunite and 2 for basalt) in the most nodulated 20-

year old forest site in Australia. In contrast, the second group (“low-fixing forest samples”) 

consisted of soil-mineral metagenomic samples from non-fixers far from fixers (n=3 dunite) 

from our tropical forests sites in Panama and samples from the 12.5 and 48-year old Australian 

forests where assessment of nodulation rates showed low to near-absent symbiotic N2-fixation 

(n=14 for dunite and 14 for basalt). Because all fresh mineral samples are microbially-

speaking identical prior their deposition in the 0-10cm topsoil, they represent a convenient 

method to assess the short-term effects driven by the tree and its rhizosphere during the 8-10 

months weathering period in soil.  

High-level metagenomic comparisons revealed that the abundance of genes involved in 

microbial respiration was consistently greater (Mann-Whitney test, P<0.001) in metagenomes 

from high-fixing forests (n=21) than in metagenomes from low-fixing forests (n=25) – a trend 

consistent across soil-deposited rock types (dunite and basalt) and forest locations (Panama 

and Australia; Figure 6a). The sum of microbial respiration genes also consistently positively 

correlated with silicate weathering rates (Figure 6a). Microbial respiration is a major source 

of CO2 in soil and its associated weathering-potent carbonic acid which may be one reason 

for their strong association in addition to glycolytic (gluconic, acetic) and Krebs (citric, oxalic, 

malic) organic acids which are also produced by actively respiring microorganisms. In 

addition to providing N necessary for respiration (otherwise N limitation puts a break on the 
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Krebs cycle and glycolysis27), fast decomposition would also be expected to quickly release 

labile C such as starch from plant materials explaining the strong correlation between the gene 

abundance of microbial glucoamylase and weathering and its higher abundance in high-fixing 

forests (not shown).  

 

4. N2-fixing trees are linked to more abundant belowground lithotrophy 

In essence, microbial respiration generates energy from coupling electron transfer from a 

donor to an acceptor across a respiratory membrane chain, generating a proton motive force 

used for synthesis of ATP. Many microorganisms use organic molecules for donors of 

electrons (chemoorganotrophs) and fast-decomposing legume litter may provide large 

quantities of labile C sources quickly assimilated by microorganisms as discussed above. 

However, other microorganisms utilise inorganics as electron donors (chemolithotrophs) 

including sulphate oxidisers, ammonia oxidisers, iron oxidisers, hydrogen oxidisers and some 

sulfate reducers.  

A clearly established example for the effects of N2-fixing trees on lithotrophic 

communities is the oxidation of ammonia and nitrite during nitrification. By supplying N-rich 

litter, high loads of NH3 released through ammonification feeds into increases in nitrifying 

lithotrophic organisms and nitrification rates beneath such fixer-rich forests as we have 

already discussed. Indeed, high-fixing forest metagenomic samples were significantly 

enriched in nitrification genes showing 1.3-fold greater narG and narH, 2.2-fold greater HAO 

and 3.7-fold greater AMO gene abundances than those of low-fixing forests (Mann-Whitney 

test, P<0.01, except for HAO where P<0.001; Figure 6d). However, it is comparatively less 

understood how N2-fixers impact other lithotrophic groups in soil.  

Our soil-mineral metagenomes from high-fixing forests are significantly enriched in 

the sulfur (S) oxidation pathway relative to low-fixing metagenomes (+1.1-fold; Mann-

Whitney test, P<0.01; Figure 6b) in both Panamanian and Australian tropical forests and in 

both soil-deposited dunite and basalt rocks. Key S oxidation genes significantly enriched in 

high-fixing forests include sulfite oxidase (1.1-fold, Mann-Whitney test, P<0.05), sulfite 

dehydrogenase SoxD (1.2-fold, Mann-Whitney test, P<0.01) and sulfane dehydrogenase 

subunit SoxC cytochrome subunit (1.2-fold, Mann-Whitney test, P<0.01). Previous molecular 

studies have linked the number of Sox genes in soil communities to measured sulfur oxidation 



144 
 

rates28 reaffirming that Sox gene abundance can reliably predict in situ S oxidizing activity. 

In addition, 16S rRNA-based community analyses using the SSU SILVA database revealed 

enrichment of several S oxidizing genera (Thioalkalivibrio, Allochromatium, Thiobacter, 

sulfur-oxidiser OBII5 – Chapter 1: Figure 3b) in soil microbiomes beneath N2-fixers.  

The S oxidation gene enrichment in high-fixing forests (1.1-1.2-fold) is more modest than 

that of their respective lithotrophic nitrification gene analogues which exhibited 1.3-3.7-fold 

increase in high-fixing forest soil-mineral metagenomes than in those of low-fixing forests 

(Figure 6d). Meta-analysis of the RAINFOR foliar dataset available from the TRY database 

shows that N2-fixing legume trees of tropical forests do not have significantly different foliar 

S levels than non-fixing trees (Chapter 1: Supplementary Figure 4). Those findings suggest 

that unlike the direct well established link between N inputs of N2-fixers and increased 

nitrification, the link between N2-fixers and increased S oxidation may be indirect and 

unlinked to higher S inputs.  

One possible cause for increased S oxidation potential beneath actively fixing legume 

trees is the coupling between nitrate reduction and S oxidation. Previously, nitrate addition 

has been demonstrated to increase oxidation of H2S to SO4
2- in wetland ecosystems as various 

microorganisms can couple SO4
2- oxidation to denitrification (NO3

- to N2) or dissimilatory 

nitrate reduction (NO3
- to NH3)29. In support, dissimilatory nitrite reductases and 

denitrification, both pathways that can be physiologically coupled to S oxidation, showed 2.0-

fold and 1.2-fold higher abundance in high-fixing than low-fixing forest samples (Figure 6e; 

denitrification pathway not shown), respectively (Mann-Whitney test, P<0.01 and P<0.05). 

However, further studies are advised before any definitive mechanisms for the recorded link 

between S oxidation and high symbiotic N2-fixation are established.  

Metagenomic samples from high-fixing forests also contained significantly more 

hydrogenases than non-fixing forests (Figure 6c; Mann-Whitney test, P<0.001). We show 

that a total of 26 hydrogenase-encoding genes exhibited a range of 1.2-2.4-fold significant 

enrichment (Mann-Whitney test, 8 genes P<0.001, 7 genes P<0.01, 11 genes P<0.05) in high-

fixing relative to low-fixing forest soil-mineral metagenomes. Hydrogenases are the main 

enzymes catalysing the lithotrophic H2 oxidation reaction which generates energy by 

oxidizing H2 gas to H2O and electrons and subsequent electron transfer across the membrane 

respiratory chain. N2-fixing legume trees may drive the observed enrichment in H2 oxidizing 

metabolism by generating large quantities of H2 gas as a by-product of their nitrogen fixation 
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reaction producing a molecule of H2 per molecule of N2 fixed. This phenomenon of beneficial 

effects to plant growth30 has been recorded for legume crops with studies showing greater H2 

gas concentration in legume rhizospheres30.  Interestingly, hydrogenase abundance in the 

metagenome also strongly correlated with weathering rates (Figure 6c) suggesting an 

important role for H2 oxidative metabolism in bacteria-rock interactions.  

High respiration rates beneath N2-fixers may cause the depletion of O2 locally and 

consequent formation of anaerobic microsites at certain soil loci. Such loci would be rich in 

anaerobic food chain organisms including sulfate reducers, fermenters, methylotrophs and 

methanogens31. Sulfate-reducing lineages use sulfate as their terminal electron acceptor for 

anaerobic respiration generating H2S in the process. The metagenomic pathway containing 

the genes encoding the sulfate reduction-associated complexes shows 1.5-fold significant 

enrichment in high-fixing metagenomes than low-fixing forest samples (Figure 6e; Mann-

Whitney test, P<0.05). This finding is further complemented by enrichment of sulfate 

reducing lineages in the soil microbial communities beneath N2-fixers including the genera 

Desulfococcus, Dethiosulfovibrio, Desulfobulbus-like and Alkalispirillum (Chapter 1: 

Figure 3b). The metagenomic pathway containing the genes involved in fermentation is also 

enriched in high-fixing metagenomes relative to low-fixing ones (Mann-Whitney test, 

P<0.01; Figure 6e). Indeed, the 16S rRNA-based reconstruction of the microbial community 

of N2-fixers soil is similarly enriched in anaerobic fermentative lineages including many 

clostridia (not shown). Methylotrophs utilize the gene methanol dehydrogenase to assimilate 

and convert the C1 compound methanol to formaldehyde with this gene abundance greater in 

high-fixing than low-fixing metagenomes (Mann-Whitney test, P<0.001; not shown). 

Combined these findings support the enrichment of anaerobic metabolic niches at localized 

loci beneath N2-fixers. They also paint a picture of multiple possible syntrophic (“cross-

feeding”) interactions.  

For instance, H2 generation by legume symbioses or by fermenting bacteria can 

provide H2 for both hydrogen-oxidizing and lithotrophic sulfate-reducers. Other sulfate-

reducers utilise organic electron donors such as acetate, propionate, butyrate and lactate which 

again may be provided by the activity of fermenting lineages. H2S produced by sulfate 

reducers can then be fuelled into sulfur oxidation either alone or coupled to dissimilatory 

nitrate reduction or denitrification.  
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5. Symbiotic shaping of belowground microbiomes may stimulate weathering via 

gluconic and 2-ketogluconic acid production 

Our in vitro studies with Burkholderia thailandensis mutants revealed that gluconic and 2-

ketogluconic acids biosynthesis in the Entner-Doudoroff pathway is key in bacteria-driven 

rock weathering (Chapter 3). However, under field conditions, many other community-driven 

processes such as nitrification, sulfur oxidation, fermentation etc. occur simultaneously with 

glucose oxidation making it difficult to isolate the impact that microbial production of 

gluconic acids will have on rock weathering in the field. We find that the gene encoding the 

PQQ-dependent glucose dehydrogenase (gdhPQQ), the enzyme product of which catalyses 

the oxidation of glucose to gluconic acid, correlates positively with weathering at slightly 

lower r-value (Pearson test P<0.05, r=0.37; Figure 7a) than processes such as nitrification 

and sulfur oxidation (Figures 5 and 6). The gdhPQQ gene is also significantly more abundant 

in soil-mineral metagenomes beneath high-fixing than non-fixing forests (Mann-Whitney test, 

P<0.01; Figure 7a). It also clearly correlates with other PQQ-containing genes such as PQQ-

dependent alcohol dehydrogenase and PQQ-dependent methanol dehydrogenase (Figure 7b), 

suggesting that those enzymes are all under the control of co-enzyme PQQ bioavailability. 

Indeed, the gene abundance of the pathway encoding co-enzyme PQQ biosynthesis correlated 

positively with gdhPQQ signifying that relationship between PQQ supply and PQQ-

dependent enzymes (Figure 7b).   

Our taxonomic analysis of the gdhPQQ gene pool in soil (Chapter 3) revealed that 

Bradyrhizobium contributes 7.2% of all gdhPQQ copies in soil which is substantial but 

somewhat dwarfed by its 40.7% contribution to all gluconate 2-dehydrogenase/trkA gene 

copies in soil which converts gluconic acid to 2-ketogluconic acid, another equally potent 

weathering agent. Indeed, trkA exhibits 1.3-fold greater abundance in high-fixing 

metagenomes than low-fixing ones at astonishingly low Mann-Whitney P value of 9.06E-05 

and it also correlates with field weathering rates (Pearson test P<0.01, r=0.41; Figure 7a). 

Given that Bradyrhizobium is the likely nodulating agent of Acacia celsa and that it is 

enriched in basalt communities from beneath A. celsa (demonstrated using the nifK gene as a 

marker; see Chapter 3: Figure 4) in Australian tropical forests and in weathered soil-dunite 

(demonstrated using the 16S rRNA gene as a marker; not shown) from beneath N2-fixers in 

Panama, it is very likely that symbiotic attraction may be a driver for the observed enrichment 
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of gdhPQQ and trkA genes and indeed enhanced in situ production of gluconic acids in high-

fixing soil-mineral metagenomes.    

 A second parallel mechanism explaining the observed enrichment may be the 

increased respiration rates beneath N2-fixers releasing labile C and glucose which then attracts 

more glucose-oxidizing microorganisms converting glucose to gluconic acid and 2-

ketogluconic acid through the combined action of gdhPQQ and trkA.   

 

 

 

6. Concluding remarks 

 Multiple lines of metagenomic and biogeochemical evidence collected in natural 

systems support substantial functional differences in the microbial community beneath forests 

containing actively N2-fixing trees when compared to non- or low-fixing ones. Meta-analysis 

show that high fixing forest stands support higher abundance of genes involved in microbial 

respiration, lithotrophic metabolism as well as an enrichment in gluconic acid-producing 

symbiotic nodulating lineages all converging in 52-60% significantly greater mineral 

weathering. Consequently, plant communities rich in N2-fixers during successional scenarios 

may benefit not only from increases in nitrogen availability but also from more dynamic 

biogeochemical cycling releasing previously unavailable mineral nutrients. As a consequence 

of enhanced weathering, the evolution of the first legume-rich tropical forests in the early 

Cenozoic are likely to have entailed a considerable impact on weathering-driven drawdown 

of CO2 and past climate history.  
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Figures and Figure Text 

 
Table 1. Examples highlighting the important role of N2-fixers in ecosystem primary 
succession 

 

Table 2. Examples highlighting the important role of N2-fixers in ecosystem secondary 
succession 

 

Primary succession 
examples 

Family Form N2-fixer Geology  Climax 
community 

Location  Effect 
 

 
Alnus crispa 

 
Betulaceae 

 
tree 

 
yes 

moraines Spruce 
coniferous 
forest 

USA,  
N America 

• Decline in soil pH 
• Higher carbonate weathering 
• N fertilisation Ref 32 

 
Carmichaelia odorata 

 
Leguminosae 

 
shrub 

 
yes 

schists Cool 
temperate 
montane 
rainforest 

New 
Zealand, 
Oceania 

• N fertilisation effect on climax 
trees Ref 33 

 
Coriaria arborea 

 
Coriariaceae 

 
shrub 

 
yes 

volcanic 
rhyolite 

Cool 
temperate 
montane 
rainforest 

New 
Zealand, 
Oceania 

• N fertilisation effect on climax 
trees Ref 34  

 
Astracantha aitosensis 

 
Leguminosae 

 
shrub 

 
yes 

andesite 
and 
basalt 
tuffs 

Mixed 
temperate 
forest 

Bulgaria, 
Europe 

• N fertilisation? 

 
Hedysarum boreale 

 
Leguminosae 

 
herb 

 
yes 

 
moraines 

Shrub, short 
woodland 

Canada, 
N America 

• Nucleation effects (positively 
associates with other plants) Ref 35 

 
Dryas spp. 

 
Rosaceae 

 
shrub 

 
yes 

 
moraines 

Shrub, short 
woodland 

Canada, 
N America 

• Nucleation effects (positively 
associates with other plants) Ref 35 

 
Purshia tridentata  
 

 
Rosaceae 

 
shrub 

 
yes 

 
moraines 

Coniferous  
temperate 
forest 

USA,  
N America 

• N fertilisation? Ref 36 

Secondary successional 
species 

Family Form N2-fixers Climax 
community 

Location Effects Reference 

Inga cocleensis, Inga 
thibaudiana, Swartzia 
simplex, Abarema 
barbouriana, Platymiscium 
dimorphandrum 

 
Leguminosae 

 
trees 

 
yes 

 
Wet Tropical 
forest 

 
Panama, 
Mesoamerica 

• Decline in soil pH 
• Increase in ecosystem N 
stocks 
• Weathering enhancement  
• Early successional peak 
in nodulation 

 
Chapter 1 
and Ref 37 

 
Acacia celsa 

 
Leguminosae 

 
tree 

 
yes 

 
Wet Tropical 
forest 

 
Australia, 
Oceania 

• Decline in soil pH 
• Weathering enhancement   
• Early successional peak 
in nodulation 

 
Chapter 2 

Vachellia farnesiana Leguminosae tree yes Savanna 
woodland 

USA,  
N America 

• Increase in ecosystem N 
stocks 

38 

Mimosa arenosa Leguminosae tree yes Dry tropical 
forest 

Mexico,  
Mesoamerica 

39 

 
Robinia pseudoacacia 

 
Leguminosae 

 
tree 

 
yes 

Deciduous 
temperate 
forest 

 
USA,  
N America 

• Increase in ecosystem N 
stocks 
• Early successional peak 
in nodulation 

 
40 

Inga chocoensis Leguminosae tree yes Wet Tropical 
forest 

Costa Rica,  
Mesoamerica 

41 

Adenanthera pavonina, 
Albizia lucidior, Albizia 
vialenea, Milletia diptera, 
Afzelia xylocarpa 

 
Leguminosae 

 
trees 

 
yes 

 
Wet Tropical 
forest 

 
Vietnam, Asia 

 
42 

Baphia nitida Leguminosae tree yes Wet Tropical 
forest 

Nigeria, Africa • Suggested increase in 
ecosystem N stocks 

43,44 

 
Alnus rubra 

 
Betulaceae 

 
tree 

 
yes 

Coniferous 
temperate 
forest 

USA, 
N America 

• Increase in ecosystem N 
stocks 

 

45 

 
Ceanothus velutinus 

 
Rhamnaceae 

 
shrub 

 
yes 

Coniferous 
temperate 
forest 

USA, 
N America 

• Increase in ecosystem N 
stocks 
• Early successional peak 
in nodulation 

 

46 
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Figure 1. Early pioneering N2-fixers, such as (a) the legume shrub Astracantha aitosensis 
endemic to Bulgaria and (b) the betulaceous Alnus sp. (and its Frankia-inhabited 
nodules) illustrated here, are important for soil formation by their N2-fixing symbioses 
and active rock-root-microbe interactions. Photo credit: Dimitar Z. Epihov.  

 

 

 

 

 

 

 

 

Figure 2. Secondary successional N2-fixers, such as (a) Inga cocleensis in Panamanian 
tropical forests fix large amounts of atmospheric dinitrogen through their (b,c) 
indeterminate Burkholderia/Paraburkholderia and Bradyrhizobium-inhabited nodules 
(see Appendix 4) and (b) actively interact with soil minerals as seen by their highly 
nodulated roots surrounding a buried bag of soil minerals. Magnification in c is x10. 
Photo credit: Dimitar Z. Epihov.  

a b 

a b c 
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Figure 3. Case studies revealing greater weathering rates and cation export beneath N2-
fixing trees (a-d, k) linked to soil acidification (e-h) and successionally-timed nodulation 
in legume trees (i,j,l). References are as follows: Panama and Australia – Chapters 1 and 2, 
respectively, USA 2o c,g – Homann et al.14 and references therein, USA 1o d,h – Crocker and 
Major32, USA 2o lime/no-lime watershed data from Johnson et al.15 and references therein, 
USA 2o nodulation data for Robinia pseudoacacia from Boring et al.40. Nodulation biomass 
data for Panamanian legume trees are after Batterman et al.37. Error bars indicate S.E.M. 
Statistical tests are Mann-Whitney test (P<0.05) and Two-Way ANOVA (P<0.001).  
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Figure 4. Meta-analysis of N2-fixing trees reveals that they trigger 52-60% significantly 
greater rock weathering rates in their soils than non-fixing trees.  
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Figure 5. Meta-analyses of biogeochemical and metagenomic data show that the lower 
soil C:N ratios and higher abundance of N-cycling microorganisms, all indicative of high 
N inputs by fixers, are linked to weathering rates with strong positive correlations of all 
major nitrification genes with silicate rock weathering. a. Soil C:N ratios significantly 
correlate with weathering of dunite in Panamanian tropical forests; b. summary of six studies 
comparing soil C:N in N2-fixing trees with those beneath non-fixing trees; c. meta-analysis 
using the mean for each species shown in Figure 4b reveals significantly lower C:N in soil of 
N2-fixing trees than non-fixers (two-tailed t-test, P<0.001); Studies are: circles: USA Boring 
and Swank, 1984,40, triangles: USA Rice et al., 2004,16, diamonds: USA Cole et al.,1991,47, 
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polygons: USA Rhoades et al., 2001,48, squares: Czech Republic Urbanová et al., 2015,49, 
polygons with dot: Panama Epihov et al., 2018, unpublished;  d. soil N-cycling archaea 
(combined abundance of the genera Nitrososphaera and Nitrosocaldus) correlate negatively 
with soil C:N (Pearson correlation test, P<0.05, r=-0.36, n=45) in Panamanian tropical forests; 
e. summary of four studies (circles: Panama – Epihov et al., 2018, unpublished, triangles: 
Ghana – Sul et al., 2013,50, diamonds: Amazonia soil incubation experiment – Barbosa Lima 
et al., 201551, squares: Czech Republic – Urbanová et al., 201549) comparing the abundance 
of N-cycling microorganisms in N2-fixing and non-fixing trees (the abundance is the sum of 
all N-cycling genera including Nitrososphaera, Nitrosocaldus, Nitrosomonas, Nitrospira, 
Nitrosospira, Nitrobacter, Denitrobacter, Nitratiruptor, Nitrosococcus, Nitrosovibrio, 
Nitrococcus, and Denitromonas – among which Nitrospira and Nitrososphaera are dominant 
accounting for ~59% and 35% of all N-cycling bacteria, respectively, in the Panamanian study 
– labelled with circular symbols). In the case of the studies labelled with diamonds and squares 
– only data for the dominant Nitrospira was available and used; f. meta-analysis of microbial 
community data using the mean from each species or combination of species in Figure4e 
shows that N2-fixers exhibit significantly greater abundance of N-cycling microorganisms in 
soil than non-fixing trees (Mann-Whitney test, P<0.05); g. all major nitrification genes as 
identified in KEGG (including AMO, HAO, narG, and narH) exhibit significant positive 
correlations with silicate weathering rates. 
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Figure 6. Metagenomic evidence for greater levels of respiratory, lithotrophic (sulfur 
oxidising, hydrogen oxidising, ammonia/nitrite oxidising) and anaerobic activities in 
soil-mineral samples from high-fixing forests all correlated to higher rock weathering. 
a. The high-level pathway of respiration is enriched in high-fixing relative to low-fixing 
forests consistent across soil-minerals and studies and correlating with weathering; b. The 
high-level pathway of sulfur oxidation (a type of lithotrophic metabolism) is enriched in 
high-fixing relative to low-fixing forests consistent across soil-minerals and studies and 
correlated with rock weathering; c. The sum of all hydrogenases genes in the metagenome is 
greater in high-fixing than low-fixing forests consistent across sites and soil-minerals and 
correlating with rock weathering rates; d. nitrification genes, previously shown to correlate 
with rock weathering rates (Figure 4g), are significantly more abundant in metagenomes 
from high-fixing forests relative to low-fixing ones; e. metabolic pathways from the 
anaerobic food chain including fermentation, sulfate reduction and nitrate/nitrite 
dissimilatory reduction are enriched in high-fixing metagenomes and positively correlate 
with weathering (not shown). Mann-Whitney test, ***P<0.001, **P<0.01, *P<0.05. 
Correlations are based on Pearson tests. Error bars in the first figure of each triplet in a, b, c 
show S.E.M. The whisker box plots contain error bars are based on Tukey distribution.  
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Figure 7. Genes governing the microbial production of gluconic and 2-ketogluconic acid 
a. are significantly greater in high-fixing forest samples and correlate with field rock 
weathering rates and b. are dependent on PQQ supply (particularly the gdhPQQ, not 
trkA) as evident from co-variation between coenzyme PQQ synthesis pathway and PQQ-
dependent enzyme-coding genes (methanol dehydrogenase, quinoprotein alcohol 
dehydrogenase and gdhPQQ) validating the importance of adequate microbial PQQ 
supply. Statistical tests include Mann-Whitney tests, ***P<0.001, **P<0.01 and Pearson 
correlation tests. For b. all correlation tests are significant at P<0.001.  
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Appendices 

 

Appendix 1 

Comparing novel and established approaches to taxonomy 
calling in amplicon libraries of microbial communities 

(Annexed to Chapter 1) 

Amplicon-based libraries can provide deep structural and functional insights into the 
microbial communities of soil. Here, we have generated a total of 46 soil rhizospheric 
libraries containing amplicon DNA sequences of the V4-V5 region of the 16S rRNA gene in 
prokaryotes. Amplicon libraries were constructed using a two-step PCR approach where the 
target region was first amplified using locus specific primers with Illumina sequencing 
primer adapters incorporated into their 5’ end (30 cycles), then a second round of PCR was 
done using forward and reverse primers that contain all Illumina sequencing primer and 
flow cell binding sequences as well as a unique 8 bp barcode (6 cycles).  In the first round of 
PCR, all samples were amplified in triplicate using the 515F/806R primer set that amplifies 
the V4-V5 region of the 16S rRNA for bacteria1. Triplicate reactions were then pooled and 
unique combinations of barcodes and Illumina adapters added via a second round of PCR. 
PCR products were purified and normalized using SequalPrep Normalization plates (Life 
Technologies), pooled into single libraries based on sample type (e.g. soil rhizospheric 16S, 
soil mineral 16S), concentrated using Agencourt AMPure XP beads, quantified on a Qubit 
fluorimeter, and quality checked using the High Sensitivity Agilent DNA kit on an Agilent 
Bioanalyzer. Subsequently, samples were adjusted to appropriate concentrations and 
sequenced on a total of two runs on an Illumina MiSeq sequencer (2x250 bp paired-ends 
runs) at the Smithsonian Tropical Research Institute. The generated libraries were de-
multiplexed in QIIME2 and subsequently processed through 3 separate pipeline processes 
outlined below:  

 

1. R1 sequences were loaded onto QIIME2 closed reference OTU picking using 97% 
and 90% identity cut-offs and GreenGenes database 
(http://greengenes.lbl.gov/Download/, gg_13_05 release from May, 2013) for the 
construction of OTU tables (QIIME+GreenGenes+90%identity and 
QIIME+GreenGenes+97%identity, hereafter QIG90 and QIG97, respectively). Full 
sequences are aligned (all 250 bp).   

2. R1 and R2 sequences were merged and loaded onto the MG-RAST3 server 
(http://www.mg-rast.org) and processed according to default parameters for 
amplicon libraries. Resulting OTU tables were processed against the in-built SILVA 
SSU database. As the method of comparison in MG-RAST is blat, the alignment 

ADDED! 
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a. b. 

length is usually much smaller with an average of 103 bp and very high average 
identity of 98% (hereafter referred to as MGS) 

3. R1 and R2 sequences were merged and loaded onto Blast2GO 5 Pro and compared 
against the NCBI microbial 16S database (accessed in June 2018) using local blastx-
fast set at default, except the e-value that was changed from the default e-3 to e-5 
and selecting only the single best top ranking hit rather than the top 20 best ranked 
hits. There was no applied identity cut-off but the average identity was 91% with an 
average alignment length of ~253bp (hereafter referred to as BGN). Higher level of 
taxonomy of obtained species and genera OTU tables can be obtained through 
manual assignment in the Taxonomy Summary tool supported by KEGG 
(https://www.genome.jp/tools-bin/taxsummary).  

Rarefaction curves revealed satisfactory levels of sequencing depth in all 46 samples and 
no samples were excluded from further analyses.  

Comparisons of the three workflows 

Coverage of class and genus level OTUs  

BGN generated the greatest number of named + unnamed (“derived from…”; novel) 
genera (2079) followed by QIG90 (1302), MGS (1240), and QIG97 (1127). Excluding any 
unnamed genera derived from family/order/class etc., BGN generated the same number, 
2079 genera, as it does not bin genera into derived categories, MGS – 892, QIG90 – 732 and 
QIG97 – 459 (Appendix Figure 1). Such differences in the number of named genera can 
result from strict cut-offs (as in QIG97) but also from differences in size of the selected 
databases as QIG90 contained still smaller number of genera than BGN despite the average 
genus identity in BGN output of ~88% (Appendix Table 2). For instance, the NCBI 16S 
microbial database used in our BGN approach covers ~65-fold and 10-fold more genera 
than GreenGenes and SILVA SSU, respectively, with authors recommending the further use 
of the NCBI database in more sequencing microbiome studies4. 

 
  
 

 

 

 

Appendix Figure 1. Number of unique and overlapping (a) named genera only and (b) named 
and unnamed (novel; “derived from…”) genera in 46 rhizospheric soil samples analyzed by 
the three taxonomic calling approaches. QIG90 = QIIME + GreenGenes at 90% identity cut-off, 
MGS=MG-RAST+SILVA SSU, BGN=BlastGO+NCBI. Note QIG97 not shown in this diagram.  
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Despite their differing numbers of genera, the relative abundance of 11 out of the 12 
analysed major prokaryotic classes significantly correlated with BGN and QIG97 relating 
better than the abundance generated by MGS (Appendix Figure 2). The average identity of 
genera in BGN is 91% which may seem too relaxed relative to the recommended 95% genus  

Appendix Figure 2. Class-level comparisons reveal that the newly proposed BGN method 
(Blast2GO+NCBI+Taxonomy summary) agrees well the output of well-established 
analogues QIIME+GreenGenes at 97% identity cut-off (QIG97) and MG-RAST+SILVA 
SSU (MGS).   
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cut-off5 suggesting that any hits below 95% may represent (case 1) a novel closely related 
genus or perhaps (case 2) be part of the same genus if the latter is with high-intragenic 
variation. We find that the relative abundance of over 47% of all genera shared between 
QIG97 and BGN correlate significantly. More than half of those reveal average identity 
<95%. Combined these findings suggest that either these are part of the same genus (OTUX1 
is a species of genus X). An alternative explanation is that OTUX1 and X are separate genera 
that share similar physiology or niches in soil causing their apparent correlation at even 
lower identity thresholds (OTUX1 is part of a novel genus X1 that is most closely related to 
genus X). Although OTUX1 and genus X may differ in certain aspects of their physiology, 
functionally in the context of the soil community, OTUX1 and genus X can be seen as 
“behaving” as a single unit supported both by their correlation and sequence based 
similarity.  

Methods such as QIG bin OTUs that are below a certain cut-off in “derived from 
family/order/class etc.” so that OTUX1, OTUX2…OTUXn revealing 93%<identity<95% 
would all be part of a “derived from family” cluster. Consequently, no functional 
information is known about these as they will represent a collection of sequentially distinct 
units as demonstrated in the following example below:  

Family M = {genus U, genus V, genus W, genus X, genus Y, genus Z} 

OTUX1 best hit: 94.1% identity with genus X  binned in “derived from family M” 

OTUX2 best hit: 94.0% identity with genus X  binned in “derived from family M” 

OTUX3 best hit: 93.7% identity with genus Y  binned in “derived from family M” 

… 

OTUX7 best hit: 93.6% identity with genus Z  binned in “derived from family M” 

Although OTUX1 and OTUX2 are most closely related to each other and to X than to any 
of the other genera in family M, they are all binned together with OTUX3 and OTUX7 into 
“derived from family M” making their functional differentiation impossible as the resulting 
“derived from family M” would carry a mixture of X-like, Y-like and Z-like traits.  

However, if a database is relatively limited in their number of genera and family M is not 
fully represented by all of its constituent genera so that: 

 Family M = {genus U, genus Y, genus Z} 

   and 

OTUX1 external BLAST best hit: 94.1% identity with genus X; second best hit 
89.2% identity with genus Y  binned in “derived from family M” 

OTUX2 external BLAST best hit: 94.0% identity with genus X; second best hit 
88.4% identity with genus Y  binned in “derived from family M” 
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binning OTUs in a “derived from…” would be more appropriate than binning them in genus 
Y. 

However, databases that cover more of the currently supported phylogeny (such as 
NCBI, which is the largest sequence-containing microbial taxonomy database4) would be 
less constrained and therefore should be able to place OTUX1-X7 in their respective most 
closely related genera rather than clustering them all in one or two more distantly related 
genera. Indeed, upon discovery and description of all bacterial genera, local blasts against 
such a future complete database would yield exact matches thus eliminating the need of 
“derived from…” clusters regardless of % identity.  

Even at present, while such a database is yet to materialise, substantially large databases 
such as NCBI in combination with no imposed identity cut-offs should be able to provide an 
enhanced insight into the functional traits of the analysed 16S-based microbiomes while 
lacking information on potentially new taxa. In contrast, methods relying on strictly 
embedded identity cut-offs (98.65% for species and 95% for genus5,6) will be bound to 
present an exaggerated estimate of novel taxa. For example, some such predictions yield 
over 3600 new genera in a single soil community sample7. However, analysis of over 150 
genera reveals that 62% of these contain published species that exhibit lower than the 
accepted 95% identity with other members of the same genus. Different monophyletic 
clades vary substantially in their level of 16S rRNA gene conservation and taxonomy based 
on strict thresholds equal for all taxa may consequently be misleading5. As a result, we 
hypothesize that the BGN approach, proposed here, may be better suited to functional 
characterisation of environmental microbial communities.  

 

Comparison of BGN vs. QIG vs. MGS in their ability to predict function in the 
microbiome 

Linking microbial abundance to functional potential is challenging but has been 
previously attempted. One such example is the platform PICRUSt8 which can reconstruct 
abundance profiles for KEGG gene orthologues using 16S rRNA closed-reference OTU 
picking in QIIME and its resulting BIOM tables. However, one limitation of that approach 
is the large gap between number of genera in 16S databases and the number of sequenced 
genomes. Similarly, BLAST-ing annotated metagenomic sequences to establish the 
taxonomic identity of genera contributing to the pool of a particular gene of interest will 
also be hampered by the comparatively small number of sequenced genomes as well as by 
the often highly conserved sequences of such genes.  

Alternatively, another approach is to utilise detailed literature search in generating large 
lists of genera that have been documented to perform a particular function of interest – e.g. 
nitrification, sulfur reduction, iron reduction, methanogenesis etc. Consequently, manual 
extraction of genera from OTU tables and summing of their abundance should serve as a 
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proxy proportional to the abundance of marker genes in the metagenome that are involved in 
the same function or process. 

Because such a methodology would ultimately rely on reports of a given phenotypic trait 
in a genus, OTU tables containing large number of genera such as BGN may be better 
equipped in linking structure to function. In support of that statement, we find that the 
summed abundance of genera in BGN could significantly link the abundance of ammonia 
oxidisers to ammonia monooxygenase (AMO) gene abundance (n = 12 16S rRNA libraries 
paired with n = 12 shotgun metagenomic libraries), nitrite oxidisers to hydroxylamine 
reductase (HAO), Fe(III) reducing genera to Fe(III) respiration - Shewanella type 

 

Appendix Table 1. Inferred links between structure of the microbiome (relative abundance 
of taxa) and function in the metagenome (relative abundance of marker genes or pathways 
of genes).  

 

AMO – ammonia monooxygenase; HAO – hydroxylamine reductase; PMO+MMO – particulate methane monooxygenase 
and methane monooxygenase. Pearson test, ***P<0.001, **P<0.01, *P<0.05, •P<0.10, nsP>0.10, except where the test was 
Spearman due to lack of normal distribution (denoted with “Sp”). 

 

pathway, and sulfur cycling genera to inorganic sulfur assimilation (Appendix Table 1). In 
comparison, in QIG97 correlation was only observed between genera abundance with AMO 
and HAO; and MGS-generated abundance profiles only correlated with HAO and Fe(III) 

Sum of 16S rRNA 
relative abundance 

BGN QIG97 MGS Metagenomic 

gene markers 

Ammonia oxidising genera 

 

** * ns AMO 

Nitrite oxidising genera 

 

*** *** * HAO 

Fe(III) reducing genera ** ns • Fe(III) respiration - Shewanella type  

(all genes) 

Sulfur cycling genera   *Sp
 ns ns 

 

Inorganic sulfur assimilation  

(all genes) 

Methanogenic genera 

 

ns ns ns PMO/MMO 
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respiration genes (the latter correlated at Pearson test P<0.10). Neither one of the three 
methods was able to link their assigned methanogen abundance to the abundance of 
methane monooxygenase genes.  

These findings suggest that taxonomy calling by BGN generates an enhanced 
approximation of soil microbiomes in relation to important functional traits. However, 
certain processes still remain elusive to such approaches (e.g. methanogenesis) indicating 
that further research in the lineages involved is required before taxonomy can reliably be 
translated into function.  

 

Appendix Table 2. Top 60 Blast2GO genus-level OTUs – their average e-value, mean alignment 
length (base pairs), total number of hits and mean identity % as well as the same across all 
genera and hits (at the bottom of the table) in soil microbiome samples 32-41 (n = 10). 

Genus Mean  

E-Value 

Mean 
alignment 
length (bp) 

Total 
number of 
hits 

Mean 
identity % 

Chthoniobacter 1.54E-44 256 39901 91.5 

Acidobacterium 5.48E-57 250 25584 91.1 

Limisphaera 6.07E-18 260 22606 89.0 

Edaphobacter 5.22E-48 250 13187 88.3 

Ktedonobacter 6.83E-55 253 12037 85.1 

Occallatibacter 2.33E-65 252 10926 89.4 

Bradyrhizobium 2.9E-80 256 10778 97.8 

Paludibaculum 1.41E-49 260 10440 89.5 

Vicinamibacter 1.06E-63 265 10079 91.6 

Rhodoplanes 4.04E-82 257 9116 96.9 

Gemmata 6.49E-58 259 8979 87.4 

Burkholderia 5.57E-63 262 6609 98.3 

Bacillus 3.09E-22 254 5338 97.7 

Acidibacter 2.98E-59 257 4889 95.5 

Pseudolabrys 7.08E-57 262 4872 96.5 

Pseudomonas 3.37E-65 255 4217 98.1 

Rhizomicrobium 4.6E-73 268 3860 93.1 
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Granulicella 6.78E-16 252 3824 88.6 

Actinoallomurus 2.23E-69 253 3277 95.2 

Desulfonatronum 9.41E-45 254 3213 87.0 

Streptomyces 6.32E-71 258 3146 97.3 

Chryseolinea 1.03E-24 263 3069 91.1 

Pseudorhodoplanes 8.64E-71 259 3063 96.6 

Bryobacter 3.2E-69 264 3034 89.8 

Skermanella 4.59E-68 272 2988 91.2 

Zavarzinella 6.66E-60 269 2863 87.5 

Gaiella 3.32E-67 262 2734 92.3 

Azospirillum 7.52E-28 258 2723 92.1 

Stenotrophobacter 1.4E-62 287 2557 94.3 

Thauera 3.41E-64 280 2536 92.5 

Tepidisphaera 4.37E-51 272 2472 87.8 

Sphingomonas 2.04E-77 268 2461 97.8 

Rhizobium 3.97E-20 258 2437 98.0 

Sphingobium 4.95E-85 255 2357 96.1 

Stella 4.41E-25 256 2342 92.0 

Klebsiella 2E-99 253 2273 99.3 

Silvibacterium 7.05E-61 252 2219 94.0 

Gemmatimonas 5.86E-62 280 2195 88.9 

Thermostilla 1.33E-72 280 2136 89.6 

Fimbriiglobus 1.56E-63 268 2111 88.5 

Terrimonas 5.19E-79 267 2093 96.1 

Mucilaginibacter 1.13E-08 256 2090 98.2 

Terrimicrobium 8.88E-54 256 1904 89.0 

Nevskia 1.13E-59 290 1687 92.9 

Niastella 3.26E-79 257 1673 95.5 
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Haliangium 3.97E-69 263 1644 90.5 

Parasediminibacterium 1.55E-64 257 1595 94.6 

Phenylobacterium 4.7E-65 255 1513 96.3 

Aliidongia 3.09E-77 271 1507 90.6 

Planctopirus 1.3E-59 279 1462 88.8 

Reyranella 2.19E-26 266 1432 96.2 

Paraburkholderia 1.19E-66 257 1408 97.8 

Niabella 7.66E-77 275 1318 95.0 

Geobacter 1.28E-66 259 1308 91.0 

Massilia 2.37E-63 257 1279 92.8 

Anaeromyxobacter 3.75E-67 257 1279 90.8 

Kofleria 4.03E-52 260 1265 90.1 

Brevitalea 4E-30 260 1265 92.6 

Labilithrix 5.9E-69 261 1264 92.6 

Fimbriimonas 1.77E-69 284 1226 88.4 

… … … … … 

 
Median Average 

 
Average 

Across genera 1.01E-70 250 
 

87.8 

Across all hits 1.7E-101 259 
 

91.6 

 

Note that all legume nodulating genera found in top 60 are highlighted in green, with all of them exhibiting 
identity >95% consistent with the accepted genus-level cut-off5.  
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Appendix 2 

Shotgun Metagenome Statistics 

(Annexed to Chapters 1 and 2) 

 

Appendix Table 3. Shotgun metagenome libraries from our tropical forest weathering study in 
Panama (Chapter 1) and their MG-RAST ID numbers and size 

MG-RAST ID Name Base pairs (bp) count No. of sequences 

mgm4750411.3 OL_2 2,868,154,772 17,959,686 

mgm4750538.3 OL_1 6,067,791,629 38,077,834 

mgm4750539.3 OL_7 4,935,659,002 30,420,129 

mgm4750544.3 OL_16 6,825,659,192 42,207,195 

mgm4751389.3 OL_17 5,642,423,815 35,154,753 

mgm4751392.3 OL_31 4,626,468,473 28,844,519 

mgm4751395.3 OL_29 4,501,728,547 28,118,622 

mgm4751396.3 OL_33 2,891,291,381 18,057,850 

mgm4751576.3 OL_47 3,275,979,911 20,550,000 

mgm4751577.3 OL_48_ 4,413,291,146 27,590,400 

mgm4751584.3 OL_50 4,075,326,761 25,439,339 

mgm4751599.3 OL_58 7,132,861,445 44,185,203 

mgm4751712.3 S_17_ 7,793,811,849 48,374,646 

mgm4751755.3 S_29 7,823,595,015 48,433,318 

mgm4752317.3 S_33 7,942,191,469 49,059,560 

 

OL – weathered soil olivine samples; S – soil rhizosphere samples. Note that the number of sequences of weathered 
soil minerals from beneath N2-fixers (OL17-OL48), non-fixers near N2-fixers (NF-near: OL1, 2, 50) and non-fixers far 
from N2-fixers (NF-far: OL7, 16, 58) do not differ significantly neither in number of sequence reads (Welch’s ANOVA, 
P>0.10), nor in total number of base pairs (Welch’s ANOVA, P>0.10).  
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Appendix Figure 3. k-mer sequencing coverage is similar across shotgun metagenomes of weathered soil 
mineral from beneath different functional groups of trees in Panamanian tropical forest (Chapter 1) 
indicating comparable sequencing depths.  
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Appendix Figure 4. k-mer sequencing coverage is similar across shotgun metagenomes of weathered soil 
olivine mineral from beneath N2-fixing Acacia celsa (Ac) and non-fixing Alphitonia petriei (Alph) trees at 
different ages of secondary forest succession (Chapter 2) indicating comparable sequencing depths.  

 

 

Appendix Figure 5. DRISEE sequencing error distribution in each of the three groups of shotgun 
metagenomes (Australian tropical forest soil basalt and soil olivine – Chapter 2 and Panamanian 
tropical forest soil olivine – Chapter 1) shows that our libraries are largely similar to other 
metagenomes hosted at the MG-RAST server (with means falling within the range defined by the mean 
and 2 x standard error) and those compiled by the original DRISEE paper9 by Keegan et al., 2012. The 
Australian shotgun metagenomes (prepared using the TruSeq Nano gel free kit and sequenced on an Illumina 
NovaSeq) reveal lower DRISEE errors than the Panamanian shotgun metagenomes (prepared using Nextera 
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XT library prep-up kit and sequenced on an Illumina HiSeq machine). Note than for shotgun metagenomes of 
weathered soil olivine samples in Panama n = 4 because MG-RAST failed to generate DRISEE values for the 
remaining 8 samples. Note that analyses of DRISEE values between tree groups (non-fixers and N2-fixers) and 
between different forest ages (12.5, 20, 48 years old forests) yielded no significant differences between these 
groups neither in olivine, nor in basalt from the soil of Australian tropical forests in Chapter 2 (two-tailed t-
test, P>0.10; Welch’s ANOVA, P>0.10).  

 

 

Appendix 3 

Amplicon library sequencing statistics 

(Annexed to Chapter 1) 

 

Appendix Table 4. The 46 soil rhizospheric samples and their sequencing statistics 

MG-RAST ID Sample 
name 

Base pairs (bp) count Number of sequences 

mgm4756263.3 1 63,854,634 252,483 

mgm4756256.3 2 40,022,945 158,114 

mgm4756275.3 3 42,858,015 169,309 

mgm4756277.3 4 42,312,921 167,186 

mgm4756267.3 5 49,770,373 196,653 

mgm4756266.3 6 44,649,079 176,577 

mgm4756274.3 7 40,438,161 159,796 

mgm4756284.3 8 41,769,319 165,041 

mgm4756254.3 9 62,893,261 248,475 

mgm4756264.3 10 30,252,288 119,392 

mgm4756246.3 11 46,130,351 182,257 

mgm4756278.3 12 32,551,375 128,519 

mgm4756258.3 13 57,141,266 225,702 

mgm4756286.3 14 52,771,514 208,488 

mgm4756242.3 15 66,947,090 264,442 
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mgm4756271.3 16 47,073,898 186,072 

mgm4756262.3 17 49,710,367 196,502 

mgm4756281.3 18 36,896,361 145,811 

mgm4756250.3 19 65,169,337 257,393 

mgm4756251.3 20 63,143,293 249,501 

mgm4756270.3 24 30,645,778 121,093 

mgm4756260.3 25 28,577,246 112,909 

mgm4756243.3 26 36,937,032 145,587 

mgm4757411.3 27 29,671,543 117,235 

mgm4756269.3 29 61,957,368 244,705 

mgm4756247.3 30 26,976,030 106,574 

mgm4756261.3 31 26,973,619 106,566 

mgm4757419.3 33 37,579,765 148,565 

mgm4757416.3 34 19,565,480 77,200 

mgm4757417.3 36 35,092,277 138,680 

mgm4756245.3 37 22,687,404 89,666 

mgm4757415.3 39 23,914,482 94,429 

mgm4757420.3 40 25,700,294 101,522 

mgm4756252.3 41 32,083,674 126,763 

mgm4756249.3 43 14,451,495 57,087 

mgm4757421.3 45 29,658,137 117,153 

mgm4756265.3 46 28,802,145 113,782 

mgm4756280.3 47 105,979,767 418,805 

mgm4756285.3 48 150,092,873 593,223 

mgm4757412.3 50 101,003,730 398,844 

mgm4757422.3 51 83,243,133 328,719 

mgm4757418.3 52 182,368,519 720,242 

mgm4756257.3 53 80,479,270 317,881 
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mgm4756283.3 54 102,373,708 404,467 

mgm4757414.3 56 110,218,169 435,625 

mgm4756287.3 57 138,345,533 546,603 

 

 

 

 

 

Appendix Figure 6. Rarefaction curve generated in MG-RAST using the SILVA SSU database 
for the soil microbial community samples demonstrates sufficient sequencing depth with the 
majority of amplicon libraries near to or reaching a plateau.  
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Appendix 4 

Symbiotic bacteria in crushed nodule and rhizosphere mixed 
samples 

(Annexed to Chapter 1 and Chapter 4) 

 

 Our secondary tropical forest sites represent a diverse mixture of nodulating legumes, 
but Inga trees are the most predominant in terms of numbers and basal tree area, particularly 
early-pioneering Inga cocleensis (sample 28; Appendix Figure 7) and Inga thibaudiensis 
(sample 32; samples 38 – Platymiscium dimorphandrum, 44 – Swartzia simplex, 49 and 55 – 
nodules from the rhizosphere of non-legumes with unknown legume hosts; Appendix Figure 
7). To gain insight into the nodulating bacteria of legumes in our sites,  we sequenced and 
performed taxonomy calling of 16S rRNA amplicon libraries of soil rhizosphere + crushed 
nodules (n = 6) and compared them against samples only containing soil rhizosphere 
communities (n = 46). Our analyses reveal a major  >3-fold enrichment in the atypical β-
proteobacterial nodulating genera Burkholderia and Paraburkholderia as well as a more 
minor 1.5-fold enrichment of Bradyrhizobium in Inga nodules (samples 28 and 32) relative 
to soil only samples (Appendix Figure 7). While the majority of nodulating reports from Inga 
trees indicate symbiotic interactions mainly with Bradyrhizobium10,11,12, a study has also 
extracted several Burkholderia isolates from nodules of Inga vera in the Atlantic rainforest in 
Brazil13. Therefore, our preliminary findings are consistent with the published literature but 
highlight the need of further research into non-bradyrhizobial nodulating agent within this 
diverse and dominant Neotropical genus of legumes.  

 

 

 

 

 

 

 

Appendix Figure 7. Heatmap of the relative abundance of different nodulating genera 
in crushed nodules+rhizospheric soil versus rhizospheric soil only 16S rRNA libraries. 
Note that the colour coding is as follows: high abundance – dark red, medium abundance – 
white, low abundance – blue).  
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Little information exist on nodulation in Platymiscium with previous research 
indicating extraction of very slow to slow growing isolates from nodules without 
characterising their taxonomic identity14. Here, we report that in addition to enrichment in 
Burkholderia and Paraburkolderia, as well as in Mesorhizobium, Rhizobium and 
Sinorhizobium, nodules from the faboid P. dimorphandrum exhibited high abundance of 
Cupriavidus, another atypical rhizobial genus that was not enriched in any other nodule 
samples (Appendix Figure 7). As studying the detailed species-level resolution of nodulating 
agents was beyond the scope of our study, our generated V4-V5 16S rRNA sequences can 
only provide reliable differentiation at the genus level (see Appendix Table 2 and text within 
Appendix 1) but it, nevertheless, reveals that interactions between tropical forest legume trees 
and rhizobia may not be as simple as “single species-single host scenario” and require further 
detailed study using other more suitable marker genes as recA and nifH (currently underway; 
Brandt, P. and Hedin, L; personal communication).  
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