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Abstract

This thesis aims to empirically test the validity of economic theories of the individual
decision making under risk and uncertainty with a laboratory experiment. The first
chapter outlines this thesis. The second chapter experimentally tests Manski’s theory of
satisficing (2017). He proposes solutions to two key questions: when should the decision-
maker (DM) satisfice?; and how should the DM satisfice? The results show that some of
Manski’s proposition (those relating to the “how”) appear to be empirically valid while
others (those relating to the “when”) are less so. The third chapter extends the findings
from the previous chapter, mainly relating to “how to satisfice”. I propose an alternative
story with a different assumption of the subjects’ preference functional and of the payoff
distribution. The results suggest that my alternative story appears to better-explain
the subjects’ behaviour than that of Manski’s story. The fourth chapter explores the
individual behaviour towards randomisation of the choice. I use the elicitation method
that provides an additional option between two alternatives, namely “I am not sure what
to choose” as an alternative of two standard options: "I choose A" or "I choose B". It
gives a consequence where the subjects’ payoff is determined by a randomisation of two
alternatives through the flipping a coin. I propose four stories to account for the choice
of this option. The results show that the most of the subjects either have strictly convex
preferences with random risk attitude or simply cannot distinguish the two alternatives.
The fifth chapter empirically tests Nicolosi’s model (2018). He derives the optimal strategy
for the fund manager under a specific payment contract and the investment environment.
I compare his model with other strategies. The results show that Nicolosi’s model receives
strong empirical support to explain the subjects’ behaviour.
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1 Preface

The hunt for the economic theories of the individual decision making under risk and
uncertainty is a never-ending story. The vast-growing literature of this interest is unsur-
prising since most of our daily life has to deal with both environments, whether or not we
can attach probability in some events. The traditional economic theory assumes that the
decision maker (DM) is fully rational in ways that he or she always achieve optimality;
to some extent, it leads to the theory of deterministic choice. This means that the DM
fully maximises his or her cognitive ability, without any logical and arithmetical errors,
to compare the choices in order to choose accordingly. Moreover, it has brought eco-
nomics to become a study that provides a prediction of the individual choice. However,
a large body of empirical evidence suggests that individuals often behave in ways that
contradict the predictions of the theory. Allais Paradox perhaps is the famous example of
such violation to the rational assumptions of the traditional economic theory. Instead of
making decisions that could be predicted by the theory, people most of the time behave
inconsistently to the prediction of the theory. Since then, economic theory often incorpo-
rates psychological and philosophical perspectives into the general assumptions, i.e. the
concept of bounded rationality by Herbert Simon (1947). Simon maintained that the DM
is bounded by “cognitive limits”, therefore in some situations, he or she does not optimise
his or her choice but rather seeking something satisfactory.

The concept of bounded rationality gives economics a new perspective. It leads into
explorations of the alternative to understand the individual behaviour under risk and
uncertainty. One particular interest is the incorporation of the stochastic choice. In this
case, decision-making is naturally noisy because of mistakes or errors that the DM makes
when implementing his or her decisions. Let me give a sensible example of this. A subject
takes a part in an experiment to weigh between two objects. In the first attempt, he or
she is presented two objects without being told their weights: object 1 weighs 500 grams
and object 2 weighs 300 grams. He or she may easily say object 1 is heavier than that of
object 2. In the second attempt, he or she, again, is presented two objects without being
told their weights: object 1 weighs 500 grams and object 2 weighs 505 grams. What is
the likelihood for him or her to say that object 2 is higher than object 1? And what
if we repeat this procedure with different weight of the objects? This example may be

1



1 Preface

provoking, however, would this produce consistent answers from the subject with precise
comparison?

This naturally drives us into the main issue: how we incorporate the noise into theories
of deterministic choice. Some of the early works can be found in Davidson and Marschak
(1957) and Debreu (1958). It then further has been explored by Hey and Orme (1994),
Harless and Camerer (1994), and Loomes and Sugden (1995). The key issue of what
it now refers to as stochastic choice is the appropriate stochastic specification given the
individual true preference functional, hence one most-likely uses the econometric approach
to make it operational.

So there are two important elements here: the identification of the true preference func-
tional; and the identification of the noise. Although the development of descriptive theo-
ries under risk and uncertainty keeps going on, we perhaps should also discuss the speci-
fication of the stochastic structure.

The scope of this thesis is to provide the empirical testing of economic theories of the
individual decision making under risk and uncertainty. The thesis consists of five sections,
three of them involving experiments and one uses the data from another section to extend
the analysis of that section.

Section 1 is preface. Section 2 tests the empirical validity of the theory of satisficing of
Manski (2017) with a lab experiment. Satisficing is defined when the DM is satisfied with
achieving some objective, rather than in obtaining the best outcome. Manski’s model
proposes solutions to two key questions: when should the DM satisfice; and how should
the DM satisfice. Rather ironically, the DM should employ a satisficing strategy if it
is optimal to satisfice. Manski envisages the DM being in an ambiguous situation and
assumes that the Minimax Regret criterion is the objective function of the DM. We test
his model experimentally, and implement ambiguity in the laboratory by using Stecher
et al’s (2011) method to generate ambiguous numbers. The results show that some of
Manski’s proposition (those relating to the “how to satisfice”) appear to be empirically
valid while others (those relating to the “when to satisfice”) are less so.

Building on the findings from Section 2, I explore further the subjects’ decisions relating
to “how to satisfice” in Section 3. In this section, I try to find a better explanation
for the behaviour of the subjects in the experiment reported in Section 2 than that of
Manski. This alternative story assumes that the DM is an Expected Utility maximiser,
rather than the Minimax Regret agent, and that he or she perceives the payoffs as having
a uniform risky distribution, rather than an ambiguous distribution; I call this the EU
story. Given these alternative assumptions, one can derive the DM’s optimal strategy;
clearly, this depends upon the DM’s risk aversion. I fit this EU story to the data from

2
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the experiment of Section 2 with two different stochastic specifications (of errors in the
subjects’ choices) beta and normal. I also fit the data using Manski’s optimal strategy
under both stochastic specifications. The results show that the EU story appears to be
a better explanation of the data than that of Manski’s story. Interestingly, the subjects
appear to be risk-loving under the EU story.

In Section 4, I explore the individual behaviour towards randomisation of the choice. I
use the elicitation method that provides an additional option between two alternatives.
I label this option as “I am not sure what to choose” as an alternative of two standard
options: "I choose option A" or "I choose option B". The implication for making this
choice is that if the subjects choose this option, then their payoff is determined by a
randomisation of A and B through the flipping a coin. I ask the question as to why
subjects might choose this option, that is, “why do subjects prefer randomisation?”, and
explore four distinct stories to explain the subjects’ behaviour. The first story is that the
DM has strictly convex preferences (which vary randomly from problem to problem) and
actually prefers a mixture of A and B. The second is that the DM prefers a mixture of A
and B only if it gives the highest utility, but he may tremble in expressing his preference.
The third is that the DM cannot distinguish between A and B unless their difference
exceeds some threshold. The fourth is that the DM actually prefers to delegate the choice
(to the coin), shifting the ’responsibility’ to the coin, though the DM may tremble in
expressing his preference. I compare the goodness-of-fit between the stories to see which
story better explains the data. The results show that the first and third stories have the
most empirical support.

In Section 5, I examines the empirical validity of Nicolosi’s model (2018) which investigates
the optimal strategy for a hedge fund manager under a specific payment contract. The
contract specifies that the manager’s payment consists of a fixed payment and a variable
payment, which is based on the over-performance with respect to a pre-specified bench-
mark. The model assumes that the manager is an Expected Utility agent who maximises
his expected utility by buying and selling the asset at appropriate moments. Nicolosi de-
rives the optimal strategy for the manager. To find this, Nicolosi assumes a Black-Scholes
setting where the manager can invest either in an asset or in a money account. The asset
price follows geometric Brownian motion and the money account has a constant interest
rate. I experimentally test Nicolosi’s model. The results show that Nicolosi’s model re-
ceives strong empirical support to explain the subjects’ choice, though not most of the
subjects follow Nicolosi’s model. Despite this, the subjects somehow follow the intuitive
prediction of Nicolosi’s model where the subjects respond to the difference between their
managed portfolio and the benchmark to determine their portfolio allocation.

3
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2 When and How to Satisfice: An
Experimental Investigation

Abstract — This section is about satisficing behaviour. Rather tautologically, this is
when decision-makers are satisfied with achieving some objective, rather than in obtaining
the best outcome. The term was coined by Simon (1955), and has stimulated many
discussions and theories. Prominent amongst these theories are models of incomplete
preferences, models of behaviour under ambiguity, theories of rational inattention, and
search theories. Most of these, however, seem to lack an answer to at least one of two
key questions: when should the decision-maker (DM) satisfice; and how should the DM
satisfice. In a sense, search models answer the latter question (in that the theory tells
the DM when to stop searching), but not the former; moreover, usually the question
as to whether any search at all is justified is left to a footnote. A recent paper by
Manski (2017) fills the gaps in the literature and answers the questions: when and how
to satisfice? He achieves this by setting the decision problem in an ambiguous situation
(so that probabilities do not exist, and many preference functionals can therefore not be
applied) and by using the MiniMax Regret criterion as the preference functional. The
results are simple and intuitive. This section reports on an experimental test of his theory.
The results show that some of his propositions (those relating to the ‘how’) appear to be
empirically valid while others (those relating to the ‘when’) are less so.

*****
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2 When and How to Satisfice: An Experimental Investigation

2.1 Introduction

This section is about satisficing behaviour. Way back in 1955 Herbert Simon made a call
for a new kind of economics stating that:

“the task is to replace the global rationality of economic man with a kind
of rational behavior that is compatible with the access to information and the
computational capacities that are actually possessed by organisms, including
man, in the kinds of environment in which such organisms exist.” (p. 99)

There is a fundamental conflict here provoked by the use of the word ‘rational’, and
economists’ obsession with it. The problem is that the expression ‘rational behaviour’
covers virtually all forms of behaviour, as long as it is motivated by some ‘rational’
objective function, and the decision-maker has all relevant information available to him or
to her, and the decision-maker (henceforth, DM) can perform all the necessary calculations
costlessly. If calculations are costly, then we are led into the infinite regression problem,
first pointed out by Conlisk (1996), and rational behaviour, as defined by economists,
cannot exist. We are, therefore, constrained to operate with rational models, defined as
above. The way forward, within the economics paradigm, is therefore to weaken our ideas
of what we mean by rational behaviour. This is the way that economics has been moving.
Prominent amongst these latter weaker theories are theories of incomplete preferences
(Ok et al. 2012; Nau 2006; Mandler 2005; Dubra et al. 2004); theories of behaviour under
ambiguity (Etner et al. 2012; Gajdos et al. 2008; Ghirardato et al. 2004; Hayashi and
Wada 2010; Klibanoff et al. 2005; Schmeidler 1989; Siniscalchi 2009); theories of rational
inattention (Sims 2003; Manzini and Mariotti 2014; Matejka and McKay 2015; Caplin and
Dean 2015); and search theories (Masatlioglu and Nakajima 2013; McCall 1970; Morgan
and Manning 1985; Stigler 1961). A useful survey of satisficing choice procedures can be
found in Papi (2012).

Almost definitionally, models of incomplete preferences have to be concerned with satis-
ficing: if the DM does not know his or her preferences, it is clearly impossible to find
the best action. These models effectively impose satisficing as the only possible strat-
egy. The problem here is that complete predictions of behaviour must also be impossible.
Prediction is possible in models of behaviour under ambiguity. But here again satisficing
behaviour ‘must’ occur, if only because not all the relevant information is available to the
DM. Unless the DM’s information is objectively correct, there is presumably always some
action that is better than the one chosen by the DM. But here the DM does not choose
to satisfice; nor does he or she choose how to satisfice. Models of rational inattention
also capture the idea of ‘satisficing’ behaviour — in that choice is made from a subset

6



2 When and How to Satisfice: An Experimental Investigation

of the set of possible actions — those which capture the attention of the DM, that is,
those which are in the consideration set of the DM. However, these theories are silent on
the reasons for the formation of a consideration set, and, in some of them, on how the
consideration set is formed.

We examine a new theory — that of Manski (2017) — which might be classified as an
extended search model. Search models seem to be closest to the scenario in which Manski’s
paper is set. Standard search models assume that the DM is searching for the highest
number in some distribution and that there is a cost of obtaining a drawing from that
distribution. Because of this cost, the DM does not keep on searching until he or she finds
the highest number: generally he or she should keep on searching until a ‘sufficiently’ high
number is found. This could be termed the DM’s aspiration level. One interpretation of
Manski’s paper is that he generalises the story: in addition to being able to search for
numbers greater than some (or several) aspiration level(s), the DM can pay a higher search
cost and be able to find the highest number, and also the DM can choose not to indulge in
any search and simply receive a lower number. Manski not only considers choice between
these three strategies, but also the choice of the aspiration level(s). This is the ‘how’
of Manski’s theory: he explains how many times satisficing should be implemented, how
aspiration levels should be formed and how they should be changed in the light of the
information received.1

We experimentally test this new theory. Some of the other models that we have discussed
have also been tested experimentally; for incomplete preferences we refer the reader to
Cettolin and Riedl (2019), Costa-Gomes et al. (2014) and Danan and Ziegelmeyer (2006);
for behaviour under ambiguity to Abdellaoui et al. (2011), Ahn et al. (2010), Halevy
(2007), Hey and Pace (2014) and Hey et al. (2010); for rational inattention to Chetty
et al. (2009), De Los Santos et al. (2012); and for search theories to Caplin et al.
(2011), De Los Santos et al. (2012), Hayashi and Wada (2010) and Reutskaja et al.
(2011). Our experimental test has some similarities in common with some of these and
some differences. In some ways our test is closest to that of Hayashi and Wada (2010),
though they test minimax, α-maximin and the (linear) contraction model (Gajdos et
al. 2008). We test Manski’s model and have a different way of generating imprecise
information/ambiguity.

In the next section we describe the Manski model, while in Section 2.3 we discuss the
experimental design. Our results are in Section 2.4, and Section 2.5 concludes.

1There are echoes of this in Selten (1998), though he notes on page 201 that “In this respect, the role
of aspiration levels in [Selten’s] model is different from that in the satisficing processes described
by Simon, where it is assumed that it can be immediately seen whether an alternative satisfies the
aspiration level or not. The situation of the decision maker in [Selten’s] model is different.”
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2 When and How to Satisfice: An Experimental Investigation

2.2 Manski’s model of satisficing

In the model, the DM has to choose some action. The DM knows that there is a set of
actions, each member of the set implying some payoff. The payoffs of these actions are
bounded between a lower bound, L, and an upper bound, U , which are known to the DM.
Hence, without costly deliberation, the DM faces a problem under ambiguity as he or she
does not have sufficient knowledge to determine the optimal decision — that of choosing
the action which yields the highest payoff. However, the DM can learn more about the
payoff values subject to different costs, which in turn, yield different benefits. There are
three available deliberation strategies: ‘No Deliberation’, ‘Satisficing’, and ‘Optimising’.
‘No Deliberation’ incurs no cost and yields only the value of the payoff of an arbitrarily
chosen action. ‘Optimising’ has a positive cost (K) and reveals the maximum payoff value.
‘Satisficing’ has a positive cost (k) and provides information whether there are actions
that are at least as large as some specified aspiration level.

Crucial to the model is that the assumed objective of the DM is the minimisation of maxi-
mum regret (MMR). One reason for this is that there is no known probability distribution
of the payoffs, so, for example Expected Utility theory and its various generalisations can-
not be applied.2 Additionally, and crucially for our experiment, the solution is an ex ante
solution, saying what the DM should plan to do as viewed from the beginning of the
problem. As Manski writes “I study ex ante MiniMax-Regret (MMR) decision making
with commitment”. So the DM is perceived of as choosing a strategy at the beginning
of the problem, and then implementing it. This implies a resolute decision-maker. If the
DM is not resolute the solution may not be applicable.

The paper applies the ex ante MiniMax-Regret rule to this environment and derives a set of
simple, yet intuitive, decision criteria for both the static and the dynamic choice situation.
Simon (1955) also suggested that there can be a sequence of deliberations/satisficing where
the DM adjusts his or her aspiration level in the light of information discovered. Hence,
the dynamic choice situation is of particular interest. Manski’s theory (in his Proposition
2) is that:

1. The optimal (maximum number of rounds of deliberation (M∗) if the DM uses a
satisficing strategy is given by:

M∗ = int

 log
(
U−L
k

)
log (2)


2. If the DM uses a satisficing strategy, the DM sets the aspiration level tm in the m’th

2Manski notes that “The maximin criterion gives the uninteresting result that the person should always
choose the null option when deliberation is costly.”
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2 When and How to Satisfice: An Experimental Investigation

round of satisficing as follows:

tm = Lm + Um
2

Here tm denotes the aspiration level in round m and Lm and Um are the lower and
upper bounds on the payoffs given what the DM has observed up to round m.

3. (a) Optimisation is an MMR decision if

K ≤ U − L and K ≥ kM∗ + U−L
2M∗

(b) Satisficing with M∗ and tm (m = 1, . . . ,M∗) is an MMR decision if

k ≤ U−L
2 and K ≥ kM∗ + U−L

2M∗

(c) No Deliberation is an MMR decision if

k ≥ U−L
2 and K ≥ U − L

The intuition of the theory is simple. Deliberation costs play a central role. ‘Optimising’
or ‘Satisficing’ will be the decision if their respective associated cost (K, k) is low enough.
If both costs are sufficiently large then ‘No Deliberation’ will be preferred. If ‘Satisficing’
is chosen, the aspiration level is midway between the relevant lower bound and the relevant
upper bound, while the number of deliberation rounds is decreasing in its associated cost.
This theory is different from the existing search literature in that it provides the concept
of satisficing search that follows more closely Simon’s perception of adaptive aspiration
levels than standard search models. It clearly states when the DM should satisfice. It
also provides a solution to the choice of aspiration levels.

Before we move on to the experiment, let us briefly translate the above theory into a
description of behaviour. The DM starts with knowing that there is a set of payoffs (the
number of them is unknown) lying between some lower bound L and some upper bound
U . The DM is told the values of k and K. The first thing that the DM needs to do is to
design a strategy. This depends on the values of k and K. If these are sufficiently large
(see 3c above), the DM decides not to incur these costs and chooses ‘No Deliberation’.
The DM is then told and given the payoff of the first action in the choice set, and that is
the end of the story.

If K is sufficiently small (see 3a above) the DM decides to incur this cost and ‘Optimise’
and hence learn the highest payoff. He or she gets paid the highest payoff minus K, and
that is the end of the story.

9



2 When and How to Satisfice: An Experimental Investigation

The interesting case is 3b, where k is sufficiently small and K is sufficiently large. The
DM then decides to satisfice with (a maximum3 of) M∗ rounds (as given by 1 above)4

of satisficing. In each of these M∗ rounds, the DM sets an aspiration level, pays k and
is told at the end of the round whether or not there are payoffs greater than or equal
to the stated aspiration level. More precisely, the DM is told whether there are 0, 1 or
more than 1 payoffs greater than or equal to the stated aspiration level. The DM then
updates his or her views about the lower and upper bounds on the payoffs in the light of
the information received. This updating procedure is simple:

• If there are no payoffs greater than aspiration level tm then Lm+1 = Lm and Um+1 =
tm

• If there are payoffs greater than aspiration level tm then Lm+1 = tm and Um+1 = Um,

where Lm and Um are the lower and upper bounds after m rounds of satisficing.

When at most M∗ rounds have been completed, the DM gets paid the payoff of the
first action in the range between his or her current lower bound and the current upper
bound minus kM (the costs of deliberation), where M is the actual number of rounds of
satisficing implemented (M ≤M∗).

This section reports on an experiment to test the theory. We test whether subjects choose
between ‘No Deliberation’, ‘Satisficing’ and ‘Optimising’ correctly (as in (3) above). We
also test, when subjects choose to satisfice, whether they choose the correct number of
rounds of satisficing (as in (1) above), and whether aspiration levels are chosen correctly
(as in (2) above).

2.3 Experimental design

The actual experimental design differs in certain respects from the design of the theory.
First, we told subjects that if they implemented ‘No Deliberation’ they would be paid the
lowest payoff in the choice set, rather than the payoff of the first-ordered element of the
choice set. Second, we only told subjects, when they chose to satisfice with an aspiration
level t, whether there were or were not payoffs greater than or equal to t, and not whether
there were 0, 1 or more than 1. Moreover, if after satisficing for m rounds, and discovering
that there were payoffs in a set [Lm, Um], if they chose ‘No (further) Deliberation’ at that
point they would get a payoff equal to the lowest payoff in the set [Lm, Um] minus mk.
These differences do not change the predictions of the theory in that an MMR decision-

3Depending on what the DM learns. He or she may not implement all M∗ rounds.
4After these M∗ rounds, the DM should choose ’No Deliberation’. Subjects were informed about that.
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maker will always assume that the first element is the lowest element. Additionally, the
ex ante choice of M∗ remains the same.

Let us give an example (which was included in the Instructions to the subjects). To make
this example clear, we need to introduce some notation: the variable lvgeal is defined as
the lowest payoff greater than or equal to the highest aspiration level for which there are
payoffs greater than or equal to the aspiration level.

On the screen (see the screenshot below) there were three buttons

The one on the left corresponds to ‘No Deliberation’, the one in the middle to ‘Satisfice’
and the one on the right to ‘Optimise’. In this example k = 1 and K = 10.

Suppose—though the DM does not know this and our subjects were not told
this—that the payoffs are 55 18 75 19 9

If the DM clicks on the left-hand button straight away the income would be 9 (the lowest
payoff).

If the DM clicks on the right-hand button straight away the income would be 65 (the
highest payoff, 75, minus K).

If the DM clicks on the middle button and specifies an aspiration level of 40, he or she
would be told that there are payoffs greater than this, but would not be told how many
nor what they are. The software would, however, note that the lowest payoff greater than
or equal to 40 is 55. This would be the lvgeal defined above. If the DM clicked on the
left-hand button at this stage his or her income would be 54 (lvgeal minus k). After this
first round of satisficing the DM’s L1 and U1 are 40 and 100, respectively.

If the DM now clicks on the middle button again and now specifies an aspiration level of
70, he or she would be told that there are payoffs greater than this, but would not be told
how many nor what they are. The software would, however, note that the lowest payoff
greater than or equal to 70 is 75. This would become the lvgeal. If the DM clicks on the
left-hand button at this stage the income for this problem would be 73 (lvgeal minus 2k).
After this second round of satisficing the DM’s L2 and U2 are 70 and 100, respectively.

If the DM now clicks on the middle button a third time, and now specifies an aspiration
level of 80, he or she would be told that there are no payoffs greater than this. The
software would, however, keep the lvgeal, 75, in memory. If the DM clicks on the left-
hand button at this stage the income for this problem would be 72 (lvgeal minus 3k).
After this third round of satisficing the DM’s L3 and U3 are 70 and 80, respectively.

11
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Subjects could keep on clicking on the middle button as often as they wanted, but they
were told that the cost would be deducted from the payoff each time.

Note that in this particular case, it is better to click on the middle button twice (with
aspiration levels of 40 and 70) and then on the left-hand button, rather than to click on
either the left-hand button or the right-hand button straight away, and better than to
click on the middle button one or three times (with aspiration levels of 40, 70 and 80)
and then on the left-hand button. But this is not always the case.

In the experiment, 48 subjects were sequentially presented with 100 problems on the
computer screen, all of the same type. They were given written Instructions and then
shown a PowerPoint presentation of the instruction before going on to the main experi-
ment. Subjects were informed of the lower (L) and upper (U) bounds on the payoffs in
each problem; these were fixed at 1 and 100, respectively. They were also told the two
types of cost: the cost of finding out whether there are any payoffs greater or equal to
some specified aspiration level (k) and the cost of finding the highest payoff (K). The
number of payoffs (N) was fixed at 5, though subjects were not given this information.5

We used the procedure in Stecher et al. (2011) to generate the ambiguous distributed
payoffs. This procedure creates complete ambiguity for subjects as they have no way
to put any probabilities on the payoffs. To make this clear to the subjects we inserted
Figures 2.5.1 and 2.5.2, which can be found in the Appendix B.2, in the Instructions.
Each of them contains 49 distributions, each of 10,000 replications. In the Figure 2.5.1 in
the Appendix B.3, the drawings were from a uniform distribution over the entire range,
while in the Figure 2.5.2, the drawings were from an ambiguous distribution as derived
using the Stecher et al. (2011) method. It will be seen that all the distributions in Figure
2.5.1 are approximately uniform, while those in Figure 2.5.2 are all completely different.
We told the subjects that “this means that one cannot attach probabilities to each of the
numbers coming up. Probabilities are undefined.”

We ran two different treatments, Treatment 1 and Treatment 2. In each of these subjects
were presented with 100 problems. In Treatment 1, we had four different values for k and
K (with N , L and U were fixed across the 100 problems); and we gave the subjects these
4 problems in 4 blocks of 25, with the order of the blocks randomised across subjects. In
Treatment 2, we had 100 different values for k and K in each of the 100 problems and
presented the problems in a randomised order (again with N , L and U fixed across the
100 problems). Figure 2.3.1 illustrates. Figure 2.3.2 shows the predictions of the theory.

All 48 subjects completed the experiment which was conducted in the EXEC Lab at the
University of York. Subjects’ ages ranged from 18 to 44 years. Educational backgrounds

5This is not relevant to the theory.
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Figure 2.3.1: Sets of k and K for Treatment 1 (left) and Treatment 2 (right) plotted in
the parameter space

were: high school graduate or equivalent (9 subjects); college credit (8); bachelor degree
(19); master degree (11); and professional degree (1). 46 subjects reported themselves as
a student (8 subjects in a bachelor degree, 9 subjects in a master degree and 11 subjects in
doctoral degree); one subject was a member of staff at the University of York; one subject
did not report his or her current degree/position. Subjects’ ethnicities were mainly White
(26 subjects) while 18 were Asian/Pacific Islander, 3 were Black or African American and
1 other. There were only 5 subjects who had any work experience related to finance or
economics, but most of them (34 subjects) had previously participated in an economics
experiment.

To be a fair test of the theory, we need to give incentives to the subjects to act in
accordance with it. We should repeat the fact that the theory is an ex ante theory: it
tells DMs what to do as viewed from the beginning of a problem; it assumes commitment.
Clearly, given the nature of the experiment, we cannot observe what the subjects planned
ex ante, nor can we check whether they implemented their plan. All we can observe is
what they did, so we are testing the theory in its entirety — meaning the validity of all
its assumptions.6 Ex ante the objective of the theory is to minimise the maximum regret.
Ex ante Regret is the difference between the maximum possible income and their actual
income. The maximum possible value of the former is exogenous — it depends upon the

6An alternative design would be to ask subjects to state a plan and then we implement it. But ’stating
a plan’ is not straightforward — not only would subjects have to state whether they want to have ’No
Deliberation’, ’Optimise’ or ’Satisfice’, they would also have to specify their rules for choosing their
aspiration levels. Asking subjects to do this would be immeasurably more difficult than asking them
to play out the problems. We expand on this in our conclusions.
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Figure 2.3.2: Partition of the parameter space into areas corresponding to the theoretical
predictions

problem which in our case is always 100 ex ante. So minimising the ex ante maximum
regret is achieved by maximising their income. So we paid them their (average7) income.

The subjects’ payment from the experiment was their average income from all 100 prob-
lems plus the show-up fee of £2.50. Average income was expressed in Experimental
Currency Units (ECU). Each ECU was worth 331/3p; that is 3 ECU was equivalent to £1.
They filled in a brief questionnaire after completing all problems on the computer screen,
were paid, signed a receipt and were free to go. The average payment was £13.05. This
experiment was run using purpose-written software written (mainly by Paolo Crosetto)
in Python 2.7.

2.4 Results and analyses

The purpose of the experiment was to test Proposition 2 of Manski (2017) as stated in
Section 1.3. First, we compare the actual and theoretical decisions for all subjects and in
each treatment. Second, we compare the actual and theoretical predictions for income and
regret. Third, we analyse the number of rounds of satisficing by comparing the theoretical
and actual number for all subjects and both treatments. Finally, we analyse the subjects’
actual aspiration levels and compare them with those of the theory.

7If subjects are maximising their income on each problem, they are maximising their average income,
and vice versa, as problems are independent.
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Table 2.1: Actual vs theoretical decisions for all the subjects
Subjects’ choices

No
deliberation Satisfice Optimise Totals

Manski’s theory

No deliberation 717
(85.36%)

98
(11.67%)

25
(2.98%)

840
(17.5%)

Satisfice 1,079
(34.58%)

1,895
(60.74%)

146
(4.68%)

3,120
(65%)

Optimise 598
(71.19%)

161
(19.17%)

81
(9.64%)

840
(17.5%)

Totals 2,394
(49.88%)

2,154
(44.88%)

252
(5.25%)

2.4.1 When to satisfice

Our experiment gives us 4,800 decisions (between ‘No Deliberation’, ‘Satisficing’ and
‘Optimising’) across 48 subjects and 100 problems. Table 2.1 gives a comparison of the
actual and the theoretical decisions; here the main diagonal indicates where subjects
followed the theoretical prediction. From this table it can be seen that 2,693 out of the
4,800 decisions (56.10%) are in agreement with the theoretical predictions. The number of
theoretical predictions for each strategy can be found at the end of each row while the total
number of subjects’ decisions can be found at the bottom of each column. Subjects appear
to choose ‘No Deliberation’ significantly more than the theoretical prediction (49.88%
compared with 17.50%). Comparing Treatment 1 with Treatment 2 shows that Treatment
2 is closer to the Manski optimal than Treatment 1; 1,476 out of 2,400 actual decisions
(61.50%) match with the theoretical in Treatment 2 compared to 1,217 out of 2,400 actual
decisions (50.71%) in Treatment 1.8

In Table 2.2 we compare the actual and theoretical average income and average regret.
Obviously, it must be the case that actual regret is higher than the theoretical regret
(as subjects were not always following the theory). Subjects also have a higher average
income. This suggests that subjects may have been working with a different objective
function,9 or making some assumption about the distribution of the payoffs that was not
true.10 Comparing the two treatments, we see that subjects in Treatment 2 have relatively
better results in terms of the average income (33.40 ECU to 30.10 ECU) and regret (95.20
ECU to 121.10 ECU) than in Treatment 1. This is interesting, as the idea of Treatment

8Tables reporting for Treatment 1 and Treatment 2 can be found in the Appendix B.1.
9For example, maximising Expected Utility.

10For example, assuming that the distribution was uniform.
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1 (where each problem was repeated 25 times) was to give subjects a chance to learn; we
had expected performance to be better there. Perhaps they learnt about the ‘distribution’
of payoffs and therefore departed from the theory?

Table 2.2: Actual average vs theoretical average for income and regret
Average income and regret
Theoretical Actual

All subjects
Income 24.30 31.80
Regret 65.70 108.20

Treatment 1
Income 21.60 30.10
Regret 72.70 121.10

Treatment 2
Income 270 33.40
Regret 58.70 95.20

2.4.2 How to satisfice

Table 2.3 compares the theoretical (maximum11) and the actual number of rounds of
satisficing (obviously restricted to the cases where they actually satisficed). There are
452 problems out of 3,120 problems (14.49%), where the subjects should satisfice, and
where they choose the same number of rounds of deliberation as the theoretical prediction.
The difference between treatments is small: 16.67 and 11.89% matches of theoretical and
actual number of rounds of deliberation, for treatments 1 and 2 respectively. Generally
they choose fewer rounds of satisficing than the theory predicts.12

11Note that if subjects were following the theory with our design, the actual number of rounds of satisficing
would be equal to the M∗, while in the theory the actual number of rounds of satisficing could be less
than M∗ (because they would stop satisficing if they discovered the highest payoff).

12This is not a consequence of our experimental design which encourages subjects to choose the maxi-
mum number of rounds of satisficing. Indeed with the theory we might observe numbers below the
theoretical maximum.
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Figure 2.4.1 shows a plot of actual vs theoretical aspiration levels for all subjects (and
separately for those in Treatments 1 and 2) where the subjects chose to satisfice.13 We
calculate the theoretical aspiration level based on the relevant lower and upper bounds
at the time of choosing satisficing. The 45◦ line shows what subjects should do if they
select their aspiration level according to the theory. The figure shows that subjects’
aspiration levels increase with the theoretical levels, although the mean equality test
shows a rejection of equal means between the actual and theoretical aspiration levels
when subjects do satisficing (t-test = 15.19, p = 0.000) for all the subjects. Doing this
analysis for each treatment separately shows the same result.

Figure 2.4.1: Actual vs theoretical aspiration levels

We now investigate more closely whether subjects set their aspiration level as the theory
predicts: equal to the mid-point between the relevant upper and lower bounds. We
report below regressions of the actual aspiration level against the optimal level. If the
theory holds, the intercept should be zero and the slope should be equal to 1. We omit
observations where the aspiration level was above the upper bound (see footnote 8), and
accordingly, carry out truncated regressions. Before we proceed to the regressions, we
note that the correlations between the actual and theoretical aspiration level 0.544 over
13We exclude the few outliers when the subjects put their aspiration level above 100. There were 39

(1.2%) out of 3,347 cases where this happened.
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all subjects, 0.513 for Treatment 1 and 0.569 for Treatment 2.

Table 2.4 shows that the coefficient on the theoretical aspiration level is not significantly
different from 1 in Model 1. However, in Model 1 we have included a constant term which
should not be there; unfortunately, it is significantly different from 0, which should not
be. If we remove the constant term to get Model 2, we find that the slope coefficient is
almost significantly different from 1. So Table 2.4 tells us that the subjects are almost
but not quite following the Manski’s rule.

Table 2.4: Regressions of the actual aspiration level on the theoretical aspiration level for
all subjects

Model 1 Model 2

Theoretical aspiration
level

0.994
(0.0208)

1.144
(0.0071)

Constant 7.662∗
(1.035)

Observations 3,308 3,308
Wald Chi2 2,273.52 25,592,94

* Significance at 1% against the null that the true is 1.0 or 0.0 as appropriate.

Table 2.5: Regressions of the actual aspiration level on the lower and upper bounds for
all subjects

Model 1 Model 2

Lower bound 0.439∗
(0.0156)

0.441∗
(0.0158)

Upper bound 0.546∗
(0.0153)

0.583∗
(0.0042)

Constant 3.489∗
(1.315)

Observations 3,308 3,308
Wald Chi2 2,457.69 32,335.35
Likelihood ratio 710.82 2,113.65

* Significance at 1% against the null that the true is 0.5 or 0.0 as appropriate.

We break down the analysis of Table 2.4 by treatments. The results are similar for Model
1 in both treatments. In Model 2, we find that the slope coefficient is significantly different
from 1 in both treatments.

We now delve deeper and try to understand how the actual aspiration levels are deter-
mined, and in particular, how they are related to the upper and lower bounds. We present
below regressions of the subjects’ aspiration level as a function of these bounds. If follow-
ing the theory the relationship should be ALim = 0.5Lim+ 0.5Uim (where ALim is subject
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i’s aspiration level in round m of satisficing and Lim and Uim are the relevant lower and
upper bounds). As before, we have excluded outliers (aspiration levels greater than the
upper bound) from the regression and performed truncated regressions.

Table 2.5, over all the subjects, shows that the estimated parameters on the bounds are
significantly different from the theoretical value of 0.5 and that the subjects put more
weight on the upper bound and less on the lower bound when they select their aspiration
levels.

If we break down the analysis of Table 2.5 by treatments, we see some differences between
them. In Treatment 1 the estimated parameters are significantly different from the theo-
retical 0.5 (with more weight put on the upper bound than the lower), while in Treatment
2 they are much closer (and indeed only significantly different from 0.5 for one estimated
parameter). So in Treatment 2, the subjects are closer to the theory in this respect than
in Treatment 1. This confirms an earlier result. Possibly it was a consequence of the fact
that in Treatment 2 each problem was an entirely new one, while in Treatment 1 (where
4 problems were given in blocks of 25) subjects were ‘learning’ about the distribution of
payoffs14 and thus departing from the theory: as the subjects were working through the
25 problems they felt that they were getting some information about the ‘distribution’.

2.5 Conclusions

The overall conclusion must be that subjects were not following the part of the theory
regarding the ‘when’ question: the choice between ‘No Deliberation’, ‘Satisficing’ and ‘Op-
timising’, possibly as a consequence of our experimental design.15 However, the choice of
the number of rounds of satisficing is closer to the theory. The first of these is a particu-
larly difficult task and the second slightly less difficult, and, therefore, these results may
not be surprising. In addition, subjects may have experienced difficulties in understanding
what was meant by an ambiguous distribution. However, when it comes to the choice of
the aspiration levels, subjects are generally close to (though sometimes statistically signif-
icant from) the optimal choice of (L+ U) /2. This latter task is easier and more intuitive.
So it seems that the ‘when’ part of the theory is not empirically validated, while part of
the ‘how’ part receives more empirical support.

One serious problem with our experimental test (which we have already mentioned) is
that the theory is an ex ante theory, and one with commitment (so the DM is resolute),
14This raises an interesting theoretical point: if we observe 25 repetitions of an ambiguous process, can

we learn about it?
15Though we should re-iterate that, even though our design differs from that of the theory, the theoretical

predictions should be the same.
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while our experimental test involves observing what subjects actually do. A full ex ante
test is difficult as we would have to ask subjects to specify, not only their choice of
deliberation strategy, but also their choice of conditional aspiration levels. Perhaps we
could go part-way there by getting the computer to implement some stated aspiration
levels, telling subjects the computer algorithm, and asking subjects simply to choose
between ‘No Deliberation’, ‘Satisficing’ and ‘Optimisation’. This would be a partial test
— one answering only the ‘when’ of the title. Other variations are possible, but all appear
to be difficult.

Let us restate that the theory is an ex ante theory and one with commitment: the DM
is committed to his or her ex ante plan and implements it resolutely. The theoretical
predictions may be different if the DM is not resolute. Let us illustrate this with the
choice of M∗. At the beginning of the problem the DM calculates M∗ — which depends
on L and U at the beginning. After m rounds of satisficing the DM will have updated
lower and upper bounds. Suppose he or she re-calculates the relevant M∗ — call this
M∗

m. Will it be true that M∗
m is equal to M∗ −m? We see no reason why that should be

so — it depends upon the information that the DM has acquired. So it seems perfectly
reasonable that a DM should revise his or her plan as he or she works through a problem.
But then this is not the optimal way to solve the problem even if the DM is a MMR
agent — backward induction should be employed. Perhaps this is what our subjects were
doing?

In conclusion, we should note that there are three crucial elements to the theory: the
use of the MMR preference functional, commitment and the perception of the payoffs
as having an ambiguous ‘distribution’. The violation of any of these would lead to a
breakdown of the theory. We tried to ensure that subjects perceived the ‘distribution’ as
being ambiguous in our experiment. We tried to incentivise the use of the MMR preference
functional by our payment rule, but the subjects could well have had a different objective
function.16 Unfortunately, it seems difficult to force commitment on the subjects, and
they may well have been revising their strategy as they were working through a problem.
Nevertheless, subjects seem to have been following the theory in at least one key respect
— the choice of their aspiration levels.

16For example they could have been Expected Utility maximisers operating under the (wrong) assumption
that the distributions were uniform.
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Appendices

Appendix B.1 — Actual vs theoretical decisions

Table 2.6: Actual vs theoretical decisions in Treatment 1
Subjects’ choice

No Delib-
eration

Satisfice Optimise Totals

M
an

sk
i’s

th
eo
ry No Deliberation 524

(87.33%)
64

(10.67%)
12

(2.00%) 600

Satisfice 522
(43.50%)

645
(53.75%)

33
(2.75%) 1,200

Optimise 452
(75.33%)

100
(16.67%)

48
(8.00%) 600

Totals 1, 498
(62.42%)

809
(33.71%)

93
(3.88%) 2,400

Note: the number in parentheses indicates the percentage by row

Table 2.7: Actual vs theoretical decisions in Treatment 2
Subjects’ choice

No Delib-
eration

Satisfice Optimise Totals

M
an

sk
i’s

th
eo
ry No Deliberation 193

(80.42%)
34

(14.17%)
13

(5.42%) 240

Satisfice 557
(29.01%)

1, 250
(65.10%)

113
(5.89%) 1,920

Optimise 146
(60.83%)

61
(25.42%)

33
(13.75%) 240

Totals 896
(37.33%)

1, 345
(56.04%)

159
(6.63%) 2,400

Note: the number in parentheses indicates the percentage by row
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Appendix B.2 — Uniform risky and ambiguous distributions

Figure 2.5.1 and Figure 2.5.2 show uniform risky and ambiguous distributions respectively.
Each of them contains 49 distributions, each of 10,000 replications. Figure 2.5.1 and Figure
2.5.2 are Figure 1 and Figure 2 respectively in the Instructions shown to the subjects.
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Appendix B.3 — Instructions

Instructions

Preamble

Welcome to this experiment. Thank you for coming. Please read carefully these Instruc-
tions. They are to help you to understand what you will be asked to do. You are going
to earn money for your participation in the experiment and you will be paid immediately
after its completion.

The Experiment

You will be presented with a series of 100 problems, all of the same type. In each problem,
there are a set of integer payoffs, about which you initially know nothing. During any
problem, you might choose to incur some costs to get information about the payoffs. At
the end of any problem you will get a particular one of these payoffs. We call your income
for any problem this payoff minus any costs of information that you expended in that
problem. Your payment for participating in this experiment will be determined by the
average income from these problems, plus a £2.50 show-up fee.

At the beginning of each problem you will not be told anything about these payoffs other
than they are between 1 and 100; the payoffs can be anywhere between and including 1 and
100. In fact, they will be randomly distributed between these bounds with what is known
as an ambiguous distribution. As such a distribution is important to the experiment; we
should describe it in more detail.

Ambiguous and Uniform Risky Distributions

Examine Figures 1 and 2 at the end of these instructions. To produce each of these figures
we replicated 49 times the drawing of 10,000 random numbers. For Figure 1 we generated
them as uniformly distributed random numbers. You will see that the number of times
that each number between 1 and 100 came up was roughly the same (around 100) on
each replication; so one can conclude that the probability of any number coming up in
the experiment is 1 in 100. For Figure 2, we generated them as ambiguously distributed
random numbers. You will notice that, whereas in Figure 1, each of the 49 replications the
distributions are approximately the same, in Figure 2, this is emphatically not the case:
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the distributions vary enormously across the replications. This means that one cannot
attach probabilities to each of the numbers coming up. Probabilities are undefined.

Part of the Screen

On the screen you will see some information about the payoffs and you will also see three
buttons — an example is above. These relate to information that you can buy if you
wish.

Information

You can choose, if you want, to buy information about the payoffs, but you do not need
to.

If you do not want to buy information, then you should click on the left-hand button
shown above, and then your income for that problem will simply be the lowest payoff in
the set of payoffs.

If you do decide to buy information, there are two types you can buy — with high (denoted
by K) and low (denoted by k) costs.

If you spend the high cost, K, by clicking on the right-hand button above, then the
software will tell you the highest payoff in the set of payoffs, so that your income for that
problem would be the highest payoff minus the high cost. In the example screen shot
above, the high cost is 10 ECU.

If you want to spend the low cost, k, then you should click on the middle button above
(in the screen shot above this low cost is 1 ECU), and then you will be asked to specify
an aspiration level. The software will tell you whether there are any payoffs greater than
or equal to this value. You will be told either that “there are payoffs greater than or
equal to your aspiration level” or that “there are no payoffs greater than or equal to your
aspiration level”. If there are payoffs greater than or equal to the aspiration level, then
the software will keep a record of these payoffs, and, in particular, will keep a record of
the lowest one of these payoffs (greater than or equal to the aspiration level). We call
this payoff the lowest payoff greater than or equal to the highest aspiration level for which
there are payoffs greater than or equal to the aspiration level. For succinctness in what
follows, we denote this by lvgeal. We note that the software automatically updates lvgeal
in the sense that if you try a higher aspiration level and there are payoffs greater than
or equal to this aspiration level, then lvgeal will become the lowest payoff greater than or
equal to this new aspiration level.
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You can pay this low cost as many times as you wish (though the costs will be deducted
from your final payoff to determine your income for this problem) and you can change
your aspiration level.

When you have decided that you have obtained enough information, simply click on the
left-hand button, and your income for that problem will be lvgeal minus the costs you
incurred in finding it. You could, of course, click on the right-hand button and your
income for that problem will be the highest payoff minus all the costs you incurred up to
that point, including the K.

Payment

Your payment from the experiment will be the average income from these problems plus
the show-up fee of £2.50. When you have finished all 100 problems, the software will
calculate your average income across all 100 problems. In the experiment all amounts are
denominated in ECU (Experimental Currency Units). Each ECU is worth 331/3p; that
is 3 ECU is equivalent to £1. The show up fee is £2.50 and this will be added to your
payment from the experiment, as described above.

Example (Note crucially — you will NOT be told the values of the payoffs. This
example is simply to demonstrate how the software works.)

Suppose that k = 1 and K = 10. Suppose — though you will not be told this —
that the payoffs are

55 18 75 19 9

If you clicked on the left-hand button straight away your income for this problem would
be 9 (the lowest payoff).

If you clicked on the right-hand button straight away your income for this problem would
be 65 (the highest payoff, 75, minus the high cost).

If you clicked on the middle button and specified an aspiration level of 40, you would be
told that there are payoffs greater than this, but you would not be told how many nor
what they are. The software would, however, note that the lowest payoff greater than
or equal to 40 is 55. This would be the lvgeal referred to earlier. If you clicked on the
left-hand button at this stage your income for this problem would be 54 (lvgeal minus the
low cost).

If you now clicked on the middle button again and now specified an aspiration level of
70, you would be told that there are payoffs greater than this, but you would not be told
how many nor what they are. The software would, however, note that the lowest payoff
greater than or equal to 70 is 75. This would become the lvgeal. If you clicked on the
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left-hand button at this stage your income for this problem would be 73 (lvgeal minus the
low cost twice).

If you now clicked on the middle button again and now specified an aspiration level of
80, you would be told that there are no payoffs greater than this. The software would,
however, keep the lvgeal, 75, in memory. If you clicked on the left-hand button at this
stage your income for this problem would be 72 (lvgeal minus the low cost three times).

You can keep on clicking on the middle button as often as you want, but you should note
that the costs will be deducted from the payoff each time. You should also note that your
income from a problem can be negative.

Note that in this particular case, it is better to click on the middle button twice (with
aspiration levels of 40 and 70) and then on the left-hand button, than to click on either
the left-hand button or the right-hand button straight away, and better than to click on
the middle button three times (with aspiration levels of 40, 70 and 80) and then on the
left-hand button. But this is not always the case.

What to do next

After you have read and understood these Instructions (and had any doubts clarified by
asking an experimenter), please click once on your computer screen. This will activate a
PowerPoint presentation of these Instructions — which goes at a predetermined speed.
When it gets to the end — to a screen saying ‘THANK YOU’ — please hit the escape
button — at the top-left of your keyboard. The PowerPoint presentation will disappear
and you will see the first screen of the experiment proper. At this point, please call over
an experimenter, and, if necessary, clarify any doubts with him or her. You will then be
told how to start the experiment properly.

If you have any questions, please raise your hand and an experimenter will come to you.

John Hey Yudistira Permana Nuttaporn Rochanahastin

May 2016
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3 Explaining Satisficing through Risk
Aversion

Abstract — This section extends the analysis of the data from the experiment of Hey
et al. (2017), which was designed to test Proposition 2 of the theory of Manski (2017). I
focus on how the subjects select the aspiration levels when they choose to satisfice, and try
to find a better explanation for that story than that of Manski. I assume that the subjects
are the Expected Utility (EU) (rather than MiniMax Regret) agent and that they think of
the payoffs as having a uniform risky (rather than an ambiguous) distribution. I consider
two special cases of the EU preferences: CRRA and CARA; and I combine these with two
different stories for the stochastic specification of errors: beta and normal. To give a fair
comparison in finding a better explanation of the individual behaviour, I also fit the data
using Manski’s optimal strategy under both stochastic specifications. I estimate using
maximum log-likelihood. The estimation is done subject by subject. The results tell us
that assuming that the subjects are EU agents and that they see the payoffs as uniformly
distributed produces a better statistical explanation than that of Manski. That is the
actual aspiration levels are statistically closer to the optimal aspiration levels assuming
CRRA and CARA than those of Manski’s prediction. Interestingly, the subjects in the
Hey et al. (2017) experiment appear to be risk loving when selecting their aspiration
levels.

*****
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3.1 Introduction

Satisficing is a term introduced by Simon (1955): a decision-maker (henceforth DM)
satisfices if he or she seeks an outcome greater than or equal to some ‘satisfactory level’;
the latter is usually referred to as the DM’s aspiration level. However, Simon never
articulated precisely how aspiration levels should be chosen. In a recent paper, Manski
(2017) rectifies this deficiency by providing a theoretical analysis of when and how a DM
should satisfice, and how they should choose aspiration levels.

Manski considers the DM in the following situation: he or she must choose a strategy,
each strategy leading to a choice from a set of actions, each of which implies some payoff.
There are three available strategies: ’No Deliberation’, ’Satisficing’ and ’Optimising’. No
deliberation incurs no cost and yields the payoff of the first-ordered element of the choice
set. Satisficing incurs a cost k and provides information as to whether there is at least
one action that has a payoff greater than or equal to some specified aspiration level.
Optimising incurs a cost K and reveals the maximum payoff in the choice set.

In determining the optimal strategy, Manski makes three key assumptions: (1) the DM’s
objective function is that of minimising the maximum regret (MMR) from the choice of
the strategy; (2) the DM has to commit to a chosen strategy at the beginning of the
problem; and (3) the payoffs have an ambiguous1 distribution (bounded between a lower
bound and an upper bound). The rationalisation for an MMR objective function stems
from the assumption of ambiguity: if no probabilities exist, then the objective function of
the DM cannot be that of Expected Utility, or indeed any objective function which relies
on probabilities.

Hey et al. (2017) provide an experimental test of Proposition 2 of Manski (2017). This
proposition shows that: (1) optimising is chosen if the cost K is sufficiently low; (2)
satisficing with possibly a sequence of rounds is chosen if k is sufficiently low while K
is sufficiently large; (3) no deliberation is chosen if both K and k are sufficiently large.
Moreover, and crucially for this section, Manski’s story proposes that if satisficing is
chosen, the optimal aspiration level is the midpoint between the relevant lower and upper
bound in every round of deliberation or satisficing. This section concentrates here on this
latter prediction.

The results of Hey et al. (2017) experiment show that the subjects partly follow Manski’s
solution, in that the subjects’ aspiration levels were quite close to the theoretical predic-
tion. This current study tries to get closer on how the subjects select the aspiration level
when they choose to satisfice. My alternative story is that subjects perceive (incorrectly)

1By which is meant that probabilities cannot be attached to the possible payoffs.
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that the payoffs have a uniform risky distribution (which, in some sense, is simpler than
to think of them as being ambiguously distributed);2 as a consequence, they can and do
behave as Expected Utility (EU) maximisers since they are able to attach probabilities
to the payoffs. This leads to predictions that the optimal aspiration level may be above
or below the midpoint between the relevant bounds depending upon the DM’s attitude
to risk.

This section is constructed as follows: in the next section, I describe the experiment in
Hey et al. (2017) and the data used for this chapter; Section 3.3 discusses the prefer-
ence functional; while Section 3.4 discusses the econometric specification; the results and
analyses are discussed in Section 3.5, while Section 3.6 concludes.

3.2 The experiment and the data

I use the data from Hey et al. (2017), specifically relating to the choice of the aspiration
level (obviously restricted to the cases when they chose to satisfice). The data was ob-
tained from 48 subjects, all from the University of York. All 48 subjects were sequentially
presented3 with 100 problems all of the same type. Subjects were asked to choose between
three available strategies: ’No Deliberation’, ’Satisficing’ and ’Optimising’. The subjects
were told the lower (L) and upper (U) bounds, which were fixed at 1 and 100 respec-
tively, in each problem. They were also told the two types of cost; the cost of finding out
whether there are any payoffs greater or equal to some specified aspiration level (k) and
cost of discovering the highest payoff (K). In addition, they were told4 that the payoffs
are ambiguously distributed; to generate the payoffs we used the procedure of Stecher
et al. (2011). The number of payoffs (N) was fixed at 5 in each problem, though the
subjects were not given this information.

If a subject chose satisficing, he or she was asked to specify an aspiration level. Having
done this, the subject was told only whether there was at least one payoff greater than
or equal to the specified aspiration level, or whether there were none. A subject was
allowed to choose this strategy as many times as he or she wished. When the subject had
done as much satisficing as he or she wanted, he or she would close the problem by then
choosing ‘No Deliberation’ and then being credited with a payment equal to the smallest
payoff above the highest aspiration level minus mk where m was the number of rounds of

2It may be simpler for one to predict what the payoffs are by thinking that they are unifromly distributed,
hence it is possible for one to attach probabilities to each of the numbers coming up, instead of
thinking them as having ambiguous distribution so no one can attach probabilities to each of the
numbers coming up.

3On the computer screen; the experiment was computerised (in Python 2.7).
4How we told them this can be seen in the Instructions in Appendix B.3.
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satisficing performed. At the end of the experiment, the subjects were paid their average
payment over all the problems, plus a show-up fee.

There were two different treatments, each with 24 subjects. Treatment 1 had four different
parameters for k and K (with N , L and U were fixed across all problems). Treatment 2
had 100 different k and K values for every 100 problems. The experiment was conducted
in the EXEC Lab at the University of York.

3.3 Modelling the preference functional

Unlike Manski (2017), I assume that the DM is an EU maximiser and believes that he
or she faces uniformly distributed payoffs: the DM might have not believed the experi-
menter (that the payoffs were ambiguously distributed with a discrete setting) and instead
assumed that the payoffs were uniform; or simply assumed uniformity for simplicity.

Let me start briefly by explaining the updating process when the DM chooses to satisfice.
At the beginning of the problem, the DM faces lower (L1) and upper (U1) bounds. The DM
then is asked to choose one of the three options (optimising, satisficing or no deliberation).
If the DM chooses to satisfice then he or she is asked to select an aspiration level t1, and
then they are told whether there is at least one payoff greater than or equal to t1 or
not. If there is at least one, then the DM can update the lower bound from L1 to t1,
while keeping the upper bound unchanged; if there is not, then the lower bound remains
unchanged, while the upper bound can be updated from U1 to t1. In a similar fashion,
the bounds are updated with further rounds of satisficing (m); an example is given below.

Suppose that the payoffs — though the DM does not know this information — in
this problem are: 15, 28, 55, 63 and 71. At the beginning of the problem the DM is only
told that the payoffs are bounded between 1 and 100, all integers; suppose k is 5.

If, for example, the DM selects an aspiration level at 50, he or she would be told that
there is at least one payoff greater than or equal to 50. The remaining payoffs are now
55, 63 and 71, though the DM is not told this information. The DM can decide to
stop satisficing in this round and then receives an income of 55 (the lowest payoff greater
than or equal to the aspiration level) minus 5 (the cost of satisficing). After this round of
satisficing the DM’s Lm and Um are 50 and 100 respectively.

If the DM chooses to satisfice again and now specifies the aspiration level of 80, he or
she will be told that there is no payoff greater than 80. After this round of satisficing
the DM’s Lm and Um are 50 and 80 respectively. The experiment software will keep 55
as the lowest payoff greater than or equal to the aspiration level. If the DM, once again,
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chooses to satisfice and now specifies the aspiration level of 70, he or she will be told that
there is at least one payoff greater than 70. After this round of satisficing the DM’s Lm
and Um are 70 and 80 respectively. The experiment software notes that now the lowest
payoff greater than or equal to the aspiration level is 71. If the DM stops at this round,
he or she will get an income of 56 = 71 – 3k). The DM can continue to satisfice as he or
she wants, but then he or she is told that the cost (mk) will be deducted from the payoff
each time.

I now turn to the determination of the optimal aspiration level. Suppose after m rounds
of satisficing, the lower and upper bounds are Lm and Um. If the DM sets an aspiration
level tm at this point, there are two possible outcomes: (1) there is no payoff greater
than or equal to tm; (2) there is. Case (1) has probability tm−Lm

Um−Lm (that the payoff exists
between tm and Lm) and I assume that the DM expects to earn Lm, and the utility would
be Lm − mk; Case (2) has probability Um−tm

Um−Lm (that the payoff exists between Um and
tm) and I assume that the DM expects to earn tm, and the utility would be tm − mk.
Therefore the expected utility from choosing an aspiration level t in round m of satisficing
is:

EU (tm) = u (Lm −mk)
{
tm − Lm
Um − Lm

}
+ u (tm −mk)

{
Um − tm
Um − Lm

}
(3.3.1)

The optimum value of tm is given by the first-order condition of Equation 3.3.1 with
respect to tm:

u (Lm −mk)− u (tm −mk) + u′ (tm −mk) (Um − tm) = 0 (3.3.2)

Equation 3.3.1 and 3.3.2 show that both the expected utility of the aspiration level
(EU(tm)) and the optimal aspiration level (t∗m) in round m of satisficing depend on the
past information (the relevant bounds Lm and Um). The EU has a parameter risk aver-
sion (r). I use the Constant Relative Risk Aversion (CRRA) and Constant Absolute Risk
Aversion (CARA) utility functions to calculate the optimal choice of the aspiration level
in accordance with the EU specification above (Equation 3.3.1). Details of the functional
forms are given in Appendix C.1. In the particular case of risk neutrality, the solution
to Equation 3.3.2 is t∗m = Um+Lm

2 — the same as Manski’s solution which is the midway
between the relevant lower and upper bounds. However, the solution is different if the
DM is not risk-neutral. One cannot find the optimal aspiration level analytically except
for the case of risk neutrality. This is done numerically. It is clear that the t∗m must lie
between Lm and Um.
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3.4 The econometric specification

I estimate the parameters of the functional forms (EU story with either CRRA or CARA)
using maximum likelihood. The parameters of each estimate are estimated subject by sub-
ject, as subjects are different, as has been shown in the countless experiment. Maximum
likelihood estimation requires a specification of the stochastic nature of the data. Let
me start with a normalisation of the optimal and actual aspiration levels. The optimal
aspiration level must lie between Lm and Um. So I normalise it as follows, which means
that normalised optimal aspiration level, NOAL, must be between 0 and 1:

NOALm = OALm − Lm
Um − Lm

(3.4.1)

I do the same for the actual aspiration level

NAALm = AALm − Lm
Um − Lm

(3.4.2)

Unlike NOALm, the NAALm can be outside of the relevant bounds [0, 1] if the AALm is
outside [Lm, Um] — which is irrational behaviour on the part of the subject, but possible.

Now I need to talk about noise or error. Clearly, subjects make mistakes when choosing
their aspiration levels, and I must specify some stochastic story to account for this. I
assume this error is independent in every round of satisficing. To specify the noise in
subjects’ choice I must consider two possible cases: (1) when a subject always sets the
aspiration level between the lower and upper bounds; and (2) when a subject sometimes
sets the aspiration level outside the lower and upper bounds.

The first case is simple — since the normalised actual aspiration level (like the normalised
optimal aspiration level) is between 0 and 1. Let x∗ denotes the optimal aspiration level
and x denotes the actual aspiration level. The obvious stochastic specification is a beta
distribution for x. Further, if we posit that x has a beta distribution parameters α and
β, and we put α = x∗ (s− 1) and β = (1− x∗) (s− 1), then it follows that the mean
and the variance of x are x∗ andx

∗(1−x∗)
s

respectively; these parameters must satisfy the
condition of α > 0 and β > 0. Here the parameter s indicates the precision of the subject
— the higher is the s, the less noisy is the subject. This specification implies that the DM
does not make a biased decision if x = x∗ and that the magnitude of the noise decreases
towards the bounds.

The second case is more problematic: clearly, this beta story cannot explain the aspiration
levels outside the relevant bounds. So what I do here is to simply assume a tremble (ω).
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The tremble parameter appears here to capture the behaviour when the DM selects the
aspiration level outside the relevant bounds. This can possibly happen if the subjects
simply make a mistake when selecting the aspiration level. By this, I mean that the
DM chooses an aspiration level in every round of satisficing between Lm and Um with
probability (1− ω), otherwise with probability ω.

Before I turn to the specification of the log-likelihood function, I introduce some further
notation which I will need in the estimation (it takes into account the fact that subjects
were asked to report their aspiration levels as integers).

NAAL+
m = AALm + 0.05− Lm

Um − Lm
(3.4.3)

NAAL−m = AALm − 0.05− Lm
Um − Lm

(3.4.4)

Given these notations, the choice of aspiration level t, after normalisation, could result
from an optimal value between t − 0.05 and t + 0.05. Thus the log-likelihood function
finds the probability that the actual aspiration levels lie within the interval (t− 0.05 and
t+ 0.05) for any given level of risk aversion r. These notations are important here to
capture the possibility of unobserved behaviour. The subjects might have thought of a
non-integer number as the aspiration level (i.e. 49.5) but they could not do that. With
the notation as in the Equations 3.4.3 and 3.4.4, we can now specify the log-likelihood
function. Under ‘beta with tremble’ story, the contribution to the log-likelihood of an
observation NAALm is (recall that subjects had to state their aspiration levels as an
integer):

(1− ω) log [Ψ (NAAL+
m, α, β)−Ψ (NAAL−m, α, β)] ; 0 ≤ NAALm ≤ 1

ω; 0 > NAALm
f
NAALm > 1

(3.4.5)

where Ψ (x, α, β) is the cumulative distribution function (cdf ) of a beta distribution with
parameters α and β. Here α = (s− 1)NOALm and β = (1−NOALm) (s− 1).

However, one does not need to follow this ‘beta with tremble’ story. The stated (actual)
aspiration level could be normally distributed. This solves the problem of rationalising
actual aspiration levels outside the lower and upper bounds. I adopt this story and call it
the ‘normal’ story; I assume that the NAAL is normally distributed with mean NOAL (so
that there is no bias) and standard deviation 1/s— so that s again indicates the precision.
With this ‘normal’ story the contribution to the log-likelihood of an observation NAALm
is:
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log
[
Φ
(
NAAL+

m, NOALm,
1
s

)
− Φ

(
NAAL−m, NOALm,

1
s

)]
(3.4.6)

where Φ (x, µ, σ) is the cdf of a normal distribution with mean µ and standard deviation
σ; as stated previously, σ = 1/s in this case.

I also fit Manski’s rule for the choice of the aspiration levels using both the ‘beta with
tremble’ and the ‘normal’ stories. This enables me to compare his story with mine. Notice
that there is no preference parameter in Manski’s model. However, I can estimate s and ω
for the ‘beta with tremble’ story and s for the ‘normal’ story and find the goodness-of-fit.
In summary, I report the estimation of the EU CARA, EU CRRA and Manski’s models
each combined with the ‘beta with tremble’ and ‘normal’ error stories. Let me refer to
these six combinations as ‘specifications’.

3.5 Results and analyses

The main purpose of this study is to find a better explanation of individuals’ behaviour
in selecting the aspiration level when they choose to satisfice than that in Proposition
2 of Manski (2017). First, I compare the actual and optimal aspiration levels, given
the estimated risk aversion, for five5 of the six specifications. The optimal aspiration
levels are estimated by fitting the data except for Manski’s model, where they are given,
irrespective of the subject’s risk aversion. Second, I report the estimates of individual
risk preferences, r, for four of the six specifications (CRRA and CARA each with the
‘beta with tremble’ and ‘normal’ stories). Third, I report the estimates of the precision
s in all six specifications. Last, I report the individual log-likelihoods and the corrected
log-likelihoods in each specification; I use the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC) and Hannan-Quinn Information Criterion (HQC)
to correct for differing degrees of freedom.6

Rather trivially, the maximum likelihood of the tremble parameter ω under the beta story
is always equal to the proportion of rounds of satisficing in which the aspiration level was
outside the relevant bounds. This is because the estimate of ω takes the observations
that are not involved in the log-likelihood function — the non-optimal actual aspiration
levels. Figure 3.5.1 shows the comparison of optimal and actual aspiration levels for each
specification.

5There is no risk aversion parameter to estimate in Manski’s model and thus only one set of optimal
aspiration levels to compare with the actual aspiration levels.

6Four of the specifications have one more parameter than the two Manski’s specifications.
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Figure 3.5.1: Optimal vs actual aspiration levels

First I focus on a comparison of the optimal and actual aspiration levels for each specifi-
cation as shown in Figure 3.5.1. There are 3,347 observations when the subjects choose to
satisfice. I do not exclude any observations in this figure — thus including the trembles.7

Plots within the relevant bounds in Figure 3.5.1 are shown with a red cross; those outside
7The estimated values of the tremble parameter for each subject are reported in Figure 3.4.2.
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are shown with a blue circle. The forty-five-degree line shows what subjects should do if
they select the aspiration level equal to its optimal.

I use a Pearson correlation and the mean equality test to see which specification provides
a better story. Table 3.1 shows that there is a significant relationship between the optimal
and actual aspiration levels in all specifications. In addition, the coefficient indicates a
positive correlation in all specifications. However, the mean equality test shows that the
mean of optimal and actual aspiration levels in Manski specification and EU CARA within
the beta story are not equal while other specifications are equal. According to this, the
EU story may well produce a better explanation than that of Manski.

Table 3.1: Pearson correlation coefficient and the mean equality test of each estimate
Estimation Pearson

correlation
Mean eq. test

EU CRRA Beta 0.561
(0.0000)

1.021
(0.3072)

EU CARA Beta 0.484
(0.0000)

4.517
(0.0000)

EU CRRA Normal 0.564
(0.0000)

1.768
(0.077)

EU CARA Normal 0.523
(0.0000)

0.829
(0.407)

Manski 0.436
(0.0000)

11.251
(0.0000)

The number in parentheses indicates p-value.

Turning into the EU stories, it is clear that different subjects have different risk aver-
sion. Figure 3.5.2 shows the estimated risk aversion coefficients under the non-Manski
specifications.
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Figure 3.5.2: Individual estimated risk aversion

Figure 3.5.2 shows the estimates of individual risk aversion for each specification; except
Manski’s model. The dashed-blue line is horizontal at 0, indicating risk neutrality. Four
estimates suggest a similar result: the majority of the subjects are risk-lover. The details
can be seen in Table 3.2. The results are similar in each treatment; but Treatment 1 has
more risk-loving subjects than that in Treatment 2.
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Table 3.2: Number of individual estimated risk aversion
EU CRRA

Beta
EU CARA

Beta
EU CRRA

Normal
EU CARA

Normal

Entire subjects
Risk loving 34 19 33 29
Risk neutral 0 20 0 5
Risk averse 14 9 15 14

Treatment 1
Risk loving 19 10 19 16
Risk neutral 0 10 0 3
Risk averse 5 4 5 5

Treatment 2
Risk loving 15 9 14 13
Risk neutral 0 10 0 2
Risk averse 9 5 10 9

Each specification admits there is noise in fitting the actual data. Following the stochastic
story in this study, I report precision (s) from all estimates. They are shown in Figure
3.5.3. The higher is the precision (s), the less is the noise in the subjects’ choice.
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Figure 3.5.3: Individual estimated precision

The beta story captures the mistake in selecting the aspiration level. I report the tremble
(ω) from the beta story; the ω will be identical in CRRA and CARA estimates. It is
shown in Figure 3.5.4. There are 11 subjects who have made a mistake in selecting the
aspiration level. The higher is the tremble (ω), the more is the mistake in the subjects’
choice.
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Figure 3.5.4: Individual estimated tremble

Now I report the log-likelihood in all specifications for all subjects. These are measures
of the goodness-of-fit (the details in table form are given in Appendices C.2 – C.5) of
the various specifications. However, I have already noted that different specifications
have different degrees of freedom: the non-Manski ones have three parameters, while the
Manski ones have just two parameters. In order to correct for differing degrees of freedom,
I calculate the Akaike Information Criterion (AIC), the Bayesian Information Criterion
(BIC) and the Hannan-Quinn Information Criterion (HQC). 8 I compare them and have
a conclusion accordingly for each subject.

The measures of the goodness-of-fit show that the EU story used in this study is better
than that of Manski in explaining the subjects’ behaviour when decided to satisfice. The
details of the judgment can be seen in Appendix C.6. Of all subjects, 43 subjects are
better explained with the EU story; 21 subjects are best-fitted using the beta story and
22 subjects are best-fitted using the normal story. Whether the subjects are best-fitted
using either beta or normal story, the CRRA specification clearly appears as the better
utility function. One advantage of the EU story is that it explains why many subjects
selected the aspiration level close to the upper bound. Under the assumption that subjects
are EU-maximisers, many subjects appear to be risk-loving.

8The AIC is given by 2v- 2log (LL), the BIC is given by v log (n) − 2 log (LL) and the HQC is given
by 2v log (log (n)) − 2 log (LL); where v is the number of estimated parameters, n is the number of
observations and LL is the maximised likelihood. By this, BIC and HQC employ a penalty function
for additional coefficients while AIC does not—BIC penalises more than does HQC. The BIC and
HQC penalise the number of estimated parameters using the number of observations so they are
considered to be a consistent model selection for a large sample size. However, AIC remains simple
and effective in practice, and very general methodology for the analysis of empirical data (Anderson
and Burnham 2002). I report all three model selection criteria in this section and make a judge of
which specification is best according to all criteria.

44



3 Explaining Satisficing through Risk Aversion

3.6 Conclusion

Manski’s story is that subjects (correctly) perceived the payoff distribution as ambiguous
and therefore adopted a MiniMax Regret objective function. I have investigated a dif-
ferent story in which subjects, finding it difficult to understand what ambiguity means,
adopted a simpler perception — namely that the payoff distribution was uniform. Given
this perception, my story then assumes that the objective function of the subjects was
that of Expected Utility, which needs probabilities. Overall results show that my story
better explains the satisficing behaviour in the part of the subjects of Hey et al. (2017)
experiment than that of Manski’s story. Of course, other stories are possible. One could
assume some other perceptions, for example, subjects may have perceived the distribu-
tion of the payoffs as being that of a beta distribution. Also, instead of assuming an
Expected Utility objective function of the subject, one could assume some non-Expected
Utility functional — i.e. Loomes and Sugden 1983 (regret theory); Chorus 2010 (random
regret minimisation); Gonzalez-Valdes and Ortuzar 2018 (stochastic satisficing in discrete
choice). Alternatively, one could go further to the literature of objective function within
ambiguity framework — for example, Etner et al. (2012). However, all these extensions
would involve extra parameters, and therefore might not be better fitting than my story.
But that, as I have shown, is better than that of Manski.
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Appendices

Appendix C.1 — CRRA and CARA utility functions

This is the applications of CRRA and CARA in the EU specification as in Equation 3.3.1:

CRRA :
x ≥ 0

 u (x) = x1−r

1−r ; r 6= 1
u (x) = log (x) ; r = 1

x < 0

 u (x) = −(−x)1−r

1+r ; r 6= 1
u (x) = log (x) ; r = 1

CARA :
u (x) = 1−exp−rx

1−exp−rX ; r 6= 0
u (x) = x

X
; r = 0

where u (x) is the utility of getting x (the DM’s income), X is the maximum possible
income (Um −mk) and r is the risk aversion parameter. In both CRRA and CARA
above, the r takes any values between −∞ and ∞, with a positive r indicating a risk
averse, a negative r indicating a risk loving and r = 0 indicating a risk neutral. Note that
the parameters Lm, Um, k and r are exogenous to the optimal aspiration level in the EU
specification. Substituting the EU function as in Equation 3.3.1 into CRRA and CARA
forms results in:

CRRA : EU (tm) = (Lm −mk)1−r

1− r

(
tm − Lm
Um − Lm

)
+ (tm −mk)1−r

1− r

(
Um − tm
Um − Lm

)

CARA : EU (tm) = 1− exp−r(Lm−mk)

1− exp−r(Um−mk)

(
tm − Lm
Um − Lm

)
+ 1− exp−r(tm−mk)

1− exp−r(Um−mk)

(
Um − tm
Um − Lm

)

Note that the CRRA is conditional on r 6= 1 and the CARA is conditional on r 6= 0. They
are also conditional on the value of x — either (Lm −mk) or (tm −mk). Given these
functional forms, the optimal aspiration level is calculated by taking the first derivative
with respect to tm. The optimal aspiration level from both CRRA and CARA may be
different with the one from Manski’s optimal aspiration level which is always the midpoint
of Lm and Um, depending on the degree of the risk aversion.
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Appendix C.2 — Log-likelihood of each class of estimate by subject

Subject
Log-Likelihood

EU

CRRA

Beta

EU

CARA

Beta

EU

CRRA

Normal

EU

CARA

Normal

Manski

Beta

Manski

Normal

1 -137.0818 -140.4459 -137.361 -141.8459 -140.4459 -141.8459

2 -117.2147 -126.183 -127.3944 -131.1898 -126.183 -133.1838

3 -82.5899 -81.029 -82.7833 -81.2951 -109.3809 -110.3939

4 -160.4996 -159.6992 -160.3705 -159.7086 -160.7526 -160.9417

5 -142.9282 -150.4336 -141.9707 -139.9121 -150.4336 -150.4549

6 -142.7936 -144.6828 -147.6134 -147.6569 -146.7577 -152.42

7 -170.9142 -172.6853 -169.9894 -172.2301 -172.6853 -172.2301

8 -195.4035 -193.6349 -196.8826 -196.2193 -214.4524 -217.4165

9 -69.5953 -122.7041 -79.1499 -122.2347 -142.826 -143.7574

10 -119.2678 -118.5873 -119.2943 -118.1065 -123.088 -122.8984

11 -186.0771 -185.8757 -184.3621 -184.2638 -186.2113 -184.5798

12 -356.7305 -425.6602 -360.9915 -410.1529 -425.6602 -451.8336

13 -191.7149 -211.3424 -192.6701 -202.4645 -211.3424 -211.3852

14 -100.4139 -98.9567 -105.5605 -105.1277 -110.3323 -122.4522

15 -68.2335 -67.8882 -68.2823 -68.488 -70.4649 -71.2063

16 -156.9663 -149.3406 -157.8336 -151.4357 -241.5274 -250.1756

17 -456.2044 -476.2547 -459.1101 -485.3185 -476.2547 -485.3185

18 -32.1148 -32.1148 -32.107 -32.107 -37.5147 -37.6116

19 -360.9719 -380.1267 -365.4331 -374.6104 -380.1267 -387.1399

20 -85.7851 -88.5424 -85.7547 -88.2763 -95.9878 -95.8618

21 -47.5193 -48.105 -42.6578 -42.6039 -55.5046 -57.4771

22 -128.2903 -136.9631 -130.262 -135.8589 -153.9751 -155.7088

23 -291.0074 -298.2927 -290.666 -293.7398 -298.2927 -298.191

24 -197.5677 -247.1025 -197.7136 -219.6665 -247.1025 -254.0015

25 -324.1581 -324.7408 -313.7025 -315.0042 -324.8619 -315.6486

26 -381.7141 -410.1681 -386.0406 -393.085 -432.9103 -444.9089

27 -297.0586 -305.6377 -298.3949 -305.4319 -305.6377 -307.1325

28 -330.4155 -332.1696 -333.0814 -334.338 -367.7292 -370.5831

29 -669.5666 -664.7455 -656.1102 -656.238 -664.7455 -656.238

30 -518.3362 -519.8223 -521.2735 -520.476 -519.8223 -525.7093

31 -278.0399 -274.2338 -276.7565 -273.1816 -287.9179 -288.0319
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32 -388.7663 -392.2955 -399.3369 -404.6544 -395.9684 -408.672

33 -255.0719 -249.2691 -263.2727 -258.394 -325.3427 -353.1646

34 -344.9115 -345.7437 -347.6672 -335.1391 -373.4001 -378.2545

35 -109.6705 -110.2196 -130.9613 -131.432 -123.5889 -150.1689

36 -360.557 -360.9986 -362.323 -362.0929 -364.8646 -366.1326

37 -267.923 -255.7363 -270.3283 -257.5517 -309.4383 -316.0274

38 -329.245 -319.8938 -329.0403 -320.2271 -359.6061 -361.6542

39 -298.8213 -308.576 -299.4934 -304.0832 -308.576 -311.315

40 -642.6974 -684.4305 -649.2134 -644.5289 -684.4305 -702.1708

41 -274.5945 -284.9113 -276.6887 -285.5894 -284.9113 -287.4787

42 -285.6887 -307.1449 -285.6726 -308.2354 -307.1449 -310.9337

43 -461.9904 -483.2967 -450.639 -452.759 -483.2967 -476.5856

44 -355.0234 -348.5793 -356.2455 -348.903 -374.2465 -375.7026

45 -64.3419 -63.0725 -67.7099 -65.6977 -65.2678 -67.8672

46 -435.1923 -435.3229 -434.625 -434.6867 -435.3229 -434.6867

47 -321.2582 -315.4041 -312.3625 -310.4275 -321.9624 -317.9618

48 -394.2274 -403.9283 -397.1945 -397.65 -403.9283 -406.7582
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Appendix C.3 — AIC of each class of estimate by subject

Subject
Akaike Information Criterion

EU

CRRA

Beta

EU

CARA

Beta

EU

CRRA

Normal

EU

CARA

Normal

Manski

Beta

Manski

Normal

1 280.16 286.89 278.72 287.69 284.89 285.69

2 240.43 258.37 258.79 266.38 256.37 268.37

3 171.18 168.06 169.57 166.59 222.76 222.79

4 327.00 325.40 324.74 323.42 325.51 323.88

5 291.86 306.87 287.94 283.82 304.87 302.91

6 291.59 295.37 299.23 299.31 297.52 306.84

7 347.83 351.37 343.98 348.46 349.37 346.46

8 396.81 393.27 397.77 396.44 432.90 436.83

9 145.19 251.41 162.30 248.47 289.65 289.51

10 244.54 243.17 242.59 240.21 250.18 247.80

11 378.15 377.75 372.72 372.53 376.42 371.16

12 719.46 857.32 725.98 824.31 855.32 905.67

13 389.43 428.68 389.34 408.93 426.68 424.77

14 206.83 203.91 215.12 214.26 224.66 246.90

15 142.47 141.78 140.56 140.98 144.93 144.41

16 319.93 304.68 319.67 306.87 487.05 502.35

17 918.41 958.51 922.22 974.64 956.51 972.64

18 70.23 70.23 68.21 68.21 79.03 77.22

19 727.94 766.25 734.87 753.22 764.25 776.28

20 177.57 183.08 175.51 180.55 195.98 193.72

21 101.04 102.21 89.32 89.21 115.01 116.95

22 262.58 279.93 264.52 275.72 311.95 313.42

23 588.01 602.59 585.33 591.48 600.59 598.38

24 401.14 500.20 399.43 443.33 498.20 510.00

25 654.32 655.48 631.40 634.01 653.72 633.30

26 769.43 826.34 776.08 790.17 869.82 891.82

27 600.12 617.28 600.79 614.86 615.28 616.26

28 666.83 670.34 670.16 672.68 739.46 743.17
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29 1345.10 1335.50 1316.20 1316.50 1333.50 1314.50

30 1042.70 1045.60 1046.50 1045.00 1043.60 1053.40

31 562.08 554.47 557.51 550.36 579.84 578.06

32 783.53 790.59 802.67 813.31 795.94 819.34

33 516.14 504.54 530.55 520.79 654.69 708.33

34 695.82 697.49 699.33 674.28 750.80 758.51

35 225.34 226.44 265.92 266.86 251.18 302.34

36 727.11 728.00 728.65 728.19 733.73 734.27

37 541.85 517.47 544.66 519.10 622.88 634.05

38 664.49 645.79 662.08 644.45 723.21 725.31

39 603.64 623.15 602.99 612.17 621.15 624.63

40 1291.40 1374.90 1302.40 1293.10 1372.90 1406.30

41 555.19 575.82 557.38 575.18 573.82 576.96

42 577.38 620.29 575.35 620.47 618.29 623.87

43 929.98 972.59 905.28 909.52 970.59 955.17

44 716.05 703.16 716.49 701.81 752.49 753.41

45 134.68 132.14 139.42 135.40 134.54 137.73

46 876.38 876.65 873.25 873.37 874.65 871.37

47 648.52 636.81 628.73 624.86 647.92 637.92

48 794.45 813.86 798.39 799.30 811.86 815.52
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Appendix C.4 — BIC of each class of estimate by subject

Subject
Bayesian Information Criterion

EU

CRRA

Beta

EU

CARA

Beta

EU

CRRA

Normal

EU

CARA

Normal

Manski

Beta

Manski

Normal

1 285.00 291.72 281.94 290.91 288.11 287.30

2 245.10 263.03 261.90 269.49 259.48 269.92

3 175.07 171.95 172.16 169.18 225.35 224.08

4 332.49 330.88 328.40 327.07 329.16 325.71

5 296.69 311.70 291.16 287.05 308.09 304.52

6 295.98 299.76 302.16 302.25 300.45 308.31

7 353.44 356.98 347.72 352.20 353.11 348.33

8 402.66 399.12 401.67 400.34 436.81 438.78

9 150.10 256.32 165.57 251.74 292.93 291.15

10 249.03 247.66 245.58 243.21 253.17 249.29

11 384.07 383.66 376.66 376.47 380.36 373.13

12 727.15 865.01 731.11 829.43 860.45 908.23

13 395.51 434.76 393.39 412.98 430.74 426.80

14 211.82 208.90 218.45 217.58 227.99 248.57

15 144.78 144.09 142.11 142.52 146.48 145.19

16 325.95 310.70 323.68 310.89 491.07 504.36

17 926.67 966.77 927.73 980.14 962.02 975.39

18 71.14 71.14 68.82 68.82 79.64 77.53

19 735.41 773.72 739.84 758.20 769.23 778.77

20 181.34 186.86 178.03 183.07 198.49 194.98

21 102.49 103.66 90.29 90.18 115.98 117.44

22 267.25 284.59 267.63 278.83 315.06 314.97

23 594.97 609.54 589.97 596.11 605.22 600.70

24 407.26 506.33 403.51 447.42 502.29 512.05

25 661.42 662.59 636.14 638.75 658.46 635.67

26 777.24 834.15 781.29 795.38 875.03 894.42

27 607.07 624.23 605.42 619.50 619.91 618.58

28 674.49 678.00 675.27 677.78 744.57 745.72
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29 1355.10 1345.40 1322.80 1323.10 1340.10 1317.80

30 1051.10 1054.10 1052.20 1050.60 1049.30 1056.20

31 569.11 561.50 562.20 555.05 584.52 580.41

32 791.10 798.16 807.72 818.35 800.98 821.87

33 522.97 511.37 535.10 525.34 659.24 710.61

34 703.52 705.18 704.46 679.41 755.93 761.07

35 231.02 232.11 269.71 270.65 254.96 304.23

36 734.74 735.63 733.73 733.27 738.82 736.81

37 548.68 524.30 549.21 523.66 627.43 636.33

38 672.09 653.39 667.15 649.52 728.28 727.84

39 610.43 629.94 607.51 616.69 625.68 626.89

40 1300.60 1384.10 1308.60 1299.20 1379.00 1409.40

41 561.85 582.48 561.82 579.62 578.26 579.18

42 584.29 627.20 579.95 625.08 622.90 626.17

43 938.22 980.83 910.77 915.01 976.08 957.92

44 723.58 710.69 721.51 706.83 757.51 755.92

45 137.35 134.82 141.20 137.18 136.32 138.62

46 884.72 884.98 878.81 878.93 880.20 874.15

47 656.02 644.31 633.72 629.85 652.92 640.42

48 802.27 821.67 803.60 804.51 817.07 818.12
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Appendix C.5 — HQC of each class of estimate by subject

Subject
Hannan-Quinn Information Criterion

EU

CRRA

Beta

EU

CARA

Beta

EU

CRRA

Normal

EU

CARA

Normal

Manski

Beta

Manski

Normal

1 281.87 288.60 279.86 288.83 286.03 286.26

2 242.04 259.98 259.86 267.45 257.44 268.90

3 172.34 169.21 170.34 167.36 223.53 223.17

4 329.05 327.45 326.11 324.79 326.88 324.57

5 293.56 308.57 289.08 284.96 306.00 303.48

6 293.04 296.82 300.20 300.29 298.49 307.33

7 349.95 353.49 345.39 349.87 350.78 347.17

8 399.05 395.51 399.26 397.93 434.40 437.58

9 146.94 253.16 163.47 249.63 290.82 290.10

10 246.05 244.69 243.60 241.22 251.18 248.30

11 380.43 380.02 374.24 374.04 377.94 371.92

12 722.57 860.43 728.06 826.38 857.39 906.70

13 391.79 431.04 390.91 410.50 428.26 425.56

14 208.62 205.70 216.31 215.45 225.86 247.50

15 142.59 141.90 140.64 141.06 145.01 144.45

16 322.26 307.01 321.22 308.42 488.61 503.13

17 921.76 961.86 924.46 976.87 958.75 973.75

18 69.23 69.23 67.55 67.55 78.37 76.89

19 730.95 769.26 736.87 755.23 766.26 777.28

20 178.66 184.17 176.23 181.28 196.70 194.09

21 100.50 101.67 88.96 88.85 114.65 116.77

22 264.19 281.54 265.60 276.79 313.02 313.95

23 590.79 605.36 587.18 593.33 602.44 599.31

24 403.52 502.59 401.02 444.92 499.79 510.80

25 657.16 658.33 633.30 635.91 655.62 634.25

26 772.59 829.50 778.19 792.28 871.93 892.87

27 602.89 620.05 602.64 616.71 617.13 617.19

28 669.93 673.44 672.23 674.74 741.52 744.20
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29 1349.20 1339.50 1318.90 1319.20 1336.20 1315.80

30 1046.10 1049.10 1048.80 1047.20 1045.90 1054.60

31 564.89 557.28 559.39 552.24 581.71 579.00

32 786.59 793.64 804.71 815.34 797.97 820.36

33 518.86 507.26 532.36 522.60 656.50 709.24

34 698.93 700.60 701.41 676.35 752.87 759.55

35 227.49 228.59 267.36 268.30 252.61 303.06

36 730.20 731.08 730.70 730.24 735.78 735.29

37 544.57 520.19 546.47 520.92 624.69 634.96

38 667.56 648.86 664.13 646.50 725.26 726.33

39 606.34 625.85 604.79 613.97 622.95 625.53

40 1295.10 1378.60 1304.90 1295.60 1375.40 1407.60

41 557.83 578.46 559.14 576.94 575.58 577.84

42 580.13 623.05 577.18 622.31 620.13 624.79

43 933.32 975.94 907.51 911.75 972.82 956.29

44 719.09 706.20 718.52 703.83 754.52 754.42

45 135.05 132.51 139.67 135.64 134.78 137.86

46 879.77 880.03 875.51 875.63 876.90 872.50

47 651.54 639.83 630.74 626.87 649.94 638.93

48 797.62 817.02 800.50 801.41 813.97 816.57
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Appendix C.6 — Model selection based on the corrected
log-likelihood (by majority)

Subject
Model Selection

Decision
AIC BIC HQC

1 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

2 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

3 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

4 EU CARA Normal Manski Normal Manski Normal Manski Normal

5 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

6 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

7 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

8 EU CARA Beta EU CARA Beta EU CARA Beta EU CARA Beta

9 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

10 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

11 Manski Normal Manski Normal Manski Normal Manski Normal

12 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

13 EU CRRA Beta EU CRRA Normal EU CRRA Normal EU CRRA Normal

14 EU CARA Beta EU CARA Beta EU CARA Beta EU CARA Beta

15 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

16 EU CARA Beta EU CARA Beta EU CARA Beta EU CARA Beta

17 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

18 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

19 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

20 EU CRRA Nomal EU CRRA Normal EU CRRA Normal EU CRRA Normal

21 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

22 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

23 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

24 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

25 EU CRRA Normal Manski Normal EU CRRA Normal EU CRRA Normal

26 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

27 EU CRRA Beta EU CRRA Normal EU CRRA Normal EU CRRA Normal

28 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

29 Manski Normal Manski Normal Manski Normal Manski Normal
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30 EU CRRA Beta Manski Beta Manski Beta Manski Beta

31 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

32 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

33 EU CARA Beta EU CARA Beta EU CARA Beta EU CARA Beta

34 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

35 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta

36 EU CRRA Beta EU CARA Normal EU CRRA Beta EU CRRA Beta

37 EU CARA Beta EU CARA Normal EU CARA Beta EU CARA Beta

38 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

39 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

40 EU CRRA Beta EU CARA Normal EU CRRA Beta EU CRRA Beta

41 EU CRRA Beta EU CRRA Normal EU CRRA Beta EU CRRA Beta

42 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

43 EU CRRA Normal EU CRRA Normal EU CRRA Normal EU CRRA Normal

44 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

45 EU CARA Beta EU CARA Beta EU CARA Beta EU CARA Beta

46 Manski Normal Manski Normal Manski Normal Manski Normal

47 EU CARA Normal EU CARA Normal EU CARA Normal EU CARA Normal

48 EU CRRA Beta EU CRRA Beta EU CRRA Beta EU CRRA Beta
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4 Why Do People Prefer
Randomisation? An Experimental
Investigation

Abstract — Increasingly, experimental economists, when eliciting risk preferences using
a set of pairwise choice problems (between two risky lotteries A and B), have given
subjects a third choice (in addition to ’I prefer A’ and ’I prefer B’), namely that of
saying, for example, ’I am not sure about my preference’ or ’I am not sure what to
choose’. The implications for subjects of choosing this third option (which we call the
’middle column’) vary across experiments depending upon the incentive structure. Some
experiments provide no direct financial implications: what is ’played out’ at the end
of the experiment is not influenced by subjects choosing this middle column. In other
experiments, if the middle column has been checked, then the payoff is determined by a
randomisation of A and B. I report on an experiment, which adopts this latter incentive
mechanism, and ask the question as to why people might choose this option, that is
"why do they prefer randomisation?" I explore four distinct stories and compare their
goodness-of-fit in explaining the data. My results show that the two of the four have the
most empirical support. I include a discussion of whether my results have anything to
say about preference imprecision.

*****
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4.1 Introduction

Increasingly, experimental economists, when eliciting risk preferences using a set of pair-
wise choice problems (between two risky lotteries A and B), have given subjects a third
choice (in addition to ’I prefer A’ and ’I prefer B’), namely that of saying, for example,
’I am not sure about my preference’ or ’I am not sure what to choose’. We call this
choice ’choosing the middle column’. Some experimental economists use this design to
investigate the difficulty in making a straight choice (either Option A and Option B),
while some use it to explore the possibility of a preference for randomisation.

The implications for subjects of choosing this middle column vary across experiments
— it depends on the incentive mechanism. In some experiments, for example Cubitt
et al. (2015), there are no financial implications: what is ’played out’ at the end of
the experiment is not influenced by subjects choosing this middle column. Cubitt et al.
use this procedure to associate the subjects’ decision choosing the middle column with
preference imprecision. In other experiments, for example Cettolin and Riedl (2019), if
the middle column has been checked, then the payoff is determined by a randomisation of
Option A and Option B (a mixture of A and B). Recent literature adopts this procedure
to allow the investigation of a preference for randomisation (Dwenger et al. 2018) and
stochastic choice (Agranov and Ortoleva 2017).

I report on an experiment which adopts this latter incentive mechanism, and ask the
question as to why people might choose this option, that is "why do they prefer randomi-
sation?" I explore four distinct stories and compare their goodness-of-fit in explaining the
data: the random-convex preference story, the tremble story, the threshold story and the
delegation story. The first story is that the decision-maker (DM) has convex indifference
curves within the Marschak-Machina Triangle (MMT) and actually prefers a mixture of A
and B. To make it operational, this story is embedded in the Random Preferences Model
(Loomes and Sugden 1995; Loomes et al. 2002) in which the risk aversion parameter varies
randomly from problem to problem. My second story is that the DM prefers a mixture of
A and B only if it gives the highest utility; however, the DM simply makes a mistake in
expressing the preferences. By this, the DM is assumed to be able to calculate the subjec-
tive utility of an alternative but that does not guarantee him or her choosing the optimal
choice. This stochastic specification follows the tremble specification as in Harless and
Camerer (1994), and Moffatt and Peters (2001). My third story is that the DM cannot
distinguish between A and B unless their difference exceeds some threshold. This story
follows the same logic as in Khrisnan (1977). Here the DM prefers an alternative if he or
she subjectively perceives the utility of an alternative exceeding another one by at least
some threshold (a minimum perceivable difference). Otherwise, the DM perceives that
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he or she is indifferent between the two alternatives. So the choice of a mixture A and B
depends on the magnitude of the threshold — the higher is the threshold, the more likely
is the choice of a mixture of A and B. I also add in a tremble. Lastly, the delegation
story follows Vickers (1985), and Armstrong and Vickers (2010). The DM will delegate
decisions if it gives the highest utility. Hence, I assume that the DM gets an additional
utility when stating their preference with “I am not sure what to choose” — delegating
the decision to the coin toss. Again, I add in a tremble.

I note that my incentive mechanism is different from that in Cubitt et al. The latter
was concerned with preference imprecision; this section is concerned with preference for
randomisation. These are different things, but this chapter may have something to tell us
about preference imprecision — this depends upon how subjects view the choice problem
and the incentive mechanism. We shall have more to say on this in Section 4.4.2 and 4.5.

This section is organised as follows: the next section discusses the experimental design;
Section 4.3 describes the four stories in detail; Section 4.4 presents the empirical results
and analyses; Section 4.5 discusses and concludes.

4.2 Experimental design

I used 72 ’response tables’. In each of these, subjects were presented with a number (which
varied from table to table) of pairwise-choice problems (we refer this to problem) between
a certainty and a (two- or three-outcome) lottery. in every response table, the lottery
remained unchanged, while the certain amount varied from the highest amount in the
lottery, in steps of 25 pence to the lowest amount in the lottery. This determines the
number of rows or problems in each response table.

These tables were similar to those used in Cubitt et al. (giving subjects choices which
cpanned most possible preferences), though I duplicated the tables (in order to have a
sufficient number of problems for estimation). There are seven lottery sequences: payoff
scale (Seq.1), mean preserving spread (Seq.2), risky common consequence (Seq.3), safe
common consequence (Seq.4), safe common ratio (Seq.5), risky common ratio (Seq.6) and
betweenness (Seq.7). Subjects were given three alternative answers to state their prefer-
ence on a particular problem in each response table: 1) I choose Option A; 2) I am not
sure what to choose; or 3) I choose Option B. Figure 4.2.1 illustrates a response table
used in the experiment. In the Instructions, these were called ’Preference Sheets’.
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You are asked to state your preference between certain money proposed in the
first column (Option A) and a lottery (Option B). There are 3 answer options
to represent your preference: (i) I choose Option A; (ii) I am not sure
what to choose; (iii) I choose Option B. You should click CONFIRM once
you have finished completing this Preference Sheet, otherwise click CLEAR to
modify your answer. The CONFIRM button will appear after 10 seconds.
Please notice that you cannot go back to the previous Preference Sheet.
Option A: You will receive a proposed amount of money for sure.
Option B: You will have a chance of 0.65 to win £30.00 and a chance of 0.35
to win £15.00.

No. Proposed
certain money

I choose
Option A

I am not sure
what to
choose

I choose
Option B

1 For £30.00
2 For £29.75
3 For £29.50
... ... ... ... ...
59 For £15.50
60 For £15.25
61 For £15.00

Figure 4.2.1: A response table in the experiment

As Figure 4.2.1 shows, a short explanation of what subjects have to do is given at the
top of the table. There is a description of Option A and Option B. Option A is always a
sure amount of money whereas Option B is a fixed lottery in any one table. There were
five columns in each table: the first column was the problem number in the particular
response table; the second column was the certain amount of money in Option A; the
third to the fifth columns are the three answer boxes.

The response table is implemented as follows. Subjects had to choose one answer in each
row of the table. Unlike Cubitt et al. (who forced subjects not to switch between columns
as they moved down the table), I did not restrict the subjects in any way. There were
two buttons to confirm and to modify the answer. The confirm button became active
after ten seconds; before that it was inactive. However, there was no maximum time to
complete the tasks, so subjects were free to think as long as they wished. Subjects were
given the instructions (paper and on-screen) and two practice tables prior to the main
tasks. The experimental software was written (mainly by Alfa Ryano) in Python 2.7.

Monetary incentives were provided to reveal the subjects’ true preferences. Subjects
were told in the instructions that one of the problems from one of the tables would be
the basis of their payment (additionally they were given a show-up fee of £2.50). The
subject’s response in a randomly chosen problem would be played out for real. First, the
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subject drew a disk from a closed bag containing the numbered disks from 1 to 72 — this
identified a particular response table. Then, the subject drew another disk from a different
closed bag to choose the problem in the selected table to play out — the number of disks
depending upon the number of rows or problems in the randomly-chosen table. For the
selected problem, the following rules were used to determine the subjects’ payment: 1)
if a subject chose Option A, then he or she would get the sure amount of money; 2) if a
subject chose Option B, then he or she would play the lottery in that particular response
table; 3) if a subject stated that he or she was unsure, then he or she would flip a coin
to determine which option to play — then either rule (1) or rule (2) would be applied
for the chosen option from the coin toss. This payment mechanism implied that the
choice of the middle column was a choice for randomisation. Note that this is a different
incentive mechanism than that used by Cubitt et al.1 as we are specifically interested in
a preference for randomisation.

The experiment was conducted in the EXEC Lab at the University of York. Invitation
messages were sent through hroot (Hamburg registration and organization online tool) to
all registered subjects in the system. There were 77 subjects who participated in the main
experiment; this was preceded by a pilot experiment; I do not report its results here. They
were all members of the University of York: 73 subjects were students and 4 subjects were
staff members. The gender composition was: 32 subjects were male and 45 subjects were
female. Subjects read the instructions together and were free to ask anything about the
experiment before starting the experiment. After subjects had completed all tasks, they
were paid as previously explained. Then they were free to leave. The average payment to
the subjects was £11.72 and the average duration of the experiment (including reading
the instructions) was a little below one and a half hours. Communication was prohibited
during the experiment.

4.3 Modelling the choice

I bring four stories to try to explain the subjects’ decisions: the random-convex preference
story (henceforth the RCP story), the tremble story, the threshold story and the delegation
story. These four stories have different ways of interpreting a statement of choosing the
middle column; hereafter we use A, B and M to refer Option A, Option B and the
mixture of A and B (the middle column) respectively. To model the stories in this paper,
I use either the Expected Utility (EU) or the Rank-Dependent Expected Utility (RDEU)

1In that, there was no incentive for choosing the middle column: subjects were additionally asked to
indicate the row on which their preference changed from A to B, and their payment depended on the
position of this row relative to the randomly-chosen row.
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functional to specify the DM’s preference function; so that the DM chooses option with the
highest expected (rank-dependent) utility. This is crucial as I put important assumptions
on the DM’s preference within the MMT; in which I describe later in this section. EU
has a risk-aversion parameter (r), while RDEU has two parameters (risk aversion, r, and
probability-weighting-function parameter, g). I use the Constant Absolute Risk Aversion
(CARA) and the Constant Relative Risk Aversion (CRRA) to specify the DM’s utility
function in both EU and RDEU. In addition, I use the Power function2 to specify the
probability weighting function in RDEU to rationalise the strictly convex preference,
which is necessary in the RCP story.3

All stories share the common assumption that the subjects answer each pairwise-choice
problems independently.4 So crucially, all stories can rationalise the DM’s decision to
switch between columns as he or she moves down the table. We should notice that A
first-order stochastically dominates B in the first problem in each table, and vice versa
in the last problem in each table. Hence, these two problems are dominance problems,
since, using either the EU or the RDEU, they should be chosen with certainty. I also
assume that the DM perceives M as a single lottery through the use of the reduction
of compound lotteries (ROCL). This may raise an issue as I use RDEU in some of my
stories (the RCP story and the tremble story).5 For example, Harrison et al. (2015) find
the violation of ROCL as they assume RDEU preference and implement random-lottery
incentive mechanism. This violation occurs since their subjects attach additional value
to the compound lottery hence evaluate it differently problem to problem. However, in
order to keep my stories as simple as possible, I assume ROCL.

The first story is that the DM has strictly convex indifference curves within the MMT
— this can rationalise the choice of M . The second is that the DM simply makes a
mistake though he or she is fully able to determine the best choice. The third is that
the DM cannot distinguish between A and B unless their utility difference exceeds some
threshold; if not, the DM chooses M ;6 I specify the threshold in two ways, a random and
a fixed threshold. The fourth is that the DM actually prefers to delegate the choice (to
the coin), shifting the ‘responsibility’ to the coin; here the DM receives an extra utility
from delegating the choice. The details will be explained later. In each story there is

2f (p) = pg
3Other specifications, i.e. the Quiggin and the Prelec functions, cannot rationalise a strictly convex
preference within MMT as they produce an S-shape form. Detailed specifications can be found in the
Appendix D.2.

4I have to assume this since I allowed subjects to switch between columns as they moved down the table:
in fact, in 253 out of 5,544 tables (4.56%) from 27 subjects saw such switches.

5Other evaluations are possible to used, for example the compound independence (Segal 1990), in the
case of RDEU preference.

6This idea is different than that of noisy preferences in which the DM is assumed to calculate precisely
if the utility difference between two alternatives exceeds some threshold.
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inevitably some randomness.

Table 4.1: A short explanation of each story

Story Preference
within MMT

Source(s) of
stochasticity

Why the DM states
that he or she prefers

randomising
The
random-convex
preference

Strictly convex
The DM picks risk
parameters randomly

If it gives the highest utility.

The tremble
It can be convex,
concave or linear

Mistake in expressing the
preference function.

If it gives the highest utility or
if the DM trembles

The threshold Strictly linear

The threshold to make a
precise calculation on the
preference function; and
mistake in expressing the
preference function when
the DM is able to
calculate precisely.

Fixed threshold: randomly
chosen if the utility difference of
A and B is less than some
threshold.
Random threshold: strictly
chosen if the utility difference of
A and B is less than some
threshold.

The delegation Strictly linear
Mistake in expressing
either the DM’s or other’s
preference function.

If delegating the choice gives the
highest utility.

I apply RDEU to the RCP and the tremble stories as it allows the indifference curves
(IC) in the MMT to be non-linear in probability, hence these stories can explain why
randomising might be preferable. The DM prefers the mixture of A and B if it gives the
highest utility. This may occur if the indifference curves are strictly convex within the
MMT (Starmer 2000).7 Figure 4.3.1 illustrates concave preferences (left panel) and convex
preferences (right panel) within the MMT.8 In the left panel, A and B are preferred to
M , while in the right panel, M is preferred to both A and B.

I apply EU to the threshold story and to the delegation story; with EU the DM’s indif-
ference curves are linear within the MMT. For the threshold story, in particular, one can
assume other preference functions to calculate the utility, but I assume that the DM is
an EU agent to have the simplest version of this story; I explain these in each story’s
specification. Building on these four stories, I have sixteen variants depending upon the
stochastic specification and the utility function. I fit the various stories using maximum
likelihood.

7Of course one can assume other preference functionals that allow for non-linear preference within the
MMT to explain why the mixture of A and B might be preferable.

8I specify the MMT accordingly with p1 is the probability of the highest outcome and p3 is the probability
of the lowest outcome.
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Figure 4.3.1: Indifference curves within the MMT

4.3.1 The random-convex preference story

In this story, I assume that the DM’s preference function is that of RDEU and the DM
has strictly convex indifference curves within the MMT. This convex preference implies
the possibility that the DM prefers M . Given this, I assume that the DM always chooses
the option with the highest expected rank-dependent utility. I also assume the Random
Preference Model (Loomes and Sugden 1995) in which the DM’s preferences vary ran-
domly from problem to problem. By this, I mean that the DM’s risk aversion parameter
varies randomly from problem to problem.

Let me explain how I implement this story. Let V (A) be the RDEU value of A, V (B) be
the RDEU value of B and V (M) be the RDEU value of M . To proceed to a decision, the
DM makes the following comparisons: i) V (A,M) = V (A) − V (M) to compare A and
M ; ii) V (B,M) = V (B)−V (M) to compare B andM . Therefore, the DM’s preferences
on each comparison are given by:

A
(
%
≺

)
M ⇔ V (A,M)

(
T
)

0 and B
(
%
≺

)
M ⇔ V (B,M)

(
T
)

0 (4.3.1)

I specify the r (risk-aversion parameter) in the RDEU to be random across problems, while
the g (probability-weighting parameter) is fixed; that is why I call this the random-convex
preference story. So there will be an r∗ in every comparison indicating that the DM is
indifferent between two options for any given fixed g; V (A,M) = 0 and V (B,M) = 0.
This setup is to simplify the estimation.9 I arbitrarily assume that the r has a normal

9However, it is possible to allow both r and g random, and find a combination of r∗ and g∗ on each
V (A,M) and V (B,M) — when the DM is indifferent between A and M , and between B and M
respectively. Thus, to make it operational, it needs a joint distribution to define the simultaneous
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distribution with parameters (µ and σ) — mean and standard deviation.

Each comparison, V (A,M) and V (B,M), defines a function between r and g. Since I
assume random r and fixed g, this implies a unique r for each comparison. I define r∗1 and
r∗2 as follows: r∗1 ⇔ V (B,M) = 0 and r∗2 ⇔ V (A,M) = 0. These must satisfy r∗1 ≤ r∗2

since the DM must be less risk-averse to be indifferent between B and M than when he
or she is indifferent between A and M . The implication is that the DM chooses A if
r ≥ r∗2; that the DM chooses B if r ≤ r∗1; and that the DM chooses M if r∗1 < r < r∗2.
As the preferences are convex, so that 0 < g < 1, there exists the solution for r∗1 and r∗2.
However, I exclude the dominance problems, for which r∗1 and r∗2 do not exist. It follows
that this story has fewer observations than the other stories by excluding the first and
the last row in each response table since they are dominance problem.10

Using these two ‘boundary’ risk attitudes (r∗1 and r∗2), I can now specify the log-likelihood
function. Let y ∈ {1, 2, 3} be the DM’s decision in any problem; taking the value 1, 2 and
3 if the DM chooses A, M and B respectively. The contribution to the log-likelihood of
the observation y in any problem is:

(y − 3) (y − 2) log (1− Φ2)
2 +(3− y) (y − 1) log (Φ2 − Φ1)+ (y − 2) (y − 1) log Φ1

2 (4.3.2)

where Φ2 is the cumulative distribution function (cdf ) of a normal distribution with
parameters µ and σ given an observation r∗2, and Φ1 is the cdf of a normal distribution
with parameters µ and σ given an observation r∗1.11 However I will report s = 1/σ, the
precision. I implement this story with two variants — being the two utility functions
CARA and CRRA.

4.3.2 The tremble story

As with the RCP story, I use RDEU to specify the DM’s preference function, and assume
that he or she always prefers the option that yields the highest expected rank-dependent
utility. I assume that r and g are fixed across the problems. For this story, I assume
that the DM is able to make a correct calculation but he or she sometimes trembles when
expressing his or her preference. Hence I involve a tremble parameter, which I denote by
ω, in this story to capture the DM’s mistake.

relationship of r∗ and g∗.
10I could include these problems within the RCP story by involving a tremble in its specification. But I

want to keep this story as simple as possible.
11Strictly, Φ2 is the probability that a variable with the given distribution takes value less than r2.
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I specify this story in two ways: the tremble 1 and the tremble 2 . The former
specification assumes that the tremble is the same in all possible non-optimal decisions.
The tremble parameter for this specification takes a value 0 ≤ ω ≤ 0.5. The probability
distribution of all decisions within this sub-story therefore is:

Table 4.2: Probability distribution of the tremble 1 story
Optimal decisions (y∗)
A M B

Actual decisions
(y)

A 1− 2ω ω ω
M ω 1− 2ω ω
B ω ω 1− 2ω

Following Table 4.2, the contribution to the log-likelihood of the observation y conditional
to y∗ is:

P (y = y∗ | r, g, ω) = log (1− 2ω)
P (y 6= y∗ | r, g, ω) = log (ω)

(4.3.3)

The tremble 2 specification assumes that the error can be different across the non-optimal
decisions. The probability distribution of all decisions within this sub-story therefore is:

Table 4.3: Probability distribution of the tremble 2 story
Optimal decisions (y∗)

A M B

Actual decisions
(y)

A 1−ω1−ω2 ω1 ω2
M ω1 1−ω1−ω2 ω1
B ω2 ω1 1−ω1−ω2

It is not necessarily the case that ω1 > ω2 in the tremble 2 specification. The tremble
parameters in this particular specification take values 0 ≤ ω1, ω2 ≤ 0.5. I assume that the
tremble is shared equally if the optimal decision is choosing M , otherwise it is not nec-
essary. As with the tremble 1 specification, this specification has two variants depending
upon the utility function (CARA or CRRA) in the RDEU. Following the table above, the
contribution to the log-likelihood of the observation y conditional to y∗ is:

y∗ 6= M

 P (y = y∗ | r, g, ω1, ω2) = log (1− ω1 − ω2)
P (y 6= y∗ | r, g, ω2) = log

(
ω|y∗−y|

)
y∗ = M

 P (y = y∗ | r, g, ω1, ω2) = log (1− 2ω1)
P (y = y∗ | r, g, ω1) = log (ω1)

(4.3.4)
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This story has four variants from the implementation of the tremble specification and the
utility function in the EU.

4.3.3 The threshold story

Unlike the two previous stories, I assume that the DM has a limitation in making a
precise calculation of a straight option (either A or B). The implication is that the DM
can clearly distinguish between A and B only if the difference in their evaluation exceeds
some threshold, otherwise the DM’s optimal decision is to choose M . Here is a simple
example: someone is shown two bars, they are similar in length with a difference of 0.5
mm. Those bars are seen from a distance of 1 meter. It is highly likely that someone
would say that those bars are exactly identical. So he or she thinks that those bars give
the same level of utility.

For this story, I use EU to specify the DM’s preference function. The DM prefers A if
EU (A)−EU (B) > ϕ and prefers B if EU (B)−EU (A) > ϕ, where ϕ is the threshold of
the EU difference. Additionally, I will have to involve a tremble (ω) to capture the DM’s
mistake in expressing the EU when the DM is fully able to calculate the EU precisely;
the DM cannot express the EU preference if the EU difference is less than the threshold.

I specify this story in two ways according to the DM’s threshold: a random and a
fixed threshold. The random threshold specification assumes that the DM has a differ-
ent calculation ability across problems because he or she may understand each problem
differently — that the ϕ may be different across problems. Here I assume that the DM
cannot distinguish A and B if he or she prefers M . So the choice of either A or B implies
that the DM can clearly distinguish A and B. The fixed threshold specification assumes
that the DM has fixed calculation ability across problems — that the ϕ is fixed across
problems. I arbitrarily assume that the DM can choose any option when he or she cannot
distinguish A and B with a probability of 1/3.

I involve tremble in both specifications to capture the DM’s mistake in expressing his
or her preference. However, since the two specifications have key differences, they will
have different probability distribution of the DM’s decision. For the random threshold
specification, the probability distribution of the DM’s decisions where he or she does not
choose M is:
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Table 4.4: Probability distribution of the random threshold story
Optimal decisions

(y∗)
A B

Actual decisions
(y)

A 1− ω ω
B ω 1− ω

The tremble parameter takes value 0 ≤ ω ≤ 1 in this specification. To proceed to the
estimation I have to assume the distribution of ϕ as it is assumed to be random across all
problems. I use the exponential and log-normal distribution of ϕ. Both distributions take
into account the non-negative nature of ϕ. The exponential distribution has a parameter
of λ (the inverse of the mean), whereas the log-normal distribution has two parameters:
log (µ) and log (σ). Instead I will report the mean of ϕ (Λ = 1/λ) for the exponential
distribution, and the mean (µ) and the precision (s = 1/σ) of ϕ to make it easy to read
— the higher is the precision, the less is the noise. Following the decision matrix above,
the contribution to the log-likelihood of the observation y conditional to y∗ is:

P (y = M | r, δ) = log (1−Θ (ϕ))

y 6= M

 P (y = y∗ | r, ω, δ) = log ((1− ω) Θ (ϕ))
P (y 6= y∗ | r, ω) = log (ω)

(4.3.5)

where Θ is cdf of the ϕ following either a log-normal or an exponential distribution,
and δ is a set of parameter(s) of either a log-normal or an exponential distribution. This
random threshold specification has four variants from the implementation of the threshold
distribution and the utility function in the EU. So I have: i) the log-normal threshold
combined with CRRA and CARA, and ii) the exponential threshold combined with CRRA
and CARA.

Move on to the fixed threshold specification, the probability distribution of all decisions
within this sub-story therefore is:

Table 4.5: Probability distribution of the fixed threshold story
Actual decisions (y)

A M B

What the DM
reveals (y∗)

EU (A)−EU (B) > ϕ 1− 2ω ω ω
EU (A)−EU (B) ≤ ϕ

and
EU (B)−EU (A) ≤ ϕ

1/3 1/3 1/3

EU (B)−EU (A) > ϕ ω ω 1− 2ω
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As in the decision matrix in Table 4.5, each option shares an equal probability to be
optimal decision when the DM cannot distinguish A and B. I assume that ω is the same
in all possible non-optimal decisions when the DM can distinguish A and B. This is to
keep this story as simple as possible.12 The tremble parameter takes value 0 ≤ ω ≤ 0.5.
The contribution to the log-likelihood of the observation y conditional to y∗ is:

|EU (A)− EU (B)| ≤ ϕ⇔ P (y = A,M,B | r) = log (1/3)

|EU (A)− EU (B)| > ϕ

 P (y = y∗ | r, ω) = log (1− 2ω)
P (y 6= y∗ | r, ω) = log (ω)

(4.3.6)

This fixed threshold story has two variants depending on the specification of the utility
function: the fixed threshold with CRRA and the fixed threshold with CARA.

4.3.4 The delegation story

As in the threshold story, I assume that the DM is the EU agent so he or she always
prefers the option that yields the highest expected utility. In addition, I assume that
the DM receives an extra utility if he or she chooses M — delegating the decision to the
coin toss. Therefore the expected utility of M is defined as: EU (M) = 0.5 [EU (A)] +
0.5 [EU (B)] + a where EU (M) is the expected utility of M , and a is an extra utility.
This setup differentiates this story from the tremble story.

Also, I involve a tremble to capture the DM’s mistake in expressing his or her preference.
I specify the tremble in two ways: tremble 1 and tremble 2 as in the tremble story. Since
there is always the best of all decisions in this story, the probability distribution of the
DM’s decision in both tremble 1 and tremble 2 specifications is identical to that one in the
tremble story; likewise the contribution to the log-likelihood. This story has four variants
arising from variations of the tremble specification and of the utility function in the EU.

4.4 Results and analyses

I start with some simple descriptive statistics. Then I proceed to a more formal analysis.

12Of course one can assume that the tremble can be different across non-optimal decisions when the DM
can distinguish A and B.
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4.4.1 Descriptive statistics

I have already noted that I allowed subjects to switch between columns as they moved
down a table. We observed 253 (4.56%) such switches in 5,544 tables from 27 subjects.
This means that the entries in the middle column may not have been continuous. There
are 114 (2.06%) of 5,544 tables from 10 subjects see a non-continuous range in the choice
of the middle column. However, in either case, I can measure the percentage of middle
column responses in each table. This I call PROPMID. Note that this is not the same
as INTSIZE as used in Cubitt et al., though it is closely related to it.

First I report the subjects’ behaviour when they choseM . There are 14,761 cases (6.22%)
out of 237,314 decisions in which subjects chooseM — with 47 subjects chooseM at least
once. Figure 4.4.1 shows the histogram of PROPMID in all problems. It is clear that
some subejcts hardly ever choose the middle column, while a few choose it rather often.

Figure 4.4.1: The percentage of choosing M

Now we break down PROPMID by the lottery sequence — there are seven basic lottery
sequences following the design in Cubitt et al. The percentage of choosing M is slightly
different between the seven sequences, and there is a slight tendency for PROPMID to
be lower when the problems are repeated: in the first half (problems 1 to 36), PROPMID

averages 6.95% compared to 5.49% in the second half (problem 37 to 72).13

Note that, not only does PROPMID decreases when the lottery sequences are repeated,
but also the subjects show different pattern across lotteries within sequence. We can use
this to see whether there is any connection between our subjects’ behaviour and those of
Cubitt et al. Let us focus attention on Sequences 3 to 6 where Cubitt et al. find that
13Sequence 5 has six lotteries with lottery 2 is slightly different kind of lottery 1 in this sequence. Lottery

1 is a certain lottery while lottery 2 is a close-to-certainty lottery.
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Figure 4.4.2: The percentage of subjects choosing M by sequence in each half of the
problem set

the size of the imprecision decreases as the lotteries approach certainty. The left panel in
Figure 4.4.2, for problems 1 to 36, shows that only Sequences 3 and 6 have an apparent
decrease in PROPMID as the lotteries approach to certainty; however, Sequences 4 and
5 do not have a systematic pattern across lotteries. Different results are shown in the
right panel, for problems 37 to 72, where there is an apparent decrease of PROPMID

as the lotteries approach to certainty in Sequence 3 to 6. These findings are different
from those in Cubitt et al., since subjects do not show a strong systematic pattern of in
Sequences 3 to 6. The differences almost certainly arise because of the different incentive
mechanism: a point that is reinforced by our regression results below.

4.4.2 Formal analyses

Now I report formal results investigating my stories. There are sixteen variants of the
four stories to try to explain why subjects choose M . I estimate subject by subject using
maximum likelihood. Below is a summary of the stories. Following that are the results.

I separate the formal analysis into two parts. The first part is the main analysis of this
paper where it tries to find the best story to account for the subjects’ behaviour. I do this
subject by subject. For this, I run a horse-race between the four stories and their some
descriptive statistics, before proceeding to some more formal analyses. Second, I perform
a regression analysis that serves as a complement to the first part and tries to identify
the connection between preference for randomisation and preference imprecision.
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Table 4.6: Summary of the stories

Story Preference
functional

Random
variable

Number
of

variants

Estimated
parameters

The RCP RDEU
The risk
parameter.

2
µ and s of r, and g within all
variants.

The tremble RDEU
n.a. in both
tremble
specifications.

4

r, g, ω for the tremble 1
specifications.

r, g, ω for the tremble 2
specifications.

The threshold EU

The threshold
in the random
threshold
specifications.

4

r, Λ, ω for the exponential
threshold
specifications within
all variants.

r, µ, s, ω for the log-normal
threshold
specifications within
all variants.

n.a. in the fixed
threshold
specifications.

2 µ, ϕ, ω in all variants.

The delegation EU
n.a. in all
variants.

4

r, a, ω for the delegation
with tremble 1
specifications.

r, a, ω1, ω2 for the delegation
with tremble 2
specifications.

To find the best fitting variant and story, I compare the individual average corrected
log-likelihood in each model. Note that the RCP story has fewer observations than other
stories due to exclusion of the dominance problems in this story.14 So this compares
the contribution of the corrected log-likelihood from each problem. I use the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC) and Hannan-
Quinn Information Criterion (HQC).15

14This leaves the RCP story to have 2,694 observations for each subject compared to 3,082 observations
for each subject in other stories.

15AIC is given by 2k − 2LL; BIC is given by ln (n) k − 2LL; HQC is given by −2LL + 2 ln (ln (n)) k;
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Based on the variant comparisons, the RCP with CARA and the fixed threshold with
CARA receive the most empirical support. These two variants best explain the choice of
the majority of the subjects. Within the story comparison, it follows that the RCP story
and the threshold story receive the most empirical support.16 The results show that 38
subjects are best explained by the threshold story; 33 subjects are best explained with
the RCP story.

Now I turn to the subjects’ risk aversion. All variants used involve risk aversion, and it
is obvious that different subjects have different attitudes to risk.17 All variants show that
most of the subjects are risk averse. The details of each variant can be seen in Appendix
D.6. I report the tremble (ω) from variants within those stories in Appendix D.7 following
the tremble parameter used in the tremble, the threshold and the delegation stories to
capture the mistake in expressing the subjects’ preference. I also report the extra utility
parameter within the delegation story in Appendix D.8.

4.4.3 Regression analysis of the choice on the mixture of A and B

This section’s main purpose is to see whether there is a connection between preference for
randomisation and preference imprecision. I follow the regression model as in Cubitt et al.
to explore what determines the choice onM . Since we saw switching amongst the subjects,
I collect the percentage (PROPMID) of the choice of M in each response table — this
differs with Cubitt et al. who use the range of the choice ofM as measured in a monetary
sum (INTSIZE). I use the lottery characteristics and the subjects’ experience as the
determinant of PROPMID for each regression. Outcomes in the particular lottery are
constructed through the MMT: each lottery has three outcomes with their corresponding
probabilities. x1 is the highest outcome with probability p1, x2 is the middle outcome with
probability p2, and x3 is the lowest outcome with probability p3. For any lottery with two
outcomes, I interpret it as having x3 zero with p3 zero. I also involve the ratio of the middle
to the highest outcome (RATIO x2x1), the expected value of each lottery (EV ), and the
range between the highest and the lowest outcome stated in the lottery (RANGE) as
the lottery characteristics in the regression. To capture the subjects’ experience, I involve
a number of response table that the subjects had completed (ORDER) and a dummy
variable to indicate the repeated response table (REPEAT ). I report the significant
variables only from stepwise regression in Equation 4.4.1 below:18

where k is the number of parameters, LL is the maximised log-likelihood and n is the number of
observations.

16The overall comparisons to find the best variant and the best story are in Appendix D.3 and D.4
respectively.

17The detail results can be seen in Appendix D.5
18Standard errors are in parentheses; * and ** denote significance at the 5% and 1% levels respectively.
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PROPMID = 5.317
(1.099)∗∗

+ 0.284x1
(0.078)∗∗

− 1.456p1
(0.586)∗

+ 0.354RATIO x1x2
(0.104)∗∗

− 0.051ORDER
(0.009)∗∗

(4.4.1)

The regression model shows reasonable results as all coefficients are jointly not equal from
zero.19

The regression results in Equation 4.4.1 show that both x1 and RATIO x1x2 have a posi-
tive effect to PROPMID; the higher are x1 and RATIO x1x2, the higher is PROPMID.
Meanwhile, both p1 and ORDER have a negative effect to PROPMID; the higher are
p1 and ORDER, the lower is PROPMID. One interesting finding here is that of experi-
ence (ORDER) is negatively significant to PROPMID. This implies that randomising
behaviour is a temporary phenomenon; there is a tendency of the choice of M to decrease
as subjects continued to the next tables. This confirms the descriptive analysis in the
previous sub-section where the subjects are found to have different behaviour of choosing
M when the problems were repeated.

Below I reproduce the same regression from Cubitt et al. (the only difference being the
definition20 of the dependent variable)21:

INTSIZE = 0.294
(0.315)

+ 2.211p1
(0.280)∗∗

− 0.841p3
(0.377)∗

+ 0.206RANGE
(0.013)∗∗

− 0.049EV
(0.016)∗∗

(4.4.2)

Comparing these equations (4.4.1 and 4.4.2), it is seen that, not only does significance
change, but also the magnitude of the coefficients. The conclusion seems to be that
preference for randomisation and preference imprecision are two different things. The
incentive mechanism would appear to be the key reason for these different results.

4.5 Discussion and conclusion

The motivation for this paper is to explore possible stories to help understand subjects’
behaviour when they are given an additional option when stating their preference be-
tween two options, namely, “I am not sure what to choose”, and when, if they chose this
option, their payment would depend upon the tossing of a coin. It means that this choice

19Stepwise deletion (p ≤ 0.2) and stepwise addition (p ≥ 0.2) produce identical results. I also report
simple and truncated regressions. The detail of all regression results can be seen in Appendix D.9.

20My PROPMID is the percentage of response using M ; Cubitt et al’s INTSIZE is the interval size
of the choice of M as measured in a monetary sum.

21I reproduce the detail of regression results from Cubit et al. in Appendix D.9
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has a direct financial implication through randomisation, and leads to the discussion of
preference for randomisation.

The main contribution of this section is to try to understand the nature of preference
for randomisation. I propose four stories of why someone may randomise the choice.
This complements previous studies that rarely provide a formal model to account for
this behaviour. My analysis shows, that of the four stories, the random-convex preference
story and the threshold story receive the most empirical support in explaining the subjects’
behaviour. Further research, of course, is necessary to disentangle these two since they
are principally different for why the DM may randomise the choice.

The four stories in this section consider that preference for randomisation is a deliberate
choice. Cettolin and Riedl (2019) investigated if the subjects prefer to randomise the
choice between risky and uncertain options, and between risky and sure options. They
found that randomisation is a deliberate decision and is consistent across problems since
their subjects’ behaviour does not change with the magnitude of the incentives. An inves-
tigation by Dwenger et al. (2018) shows a similar pattern; they conducted experiments
where the subjects’ choice is implemented (in the payout rule) with a certain known prob-
ability. In one treatment, subjects were allowed to make a choice twice, the idea being
that subjects with a strict preference will have the same choice in both attempts. How-
ever, the results show that a significant proportion of the subjects have choice reversals,
indicating deliberate randomisation. A different approach has been done by Dominiak
and Schnedler (2011) who tried to challenge the classical prediction in which uncertainty-
averse individual is supposed to prefer randomisation. The experiment elicited both
randomisation and uncertainty attitudes, and identified their connection. Their findings
show that randomisation and uncertainty attitude are not negatively associated; it is
either randomising-averse subjects are uncertainty-averse or otherwise.

An interesting exploration has been made by Agranov and Ortoleva (2017) that is related
to one concern of my stories: the source of the stochastic process. They ran an exper-
iment to find the relationship between preference for randomisation and the stochastic
choice. In their experiment, the subjects faced repeated problems in two treatments: far
repetition and in-a-row repetition. Both treatments differed in how the binary-problems
were presented. The far repetition treatment repeated the same problems far apart and
the subjects were not told about that, whereas the in-a-row treatment repeated the same
problems in a row and the subjects were told about that. Moreover, subjects were allowed
to randomise the choice in both treatments at a fixed cost. They found that subjects who
randomise the choice are significantly more likely to report inconsistent choice in both
treatments. This indicates that the desire to randomise plays an important role in driving
stochastic choice.
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One recent popular topic that may have a connection with preference for randomisation
is preference imprecision. This has been the main subject explored in Cubitt et al. (2015)
and in Butler and Loomes (2007, 2011); these papers give an interpretation of the choice
of the middle column despite there being no financial implication of subjects choosing it.
I try to find a connection between these two topics, though they have different incentive
mechanisms, by the descriptive statistics and constructing a regression model following
Cubitt et al. Analyses on the descriptive statistics show that subjects in both studies have
a different behaviour in choosing the middle column. This is clarified in my regression
estimation that shows the different results than that of Cubitt et al. since no explana-
tory variables have the same magnitude and significance. This suggests that there is no
association between preference for randomisation and preference imprecision as defined
by Cubitt et al.

However, it still might be possible to link these phenomena by having a different inter-
pretation of what we mean by preference imprecision. As Loomes and Pogrebna (2014)
recommend, eliciting preferences should take care of the context where it is elicited, and
that it is necessary to develop a model engaging the inherently stochastic nature of hu-
man decision-making; though they avoid using some deterministic theory combined with
the error term. This paper tries to address this issue by identifying the possible source
of stochasticity given the elicitation procedure, that is, the two stories that receive most
empirical support in this section involve an imprecision element: in the threshold story,
the imprecision takes occurs because of the DM’s (in)ability to calculate utility; surely
this has an implication for the DM’s preference? In the random-convex preference story,
the DM does not have a single preference since his or her risk attitude changes across
problems. Perhaps we should pay more attention to defining what we mean by preference
imprecision.
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Appendices

Appendix D.1 — On the screen example to complete the tasks in
the particular response table

Appendix D.2 — Specification of the EU and the RDEU

The general form of the EU is EU (.) = ∑I
i piui and of the RDEU is RDEU (.) = ∑I

i Piui;
where pi is the set of true probabilities, (ui) is a set of the utility indices and (Pi) is the set
of weighted probabilities. For the RDEU specification, I assume that the DM ranks the
outcomes from the highest to the lowest. So I can define Pi as: Pi = ∑i

1 w (pi)−w (pi−1)
— where w (.) is the probability weighting function. I use the Power weighting function
for w (.) which can formally be written as: w (p) = pg; g > 0 — where g is the parameter
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of w (.).22 Given this, P1 = w (p1) and RDEU will reduce to EU if w (p1) = p1 everywhere.
The w (p1) is monotonically increasing in the area of [0, 1] with w (0) = 0 and w (1) = 1.

To complete the specification of the EU and RDEU, I use CARA and CRRA to specify
the utility function. The general form of CARA and CRRA, and its application in this
paper, are:

CARA : u (x) =


1−exp(−rx)
1−exp(−rX) ; r 6= 0

x
X

; r = 0

CRRA : u (x) =

 (x+ e)1−r ; r 6= 1
log (x+ e) ; r = 1

; e > 0

where x is the outcome received by the DM in a choice problem, X is the highest outcome
for all choice problems and r is the parameter of risk aversion. I normalise CARA so the
utility index will always be 0 ≤ u ≤ 1. For CRRA, I need to add e because CRRA
does not fully accommodate the case when x = 0 and r < 0, otherwise the function is
undefined.

22There are several forms to specify the probability weighting function, such as Quiggin and Prelec
weighting function. However, a power function is used due to a technical reason.
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Appendix D.3 — Count for best-fitting variant according to the
average corrected log-likelihood23

Variant AIC BIC HQC
RCP CARA 29 29 29
RCP CRRA 4 4 4
CT CARA 0 0 0
CT CRRA 0 0 0
NCT CARA 1 1 1
NCT CRRA 5 5 5
RTE CARA 2 2 2
RTE CRRA 1 1 1
RTL CARA 0 0 0
RTL CRRA 1 0 0
FT CARA 23 24 24
FT CRRA 11 11 11
DCT CARA 0 0 0
DCT CRRA 0 0 0
DNCT CARA 0 0 0
DNCT CRRA 0 0 0

Appendix D.4 — Count for story selection according to the average
corrected log-likelihood

Story AIC BIC HQC
The RCP 33 33 33
The Tremble 6 6 6
The Threshold 38 38 38
The Delegation 0 0 0

23Each variant is abbreviated as follows: RCP = the random-convex preference; CT = the tremble 1;
NCT = the tremble 2; RTE = the random threshold with an exponential distribution of the threshold;
RTL = the random threshold with a log-normal distribution of the threshold; DCT = the delegation
with the tremble 1 specification; DNCT = the delegation with the tremble 2 specification; FT = the
fixed threshold.
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Appendix D.5 — Count for risk aversion from each variant24

Variant AIC BIC HQC
RCP CARA 70 0 7
RCP CRRA 68 0 9
CT CARA 73 0 4
CT CRRA 60 0 17
NCT CARA 63 0 14
NCT CRRA 72 0 5
RTE CARA 67 1 9
RTE CRRA 71 1 5
RTL CARA 66 1 10
RTL CRRA 68 0 9
FT CARA 69 0 8
FT CRRA 64 0 13
DCT CARA 69 0 8
DCT CRRA 63 0 14
DNCT CARA 65 2 10
DNCT CRRA 64 1 12

24The reported count within the RCP story indicates that most of the subjects have their mean of the r
at the risk aversion state.
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Appendix D.6 — Risk aversion of each variant
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Appendix D.7 — Tremble parameter of the related variant
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Appendix D.8 — Extra utility parameter of the related variant
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Appendix D.9 — Reported regression model results for PROPMID

and INTSIZE25

Dependent
Variable

PROPMID INTSIZE

Procedure Simple
Linear

Stepwise Simple
Linear

Stepwise

Constant 5.998∗∗
(1.255)

5.317∗∗
(1.099)

−0.285
(1.329)

0.294
(0.315)

x1 0.185
(0.122)

0.185∗∗
(0.078)

0.058
(0.079)

p1 −2.455∗∗
(0.898)

−1.456∗
(0.586)

2.816∗
(1.132)

2.211∗∗
(0.280)

p3 −0.766
(1.111)

−2.262
(2.386)

−0.841∗
(0.377)

RATIO x2x2 0.312∗∗
(1.112)

0.354∗
(0.104)

0.870
(1.650)

EV 0.108
(0.093)

−0.122
(0.286)

−0.049∗∗
(0.016)

RANGE −0.016
(0.108)

0.203∗∗
(0.019)

0.206∗∗
(0.013)

REPEAT 0.311
(1.119)

0.081
(0.186)

ORDER −0.055
(0.029)

−0.051∗
(0.009)

−0.014
(0.018)

Observations 5,544 5,544 1,830 1,830
Adj −R2/R2 0.012 0.011 0.162 0.161
Subjects 77 77 79 79
Prob. > F 0.000 0.000 0.000 0.000
RMSE 14.206 14.206 N.A N.A
Mean of ŷ 6.319 6.319 N.A N.A
Min. ŷ 3.469 3.749 N.A N.A
Max. ŷ 10.424 10.267 N.A N.A

25Standard errors are in parenthesis; * and ** denote significance at the 5% and 1% respectively. Stepwise
addition (p-values ≥ 0.2) and stepwise removal (p-values ≤ 0.2) produce identical results.
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Appendix D.10 — Instructions

Instructions

Preamble

Welcome to this experiment and thank you for coming. Please read these Instructions
carefully. They will help you to understand what the experiment is all about and what you
are being asked to do during the experiment. This experiment gives you the opportunity
to earn money which will be paid to you in cash after you have completed the experiment.
However there is no participation fee in this experiment; what you earn in the experiment
is what you will be paid. So you must take this experiment seriously. The payment is
described below and it will be added to a show-up fee of £2.50 that you will be paid
independently of your answers.

The Experiment

This is an experiment involving pairwise choices. The pairwise choices will be presented
in a series of preference sheets. There are 72 preference sheets for you to complete, all of
the same type. Each preference sheet has a number of pairwise choices that we will call
it as row. Each pairwise choice will ask you to state your preference between a certain
amount of money (Option A) and a lottery (Option B). On any one preference sheet,
the certain amount (Option A) changes, while the lottery (Option B) remains the same.
Each lottery involves either two or three possible outcomes. All outcomes are positive
amounts, so you are guaranteed not to lose money. You should look at the figure below
for an example of a preference sheet. In each of these, the unchanging lottery (Option
B) is described at the top of the sheet. In each preference sheet, there are several rows,
in each of which there is a pairwise choice — the number of rows depending on the range
between the lowest and highest outcomes in the lottery (Option B) with a decrement
of 25 pence. We refer to the number of row as the number of the pairwise choice. There
are 5 columns in each preference sheet: the first column is the row number; the second
column is the certain amount of money in Option A; the third to the fifth columns are
three answer boxes. You are given 3 answer options to state your preference over Option
A or Option B: i) I choose Option A; ii) I am not sure what to choose; iii) I choose
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Option B. What answer option “ii” means will become clearer when we describe below
how you will be paid.

To state your preference in the sheet, you have to block one answer box in the particular
row. To save your time, if you want, you can block an answer box at the last row that
you think it represents your preference in the particular row and its previous row(s). The
computer will automatically block the previous row(s) for you. There are 2 buttons to
confirm and to modify your answer. If you think your answers represent your preference,
you should click on CONFIRM and you will then go on to the next preference sheet. The
CONFIRM button will be active after 10 seconds if you have answered to all pairwise
choices in a preference sheet. Otherwise it remains inactive. If you wish to modify your
answer, you should click on the CLEAR button. It will clear all of your answers and you
will have to fill in the answer boxes again from the start.

Please notice that you can only choose one answer column in a particular row.

Example

Suppose that you are offered a lottery (this will be the Option B) that gives you a 0.65
chance of winning £30 and a 0.35 chance of winning £15. It means that you can earn
either £30 or £15 if you play out the lottery, each depends on its chance to win (0.65 and
0.35 respectively). This lottery will determine the certain amounts of money (this will be
the Option A) and the number of pairwise choices offered to you in this preference sheet.
In this case, the preference sheet will have 61 rows with the highest certain amount of
money £30 and the lowest certain amount of money £15. So you have 61 pairwise choices
(rows) between 61 different certain amounts of money (as Option A) and an unchanged
lottery as Option B.

On the screen, you will see the problem instructions, Option A and Option B, the prefer-
ence sheet, and the control buttons. An example of the preference sheet on your screen
based on the problem above is:
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The picture above is an example of a particular sheet. Please notice that it has 61 rows
and you must drag down the slider in the right to see all 61 rows. The Option A always
changes 61 times from £30 to £15 with a decrement of 25 pence whereas the Option B
remains fixed when you are asked to state your preference in this particular preference
sheet. The chance of winning each lottery outcome (£30 or £15) in the example above
is 0.65 and 0.35 respectively. You have to click one of the three answer boxes to state
your preference between Option A and Option B. So one answer for one row. There are
2 control buttons as shown below to confirm and to modify your answers. The left one is
the CONFIRM button with a timer on it — this button is to confirm your answers. It
remains inactive for 10 seconds and if you have not completed all pairwise choices. The
right one is the CLEAR button — this button is to modify your answers.
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After 10 seconds and if you have answered to all pairwise choices, the CONFIRM button
will be active. You have to click this button to confirm your answers and to go to the
next problem. If you want to modify your answer, you should simply click the CLEAR
button and it will clear your answers in the current sheet.

Payment

Your payment in this experiment will be determined by your responses during the experi-
ment plus a show-up fee of £2.50. There is no participation fee in this experiment. What
you have done is what you will be paid with. So make sure that you answer every task
seriously. The row in a preference sheet will be a basis of your payment. To determine
the number of the preference sheet, you will be presented a closed bag containing the
numbered disks from 1 to 72, each indicating the number of a preference sheet and is in
integer number. Then you draw a disk by yourself. After that, once again, you will be
presented a closed bag containing numbered disks depending on how many rows there are
in the chosen preference sheet. You pick a disk from the bag to determine which row in
the chosen preference sheet is to be played for real. After you have got the row as your
basis of your payment, these following rules are used to determine your payment:

• If, on the chosen row, your answer is “I choose Option A” then you will get paid
the certain amount of money.

• If, on the chosen row, your answer is “I choose Option B” then you will play out
the lottery for real, being paid one of the outcomes in the lottery.

• If, on the chosen row, your answer is “I am not sure what to choose” then you
will be asked to toss a fair coin. If the coin lands head you will get paid the amount
of money specified in Option A. If the coin lands tail you will play out the lottery
for real, being paid one of the outcomes in the lottery.

How is the lottery played out

You will play out the lottery if your payment basis is the lottery. The lottery gives you
an opportunity to win either £X or £Y or £Z, depending on the lottery setting, each
with its own chance. We will use disks in the closed bag that is numbered from 1 to 100
to represent the chance of winning some money from the lottery. The disks are in integer
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number. There are two basic lottery design: a 2-outcome lottery and a 3-outcome lottery.
Here is the example of a 2-outcome lottery. Suppose you get a lottery that gives you a
0.35 chance of winning £20 and a 0.65 chance of winning £10. Then you are presented a
closed bag with 100 disks in it that are numbered from 1 to 100 and you draw a disk by
yourself. If you draw a disk numbered from 1 to 35 then you will get paid £20. If you
draw a disk numbered from 36 to 100 then you will get paid £10. Here is the example of
3-outcome lottery. Suppose you get a lottery that gives you a 0.25 chance of winning £20,
a 0.50 chance of winning £15 and a 0.25 chance of winning £10. Then you are presented
a closed bag with 100 disks in it that are numbered from 1 to 100 and you draw a disk
by yourself. If you draw a disk numbered from 1 to 25 then you will get paid £20. If
you draw a disk numbered from 26 to 75 then you will get paid £15. If you draw a disk
numbered from 76 to 100 then you will get paid £10.

How long will the experiment last?

It is important for you to consider the problems carefully because your answers determine
how much you can earn from this experiment. Hence we impose a minimum time of 10
seconds for you to respond on each preference sheet. This means that you can go on to
the next preference sheet after 10 seconds providing that you have answered all pairwise
choices in that sheet. There is no maximum time to complete each preference sheet but
you still have to complete all pairwise choices to go on to the next preference sheet. Please
notice that you cannot go back to the previous preference sheets. We estimate that the
experiment will take at least 45 minutes of your time. You can take longer and it is clearly
up to your interests to be as careful as you can when you are answering the questions.
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Questionnaire

Subject Number:

Please provide us the following information about you.

Q. Sex: Male/Female (Cycle the right one)

Q. Age: What is your age?

Q. Ethnicity origin: Please specify your ethnicity. (Cycle the right one)

• White • Hispanic or Latino • Black or African American • Native Amer-
ican or American Indian • Asian / Pacific Islander • Other

Q. Education: What is the highest degree or level of school you have completed? If
currently enrolled, highest degree received. (Cycle the right one)

• No schooling completed • Nursery school to 8th grade • Some high school,
no diploma • High school graduate, diploma or the equivalent (for example: GED)
• Some college credit, no degree • Trade/technical/vocational training • As-
sociate degree • Bachelor’s degree • Master’s degree • Professional degree
• Doctorate degree

Please answer also the following questions

Q. Are you currently a student? If so, in which level you are currently enrolled?

Q. What are you studying?

Q. Do you have any work experience in Economics? If so, for how long did/do you work
in this field and which was/is your job title/titles?

Q. Have you participated in economics experiments in the past?

Q. Did you feel impatience during the experiment? (Cycle the right one)
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1: Not at all 2: Mainly disagree 3: Neither agree nor disagree 4: Mainly
agree 5: Totally agree

Q. Did you feel stress during the experiment? (Cycle the right one)

1: Not at all 2: Mainly disagree 3: Neither agree nor disagree 4: Mainly
agree 5: Totally agree

Q. Which is your risk aversion level? From 1 to 5 the risk aversion level is increasing.

(Cycle the right one)

1 2 3 4 5

Q. What did you like in the experiment?

Q. What you did not like in the experiment?

Q. Any suggestions for improvement?

Thank you for your participation!

Yudistira Permana

October 2017
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5 On the optimal strategy for the
hedge fund manager: An
experimental investigation

Abstract – This section examines the empirical validity of Nicolosi’s model (2018) which
investigates the optimal strategy for a hedge fund manager under a specific payment con-
tract. The contract specifies that the manager’s payment consists of a fixed payment and
a variable payment, which is based on the over-performance with respect to a pre-specified
benchmark. The model assumes that the manager is an Expected Utility agent who max-
imises his or her expected utility by buying and selling the asset at appropriate moments.
Nicolosi derives the optimal strategy for the manager. To find this, Nicolosi assumes
a Black-Scholes setting where the manager can invest either in an asset or in a money
account. The asset price follows geometric Brownian motion and the money account has
a constant interest rate. I experimentally test Nicolosi’s model. To meet the aim of this
paper, I compare the empirical support of Nicolosi’s model with other possible strategies.
The results show that Nicolosi’s model receives strong empirical support for explaining the
subjects’ behaviour, though not all of the subjects follow Nicolosi’s model. Having said
this, it seems that the subjects somehow follow the intuitive prediction of Nicolosi’s model
in which the decision-maker responds to the difference between the managed portfolio and
the benchmark to determine the portfolio allocation.

*****
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5.1 Introduction

The hedge fund industry has grown enormously in the last few decades. It may be best
defined as the private investment vehicle deploying a wide range of investment strategies
in order to achieve a high rate of return, though there are alternative definitions for it
(Hildebrand 2005). It has a wide variety of investments such as stock, bonds, real estate
and other commodities. The hedge fund manager is then responsible to manage the
investor’s funds under a specific contract. The contract initially specifies the investor’s
target (usually referred to as the benchmark), the investment period and the payment
scheme. The payment typically is based on the manager’s performance with respect to a
pre-specified benchmark; though the benchmark may be arbitrarily set by the investor.
The better is the manager’s performance with respect to the benchmark, the higher is the
manager’s payment.

Clearly, the payment scheme determines the manager’s behaviour, given his or her risk
attitude, in managing the investor’s funds (Palomino and Prat 2003). The investor em-
ploys this payment scheme to meet his or her benchmark, and the manager maximises his
or her expected utility by buying and selling the asset at appropriate moments given the
payment scheme. So once the contract is agreed, the manager chooses his or her portfolio
strategy, given the risk attitude, to ensure beating the benchmark at maturity, in order
to maximise the manager’s utility.

Much literature has explored the optimal portfolio strategy for the hedge fund manager in
order to maximise his or her expected utility under a specific contract. Notable amongst
these recently are Browne (1999), Carpenter (2000), Gabih et al. (2006), Hodder and
Jackwerth (2007), Panageas and Westerfield (2009), Guasoni and Obloj (2016) which
investigate the optimal portfolio choice for the manager in continuous-time with respective
to a selected benchmark by the investor; this literature being motivated by the work of
Merton (1969, 1971).1 One clear conclusion from this literature is that the benchmark
level determines the manager’s behaviour, given his or her risk attitude (measured by the
level of risk aversion). In particular, this literature investigates how the manager’s risk
attitude affects his or her allocation decision: that is, how much to allocate in the risky
asset. Generally, the literature shows that the manager is highly likely to hold more of
the asset (that is, take on more risk) when the portfolio value is below the benchmark, in
order to increase his or her chance of ending up with a higher payment. Contrariwise, the
manager should reduce his or her portfolio volatility (by holding less of the asset) when

1This benchmark can be either fixed or variable. The fixed benchmark usually is the expected return
from the investment funds whereas the variable benchmark usually is the portfolio value at maturity
following the investor’s portfolio allocation choice.
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the performance is relatively above the benchmark.

This section examines the empirical validity, with a laboratory experiment, of a recent
theory — that of Nicolosi (2018). This theory investigates the dynamic optimal strategy
for the hedge fund manager under a performance-based payment. In his model, Nicolosi
specifies two types of payment: a fixed payment and a variable payment, where the variable
payment is based on the over-performance at maturity with respect to the benchmark. So
the manager surely earns the fixed payment and will earn the variable payment depending
on what he or she achieves. The benchmark is a linear combination of the investment
invested in the risky and riskless assets, and the over-performance is achieved if the
manager makes a higher portfolio value than that of the benchmark at maturity. Nicolosi
imposes two important rules of the game: 1) the manager allocates the fund between an
asset (risky) and a money account (riskless), and 2) the manager’s performance is assessed
by the value of the portfolio at maturity. He also assumes that the asset price follows
geometric Brownian motion while the money account provides a constant interest rate.

Nicolosi derives the optimal portfolio strategy for the manager to maximise his or her
expected utility subject to the given investment funds. The optimal strategy is dynamic
portfolio choice decisions that maximizes the manager’s expected utility at maturity. The
intuition behind this solution is similar to the existing literature in which the optimal
strategy manages the manager’s risk-taking behaviour, given his or her level of risk aver-
sion, in order maximise his or her expected utility at maturity. One crucial implication
of Nicolosi’s story is that, during the trading period, the manager should not hold a high
allocation in the asset when his or her portfolio is above the benchmark. Mutatis mutan-
dis, the manager should allocate his or her portfolio to the asset when his or her portfolio
value is lower than that of the benchmark. Following the optimal strategy, thus, helps
the manager to end up earning both fixed and variable payments as his or her portfolio
value is higher than that of the benchmark at maturity — hence receiving the maximum
utility.

The aim of this section is to investigate how close is actual behaviour to the optimal
strategy of Nicolosi’s model given the estimated risk aversion. Actual behaviour is then
compared with other strategies to check the empirical validity of Nicolosi’s model. I esti-
mate the individual risk aversion — elicited from the actual choice — which best explains
behaviour and use it to compute the optimal strategy and the portfolio value at maturity.
In the next section, I describe Nicolosi’s model. Section 5.3 describes the experimental
design, Section 5.4 describes the econometric specification, Section 5.5 presents the results
and analysis, and Section 5.6 discusses and concludes.
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5.2 Nicolosi’s model of the fund manager

Nicolosi explores the optimal strategy for the hedge fund manager who wants to maximise
his or her expected utility subject to the investment funds. The hedge fund manager
receives investment funds (W0) from the investor and takes responsibility to invest in the
financial market. There are two types of the financial market where the manager can
invest, the risky asset market and the money market. The risky asset market trades an
asset whose price (S) fluctuates over time t. The money market is riskless and gives a
constant return (r). What the manager does then is to set portfolio allocation to be
invested in the asset (θ) and in the money market (1− θ).

The investor asks if the manager can achieve, at least, the benchmark (Y ) from the
investment funds over an investment period T .2 This benchmark is the basis of the
manager’s performance measure and it is used to determine his or her payment; this
payment will be explained later. The investor arbitrarily sets his or her benchmark as the
value at maturity of a portfolio with a constant proportion (β) invested in the asset and
a constant proportion (1− β) in the money market. The investor then sees what would
happen to his or her benchmark value at maturity (YT ) following this scheme.

The manager agrees on a contract, determined by the investor, which sets the investment
period and the payment scheme for the manager. The investor pays the manager depend-
ing on what the manager achieves at maturity (WT ). The payment (Π) consists of two
terms, a fixed and a variable payment. The fixed payment is a percentage (K) of the
initial investment funds and the variable payment is a share (α) on the over-performance
(WT − YT )+ relative to the benchmark. It is assumed that there is no penalty for the
manager if he under-performs relative to the benchmark.3 It follows that the manager
will always earn non-negative payment irrespective of his or her performance. However
the better is the performance compared to the benchmark, the higher is the payment for
the manager.

Nicolosi assumes a Black-Scholes setting4 with the asset price following standard geometric

2One may also refer this to as the “investment planning horizon”.
3Despite this assumption, there may be various implementation to be taken for the case of under-
performance considering that the investor pays a relatively high amount payment for the manager.
For example, a percentage deduction to the fixed payment depending on the magnitude of the under-
performance.

4Black-Scholes setting has following assumptions: a) there are two types of market, the asset market
(risky) and the money market (risk-free), b) asset pays no dividend and there is no transaction cost
in the market, c) asset price reflects all information in the asset market, d) asset price is exogenous
to all agents, e) it is possible to borrow and lend cash at riskless rate as well as doing short-selling,
f) the asset price change is random with known parameters, and g) it is possible to buy and to sell
asset at any time. This assumption is important in the model in order to draw stochasticity of the
asset price.

97



5 On the optimal strategy for the hedge fund manager: An experimental investigation

Brownian motion. We can write this as: dSt = St (µdt+ σdZt); where St is the asset price
at time t ∈ [0 T ), µ and σ are trend and volatility of the asset price respectively, and Z is
a standard Brownian motion which follows N (0, 1). The asset price follows a geometric
Brownian motion, hence it is defined as:

St = S0 exp(µ−0.5σ2)t+σVt (5.2.1)

where Vt = Ztd
0.5
t is the increment of a Wiener process5 and S0 is the initial asset price.

Both the manager and the investor are aware of this process and its parameters.

Given the contract, the investor will pay the manager with a linear combination of the
fixed and the variable payment which can be written as: Π = K + α (WT − YT )+. The
first term is the fixed payment (K) and the second term is the variable payment where
α is a proportion of the positive underlying managed portfolio minus the benchmark at
maturity (WT − YT )+. So the higher is the (WT − YT )+, the higher is the manager’s
payment.

The manager is assumed to be an Expected Utility (EU) agent who maximises his or her
expected utility from the payment in managing the investment fund. The model assumes
that the utility function of the manager is that of constant relative risk aversion (CRRA)
with a parameter risk aversion γ.6 In addition, it assumes that the manager is strictly
risk-averse, so that γ > 0. Therefore the manager’s problem is written as follows:

max
WT

E
[
u
(
α (WT − YT )+ +K

)]
st E

[
ξT
ξ0
WT

]
= W0 (5.2.2)

where ξ is the state price density7 which is defined as ξT = exp−(r+0.5X2)T−XZT and
ξ0 = 1 – where X = (µ−r)

σ
and X > 0. Although Equation 5.2.2 is a static problem, it

is maximised through optimising the dynamic problem throughout the investment period
by setting the optimal allocation θ∗ subject to Wt.8 Crucial to this approach is to define
the optimal portfolio at maturity (W ∗

T ). Carpenter (2000) proposes the solution of this

5Wiener process (Vt) has the following properties: a) it is continuous, b) its change process is independent
of the previous values, c) its increment process follows N (0, dt), d) V0 = 0.

6See Appendix E.1 for the specification of CRRA utility function.
7State price density contains important information on the behaviour and expectations of the market
(Hardle and Hlavka 2009). It follows a log-normal distribution in the Black-Scholes setting.

8Equation 5.2.2 is the implication of the martingale approach used in the model which decomposes
a dynamic optimisation problem max

θ
E
[
u
(
α (WT − YT )+ +K

)]
s.t. Wt into a static optimisation

problem as in Equation 5.2.2. This determines the optimal condition at maturity. Next step is to find
the portfolio strategy that leads to the optimal condition at maturity. This approach was notably
developed by Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989) among others.
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problem in which W ∗
T depends on YT , since the manager would never want WT ∈ (0, YT ],

and the realisation of ξT . It is given by:

W ∗
T =

{[
I

(
λ∗ξT
α

)
−K

]
1
α

+ YT

}
I{ξT≤ξ∗} (5.2.3)

where I (X) = (u′)−1 (x) is the inverse function of the marginal utility and I{.} is the
indicator function over {.} and ξ̂ is the threshold state price density. As a part of the
solution, there exists a unique Lagrange multiplier λ∗ > 0 to ensure that E

[
ξT
ξ0
WT

]
= W0

is satisfied for any W ∗
T > YT .

Proposition 1 of Nicolosi’s model proposes the optimal portfolio strategy throughout the
investment period (W ∗

t ) that leads to the optimal portfolio at maturity (W ∗
T ). Given the

manager’s risk aversion γ, the optimal portfolio strategy W ∗
t for any β ≤ βm — where

βm = X
σ
— is:

W ∗
t = 1

ξt
Et [ξtW ∗

t ] (5.2.4)

where Et [.] is the expectation of the optimality conditional to the information at time
t which is ξt. Since ξ follows Markovian process, for which the future probability is
determined by its most recent value, we can rewrite ξT as:

ξT = ξt exp−(r+0.5X2)(T−t)−X(ZT−Zt) (5.2.5)

The corresponding optimal strategy to achieve W ∗
t as in Equation 5.2.4 given the man-

ager’s risk aversion γ is:

θ∗t = θM + βm
W ∗
t

(
−1
γ
C2 (t)N (d2 (t, ξt)) +

(
β

βm
− 1
γ

)
C3 (t) ξ

− β
βm

t Φ (d3 (t, ξt))

+C1 (t) ξ
− 1
γ

t exp−0.5d1(t,ξt)2

X
√

2π (T − t)
+ C2 (t) exp−0.5d2(t,ξt)2

X
√

2π (T − t)
+ C3 (t) ξ

− β
βm

t exp−0.5d3(t,ξt)2

X
√

2π (T − t)


(5.2.6)

where θM = βm
γ

is the Merton’s strategy (1971) in the dynamic optimisation problem
without compensation scheme and Φ (.) is the cumulative distribution function (cdf ) of
the normal distribution. What C1, C2, C3, d1, d2 and d3 mean are defined in Appendix E.2.
All parameters in Nicolosi’s model are pre-determined except the risk aversion γ; both λ∗
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and ξ̂ are solved from the solution to the final optimal portfolio (W ∗
t ) as in Equation 5.2.3.

Therefore this section reports on an experiment to see how close the subjects’ choices are,
of the θt, to those optimal choices as in the theory and elicit the risk aversion γ from the
subjects’ choice.

5.3 Experimental design

The actual experiment design differs in two aspects from the theoretical design: a non-
consequential and a consequential difference. The non-consequential difference is that the
experimental design implements a discrete approximation to the continuous time problem,
due to computer system limitation. Each discrete time step has a length dt = 0.1 second
— hence the asset price changes every 0.1 second. The consequential difference is that
the subjects were allowed to allocate their portfolio in the asset market (θ) only between
0% and 100%. By this, the subjects were not allowed to short-sell so avoiding a large
negative payment for the subjects. However, the theory allows −∞ < θ <∞.

There were ten problems in the real experiment, all of the same type; the number of
problems was chosen arbitrarily considering the experiment duration. It was preceded by
two practice problems. The subjects were given paper and on-screen instructions, and a
simulation practice to generate the actual asset price with adjustable parameters (µ and
σ) before going on to practice session.9 They were informed (in non-technical terms) that
the asset price followed geometric Brownian motion, and were presented with as many
simulations as they liked of such motion. Each simulation lasted for one minute; subjects
could see how as many simulated asset price path as they wanted. After they were clear of
what being asked to do and of how the asset price is generated, they started the practice
session; after that, they started the real experiment. At the beginning of every problem,
subjects were told all parameters for that problem (S0, K, α, T, t, β, µ, σ,W0, r); the initial
price S0, initial wealth W0, and interest rate r are always 25 ECU, 100 ECU, and 0 ECU
respectively in every problem. They were also given six examples of the asset price chart
for given parameters in every problem. Given all these information, subjects were asked
to set their θ0 before the trading period.

Subjects were shown all update information during trading (the managed portfolio value
in the asset, in the money account and in total, the benchmark value, the asset price,
trading time and portfolio allocation in both asset and money market). They adjusted
their portfolio allocation in the stock market using a slider. In addition, short instructions
and the parameters used were displayed on the trading screen. They could start trading

9The paper instructions can be seen in Appendix E.10
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anytime they wished by clicking the “START” button. Each problem lasted for one
minute in the practice session and three minutes in the real experiment. In addition,
subjects were shown their performance (the managed portfolio value, the benchmark
value and the payoff) by the end of every problem.

Monetary incentives were provided in accordance with the theory. One problem from the
main experiment was randomly drawn for the subjects’ payment. Subjects were asked to
draw a disk themselves from a closed bag containing the numbered disks from 1 to 10 —
this identifies the problem number. The conversion rate is £1:3 ECU rounded up to the
nearest 5 pence. The payment then will be added to a show-up fee of £3.

The experiment was conducted in the EXEC Lab, University of York. Invitation mes-
sages were sent through hroot (Hamburg registration and organization online tool) to all
registered subjects in the system. 73 university members participated in this experiment:
46 males and 27 females. Composition of their educational degree was: 49 subjects were
bachelor, 15 subjects were master, 7 subjects were PhD, 1 subject was diploma and 1
subject did not report his or her educational degree. I targeted the subjects who were
or had been enrolled in the specific study that teaches finance and/or Brownian motion
(e.g. Economics, Finance, Physics, Mathematics, and Statistics). Most of them (48 sub-
jects) had participated in at least one economic experiment prior to this experiment. The
average payment to the subjects was £8.1 and the average duration of the experiment
(including reading the instructions) was around one and quarter hours. Communication
was prohibited during the experiment. The experimental software was written (mainly
by Alfa Ryano) in Python 2.7.

5.4 Econometric specification

I use maximum likelihood to estimate the parameter of the model — risk aversion (γ),
estimating subject by subject. Maximum likelihood requires a specification of the stochas-
tic nature of the data to capture the noise or error in the subjects’ choice (θt). I assume
this error is independent in every period during trading (t). Since the optimal choice
(θ∗t ) takes any values, I consider a normal distribution to specify the stochastic story to
account for this case. I assume that the choice of θt is normally distributed with mean
θ∗t (so that there is no bias) and standard deviation ς; I will report s = 1

ς
which indicates

the precision. My estimation takes into account the difference between the model and the
actual the latter is bounded between 0 and 1 — as I have explained above.

Before I turn to the specification of the log-likelihood function, I introduce further no-
tations which will be used in the estimation to create an interval around θt since the
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log-likelihood function is continuous, while the actual choices were discrete, with steps of
0.1 second:

θ+
t = θt + 0.005
θ−t = θt − 0.005

(5.4.1)

Given these notations, the log-likelihood function finds the probability that θt lies within
θ+
t and θ−t for any given γ (risk aversion). Under this specification, the contribution to
the likelihood of an observation θt is:

θt = 0⇔ Φ
(
θ+
t , θ

∗
t ,

1
s1

)
0 < θt < 1⇔ Φ

(
θ+
t , θ

∗
t ,

1
s

)
− Φ

(
θ−t , θ

∗
t ,

1
s1

)
θt = 1⇔ 1− Φ

(
θ−t , θ

∗
t ,

1
s1

) (5.4.2)

where Φ is the cdf of a normal distribution with parameters θ∗t (mean) and 1
s1

(standard
deviation) given an observation θt. For this specification, I estimate γ1 (risk aversion) and
s1 (precision).

I also estimate using the average dataset. This is addressed to minimise the noise since
the discrete time step (t) is quite fast (0.1 second). By this, I take an average of the
dataset on every second, excluding the initial decision which remains as a single data —
that is every 10 discrete time step (t). I denote subjects’ choice as θ̄i in this specification
where i is the average discrete time step. Given this specification, the contribution to the
likelihood of an observation θ̄i is:

θ̄i = 0⇔ Φ
(
θ̄+
i , θ̄

∗
i ,

1
s2

)
0 < θ̄i < 1⇔ Φ

(
θ̄+
i , θ̄

∗
i ,

1
s2

)
− Φ

(
θ̄−i , θ̄

∗
i ,

1
s2

)
θ̄i = 1⇔ 1− Φ

(
θ̄−i , θ̄

∗
i ,

1
s2

) (5.4.3)

where θ̄+
i = θ̄i+0.005 and θ̄−i = θ̄i−0.005. Let me call these two specifications as Nicolosi

1, following the specification in Equation 5.4.2, and Nicolosi 2, following the specification
as in Equation 5.4.3. As with previous specification, I estimate γ2 (risk aversion) and s2

(precision) in this specification.

One may think of other stochastic assumptions to underlie estimation. For example, I
could use a beta distribution to specify the stochastic of the subjects’ choices since they
are bounded between 0 and 1. However, I start simple in this section with a normal
distribution specification.

To give a proper assessment to Nicolosi’s model, I fit the data additionally assuming both
random and risk-neutral choices. The former (random choice) assumes that the choice of
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θt is random following a normal distribution. The latter (risk-neutral choice) assumes that
the choice of θt follows risk-neutral behaviour. Theoretically, the risk neutrality returns
either −Inf or Inf , depending on the asset price change. Here I assume that θt is 1 if
the asset price goes up, otherwise 0 if the asset price goes down. Note crucially, neither
of these alternatives involves parameter risk aversion γ.

Again, I consider a normal distribution to specify the stochasticity for both random and
risk-neutral choices. I also estimate using both all observations and the average dataset.
The contribution to the log-likelihood for these specifications adopts Equation 5.4.2 and
5.4.3 as appropriate. For these specifications, let me call the random choice specification
as Random 1 (for the all-observation estimation) and Random 2 (for the average-dataset
estimation), and Risk Neutral 1 (for the all-observation estimation) and Risk Neutral 2
(for the average-dataset estimation) for risk-neutral choices.10

5.5 Results and analyses

One main purpose of this section is how well Nicolosi’s model explains the subjects’ choice
compared to other strategies (random and risk-neutral choices). The analyses for this
purpose use all observations and average dataset from the real experiment. The former
sees 1,801 decisions while the latter sees 181 decisions in each problem for each subject.
However, the risk-neutral choice will see 1,800 and 180 decisions respectively, excluding
the initial decision, since it is drawn following the realisation of the price change.

Additionally, I develop a simple strategy from a regression model using variables in Ni-
colosi’s model. This is a simplification of the theory as in Equation 5.2.6; hereinafter
referred to as Simple 1 (for the all-observation estimation) and Simple 2 (for the average-
dataset estimation). As previously, I compare Nicolosi’s model and this simple strategy
given the estimated risk aversion γ from both the all-observation and average-dataset
estimations.

Before going on the main analyses, I estimate the individual risk aversion and precision
in Nicolosi 1 and Nicolosi 2, which can be found in Appendix E.3 and E.4. The results
between both estimates show that estimate in Nicolosi 2 returns less risk-averse and
higher precision on average than that of estimates in Nicolosi 1.11 This can be a further
point of interest, but I take this merely as a consequence of using different approach since
the main purpose of this study is to test the empirical validity of Nicolosi’s model.
10I use the patternsearch routine in Matlab to maximise the log-likelihood function in all specifications.
11The average estimated risk aversion in Nicolosi 1 is 2.3353 compared to 0.5778 from the result in

Nicolosi 2. Meanwhile, the average estimated precision Nicolosi 1 is 1.3556 compared to 1.4763 from
the result in Nicolosi 2; with θt is bounded between 0 and 1 whereas θ∗

t is unbounded.
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The estimated risk aversion then is used to compute the optimal portfolio value indi-
vidually as in Equation 5.2.6. It should be the case that following the optimal strategy
will return a better portfolio than that of the benchmark given the estimated risk aver-
sion. There are 730 portfolios at maturity in total from 10 problems across 73 subjects.
Appendix E.5 shows comparisons of the optimal portfolio and the benchmark values at
maturity across all problems in both Nicolosi 1 and 2. Results from Nicolosi 1 show
that all of the optimal portfolios (730 portfolios) are better than that of the benchmark,
meanwhile results from Nicolosi 2 show that 711 optimal portfolios (97.4% of the total)
are better than that of the benchmark given the individual estimated risk aversion. This
shows that following the optimal strategy of Nicolosi is highly likely to end up with both
payments (fixed and variable payments). In addition, the optimal portfolios return the
higher utility than that of the actual portfolios — as shown in Appendix E.6.12 This is
hardly surprising.

5.5.1 Nicolosi’s model vs random and risk-neutral strategies

Now we move on to the first comparison between Nicolosi’s model and the random and
risk-neutral strategies. The concern is to find the best-fitting strategy as the explanation
of the individual behaviour in selecting the portfolio allocation between the asset and the
money account with Nicolosi’s model as the subject to test. I measure the goodness-of-fit
by maximising the log-likelihood function, as specified in the Equation 5.4.2 and 5.4.3,
but we need to correct the maximised log-likelihood for the number of parameters in each
specification — Nicolosi’s model has two estimated parameters while each of random and
risk-neutral choices has one estimated parameter. In particular, I simulate 100 times
each to generate the dataset for both random choices (Random 1 and 2 ), then taking its
average log-likelihood.

I use the Akaike Information Criterion (AIC) as the measure of the goodness-of-fit to
find the best explanation for each subject. The details of the judgment can be seen
in Appendix E.7 and E.8. With the all-observation estimation — between Nicolosi 1,
Random 1 and Risk Neutral 1 — of all 73 subjects, 49 subjects are better explained with
Risk Neutral 1 while the other 24 subjects are better explained with Nicolosi 1 ; Random
1 is always the worst. Nevertheless, with the average-dataset estimation, 40 subjects are
better explained with Nicolosi 2 while the other 33 subjects are better explained with Risk
Neutral 2 ; Random 2 remains the worst. This finding obviously shows that subjects did

12This sees 535 optimal portfolios (73.29% of the total) returns the better utility than that from the
actual portfolios from results in Nicolosi 1 ; and 665 optimal portfolios (91.1% of the total) returns
the better utility than that from the actual portfolios from results in Nicolosi 2.
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not randomise their choice in allocating their portfolio — that they followed some specific
strategies for this. In particular, averaging the dataset improves the goodness-of-fit of
Nicolosi’s model. This may be the evidence that subjects somehow follow the optimal
strategy as in Nicolosi’s model but having difficulties to be as precise as the theory.

So far it is obvious that subjects did not randomise their choices, and that following
the optimal strategy is highly likely to end up with a better portfolio than that of the
benchmark. As it also has shown, Nicolosi’s model receives the most empirical support
on the average level. Nevertheless, subjects might find it difficult to follow the optimal
strategy of Nicolosi, which involves sophisticated dynamic programming, given his or
her risk aversion — calculating and implementing as precise as the optimal strategy.
Results from estimated precision show that the subjects’ choices are noisy compared to the
optimal strategy in both Nicolosi 1 and 2 ; with average estimated precisions are 1.3556
(or standard deviation 0.7377) and 1.4763 (or standard deviation 0.6774) respectively.
However, they must respond to some variables shown on the screen to determine their
choice.

5.5.2 Nicolosi’s model vs the simple strategy

Building on the previous results, I try to explore the determinants of the subjects’ choice
in a simple way using a regression model. Following Nicolosi, the portfolio allocation
in the asset (θt) should not be constant, as the Merton’s strategy

(
θM = βm

γ

)
, when the

managed portfolio value is lower than that of the benchmark during trading in order to
increase the chance to beat the benchmark at maturity. In particular, θt tends to be low,
during trading, when the portfolio value (Wt) is higher than that of the benchmark (Yt),
vice versa. So I involve the difference between the managed portfolio and the benchmark
(Wt − Yt) in the regression model; I denote this as ∆t. In addition, I also involve the
asset price (St) and the benchmark value (Yt) since they were shown to the subjects in
the experimental interface — I denote θ̄, S̄, Ȳ and ∆̄ for variables used in Simple 2. The
regression results from Simple 1 and Simple 2 are as follows:13

θt = 43.649
(0.129) ∗

− 0.0145St
(0.005) ∗

+ 0.115Yt
(0.002) ∗

− 0.008 ∆t
(0.002) ∗

(5.5.1)

θ̄i = 43.672
(0.401) ∗

− 0.042 S̄i
(0.017) ∗∗

+ 0.115 Ȳi
(0.007) ∗

− 0.008 ∆̄i
(0.004) ∗∗∗

(5.5.2)

13I use a simple linear procedure in both regression models. Standard errors are in parentheses and *,
**, *** denote the significance at 1%, 5%, and 10% respectively. All coefficients are jointly not equal
to zero in both regression models. Adjusted R2 in both models are 0.0094 and 0.0097 respectively,
and the number of observations is 1,314,730 and 132,130 respectively.
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I use percentage values for θ, t is time step and i is average time step. Overall results
from both regression model above show that all independent variables are significant in
determining the subjects’ choice — the signs of the independent variables are identical.
Both the asset price and the difference between the managed portfolio and the benchmark
have a negative effect to the subjects’ choice, meanwhile, the value of the benchmark has
a positive effect to the subjects’ choice. These results are sensible and intuitive. Overall,
subjects tended to buy the asset when its price is low and to sell the asset when its price is
high; to some extent, it is commonly known as “buy low, sell high” strategy. This strategy
is possibly the most famous adage in making profits from the asset market. Moreover,
subjects tended to hold the asset as they saw the benchmark value was high. Lastly,
subjects were consistent with the theoretical prediction in which they were unlikely to
hold the asset when their portfolio value was relatively far above the benchmark.

Building on the regression results, I then run the regression model individually using the
same structure as in Equation 5.5.1 and 5.5.2. This is to give a comparison of which
model to have a better explanation for each subject between Nicolosi’s model and the
simple strategy using their measure of the goodness-of-fit; I compare between Nicolosi
1 and Simple 1, and between Nicolosi 2 and Simple 2. Since the models have different
specifications, hence different degree of freedom, I calculate the AIC to correct for differing
degrees of freedom.14 I compare them and have a conclusion accordingly for each subject.

Results from two estimation procedures (using all observations and the average dataset)
produce a slightly different AIC conclusion. With the all-observation estimation, 37 sub-
jects are better explained with Nicolosi’s model; 36 subjects are better explained with the
simple strategy. Meanwhile, with the average-dataset estimation, 36 subjects are better
explained with Nicolosi’s model; 37 subjects are better with the simple strategy. The
details of the judgment can be seen in Appendix E.9.

5.6 Discussion and conclusion

This section examines Nicolosi’s model (2018) by investigating the subjects’ behaviour in
order to follow the optimal strategy of Nicolosi in a controlled-lab experiment. Subjects act
as if they are the hedge fund manager who takes a responsibility to manage the investor’s
funds. The manager agrees on a contract, determined by the investor, who pays the
manager with a two-term payment: the fixed payment and the variable payment, where
the variable payment is a share-based on the over-performance with respect to the specific

14The AIC is given by 2k – 2LL, where k is the number of estimated parameters and LL is the log-
likelihood.
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benchmark.

I follow Nicolosi’s design in which there are two markets for the manager to invest: the
asset market and the money market. The asset price follows geometric Brownian motion
and subjects were aware of all parameters used in the experiment. However, there are non-
consequential and consequential differences in the experimental setup from the theoretical
design. The former relates to the computer limitation to implement the continuous time in
generating the asset price, hence I use the discrete approximation to the continuous time
with an increment of 0.1 second. The latter restricts the maximum portfolio allocation
between the asset and the money account. This is addressed to prevent the subjects from
a negative payoff from short-selling since it may have an unlimited loss.

To give a proper assessment of the empirical validity of Nicolosi’s model, I compare its
optimal choice, given the estimated subjects’ risk aversion, with two alternative strate-
gies. First, I compare the optimal choice of Nicolosi’s model with random and risk-neutral
choices. The random choice generates θ (portfolio allocation in the asset market) ran-
domly following a normal distribution while the risk-neutral choice generates θ as if the
subject was a risk-neutral agent; put everything on the asset if the asset price goes up,
otherwise nothing if the asset price goes down. Second, I compare the optimal choice of
Nicolosi’s model with the simple strategy, developed using a regression model. One obvi-
ous conclusion from the first assessment is that subjects did not randomise their choice.
They followed some specific strategies to maximise their utility from the experiment. Of
all subjects, 24 subjects are better explained with Nicolosi’s model while the other 49
subjects are better explained with risk-neutral choice using all the observations. We get
a different conclusion if we use the average dataset. Of all subjects, 40 subjects are bet-
ter explained with Nicolosi’s model; the other 33 subjects are better explained with the
risk-neutral choice.

Building on the previous results, I then develop a regression model to provide the simple
strategy in which subjects may plausibly have followed. With this simple strategy, one
tends to hold the asset when its price is low and to sell the asset when its price is high.
In addition, one manages its portfolio value depending on the benchmark value and the
difference between the managed portfolio and the benchmark. I compare Nicolosi’s model
with this simple strategy individually — as with the previous analysis. The comparison
sees that 37 subjects are better explained with Nicolosi’s model, 36 others are better
explained with the simple strategy, using all observations. If we use the average dataset,
we get slightly different results: of all subjects, 36 subjects are better explained with
Nicolosi’s model, while 37 others are better explained with the simple strategy.

Although the optimal strategy of Nicolosi ensures a high possibility to end up with both
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fixed and variable payments, hence the maximum utility, subjects found it difficult to
follow. As it has shown, the subjects’ choices are noisy compared with the optimal
strategy. One may argue that subjects could have more precise computation if they
were well accommodated in the experiment since Nicolosi’s optimal strategy involves
sophisticated dynamic programming. For example, we could ask the subject to specify
their own strategy to be implemented during trading at the beginning of each problem,
and they are free to adjust their strategy at any time. Will it improve the empirical
validity of the theory? I may not think so because it depends on how subjects understand
the random process in the asset price, hence determining the benchmark value.

Alternatively, we could go further with other models within similar substantial framework
of Nicolosi’s model. Among these are Nicolosi et al. (2018) and Herzel and Nicolosi (2019).
Both provide the optimal solution for the fund manager, similar to Nicolosi (2018), who
invests in one riskless asset and several risky assets. However the former assumes that
there is no fixed payment, instead the manager is compensated with implicit incentives as
shown in Chevalier and Ellison (1997). By this the asset under management is multiplied
if the manager performs well due to the inflow in the investor’s funds, otherwise a part
of the asset under management is withdrawn. Other possibility is to model the subjects’
choice assuming one preference function within either risk or ambiguity frameworks as
shown in He and Zhou (2011) and Ahn et al. (2014), though they do not take into
account the payment scheme for the fund manager; but they are not restricted only for the
risk-averse agent case. Nevertheless, Nicolosi’s model receives strong empirical support in
explaining the subjects’ behaviour. In addition, the subjects follow the intuitive prediction
of Nicolosi’s model where the difference between the managed portfolio and the benchmark
determines the subjects’ choice.
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Appendices

Appendix E.1 — Specification of CRRA utility function

Nicolosi’s model assumes that the manager is utility maximiser specified with CRRA
utility function. It can be written as:

CRRA : u (x) = x1−γ

1− γ ; γ > 0, γ 6= 1

The manager is assumed to be strictly risk-averse and the function is undefined when
γ = 1. However I apply CRRA utility function so it is able to accommodate when γ = 1
as follows:

CRRA : u (x) =


x1−γ

1−γ ; γ 6= 1

log (x) ; γ = 1

Appendix E.2 — Definitions to Equation 5.2.6

Solution in Equation 5.2.6 contains some components (C1, C2, C3, d1, d2 and d3) where
they are defined as follows:

C1 (t) = 1
α

(
λ∗

α

)− 1
γ exp

[(
1
γ
− 1

) (
r + 1

2γX
2
)

(T − t)
]

C2 (t) = −K
α

exp [−r (T − t)]

C3 (t) = Y0AT exp
[(

β
βm
− 1

) (
r + 1

2βαX
)

(T − t)
]

d1 (t, ξt) =
ln
(
ξ̂
ξ

)
+(r− 1

2X
2(1− 2

γ ))(T−t)

X
√
T−t

d2 (t, ξt) =
ln
(
ξ̂
ξ

)
+(r− 1

2X
2)(T−t)

X
√
T−t

d3 (t, ξt) =
ln
(
ξ̂
ξ

)
+(r− 1

2X
2(1− 2β

βm
))(T−t)

X
√
T−t

AT = exp
[(
r + 1

2βσX −
1
2β

2σ2 − r βσ
X

)
T
]
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Appendix E.3 — Estimated individual risk aversion and precision in
Nicolosi 1
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Appendix E.4 — Estimated individual risk aversion and precision in
Nicolosi 2

Appendix E.5 — Optimal portfolio vs the benchmark at maturity
given the estimated risk aversion in Nicolosi 1 and Nicolosi 2
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Appendix E.6 — Optimal utility vs actual utility given the estimated
risk aversion in Nicolosi 1 and Nicolosi 2
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Appendix E.7 — Individual AIC of Nicolosi’s model vs random and
risk-neutral strategies from the all-observation estimation

Sub. Nicolosi 1 Random 1 Risk Neutral 1 Judgment

1 198,321.246 221,535.182 196,036.112 Risk Neutral 1

2 94,621.670 108,686.455 95,907.756 Nicolosi 1

3 197,009.678 217,617.004 191,808.286 Risk Neutral 1

4 192,582.322 216,253.368 189,739.869 Risk Neutral 1

5 122,903.085 138,235.154 119,387.990 Risk Neutral 1

6 189,562.792 214,315.596 189,052.356 Risk Neutral 1

7 84,860.704 99,729.582 99,462.459 Nicolosi 1

8 186,540.242 207,883.918 183,558.288 Risk Neutral 1

9 182,607.437 217,255.937 195,904.024 Nicolosi 1

10 106,135.443 120,671.830 115,009.369 Nicolosi 1

11 196,790.120 221,631.587 193,273.823 Risk Neutral 1

12 54,509.687 66,651.489 59,471.648 Nicolosi 1

13 152,116.133 169,983.115 153,503.171 Nicolosi 1

14 194,862.244 222,545.901 193,953.201 Risk Neutral 1

15 186,890.991 215,782.103 191,504.509 Nicolosi 1

16 189,016.232 207,505.756 181,871.617 Risk Neutral 1

17 148,867.582 164,916.650 147,838.409 Risk Neutral 1

18 176,018.071 151,683.890 138,768.587 Risk Neutral 1

19 163,426.340 180,998.317 161,666.209 Risk Neutral 1

20 189,294.637 207,850.753 184,832.636 Risk Neutral 1

21 160,497.587 177,756.712 155,350.027 Risk Neutral 1

22 186,078.435 208,115.105 183,769.752 Risk Neutral 1

23 170,643.478 188,881.973 170,967.209 Nicolosi 1

24 51,079.834 63,854.067 54,270.308 Nicolosi 1

25 187,165.955 209,552.850 186,916.125 Risk Neutral 1

26 126,078.497 141,947.310 116,499.274 Risk Neutral 1

27 151,085.506 168,136.912 145,798.463 Risk Neutral 1

28 175,190.721 192,642.030 169,266.254 Risk Neutral 1

29 157,320.343 174,516.666 146,924.193 Risk Neutral 1

30 190,712.679 211,741.269 186,811.810 Risk Neutral 1

31 157,683.899 173,815.791 153,422.846 Risk Neutral 1

32 188,010.084 220,763.381 195,939.363 Nicolosi 1
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33 171,356.837 188,166.312 163,075.761 Risk Neutral 1

34 180,645.237 207,768.161 186,878.163 Nicolosi 1

35 148,606.352 165,520.165 144,722.103 Risk Neutral 1

36 149,326.154 168,566.469 154,822.340 Nicolosi 1

37 115,501.088 131,262.478 114,856.663 Risk Neutral 1

38 164,300.775 179,758.909 163,826.794 Risk Neutral 1

39 105,318.745 119,110.311 105,075.899 Risk Neutral 1

40 193,010.105 215,980.369 191,613.115 Risk Neutral 1

41 193,079.490 215,507.103 191,125.544 Risk Neutral 1

42 102,158.038 117,273.322 102,023.025 Risk Neutral 1

43 191,534.105 217,478.581 192,924.714 Nicolosi 1

44 100,711.684 115,442.352 96,066.439 Risk Neutral 1

45 189,579.881 207,319.183 180,829.065 Risk Neutral 1

46 194,783.214 222,833.959 194,219.174 Risk Neutral 1

47 182,924.555 204,784.083 183,673.065 Nicolosi 1

48 116,701.608 132,051.666 113,366.554 Risk Neutral 1

49 124,055.332 139,689.192 119,136.480 Risk Neutral 1

50 164,785.441 182,718.537 161,453.783 Risk Neutral 1

51 161,217.997 180,715.868 163,137.731 Nicolosi 1

52 191,179.743 210,993.377 182,570.474 Risk Neutral 1

53 154,667.291 172,399.683 158,500.161 Nicolosi 1

54 180,204.121 198,634.060 176,427.731 Risk Neutral 1

55 128,189.903 143,954.123 130,924.244 Nicolosi 1

56 135,654.533 151,052.930 138,158.201 Nicolosi 1

57 170,254.851 193,062.692 175,979.028 Nicolosi 1

58 191,571.075 221,156.903 195,161.530 Nicolosi 1

59 130,256.125 146,583.512 119,740.229 Risk Neutral 1

60 190,167.843 211,890.509 190,014.183 Risk Neutral 1

61 202,235.566 223,559.600 197,466.484 Risk Neutral 1

62 172,044.525 191,046.174 170,416.059 Risk Neutral 1

63 90,625.379 104,704.284 94,595.255 Nicolosi 1

64 207,332.067 227,625.598 199,915.193 Risk Neutral 1

65 109,043.874 123,792.059 112,917.040 Nicolosi 1

66 194,080.405 222,086.179 197,334.587 Nicolosi 1

67 193,908.536 217,101.724 193,144.819 Risk Neutral 1

68 187,425.745 207,541.866 182,043.057 Risk Neutral 1
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69 94,374.381 110,006.082 86,862.585 Risk Neutral 1

70 199,755.572 220,640.863 193,689.952 Risk Neutral 1

71 174,579.674 218,264.507 196,189.365 Nicolosi 1

72 127,173.519 142,300.792 126,914.538 Risk Neutral 1

73 191,689.817 210,673.852 185,153.444 Risk Neutral 1
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Appendix E.8 — Individual AIC of Nicolosi’s model vs random and
risk-neutral strategies from the average-dataset estimation

Sub. Nicolosi 2 Random 2 Risk Neutral 2 Judgment

1 19,645.443 22,396.753 19,707.556 Nicolosi 2

2 10,308.974 11,782.616 10,451.865 Nicolosi 2

3 19,654.644 21,920.540 19,323.457 Risk Neutral 2

4 19,110.957 21,726.471 19,102.646 Risk Neutral 2

5 12,721.576 14,567.587 12,584.114 Risk Neutral 2

6 18,881.490 21,386.711 18,992.737 Nicolosi 2

7 9,073.263 10,720.300 10,598.342 Nicolosi 2

8 18,432.750 21,020.618 18,455.694 Nicolosi 2

9 18,211.662 21,863.967 19,736.161 Nicolosi 2

10 10,910.544 12,372.939 11,842.976 Nicolosi 2

11 18,562.476 22,249.818 19,419.260 Nicolosi 2

12 7,072.808 8,472.030 7,463.668 Nicolosi 2

13 15,570.811 17,597.844 15,900.244 Nicolosi 2

14 19,276.702 22,519.796 19,518.378 Nicolosi 2

15 18,478.606 21,778.457 19,321.530 Nicolosi 2

16 18,698.295 20,953.837 18,266.338 Risk Neutral 2

17 15,867.467 17,826.628 15,956.145 Nicolosi 2

18 14,487.021 16,213.418 14,690.872 Nicolosi 2

19 16,512.099 18,530.058 16,428.442 Risk Neutral 2

20 19,139.755 21,299.027 18,857.811 Risk Neutral 2

21 16,221.765 18,209.440 15,863.659 Risk Neutral 2

22 18,577.961 20,952.206 18,524.010 Risk Neutral 2

23 17,297.021 19,396.443 17,560.452 Nicolosi 2

24 6,858.525 8,360.110 7,112.858 Nicolosi 2

25 18,743.614 21,263.016 18,818.953 Nicolosi 2

26 12,183.404 14,173.531 11,740.719 Risk Neutral 2

27 15,094.474 16,840.326 14,710.935 Risk Neutral 2

28 17,693.703 19,721.227 17,281.467 Risk Neutral 2

29 15,456.541 17,438.657 14,783.131 Risk Neutral 2

30 18,890.308 21,499.885 18,803.754 Risk Neutral 2
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31 15,895.487 17,789.191 15,689.552 Risk Neutral 2

32 18,526.775 22,119.098 19,693.844 Nicolosi 2

33 17,015.108 18,982.365 16,477.604 Risk Neutral 2

34 18,015.064 20,749.880 18,891.320 Nicolosi 2

35 15,146.999 17,155.569 14,817.561 Risk Neutral 2

36 15,168.377 17,248.989 15,804.205 Nicolosi 2

37 11,896.929 13,691.741 11,961.519 Nicolosi 2

38 16,989.139 18,919.505 16,897.985 Risk Neutral 2

39 11,219.657 12,503.414 11,340.596 Nicolosi 2

40 19,240.664 21,731.483 19,315.266 Nicolosi 2

41 19,068.611 21,756.788 19,148.219 Nicolosi 2

42 10,929.215 12,372.552 10,954.997 Nicolosi 2

43 19,046.644 21,904.505 19,378.574 Nicolosi 2

44 10,393.924 12,028.812 10,090.863 Risk Neutral 2

45 18,747.958 20,850.652 18,217.787 Risk Neutral 2

46 19,584.232 22,184.205 19,521.625 Risk Neutral 2

47 18,272.897 20,726.031 18,539.222 Nicolosi 2

48 12,098.261 13,840.846 11,856.479 Risk Neutral 2

49 12,740.073 14,514.027 12,463.929 Risk Neutral 2

50 16,569.828 18,483.517 16,499.363 Risk Neutral 2

51 16,448.717 18,570.264 16,770.022 Nicolosi 2

52 18,932.483 21,183.288 18,280.755 Risk Neutral 2

53 15,785.945 17,666.946 16,236.848 Nicolosi 2

54 18,267.852 20,146.303 18,006.249 Risk Neutral 2

55 13,141.490 14,834.835 13,500.656 Nicolosi 2

56 14,167.084 15,896.999 14,434.206 Nicolosi 2

57 16,924.950 19,519.659 17,803.038 Nicolosi 2

58 19,007.689 22,125.966 19,604.083 Nicolosi 2

59 12,676.044 14,829.104 12,218.915 Risk Neutral 2

60 19,037.041 21,507.981 19,166.922 Nicolosi 2

61 20,077.660 22,429.210 19,884.740 Risk Neutral 2

62 17,388.911 19,482.250 17,368.394 Risk Neutral 2

63 10,421.870 11,906.986 10,742.597 Nicolosi 2

64 20,533.681 22,838.574 20,089.477 Risk Neutral 2

65 11,727.217 13,435.158 12,039.345 Nicolosi 2

66 19,164.185 22,282.204 19,823.653 Nicolosi 2
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67 19,276.851 21,797.376 19,318.071 Nicolosi 2

68 18,828.910 20,978.008 18,379.339 Risk Neutral 2

69 10,400.811 12,102.199 9,721.980 Risk Neutral 2

70 19,798.275 22,282.207 19,464.585 Risk Neutral 2

71 16,337.286 21,896.816 19,652.329 Nicolosi 2

72 13,006.015 14,722.619 13,040.748 Nicolosi 2

73 19,224.107 21,620.434 18,838.633 Risk Neutral 2
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Appendix E.9 — Individual AIC of Nicolosi’s model vs the simple
strategy from the all-observation and average-dataset estimations

Sub. Nicolosi 1 Simple 1 Judgment Nicolosi 2 Simple 2 Judgment

1 198,321.246 174,453.096 Simple 1 19,645.443 17,455.645 Simple 2

2 94,621.670 187,219.239 Nicolosi 1 10,308.974 18,728.059 Nicolosi 2

3 197,009.678 177,602.827 Simple 1 19,654.644 17,758.940 Simple 2

4 192,582.322 166,821.787 Simple 1 19,110.957 16,733.459 Simple 2

5 122,903.085 182,955.881 Nicolosi 1 12,721.576 18,304.908 Nicolosi 2

6 189,562.792 168,015.790 Simple 1 18,881.490 16,891.658 Simple 2

7 84,860.704 171,150.393 Nicolosi 1 9,073.263 17,002.175 Nicolosi 2

8 186,540.242 171,222.098 Simple 1 18,432.750 17,215.338 Simple 2

9 182,607.437 166,307.909 Simple 1 18,211.662 16,608.700 Simple 2

10 106,135.443 182,277.380 Nicolosi 1 10,910.544 18,228.427 Nicolosi 2

11 196,790.120 157,968.120 Simple 1 18,562.476 15,843.093 Simple 2

12 54,509.687 189,229.569 Nicolosi 1 7,072.808 18,861.851 Nicolosi 2

13 152,116.133 174,479.333 Nicolosi 1 15,570.811 17,457.335 Nicolosi 2

14 194,862.244 149,449.397 Simple 1 19,276.702 15,026.829 Simple 2

15 186,890.991 140,797.022 Simple 1 18,478.606 14,131.838 Simple 2

16 189,016.232 170,370.559 Simple 1 18,698.295 17,123.570 Simple 2

17 148,867.582 182,301.089 Nicolosi 1 15,867.467 18,154.031 Nicolosi 2

18 176,018.071 188,021.265 Nicolosi 1 14,487.021 18,768.873 Nicolosi 2

19 163,426.340 163,742.014 Nicolosi 1 16,512.099 16,425.107 Simple 2

20 189,294.637 182,459.465 Simple 1 19,139.755 18,084.611 Simple 2

21 160,497.587 180,933.397 Nicolosi 1 16,221.765 18,095.145 Nicolosi 2

22 186,078.435 172,963.107 Simple 1 18,577.961 17,361.759 Simple 2

23 170,643.478 183,885.162 Nicolosi 1 17,297.021 18,371.147 Nicolosi 2

24 51,079.834 189,411.817 Nicolosi 1 6,858.525 18,873.701 Nicolosi 2

25 187,165.955 176,686.211 Simple 1 18,743.614 17,630.047 Simple 2

26 126,078.497 173,352.631 Nicolosi 1 12,183.404 17,410.910 Nicolosi 2

27 151,085.506 180,397.210 Nicolosi 1 15,094.474 18,129.940 Nicolosi 2

28 175,190.721 176,939.549 Nicolosi 1 17,693.703 17,721.956 Nicolosi 2

29 157,320.343 153,376.336 Simple 1 15,456.541 15,409.923 Simple 2

30 190,712.679 170,171.255 Simple 1 18,890.308 17,041.947 Simple 2
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31 157,683.899 184,829.529 Nicolosi 1 15,895.487 18,514.293 Nicolosi 2

32 188,010.084 161,722.966 Simple 1 18,526.775 16,250.788 Simple 2

33 171,356.837 166,172.225 Simple 1 17,015.108 16,676.372 Simple 2

34 180,645.237 170,523.007 Simple 1 18,015.064 17,085.953 Simple 2

35 148,606.352 181,124.271 Nicolosi 1 15,146.999 18,123.924 Nicolosi 2

36 149,326.154 173,965.530 Nicolosi 1 15,168.377 17,377.665 Nicolosi 2

37 115,501.088 185,358.890 Nicolosi 1 11,896.929 18,521.134 Nicolosi 2

38 164,300.775 190,106.051 Nicolosi 1 16,989.139 18,786.662 Nicolosi 2

39 105,318.745 188,589.613 Nicolosi 1 11,219.657 18,861.343 Nicolosi 2

40 193,010.105 179,141.643 Simple 1 19,240.664 17,959.728 Simple 2

41 193,079.490 175,035.633 Simple 1 19,068.611 17,448.843 Simple 2

42 102,158.038 187,359.316 Nicolosi 1 10,929.215 18,753.266 Nicolosi 2

43 191,534.105 168,380.417 Simple 1 19,046.644 16,883.941 Simple 2

44 100,711.684 184,714.380 Nicolosi 1 10,393.924 18,524.670 Nicolosi 2

45 189,579.881 156,042.604 Simple 1 18,747.958 15,683.010 Simple 2

46 194,783.214 154,996.682 Simple 1 19,584.232 15,558.910 Simple 2

47 182,924.555 179,923.901 Simple 1 18,272.897 18,060.958 Simple 2

48 116,701.608 188,101.443 Nicolosi 1 12,098.261 18,841.319 Nicolosi 2

49 124,055.332 179,661.868 Nicolosi 1 12,740.073 17,995.199 Nicolosi 2

50 164,785.441 182,127.024 Nicolosi 1 16,569.828 18,263.963 Nicolosi 2

51 161,217.997 180,868.857 Nicolosi 1 16,448.717 18,068.112 Nicolosi 2

52 191,179.743 150,357.056 Simple 1 18,932.483 15,120.175 Simple 2

53 154,667.291 181,851.840 Nicolosi 1 15,785.945 18,154.987 Nicolosi 2

54 180,204.121 176,885.073 Simple 1 18,267.852 17,667.756 Simple 2

55 128,189.903 183,068.355 Nicolosi 1 13,141.490 18,362.161 Nicolosi 2

56 135,654.533 187,990.605 Nicolosi 1 14,167.084 18,768.260 Nicolosi 2

57 170,247.571 177,850.007 Nicolosi 1 16,924.950 17,838.094 Nicolosi 2

58 191,571.075 157,387.741 Simple 1 19,007.689 15,819.855 Simple 2

59 130,256.125 170,843.543 Nicolosi 1 12,676.044 17,157.900 Nicolosi 2

60 190,167.843 183,068.432 Simple 1 19,037.041 18,190.008 Simple 2

61 202,235.566 174,855.835 Simple 1 20,077.660 17,534.646 Simple 2

62 172,044.525 178,631.531 Nicolosi 1 17,388.911 17,846.881 Nicolosi 2

63 90,625.379 186,551.648 Nicolosi 1 10,421.870 18,584.942 Nicolosi 2

64 207,332.067 171,978.988 Simple 1 20,533.681 17,291.396 Simple 2

65 109,043.874 190,880.268 Nicolosi 1 11,727.217 19,066.867 Nicolosi 2

66 194,080.405 164,270.808 Simple 1 19,164.185 16,518.488 Simple 2
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67 193,908.536 177,807.706 Simple 1 19,276.851 17,709.987 Simple 2

68 187,425.745 171,412.721 Simple 1 18,828.910 17,112.860 Simple 2

69 94,374.381 185,129.275 Nicolosi 1 10,400.811 18,465.155 Nicolosi 2

70 199,755.572 167,452.215 Simple 1 19,798.275 16,821.980 Simple 2

71 174,579.674 117,201.218 Simple 1 16,337.286 11,732.197 Simple 2

72 127,173.519 186,266.268 Nicolosi 1 13,006.015 18,667.986 Nicolosi 2

73 191,689.817 170,526.544 Simple 1 19,224.107 17,077.428 Simple 2
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Appendix E.10 — Instructions

Instructions

Preamble

Welcome to this experiment and thank you for coming. Please read these Instructions
carefully. They will help you to understand what the experiment is all about and what you
are being asked to do during the experiment. This experiment gives you the opportunity
to earn money which will be paid to you in cash after you have completed the experiment.
However there is no participation fee in this experiment; what you earn in this experiment
is what you will be paid. So you must take this experiment seriously. Your payment
is described below and it will be added to a show-up fee of £3 that you will be paid
independently of your answers.

The Experiment

This experiment is interested in your decision as a fund manager who manages the
investor’s funds. You are entrusted to manage his or her funds and then the investor will
see if you can perform better than that of the investor’s benchmark. What the investor’s
benchmark means will be explained later. There are two types of market that you can
invest, the money market and the asset market. The money market is risk-free that
gives you a constant interest rate, whereas the asset market is risky that trades assets
continuously in time.

The asset price process in the asset market contains the Brownian motion. It means that
the asset price changes randomly over time t. There are two parameters in the asset price
process, the Drift (mean) and the Scale (sigma). Please notice that parameter Drift
determines the realisation of the asset price by the maturity time, whereas parameter
Scale determines the fluctuation of the asset price over all period. Those parameters
remain constant in a particular problem. However the asset price is non-negative (either
zero or positive) in this experiment. The asset price change therefore can be written as:
dSt = St(µdt + σdZt); where S is the asset price, µ is the drift, σ is the scale and Z is
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the Brownian motion. There will be examples of the asset price process that help you
to understand how it works given the parameters. Please do not ignore these examples!
Moreover they are addressed to help you make your decision during the experiment.

You will be presented with a sequence of 10 problems, all of the same type, in the
main experiment, preceded by 2 practice problems. Please do not waste the practice
session! Each problem has its unique circumstances depending on its initial setup. In the
beginning of each problem, you are endowed by an initial fund for you to manage in a
certain time. You are told the initial asset price in the asset market and the interest rate
in the money market. Given these information, you will be asked your initial allocation,
of your portfolio, in each market. Then, you can adjust your allocation in both markets
as a response to the current asset price in the asset market and the current benchmark
portfolio.

You will receive payoffs depending on your performance with respect to the investor’s
benchmark by the end of each problem. The benchmark is a constant portfolio consisting
of the proportions of the funds invested in the money market and in the asset market.
These proportions are determined by the investor in the beginning of the problem and
remain fixed throughout the problem. There are two types of the payoff that you will
receive, a fixed payoff and an additional payoff. The fixed payoff is paid to you indepen-
dently of your performance. The additional payoff is paid proportionally to the profit
earned by you if the final portfolio you manage is higher than that of the final benchmark
portfolio. You will be told these information in the beginning of each problem along with
other information. Given this, your payoff function is:

α (WT − YT )+ +K

where K is the fixed payoff and α is the proportion of positive margin of the final portfolio
to the final benchmark (WT − YT )+ that you will earn—where WT and YT are your port-
folio and the benchmark portfolio respectively by the maturity time. All the currency
used in this experiment is in ECU (Experimental Currency Unit). Therefore, you can
earn more payoffs if your final portfolio is higher than that of final benchmark portfolio.

Here is to give you an example of how you will receive payoff in a particular problem:

Example: You are asked by the investor if you can optimise his or her funds in both
money market and asset market. The initial fund that you can manage is 100 ECU. The
investor has his or her benchmark to the portfolio allocation in both money market and
asset market. He or she would allocate 0% of the initial fund to the money market, and
100% of the initial fund to the asset market. The money market return is 0%, whereas
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the asset market trades asset in continuously period. The investor would let his or her
portfolio grows given his or her allocation to the maturity time. This will be the final
benchmark portfolio and a basis to the fund manager’s performance.

You will receive two types of payoffs as a part of your effort by the end of the problem: a
fixed payoff and an additional payoff. The fixed payoff for you is 10 ECU. The additional
payoff is 25% of the positive margin of your final portfolio minus the final benchmark
portfolio. Given this information, you will start this problem by setting your initial
portfolio allocation in each market. Then you can manage your portfolio by adjusting
your portfolio allocation in each market for a given certain time—as an example, the total
time in this problem is 3 minutes.

If, for example, your final portfolio is 190 ECU and the final benchmark portfolio is 150
ECU by the end of a problem. Your payoff is calculated as follow: 0.25(190 – 150) +
10 = 20 ECU. You receive both fixed payoff and additional payoff because you have
managed to have a higher final portfolio than that of the final benchmark portfolio.

If, for example, your final portfolio is 190 ECU and the final benchmark portfolio is 200
ECU by the end of a problem. Your payoff, therefore, is 10 ECU. You receive only a
fixed payoff because you have failed to have a higher final portfolio than that of the final
benchmark portfolio.

The Interface

When you arrive at the laboratory, you will find the screen displaying the EXEC logo. Do
not touch the computer until all the participants have read the instructions. The screen
remains inactive. When all have done so, the experimenter will let you know to go to the
instructions screen. There are three instruction screens that will help you to understand
the experiment.

After you think you are clear of what you are asked to do, you can practice the asset price
simulation, which contains the Brownian motion, to get your feeling on how the asset
price is generated. Below is the practice screen for the asset price simulation.
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You can adjust both parameters Drift and Scale and click “Start” button to display the
asset price path (which contains Brownian motion). There is no time limit for you in
this simulation. Make sure you clearly understand and get the feeling of how the asset
price path is produced for any given parameters. After you have understood and got your
feeling, please click the “NEXT” button to move on to the next page (as shown in the
figure below).

There will be two practice sessions for you before going on to the main experiment. But
notice that these practice sessions do not count for your payment. You can continue to
the practice session by clicking on the “Start Practice!” button if you think you are
clear so far.

You will be told any necessary information in the particular problem. It includes the initial
funds to manage, the interest rate in the money market, time maturity (in minute), the
initial price per unit asset in the asset market, the investor’s allocation strategy in each
market, your payoffs and the asset price process parameters. Once you have understood
the tasks and all information, you can continue by clicking the “NEXT” button (as shown
in the figure below).
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Next screen (the figure below) is examples of asset price path using the same parameters
as stated in a particular problem (in the previous screen). Click “NEXT” button to move
on to the next page if you are clear so far.

Then, in the next page, you will be asked your initial allocation of the funds to be invested
in the asset market given all necessary information that you have acquired in the previous
screen. You do so by making an adjustment in the “Initial Allocation in the Asset
Market” box. Its default value is 50 percent, but you can adjust it up to two decimal
places. However you can only set the initial allocation in the asset market between 0 and
100. Once you have decided your initial allocation, you can continue to have your practice
by clicking the “NEXT” button as shown in the figure below.
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The next screen (the figure below) is the main screen of the practice session. On the left
panel there are updating information in continuously period—your portfolio value, the
benchmark portfolio value and the unit asset hold. There is a short instruction that tells
you the parameter in the particular problem. On the right panel there are two figures that
show you the asset price chart and the portfolio value chart continuously in time. The
blue line in the portfolio value chart shows your updated portfolio value and the green
line shows the updated benchmark portfolio value.

The “START” button will be inactive once you click that. You can adjust your port-
folio allocation in the stock market by moving the slider below “Next Adjustment on
Allocation in the Stock Market”. Again, you can only adjust your allocation in the
stock market between 0 and 100. Bottom right are the information of your portfolio in
the stock market and in the money market, and their proportion to your total portfolio.
Notice that the better the Portfolio Value than that of the Benchmark Value, the higher
the payoff you will earn in this particular problem.
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You will be told your gain value (Portfolio Value – Benchmark Value) after the problem
is finished (as shown in the figure above). Please click the “NEXT” button to go to
the next practice session and finish this session. If you have understood the experiment
after finishing the practice session you can click the “Start the Main Experiment!”
button (as shown in the figure below). Otherwise you should raise up your hand and the
experimenter will come to you to answer any of your questions.

Notice that you cannot go back to the previous screen once you click the “Start the
Main Experiment!” button. So please make sure that you clearly understand of what
you are asked to do during the experiment. You will be told any necessary information
and are asked to set your initial allocation in the asset market as in the practice session.

The Payment

It is important for you to take this experiment seriously because it determines your pay-
ment by the end of this experiment. Notice that you will earn cash from this experiment.
Only problems in the main experiment will be basis of your payment. You will draw a disk
by yourself from a closed bag containing the number disks from 1 to 10, each indicating
the number of a problem. The drawn disk determine which problem to be a basis of your
payment. The exchange rate of your payment is £1:3 ECU. That means if your payoff in
a particular problem is 3 ECU, then you will receive £1 from this experiment. However
this will be round up by 5 pence. Your payment in this experiment then will be added to
a show-up fee of £3.

How Long Will the Experiment Last?
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It is important for you to understand the problem carefully. You can start the experiment
as you wish. However, as the timing for each problem is fixed, I estimate that the
experiment will take at least 60 minutes of your time. Please notice that you cannot
go back to the previous screen as you move on to the next screen, and any kind of
communication is prohibited during this experiment.
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Questionnaire

Subject Number:

Please provide us the following information about you.

Q. Sex: Male/Female (Cycle the right one)

Q. Age: What is your age?

Q. Ethnicity origin: Please specify your ethnicity. (Cycle the right one)

• White • Hispanic or Latino • Black or African American • Native Amer-
ican or American Indian • Asian / Pacific Islander • Other

Q. Education: What is the highest degree or level of school you have completed? If
currently enrolled, highest degree received. (Cycle the right one)

• No schooling completed • Nursery school to 8th grade • Some high school,
no diploma • High school graduate, diploma or the equivalent (for example: GED)
• Some college credit, no degree • Trade/technical/vocational training • As-
sociate degree • Bachelor’s degree • Master’s degree • Professional degree
• Doctorate degree

Please answer also the following questions

Q. Are you currently a student? If so, in which level you are currently enrolled?

Q. What are you studying?

Q. Do you have any work experience in Economics? If so, for how long did/do you work
in this field and which was/is your job title/titles?

Q. Have you participated in economics experiments in the past?

Q. Did you feel impatience during the experiment? (Cycle the right one)
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1: Not at all 2: Mainly disagree 3: Neither agree nor disagree 4: Mainly
agree 5: Totally agree

Q. Did you feel stress during the experiment? (Cycle the right one)

1: Not at all 2: Mainly disagree 3: Neither agree nor disagree 4: Mainly
agree 5: Totally agree

Q. Which is your risk aversion level? From 1 to 5 the risk aversion level is increasing.

(Cycle the right one)

1 2 3 4 5

Q. What did you like in the experiment?

Q. What you did not like in the experiment?

Q. Any suggestions for improvement?

Thank you for your participation!

Yudistira Permana

November 2018
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************************
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