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Abstract 

Waldenström macroglobulinemia (WM) is unique amongst B-cell malignancies in that the 

neoplastic cells retain the capacity to undergo plasma cell differentiation. This gives rise to a 

clonal neoplasm encompassing the spectrum of differentiation and as such presents a challenge 

to model and treat effectively. Therefore, the feasibility of using an in vitro culture system to 

model the differentiation of primary WM B-cells derived from patient samples was examined 

and their response to different stimuli characterised. Subsequent to T-dependent activation, 

WM B-cells successfully differentiate and generate plasma cells with an equivalent 

immunophenotype and lifespan to that of healthy B-cells, and do so more efficiently than B-cells 

derived from patients with splenic marginal zone lymphoma, which shares a related aetiology 

to WM. Unlike healthy cells or those derived from other B-cell neoplasms, however, WM B-cells 

generate a novel population of plasma cells that do not express CD38 and their appearance is 

strongly linked to the characteristic MYD88L265P mutation.  

The virtually ubiquitous presence of MYD88L265P, coupled with reports suggesting that TLR 

signalling is required for the survival of MYD88-mutated cells prompted investigation into the 

response of WM cells to stimuli mimicking a T-independent immune response. Whilst WM B-

cells remain receptive to TLR stimulation, they fail to differentiate in response to a combination 

of TLR7 agonism and BCR ligation and demonstrate a profound apoptotic response that is in 

stark contrast to their healthy counterparts. This unexpected response is not as a result of a 

secreted factor acting in trans or due to the upregulation of Fas or its ligand within the WM 

population. Indeed, RNA sequencing identifies substantial disruption of multiple essential 

pathways within these cells subsequent to TLR stimulation, but no significant differences in the 

expression of either pro-apoptotic or survival genes. The data presented here suggest that WM 

cells rely on additional support from the bone marrow microenvironment for their survival and 

that ligation of TLR7 and the BCR without an additional signal such as CD40L are insufficient to 

sustain the WM population. 
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Chapter 1  - Introduction 

1.1 B-cell mediated immunity 

The immune system is critically important in defence against pathogens and functions as an 

immunosurveillance mechanism, enabling the distinction of neoplastic cells from healthy ones. 

B-cells are essential for combatting pathogens; mature cells are primed to release high affinity 

antibodies, they also form the core of our immunological “memory”. Upon antigen binding and 

receipt of a second activation signal, B-cells undergo differentiation generating a population of 

both long and short-lived antibody-secreting plasma cells (figure 1.1). Short-lived plasma cells 

are transient but long-lived plasma cells may persist for many years, serving to maintain humoral 

immunity (Slifka et al., 1998). The role of B-cells in the anti-tumour response is less well-defined. 

Whilst the production of specific antibodies against tumours mediates antibody-dependent 

cellular cytotoxicity, cytokine release by B-cells after a tumour has become established results 

in an immunosuppressive effect and can enhance tumour progression (Inoue et al., 2006). B-

cells themselves can become oncogenic when mutations occur, resulting in the dysregulation of 

survival and proliferative pathways.  

 

Figure 1.1 B-cell differentiation to plasma cell effectors.  Antigen binding initiates signalling cascades that 

result in the proliferation and differentiation of naïve B-cells, resulting in the production of both long and 

short-lived plasma cells. Upon repeated challenge by an antigen, memory B-cells respond by generating 

plasma cell populations.
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1.1.1 Plasma cell differentiation 

The differentiation of B-cells into plasma cells is accompanied by distinct changes in the 

expression of multiple cell surface markers. Five of these markers are particularly informative 

for defining B-cell subsets and assessing the progress of differentiation; CD19, CD20, CD27, CD38 

and CD138 (figure 1.2). 

 

 

Figure 1.2 Immunophenotypic changes that accompany plasma cell differentiation. CD20 

downregulation is accompanied by the upregulation of CD27 and sequential increase of first CD38 and 

CD138 as B-cells progress to terminally-differentiated plasma cells. 

 

CD19 is ubiquitously expressed on B-cells throughout their development and thus serves as a 

lineage marker (Nadler et al., 1983; Anderson et al., 1984).  It functions as a co-receptor for the 

B-cell receptor (BCR), decreasing the signal threshold required for antigen receptor-dependent 

stimulation and functioning as a signalling adaptor (Carter and Fearon, 1992; Fearon et al., 

2000). Activation of CD19 results in phosphorylation of the cytoplasmic tail of the protein, 

enabling recruitment of PI3K and the initiation of downstream signalling (Tuveson et al., 1993; 

Sato et al., 1997; Otero et al., 2001). Whilst plasma cells were thought to retain CD19 expression, 

recent publications have identified the presence of a CD19- plasma cell fraction (Mei et al., 2015; 

Arumugakani et al., 2017; Brynjolfsson et al., 2017). 

B-cells express CD20 during the majority of their development until it is downregulated during 

plasma cell differentiation (Stashenko et al., 1980). CD20 has diverse functions, including 
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regulation of differentiation and cell cycle progression and involvement in calcium signalling 

(Deans et al., 1993; Tedder et al., 1985; Tedder and Engel, 1994). 

The expression of the CD27 receptor is commonly used to distinguish naïve and memory B-cell 

subsets, with it being absent in the former and present on the latter (Maurer et al., 1992; 

Agematsu et al., 1997). Surface expression of CD27 increases during differentiation, with plasma 

cells strongly expressing this marker (Jung et al., 2000). Indeed, interaction of CD27 with its 

ligand, CD70 promotes plasma cell differentiation and augments immunoglobulin synthesis 

(Agematsu et al., 1995; Nagumo and Agematsu, 1998; Nagumo et al., 1998). CD27 signalling can 

also activate the canonical and non-canonical NF-κB pathways (Yamamoto et al., 1998).  

Many cells from the lymphoid and myeloid lineages express CD38, including monocytes and 

macrophages, NK cells and both T- and B-cells (Alessio et al., 1990; Banchereau and Rousset, 

1992). CD38 is expressed at various stages of B-cell development; being present on pro- and pre-

B-cells before being downregulated in mature B-cells and finally upregulated subsequent to B-

cell activation as the cells become plasmablasts (Stashenko et al., 1981; Banchereau and 

Rousset, 1992; Galibert et al., 1996). CD38 functions as an ADP-ribose hydrolase, catalysing the 

conversion of NAD+ and NADP+ to cyclic ADP-ribose (cADPR) which plays an essential role in the 

regulation of intracellular Ca2+ (Howard et al., 1993; Zocchi et al., 1998; Moreno-García et al., 

2005). It is also involved in both cell adhesion and signal transduction although the molecular 

mechanism for the latter has yet to be fully elucidated (Lund et al., 1998; Moreno-García et al., 

2005; Malavasi et al., 2008). 

During plasma cell differentiation, the expression of CD38 and CD138 are sequentially 

upregulated, with plasmablasts expressing CD38 and plasma cells defined by the additional 

expression of CD138 (O’connell et al., 2004). CD138, also known as Syndecan-1, is a 

transmembrane heparan sulfate proteoglycan and a member of the syndecan proteoglycan 

family (Bernfield et al., 1992). CD138 mediates plasma cell adhesion to the bone marrow stroma 

and appears to enhance their survival (Ridley et al., 1993; McCarron et al., 2017). Investigation 

of the role of CD138 in multiple myeloma has demonstrated that it interacts with many 

components within the bone marrow microenvironment, including growth factors, cytokines 

and chemokines (Derksen et al., 2002; Yang et al., 2002; Khotskaya et al., 2009; Reijmers et al., 

2010). 

Plasma cell differentiation requires the repression of the B-cell transcriptional programme and 

the coordinated induction of a host of transcription factors responsible for the generation and 

maintenance of antibody secreting cells. Regulation of this process is achieved through 

antagonism of transcription factors that maintain cellular identity (figure 1.3). 
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Figure 1.3 The interaction between key transcription factors involved in the regulation of plasma cell 

differentiation. B-cells express multiple transcription factors that serve to commit and preserve their 

cellular identity. These include PAX5, BCL6 and SPI-B, which have an antagonistic relationship with many 

of the transcription factors essential for terminal differentiation. Following B-cell activation, genes such 

as IRF4 and the master regulator of plasma cell differentiation, PRDM1 which encodes BLIMP-1, are 

upregulated. These, in turn, repress the genes responsible for maintaining the B-cell transcriptional 

programme. Transcription factors involved in maintaining B-cell identity are coloured blue, whilst those 

that drive plasma cell differentiation are denoted in purple. Activation or repression are indicated by 

arrows or bars respectively. 

 

An essential component of the B-cell programme is the transcription factor PAX5 (paired box 

protein 5). Expression of PAX5 is both critical to commit haematopoietic progenitors to adopt a 

B-cell fate and to preserve their identity subsequent to this commitment (Nutt et al., 1999; 

Horcher et al., 2001; Cobaleda et al., 2007). PAX5 regulates the expression of B-cell transcription 

factors BACH2, IRF8 and SPI-B whilst repressing the essential regulator of plasma cells, BLIMP-1 

(Usui et al., 1997; Schebesta et al., 2007; Pridans et al., 2008). In addition to its control of B-cell 

fate, PAX5 is also involved in the regulation of BCR signalling, promoting VDJ recombination of 

the immunoglobulin heavy chain (Nutt et al., 1997; Fuxa et al., 2004). It activates genes encoding 

CD79a, involved in signal transduction, the BCR co-receptor CD19 and the BCR signalling adaptor 

BLNK (Kozmik et al., 1992; Fitzsimmons et al., 1996; Nutt et al., 1998; Schebesta et al., 2002). 

The transcriptional repressor BCL6 was identified as essential for the formation of germinal 

centres (Dent et al., 1997; Fukuda et al., 1997; Bihui et al., 1997). BCL6 suppresses plasma cell 

differentiation by repressing the effects of BLIMP-1 (Reljic et al., 2000; Shaffer et al., 2000). BCL6 

expression is supported by IRF8, but repressed by BLIMP-1 and IRF4 (Cimmino et al., 2008; 

Carotta et al., 2014). 
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Several members of the ETS family of transcription factors are involved in maintaining B-cell 

identity.   SPI-B is one such factor, expressed only within lymphoid cells (Ray et al., 1992; Su et 

al., 1996). Whilst SPI-B is not required to initiate the formation of germinal centres, its 

expression is responsible for their maintenance, which collapse in its absence (Su et al., 1997). 

It is also involved in BCR signal transduction and has an antagonistic relationship with BLIMP-1 

(Garrett-Sinha et al., 1999; Shaffer et al., 2002). Another ETS family member, ETS1 negatively 

regulates plasma cell differentiation via the repression of BLIMP-1 (John et al., 2008).  

BLIMP-1 (B lymphocyte-induced maturation protein 1), encoded by PRDM1 (PR domain 

containing 1) has been termed the master regulator of B-cell differentiation and is essential for 

the generation of terminally differentiated plasma cells (Shapiro-Shelef et al., 2003). It functions 

as a transcriptional repressor, suppressing multiple genes responsible for maintaining the B-cell 

programme, such as MYC, PAX5 and SPI-B (Lin et al., 1997; Shaffer et al., 2002; Lin et al., 2002). 

Whilst BLIMP-1 is critical for plasma cell generation, the initiation of B-cell differentiation is able 

to occur in its absence (Kallies et al., 2007). Engagement of CD40 on the surface of B-cells during 

interactions with helper T-cells over the course of an immune response demonstrates synergism 

with the binding of T-cell derived IL-21 in upregulating BLIMP-1 and promoting terminal 

differentiation (Ding et al., 2013). 

Whilst the regulatory capacity of BLIMP-1 is most well characterised in the context of plasma 

cell differentiation, it has multiple additional functions within B-cells. BLIMP-1 exerts 

transcriptional control over antigen presentation by MHC classes I and II, regulating MHC 

expression in response to IFN-γ (Tooze et al., 2006; Doody et al., 2007). A regulatory role for 

BLIMP-1 has also been identified in B-cell malignancies. Mutations in BLIMP-1 are common in 

activated B-cell diffuse large B-cell lymphoma (ABC DLBCL), demonstrating that it acts as a 

tumour suppressor (Pasqualucci et al., 2006; Mandelbaum et al., 2010; Lohr et al., 2014). 

IRF4 is required for both B-cell and plasma cell processes, playing an essential role in germinal 

centre formation and class switch recombination whilst also regulating plasma cell 

differentiation (Klein et al., 2006; Sciammas et al., 2006). The outcome of IRF4 regulation occurs 

according to the concentration of its expression, with low levels activating BCL6 and activation-

induced cytidine deaminase (AID) and eliciting a germinal centre response (Sciammas et al., 

2006). Levels of IRF4 above a certain threshold shifts its binding to different motifs, resulting in 

BLIMP-1 activation and suppression of BCL6 (Ochiai et al., 2013).   

Plasma cell differentiation is accompanied by the acquisition of Ig secretory capacity. Due to 

their immense secretory burden, plasma cells are sensitive to ER stress and may initiate the 

unfolded protein response (UPR) if a build-up of unfolded proteins occurs (Yoshida et al., 2001; 
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Lee et al., 2002; Todd et al., 2009). The UPR aims to resolve the issue of protein accumulation 

within the ER by a combination of decreased protein synthesis and upregulation of chaperones 

that promote protein folding (Harding et al., 2000; Yoshida et al., 2000; Todd et al., 2008). Prior 

to plasma cell differentiation, XBP1 is suppressed by PAX5, but decreasing levels of PAX5 enable 

it to become activated (Reimold et al., 1996). Models of XBP1 deficiency demonstrate that it is 

not required to generate plasma cells (Todd et al., 2009; Taubenheim et al., 2012). However, 

XBP1 is induced in plasma cells in response to ER stress and activates the UPR (Reimold et al., 

2001; Yoshida et al., 2001; Calfon et al., 2002; Lee et al., 2002). XBP1 is thus key for plasma cell 

function by facilitating immunoglobulin secretion via ER remodelling and the processing of 

immunoglobulin (Schaffer et al., 2004).  

1.2 T-cell dependent and T-independent immune response 

The response of B-cells can be divided into two categories – those that require T-cell help and 

those that do not. These are classified as T-dependent (TD) and T-independent (TI) responses, 

respectively (figure 1.4). TD responses are generally elicited by protein antigens and require 

either cognate interaction from follicular helper T-cells (TFH) or natural killer T follicular helper 

cells (NKTFH) (Vinuesa and Chang, 2013). TFH interaction is particularly important for the 

production of long-lived plasma cells and memory cells. TI responses, on the other hand, involve 

receipt of costimulatory signals from other sources. These include Toll-like receptor (TLR) 

activation by bacterial motifs, extensive BCR crosslinking by polysaccharides from capsular 

bacteria or interaction with neutrophil B-helper cells (NBH) (Puga et al., 2012). In general, TI 

activation results in a more rapid response.  
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Figure 1.4 Classes of T-dependent and T-independent immune responses. During the classical TD-1 

response to a proteinaceous antigen, TFH provide the second activation signal. The response elicited by 

glycolipids (TD-2) involves B-cell interaction with NKTFH cells. TLR ligation is the source of the additional 

signal in the TI-1 response, whereas the repetitive epitopes of encapsulated bacteria crosslink the BCR 

and the signal is transduced by BTK (Bruton’s tyrosine kinase) in TI-2 responses. Interaction with NBH cells 

and soluble factors such as BAFF and APRIL elicit the TI-3 response 

1.3 T-cell dependent response 

When an antigen binds the B-cell receptor (BCR), it induces activation and proliferation of the 

B-cell. Subsequently the antigen is processed and presented to TFH cells in a complex with MHC-

II (Liu et al., 1991). This complex binds to the T-cell receptor and induces the TFH cell to express 

CD40L and various cytokines such as IL-4 (Breitfeld et al., 2000; Schaerli et al., 2000). The 

interaction between CD40 and CD40L  delivers a potent activation signal to the B-cell. The T-cell 

dependent response is a two-step process. The first step is rapid - the activated B-cells 

proliferate, may undergo class switch recombination (CSR) and differentiate into short-lived 

plasmablasts (MacLennan et al., 2003). This occurs outside of lymphoid follicles and is known as 

the extrafollicular response. These cells produce antibodies of moderate affinity but they do not 

persist. Some B-cells will, however, take part in the second step of the TD response. These cells 

re-enter the lymphoid follicle and form a germinal centre (GC) whereby they undergo somatic 

hypermutation (SHM) and CSR. 

CSR and SHM require activation-induced cytidine deaminase (AID or AICDA) and its expression 

is tightly regulated (Muramatsu et al., 2000). One of the signalling cascades instigated by the TD 

response is the transcription factor nuclear factor-kappa B (NF-κB) pathway. NF-κB plays a 

pivotal role in both processes as its subunits bind the promotor and enhancers of the AICDA 

gene and induce transcription (figure 1.5) (Victora and Nussenzweig, 2012). 
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Figure 1.5 BCR signalling activates the NF-κB pathway. The BCR is composed of surface transmembrane 

immunoglobulin molecules and associated CD79a/CD79b (Igα/Igβ) heterodimers. When the mIg is bound 

by an antigen, aggregation of receptors occurs and CD79a/CD79b are phosphorylated. This results in the 

activation of multiple signalling cascades through the recruitment of Src family kinases such as LYN, 

tyrosine kinases such as SYK and enzymes, including PLCγ2. The complex of multiple proteins including 

BLNK, BTK and PLCγ2 is known as the signalosome. PLCγ2 is a fundamental effector for downstream 

signalling, it facilitates activation of PKC which ultimately results in IKK-mediated IκB degradation and 

release of NF-κB. SYK – spleen tyrosine kinase, BLNK – B-cell linker protein, BTK – Brutons tyrosine kinase, 

PLCγ2 – phospholipase C-gamma 2, IKK – inhibitor of kappa-B kinase, IκB  – inhibitor of kappa-B.  

 

The GC microenvironment facilitates the clonal expansion, affinity-based selection and 

maturation of B-cells. The resultant terminally-differentiated plasma cells produce large 

quantities of high-affinity antibodies and memory B-cells are primed to respond quickly to 

repeated infection (Allen et al., 2007). During CSR and SHM, double stranded DNA breaks are 

formed and repaired and point mutations occur. This, when combined with the highly 

proliferative nature of germinal centre B-cells, means that the GC often becomes the source of 

B-cell malignancies (figure 1.6).   
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Figure 1.6 B-cell germinal centre development and cell of origin for several B-cell neoplasms. In the dark 

zone, the centroblasts proliferate and undergo somatic hypermutation (SHM) which generates clonal 

diversity. SHM increases the B-cell repertoire through mutation of the variable region of the antibody and 

facilitates increased antigen affinity. CSR enables the generation of different isotypes and involves the 

deletion of segments of the antibody heavy chain locus, followed by non-homologous end joining to repair 

the break and re-join the variable and constant regions. Centroblasts differentiate and migrate to the light 

zone where they interact with follicular dendritic cells (FDCs) and follicular helper T-cells (TFH) and undergo 

class switch recombination (CSR). The centrocytes undergo apoptosis unless their antibody affinity is 

sufficient to confer a selection advantage and they are rescued by the TFH or FDCs. Centrocytes displaying 

self-reactivity undergo apoptosis. Centroblast-centrocyte cycling enables unselected cells to improve their 

affinity. Selected centrocytes exit the GC and differentiate into plasma cells or memory B-cells. B-cell 

malignancies and their proposed normal counterparts are indicated on the left-hand side. Adapted from: 

(Vinuesa et al., 2009; Kuppers, 2005) 
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Different neoplasms arise depending on their cellular origin and mutational status. 

Waldenström macroglobulinemia (WM) is a rare, non-Hodgkin lymphoma that develops from 

memory B-cells (Kriangkum et al., 2004b).  

1.4 Waldenström macroglobulinemia 

Jan Gosta Waldenström was a Swedish clinician who, in 1944, first described two patients that 

presented with symptoms of a distinct neoplasm that would come to bear his name 

(Waldenström, 1944). Both patients suffered from various symptoms, including 

lymphadenopathy, thrombocytopenia, oronasal bleeding and accumulation of lymphoid cells 

within the bone marrow but without bone pain, which is classically associated with multiple 

myeloma (Niscola et al., 2010; Terpos et al., 2014). He noted that the bone marrow infiltrate 

consisted of B-cells rather than plasma cells, which he again contrasted to multiple myeloma. In 

addition to these symptoms, the patients exhibited abnormally high serum viscosity and one 

demonstrated evidence of cryoglobulinemia. Waldenström identified large quantities of 

globulin with a high molecular weight which he astutely attributed to be macroglobulins rather 

than aggregates of multiple small proteins. 

Waldenström pioneered the concept of monoclonal versus polyclonal gammopathies. He 

identified patients that did not show evidence of malignancy but possessed a narrow band of 

hypergammaglobulinemia following serum protein electrophoresis as having a benign 

monoclonal gammopathy, now most commonly referred to as monoclonal gammopathy of 

undetermined significance. Whereas he discerned broad band hypergammaglobulinemia as a 

polyclonal gammopathy (Waldenstrom, 1961). The distinction between monoclonal and 

polyclonal gammopathies is particularly important because the former is the precursor to B-cell 

malignancy, whilst polyclonal gammopathies most commonly originate from inflammatory 

responses rather than a neoplastic cause (Dispenzieri et al., 2001).  

WM is characterised by the infiltration and accumulation of clonal B-lymphocytes in the bone 

marrow, which give rise to neoplastic plasma cells that secrete monoclonal IgM paraprotein 

(Owen et al., 2003). The uniform ability of WM B-cells to undergo plasma cell differentiation is 

unique amongst B-cell malignancies as cells from other neoplasms are either halted at a 

particular stage of differentiation, such as the activated B-cell-like stage in ABC DLBCL or only 

retain a limited capacity for differentiation such as marginal zone lymphoma (Alizadeh et al., 

2000; Van Huyen et al., 2000; Owen et al., 2003; Dufresne et al., 2010). WM may occur as 

smouldering or symptomatic disease. Alternately, if a patient presents with an abnormal level 

of IgM, but no bone marrow infiltration and are symptom-free they are classified as having IgM 
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MGUS, an IgM monoclonal gammopathy of undetermined significance. A patient with IgM 

MGUS or smouldering WM is at significant risk of developing symptomatic WM, with a 

progression rate to WM of approximately 2% per year (Kyle et al., 2003).  

Initially, investigation into the molecular pathogenesis of WM revealed the recurrent somatic 

mutation of the myeloid differentiation primary response gene (MYD88), on the short arm of 

chromosome 3 (Treon et al., 2012). The MYD88 mutation is a single base transition from CTG to 

CCG, resulting in an amino acid substitution from leucine to proline at position 265. MYD88 is 

an adaptor protein for the TLR family and is important for NF-κB activation (Medzhitov et al., 

1998). A second recurrent mutation was also discovered, the CXCR4-WHIM-like mutation – 

CXCR4S338X which results in protein truncation (Treon et al., 2012; Hunter et al., 2014).   

MYD88L265P was identified as the most common mutation in WM, present in 91% of patients 

(Treon et al., 2012). It was also observed to occur at a much lower level in IgM MGUS, suggesting 

that MYD88L265P may be critical for the progression of disease. Further investigation by allele 

specific oligonucleotide PCR concurred with these findings, noting that the MYD88 mutation was 

highly prevalent among patients with WM (Xu et al., 2013). However, the increased sensitivity 

of the technique revealed that the MYD88L256P mutation was present in far more patients (in 

excess of 50%) with IgM MGUS than was previously reported. The importance of MYD88 

mutation in WM is clear, but its presence alone does not fully explain the transformation of IgM 

MGUS to malignant disease. 

The mechanism of transformation from smouldering WM or IgM MGUS to WM has yet to be 

fully elucidated. Paiva et al. (2014) reported that 12% of IgM MGUS patients had a population 

of clonal B-cells that were found to progressively accumulate, as the disease transformed into 

symptomatic WM (Paiva et al., 2014). In addition to the accumulation of clonal B-cells, they 

increasingly displayed the same signature phenotype as WM clonal B-cells 

(CD22lowCD25+CD27+IgM+).  

Subsequently, the same group used multidimensional flow cytometry to increase the sensitivity 

of their characterisation of the phenotypes of the clonal B-cells in each of the three disease 

groups (Paiva et al., 2015). A comparison of the disease stages revealed that whilst patients with 

WM and IgM MGUS possessed molecularly and phenotypically similar clonal B-cell populations, 

the mutations present in symptomatic WM occurred less frequently in patients with IgM MGUS. 

Analysis of the gene expression profiles of WM and IgM MGUS revealed that they possess high 

levels of similarity (Chng et al., 2006). 

The identification of MYD88L265P and its prevalence implies that WM cell survival results from 

constitutive activation of the NF-κB pathway. NF-κB activation is one of the many downstream 
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effects of BCR stimulation, but this does not require MYD88. Therefore, this indicates that an 

alternate pathway must be involved in WM pathogenesis such as the TLR or BAFF-R pathways 

(Treon et al., 2012).  

1.5 MYD88 in B-cell responses 

Whilst MYD88 is not required in the T-cell dependent response, B-cell differentiation can be 

induced in a manner independent of T-cell interaction and elicits antibody production and 

limited CSR (Rawlings et al., 2012). Whilst the antibodies produced in a T-cell independent (TI) 

immune response are generally of lower affinity than those produced from plasma cells that 

have undergone the germinal centre reaction, it nevertheless enables B-cells to rapidly mount a 

defence against invading pathogens and generates some long-lived plasma cells (Fairfax et al., 

2008). A TI response can be initiated in several ways, such as when B-cells activated by antigens 

receive additional signals from TLRs, but may also occur independently of TLR ligation, following 

binding of multivalent antigens (Obukhanych and Nussenzweig, 2006).  

1.5.1 Toll-like receptors 

TLRs are present on many cells within the immune system, particularly B-cells, plasmacytoid 

dendritic cells and macrophages (Takeda and Akira, 2005). TLRs may be located either on the 

surface of cells such as TLR 1, 2 and 4 or localised within endosomes (TLRs 7, 8 and 9) and bind 

their ligands which are usually highly evolutionarily conserved bacterial motifs, such as LPS or 

CpG (Akira and Takeda, 2004). Currently, 11 human TLRs have been reported, but TLR11 appears 

to be non-functional due to the presence of a stop codon within the gene resulting in protein 

truncation (Zhang et al., 2004). The TLRs may be divided into three groups based on their ligands: 

TLRs 1, 2, 4 and 6 recognise lipids and lipopeptides, nucleic acids serve as the ligands for TLRs 3, 

7, 8 and 9 and TLR5 recognises proteins (Takeuchi et al., 1999; Alexopoulou et al., 2001; Hayashi 

et al., 2001; Takeuchi et al., 2001; Takeuchi et al., 2002). The ligand of TLR10 remains unknown 

but it has been reported to undergo homodimerisation and is also able to heterodimerise with 

TLRs 1 and 2 (Hasan et al., 2005). The TLRs that have been characterised in humans and their 

associated ligands are summarised in  table 1.1.
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Table 1.1 Human toll-like receptors and their ligands 

TLR Ligand Location Heterodimer 

1 Triacyl lipopeptides Surface TLR 2 

2 Peptidoglycan, lipopeptides, lipoproteins, 

zymosan 

Surface TLR1, TLR6 

3 Double-stranded RNA Endosomal - 

4 Lipopolysaccaride Surface - 

5 Flagellin Surface - 

6 Diacyl lipopeptides Surface TLR2 

7 Single-stranded RNA Endosomal - 

8 Single-stranded RNA Endosomal - 

9 Unmethylated deoxycytidyl-phosphate-

deoxyguanosine (CpG) motifs 

Endosomal - 

10 Unknown Surface TLR 1, TLR 2 

11 (Non-functional) Endosomal - 

 

Mature human B-cells express TLRs 1, 6, 7, 9 and 10, with low or negligible expression of TLRs 3, 

5 and 8 (Hornung et al., 2002; Bernasconi et al., 2003; Bourke et al., 2003). In stark contrast to 

murine B-cells, human B-cells lack TLR4 and thus are unable to be activated by LPS (Bernasconi 

et al., 2003). Naïve and memory B-cells have their own distinct TLR expression patterns; whilst 

naïve B-cells have been shown to express only low levels or TLRs 6, 7, 9 and 10, memory cells 

express these receptors at much higher levels, conferring additional sensitivity to TLR activation 

(Bernasconi et al., 2003). 

The requirement of a second signal subsequent to BCR ligation, such as that provided by TLRs, 

acts to maintain immunological tolerance to self-ligands that may otherwise elicit an aberrant 

response (Fulcher and Basten, 1997; Vos et al., 2000; Pone et al., 2010). TLR stimulation induces 

signalling cascades, ultimately resulting in the activation of the canonical NF-κB pathway, 

translocation of NF-κB to the nucleus and gene expression for cell survival and proliferation. All 

members of the TLR family except TLR 3 signal through MYD88 and thus it plays a critical role in 

signal transduction for the TI response (figure 1.7) (Takeda and Akira, 2005).    
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Figure 1.7 MYD88 is essential for the T-cell independent TLR signalling pathway. TLR signalling pathways 

are initiated upon ligand binding and this induces dimerisation of the receptors, resulting in interactions 

between their intracellular TIR (Toll-interleukin-1 receptor) domains. This facilitates the recruitment of 

the adaptor protein MYD88 which binds via its corresponding TIR domain. MYD88 oligomerises and 

subsequently forms a complex with the serine/threonine kinase IRAK4 which in turn undergoes 

autophosphorylation and in addition phosphorylates IRAK1. IRAK1 subsequently activates TRAF6, leading 

to the recruitment of the TAK1-TAB2-TAK3 and IKKα-IKKβ-IKKγ complexes and the resultant 

phosphorylation of IKKα and IKKβ. IκB is phosphorylated by IKKα and IKKβ and consequently it is degraded. 

Degradation of IκB enables the nuclear translocation of NF-κB which results in gene expression. IRAK1/4 

– interleukin-1 receptor-associated kinase, TRAF6 – TNF Receptor-Associated Factor 6, TAK - transforming 

growth factor-β-activated kinase 1, TAB2/3 – TAK1 binding protein.  

 

MYD88L265P is also a common mutation in activated B-cell type diffuse large B-cell lymphoma 

(ABC DLBCL) and occurs in B-cell chronic lymphocytic leukaemia (B-CLL) (Ngo et al., 2011; 

Jimenez et al., 2013). In each case, constitutive NF-κB signalling promotes oncogenic cell 

survival. Ngo et al., identified MYD88L265P as a gain-of-function mutation resulting in the 

TLR 7/8/9 

TLR Ligand 

TAB2  TAB3  

TAK1  

IRAK4  IRAK1  

TRAF6  

IKKγ  

α β 

NF-κB 

NF-κB 

IκB Nucleus 

Cytoplasm 

IκB 

MYD88 

Endosome 

P P 

P 

P 

P 

P 

P 

Transcription 

TIR TIR 



Chapter 1 – Introduction 

15 

constitutive signalling. Knockdown of MYD88 in ABC DLBCL cell lines by shRNA resulted in 

improved cell killing when used in combination with shRNAs against CARD11 or CD79b. This 

suggests that the BCR and TLR signalling pathways function in a non-redundant manner.  

1.6 MYD88 mutation in WM 

1.6.1 Structure of MYD88  

MYD88 contains three functional domains; a death domain located at its N-terminus, followed 

by an intermediate domain and, at its C-terminus, a TIR domain (Hardiman et al., 1996) (figure 

1.8). The death domain adopts a conformation of six antiparallel α-helices and is crucial for 

MYD88 interaction with the death domains of IRAK1 and 4. This interaction brings the kinase 

domain of IRAK4 into close proximity with IRAK1, which enables its phosphorylation (Burns et 

al., 2003).  

The TIR domain is important for upstream signal transduction; the TIR of TLRs interacts with the 

corresponding MYD88 TIR domain and enables MYD88 to recruit IRAK4 (Watters et al., 2007) . 

The structure of the MYD88 TIR domain is similar to other members of the TLR/IL-1R 

superfamily, comprising of five β-sheets (βA-βE) connected by surface-exposed loops to four α-

helices (αA-αC and αE) (Ohnishi et al., 2009). 

Figure 1.8 Representation of the domain structure of MYD88. DD – death domain, ID – intermediate 

domain, TIR – Toll-interleukin-1 receptor domain. The location of the L265P mutation is shown. Numbers 

denote amino acids. 

 

Upon TLR stimulation, MYD88 undergoes oligomerisation and this facilitates interaction with the 

IRAKs. The resulting complex has been termed the Myddosome and is important for the 

downstream activation of NF-κB (Gay et al., 2011). MYD88-TLR TIR-TIR interactions are believed 

to initiate the formation of the Myddosome (Loiarro et al., 2005) . The L265P mutation occurs 

at a highly conserved residue situated in the hydrophobic core of the protein and forms part of 

the TIR βD β-sheet. This mutation increases the propensity of MYD88 to oligomerise and form 

spontaneous Myddosomes without the requirement of TLR signalling (Loiarro et al., 2013).  

N C DD ID TIR 

1 54 110 155 309 296 

L265P 
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MYD88L265P enhances oligomerisation with both mutant and WT MYD88 and the strength of 

these interactions is significantly increased compared to the interaction between two WT 

domains (Loiarro et al., 2005). This ultimately results in apoptotic resistance via the constitutive 

activation of the NF-κB pathway.  WM B-cells possessing MYD88L265P therefore have a survival 

advantage over their WT counterparts.  

1.6.2 Mechanism of MYD88 signalling 

Engagement of TLRs with their cognate ligand induces dimerization of the receptor, facilitating 

the recruitment of MYD88 and initiating the formation of the oligomeric Myddosome complex 

(Jin and Lee, 2008). Subsequent recruitment of IRAK-4 to the complex is mediated by a peptide 

sequence spanning the intermediate and death domain (Motshwene et al., 2009). Jannssens et 

al., identified a splice variant of MYD88 lacking the ID, which they have termed MYD88s 

(Janssens et al., 2003). MYD88s is unable to recruit IRAK-4 to the Myddosome, highlighting the 

importance for the ID in its assembly (Janssens et al., 2003).  

Dimerisation of IRAK-4 is critical to facilitate trans-autophosphorylation, whereby the activation 

loop of one kinase is brought in close proximity to its neighbour, enabling phosphate exchange 

(Motshwene et al., 2009; Vollmer et al., 2017). IRAK-4 subsequently activates IRAK-1 by 

phosphorylation, which appears to be promoted by MYD88 (Li and Verma, 2002). IRAK-1 

interacts with TRAF6 via its C-terminal enabling the translocation of TRAF6 from the membrane 

to the cytosol in a phosphorylation-dependent manner and activation of downstream NF-κB 

signalling (Qian et al., 2001). 

Unusually, IRAK-1 signalling is negatively regulated by its own activity as a kinase (Kollewe et al., 

2004; Noubir et al., 2004). Activation of IRAK-1 by IRAK-4 results in hyper-autophosphorylation. 

Extensive phosphorylation of IRAK-1 results in its dissociation from the protein signalling 

complex, whereby it is subsequently ubiquitinated and degraded by the proteasome (figure 1.9) 

(Kollewe et al., 2004; Noubir et al., 2004).  
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Figure 1.9 Mechanism of MYD88 signalling following TLR ligation. A) Ligand binds to TLR, induces TLR 

dimerisation. MYD88 interacts with the TIR domain of TLR. B) MYD88 binds with IRAK-4 via a peptide 

sequence spanning the ID and DD. C) The KD domains of IRAK-1 and -4 are brought within close proximity 

and this enables the phosphorylation of IRAK-1 by IRAK-4. D) Phosphorylation of IRAK-1 induces further 

autophosphorylation. E) Thereafter it interacts with TRAF6, initiating the pathway leading to nuclear 

translocation of NF-κB. Multiple phosphorylations of IRAK-1 eventually destabilise its interaction with the 

Myddosome. F) Following the dissociation of IRAK-1 from the Myddosome complex, it undergoes 

ubiquitination and degradation. TIR - Toll/interleukin-1 receptor homology domain, ID - Intermediary 

domain, DD - Death domain, KD - Kinase domain. Adapted from Jannssens et al., 2003. 

 

Control of this pathway may occur in a variety of ways, with one example being the regulation 

of adaptor molecules, such as the ubiquitination of IRAK-1. The alternately spliced MYD88s is 

able to inhibit MYD88 signalling by dimerising with the full-length MYD88, but the activation 

signal is not propagated further due to its inability to activate IRAK-4 (Janssens et al., 2003). A 

member of the TIR superfamily, ST2, binds to MYD88 via its TIR domain and thus prevents its 
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interaction with TLRs (Brint et al., 2004). As with MYD88, inhibitory splice variants of the IRAKs 

also occur and function in a similar manner (Hardy and O'Neill, 2004; Rao et al., 2005). 

In addition to the regulation of components within the TLR signalling pathway, regulation of TLR 

signalling may be achieved via their location, particularly for the endosomal TLRs (Miggin and 

O’Neill, 2006). These TLRs recognise elements of bacterial DNA and RNA and have the potential 

for the recognition of self-ligands, thus their sequestration within endosomal compartments 

prevents them from coming into contact with these molecules (Barton et al., 2006). Expression 

of TLRs can also be regulated via anti-inflammatory cytokines and the TLRs themselves may be 

degraded (Chuang and Ulevitch, 2004; McCartney-Francis et al., 2004). 

1.6.3 The Myddosome 

The Myddosome is an oligomeric complex that acts like a scaffold, facilitating the recruitment 

of the IRAK-family kinases to potentiate the TLR signal. The crystal structure of the Myddosome 

was first determined by Lin and colleagues (Lin et al., 2010). It forms a left-handed helical 

structure by the association of the death domains of MYD88, IRAK-4 and IRAK-1 or IRAK-2 in a 

sequential process. Based on their findings and the structure of other DD-containing complexes, 

they proposed a 6:4:4 MYD88:IRAK-4:IRAK-1 stoichiometry (Park et al., 2007; Lin et al., 2010). 

Each molecule within the complex has, at most, six partner death domains within its immediate 

locale, giving rise to a hexagonal pattern (Lin et al., 2010).  

Subsequently, Motschwene et al., demonstrated that stoichiometries of 7:4 or 8:4 were the 

most likely to form (Motshwene et al., 2009). They speculate that 7:4 Myddosomes may be able 

to interact with 8:4 complexes, enabling the formation of scaffolds of alternating 7:4 and 8:4 

Myddosomes (figure 1.10). 
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Figure 1.10 Tertiary structure of the Myddosome. Each layer of the helix consists of 4 DD molecules and 

is constructed sequentially. MYD88 molecules are depicted in shades of green, IRAK-4 - blue, IRAK-1 - 

purple. A planar view is illustrated on the right, demonstrating a hollow in the centre of the complex. The 

putative association of alternating 7:4 and 8:4 Myddosomes has been suggested to occur via the 7th 

MYD88 molecule in the 7:4 complex (Motschwene et al., 2009). 

 

The first stage in Myddosome assembly is the homodimerisation of MYD88, facilitated by the 

interaction between the TIR domains (Li et al., 2005; Loiarro et al., 2005). The MYD88L265P 

mutation can initiate the formation of the Myddosome without the prior requirement of TLR 

ligation (Ngo et al., 2011; Treon et al., 2012). Moreover, MYD88L265P interacts most strongly with 

wild-type MYD88 molecules, thus requiring only a limited number of mutant moieties for 

multiple complexes to form (Avbelj et al., 2014). 
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1.6.4 Canonical and non-canonical NF-κB signalling pathways 

Signalling through TLRs and subsequent Myddosome formation has been established to elicit 

NF-κB pathway activation (Kawai and Akira, 2007). There are two distinct branches of the NF-κB 

signalling axis, the canonical and non-canonical pathways. Aberrant activation of the canonical 

arm of the NF-κB pathway by MYD88L265P is central to the pathogenesis of WM (Treon et al., 

2012). However, under normal conditions, multiple receptors on B-cells are able to initiate 

canonical NF-κB signalling, including the BCR and TLRs (figure 1.10). Ligation of these receptors 

results in phosphorylation of IKKβ and activation of the trimeric IκB kinase complex. This 

complex is composed of a regulatory IKKγ subunit and catalytically active IKKα and β subunits. 

This in turn phosphorylates the inhibitor of κB (IκB), resulting in its ubiquitination and 

subsequent proteasomal degradation. IκB degradation releases dimers of canonical NF-κB 

family members such as p50-p65 (RELA) leaving them free to translocate to the nucleus and 

initiate transcription. Canonical NF-κB signalling is usually characterised as swift but transient 

whereas non-canonical NF-κB activation is slower but more persistent. 

In contrast to the canonical pathway, non-canonical signalling is mediated through NIK (NF-κB-

inducing kinase. Activation of NIK, for example by CD40, first results in IKKα phosphorylation, 

which itself phosphorylates the C-terminal of p100. This results in the degradation of the C-

terminal end of the protein and the generation of p52. The RelB-p52 dimer is then able to 

undergo nuclear translocation (figure 1.11).  

 



Chapter 1 – Introduction 

21 

 

Figure 1.11 Activation of canonical and non-canonical NF-κB signalling in B-cells. Upon the initiation of 

canonical NF-κB signalling, phosphorylation activates the IκB kinase complex which, in turn, 

phosphorylates IκB (inhibitor of κB), targeting it for ubiquitination and proteasomal degradation. This 

process releases the p50-p65 dimer for nuclear translocation. Non-canonical signalling is achieved 

through the processing of the p100 subunit. NIK (NF-κB-inducing kinase) activation results the sequential 

phosphorylation of IKKα and then the C-terminal of p100, which is degraded. This enables RelB-p52 to 

move to the nucleus.  

 

Whilst the focus of WM is on the canonical pathway, non-canonical signalling may also be 

important to WM cells due to their residence within the bone marrow. Neighbouring cells 

located within the bone marrow microenvironment provide several different sources of ligands 

that activate the non-canonical NF-κB pathway within the neoplastic clone. These include the 

production of BAFF by monocytes and the provision of CD40 signalling by mast cells and T-cells 

(Morrison et al., 2005; Elsawa et al., 2006; Ho et al., 2008). The combination of mutations 

occurring within WM cells thus facilitates improved survival over their wild-type counterparts 

through constitutive activation of the canonical NF-κB pathway but also localises these cells to 



Chapter 1 – Introduction 

22 

a permissive environment which provides supplemental signals to support neoplastic growth 

and survival. 

1.7 CXCR4 signalling 

Following the discovery of MYD88L265P, mutations in CXCR4 were identified as the second most 

prevalent in WM (Hunter et al., 2014). CXCR4 is the cognate receptor for the chemokine SDF-1 

(stromal cell derived factor-1), which is also known as CXCL12 (Bleul et al., 1996). SDF-1 is 

expressed on the stromal and endothelial cells of the bone marrow and facilitates homing of 

lymphocytes to the niche via a chemotactic gradient (Bleul et al., 1996). The association of CXCR4 

expression and the infiltration of neoplastic cells to the bone marrow was first identified by two 

groups in CLL (Burger et al., 1999; Möhle et al., 2000). In a similar manner, the CXCR4/SDF-1 axis 

is key to the homing of WM cells to the bone marrow and their subsequent adhesion to 

endothelial and stromal cells within the niche (Ngo et al., 2008).  

Control of CXCR4 signalling is normally exerted by internalisation of the receptor, resulting in 

desensitisation (Haribabu et al., 1997; Signoret et al., 1997). Following activation, the 

intracellular domain of CXCR4 is rapidly phosphorylated by GRK, this enables binding of β-

arrestin which ultimately results in attenuation of G-protein activation and internalisation of the 

receptor (Cheng et al., 2000). Mutations to CXCR4 within WM are restricted to the intracellular 

cytoplasmic tail of the protein (Poulain et al., 2016). The most predominant mutation, 

CXCR4S338X, is often referred to as CXCR4WHIM as it was originally identified in patients with WHIM 

syndrome (Hernandez et al., 2003). These mutations prevent the internalisation of the receptor, 

resulting in aberrant activation of a multitude of downstream signalling cascades (figure 1.12). 

CXCR4 signalling is mediated by heterotrimeric G-proteins. Ligand binding triggers 

conformational changes within the Gα subunit, enabling the release of the trimer from CXCR4 

and subsequent disassociation of this subunit and the Gβ/Gγ dimer. The function of CXCR4 is 

altered depending on the stage of lymphopoiesis, enabling egress of mature B-cells from the 

bone marrow before enabling plasma cells to return to the niche (Honczarenko et al., 1999; 

Glodek et al., 2003; Palmesino et al., 2006). The PI3K pathway is particularly important for 

lymphocyte chemotaxis (Ganju et al., 1998; Helbig et al., 2003; Kukreja et al., 2005). This 

pathway has been found to be constitutively active in WM, aiding the infiltration of the 

neoplastic clone within the bone marrow (Leleu et al., 2007).  
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Figure 1.12 Divergent signalling cascades activated by CXCR4 ligation. The CXCR4/SDF-1 axis activates 

multiple downstream processes including chemotaxis, cell proliferation and survival, gene transcription 

and calcium release. cAMP - cyclic adenosine monophosphate; PKA - protein kinase A; JAK - Janus kinase; 

STAT - signal transducer and activator of transcription; Cdc42 - cell division control protein 42 homolog; 

Rac - Ras-related C3 botulinum toxin substrate; Rho - Ras homolog gene family; GRK – G-protein-coupled 

receptor kinase; FOXO - Forkhead box protein; PIP2 - phosphatidylinositol bisphosphate; PLC - 

phospholipase C; PKC - protein kinase C; Ras - Rat sarcoma protein family; IP3 - inositol 1,4,5 

trisphosphate; PI3K - phosphoinositide-3 kinase; ERK1/2 - extracellular regulated kinase 1/2.  

 

CXCR4 stimulation can also result in the activation of NF-κB via several diverging signalling 

pathways, facilitating survival and transcription. In WM, CXCR4 signalling results in the 

upregulation of the adhesion molecule VLA-4, mediating adhesion to stromal cells and 

contributing to chemotherapy resistance (Ngo et al., 2008).  
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1.8 Treatment of WM 

The ubiquitous expression of CD20 on B-cells up to the plasmablast stage originally led to the 

use and recommendation of Rituximab as a standard of care in WM (Dimopoulos et al., 2007). 

Rituximab is a monoclonal CD20 antibody and has been commonly used as a first line of 

treatment in WM (Dimopoulos et al., 2007; Buske et al., 2013; Dimopoulos et al., 2014). It is 

generally well tolerated by patients and does not damage stem cells, a key factor in treatment 

selection if an autologous stem cell transplant is being considered as salvage therapy (Treon et 

al., 2001; Gertz et al., 2004; Kyriakou et al., 2014). A common complication for patients when 

on Rituximab is a paradoxical increase in IgM levels within the serum, termed “IgM flare” which 

may require plasmapheresis to prevent hyperviscosity, but is otherwise manageable (Treon et 

al., 2004; Treon et al., 2005). 

The efficacy of Rituximab as a single agent prompted trials of its use in combination with other 

drugs such as alkylators and purine analogues (Treon et al., 2006; Dimopoulos et al., 2007; 

Tedeschi et al., 2012; Kastritis et al., 2015; Souchet et al., 2016). Two common combination 

regimes are Rituximab and Bendamustine and R-CHOP (Rituximab plus cyclophosphamide, 

doxorubicin, vincristine, and prednisone) (Rummel et al., 2005; Treon et al., 2011; Rummel et 

al., 2013; Tedeschi et al., 2015). Combination therapies which include Rituximab have now 

become the current standard of care for the treatment of WM (Owen et al., 2014). 

One of the drugs that has recently demonstrated efficacy in treating WM is Ibrutinib (Yang et 

al., 2013) (Treon et al., 2015). Ibrutinib is a selective inhibitor of Bruton’s tyrosine kinase (BTK). 

The first evidence of the interaction between MYD88 and BTK was provided by Jefferies and 

colleagues, who observed co-immunoprecipitation of MYD88 with endogenous BTK following 

the overexpression of MYD88 in HEK293 cells (Jefferies  et al., 2003). They also demonstrated 

that BTK interacts with the TIR domain of TLRs (Jefferies et al., 2003). Subsequently, co-

immunoprecipitation of MYD88 and BTK in macrophages stimulated with LPS provided 

additional evidence of this interaction and thus a link between BTK and TLR signalling (Liu et al., 

2011). Furthermore, the interaction between these two proteins was also identified in human 

neutrophils (Krupa et al., 2013). Investigation into the effects of MYD88L265P within WM cell lines 

revealed that it enhanced BTK activity, thus providing a rationale for BTK inhibition (Yang et al., 

2013). BTK is involved in both the BCR and TLR signalling pathways and has previously been 

shown to be effective at killing ABC DLBCL with chronic active BCR signalling (Wilson et al., 2015). 

Ibrutinib elicits a similar response in WM cells (Treon et al., 2015), highlighting the importance 

of MYD88L265P/NF-κB induced survival and therefore targeting this pathway is key for effective 

therapy (figure 1.13).  
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Figure 1.13 Involvement of BTK in the TLR and BCR signalling pathways. BTK is able to interact with 

multiple components of the TLR pathway, including the TLR TIR domain, MYD88, IRAK1 and IκB (Jefferies 

et al., 2003). In WM, MYD88L265P complexes with BTK upon TLR stimulation and this results in BTK 

phosphorylation (Yang et al., 2013). BTK is constitutively activated and phosphorylates IκB, releasing NF-

κB. In the BCR pathway, BTK phosphorylates PLCγ2, which, in turn cleaves phosphatidylinositol-4, 5-

bisphosphate (PIP2). This results in the generation of inositol triphosphate (IP3) and diacylglycerol (DAG). 

DAG interacts with PKC and this activates the NF-κB pathway whilst IP3 is critical for intracellular Ca2+ 

release and thus BCR signal transduction.  

 

A clinical trial of combination therapy of Ibrutinib and Rituximab in both treatment naïve and 

relapsed/refractory patients has recently been completed (Dimopoulos et al., 2018). Results 

from this trial indicate that progression-free survival is significantly increased in patients 

receiving Ibrutinib-Rituximab compared to those receiving Rituximab and a placebo, regardless 

of their previous treatment status (Dimopoulos et al., 2018). Due to the heterogeneity of the B-

cell state within WM and the variety of mutations that may be present, a multi-faceted approach 

appears to provide the best outcome for patients.  

WM treatment has thus far focussed on the B-cell component of the disease, presenting an 

opportunity to improve patient outcomes with the inclusion of a more plasma-cell specific 

therapy. One such example is the trial of the CD38 monoclonal antibody Daratumumab. 
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Daratumumab has previously demonstrated efficacy in MM and CD38+ CLL (de Weers et al., 

2011; Lokhorst et al., 2015; Usmani et al., 2016; Matas-Céspedes et al., 2017). Investigation of 

the efficacy of Daratumumab in treating WM has been undertaken using WM cell lines and 

suggests that it may be effective (Paulus et al., 2016; Paulus et al., 2017b; Paulus et al., 2018). A 

phase II trial evaluating a combination of Daratumumab plus Ibrutinib is currently being 

conducted in WM patients (A study of Daratumumab in patients with relapsed or refractory 

Waldenström Macroglobulinemia. Trial number NCT03187262). A greater understanding of WM 

aetiology will help to inform future treatment. 

1.9 Aims and objectives 

Our group has previously published a novel technique for the in vitro differentiation of B-cells 

that is able to generate long-lived plasma cells (Cocco et al., 2012). B-cells derived from 

peripheral blood or bone marrow are isolated and stimulated with a ligand such as CD40L and 

antibody to the BCR. The activated B-cells are cultured with cytokines to initially support viability 

and then conditions are sequentially altered to drive differentiation. Stromal cell support is 

provided to mimic the plasma cell niche and this enables long-term culture of plasma cells.  

This is the first time a detailed investigation will be conducted into the differentiation of WM B-

cells using this in vitro differentiation method. It will enable the characterisation of B-cell 

immunophenotype by flow cytometry and will permit quantification of cellular proliferation as 

differentiation occurs. 

1.9.1 Preliminary results 

Initial results indicated that some WM cells are able to differentiate when they are stimulated 

with CD40L but others are resistant to differentiation (data generated by Dr J. Sinfield). In 

addition, when WM cells were stimulated with R848 (Resiquimod), a selective synthetic agonist 

for TLR7/8, WM cells appeared to die rather than proliferate (figure 1.14). 
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Figure 1.14 Immunophenotype of WM B-cells differentiated with CD40L or R848 stimulation. B-cells 

were isolated from the BM of a WM patient and stimulated with either CD40L + F(ab’)2 anti-IgG/M or 

1μg/ml R848 + F(ab’)2 anti-IgG/M. Whilst the cells stimulated with CD40L differentiated, a population was 

resistant and retained an undifferentiated phenotype (CD19+CD20+CD38-CD138-). Meanwhile, cells 

stimulated with 1µg/ml R848 declined sharply in number, to an extent that a phenotype for day 10 could 

not be obtained (data generated by Dr J. Sinfield). 

1.9.1.1 Hypotheses 

1) Following activation with stimuli that mimics a T-dependent immune response, primary 

WM B-cells will be able to undergo differentiation and generate a population of long-

lived plasma cells within the in vitro culture system. 

The impact of MYD88 activation on WM B-cell differentiation will be assessed using the in vitro 

model. The response of healthy primary B-cells isolated from peripheral blood will be 

established to provide a control differentiation profile. The ability of WM cells to differentiate 

in response to the same stimuli will be evaluated, including cell phenotype, viability and number 

and compared to healthy controls. The longevity of the WM plasma cell population will also be 

assessed, to confirm that they persist in culture long-term. 
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2) WM cells require an intact TLR signalling pathway and will generate long-lived plasma 

cells in response to stimuli mimicking a T-independent immune response. 

The necessity for TLR signalling for the survival of for MYD88L265P-mutated WM cells has been 

postulated by two groups but has not been investigated in primary human cells (Lim et al., 2013; 

Wang et al., 2014).  Preliminary data from the in vitro culture system has indicated that this is 

not the case and that additional activation of the MYD88 pathway – in addition to prior 

constitutive signalling - initiated by TLR7-R848 ligand binding has a detrimental effect on WM B-

cell survival. Therefore the response of WM cells to TLR activation will be investigated further 

to determine their requirement for this signalling pathway.  

 

3) WM B-cells will be able to generate a population of plasma cells more efficiently than 

cells derived from patients with other B-cell malignancies. 

The ability of neoplastic B-cells to retain their capacity to differentiate into plasma cells is not 

exclusive to WM. B-cells from other malignancies often exhibit some level of plasmacytic 

differentiation, such as that which occurs in marginal zone lymphoma and B-cell chronic 

lymphocytic leukaemia. However, unlike WM in which the capacity for differentiation is retained 

throughout the B-cell population, the proportion of cells within other malignancies which 

remain able to initiate a differentiation response and the degree to which they are able to 

differentiate is highly variable. The differentiation profile of primary cells isolated from the bone 

marrow of patients with B-cell neoplasms that are not WM will therefore be characterised. This 

will enable phenotypic comparison to both WM and healthy cells and facilitate assessment of 

the extent to which differentiation is compromised in a proportion of the population. 

1.9.1.2 Project aims  

- Assess the feasibility of using the in vitro system to model plasma cell differentiation in 

primary WM cells. 

- Analyse the impact of MYD88L265P mutation on WM B-cell differentiation and survival in 

response to stimuli mimicking a T-dependent or T-independent immune response. 

- Characterise the response of primary B-cells derived from other B-cell neoplasms to 

these different types of stimuli and compare them to WM and healthy cells. 

- Investigate the aberrant response of WM cells as postulated by the preliminary data. 

- Analyse and compare gene expression between healthy and WM differentiating cells, 

particularly the expression of transcription factors and cell cycle regulators to gain 

further insight into WM B-cell differentiation. 
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Chapter 2 - Methods 

2.1 In vitro generation of long-lived plasma cells 

2.1.1 Donors and clinical samples 

Peripheral blood was obtained from healthy donors with their informed consent. Patient bone 

marrow aspirates and peripheral blood provided by the haematological malignancy diagnostic 

service (HMDS) Leeds, were from anonymous donors, derived from surplus clinical samples . 

Approval for the study was granted by the Leeds (East) NHS Research Ethics Committee, REC 

reference number 07/Q1206/47. 

2.1.2 Isolation of PBMCs 

50ml peripheral blood obtained from healthy donors was mixed with an equal volume of sterile 

phosphate buffered saline (PBS) at room temperature. 34ml of the blood/PBS mix was layered 

on top of 17ml Lymphoprep (Allere Ltd.). Samples of peripheral blood or bone marrow from WM 

patients were.  When working with small quantities of patient samples, peripheral blood or bone 

marrow was mixed with sterile room temperature (RT) PBS to a volume of 8ml and layered on 

to 4ml Lymphoprep. The blood/lymphoprep was centrifuged at 2400rpm for 20 minutes at RT 

(acceleration 5, brake 0). All centrifugation was carried out with a 5810 R bench top centrifuge 

(Eppendorf). The lymphocyte layer was removed and divided between two 50ml falcon tubes 

containing 10ml cold PBS. The volume was made up to 50ml with cold PBS, then the peripheral 

blood mononuclear cells (PBMCs) were centrifuged at 1800rpm for 15 minutes at 4oC. The cells 

were combined into one tube, washed with 50ml cold PBS and centrifuged at 1500rpm for 10 

minutes at 4oC. This was repeated, then the PBS was removed and the cells washed with 15ml 

ice-cold MACS buffer - 2.5ml MACS BSA stock solution, 47.5ml autoMACS rinsing solution 

(Miltenyi Biotec). The cells were counted using a haemocytometer before being centrifuged at 

1500rpm for 10 minutes at 4oC. The cell pellet was stored on ice.  

Suppliers and details of general tissue culture materials and reagents are provided in table 2.7. 

2.2 Protocols used to isolate B-cells 

Four different protocols were used to isolate either total B-cells or memory and naïve B-cell 

fractions (table 2.1). 
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Table 2.1 B-cell isolation protocols 

 A B C D 

Name Basic isolation 
(Negative 
selection) 

Alternate total 
B-cell isolation 
(CD20+ 
selection) 

Naïve and 
memory 
separation 

FACS sort (6-
way cell sort) 

Methods 
section 

2.2.1 2.2.2 2.2.3 2.3 

Description Magnetic 
separation with 
memory B-cell 
isolation kit 
(Miltenyi Biotec) 

CD3/CD56 
depletion 
followed by 
CD20+ positive 
selection 

Magnetic 
separation with 
memory B-cell 
isolation kit 
(Miltenyi Biotec) 
followed by 
CD23+ positive 
selection 

Cells stained 
with CD3, CD15, 
CD19, CD23,  
CD38 and CD64 
to identify and 
separate the B-
cell fraction 
from PBMCs 

Output Unlabelled total 
B-cells 

CD20+ labelled 
total B-cells 

CD23+ naïve B-
cells, unlabelled 
memory B-cells 

CD19+ CD23+ 
CD38-/+ Naïve B-
cells, CD19+ 
CD23- CD38-/+ 

memory B-cells 

 

2.2.1 Basic total B-cell isolation (negative selection, protocol A) 

2.2.1.1 Isolation of B-cells with memory B-cell kit 

The following protocol was used for B-cell selection with a memory B-cell isolation kit (Miltenyi 

Biotec) for a total quantity of 1 x 108 cells or fewer. Where the PBMC yield exceeded 1 x 108, all 

quantities of reagents were doubled. 

The PBMC pellet was resuspended in 400µl of cold MACS buffer. 100µl B-cell Biotin-Antibody 

Cocktail was added and the mixture incubated for 20 minutes 4oC. Subsequently, 300µl cold 

MACS buffer and 200µl Anti-Biotin Microbeads were added, mixed, and then incubated for 20-

30 minutes at 4oC. 10ml cold MACS buffer was added and the cells centrifuged for 10 minutes 

at 1500rpm 4oC. The cell pellet was resuspended in 1ml cold MACS buffer. 

2.2.1.2 Magnetic separation of cells 

In order to negatively select for memory and naïve B-cells, an LD Column (Miltenyi Biotec) was 

placed in the magnetic field of a suitable MACS separator and rinsed with 2ml of cold MACS 

buffer. The cell suspension was applied to the column and the unlabelled cells that passed 

through were collected in a fresh tube. The column was washed twice with 1ml of cold MACS 

buffer and the effluent collected in the same tube. To further increase B-cell purity, cells were 
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applied to a second LD column, washed twice with 1ml of cold MACS buffer and the unlabelled 

cells collected in a fresh tube (protocol A+). The cells were counted and resuspended in Iscove's 

Modified Dulbecco's Medium (IMDM) (Gibco) + 10%  heat-inactivated fetal bovine serum (HIFBS) 

(Gibco) at 5 x 105 cells/ml. 

2.2.2 Alternate total B-cell isolation (CD20+ selection, protocol B) 

2.2.2.1 CD3/CD56 depletion 

After isolation of naïve and memory B-cells, their purity was increased further with additional 

magnetic separation using anti-CD3 and CD56 microbeads. 

The cell number was determined using a haemocytometer and the cell suspension centrifuged 

at 300 × g for 10 minutes. The cell pellet was resuspended in 80 µl MACS buffer /107 cells. 20µl 

each of anti-CD3 and CD56 MicroBeads (Miltenyi) were added per 107 cells, mixed and incubated 

for 15 minutes at 4°C. Cells were washed by adding 1−2ml MACS buffer /107 cells and centrifuged 

at 300 × g for 10 minutes. The resulting pellet was resuspended in 500µl MACS buffer. 

An MS Column (Miltenyi Biotec) was placed in the magnetic field of a suitable MACS separator 

and rinsed with 500µl cold MACS buffer. The cell suspension was applied to the column and the 

cells that passed through were collected in a fresh tube. The column was washed twice with 3 × 

500µl of cold MACS buffer and the effluent collected in the same tube. The cells were counted 

and resuspended in IMDM + 10% FBS at 5 x 105 cells/ml. 

2.2.2.2 Isolation of B-cells by CD20 selection 

PBMCs were isolated and depleted for CD3/CD56 positive cells as described previously. 

Depletion was performed with LD Columns (Miltenyi) when cell numbers exceeded the capacity 

of MS columns (Up to 107 magnetically labelled cells from up to 2×108 cells). Subsequently, the 

cell number was determined using a haemocytometer and the cell suspension centrifuged at 

300 × g for 10 minutes. The cell pellet was resuspended in 80µl MACS buffer /107 cells. 20µl each 

of anti-CD20 MicroBeads (Miltenyi) were added per 107 cells, mixed and incubated for 15 

minutes at 4°C. Cells were washed by adding 1−2ml MACS buffer /107 cells and centrifuged at 

300 × g for 10 minutes. The resulting pellet was resuspended in 500µl MACS buffer. The cell 

suspension was applied to MS columns and the flow-through discarded. The MS columns were 

flushed with 1ml cold MACS buffer and the effluent collected in a fresh tube. The CD20+ cells 

were counted and resuspended in IMDM + 10% FBS at 5 x 105 cells/ml.
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                                A                     B 

 

Figure 2.1 Scheme of total B-cell isolation protocols. PBMCs were isolated as per methods section 2.1.2. 

The basic isolation method (A) uses a memory B-cell isolation kit (Miltenyi Biotec) methods sections 

2.1.3.1 and 2.1.3.2. The alternate method (B) positively selects for CD20+ cells subsequent to a CD3/CD56 

depletion step (sections 2.1.4.1 and 2.1.4.2). 

2.2.3 Isolation of naïve and memory B-cell subsets (protocol C) 

PBMCs were isolated and depletion of non-B-cells was performed with a Miltenyi memory B-cell 

isolation kit. The unlabelled total B-cell fraction was incubated with 10μl CD23, 90μl MACS buffer 

per 107 cells for 20 min at 4oC. The cells were washed then incubated with 20μl Microbeads, 

80μl MACS buffer per 107 cells for 15 min 4oC. Cells were washed by adding 1−2ml MACS buffer 

/107 cells and centrifuged at 300 × g for 10 minutes. The resulting pellet was resuspended in 

500µl MACS buffer. The cell suspension was applied to an MS column and the flow through 

collected contained unlabelled CD23- memory B-cells. The columns were flushed and the CD23+ 

naïve cell fraction was collected. To increase the purity of the CD23- memory fraction, the 

suspension was applied to a second MS column and the CD23- flow through collected in a fresh 

tube. 
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2.3 B-cell isolation by fluorescence-activated cell sorting (FACS) 

(protocol D) 

2.3.1 Red Cell Lysis 

A fresh solution of 160mM ammonium chloride was prepared and filter-sterilised. 10ml 

ammonium chloride was added per 2ml whole blood and incubated at 37oC for 5-10 minutes. 

The lysate was centrifuged for 3 minutes at 2000rpm. Cell pellets were combined and washed 

twice with 50ml MACS buffer. The cell pellet was resuspended in 10ml MACS buffer + 1% DNaseI 

(Ambion) and the cells counted using a haemocytometer. The cells were centrifuged at 300 x g 

for 10 minutes at 4oC, the supernatant discarded and PBMCs stored on ice prior to staining. 

2.3.2 Staining cells for sorting 

The cells were resuspended in blocking buffer (1x107 cells/100µl blocking buffer) and incubated 

for 15 minutes at 4oC. The cells were stained with the appropriate antibodies for 20-30 minutes 

at 4oC with light excluded. 10ml MACS buffer + 1% DNaseI was added and the cells passed 

through a 70µm cell sieve (Falcon). The suspension was centrifuged at 300 x g for 10 minutes at 

4oC and the cells resuspended at 2.5-5.0 x 107 cells/ml in MACS buffer + DNaseI. Following 

sorting, the cell fractions were collected in sterile Eppendorf tubes or FACS tubes 1-2ml RPMI (+ 

10% FBS + 1% Penicillin/Streptomycin) for monocytes, granulocytes and T-cells and IMDM (+ 

10% FBS + 1% Penicillin/Streptomycin) for B-cells. 

Table 2.2 Antibodies used for FACS 6-way sort 

Antibody Fluorophore Volume per 107 cells Supplier 

CD3  VioGreen 2µl Miltenyi 

CD15  FITC 2µl   Miltenyi 

CD19  PE 2µl Miltenyi 

CD23  APC 2µl BD Biosciences 

CD38  PE-Cy7 1µl BD Biosciences 

CD64  VioBlue 2µl Miltenyi 

  

2.3.3 Gating strategy for flow cytometry 6-way sort 

The gating strategy used for the 6-way sort is as follows: 



 

 

3
4

 

 

 

Figure 2.2 Gating strategy for 6-way cell sort.  Cells were initially gated on their size according to forward and side scatter and divided into two groups. The monocytes and 

granulocytes were distinguished by their higher expression of CD64 or CD15, respectively. T-cells were separated from B-cells by their expression of CD3. The CD19+ B-cells were 

subdivided into naïve, memory and plasmablasts by their expression of CD23 and CD38: naïve B-cells CD19+CD23+, memory B-cells CD19+CD23- and plasmablasts CD19+CD23-

CD38++. 
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2.4 In vitro B-cell differentiation – tissue culture 

2.4.1 Preparation of CD40L-L fibroblasts 

In preparation for B-cell differentiation (where necessary), murine fibroblasts transfected with 

human CD40L (CD40L-L cells) were plated 24 hours in advance. CD40L-L cells were irradiated in 

advance at 50Gy for 50 minutes in a gamma irradiator (NDT) and stored at -80oC. An aliquot of 

1 x 106 pre-irradiated CD40L-L cells was thawed and added to 10ml room temperature IMDM 

media + 10% HIFBS then centrifuged at 1500rpm for 5 minutes. CD40L-L cells were resuspended 

in 12ml fresh IMDM + 10% HIFBS and 0.5ml plated per well of a 24-well plate (~40,000 cells/ 

well) and incubated overnight at 37oC + 5% CO2 (Sanyo).  

2.4.2 Preparation of M2-10B4 stromal cells 

M2-10B4 murine bone marrow stromal cells were cultured in RPMI 1640 (Sigma) + 10% HIFBS 

(37oC + 5% CO2) and passaged twice weekly. To prepare M2-10B4 cells for co-culture with 

differentiating B-cells, they were irradiated when they had reached confluency of ~80% at 57Gy 

for 57 minutes on day 5 of the B-cell differentiation. The cells were washed and plated at 1 x 106 

cells / 24-well plate (0.5ml media / well) and the plates incubated overnight at 37oC + 5% CO2. 

2.4.3 Conditions used during B-cell differentiation  

B-cells were cultured with IMDM + 10% HIFBS supplemented with 1 x TxHybridoMax hybridoma 

growth supplement, 1 x Lipid Mixture 1, chemically defined and 1 x MEM amino acids solution 

(table 2.3). The culture conditions for various stages of differentiation are as follows: 

Day 0-3: B-cells were cultured in 24-well plates at 2.5 × 105 cells/ml in IMDM + 10% HIFBS + 

supplements with the addition of hIL-2 (20 U/ml), hIL-21 (50 ng/ml) and F(ab′)2 goat anti-human 

IgM and IgG (10μg/ml). B-cells were stimulated by the TLR 7/8 agonist R848, TLR9 agonist CpG 

ODN 2006 or gamma-irradiated CD40L-L cells (1 × 106/plate) (table 2.3).  

Day 3-6: B-cells were reseeded at 1 × 105/ml in T-25 or T-50 tissue culture flasks in IMDM + 10% 

HIFBS + supplements with the addition of hIL-2 (20 U/ml) and hIL-21 (50 ng/ml). If cultured with 

CD40L-L cells on day 0, B-cells were removed by gently pipette mixing before reseeding.  
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Day 6-9: When using Transwell cell culture inserts, cells were seeded at 1.5 or 3×105/well into 

the upper chamber of 24 or 12 well plate with Transwell inserts respectively in IMDM + 10% 

HIFBS + supplements with the addition of hIL-6 (10 ng/ml), IhL-21 (50 ng/ml), IFN-α (100 U/ml. 

The lower chamber of the plate was seeded with gamma-irradiated M2-10B4 cells (4.16 × 

104/well and 8.33× 104/well for 24 and 12 well plates, respectively). When Transwells were not 

used, cells were resuspended at 5 × 105 cells/ml and cultured in 96-well round-bottomed plates 

at 200μl/well. 

Day 9: Cells were re-fed by replacing half of the media with the same media as day 6. 

Day 13 onwards: hIL-21 was withdrawn from the media + supplements + hIL6 + IFN-α. Cells were 

re-fed every 3-4 days by replacing half of the volume of media - from the lower chamber if 

Transwells were used - with fresh media + supplements + day 13 cytokines. 

2.4.4 Reagents used during in vitro B-cell differentiations 

Table 2.3 Table of cytokines and other reagents used during an in vitro differentiation 

Name Company Cat no. 

hIL-2 Roche 11147528001 

hIL-6 PeproTech 200-06 

hIL-21 PeproTech 500-P191 

IFN-α Sigma/PeproTech SRP4596 

Goat anti-human F(ab’)2 (anti-IgM & IgG) Jackson 
ImmunoResearch 

109-006-127 

R848 (Resiquimod) Invivogen 144875-48-9 

CpG ODN 2006 Invivogen tlrl-2006 

HybridoMax hybridoma growth supplement Gentaur TX-HYB 

Lipid Mixture 1 chemically defined Sigma L0288 

MEM Amino Acids Solution Sigma M5550 
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Figure 2.3 Diagrammatic representation of the conditions used throughout an in vitro B-cell 

differentiation. Isolated B-cells are activated by either CD40L or a TLR agonist, paired with antibody to 

the BCR. Activated B-cells are removed from the stimuli at day 3 before being placed into Transwells with 

stromal support or 96-well plates at day 6. Cytokines are added sequentially as indicated and the media 

supplemented  with 1 x TxHybridoMax hybridoma growth supplement, 1 x Lipid Mixture 1, chemically 

defined and 1 x MEM amino acids solution from day 3 or the differentiation. 

Day 0 

Day 3 

Day 6 

Day 13 

+ F(ab’)2 anti-IgG/M + 

IL-2 + IL-21 

+ IL-2 + IL-21 + Supplements  

+ IL-21 + IL-6 + IFNα + 
Supplements  

+ IL-6 + IFNα + Supplements  

Plasmablasts 

Plasma Cells 

Activated B-cells 

B-cells 

CD40L-L cell layer 

B-cells seeded into transwell plates or 
96 well round-bottomed plates 

M2-10B4 cell layer 

B-cell activation by co-culture with CD40L-L 
cells or addition of TLR agonist 

M2-10B4 cell layer 



Chapter 2 - Methods 

38 

2.5 Flow Cytometry 

2.5.1 Flow cytometry 

Flow cytometry was performed using a LSRII 3 laser (BD Biosciences) or CytoFLEX S (Beckman 

Coulter). Analysis was performed using FACSDiva v8.0.0 (BD Biosciences) or FlowJo v10 

(Treestar). 

2.5.2 Immunophenotype analysis 

Where possible, at least 10,000 live cell events were recorded. Fluorescence minus one (FMO) 

or matched isotype controls were used. FMO controls consisted of the experimental cells stained 

with all the fluorophores minus one fluorophore. Cells were washed with 1ml FACS buffer before 

being blocked with 25μl 2x blocking buffer at 4oC for 15min. Blocking buffer contained hIgG 

(Sigma) and normal mouse serum (Sigma). The cells were subsequently incubated with the 

immunophenotyping antibody mix (table 2.4) at 4oC for 30min. Cells were washed with 1ml FACS 

buffer and resuspended in 300μl FACS buffer.  

Table 2.4 Antibodies used for immunophenotype analysis. 

Antibody Fluorophore Clone Vol/107 Supplier Cat no. Isotype 

CD19  PE HIB19 2µl Miltenyi 130-091-247 IgG1κ 

CD20  e450 2H7 2µl eBioscience 48-0209-42 IgG2bk 

CD27  FITC M-T271 2.5µl BD Biosciences 555440 IgG1κ 

CD38  PE-Cy7 HB-7 0.5µl BD Biosciences 335825 IgG1κ 

CD138  APC 44F9 2µl Miltenyi 130-091-250 IgG1κ 

 

The antibodies for CD19 and CD27 were exchanged for Fas and FasL to assess their expression 

during the course of B-cell differentiation.  

Table 2.5 Antibodies used for Fas and FasL analysis.  

Antibody Fluorophore Clone Vol/107 Supplier Cat no. Isotype 

Fas - 
CD95  

FITC  NOK-1 10 µl Miltenyi 130-092-415 IgG1κ 

FasL -
CD178  

PE DX2 10 µl Miltenyi 130-096-456 IgG1κ 
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2.5.3 Gating strategy for flow cytometry 

The gating strategy used throughout for flow cytometry is as follows: 

Figure 2.4 Gating strategy for immunophenotype analysis. B-lymphocytes were gated firstly on their 

forward vs. side scatter characteristics. Doublets were excluded for both forward and side scatter by 

plotting area against width. Live-dead discrimination was based upon staining with 7-AAD against the B-

cell marker CD19. 

 

2.5.4 Cell number quantitation 

CountBright Absolute counting beads (Invitrogen) were used to quantify cell number. Cells from 

multiple wells were pooled to minimise well to well variation. CountBright beads were vortexed 

for 30 seconds prior to use. 50µl of counting beads were added to either 300μl undiluted cells 

or, if less than 300μl cells were available, cells were diluted to a total volume of 300μl and the 

original volume of cells used was recorded. 1,000 bead events were collected and the number 

of live cells recorded. The following calculation was performed to determine cell number: 

Calculation of cell concentration: (A/B) x (C/D) = concentration of sample as cells/µl 

Where: A = number of cell events B = number of bead events C = assigned bead count of the lot 

(beads/50 µl) D = volume of sample (µl) 
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2.5.5 Intracellular staining 

Cells were washed with 1ml PBS then resuspended in 1ml PBS at 1x106 cells/ml. In order to 

assess viability, Zombie Aqua or Zombie UV dyes (BioLegend) were used. 1µl reconstituted 

fluorescent reactive dye was added and samples incubated at RT for 30min in the dark. 25µl 

blocking buffer was added and incubated on ice for 15min. The surface stain antibodies were 

added and samples incubated for 30 min on ice. The cells were washed with1ml PBS and fixed 

in 100µl 1x Foxp3 fixation/permeabilisation solution (eBioscience) and incubated in the dark at 

RT for 20min. Cells were washed with 1x permeabilisation buffer and resuspended in 

permeabilisation buffer with the intracellular antibodies and incubated in the dark at RT for 

30min. The cells were washed with 1x permeabilisation buffer then resuspended in FACS buffer. 

2.5.6 TLR quantification and immunophenotype analysis 

The panel of antibodies provided in table 2.6 were used to assess TLR7-9 expression on B-cells 

isolated from peripheral blood or bone marrow or on cell lines. Cells were stained with 

antibodies to the surface markers before being fixed and permeabilised and stained with the 

intracellular antibodies (section 2.5.5). 

Table 2.6 Antibodies used for TLR quantification. 

Fluorochrome Antigen Location Source Clone Cat no. Vol/106 

BV421 CD25 Surface BD Biosciences M-A251 562442 1μl 

BV510 LAIR1 Surface BD Biosciences DX26 744558 5μl 

FITC TLR8 Intra R&D Systems 935166 IC8999G 1μl 

PE TLR7 Intra R&D Systems 533707 IC5875P 10μl 

PerCP-Cy5.5 CD19 Surface BD Biosciences SJ25C1 332780 5μl 

PE-Cy7 CD27 Surface BD Biosciences M-T271 560609 1μl 

APC TLR9 Intra BD Pharmingen eB72-1665 560428 20μl 

APC-H7 CD20 Surface BD Biosciences L27 641414 5μl 

2.6 Visualisation and further analysis of flow cytometry data 

viSNE and SPADE analysis was performed using the cloud based platform Cytobank (Cytobank, 

Inc.). Prior to analysis, raw flow cytometry data files were amalgamated using an FCS file 

concatenation tool. Files were grouped based on sample origin (healthy, WM samples, other 

lymphoproliferative disorder samples etc.), the type of stimulation used to activated the B-cells 

(CD40L vs R848) and the time point the flow cytometry data was collected (day 0, day 6, day 13 
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etc.) - closely related time points from day 13 onwards (+/- 48 hours) were grouped together for 

clarity. The concatenated data was then gated to exclude doublets and to ensure that only live 

cells were analysed. 

2.6.1 viSNE analysis 

viSNE (visualisation of t-Distributed Stochastic Neighbour Embedding) maps were generated 

with the following parameters. The channels selected for visualisation were CD19, CD20, CD27, 

CD38 and CD138. Proportional sampling of the concatenated data was used for downsampling. 

Analysis was performed using the default t-SNE parameters but with perplexity = 50 and 5000 

iterations.  

Proportional rather than equal sampling was used because the number of events within each 

concatenated file was highly variable between time points and different groups and this 

prevented the exclusion of files that had few events. Runs were performed with an identical 

random seed to optimise the clustering. A test analysis was performed with 100,000 events, 

(perplexity = 30, 1000 iterations and theta = 0.5) but the separation and resolution of the maps 

were poor so the final analyses were performed with 500,000 events (perplexity = 50, 5000 

iterations, theta = 0.5).  

2.6.2 SPADE analysis 

Clustering analysis of the viSNE output was then performed using SPADE (Spanning-

Tree Progression Analysis of Density-normalized Events). The default analysis parameters were 

retained and downsampling was not performed in order to include all of the events within this 

analysis. Clusters of nodes were then labelled manually according to the phenotype.  

2.7 Supernatant experiments 

Tissue culture supernatant (TCSN) was taken from in vitro differentiation experiments at day 3 

and 6, centrifuged at 1500rpm for 5min and frozen prior to use. TCSN was diluted with the 

addition of IMDM + 10% HIFBS. A second differentiation was performed and the TCSN was added 

at day 3 when the cells were resuspended in day 3 media conditions to give a final concentration 

of either 1:10 or 1:100 of the total volume.



Chapter 2 - Methods 

42 

2.8 Dose response experiments 

Cells from cell lines were resuspended at 2.5x105/ml. R848 was added at a concentration of 

10μg/ml, 1μg/ml or 0.1μg/ml or CpG was added at concentrations of 20μg/ml, 2μg/ml or 

0.2μg/ml with or without the addition of F(ab’)2 anti-IgG/M. 1ml of this was plated per well of a 

24-well plate. After 72h cell number was determined by flow cytometry using CountBright 

Absolute counting beads and viability by Annexin V/7-AAD staining. 

2.8.1 Assessment of viability by Annexin V/7-AAD staining 

Cells were harvested from each well and washed with 2ml 1x PBS. Cells were subsequently 

washed with 1ml 1x binding buffer. 100μl of staining mix – 5μl Annexin V + 95μl 1x binding buffer 

(BioLegend) – was added per sample and cells were incubated for 15 minutes at RT in the dark. 

The cells were washed with 1ml 1x binding buffer, resuspended in 200ul binding buffer and 5μl 

7-AAD (BD Biosciences) added per sample. Samples were analysed immediately by flow 

cytometry. Apoptotic cells were identified as Annexin V positive, 7-AAD negative and late stage 

apoptosis was identified as  Annexin V positive, 7-AAD positive.  

2.9 Tissue culture 

2.9.1 Cell lines 

All cells were cultured at 37oC and 5% CO2. Cell lines were cultured until they reached 

approximately 80% confluence before passaging.  

WM cell lines: BCWM.1, MWCL.1 (cells courtesy of Dr Steven Ansell, Mayo Clinic, USA) were 

grown in RPMI-1640 + 10% HIFBS.  

ABC DLBCL cell lines: OCI-Ly3 was grown in RPMI-1640 + 10% HIFBS and OCI-Ly10 in IMDM + 

10% HIFBS + 2-ME.
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2.9.2 Tissue culture materials and reagents 

Table 2.7 Materials and reagents used in tissue culture 

Product Company Cat no. 

12-well flat-bottomed plates Corning CLS3513 

24-well flat-bottomed plates Corning CLS3527 

96-well round-bottomed plates Corning CLS3799 

Transwell inserts, clear polyester membrane, 0.4µm pore Corning CLS3470 

RPMI-1640 medium Sigma R8758 

IMDM, supplemented with Glutamax Gibco 31980-022 

Fetal Bovine Serum, South America origin Gibco 10500-64 

Fetal Bovine Serum, “Gold” PAA A15-151 

Penicillin-Streptomycin Sigma P4333 

2-Mercaptoethanol Sigma M6250 

Lymphoprep Alere 1116508 

CountBright Absolute counting beads Invitrogen C36950 

Memory B-cell isolation kit, human Miltenyi 130-093-546 

autoMACS rinsing solution Miltenyi 130-091-222 

MACS BSA stock solution Miltenyi 130-091-376 

5ml round-bottomed polystyrene tubes Falcon 10186360 

5ml round-bottomed polypropylene tubes Falcon 10654411 

PBS tablets Sigma P4417 

Annexin V BioLegend 640992 

7-AAD (PerCP-Cy5) BD Biosciences 559925 

Foxp3/Transcription factor fixation staining buffer set eBioscience 00-5523-00 
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2.10 PCR 

2.10.1 RNA isolation 

Cells were centrifuged at 2000rpm for 5min at RT, the supernatant discarded and the pellet 

resuspended in 800µl TRIzol (Thermofisher). 160µl of chloroform was added to the samples, 

they were thoroughly shaken to mix and incubated for 2-3 minutes at room temperature. 

Samples were centrifuged at 12,000 x g for 15 minutes at 4oC and the upper aqueous phase 

removed to a fresh tube.  

10µg RNase-free glycogen was added to the aqueous phase to improve precipitation. RNA was 

precipitated by adding 400µl 100% isopropanol to the aqueous phase, incubating at room 

temperature for 10 minutes and then centrifuging the mix at 12,000 x g for 10 minutes at 4oC. 

The supernatant was removed and discarded and the RNA pellet washed with 800µl 75% 

ethanol. Samples were vortexed, then centrifuged at 7,500 x g for 5 minutes at 4oC. The 

supernatant was discarded and the pellet air-dried for 5-10 minutes. Pellets were resuspended 

in 44µl RNase-free water, then incubated at 55oC for 10 minutes. 

2.10.2 DNAse I treatment of RNA 

5µl of 10x buffer and 1µl DNAse I (DNA Free, Ambion) was added to each RNA sample and then 

incubated at 37oC for 20 minutes. 5µl DNAse I inactivation reagent was added and the RNA 

concentration within 1μl of sample measured on an ND-1000 NanoDrop Spectrophotometer 

(Thermo Fisher Scientific). 

2.10.3 cDNA synthesis 

1µg RNA was used for cDNA synthesis, however when the RNA concentration was low and more 

than 5µl was required for 1µg, the volume of mixes 1 and 2 used were doubled (Table 2.6).  
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Table 2.8 cDNA synthesis master mixes.  

Mix 1 Mix 2 

Reagent Supplier Reagent Supplier 

1µl Oligo dT  Invitrogen 4µl 5x cDNA synthesis buffer Invitrogen 

1µl dNTPs  Invitrogen 2µl DTT Sigma 

3µl Nuclease-free 

dH2O  

Ambion 2µl MgCl2 Applied 

Biosystems 

- - 1µl RNAse Out Invitrogen 

- - 0.25µl Reverse transcriptase (SSII) Invitrogen 

- - 0.75µl Nuclease-free dH2O Ambion 

Total volume - 5µl - Total volume - 10µl - 

 

5µl RNA was mixed with 5µl Mix 1 and incubated at 65oC for 5 minutes. The sample was placed 

on ice for 1 minute before adding 10µl Mix 2. It was then incubated at 42oC for 50 minutes and 

then incubated at 70oC for 15 minutes. Subsequently the mixture was chilled on ice, 1µl RNAseH 

(Invitrogen) added and then the mixture was incubated at 37oC for 20 minutes. 

2.10.4 Conventional PCR  

100ng cDNA was used for PCR. The master mix and PCR conditions are indicated in tables 2.7 

and 2.8. 

Table 2.9 Composition of PCR master mix. 

Reagent Volume Supplier 

10x buffer  2.5µl  Applied Biosystems 

10mM dNTPs  0.5µl Invitrogen 

10µM Forward Primer 0.5µl Sigma 

10µM Reverse Primer 0.5µl Sigma 

25mM MgCl2  1.5µl Applied Biosystems 

DMSO  1.25µl Sigma 

AmpliTaq Gold  0.125µl Applied Biosystems 

DNA  100ng - 

Nuclease-free dH2O To 25µl Ambion 
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Table 2.10 PCR conditions. 

PCR cycle conditions 

94oC 10 minutes 

94oC 30 seconds 

x 36 cycles 60oC 30 seconds 

72oC 1 minute 

72oC 7 minutes 

15oC Hold 

 

PCR products were then run on either a 1% or 3% agarose gel (see section 2.10.5). 

Table 2.11 PCR primers. 

Primer Sequence (5’-3’) 

MYD88 variant determination Forward Primer AGTTGTGTGTGTCTGACCGC 

MYD88 variant determination Reverse Primer GAGACAACCACCACCATCCG 

Amplification of MYD88 var.1 only Forward primer CGAAAAGAGGTTGGCTAGAAGG 

Amplification of MYD88 var.1 only Reverse primer GGCGAGTCCAGAACCAAGATT 

GAPDH (GAPD728) Forward Primer TGGACCTGACCTGCCGTCTA 

GAPDH (GAPD970) Reverse Primer CCTGTTGCTGTAGCCCAAATTC 

 

2.10.5 Agarose gel electrophoresis and extraction 

Gels were prepared to the percentage required by melting agarose (Sigma) in 1x TBE buffer and 

adding one drop of Ethidium bromide per 50ml gel. Gels were run at voltages between 100-

150V. Bands were visualised on a UV transilluminator before being excised. A QIAquick gel 

extraction kit (Qiagen) was used for gel extraction and purification according to the 

manufacturer’s instructions. DNA was eluted in 35μl elution buffer. 

2.10.6 DNA sequencing  

Samples were sent to Source Bioscience for Sanger sequencing and chromatograms viewed with 

Chromas Lite (Technelysium Ltd).  
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2.11 RNA sequencing 

RNA samples were quantified with a Qubit HS RNA assay kit (Thermo Fisher Scientific) and the 

quality was assessed by RNA HS assay using the TapeStation system (Agilent). Sequencing 

libraries were generated by using a TruSeq Stranded Total RNA Human/Mouse/Rat kit (Illumina) 

according to the manufacturer’s protocol. Library performance was checked on the TapeStation 

followed by picogreen quantification. Equimolar pooling was performed across all the libraries 

and the final pool was sequenced on a NextSeq 500 platform (Illumina) using 75-bp single-end 

sequencing.  

The fastq files were assessed for initial quality using FastQC v0.11.8, trimmed for adapter 

sequences using TrimGalore v0.6.0  and aligned to GRCh38.p12 (Gencode release 28) with STAR 

aligner (v2.6.0c) using twopassMode (Dobin et al., 2013). Transcript abundance was estimated 

using RSEM v1.3.0 and imported into R v3.5.1 using txImport v1.10.1 and then processed using 

DESeq2 v1.22.2 (Development Core Team, 2008; Li and Dewey, 2011; Love et al., 2014; Soneson 

et al., 2015). Using DESeq2 rLog transformed data, exploratory analysis of biological replicates 

was carried out using correlation heatmaps and MDS (all genes) and PCA (500 most variant 

genes).  Differential gene expression was determined using DESeq2, quality visualised using MA 

plots and shrinkage of log fold estimated using the apeglm method (Zhu et al., 2018).  rLog 

transformed data was exported for downstream visualisations using the GENE-E package 

v3.0.21. These analyses were performed by Dr M. Care. 

Genes with adjusted p-values of less than 0.01 were considered significant. Significantly 

differentially expressed genes were input into the DAVID functional annotation tool (LHRI). Read 

data was visualised using the Integrative Genomics Viewer (Broad Institute).  

Table 2.12 Resources used during bioinformatic analysis. 

Program Version Link to resource 

FastQC v0.11.8 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

TrimGalore v0.6.0 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ 

GENE-E v3.0.21 https://software.broadinstitute.org/GENE-E/ 

DAVID v6.8 https://david.ncifcrf.gov/summary.jsp 

IGV v2.5.x https://software.broadinstitute.org/software/igv/ 
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Chapter 3 – Differentiation responses to T-dependent activation  

3.1 Introduction 

Initially, the differentiation profile of healthy B-cells in response to stimulation with CD40L and 

F(ab’)2 anti-IgG/M was established. This includes immunophenotype analysis of the cells at each 

key stage of differentiation in addition to cell counts to provide a baseline for future comparison 

to patient samples. The effect of removing either the CD40L or F(ab’)2 anti-IgG/M component 

from the differentiation was then further interrogated to determine the response of healthy B-

cells to each of these stimuli in isolation. Subsequently, it was important to determine whether 

the in vitro system would enable WM cells to differentiate into plasma cells – a key facet of WM 

pathology in vivo that is not recapitulated in current work with cell lines. Therefore the response 

of B-cells derived from WM patients was characterised and compared to the response of healthy 

cells under the same conditions.  

3.2 Response of healthy cells during in vitro B-cell differentiations 

with CD40L stimulation 

In order to establish the profile of cell proliferation, viability and immunophenotype throughout 

their differentiation in the in vitro system, total B-cells were isolated from the peripheral blood 

of a healthy donor and cultured with CD40L + F(ab’)2 anti-IgG/M stimulation according to the 

method developed by Cocco et al., 2012 (methods section 2.1). 

CD40L is a co-stimulatory molecule found on a range of cells including activated T-cells, 

granulocytes, dendritic cells and macrophages. Arguably the most important interaction 

between CD40L and its receptor on B-cells occurs during T-cell dependent immune responses 

where it is critical to induce B-cell class switching, proliferation, antibody secretion and the 

formation of germinal centres. CD40L-L cells - murine fibroblasts transfected with human CD40L 

- were therefore used to provide stimulation to the B-cells by co-culturing them as described in 

methods section 2.1.10. 

M2-10B4 cells are a murine bone marrow stromal cell line and were added to the culture 

conditions at day 6 to support long-term B-cell survival as they provide an array of soluble factors 

similar to those found in the stromal niche that plasma cells occupy. Whilst culture with M2-

10B4 cells improves plasma cell viability, it does not affect cell phenotype during differentiation 
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(Cocco et al., 2012). Samples were taken for analysis by flow cytometry at time points 

corresponding to key phenotypic stages of B-cell differentiation.  

The response of the B-cells in the in vitro system should closely resemble that of B-cells in vivo. 

Following isolation from peripheral blood, day 0 B-cells are undifferentiated and remain 

quiescent until they receive stimulation. They should express high levels of CD19 and CD20, with 

positivity for CD27 denoting the memory B-cell compartment. At this stage, there is expected to 

be a range of expression of CD38, but all cells should be negative for the plasma cell marker 

CD138. By day 6 the B-cells should have differentiated to the plasmablast stage and express 

CD19+ CD20- CD38+ CD138- CD27+. During the subsequent week, a large proportion of cells will 

acquire the plasma cell phenotype (CD19+ CD20- CD38+ CD138+ CD27+) and virtually all remaining 

cells are expected to have fully differentiated into plasma cells by day 20. Thereafter, the 

phenotype of the cells should remain unchanged. The immunophenotype of cells from a healthy 

donor at each stage of differentiation in the in vitro system is displayed in figure 3.1 (details of 

antibodies used for immunophenotype analysis are provided in methods section table 2.4). 

In this example, the purity of B-cells as indicated by their co-expression of CD19 and CD20 

following isolation by magnetic separation was greater than 99%. The distribution of CD38 

expression was variable, with two thirds of cells possessing this marker and the rest with low or 

no expression. In this sample, the proportion of naïve to memory B-cells was 45%:55%. Following 

T-dependent stimulation with CD40L and F(ab’)2 anti-IgG/M, the cells initiate the differentiation 

response and have generated plasmablasts by day 6, evidenced by their downregulation of the 

B-cell marker CD20 and upregulation of CD38 and CD27. The distribution of cells at day 13 

consists of a mixed population of plasmablasts and plasma cells, with some cells having 

progressed further than others. For these cells, the expression of CD20 has continued to decline 

and levels of CD19 have also decreased slightly. Virtually all cells have become CD38+ with 65.7% 

of those now possessing dual expression of CD38 and CD138, denoting their plasma cell status. 

The upregulation of CD27 is almost complete, with 94% of cells expressing this marker. By day 

22, more than 90% of the remaining cells in culture have become plasma cells, with almost all 

of these having completely lost CD20 expression. The proportion of plasma cells subsequently 

increases to almost 100% and these fully differentiated cells are maintained for the duration of 

the culture. 
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Figure 3.1 A representative example of the immunophenotype of healthy cells between day 0 and 60 of 

an in vitro differentiation. Total B-cells were derived from the peripheral blood of a healthy donor 

(isolation protocol A) and stimulated with CD40L + F(ab’)2 anti-IgG/M at day 0. Live cells were 

distinguished by their exclusion of 7-AAD staining and were assessed by flow cytometry for surface 

markers at the indicated time points. The percentage of cells expressing each marker are indicated within 

individual quadrants.  
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Activation of B-cells during an immune response in vivo via a T-dependent manner results in 

extensive proliferation in order to generate sufficient numbers of effector cells to combat the 

infection. Cell survival is tightly regulated in order to prevent an excessive response and 

autoimmunity, therefore only a small number of highly specific memory cells and long-lived 

plasma cells persist upon resolution of the immune response. The cells thus begin in a quiescent 

state before activation, stimulation results in rapid proliferation and differentiation and 

subsequently the long-lived cells must return from a highly proliferative active state to a 

quiescent one. To assess this response in the in vitro system, cell number was quantified 

between day 0 and 6 with a haemocytometer and thereafter by flow cytometry with CountBright 

absolute counting beads. The accompanying cell counts for the differentiation depicted in figure 

3.1 are displayed in figure 3.2. 
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Figure 3.2 The fold change in cell number during the course of an in vitro differentiation mirrors the 

observed phenotype. Total B-cells were derived from the peripheral blood of a healthy donor and 

stimulated with CD40L + F(ab’)2 anti-IgG/M. Cell number per ml was recorded at each time point and then 

normalised relative to the number of input B-cells at day 0 to determine the fold change at each stage. 

 

The number of cells for this donor increased slightly by day 3 as the cells became activated. This 

was followed by a 19-fold increase between days 3 and 6 as the activated B-cells undergo 

extensive proliferation and become plasmablasts. A rapid decline in cell number occurred by day 

13, corresponding to the acquisition of the plasma cell phenotype, following which cell numbers 

declined slightly, but the plasma cell population was largely maintained long-term. 
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3.2.1 Reproducibility and intra- and inter-donor variation 

The proportion of memory and naïve B-cells isolated from each donor can vary considerably 

depending when samples were taken. This was observed seasonally and also if the donor had 

recently suffered from an infection. Unless otherwise stated, differentiation experiments were 

performed with total B-cells so reproducibility between these controls are crucial. In order to 

address the reproducibility of the system, two independent differentiations were performed on 

total B-cells derived from the PB of the same donor taken several months apart. 

The flow cytometry results from both of these differentiations are shown in figure 3.3. The 

immunophenotype of the cells at each stage are very similar to one another and are also 

comparable to the phenotypes depicted in figure 3.1, in which the cells were isolated from a 

different donor. In each of the three differentiations, the proportion of plasmablasts at day 6 is 

approximately 90% and the proportion of plasma cells at day 20 is also at least 90%. 

Despite the variation that can occur between samples, the in vitro system demonstrates robust 

reproducibility of phenotypes obtained during differentiations between different donors or 

independent samples taken from the same donor following stimulation with CD40L + F(ab’)2 

anti-IgG/M.   
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Figure 3.3 The immunophenotype of cells from independent differentiations is highly reproducible. B-cells were derived from the peripheral blood of a healthy donor on two 

separate occasions (isolation protocol A) and stimulated with CD40L + F(ab’)2. The cells were assessed by flow cytometry for the surface markers CD19, CD20, CD38, CD138 and 

CD27 at the indicated time points. Percentages are indicated within individual quadrants. Note: the flow cytometer voltage setting for CD38 and CD27 at day 0 on the left hand 

side had not been optimised and thus the distribution of naïve and memory cells cannot be determined for this time point so have been greyed out. 
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3.3 The differentiation profile of healthy B-cells stimulated with 

CD40L 

B-cell differentiation in response to T-dependent stimuli is characterised by extensive 

proliferation, followed by a contraction in cell number upon resolution of the immune response. 

The in vitro system replicates these stages and this can be seen by cell counts recorded at each 

stage of differentiation. The change in cell number throughout differentiations from multiple 

independent experiments is shown in figure 3.4. Some differentiations did not have sufficient 

numbers of cells initially to support long-term culture after a proportion of cells were used at 

each time point for analysis so these have been excluded. Only differentiations that were in 

culture for at least 20 days have been included. 
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Figure 3.4 Healthy B-cells display a similar and reproducible change in cell number upon activation with 

stimuli mimicking a T-dependent immune response. B-cells derived from the peripheral blood of healthy 

donors (isolation protocol A or B)  were stimulated with CD40L and F(ab’)2 anti-IgG/M. Cell number at 

each time point was determined by manual counts between days 0-6 and then by flow cytometry 

thereafter with CountBright Absolute counting beads (see methods section 2.5.4). The cell number at 

each point was normalised to the number of “input” cells for that specific donor obtained at day 0. 

 

In each case, cell number remains fairly constant or increases slightly between day 0 and day 3 

as the cells become activated, followed by an expansion of between 15-40-fold as the activated 

B-cells proliferate and differentiate into plasmablasts. Subsequently, the number of cells sharply 
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declines to levels roughly equivalent to the initial number of input cells. Cell number thereafter 

remains broadly stable as the plasma cells generated persist long-term. A slight deterioration in 

plasma cell number is expected as cultures are maintained for such extended amounts of time. 

The bone marrow is a multifaceted niche with a milieu of cytokines and stromal cells that 

support the long-term survival of plasma cells residing within this environment. Whilst the in 

vitro system endeavours to recreate the complexity of the BM microenvironment with as few 

components as possible, there are inevitably aspects of this niche that are not modelled here. 

The profile of cell surface marker expression during differentiations is illustrated in figure 3.5. 

All B-cells possess high levels of CD19 and CD20 at day 0 following purification from PB. Whilst 

levels of CD19 are expected to remain relatively constant, it was occasionally observed that a 

number of plasma cells generated following CD40L stimulation downregulated CD19 at the latter 

time points and this can be seen in the top left graph. The expression of CD20 in all instances 

declines between day 0 and day 6, with expression falling to below 20% for the majority of 

donors by days 13-15 and decreasing further thereafter. The expression of CD38 is quite variable 

in the isolated cells initially, but by day 13, virtually all cells from all donors have upregulated its 

expression. The subsequent increase in expression of CD138 after levels of CD38 have risen is 

demonstrated in the middle-right graph, with little change between day 0 and 6 when the cells 

have become plasmablasts and then a large increase in the percentage of CD138+ cells by day 

13-15 when over 50% of cells have become plasma cells. The proportion of plasma cells 

increases at each subsequent time point. The proportion of memory B-cells varies between 

donors and his can be seen in the bottom graph. However, for all donors, expression of CD27 

rises by day 6 and by day 13, almost 100% of cells express this marker. 
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Figure 3.5 Scatter plot profiles for the expression of each CD marker assayed in multiple differentiations 

with healthy B-cells.  B-cells derived from the peripheral blood of healthy donors (isolation protocol A or 

B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Each scatter plot displays the percentage of live 

cells expressing the stated CD marker as determined at each time point via flow cytometry. Data from 

comparable intervals were grouped together for clarity. Each independent differentiation is represented 

by a different colour.  
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The profile of cell surface marker expression and change in cell number during in vitro 

differentiations closely resembles the changes B-cells undergo in vivo. All healthy samples 

successfully generated plasma cells given sufficient numbers of input cells and do so by day 20. 

The phenotype at the later time points – those past day 13 – of the differentiations are very 

similar, regardless of the initial proportion of naïve and memory B-cells, which can vary widely 

between each donor.  

3.4 The effect of CD40L or F(ab’)2 anti-IgG/M omission on B-cell 

phenotype and number 

In order to respond to T-dependent antigens, B-cells require T-cell assistance, therefore 

activation of B-cells in this manner requires a combination of signals from both the BCR and 

CD40 as well as additional secondary signals such as T-cell provided cytokines. The response of 

B-cells to dual signals from these sources has been defined in the previous section, but the 

individual contribution of CD40L-L cells or F(ab’)2 anti-IgG/M alone within the in vitro culture 

system has not been addressed. Therefore, to determine the impact of each of these 

components on the cell number and phenotype of the B-cells, differentiations were performed 

omitting these stimuli in turn. 

3.4.1 Omission of F(ab’)2 anti-IgG/M from the culture system 

In order to determine whether the omission of F(ab’)2 anti-IgG/M had an effect on B-cell 

differentiation with CD40L stimulation, cells were cultured with and without F(ab’)2 anti-IgG/M 

and with CD40L-L cells until day 3. No other culture conditions were altered and the temporal 

changes in cytokines remained the same. In this instance, cells had been sorted by FACS instead 

of being isolated by magnetic separation. B-cells were separated based on their expression of 

CD27, the presence or absence of which denoted their memory or naïve phenotype, 

respectively, and each was cultured separately. The phenotype of each condition is displayed in 

figure 3.6. Unfortunately, the memory cells cultured with F(ab’)2 anti-IgG/M did not proliferate 

between days 3 and 6 and therefore numbers were insufficient for further immunophenotype 

analysis. 
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Figure 3.6 The immunophenotype of differentiating cells at early time points is altered with the removal of F(ab’)2  anti-IgG/M stimulation. B-cells were derived from the 

peripheral blood of a healthy donor and sorted by flow cytometry into naïve and memory fractions (isolation protocol D, details of antibodies used for 6-way sort are provided in 

methods section table 2.2). These were stimulated with CD40L with or without the addition of F(ab’)2 anti-IgG/M and assessed by flow cytometry for surface markers at the 

indicated time points. Percentages are indicated within individual quadrants. 
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At day 6, B-cells derived from naïve cells and cultured without F(ab’)2 anti-IgG/M had the highest 

expression of CD20, with a noticeable population of CD19++ CD20++ cells. This population is not 

present when the naïve cells are stimulated with CD40L and F(ab’)2. The memory cells cultured 

in the absence of F(ab’)2 consisted of a population of cells that had downregulated CD20 but, 

similar to the naïve cells, also had a population of cells that retain high expression of both CD19 

and CD20. Whilst the comparison to memory cells with CD40L and F(ab’)2 anti-IgG/M cannot be 

made here, if this result is instead compared to the immunophenotype obtained for total B-cells, 

the CD19++CD20++ population does not occur, suggesting that the lack of F(ab’)2 anti-IgG/M in 

this case is delaying loss of CD20 in these cells. The naïve cells activated with the dual stimulation 

possessed twice the proportion of CD38+ cells compared to those without F(ab’)2 anti-IgG/M, 

supporting a conclusion that its absence results in a delay to differentiation. The removal of 

F(ab’)2 anti-IgG/M from the culture system also results in a delay to the upregulation of CD27 in 

the naïve fraction. 

The differences in phenotype between the two naïve conditions are almost completely lost by 

day 13 of the differentiation. In addition, the naïve phenotypes have become more similar at 

this time point to the memory phenotype, but the memory fraction has generated a higher 

proportion of plasma cells. From day 20 onwards the phenotypes of each condition are nearly 

indistinguishable from one another. In summary, differentiating B-cells without F(ab’)2 anti-

IgG/M appears to delay their progression to plasmablasts, but thereafter has little effect on the 

generation of plasma cells. Memory B-cells are more efficient at generating plasma cells than 

their naïve counterparts even without this key signal. Interestingly, in the absence of F(ab’)2  anti-

IgG/M, the differences in phenotype for both of these subsets is less profound than expected, 

indicating the importance of the dual signal for the memory response.  

The fold change in cell number of the memory and naïve fractions for this donor are displayed 

in figure 3.7. 
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Figure 3.7 Number of cells cultured with CD40L and with or without the addition of F(ab’)2 anti-IgG/M. 

Cells derived from the peripheral blood of a healthy donor were sorted by FACS into memory and naïve 

phenotypes (isolation protocol D) and cultured separately with CD40L with or without F(ab’)2 anti-IgG/M. 

Cell number at each time point was determined by flow cytometry. The cell number at each point was 

normalised to the number of “input” cells obtained at day 0. 

 

Cell numbers decreased in all conditions between days 0 and 3. This does not normally occur in 

differentiations with healthy cells and is likely as a result of the stress the cells undergo during 

the cell sorting process. However, between days 3 and 6, even without the additional F(ab’)2 

stimulation, both subsets were able to proliferate. Due to the initial drop in numbers, the fold 

change between day 3 and day 6 for the naïve without F(ab’)2 anti-IgG/M, naïve + F(ab’)2 anti-

IgG/M and memory without F(ab’)2 anti-IgG/M was 16.7, 16.3 and 12.6-fold, respectively. 

Surprisingly, there was very little difference between the fold change increase between these 

time points for the naïve cells, when one would expect the dual stimulation to result in more 

proliferation. The memory fraction generated a greater number of cells at day 6 when compared 

to the input cell number than the naïve cells due to the enhanced survival of these cells over 

their naïve counterparts. Unfortunately, the memory-derived cells cultured with F(ab’)2 anti-

IgG/M did not survive. For all remaining conditions, cell numbers declined between days 6 and 

13 but a greater proportion of memory-derived plasma cells survived compared to their naïve-

derived counterparts, which was as expected. The long-term survival of plasma cells generated 

from the memory fraction was superior to those from the naïve fraction.  

Whilst a delay in differentiation at day 6 occurs when the cells do not receive both signals, the 

proliferation of the naïve-derived cells when F(ab’)2 anti-IgG/M was omitted from the culture 

was almost the same as when it was present, possibly as a result of the delay in differentiation 
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that was observed by phenotype analysis. The cells remain in the activated B-cell stage which is 

more highly proliferative for longer, thus generating a greater number of progeny. A similar 

delay was observed in early differentiation for memory cells without F(ab’)2 and its removal also 

appears to decrease proliferation but it does not affect the survival of plasma cells.  

3.4.2 Stimulation of B-cells with F(ab’)2 anti-IgG/M only 

B-cell activation can occur in the absence of CD40L, namely during T-independent immune 

responses. In the case of the in vitro system, it was unclear as to the extent of survival and 

differentiation of B-cells in the absence of these signals. Therefore, a reciprocal experiment to 

the one previously demonstrated was performed to understand the impact of CD40L omission 

on total B-cells. The phenotype of the cells obtained in this experiment are shown in figure 3.8. 

 

 

Figure 3.8 Absence of a CD40L signal results in severely impaired differentiation. B-cells were derived 

from the peripheral blood of a healthy donor (isolation protocol A). The cells were stimulated with F(ab’)2 

anti-IgG/M alone and assessed by flow cytometry for surface markers at the indicated time points. 

Percentages are indicated within individual quadrants. Note: the flow cytometer voltage setting for CD38 

and CD27 at day 0 had not been optimised and thus the expression of these markers cannot be 

determined for this time point - these plots have been greyed out. 
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B-cell purity of viable cells was greater than 98% initially but there are so few surviving cells at 

the subsequent time points that a phenotype cannot be accurately determined. Interestingly, of 

the remaining cells at day 13, expression of CD20 appears to have decreased and there is some 

evidence of a population of CD38+ cells. The paucity of surviving cells however, makes any 

conclusions regarding their phenotype unreliable, particularly cells which are on the verge of 

apoptosis as is the case here. The positivity for the markers depicted may simply be as a result 

of autofluorescence. Cell survival under these conditions was extremely poor and the fold 

change in cell number is depicted in figure 3.9. 
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Figure 3.9 Number of cells following stimulation with F(ab’)2 anti-IgG/M only. Cells derived from the 

peripheral blood of a healthy donor were stimulated with F(ab’)2 anti-IgG/M only. Cell number at each 

time point was determined by flow cytometry. The cell number at each point was normalised to the 

number of “input” cells obtained at day 0. 

 

The number of cells in culture falls substantially between day 0 and 3 and decreases to virtually 

zero thereafter. A very small number of cells persist to day 13 but there are no viable cells after 

this time point. Control of B-cell survival is exerted through Fas-dependent apoptosis, which is 

crucial to maintain immunological tolerance. CD40 receptor engagement prevents B-cell death 

by upregulating the anti-apoptotic proteins Bcl-2 and cFLIP. B-cells can also be rescued from cell 

death via other mechanisms such as ligation of TLRs or IL-4R, but in this case, none of these 

additional signals are present. The results from this differentiation illustrate the consequences 

when B-cells do not receive sufficient survival signals to overcome Fas-mediated apoptosis.
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3.5 Response of WM B-cells to CD40L stimulation 

Following the characterisation of the response of healthy cells, it was imperative to ascertain 

whether WM B-cells would also respond to CD40L stimulation and what if any, are the 

differences between patient samples and healthy controls. The ability of neoplastic B-cells to 

differentiate is critical to the pathogenesis of WM. However, constitutive activation of the NF-

κB pathway endowed by the MYD88L265P mutation is thought to be independent of stimulation 

by CD40L and BCR ligation. Despite this, there is evidence for a level of chronic active BCR 

signalling within WM (Argyropoulos et al., 2016; Munshi et al., 2017). Whilst the mutational 

burden on the BCR cascade is much lower, with an occurrence of approximately 15%, compared 

to the virtually ubiquitous MYD88L265P mutation and largely confined to CD79A and B, it 

nevertheless may influence the response of WM B-cells to these stimuli. Signalling via both T-

dependent and T-independent means converges on NF-κB, so activation with CD40L + F(ab’)2 

anti-IgG/M may synergise with the constitutive signalling to produce a more profound response.  

WM diagnostic flow cytometry results are summarised in table 3.1 below. Three samples were 

previously frozen and the corresponding data could not be obtained. 
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Table 3.1 WM diagnostic flow cytometry results. Cells have been left blank if the data were not reported. Data was collected at HMDS Leeds and provided by Dr R. de Tute. 
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WM1 frozen sample - no diagnostic flow cytometry data available 

WM2 4.4 n y + + - - -                

WM3 3.4 y n ++ ++ +/- - - - +/- +/- + ++ ++ ++ ++ + - - + + + + 

WM4 60 y n ++ + + - + + + - - + + + ++ + - - + +   

WM5 >90 y n ++ ++ +/- - - - - - +/- ++ ++ ++ + ++ - - +/-    

WM6 54 n y + ++ - -  +/- - + - ++ + ++ ++ + - +/- ++    

WM7 82   ++ +/- - -  - + - - +/- + ++ + + - - +    

WM8 frozen sample - no diagnostic flow cytometry data available 

WM9 frozen sample - no diagnostic flow cytometry data available 

WM10 89 y n ++ ++ + -  +/- + - + ++ ++ ++ + + - - ++    

WM11 90 y n + ++ - -  - + - - ++ + ++ ++ + - - +    

WM12 40 y n ++ ++ +/- - - - +/- - +/- ++ ++ ++ ++ ++ - - + + ++ + 

WM13 45 n y ++ + - -  +/- + - +/- ++ + + + + - - +    

WM14 >90 y n ++ ++ +/- -  - - - +/- ++ + + ++ + - - ++    
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3.5.1 WM cells differentiate following stimulation with CD40L 

Whilst the immunophenotype of WM cells in vivo at the B-cell and plasma cell stages has been 

well documented, whether the cells possess the same phenotype as healthy cells as they 

progress through each stage of differentiation has not been previously investigated (San Miguel 

et al., 2003; Konoplev et al., 2005; Toma et al., 2007; Paiva et al., 2013). Whether the clonal cells 

can be distinguished and if they differentiate concurrently to the fraction of healthy cells in the 

sample is another question to address. Initially, WM B-cells derived from samples of patient 

bone marrow were assessed to determine whether they remained able to differentiate into 

plasma cells when stimulated with CD40L + F(ab’)2 anti-IgG/M. Several different profiles of 

differentiation were obtained, the first of which is illustrated below in figure 3.10. In this 

example, the phenotype of the cells throughout the differentiation closely resembles a healthy 

differentiation. 
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Figure 3.10 Example of WM cells that differentiate with a “normal” phenotype. B-cells were isolated 

from the bone marrow of a patient with WM (isolation protocol A). The cells were activated with CD40L 

+ F(ab’)2 anti-IgG/M and the immunophenotype assayed by flow cytometry at each time point. 

Percentages are shown for each quadrant. 

 

In this sample, the number of cells at day 6 was low, affecting the quality of the flow data, but 

the cells have begun to show evidence of differentiation, with a loss of CD20 and an increase in 

the levels of CD38 expression. By day 13, more than 90% of cells have lost CD20 expression. The 

proportion of cells that have upregulated CD38 has increased to just under 75%, with one third 
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of these having differentiated into plasma cells. Increase in CD27 expression has risen from 40% 

to 80% during this period between day 6 and day 10. The proportion of fully differentiated 

plasma cells increases at each subsequent time point and these cells are maintained long term. 

This sample confirms that stimulation with CD40L can, at least in some cases, result in complete 

differentiation and the generation of plasma cells from WM B-cells. 

3.5.2 Summary of WM differentiations stimulated with CD40L 

It has been established that WM B-cells are able to generate plasma cells that are phenotypically 

equivalent to healthy PCs. It was then essential to repeat the in vitro differentiations with 

additional patient samples to assemble a more representative overview of responses to this type 

of stimulation. The following section compares the number of cells and phenotypes obtained 

during differentiations with 8 WM samples to those with B-cells from healthy donors.  

The overall response of most WM samples (figure 3.11) shares a similar profile of proliferation 

to healthy controls, with an expansion in cell number occurring between day 3 and 6 of the 

differentiation, followed by a substantial decrease in cell number to day 14 and subsequently 

cell numbers reaching a plateau at approximately day 20. However, the amplitude of the 

increase to cell number during the proliferative phase is considerably lower than that which 

occurs in differentiations with healthy cells. Healthy differentiations average a 20-30 fold 

increase to cell number whereas WM cells are only able to expand 4-fold. The fold change in cell 

number depicted in figure 3.11 (top) between days 3 and 6 for samples WM5, 7 and 9 is 

underrepresented because of a decrease in cell number that occurred between day 0 and 3 for 

each of these samples. Similarly, this also decreases the average fold change for the WM 

samples in the bottom graph of figure 3.11. The decrease in cell number between day 0 and 3 is 

a phenomenon that affected patient samples to a much greater extent than samples derived 

from healthy donors. The average fold change in cell number between day 0 and 3 for healthy 

donors was 2, with cell numbers decreasing between these two time points in only 1/13 

samples. In contrast, the average fold change in cell number between day 0 and 3 for WM 

samples was 0.7 and cell numbers decreasing in 5/6 instances. It is likely due to the greater delay 

that occurred between when the sample of bone marrow was taken to when the B-cells were 

isolated than occurred for samples of PB from healthy donors, thus in some cases affecting the 

viability of the WM B-cells. For WM5, 7 and 9, whilst a drop in cell number occurred by day 3, 

each was able to proliferate to a comparable level to the WM samples that did not experience 

a decrease in number. However, the expansion in cell number even when this is taken into 

account is still lower than for healthy cells. This was unexpected, since one would anticipate that 

neoplastic cells would be more inclined towards proliferation and have a survival advantage over 
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their healthy counterparts. Samples WM1 and WM2 did not proliferate between days 3 and 6 

as expected, but similar numbers of plasma cells were present at the later time points as cell 

numbers for these samples did not drop as sharply.  
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Figure 3.11 WM B-cells display a range of cell number profiles following activation with stimuli 

mimicking a T-dependent immune response. (Top) B-cells derived from the bone marrow of patients 

diagnosed with WM (isolation protocol B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Cell 

number at each time point was determined by manual counts for days 3 and 6 and then by flow cytometry 

thereafter. The cell number at each point was normalised to the number of “input” cells for that specific 

patient obtained at day 0. (Bottom) A comparison of the average proliferation dynamics of healthy and 

WM patient-derived B-cells over the course of differentiation. Healthy n = 13, WM n =  6, error bars - 95% 

confidence interval. 

 

Whilst some samples taken from WM patients were nearly indistinguishable from healthy 

samples in terms of phenotype following activation, overall there was a far greater range of 
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responses to CD40L stimuli than was observed in healthy controls. This is illustrated in figure 

3.12. The only marker to remain constant is the ubiquitous B-cell maker CD19, which is 

maintained throughout the differentiations as expected. Initially, expression of CD20 is 

invariant, but whilst it decreases by day 6 for all samples, the range of expression between 

different samples is considerable at over 80%. Thereafter, the variability in levels of CD20 are 

maintained, with some samples showing the expected trend of loss of CD20 as the 

differentiation progresses (WM1 and 6), but others (WM3, 7 and 8) retaining high CD20 

expression throughout. Levels of CD38 at day 0 were extremely variable between samples, with 

several samples negative for the presence of any CD38 and one sample with 100% CD38 

positivity. The common trend for these samples was to demonstrate increasing levels of CD38 

throughout the differentiation, but there was still a large variety in expression levels, contrasting 

with the homogenous high levels of CD38 expressed in healthy cells from day 6 onwards. 

Expression of CD138 too, followed the expected overall trend to increase as plasma cells were 

generated, but again, there was considerable differences between samples, very unlike the 

healthy controls. Levels of CD138 were also delayed in WM cells compared to their healthy 

counterparts. The expression levels of CD27 are more similar to the controls than some of the 

other markers, with upregulation of this marker in almost all cells by days 13-15, after which it 

is maintained.   
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Figure 3.12 Scatter plot profiles for the expression of each CD marker assayed in multiple 

differentiations with B-cells isolated from WM patients. B-cells derived from the bone marrow of WM 

patients (isolation protocol B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Each scatter plot 

displays the percentage of live cells expressing the stated CD marker as determined at each time point via 

flow cytometry. The lower left plot depicts the percentage of cells that expressed CD138 but without CD38 

expression. Data from comparable intervals were grouped together for clarity. Each independent 

differentiation is represented by a different colour.   

 

A comparison of the average expression of the variable CD markers between healthy and WM 

samples subsequent to CD40L simulation is provided in figure 3.13. 
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Figure 3.13 Comparison of the average expression of immunophenotypic markers between healthy and 

WM cells subsequent to CD40L + F(ab’)2 anti-IgG/M stimulation. B-cells derived from the bone 

marrow of patients diagnosed with WM or peripheral blood of healthy donors (isolation protocol 

A+ or B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Each plot displays an average of 

the percentage of live cells expressing the stated CD marker as determined at each time point 

via flow cytometry (healthy n = 12, WM n = 7). Values for WM expression significantly different from 

healthy samples are indicated – (*, p < 0.05, t-test with Welch’s correction). Error bars represent S.D. 

 

WM cells demonstrate significantly higher levels of CD20 expression and significantly lower 

expression levels of CD38 than cells derived from healthy donors. Whilst the expression of CD27 

is highly variable in WM samples at day 0, there is no significant difference between the average 

expression in WM to that of the healthy samples. There was also no significant difference in 

average CD138 expression. The most intriguing result and a factor which partly explains the large 

amount of variation in CD38 expression is the presence in some samples of a population of cells 

that possess CD138 without any expression of CD38 (figure 3.12, lower left plot). This population 

does not occur in differentiations with healthy cells and will be discussed further. 
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3.5.3 Alternate plasmablast-like phenotype observation 

There is far more variability in WM differentiations than occurred with healthy controls but the 

phenotypes observed during differentiations with WM patient-derived cells can be broadly 

divided into two categories. Whilst some WM samples differentiate with phenotypes similar to 

healthy cells as previously discussed, others differentiate in an unconventional way, with a 

population of CD38- CD138+ plasmablast-like intermediates generated. The full 

immunophenotype of one such differentiation is displayed in figure 3.14.  

 

Figure 3.14 A population of cells expressing CD138 in the absence of CD38 frequently occurs during 

differentiations with WM B-cells. B-cells were derived from the BM from a patient with WM and 

stimulated with CD40L and F(ab’)2 anti-IgG/M. Cells were stained for the surface markers CD19, CD20, 

CD38, CD138 and CD27 and assayed by flow cytometry at each indicated time point.   
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The B-cells derived from the bone marrow of this patient were almost exclusively CD38- and 

expressed only low levels of CD27. At day 6, there is some evidence of differentiation, with 

downregulation of CD20 and upregulation of CD27. Whilst a limited number of cells 

(approximately 5%) have increased expression of CD38 and just under 1% have also upregulated 

CD138, the proportion of CD38+ plasmablasts is considerably lower than that which occurs with 

healthy cells. The level of expression of CD138 is also approximately 10-fold lower than is seen 

for healthy cells. There also appears to be a small fraction of cells that have severely impaired 

differentiation, retaining CD20 expression, failing to upregulate either CD38 or CD138, but 

expressing CD27. 

The most striking deviation in phenotype when compared to healthy cells emerges at day 13, 

whereby, in addition to a population of plasmablasts (CD38+ CD138-) and plasma cells (CD38+ 

CD138+), there is a “third” phenotypically distinct population which upregulated CD138 in the 

absence of CD38 expression. The proportion of these unusual plasmablast-alternate cells 

increases to approximately one third of the total population by day 20 and remains present until 

at least day 38. Overall, the generation of plasma cells is delayed, with a decrease in the fraction 

of cells that are CD38+ CD138- - 9.8% to 4.9% and a decrease in the CD38- CD138+ fraction – 32-

26.1%. This suggests that the CD38- CD138+ fraction represents an alternate intermediate 

phenotypic step and that some of these cells do indeed upregulate CD38 eventually. The 

expression of CD markers in the CD38- CD138+ population is provided in figure 3.14.
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Figure 3.15 Expression of additional CD markers on CD38- CD138+ WM fraction. WM B-cells were 

stimulated with CD40L + F(ab’)2 anti-IgG/M and assessed by flow cytometry for surface markers at the 

indicated time points. The cell surface marker expression for the CD38- CD138+ quadrant is displayed on 

the right. Percentages are indicated within individual quadrants. 

 

The proportion of cells expressing CD20 is slightly higher in this fraction when compared to the 

complete population of cells. These cells also express high levels of CD27. 

The unusual phenotype of CD38- CD138+ cells occurred in 4 of 9 (44%) WM differentiations with 

CD40L + F(ab’)2 anti-IgG/M taken to at least day 13. A selection of examples of this phenotype 

are illustrated in figure 3.15. In each case, the generation of day 6 plasmablasts is delayed 

compared to healthy controls and the CD38- CD138+ cells do not emerge until day 13. In each of 

these three differentiations, this population of cells remains present for at least 14 days 

subsequent to day 13.  Similarly to the phenotype depicted in figure 3.13, loss of CD20 is 

incomplete, with a notable proportion of cells failing to downregulate this marker even by the 

final time point. The upregulation of CD27 is unperturbed in these differentiations but the 

overall level of CD138 expression in the WM plasma cells is again lower than for plasma cells 

generated from healthy B-cells. 
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Figure 3.16 Additional examples of the CD38- CD138+ population from three further WM differentiations with CD40L. B-cells were isolated from the BM of three independent 

patients with WM (isolation protocol B) and stimulated with CD40L + F(ab’)2 anti-IgG/M at day 0. The immunophenotype was determined at the indicated time points by flow 

cytometry. Percentages of cells within each quadrant are indicated.   
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The CD38- CD138+ fraction generated in each case possesses the same distribution of the other 

markers as the rest of the population. The presence of these cells has not previously been 

reported in the WM literature and warrants additional investigation. 

3.5.4 Immunophenotype comparison between WM differentiations that 

generated alternate plasmablasts and those that did not 

The unexpected emergence of this phenotypically distinct population raised a number of 

questions as to its origins and whether there were further deviations in phenotype from either 

healthy differentiation or, indeed, those with other WM cells. To address these questions, the 

immunophenotype of the WM differentiations that generated the alternate plasmablasts was 

examined further and compared with the other WM differentiations that did not generate this 

unusual population to see if there were additional differences between them and to try to 

determine if the generation of this alternate cell population could be predicted from the 

phenotype obtained at earlier time points. 

The expression of cell surface markers in figure 3.16 have been separated into those 

differentiations that did not generate CD38- CD138+ cells and those that did. Levels of CD20 are 

highly variable in each group of differentiations, but are higher from day 6 onwards in those 

differentiations which generated the alternate plasmablasts. Interestingly, expression of CD38 

initially appears to be at a much lower level in those cells that went on to generate the alternate 

PB phenotype than those that did not. In addition to this, there is very little increase in the 

proportion of cells expressing CD38 between day 0 and day 6 in samples which went on to 

generate the CD38- CD138+ population. The proportion of cells that have upregulated CD138 at 

each stage does not vary widely between the two variations of differentiations. The upregulation 

of CD27 is not significantly different between the two either. 

From this selection of markers, the expression of CD38 in WM samples appears to serve as the 

best predictor for the generation of CD38- CD138+ cells. WM samples which initially consist of 

cells with low levels of CD38 and also possibly lower CD27 expression, which do not increase 

expression of CD38 between day 0 and day 6 appear much more likely to differentiate with the 

alternate plasmablast-like intermediate. 
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Figure 3.17 Scatter plot profiles for the expression of each CD marker in differentiations with WM cells divided into those which generated CD38-CD138+ cells and those that 

did not. B-cells derived from the bone marrow of WM patients (isolation protocol A or B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Each scatter plot displays the 

percentage of live cells expressing the stated CD marker as determined at each time point via flow cytometry. The top set of plots display data from differentiations that did not 

generate the alternate plasmablast-like phenotype (CD38- CD138+) and the bottom set represents those differentiations that did generate these cells. The fourth plot depicts the 

percentage of cells that expressed CD138 but without CD38 expression. Data from comparable intervals were grouped together for clarity. Each independent differentiation is 

represented by a different colour and the colours used to denote each patient are consistent with figure 3.12.
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3.6  Discussion 

The response of healthy B-cells to stimuli mimicking a T-dependent immune response was 

initially investigated. Healthy cells derived from multiple donors demonstrated uniform 

phenotypes following stimulation with CD40L that corresponded to the established stages of 

differentiation in vivo (figure 3.5). The B-cells became activated between day 0 and 3, with cell 

numbers remaining largely unchanged during this time (figure 3.4). Subsequently, the cells 

underwent high levels of proliferation and this coincided with upregulation of the plasmablast 

marker CD38. A population of plasma cells were generated by day 13 of the differentiation in all 

samples, accompanied by a contraction in cell numbers (figures 3.4 and 3.5). The population of 

plasma cells was maintained indefinitely until elective termination of the cultures.   

Omission of each of the activation stimuli from differentiations with healthy cells were 

performed in turn. Results from these experiments demonstrate that B-cells were not reliant on 

the F(ab’)2 anti-IgG/M signal for differentiation and survival, but its absence delayed 

differentiation as evidenced by the phenotype of these cells at early time points (figure 3.6). B-

cells that did not receive CD40 stimulation were completely unable to survive (figure 3.9). 

Removal of CD40L underscores how vital this stimulation is to initiate differentiation and 

overcome apoptotic signals.  

Subsequently, the response of B-cells isolated from WM patients to CD40L stimulation was 

characterised. WM cells rely on the constitutive activation of the NF-κB signalling pathway 

conferred by the MYD88L265P mutation for their survival. MYD88 functions as an adaptor for the 

majority of toll-like receptors which recognise a wide variety of pathogen associated molecular 

patterns and are critically involved in the T-independent immune response. Whilst both the T-

dependent and T-independent signalling pathways converge on NF-κB activation, the capacity 

of WM cells to respond to isolated CD40L stimuli and BCR ligation had not previously been 

assessed. The in vitro differentiation system enabled the phenotypic response of WM cells each 

key time point to be characterised.  

WM B-cells do indeed successfully generate a population of plasma cells that express CD38+ 

CD138+ CD27+ following stimulation with CD40L + F(ab’)2 anti-IgG/M, recapitulating the 

differentiation response of the neoplastic cells in vivo (figure 3.12). However, there are 

considerable differences between the phenotypic profile and cell number of the WM samples 

compared to their healthy counterparts. 

Surprisingly, WM B-cells did not proliferate to the same extent as was observed in the healthy 

controls (figure 3.11). This was unexpected, as the MYD88L265P mutation should confer a 
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competitive advantage and it is also thought that chronic active BCR signalling has a role to play 

in WM. The requirement for intact BCR signalling in WM was first postulated in 2001 by Ciric and 

colleages (Ciric et al., 2001). Analysis of the immunoglobulin heavy chain present on the surface 

of WM clones indicated that mutations preserved sIgM structure and hence functional capacity 

of the BCR in WM cells. The occurrence of mutations associated with the BCR signalling cascade 

have been documented, though they appear to be restricted to CD79A and CD79B (Poulain et 

al., 2013; Varettoni et al., 2013). However the frequency of this incidence is low, at 

approximately 15% of WM cases. Despite this, there is evidence for chronic active BCR signalling 

within WM (Argyropoulos et al., 2016; Munshi et al., 2017). 

Argyropoulos et al., analysed WM BCR signalling by phosphoflow cytometry and observed 

elevated basal levels of phosphorylation amongst BCR-related proteins in WM samples 

(Argyropoulos et al., 2016). Subsequently, they established phosphorylation profiles for 

neoplastic versus healthy B-cells for six components downstream of the BCR comprising of pSFK, 

pSYK, pBLNK, pPLCγ2, pERK and pAKT. Interestingly, their data also stratified WM patients via 

their phosphoprofiles into those which were more similar to healthy cells, corresponding to a 

more indolent clinical phenotype, and those that deviated more substantially from the controls. 

It would be most interesting if the WM cells that differentiated with a phenotype that was 

closely matched that of healthy cells described here was analogous to the “healthy-like group” 

defined in that study.  

Despite WM cells being postulated to originate for a memory B-cell precursor, levels of CD27 

observed in many WM samples here was lower than expected (figure 3.12). The data presented 

here concur with the findings of Kriangkum and colleagues, who performed clonotypic analysis 

on populations of CD20+ CD27- and CD20+ CD27+ WM cells derived from BM and PB (Kriangkum 

et al., 2004a). The frequency of CD27- neoplastic cells was higher than those expressing CD27, 

indicating that CD27 does not distinguish the WM clone. In accordance with this, Sahota and 

colleagues proposed a model whereby WM cells derive from CD27+ memory B-cells but shed 

CD27 as the disease progresses (Sahota et al., 2009). Upregulation of CD27 appeared unaffected 

during WM differentiations, with the proportion of cells expressing this marker at each stage 

closely mirroring that of the healthy cohort (figure 3.13). 

A subset of WM differentiations displayed significant impairment to CD20 downregulation 

(figures 3.12 and 3.13). The CXCR4/SDF-1 signalling axis is crucial for B-cell homing to the bone 

marrow and plays an important role in CD20 regulation (Burger and Kipps, 2006; Pavlasova et 

al., 2015). Somatic mutations in CXCR4 are common in WM and invariable co-occur with 

MYD88L265P (Hunter et al., 2014). Whilst a direct connection between CXCR4 mutation status and 

dysregulation of CD20 loss cannot be made here due to the unavailability of CXCR4 mutation 
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status amongst the patients studied, it remains plausible that samples with increased retention 

of CD20 may comprise those that possess this mutation. The detection of elevated levels of CD20 

in WM differentiations is also in accordance with Kriangkum et al., (2004) who observed 

increased expression of CD20 in WM patients with active disease. 

Perhaps the starkest deviation from the normal immunophenotype observed throughout the 

differentiations was the generation of a population of WM cells expressing CD138 without prior 

upregulation of CD38 (figure 3.14). This unusual population arises between day 6 and day 13 

when the cells are transitioning from plasmablasts to plasma cells. The time at which these cells 

appear initially suggests that the CD38- CD138+ population may be an as yet undescribed 

plasmablast-like intermediate. WM plasmablasts have not been well characterised but a 

population of cells that shares this phenotype has been observed during diagnostic flow 

cytometry on bone marrow aspirates (Dr. R. de Tute personal communication). The presence of 

this population is maintained in each sample for at least 14 days and thus well into the time 

period where only plasma cells should remain (figure 3.12). The proportion of these cells in a 

few cases diminishes slightly as time progresses and further investigation is required in order to 

determine whether these cells ever increase CD38 expression and become phenotypically 

“normal” plasma cells at some point down the line. The appearance of these cells could have 

potential ramifications for treatment. Trials of CD38 antibodies such as Daratumumab have 

commenced in recent years and may soon comprise part of the WM treatment regime, paired 

with the CD20 monoclonal antibody Rituximab (A Study of Daratumumab in Patients with 

Relapsed or Refractory Waldenström Macroglobulinemia. Trial number: NCT03187262). The 

absence of both CD38 and CD20 on this population of cells will render this combination of 

antibodies ineffective a leave a residual population of neoplastic cells unchecked in these 

patients. 

The most successful differentiation experiments have a prerequisite on quality samples, with 

sufficient quantities of B-cells and adequate viability. This was not an issue for healthy samples 

derived from peripheral blood as isolation of B-cells could be performed immediately 

subsequent to when the sample was taken. However, BM sample quality was highly 

heterogeneous, affecting the number of cells obtained during the isolation process and having 

a prolonged impact on viability. This has considerable repercussions at the latter stage of 

differentiation, because such a high proportion of cells die between day 6 and day 14. In order 

for high quality data to be obtained at beyond this point, there is a reliance on having low levels 

of cell death in the early stages and high levels of proliferation when the cells become activated 

to generate sufficient numbers of plasmablasts at day 6 such that even though a large proportion 

of cells perish in the subsequent week, there are enough plasma cells for further analysis. It 
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should be noted that the paucity of cells from some WM samples precluded the analysis of all 

time points and the rarity of this neoplasm resulted in fewer complete data sets than for healthy 

samples.   

 



Chapter 4 - Results 

83 

Chapter 4 – Differentiation responses to T-independent activation 

4.1 Introduction 

The differentiation profiles for both healthy and WM B-cells in response to CD40L stimulation 

have been established. However, B-cell activation can also occur by other means such as cross-

linking of the BCR by polyvalent antigen or ligation of pattern recognition receptors such as toll-

like receptors (Mosier et al., 1977; Mond et al., 1995). In WM B-cells, the MYD88L265P mutation 

initiates the same signalling cascade that is elicited by TLR ligation as it lies directly downstream 

of nearly all the TLRs (Medzhitov et al., 1998; Akira and Takeda, 2004). Research has identified 

a prior requirement for TLR signalling in MYD88L265P cell lines and murine B-cells (Lim et al., 2013; 

Wang et al., 2014). The in vitro differentiation system enables further investigation of these 

findings in primary human cells. Thus, it is important to determine the response of healthy cells 

to TLR ligation and to identify if it differs from a T-dependent response. This, combined with the 

characterisation of WM responses to TLR stimulation, will enable comparisons to be made 

between normal and neoplastic B-cells and also between the two types of immune response.  

In order to mimic a T-independent response, B-cells were activated with a combination of the 

synthetic TLR7/8 agonist, Resimiquod (R848), and antibody to the BCR. Inclusion of F(ab’)2 anti-

IgG/M serves to cross-link the BCR, an essential step in initiating differentiation, without co-

ligation of the inhibitory Fc receptor FcΥRIIB (Ono et al., 1996). Dual activation of the BCR and 

TLRs have been shown to elicit a synergistic response, whilst also functioning to prevent B-cell 

tolerance to TLR signalling (Poovassery et al., 2009; Pone et al., 2012; Kuraoka et al., 2017). Prior 

to assessing the response of WM cells, the differentiation characteristics of healthy B-cells in 

response to stimulation with R848 + F(ab’)2 anti-IgG/M were examined. This included the effects 

of reagent carryover and dose response evaluation in order to refine the culture protocol for 

this type of stimulation and to determine the optimal concentration of R848. As with CD40L 

differentiations, the effect of F(ab’)2 anti-IgG/M removal on phenotype and cell number was also 

examined. Subsequently, the effect of R848 + F(ab’)2 anti-IgG/M stimulation was examined in 

WM primary B-cells. 

4.2 Response of healthy cells to R848 stimulation 

Whilst stimulation of B-cells with CD40L mimics a T-cell dependent immune response, B-cell 

activation can also occur via a T-cell independent pathway. This response can be initiated when 
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Toll-like receptors are bound by their ligands and provide the second activation signal. In murine 

models, stimulation of TLR4 with LPS is classically used to activate B-cells (Sultzer, 1968; Poltorak 

et al., 1998; Hoshino et al., 1999). However, unlike their murine counterparts, human mature B-

cells do not express TLR4, rendering this stimulation ineffective (Muzio et al., 2000; Hornung et 

al., 2002; Zarember and Godowski, 2002). Human B-cells express a range of other TLRs, including 

TLR7, 8 and 9 which are located within endosomes (Lee et al., 2003; Heil et al., 2004; Nishiya 

and DeFranco, 2004). The synthetic TLR7/8 agonist R848 was therefore used to stimulate the B-

cells, replacing the CD40L-L expressing fibroblasts, with the continued addition of a constant 

amount of F(ab’)2 anti-IgG/M. Preliminary differentiation experiments with healthy B-cells taken 

to day 13 were conducted with three concentrations of R848 – 10, 1 and 0.1µg/ml. 

Representative results from one donor are depicted in figure 4.1. 
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Figure 4.1 The concentration of R848 used for B-cell activation affects the phenotype. B-cells were 

derived from the peripheral blood of a healthy donor (isolation protocol A) and stimulated with three 

concentrations of R848 - 10, 1 or 0.1µg/ml + F(ab’)2 anti-IgG/M. Data are representative of three 

independent experiments. The cells were assessed by flow cytometry for the surface markers CD19, CD20, 

CD38, CD138 and CD27 at the indicated time points. Percentages are indicated within individual 

quadrants.  

 

The B-cells display dose-dependent changes in phenotype. Cells stimulated with 0.1µg/ml R848 

had progressed to a more differentiated phenotype at day 6, with those stimulated with 

10µg/ml R848 displaying the least differentiated phenotype – with the highest proportion of 
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cells retaining CD20 and lowest proportion of CD38+ CD138+ cells amongst the three conditions. 

The proportion of viable B-cells was also affected by the concentration of R848, with 53.6% 

viable cells at 10µg/ml, 42.7% at 1µg/ml and 33.9% at 0.1µg/ml (data not shown). 

Interestingly, the impact of R848 concentration on how rapidly the cells differentiate remains at 

day 13, but the pattern is no longer dose-dependent. The cells which were activated with the 

highest concentration of R848 continue to phenotypically lag behind their counterparts that 

received lower levels of R848 stimulation. However, the B-cells which have progressed furthest 

are those which were stimulated with 1µg/ml R848 – with the greatest proportion of plasma 

cells and lowest proportion of cells retaining CD20.  

Whilst the initial B-cell purity following isolation was >95%, a population of non-B-cells expanded 

between day 6 and 13. These cells are occasionally observed in CD40L cultures when B-cell purity 

at day 0 falls below approximately 95% and comprise of T- or NK-cells. Addition of R848 to the 

culture appeared to favour the expansion of these cells compared to differentiations performed 

with CD40L. In order to minimise the occurrence these cells, the isolation protocol was adapted 

to be more stringent, with an additional separation step using a fresh LD magnetic column to 

increase B-cell purity further (isolation protocol A+).  

4.2.1 Investigation of R848 carryover 

A delay in differentiation was observed for B-cells cultured with the highest concentration of 

R848. During the process of a differentiation, the media is removed and replaced at day 3 to 

prevent persistent activation. In the case of differentiations with CD40L-L expressing fibroblasts, 

the CD40 signal ceases when the B-cells are removed from contact. However, since the R848 is 

a soluble factor, it is possible that quantities of R848 might persist after removal of the day 0 

media. Whilst the activated B-cells are resuspended in fresh media at day 3, there is potential 

for some carryover of R848, particularly for the highest concentration. Considering that B-cells 

were able to respond to levels of R848 100 times lower than the maximum concentration tested, 

any persistent R848 may subsequently have a significant knock-on effect on the differentiation. 

It was noted by Arpin and colleagues that B-cells cultured in the continued presence of CD40L 

were unable to differentiate into plasma cells (Arpin et al., 1995). Similarly, prolonged TLR 

signalling results in tolerance, rendering the cells unresponsive to this type of stimulation in 

order to regulate autoimmunity (Poovassery et al., 2009; Kuraoka et al., 2017). Whilst such an 

extreme effect does not appear to be the case here, it was nevertheless important to ensure 

that the R848 did not remain in the culture and affect the phenotype of the cells. To determine 

whether carryover of R848 was affecting differentiation and to optimise the protocol in an 

attempt to minimise the potential remaining levels of R848, cells cultured with 10µg/ml R848 
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underwent an additional wash with 10ml fresh media before being resuspended with day 3 

media (figure 4.2). 

The difference in phenotype for differentiations with and without the media wash are most 

pronounced for the highest concentration of R848 as expected. The cells treated with 10µg/ml 

R848 that were not washed at day 3 displayed a considerable delay in differentiation. At this 

concentration, the proportion of cells retaining CD20 at day 6 without the wash was almost 

double that of those with the wash and the percentage of plasma cells was over four times lower 

at only 2.8% compared to 12.1% subsequent to a media wash (figure 4.2). This illustrates the 

considerable impact that continued TLR stimulation has on differentiation. The phenotype at 

day 6 for 0.1µg/ml R848 with and without the media wash was virtually identical. This indicates 

that at this concentration, any carryover of R848 is negligible and has no effect on cell 

phenotype. 
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Figure 4.2 The immunophenotype of differentiating cells with and without a media wash at day 3.  B-cells were derived from the peripheral blood of a healthy donor (isolation 

protocol A+) and stimulated with either 10, 1 or 0.1µg/ml R848 + F(ab’)2 anti-IgG/M. The media was replaced as usual on day 3 either with or without an additional wash with 

10ml fresh media. Cells from a non-B-cell fraction that expanded after day 6 (CD19- CD20-)  are apparent in the lower right quadrants of the 0.1µg/ml R848 day 13 plots.
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The phenotype of the cells with the media wash at day 6 was very consistent between the three 

concentrations of R848 used. Phenotypic differences between the three conditions were very 

subtle, with the proportion of cells expressing each marker varied by less than 5% at day 6. The 

trend of higher levels of R848 delaying differentiation is no longer clearly evident, however the 

proportion of plasma cells does appear to be inversely dose-dependent, with the lowest 

concentration of R848 generating the greatest proportion of CD38+ CD138+ cells at day 6.  

Cell survival was poor at day 13, this was due to a population of non-B-cells that again expanded 

between day 6 and day 13, negatively affecting the number of B-cells as the differentiation 

progressed. The expansion of a non-B-cell fraction at later time points within the culture system 

has previously been investigated (work performed by Dr G. Arumugakani). The identity of this 

population was found to consist of NK-cells or T-cells that were not removed during the B-cell 

isolation process. In order to increase the purity of the isolated B-cell fraction and eliminate the 

appearance of the T- or NK-cells cells from the culture, an additional depletion step using CD3 

and CD56 microbeads was subsequently incorporated into the B-cell isolation procedure.  

Interestingly, the cells which were stimulated with 1µg/ml R848 have produced the highest 

proportion of plasma cells, though the phenotype of the cells stimulated with 0.1µg/ml R848 

has been skewed due to the presence of the non-B-cell fraction. It is clear that prolonged 

exposure of B-cells to small quantities of R848 is sufficient to affect the phenotype of the cells. 

In order to prevent the carryover of R848 from affecting future differentiations, the 10ml media 

wash at day 3 was incorporated as standard for all concentrations of R848 used.  

4.2.2 R848 dose response 

Having established that prolonged exposure to R848 does have an impact on cell phenotype, 

the protocol was optimised to prevent this and to minimise the occurrence of non-B-cells by 

increasing the stringency of the isolation procedure. It was now possible to determine the effect 

of R848 dose response on phenotype and cell number, without the results becoming skewed by 

persistent stimulation with residual R848. A differentiation was performed with the cells from a 

healthy donor, stimulated with three concentrations of R848, as before, but in this instance, the 

protocol included an additional CD3/CD56 depletion and day 3 media wash (figure 4.3). 
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Figure 4.3 Differentiation of B-cells from a healthy donor with three concentrations of R848. B-cells were derived from the peripheral blood of a healthy donor (isolation protocol 

A+), with CD3/CD56 depletion and stimulated with either 10, 1 or 0.1µg/ml R848 + F(ab’)2 anti-IgG/M. Cells were washed with 10ml fresh media at day 3. The phenotype was 

assessed by flow cytometry for surface markers at the indicated time points. Percentages are indicated within individual quadrants. 
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The improved isolation of B-cells in this instance resulted in increased purity and prevented the 

expansion of a CD19- CD20- non-B-cell fraction, enabling the cells to be maintained until elective 

termination of the culture. B-cells from all conditions were successfully able to generate 

populations of long-lived plasma cells. Once again, at day 6 the proportion of CD38+ CD138+ cells 

was inversely correlated to the concentration of R848 used to stimulate the cells but did not 

quite reach the threshold for significance (Pearson’s correlation coefficient r = -0.993, p = 

0.0755, R2 = 0.986, n = 5). This trend was not reflected in the expression of the other markers. 

The differences in phenotype between the three conditions are no longer apparent from day 14 

onwards. 

The fold change number of cells at each time point is displayed in figure 4.4.  
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Figure 4.4 Stimulation of healthy B-cells with different concentrations of R848 results in different levels 

of fold-change for each condition. B-cells derived from the peripheral blood of a healthy donor (isolation 

protocol A+), with CD3/CD56 depletion, were stimulated with 10, 1 or 0.1μg/ml R848 and F(ab’)2 anti-

IgG/M. Cell number at each time point was determined by manual counts between days 0-6 and then by 

flow cytometry thereafter. The cell number at each point was normalised to the number of “input” cells 

for that specific donor obtained at day 0. 

 

The profile of proliferation recapitulates the response of B-cells in vivo and is comparable with 

the profile seen in cells stimulated with CD40L. In contrast to the phenotypes observed at day 

6, the fold change in cell number was not correlated with the concentration of R848 used. B-

cells which were activated with 1μg/ml R848 exhibited greater levels of proliferation between 
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day 0 and 3 and subsequently between day 3 and day 6 of the differentiation than cells 

stimulated with the other concentrations of R848. 

The results from this differentiation were used to establish the concentration of R848 to be used 

in future differentiations. An important factor determining the quality of the flow cytometry 

results and other downstream analysis during in vitro differentiations is the number of cells 

available, particularly for late time points following the contraction in cell number after day 6. 

Cells which were stimulated with 1µg/ml R848 displayed the greatest fold increase in number 

and survived slightly better than the cells from the other two conditions. This, in combination 

with the intermediate phenotype observed at day 6, indicated that 1µg/ml R848 would be the 

optimal concentration of the three to use for future differentiations.  

4.2.3 Removal of F(ab’)2 anti-IgG/M from the culture system 

In previous differentiations, a cross-linking F(ab’)2 anti-IgG/M was used at day 0 because of its 

importance in instigating B-cell maturation(Ono et al., 1996). F(ab’)2 fragment antibodies retain 

two antibody-binding portions linked by the hinge region, whilst a large proportion of the Fc 

region is removed. The removal of the constant region eliminates co-ligation to the Fc receptor 

FcγRIIB, which is known to inhibit BCR signalling (Ono et al., 1996). F(ab’)2 is used to cross-link 

the BCR, resulting in receptor aggregation and providing the initial activating signal responsible 

for B-cell proliferation and differentiation.  

The effect of F(ab’)2 anti-IgG/M on B-cell phenotype and cell number throughout differentiations 

with B-cells activated with CD40L was limited. However, the strength of the CD40L stimulation 

appears to elicit a much greater proliferative response from the B-cells than that which occurs 

following R848 stimulation. Co-stimulation of both the BCR and TLRs has been shown to 

demonstrate synergism in the production of autoantibodies and the activation of the naïve B-

cell subset (Leadbetter et al., 2002; Rui et al., 2003; Viglianti et al., 2003). Therefore, F(ab’)2 anti-

IgG/M may play a bigger role when the cells are stimulated with R848. To determine the impact 

of F(ab’)2 anti-IgG/M in combination with TLR stimulation, B-cells were stimulated with R848 

both with and without the addition of F(ab’)2 anti-IgG/M at day 0. Three concentrations of R848 

were used to establish whether more extensive TLR ligation nullified the effects of removing 

F(ab’)2 anti-IgG/M (figure 4.5). 
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Figure 4.5 Immunophenotype of cells cultured with three different concentrations of R848, both with and without the addition of F(ab’)2 anti-IgG/M. B-cells were isolated 

from the peripheral blood of a healthy donor (isolation protocol A+), with CD3/CD56 depletion, and stimulated with 10, 1 or 0.1µg/ml R848 with or without the addition of F(ab’)2 

anti-IgG/M. The phenotype was assessed by flow cytometry for surface markers at the indicated time points. Percentages are indicated within individual quadrants.
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Omission of F(ab’)2 anti-IgG/M resulted in delayed B-cell differentiation compared to cells 

cultured with the addition of F(ab’)2 anti-IgG/M. At day 6, a distinct population of cells expressing 

very high levels of CD19 and CD20 was observed for B-cells that had been cultured without 

F(ab’)2 anti-IgG/M but it was absent when the cells received stimulation with F(ab’)2 anti-IgG/M. 

The CD19++ CD20++ cell populations were back-gated to analyse their expression of CD38 and 

CD138. They displayed an undifferentiated B-cell phenotype, with cells expressing low levels of 

CD38 and CD138.  The proportion of the CD19++ CD20++ population compared to those that had 

downregulated CD20 appeared to be inversely dose dependent, with the greatest prevalence 

occurring in cells treated with 0.1µg/ml R848 and becoming less apparent at the higher 

concentrations of R848. This fraction is largely lost between day 6 and 13, as the cells become 

more differentiated, although a greater proportion of cells still retain CD20 expression when 

F(ab’)2 anti-IgG/M was absent. Cells stimulated with 10µg/ml or 1µg/ml R848 without F(ab’)2 

anti-IgG/M continued to phenotypically lag behind their counterparts at day 20, with each 

generating a smaller proportion of plasma cells. However, the proportion of plasma cells was 

very similar for the lowest concentration of R848, both with and without the addition of F(ab’)2 

anti-IgG/M. These results demonstrate that receipt of both stimulatory signals is of greater 

importance here than was observed following CD40L stimulation.  

This differentiation was performed before the B-cell isolation procedure was optimised to 

minimise the expansion of any non-B-cell fraction. Stimulation with R848 again appeared to 

result in the preferential expansion of this population and, accordingly, it had detrimental 

consequences for B-cell survival. In order to determine if this effect was reproducible and if the 

impact on B-cell phenotype persisted after day 20, B-cells from a different healthy donor were 

cultured with 1μg/ml R848 and F(ab’)2 anti-IgG/M, or 1μg/ml R848 alone. The phenotypes were 

analysed by flow cytometry to day 40 of the culture and are displayed in figure 4.6. 
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Figure 4.6 Differentiation of B-cells from a healthy donor with R848 stimulation, with or without the addition of F(ab’)2 anti-IgG/M. B-cells were isolated from the peripheral 

blood of a healthy donor (isolation protocol A+), with CD3/CD56 depletion and stimulated with 1µg/ml R848 with or without F(ab’)2 anti-IgG/M. Cells were washed at day 3 with 

10ml fresh media. The phenotype was assessed by flow cytometry for surface markers at the indicated time points. Percentages are indicated within individual quadrants. 
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As before, omission of F(ab’)2 anti-IgG/M resulted distinct phenotypic differences between cells 

from the two conditions. A population of CD19++ CD20++ cells is once again present at day 6 of 

the differentiation when cells are cultured with R848 alone and it persists to day 13. Loss of 

CD20 appears to be impaired when the cells do not receive F(ab’)2 anti-IgG/M stimulation, with 

a considerable proportion of cells retaining CD20 expression at day 20 and to a lesser extent day 

40 following omission of F(ab’)2 anti-IgG/M. Interestingly, B-cells that were cultured with R848 

alone generated a population of plasma cells at day 6, whereas the B-cells that had received 

stimulation from both sources did not. This effect was also observed during dose response 

experiments, with cells stimulated with lower concentrations of R848 generating a greater 

proportion of CD38+ CD138+ cells at day 6 (figure 4.3). It appears therefore that a fraction of B-

cells are particularly sensitive to low levels of stimulation and are primed to respond with 

increased alacrity, but this response is mitigated when the cells receive stimulation above a 

certain threshold. B-cells that were stimulated with both R848 and F(ab’)2 anti-IgG/M possessed 

a greater proportion of plasma cells at day 13, overtaking those that were cultured with R848 

alone. Subsequently, differences in the proportion of plasma cells between the two conditions 

were lost and the expression of CD38, CD138 and CD27 was very similar. The fold change in cell 

number at each time point are presented in figure 4.7. 
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Figure 4.7 B-cells demonstrated no fold change increase in number following stimulation with R848 

without the addition of F(ab’)2 anti-IgG/M. B-cells derived from the peripheral blood of a healthy donor 

(isolation protocol A+), with CD3/CD56 depletion were stimulated with 1μg/ml R848 +/- F(ab’)2 anti-IgG/M 

at day 0. Cells were washed at day 3 with 10ml fresh media. Cell number at each time point was 

determined by manual counts between days 0-6 and then by flow cytometry thereafter. The cell number 

at each point was normalised to the number of “input” cells for that specific donor obtained at day 0. 
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The variances in phenotype observed were accompanied by substantially different proliferative 

profiles. Cells stimulated with both R848 and F(ab’)2 anti-IgG/M demonstrated the classic profile, 

with steady cell numbers between day 0 and day 3, followed by an increase to day 6, a steep 

decline between day 6 and day 13 and then numbers stabilising to a plateau. However, cells 

activated with R848 alone declined in number at each successive time point. This is somewhat 

at odds with the phenotype – considering the increased proportion of plasma cells in this 

condition at day 6, it might be expected that the cells would have undergone a burst of 

proliferation but this does not appear to be reflected in the cell number. However, it may be 

that the cells underwent high levels of proliferation and subsequently died within a very short 

timeframe, such that the cell numbers at these early time points more closely resemble the 

latter stages of previous differentiations. The addition of F(ab’)2 anti-IgG/M to cells being 

stimulated with R848 thus alters the phenotype of the cells, slows the rate of differentiation and 

results in a greater population of cells at day 6. 

4.3 The differentiation profile of healthy B-cells stimulated with R848 

As with CD40L stimulations, it was important to collate data for multiple differentiations to 

establish an overall phenotypic and cell number profile for the cells following stimulation with 

R848. The cell numbers for nine independent differentiations that were cultured to day 28 are 

displayed in figure 4.8. 
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Figure 4.8 Healthy B-cells display a range change in cell number upon activation with stimuli mimicking 

a T-independent immune response. B-cells derived from the peripheral blood of healthy donors (isolation 

protocol A+ or B) were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Cells were washed at day 3 

with 10ml fresh media. The cell number at each time point was determined by manual counts between 

days 0-6 and then by flow cytometry thereafter. The cell number at each point was normalised to the 

number of “input” cells for that specific donor obtained at day 0. 

 

There was a more varied cell number profile for differentiations with R848 than was seen in 

differentiations with CD40L stimulation. In 6 of the 9 donors, similar to CD40L, cell numbers 

remained broadly the same or increased between day 0 and 3, followed by an increase in 

number to day 6. Donors 3 and 8 display a roughly equivalent overall profile, but the expansion 

in number is only twofold. The cells from donor 4 behaved differently, with an increase in cell 

number by day 3 but no further increase by day 6. The number of viable cells in culture 

subsequently fell for all donors and thereafter decreased slightly before reaching a plateau.  

The profile of cell surface marker expression is depicted in figure 4.9. Despite greater variability 

in the amplitude of the B-cell proliferative response when cultured with R848 stimulation, each 

donor displayed a high level of phenotypic consistency across all of the differentiations. 

Downregulation of CD20 has commenced in all samples by day 6, and expression falls below 40% 

of the population after day 13, with the loss of this marker continuing as the differentiations 

progress. The upregulation of CD38 is extremely consistent across each independent 

differentiation, with approximately 90% of cells expressing this marker by day 6 and this rises to 

virtually all cells at the subsequent time point. The range of CD138 expression is slightly more 

variable for the donors between day 6 and day 20, but all follow the same pattern of 
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upregulation and only plasma cells remain at the latter time points. The upregulation of CD27 is 

very uniform and concurrent with the increase in CD38 levels. 

 

Figure 4.9 Scatter plot profiles for the expression of each CD marker assayed in multiple differentiations 

with healthy B-cells. B-cells derived from the peripheral blood of healthy donors were stimulated with 

1μg/ml R848 and F(ab’)2 anti-IgG/M. Each scatter plot displays the percentage of live cells expressing the 

stated CD marker as determined at each time point via flow cytometry. Data from comparable intervals 

were grouped together for clarity. Each independent differentiation is represented by a different colour. 
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4.4 Comparison of responses to R848 with CD40L in healthy cells 

Differences between stimulation with CD40L and R848 are clearly apparent during in vitro 

differentiations. In order to make a direct comparison of the response of B-cells to each of these 

stimuli, independent experiments with three different donors were performed, activating the 

isolated B-cells with either 1μg/ml R848 + F(ab’)2 anti-IgG/M or CD40L + F(ab’)2 anti-IgG/M. The 

cell numbers obtained for each condition are represented below in figure 4.10. 
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Figure 4.10 The amplitude of the proliferative response of healthy B-cells to R848 stimulation is 

considerably lower than for CD40L stimulation. B-cells derived from the peripheral blood of three 

independent healthy donors (isolation protocol B) were stimulated with either 1μg/ml R848 or CD40L and 

F(ab’)2 anti-IgG/M at day 0. Cells were washed at day 3 with 10ml fresh media. Cell number at each time 

point was determined by manual counts between days 0-6 and then by flow cytometry thereafter. The 

cell number at each point was normalised to the number of “input” cells for that specific donor obtained 

at day 0. 

 

A stark contrast in the amplitude of proliferation was observed for each of the three donors. Cell 

numbers for both conditions increased between day 0 and 3, with a slightly higher average 

increase of 3.3-fold for CD40L stimulated cells compared to a 2.3-fold increase for those 

stimulated with R848. Subsequently, numbers increased in both conditions, but the observed 

increase for cells in the CD40L condition was almost 4x greater than that of cells stimulated by 

R848 - with an average of 24.9-fold increase for cells stimulated with CD40L and a 6.3-fold 

increase for those stimulated with R848. The difference between the amplitude of proliferation 
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that occurs from day 3-6 between the two types of stimulation are significant (unpaired Welch’s 

t-test p = 0.0011). 

Subsequent to day 6, there was a decline in cell numbers for both conditions before numbers 

stabilised thereafter. At day 28, cells which were stimulated with CD40L had generated on 

average 0.95 plasma cells per input cell and those stimulated with R848 had generated an 

average of 0.38 - a difference of 2.5-fold.  

A representative phenotype from donor 1 is depicted in figure 4.11. The phenotype of the cells 

at each time point from each condition are presented side by side. In comparison to CD40L 

stimulation, B-cells activated with R848 generate a population of plasma cells more rapidly, with 

24.8% of cells expressing both CD38 and CD138 at day 6 compared to 4.16% of CD40L-stimulated 

cells. The increase in CD27 expression is also more rapid, with >90% of R848-stimulated cells 

expressing this marker compared to 76.5% for those activated with CD40L. However, by day 13 

of the differentiation, the phenotypic differences between the two conditions are no longer 

present.  

At day 13, in both conditions, levels of CD20 expression have declined and the proportion of 

CD38+ CD138+ cells has increased to >90% of the total population, with virtually all cells having 

upregulated CD27 expression. The plasma cell population subsequently increases to >95% and 

is maintained in both conditions. Despite the variation in proliferation, both types of stimulation 

generate phenotypically identical plasma cells. 
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Figure 4.11 Differentiation of B-cells from a healthy donor with either CD40L or R848 stimulation. B-cells were isolated from the peripheral blood of a healthy donor (isolation 

protocol B) and stimulated with either CD40L or 1µg/ml R848 + F(ab’)2 anti-IgG/M. Cells were washed at day 3 with 10ml fresh media. The phenotype was assessed by flow 

cytometry for surface markers at the indicated time points. Percentages are indicated within individual quadrants. Gates were adjusted to compensate for increased background 

autofluorescence as the differentiation progresses. Representative phenotype from donor 1 (figure 4.10).
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There are likely to be several factors contributing to the decreased proliferative response of B-

cells following R848 stimulation. One is that memory B-cells expand preferentially in response 

to TLR ligation compared to their naïve counterparts (Bernasconi et al., 2002; Bernasconi et al., 

2003). Memory cells comprise a smaller fraction of the total B-cell population (for example the 

donor in figure 4.3 has approximately 40% using CD27 as a marker of memory) and whilst they 

proliferate following TLR ligation, stimulation with CD40L + F(ab’)2 anti-IgG/M results in 

proliferation within both compartments and thus a greater contribution to the total number of 

day 6 cells generated. In addition to this, the stimulation provided by the CD40L-L cells 

constitutes an extremely potent activation signal. In contrast, the activation signals delivered 

through TLR7 appear to be more moderate. 

Furthermore, activation with R848 generates a population of plasma cells more quickly than 

CD40L stimulation. Plasma cells exit the cell cycle, transitioning from the highly proliferative 

plasmablast stage and return to a state of quiescence. In the differentiation presented in figure 

4.11, the pool of proliferating cells at day 6 has been reduced by 20% compared to the 

population of cells in the CD40L condition, implying that these cells will have stopped 

undergoing division before this time point and thus were not contributing additional numbers 

to the total population at day 6.  

4.5 Response of WM B-cells to R848 stimulation 

The rationale for investigation of the effects of TLR stimulation on WM B-cell differentiation 

stems from research conducted by Wang et al., and the Staudt group, both of which indicate 

that the MYD88L265P mutation does not act independently to induce B-cell proliferation but 

instead requires signals from TLRs (Lim et al., 2013; Wang et al., 2014). These studies were not 

performed in primary human cells, but rather ABC DLBCL cell lines or murine B-cells transduced 

with the MYD88L265P mutation, so the effect in WM primary cells has yet to be investigated. In 

order to address this, B-cells derived from the peripheral blood or bone marrow of patients 

diagnosed with WM were stimulated with 1µg/ml R848 + F(ab’)2 anti-IgG/M. The cell numbers 

obtained for these differentiations are displayed in figure 4.12.  
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Figure 4.12 The number of WM cells rapidly declines subsequent to activation with stimuli mimicking a 

T-independent immune response. B-cells derived from the bone marrow of patients diagnosed with WM 

(isolation protocol B) were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Cells were washed at day 

3 with 10ml fresh media. The cell number at each time point was determined by manual counts between 

days 0-6 and then by flow cytometry thereafter. The cell number at each point was normalised to the 

number of “input” cells for that specific patient obtained at day 0. 

 

Most unexpectedly, WM cell numbers decreased for all samples at each successive time point, 

with the number of viable cells in culture falling to zero in most cases by day 13 of the 

differentiation. The most acute decrease in cell number occurred between day 0 and day 3 for 

all but two of the samples. A decrease in cell number between these time points was observed 

previously in patient samples stimulated with CD40L, but the proliferative phase between days 

3 and 6 remained intact for these cells despite the initial drop in number. This is not the case for 

WM samples stimulated with R848, as no proliferation was observed in these samples and cell 

numbers continue to fall.  

WM cells stimulated with R848 also displayed an impaired ability to differentiate. An example 

of the drastic differences in phenotype observed is provided in figure 4.13. A differentiation was 

performed with WM B-cells stimulated concurrently with either CD40L + F(ab’)2 anti-IgG/M or 

1µg/ml R848 + F(ab’)2 anti-IgG/M. WM cells in receipt of CD40L stimulation successfully 

generated a population of long-lived plasma cells whereas cells stimulated with R848 were 

wholly unable to respond. These cells retained an undifferentiated phenotype, failing to lose 

expression of CD20 and failing upregulate CD38, CD138 or CD27.  
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Figure 4.13 B-cells derived from a WM patient are able to differentiate into plasma cells following CD40L stimulation but are completely unable to respond to R848 stimulation. 

B-cells were isolated from the bone marrow of a patient diagnosed with WM (isolation protocol B) and stimulated with either CD40L or 1µg/ml R848 + F(ab’)2 anti-IgG/M. The 

phenotype was assessed by flow cytometry for surface markers at the indicated time points. Percentages are indicated within individual quadrants. 
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Whilst the cells from this example demonstrated a complete inability to differentiate, a range of 

phenotypes were observed for WM cells stimulated with R848 + F(ab’)2 anti-IgG/M. Figure 4.14 

illustrates the phenotypic profiles for 12 independent differentiations with WM samples. 

 

 

Figure 4.14 Scatter plot profiles for the expression of each CD marker assayed in multiple 

differentiations with WM B-cells. B-cells derived from the bone marrow of patients diagnosed with WM 

were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Each scatter plot displays the percentage of 

live cells expressing the stated CD marker as determined at each time point via flow cytometry. Data from 

comparable intervals were grouped together for clarity. Each independent differentiation is represented 

by a different colour.   



Chapter 4 - Results 

107 

The WM cells did not remain viable past days 13-15 for all but three of the differentiations and 

in several samples the cells did not persist past day 6. This therefore resulted in limited 

phenotypic data for some of these experiments. 

From day 6 onwards, expression of CD20 was highly variable between all samples. In 5 of the 12 

samples, expression of this marker decreased to 70% or below of the total population between 

day 0 and 6. The proportion of cells retaining expression of this marker for these five samples 

decreased further in some instances, but in others it did not. For the other 7 samples, high levels 

of CD20 expression (greater than 70% of the total population) were maintained to days 13-15. 

The WM cells exhibited a wide range of CD38 expression at day 0 and this variability continues 

across each time point. There is no discernible trend of increasing CD38 expression amongst the 

samples as the differentiations progressed, as would normally be expected, although the 

proportion of CD38+ cells does increase in some samples, for example WM7.  

Five samples generated a population of CD38+ CD138+ plasma cells comprising at least one 

quarter of the total surviving population at either days 13-15 or days 20-22 of the differentiation. 

The remaining WM cells either completely failed to upregulate this marker, or displayed only 

low levels of CD138 acquisition. Unlike WM cells that were stimulated with CD40L + F(ab’)2, there 

does not appear to be a population of CD38- CD138+ cells. As with CD38, expression of CD27 

varied considerably, with levels increasing in some samples and decreasing in others as the 

differentiation progressed.  

A comparison of the immunophenotypic markers between WM and healthy cells subsequent to 

1μg/ml R848 stimulation illustrates the different responses to this type of stimuli (figure 4.15). 

The expression of CD38 is significantly lower in the WM cells for each time point assayed (p = < 

0.05, t-test with Welch’s correction). In addition to decreased levels of CD38 expression, WM cells 

demonstrate an impairment to plasma cell differentiation, expressing significantly lower levels 

of CD138 from day 13, by which time approximately 70% of healthy cells express this marker. 

The lack of a significant difference between the WM and healthy cells for CD20 and CD27 

expression at day 20-22 may be explained by the survival of the non-neoplastic fraction of B-

cells in the WM samples, contributing to a phenotype that more closely resembles that of the 

healthy cells. 
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Figure 4.15 Comparison of the average expression of immunophenotypic markers between healthy and 

WM cells subsequent to 1μg/ml R848 + F(ab’)2 anti-IgG/M stimulation. B-cells derived from the bone 

marrow of patients diagnosed with WM or peripheral blood of healthy donor (isolation protocol 

B) were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Cells were washed with 10ml fresh 

media at day 3. Each plot displays an average of the percentage of live cells expressing the stated 

CD marker as determined at each time point via flow cytometry (healthy n = 9, WM n = 12). Values 

for WM expression significantly different from healthy samples are indicated – (*, p < 0.05, **, p < 0.001, 

***, p < 0.001,t-test with Welch’s correction). Error bars represent S.D. 

 

There appeared to be a distinction between samples that were able to generate a population of 

plasma cells and those that were unable to do so. Therefore, the data from WM differentiations 

was stratified into two groups - those which generated a proportion of plasma cells that 

comprised at least 25% of the viable population during the course of the differentiation and 

those that were unable to do this. A comparison of the fold change in cell number is presented 

in figure 4.15 and the associated scatter plot profiles in figure 4.16.  
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Figure 4.16 WM cell number declines more rapidly in samples unable to generate plasma cells. B-cells 

derived from the bone marrow of patients diagnosed with WM (isolation protocol B) were stimulated 

with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Cells were washed with 10ml fresh media at day 3. The cell 

number at each point was normalised to the number of “input” cells for that specific patient obtained at 

day 0. Patient numbers correspond to those in figure 4.14 and 4.17. 

 

It appears that the cell number in samples that are unable to generate plasma cells falls more 

steeply between day 0 and 3 than for samples which are able to differentiate into plasma cells. 

The fold change difference between the two groups at both day 3 and day 6 is significant 

(unpaired Students t-test p = 0.006, p = 0.031). This raises several possibilities; either the 

samples which were unable to respond contained a greater proportion of WM cells, perhaps 

these samples possess intrinsically lower levels of TLR7/8 or it may be that the signalling 

pathway is further perturbed in these samples in comparison to the rest of the patient cohort. 
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Figure 4.17 Scatter plot profiles for the expression of each CD marker in differentiations with WM cells divided into those which generated plasma cells and those that did 

not. B-cells derived from the bone marrow of WM patients were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Each scatter plot displays the percentage of live cells 

expressing the stated CD marker as determined at each time point via flow cytometry. The top set of plots display data from differentiations that produced fewer than 25% 

plasma cells and the bottom set represents those differentiations that generated plasma cells comprising >25% of the total population. Data from comparable intervals were 

grouped together for clarity. Each independent differentiation is represented by a different colour and the colours used to denote each patient are consistent with figure 3.
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4.5.1 Differential response of individual populations within the total isolated 

WM B-cells  

On several occasions, WM cells stimulated with 1µg/ml R848 + F(ab’)2 anti-IgG/M generated two 

phenotypically distinct populations that corresponded to differences in FSC and SSC 

characteristics, an example of which is illustrated in figure 4.18.  These two diverging phenotypes 

appear to denote a fraction of B-cells that are able to differentiate (upper plots) and a second 

which does not (lower plots). The phenotype of the cells in the upper plots alters in a manner 

consistent with differentiation of these cells, with decreasing CD20 expression and increasing 

CD38, CD138 and CD27 levels from day 3 to day 14, in addition to a larger cell size. Whereas the 

cells that remain distinctly smaller on the FSC/SSC biaxial plots retain a B-cell-like phenotype 

(CD20+ CD38low CD138- CD27-) for the entire time course. This phenomenon was not observed 

when WM cells were stimulated with CD40L + F(ab’)2 anti-IgG/M.  

It is possible that the cells which retain the capacity to differentiate in response to stimulation 

with R848 are the un-mutated fraction as the total B-cells are not entirely comprised of the WM 

clone in each case. Since the WM and healthy cells are normally indistinguishable from each 

other by the surface markers assayed by flow cytometry in these experiments, the phenotype 

obtained comprises features from both populations. The WM cells were able to differentiate 

subsequent to CD40L + F(ab’)2 anti-IgG/M stimulation and thus any differences between the 

neoplastic and healthy cells would have been masked. However, if the WM cells do not proceed 

with differentiation but the healthy cells are able to do so, a similar divergence in phenotype 

would be expected to occur as seen here.  
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Figure 4.18 WM B-cells activated with R848 generate phenotypically distinct populations that can be 

discriminated based on FSC and SSC characteristics. B-cells were isolated from the bone marrow of a 

patient diagnosed with WM and stimulated with 1µg/ml R848 + F(ab’)2 anti-IgG/M. Populations were 

gated on FSC and SSC, with the phenotype of the larger subset presented on the top and that of the 

smaller subset on the bottom for each time point. Percentages are indicated within individual quadrants. 

 

In summary, primary B-cells isolated from the bone marrow of WM patients demonstrate a 

profound impairment in plasma differentiation and survival subsequent to stimulation with the 

TLR7/8 agonist R848 + F(ab’)2 anti-IgG/M compared to B-cells derived from the peripheral blood 

of healthy donors. Whilst B-cells from healthy donors were successfully able to generate a 

population of long-lived plasma cells by day 13, WM B-cells produced only a small proportion of 
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plasma cells and in some instances, completely failed to differentiate (table 4.1). Concurrently, 

cell numbers fell and there was a deficiency in proliferation which normally occurs between days 

3 and 6 in healthy samples.  

Table 4.1 Comparison of the capacity of WM cells to proliferate and generate plasma cells subsequent 

to either CD40L or R848 stimulation. Only differentiations with phenotypic data up to at least day 13 have 

been included. 

Patient 
CD40L stimulation R848 stimulation 

Proliferation Plasmablasts Plasma Cells Proliferation Plasmablasts Plasma Cells 

1 - - - No No No 

3 No Yes Yes No Yes Yes 

4 Yes Yes Yes - - - 

5 Yes Yes Yes No Limited Limited 

6 Yes Yes Yes No Yes No 

7 Yes Yes Yes No Limited Limited 

8 Yes Yes Yes No Yes No 

9 Yes Yes Yes No No No 

10 - - - No Yes No 

11 - - - No Yes Yes 

12 - - - * Yes Limited 

13 - - - * No No 

* - Too few cells for accurate cell counts to be obtained 

4.6 Discussion 

Expression of TLRs on human B-cells is variable, with the memory B-cell fraction possessing 

intrinsically higher levels of TLRs, including TLR7, than the naïve subset (Hornung et al., 2002; 

Bernasconi et al., 2003). As a consequence, stimulation with a TLR agonist favours the expansion 

of the memory B-cell compartment (Bernasconi et al., 2002). This accounts for a substantial 

proportion of the variability observed between the response to R848 and CD40L stimulations. 

In vivo, memory cells are primed to respond with increased alacrity to reinfection and thus the 

secondary immune response results in pathogen clearance more swiftly (Ahmed and Gray, 1996; 

Tangye et al., 2003). Activation with R848 in the in vitro system results in the production of 

plasma cells more rapidly than with CD40L stimulation, recapitulating the in vivo response 

(figure 4.9).   

Somewhat less expected was the significantly lower fold-change increase in cell number 

observed between days 3 and 6 of the differentiation following TLR stimulation versus that 
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which was observed following CD40L stimulation (figure 4.8). Memory B-cells initiate division 

earlier in response to stimulation and generate a greater number of cells (Tangye et al., 2003). 

Thus one would anticipate that R848 stimulation might result in similar levels of proliferation 

overall due to preferential activation of the memory subset and their capacity to proliferate, 

even with reduced proliferation of the naïve population in response to this type of stimuli, but 

this was not the case. There are several factors that may contribute to this observation. Firstly, 

the proliferative response of the memory fraction to R848 stimulation may indeed be greater 

than the response to CD40L stimulation, but since they comprise approximately 20-40% of the 

total B-cell population, the resulting cell numbers compared to the total input would remain less 

unless a certain threshold of proliferation was passed (Morbach et al., 2010). The in vitro culture 

system was optimised to generate the greatest number of viable cells following CD40L 

stimulation (Cocco et al., 2012). The CD40L-L cells used to mimic a T-dependent response 

provide a powerful stimulation, surplus to that which is required for successful B-cell activation 

and both memory and naïve cells are more equally responsive so it is perhaps not surprising that 

the amplitude of proliferation across the differentiations with R848 stimulation are lower. It was 

noted by Simchoni and Cunningham-Rundles that stimulation with CD40L and IL-21 resulted in 

the proliferation of practically all cells within the memory and naïve subsets, whereas 

stimulation via TLR7 or TLR9 only induced proliferation in a smaller fraction of IgM+ CD27+ cells 

(Simchoni and Cunningham-Rundles, 2015). In addition to this, phenotypic R848 stimulation 

generates a population of plasma cells more rapidly than occurs subsequent to CD40L 

stimulation. The differentiation of this population removes them from the pool of proliferating 

cells, limiting their contribution to the overall number.  

The total number of plasma cells generated compared to the input cells in a direct comparison 

between the two types of stimuli was lower after R848 stimulation (figure 4.10). But, in the same 

manner as those produced from CD40L stimulation, the plasma cells that were generated with 

R848 could be maintained for several months and thus are similarly long-lived. 

Synergistic co-operation between BCR and TLR stimulation is well established (Coutinho et al., 

1974; Leadbetter et al., 2002). Upregulation of TLR9 in the naïve B-cell subset was observed by 

Bernasconi et al., in response to BCR ligation, but it was not required by memory cells 

(Bernasconi et al., 2003). This may explain why addition of F(ab’)2 anti-IgG/M has a greater 

impact when cells are stimulated with R848 compared to CD40L. The synergistic effect of BCR 

and TLR7 co-stimulation was observed here when F(ab’)2 anti-IgG/M was removed from the 

culture system and the cells were stimulated with R848 only. This resulted in a population of 

cells that retained a non-differentiated phenotype for an extended period of time (figure 4.5). 

The proportion of these unresponsive cells increased for the lower concentrations of R848, 
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implying that dual stimulation is vital to increase the sensitivity of cells to TLR ligation that would 

otherwise fail to initiate a differentiation response. Primary B-cells do not normally survive in 

vitro in an undifferentiated state and thus these cells must have been supported by a 

combination of TLR signalling and the cytokine milieu within the culture system to persist for a 

protracted period. However, these cells were eventually lost from the culture, either because 

the intrinsic apoptotic signals overcame the pro-survival signals or because the cells were 

ultimately able to differentiate, although the former appears more likely. 

Due to the fact that the R848 is soluble, rather than provided by cell-cell contact as with the 

CD40L stimulation, the potential for carryover of residual compound is considerably greater. 

Three concentrations of R848 were tested and it became clear that prolonged TLR stimulation 

affected the phenotype of the cells, resulting in a delay in differentiation in a similar manner as 

occurs when B-cells receive continued CD40L stimulation (figure 4.1) (Randall et al., 1998; 

Upadhyay et al., 2014). This response appears to reflect a mechanism for TLR tolerance, whereby 

cells become unresponsive to additional TLR signals following exposure to chronic TLR 

stimulation (Poovassery et al., 2009). An additional wash of the cells with 10ml fresh media at 

day 3 was sufficient to prevent this response from occurring (figure 4.2). Interestingly, B-cells 

exposed to the lowest concentration of R848 generated the greatest proportion of CD38+ 

CD138+ plasma cells by day 6 of the differentiation. This suggests that a small portion of B-cells, 

presumably from the memory fraction, are particularly sensitive to low levels of stimulation and 

demonstrate an enhanced response compared to the rest of the population. 

Despite the phenotypic differences that occur during the early portion of the differentiations 

between the two types of stimulation, the divergence in phenotype is minimal from day 13 

onwards. Ultimately, stimulation of healthy B-cells with R848, as with CD40L generates 

phenotypically identical plasma cells that comprise most, if not all, of the total population by 

day 20 of the differentiation and these cells can be maintained in culture long-term. 

The most striking but unanticipated result presented in this chapter was the impaired response 

of WM B-cells to stimulation with R848 (figures 4.12 and 4.13). The initial reason to examine 

that effect of TLR stimulation on WM B-cells originated from the results presented by Lim et al. 

suggesting that MYD88L265P cells still require TLR signals for proliferation and survival (Lim et al., 

2013). They demonstrated that MYD88L265P binds constitutively to both TLR7 and TLR9 and that 

silencing of the TLR7/9 genes suppressed activation of the NF-κB pathway within the MYD88L265P 

expressing ABC DLBCL cell lines OCI-Ly3 and OCI-Ly10 and promoted apoptosis, but had no effect 

on the MYD88WT GCB cell line SU-DHL-6. Depletion of proteins responsible for the trafficking of 

TLR7 and TLR9 to endosome also proved to be lethal. In addition to this, they also assessed the 
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effect of a TLR9 suppressing inhibitory oligonucleotide, which abrogated NF-κB signalling and 

resulted in decreased survival of the ABC DLBCL cell lines. 

Subsequently, data was published by Wang et al. that appeared to support the findings of Lim 

et al. (Wang et al., 2014). They investigated the effect of the MYD88L265P mutation by retrovirally 

transducing mutated Myd88 alleles into activated murine B-cells that had previously been 

exposed to antigens. These cells were either cultured in vitro or adoptively transferred to Rag1 

deficient mice. In the absence of B-cell mitogens, the MYD88L265P bearing cells underwent 

multiple rounds of spontaneous proliferation. However, the MYD88L265P population was not self-

sustaining and the proliferation was limited by a negative feedback loop via the induction of 

TNFAIP3. In order to determine whether TLR signalling was a prerequisite for survival, they 

treated the cells with chloroquine, a compound which prevents endosomal acidification and 

proteolytic cleavage of TLR7 and 9 which is essential for their activation (Park et al., 2008) and 

this, in turn, inhibited proliferation as did mutation of the TLR trafficking protein Unc93b1. Taken 

together, the results from these investigations indicate that signals via the TLR 7 and 9 signalling 

pathways must remain intact and are a prerequisite for the sustained proliferation and survival 

that is characteristic of MYD88L265P B-cells in vivo. Thus, one might expect WM cells to 

demonstrate an enhanced response to TLR stimulation, with a combination of the intrinsic 

activation NF-κB via MYD88L265P and additional in vitro ligation of this receptor with R848 + 

F(ab’)2 anti-IgG/M.      

In contrast to this, when primary B-cells isolated from patients with WM were stimulated with 

1μg/ml R848, they demonstrated both impaired survival and differentiation (figures 4.12 and 

4.13). Cell numbers fell sharply between day 0 and 3 and continued to decline further thereafter. 

Whilst a decrease in number for WM cells was often observed when they were activated with 

CD40L, the cells were subsequently able to proliferate and cell numbers recovered between day 

3 and day 6. Paired with the inability of the cells to survive subsequent to stimulation with R848 

was a profound defect in the generation of plasma cells. Whilst activation with CD40L resulted 

in the generation of plasma cells in each sample by day 13-15, stimulation with R848 elicited the 

production of fewer plasma cells or in some cases none at all (figure 4.14). 

In several instances, WM cells persisted with an undifferentiated B-cell phenotype in addition 

to a fraction of cells that were able to respond phenotypically (figure 4.18). It is possible that 

these WM cells are refractory to differentiation as they are already receiving the downstream 

signals normally initiated from TLR ligation but as a consequence of the MYD88L265P mutation 

and are thus unresponsive when additional stimuli are provided. Whilst it is not possible to 

determine whether the fraction of WM cells that are able to respond to TLR7 ligation correspond 

to the proportion of non-neoplastic cells from the flow cytometry analysis presented here, this 
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remains a feasible explanation for the difference between the proportion of cells able to initiate 

the differentiation program and those that cannot. 

The reasons underlying the negative effect of TLR7 signalling on WM cells are less clear but there 

are several possible explanations for the lack of survival of WM cells following R848 stimulation. 

It is possible that the WM B-cells are incapable of receiving the TLR signal, either due to the 

absence of TLR7 or an uncoupling of the signalling pathway. Without pro-survival signals 

provided by the binding of a cognate antigen or stimulation via TLRs, B-cells are programed to 

undergo apoptosis and a similar situation may be occurring here. Alternatively, it may be that 

the tonic survival signals provided by the constitutive activation of the NF-kB pathway are 

normally sufficient to endow enhanced survival of WM cells over their healthy counterparts, but 

that additional TLR signalling above this threshold triggers the activation of a negative feedback 

loop such as TNFAIP3, resulting in lethality.  

Another hypothesis is that WM cells undergo T-cell independent activation induced cell death 

following TLR7 activation. Cells participating in the immune response are tightly regulated to 

prevent autoimmunity and limit inflammatory damage after pathogen clearance. During T-cell 

dependent responses, Fas expression on activated B-cells is upregulated, priming them for 

sensitivity to FasL-mediated apoptosis (Schattner et al., 1995). R848 and F(ab’)2 anti-IgG/M 

stimulation may also result in the upregulation of surface expression of Fas, priming the WM 

cells for susceptibility to apoptosis. In addition, WM cells secrete BAFF which upon binding to 

TACI enhances the expression of Fas and FasL (Elsawa et al., 2006; Figgett et al., 2013). Binding 

of FasL may therefore initiate a profound pro-apoptotic signal which is able to overcome 

inhibitory signalling from BCR ligation and ultimately results in WM cell death. These will be 

investigated further in later chapters in an effort to further understand the response of WM cells 

to this type of stimulation. 

The results presented here do not concur with the findings of Lim et al., 2013 or Wang et al., 

2014 regarding the requirement of TLR signalling, but do corroborate with the more recent 

publication by Wang and colleagues (Wang et al., 2016). They observed amplified levels of 

accumulation of MYD88L265P transduced plasmablasts within the spleens of mice bearing a 

mutation to Unc93b1 following adoptive transfer. Unc93b1 is essential for trafficking of the TLRs 

to the endosomes and hence the TLR3, 7, 8 and 9 signalling pathways are abrogated in its 

absence (Kim et al., 2008). Similarly, enhanced accumulation of MYD88L265P plasmablasts also 

occurred subsequent to TLR9 deficiency. Following this line of thought, if the abolition of 

endosomal TLR signalling results in increased numbers of MYD88 mutated plasmablasts, it 

suggests that it is advantageous for these cells to be refractory to TLR ligation and one would 
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anticipate that the consequences of additional stimulation via the endosomal TLRs would have 

a detrimental impact on the MYD88L265P cells and this is indeed the case.  
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Chapter 5 - Differentiation responses in other lymphoproliferative 

disorders and Schnitzler syndrome 

5.1 Introduction 

The preceding chapters have established the differentiation phenotype and cell number profile 

of WM and healthy B-cells following activation with stimuli mimicking either a T-dependent or 

a T-independent immune response. In order to determine whether the response of WM cells is 

unique or shares characteristics with other neoplasms, differentiations with B-cells from a 

selection of other lymphoproliferative disorders (LPDs) were performed to provide further 

comparison with WM cells. In particular, cells from individuals with splenic marginal zone 

lymphoma (SMZL) were examined as these patients present with similar symptoms to WM and 

they possesses related aetiologies. B-cells derived from bone marrow, peripheral blood or 

splenic samples were activated with CD40L + F(ab’)2 anti-IgG/M or R848 + F(ab’)2 anti-IgG/M and 

the response of the cells was assessed by flow cytometry.  

In addition to this, the effect of these two types of stimulation on Schnitzler syndrome B-cells 

was also investigated. Schnitzler syndrome is a rare autoinflammatory condition and shares 

clinical features with WM such as monoclonal IgM gammopathy as well as involvement of the 

MYD88 signalling pathway in pathogenesis (Lim et al., 2002). Individuals with Schnitzler 

syndrome are particularly prone to developing Waldenström’s macroglobulinemia and thus may 

represent an intermediate between healthy controls and WM samples. 

5.2 Differential diagnosis of WM 

The differential diagnosis of WM is particularly difficult before information regarding the MYD88 

mutation status is obtained and immunophenotyping is performed. Several patient samples 

were obtained that were expected to be WM but were later confirmed otherwise by diagnostic 

flow cytometry and detection of MYD88 mutation status by allele-specific oligonucleotide PCR 

(ASO PCR). These samples largely consisted of splenic marginal zone lymphoma  with an IgM 

paraprotein, with one incidence each of mantle cell lymphoma and B-cell chronic lymphocytic 

leukaemia. In addition to the occurrence of IgM paraprotein, the presentation of patients with 

WM and SMZL can be similar, with incidences of splenomegaly, mucosal bleeding and cold 

agglutinin disease occurring in both cases (Thieblemont et al., 2002; Owen et al., 2003). The 
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similarities in these neoplasms provide an opportunity to examine the distinctiveness of the WM 

B-cell response within the in vitro system.    

5.2.1 Marginal zone lymphoma 

Three subtypes of MZL are recognised: nodal, extranodal and splenic (Norris and Stone, 2008). 

Since the majority of the additional LPD samples were from SMZL, they will be the main focus of 

this section, but the results from the other two neoplasms – one sample each of mantle cell 

lymphoma and B-cell CLL - will also be included in later analysis. Therefore the group as a whole 

will be termed “other LPDs” and the response of the subset of SMZL cells will be highlighted if 

they are of particular interest. SMZL is a rare, indolent lymphoma with splenic, bone marrow 

and PB involvement (Molina et al., 2011). Low levels of monoclonal Ig, most commonly IgM, 

occur in approximately one third of patients affected (Matutes et al., 2007; Traverse-Glehen et 

al., 2011). The neoplastic cells consist of B-cells and activated B-cells located in the marginal 

zone which infiltrate the white pulp of the spleen, commonly resulting in splenomegaly 

(Thieblemont et al., 2002). In addition, cells resembling centrocytes erode the mantle zone and 

invade the germinal centres, further disrupting the architecture of the spleen. The cell of origin 

in SMZL is postulated to be a marginal zone memory B-cell that has previously encountered 

antigen (Tierens et al., 2003; Stamatopoulos et al., 2004; Zibellini et al., 2010).  

Dysregulation of NF-κB signalling plays a key role in SMZL pathogenesis, with approximately one 

third of SMZL patients possessing mutations in NF-κB regulators within both the canonical and 

non-canonical pathways, including IKBKB, TRAF3 and MAP3K14 (Rossi et al., 2011). Inactivating 

mutations in the transcription factor KLF are also common (20-40%), resulting in aberrant NF-κB 

activation by preventing its suppression (Clipson et al., 2014; Piva et al., 2014; Parry et al., 2015). 

Whilst deregulated NF-κB signalling is a common feature of both SMZL and WM aetiology, the 

frequency of the MYD88L265P mutation in SMZL is low, with an incidence of approximately 6%-

15% (Yan et al., 2012; Varettoni et al., 2013; Martinez-Lopez et al., 2015).  

The capacity to differentiate into plasma cells appears to be conserved in a large proportion of 

SMZL cases, with observations in the literature ranging from 21-74% (Mollejo et al., 1995; 

Hammer et al., 1996; Van Huyen et al., 2000; Dufresne et al., 2010). It is expected therefore that 

there will be varying degrees of differentiation amongst these samples following stimulation in 

the in vitro system.
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5.3 Differentiation profiles from non-WM lymphoproliferative 

disorders  

Having established the response of WM B-cells to stimulation with CD40L, the next key question 

to address was how the responses of B-cells derived from patients with other 

lymphoproliferative disorders compared. B-cells were isolated from each sample and stimulated 

with CD40L + F(ab’)2 anti-IgG/M as described previously. A summary of clinical information for 

these patients is provided in table 3.2 accompanied by the capacity of B-cells from each sample 

to generate plasmablasts or plasma cells after culture within the in vitro system. All samples 

were negative for the MYD88L265P mutation as determined by ASO PCR. Several samples were 

bone marrow aspirates (table 5.1), similar to the type of samples used from WM patients. In 

differentiations performed with WM BM samples, it appeared that if there was an extended 

amount of time between when the sample was collected and when an in vitro experiment was 

initiated, cell viability was negatively impacted. Additional samples that have been prepared and 

stored in the same manner provide further reference as to the effects on cell survival and 

differentiation of both the sample source (bone marrow vs. blood) and the delay between 

sample collection and initiation of the differentiation experiment. 

 

Table 5.1 Clinical data and differentiation capability of B-cells isolated from LPD patients with CD40L + 

F(ab’)2 anti-IgG/M stimulation. PB, peripheral blood. BM, bone marrow. 

Patient Sample 
type 

Diagnosis Culture length 
(days) 

Plasmablasts Plasma 
Cells 

1 Spleen SMZL 0-6 Yes No 

2 PB SMZL 0-28 No No 

3 BM  Mantle cell 0-13 Yes Yes 

5 BM SMZL 0-15 Yes Limited 

5 PB SMZL 0-15 Yes Yes 

6 PB SMZL 0-28 Yes Yes 

7 BM SMZL 0-28 Yes Limited 

8 BM B-cell CLL 0-28 Yes Yes 

9 BM SMZL 0-6 Yes No 

 

The phenotypic profiles for each of these differentiations is depicted in figure 5.1.  
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Figure 5.1 Scatter plot profiles for the expression of each CD marker assayed in multiple differentiations 

with B-cells isolated from patients with LPDs. B-cells derived from the bone marrow, PB or spleen of 

patients with various LPDs (isolation protocol B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Each 

scatter plot displays the percentage of live cells expressing the stated CD marker as determined at each 

time point via flow cytometry. Data from comparable intervals were grouped together for clarity. Each 

independent differentiation is represented by a different colour.   
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The expression of each marker, with the exception of CD19, was highly variable between the 

samples, as was the extent to which they were able to differentiate. For example, the cells 

derived from a peripheral blood sample from patient 2, denoted in purple in the scatter plots, 

were completely unable to differentiate. These cells retained the B-cell phenotype throughout 

the entire culture period, with an absence of upregulation of CD38, CD138 or CD27. In contrast, 

B-cells from patient 8 were able to differentiate successfully following CD40L + F(ab’)2 anti-

IgG/M stimulation, generating a population of plasma cells by days 13-15. The samples from 

patient 5 consisted of a matched bone marrow and peripheral blood sample. Unfortunately, the 

cells from this patient were no longer viable after day 13. However, assessment of the 

phenotype at the three time points shown indicates that cells from both samples were able to 

differentiate. Interestingly, B-cells from the peripheral blood displayed a more differentiated 

phenotype at day 13, with fewer than 30% of cells retaining CD20 expression compared to 

almost 70% in cells derived the bone marrow and 20% more cells expressing CD138 at this time 

point. The difference in phenotype may reflect an increased disease burden within the bone 

marrow compared to the peripheral blood. A very small proportion of CD38- CD138+ cells appear 

to be present at day 6 in some samples but this is due to a greater spread of negative expression 

in these samples at this time point compared to the healthy controls and isotypes used 

determine the gates on the biaxial plots and not evidence of a true CD38- CD138+ population. 

Subsequently, there is no evidence that any of these samples generate CD38- CD138+ cells.  

The LPDs do share some phenotypic features with the WM cells subsequent to stimulation with 

CD40L + F(ab’)2 anti-IgG/M. The pattern of CD20 retention in the cells is very similar in both WM 

and the other LPDs, with a broad range of expression throughout the time course, with some 

samples demonstrating downregulation of this marker and others retaining it. Expression of 

CD38 is also comparable between the LPDs and WM, with expression increasing in general, 

although patient 2 was completely unable to upregulate this marker, CD138 or CD27. The 

similarity in CD38 expression across the various neoplasms is in part due to the proportion of 

WM cells that acquire the alternate plasmablast-like phenotype of CD38- CD138+. If one omits 

these samples when examining overall CD38 expression, then the other WM samples upregulate 

CD38 more swiftly and to a greater extent than the LPDs do. The generation of plasma cells and 

expression of CD138 is considerably less consistent between the WM and LPD samples, with all 

WM samples increasing expression of this marker, but a more mixed response of the LPD subset, 

with samples from patients 6 and 8 generating considerably more plasma cells than the other 

LPD samples. The expression of CD27 is more highly variable in the LPD group, again with a large 

range of expression, whereas the WM cells uniformly upregulated this marker to >90% between 

day 6 and day 13 of the differentiation. 
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Figure 5.2 displays the fold change in cell number for 8 of the 9 differentiations. The number of 

B-cells isolated from the samples of BM and PB from patient 5 were very low so accurate counts 

could not be determined. 
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Figure 5.2 The change in cell number following B-cell activation with stimuli mimicking a T-dependent 

immune response in samples derived from patients with LPDs is highly variable. B-cells derived from 

either the peripheral blood, bone marrow or spleen of patients with LPDs that were not WM (isolation 

protocol B) were stimulated with CD40L and F(ab’)2 anti-IgG/M. Cell number at each time point was 

determined by manual counts for days 3 and 6 and then by flow cytometry thereafter. The cell number at 

each point was normalised to the number of “input” cells for that specific patient obtained at day 0. 

Patient numbers are consistent with figure 5.1. 

 

The proliferative response of the LPD-derived B-cells did not necessarily match their capacity to 

differentiate. B-cells from patients 3 and 6 were successfully able to generate successive 

populations of plasmablasts and plasma cells, but the plasmablast transition was not 

accompanied by an increase in cell number as is observed for both healthy and WM cells. Other 

samples such as that of patients 1, 7 and 8 demonstrated a cell number profile which more 

closely resembles that of healthy cells, with an increase in cell number between days 3 and 6 

followed by a sharp decline thereafter. Due to the decrease in numbers from day 0 to day 3, the 

fold change in number of cells for patient 1 between days 3 and 6 was approximately 60-fold – 

considerably greater than that which was observed in healthy cells. Surprisingly, despite the 

extensive proliferation, all the cells subsequently died between day 6 and day 13. This could be 
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due to exhaustion of the cells after undergoing such an intense period of proliferation or may 

indicate a reliance on IL-2, which is removed from the culture from day 6 onwards. 

A decrease in cell number was observed in all samples, which consisted of bone marrow, 

peripheral blood and one splenic sample, between days 0 and 3. This corresponds to the results 

observed in differentiations with WM samples. The difference in the average fold change in cell 

number at day 3 between the WM and LPD samples was not significant, but the difference 

between the healthy samples and either the WM or LPD samples at this time point was highly 

significant in both instances (adjusted p-value for multiple t-tests p < 0.005). Whilst this effect 

cannot be solely attributed to the differing methods of sample collection and storage, it seems 

likely that it is a major contributing factor at this early time point. These data indicate that the 

delay between sample acquisition and differentiation does have a knock-on effect on the 

numbers of viable cells and that efforts should be made to minimise the length of time samples 

are in storage to optimise results.  

In summary, differentiations performed on B-cells derived from patients with an assortment of 

LPDs that were not WM generate a wide variety of phenotypes, ranging from the complete 

absence of differentiation to samples which generate populations of plasma cells within a 

comparable time scale to healthy cells. When compared to the phenotypes and cell numbers 

observed here, WM B-cells are considerably more proficient at generating plasma cells, and 

these cells are sustained for longer and with greater numbers during in vitro culture, in line with 

their capability in vivo. The capacity of B-cells from several of the LPD patients to differentiate is 

clearly compromised, mirroring the impairment of these neoplasms in vivo (Van Huyen et al., 

2000; Swerdlow et al., 2016). The inability of patient B-cells to undergo differentiation 

underscores that B-cells placed into the in vitro culture system are not able to spontaneously 

overcome inherent defects resulting from neoplastic transformation, despite being provided 

with stimulation and an environment conducive to differentiation. No evidence of a CD38- 

CD138+ population akin to that of the WM samples was observed in any of the differentiations 

with LPD B-cells, indicating that the plasmablast-like intermediate phenotype may be restricted 

to WM cells. 

5.4  Response of LPD B-cells to TLR7 stimulation 

Where possible, concurrent differentiations were performed with both CD40L + F(ab’)2 anti-

IgG/M (figure 5.2) and R848 + F(ab’)2 anti-IgG/M for the LPD B-cells to enable direct comparison 

between both types of stimulation. The normalised fold change in cell numbers for R848-

stimulated cells are depicted in figure 5.3. 
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Figure 5.3 B-cells from LPDs display variable fold-changes in cell number upon activation with R848. B-

cells derived from the bone marrow, peripheral blood or splenic samples of patients with diagnosed LPDs 

(isolation protocol B) were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Cells were washed with 

10ml fresh media at day 3. The cell number at each time point was determined by manual counts between 

days 0-6 and then by flow cytometry thereafter. The cell number at each point was normalised to the 

number of “input” cells for that specific individual obtained at day 0. 

 

The response of B-cells from the LPDs to R848 stimulation was highly variable but can broadly 

be divided as above, with only the cells from patient 1 demonstrating a substantial proliferative 

response. The most common response, occurring in three of the six samples was a decrease in 

cell number at each subsequent time point in a similar manner to that which was observed for 

WM cells, with slightly different dynamics observed for patients 2 and 7. Data from patient 1 

were excluded from the statistical analysis of the fold change profiles due to the considerable 

deviation in proliferation dynamics to the other LPD samples. The average fold change in number 

for the remaining five LPDs was used to compare with the averages obtained for the WM 

samples as a whole and when the WM samples had been stratified into two groups based on 

their capacity to generate plasma cells as per chapter 2. Whilst the profile of the LPDs is not 

significantly different compared to the entire group of WM samples or the subset that 

demonstrated some differentiation following R848 stimulation, it was statistically significant 

compared to the fold change that occurred in WM samples that were unable to differentiate at 

day 3 and at day 6 (p < 0.01 and p < 0.05 respectively, two-tailed unpaired t-test with Welch’s 

correction). This suggests that whilst LPDs in general may respond poorly to TLR7 stimulation, 

approximately half of the WM samples demonstrate a considerably worse response in terms of 

cell number and survival.  

It would thus appear that the response of WM cells is actually very similar to other LPDs 

following R848 stimulation. However, when the response of the two worst responding LPDs – 
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LPD patient 3 and 6 – to R848 are examined further and compared to their matched CD40L-

stimulated counterparts, a different picture emerges. The cell number profiles for these two 

LPDs subsequent to stimulation with either CD40L or 1μg/ml R848 + F(ab’)2 anti-IgG/M are 

shown in figure 5.4 with two WM samples for comparison.  

 

 

Figure 5.4 WM cells display distinct fold-change profiles subsequent to each type of stimulation 

whereas the poorly responding LPDs do not. B-cells derived from the bone marrow or peripheral blood 

of patients with diagnosed LPDs (top) or WM (bottom) were stimulated concurrently with either CD40L 

or 1μg/ml R848 and F(ab’)2 anti-IgG/M (isolation protocol B). Cells were washed with 10ml fresh media at 

day 3. The cell number at each time point was determined by manual counts between days 0-6 and then 

by flow cytometry thereafter. The cell number at each point was normalised to the number of “input” 

cells for that specific individual obtained at day 0.  
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This demonstrates that, in fact, these LPD samples responded very poorly in terms of 

proliferation to both types of stimulation. In contrast, the WM cells successfully responded to 

CD40L stimulation, with a peak in proliferation coinciding with transition to the plasmablast 

stage but B-cells differentiated simultaneously showed a severely impaired response following 

R848 stimulation.  

The corresponding phenotypes obtained at each time point are displayed in figure 5.5. There 

are no general trends that can be applied to all of the samples as they behave quite differently 

from one another. However, only B-cells from one sample – that from patient 6 – were 

successfully able to generate plasma cells. This is in contrast to the phenotypes obtained when 

the cells were stimulated with CD40L, in which all but one sample exhibited some ability to 

generate plasma cells. There is some evidence of differentiation in the sample from patient 7, 

with decreasing CD20 expression and increasing CD38 and CD27 levels, however these B-cells 

are unable to generate plasma cells, with virtually no CD138 expression by the latest time point 

assayed. 
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Figure 5.5 Scatter plot profiles for the expression of each CD marker assayed in multiple differentiations 

with B-cells from various LPDs. B-cells derived from the bone marrow, peripheral blood or splenic 

samples of patients with LPDs were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M (isolation 

protocol B). Cells were washed with 10ml fresh media at day 3. Each scatter plot displays the percentage 

of live cells expressing the stated CD marker as determined at each time point via flow cytometry. Data 

from comparable intervals were grouped together for clarity. Each independent differentiation is 

represented by a different colour and the colours are consistent with figure 5.1.   
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The various differentiation capabilities of the LPD B-cells subsequent to the two types of 

stimulation are summarised in table 5.2. 

Table 5.2 Comparison of the capacity of B-cells derived from multiple LPDs to generate plasmablasts 

and plasma cells subsequent to either CD40L or R848 stimulation. 

Patient Diagnosis 
CD40L stimulation R848 stimulation 

Plasmablasts Plasma Cells Plasmablasts Plasma Cells 

1 SMZL Yes No Yes No 

2 SMZL No No No No 

3 Mantle cell Yes Yes No No 

5 SMZL Yes Limited No No 

5 SMZL Yes Yes No No 

6 SMZL Yes Yes Yes Yes 

7 SMZL Yes Limited Yes No 

 

In 3/7 samples, the ability of the B-cells to differentiate is matched following activation with 

both types of stimuli. However, in the other 4 samples, the capacity for differentiation is 

diminished when cells receive R848 stimulation compared to when they receive CD40L 

stimulation. This is most striking for patents 3 and 5 which are able to generate both 

plasmablasts and plasma cells when CD40L stimulation is provided but are incapable of 

responding to R848 stimulation. 

In summary, the LPD samples, with the exception of patient 1, displayed a weaker proliferative 

response to stimulation with R848 + F(ab’)2 anti-IgG/M in comparison to that which was 

observed following CD40L + F(ab’)2 anti-IgG/M stimulation. In addition, samples capable of 

generating plasma cells following activation with CD40L were, in general, less able to do so 

subsequent to TLR7 stimulation. The variable capacity for plasma cell differentiation amongst 

these samples within the in vitro system is in line with the spectrum of differentiation observed 

in vivo. Despite the fold-change profiles initially appearing similar between WM and the other 

LPDs, direct comparison of the proliferation of these samples following both types of stimulation 

reveals that the highly divergent response of WM B-cells to these stimuli is unique. 
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5.5 Schnitzler syndrome 

Schnitzler syndrome (SchS) is a rare disorder characterized by chronic urticaria, bone and joint 

pain and monoclonal IgM gammopathy (Lipsker, 2010). Individuals with Schnitzler syndrome are 

more prone to developing lymphoproliferative disorders than the general population, with the 

development of Waldenström’s macroglobulinemia being the most common occurrence (Lim et 

al., 2002; de Koning, 2014). Schnitzler’s syndrome patients demonstrate a good response to IL-

1 pathway blockade with anakinra (Cascavilla et al., 2010). The IL-1R pathway interestingly also 

employs MYD88 in signal transduction, suggesting a potential common thread between IgM 

gammopathy and clinical response (Janssens and Beyaert, 2002). Given the presence of IgM 

paraprotein, the possibility that some of these patients may harbour the MYD88L265P mutation 

within the B-cell fraction therefore presented an attractive opportunity to further examine the 

effect of MYD88 on B-cell differentiation and to compare the phenotypic profile of Schnitzler 

syndrome B-cells throughout the differentiation to that which was observed for WM cells. 

Patient data for the three SchS individuals is summarised in table 5.3. 

Table 5.3 Clinical data for Schnitzler syndrome patients. 

 SchS 1 SchS 2 SchS 3 

Sex Female Female Male 

Age at symptom onset (years) Mid 50s 59 43 

CRP mg/l - 75.2 110 

Hb g/dl - 119 100 

IgM g/l reference range: 0.4-3.0 g/l - 5 6 

Bone marrow histology - MZL MGUS 

Duration of anakinra treatment (months) - 45 27 

Response to anakinra - Complete Complete 

Clonal progression requiring 
chemotherapy? 

- No No 

Mutations identified by Sanger sequencing - MYD88L265P MYD88L265P 

Mutations identified by ASO-PCR - MYD88L265P MYD88L265P 

 

MYD88L265P mutations were identified in the PBMCs of two of the three patients, but its presence 

within the B-cell lineage cannot be inferred from this result.  
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5.5.1 Response of Schnitzler syndrome B-cells to stimulation with CD40L + 

F(ab’)2 anti-IgG/M 

Figure 5.6 displays the phenotypic profiles for four differentiations with SchS B-cells, consisting 

of samples from three unique patients and one independent repeat performed on a fresh 

sample of peripheral blood taken several months after the initial sample. Interestingly, the 

proportion of memory B-cells appear to be lower in SchS samples than in healthy controls, with 

fewer than 10% CD27+ cells at day 0. Interestingly, Lower levels of CD27 expression than 

expected were also observed in the WM samples. This may reflect a difference in the origins of 

the memory populations present in both WM and SchS patients compared with healthy 

individuals (Bagnara et al., 2015). An alternate explanation for the downregulation of CD27 in 

these individuals is that it has been lost via a process of shedding from the cell surface over time 

(Ho et al., 2008; Braggio et al., 2012).  

The general profile of cell surface marker expression across the samples is normal, with all 

samples cultured for at least 13 days generating plasma cells. In each case, loss of CD20 is 

accompanied by successive upregulation of first CD38 and then CD138 and the acquisition of 

CD27 as the cells progress from the plasmablast to the plasma cell stage. However, one sample 

possesses a notable departure in phenotype from healthy cells - SchS 3. Intriguingly, SchS 3 cells 

generated a population of CD38- CD138+ cells by day 13 of the differentiation, identical to the 

plasmablast-like cells that often occur in differentiations with cells derived from WM patients. 
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Figure 5.6 Scatter plot profiles for the expression of each CD marker assayed in multiple differentiations 

with Schnitzler syndrome B-cells. B-cells derived from the peripheral blood of patients with SchS were 

stimulated with CD40L and F(ab’)2 anti-IgG/M (isolation protocol B). Each scatter plot displays the 

percentage of live cells expressing the stated CD marker as determined at each time point via flow 

cytometry. Data from comparable intervals were grouped together for clarity. Each independent 

differentiation is represented by a different colour.   

 

The corresponding fold change in cell number for each of these differentiations is shown in 

figure 5.7. 
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Figure 5.7 The change in cell number following B-cell activation with stimuli mimicking a T-dependent 

immune response in samples derived from Schnitzler syndrome patients. B-cells derived from the 

peripheral blood of SchS patients (isolation protocol B) were stimulated with CD40L and F(ab’)2 anti-

IgG/M. Cell number at each time point was determined by manual counts for days 3 and 6 and then by 

flow cytometry thereafter. The cell number at each point was normalised to the number of “input” cells 

for that specific individual obtained at day 0. 

 

The profiles again are mostly comparable to healthy cells, with the exception of SchS 2. B-cells 

from the PB of SchS 2 were isolated by flow sort. Whilst the phenotype of the cells was 

unaffected, there was a negative impact on the viability caused by the shear stress, resulting in 

too few cells to continue this experiment to the later time points.  

5.5.2 Observation of WM alternate plasmablast phenotype in 

differentiations with SchS B-cells 

By far the most interesting result from differentiations with SchS B-cells is the observation of 

the alternate plasmablast-like phenotype in one sample. As has been previously demonstrated, 

the other LPDs that were analysed did not display this unusual phenotype, so it is striking that 

PB from a patient with SchS should do so. The presence of this population does, however, tie in 

with the abnormal bone marrow histology, indicating the presence of monoclonal gammopathy 

of undetermined significance and the presence of MYD88L265P detected by PCR. Figure 5.8 

depicts the full phenotype of cells from this differentiation and a second differentiation with 

SchS B-cells that possess a “normal” phenotype for comparison. 
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Figure 5.8 Example of differentiations with Schnitzler’s B-cells that differentiate with a normal phenotype (left) and WM-like phenotype (right). B-cells were isolated from the 

peripheral blood of patients with Schnitzler syndrome (isolation protocol B). The cells were activated with CD40L + F(ab’)2 anti-IgG/M and the immunophenotype assayed by flow 

cytometry at each time point. Percentages are displayed for each quadrant. 
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This distinctive population emerges within the same time frame as CD38- CD138+ WM cells. The 

precursors which generate this plasmablast-like population are indistinguishable from their 

counterparts in the preceding flow analysis, which differentiate normally. As with WM samples, 

this population is maintained for several weeks in the culture. By day 40, all cells have 

upregulated CD138, but the division between those that have upregulated CD38 and those cells 

that are unable to do so remains apparent. The downregulation of CD20 in this sample seems 

unaffected, unlike the WM samples, where CD20 downregulation is often delayed. The 

upregulation of CD27 is unperturbed, as with the WM samples. To confirm that the CD38- 

CD138+ cells could not be distinguished from the rest of the population by the expression of any 

other marker within the experiment, the full phenotype of this subset is displayed in figure 5.9.   

 

 

Figure 5.9 Full phenotype of SchS alternate plasmablast-like cells. The expression of CD19, CD20 and 

CD27 for the CD38- CD138+ population (blue quadrant) for each time point indicated are shown on the 

right. Percentages are displayed for each quadrant. 

 

There is no difference in the expression of the other markers in these cells and they otherwise 

appear to differentiate in a normal manner. Overall, the phenotype of the SchS sample that 
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generated the alternate plasmablasts appears to be an intermediate between that of a healthy 

control and a WM differentiation, generating CD38- CD138+ cells but without an impediment to 

CD20 downregulation.  

PCR analysis had been performed on peripheral blood mononuclear cells and demonstrated the 

presence of the MYD88L265P mutation (S. Savic, personal communication). To confirm that this 

mutation was present within the B-cell population, RNA was taken from cells at day 6 of the 

differentiation. Sequencing analysis revealed that both patients possessed both wild-type and 

mutant forms of MYD88 (figure 5.10). 

 

 

Figure 5.10 B-cells from patients with Schnitzler syndrome possessed both wild-type and mutant forms 

of MYD88. Representative sequencing trace from a MYD88 PCR performed on SchS cells taken at day 6 of 

the differentiation. The trace on the left is homozygous for wild type MYD88 – a leucine present at position 

365 (CTG), whilst the trace on the left demonstrates heterozygosity at this base, with an additional peak 

for cytosine beneath the tyrosine peak. 

 

B-cells isolated from SchS patients were able to differentiate into plasma cells and demonstrated 

comparable proliferation dynamics to healthy cells. Despite the similarities between Schnitzler 

syndrome and WM, the appearance of the CD38- CD138+ population was still completely 

unexpected. Sequencing of SchS 3 day 6 cells from this differentiation revealed that they 

possessed the MYD88L265P mutation, reinforcing the link between MYD88 mutation and this 

unusual phenotype. 
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5.6 The effect of R848 stimulation on SchS B-cells 

Schnitzler syndrome B-cells shared phenotypic and proliferative features with both healthy and 

WM B-cells in differentiations following activation with CD40L + F(ab’)2 anti-IgG/M. Since the 

reaction of WM cells to TLR7 stimulation in comparison to healthy controls was so markedly 

different, the response of Schnitzler’s B-cells was investigated in order to determine if they 

behaved in the same way. A graph depicting the fold-change in number for B-cells derived from 

two SchS patients is presented in figure 5.11. The initial sample from patient SchS 3 was sorted 

by flow cytometry. As with the CD40L stimulation, the sorting process resulted in a detrimental 

effect on cell viability, with a substantial loss of cells occurring between day 0 and day 3. When 

B-cells from the peripheral blood of patient SchS 3 were isolated by magnetic separation, a 

considerably greater amplitude of proliferation is observed compared to the input cell number 

as the viable population is preserved during the initial phase of the differentiation.  
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Figure 5.11 The change in cell number following B-cell activation with stimuli mimicking a T-

independent immune response in samples derived from Schnitzler syndrome patients. B-cells derived 

from the peripheral blood of SchS patients were stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M. Cell 

number at each time point was determined by manual counts for days 3 and 6 and then by flow cytometry 

thereafter. The cell number at each point was normalised to the number of “input” cells for that specific 

individual obtained at day 0. 

 

The amplitude of the fold change increase between day 3 and 6 for SchS 1 and SchS 3 #2 is 

considerably greater than the average fold change observed in healthy cells in response to this 

type of stimuli. In both cases, it is also greater than that which was observed following parallel 
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experiments with CD40L stimulation. SchS 1 cells expanded 7.49-fold subsequent to activation 

with CD40L + F(ab’)2 anti-IgG/M and 12.17-fold following activation with 1μg/ml R848 + F(ab’)2 

anti-IgG/M and similarly SchS 3 cells increased 20.87-fold with CD40L and 29.5-fold with R848. 

The proliferation of healthy cells was always greater subsequent to CD40L stimulation in 

comparison to R848 stimulation so the reversal of responsiveness in SchS cells is notable.  

The phenotypic profiles for these differentiations are summarised in figure 5.12. Spontaneous 

transformation of B-cells, most likely due to reactivation of latent EBV was occasionally observed 

during in vitro differentiations. When this occurs, high levels of proliferation are induced in this 

fraction and the phenotype of the population becomes skewed away from terminally-

differentiated plasma cells and back towards a less differentiated B-cell phenotype. The SchS 

samples were particularly prone to transformation subsequent to activation with R848. An initial 

sign of this phenomenon is the increase in cell number observed between day 20 and day 28 for 

the SchS 1 sample shown in figure 5.11. Due to this effect, the phenotypes of the SchS samples 

have not been included past day 20-22 as they are no longer informative as to the proportion of 

plasma cells in the population, even though the cells remained viable and in culture past this 

point. 
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Figure 5.12 Scatter plot profiles for the expression of each CD marker assayed in multiple 

differentiations with Schnitzler syndrome B-cells. B-cells derived from the peripheral blood of patients 

with SchS were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M (isolation protocol B). Cells were 

washed with 10ml fresh media at day 3. Each scatter plot displays the percentage of live cells expressing 

the stated CD marker as determined at each time point via flow cytometry. Data from comparable 

intervals were grouped together for clarity. Each independent differentiation is represented by a different 

colour.   



Chapter 5 - Results 

141 

SchS cells are able to differentiate in response to TLR7 ligation, generating a population of 

plasma cells in each case. It does appear, however, that the generation of plasma cells 

subsequent to activation with R848 is less efficient than occurs when the SchS cells are 

stimulated with CD40L, with a smaller proportion of cells acquiring CD138 expression. 

Expression of the other surface markers is generally comparable between the two conditions 

and follows the expected pattern, although upregulation of CD27 is more rapid in R848-

stimulated cells, with 85.6% of the total population expressing this marker at day 6 compared 

to. 64.7% in CD40L-stimulated cells at the same time point. 

Once again, B-cells derived from patient SchS 3 generated a population of CD38- CD138+ cells by 

day 13-15. An independent repeat was performed with B-cells isolated from a new sample of PB 

from this patient. This, in turn, also generated a CD38- CD138+ fraction although there was a 

slightly lower overall proportion. 

It is clear that the B-cells derived from these patients share phenotypic features with both 

healthy and WM cells. Results from experiments with healthy cells demonstrated that removal 

of F(ab’)2 anti-IgG/M from the culture had a substantial effect on the phenotype and 

proliferation of the differentiating cells. Since performing this experiment with WM cells was 

very difficult due to the paucity of cells and their death subsequent to stimulation with R848, 

the effect of omission of F(ab’)2 anti-IgG/M from the culture was examined in the SchS cells. 

B-cells from patient SchS 1 stimulated with R848 and F(ab’)2 anti-IgG/M differentiated with a 

phenotype that is indistinguishable from healthy cells (figure 5.13). Removal of F(ab’)2 anti-

IgG/M results in a population of CD19++ CD20++ cells which do not express CD38, CD138 or CD27. 

This population is analogous to that which occurs in differentiations with healthy cells when 

F(ab’)2 anti-IgG/M is omitted. These cells remain present at day 13, before they are lost by day 

22. In healthy cells, the effect of F(ab’)2 anti-IgG/M removal on cell phenotype was negligible 

from day 20 onwards, with the majority of cells displaying a CD38+CD138+ phenotype (figure 

4.6). In contrast, SchS B-cells cultured with only R848 stimulation display a considerable 

difference in phenotype at day 22. Omission of F(ab’)2 anti-IgG/M delays the generation of 

plasma cells by approximately 50%, suggesting that dual receptor engagement may be more 

important for plasma cell generation in SchS B-cells. 
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Figure 5.13 SchS B-cells which differentiate with a normal phenotype also demonstrate the same phenotypic response as healthy B-cells when F(ab’)2 anti-IgG/M is omitted. 

B-cells were isolated from the peripheral blood of a patient with Schnitzler syndrome (patient SchS 1) (isolation protocol B). The cells were activated with 1μg/ml R848 +/- F(ab’)2 

anti-IgG/M and the immunophenotype assayed by flow cytometry at each time point. Cells were washed with 10ml fresh media at day 3. Percentages are displayed for each 

quadrant. 
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Interestingly, Schnitzler syndrome B-cells display similar proliferation dynamics both with and 

without the presence of F(ab’)2 anti-IgG/M, although the amplitude of proliferation between 

days 3 and 6 is considerably reduced (figure 5.14). 

 

Figure 5.14 SchS B-cells display similar proliferation dynamics but a decrease in the amplitude of the 

response when F(ab’)2 anti-IgG/M is omitted from the culture. B-cells derived from the peripheral blood 

of two Schnitzler’s syndrome patients (isolation protocol B) were stimulated with 1μg/ml R848 + F(ab’)2 

anti-IgG/M (left) or 1μg/ml R848 alone (right). Cells were washed with 10ml fresh media at day 3. The cell 

number at each time point was determined by manual counts between days 0-6 and then by flow 

cytometry thereafter. The cell number at each point was normalised to the number of “input” cells for 

that specific individual obtained at day 0. 

 

The fall in cell number observed between day 0 and day 3 may be as a consequence of a 

decreased proportion of B-cells that are able to respond to this weaker activation stimuli, 

perhaps due to variances in innate TLR7 expression. In the absence of BCR crosslinking, survival 

signals are diminished and unable to overcome the intrinsic pro-apoptotic program, resulting in 

cell death. Despite this, proliferation occurred in both samples from day 3 to day 6, unlike 

healthy cells, in which numbers reduced at each successive time point. This appears to support 

a hypothesis that SchS B-cells, or at least a proportion of them, are hyperresponsive to TLR 

stimulation and are able to proliferate to a much greater extent than their healthy counterparts. 

Accordingly, the hyperresponsive cells may correspond to a CD27- memory compartment, thus 

explaining the apparent deficiency in the total memory fraction (Bagnara et al., 2015). 

A comparison of the phenotypes obtained for B-cells isolated from patient SchS 3 following 

stimulation with R848, with and without F(ab’)2 anti-IgG/M are shown in figure 5.15. 
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Figure 5.15 Stimulation of SchS B-cells with R848 in the absence of BCR crosslinking generates a greater proportion of CD38- CD138+ cells. B-cells were isolated from the 

peripheral blood of a patient with Schnitzler syndrome (SchS 3) (isolation protocol B). The cells were activated with 1μg/ml R848 +/- F(ab’)2 anti-IgG/M and the immunophenotype 

assayed by flow cytometry at each time point. Cells were washed with 10ml fresh media at day 3. Percentages are displayed for each quadrant.  
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In both conditions, a population of CD38- CD138+ cells arose. However, it emerged earlier and 

comprised a greater proportion of the total population when the cells are stimulated with R848 

in the absence of F(ab’)2 anti-IgG/M. The proportion of CD38- CD138+ cells increases at each 

successive time point when the cells were activated with R848 alone, whereas it diminishes 

between day 13 and day 22 following dual TLR/BCR stimulation. The population of CD38- CD138+ 

cells were back-gated to examine the expression of the other markers in this subset (figure 5.16). 

 

 

Figure 5.16 Expression of additional markers on alternate plasmablast-like population generated 

subsequent to stimulation with 1μg/ml R848 only. The expression of CD19, CD20 and CD27 for the CD38- 

CD138+ population (blue quadrant) for each time point indicated are shown on the right. Percentages are 

displayed for each quadrant. 

 

The CD38- CD138+ population appears otherwise normal in the expression of the other markers 

assayed. This subset exhibits more rapid differentiation than the population as a whole, with a 

smaller proportion of CD20+ cells at each successive time point compared to the population as 

a whole (figure 5.15). In addition to this, all CD38- CD138+ cells have upregulated CD27 compared 

to ~60% by day 6 of differentiation. 



Chapter 5 - Results 

146 

The lack of BCR ligation in this sample clearly favours the generation of the alternate plasmablast 

phenotype over stimulation of both TLR7 and the BCR. Moreover, this unusual population 

emerges earlier following R848 stimulation in comparison to CD40L stimulation and this is 

accelerated further with the removal of F(ab’)2 anti-IgG/M.  Activation with CD40L + F(ab’)2 anti-

IgG/M resulted in a greater proportion of CD38- CD138+ cells than R848 + F(ab’)2 anti-IgG/M, but 

omission of F(ab’)2 anti-IgG/M lead to the highest overall proportion of these cells (Table 5.4).  

 

Table 5.4 Proportion of CD38- CD138+ cells generated following stimulation of SchS-derived B-cells with 

three different combinations of activating stimuli. SchS cells were stimulated with conditions mimicking 

T-dependent stimulation (CD40L + F(ab’)2 anti-IgG/M), T-independent stimulation (R848 + F(ab’)2 anti-

IgG/M)  or  TLR stimulation alone (R848 only). The proportion of CD38- CD138+ cells within the total 

population at each time point was assessed by flow cytometry. 

 Proportion of CD38- CD138+ cells (%) 

Day CD40L + F(ab’)2 anti-
IgG/M 

1μg/ml R848 + F(ab’)2 anti-
IgG/M 

1μg/ml R848 only 

6 0.0 1.0 7.5 

13 23.5 15.9 24.1 

22 27.4 10.4 29.4 

 

B-cells derived from patients with Schnitzler syndrome are able to successfully differentiate into 

plasma cells following stimulation with CD40L + F(ab’)2 anti-IgG/M. Despite all samples 

possessing the MYD88L265P mutation, confirmed within the B-cell lineage in SchS 3, SchS B-cells 

do not suffer a detriment to survival subsequent to stimulation with 1μg/ml R848 + F(ab’)2 anti-

IgG/M like WM B-cells. In fact, SchS B-cells appear to be hyperresponsive to this stimulus, 

demonstrating a greater fold-change increase in cell number between day 3 and 6 of the 

differentiation. 

B-cells derived from patient SchS3 are particularly remarkable. This sample shares phenotypic 

characteristics unique to WM samples, generating a CD38- CD138+ population following both T-

dependent and T-independent stimulations. However, in stark contrast to WM B-cells, these B-

cells do not die subsequent to R848 stimulation and can even generate plasma cells without 

additional BCR ligation. Since both samples possess the MYD88L265P mutation it appears that a 

different feature of WM cells is responsible for the cell death. 
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5.7 Discovery of a novel MYD88 mutation in Schnitzler syndrome B-

cells 

Further examination of the MYD88 sequence data revealed that both SchS patient 2 and 3 

possessed an additional mutation at amino acid position 256. As with MYD88L265P, this mutation 

is a single base transition from cytosine to tyrosine, CTC → CCC, resulting in an amino acid 

substitution of leucine to proline. The MYD88L256P mutation was not present in any of the six 

WM samples analysed or any of the cells lines tested, which included the WM cell lines BCWM.1 

and MWCL.1 (data not shown) and the ABC DLBCL cell lines OCI-Ly3 and OCI-Ly-10 (figure 5.17). 

The lack of a MYD88L256P mutation in SchS 1 does not necessarily mean that this patient does not 

possess it. In a similar manner to the MYD88L265P mutation in WM, this mutation may occur 

within a proportion of the SchS B-cell population and as such is not identified here as the 

sequencing of this sample was only performed once. 
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Figure 5.17 Schnitzler syndrome B-cells possess a novel MYD88 mutation, MYD88L256P. Sequencing traces from a MYD88 PCR performed on SchS cells, the WM cell line BCWM.1 

and WM patient 12. The location of MYD88L265P and MYD88L265P are starred. SchS and WM samples were taken at day 6 of the differentiation. 
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5.7.1 Effect of the L256P mutation on the structure of MYD88 

To assess the impact of this mutation on the conformation of the protein, the modelling tool 

SWISS-MODEL was used (Schwede et al., 2003). The tertiary structure of MYD88 is shown in 

figure 5.18, with the location of MYD88L256P and its impact on the local protein structure. 

 

 

 

Figure 5.18 Location of L256P within the structure of MYD88. (Top) Ribbon diagrams demonstrating the 

location of the L256P residue within the 3D structure of MYD88. A comparison of the location of 

MYD88L265P is provided on the right. (Bottom) Visualisation of the structure from a different angle 

demonstrates a slight rotation to the α-helix induced by the L256P mutation but the region is otherwise 

undisturbed. 

 

The L256P mutation is present in the αC region of the protein, within the TIR domain, in a loop 

just prior to the β-sheet that contains leucine 265. Since the nomenclature of these mutations 
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is so similar, the L256P mutation will hereafter be referred to as MYD88SchS for clarity. 

Lymphoma-associated MYD88 mutations rarely disrupt the conformation of the TIR domain due 

to its stability, but rather influence the interaction between the proteins (Avbelj et al., 2014). As 

with the L265P mutation, MYD88SchS has very little effect on the tertiary structure of the protein 

and one would anticipate that the integrity of the TIR domain would be unaffected by this 

mutation. Interestingly however, MYD88SchS lies on the proposed axis of dimerisation (figure 

5.19), suggesting that it may alter protein-protein interactions (Bovijn et al., 2013). 

 

 

Figure 5.19 MYD88SchS lies on the interaction plane between MYD88 moieties. Cancer-associated 

mutations modelled by Avbelj and colleagues map to hub locations (orange) or lie on the interaction plane 

(red). The MYD88SchS mutation is located on this axis as indicated. Arrows designate areas of interaction. 

Residues indicated in green are interfacing hubs for which mutations have not been documented thus far 

and the blue section denotes a region with reduced flexibility following MYD88 mutation. Adapted from 

Avbelj et al., 2014. 

 

Whilst any conclusions are tentative, MYD88SchS may increase the propensity of the protein to 

undergo oligomerisation in a similar manner to MYD88L265P, resulting in Myddosome formation 

and potentiation of NF-κB signalling. It is possible that the combination of both MYD88 

mutations increases this further. Additional investigation of the incidence of this mutation in 

SchS patients is warranted to determine its frequency. Assessment of NF-κB activation would 

provide insight as to its effect and may provide an explanation for the proliferation observed 

during in vitro differentiations.
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5.8 Discussion 

Multiple samples were obtained over the course of the project from patients that were 

subsequently diagnosed with an LPD that was not WM. This represented an opportunity not 

only to compare the response of WM cells to those from other B-cell lymphoproliferative 

disorders but they also provided additional controls for the way in which patient samples are 

stored versus that of healthy samples and the knock-on effect that results. Seven of the nine 

LPD samples were from patients that has been diagnosed with SMZL with an IgM paraprotein 

(table 5.1). These samples share both clinical features with WM and similar molecular pathology, 

with dysregulation of NF-κB a common feature of both neoplasms (Arcaini et al., 2016). The 

incidence of MYD88L265P within SMZL is infrequent (Varettoni et al., 2013) and thus enables 

comparison of highly related aetiologies on this differentiation of B-cells within the in vitro 

system. Of note however, was a suspected MYD88L265P mutation in one SMZL sample. 

In all LPD samples, a greater proportion of cells died following the initial isolation and the 

assessment of cell number three days later than occurred in healthy samples (figure 5.2). Similar 

levels of viability and a reduction in cell number were also observed in differentiations with BM 

samples from WM patients. This was a common feature of all clinical samples, indicating that 

the increased time the samples are stored as whole blood or bone marrow in sample collection 

tubes negatively impacts the viability of the cells although it does not appear to affect the 

phenotype. Whilst these additional samples enabled phenotypic comparison to the WM 

differentiations, they also confirmed that the decrease in cell numbers seen in the initial stages 

of WM differentiations can most likely be attributed to the treatment of the samples in general 

rather than an inherent feature of the WM B-cells.  

The results of stimulating multiple types of LPDs with CD40L + F(ab’)2 anti-IgG/M revealed an 

array of phenotypes which were unsurprisingly more highly variable compared to the group of 

WM samples (figure 5.1). The LPD B-cells displayed a range of abilities to generate plasma cells, 

in keeping with the variable capacity of the neoplasms to differentiate in vivo (Young et al., 2006; 

Ribera-Cortada et al., 2015; Swerdlow et al., 2016).  

Compared to the LPDs, WM B-cells were more effective at generating plasma cells in response 

to stimulation with CD40L + F(ab’)2 anti-IgG/M, upregulating CD38 more rapidly and generating 

a greater proportion of plasma cells. B-cells from several of the LPD samples demonstrated 

impaired differentiation, with one sample completely unable to differentiate, in accordance with 

the inability of these cells to differentiate in vivo (figure 5.1) (Van Huyen et al., 2000).  These 

results verify that B-cells possessing an inherent defect in their ability to differentiate do not 
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spontaneously acquire the capacity to do so under the in vitro conditions, despite being placed 

within an environment highly conducive to differentiation. Despite the high incidence of NF-κB 

dysregulation in SMZL cells, the examples here did not generate a CD38- CD138+ plasmablast-

like population, suggesting this unusual subset of cells is not a general feature of neoplastic B-

cells (figure 5.1).   

Initially, it appeared that the proliferation dynamics observed in WM cells was common to other 

LPD samples (figure 5.2). However, on further investigation, those LPD samples which most 

closely matched the cell death seen in the WM samples responded equally poorly to both CD40L 

and R848 stimulation (figures 5.3 and 5.4), unlike the WM cells which are able to proliferate and 

differentiate in response to CD40L but suffer impaired differentiation and survival subsequent 

to R848 stimulation. Whilst the prevalence of MYD88L265P within SMZL as a whole is low, it would 

be very interesting to compare the differentiation profiles of MYD88 mutated SMZL samples 

with WM B-cells. In the same context, one might hypothesise that MYD88WT WM samples would 

behave differently due to the absence of the mutation and this presents a very interesting line 

of enquiry.  

B-cells derived from patients with Schnitzler syndrome presented an excellent opportunity to 

examine the response of potentially MYD88L265P mutated B-cells in a non-WM background. 

Patients with SchS are at an increased risk of neoplastic transformation, with approximately 20% 

progressing to WM (de Koning, 2014). Each patient possessed the MYD88L265P mutation within 

either the lymphoid or myeloid lineages or both as demonstrated by Sanger sequencing and 

ASO-PCR (S. Savic, personal communication). Whilst the phenotype of the differentiating B-cells 

from two of the patients was relatively normal, the third patient generated a population of CD38- 

CD138+ cells, which seem to be a hallmark of WM within the in vitro system (figures 5.6 and 5.8). 

This patient possessed evidence of MGUS within the bone marrow and whilst this has not 

currently progressed, it is interesting to speculate that perhaps patient SchS 3 is at a higher risk 

of further neoplastic B-cell transformation to WM due to the irregularities observed in the 

phenotype during differentiation experiments. Whilst SchS and WM share several 

commonalities, the presence of a large fraction of CD38- CD138+ cells during a differentiation in 

one of the three SchS patients is particularly striking. The detection of MYD88L265P within B-cells 

collected during the differentiation presented here appears to confirm the relationship between 

this mutation and this unusual phenotype and suggests this patient may be at a particular risk 

of developing WM in the future (figure 5.10). 

It has been demonstrated in mouse models that the presence of MYD88L265P alone is insufficient 

to cause WM (Knittel et al., 2016). As demonstrated in this and previous chapters, the presence 

of MYD88L265P does not guarantee that B-cells will generate the alternate plasmablast-like 
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phenotype. MYD88L265P was confirmed in all samples with WM and two of the SchS samples and 

yet the appearance of this population during differentiations that reached at least day 20 was 

50% in both instances – 4/8 in WM and 1/2 in SchS. Thus, additional factors must contribute to 

the emergence of these distinctive cells. 

As with healthy cells, a proportion of SchS cells are able to respond rapidly to TLR stimulation 

alone, generating a small population of plasma cells by day 6. At this time point, the proportion 

of CD38- CD138+ cells outnumbers those with the conventional plasma cell phenotype. It would 

appear, therefore, that the CD38- CD138+ precursors are particularly TLR7 sensitive and able to 

initiate differentiation more quickly. The favouring of the CD38- CD138+ fraction in SchS cells 

following stimulation with R848 in the absence of BCR ligation by F(ab’)2 anti-IgG/M suggests 

that additional activation of the BCR signalling cascade may suppress the generation of this 

aberrant population when both the BCR and TLR7 are ligated concomitantly. It is possible that 

stimulation with CD40L without F(ab’)2 anti-IgG/M would generate a greater proportion of these 

cells but this has not been investigated. 

This effect may help to explain why the alternate plasmablast-like population does not emerge 

when WM B-cells are stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. It is possible that the 

WM cells that would normally constitute the precursors for the CD38- CD138+ alternate 

plasmablasts are particularly sensitive to TLR signalling. Thus, they are most profoundly affected 

by stimulation of TLR7, resulting in apoptosis either from over-activation or conversely a lack of 

pro-survival signalling. In addition to this, dual receptor engagement of TLR7 and the BCR 

dampens the emergence of this distinctive population and therefore it is absent when WM B-

cells are stimulated with R848.  

The proliferative response of healthy cells to stimulation with R848 was weaker than that which 

was observed following CD40L stimulation. In contrast, SchS B-cells appear to be 

hyperresponsive to TLR7 stimulation, with concomitant BCR and TLR7 stimulation resulting in 

enhanced proliferation compared to activation with CD40L (figure 5.11). This is intriguing, 

especially in the light of the profoundly impaired survival and differentiation of WM B-cells when 

they are exposed to this type of stimulation. SchS B-cells also demonstrated an improved 

proliferative response to TLR7 stimulation alone, although dual receptor ligation certainly has a 

synergistic effect on the proliferation of SchS cells (figure 5.14). 

The response of SchS B-cells appears to fit in well with the data generated by Lim et al., and 

Wang et al (Lim et al., 2013; Wang et al., 2014). A situation may be occurring in SchS B-cells 

whereby the tolerance to self-ligands is broken due to MYD88L265P and thus stimulation via the 

TLR/IL-1R superfamily increases the proliferation of the MYD88-mutated cell fraction and 
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induces the differentiation of this population, resulting in inflammation and increased levels of 

IgM paraprotein.  

The identification of a novel MYD88 mutation within SchS B-cells may also shed some light on 

the differential response of these cells in comparison to WM. The MYD88SchS mutation shares 

similarities with MYD88L265P, being located with the TIR domain and falling within the interaction 

plane (Bovijn et al., 2013; Avbelj et al., 2014). Whilst the possibility that the MYD88SchS mutation 

has no impact on oligomerisation and Myddosome formation remains, the results from these in 

vitro differentiations in combination with the literature regarding MYD88 protein structure do 

suggest a potential effect. The aetiology of Schnitzler syndrome remains largely unknown, thus 

investigation into the incidence of this mutation and characterisation of its effects are required 

as it may contribute to SchS pathology.   

Differentiations with samples from other LPDs that are not WM have established that these 

neoplastic B-cells behave differently to both healthy cells, as expected, but also exhibit a 

different profile to WM. In contrast, B-cells from a patient with Schnitzler syndrome 

demonstrated remarkable phenotypic similarities to WM cells, indicating that the MYD88L265P 

mutation is a factor contributing to the departure in phenotype from healthy controls observed 

for both WM and SchS. The differences in the proliferative response of SchS B-cells to WM B-

cells might represent the more simplistic mutational landscape of a pre-malignant condition 

compared to that of full-blown WM and the additional abnormalities that accompany neoplastic 

transformation. 
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Chapter 6 – Further analysis and visualisation of flow cytometry data 

6.1 viSNE analysis 

6.1.1 viSNE introduction 

A large quantity of flow cytometry data was generated throughout the course of the project to 

assess the phenotype of the differentiating cells at multiple time points. However, displaying an 

accurate representation of numerous data sets in a condensed format presented a challenge. 

To supplement previous analysis and to encompass the global differences between 

differentiations with WM-derived cells and differentiations with healthy cells, an algorithm 

called viSNE (visualisation of t-Distributed Stochastic Neighbour Embedding) was used in order 

to display the data and identify populations and trends that become apparent when multiple 

data sets are analysed simultaneously (Kotecha et al., 2010). An important aspect of viSNE 

analysis is that the algorithm considers all of the phenotypic markers that have been selected 

for use simultaneously and thus enables the relationships between populations of cells within 

complex data to be visually packaged into a biaxial plot. In order to perform this analysis, the 

cloud-based platform Cytobank was used (Kotecha et al., 2010).  

Hinton and Roweis initially developed a method for organising high dimensional data in a two-

dimensional space, with an aim to preserve the greatest extent of the structure of this complex, 

nonlinear data than is possible with principle component analysis (Hinton and Roweis, 2003). 

They called this technique stochastic neighbour embedding (SNE). Several years later, a 

modification of this algorithm was developed and published by van der Maaten and Hinton, 

improving the cost function - an estimate of how the model is performing - and was easier to 

optimise (Maaten and Hinton, 2008). This version used a Student-t distribution rather than a 

Gaussian distribution so it was designated t-SNE. 

Application of this algorithm to mass cytometry data was first described by Amir et al., 2013 

(Amir et al., 2013). In order to readily visualise their high dimensional single cell data, they 

developed viSNE (visualisation of t-Distributed Stochastic Neighbour Embedding). Subsequently, 

a variant of this algorithm based on the Barnes-Hut approximation was developed by Laurens 

van der Maaten, which enabled the analysis to be performed more rapidly whilst using less 

memory (Van Der Maaten, 2014). Cytobank uses this version of the algorithm, termed the 

Barnes-Hut implementation. 
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6.1.2 viSNE workflow 

Raw flow cytometry fcs files were concatenated using an fcs concatenation tool downloaded 

from cytobank.org. Initially, flow cytometry data was acquired on an LSRII 3-laser, but a year 

into the project this machine was retired and replaced with a CytoFLEX S flow cytometer. The 

settings parameters between the two machines are different as the CytoFLEX S is able to record 

over a much greater range. These differences preclude the concatenation of fcs files recorded 

on the two cytometers because the populations of cells occupy different positions on the axes. 

This resulted in some groups containing fewer samples than were able to be included in previous 

analysis which did not require this level of compatibility. Samples were concatenated based on 

their origin, the type of stimulation they received and the time point the phenotype was 

assessed, summarised in table 6.1. The number of concatenated samples that comprise each 

group are indicated. 

Table 6.1 Sample groups used in viSNE analysis.  

Time point Stimulation Sample Group 
  

Healthy WM SMZL Other LPDs SMZL + Other All LPDs 

Day 0 
 

n=11 n=12 n=7 n=2 n=9 n=21 

Day 6 CD40L n=11 n=8 n=7 n=2 n=9 n=17 

R848 n=6 n=9 n=7 n=2 n=9 n=18 

Day 13-15 CD40L n=11 n=6 n=6 n=2 n=8 n=14 

R848 n=7 n=6 n=6 n=2 n=8 n=14 

Day 20-22 CD40L n=8 n=4 n=3 n=2 n=5 n=19 

R848 n=4 - n=2 n=1* n=3 n=4** 

Day 28+ CD40L n=6 n=4 n=3 n=1* n=4 n=8 

R848 n=4 - - - - - 

*viSNE analysis was not performed when there was only one sample, but these were included within the 

all LPDs group. 

**This condition contains the same set of samples as SMZL + Other LPDs as no WM cells survive to this 

time point. 

 

The viSNE algorithm generates a random seed each time an analysis is performed which 

influences the initial point at which the plot is populated and thus the locations of the clusters 

that are generated. Due to the stochastic nature of the algorithm and the variable number of 
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events within each concatenated data file, pairwise analysis of multiple different data sets 

results in viSNE plots that look different each time. Therefore, two diverging analysis workflows 

were performed to facilitate global comparisons between all of the amalgamated samples and 

another to evaluate specific variations between two of the selected groups.  

In order to compare all of the data together, a viSNE analysis was performed on all 6 groups of 

concatenated data. Including all of these groups within one analysis enables plots to be 

generated where the clusters are located in the same positions in each case. This in turn enables 

differences to be more easily identified. In order to examine the relationship between the 

populations of cells generated in each group more closely, an additional step was performed 

whereby SPADE plots were generated from the initial viSNE results. The scheme for this analysis 

is illustrated in figure 6.1. 

Expression of each of the markers - CD19, CD20, CD38, CD138, and CD27 - are informative and 

thus will contribute to the separation of populations as calculated by the algorithm so all were 

included within the analysis.  

 

Figure 6.1 Scheme for viSNE and SPADE analysis. 



Chapter 6 - Results 

158 

viSNE plots each individual cell in a two-dimensional space based upon the level of expression 

of each marker enabling visualisation of complex data. The expression of each surface marker is 

presented on a rainbow scale, with dark blue indicating no expression and dark red indicating 

the highest expression. Each column represents a different marker, with an accompanying scale 

for each. Populations of cells expressing similar levels of each marker are clustered together. 

The progress of differentiation can therefore be tracked from B-cell to plasma cell via the colour 

change and overall shape on each subsequent plot. By concatenating the raw flow cytometry 

data for multiple differentiations, this analysis can provide an overview of these data sets an 

enable patterns to more easily be seen. 

6.1.3 Analysis of CD40L stimulated cells 

The viSNE plots for healthy differentiations are shown in figure 6.2. It should be noted that viSNE 

is normally used to cluster cells from multiple lineages, for example from PBMCs, whereas here 

it is being applied to differentiating B-cells only. This results in maps that do not appear quite 

like traditional viSNE maps such as those from Amir et al., with separate clearly defined clusters, 

but rather these bivariate plots display a gradual shift in marker expression as occurs during B-

cell differentiation (Amir et al., 2013). 

 The distribution of B-cells at day 0 illustrates how the algorithm separates the cells based upon 

varying expression of the markers assessed. The naïve B-cell fraction falls mostly within a large 

dark blue cluster distinguished on the CD27 plot. Using this location as a starting point, is can be 

observed that a proportion of these cells possess higher levels of CD38 expression than their 

counterparts and that this coincides with the highest levels of CD20 expression. Memory cells 

are identified within the CD27 plot by their increased expression of CD27 and are thus coloured 

as either green or yellow. They share high levels of CD20 but relatively lower CD38 expression. 

At day 6, the location of the cells within the space has shifted, as has the expression of the cell 

surface markers. The plasmablasts are located centrally, with increased expression of CD38 and 

CD27 and loss of CD20. As the cells become terminally differentiated plasma cells and acquire 

CD138, they converge at the very bottom of the plots.  

For healthy cells, this analysis highlights several things of note. The population of CD19 negative 

plasma cells that are sometimes generated (Halliley et al., 2015; Arumugakani et al., 2017) can 

be seen from days 13-15 onwards as a small cluster at the southern tip of the plots, most easily 

distinguished in the CD19 column. Despite the CD19 negativity of these cells, they possess high 

levels of CD38, CD138 and CD27. Interestingly, the algorithm continues to display a wide range 

of colours when the cells are clustered by expression of CD138 from day 21 onwards, indicating 
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a range of expression of this marker. This is unexpected because the cells present at these time 

points are almost exclusively plasma cells and the expression of CD138 appears largely invariant 

when this data is displayed as a traditional biaxial contour plot, so one would anticipate a 

relatively homogenous red tone akin to the CD38 clustering. This subtle difference that normally 

cannot be distinguished may delineate the short and long-lived plasma cells but requires further 

investigation.  
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Figure 6.2 viSNE plots of healthy CD40L-stimulated cells. B-cells were stimulated at day 0 with CD40L + F(ab’)2 anti-IgG/M. viSNE plots created from concatenated raw flow 

cytometry data where similar time points have been grouped together for clarity. Each column has been coloured using the marker indicated. A – Absence of CD38- CD138+ cells. 
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An equivalent summary of differentiating WM cells is depicted in figure 6.3. In this case, the 

plots depicting the B-cells at day 0 appear quite similar to the healthy plots, but thereafter they 

diverge substantially. These viSNE plots illustrate the heterogeneity of the response of WM cells 

compared to healthy B-cells by displaying them as a continuum across the space, rather than 

the more discrete location of the healthy cells within the lower left quadrant from day 13 

onwards. The lower efficiency of plasma cell generation by these cells is highlighted by the 

decreased proportion of cells located at the southern tip of the plots, which conversely are 

densely populated in the viSNE plots for healthy cells. The delay in the loss of CD20 for many of 

the WM cells can be seen in several red clusters that persist throughout the differentiation 

within the CD20 column – population A – as well as a more diffuse group present at the top 

right. The locations of these clusters demonstrate that there is a fraction of cells which are less 

responsive to CD40L stimulation and remain in a pre-plasmablast like stage – those in the top 

right – whilst the other CD20+ cells are more closely related to plasmablasts or plasma cells, 

despite their inability to downregulate this marker. 

The CD38- CD138+ population of plasmablast-like cells in WM differentiations can be identified 

as a cluster in the CD138 column from day 13 onwards on the left hand side of the plots and has 

been circled (B). At the corresponding location on the viSNE maps of healthy controls, cells falling 

within the boundaries of this cluster are almost completely absent. Interestingly, a very small 

population can be seen in the healthy plots at day 13 (figure 6.2, cluster A), but with a slightly 

different phenotype of CD20+, CD138low and a lower expression of CD38 than the other 

plasmablasts at this time point. However in this instance this cluster appears to represent a 

group of cells that have not upregulated as quickly as the rest of the population, as this 

population substantially diminishes between days 15-20 as the differentiation progresses and 

the remaining cells increase CD38 and CD138 expression in line with the recognised CD38+ 

CD138+ plasma cell phenotype. It is nevertheless intriguing that the WM CD38- CD138+ precursor 

may have a counterpart in healthy samples but they exhibit a divergent response to CD40L 

stimulation. 

 



 

 

1
6

2
 

 

Figure 6.3 viSNE plots of CD40L-stimulated WM differentiations. B-cells derived from WM patients were stimulated with CD40L + F(ab’)2 anti-IgG/M. Clusters of particular 

interest are circled . A – Persistent CD20hipopulation, B – CD38- CD138+ population.
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B-cells derived from the bone marrow of patients with SMZL were differentiated in order to 

determine if the phenotypes observed in WM cells were representative of B-cell neoplasms in 

general or if WM cells demonstrated a unique profile. A group of concatenated samples from 

SMZL differentiations were included in this analysis in order to further investigate the 

relatedness of WM cells to this neoplasm. The viSNE maps of SMZL B-cells are different to both 

healthy and WM B-cells as one might expect (figure 6.4). The most noticeable aspect of this 

difference is the absence of a cluster which, in healthy and WM B-cells, denotes CD19+ CD20+ 

CD27- naïve B-cells with low to medium expression of CD38 (figure 6.4, cluster A). CD38 has been 

found to be variably expressed in SMZL, with early investigations by Mollejo et al., and Wu et 

al., indicating the SMZL cells were negative for this marker, but more recent phenotypic analysis 

confirms CD38 expression in some patients (Mollejo et al., 1995; Wu et al., 1996; Algara et al., 

2002; Kost et al., 2008).  

The location of the SMZL cells within the viSNE plots from subsequent time points fall 

somewhere between the healthy and WM cells. In a similar manner to the WM cells, the SMZL 

cells form a sweep across the biaxial plots with cells that are unable to respond correctly to 

CD40L stimulation continuing to be present in the upper right quadrant even at the later time 

points. These cells express high levels of CD20, intermediate levels of CD38 and low levels of 

CD138, this in combination with their location, suggesting that they are quite similar to the 

healthy day 6 plasmablasts but that they are unable to proceed further with differentiation. The 

location that corresponds to the WM CD38+ CD138- population is completely devoid of cells, 

emphasising the highly distinct nature of this population to WM (figure 6.4, cluster B). The SMZL 

viSNE plots share a cluster of CD27low plasma cells with the healthy samples, but that cluster is 

much less populated within the WM plots. 

Another cluster that is more prominent in the SMZL plots is a group of persistent CD20- CD38+ 

plasmablasts located at the centre of the viSNE maps which have been circled with a dashed line 

on the day 30+ CD38 and CD138 plots (figure 6.4, cluster C). It appears that a fraction of SMZL 

B-cells are able to differentiate to this stage but suffer a defect that prevents them from 

progressing further. Plasmablasts occupying this location occur in the healthy and WM viSNE 

maps at day 6 and 13-15, but these populations subsequently diminish and are either able to 

complete differentiation or do not survive to the later time points, unlike the SMZL cells. 
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Figure 6.4 viSNE plots of CD40L-stimulated SMZL differentiations. B-cells derived from SMZL patients were stimulated with CD40L + F(ab’)2 anti-IgG/M. Clusters of particular 

interest are circled. A – Absence of CD19+ CD20+ CD27- CD38low cluster, B – Absence of CD38- CD138+ population., C – Persistent plasmablasts.
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A group comprising of concatenated data from all non-healthy samples was also created in order 

to visualise the profile in comparison to healthy controls and to determine whether the 

distinctive clusters observed in each individual LPD group are still present following 

amalgamation of the samples. This set of data includes WM, SMZL and samples from two other 

LPDs. The viSNE maps of this concatenated data is presented in figure 6.5. The proportion of B-

cells that are unable to successfully respond to CD40L stimulation is most evident in this merged 

data. The location of the healthy differentiating cells shifts completely from one side of the plots 

to the other as B-cells become plasma cells, but the in case of the LPD samples, a large fraction 

of cells remain in their initial position throughout the entire time course, retaining a B-cell 

phenotype. Compared to healthy cells, there is much less downregulation of CD19 by the LPD 

cells. 

Several clusters of CD20+ plasmablasts and plasma cells that were identified in the WM group 

remain prominent within this larger set of samples. In addition, the distinctive WM CD38- CD138+ 

fraction is not masked by the concatenation of multiple different LPDs together (figure 6.5, 

cluster A). A feature of SMZL B-cells is lost in this combined data – the lack of a CD38+ CD27- 

naïve B-cell fraction is evident within the SMZL group but due to the presence of these cells in 

the other LPDs, this distinction is now absent. This underscores that whilst a combinatorial LPD 

group provides a useful method of comparison to healthy cells, pairwise differences between 

groups should be evaluated in order to establish the full picture.  

Thus, following stimulation with CD40L + F(ab’)2 anti-IgG/M, B-cells derived from healthy cells 

clearly behave in a distinct manner to cells derived from patients with LPDs as evidenced by the 

viSNE plots. Moreover, B-cells from patients grouped by their LPD share the same characteristics 

within their respective groups but are different when compared to another LPD. 
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Figure 6.5 viSNE plots of CD40L-stimulated LPD cells. LPD B-cells were stimulated with CD40L + F(ab’)2 anti-IgG/M at day 0. Plots were created from concatenated data from 

multiple LPDs. Clusters of particular interest are circled. A – CD38- CD138+ plasmablast-like.
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6.1.4 Analysis of R848 stimulated cells 

The differentiation data was divided based on the stimulation that the cells received, enabling 

comparison between viSNE plots for each type of stimuli. viSNE plots for healthy cells stimulated 

with 1μg/ml R848 + F(ab’)2 anti-IgG/M are displayed in figure 6.6. By day 6, B-cells stimulated 

with R848 have progressed further though the differentiation process, with a greater proportion 

of cells having downregulated CD20, more extensive CD38 expression, paired with increased 

CD27 levels and a greater proportion of cells expressing CD138 than occurs following stimulation 

with CD40L. This results in the upper right quadrant of the plots being less populated in figure 

6.6 compared to figure 6.2. The spatial arrangement of the populated clusters is very similar 

between the two conditions. A cluster of CD27low plasmablasts is evident in the viSNE maps for 

both types of stimuli.  

From day 20 onwards, the overall arrangement of clusters is virtually identical, and the 

expression of cell surface markers is very similar between the two types of stimulation. Whilst 

both conditions generate populations that consists almost exclusively of plasma cells by day 20, 

a delay in differentiation at the latter time points can be seen in the viSNE plots that is not 

observed from examining the biaxial flow data. In fact, the day 20-22 R848 plots look most 

similar to day 30+ in CD40L, suggesting that the difference between the two types of stimuli is 

present for longer than initially thought. 

CD19- plasma cells are generated earlier and in greater quantities when the cells were 

stimulated with R848. The location of the R848-plasma cells is more compact at the bottom of 

the biaxial plots compared to CD40L-plasma cells which form a slight sweep across a larger area. 

This indicates that plasma cells generated from R848 stimulation are more closely related.  

The location of the WM CD38- CD138+ fraction has been circled to demonstrate the absence of 

healthy cells falling within this boundary (figure 6.6, cluster A). 
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Figure 6.6 viSNE plots of R848-stimulated healthy differentiations. Cells were stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M.  Clusters of interest are circled. A – Absence of 

CD38- CD138+ population.
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Data from chapter 4 established that WM B-cells die following stimulation with 1μg/ml R848 + 

F(ab’)2 anti-IgG/M (figure 4.12). After day 13-15 of these differentiations, there were too few 

cells to generate meaningful viSNE maps so only data up to day 13-15 is displayed (figure 6.7). 

As one might expect, the spatial arrangement of WM clusters at day 6 for both types of stimuli 

share similarities and appear more closely related to one another than if they are compared to 

healthy cells stimulated with R848. However, there are several differences of note between the 

viSNE plots of WM cells stimulated with R848 compared to those that received CD40L 

stimulation. The R848-stimulated WM cells are much less efficient at generating plasma cells 

than their CD40L-stimulated counterparts and this is illustrated here by the lower density of cells 

at the southern point of the plots. The two clusters of CD20+ plasmablasts that are generated at 

day 6 subsequent to CD40L stimulation (figure 6.7, cluster A) are almost completely absent at 

this time point when the WM cells are stimulated with R848 and these diminish further from 

day 6 to day 13-15. 

A particularly prominent feature of the R848 plots at day 13-15 is the presence of a large portion 

of cells located on the on the lower right hand side of the bivariate plots which are particularly 

recalcitrant to differentiation. This cluster is much more conspicuous in the R848-stimulated 

cells but this population is also evident in the differentiations with CD40L. There is very little 

phenotypic progression of the WM cells cultured with R848 between day 6 and days 13-15, in 

fact the population becomes more skewed towards a greater proportion of cells that have been 

unable to respond, whereas those from the CD40L condition have begun to migrate to the upper 

left of the plots as they acquire a more differentiated phenotype. Whilst the CD40L plots consist 

of a smooth continuum of populations, there appears to be a divide in R848 plots, almost directly 

down the middle, separating the population of cells that are unable to differentiate and those 

which have been able to respond and have generated a small population of plasma cells. Since 

an intermediate population is not present, this feature may denote the proportion of non-

neoplastic cells within the culture, as they display a phenotype which is much more similar to 

that of the healthy cells following stimulation with R848. There are clearly few cells as the 

differentiation progresses, but there is no evidence of the CD38- CD138+ population at day 13-

15 (figure 6.7, cluster B). 
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Figure 6.7 viSNE plots of R848-stimulated WM differentiations. Cells were stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M. Clusters of interest are circled. A – Absence of 

persistent CD20hi fraction observed in differentiations with WM samples. B – Absence of CD38- CD138+ population.
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Figure 6.8 viSNE plots of R848-stimulated SMZL differentiations. B-cells derived from SMZL patients were stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M.  
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Figure 6.8 displays the viSNE plots generated from SMZL samples stimulated with R848. A 

decrease in the number of SMZL cells surviving subsequent to R848 stimulation compared with 

CD40L is evident, but there were sufficient numbers to produce an informative viSNE plot for 

day 20-22. Interestingly, whilst cell survival is considerably better in this group compared to the 

WM samples, plasma cell differentiation is more substantially impaired.  

In a similar manner to SMZL B-cells stimulated with CD40L, the SMZL cells activated with R848 

generate a significant proportion of plasmablasts that persist to day 20-22 without progressing 

any further. The location of the clusters at the 13-15 and day 20-22 time points are different, 

favouring the plasmablast fraction at the later time point rather than the plasma cell fraction as 

would be expected. This may be due to the data being sampled from a pool of 2 at day 20-22 

rather than a pool of 6 for the previous plots and thus a skewing of the populations towards a 

sample with high levels of plasmablasts at this time point. However, this does highlight that a 

clear subset of SMZL cells are able to differentiate into plasmablasts and survive long-term but 

are incapable of terminal differentiation.    

The proportion of cells that appear to be incapable of differentiating is an obvious commonality 

shared between both the SMZL and WM groups that does not occur in healthy differentiating 

cells. Whilst this fraction increases considerably in WM cells following R848 stimulation 

compared with CD40L stimulation, it appears that the proportion of unresponsive cells in the 

SMZL samples is similar across both types of stimulation. 

Data from all LPD samples stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M were combined in 

figure 6.9 as for the CD40L stimulation. Since the WM cells died before day 20 of the 

differentiation, only this first three time points containing amalgamated data from all groups are 

shown. The large sweep of cells makes it clear that there is certainly a general impairment to 

differentiation following R848 stimulation compared to healthy cells. It is evident from this data 

that the characteristic WM CD38- CD138+ fraction is not generated by any of the samples here 

and is limited to WM cells stimulated with CD40L.  
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Figure 6.9 viSNE plots of R848-stimulated LPD B-cells. Cells were stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M. Plots were created from concatenated data from multiple LPDs 

and contain WM, SMZL and samples from two other LPDs.  
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6.2 SPADE on viSNE  

6.2.1 SPADE introduction 

The previous analysis enabled global comparisons to be made, but to further interrogate the 

data and examine the relationships between the different populations of cells generated during 

the differentiations, an algorithm called SPADE was used as an automated method to categorise 

groups in order to generate clusters that correspond to the viSNE plots shown previously. SPADE 

(spanning-tree progression analysis of density-normalized events) is a clustering algorithm that 

enables visualisation of populations within multidimensional flow cytometry data by 

representing them within a tree (Qiu et al., 2011). The location of the clusters within the plot 

cannot be used to infer relatedness, but rather this can be determined by the connections 

between the different clusters, termed edges. The fewer the number of edges from one cluster 

to another, the more similar they are. 

Populations of cells are denoted as clusters or nodes of differing size depending on the number 

of cells they represent and each node is linked to the other most closely related nodes by one 

or more edges. The colour of any given node illustrates the expression of a marker by that 

population of cells. In this case, as with the viSNE analysis, blue represents low or no expression 

and red represents the highest expression. The SPADE algorithm, like viSNE, is unbiased and thus 

allows identification of populations in an objective manner. 

A small section of a SPADE tree is depicted in figure 6.10, demonstrating how populations can 

be discriminated, in this case the memory and naïve B-cell fraction by using CD27 expression.  
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Figure 6.10 Section of a SPADE plot containing the naïve and memory B-cell fractions. The tree was 

constructed from concatenated flow data for day 0 B-cells isolated from healthy donors. Cells have been 

clustered using the marker indicated. 

 

Since SPADE plots only display the expression of one marker at a time, consolidating clusters 

together based on a shared phenotype facilitates comparison between plots. This is not 

performed by the algorithm, rather they must be established by whomever is analysing the 

output. For the data presented here, several groups were initially determined based on 

populations of cells which matched the recognised phenotype for each stage of differentiation 

– B-cells (both the memory and naïve fraction), plasmablasts and plasma cells – by their 

expression of CD19, CD20, CD27, CD38 and CD138. Labelling of the nodes was performed first 

for the concatenated healthy samples so any deviations from this could be identified in the 

patient samples. Subsequently, collections of related nodes that did not fall within the pre-

established groups but that shared the same phenotype as each other were identified and 

named appropriately depending on their distinguishing features.  

The temporal and spatial movement of B-cell populations during a healthy differentiation is 

illustrated in the selection of SPADE plots in figure 6.11. CD38 was chosen to colour these plots 

as the expression of this marker increases over the course of the differentiation. 



 

 

1
7

6
 

 

Figure 6.11 SPADE plots depicting changes in the B-cell population during an in vitro differentiation. B-cells isolated from healthy donors were stimulated with CD40L and 

F(ab’)2 anti-IgG/M. Plots were constructed from concatenated flow data at each time point indicated. Expression intensity is indicated by colour – blue to red = low to high. 
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At day 0, the only populated branches are those that contain the memory and naïve B-cell 

fractions and a branch containing B-cells that express higher levels of CD38 than the rest of the 

population. By day 6, the number of cells within the B-cell nodes has depleted as the cells have 

become plasmablasts.  Consequently, most of the population of cells now lie within a section 

that has been designated early plasmablasts and the upregulation of CD38 expression is 

demonstrated by the change of colour from green to yellow or orange. From day 13 onwards, 

the majority of the cells have become plasma cells and have shifted accordingly, although some 

plasmablasts persist, which have been termed late plasmablasts. 

Using this method, the presence of unusual populations can be confirmed in a non-biased 

manner. To demonstrate this, SPADE analysis was performed using only the samples from the 

healthy group. A population of CD19- plasma cells that sometimes occurs at the late stages of an 

in vitro differentiation are clearly defined by their location at the tip of a branch of the plots 

shown in figure 6.12.  

 

 

Figure 6.12 Section of a SPADE plot illustrating the phenotype and separation of the CD19- plasma cells 

from the CD19+ plasma cell fraction. The tree was constructed from concatenated flow data for day 30+ 

B-cells isolated from healthy donors stimulated with CD40L and F(ab’)2 anti-IgG/M. Cells have been 

clustered using the marker indicated. The intensity of expression is indicated by colour – blue = low/no 

expression, red = high expression.
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6.2.2 Comparison of CD40L and R848 stimulations in healthy cells 

The phenotype of healthy differentiating cells following stimulation with either CD40L + F(ab’)2 

anti-IgG/M or 1μg/ml R848 + F(ab’)2 anti-IgG/M are comparable to each other when compared 

on biaxial flow plots. SPADE analysis provides additional insight as to the relationship between 

the populations generated by both types of stimuli. 

The similarity in the phenotypes of healthy cells stimulated with either CD40L or R848 is 

demonstrated in figure 6.13. However, visualisation of the data in this manner enables some 

differences to be distinguished that are not normally discernible by analysing regular flow 

cytometry contour plots. The greatest divergence between the plots occurs at day 6 of the 

differentiation, as would be expected by the differences observed from the raw data. B-cells 

stimulated with CD40L + F(ab’)2 anti-IgG/M generated populations that are spread across 

multiple branches within the early plasmablast segment of the tree, whereas those stimulated 

with R848 are located within only a few edges of one another and are thus more closely related. 

This is most interesting as it appears to reflect the findings that certain subsets of B-cells are 

more responsive to TLR stimulation, hence the more homogeneous location of the populations 

within the tree whilst activation with CD40L elicits a response from a broader proportion of the 

cells and thus there are a greater variety of plasmablasts (Bernasconi et al., 2003; Capolunghi et 

al., 2008; Simchoni and Cunningham-Rundles, 2015). 

The increased rapidity of the B-cell response to R848 + F(ab’)2 anti-IgG/M stimulation can also 

be seen at day 6, where the nodes within the plasma cell section have begun to be populated 

by cells in the R848 condition but not yet by those stimulated with CD40L. Thereafter, the 

distribution of the populations across the plasma cell nodes is very similar between both types 

of stimulation, but with a greater proportion of CD138++ plasma cells generated by stimulation 

with R848 at day 20. 
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Figure 6.13 SPADE plots depicting changes in the B-cell population during an in vitro differentiation. B-

cells were isolated from healthy donors and stimulated with CD40L or 1μg/ml R848 and F(ab’)2 anti-IgG/M. 

Plots are coloured according to CD38 expression.
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6.2.3 Differences between healthy and WM differentiations 

Figure 6.14 depicts SPADE plots constructed from WM concatenated flow data at day 13 of 

differentiation, with the intensity of expression of CD38 and CD138 indicated. The equivalent 

plots of concatenated healthy cells at this time point is shown on the left for comparison. In the 

upper healthy SPADE tree, all nodes are orange or red, denoting high levels of CD38 in all cells 

and the lower tree illustrates the separation of the plasmablasts and plasma cells by CD138 

expression. However, in the CD38 WM tree, a distinct collection of green nodes can be seen at 

the tip of the top leftmost branches, denoting a population that is completely absent in the 

healthy data. These CD38 low cells have a comparable level of CD138 expression to the WM cells 

that fall within the “classic” plasma cell group delineated by the healthy cells and are thus the 

peculiar CD38- CD138+ fraction. The WM cells in general exhibit lower levels of CD38 and CD138 

expression than their healthy counterparts. The most closely related healthy cells to these CD38- 

CD138+ cells lie further up the branch and are located within the plasmablast group, suggesting 

that the CD38- CD138+ cells are more similar to healthy plasmablasts than plasma cells.  
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Figure 6.14 SPADE plots depicting the CD38- CD138+ WM population and spatial differences between heathy cells and WM cells at day 13. The cells in each case were stimulated 

with CD40L and F(ab’)2 anti-IgG/M at day 0. Plots are coloured according to the markers indicated.  
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The failure of WM cells to respond to TLR7 stimulation was completely unexpected. A 

comparison of healthy and WM cells at day 13 of the differentiation following stimulation with 

R848 + F(ab’)2 anti-IgG/M is shown in figure 6.15. Four markers are shown to demonstrate the 

lack of differentiation in the WM cells. Virtually all nodes in the WM SPADE plots lie on the right 

hand side, which is normally only populated at day 0 by undifferentiated B-cells. In contrast, 

almost all of the healthy cells have become plasma cells at this time point and shifted to the 

bottom left of the trees. The phenotype across the spread of WM nodes is very similar, the cells 

have retained CD20 expression and failed to increase the expression of CD38, CD138 and CD27. 

Whilst the memory and naïve B-cells from healthy donors are all located within the designated 

sections, there is a large group of WM specific B-cells which are closely related, but clearly 

divergent, illustrating a difference that was not visible from the raw flow data. The most closely 

related healthy counterpart to WM cells has been postulated to be memory B-cells. Whilst 

expression of CD27 is lower in the WM cells than was expected, it is intriguing that there are 

multiple populated nodes within the memory B-cell portion at this time point whilst there are 

no cells within the naïve group.  

These analyses confirm that there is considerable divergence in the way WM cells differentiate 

in response to CD40L stimulation when compared to healthy controls. They concur with initial 

results extrapolated from individual flow data and make it considerably easier to visualise the 

changes across these data sets during differentiations. The fact that analysis via viSNE and SPADE 

highlight unusual populations such the CD38- CD138+ WM population and the CD19- plasma cells 

is very encouraging. 
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Figure 6.15 SPADE plots comparing populations from WM or healthy cells at day 13 of in vitro 

differentiation. The cells were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Plots are coloured 

according to the markers indicated.
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6.2.4 Comparison of SMZL differentiations to healthy and WM 

The viSNE maps for day 0 B-cells from each group were more similar than expected, however 

SPADE reveals more detail regarding the relationships between the different populations of 

cells. A section of the SPADE plots are presented in figure 6.16, with the intensity of expression 

for the markers CD27 and CD38 shown. Each group possesses a unique spread of nodes across 

the trees.  The healthy cells are located on three branches, but the populated nodes are 

clustered tightly together, implying that within these clusters, the cell are homogenous and 

highly related. The distribution of populated nodes within the SMZL and WM samples are 

distinct from both the healthy group and from each other. The SMZL B-cells are less homogenous 

than the healthy cells, and the overlap between the most populous nodes with the healthy cells 

is quite low. A large proportion of the SMZL cells lie at the intersection between the naïve and 

memory B-cells, distinguishing them from the healthy and WM groups. The WM plot possesses 

the most diverse set of cells, with populated nodes across many of the branches. Some of the 

cells fall within the B-cell fractions defined by the healthy controls but a large proportion of naïve 

cells lie within the top two branches which are only populated by B-cells from the LPDs and were 

defined thus. The proportion of neoplastic cells within the WM samples varied more highly than 

in the SMZL group and this may contribute to the range of populations observed here. 

The viSNE plots demonstrated that SMZL group lacked a cluster of CD38+ B-cells that was present 

in both the WM and healthy groups. This can been seen here, with much lower expression of 

CD38 in the SMZL fraction compared to both the WM and healthy cells. 
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Figure 6.16 SPADE plots comparing B-cell populations from healthy, SMZL or WM cells at day 0 of in vitro differentiation.
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6.2.5 Differentiations WM and SMZL B-cells generate distinct populations 

Differences in the viSNE maps for both WM and SMZL cells are apparent and SPADE enables the 

relatedness of the cells to be interrogated (figure 6.17). At day 6, virtually all of the WM cells are 

located in a highly related branch which has been termed WM CD40L specific cells due to this 

extreme aggregation. In contrast, the SMZL cells are more spread across the plot. There is some 

overlap between the SMZL cells that fall within the WM CD40L group and a small proportion of 

WM cells that lie within the SMZL CD20 retaining group. These clusters are highly related and 

are not populated in the SPADE trees for healthy cells, suggesting that the dysregulation to the 

plasma cell program in these cells, whilst caused by alternate mechanisms, results in 

phenotypically related populations of transitional pre-plasmablast cells. The SMZL B-cells have 

upregulated CD38 more rapidly in a proportion of the total population than the WM cells. These 

SMZL plasmablasts are more closely related to the late plasmablasts which emerge in healthy 

differentiations at day 13 than the clusters B-cells or early plasmablasts but are distinct from the 

location of the healthy cells. 

By day 13, the SMZL population is split between a large fraction of plasma cells and two smaller 

fractions – CD20 retaining cells that are unable to progress further and a fraction of cells which 

overlap with the early plasmablast segment. The WM cells have also shifted so they broadly fall 

within the defined plasma cell section, but favour the lower fork, with lower levels of CD38 and 

CD138 than the SMZL plasma cells. The SMZL differentiation does not generate any CD38- 

CD138+ cells and this branch is bare.  

Interestingly, at the final time point, the plasma cell proportion of the SMZL population has 

diminished and a population of cells with a plasmablast phenotype predominate. A similar effect 

was observed in the viSNE plots for SMZL cells stimulated with R848 but there is no obvious 

change in the CD40L viSNE. This result may be as a consequence of fewer samples being 

amalgamated at the later time points (n=6 at day 13 and n=3 at day 20) and a preferential skew 

away from the plasma cells or may reflect the inability of these cells to produce long-lived 

plasma cells and thus the population generated at day 13 have not survived. The SMZL samples 

appear to generate a population of plasma cells but WM cells generate a greater proportion of 

long-lived plasma cells. 
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Figure 6.17 SPADE plots comparing B-cell differentiation between SMZL and WM cells. B-cells were 

isolated from SMZL or WM bone marrow and stimulated with CD40L and F(ab’)2 anti-IgG/M. Plots are 

coloured according to CD38 expression.   
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The differential responses of B-cells from both of these LPDs is at its most apparent when SPADE 

plots are compared for B-cells subsequent to stimulation with R848 (figure 6.18). A large 

proportion of the WM cells are completely unable to respond and fail to initiate plasma cell 

differentiation. Some cells, do however respond, populating the nodes within the early 

plasmablast and late plasmablast sections. Between day 0 and 6, the cells within the naïve 

portion of the tree are lost, indicating that it is potentially these cells that are the ones that 

retain the ability to respond and become plasmablasts. These naïve B-cells may comprise the 

non-neoplastic fraction of cells, explaining their capability of response to TLR7 stimulation. This 

also supports evidence that WM cells are most closely related to healthy memory cells (Sahota 

et al., 2009; García-Sanz et al., 2016).  Additionally, the surviving cells at day 13 are enriched for 

those falling within the memory fraction, suggesting that they have a survival advantage to the 

rest of the population. 

SMZL cells, on the other hand, do respond at least partially to R848 stimulation. Almost all the 

B-cell nodes become depopulated between day 0 and 6, implying that most of the SMZL cells 

are able to initiate some form of differentiation program in response to the stimuli and those 

that do not are unable to survive. The populations of SMZL cells at day 6 of the differentiation 

overlap considerably with the healthy cells at this time point, although there is a prevalence of 

SMZL plasmablasts that are much less prominent in the healthy control group. The difference 

between the day 6 and day 13 SPADE trees is very noticeable, with the cells appearing to have 

reverted to a less differentiated state between these two time points albeit with a small fraction 

of cells that are potentially non neoplastic progressing to the plasma cell stage. There was only 

one fewer sample in the day 13 concatenated data (n=6) than the day 6 data (n=7) so skewing 

of the results by a predominating sample is unlikely. In the same manner as when the cells were 

stimulated with CD40L, the SMZL plasmablast fraction is lost after day 6 suggesting that there is 

a block in the differentiation program of these cells and that they are unable to survive.  The 

SPADE plot for the day 20 SMZL population generated following activation with R848 is very 

similar when compared with the equivalent plot for the CD40L stimulated cells. The surviving 

cells are related to healthy early plasmablasts but are distinct from the healthy populations.  
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Figure 6.18 SPADE plots comparing B-cell differentiation between SMZL and WM cells. B-cells were 

isolated from SMZL or WM bone marrow and stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M. Plots are 

coloured according to CD38 expression. 
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6.2.6 Overview of healthy cells vs all LPDs 

The responses of all of the LPD samples to the two types of stimulation at day 13 of the 

differentiation in comparison to healthy cells are summarised in figure 6.19. Whilst differences 

are observed in the healthy group at day 6 of the differentiation, the final result following either 

stimulation is almost identical from day 13 onwards. The overlap of the populated nodes 

between the healthy cells with either stimulation is extensive, this is in contrast to the LPDs, 

which diverge not only from the healthy plots but also substantially differ between the different 

stimulations.  

The SPADE plots for the LPD cells in the CD40L condition are more similar to their healthy 

counterparts than the R848 plots. Whilst LPD B-cells do generate plasmablasts and plasma cells 

after CD40L stimulation that correspond to the healthy populations, a considerable proportion 

of LPD cells diverge from this.  The unusual populations of cells generated by the dysregulation 

of B-cell differentiation in these cells can be identified as discrete groups of nodes which 

separate WM and SMZL cells from both healthy cells and each other.  

The profound inability of WM cells to respond correctly to TLR7 stimulation predominates in the 

R848 plots, with the SMZL plasmablasts generated earlier in the time course unable to survive 

to this time point.  
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Figure 6.19 SPADE plots comparing B-cell differentiation between healthy and LPDs. Plots depict cells at 

day 13 of differentiation and are coloured according to the expression of the markers indicated.
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6.3 Discussion 

These analyses provide additional insight into the differentiation of healthy B-cell and B-cells 

derived from patients with LPDs. Performing viSNE on groups of concatenated raw flow 

cytometry data enable large numbers of samples to be compared simultaneously without loss 

of high dimensional data (table 6.1 and figure 6.1). The data represented here depict a slightly 

unconventional use of viSNE as the samples include only B-cells. This analysis has limitations, 

particularly with regards to clustering non-discrete populations such as this, but has still proven 

to be highly informative. A similar comparison with a more extensive panel would be very 

interesting - inclusion of additional cell surface markers commonly used in diagnostic flow 

cytometry would enable the algorithms to more easily distinguish neoplastic cells from their 

healthy counterparts and improve the clustering. A comparison with a greater variety of LPDs 

and a greater number of samples within the groups would likely result in clearer distinctions 

between the different groups. However, the detection of unusual phenotypic fractions such as 

the WM CD38- CD138+ cells in an unsupervised, unbiased manner independently confirms their 

existence within the larger population as a whole and supports the conclusions drawn from the 

raw data.  

A feature common to both types of stimulation are a subset of cells that are unable to respond 

to stimulation and retain the B-cell phenotype throughout the course of the differentiation, 

suggesting that these cells are completely refractory to both T-dependent and T-independent 

stimulation (figure 6.18). However, this fraction of cells is considerably smaller in the SMZL group 

than in the WM group and the overall proportion that remain unresponsive is roughly equivalent 

in both the CD40L and R848 conditions (figures 6.17 and 6.18). In the case of the WM cells, the 

unresponsive fraction comprises a much greater proportion of the total population when the 

cells have been stimulated with R848, suggesting that some cells are selectively responsive and 

able to correctly initiate differentiation following CD40L stimulation but are unable to do so 

when they are given R848 stimulation (figure 6.14 and 6.15). This itself is surprising, given the 

ubiquitous reliance of these cells on the constitutive activation of the NF-κB signalling pathway 

via MYD88L265P, but perhaps ties in with the observed cell death in WM cells following R848 

stimulation.     

Data from the group of concatenated SMZL cells demonstrates that they are able to generate 

plasma cells but their capacity to do so is considerably less than WM cells (figure 6.17). This is 

consistent with what occurs in vivo, where differentiation among SMZL cells is limited but does 

occur (Mollejo et al., 1995; Hammer et al., 1996; Van Huyen et al., 2000; Dufresne et al., 2010). 
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These results also identify a block in differentiation for a large proportion of these cells at the 

plasmablast or pre-plasmablast stage.  

The results inferred from the phenotypes of individual samples in previous chapters were 

supported by analysis via viSNE and SPADE. Both methods demonstrate differences in the flow 

cytometry data between healthy cells and WM cells throughout the differentiation. They also 

provide further insight into the data such has the potential for a similar population of alternate 

plasmablast-like cells to exist in healthy samples (figure 6.2). It is interesting to speculate that 

an equivalent precursor of the CD38- CD138+ cells may occur in healthy samples due to the 

results from viSNE analysis. For these individuals, this population of plasmablasts appear to have 

a slightly delayed response to stimulation compared to the rest of the population, rather than 

an inability to upregulate CD38 and generate phenotypically normal plasma cells. However, 

when using SPADE on viSNE, the CD38- CD138+ cells appear more closely equivalent to healthy 

plasma cells (figure 6.14). It is thus currently unclear as to whether this population of cells 

represents a true intermediate stage in plasma cell differentiation or is actually the “end point” 

and denotes a subset of phenotypically distinct plasma cells. 

The results presented here emphasise the uniqueness of the B-cell differentiation profile for 

each group presented here. There is not only a “healthy” and “disease” set of phenotypes and 

relationships but rather each group possesses characteristics that these unbiased and 

unsupervised algorithms identify even when a group contains a mixture of different LPDs. 
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Chapter 7 – Investigation of the WM B-cell response to TLR7 ligation 

7.1 Introduction 

In order to determine the reason for the unexpected response of WM cells to R848 stimulation, 

several different avenues were explored. WM cells most closely resemble the memory B-cell 

fraction and thus far, differentiations were performed with total healthy B-cells. It is possible 

that a response similar to that of the WM cells may occur in memory cells derived from healthy 

donors. Therefore, memory and naïve B-cell fractions were isolated from the PB of healthy 

donors and stimulated with R848. The reaction of each subset was examined to determine if 

there is a difference in phenotype and cell number between the two and whether the memory 

subset shared any characteristics with the WM response to this type of stimulation. 

Subsequently, the response of WM and ABC DLBCL cell lines possessing the MYD88L265P mutation 

to TLR agonists was assessed in order to determine whether simply the presence of MYD88L265P 

confers susceptibility to apoptosis when the cells are cultured with these compounds. The 

impact of the addition of a combination of TLR agonists and F(ab’)2 anti-IgG/M to WM cell lines 

was also investigated to more closely replicate the stimuli used in the in vitro culture system.  

Another potential explanation for the response of WM cells is that stimulation with R848 may 

trigger the secretion of a factor that is detrimental to cell survival. To determine if this is the 

case, supernatant was taken from differentiations performed with WM or healthy cells, 

stimulated either with R848 + F(ab’)2 anti-IgG/M or CD40L + F(ab’)2 anti-IgG/M and added to 

subsequent differentiations with healthy or neoplastic B-cells which were monitored for cell 

number, viability and phenotypic changes.  

The humoral immune response is subject to control by activation-induced cell death; a process 

by which B-cells undergo apoptosis following ligation of the Fas receptor by its ligand FasL, thus 

constraining a potentially damaging response. Therefore, the presence of Fas and FasL on 

differentiating cells was investigated to assess whether WM cells stimulated with R848 

upregulated their expression to a greater extent than control cells. In addition to this, the 

expression of endosomal TLR receptors on B-cells isolated from the bone marrow of patients 

with WM and other LPDs was evaluated and compared to that of healthy cells derived from the 

peripheral blood or bone marrow.   

The possibility that the effect of R848 on phenotypic response and cell number could be 

ameliorated in WM cells with the introduction of CD40L stimulation in addition to R848 + F(ab’)2 
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anti-IgG/M was investigated. Samples of WM and healthy cells taken at day 6 of differentiation 

were also analysed by RNA-sequencing to identify differentially expressed genes between the 

both groups and the two alternate types of stimulation. 

7.2 The response of memory and naïve B-cell subsets to TLR 

stimulation 

Since WM cells more closely resemble memory B-cells than naïve B-cells (Sahota et al., 2002; 

Kriangkum et al., 2004b), confirmation that memory B-cells are able to respond to TLR7 

stimulation correctly within the in vitro system was necessary in order to determine that the 

observations in WM cells do not arise from a general impairment in memory cells to differentiate 

in response to R848 stimulation. Therefore, B-cells were isolated from the peripheral blood of 

two healthy donors and separated into naïve and memory fractions. These two subsets were 

concurrently stimulated with 1μg/ml R848 + F(ab’)2 anti-IgG/M.  

The fold change in cell number recorded over the course of the culture is shown in figure 7.1. At 

day 3, the naïve fraction from both donors did not increase in number, but in contrast, the 

memory cells had doubled in number. By day 6, in both instances, the memory fraction had 

proliferated to a much greater extent than the naïve fraction. Whilst the naïve cells from donor 

1 expanded in number, the corresponding subset from donor 2 did not exhibit any increase in 

number. Between day 6 and 13, cell numbers decreased in all conditions, but more cells 

persisted in the memory fractions for both donors. There were substantially fewer naïve cells by 

day 20 of the differentiation and as such there were not enough to generate meaningful 

phenotypic data at the later time points. In contrast, the memory fractions produced a greater 

number of plasma cells that persisted until the culture was terminated. 
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Figure 7.1 Memory B-cells demonstrate enhanced proliferation and survival in response to TLR7 

stimulation. Naïve and memory B-cells derived from the peripheral blood of healthy donors (isolation 

protocol C) were stimulated with 1μg/ml R848 and F(ab’)2 anti-IgG/M. Cells were washed at day 3. Cell 

number at each time point was determined by manual counts between days 0-6 and then by flow 

cytometry thereafter. The cell number at each point was normalised to the number of “input” cells for 

that specific donor obtained at day 0. 

 

Whilst the proliferative response and total number of cells generated by each of the two B-cell 

subsets was very different, the phenotype at day 6 is remarkably consistent (figure 7.2). The 

parity continued throughout the differentiation, with no significant difference in phenotype 

between naïve and memory cells at any of the time points examined. The only minor difference 

between the two groups is that the memory fraction from both donors had a slightly greater 

spread of CD38 expression from day 13 onwards, compared to a more consistent expression 

within the naïve subset. Both fractions generated a high proportion of plasma cells by day 13, 

despite the limited proliferative response of the naïve cells.  

Overall, the memory fraction from both donors was better able to respond to R848, with a 

greater number of long-lived plasma cells generated than from the naïve subset. This is 

consistent with the published literature, whereby memory B-cells have been shown to 

proliferate preferentially in response to TLR agonism (Simchoni and Cunningham-Rundles, 

2015). These results demonstrate that the aberrant response of WM cells to activation with 

R848 + F(ab’)2 anti-IgG/M in the in vitro system is not due to an inherent defect in the response 

of memory cell compartment to this type of stimuli. The strength of the memory response to 

TLR7 ligation makes the deficient reaction of WM cells perhaps even more surprising.
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Figure 7.2 The phenotype of memory and naïve B-cell subsets in response to TLR7 stimulation. A representative phenotype from one donor is shown (n =2). B-cells were derived 

from the peripheral blood of healthy donors and stimulated with 1µg/ml R848 + F(ab’)2 anti-IgG/M. The phenotype was assessed by flow cytometry for surface markers at the 

indicated time points. Percentages are indicated within individual quadrants. 
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7.3 Dose response of MYD88L265P cell lines to TLR agonists 

The MYD88L265P mutation appears to be tightly linked with the aberrant response of WM B-cells 

to activation with R848 so the reaction of cell lines possessing this mutation to TLR ligation was 

characterised. Two WM cell lines were examined, MWCL.1 and BCWM.1, both of which are 

heterozygous for MYD88L265P (Treon et al., 2012). Additionally, two ABC DLBCL cell lines were 

also selected for investigation; OCI-Ly10 which is homozygous for the MYD88L265P mutation and 

OCI-Ly3 which is homozygous for MYD88L265P (Ngo et al., 2011). Three different concentrations 

of R848 were added to the culture media, with or without F(ab’)2 anti-IgG/M. The cells were 

cultured for 72 hours and then the number and viability were analysed by flow cytometry. 

7.3.1 TLR7/8 agonist R848 

There was no effect in terms of either cell number or viability on the addition of R848 with or 

without F(ab’)2 anti-IgG/M on either of the WM cell lines or OCI-Ly3 (figure 7.3). The only 

significant differences occurred for the OCI-Ly10 cell line, in which R848 concentrations of 

10μg/ml and 1μg/ml increased the total cell number compared to the control but did not 

significantly increase the viability of these cells. 
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Figure 7.3 Dose response of WM and ABC DLBCL cell lines following the addition of three concentrations of the TLR7/8 agonist R848 alone (A) or with F(ab’)2 anti-IgG/M (B). 

Cell lines were seeded in 96-well plates at 2 x 105 cells/well and treated with 10, 1 or 0.1μg/ml R848. After 72 hours, cell number was quantified on a flow cytometer using 

CountBright beads. Cell number/ml is depicted (left) with corresponding graph of cell viability (right) as measured by Annexin V/ 7-AAD staining. Control cells were seeded at the 

same density, but in media alone. Values significantly different from the control are indicated – (*, p < 0.05, t-test with Welch’s correction). Error bars represent S.D (n = 3). 
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7.3.2 TLR9 agonist CpG ODN 2006 

Of the other endosomal TLRs, TLR9 is highly expressed on B-cells, so the reaction of the MYD88-

mutated cell lines to a TLR9 agonist was also investigated (Hornung et al., 2002; Dasari et al., 

2005; Månsson et al., 2006). As with TLR7, TLR9 is located within endosomes but recognises 

unmethylated CpG DNA instead of ss-RNA (Hemmi et al., 2000; Hemmi et al., 2002; Heil et al., 

2004). Three classes of CpG have been identified, each of which demonstrates differing activity 

in PBMCs (Vollmer et al., 2003). CpG oligodeoxynucleotide (ODN) 2006 was chosen as it belongs 

to the class B ODNs, which are potent activators of B-cells (Vollmer et al., 2003). The 

concentrations to be tested were determined from the working concentration and published 

literature (Reid et al., 2005; Sivori et al., 2006).  

A significant increase in cell number was observed for MWCL.1 with the highest concentration 

of CpG tested, but it was not accompanied with an increase in cell viability (figure 7.4). This was 

replicated with the addition of F(ab’)2 anti-IgG/M. A significant increase in number was also 

observed for BCWM.1, but this time only with the lowest concentration of agonist. However this 

was not observed when a combination of CpG and F(ab’)2 anti-IgG/M were used. As with 

MWCL.1, the viability was unaffected in both conditions.  

The highest concentration of CpG significantly increased the number of OCI-Ly10 cells compared 

to the control, but the viability remained the same for all conditions tested. Whilst there was no 

impact of the addition of CpG to the number of OCI-Ly3 cells, the highest dose had a negative 

impact on the viability. This cell line did not proliferate very much in the 3 days in either 

condition, so the decrease in viability may just be a reflection of the high proportion of apoptosis 

occurring intrinsically within the culture. 

Whilst a statistically significant decrease in viability was observed for OCI-Ly3, the addition of 

CpG resulted in significant increases to cell number in the other three cell lines and thus it does 

not appear that this result reflects the general trend. These findings, in combination with the 

R848 results, confirm that the presence of MYD88L265P alone does not confer susceptibility to 

cell death following ligation of either TLR7 or TLR9. 
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Figure 7.4 Dose response of WM and ABC DLBCL cell lines following the addition of three concentrations of the TLR9 agonist CpG ODN 2006 alone (A) or with F(ab’)2 anti-

IgG/M (B). Cell lines were seeded in 96-well plates at 2 x 105 cells/well and treated with 20, 2 or 0.2μg/ml CpG. After 72 hours, cell number was quantified on a flow cytometer. 

Cell number/ml is depicted (left) with corresponding graph of cell viability (right) as measured by Annexin V/ 7-AAD staining. Control cells were seeded at the same density, but 

in media alone. Values significantly different from the control are indicated – (*, p < 0.05; **, p < 0.01, t-test with Welch’s correction). Error bars represent S.D (n = 3).
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7.4 Application of supernatant taken from differentiating WM B-cells 

to subsequent in vitro differentiations 

In the context of ABC-DLBCL cell lines, the presence of MYD88L265P confers increased activation 

of both NF-κB and JAK-STAT3 leading to the autocrine production of IL-10, IL-6 and IFNβ that are 

thought to provide survival signals to the lymphoma cells (Ngo et al., 2011). In contrast, exposure 

of chronic lymphocytic leukaemia (CLL) B-cells to a TLR9 agonist triggers apoptosis following 

autocrine production of IL-10 and activation of STAT1 (Liang et al., 2010). Following 

phosphorylation, STAT1 induces pro-apoptotic genes such as caspases, TRAIL (TNF-related 

apoptosis-inducing ligand) and FasL. Since the addition of R848 did not adversely affect the 

proliferation of the MYD88 L265P-expressing cell lines, it is plausible that, in WM patient-derived 

B-cells, stimulation with R848 may be causing these cells to secrete a factor that results in killing 

in–trans as observed for CLL. 

7.4.1 The effect of WM supernatant on healthy differentiating cells 

The impact of WM supernatant (S/N) on differentiating B-cells was initially investigated with 

cells derived from healthy donors. Supernatant taken from differentiations with WM cells that 

had been stimulated with either CD40L or R848 + F(ab’)2 anti-IgG/M was applied to healthy 

differentiating B-cells at day 3, after they had been activated with either CD40L or R848. The 

healthy cells were resuspended in the day 3 differentiation conditions at 1 x 105/ml and 200μl 

added per well of a 96-well plate. The supernatant was subsequently added at concentrations 

of either 1:10 or 1:100. After 72 hours, the number of cells, viability and phenotype was 

determined by flow cytometry. A scheme for the supernatant experiments is depicted in figure 

7.5. 

 

 

 

 



 

 

2
0

4
 

 

Figure 7.5 Scheme for supernatant experiments. Two independent in vitro differentiation experiments were performed, the first to generate the supernatant and the second to 

assess the effect on cell number, viability and phenotype. B-cells were isolated from WM patient BM or PB from healthy donors and stimulated with either CD40L + F(ab’)2 anti-

IgG/M or 1µg/ml R848 + F(ab’)2 anti-IgG/M. Supernatants were collected at day 3, day 6 and/or day 13 from these differentiations. Subsequently, supernatants were added at a 

concentration of 1:10 or 1:100 to a second independent differentiation with B-cells derived from healthy or WM patients at day 3, following activation with CD40L + F(ab’)2 anti-

IgG/M or 1µg/ml R848 + F(ab’)2 anti-IgG/M. The cells were analysed by flow cytometry 72 hours later to assess their phenotype and viability.
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Supernatants from 5 independent WM differentiations that were concurrently stimulated with 

either CD40L + F(ab’)2 anti-IgG/M or 1μg/ml R848 + F(ab’)2 anti-IgG/M were tested. The details 

of which are provided in table 7.1. Control wells were cultured in the same conditions, 

stimulated with either CD40L or 1μg/ml R848 + F(ab’)2 anti-IgG/M but did not include the 

addition of supernatant. Supernatant taken from day 6 of a differentiation with healthy cells 

stimulated with R848 was also tested to assess whether there was a difference between the 

supernatant taken from cells with high levels of viability following this type of stimulation 

compared to the WM population which consists of almost entirely non-viable cells at this time 

point.  

 

Table 7.1 Details of supernatants used. 

Sample Day harvested Stimuli 

Healthy 6 R848 

WM 1 3 CD40L 

WM 1 3 R848 

WM 2 3 CD40L 

WM 2 3 R848 

WM 3 6 CD40L 

WM 3 6 R848 

WM 4 6 CD40L 

WM 4 6 R848 

WM 5 13 CD40L 

WM 5 13 R848 

 

The results for the first healthy donor are shown in figure 7.6. 
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Figure 7.6 Supernatant from WM B-cells stimulated with 1μg/ml R848 + F(ab’)2 to healthy differentiating cells which have also been stimulated with 1μg/ml R848 + F(ab’)2 

results in significantly increased cell numbers and viability. S/N added at a dilution of either 1:10 or 1:100 to healthy cells stimulated with either CD40L or R848. Top – cell 

numbers determined by flow cytometry using CountBright beads, bottom - viability as measured by percentage 7-AAD negative cells. Statistical analysis by Student’s t-test with 

Welch’s correction *, p < 0.05; ** p < 0.01. Results significantly different from the controls for each condition are indicated. Data are in duplicate with error bars denoting S.D.
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There was no significant effect of the addition of any of the supernatants to the healthy cells 

stimulated with CD40L + F(ab’)2 anti-IgG/M at dilutions of either 1:10 or 1:100. The day 3 

supernatants from the WM cells activated with R848 may potentially increase the cell number 

although the variance of these values was very high so it is not significant here. There was no 

significant effect on cell viability in any of the conditions. However, when the healthy cells were 

initially stimulated with R848 + F(ab’)2 anti-IgG/M, there was a significant effect of the addition 

of supernatant from WM cells which were activated with R848. Instead of having a detrimental 

effect on cell numbers and viability, supernatant from WM differentiations at both day 3 and 

day 6 increased cell numbers significantly, accompanied by a significant increase to viability.  

A potentially confounding factor in these results is the effect of R848 carryover. The supernatant 

derived from R848-stimulated WM differentiations at day 3 will contain some R848. However, 

the effect should be minimal as the supernatants were diluted by 10-fold when added to the 

fresh media that the healthy cells were resuspended in at day 3. Additionally, it has been 

previously shown that carryover of 0.1μg/ml R848 had a negligible effect on cell number and 

phenotype. Interestingly, there is also a significant increase in cell number after the addition of 

healthy supernatant from cells stimulated with R848 but this is not accompanied by an increase 

in viability. There is no residual R848 subsequent to day 3, so this supports a conclusion that 

these cells are secreting factors supporting cell proliferation. Therefore, whilst the potential for 

carryover of R848 from day 3 samples cannot be eliminated completely and thus may contribute 

to any increase in proliferation observed following the addition of this supernatant, it seems 

likely that the effect observed here is genuine. The WM supernatant taken at day 6 also results 

in a significant increase to cell number in these samples, accompanied by a significant increase 

in viability from approximately 45% to 65-70%. Supernatant taken at this time point of the 

differentiation should pose no risk of R848 carryover so this would appear to be due to an effect 

of some sort of secreted factor from the WM cells that is being induced following R848 

stimulation.  

The effect on cell number was considerably reduced when the concentration of supernatant was 

decreased to 1:100, as would be expected if the cells were secreting factors acting in-trans. 

Nevertheless, the pattern of increased cell number and viability with WM R848 supernatant can 

still be observed in the healthy cells following stimulation with R848 + F(ab’)2 anti-IgG/M, 

although in most instances it is not significant. It would appear that this concentration of 

supernatant lies just over the threshold where an observable effect can occur.  

Whilst the cell number was unaffected, the viability of the cells was negatively affected by the 

addition of the WM day 13 supernatant. Whilst cells in the earlier stages of differentiation 

release factors that foster survival and proliferation, the population that exists at day 13 largely 
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consists of plasma cells, which will have altered there secretome accordingly. Moreover, a large 

proportion of cell death occurs subsequent to day 6, likely accompanied by the release of 

apoptotic factors into the harvested media which may account for this result.  

The phenotype was assessed for cells that had the higher concentration of supernatant added 

as this had a greater effect on the cell number and viability. The results are presented in figure 

7.7. The limited effect of the addition of the supernatants to the healthy cells stimulated with 

CD40L + F(ab’)2 anti-IgG/M is reflected in only very subtle differences surface marker expression. 

Expression of CD20 was bi-modal in cells which received CD40L-stimulated supernatant, 

whereas the proportion of CD20++ cells is reduced with the R848-stimulated supernatant, 

indicating that the cells have proceeded further in the differentiation. There were subtle effects 

of the supernatant on CD38 expression, with the day 6 supernatants increasing the average MFI 

to 366 compared to the day 3 supernatant average of 248.5. Examination of the matched 

supernatant pairs shows no difference in phenotype between the two types of stimulation and 

that the changes observed in the healthy phenotype appear to be as a result from the particular 

time point the supernatant was taken at. 

The healthy cells stimulated with R848 + F(ab’)2 anti-IgG/M have progressed slightly further in 

differentiation, having downregulated CD20 and upregulated CD38, CD138 and CD27 to a 

greater extent than their CD40L-stimulated counterparts. In line with the more profound impact 

of the supernatant on cell number and overall viability, considerably greater effects of the 

supernatant on the cell phenotype was also observed. The addition of R848-stimulated WM 

supernatant resulted in a considerably less differentiated phenotype. These cells retained higher 

levels of CD20 expression and a reduced proportion had upregulated CD38 and CD138. 

Interestingly, whilst addition of healthy supernatant resulted in a significant increase to cell 

number, there is almost no change in the phenotype, just a slightly tighter spread of CD38 

expression. As for the CD40L-stimulated healthy cells, addition of day 13 WM supernatant had 

no effect on the phenotype.  
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Figure 7.7 The phenotype of healthy differentiating cells is affected by the addition of WM supernatant. 

Histograms for the expression of each of the five cell surface markers on healthy differentiating cells 

corresponding to that of the donor in figure 7.6. Supernatant was added at a dilution of 1:10 at day 3 of 

the differentiation and the phenotype assayed by flow cytometry at day 6. Top – cells stimulated with 

CD40L + F(ab’)2 anti-IgG/M, bottom - 1μg/ml R848 + F(ab’)2 anti-IgG/M (isolation protocol B, 10ml media 

wash at day 3). The identity of the supernatants used are displayed on the right. 
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The results obtained from a second differentiation with B-cells derived from a different healthy 

donor are very comparable (figure 7.8). Once again, there was no significant effect on cell 

number or viability when the supernatant was added to the healthy cells stimulated with CD40L 

+ F(ab’)2 anti-IgG/M at either concentration. However, supernatant from WM cells activated 

with R848 taken at either day 3 or day 6 of the differentiation, significantly increased the cell 

numbers, matched in three of the four instances by a substantial increase in viability. Addition 

of WM1 CD40L-stimulated supernatant increased the viability but had no significant impact on 

the cell number. The impact of the reduced concentration of supernatant was more modest, 

with small but significant increases in number for three of the R848 supernatant and a similar 

small increase with the WM1 CD40L supernatant. The viability of the cells was only significantly 

increased for the WM1 R848 supernatant taken at day 3. 
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Figure 7.8 Addition of supernatant derived from WM B-cells stimulated with 1μg/ml R848 + F(ab’)2 to healthy cells from a second donor which have also been stimulated with 

1μg/ml R848 + F(ab’)2 results in significantly increased cell numbers and viability. S/N added at a dilution of 1:10 or 1:100 to healthy cells stimulated with either CD40L or R848. 

Top – cell numbers determined by flow cytometry using CountBright beads, bottom - viability as measured by percentage 7-AAD negative cells. Statistical analysis by Student’s t-

test with Welch’s correction *, p < 0.05; ** p < 0.01. Results significantly different from the controls for each condition are indicated. Error bars denote S.D (n = 2). 
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The phenotypes of the cells are also very similar to that of the first healthy donor (figure 7.9). In 

cells that were stimulated with CD40L + F(ab’)2 anti-IgG/M, there is a small effect on the 

expression of CD20 following the addition of the WM R848-stimulated supernatant, with a 

reduction in the proportion of CD20++ cells and a slight decrease in the shoulder of the CD27 

histograms. The expression of the other markers is otherwise consistent across the conditions. 

As with the first donor, a substantial change in the phenotype of the R848-stimulated cells is 

seen following the addition of the R848 supernatants. In the same manner as the previous 

donor, cells from this individual display a less-differentiated phenotype following the addition 

of the WM R848 supernatant. The effect on the phenotype of the supernatants taken at day 6 

is less profound for this donor, but an increase in the MFI for CD38 and a decrease for CD20 

occurs compared to the CD40L-stimulated supernatant.   

In summary, the addition of supernatant derived from R848-stimulated WM cells at either day 

3 or 6 of the differentiation resulted in a marked increase to cell numbers for R848-stimulated 

healthy cells. A similar but less pronounced effect appears to occur upon the application of WM 

supernatant from cells stimulated with R848 to healthy cells that had been stimulated with 

CD40L + F(ab’)2 anti-IgG/M. This was somewhat surprising, given that all cells isolated from WM 

patients die subsequent to R848 stimulation, despite the WM clone comprising a variable 

proportion of the samples. 

In general, the supernatants harvested at day 3 of the differentiation result in an increase to the 

cell number, accompanied by an increase in overall viability. The extent to which the cell 

numbers are increased are greater than can be explained solely by the increase to viability, thus, 

the day 3 supernatant must support proliferation. This is accompanied by a less differentiated 

phenotype, suggesting that the factors within the supernatant delay differentiation, enabling 

the cells to remain in a proliferative state for longer and supporting their viability. During an 

immune response, secretion of factors by the B-cell population to supplement an environment 

conducive to cellular proliferation and survival would seem to be advantageous for an 

efficacious response, so this result is not unexpected. 
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Figure 7.9 Addition of WM supernatant affects the phenotype of healthy cells stimulated with R848 

more profoundly than those stimulated with CD40L. Histograms for the expression of each of the five 

cell surface markers on healthy differentiating cells corresponding to that of the donor in figure 7.8. 

Supernatant was added at a dilution of 1:10 at day 3 of the differentiation and the phenotype assayed by 

flow cytometry at day 6. Top – cells stimulated with CD40L + F(ab’)2 anti-IgG/M, bottom - 1μg/ml R848 + 

F(ab’)2 anti-IgG/M. The identity of the supernatants used are displayed on the right. 



Chapter 7 - Results 

214 

The supernatant taken at day 6 also increased cell number and viability, but to a lesser extent 

than the day 3 supernatant and the impact on the phenotype was also reduced. In a similar 

manner to the day 3 secretome, it would seem likely that these cells would also secrete pro-

survival factors to support the differentiating population. However, delaying differentiation into 

effector cells is perhaps less beneficial as the response progresses, once a pool of plasmablasts 

has been established and thus the phenotype of the cells here is comparable to the CD40L-

stimulated cohort. 

It should be noted that supernatant collected at day 3 from R848-stimulated cells will still 

contain R848. The results of experiments described in previous chapters have shown that 

persistent R848 stimulation results in additional proliferation of the cells and delays 

differentiation. This is remedied by the inclusion of an additional wash step with fresh media to 

dilute the R848 to levels that have no effect on the continuing culture, but in this case the day 3 

supernatant was collected with any R848 still present and undiluted. However, the increase to 

healthy cell numbers was also observed after the addition of WM supernatant taken at day 6, at 

which time the cells will have been washed and thus any carryover of R848 will have been 

eliminated. This indicates that whilst there could be some effect of R848 carryover at day 3, 

there is a genuine effect of secreted factors from WM cells stimulated with R848 that would 

normally increase proliferation instead of resulting in cell death. 

The effect of supernatants derived from WM cells on healthy CD40L-stimulated cells was limited. 

One explanation for this lies with the difference in strength of the signal provided by the CD40L-

L cells versus that of the R848. The CD40L-L cells provide a powerful activation signal that seems 

to mask the effects of the supernatant. In contrast, the intensity of the R848 stimulation is 

diminished in comparison so enables more subtle changes elicited by the supernatant to be 

seen. Another possibility is that some of the differences may be attributed to the subset of cells 

that are responsive to the initial stimuli provided. Since there is preferential expansion of 

memory cells with R848, the supernatant may exert a greater effect on this subset compared to 

the naïve fraction. 

In conclusion, activation of WM B-cells within the in vitro system induces them to secrete factors 

into the culture media which can exert an effect on healthy cells. The secretion of factors by WM 

B-cells triggered by activation with R848 + F(ab’)2 anti-IgG/M, support the survival and 

proliferation of healthy differentiating cells and do not induce apoptosis. 
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7.4.2 The effect of WM supernatant on differentiating WM cells 

The results from supernatant experiments with healthy differentiating cells suggest that the cell 

death observed in R848-stimulated WM cells may be intrinsic, since the secreted factors do not 

negatively impact these cells. Therefore, the effect of supernatant taken from WM cells and 

applied to a second WM differentiation was investigated. 

A differentiation was performed with B-cells from two independent WM patients. Since WM B-

cells die subsequent to stimulation with R848, they were activated with CD40L to assess if the 

survival signals would be overcome by factors secreted by the R848-stimulated WM cells. A 

similar selection of supernatants to the previous experiments were used (table 7.2), but the 

supernatants taken at day 13 were substituted for an additional day 6 sample, as they had 

virtually no effect on the healthy cells. As before, the phenotype, cell number and viability were 

assessed at day 6 (figure 7.10). 

 

Table 7.2 Details of supernatants used for WM supernatant experiments. 

Sample Day harvested Activating stimuli 

Healthy 6 R848 

WM 1 3 CD40L 

WM 1 3 R848 

WM 2 3 CD40L 

WM 2 3 R848 

WM 2 6 CD40L 

WM 2 6 R848 

WM 3 6 CD40L 

WM 3 6 R848 

WM 4 6 CD40L 

WM 4 6 R848 
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Figure 7.10 Addition of supernatant derived from an initial differentiation with WM B-cells to a second 

WM differentiating cells which have also been stimulated with CD40L + F(ab’)2 results in significantly 

increased cell numbers. Top – cell numbers determined by flow cytometry, data are in duplicate with 

error bars denoting S.D. Statistical analysis by Student’s t-test with Welch’s correction: *, p < 0.05; ** p < 

0.01.  Bottom - viability as measured by percentage 7-AAD negative cells.  

 

In a similar manner to the healthy cells, supernatant derived from WM cells at day 3 that were 

initially stimulated with R848 increased the number of cells, but in this instance did not affect 

the viability. The day 3 supernatant from CD40L-stimulated WM cells also appears to increase 

the cell number, although this was not significant for WM6 due to higher variability in the cell 

numbers obtained. Supernatant taken from WM differentiations at day 6 did not have a 

significant effect on either the total cell number or the proportion of viable cells within the 

culture within the subsequent differentiations.  
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Figure 7.11 The phenotype of CD40L-stimulated WM cells is unaffected by the addition of supernatant 

from other WM differentiations. Histograms for the expression of each of the five cell surface markers 

on differentiating WM cells corresponding to the samples in figure 7.10 (isolation protocol B). Supernatant 

was added at a dilution of 1:10 at day 3 of the differentiation and the phenotype assayed by flow 

cytometry at day 6. Both WM samples were stimulated with CD40L + F(ab’)2 anti-IgG/M. Top – B-cells 

derived from patient WM 6, bottom – B-cells derived from WM 7. The identity of the supernatants used 

are displayed on the right. 

 

Despite significant individual differences in the levels of differentiation observed between the 

two WM samples, the addition of supernatant has a negligible effect on the phenotype on either 
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one (figure 7.11). This data supports a conclusion that WM cells are capable of secreting one or 

more factors in response to stimulation with R848 and most likely also CD40L, which, through 

autocrine or paracrine signalling, results in proliferation of the population as a whole. 

Interestingly, the addition of the WM supernatant demonstrated no effect on either the cell 

number or viability of SMZL cells (figure 7.12). 

 

Figure 7.12 Addition of supernatant derived from an initial differentiation with WM B-cells to cells 

derived from a patient with SMZL which have been stimulated with CD40L + F(ab’)2 has no significant 

impact. Top – cell numbers determined by flow cytometry, data are in duplicate with error bars denoting 

S.D. Statistical analysis by Student’s t-test with Welch’s correction: *, p < 0.05; ** p < 0.01.  Bottom - 

viability as measured by percentage 7-AAD negative cells.  

 

In accordance with this, there was minimal impact on the phenotype of the SMZL cells, although 

the addition of some supernatants did result in CD20 retention (figure 7.13). This effect occurred 

most commonly following that addition of supernatant from R848-stimulated cells taken at both 

day 3 and day 6 of culture but can also be observed with the CD40L-stimulated supernatant. It 



Chapter 7 - Results 

219 

would therefore appear that this effect cannot be attributed to a particular type of stimulation 

or day the supernatant was collected. 

 

 

Figure 7.13 CD20 is retained in SMZL cells stimulated with CD40L following the addition of WM 

supernatant but the phenotype is otherwise unaffected. Histograms for the expression of each of the 

five cell surface markers on differentiating cells derived from the bone marrow of a patient with SMZL 

(isolation protocol B). The cells were activated with CD40L + F(ab’)2 anti-IgG/M., supernatant was added 

at a dilution of 1:10 at day 3 of the differentiation and the phenotype assayed by flow cytometry at day 

6. The identity of the supernatants used are displayed on the right. 

 

Surprisingly, the supernatant derived from R848-stimulated WM cells, which are undergoing 

high levels of apoptosis, did not result in a detrimental effect to either healthy cells or cells from 

other WM patients. On the contrary, the WM supernatant enhanced both the proliferation and 

viability of healthy cells and the proliferation of WM cells. The greatest effect was observed for 

the WM R848-stimulated supernatant, although the day 3 CD40L-stimulated supernatant also 

appeared to elicit a proliferative response, with a trend towards a significance. It is perhaps not 

unexpected that supernatant collected at day 3 of an in vitro differentiation would demonstrate 

a positive effect on other cells at this time point. It seems plausible that these cells would secrete 

factors into the local environment which enhance the proliferation of their peers to augment 
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the immune response. In the case of WM cells, it would similarly prove advantageous for the 

clonal population to enhance each other’s survival.  

The apoptotic response of WM cells to R848 stimulation now appears even more contrary, given 

that these cells are most likely concurrently in receipt of additional pro-survival and pro-

proliferative signals from their neighbours. This indicates that either WM cells are reliant on 

supplementary signalling from the microenvironment of the bone marrow to enhance their 

survival or that they upregulate apoptotic genes in response to R848 to such a great extent that 

this overwhelms not only the constitutive NF-κB activation conferred by MYD88L265P but also the 

autocrine and paracrine pro-survival signalling demonstrated here.  

7.5 Evaluation of Fas and FasL expression in WM cells 

Given that the cell death observed in WM cells does not appear to be as the result of a secreted 

factor, it could instead result from receptor-ligand interactions between the cells. The potency 

of the B-cell immune response requires exquisite control in order to prevent it from escalating 

disproportionately. One such mechanism that is essential for B-cell tolerance is activation-

induced cell death (AICD) (Donjerković and Scott, 2000). The importance of regulatory 

mechanisms such as AICD for the prevention of autoimmunity is clear, with Fas mutations in 

humans and mice resulting in uncontrolled lymphocyte proliferation and severe autoimmune 

disorders (Krammer, 2000).  

The interaction between CD40 on the B-cell surface and its ligand expressed on T-cells induces 

a potent activation signal, resulting in survival and proliferation (Lederman et al., 1992; J 

Banchereau et al., 1994). However, during T-dependent immune responses, Fas expression on 

activated B-cells is upregulated following CD40L stimulation from T-cells, priming them for 

sensitivity to FasL-mediated apoptosis (Schattner et al., 1995; Nagata, 1997). However, 

concomitant BCR stimulation inhibits this process, enabling B-cells that have bound their 

cognate antigen to survive and undergo expansion and differentiation (Rothstein et al., 1995). 

Once engagement of the BCR has ceased following the elimination of pathogens, resistance to 

FasL-mediated apoptosis diminishes and thus the response is controlled. The ability of WM cells 

to proliferate and differentiate subsequent to TD stimulation is in keeping with this, apoptotic 

signals are inhibited by simultaneous BCR and CD40 ligation, enabling the cell to avoid this fate 

and instead resulting in survival. 

The response of WM cells to activation with R848 may therefore be due to activation-induced 

cell death. It is possible that the innate expression of Fas and/or FasL on WM cells is elevated in 

comparison to healthy cells and that stimulation of both the BCR and TLR7 are insufficient to 
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overcome the pro-apoptotic signals. An alternate explanation is that ligation of TLR7 in WM cells 

results in the upregulation of Fas or FasL to a greater extent than that which occurs in healthy 

cells and that this is the cause for the apoptotic response. The expression of Fas and FasL on 

WM and healthy cells at each time point of the differentiation were therefore evaluated to 

determine whether either of these hypotheses were correct. Histograms and corresponding MFI 

values for Fas and FasL expression are shown in figure 7.14 (details of antibodies used for this 

analysis are provided in methods section table 2.5.  
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Figure 7.14 Fas and FasL are upregulated during differentiation. B-cells derived from the bone marrow 

or peripheral blood of WM patients or the peripheral blood of a healthy donor were stimulated as 

indicated and the expression of Fas and FasL were assessed by flow cytometry at the time points indicated. 

Histograms are displayed with the corresponding MFI values plotted to the right.  

 

The pattern of expression of Fas and FasL is very similar in healthy cells between both types of 

stimulation. In accordance with the published literature, the expression of Fas remains 
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unchanged between day 0 and day 1, followed by a significant increase to day 3 as the B-cell 

population becomes activated. Subsequently, protein expression decreases to day 6 but once 

again rises to a similar level of expression as the cells at day 3. FasL expression follows a similar 

pattern, but expression falls to a greater extent between day 3 and day 6 and remains lower 

thereafter.  

The Fas expression pattern in WM cells is slightly different, with a less pronounced increase at 

day 3, followed by an increase thereafter. Despite this, the MFI values for the later time points 

are comparable with the healthy controls. There are two patterns of FasL expression in the WM 

samples. WM1 and the peripheral blood sample from WM2 exhibit an expression pattern similar 

to that of the healthy sample, with the highest expression of FasL occurring at day 3 of the 

differentiation. In contrast, the matched bone marrow sample from patient WM2 and the 

sample from WM3 demonstrate increasing levels of FasL as the differentiation progressed. The 

bone marrow sample from WM2 possesses a bi-modal peak at day 3. This corresponds to a 

divergence in the phenotype observed for this sample, with a population of cells that are unable 

to differentiate in response to stimulation with R848 exhibiting lower FasL expression than the 

rest of the population. 

The similarity between the overall levels of Fas and FasL expression between the healthy and 

WM samples and lack of a marked increase of either at early time points in the R848-stimulated 

WM cells suggests that activation-induced cell death via Fas or FasL is unlikely to be the cause 

of the profound apoptotic response elicited by this type of stimulation in WM cells. 

7.6 Assessment of B-cell response to dual stimulation with CD40L and 

R848  

WM B-cells in vivo encounter a variety of different stimuli within the bone marrow niche, 

simultaneously activating multiple signalling cascades. The potential for a combination of 

activating stimuli to overcome the effects of TLR7 stimulation was examined to provide further 

insight into the WM response. 

7.6.1 Healthy cells 

The effect of a combination of both CD40L and R848 stimulation was initially assessed in healthy 

B-cells to establish a control phenotype. B-cells from two donors were stimulated concurrently 

with either CD40L + F(ab)’2 anti-IgG/M,  1μg/ml R848 + F(ab)’2 anti-IgG/M or a combination of 

both CD40L and R848. B-cells from both donors proliferated more highly following stimulation 
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with CD40L when compared with those that received R848 stimulation (figure 7.15). Cells that 

received both CD40L and R848 stimulation proliferated to a similar extent to their counterparts 

that received CD40L + F(ab)’2 anti-IgG/M stimulation, this being considerably more than the cells 

with R848. The difference in cell number between CD40L alone and CD40L + R848 for both 

donors at each time point was minimal. The response of donor 2 was the lowest observed of all 

the healthy differentiations that were stimulated with R848. Despite this, a combination of 

CD40L and R848 resulted in greater proliferation than was seen with CD40L alone.  
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Figure 7.15 Dual stimulation with CD40L and R848 results in a cell number profile that is similar to CD40L 

stimulation alone. B-cells derived from the peripheral blood of two healthy donors were stimulated with 

CD40L, CD40L + 1μg/ml R848 or 1μg/ml R848 + F(ab’)2 anti-IgG/M. Cell number at each time point was 

determined by manual counts for days 3 and 6 and then by flow cytometry thereafter. The cell number at 

each point was normalised to the number of “input” cells for that specific patient obtained at day 0.  

 

The phenotype of cells from both donors was highly comparable at each time point, despite the 

differences in the amplitude of the individual responses. A representative example from donor 

1 is displayed in figure 7.16. At day 6, the difference in phenotype between the two basic 

conditions – CD40L alone versus R848 alone – are as expected, with a larger plasma cell 

population generated with R848 + F(ab)’2 anti-IgG/M. The cells that were stimulated with a 

combination of CD40L + R848 + F(ab)’2 anti-IgG/M possess a phenotype that is almost identical 

to those with CD40L alone, in line with the similarity in cell number. The differences in 

phenotype between the three conditions diminish by day 13 and remain consistent thereafter.  

A combination of both CD40L and R848 stimulation does not appear to have an additive effect 

in the case of either individual, rather, the proliferation induced following activation with CD40L 
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+ F(ab)’2 anti-IgG/M appears to elicit something close to maximal proliferative response. The 

strength of the CD40L stimulation appears to override the phenotypic response as well, with a 

combination of both stimuli yielding a phenotype that is very similar to that of CD40L + F(ab)’2 

anti-IgG/M alone, rather than an intermediate between that which is observed for the individual 

stimuli. As was previously shown with the two basic stimuli, the phenotypic differences that are 

observed at the early time points are lost as the differentiation proceeds and the phenotype of 

the plasma cells are indistinguishable from one another.    
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Figure 7.16 Representative phenotypes for single and combined CD40L and/or R848 B-cell stimulations for one donor. B-cells isolated from the peripheral blood of healthy 

donors (n = 2) were activated with CD40L, 1μg/ml R848 or both CD40L and 1μg/ml R848 + F(ab’)2 anti-IgG/M (isolation protocol B). The immunophenotype was assayed by flow 

cytometry at each time point. Percentages are displayed for each quadrant.
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7.6.2 WM cells 

The response of WM B-cells was then examined to investigate whether the failure to proliferate 

and differentiate following R848 stimulation could be ameliorated by co-stimulation with R848 

and CD40L. As with the healthy cells, bone marrow-derived B-cells from a WM patient were 

stimulated with either CD40L, 1μg/ml R848 or a combination of CD40L + 1μg/ml R848, with 

F(ab)’2 anti-IgG/M in each instance. 

Between days 0 and 3, cell numbers were maintained within cultures which received CD40L 

stimuli but cells which were stimulated with R848 alone had considerably decreased in number 

(figure 7.17). The decline continued for the R848-stimulated cells until there were no cells left 

from day 13 onwards. In contrast, cells from both the CD40L-stimulated conditions proliferated 

between days 3 and 6, with WM cells stimulated with a combination of CD40L and R848 

proliferating to a greater extent than those which received just CD40L. The numbers of cells 

from the dual-stimulated condition remained higher than those with CD40L alone until day 20 

of the differentiation, after which both conditions had a very similar number of cells. 
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Figure 7.17 Dual stimulation of WM B-cells with CD40L and R848 has a synergistic effect on cell number. 

B-cells derived from the bone marrow of a WM patient were stimulated with either CD40L, a combination 

of CD40L + 1μg/ml R848 or 1μg/ml R848 + F(ab’)2 anti-IgG/M (isolation protocol B, with 10ml media wash 

at day 3). Cell number at each time point was determined by manual counts for days 3 and 6 and then by 

flow cytometry thereafter. The cell number at each point was normalised to the number of “input” cells 

for that specific patient obtained at day 0.  
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The phenotype of the cells in each condition are displayed in figure 7.18. At day 6, the phenotype 

of the dual-stimulated cells is virtually indistinguishable from those in receipt of CD40L alone. 

Whilst they have not progressed as far as the healthy cells by this time point, downregulation of 

CD20 is occurring in combination with CD38 upregulation, confirming that they are in the 

process of differentiating. In contrast, the phenotype of the WM cells receiving R848 stimulation 

only differs considerably. The cells in this condition are unable to respond correctly, maintaining 

a B-cell phenotype, with no evidence of differentiation. The cells stimulated with both CD40L 

and R848 continue to have almost exactly the same phenotype as the CD40L-only group 

throughout the rest of the differentiation, generating plasma cells by day 14 which are 

maintained thereafter. In contrast, the R848 stimulated cells fail completely to differentiate, 

with an inability to downregulate CD20 and failing to upregulate CD38 and CD138. Interestingly, 

this sample generated a population of CD38- CD138+ cells in both the CD40L and CD40L + 1μg/ml 

R848 conditions. 

Thus cells from this WM patient exhibited the same pattern of phenotypic response as the 

healthy cells, with the combinatorial stimuli resulting in a phenotype that closely resembles that 

of CD40L alone, rather than an intermediate phenotypic response. However, in contrast to the 

differentiations with healthy cells, addition of TLR7 agonist R848 resulted in a considerably 

greater fold change between days 3 and 6 compared to cells just stimulated with CD40L. 

Surprisingly, the combination of stimuli elicits an enhanced response, suggesting that perhaps 

WM cells in vivo would proliferate to a greater extent than the non-neoplastic clone when 

provided with the same stimulation.  
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Figure 7.18 A comparison of the phenotype obtained following dual stimulation of WM cells to the two basic stimulations. B-cells were isolated from the bone marrow of a 

WM patient and activated with CD40L, 1μg/ml R848 or both CD40L and 1μg/ml R848 + F(ab’)2 anti-IgG/M (isolation protocol B, with 10ml media wash at day 3). The 

immunophenotype was assayed by flow cytometry at each time point. Percentages are displayed for each quadrant. 
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The response of B-cells isolated from a second WM patient was evaluated to determine if the 

results from the first WM sample could be replicated. For all conditions, cell numbers declined 

between day 0 and 3, but with a distinction between those that received CD40L or CD40L + R848 

stimulation and those which did not (figure 7.19). This patient sample had been stored for an 

increased length of time in comparison to the first WM sample, which likely contributed to the 

decreased levels of viability and cell death observed here. Cell numbers in the R848 only 

condition continued to decline thereafter whereas there was an increase in numbers for both 

CD40L and CD40L + R848 between days 3 and 6. WM B-cells that received both CD40L and R848 

stimuli proliferated to a greater extent than those with just CD40L. Cell numbers declined 

substantially between day 6 and 13 in these two conditions, but remained very similar at each 

subsequent time point. 
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Figure 7.19 A combination of CD40L and R848 stimuli ameliorates the detrimental effect of R848 

stimulation alone in WM B-cells. B-cells derived from the bone marrow of a WM patient were stimulated 

with either CD40L, a combination of CD40L + 1μg/ml R848 or 1μg/ml R848 + F(ab’)2 anti-IgG/M (isolation 

protocol B, with 10ml media wash at day 3). Cell number at each time point was determined by manual 

counts for days 3 and 6 and then by flow cytometry thereafter. The cell number at each point was 

normalised to the number of “input” cells for that specific patient obtained at day 0.  

 

As with the previous WM sample, the phenotypes demonstrate a partition between cells that 

were stimulated with CD40L and those that were not (figure 7.20). Cells stimulated with R848 

alone displayed a profound defect in their ability to differentiate, retaining a B-cell phenotype 

throughout. On the other hand, the phenotypes were very consistent between both conditions 
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that received CD40L stimulation, with no noticeable differences with the addition of R848. The 

cells from this patient showed a delay in the acquisition of CD38 at day 6 as with the first WM 

sample, but this was consistent between the two CD40L-stimulated conditions. Once again at 

day 13, the phenotypes remained very similar, with a delay in the downregulation of CD20 

expression and a population of CD38- CD138+ cells emerging in both instances. This consistency 

in phenotype was maintained to day 32 of the differentiation.  

The similarity in phenotype between the CD40L and CD40L + R848 conditions is consistent 

between both the WM cells and their healthy counterparts. Whilst the healthy cells proceeded 

to differentiate more rapidly when provided with R848 + F(ab’)2 anti-IgG/M than the other two 

conditions, the WM cells were unable to differentiate properly in response to these stimuli. The 

combination of stimuli did not increase the fold-change response of the healthy cells, instead 

the response was comparable with the proliferation induced with the basic activation with 

CD40L + F(ab’)2 anti-IgG/M. For the WM samples, a combination of both stimuli at the very least 

ameliorates the apoptotic response normally induced by stimulation with R848. The presence 

of both signals appears to elicit a greater response from WM B-cells, with cells from both WM 

patients demonstrating an increase in fold-change between day 3 and day 6 of the 

differentiation, although this was somewhat more limited in the second patient sample. 

The results would seem to suggest that WM cells are more reliant on additional pro-survival 

signals, in this instance provided by CD40 ligation, than their healthy counterparts, but when in 

receipt of these they are able to proliferate to a greater extent. This is perhaps not surprising 

given what is known about WM pathology. WM cells express high levels of both cytokine and 

adhesion receptors, enabling them to home to the bone marrow, aided by mutations in CXCR4 

(Ngo et al., 2008; Ghobrial et al., 2011; Hunter et al., 2013). Thus, they are situated within an 

environment rich in additional sources of support from stromal cells and secreted factors. 

Further stimulation of TLR7, in concert with the other signalling occurring in vivo may therefore 

contribute to enhanced levels of proliferation of the WM clone, helping it out-compete the 

healthy fraction.       
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Figure 7.20 A comparison of the phenotype obtained following dual stimulation of WM cells to the two basic stimulations. B-cells were isolated from the bone marrow of a 

WM patient and activated with CD40L, 1μg/ml R848 or both CD40L and 1μg/ml R848 + F(ab’)2 anti-IgG/M (isolation protocol B, with 10ml media wash at day 3). The 

immunophenotype was assayed by flow cytometry at each time point. Percentages are displayed for each quadrant. 
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7.7 TLR expression in patient samples 

Since a proportion of WM cells are completely unable to respond to R848 stimulation, it is 

possible that they have downregulated TLR expression. Hunter et al., have suggested that TLR7 

is upregulated in MYD88L265P CXCR4WHIM patients but quantification of TLRs in situ has not been 

analysed (Hunter et al., 2016). To provide insight into this, expression of endosomal TLRs in WM 

cell lines, samples of PB from healthy donors and a sample of BM from a WM patient were 

analysed by flow cytometry. The DLBCL cell line HBL-1 was found to express high levels of TLR9 

in tests so was included as a positive control. For the primary samples, RBCs were lysed before 

cells were initially stained with antibodies to cell surface markers to enable the B-cell population 

to be identified and subsequently with the intracellular TLR antibodies.  

The inclusion of a LAIR1 antibody facilitates identification of neoplastic WM cells since LAIR1 

expression is commonly high in healthy individuals but conversely the WM clonal population can 

usually be distinguished by low to intermediate levels of this marker (Paiva et al., 2015; Rawstron 

et al., 2017). In addition, LAIR1 expression typically varies amongst other LPDs, with elevated 

expression in SMZL, whilst it is normally absent from GC DBLCL cells (Van Dongen et al., 2012). 

The CD19+ CD20+ fraction was therefore subdivided based on LAIR1 expression (details of 

antibodies used for TLR analysis are provided in methods section table 2.6). The pattern of TLR 

expression is shown in figure 7.21. 
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Figure 7.21 Endosomal TLR expression in cell lines and primary samples. Cells were stained for surface 

antigens and with a fixable viability dye before fixation, permeabilisation and staining with intracellular 

antibodies. For healthy and WM samples, B-cells were defined as CD19+ CD20+ and then gated on LAIR1 

expression using FMO controls. Expression of TLR7-9 are shown for the LAIR1- fraction (top) and LAIR1+ 

fraction (bottom). 

 

In general, TLR9 was the most highly expressed, with levels of TLR7 and 8 considerably lower, 

but still present in at least a proportion of cells in most samples. Interestingly, the TLR expression 

changes dramatically between the LAIR1+ and LAIR1- fractions of the WM sample. Whilst 

expression of TLR7, 8 and 9 is low in the LAIR1- population, the expression of each increases 

substantially in the LAIR1+ fraction. Strikingly, LAIR1+ WM cells expressed the highest levels of 

TLR7 and 8 out of the 6 samples tested. This may suggest that the neoplastic fraction has 

downregulated TLR expression. 

Both WM cell lines expressed particularly high levels of TLR9 and also express slightly elevated 

levels of TLR7 and 8 in comparison to the healthy samples and WM LAIR1- fraction. The majority 
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of the healthy cells were LAIR1+ as expected. Within this subgroup, both samples had a small 

proportion of cells that expressed high levels of both TLR7 and TLR8. Whilst not investigated 

here, it would be most interesting if this fraction corresponded to the subset of cells observed 

to respond particularly rapidly to R848 stimulation during differentiations.  

The assessment of endosomal TLR expression within the B-cell population was extended with 

additional clinical samples from 8 patients with a selection of LPDs, summarised in table 7.3 

below. The results from two staging marrows were also included as a surrogate for heathy 

controls as these did not display a neoplastic phenotype and provide the best comparison for 

the neoplastic bone marrow samples. Flow cytometry data for TLR expression is presented in 

figure 7.22.   

 

Table 7.3 Clinical samples assessed for endosomal TLR expression. 

Sample number Diagnosis Sample type 

1 Staging marrow (normal) BM 

2 Staging marrow (normal) BM 

3 MZL BM 

4 Mantle cell BM 

5 CLL PB 

6 CLL PB 

7 CLL BM 

8 CLL BM 

9 CLL BM 

10 WM BM 

 

Expression of LAIR1 was highly variable, but in keeping with the published literature, with the 

staging samples generally positive for this marker, the MZL sample expressing even higher levels 

of LAIR1, whilst it is absent from the WM sample. The WM sample possessed a high level of 

clonality, with a correspondingly low expression of LAIR1 for virtually the entire B-cell 

population. Of all the samples tested, the LAIR1- WM subset possessed the lowest MFI for TLR7 

and TLR8 although TLR9 is expressed at an intermediate level in a large proportion of these cells. 

TLR expression in the other samples varied considerably, but levels were very similar between 

both the LAIR1 positive and negative fractions in all instances. 

Whilst downregulation of TLR7 in the WM sample cannot be definitively determined due to lack 

of a non-neoplastic fraction within the sample to compare to, the average MFI for TLR7 the 
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LAIR1+ population of two staging marrows is 352, whilst the WM sample is 279 suggesting that 

TLR downregulation may be a possibility. 
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Figure 7.22 Endosomal TLR expression patterns in clinical samples. Cells were stained for surface antigens before fixation, permeabilisation and staining with intracellular 

antibodies. B-cells were defined as CD19+ CD20+ and then gated on LAIR1 expression as shown. Expression of TLR7-9 are shown for the LAIR1- fraction (top) and LAIR1+ fraction 

(bottom). Histograms represent individual samples, with samples grouped and coloured by type. 
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7.8 RNA-sequencing of differentiating cells from the in vitro system 

RNA sequencing was performed on material harvested from differentiating cells at day 6 of 

culture within the in vitro system. The samples consisted of 3 healthy controls with matched 

samples for both CD40L and R848 stimulation and a total of 6 WM samples (table 7.4). Due to 

the paucity of WM samples and cell death that occurs within those cultured with R848, matched 

samples of WM cells of sufficient quality for sequencing were only obtained in two instances. 

Cells from four other patients were therefore used to increase the number of samples and 

enable an overview of WM cells in general. 

Table 7.4 Samples used for RNA-sequencing. 

Sample CD40L R848 

WM4 x  

WM5 x  

WM6 x x 

WM7 x x 

WM11  x 

WM15  x 

Healthy1 x x 

Healthy2 x x 

Healthy3 x x 

 

The profound levels of apoptosis within the highly clonal WM samples 6 and 7 subsequent to 

R848 stimulation resulted in less material for sequencing and thus a reduced number of reads 

for both of these samples in comparison to the rest of the samples. The decreased number of 

read counts within these two samples resulted in larger values for gene dispersion during the 

analysis of the data, affecting subsequent modelling. Figure 7.23 is a heatmap generated during 

quality control assessment, illustrating the two outlying samples. Whilst a greater number of 

reads would improve the quality of the dataset as a whole, modification of the analysis pipeline 

to account for this flaw by shrinking the log2 fold change estimates enables meaningful 

conclusions to be determined.  
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Figure 7.23 QC heatmap depicting outlying samples. Correlations were performed across all genes. The 

colour ranges from blue to red as the correlation trends towards 1.  

 

7.8.1 Differentially expressed genes 

The numbers of significantly up- or downregulated genes between healthy and WM samples 

and between the different activation stimuli, from a total of 50663, are displayed in figure 7.24. 

The greatest difference in gene expression occurs between the WM and healthy samples, with 

WM samples demonstrating a considerably greater proportion of upregulated genes. A 

comparison of the two types of stimulation, encompassing both the WM and healthy samples 

reveals a more even split between the numbers of differentially expressed genes. The difference 

in gene expression between CD40L vs. R848 arises in the most part from the contribution of the 

WM samples, since the number of differentially expressed genes between the two conditions in 
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healthy samples is significantly lower. This is in accordance with the observed phenotype and 

proliferative responses of both healthy and neoplastic samples, with the former demonstrating 

highly similar responses to both activation conditions, whilst there exists a considerable disparity 

in the differentiation of the WM cohort in response to the two types of stimuli. 

As might be anticipated from the characterisation of the differentiation responses, the number 

of differentially expressed genes between WM and healthy cells following CD40L stimulation is 

smaller than that for R848 stimulation. Surprisingly, the R848-stimulated WM samples 

demonstrate a greater number of upregulated genes than their healthy counterparts, despite 

failing to differentiate correctly.  

 

 

Figure 7.24 Comparison of the numbers of differentially expressed genes at day 6 of differentiation 

between WM and healthy individuals and between different stimuli. Venn diagrams depicting the 

significantly differentially expressed genes for each stated comparison. The numbers of upregulated 

genes are displayed in red, downregulated genes in blue and the non-significant genes in the centre. The 

threshold for significance was p < 0.01.  

 

The difference in gene expression between the two WM samples with a heavy disease burden 

(WM6 and WM7) and their counterparts with low levels of clonality following R848 stimulation 

is highlighted in figure 7.25. 
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Figure 7.25 Heatmap of differentially expressed genes between R848 and CD40L stimulations. 
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Amongst the most significantly differentially expressed genes between samples derived from 

WM patients and those taken from healthy donors were those encoding the variable regions of 

immunoglobulin heavy and light chains, with a marked downregulation of many of these families 

in the WM samples. In particular, expression of the IGHV3 family was almost completely absent 

in the WM samples. The lack of variability of immunoglobulin expression in the WM cells 

compared to the healthy controls reflects the skewing of the Ig repertoire due to the 

monoclonality of the population. 

Components of the plasma cell differentiation pathway such as PRDM1, encoding BLIMP1, the 

master regulator of B-cell differentiation, and IRF4 are equally highly expressed in the healthy 

cells from both conditions, indicating that both stimuli elicit a similar response. Interestingly 

however, one of the most significantly differentially expressed genes in healthy cells between 

the two conditions is CD138, with a 32-fold increase in those activated with R848 versus those 

activated with CD40L. This mirrors the increased alacrity of plasma cell generation by healthy 

cells stimulated with R848 and appears to be one of the few differences between the responses 

elicited by each stimuli. 

In order to highlight specific pathways that would be affected by the altered expression levels 

between the different samples and conditions, comparisons of differentially expressed genes 

were performed between and within the healthy and WM groups. Subsequently, the 

significantly differentially expressed genes were input into the functional annotation tool DAVID. 

The pathways identified are listed in table 7.5. 
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Table 7.5 Pathways associated with differentially expressed genes between each sample group.  

Up Down 

Healthy R848 vs. Healthy CD40L 

No significant pathways ribosome 

 cytokine-cytokine receptor interaction 

 metabolism 

 amino acid synthesis   

 gluconeogenesis 

 oxygen homeostasis 

All WM vs. All Healthy 

MAPK signalling pathway No significant pathways 

NF-κB pathway  

cytokine-cytokine receptor interaction  

WM CD40L vs. Healthy CD40L 

cytokine-cytokine receptor interaction JAK-STAT signalling pathway 

TNF signalling pathway endocytosis 

TLR signalling pathway NK cell mediated cytotoxicity 

NF-κB pathway FOXO signalling pathway 

apoptosis glycosaminoglycan biosynthesis 

chemokine signalling pathway  

WM R848 vs. Healthy R848 

cell adhesion molecules  protein processing in ER 

TNF signalling pathway  

TLR signalling pathway  

NF-κB pathway  

focal adhesion  

cytokine-cytokine receptor interaction  

PI3K-AKT signalling  

glutamatergic synapse  

neuroactive ligand-receptor interaction  

haematopoietic cell lineage  

RAP1 signalling pathway  

WM R848 vs. WM CD40L 

antigen processing and presentation Ribosome 

NK cell mediated cytotoxicity spliceosome 

ECM-receptor interaction cell cycle 

PI3K-AKT signalling pathway DNA replication 

endocytosis ribosome biogenesis 

choline metabolism in cancer glycolysis 

 RNA transport 

 purine/pyrimidine metabolism 

 leukocyte transendothelial migration 

 regulation of actin cytoskeleton 

 RNA degradation 
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7.8.1.1 Healthy CD40L vs. R848 

A comparison of differentially expressed genes between the healthy cells activated with either 

CD40L or R848 reveals that there was no significant upregulation of any particular pathway, 

despite the differences in the initial activating stimuli. However, multiple components of various 

metabolic pathways exhibited decreased expression levels subsequent to TLR7 stimulation. The 

previously characterised effects of B-cell stimulation with R848 in comparison to CD40L 

activation in healthy cells are twofold, resulting in more rapid differentiation but overall 

generating fewer cells by day 6 than the CD40L stimulation. The cells successfully able to 

respond to activation with R848 have become plasmablasts at this time point, with a small 

proportion of plasma cells, whereas cells stimulated with CD40L do not acquire the plasma cell 

phenotype for another few days. Plasma cells are highly metabolically active due to their 

increased secretory burden and one might expect that cells derived from the R848 condition 

may begin to upregulate genes involved in this process at an earlier stage than their 

counterparts stimulated with CD40L. Thus, a decrease in genes involved with metabolism at this 

time point seems to reflect a state of lower activation within this population in general, 

consistent with a lower proportion of cells able to respond as effectively to this type stimuli.  

7.8.1.2 WM vs. healthy 

Components of three major pathways were upregulated amongst the WM samples compared 

to the healthy controls. As expected, the NF-κB pathway was highlighted by the functional 

annotation tool. Interestingly, whilst MYD88L265P results in constitutive activation of the 

canonical NF-κB pathway, the transcription factor RelB, the central player involved in the non-

canonical pathway was also significantly increased compared to healthy cells, suggesting an 

interplay between the two branches of the pathway.  

Cytokine signalling plays a key role in WM pathogenesis, with mutations in CXCR4 being the most 

common after MYD88 and are central to the homing of WM cells to the bone marrow (Ngo et 

al., 2008; Hunter et al., 2013; Poulain et al., 2016). It is therefore not surprising for components 

of these pathways to be upregulated. In particular, the chemokines CCR4, CCR7 and CCL5, CXCR4 

itself and multiple members of the TNF family are all elevated in the WM samples. This is in 

accordance with the findings of Ngo and colleagues (Ngo et al., 2008). Similarly, activation of 

MAPK is important for chemotaxis, adhesion and proliferation and this pathway is also 

upregulated in the WM samples.  
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Many of the genes upregulated in WM cells compared to heathy following CD40L stimulation 

correspond to the literature (Ghobrial et al., 2011; Paiva et al., 2015; Hunter et al., 2016). Even 

in the absence of additional TLR stimulation, WM cells display upregulation of the TLR and NF-

κB pathways, indicative of their constitutive activation in the neoplastic cells. In addition to this, 

a large group of both cytokines and chemokines are upregulated, highlighting the importance of 

the microenvironment to WM cells. Interestingly, genes associated with apoptosis were also 

upregulated in WM cells, but this was specific to the CD40L-stimulated group. Activation of B-

cells results in the upregulation of pro-apoptotic genes to increase the susceptibility of these 

cells to activation-induced cell death in the absence of sufficient pro-survival factors in order to 

exert control over potentially damaging immune responses. The upregulation of this set of genes 

by CD40 ligation appears to be sufficiently countered in this instance by genes enhancing survival 

such as the constitutive activation of the NF-κB pathway. It may indicate that WM cells are more 

susceptible than healthy cells to cell death without additional support from stromal cells or other 

secreted factors within the bone marrow. Another factor that may oppose the cell death is the 

downregulation of members of the FOXO pathway. Activation of this pathway results in 

apoptosis, so its downregulation may counteract the increased expression of other pro-

apoptotic genes. Genes associated with NK cell mediated cytotoxicity are also downregulated in 

the WM group, suggesting that WM cells may escape normal regulation, becoming less visible 

to immunosurveillance and thus creating an environment more conducive to their proliferation, 

unchecked by NK cells. 

Despite the profound impairment to plasma cell differentiation in WM cells subsequent to TLR7 

activation, only a limited number of genes were downregulated at this time point in comparison 

to healthy cells stimulated in the same manner. In contrast, a large number of genes in the WM 

cells demonstrated elevated expression. These included multiple genes involved in adhesion and 

cell-cell interaction. As with the comparison of cells stimulated with CD40L, WM cells stimulated 

with R848 demonstrate elevated expression levels of genes associated with TLR and NF-κB 

signalling. Once again, WM cells demonstrate upregulation of numerous components involved 

in cell-cell interaction, but to an even greater extent than following CD40L stimulation. This 

suggests that the WM cells may be attempting to initiate contact with other cells that would 

normally be found within the bone marrow or perhaps with each other. Of particular note is the 

absence of apoptosis associated genes, despite the virtual eradication of the WM population by 

this time point.  
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7.8.1.3 WM CD40L vs. R848 

Once again, differential expression of genes involved with apoptosis are notable by their 

absence. In comparison to their CD40L-stimulated counterparts, the WM cells stimulated with 

R848 display a catastrophic breakdown of essential regulatory pathways. This reflects the cell 

death but does not enable the elucidation of the genes involved in the initiation of this response.  

Interestingly, the PI3K-Akt signalling pathway is upregulated in R848-stimulated WM cells in 

comparison to both the CD40L-stimulated group and the healthy cohort stimulated with R848. 

Increased PI3K-Akt signalling in WM cell lines and primary cells was initially identified by Leleu 

and colleagues (Leleu et al., 2007). Evidence of constitutive activation of this pathway in primary 

CD19+ WM cells was further supported in a subsequent paper (Roccaro et al., 2010). Activation 

of the PI3K-Akt signalling axis results in increased proliferation and survival and is involved the 

homing of WM cells to the bone marrow (Vivanco and Sawyers, 2002; Leleu et al., 2007). Since 

the majority of the cell death in R848-stimulated WM cells occurs before day 6, it is interesting 

to speculate that the cells that have upregulated the PI3K-Akt pathway may be partially resistant 

to the apoptosis and that this is reflected in the differentially expressed genes between the two 

types of stimulation. 

7.8.2 Evidence of B-cell activation in R848-stimulated WM samples and 

expression of TLR mRNA  

One of the most important questions to address was whether WM cells are able to receive TLR7 

signals and integrate them successfully in order to initiate B-cell activation, as a failure to do so 

could explain the profound apoptotic response. The results from the RNA sequencing indicate 

that TLR7 stimulation does indeed activate WM B-cells. Stimulation of WM cells with R848 

upregulates multiple genes associated with B-cell activation that are similarly upregulated in 

R848-stimulated healthy cells including FosB, JunD, IL2Rα and CD138 (figure 7.26). Other genes 

associated with activation that were upregulated in WM cells but not healthy cells were CD83, 

CD22, CD69 and IL7R. This supports the data generated using WM supernatants, suggesting that 

WM cells could be sufficiently activated with R848 in order to trigger them to secrete one or 

more factors that can support B-cell proliferation and survival. 
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Figure 7.26 R848-stimulated WM cells demonstrate upregulation of multiple genes associated with B-

cell activation. Activation associated genes that are similarly upregulated in both WM and healthy 

samples are on the left, whilst those more specific for WM samples are on the right hand side. Mean 

RKPM values are shown for each gene with error bars representing the range. 

 

Evaluation of the expression of TLRs within the endosomes of WM cells by flow cytometry was 

inconclusive, but indicated that there might be variable expression between individuals. The 

sequencing data reveals that, in fact, TLR7 mRNA is the most highly expressed of the endosomal 

TLRs in both healthy and WM samples.  
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Figure 7.27 Expression of TLR genes in healthy and WM samples. Mean RKPM values are shown for each 

gene with error bars representing the range. 

 

The expression of TLR7 mRNA was fairly similar between healthy and WM cells, with WM cells 

expressing on average slightly lower levels. An exception to this was patient WM6, in which both 

samples possessed significantly lower expression of TLR7, significantly decreasing the average 

in figure 7.27. This is quite unexpected, as B-cells from this patient displayed some evidence of 

differentiation subsequent to R848 stimulation, whereas cells from patient WM7 appeared 

completely unable to respond to TLR stimulation, despite expressing similar levels of mRNA to 

healthy individuals. This implies that endosomal TLR expression is not necessarily correlated to 

mRNA expression levels and is controlled through post-translational mechanisms. The 

localisation of TLR7 to the endosome requires the shuttling protein UNC93B1 and it is also 

regulated by subsequent endosomal acidification and proteolytic cleavage, all of which are 

subject to additional control (Brinkmann et al., 2007; Kim et al., 2008; Ewald et al., 2011). This 

is in accordance with the literature, whereby endosomal TLRs in particular are more tightly 

regulated due to their capacity to bind self-ligands and potentially initiate an autoimmune 

response (Barton et al., 2006). The expression of the TLRs themselves therefore is likely quite 

variable, as the flow cytometry data suggested. Despite the potential variability of TLR 

expression between individuals, B-cells were activated in all instances, indicating that low levels 

of TLR7 are sufficient for B-cell activation. These results suggest that the TLR7 pathway within 

WM B-cells remains at least partly intact and that WM cells are receptive to additional activation 

signals via TLR7 ligation.
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7.8.3 Expression of genes within the plasma cell differentiation pathway 

Having established that WM cells remain capable of being activated by ligation of TLR7, the 

failure of these cells to successfully differentiate may be due to a perturbation of the genes 

associated with plasma cell differentiation. This, in turn, may provide evidence as to why WM 

cells are unable to survive following activation with R848. 

WM cells demonstrated differential expression of multiple key genes within the plasma cell 

differentiation pathway compared with healthy cells. Differences in gene expression were 

apparent subsequent to both types of stimulation and these are highlighted in figure 7.28.  
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Figure 7.28 Differential expression of genes involved in plasma cell differentiation. A comparison 

between the fold change in expression in WM vs. healthy samples subsequent to either CD40L or R848 

stimulation are depicted. The fold change was considered statistically significant if p <0.05; bars for genes 

that did not fall below this threshold are shown in pale tones.  

 

For WM cells stimulated with CD40L, fewer genes were significantly differentially expressed 

than for WM samples activated with R848. The magnitude of the fold change in expression was 

also lower for five of the six genes. WM cells exhibited decreased levels of PRDM1 – encoding 

the master regulator of plasma cell differentiation BLIMP1 – and POU2AF1 and conversely, 

increased levels of BACH2, CIITA, STAT3 and SPI-B. The regulatory relationship between BACH2, 
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SPI-B and PRDM1, with an increase in the former and a decrease in the latter are suggestive of 

a slight suppression of plasma cell differentiation. The repression of PRDM1 supports previous 

phenotypic analysis and may explain the delay in differentiation at this time point that is 

sometimes observed in WM cells in comparison to their healthy counterparts. Despite the slight 

delay in acquisition of PC phenotype in some instances, the effect of the differentially expressed 

genes is in general minimal, with the capacity of WM B-cells to generate plasma cells being 

retained (figure 7.29). 

 

 

 

Figure 7.29 Differentially expressed genes within the plasma cell differentiation pathway between WM 

and Healthy cells stimulated with either CD40L or R848. The interaction between key genes involved in 

plasma cell differentiation is depicted for cells stimulated with CD40L + F(ab’)2 anti-IgG/M (top) or R848 + 

F(ab’)2 anti-IgG/M (bottom). Genes that are upregulated in WM samples compared to healthy are in a 

larger font and bold whereas those that are downregulated are shown in a smaller font and italicised. 
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A greater number of members of this pathway are perturbed in WM cells subsequent to R848 

stimulation. IRF8, BACH2, SPI-B and MITF exhibit significantly increased expression, resulting in 

repression of both IRF4 and PRDM1, indicative of an impediment to plasma cell differentiation. 

The elevated levels of BACH2, SPI-B and IRF8 suggest that subsequent to activation, WM cells 

are able to become pre-plasmablasts or plasmablasts and are then unable to progress further 

(figure 7.29, bottom). Again, these data are in line with the results obtained from the in vitro 

experiments and provide an explanation for the decreased ability to generate plasma cells 

exhibited by the WM samples. 

7.8.4 Apoptosis of WM cells subsequent to activation with R848 

The most unanticipated result from the in vitro differentiation experiments was the profound 

cell death that occurred in WM cells following stimulation with R848 + F(ab’)2 anti-IgG/M. Given 

the ubiquity of the apoptosis within the WM cultures, one would anticipate either a substantial 

upregulation of pro-apoptotic genes or downregulation of pro-survival genes to be apparent, 

but this is not the case from the sequencing data. Within the WM cohort, the expression of Fas 

and FasL, key factors involved in activation-induced cell death are in accordance with the results 

presented earlier in this chapter, with Fas mRNA more highly expressed than FasL, but no 

different to the expression in healthy cells. There is no evidence of upregulation of caspases or 

members of the Bcl-2 family of proteins such as BAD, BAX and BIM.  

The variation between WM and healthy cells instead appears to result from the underlying 

differences in biology and does not provide a clear explanation as to the reason behind the cell 

death. Whilst the difference in gene expression between the two types of stimulation in WM 

cells is clear, it does not directly implicate a specific pathway as the initiator of the cell death.  

The cell death that is initiated in WM cells subsequent to stimulation with R848 occurs rapidly, 

with >50% of cells undergoing apoptosis between day 0 and day 3. This data provides a snapshot 

of the events occurring at day 6 of the differentiation and therefore reflects the end point of the 

life of the WM cells, where multiple essential pathways are profoundly affected. To provide 

greater insight into the genes and pathways involved in the initiation of this process, an earlier 

time point would need to be investigated. 

7.8.5 Downregulation of CD38 expression in WM samples   

The propensity of WM samples to generate a population of CD38- CD138+ cells during the course 

of differentiation separates them from both healthy controls and differentiations with B-cells 

isolated from patients with other LPDs. Strikingly, the four WM samples that generated this 
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unusual population exhibited significantly lower expression of CD38 mRNA, with an average 

expression of 7.63 compared to their healthy counterparts with an average expression of 11.49 

(table 7.6).  

 

Table 7.6 CD38 expression at day 6 of the in vitro differentiation is predictive of the occurrence of the 

CD38- CD138+ alternate plasmablast population at later time points. For matched samples, CD38 RPKM 

values represent the average between the two values. 

Patient Sample 
type 

% 
Neoplastic 

CD38 
RPKM 

CD38- 
CD138+ 

R848 
differentiation? 

WM7 BM 82 7.28 Yes No 

WM4 BM 69 7.39 Yes No 

WM6 BM 54 7.55 Yes No 

WM5 BM 31 8.3 Yes No 

WM11 BM 9.4 9.88 No Some  

WM15 PB 3.2 (in BM) 12.38 No  Yes 

 

 

Figure 7.30 Expression of CD38 mRNA in WM cells is highly correlated with the percentage of neoplastic 

cells. Percentage neoplastic cells within samples of WM patient BM were determined by flow cytometry 

at HMDS Leeds. Statistical analysis of log transformed data by Pearson’s correlation coefficient (n = 6, r = 

-0.9841, r2 = 0.9685, p (two-tailed) = 0.0004).  

 

Interestingly, CD38 expression directly correlates with the proportion of neoplastic cells within 

the bone marrow (figure 7.30). There appears to be a threshold between approximately 10-30% 

neoplastic cells whereby the CD38- fraction is sufficiently large in order to generate the CD38- 

CD138+ plasmablast intermediate. B-cells derived from the peripheral blood of a patient with 

WM possessed CD38 expression levels equivalent to the healthy controls (Table 7.6, WM15). 
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This sample did not generate a CD38- CD138+ population and successfully differentiated into 

plasma cells following stimulation with 1μg/ml R848 + F(ab’)2 anti-IgG/M indicative of a 

markedly lower disease burden within the peripheral blood compared to samples derived from 

bone marrow aspirates. 

CD38 is an ADP ribose hydrolase, cleaving NAD+ and NADP+ resulting in the generation of cyclic 

ADP ribose (cADPR), NAADP, and ADPR (Howard et al., 1993). Multiple functions of CD38 have 

been identified, with the most well characterised being its involvement in calcium signalling, cell 

adhesion and signal transduction (Malavasi et al., 2008). Whilst it has been found to play a role 

in B-cell signalling, the exact mechanism by which it does this remains unclear (Lund et al., 1998; 

Moreno-García et al., 2005).  

A potential explanation for this unusual finding is that transcriptional regulation within the WM 

cells is perturbed and that the downregulation of CD38 is simply a symptom of this. Alternatively, 

the WM clone may be undergoing selection for CD38 negativity. This possibility, whilst 

intriguing, is currently hard to explain as there is no evidence to support a deleterious role for 

CD38 in lymphocytes. Any potential cause/effect relationship between the appearance of the 

CD38- fraction and the proportion of the neoplastic WM clone cannot be determined from this 

data but warrants further investigation.   

7.8.6 Expression of MYD88 isoforms 

Five representative transcripts of MYD88 have thus far been annotated according to the RefSeq 

database, with sequence alignment indicating that there are at least 13 splice variants. 

Description of the frequency and function of MYD88 isoforms is limited, particularly in the 

context of B-lymphocytes, with the exception of a short form of MYD88, termed MYD88S 

(NM_001172568.1), which was evaluated by Janssens and colleagues (Janssens et al., 2002; 

Janssens et al., 2003). They revealed that MYD88S acts as a dominant-negative regulator of 

MYD88 (NM_002468.4) as it is unable to bind to IRAK4, despite being able to dimerise with the 

regular form of MYD88, thus abrogating downstream signalling. The regulatory function of 

MYD88S is due to the absence of the intermediate domain as a result of exon 2 being skipped 

during the splicing process.  Interestingly, one of the annotated isoforms (NM_001172567.1) is 

virtually identical to the regular form of MYD88, with the only difference in the final protein 

sequence being an 8 amino acid insertion within the TIR domain (figure 7.31). This insertion 

results from alternate splicing of exons 3 and 4, but leaves the rest of the sequence intact. The 

resultant protein can thus possess the leucine to proline mutation, but at position 273 (figure 

7.32).  
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Figure 7.31 Alternate splicing of MYD88 generates multiple isoforms. Gene diagrams illustrating the 

variable splicing for three of the MYD88 isoforms, with each exon represented in a different colour. 

MYD88 variant 1 possesses a longer 5’ UTR and exon 1 than the regular form of MYD88, but this does not 

alter the coding sequence. However, the alternate splicing of exons 3 and 4 results in the addition of an 

extra 8 amino acids. Complete skipping of exon 2 results in a short form of MYD88, MYD88S. 

 

 

Figure 7.32 The domain structure of MYD88 and MYD88 variant 1. The location of the additional 

sequence within MYD88 v.1 is indicated in orange. Numbers indicate amino acid positions. DD – death 

domain, ID – intermediate domain, TIR – Toll-interleukin-1 receptor domain. 

 

The potential for the expression of both MYD88 and MYD88 v.1 within several neoplastic B-cell 

and plasma cell lines and primary B-cells from a Schnitzler syndrome patient was initially 

investigated with a PCR that enables the two forms to be distinguished by their relative size 

(figure 7.33 top). However this preferentially amplified the regular isoform of MYD88 so MYD88 

v.1-specific primers were subsequently used to confirm the result (figure 7.33 bottom). 
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Figure 7.33 MYD88 v.1 is present in a variety of cell lines and a primary SchS sample. (Top) MYD88 

distiunguishing PCR. (Bottom) MYD88 v.1-specific PCR. The size and identity of the bands are indicated on 

the right hand side. Samples were run on 3% agarose gels at 150V for 90min. The dashed line indicates 

where the images were cropped to remove samples that are not within the scope of this project. The 

larger bands from the lower gel were excised, sequenced and confirmed to be non-specific. GAPDH was 

used as a control for confirming equal amounts of input cDNA (not shown). 

 

These data demonstrate that the variant 1 isoform is present within the L265P-mutated ABC 

DLBCL cell lines OCI-Ly3 and 10, the non MYD88-mutated Hodgkin lymphoma cell lines KM-H2 

and L-1236, but it is not present in H929, a multiple myeloma cell line. The isoform is also present 

in SchS B-cells, which were previously confirmed to possess MYD88L265P. The frequency of the 

co-occurrence of the variant 1 isoform with the regular form of MYD88 prompted investigation 

as to its presence within the samples that were analysed by RNA sequencing. This data reveals 

that MYD88 v.1 is present in 2/3 healthy individuals and 5/6 WM patients at approximately 1/5th 

the frequency of the regular form of MYD88 (table 7.7). Its presence within the other two 

samples could not be confirmed due to poor sequencing coverage of this region. 

 

200bp 

300bp 

400bp 

256bp –  

MYD88 v.1 

Non specific 

100bp 

200bp 

137bp – MYD88 v.1 
103bp – MYD88 
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Table 7.7 MYD88 v.1 is present in WM and healthy primary differentiating cells  

Sample % Neoplastic clone MYD88 v.1 Comments 

WM4 69 Yes  

WM5 31 Yes  

WM6 54 Yes  

WM7 82 Yes  

WM11 9.4 undetermined Read depth too low 

WM15 3.2 Yes  

Healthy1 - Yes  

Healthy2 - undetermined Read depth too low 

Healthy3 - Yes  

 

The presence of MYD88 v.1 in all samples that had sufficent sequence coverage suggests that 

this isoform has some functional significance and may act in a regulatory capacity. The high 

levels of clonality in WM4, 6 and 7 imply that MYD88 v.1 is most likely mutated in these cases.  

Modelling of the tertiary structure of the two isoforms demonstrates the effect of the additional 

amino acids to the conformation of the protein (figure 7.34). 

 

 

Figure 7.34 Ribbon diagram of the structure of MYD88 and MYD88 variant 1. The location of the 

additional sequence is highlighted. 

 

The insertion of the additional sequence results in an extended loop between the βC and αC 

region of the protein which lies within the TIR domain. This conformational change has the 

potential to affect either the interaction of the protein with the intracellular TIR domain of TLRs 

or the subsequent formation of the Myddosome complex. However, preservation of the 
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intermediate domain suggests that variant 1 should be able to activate downstream signalling 

via IRAK1 and 4, if its oligomerisation is unaffected. Preliminary data tentatively suggests that 

L273P-mutated MYD88 v.1 does indeed activate NF-κB, but not to the same extent as MYD88L265P 

(luciferase reporter assay performed by C. Evans). The potential for existence of a mutated 

version of MYD88 that retains functional capacity but without the gain-of-function normally 

conferred by the mutation is intriguing but more investigation is required to determine the 

functional capacity of the protein.  

7.8.7 Summary of major findings from RNA-sequencing 

There is evidence of upregulation of multiple key pathways that play a role in WM pathogenesis, 

including activation of NF-κB, TNF and TLR signalling and upregulation of a wide variety of 

chemokines and cell adhesion molecules in WM samples cultured with both types of stimulation 

(table 7.5). WM cells demonstrate their clonality via the loss of Ig repertoire in comparison to 

the healthy samples. WM cells are activated with R848, upregulating multiple genes associated 

with activation that are shared with the healthy contingent and exhibit high levels of TLR7 gene 

expression, although this might not reflect the expression in situ (figures 7.28 and 7.29). 

In contrast to the healthy cells, the WM cells show some evidence of constrained plasma cell 

differentiation that is more profound subsequent to R848 stimulation than CD40L stimulation. 

This is not replicated in healthy cells, where there is no significant difference in gene expression 

between the two types of stimulation (table 7.5). 

The unusual population of CD38- CD138+ cells that appears to be restricted to B-cells derived 

from WM patients is accompanied by a significant downregulation of CD38. The levels of CD38 

expression correlate with the total proportion of the neoplastic clone and may be linked with 

the extent of plasma cell differentiation (table 7.6, figure 7.30). 

Whilst a multitude of pathways essential for cell survival are profoundly affected in the R848-

activated WM cells, there is little evidence to suggest significant upregulation of either pro-

apoptotic or downregulation of pro-survival genes. These results are tempered by the fact that 

sequencing data from cells at day 6 might be too late a time point to detect an initiating pathway. 

However, it does appear that the bone marrow microenvironment is of critical importance to 

WM cells and the susceptibility to apoptosis following TLR7 stimulation may be linked to an 

absence of additional survival signals. This interpretation would also concur with the ability of 

CD40L to rescue R848 stimulated WM cells.
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7.9 Discussion 

In previous chapters, the in vitro differentiations were performed with total B-cells. The closest 

analogue of WM cells in healthy individuals are memory B-cells, which comprise a smaller 

percentage of total B-cells than the naïve fraction, so it was possible that any similarities 

between healthy memory cells and WM cells were being masked by the naïve population. 

Therefore, the response of both the memory and naïve B-cell subsets to stimulation with the 

TLR7 agonist were characterised to assess whether the response of WM cells to this type of 

stimulation could be recapitulated. As expected and in accordance with the literature 

(Bernasconi et al., 2003; Simchoni and Cunningham-Rundles, 2015), memory B-cells exhibited a 

significantly greater proliferative response to R848 stimulation than their naïve counterparts 

and generated not only a greater number of plasma cells, but these cells survived far better than 

the plasma cells generated by the naïve fraction (figures 7.1 and 7.2). This demonstrates that 

the impaired plasma cell differentiation and cell death exhibited by the WM cells is not as a 

consequence of a deficient memory B-cell response to TLR agonism, but rather it must be 

attributed to another factor. 

Another potential cause of the aberrant response of WM cells to R848 stimulation is the 

presence of MYD88L265P. However, the sensitivity of WM cells to R848-induced cell death could 

not be replicated in either WM or DLBCL cell lines possessing the MYD88L265P mutation (figure 

7.3). Similarly, addition of a synthetic TLR9 agonist, CpG ODN 2006, did not induce cell death 

(figure 7.4). This demonstrates that the apoptosis of WM cells following TLR7 stimulation is not 

a result of the MYD88L265P per se.  

Since the cell death in the WM population did not appear to be as a consequence of either an 

aberrant response of memory-like cells or be the attributed solely to the MYD88L265P mutation 

itself, another avenue of investigation was pursued – that of autocrine or paracrine secretion as 

a potential trigger for apoptosis. An example of this phenomenon has been established in CLL 

cells following treatment with various TLR9 agonists. In this instance, B-cells isolated from the 

peripheral blood of patients with CLL were cultured with either class A or class B CpG ODNs 

(Liang et al., 2010). Class B compounds potently induced apoptosis in these cells through 

autocrine production of IL-10 and subsequent STAT1 phosphorylation resulting in the activation 

of multiple pro-apoptotic genes. 

In the light of the results published by Liang and colleagues, the effect of the addition of 

supernatant taken from differentiating WM cells at various time points to healthy cells was 

investigated. The most significant effect of the addition of WM supernatant occurred in healthy 
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cells that were activated with R848 + F(ab’)2 anti-IgG/M. Supernatant derived from WM cells 

that have been stimulated with R848 did not result in either a decrease in cell number or a 

reduction in viability in healthy differentiating cells, even though the WM cells are undergoing 

high levels of cell death in this condition (figures 7.6 and 7.8). Surprisingly, healthy cells with the 

addition of supernatant from R848-stimulated WM cells proliferated to a greater extent than 

the control cells and demonstrated increased viability. The proportion of viable cells within the 

cultures was increased by approximately 30% in each donor (figures 7.6 and 7.8). Whilst this 

contributes to the elevated total cell counts, the difference between the viability of the control 

group and that of the cells following the addition of the supernatant is not sufficient to explain 

this fully, therefore these cells must also be proliferating to a greater extent.  

The increase in cell number and viability were accompanied by phenotypic changes, with these 

cells exhibiting a delay in the acquisition of markers signifying a more mature phenotype (figures 

7.7 and 7.9). This indicates that stimulation with R848 induces WM B-cells to secrete one or 

more factors that delay differentiation, resulting in the healthy cells remaining in a more highly 

proliferative state for longer and which is reflected in the alteration to the observed phenotype. 

Whilst the delay to differentiation may account for some of the increase in the viability of these 

cells, it seems likely that the WM cells are also producing factors to support cell survival.  

An important caveat to consider when assessing these results is the potential impact of R848 

carryover between the WM and healthy cultures. Residual R848 has previously been shown to 

affect both the cell number and phenotype in a similar manner to that which was observed here. 

However, the supernatant taken from the differentiating WM cells was diluted 10-fold in the 

final volume added to the healthy cells, reducing the concentration from 1μg/ml to 0.1μg/ml. 

Assessment of the effect of prolonged stimulation with 0.1μg/ml R848 demonstrated that this 

concentration had a negligible impact on cell number and phenotype. Therefore, the effect of 

the secreted factors by the WM cells may be augmented by the residual R848 within the 

supernatant, but this likely does not account for the majority of the observed effect. 

A considerably more limited effect was observed for healthy cells that received CD40L 

activation. In this instance, the addition of the WM supernatant did not significantly increase 

cell number or viability (figures 7.6 and 7.8). However, the day 3 supernatant from both types 

of stimulation may result in an increase to cell numbers as these trend towards significance. 

Subtle changes in the phenotype were observed subsequent to the addition of R848 supernatant 

(figures 7.7 and 7.9).  

Potential candidate factors that the WM cells could be secreting are the cytokines BAFF and 

APRIL. BAFF - B-cell activating factor - is a member of the tumour necrosis factor (TNF) ligand 

family and plays a key role in B-cell development; it promotes differentiation, enhancing both 
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survival and proliferation (Mackay et al., 2003). BAFF is able to bind to three TNF receptors found 

on B-cells, with a different affinity for each. In order of decreasing affinity, these are; BAFF 

receptor (BAFF-R), transmembrane activator and calcium modulator and cyclophilin ligand 

interactor (TACI) and B-cell maturation antigen (BCMA) (Thompson et al., 2001).  A related TNF 

ligand APRIL (a proliferation-inducing ligand) is also able to bind both TACI and BCMA, but not 

BAFF-R (Marsters et al., 2000). Both BAFF and APRIL are upregulated by B-cells subsequent to 

activation (He et al., 2004a; Kern et al., 2004; Chu et al., 2007). Addition of BAFF to CD40L-

stimulated B-cells by Do et al., resulted in reduced apoptosis within the in vitro cultures and 

correspondingly increased the total cell counts, similar to that which was observed here (Do et 

al., 2000).   

In support of this hypothesis, WM cells have been shown to express high levels of BAFF-R and 

serum BAFF levels are significantly higher in WM than healthy controls (Elsawa et al., 2006). It is 

perhaps not surprising that the secretome of activated WM B-cells and plasmablasts appear to 

foster an environment that is conducive to cell proliferation and survival as this support would 

be advantageous to the neoplastic clone. What is unexpected is the production of these factors 

by WM cells subsequent to R848 stimulation, when the cells are in terminal decline, enhancing 

the proliferation of healthy cells (figures 7.6 and 7.8). It is clearly not sufficient to rescue the WM 

cells from apoptosis. It may be, therefore, that in a different context, such as when the WM cells 

are in vivo and in receipt of supplementary signals from the bone marrow microenvironment, 

TLR7 stimulation elicits the production of additional secretory factors that, in turn, facilitate 

enhanced growth and survival of the WM clone. 

The culture conditions used within the in vitro system, whilst efficient at generating plasma cells 

and facilitating their survival for long periods, represent a simplified version of the true bone 

marrow niche. In vivo, B-cells located within this niche would be subject to a myriad of signals 

from the stromal microenvironment (Tripodo et al., 2011; Wang and Wagers, 2011; Smith and 

Calvi, 2013). Of particular note, mast cells are frequently observed in close proximity to WM 

cells in the bone marrow and have been shown to regulate WM proliferation through expression 

of CD40L, BAFF, PDGF and VEGF (Tournilhac et al., 2006). The addition of CD40L at the initiation 

of the in vitro culture rescued the WM cells from decline and enabled their successful 

proliferation and differentiation (figures 7.17-7.19). Activation of WM cells with CD40L and R848 

resulted in a synergistic effect on cell number at day 6, with a greater number of cells generated 

than would occur simply by combining the numbers from each individual stimulation together 

(figure 7.17). In contrast, the dual stimulation resulted in an increase to cell number in only one 

of the healthy donors and this was an additive rather than a synergistic response (figure 7.15).  
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Whilst the addition of only one extra stimuli does not recapitulate the complexity of the true 

bone marrow microenvironment, the ability for supplementary signalling to alter the fate of WM 

cells so drastically highlights the importance of a combination of signals to the maintenance of 

these cells. It is suggestive that when WM cells are localised within the multicellular 

environment of the bone marrow, along with the milieu of additional secreted elements, further 

activating stimuli may result in a proliferative response. The fact that the combination of 

activating stimuli has a synergistic effect on the WM cells may reflect their increased propensity 

to proliferate in vivo over the population of wild-type cells.  

7.9.1 TLR expression in patient samples 

A further possible factor in the aberrant response of WM cells is the level of expression of TLR7. 

Results of RNA sequencing on WM cells and data from Staudt and colleagues and Wang et al., 

suggest that functionally intact TLR7 are required, but TLR protein expression has not been 

quantified in any of these studies (Lim et al., 2013; Wang et al., 2014; Hunter et al., 2016). 

Therefore, expression of the three endosomal TLRs – 7,8 and 9 – were assessed on primary B-

cells isolated from healthy individuals and from patients with a variety of lymphoproliferative 

disorders. Unfortunately, data on WM samples was limited due to the scarcity of samples.  

Interestingly, the WM cell lines expressed all three endosomal TLRs at high levels (figure 7.21). 

The high expression in these cell lines may contribute to differences between the results of 

experiments with cell lines compared to those with primary cells. In the primary samples 

assessed here, TLR expression was quite variable between individuals, but in general, TLR9 was 

the most highly expressed, with TLR7 and 8 expression considerably lower (figures 7.21 and 

7.22). The absence of LAIR1 expression can be used to distinguish the WM clone from the non-

neoplastic fraction, so this was used to identify the two populations, if present. The second WM 

sample consisted of a very high proportion of neoplastic cells, but the first sample could be 

clearly separated into LAIR1+ and LAIR1- populations. For both samples, the LAIR1- cells 

possessed low levels of TLR7 expression, whereas the LAIR1+ population in the first sample 

demonstrated significant TLR7 expression (figures 7.21 and 7.22). Whilst the expression of TLR7 

and 8 in the healthy samples in general was low, interestingly, the WM LAIR1- populations 

possessed the lowest MFI value for both TLR7 and TLR8.  

Surprisingly, the RNA sequencing data revealed that TLR7 was the most highly expressed TLR in 

both healthy and WM samples (figure 7.27), although its expression was considerably lower in 

one of the six WM samples than the rest. The disparity between the gene expression and protein 

expression (figures 7.21 and 7.22) implies that post-translational regulation is occurring. It 
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remains possible that WM cells downregulate TLR7 protein expression but conclusions are 

currently very tentative. Nevertheless, this remains an interesting prospect and requires further 

investigation to determine if this is the case. 

7.9.2 Fas/FasL expression during the course of in vitro differentiations  

The results from the supernatant experiments suggested that stimulation with R848 may induce 

overexpression of pro-apoptotic genes that overcome the autocrine pro-survival signalling. Fas 

and FasL are essential for the regulation of the immune response via activation induced cell 

death. Therefore the expression of Fas and its ligand on the cell surface of WM cells were 

assessed. Whilst both were considerably upregulated from their basal expression, as expected, 

there was no significant differences between the WM samples and the healthy controls (figure 

7.14). Whilst activation primes WM cells for AICD, it is unlikely to be the root cause for the 

profound apoptotic response of these cells following stimulation with R848. The RNA 

sequencing data concurs with these findings, confirming that the samples possessed greater 

expression of Fas than FasL at day 6 of the differentiation, but that there was no difference in 

gene expression between the healthy and WM samples. 

7.9.3 RNA sequencing 

RNA sequencing was performed on samples taken during in vitro differentiations in order to 

address several key questions. These included the ascertainment of whether WM B-cells were 

receptive to activation signals from TLR7 ligation, if there was any variability between the 

expression of genes involved in plasma cell differentiation compared to healthy cells, whether 

the apoptotic response of the WM cohort to R848 stimulation be attributed to the dysregulation 

of a particular pathway and how these results integrate with other data presented here and the 

current literature. 

The clonal nature of the WM samples was confirmed by the highly skewed Ig repertoire. 

Kriangkum et al., reported that the most frequent family usage at 74% was IGHV3 (Kriangkum 

et al., 2004b). However, in the data presented here, virtually all of the IGHV3 genes were 

downregulated. This may be because the cohort of patients assessed by Kriangkum is much 

larger than that which was analysed here. Also, it is possible that the pool of WM B-cells is indeed 

skewed towards IGHV3 but that these cells either do not or are unable to differentiate and 

therefore do not contribute to the population of plasmablasts at day 6. 

The sequencing data highlights the essential contribution of the bone marrow environment to 

the pathogenesis of WM. The elevated expression of multiple genes involved in the localisation 
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of WM cells to the bone marrow demonstrates their propensity to home in on this niche and 

remain within it (table 7.5). In addition to this, the WM cells significantly upregulate genes that 

are key for cell-cell interaction and appear to secrete factors that support B-cell survival. This 

indicates that the WM cells may exert an influence on their environment in order to foster their 

own survival advantage.  

WM cells stimulated with R848 upregulated multiple genes associated with B-cell activation that 

were similarly upregulated in the healthy cohort, confirming that they are able to integrate the 

signal into a response. However, there does appear to be a block in WM plasma cell 

differentiation, suggestive of an uncoupling of the differentiation signal somewhere 

downstream of TLR activation (figure 7.28). WM cells stimulated with R848 demonstrated 

elevated levels of IRF8, BACH2 and SPI-B, which repress B-cell differentiation, with a 

corresponding decrease in IRF4 and PRDM1 (figures 7.28 and 7.29). The interplay between these 

genes suggests that the WM cells may reach a plasmablast or pre-plasmablast stage but are 

thereafter unable to proceed. This concurs with the phenotypic data, whereby the small 

proportion of WM cells that are able to respond following activation with R848 are able to begin 

to downregulate CD20 and upregulate CD38 but fail to generate plasma cells. 

Accordingly, Zhou et al. observed an increase in SPI-B and decrease in POU2AF1 in CD19+ cells 

isolated from WM patients compared to their healthy counterparts (Zhou et al., 2014). An 

impediment to plasma cell differentiation in WM cells may serve to maintain the neoplastic B-

cell pool, with a proportion of these cells undergoing differentiation following the receipt of a 

sufficiently potent stimuli.  

The phenotypic rescue by supplementary stimulation with CD40L in WM cultures that would 

have otherwise succumbed to apoptosis and failed to differentiate following activation with 

R848 suggests that WM B-cells may require additional activation signals, such as the ligation of 

CD40L to successfully progress past the plasmablast stage. In vivo, this signal is likely to be 

provided by mast cells which aggregate with WM cells within the bone marrow, promoting the 

proliferation of the neoplastic clone (Tournilhac et al., 2006). Furthermore, mast cells have been 

shown to upregulate CD40L in response to soluble CD27, which is elevated in the sera of WM 

patients (Ho et al., 2008). 

Even with sufficient prerequisite signalling, WM cells may not differentiate in the conventional 

manner in vivo, with an intermediate CD38- CD138+ population generated subsequent to both 

CD40L and dual CD40L + R848 stimulation during in vitro experiments, although this remains to 

be further substantiated.  
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Assessment of CD38 expression in the WM cohort was most intriguing. WM cells displayed 

significantly decreased CD38 expression in comparison to the healthy cells and the extent of the 

decrease was highly correlated with proportion of neoplastic cells (figure 7.30). From this data, 

it is currently impossible to determine whether this downregulation is significant to WM 

pathogenesis or whether it is simply a collateral effect from disruption to a related pathway. 

What is clear however, is that it substantially influences the phenotype of the differentiating 

cells, with WM samples below a certain threshold of CD38 expression generating the enigmatic 

CD38- CD138+ population that was not observed in any other sample type. Further investigation 

into CD38 expression is warranted as this may influence the viability of treatment with anti-CD38 

antibodies in patients with a high disease burden.  

The sequencing data enabled investigation into the presence of a second isoform of MYD88 

within the samples (figure 7.31). MYD88 variant 1 possesses an identical amino acid sequence 

to the regular form of MYD88, but with the addition of an 8 amino acid insertion that elongates 

a loop between the β-sheet C and α-helix C region of the protein (figure 7.32). Surprisingly, 

MYD88 v.1 was detected in all samples which had sufficient read depth. The presence of this 

isoform within cell lines or primary B-cells has not previously been documented, but it may 

represent a mechanism by which MYD88 signalling is regulated. Further investigation as to its 

function in both a wild-type and L273P-mutated context is required to provide insight as to its 

role. Nevertheless, the ability to favour the production of a less pathogenic isoform over another 

whilst retaining overall protein function is an exciting prospect. Advances in the development of 

antisense oligonucleotides to influence splicing is a promising avenue for new therapeutics and 

could have potential in WM (Garcia-Blanco et al., 2004; Havens and Hastings, 2016). 

7.9.4 Apoptosis in WM cells 

Work published by Wang et al. indicated a role for TNFAIP3 in the regulation of proliferation in 

murine B-cells that were retrovirally transduced with MYD88L256P (Wang et al., 2014). They 

reported that activated B-cells transduced with mutant MYD88 underwent proliferation in the 

absence of additional mitogens, but that this was self-limiting due to the induction of a negative 

feedback loop that was at least partly due to increased levels of TNFAIP3. They also suggest that, 

in order to overcome this innate regulation, additional dysregulation of genes involved in 

apoptosis, such as those from the BCL2 family or BCL2 itself are likely to be involved (Wang et 

al., 2014). Indeed, WM cell lines that do not possess mutations in CXCR4 or BTK - which normally 

contribute to resistance to Ibrutinib - appear to acquire drug resistance by upregulating BCL2 

(Cao et al., 2015; Paulus et al., 2017a). The BCL2 inhibitor Venetoclax has demonstrated efficacy 

in a small number of patients with relapsed/refractory WM, although examination of BCL2 
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expression alone is insufficient to predict response (Davids et al., 2017). BCL2 is upregulated in 

the WM samples compared to the healthy samples at day 6 of differentiation, although only by 

a very modest log2 fold increase of 1.2. Further investigation is required to determine the 

contribution of BCL2 or other BCL2-family proteins to WM cell survival. 

The expression of TNFAIP3 in the WM samples was assessed in order to determine if a similar 

situation as postulated by Wang and colleagues was occurring in the primary cells, thus resulting 

in cell death subsequent to activation. In contrast to their findings, TNFAIP3 was not upregulated 

in the WM cells, nor were there any significant differences in apoptosis associated genes. There 

are several explanations for this, the first of which being that it may simply reflect the differences 

between murine and human B-cells. However, it seems more likely that simply transducing B-

cells with the MYD88L265P mutation does not sufficiently recapitulate the complexity of this 

neoplasm. This is supported by the data from Knittel et al., demonstrating that MYD88L265P is 

insufficient to cause a WM-like phenotype in mice (Knittel et al., 2016). It is also possible that 

the gene expression data presented here is capturing a time point that is too late to identify an 

upregulation of TNFAIP3 that may have occurred rapidly following B-cell activation. Assessment 

of TNFAIP3 expression at an earlier time point in the differentiation would enable a more 

definitive conclusion to be made. 

WM cells stimulated with R848 do not appear to upregulate a significant number of either pro-

apoptotic genes or downregulate pro-survival genes, despite a profound breakdown in many 

essential pathways (table 7.5). Interestingly, a similar result was reported by Gaudette and 

colleagues following analysis of a gene expression database containing samples from WM, CLL, 

MM as well as healthy B-cells and plasma cells (Gaudette et al., 2016). A comparison of WM cells 

to the other groups demonstrated that WM cells, similarly to healthy plasma cells, express low 

levels of both pro- and anti-apoptotic genes. In the light of the constitutively active NF-κB 

signalling responsible for the survival advantage of the neoplastic clone, they proposed a 

threshold model to explain the resistance to the induction of apoptosis in WM cells. They 

postulate that WM cells are resistant to apoptosis, not via the additional overexpression of anti-

apoptotic genes, but rather by low expression of members of the pro-apoptotic Bcl2 family, 

creating a requirement for high levels of pro-apoptotic signalling to initiate cell death.  

In accordance with this, the WM gene expression data indicates that these cells express Bcl2 

family members such as BAD, BAX, BIM at similar levels to the healthy controls and that BCL2 

itself is not differentially expressed. Whilst the analysis by Gaudette et al. involves some data 

from cell lines that are not necessary representative of primary WM cells, the data generated 

from primary cells is consistent with the findings reported here.  
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Whilst the expression of both pro- and anti-apoptotic genes is low in WM cells, they appear to 

maintain their existence by a combination of constitutive activation of NF-κB, autocrine 

signalling and support from other cells within the bone marrow microenvironment. In this 

instance, the scales are firmly weighted towards the survival advantage of the neoplastic clone 

over the wild-type population. However, in the absence of additional signals, WM cells are more 

delicately balanced at a point between survival and apoptosis. It would appear therefore that 

stimulation with CD40L serves to tip the balance one way – towards proliferation, and that TLR7 

stimulation tips the scales in the other direction, resulting in WM cell death.  
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Chapter 8  – Discussion 

8.1 Feasibility of the in vitro system to model B-cell differentiation in 

Waldenström macroglobulinemia  

The ability of the in vitro system to model WM B-cell differentiation was validated in comparison 

to healthy cells. The stimuli used initially were CD40L and F(ab’)2 anti-IgG/M, a combination 

which mimics T-cell dependent activation. The inclusion of F(ab’)2 anti-IgG/M was not required 

by either naïve or memory cells from healthy donors to generate plasma cells, although its 

omission resulted in a delay to differentiation (figure 3.6). In contrast, CD40L stimulation was 

essential for both cell survival and plasma cell generation (figures 3.8 and 3.9). The synergism 

between BCR and CD40L signalling is well established (Bishop et al., 1995; Haxhinasto et al., 

2002; Haxhinasto and Bishop, 2004). However, when the BCR is ligated in the absence of a 

second signal, B-cells are primed to undergo activation-induced cell death to prevent 

autoimmunity and this appears to be recapitulated within the in vitro system (Lagresle et al., 

1996; Rathmell et al., 1996). 

Stimulation of B-cells isolated from the bone marrow of WM patients in a T-dependent manner 

generated plasma cells that were phenotypically identical to those from healthy individuals 

(figure 3.10). In contrast to healthy individuals however, approximately half of the WM samples 

generated a fraction of CD138+ cells without prior upregulation of CD38, which will be discussed 

further (figure 3.12). The MYD88L265P mutated fraction of WM cells continued to be present 

within the in vitro cultures to at least day 6, as confirmed by RNA sequencing and contributed 

to the observed phenotype.  

Whilst WM cells generate plasma cells within the same time frame as healthy cells, they did not 

proliferate to the same extent as cells from healthy individuals (figure 3.11). It is worth noting 

that the viability of the isolated B-cells from samples of BM were affected by the length of time 

they were in storage. This resulted in a decrease in cell number between day 0 and day 3 of the 

differentiation that was not observed in the healthy controls, which were prepared within 24 

hours of sample collection. Nevertheless, the magnitude of the proliferation between day 3 and 

day 6 in most WM samples was less than that observed for healthy cells. This may indicate that 

the WM cells require a further extracellular signalling component for optimal proliferation that 

is not being provided in the in vitro conditions used. 
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In comparison to healthy cells, a proportion of WM B-cells exhibited an impairment to CD20 

downregulation following stimulation with CD40L + F(ab’)2 anti-IgG/M (figure 3.12). CXCR4 

signalling is involved in the regulation of CD20 surface expression, with SDF-1 treatment 

increasing CD20 in CLL cells (Burger and Kipps, 2006; Pavlasova et al., 2015; Pavlasova et al., 

2016). On the surface of mature B-cells, CD20 associates with the BCR in lipid rafts (Petrie and 

Deans, 2002; Polyak et al., 2008). Chronic active BCR signalling is thought to play a role in WM 

(Ciric et al., 2001; Argyropoulos et al., 2016; Munshi et al., 2017). However, the frequency of 

mutations within the BCR signalling cascade in WM appears to be limited to a small subset of 

patients, with an incidence of approximately 15% reported (Poulain et al., 2013; Varettoni et al., 

2013). Nonetheless, preservation of the structure of surface IgM within the neoplastic clone and 

upregulation of basal levels of phosphorylation within the BCR signalling cascade indicates that 

a functional BCR is important for WM cells (Ciric et al., 2001). Complete activation of B-cells 

subsequent to BCR ligation is dependent on an increase in cytoplasmic free calcium, initially 

from intracellular stores, but following their depletion there is an influx of extracellular calcium, 

facilitated by CD20 which acts as a store-operated cation channel (Li et al., 2003). Intact BCR 

signalling is required for this process as CD20 is thought to co-opt components of the pathway 

to facilitate calcium influx (Walshe et al., 2008). Retention of CD20 on the surface of WM cells 

may therefore serve to sustain their activation in concert with chronic active BCR signalling. 

Analysis of the phenotype of isolated WM B-cells revealed that the expression of CD27 was 

lower than healthy controls. Initially, this appears to be at odds with the literature, as WM cells 

are thought to derive from a memory B-cell origin, which is classically identified by expression 

of CD27 (Agematsu et al., 1997; Klein et al., 1998; Tangye et al., 1998; Agematsu et al., 2000; 

Sahota et al., 2002). However the incidence of CD27 negativity in WM cells has been established 

by multiple groups and is now generally accepted (Kriangkum et al., 2004b; Babbage et al., 2007; 

Sahota et al., 2009; García-Sanz et al., 2016). The absence of CD27 on WM cells may be due to 

shedding throughout disease advancement in a similar manner to multiple myeloma or 

derivation from a CD27- precursor, although a definitive conclusion has yet to be reached 

(Moreau et al., 2006; Babbage et al., 2007; Sahota et al., 2009). Despite low initial expression of 

CD27, the upregulation of this marker appears unaffected in WM cells. 

The in vitro system provides a unique opportunity to analyse WM cells in the process of 

differentiation. The robustness of this model has been confirmed by the uniformity of 

differentiation in healthy samples (figure 3.5) and conversely, samples from lymphoproliferative 

disorders determine that it does not confer the ability to differentiate on cells which would be 

unable to do so in vivo (figure 5.1). Validation of this model demonstrates that WM cells are 

successfully able to generate plasma cells following stimuli that mimic T-cell dependent 
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activation (figure 3.12). Cell lines lose the flexibility of WM primary cells to differentiate, a 

feature crucial for WM pathogenesis. The capacity of this model system to retain WM plasticity 

provides a valuable tool that complements current work with WM cell lines. Whilst a mouse 

model bearing a B-cell mutation orthologous to MYD88L265P has been developed fairly recently, 

it does not recapitulate WM, confirming that the presence of this mutation alone is insufficient 

to accurately model this neoplasm (Knittel et al., 2016).  

8.2 CD38 expression in WM cells 

A novel feature of differentiating WM cells was the generation of an unusual population of CD38- 

CD138+ cells. This occurred in over 40% of differentiations with WM cells stimulated with CD40L 

(figure 3.12). In each instance, the population arose between day 6 and day 13. It was initially 

unclear as to whether this population represented an alternate plasmablast-like intermediate 

or a fully-fledged CD38- plasma cell population. The relationship between these cells to the other 

phenotypic fractions within the WM samples and to populations within healthy cultures by the 

SPADE algorithm suggests that these cells are more similar to fully differentiated plasma cells or 

at the very least plasmablasts on the cusp of becoming plasma cells, than traditional CD38+ 

CD138- plasmablasts (figure 6.14). The expression of the other phenotypic markers assayed was 

unaffected in this unusual population of cells and they did not assist in predicting the 

appearance of the CD38- CD138+ fraction. The best predictor of the CD38- CD138+ population 

was CD38 expression at day 0 and day 6 of differentiation. Samples that generated CD38- CD138+ 

cells demonstrated very low levels of expression of CD38 following B-cell isolation which did not 

increase to day 6, in contrast to the WM samples that did not produce this population, which 

expressed significantly higher levels of CD38 at this time point (figure 3.17).  

The presence of this population was not detected in WM cells following stimulation with the 

TLR7 agonist R848 (figure 4.14). The samples with the highest proportion of neoplastic cells 

displayed an inability to differentiate, coupled with induction of a profound apoptotic response 

and thus these cells are eliminated (figure 4.12). This fraction may be particularly susceptible to 

apoptosis in the absence of the correct survival signals. In contrast, the proportion of CD38- 

CD138+ cells in SchS samples increased in R848-stimulated cells following omission of F(ab’)2 

anti-IgG/M (figure 5.15). CD38 and the BCR co-localise within lipid rafts and thus BCR stimulation 

may modulate CD38 surface expression (Lund et al., 1996; Deaglio et al., 2003; Malavasi et al., 

2008). The extent of ligation of the BCR may therefore influence the fate of these cells to become 

either traditional CD38+ CD138+ plasma cells or for them to adopt a CD38- CD138+ phenotype. 
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CD38 was highly differentially expressed between WM and healthy individuals, with a significant 

downregulation of CD38 in WM cells. Fascinatingly, CD38 expression was very highly inversely 

correlated with the proportion of neoplastic B-cells within the bone marrow of these patients 

(figure 7.30). There appears to be a threshold of CD38 expression below which results in the 

generation of CD38- CD138+ cells. Further investigation of this population is required in order to 

determine whether its presence is due to the influence of selective pressure or if it is a symptom 

of an underlying dysregulation to transcriptional regulation. The occurrence of this population 

in cells derived from Schnitzler syndrome patients could prove to be extremely helpful in 

determining the underlying cause of CD38 downregulation due to the different mutational 

burden in these cells. 

The relative presence of CD38 on WM cells is likely to influence treatment decisions in the 

future. The CD38 monoclonal antibody Daratumumab is currently undergoing phase II trials in 

WM in combination with Ibrutinib (Trial number NCT03187262) but the results are as yet 

unpublished. Research into the efficacy of Daratumumab in WM has been carried out by Paulus 

and colleagues, however much of the analysis has been done in cell lines and this may not reflect 

the reality in vivo (Paulus et al., 2016; Paulus et al., 2017b; Paulus et al., 2018). Expression of 

CD38 on the three most characterised WM cell lines is high but varies considerably, at 99.5%, 

91.5% and 44.4% for RPCI-WM1, MWCL-1 and BCWM-1, respectively (Paulus et al., 2015). The 

authors sought to confirm CD38 expression levels in primary cells and whilst they concluded that 

expression was similar to that of the cell lines, they only analysed two samples. Considerably 

more substantive prior reports on the phenotype of primary WM cells indicate that in vivo 

expression of CD38 is most likely lower than that suggested by Paulus et al. A large study 

conducted in 2001 analysing the bone marrow of over 100 patients identified CD38 expression 

in 37.8% in WM B-cells, with positivity defined as the presence of the marker in 50% of cells or 

above (Barrans et al., 2001). Konoplev et al. subsequently reported CD38 expression in 48% of 

WM samples, with a cut-off of more than 20% defining antigen positivity (Konoplev et al., 2005).  

CD38 downregulation has been reported in patients with multiple myeloma following treatment 

with Daratumumab and there is evidence of a similar effect occurring in WM cell lines (Ise et al., 

2016; Nijhof et al., 2016; Paulus et al., 2016; Minarik et al., 2017). The propensity of WM cells 

to downregulate CD38 to an increasingly greater extent as the proportion of neoplastic clone 

increases is of serious concern with regards to the efficacy of treatment with anti-CD38 

antibodies. If anti-CD38 antibodies are approved for treatment of WM, inclusion of CD38 as 

standard in flow cytometry phenotyping panels may serve to identify patients that would 

respond best and also enable monitoring of CD38 expression during treatment to detect 

downregulation. 
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Intriguingly, analysis via viSNE and SPADE suggest that a precursor to the CD38- CD138+ cells may 

exist in healthy individuals (figure 6.6). This population of cells exhibit a slightly delayed 

differentiation response in comparison to their peers. However, instead of failing to upregulate 

CD38, these cells differentiate into plasma cells that express an intermediate level of both CD38 

and CD138. If a link between a potential precursor healthy population to the CD38- CD138+ cells 

could be established it may provide insight to the molecular mechanisms behind its appearance 

in WM and SchS cells. 

8.3 MYD88 isoforms 

MYD88 has multiple isoforms but their expression and function within B-cells remains largely 

unexplored. An isoform of particular interest is in the context of WM is MYD88 variant 1, which 

shares the sequence of the regular form of MYD88, apart from the addition of 8 amino acids 

within the TIR domain due to alternate splicing of exons 3 and 4. MYD88 v.1 therefore can 

possess the same leucine to proline mutation as the regular form of MYD88, but it occurs after 

the inserted sequence, at position L273P instead. The additional sequence alters the 

conformation of the TIR domain, extending a loop between the third α-helix and β-sheet of the 

protein and as such potentially alters the kinetics of Myddosome formation. MYD88 v.1 was 

found to be present in both primary cells derived from healthy donors, WM and SchS patients 

as well as a variety of cell lines.  

The presence of this isoform in such a high proportion of samples suggests that it may have a 

regulatory role. A precedent for this has been established for a different MYD88 isoform, 

MYD88S (Burns et al., 2003; Janssens et al., 2003). MYD88S lacks an intermediate domain due to 

exon 2 being skipped during splicing and regulates signalling in a dominant-negative manner by 

undergoing oligomerisation with the regular form of MYD88 but preventing subsequent 

activation of the IRAKs. Indeed, the therapeutic possibilities of skewing splicing to favour 

MYD88S over the regular form are under investigation (Vickers et al., 2006; Janssen and Alper). 

The possibility that MYD88 v.1 normally acts in a regulatory capacity raises the question as to 

what happens when it is mutated, as is likely the case in the highly clonal WM samples. 

Preliminary research suggests that L273P-mutated MYD88 v.1 retains its function as an adaptor 

for TLR signalling but is unable to constitutively activate NF-κB in an analogous manner to 

MYD88L265P. Further investigation as to the function of this isoform in both healthy and WM cells 

is warranted in order to determine whether it does indeed regulate TLR signalling and what, if 

any, are the effects of the MYD88L273P mutation. Characterisation of MYD88 isoforms in primary 
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cells may aid our understanding of the regulation of TLR signalling and manipulation of MYD88 

splicing could present a new avenue for WM treatment in the future. 

8.4 T-independent stimulation of healthy B-cells 

There was remarkable uniformity in the phenotypes obtained from day 13 onwards for R848- 

and CD40L-stimulated healthy cells within the in vitro system, despite the contrasting modes of 

activation (figures 3.5 and 4.9). The similarity between the response of primary B-cells elicited 

by R848 stimulation to that of CD40L has been remarked upon previously within the published 

literature (Bishop et al., 2001). The phenotypes of differentiating cells from multiple donors 

were visualised using viSNE and SPADE. These confirm that the phenotypes are very similar 

between the two types of stimulation but with the CD40L-stimulated cohort lagging slightly 

behind prior to day 13 (figure 6.13). It is notable from the RNA sequencing data of day 6 cells 

that there were no specific pathways upregulated in R848-stimulated healthy cells compared to 

their CD40L-stimulated counterparts (table 7.5). Whilst there were differences in the 

downregulated pathways, these were almost all associated with metabolism and not with B-cell 

activation or plasma cell differentiation, consistent with the observed phenotype. 

Stimulation of total B-cells with TLR agonists preferentially expands the subset of memory B-

cells due to their greater expression of TLRs, including TLR7, in comparison to naïve cells 

(Hornung et al., 2002; Bernasconi et al., 2003; Simchoni and Cunningham-Rundles, 2015). The 

heightened responsiveness of memory cells to TLR7 stimulation is reflected in the generation of 

a small CD38+ CD138+ plasma cell component as early as day 6 in the in vitro culture system 

(figure 7.2). Interestingly, samples of both peripheral blood and staging marrows from healthy 

individuals all shared a similar feature – that of a small proportion of cells expressing much 

greater levels of TLR7 and 8 than the rest of the population (figures 7.21 and 7.22). It seems 

likely that these are the subset of cells that are particularly sensitive to TLR stimulation and 

generate plasma cells by day 6 of culture.  

The most significant difference between the two types of stimulation in healthy cells was the 

total expansion in cell number in the cultures as a whole. To establish the response of healthy 

cells, total B-cells were used, both to facilitate comparison to CD40L activation and to provide a 

greater number of cells for downstream analysis. The uniformity of response of memory and 

naïve B-cells alike to CD40L and IL-21 was reported by Simchoni & Cunningham-Rundles, in 

addition to their observations that agonists to TLR7 or 9 only induced a proliferative response in 

IgM+ CD27+ fraction (Simchoni and Cunningham-Rundles, 2015). The uneven response of the 

two subsets provides the most likely explanation for the observation of decreased numbers of 
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cells within the R848 cultures. Nevertheless, whilst the number of plasma cells generated per 

input cell was slightly lower for cells cultured with R848 + F(ab’)2 anti-IgG/M compared to cells 

activated with CD40L, their longevity appeared to be identical (figures 3.4 and 4.8). 

In vivo, B-cells do not receive activation signals in isolation. Indeed, co-operation between BCR 

and TLR signalling enhances the ability of B-cells to respond to pathogens, such as BCR ligation 

facilitating the upregulation of TLR9 expression in naïve cells (Coutinho et al., 1974; Leadbetter 

et al., 2002; Bernasconi et al., 2003). The synergism between the BCR and TLR7 became clear 

following omission of F(ab’)2 anti-IgG/M from the cultures, as this rendered a proportion of cells 

completely unresponsive to TLR ligation (figure 4.5). This implies that stimulation of the BCR can 

upregulate TLR7 in an analogous manner to that which was observed by Bernasconi and 

colleagues for TLR9 (Bernasconi et al., 2003). Synergism between R848 and BCR signalling has 

been demonstrated in the Ramos B-cell line by Bishop and colleagues (Bishop et al., 2001). 

Indeed, cooperation of TLR7 stimulation with a combination of CD40L and BCR signalling was 

also identified (Bishop et al., 2001). Evidence of synergism between CD40L and TLR7 was 

observed in WM cells, with this combination of stimuli overcoming the negative effect of dual 

TLR7 and BCR activation and resulting in a greater number of cells than was generated by CD40L 

and BCR stimulation (figures 7.17 and 7.18). This effect did not appear to occur in cells from the 

healthy cohort, although this may be due to the CD40L stimulation eliciting a close to maximal 

proliferative effect within this population, preventing the detection of a synergistic response 

(figure 7.15). 

Another aspect of TLR regulation became evident following dose response experiments. The 

presence of residual R848 within the culture media after day 3 resulted in a delay in the 

acquisition of a plasmablast phenotype (figure 4.2). A state of tolerance in myeloid cells defined 

as temporary hyporesponsiveness induced by repeated or chronic stimulation through the same 

or different TLRs (Broad et al., 2006; Biswas and Lopez-Collazo, 2009). Prolonged TLR 

stimulation, for time periods of greater than 12 hours, results in tolerance and impairments to 

the NF-κB and MAPK signalling pathways in murine naïve splenic B-cells (Poovassery et al., 

2009). However, ligation of both TLR7 and the BCR simultaneously is able to both prevent B-cells 

from becoming refractory to TLR signal and also overcome a state of tolerance induced by prior 

TLR stimulation (Poovassery et al., 2009). Residual R848 within the media therefore appears to 

induce tolerance within the B-cell population. This was resolved by adding an additional wash 

step to further dilute any remaining R848 but underscores the sensitivity of the cells to this type 

of stimulation. 

In conclusion, both types of stimulation induce plasma cell differentiation, with no significant 

differences in the expression of essential regulatory genes involved in the differentiation 
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pathway. Despite some variation in the responsiveness of the B-cell population to each stimuli 

and limited temporal differences, B-cells from healthy individuals ultimately generate a 

population of phenotypically identical plasma cells with equivalent longevity in response to 

activation with either stimuli. 

8.5 Response of WM cells to TLR7 and BCR stimulation 

8.5.1 Cell death in WM cells activated with R848 

Research undertaken by two different groups suggested that MYD88L265P cells still require TLR 

signals for proliferation and their continued survival (Lim et al., 2013; Wang et al., 2014). The 

effect of TLR7 stimulation on WM cells was therefore assessed in order to determine if this was 

indeed the case. In contrast to the expectation of enhanced survival, WM cells exhibited a 

profoundly deleterious response to R848 + F(ab’)2 anti-IgG/M stimulation, with a sharp decline 

in population from the initiation of culture and a failure to generate plasma cells. 

To confirm that the WM response to TLR7 ligation was not as a consequence of the MYD88L265P 

mutation per se, the response of WM and ABC DLBCL cell lines bearing this mutation to the 

addition of TLR agonists was investigated. Stimulation of these cells with R848 or CpG had no 

negative impact on growth and survival which also remained unchanged when a combination of 

both TLR agonist and BCR ligation were used to replicate the conditions in the in vitro system 

(figures 7.3 and 7.4).  

Memory B-cells in healthy individuals represent the closest analogue to WM cells, but they 

comprise a smaller proportion of total B-cells within the peripheral blood, at approximately 30%, 

than the naïve fraction (Sahota et al., 2002; Sahota et al., 2009; Perez-Andres et al., 2010; García-

Sanz et al., 2016). It was therefore possible that the ratio of naïve to memory cells obtained in 

control samples was obscuring an equivalent response to that of the WM cells in the memory 

subset. The response of each fraction to TLR stimulation had not been previously characterised 

within the in vitro system so they were isolated and cultured concurrently.  

As anticipated, TLR stimulation resulted in the preferential expansion of the memory B-cell 

subset (figure 7.1), in accordance with data published by other groups (Bernasconi et al., 2003; 

Simchoni and Cunningham-Rundles, 2015). Despite the diminished proliferation from the naïve 

cells, they exhibited an equivalent phenotype from day 6 onwards to the memory cells (figure 

7.2). Comparisons of the phenotype between differentiations with total B-cells stimulated with 

either CD40L or R848 + F(ab’)2 anti-IgG/M have been made throughout this report and these 

results confirm that the ratio of naïve to memory cells does not skew the phenotypic 
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observations. The aberrant response of WM cells does not result from their being more like 

memory B-cells and thus must be due to another factor. 

It would be interesting to identify whether the negative response of WM cells was restricted to 

stimulation of TLR7. Substitution of R848 for the TLR9 agonist CpG ODN 2006 at a range of 

concentrations informed by the literature was trialled in healthy cells. However, cells from these 

individuals failed to proliferate and whilst there was evidence of differentiation, there were too 

few cells to enable analysis. TLR9 stimulation was discontinued as R848 proved to be 

considerably more efficacious at inducing B-cell proliferation and generating long-lived plasma 

cells. Various different groups initially claimed to generate plasma cells from primary human B-

cells with CpG ODN 2006, but used CD38 expression as a surrogate plasma cell marker, rather 

than CD138 (Bernasconi et al., 2002; Poeck et al., 2004). Subsequently, optimised culture 

conditions have been proposed, with improved validation of plasma cells (He et al., 2004b; 

Huggins et al., 2006; Capolunghi et al., 2008). Despite this, none of these groups appear to 

generate cells that were truly long-lived, with plasma cell characterisation occurring no later 

than day 11 (Huggins et al., 2006). Optimisation of the culture conditions within the in vitro 

system for activation with CpG would enable the response of WM and healthy cells to this stimuli 

to be assessed. 

A new publication from the Staudt lab offers another perspective on the mechanism of 

MYD88L265P-mediated survival (Phelan et al., 2018). The findings suggest that TLR9, rather than 

TLR7, may be required for a novel pro-survival signalling complex that assembles in the 

endolysosome, linking the BCR, TLR9 and MYD88, which has been termed the My-T-BCR 

complex. In this instance, signalling through TLR9 itself is not occurring, rather it acts like a 

scaffold, facilitating the formation of the supercomplex. BCR-dependent ABC DLBCL cell lines 

required the formation of this complex for their survival.  

The authors extended the study to examine two WM cell lines and a small number of primary 

WM samples. Whilst RPCI-WM1 exhibited cytotoxicity in response to TLR9 shRNA, it had no 

effect on MWCL.1 and patient samples display little to no evidence of the formation of the My-

T-BCR complex (Phelan et al., 2018). An explanation for the importance of this mechanism in 

this cell line may derive from differences in TLR expression in comparison to primary samples. 

Whilst quantification of TLR7, 8 and 9 was not performed on RPCI-WM1 cells, BCWM.1 and 

MWCL.1 expressed substantially higher levels of TLR9 in comparison to WM or healthy samples 

and one would expect RPCI-WM1 to be similar.  

This research does however provide insight into the findings published by Lim and Wang, 

suggesting that intact TLR signalling is required in MYD88-mutated cells (Lim et al., 2013; Wang 

et al., 2014). In the first study, depletion of proteins essential for endosomal TLR trafficking was 
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lethal for ABC DLBCL lines, as was the use of inhibitory oligonucleotides against TLR9 (Lim et al., 

2013). Reliance of ABC DLBCL cell lines on the My-T-BCR complex provides a mechanistic 

explanation for these results (Phelan et al., 2018). Similarly, this complex may play a role in the 

findings by Wang et al, since both Unc93b1 mutations and TLR9 deficiency resulted in an 

inhibition of proliferation in MYD88-mutated murine B-cells (Wang et al., 2014). It did not 

however, result in apoptosis of these cells and they remained able to proliferate, suggesting that 

these cells do not solely rely on the complex for survival. The transduction of MYD88L265P into 

murine splenic B-cells most likely resulted in a population that more closely resembles ABC 

DLBCL rather than WM, akin to that generated by Knittel et al. (Knittel et al., 2016). This explains 

the differences observed by these groups to that of the primary cells studied here. 

The mutational burden in ABC DLBCL is very different to that of WM, with a hallmark of chronic 

active BCR signalling that is much less common in WM (Pasqualucci, 2013; Young et al., 2015). 

In light of this evidence, it seems unlikely that the My-T-BCR complex is of critical importance in 

WM, although it may play a more substantial role in the rare cases of co-occurrence of MYD88 

and BCR mutations. 

Despite the considerable levels of apoptosis occurring within the WM population, there was no 

evidence of the upregulation of pro-apoptotic genes or conversely, downregulation of pro-

survival genes (table 7.5). This may be due to the RNA sequencing representing a time point that 

is too far past the induction of these pathways. Whilst this appears to preclude the identification 

of any primary cascade that initiates WM cell death, it may also provide an alternate explanation 

as to the events that are occurring. Characterisation of BCL-2 family gene expression in WM cells 

in comparison to healthy B- or plasma cells and with other B-cell malignancies indicated that 

WM cells possess low levels of pro- and anti-apoptotic gene expression, similar to healthy 

plasma cells (Gaudette et al., 2016). Thus the results of the RNA sequencing presented here may 

actually reflect innately low levels of both pro-survival and pro-apoptotic genes within the WM 

population. This appears to facilitate WM survival by increasing the threshold for WM apoptosis, 

due to low levels of apoptotic proteins (Gaudette et al., 2016). WM cells may therefore rely less 

on intrinsic signalling, possessing a high threshold for apoptosis and are provided with additional 

support by the components of the bone marrow. The bone marrow microenvironment is vital 

to maintain plasma cells and forms an essential niche for WM cells that provides a myriad of 

survival signals which will be discussed subsequently in more detail (Ngo et al., 2008; Elsawa et 

al., 2011; Tangye, 2011; Jalali et al., 2018).



Chapter 8 - Discussion 

277 

8.5.2 Impaired PC differentiation  

The apoptotic response of WM cells following R848 stimulation is rapid, thus appearing to 

preclude the generation of a plasma cell population simply because of the fact that the cells 

have been eliminated by the time point prior to that at which plasma cells would be generated. 

However, there may be a link between impaired differentiation and the lack of survival of these 

cells.  

RNA sequencing has established that WM cells are able to be activated by a combination of TLR7 

and BCR signalling, yet the majority of these cells are unable to generate a plasma cell population 

(figure 7.26). This implies that there is a failure of downstream signalling to integrate the 

activation signal with the plasma cell differentiation pathway (figure 8.1). In support of this, 

multiple essential regulators of plasma cell differentiation appear to be dysregulated in WM cells 

stimulated with the TLR7 agonist (figure 7.28). Central to differentiation is PRDM1, encoding 

BLIMP-1, termed the master regulator of plasma cell differentiation due to its essential nature 

for this process. RNA sequencing data confirmed that both IRF4 and PRDM1 were significantly 

downregulated in WM cells stimulated with R848, whilst suppressors of these transcription 

factors such as SPI-B, BACH2 and MITF were significantly upregulated (figure 7.28). This provides 

a molecular explanation for the failure of R848-stimulated WM cells to generate plasma cells, 

despite retaining the capacity to do so following CD40L stimulation. 
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Figure 8.1 Failure to induce the plasma cell differentiation program subsequent to stimuli mimicking T-

independent activation may be due to uncoupling of the signalling pathway. WM cells successfully 

initiate plasma cell differentiation subsequent to stimulation with CD40L and antigen to the BCR. In 

contrast, WM cells are receptive to an activation signal from a combination of TLR7 and BCR ligation but 

fail to integrate this fully with plasma cell differentiation.  

 

B-cells unable to differentiate in response to binding of their cognate antigen either become 

anergic or undergo apoptosis to limit autoreactivity (Donjerković and Scott, 2000; Strasser and 

Bouillet, 2003; Yarkoni et al., 2010). Activation induced cell death is an essential regulatory 

mechanism to control B-cell responses (Green and Scott, 1994; Rothstein, 1996). Upregulation 

of Fas and FasL following receptor ligation render B-cells susceptible to activation induced cell 

death, but simultaneous ligation of the BCR and CD40 serve to protect the cells from apoptosis 

(Rothstein et al., 1995; Schattner et al., 1995). The expression of these proteins was therefore 

assayed on both healthy and WM cells subsequent to activation with CD40L or R848 to 

determine whether if this was a likely cause of cell death. Whilst expression of both Fas and FasL 

rose substantially following activation, there was no significant difference between healthy and 

WM cells, supported by the RNA sequencing data (figure 7.14). Thus the mechanism behind the 

apoptosis observed in WM cells does not appear to be via activation-induced cell death. 
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It is possible that additional TLR7 stimulation, on top of the innate activation of the TLR pathway 

via MYD88L265P in WM cells is inducing tolerance, rendering them unable to progress further 

down the differentiation pathway once they have been activated. However, since the cells are 

also in receipt of a concomitant BCR signal, this should be sufficient to overcome any potential 

refractory state (Poovassery et al., 2009). Addition of CD40L to TLR7 and BCR signalling rescued 

the cells from an apoptotic fate and enabled them to successfully undergo differentiation 

(figures 7.17-7.19). The synergism between these signalling cascades in WM but not in healthy 

cells suggests that the neoplastic clone may take advantage of multiple activation signals within 

the local environment. 

There appears to be a link between the failure of WM cells to undergo plasma cell differentiation 

and the cell death that occurs within the population. RNA sequencing identifies a lack of 

expression of PRDM1 following stimulation of TLR7 and the BCR as the likely central cause (figure 

7.28). This suggests that there is an uncoupling of the differentiation pathway downstream of 

TLR7, however the point at which the signal fails to be propagated further has not been 

identified. Since constitutive activation of NF-κB is intrinsic to WM cells, it may be beneficial for 

these cells to remain at an earlier, highly proliferative stage of differentiation, refractory to 

differentiation with additional TLR stimulation. 

8.6 SMZL and Schnitzler’s syndrome B-cells 

8.6.1 Response of SMZL cells 

WM and SMZL share a similar clinical presentation, with patients presenting with IgM 

paraprotein, splenomegaly and cold agglutinin disease, making differential diagnoses 

challenging (Thieblemont et al., 2002; Owen et al., 2003). SMZL cells, akin to those from WM, 

retain the capacity to differentiate in a large proportion of cases (Van Huyen et al., 2000; 

Dufresne et al., 2010). Similarly, dysregulation of the NF-κB pathway is commonly affected in 

SMZL cells (Arcaini et al., 2016). But, in contrast to WM, the prevalence of MYD88L265P mutation 

is only ~10% (Varettoni et al., 2013). 

SMZL B-cells displayed a range of differentiation capabilities in response to stimulation with 

CD40L + F(ab’)2 anti-IgG/M (figure 5.1), in contrast to WM, where the response of multiple 

samples generated a uniform phenotype (figure 3.12). WM cells demonstrated greater 

efficiency generating plasma cells, differentiating more swiftly and producing a greater 

proportion of plasma cells (figure 3.12). Interestingly, there was an overlap in the B-cell 

phenotype of WM and SMZL cells that became clear following visualisation by SPADE clustering. 

Whilst all the B-cells from healthy donors clustered into one of three groups – naïve, memory or 
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CD38+ B-cells – a large proportion of cells from both SMZL and WM were clustered together in 

a separate “neoplastic” group that was not populated at all by the healthy samples (6.16). 

Subsequently, SMZL and WM samples generated distinct populations from one another as 

differentiation progressed, with no instances of CD38- CD138+ cells in any of the SMZL samples 

and discrete plasma cell populations in those SMZL samples that were able to differentiate 

(figure 6.17). 

WM cells are marked by their highly diverging responses to CD40L and R848 stimulation. The 

SMZL samples however, exhibited very similar responses in each condition, with some samples 

able to differentiate successfully in response to both stimuli whereas other were refractory to 

both types of stimulation (figure 5.4).  

It would be interesting to profile cells from other B-cell neoplasms to provide further insight into 

the neoplastic phenotype. Application of SPADE clustering to diagnostic flow cytometry panels 

may facilitate differential diagnosis of these neoplasms due to the unbiased nature of the 

algorithm. Despite some similarities between WM and samples from other B-cell neoplasms, the 

divergent behaviour of WM cells in response to CD40L or R848 stimulation appears to be unique, 

as does the generation of the CD38- CD138+ fraction. 

8.6.2 Schnitzler syndrome 

During the course of the project, an opportunity arose to assess the differentiation of B-cells 

from patients with Schnitzler syndrome. There is a link between the aetiology of SchS and WM, 

with cells from the haematopoietic lineage in SchS patients bearing the MYD88L265P mutation 

and these individuals are predisposed to developing WM (Lim et al., 2002; Lipsker, 2010; de 

Koning, 2014). There is also evidence of efficacy of Ibrutinib in these patients (Castillo et al., 

2016; Jani et al., 2018). The SchS cells provided a rare prospect to compare the response of 

primary human B-cells in possession of MYD88L265P - but without the additional mutational 

burden of a fully-fledged neoplasm - to both WM and healthy cells. The presence of the MYD88 

mutation within the B-cell population of these patients was confirmed in both instances and 

persisted within the culture (figure 5.10), confirming that these cells are contributing to the 

observed phenotype as differentiation progresses. 

B-cells from SchS individuals were unique amongst all of the primary samples in that they 

displayed hyperresponsiveness to TLR7 agonism, with levels of proliferation enhanced over and 

above that elicited by activation with CD40L (figures 5.7 and 5.11). The SchS cells responded in 

a manner that was initially expected of the WM samples and their divergence from the negative 

response of WM cells was surprising. Strikingly, one of the SchS samples generated CD38- 
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CD138+ cells, reinforcing the link between the L265P mutation and this unusual phenotype 

(figure 5.9). B-cells from SchS patients may be able provide further insight into this enigmatic 

population. RNA sequencing was not performed on the SchS samples but it would be most 

interesting to see the results of such an analysis in the context of the data presented here.  

Analysis of SchS MYD88 PCR products revealed the existence of a novel mutation in two of these 

patients, MYD88L256P, which was not found in any of the WM samples or cell lines tested (figure 

5.17). Interestingly, this mutation shares similar features with MYD88L265P; falling within the TIR 

domain, but appearing to preserve its integrity and being located on the MYD88 interaction axis 

(Bovijn et al., 2013; Avbelj et al., 2014). It is possible that the combination of both MYD88L256P 

and MYD88L265P confers further propensity for MYD88 to form Myddosomes and thus amplifies 

the TLR signal. Additional characterisation of this mutation in a larger cohort of SchS patients 

would enable its incidence to be determined and provide insight as to whether it has an effect 

on protein interaction dynamics. 

A subset of SchS cells were able to respond very rapidly to TLR stimulation in a similar manner 

to that which occurred in healthy cells (figure 5.15). However, the majority of these cells were 

CD38- CD138+, implying that the progenitors of this population are sensitive to TLR7 ligation. The 

identity of these cells in healthy individuals appear to be memory cells, thus this indicates that 

the progenitor of the CD38- CD138+ population is of a memory cell origin. This ties in with the 

proposed memory cell precursor of WM and may explain the exclusivity of this unusual 

population to these two diseases (Kriangkum et al., 2004b; Paiva et al., 2015; García-Sanz et al., 

2016). The proportion of the CD38- CD138+ cells further increased when F(ab’)2 anti-IgG/M was 

omitted from the culture (figure 5.15). This suggests that additional signals from the BCR may 

modulate this population. Regulation could occur through multiple means, BCR ligation may be 

suppressive of this subgroup, favour the expansion of the non CD38- precursors or instead push 

the CD38- cells towards upregulating CD38. 
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Figure 8.2 summarises the differentiation profiles for healthy, SMZL, SchS and WM B-cells 

subsequent to activation with either CD40L or R848. 

Figure 8.2 A summary of the differentiation responses of healthy and lymphoproliferative patient B-

cells. Healthy B-cells proliferate and differentiate in response to both stimuli, with slightly lower levels of 

proliferation following activation with R848. SMZL samples respond variably but equally to both types of 

stimuli. SchS cells are hyperresponsive to R848 stimulation and generate CD38- CD138+ cells in both 

instances. WM cells are able to proliferate and differentiate in response to CD40L stimulation, generating 

a CD38- CD138+ population, but do not differentiate subsequent to activation with R848.
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8.7 WM Bone marrow microenvironment 

WM cells displayed a very strong bone marrow signature, with functional annotation software 

identifying the upregulation of numerous pathways involved in cell-cell interaction, cytokine 

production and migration. The bone marrow microenvironment clearly plays a central role in 

WM pathogenesis and this is reflected by the gene expression in cells from the in vitro system. 

Many of the key interactions that have been identified within the niche are summarised in figure 

8.3. 

 

 

Figure 8.3 The bone marrow microenvironment and key factors influencing the survival of WM cells. 

WM cells interact with multiple components of the niche, which facilitate homing, survival and 

proliferation of the neoplastic clone. These include endothelial and stromal cells present within the local 

environment and accessory cells that are recruited by the WM clone such as mast cells, monocytes and 

T-cells. 
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8.7.1 Cellular interactions within the niche 

Accumulation of excess mast cells within the BM is a characteristic feature of WM, with the 

presence of these cells often aiding differential diagnoses (Wilkins et al., 2001; San Miguel et al., 

2003). The presence of mast cells has been demonstrated to promote the proliferation of the 

WM clone through CD40L-CD40 interaction (Tournilhac et al., 2006). The upregulation of CD40L 

in mast cells of WM patients is thought to be mediated by soluble CD27 (sCD27) as elevated 

levels of sCD27 were identified in WM sera (Ho et al., 2008). The addition of CD40L stimulation 

to the R848 + F(ab’)2 anti-IgG/M condition rescued the WM cells from undergoing apoptosis and 

enabled the cells to successfully generate plasma cells.  

The classic source of CD40L signalling during an immune response is from T-cells. The expansion 

of a pool of monoclonal cytotoxic T-cells in 70% of WM patients was reported by Li and 

colleagues (Li et al., 2010). The presence of these cells appear to be as a result of an 

immunomodulatory response towards the malignancy but are rendered anergic in proximity to 

the WM clone. It is thought that this may be due to the expression of immune checkpoint 

molecules on WM cells (Jalali et al., 2018). Programmed death-1 (PD-1) receptor and its ligands, 

PD-L1 and PD-L2 are members of the B7-CD28 superfamily of immune checkpoint molecules 

(Ishida et al., 1992; Freeman et al., 2000). They negatively regulate the activation and 

proliferation of T-cells (Freeman et al., 2000; Latchman et al., 2001). Expression of PD-L1 and 

PD-L2 was found to be elevated in BM samples of patients with WM (Jalali et al., 2018). These 

results suggest that the neoplastic cells may be able to subvert the antitumor T-cell response 

and instead turn the presence of these cells to their advantage, providing an additional source 

of cytokines such as IL-21.   

8.7.2 WM cell homing 

Another hallmark of WM is the infiltration of clonal B-cells into the bone marrow. The 

importance to WM pathology is evident in that the second most common mutation in WM is 

CXCR4 (Hunter et al., 2014). The significance of CXCR4 signalling in WM was originally identified 

several years earlier whereby it was found to regulate homing and adhesion to endothelial cells 

and stromal cells (Ngo et al., 2008). Multiple nonsense and frameshift mutations have been 

identified in CXCR4, all of which are located in the c-terminal tail, resulting in a truncation of the 

distal portion of the protein (Poulain et al., 2016). Binding of SDF-1 to CXCR4 triggers 

phosphorylation of the receptor and its subsequent internalisation, facilitating desensitisation 

to prolonged signalling (Haribabu et al., 1997; Signoret et al., 1997; Signoret et al., 1998). C-



Chapter 8 - Discussion 

285 

terminal truncation attenuates the internalisation of the receptor and results in aberrant 

signalling. The most prevalent CXCR4 mutation S338X, was first described in WHIM syndrome 

(Hernandez et al., 2003). Poulain et al. confirmed that CXCR4 expression was elevated on CXCR4-

mutated WM cells, regardless of the type of mutation, facilitating homing to the bone marrow 

(Poulain et al., 2016). In accordance with these findings, CXCR4 is significantly upregulated in 

the WM samples in comparison to the healthy controls. 

Determination of the mutation status of CXCR4 has become particularly important in the light 

of the discovery that CXCR4 mutated cells are resistant to Ibrutinib (Hunter et al., 2013; Roccaro 

et al., 2014; Cao et al., 2015; Treon et al., 2015). Treatment with Ibrutinib results in the egress 

of WM cells from the bone marrow, which is particularly pronounced for MYD88L265P CXCR4WT 

patients and correlates with an improved clinical outcome (Treon et al., 2015; de Rooij et al., 

2016). Deprivation of the support provided by the bone marrow niche thus appears to be an 

effective mechanism to induce WM cell death. 

Once the WM cells are situated within the protective niche of the bone marrow 

microenvironment, it is advantageous for the cells to remain there. One such mechanism that is 

thought to facilitate retention of WM cells within the bone marrow locale is the interaction of 

ephrin-B2 on endothelial cells with the ephrin receptor on the neoplastic clone (Azab et al., 

2012). In agreement with these findings, cells from healthy individuals did not appear to express 

ephrin receptor B2, whereas it was significantly upregulated in the WM cohort (log2 fold change 

= 3.93, p = 0.005). 

Another component critical for homing and adhesion of WM cells is the PI3K-Akt signalling 

pathway (Leleu et al., 2007). Constitutive activation of this pathway was first discovered by Leleu 

and colleagues (Leleu et al., 2006; Leleu et al., 2007). They observed that activation of Akt 

induced the proliferation of WM cells, whilst downregulation of Akt signalling resulted in 

inhibition of the ability of WM cells to home to the BM in vivo. Accordingly, the RNA sequencing 

results presented here demonstrate that PI3K-Akt signalling was significantly upregulated in WM 

cells compared to the healthy cohort. Regulation of signalling cascades such as the PI3K-Akt 

pathway can occur via miRNA (He and Hannon, 2004). WM cells have a specific miRNA signature 

which includes increased expression of multiple miRNAs, including miR-155 which regulates Akt 

(Roccaro et al., 2009). It was found that miR-155 has multiple roles, regulating WM proliferation, 

adhesion and migration (Roccaro et al., 2009). The sequencing data from samples taken during 

in vitro differentiation concurs with these findings. As with the PI3K-Akt pathway, miR-155 is 

also significantly upregulated in the differentiating WM cells compared to healthy (data not 

shown). 
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PI3K-delta inhibitors showed promise in the killing of WM cell lines, and, in a similar manner to 

Ibrutinib, are thought to mobilise neoplastic cells from the bone marrow (Liu et al., 2013; de 

Rooij et al., 2016). A phase II trial of Idelalisib was instigated in patients with relapsed and/or 

refractory WM but was subsequently abandoned due to a high incidence of hepatotoxicity 

(Gustine et al., 2017). 

The myriad of upregulated genes in WM cells involved with cell-cell interaction, adhesion and 

homing are indicative of the importance of these factors in the survival of WM cells. Eviction of 

the neoplastic fraction from the protective environment represents a promising therapeutic 

strategy, inducing a state of susceptibility to cell death similar to anoikis.   

8.7.3 Cytokines 

The cytokine milieu within the bone marrow is essential for B-cell development and to maintain 

homeostasis (Carsetti, 2000; Cassese et al., 2003; Vazquez et al., 2015). Research has identified 

a marked difference in the BM cytokine environment in WM patients compared with healthy 

individuals (Elsawa and Ansell, 2009). A multitude of factors are therefore influencing WM 

pathogenesis. 

Application of supernatant derived from WM cells during in vitro differentiation to activated 

healthy or WM B-cells resulted in an increase to cell survival and proliferation, with secretion of 

factors by WM cells appearing to peak at day 3 (figures 7.6 and 7.8). The effects were most 

pronounced for B-cells stimulated with R848 and F(ab’)2 anti-IgG/M (figures 7.7 and 7.9). Whilst 

there was less effect on CD40L stimulated cells, the levels of physiological stimulation are likely 

to be more subtle so the effect on the R848-stimulated cells is perhaps a closer reflection of 

what might happen in vivo. Whilst the identity of the factors eliciting this response were not 

determined, BAFF and APRIL appear to be likely candidates. Activation of human B-cells with 

CD40L induces production of BAFF (He et al., 2004a; Kern et al., 2004). Similarly, TLR simulation 

via LPS or CpG in murine B-cells resulted in upregulation of both BAFF and APRIL (Chu et al., 

2007). BAFF enhances the survival of both multiple myeloma and CLL and the observation of 

increased levels of BAFF in WM suggests that these cells may benefit from its presence in a 

similar manner (Novak et al., 2002; Moreaux et al., 2004; Elsawa et al., 2006). 

Whilst BAFF was not differentially expressed between WM and control cells, expression of APRIL 

was increased in WM cells at day 6. A possible mechanism to explain these observations is the 

sequential secretion of these factors by WM cells following activation, whereby BAFF is initially 

upregulated to enhance proliferation and survival of activated B-cells then APRIL takes over to 

sustain plasma cells. Monocytes are a potent source of BAFF (Nardelli et al., 2001; Mueller et 
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al., 2007). The accumulation of monocytes within the bone marrow in close proximity to the 

WM clone represent a likely source of BAFF so the requirement for the WM cells themselves to 

be a source of autocrine BAFF within the niche is diminished. 

The RNA sequencing data revealed that BAFF-R was highly upregulated in the WM samples, TACI 

was highly expressed in both healthy and WM cells, whilst BCMA was downregulated in WM 

cells. The lack of BCMA appears to contradict the findings of Elsawa and colleagues which 

suggest BCMA expression is elevated in WM cells, but closer inspection of their data reveals that 

only one of 5 primary samples demonstrated increased BCMA levels (Elsawa et al., 2006). It is 

also possible that the expression of the three receptors alters during the course of 

differentiation. Elevated levels of BAFF-R in WM cells enables them to be receptive to external 

sources of BAFF.  

CCL5 was the 8th most significantly differentially expressed protein coding gene between WM 

and healthy samples, with a 29-fold increase in WM. These results are replicated in the data 

from Elsawa et al (Elsawa et al., 2011). They conducted a multiplex bead-based array analysis to 

quantify cytokines, chemokines and growth factors in WM sera, demonstrating that CCL5 the 

most elevated expression compared to healthy controls (Elsawa et al., 2011). Despite this, they 

were unable to detect surface expression of CCR5 by flow cytometry or RT-PCR. In contrast to 

this, Ngo et al., detected CCR5 in primary WM cells at the same level as healthy cells (Ngo et al., 

2008). CCR5 has previously been found to be expressed at low levels on mature B-cells (Lee et 

al., 1999; Honczarenko et al., 2002). The difference between the results in WM may be due to 

the identity of the isolated cells, with Ngo and colleagues using CD19+ cells, whilst the analysis 

by Elsawa was performed on CD19+CD138+ cells.  

The expression of CCR5 in WM cells is likely to be low and this is corroborated by the RNA 

sequencing data. CCR5 is expressed at relatively low levels in both the WM and healthy cells, 

however, it is increased in WM cells stimulated with R848. Interestingly, CCL5 enhanced B-cell 

proliferation and IgM secretion in murine B-cells activated with low doses of LPS, whilst ablation 

of endogenous CCL5 resulted in the opposite effect (Sullivan et al., 2011). This indicates that 

autocrine CCL5 signalling is important in these cells so perhaps an analogous effect occurs to 

some extent in WM cells.  

Further analysis by Elsawa revealed that CCL5 does not directly influence survival, proliferation 

or immunoglobulin secretion, in keeping with the lack of receptor surface expression (Elsawa et 

al., 2011). Instead, they propose that CCL5 induces bone marrow stromal cells the secrete IL-6 

(Elsawa and Ansell, 2009). IL-6 is added to the in vitro cultures at day 6 to promote plasma cell 

differentiation via activation of the STAT3 pathway, which induces upregulation of PRDM1 

(Reljic et al., 2000; Jourdan et al., 2009). The samples used for RNA sequencing were taken 
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before the addition of IL-6 and thus differences between the WM and healthy cells could be 

determined. The differential expression of IL-6 between WM and control cells was highly 

statistically significant (p < 1x10-9). WM cells expressed elevated levels of IL-6, which is likely to 

be promoting IgM secretion in these cells. Interestingly, in the murine B-cell lymphoma cell line, 

CH12.LX, stimulation with R848 resulted in very high levels of IL-6 production in comparison to 

stimulation with CpG which did not induce secretion of this cytokine (Bishop et al., 2001). Taken 

together, these data support a conclusion that high levels of CCL5 production by WM cells 

functions to recruit monocytes, which supplement the intrinsic production of IL-6 and contribute 

to an increase to IgM secretion that is so characteristic of WM. Expression of CCL5 may also 

serve to increase proliferation of the neoplastic clone via autocrine signalling. 

Not only can WM cells exert influence over their neighbouring cells, they can also affect the 

architecture of the bone marrow niche itself through the production of cytokines (Terpos et al., 

2006). One such example is macrophage inflammatory protein-1 alpha (MIP-1α). Production of 

MIP-1α is virtually ubiquitous by both haematopoietic and stromal cells, however an increase in 

MIP-1α in lymphoid neoplasms was first discovered in multiple myeloma (Choi et al., 2000). 

Abnormal bone remodelling is a classic feature of MM and whilst lytic bone disease does not 

occur in WM, alterations of the BM niche were identified in WM patients (Mundy et al., 1974; 

Valentin-Opran et al., 1982; Marcelli et al., 1988). This effect was subsequently attributed to 

MIP-1α in WM (Terpos et al., 2006). MIP-1α was significantly upregulated in the differentiating 

WM cells but was also highly variable within the group. Whilst data on the relapse/remission 

status of the patients is not available, it would be interesting to examine how closely these 

results reflect the disease activity as MIP-1α serum levels have been observed to correlate with 

active WM (Terpos et al., 2006). 

Further investigation of the WM secretome during the course of differentiation would provide 

valuable insight as to how the microenvironment is likely to be altered in the context of this 

neoplasm. Quantification of the cytokine milieu at different stages of disease progression would 

enable elucidation of temporal changes within the WM microenvironment. It would be most 

interesting to investigate how secretion is altered when the cells are activated by different 

stimuli and how other components of the BM niche such as stromal cells influence this. Use of 

the in vitro system would facilitate assessment of the secretome subsequent to drug treatment 

and may identify the most effective combinations of therapeutics. 
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8.8 NF-κB signalling in WM cells 

The MYD88L265P mutation is responsible for activating the canonical NF-κB pathway (Ngo et al., 

2011; Treon et al., 2012). This signalling is further supplemented by activation of the BCR and 

CXCR4 (Helbig et al., 2003; Weil and Israël, 2004; Schulze-Luehrmann and Ghosh, 2006). Multiple 

components of the TLR, TNF and NF-κB pathways were significantly upregulated in WM cells, 

consistent with the constitutive signalling elicited by MYD88L265P (table 7.5). Interestingly, RelB 

was upregulated in the WM samples compared to the healthy controls, particularly in samples 

activated with R848, suggesting that non-canonical signalling is also occurring.  

Stimulation of dendritic cells by TLR2, 4 and 9 resulted in the activation of RelB and that this was 

regulated by components of the canonical pathway (Shih et al., 2012). However, signalling was 

not achieved by additional synthesis of protein, but by the pool of RelB already present. 

Upregulation of RelB mRNA is unlikely to be due to the ligation of TLR7 itself, however, RelA can 

induce RelB transcription and it will be undergoing nuclear translocation as a consequence of 

the constitutive signalling (Bren et al., 2001). 

Further induction of the non-canonical pathway in WM cells is likely to be achieved via ligation 

of BAFF-R. Whilst BAFF-R is able to induce canonical NF-κB signalling, ligation of the 

receptor preferentially induces the non-canonical pathway (Morrison et al., 2005; Sun, 2011). 

Ligation of BAFF-R results in TRAF3 degradation, depleting the pool (Xu and Shu, 2002; Gardam 

et al., 2008). TRAF3 suppresses NF-κB signalling by interacting with NIK, resulting in its 

degradation by the proteasome, thus removal of TRAF3 enables NIK to proceed (Liao et al., 

2004). In support of this mechanism, biallelic TRAF3 inactivation has been identified in 5% of 

WM patients (Braggio et al., 2009). 

This involvement of non-canonical signalling in preventing apoptosis in non-Hodgkin lymphoma 

and CLL has been established (Gricks et al., 2004; Lwin et al., 2007; Mineva et al., 2007). A similar 

protective mechanism may be occurring within WM cells exposed to R848, with those 

expressing the highest levels of RelB able to survive better in comparison to the rest of the 

population. 

Activation of the canonical pathway within WM cells is enhanced by a variety of extrinsic signals 

provided by the bone marrow microenvironment. These include ligation of CXCR4 via secretion 

of SDF-1 from the stroma, CD40L signalling from mast cells and BCR ligation (Bleul et al., 1996; 

Tournilhac et al., 2006; Elgueta et al., 2009). Cumulatively, the abundance of factors able to elicit 

NF-κB activation suggests that the WM neoplastic clone benefits from activation of both arms 

of the NF-κB signalling pathway (figure 8.4). 
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Figure 8.4 NF-κB signalling in WM cells is supplemented by multiple extrinsic signals. Constitutive activation of NF-κB by MYD88L265P is augmented by additional signalling from 

the bone marrow environment. RNA sequencing indicates that co-operation between the canonical and non-canonical arms of the NF-κB pathway occurs within WM. 
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8.9 Concluding remarks 

This work represents the first time the differentiation of primary human WM B-cells has been 

investigated in an in vitro setting, in response to both T-dependent and T-independent stimuli. 

WM cells successfully differentiate when provided with stimuli that mimics T-dependent B-cell 

activation and generate a novel population of CD38- plasma cells that have not been previously 

described but is strongly linked to the presence of MYD88L265P. Both this fraction and the 

conventional CD38+ CD138+ plasma cells generated by WM cells demonstrate an equivalent 

lifespan to those generated by healthy controls and represent a truly long-lived plasma cell 

population, persisting in culture in excess of 40 days. 

As previously discussed, the downregulation of CD38 expression on the surface of a proportion 

of WM cells has ramifications for treatment decisions. Additional characterisation of CD38 

expression within WM cells is warranted to determine if its absence is as a consequence of 

transcriptional dysregulation or driven by selection. The remarkable correlation between the 

loss of CD38 expression and the proportion of neoplastic clone within the bone marrow may 

prove to be a useful prognostic marker. 

Strikingly, and in sharp contrast to their healthy counterparts, WM cells fail to generate plasma 

cells and undergo dramatic levels of apoptosis in response to TLR7 agonism with the synthetic 

ligand R848. WM cells express TLR7 and remain receptive to activation by TLR signalling, 

confirmed by RNA sequencing. However, it is not possible to pinpoint the initiating event that 

triggers apoptosis subsequent to R848 stimulation from the data generated from the day 6 cells. 

Of particular interest therefore is to examine gene expression at a much earlier time point 

following R848 stimulation in comparison to a baseline expression of unstimulated cells. This 

would provide insight as to whether TLR7 ligation directly initiates apoptosis or, as appears more 

likely, it is a result of WM cells being deprived of the additional pro-survival factors within the 

bone marrow niche.  

It would be interesting to investigate whether the aberrant response of WM cells occurs 

following stimulation of any of the other TLRs. A natural candidate to extend the study would 

be TLR9, another endosomal TLR that is highly expressed on memory cells (Bernasconi et al., 

2003; Nishiya and DeFranco, 2004). TLR9 has been more extensively characterised than TLR7 

and it may have a potential role in WM as a signalling scaffold as proposed by Staudt and 

colleagues (Phelan et al., 2018).    

Therapeutics inducing egress of neoplastic cells from the bone marrow have demonstrated 

efficacy in the treatment of WM via an anoikis-like mechanism (Treon et al., 2015; Castillo et al., 
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2016; de Rooij et al., 2016; Treon et al., 2017). It currently appears that removal of WM cells 

from the protective niche of the bone marrow microenvironment renders them susceptible to 

apoptosis due to a lack of additional pro-survival signals and this is responsible for the 

deleterious effect of R848 stimulation on WM cells. The apoptosis may not be induced by TLR7 

ligation, rather, the combination of TLR7 and BCR ligation are insufficient to rescue the WM cells 

from death as is the case when CD40L stimulation is provided. This may be linked with the 

inability of WM cells to differentiate when provided with R848 stimulation. Failure to induce the 

plasma cell differentiation program in response to these signals may push the cells towards an 

apoptotic fate in a similar manner to B-cells that are unable to respond correctly in vivo. 

The in vitro system represents a powerful tool for studying B-cell neoplasms. It is particularly 

useful for investigating WM as it enables analysis of the spectrum of B-cell differentiation which 

is impossible in cell lines. Understanding of the bone marrow microenvironment is increasingly 

being recognised as an essential component for treating WM. Currently, a mouse model that 

sufficiently recapitulates this neoplasm does not exist and thus the flexibility of the in vitro 

system will enable superior modelling of the BM niche with patient-derived primary cells.  
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