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Abstract 

A hexanucleotide repeat expansion (HRE) within the C9orf72 gene is the most prevalent 

cause of amyotrophic lateral sclerosis/fronto-temporal dementia (ALS/FTD).  Current 

evidence suggests that HREs induce neurodegeneration through the accumulation of RNA 

foci and/or dipeptide repeat proteins (DPRs), though there is also evidence for 

haploinsufficiency of the C9orf72 protein.   

Here, we modelled toxic gain of function disease mechanisms by generating and 

characterising two distinct transgenic zebrafish models.  Whilst both model systems express 

HREs that lead to RNA foci production, only one model expresses ATG-driven DPRs.  The 

two model systems were termed “RNA-only” and “RNA+DPR” zebrafish.  As a readout of 

cellular stress, we utilised a fluorescent-reporter construct that expresses DsRed under the 

control of a heat shock promoter, which we then used to screen for potential therapeutic 

compounds.  We also used immunoblotting techniques to characterise DPR, TDP-43 and 

SOD1 proteinopathies in human ALS post-mortem tissue.   

Our RNA-only zebrafish model did not display any evidence of reduced survival at 26 

months post-fertilisation.  In contrast, the RNA+DPR zebrafish model displayed muscle 

atrophy, motor neuron loss and reduced survival at 36 months post-fertilisation.  In line with 

increased toxicity, we identified that RNA+DPR zebrafish activate the heat shock response 

(HSR), which we also found to be true in C9orf72-ALS patient samples.  HSR activation 

correlated with disease progression in our RNA+DPR zebrafish model and, through drug 

screening, we found that this could be attenuated using the compounds ivermectin, 

selamectin and riluzole.  Finally, we report that SOD1 proteinopathy is detectable in disease 

relevant areas of C9orf72 patients CNS, and that this correlates with TDP-43 proteinopathy. 

We conclude that our RNA+DPR zebrafish model system shows motor neuron pathology, 

and the HSR readout in this zebrafish model may prove useful as a tool for evaluating 

potential neuroprotective compounds prior to mammalian testing.  Finally, our 

neuropathological findings suggest a potential link between C9orf72-HREs and SOD1 as 

well as TDP-43 proteinopathies. 
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1. Chapter 1: General introduction 

1.1. Amyotrophic lateral sclerosis onset and symptoms 

Amyotrophic lateral sclerosis (ALS) or motor neuron disease (MND), is a progressive 

neurodegenerative disorder primarily causing loss of the motor neurons (MNs) supplying 

voluntary muscles.  ALS results in progressive muscle weakness which eventually leads to 

paralysis and death, usually due to respiratory failure.  A 2013 meta-analysis of ALS 

epidemiological studies showed that the median incidence of ALS in European populations 

is 2.08 per 100,000 persons per year, and that the median prevalence of ALS in the same 

population is 5.4 per 100,000 persons (Chio et al., 2013).  From onset of symptoms, the 

median survival time for ALS patients is 30 months, however this figure comes with the 

caveat that there is considerable variability in ALS patient survival rates (with some patients 

surviving for decades after diagnosis) (Logroscino et al., 2008).  Currently in the United 

Kingdom, riluzole is the only approved disease modifying treatment for ALS, which is thought 

to extend the lifespan of ALS patients by an average of 3-4 months (Bensimon et al., 1994).  

In both the United States and Japan, Edaravone (Radicava) has also been approved for the 

treatment of ALS patients (Hardiman and van den Berg, 2017).  At the time of writing, data 

on average lifespan extension for ALS patients being treated with Edaravone is not 

available.  However, Edaravone treated patients showed a significantly smaller decline on 

the revised ALS Functional Rating Scale (a measure of physical disability in ALS patients), 

when compared to placebo control patients (Cedarbaum et al., 1999, Abe et al., 2017). 

There are two types of MNs: the upper MNs (primary MNs or Betz cells) are located in the 

primary motor cortex and do not exit the central nervous system (CNS), whilst the lower MNs 

exit the CNS to innervate muscles.  Bulbar lower motor neurons supply the muscles of the 

face and throat and reside in the brainstem.  Spinal lower motor neurons supply the 

voluntary muscles of the rest of the body and reside in the ventral horn of the spinal cord.  In 

ALS it is common for the degeneration of one MN population to precede the degeneration of 

another (Gordon, 2013).  ALS onset in lower MNs typically presents as fasciculation, 

cramps, muscle atrophy and marked muscle weakness (Gordon, 2013).  Upper MN onset 

ALS typically presents as spasticity, hyperreflexia and modest weakness (Gordon, 2013).  

Additionally, ALS patients are commonly classified as having spinal or bulbar onset referring 

to whether muscle weakness is first observed in the limbs or the bulbar (speech and 

swallowing) muscles (Hardiman et al., 2017).  Despite the discovery of several causative 

genetic mutations, there is still no clear link between causative mutation and upper vs lower 

MN onset, nor spinal vs bulbar onset, in ALS patients. 

ALS remains a purely motor disorder in some patients, however approximately 40% of ALS 

patients exhibit some cognitive impairment throughout the disease course (Phukan et al., 
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2012).  Almost 60% of ALS patients with cognitive decline show impaired executive function, 

with the remaining 40% showing decline in other cognitive areas such as memory or 

language (Phukan et al., 2012).  Indeed, ALS and frontotemporal dementia (FTD) share 

many common causative genetic mutations and pathomechanisms, and for this reason the 

two disorders are now often considered to be at opposite ends of a continuous disease 

spectrum (Neumann et al., 2006, Kabashi et al., 2008, Sreedharan et al., 2008, Borroni et 

al., 2009, Ferrari et al., 2011). 

1.2. The genetic aetiology of ALS 

ALS cases are most commonly sporadic in origin (80-95% of all cases) and less frequently 

are familial in origin (5-20% of all cases), these numbers vary depending on the definitions of 

sporadic and familial used, and depending on geographic location (Byrne et al., 2011, Byrne 

et al., 2013).  Sporadic cases are thought to be caused by complex interactions between 

genetic and environmental risk factors, whereas familial cases have a direct heritable cause 

which typically affects multiple members of the same family (Byrne et al., 2013).   

The earliest identified genetic cause of ALS was mutations in the superoxide dismutase 1 

(SOD1) gene (Rosen et al., 1993).  SOD1 is the first in a family of three superoxide enzymes 

which are all involved in catalysing the conversion of superoxide anions into hydrogen 

peroxide, thus detoxifying free radicals generated from metabolism (Zelko et al., 2002).  

Despite sharing many functional similarities with SOD1, mutations in SOD2 or SOD3 genes 

are not linked with ALS.  On the other hand, over 170 mutations spanning almost every 

region of the SOD1 gene have been reported to cause ALS (Rotunno and Bosco, 2013, Wei 

et al., 2017).  Due to being discovered first, SOD1 is currently the most well studied ALS 

gene.  As DNA sequencing technologies improved, the discovery rate of novel ALS genes 

greatly increased.  Mutations in two genes coding for RNA-binding proteins were both 

identified as causing ALS.  The first gene in which mutations were identified was TAR DNA 

binding protein 43 (TARDBP) which codes for the RNA-binding protein TDP-43 (Sreedharan 

et al., 2008).  The second gene in which mutations were identified was fused in sarcoma 

(FUS), which encodes an RNA-binding protein of the same name (Kwiatkowski et al., 2009, 

Vance et al., 2009).  Both TDP-43 and FUS are predominately nuclear, and both have an 

array of functions which are mostly related to RNA processing (Kapeli et al., 2017).  Later, 

tandem studies identified the most commonly known cause of ALS to date, a hexanucleotide 

expansion in the chromosome 9 open reading frame 72 (C9orf72) gene (DeJesus-

Hernandez et al., 2011, Renton et al., 2011).  Since its discovery, C9orf72 and its’ 

hexanucleotide expansion have become the fastest growing area of ALS research.  C9orf72 

is the most common ALS gene by a wide margin and in the coming years will likely overtake 

SOD1 as the most well studied ALS gene (Chió et al., 2012).  Shortly thereafter, mutations in 
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the SQSTM1 gene, which encodes the p62 protein, were identified as causing ALS (Fecto et 

al., 2011).  p62 functions in the protein degradation pathway by binding to proteins and 

targeting them for degradation by the autophagosome, p62 positive inclusions are also often 

observed in ALS post-mortem tissues (Bjorkoy et al., 2006, Mizuno et al., 2006a).  Later, 

ALS causative mutations were identified in the genes encoding RNA binding proteins 

Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), Heterogeneous nuclear 

ribonucleoprotein A2/B1 (hnRNPA2B1), TATA-Box Binding Protein Associated Factor 15 

(TAF15) and Ewing sarcoma breakpoint region 1 (EWSR1) (Ticozzi et al., 2011, Couthouis 

et al., 2012, Kim et al., 2013a).  Thus, further implicating RNA processing in the pathobiology 

of ALS.  Axonal transport defects have been reported in both mutant SOD1 and mutant 

TARDBP expressing mouse models (Magrane et al., 2014).  Later, ALS causative mutations 

were identified in the axonal transport associated genes TUBA4A and KIF5A (Smith et al., 

2014, Nicolas et al., 2018). 

The above section gives an outline of the ALS genetic discoveries which are relevant to data 

or discussion presented in later chapters of this thesis.  For a comprehensive list of ALS 

genes and their associated pathomechanisms see Table 1.1 below. 

Gene name Encoded protein 
Potential 

pathomechanism 
References 

ALS2 Alsin 
Endosomal 

processing 

(Hadano et al., 2001, 

Yang et al., 2001, Sato et 

al., 2018) 

ANG Angiogenin RNA processing 
(Greenway et al., 2006, 

Thiyagarajan et al., 2012) 

ATXN2 Ataxin-2 RNA processing 
(Elden et al., 2010, van 

den Heuvel et al., 2014) 

C9orf72 C9orf72 

Autophagy, DNA 

damage, 

nucleocytoplasmic 

transport, RNA 

processing 

(DeJesus-Hernandez et 

al., 2011, Renton et al., 

2011, Zhang et al., 

2015b, Webster et al., 

2016a, Walker et al., 

2017) 

CCNF Cyclin F 
Ubiquitin/proteasome 

system 
(Williams et al., 2016) 



15 
 

CHCHD10 
Coiled-coil-helix-coiled-

coil-helix domain-
containing protein 10 

Mitochondrial 

dysfunction 
(Bannwarth et al., 2014) 

CHMP2B 
Charged multivesicular 

body protein 2B 
Autophagy 

(Parkinson et al., 2006, 

Cox et al., 2010) 

ERBB4 
Receptor tyrosine-protein 

kinase erbB-4 

Neuronal 

development 
(Takahashi et al., 2013) 

EWSR1 
Ewing sarcoma breakpoint 

region 1 
RNA processing (Couthouis et al., 2012) 

FIG4 
Polyphosphoinositide 

phosphatase 

Endosomal 

processing 
(Chow et al., 2009) 

FUS Fused in sarcoma 

RNA processing, 

DNA damage, 

mitochondrial 

dysfunction 

(Kwiatkowski et al., 2009, 

Vance et al., 2009, Deng 

et al., 2015, Shang and 

Huang, 2016) 

GLT8D1 
Glycosyltransferase 8 
domain containing 1 

Unknown 
(Cooper-Knock et al., 

2019) 

HNRNPA1 
Heterogeneous nuclear 

ribonucleoprotein A1 
RNA processing (Kim et al., 2013a) 

HNRNPA2B1 
Heterogeneous nuclear 
ribonucleoprotein A2/B1 

RNA processing (Kim et al., 2013a) 

NEK1 NIMA related kinase 1 DNA damage 
(Kenna et al., 2016, 

Higelin et al., 2018) 

KIF5A Kinesin family member 5A Cytoskeleton (Nicolas et al., 2018) 

MATR3 Matrin 3 RNA processing (Johnson et al., 2014) 

OPTN Optineurin 
Autophagy, 

neuroinflammation 

(Maruyama et al., 2010, 

Markovinovic et al., 2017) 

PFN1 Profilin 1 Cytoskeleton (Wu et al., 2012) 

SETX Senataxin 

RNA processing, 

nucleocytoplasmic 

transport 

(Chen et al., 2004, 

Bennett et al., 2018) 

SIGMAR1 
Sigma non-opioid 

intracellular receptor 1 

Ubiquitin/proteasome 

system, 

mitochondrial 

dysfunction 

(Luty et al., 2010, 

Fukunaga et al., 2015) 

SOD1 Superoxide dismutase 1 

Oxidative stress, 

mitochondrial 

dysfunction 

(Rosen et al., 1993, Kraft 

et al., 2007) 
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1.3. Risk factors associated with ALS 

Risk factors may be broadly categorised as genetic or non-genetic (environmental) in nature.  

Genetic risk factors for ALS can be thought of as being on a continuous spectrum with the 

identified disease causing mutations, the location of the gene on the spectrum simply 

depends on the penetrance of the identified mutations.  Precise limits have not been well 

defined, but generally ALS gene mutations with a high penetrance are considered causative 

ALS genes, whereas those with low penetrance are considered risk factors. 

Well known general risk factors for ALS include increasing age, being male and having a 

family history of ALS (Armon, 2003).  Currently, there are many genes in which mutations 

have been identified as increasing the risk of developing ALS (low penetrance ALS genes), 

these include charged multi vesicular protein 2B (CHMP2B), ATXN2, SPG11, TAF15, 

OPTN, VAPB, UBQLN2 and NEK1 (Kenna et al., 2013, Kenna et al., 2016, Wang et al., 

2017).  As with causative ALS genes, the pathological molecular mechanisms of ALS 

genetic risk factors are not well understood.  As well as genetic risks factors, diverse non-

SPG11 Spastic paraplegia-11 
Lysosomal 

dysfunction 

(Orlacchio et al., 2010, 

Branchu et al., 2017) 

SQSTM1 p62 Autophagy (Fecto et al., 2011) 

TAF15 
TATA-Box Binding Protein 

Associated Factor 15 
RNA-processing (Ticozzi et al., 2011) 

TARDBP 
TAR DNA-binding protein 

43 

RNA-processing, 

mitochondrial 

dysfunction 

(Kabashi et al., 2008, 

Sreedharan et al., 2008) 

TBK1 TANK-binding kinase 1 
Autophagy, 

neuroinflammation 

(Cirulli et al., 2015, 

Freischmidt et al., 2015, 

Oakes et al., 2017) 

TUBA4A Tubulin alpha-4A Cytoskeleton (Smith et al., 2014) 

UBQLN2 Ubiquilin 2 

Autophagy,  

Ubiquitin/proteasome 

system 

(Deng et al., 2011, Chen 

et al., 2018, Kim et al., 

2018) 

VAPB 
Vesicle-associated 
membrane protein-

associated protein B/C 

Endoplasmic 

reticulum dysfunction 

(Nishimura et al., 2004, 

Fasana et al., 2010) 

VCP Valosin-containing protein 
Autophagy, DNA 

damage 

(Johnson et al., 2010, 

Meerang et al., 2011, Kim 

et al., 2013b) 

Table 1.1: Genetic discoveries and associated pathomechanisms in ALS 
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genetic risk factors have also been associated with ALS.  ALS is not one of the most 

common diseases caused by smoking, however a significant link between smoking and ALS 

has been reported in more than one study (Armon, 2003, Factor-Litvak et al., 2013).  Other 

lifestyle factors may also influence ALS, consumption of some antioxidants including vitamin 

E have been reported to associate with a lower risk of ALS (Ascherio et al., 2005, Veldink et 

al., 2007).  Conversely, treatment of ALS patients with riluzole supplemented with vitamin E 

failed to prolong survival in comparison to riluzole treatment alone (Graf et al., 2005).  Low 

BMI and frequent strenuous exercise have been reported to associate with an increased risk 

of ALS (Granieri et al., 1988, Turner, 2013).  Additionally, the incidence of ALS has been 

reported to be higher in populations of professional athletes and armed forces members 

(Beard and Kamel, 2015, Lacorte et al., 2016).  Exposure to pesticides and heavy metals 

have also been reported to increase the risk of developing ALS (Kamel et al., 2003, Kamel et 

al., 2012). 

 

1.4. Histopathology of ALS 

Histopathological characterisation of CNS tissues from ALS patients has revealed that large 

motor neurons are lost from the spinal cord, brainstem and motor cortex (Hammer et al., 

1979, Nihei et al., 1993).  In the ventral horn of the spinal cord, neuronal loss is observed 

across multiple types of morphologically distinct neurons, and is not limited to motor neurons 

(Stephens et al., 2006).  Loss of myelinated axons is also commonly observed in the ventral 

and lateral spinal cord of ALS patients (Saberi et al., 2015).  In patients with a pure ALS 

phenotype, degeneration is predominately confined to motor areas, but in patients with 

ALS/FTD neuronal and axonal loss in the frontal and temporal lobes also occurs (Brown and 

Al-Chalabi, 2017).  In both the brain and spinal cord of sALS patients, degenerating motor 

neurons are often surrounded by reactive astrocytes expressing glial fibrillary acidic protein 

(Kawamata et al., 1992, Schiffer et al., 1996).  Additionally, activated microglia are present in 

degenerating regions CNS regions of sALS patients (Troost et al., 1990, Kawamata et al., 

1992).  In sALS patients, mitochondria located in the ventral horn of the spinal cord often 

exhibit morphological abnormalities, such as appearing swollen with increased cristae or 

appearing stubby with short protrusions from the outer mitochondrial membrane (Sasaki and 

Iwata, 2007). 

CNS tissues from ALS patients frequently contain abnormal cellular inclusions.  

Approximately 85% of sALS cases show small round or oval eosinophillic inclusions termed 

Bunina bodies (Bunina, 1962). Bunina bodies are located in the cell bodies and dendrites of 

motor neurons of the spinal cord and brain stem nuclei (Piao et al., 2003, Okamoto et al., 

2008).  Bunina bodies are p62 and TDP-43 negative, but occasionally contain ubiquitin 
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(Lowe et al., 1988, Leigh et al., 1991, Mizuno et al., 2006a).  Furthermore, Bunina bodies are 

positive for proteins cytostatin c and transferrin (Okamoto et al., 1993, Mizuno et al., 2006b).  

It is currently unknown how Bunina bodies develop, or whether they actively contribute to 

ALS progression.  Ubiquitin positive inclusions are also observed in neurons (and less 

frequently in glial cells) of the majority of fALS and sALS cases (Leigh et al., 1988, Lowe et 

al., 1988).  These ubiquitin positive inclusions are frequently also positive for p62 and are 

primarily comprised of fragmented/aggregated TDP-43 protein (Arai et al., 2006, Mizuno et 

al., 2006a, Neumann et al., 2006).  p62 positive inclusions are also detected in the ventral 

horn of the spinal cord in the majority of ALS cases, and are frequently (but not always) 

ubiquitin positive (Arai et al., 2003, Mizuno et al., 2006a). 

Muscle tissue from ALS patients shows evidence of denervation, and attempted 

reinnervation by nerve sprouting of surviving motor neurons (Dadon-Nachum et al., 2011).  

Areas of type I or type II muscle fibre grouping due to reinnervation of muscle fibres is 

commonly observed in ALS patients (Soraru et al., 2008, Jensen et al., 2016).  Muscle fibres 

in ALS patients are frequently atrophic, although compensatory muscle hypertrophy as an 

attempt at muscle regeneration may also be observed (Soraru et al., 2008, Jensen et al., 

2016).  Similarly to ALS patient CNS tissue, muscle tissue from ALS patients also exhibits 

evidence of mitochondrial abnormalities and infiltration of immune cells (Wiedemann et al., 

1998, Al-Sarraj et al., 2014).  Also in line with CNS histopathology, p62 positive intracellular 

inclusions are also frequently detected in muscle fibres of ALS patients (Al-Sarraj et al., 

2014).  Conversely, no aggregation, fragmentation or cytoplasmic mislocalisation of TDP-43 

has been detected in muscle tissue from ALS patients, thus TDP-43 proteinopathy appears 

to be limited to CNS tissues of ALS patients (Soraru et al., 2010, Al-Sarraj et al., 2014). 

 

1.5. Common proteinopathies linking ALS sub-types 

Many causative ALS genes have now been identified.  The protein products of these genes 

have diverse ranging functions which are not always well understood.  An additional layer of 

complexity arises from the fact that mutations may not cause ALS by loss of endogenous 

function, but rather by an additional gained toxic function of the mutant protein product.  The 

lack of understanding of both the endogenous functions and possible gained toxic functions 

of ALS genes has made it difficult to identify whether different ALS genes share common 

pathological species.  Nevertheless, multiple previous studies have identified evidence for 

similar proteinopathies in different genetic variants of ALS which were previously thought to 

be unrelated, these studies are discussed in detail below. 

The SOD1 protein is essential in regulating the oxidation levels of the cell (Rosen et al., 

1993).  For this reason the first suspected mechanism of mutant SOD1 (mSOD1) toxicity 
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was due to a loss of dismutase enzymatic function leading to increased intracellular reactive 

oxygen species (Rosen et al., 1993).  However, evidence has since shown that many ALS 

causing variants of mSOD1 do not have reduced enzymatic activity (Borchelt et al., 1994, 

Ratovitski et al., 1999, Ramesh et al., 2010).  Additionally, a SOD1 knockout mouse model 

does not show a neurodegenerative phenotype (Reaume et al., 1996).  This evidence has 

led to a gain of toxic function mechanism being favoured for SOD1-ALS.  Many variants of 

mSOD1 are known to be less structurally stable than wildtype SOD1 (wtSOD1), and have 

been shown to form abnormal conformations which cause novel interactions between 

mSOD1 and proteins such as bcl2, among others (Pasinelli et al., 2004, Pedrini et al., 2010).  

Furthermore, the abnormal conformation, or misfolding, of mSOD1 makes the protein prone 

to oligomerisation, and formation of insoluble intracellular aggregates (Anzai et al., 2017).  

Although, recent evidence suggests that aggregation of SOD1 may be neuroprotective, and 

that soluble forms of misfolded mSOD1 are the more toxic species (Gill et al., 2019).  Thus, 

gain of toxic function through novel protein-protein interactions or aggregation of mSOD1 are 

both proposed mechanisms of mSOD1 mediated MN toxicity.  Other ALS genes cause a 

range of neurological phenotypes, for example C9orf72, VCP, FUS and TARDBP mutations 

result in a spectrum of ALS-fronto-temporal dementia (FTD) (Liscic, 2015).  Conversely, in 

>170 reported SOD1 mutations, a pure ALS phenotype predominates, this has led some 

researchers to hypothesise that SOD1 proteinopathy may be a crucial aspect of selective 

motor neuron toxicity and that SOD1 proteinopathy may also contribute to motor neuron 

pathology in non-SOD1 forms of ALS (Rotunno and Bosco, 2013, Wei et al., 2017).  To test 

the hypothesis that misfolded/aggregated SOD1 may underlie other forms of ALS, various 

antibodies which specifically recognise misfolded SOD1 have been generated.  Multiple 

studies have used several different misfolded SOD1 specific antibodies to detect 

misfolded/aggregated SOD1 in spinal cord tissue from patients with sporadic ALS (sALS) 

(Bosco et al., 2010, Forsberg et al., 2010, Pokrishevsky et al., 2012, Grad et al., 2014, Maier 

et al., 2018).  These data suggest that misfolded SOD1 may contribute to pathology in non-

SOD1 forms of ALS.  Moreover, a study using patient derived oligodendrocytes 

demonstrated that co-culture of oligodendrocytes derived from sALS and TARDBP mutation 

ALS patients conferred toxicity to wildtype mouse motor neurons upon co-culture (Ferraiuolo 

et al., 2016).  Interestingly, knockdown of the SOD1 protein in these oligodendrocytes prior 

to co-culture, ameliorated the toxicity usually conferred to the motor neurons.  These data 

suggest that within this in vitro system, the SOD1 protein directly or indirectly contributes to 

the motor neuron toxicity conferred by oligodendrocytes derived from non-SOD1 ALS 

patients.   
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In contrast however, there is also evidence that misfolded/aggregated wildtype SOD1 is not 

involved in non-SOD1 ALS.  Other studies using similar misfolded SOD1 specific antibodies 

to those discussed previously, have not been able to identify specific staining in the spinal 

cord from sALS patients (Kerman et al., 2010, Brotherton et al., 2012, Liu et al., 2012, Ayers 

et al., 2014).  The antibodies, staining techniques and sample numbers used vary from one 

study to another, and this may explain some of the observed discrepancies in the datasets.  

To address this issue, one recent study used 7 different misfolded SOD1 specific antibodies 

and stained a large cohort of over 40 ALS patient samples in total (Da Cruz et al., 2017).  

This comprehensive study did not identify any increase in misfolded SOD1 staining in sALS 

patients in comparison to non-neurological controls, despite the specificity of every antibody 

being validated in mSOD1 patient tissue.  Thus, whether SOD1 misregulation has a role in 

non-SOD1 ALS remains a highly controversial topic.   

The TARDBP gene codes for the ubiquitously expressed protein TDP-43 which has roles in 

mRNA splicing, RNA stability, gene transcription and many other functions (Lagier-Tourenne 

and Cleveland, 2009).  Mutations in the TARDBP gene are known to cause ALS 

(Sreedharan et al., 2008).  Additionally, nearly all sporadic and familial ALS cases (except 

SOD1 and FUS ALS cases) show ubiquitinated cytoplasmic TDP-43 positive aggregates 

which co-localise with disease affected areas (Arai et al., 2006, Neumann et al., 2006, 

Mackenzie et al., 2007, King et al., 2015).   TDP-43 is often mislocalised from the nucleus to 

the cytoplasm and aggregated, leading to the hypothesis that loss of nuclear function and 

aggregation mediated toxicity may be potential ALS causing mechanisms (Arai et al., 2006, 

Neumann et al., 2006).  In addition to TDP-43 many other RNA-binding proteins have been 

implicated in ALS pathogenesis.  Mutations in the genes which code for RNA-binding 

proteins FUS, hnRNPA1, hnRNPA2B1, TAF15 and EWSR1 are all known to cause ALS 

(Kwiatkowski et al., 2009, Vance et al., 2009, Ticozzi et al., 2011, Couthouis et al., 2012, 

Kim et al., 2013a).  All of the above mentioned RNA-binding proteins contain low-complexity 

prion-like domains, which allow for protein-protein interactions and self-assembly.  The 

majority of ALS causing mutations in RNA-binding protein genes are clustered in the regions 

coding for the low complexity prion-like domains of the protein (Kapeli et al., 2017).  Similarly 

to TDP-43 proteinopathy, all of the above mentioned RNA binding proteins have been shown 

to aggregate or mislocalise to the cytoplasm in a diverse range of ALS cases and models, 

albeit this is observed much less frequently than TDP-43 proteinopathy (Dormann et al., 

2010, Couthouis et al., 2011, Couthouis et al., 2012, Kato et al., 2012, Kim et al., 2013a).  

Notably, two studies from the same group have suggested that RNA-binding proteins (TDP-

43 and FUS) which are mislocalised to the cytoplasm can induce misfolding of wtSOD1 

(Pokrishevsky et al., 2012, Pokrishevsky et al., 2016).  Thus, dysregulation of multiple RNA 
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binding proteins and the SOD1 protein have been reported across diverse genetic subtypes 

of ALS, although evidence for SOD1 proteinopathy in non-SOD1 ALS remains a highly 

controversial topic at this point. 

 

1.6. C9orf72 expansions and potential routes of toxicity 

Tandem repeat disorders are caused by a microsatellite expansion located within the 

identified disease gene.  A microsatellite expansion is a short sequence of DNA (usually 3 to 

6 base pairs in length) which is repeated multiple times consecutively within a genome 

(Richard et al., 2008).  Huntington’s disease, fragile X tremor ataxia syndrome and myotonic 

dystrophy are all examples of neurodegenerative disorders caused by microsatellite 

expansions (Mirkin, 2007).  Recently, an intronic hexanucleotide expansion within the 

C9orf72 gene was identified as the most common known cause of ALS and frontotemporal 

dementia (FTD) (DeJesus-Hernandez et al., 2011, Renton et al., 2011).  In the case of the 

C9orf72 gene, the microsatellite expansion consists of repeats of the hexanucleotide 

sequence GGGGCC (G4C2), the number of these repeats can vary typically from 1-10 in 

healthy people and up to >1000 repeats in some ALS patients (DeJesus-Hernandez et al., 

2011).  The repeats are thought to become pathogenic from a length of approximately 30 

(Renton et al., 2011).  The microsatellite expansion is located in the first intron of the 

C9orf72 gene, and due to alternate splicing there are 3 possible mRNA transcripts which 

may be produced from C9orf72 (DeJesus-Hernandez et al., 2011, Renton et al., 2011).  

These mRNAs give rise to two distinct protein variants.  Both C9orf72 proteins contain a 

DENN (differential in normal and neoplastic cells) domain which led to the early hypothesis 

that C9orf72 may be a guanine exchange factor for Rab GTPases (Levine et al., 2013).  

Later, C9orf72 proteins were discovered to associate with Rab family proteins and regulate 

processes such as endocytosis and autophagy (Farg et al., 2014).  Most recently, the 

C9orf72 protein was shown to act as an effector for Rab proteins, ultimately involved in the 

initiation of autophagy (Sellier et al., 2016, Webster et al., 2016a).  In C9orf72 expansion 

bearing patients, expression of mRNA encoding endogenous C9orf72 gene products is 

reduced (DeJesus-Hernandez et al., 2011).  

Microsatellite expansions are transcribed bi-directionally (He et al., 2008).  Bidirectional 

transcription of the C9orf72 expansion results in the production of sense and antisense RNA 

transcripts very rich in bases G and C.  These GC rich RNA transcripts have a high 

propensity to form secondary structures such as hairpins and G-quadruplexes, as well RNA-

DNA hybrids termed r-loops (Fratta et al., 2012, Reddy et al., 2013, Zhou et al., 2018).  In 

C9orf72-ALS patients, the GC rich RNA transcripts produced from C9orf72 expansions are 

known to form insoluble, predominately intranuclear inclusions termed RNA foci (DeJesus-
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Hernandez et al., 2011) (Figure 1.1a+b).  Both sense and antisense transcribed RNA foci 

can be detected in neurons of multiple CNS regions including motor cortex, spinal cord, 

frontal cortex, cerebellum and hippocampus (Mizielinska et al., 2013, Zu et al., 2013, 

DeJesus-Hernandez et al., 2017).  Additionally, RNA foci frequently sequester RNA-binding 

proteins such as Pur-alpha, hnRNP-H and hnRNP-A1 (Lee et al., 2013, Sareen et al., 2013, 

Xu et al., 2013, Cooper-Knock et al., 2014). 

RNA transcripts produced from microsatellite expansions also undergo repeat associated 

non-ATG (RAN) translation (Zu et al., 2011).  RAN translation is the initiation of translation in 

the absence of the ordinarily necessary ATG start codon, and is triggered exclusively in 

microsatellite expansions.  As RAN translation is not bound by the requirement of an ATG 

codon, it is not limited to translation of a single frame of an mRNA transcript as in normal 

physiological translation.  Rather, RAN translation is capable of translating all frames of an 

mRNA transcript and can therefore produce several distinct proteins from a single transcript 

(Zu et al., 2011).  As microsatellite expansions are transcribed bi-directionally this will give 

rise to a (G4C2)n mRNA strand and a (C4G2)n mRNA strand.  From each of these mRNAs, 3 

different frames can be translated into proteins.  Thus, the C9orf72 hexanucleotide 

expansion will give rise to 2 mRNAs and 6 proteins.  However, in actuality one frame of G4C2 

and C4G2 RNA transcripts share a common base pair sequence, so only 5 distinct protein 

species are produced in total, these are poly glycine-alanine (GA), poly glycine-arginine 

(GR), poly glycine-proline (PA), poly proline-alanine (PA) and poly proline-arginine (PR), 

these are collectively termed dipeptide repeat proteins (Ash et al., 2013, Mori et al., 2013, Zu 

et al., 2013) (Figure 1.1c+d).  Dipeptide repeat proteins form p62/ubiquitin positive, TDP-43 

negative neuronal inclusions in multiple brain regions including the spinal cord, motor cortex, 

frontal cortex and temporal cortex, basal ganglia and cerebellum of ALS/FTD patients (Al-

Sarraj et al., 2011, Bigio et al., 2013, Mackenzie et al., 2013, Mann et al., 2013, Mori et al., 

2013, May et al., 2014, Baborie et al., 2015, Davidson et al., 2016). 

In summary, the three major, non-mutually exclusive, proposed mechanisms of C9orf72 

expansion mediated neurodegeneration are: 1) Toxicity derived from expansion mediated 

reduction of endogenous C9orf72 gene products, 2) Toxicity derived from RNA transcribed  

from the C9orf72 expansion and 3) Toxicity derived from the proteins translated from the 

C9orf72 expansion RNA. 
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Figure 1.1: Schematic of transcription and translation of the C9orf72 expansion 

(a)  An expanded GC rich DNA region is located within the C9orf72 gene of C9-ALS 

patients.  In addition to the endogenous transcription start site present in the 5’ promotor 

region of the C9orf72 gene, the presence of C9orf72 GC rich expansions also allows the 

transcription machinery to bind and transcribe RNA in the local expansion region (the 

exact binding site of the transcription machinery in the local expansion region is not 

known).  Additionally, expansion mediated initiation of transcription may occur in both 

sense and antisense directions.  (b)  Sense and antisense RNA transcripts produced from 

the GC rich expansion may form insoluble sense and antisense foci respectively.  These 

RNA foci are predominately nuclear, and less frequently also occur in the cytoplasm.  (c)  

In addition to forming intranuclear RNA foci, some RNA transcripts transcribed from the 

GC rich expansion are exported to the cytoplasm and then trafficked to the ribosome.  (d)   

Sense and antisense RNA transcripts transcribed from the GC rich expansion bind to the 

ribosome where peptides are produced in all 3 possible reading frames (the reason why 

canonical rules dictating reading frame are not respected in the case of these GC rich 

RNA transcripts is not currently known). 
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1.7. Evidence for loss or gain of function toxicity in C9orf72 models 

In addition to post-mortem tissue from C9orf72 expansion ALS patients, various in vitro and 

in vivo models have now been developed in order to help study different aspects of the role 

of C9orf72 in ALS pathogenesis.  In order to target therapeutic interventions and future 

research appropriately, it is important to ascertain which element(s) of the C9orf72 

expansion drive ALS pathogenesis.  Therefore the majority of ALS models to date have 

focussed on modelling one or a combination of RNA foci, DPRs and C9orf72 endogenous 

protein reduction.   

 

1.7.1. Evidence for loss of C9orf72 endogenous function causing toxicity 

Loss of function toxicity refers to a mutation which disrupts the endogenous functioning of 

the affected gene or its gene products.  Whether loss of function of the endogenous C9orf72 

protein products is neurotoxic has not been clearly defined.  In zebrafish, morpholino-

mediated knockdown of the zebrafish orthologue of C9orf72 caused a motor phenotype 

which could be rescued upon expression of human C9orf72 mRNA (Ciura et al., 2013).  

Furthermore, injection of C9orf72 RNA containing deletions in the DENN domain into 

zebrafish blastomeres resulted in locomotor defects and neuronal apoptosis (Yeh et al., 

2018).  Injection of a C9orf72 morpholino also phenocopied overexpression of the DENN 

deleted RNAs (Yeh et al., 2018).  Additionally, knockout of the C. elegans orthologue of 

C9orf72 resulted in motor neuron loss (Therrien et al., 2013).  These data suggest that 

haploinsufficiency may play a role in C9orf72-ALS pathogenesis.  Conversely, early reports 

from stable C9orf72 knockout zebrafish suggest that complete loss of C9orf72 protein 

expression does not induce any motor or neurodegenerative phenotype (Stepto et al., 2014).  

Additionally, 6 independently generated C9orf72 knockout mice, displayed no motor or 

behavioural abnormalities and no neurodegenerative phenotype (Koppers et al., 2015, 

Atanasio et al., 2016, Jiang et al., 2016, O'Rourke et al., 2016, Sudria-Lopez et al., 2016, Ji 

et al., 2017).  Further work is clearly needed to explain these directly contradictory datasets.   

 

1.7.2. Evidence for gain of function toxicity in C9orf72 expansion models 

Gain of function toxicity occurs when a genetic mutation results in the affected gene, or gene 

products, possessing new molecular functions. Toxicity related to RNA foci or DPR proteins 

are both examples of gain of function toxicity as RNA foci and DPR proteins are not 

expressed in people who possess a wildtype C9orf72 gene.  Modelling of gain of function 

mechanisms (RNA foci or DPRs) and loss of function mechanisms (C9orf72 protein levels) 

separately can be achieved with relative ease due to the independent nature of these 

pathways.  However, RNA foci and DPR pathology are intimately linked, therefore 
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expressing RNA without DPR or vice versa has proven to be a challenge in identifying the 

exact species which are responsible for driving ALS progression.  To overcome the difficulty 

of expressing RNA foci without DPRs being produced (or vice versa) researchers have 

developed various techniques.  One such technique involves introducing stop codons 

immediately prior to the expansion, which should therefore allow expression of RNA foci, but 

prevent translation of the RNA into DPR protein (Mizielinska et al., 2014).  Another technique 

involves expressing constructs which take advantage of codon degeneracy to avoid 

expressing 100% GC rich RNA transcripts, for example rather than being encoded by GGG-

GCC repeats (100% GC content), poly(GA) may be encoded by GGA-GCA repeats (66% 

GC content), thus allowing large DPR proteins to be encoded by RNA which has a more 

moderate GC content (Mizielinska et al., 2014, Wen et al., 2014).  Such constructs are 

henceforth referred to as DPR encoding constructs.   

Multiple cell lines expressing hexanucleotide expansions have now been generated, these 

cell lines show RNA foci and/or produce DPRs, which results in toxicity as measured by 

induction of apoptosis and direct reduction in cell viability.   (Lee et al., 2013, Kwon et al., 

2014, Stopford et al., 2017).  Certainly these studies demonstrate the potent toxicity of RNA 

foci and/or DPR species and therefore support gain of function mediated toxicity in ALS.  

However, due to RAN translation these models will likely not only express RNA foci but also 

some DPR proteins, indeed this was proven to be the case in one cell line but was not 

investigated in another (Lee et al., 2013, Stopford et al., 2017).   

Cell lines are often not representative of the complex biology of an entire organism, for this 

reason many in vivo models of C9orf72-ALS have also been generated (see Appendix A for 

a table summarising the in vivo C9orf72 models discussed in the section below).  These in 

vivo models have also been utilised in an attempt to unravel the contributions to 

pathogenicity of RNA foci and DPR toxicity.   

Transgenic drosophila expressing C9orf72 expansion containing constructs have helped to 

shed light on the relative toxicities of RNA and DPR species.  Drosophila expressing over 

200 G4C2 repeats showed RNA foci pathology, but RAN-translation of DPRs was prevented 

by the insertion of a bidirectional multi-frame stop codons throughout the C9-expansion 

(Mizielinska et al., 2014).  The drosophila expressing over 200 repeats with a stop codon did 

not show any DPR production or neurodegenerative phenotype.  However, in the same 

study drosophila expressing 103 repeats with no stop codons, displayed RAN translated 

poly(GR) peptides accompanied by a neurodegenerative phenotype and reduced survival 

(Mizielinska et al., 2014).  Additionally, treatment of the 103 repeat (no stop codon) 

drosophila with an agent which partially blocks protein synthesis ameliorated the decrease in 
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their survival (Mizielinska et al., 2014).  Similarly, another drosophila model demonstrated 

that expression of 160 G4C2 repeats (no stop codon) was sufficient to produce RNA foci, but 

again did not cause a neurodegenerative phenotype (Tran et al., 2015).  In the same study 

however, expression of 34 repeats in the context of a poly(A) tail allowed RNA to be 

exported to the cytoplasm and translated into DPR, and was potently neurotoxic.  Finally, 

Tran et al. demonstrated that growing the drosophila containing 160 repeats at a higher 

temperature (in order to increase the rate of protein synthesis) increased the amount of 

DPRs produced, and resulted in a corresponding increase in neurodegenerative phenotype 

(Tran et al., 2015).   

In addition to drosophila models, zebrafish models have also been utilised in attempting to 

unravel RNA and DPR toxicity.  Early data generated in zebrafish transiently expressing 

G4C2 RNA showed activation of apoptotic pathways (Lee et al., 2013).  Later, zebrafish 

stably expressing G4C2 expansions showed a modest toxic phenotype, whereas zebrafish 

expressing ATG-driven DPR proteins displayed a much more severe toxic phenotype (Ohki 

et al., 2017).  Additionally, injection of sense (35, 70 and 90 G4C2 repeats) and antisense (35 

and 70 C4G2 repeats) RNA at the 1-2 cell stage resulted in motor axonopathy in zebrafish 

(Swinnen et al., 2018).  In the same study, injection of an equimolar concentration (with 

respect to sense and antisense RNAs) of codon optimised (use of codon degeneracy to 

produce RNA transcripts with the lowest possible propensity to form secondary structures) 

DPR encoding RNA, resulted in motor axonopathy when 50 repeats of poly(PR) or poly(GR) 

encoding RNA was injected, but not when 50 repeats of poly(PA), poly(GA) or poly(GP) 

encoding RNA was injected.  Intriguingly, Swinnen and other authors confirmed that sense 

or antisense RNA injection did not result in the production of detectable levels of the toxic 

poly(GR) DPR or poly(PR) DPR respectively (Swinnen et al., 2018).  Furthermore, co-

injection of Pur-alpha mRNA resulted in rescue of the motor axonopathy observed with 

injection of sense and antisense repeats, but had no effect on poly(GR) or poly(PR) DPR 

mediated motor axonopathy.  Thus, Swinnen and other authors demonstrate that in this 

zebrafish model, C9orf72 expansion RNA and DPRs are both toxic to motor neurons, and 

may mediate their toxicity through independent mechanisms. 

Mammalian models have also offered insights into the debate over RNA and DPR toxicity.  

Viral mediated expression of 66 G4C2 repeats in the mouse central nervous system 

accurately recapitulated major aspects of human ALS (Chew et al., 2015).  The mice 

expressing 66 G4C2 repeats displayed RNA foci with the characteristic TDP-43 pathology 

frequently observed in ALS patients, the mice also showed intracellular inclusions of RAN 

translated proteins.  These mice also displayed mild motor impairment and neuronal cell loss 

(Chew et al., 2015).  Similarly, viral mediated expression of 102 G4C2 in the mouse CNS 
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resulted in expression of RNA foci, RAN-translated DPR species and caused gait and 

memory disturbances in these mice (Herranz-Martin et al., 2017).  A further mouse model 

virally expressed a DPR encoding construct (50 poly(GA) repeats), which resulted in mice 

showing anxiety-like behaviour and reduced latency to fall in the rotarod test (Zhang et al., 

2016).  Likewise, a similar mouse model which virally expressed a DPR encoding construct 

(69 poly(GA) repeats) showed motor impairment and neurodegeneration (Walker et al., 

2017).  Thus, virally driven mouse models of C9orf72 expansion ALS show a motor 

phenotype whether G4C2 expansions or DPR coding constructs are used.   

In addition to the mouse models described above, transgenic mouse models have also been 

generated from a bacterial artificial chromosome (BAC) containing a human ALS patient 

C9orf72 gene complete with G4C2 expansion and flanking regions.  Two BAC mouse models 

demonstrate the reduced survival, neuronal loss and motor deficits observed in human C9-

ALS/FTD (Jiang et al., 2016, Liu et al., 2016).  Liu and other authors, generated BAC mice 

expressing a maximum expansion size of 500 G4C2 repeats, within the full length human 

C9orf72 gene and flanked by 52 Kb of upstream sequence and 19 Kb of downstream 

sequence (Liu et al., 2016).  Whereas Jiang and other authors, generated BAC mice 

expressing a maximum of 450 G4C2 repeats, within exons 1-5 of the human C9orf72 gene 

and flanked by 140 Kb of upstream sequence (Jiang et al., 2016).  Unexpectedly, a further 

two independently generated BAC transgenic mouse models showed no signs of neuronal 

loss or reduced survival (O'Rourke et al., 2015, Peters et al., 2015).  O’Rourke and other 

authors, generated BAC mice with a maximum expansion size of 1000 G4C2 repeats within 

the full length C9orf72 gene (O'Rourke et al., 2015).   Whereas Peters and colleagues, 

generated BAC mice with a maximum expansion size of 500 G4C2 repeats (these mice 

contained an additional 300 repeat expansion) within exons 1-6 of the human C9orf72 gene, 

and flanked by 140.5 Kb of upstream sequence (Peters et al., 2015).  All 4 BAC transgenic 

mice showed expression of RNA foci and RAN translated DPR species.  While the two BAC 

mouse models which show an ALS/FTD like phenotype are consistent with the RNA foci 

and/or DPR mediated gain of function toxicity observed in cell, zebrafish, drosophila and 

previous viral expression mouse models.  It is still not known why two seemingly similar BAC 

mouse models expressed RNA foci and DPR proteins but did not develop any ALS/FTD 

symptoms (see Appendix A for a table of information on all 4 BAC mouse, and other in vivo 

C9orf72 models).  Taken together, current in vivo data show that both RNA foci and DPR 

species are toxic, with DPRs likely being the more potently cytotoxic species.  However, two 

of the 4 BAC mouse models generated, clearly demonstrate that expression of RNA foci and 

DPRs are not always sufficient to cause an ALS/FTD phenotype. 
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In summary, there is evidence suggesting that RNA foci, DPR species and 

haploinsufficiency of the C9orf72 protein products may all contribute to ALS pathogenesis.  

As these are none mutually exclusive pathways, it is possible that all three pathways may 

contribute to ALS pathology. 

 

1.8. Differential toxicity of DPR species 

Each DPR species is found to be differentially expressed in post-mortem CNS tissue from 

C9orf72-ALS patients (Mackenzie et al., 2013, Mackenzie et al., 2015, Schludi et al., 2015).  

For this reason it is important to determine what the relative toxicity of each DPR species is.  

Expression of DPR coding constructs in induced neuronal-like cells showed that poly(PA) 

was not cytotoxic but did cause electrophysiological abnormalities when expressed at over 

1000 repeats (Bennion Callister et al., 2016).  In the same study modest toxicity and 

electrophysiological changes were observed with similar repeat lengths of poly(GA).  

However, the most toxic DPRs were found to be the arginine rich poly(GR) and poly(PR) as 

these DPRs induced severe cytotoxicity at repeat lengths of ~1000 repeats, and caused 

electrophysiological changes from as few as 284 repeats (Bennion Callister et al., 2016).  

Similar results have also been obtained from drosophila expressing DPR encoding 

constructs.  Expression of DPR encoding constructs containing 100 repeats coding for either 

poly(PA) or poly(GA) had no effect, whereas expression of 100 repeats coding for either 

poly(GR) or poly(PR) resulted in reduced viability of the drosophila and the induction of a 

neurodegenerative phenotype (Mizielinska et al., 2014).  Additionally, independently 

generated drosophila expressing DPR encoding constructs also showed that poly(PR) DPRs 

induced a neurotoxic phenotype whereas poly(PA) and poly(GA) did not (Wen et al., 2014).  

Similarly, RNA injection of 50 repeats of codon optimised poly(PR) or poly(GR) resulted in 

motor axonopathy in zebrafish, however injection of equimolar concentrations of 50 repeats 

of poly(GA), poly(PA) or poly(GP) had no effect (Swinnen et al., 2018).  Independently, 

generated zebrafish models injected with DPR encoding DNA constructs identified that 200 

poly(GR) repeats more frequently induced death and swimming defects than constructs 

encoding 200 repeats of poly(GA, PA or PR) (Swaminathan et al., 2018).  In the same study, 

transgenic zebrafish expressing 100 poly(GR) encoding repeats showed reduced swimming 

distance at 7 dpf and reduced axonal length at 2 dpf, in comparison to non-poly(GR) 

expressing zebrafish (Swaminathan et al., 2018).  Importantly, induced motor neurons from 

C9orf72-ALS patients produce poly(PR) DPRs, and poly(PR) positive staining has also been 

identified in hippocampal neurons from C9orf72 patients (Mann et al., 2013, Wen et al., 

2014).  However, poly(PR) positive inclusions have not been identified in motor neurons in 

post-mortem tissue from C9orf72-ALS patients.  These data suggest that differential toxicity 
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exists between the various DPR species.  Although, there is evidence for direct cytotoxicity 

or a contribution to cell pathology in all DPR species. 

 

1.9. Pathways implicated in C9orf72 expansion pathology 

While it is important to ascertain which species resulting from the C9orf72 expansion is most 

toxic to cell and animal models, it is also important to identify the pathways through which 

these species mediate their toxicity.  Dysregulation of RNA processing, stress granule 

formation, nucleocytoplasmic transport, autophagy and DNA repair are among the most 

common pathways recurrently implicated in C9orf72 expansion pathology.  Data from post-

mortem C9orf72 patient tissue and cell/animal models of C9orf72 have all helped contribute 

to our understanding of how C9orf72 expansions affect these pathways.  

 

1.9.1. RNA processing 

Dysregulation of RNA processing in C9orf72 expansion pathology is thought to be caused by 

RNA foci mediated sequestration of RNA-binding proteins such as Pur-alpha, hnRNP-H and 

hnRNP-A1 (Lee et al., 2013, Sareen et al., 2013, Xu et al., 2013, Cooper-Knock et al., 2014) 

(Figure 1.2a).  Indeed, cell lines derived from C9orf72 expansion harbouring patients were 

shown to have an increased rate of splicing errors in comparison to non-C9orf72 expansion 

cells (Cooper-Knock et al., 2015a) (Figure 1.2b-c).  Overexpression of the RNA-binding 

protein Pur-alpha suppressed the toxic phenotype otherwise observed when expressing 

G4C2 repeat expansions in neuro-2a cells, drosophila or zebrafish (Xu et al., 2013, Swinnen 

et al., 2018).  Splicing errors in C9orf72-ALS patients may not be solely due to RNA foci 

sequestration of RNA-binding proteins, as nuclear extracts incubated with arginine rich DPR 

proteins showed defective spliceosome assembly and therefore impairment of normal 

splicing (Yin et al., 2017).  Moreover, expression of arginine-rich DPRs has been shown to 

impair splicing (Kwon et al., 2014).  As mentioned previously, cytoplasmic mislocalisation of 

RNA-binding factors such as TDP-43 and FUS among others, is a common theme occurring 

in the vast majority of ALS cases (Lagier-Tourenne and Cleveland, 2009, Kapeli et al., 

2017).  Additionally, loss of nuclear TDP-43 has been shown to cause widespread splicing 

dysregulation in motor neurons (Highley et al., 2014).  Thus suggesting that loss of TDP-43 

may cause splicing dysregulation across multiple ALS sub-types.  Whether RNA foci or 

DPRs are the main initiators of splicing dysregulation in C9orf72-ALS remains to be 

determined. 
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Figure 1.2: Schematic of sequestration of RNA binding proteins by RNA foci and 
subsequent increase in splicing errors 

(a)  In C9orf72-ALS patients, nuclear sense and antisense RNA foci bind and sequester 

RNA binding proteins such as TDP-43, FUS and hnRNP-H among many others.  (b)  

During normal functioning, RNA binding proteins assemble with other splicing factors to 

form the spliceosome.  The spliceosome binds to pre-mRNA strands and removes the 

introns before then ligating the exons back together, thus forming a final mature mRNA 

strand which is then trafficked to the ribosome to begin translation.  (c)  In C9orf72-ALS 

patients, RNA binding proteins are sequestered by sense and antisense RNA foci and 

therefore are not available during spliceosome assembly.  An incomplete spliceosome is 

then formed in the absence of the RNA binding proteins, and splicing continues with the 

incomplete spliceosome, thus leading to an increase in the rate of splicing errors such as 

intron retention and exon exclusion events.  
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1.9.2. Formation and function of membraneless organelles 

Many RNA binding proteins, including TDP-43, FUS and hnRNP-A1, contain a low 

complexity prion-like domain (Kapeli et al., 2017).  Proteins containing a low complexity  

prion-like domain can undergo liquid-liquid phase separation to form membraneless 

organelles (Molliex et al., 2015).  Liquid-liquid phase separation refers to the process by 

which a single liquid undergoes demixing and transitions into two or more distinct liquid 

structures (Hyman et al., 2014).  Well known examples of liquid-liquid phase separation in  

 biology include the formation of liquid-like nucleoli from the liquid which comprises the 

nucleoplasm, and the formation of liquid-like stress granules from the  

cytoplasm/nucleoplasm (Hyman et al., 2014).  Stress granules are formed from a mixture of 

RNA-binding proteins, RNA and various protein/RNA modifying enzymes (Jain et al., 2016).  

The precise role of stress granules in the cell is not fully understood.  However, stress  

granules are thought to contribute to the activation of stress response related proteins, 

sequestration of specific signalling molecules in order to modulate signalling pathways and 

the metabolism of RNA (Protter and Parker, 2016).  Both poly(GR) and poly(PR) DPR 

proteins are known to interact with proteins containing low complexity prion like domains, 

and have been shown to interfere with the dynamics and function of stress granules both in 

vitro and in vivo (Lee et al., 2016, Lin et al., 2016, Boeynaems et al., 2017).  Additionally, 

stress granule assembly has been associated with defects in nucleocytoplasmic transport, 

due to stress granule mediated sequestration of key nucleocytoplasmic transport factors 

such as the Ran protein (Figure 1.3a) (Zhang et al., 2018). 

The nucleolus has functions including ribosome biogenesis and response to cell stress  

(Pederson, 2011).  Both RNA foci and poly(GR)/poly(PR) proteins co-localise with nucleolin 

protein, a principle component of the nucleolus (Haeusler et al., 2014, Lee et al., 2016).  In 

line with this, induced motor neurons from C9orf72-ALS patients, exhibit dispersed nucleolin 

immunostaining patterns, in comparison to the dense and well-defined immunostaining 

pattern observed in induced motor neurons from healthy controls (Haeusler et al., 2014).  

Furthermore, in C9orf72-ALS patient post-mortem tissue, neurons containing RNA foci or 

poly(GR) proteins exhibit enlarged nucleoli (Mizielinska et al., 2017).  Nucleolar localised 

poly(GR)/poly(PR) disrupt the normal functioning of the nucleolar protein nucleophosmin 1, 

which then disrupts the organisation of the nucleolus and impedes the normal maturation of 

ribosomal RNA transcripts,  (Kwon et al., 2014, Tao et al., 2015, White et al., 2019).  Thus, 

C9orf72 expansions disrupt both the structure and functioning of the nucleolus. 

 

1.9.3. Nucleocytoplasmic transport 

Disruptions in nucleocytoplasmic transports pathways are another recurrent theme in 

C9orf72 related ALS pathology.  Nucleocytoplasmic transport is the shuttling of protein and 
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RNA cargoes between the cytoplasm and the nucleoplasm.  Nucleocytoplasmic transport 

primarily occurs through large protein complexes known as nuclear pore complexes (NPCs).  

These complexes are formed from approximately 30 subunits which are individually known 

as nucleoporins (NUPs) (Cronshaw et al., 2002).  Molecules smaller than ~30kDa can freely 

diffuse through the NPC, molecules larger than this require specialised transporter proteins 

which are also associated with, and traverse through, the NPC (Cautain et al., 2015).   

Induced-neuronal cells derived from patients with C9orf72 expansions showed retention of 

nuclear RNA, suggesting dysregulation of the normal routes of RNA export through the NPC 

(Freibaum et al., 2015).  The same study also replicated this finding in drosophila models 

carrying C9orf72 expansions.  Using the same C9orf72 expansion drosophila model, a 

genetic modifier screen identified 18 genes which enhanced or suppressed the 

neurodegenerative phenotype, all of these genes coded for components of the NPC 

(Freibaum et al., 2015).  An additional and independently generated C9orf72 expansion 

drosophila model, also identified a key nucleocytoplasmic transport regulator as a potent 

suppressor of the neurodegenerative phenotype (Zhang et al., 2015b).  Furthermore, 

depletion of the nuclear export adapter protein SRSF1 suppressed the motor and rough eye 

phenotype observed in C9orf72 expansion drosophila (Hautbergue et al., 2017).  Also, 

depletion of SRSF1 in induced C9orf72 patient motor neurons resulted in reduced DPR 

production by the cells and increased motor neuron survival (Hautbergue et al., 2017).  

SRSF1 co-localised with sense RNA foci in spinal cord post-mortem tissue from C9orf72-

ALS patients, thus suggesting that SRSF1 mediates its effect on DPR production through 

processing of G4C2 RNA (Hautbergue et al., 2017).  RanGAP1 a regulator of 

nucleocytoplasmic transport has also been shown to co-localise with sense RNA foci in 

induced neurons derived from C9orf72-ALS patients (Zhang et al., 2015b).  Additionally, 

RanGAP1 and the nucleoporin Nup205 were shown to mislocalise into perinuclear puncta in 

induced neurons and brain tissue from C9orf72-ALS patients (Zhang et al., 2015b).   

However, DPR species may also interact with the nucleocytoplasmic transport system.  

Genetic modifier screens carried out in drosophila expressing DPR constructs encoding 

poly(PR) also identified genes coding for both components of the NPC and  

nucleocytoplasmic transport regulators as modifiers of the cytotoxic phenotype (Jovicic et al., 

2015).  Moreover, both poly(PR) and poly(GR) DPR proteins have been reported to bind with  

multiple nucleoporin proteins in two independent protein interaction assays (Lee et al., 2016, 

Lin et al., 2016).  Collectively, these data show that nucleocytoplasmic transport pathways 

are important disease modifiers of C9orf72 expansion pathology, and may interact with both 

RNA foci and DPR proteins (Figure 1.3b).  Deletion of genes relating to nucleocytoplasmic 

transport could either enhance or suppress the toxic phenotype, the reason why deleting 

seemingly similar genes can often times generate opposing effects is not currently known.  
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Figure 1.3: Schematic of the C9orf72 expansion mediated stress granule formation 
and nucleocytoplasmic transport defects 

a) C9orf72 expansions drive increased stress granule formation.  Increased stress granule 

formation results in increased sequestration of nucleocytoplasmic transport factors such 

as the Ran protein.  b) Expression of C9orf72 expansions results in the sequestration of 

nucleocytoplasmic transport associated proteins nucleoporin 205 and RanGAP1 into 

perinuclear puncta. Poly(PR) DPRs translated from C9orf72 expansions bind with 

nucleoporin 205, and sense RNA foci sequester RanGAP1, it is not known whether the 

binding of these proteins by DPR/RNA foci is related to their formation of perinuclear 

puncta.  Expression of C9orf72 transcripts also results in nuclear retention of RNA 

transcripts, suggesting defects in RNA export.  Gain of function denotes that the pathway 

disruption is caused by the gained function of the C9orf72 expansion or its gene products. 
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A final notable point about nucleocytoplasmic transport in ALS, is that it has been 

hypothesised that disrupted nucleocytoplasmic transport may be related to the pathological 

primarily cytoplasmic mislocalisation of many ALS associated RNA-binding proteins (Kim 

and Taylor, 2017). 

 

1.9.4. Autophagy 

Data obtained from human cell lines suggests that an important function of the C9orf72 

protein is in the initiation of autophagy.  Knockdown of the C9orf72 protein results in reduced 

autophagosome formation (Sellier et al., 2016, Webster et al., 2016a).  In a similar fashion, 

overexpression of the C9orf72 protein results in increased autophagosome formation 

(Webster et al., 2016a). Intriguingly, C9orf72 knockout mice are reported to have defective 

autophagy functioning (Ji et al., 2017).  Furthermore, induced neurons derived from C9orf72 

patients show defective autophagy and increased sensitivity to autophagy inhibition (Almeida 

et al., 2013, Webster et al., 2016a).  Additionally, reduced autophagy mediated clearance of 

DPR proteins has been identified as contributing to neurodegeneration in induced motor 

neurons derived from C9orf72 patients (Figure 1.4a) (Shi et al., 2018).  Defective autophagy 

has also been closely linked with Parkinson’s disease, and rare C9orf72 expansion 

harbouring patients have been reported to show parkinsonian symptoms (Zhang et al., 

2015a, Wilke et al., 2016).  Finally, accumulation of p62 positive intracellular inclusions have 

been hypothesised to be caused by defective autophagy mediated clearance of p62 tagged 

aggregates, thus suggesting a role for defective autophagy signalling across multiple ALS 

sub-types (Arai et al., 2003, Mizuno et al., 2006a). 

 

1.9.5. DNA damage and repair   

Damage to the DNA of a cell can arise from a myriad of chemical and physical sources 

which can induce single strand breaks or double strands breaks (DSBs) depending on the  

 nature of the interaction (Ciccia and Elledge, 2010).  Because of this, cells have evolved 

complex DNA repair mechanisms which are capable repairing these DNA breaks through 

various mechanisms which faithfully restore the DNA to its original base pair sequence  

(Ciccia and Elledge, 2010).  Chronic DNA damage or impairment of the machinery of the 

DNA repair response, can ultimately result in DNA damage induced cell death (Roos and 

Kaina, 2006).  Induced neurons derived from C9orf72 patients have increased expression of 

the DNA DSB marker yH2AX (phosphorylated histone 2AX) (Lopez-Gonzalez et al., 2016).  

Additionally, the same authors found that expression of poly(GR) repeats in control cell lines 

was also sufficient to induce DNA damage.  The number of DSBs detected in these cells 

could be reduced by treatment with an antioxidant, suggesting that poly(GR) induced DSBs  
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Figure 1.4: Schematic of the C9orf72 expansion mediated defects in autophagy and 
DNA damage 

a)  Haploinsufficiency of the C9orf72 protein caused by the presence of C9orf72 

expansions results in decreased initiation of autophagy and therefore decreased 

clearance of p62 tagged cellular inclusions.  Additionally, autophagy dysfunction may be 

exacerbated by an increase in the number of p62 positive inclusions requiring degradation 

due to cytoplasmic inclusions of DPR proteins produced from the C9orf72 expansion.  b)  

Sense RNA foci, antisense RNA foci and DPR proteins (or a combination of these 

species) increase the frequency of double strand DNA breaks, resulting in increased 

expression of yH2AX (phosphorylated histone 2AX). Loss of function denotes that the 

pathway disruption is caused by the loss of function of C9orf72 endogenous gene 

products.  Gain of function denotes that the pathway disruption is caused by the gained 

function of the C9orf72 expansion or its gene products. 
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may be mediated in part by reactive oxygen species.  Furthermore, increased expression of 

key DNA repair proteins such as yH2AX, 53BP1 and phosphorylated ATM (pATM), have 

been reported in the spinal cords of C9orf72-ALS patients (Farg et al., 2017).  A more recent 

report however, supported the finding that increased yH2AX levels are induced by C9orf72 

expansions, but also reported that recruitment of 53BP1 and pATM to DNA repair foci was 

impaired by the C9orf72 expansion (Walker et al., 2017).  The same study showed that even 

upon treatment with camptothecin (a potent inducer of DNA breaks), 53BP1 and pATM 

would not be recruited to repair foci in the presence of C9orf72 expansions.  These findings 

suggest that, not only do C9orf72 expansions induce DNA damage, but that they may 

simultaneously impair critical aspects of the DNA damage response.  The precise reason 

why 53BP1 recruitment was increased in the presence of C9orf72 expansions in one study 

(Farg et al., 2017), and reported to be decreased in a later study (Walker et al., 2017), is not 

currently known.  Interestingly, mutation of the ALS/FTD causative genes VCP and FUS 

have also been shown to increase markers of DNA damage whilst simultaneously impairing 

the rate of DNA repair (Meerang et al., 2011, Wang et al., 2013, Naumann et al., 2018, 

Wang et al., 2018).  These data indicate that induction of DNA damage with simultaneous 

impairment of the DNA damage response may be involved in multiple ALS sub-types 

(Figure 1.4b). 

The precise molecular mechanism by which DNA damage is detected and repaired is 

dependent on the nature of the insult (Ciccia and Elledge, 2010).  Various forms of DNA 

damage can be detected by PARP1 and PARP2, these enzymes respond to DNA damage 

by attaching poly-ADP-ribose (PAR) polymers to the local DNA region (Dantzer et al., 2006).  

Subsequently, these PAR chains recruit proteins which are essential in the DNA repair 

process (Dantzer et al., 2000, Li and Yu, 2013).  PARP1 catalyses the formation of PAR 

chains, a process which consumes a single molecule of NAD+ for each PAR molecule added 

to the chain (Martire et al., 2015).  Hundreds of PAR molecules can be joined together in a 

single chain, therefore it is possible for over-activation of PARP1 to deplete cellular stores of 

NAD+ and induce cell death (Hoch et al., 2017).  Neurodegeneration induced by PARP1 

over-activation has been reported in patients suffering from cerebellar ataxia (Hoch et al., 

2017).  Additionally, mutations in the DNA repair factor tyrosyl phosphodiesterase 1 (TDP1) 

inhibit the ability of this protein to repair DNA single strand breaks and cause spinocerebellar 

ataxia with axonal neuropathy-1 (SCAN-1).  Despite their known roles in other forms of 

neurodegeneration, whether over activation of PARP1 or loss of function of TDP1 may 

contribute to C9orf72-ALS progression has yet to be investigated.  
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1.9.6. Neuroinflammation 

Activated astrocytes and microglia have long been implicated in the pathology of sALS 

(Troost et al., 1990, Kawamata et al., 1992, Schiffer et al., 1996).  Recent evidence has also 

linked C9-ALS with neuroinflammation.  Rather than resulting in a neurodegenerative 

phenotype, knockout of C9orf72 in mice caused dysregulation of the immune system, 

including causing splenomegaly, lymphadenopathy, increased circulating levels of 

proinflammatory cytokines and abnormal immune cell functioning (Atanasio et al., 2016, 

Burberry et al., 2016, O'Rourke et al., 2016, Sudria-Lopez et al., 2016).  RNA-seq analysis 

revealed an upregulation of inflammatory related pathways in C9orf72 knockout mice in 

comparison to wildtype mice (O'Rourke et al., 2016).  Similarly, RNA-seq analysis carried 

out in ALS patient CNS tissue, identified a significant upregulation of inflammatory pathways 

in C9-ALS patients when compared to sALS patients (O'Rourke et al., 2016).  Furthermore, 

increased levels of activated microglia are observed in the white matter motor cortex of C9-

ALS patient’s brains when compared to the same regions in sALS patient’s brains 

(Brettschneider et al., 2012).  Thus, neuroinflammation may become dysregulated in 

C9orf72 expansion pathology. 

1.9.7. Axonal transport and mitochondrial dysfunction 

Mutations in the axonal transport related genes KIF5A and TUBA4A are causative of ALS 

(Smith et al., 2014, Nicolas et al., 2018).  Additionally, dysfunction in the axonal transport of 

cargoes such as mitochondria, have been reported in transgenic mouse models of ALS 

expressing mutant forms of either SOD1 or TDP-43 proteins (Magrane et al., 2014).  These 

data suggest a role of axonal transport in ALS pathobiology.  In line with this, impaired 

mitochondrial transport has also been reported in C9orf72 drosophila models expressing 

either 39 poly(PR) repeats or 39 G4C2 repeats (Baldwin et al., 2016).  However, drosophila 

expressing 39 RNA only G4C2 repeats did not exhibit significantly altered mitochondrial 

transport, suggesting that impaired axonal transport may be caused by DPR species in this 

model (Baldwin et al., 2016). 

In addition to defects in mitochondrial transport, defects in mitochondrial morphology have 

been observed in sALS post-mortem tissue, and defects in both mitochondrial structure and 

function have been observed in mouse models of SOD1-ALS (Higgins et al., 2003, Pasinelli 

et al., 2004, Sasaki and Iwata, 2007).  Increased production of reactive oxygen species by 

mitochondria is observed in induced motor neurons derived from C9orf72-ALS patients, 

when compared to induced neurons from healthy controls (Lopez-Gonzalez et al., 2016).  

This increase in reactive oxygen species production eventually lead to increased DNA 

damage in these motor neurons (Lopez-Gonzalez et al., 2016).  Furthermore, in a C9orf72 

mouse model expressing poly(GR) DPRs, morphological abnormalities in mitochondria were 
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observed at 3 months old (Choi et al., 2019).  Using the same mouse model, poly(GR) was 

discovered to interact with the mitochondrial protein Atp5a1, this interaction resulted in the 

ubiquitination and proteasomal degradation of Atp5a1 (Choi et al., 2019).  Moreover, Atp5a1 

protein expression was significantly reduced in the frontal cortex of both poly(GR) 

expressing mice and C9orf72-ALS patients, and overexpression of Atp5a1 rescued 

mitochondrial morphological abnormalities in cortical neurons derived from poly(GR) 

expressing mice (Choi et al., 2019).  Taken together these data highlight an emerging role 

for DPR mediated mitochondrial dysfunction in C9orf72 pathobiology.  Table 1.2 

summarises pathways which have been recurrently implicated in C9orf72 pathobiology. 

Dysregulated 
pathway 

Reported cause of 
defect 

Links to other 
pathways 

References 

RNA processing RNA foci sequester 
RNA binding proteins 
resulting in increased 
splicing errors 

Sequestered RNA 
binding proteins also 
function in stress 
granule formation  

(Lee et al., 
2013, Cooper-
Knock et al., 
2014) 

Membraneless 
organelle 
formation/function 

DPR proteins/RNA foci 
expression alters stress 
granule dynamics 

Stress granules 
formation can cause 
nucleocytoplasmic 
transport defects by 
sequestering key 
proteins 

(Lee et al., 
2016, 
Boeynaems et 
al., 2017, 
Zhang et al., 
2018) 

Nucleocytoplasmic 
transport 

DPR proteins/RNA foci 
cause mislocalisation of 
nucleocytoplasmic 
transport proteins.  
DPR/RNA foci induced 
toxicity can be 
enhance/suppressed by 
the deletion of various 
nucleocytoplasmic 
transport genes 

Both RNA processing 
and DNA repair factors 
are frequently shuttled 
between the nucleus 
and the cytoplasm 

(Freibaum et 
al., 2015, 
Zhang et al., 
2015b) 

Autophagy Loss of C9orf72 gene 
products results in 
defective autophagy 
initiation 

The autophagy 
associated protein p62 
co-localises with DPR 
aggregates 

(Baborie et al., 
2015, 
Davidson et 
al., 2016, 
Webster et al., 
2016a) 

DNA repair DPR proteins/RNA foci 
cause DNA damage 
and impair the normal 
recruitment and 
functioning of DNA 
repair factors 

Aggregation of the 
autophagy associated 
protein p62 has been 
reported to cause DNA 
repair defects 

(Farg et al., 
2017, Walker 
et al., 2017) 

Neuroinflammation Chronic activation of 
inflammatory pathways 
and microglia in the 
CNS 

Haploinsufficiency of 
C9orf72 protein may 
contribute to immune 
dysregulation 

(Brettschneider 
et al., 2012, 
Burberry et al., 
2016, 
O'Rourke et 
al., 2016) 
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Mitochondrial 
dysfunction 

Defects in mitochondrial 
transport, morphology 
and regulation of 
reactive oxygen species 
production 

Defects in axonal 
transport pathways 
result in impaired 
mitochondrial transport 

(Baldwin et al., 
2016, Lopez-
Gonzalez et 
al., 2016, Choi 
et al., 2019) 

Table 1.2 Summary of pathways implicated in C9orf72 pathobiology 

DPR: Dipeptide repeat protein 

 

 

1.10. Generation of genetic animal models 

There are many methods for generating transgenic or mutant animals, each method having 

advantages and disadvantages.  Due to the low efficiency of generating most transgenic 

animals, often one method will be used in conjunction with another in an attempt to increase 

efficiency.  Some of the most commonly used methods are DNA microinjection (with or 

without the use of transposons), transfection with lentiviral vectors and addition of transgenic 

pluripotent stem cells.  DNA microinjection involves injecting highly concentrated DNA in nl 

volumes, preferably at the one cell stage immediately following fertilisation (Ramesh et al., 

2010).  Following microinjection the exogenous DNA incorporates into the animal’s genome 

at an unknown location (Ramesh et al., 2010).  An advantage of microinjection is that its low 

efficiency means that the transgene construct incorporating multiple times in different genetic 

loci is less likely.  Likewise, the low efficiency of microinjection means that generating a 

transgenic animal by this method can be more time consuming.   

Homologous recombination is an endogenous DNA repair process during which a 

complementary DNA strand is synthesised and then used to replace a damaged genomic 

DNA sequence (Szostak et al., 1983).  By matching short sequences of transgenic DNA to a 

specific sequence present in the genomic DNA, the endogenous homologous recombination 

machinery can be exploited to accurately deliver exogenous DNA into a specific genetic 

locus (Thomason et al., 2007).  Homologous recombination of exogenous DNA into a 

specific locus has an extremely low efficiency (Garate et al., 2013). 

In order to increase efficiency of microinjections it is possible to add transposons to the DNA 

sequence being injected.  Transposons are short DNA sequences which are replicated and 

repeatedly incorporated into the same genome (McClintock, 1950).  By attaching the desired 

transgene to a transposon prior to microinjection, the efficiency by which the transgene 

incorporates into the host genome is increased (Largaespada, 2003).  Unfortunately due to 

the high efficiency of this process, the transgene will often incorporate into multiple genomic 

loci of a single organism (Ivics et al., 2014).  In the case of multiple transgene incorporations 

an additional outcrossing step is necessitated.  The transgenic animals are bred with 
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wildtype animals and screened for those offspring who possess the transgene at only one 

locus, this can be a very time consuming process (Ivics et al., 2014).    

Transfection with lentiviral vectors is another commonly used method of generating 

transgenic animals (Hofmann et al., 2003).  Lentiviruses have the ability to incorporate their 

own genes into the host’s genome (Goff and Berg, 1976).  This feature of lentiviruses is 

exploited in molecular biology, where genes of interest can be inserted into the lentivirus and 

then incorporated into the genome of the prospective animal model.  This method has 

previously been used to insert genes into early zebrafish embryos (Kawasaki et al., 2009). 

Clustered regularly interspaced short palindromic repeats (CRISPR) technology, is a 

recently developed tool which is used in the generation of model animals (Jinek et al., 2012).  

A synthetic guide RNA molecule is used to direct the endonuclease CRISPR associated 

protein 9 (cas9) to a specific genetic locus which is then cleaved by cas9 (Jinek et al., 2012).  

CRISPR therefore allows highly specific removal of short lengths of DNA and can be used to 

efficiently generate knockout mutations of specific genes (Auer and Del Bene, 2014, 

Lebedeva et al., 2017).  After cas9 cleavage, but before DNA ligation, additional genes can 

also be incorporated at the cleavage locus, as so CRISPR can be used to knockout or insert 

genes, allowing generation of both knockout and transgenic animal models with this 

technique (Kimura et al., 2014).  A disadvantage of the CRISPR-cas9 system is that off-

target cleavage events may occur, the frequency and loci of off-target cleavage events is 

unpredictable, thus making off target cleavages difficult to detect (Sander and Joung, 2014).  

CRISPR-cas9 has previously been used to modify the genome of zebrafish (Auer and Del 

Bene, 2014, Lebedeva et al., 2017). 

A further commonly used method of generating transgenic animals is by the use of 

pluripotent stem cells.  Genes of interest can first be inserted into the pluripotent cells using 

one of the aforementioned methods (e.g. homologous recombination).  The pluripotent cells 

can then be inserted into a developing wildtype embryo at the blastocyst stage (Doetschman 

et al., 1987, Thompson et al., 1989).  Pluripotent stem cells have a high capacity for self-

renewal and are capable of contributing to a large proportion of the developing embryo 

including contributing to cells in all three germ layers, and incorporating successfully into the 

germline (Bradley et al., 1984, Beddington and Robertson, 1989).  The chimeric animal is 

then bred, and if the pluripotent cells gave rise to a portion of the germ line this will result in a 

proportion of the offspring being full transgenic animals.   

Zebrafish are frequently used as model animals of multiple diseases (Bradford et al., 2017).  

The predominant method of generating transgenic zebrafish is by microinjection, which is 

likely due to the fact that the zebrafish offers several specific advantages with this technique 
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but fewer advantages with others.  The constantly improving efficiency and specificity of 

CRISPR-cas9 techniques indicates that in the near future a large proportion of zebrafish and 

other animal models may well be generated using CRISPR. 

 

1.11. Zebrafish as model organisms 

Zebrafish have been used as a research tool since the 1960s, and following their genetic 

characterisation have become a widely used in the modelling of human diseases (Streisinger 

et al., 1981, Howe et al., 2013, Bradford et al., 2017).  The following section describes the 

development of zebrafish post-fertilisation and identifies the advantages and disadvantages 

of their use as model organisms. 

Following fertilisation, zebrafish development begins rapidly and the yolk of the egg cell 

provides nourishment for the first five days (Fraher et al., 2016).  However, the yolk is an 

extraembryonic structure and will not form any of the developing zebrafish tissues (Kimmel 

et al., 1995).  All tissues of the zebrafish arise from the yolk free cytoplasm which begins to 

segregate immediately after fertilisation. At 24 hours post-fertilisation (hpf), early 

developmental versions of many organs are now visible and diverse cellular morphogenesis 

is occurring throughout the embryo (Kimmel et al., 1995).  Also, at this time,  spinal motor 

axons have grown into the myotomes and formed functional connections (Kimmel et al., 

1988). As functional motor neuron connections have been formed, it is possible to 

commence electrophysiological studies in the zebrafish motor system from 24hpf onwards.  

Thus early motor unit formation makes zebrafish amenable to studying motor pathologies.   

In comparison to zebrafish, functional neuromuscular junctions in rodents are not observed 

until approximately 12 days post-fertilisation (dpf) (Lin et al., 2000).  In addition to longer 

developmental periods, study of mammalian embryos is further complicated by the nature of 

in utero development, as embryos must be extracted from the uterus of the parent prior to 

any investigations being possible.  In the case of DNA micro injection when attempting to 

generate transgenic mice, the chimeric embryos must also be re-implanted into the uterus of 

the parent mouse.  As the zebrafish embryo develops externally, the simplicity of carrying 

out microinjections, and therefore generating transgenic animals, is greatly increased.  The 

minimum generation time in zebrafish is 2 months, this is similar to the generation times of 

both rats and mice, therefore transgenic zebrafish lines can be produced reasonably 

efficiently (Humphreys et al., 1976, Lambert, 2009, Lawrence et al., 2012).  Another 

advantage of using zebrafish as model animals is that the zebrafish genome has been fully 

sequenced and approximately 70% of human genes have at least one zebrafish orthologue 

(Howe et al., 2013).  Generation of transgenic animals often involves the addition of DNA 

(often a fluorescent reporter gene) which incorporates into the zebrafish genome.  In 
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zebrafish most tissues are optically clear which greatly aids in florescence, and other types 

of detailed microscopy.  A further benefit of using zebrafish as a model system stems from 

their relatively small size.  During the first few days of life zebrafish are only a few millimetres 

in length and can therefore be conveniently placed into multi-well plates.  This makes 

zebrafish very efficient when used in assays where a high throughput is required, such as 

during in vivo drug screening (McGown et al., 2013).  Owing to their rapid development, 

short generation time, externally developing embryos, well characterised genetics, optically 

clear tissues, small size and comparatively low maintenance costs, zebrafish offer unique 

advantages when used as animal models of disease.   

As expected, there are also disadvantages to the use of zebrafish in modelling human 

diseases.  Evolutionarily, zebrafish are further removed from humans than other typical 

mammalian lab animals such as mice and rats.  Therefore there is an expectation that a 

greater proportion of human disease genes may be lacking or have a modified function in 

the zebrafish genome.  Indeed, during evolutionary history zebrafish underwent a gene 

duplication event which did not occur in mammals (Meyer and Schartl, 1999, Taylor et al., 

2003).  Duplicate genes in the zebrafish may possess redundant functions which could 

potentially complicate the use of zebrafish in research, in particular the use of zebrafish in 

gene knockout studies (Force et al., 1999).  One example of the zebrafish genome 

duplication causing unexpected complications was in the study of the TARDBP gene.  

TARDBP is a human gene encoding the TDP-43 protein, mutations in TARDBP are linked 

with the eventual development of human motor neuron disease (Kabashi et al., 2008, 

Sreedharan et al., 2008).  Upon knockout of the zebrafish orthologue of TARDBP, it was 

discovered that no motor phenotype developed.  Later it was discovered this was due to a 

second gene in the zebrafish genome which coded for a truncated version of TDP-43, which 

upon knockout of TARDBP was able to produce a novel splice variant which functionally 

replaced TDP-43 (Hewamadduma et al., 2013).  This is one example of how variations 

between zebrafish and human genomes can cause unforeseen problems when attempting to 

generate models of disease.  Additional complications when using zebrafish as models of 

human disease may stem from fundamental anatomical and physiological differences 

between the two species.  For example, zebrafish muscle is polyneuronally innervated, 

whereas in humans each myotome receives innervation from a single motor neuron 

(Westerfield et al., 1986).  Additionally, zebrafish motor neurons exhibit a markedly higher 

capacity for regeneration in comparison with human motor neurons (Reimer et al., 2009).  

Clearly these two factors may cause unforeseen complications when using zebrafish to 

model human motor system disorders.  It is therefore vital to ensure that data generated in 

zebrafish are confirmed in mammalian models before considering its relevance to humans. 
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1.12. Zebrafish as models of neurodegenerative disorders 

Zebrafish are utilised in labs worldwide as model organisms of wide-ranging diseases.  The 

exact reasons for using zebrafish as a model animal vary depending on the disease being 

studied.  However, a common reason zebrafish are used is due to their remarkable ability to 

regenerate damaged tissues.  Zebrafish have a very high regenerative capacity, and unlike 

humans, retain their ability to activate regenerative pathways in all tissue types through to 

adulthood (Reimer et al., 2009).  To date, zebrafish have been used in the study of multiple 

diseases including heart disease, liver disease, vascular disease, cancer and many 

neurodegenerative disorders (Liu and Leach, 2011, Wilkins and Pack, 2013, Wilkinson et al., 

2014, Wilkinson and van Eeden, 2014).  Zebrafish are commonly used to model disorders of 

the central nervous system, among these are zebrafish models of Alzheimer’s disease, 

Parkinson’s disease and spinal muscular atrophy (Bretaud et al., 2007, Boon et al., 2009, Pu 

et al., 2017).   

Alzheimer’s disease results in progressive cognitive impairment and memory dysfunction, 

eventually leading to severe disturbances in speech, perception and normal social 

functioning (Forstl and Kurz, 1999).  In its most advanced stages, Alzheimer’s disease 

results in patients becoming bedridden and incapable of caring for themselves until 

eventually dying from an external cause, frequently due to infection (Forstl and Kurz, 1999).  

Alzheimer’s disease is caused by neurodegeneration in regions of the parietal, temporal and 

frontal lobes, as well as in sub-cortical regions such as the locus coeruleus (Wenk, 2003, 

Braak and Del Tredici, 2012).  Alzheimer’s disease molecular pathology is characterised by 

the presence of hallmark abnormal proteins, these are intracellular neurofibrillary tangles 

composed of hyper-phosphorylated tau protein (tau proteins are encoded by the MAPT 

gene) and extracellular aggregates of misfolded β-amyloid protein (β-amyloid proteins result 

from proteolytic cleavage of the APP protein) (Goedert et al., 1988, De Strooper et al., 1998, 

Blennow et al., 2006).  A small proportion of Alzheimer’s cases (<1%) are known to have a 

monogenic aetiology due to mutations in amyloid precursor protein (APP), presenilin 1 

(PSEN1) or presenilin 2 (PSEN2) genes, collectively these genes are responsible for the 

majority of familial Alzheimer’s disease (Scheuner et al., 1996, Robinson et al., 2017).  

However, the vast majority of Alzheimer’s cases are referred to as sporadic and are caused 

by complex interactions between disease genes and environmental factors (Robinson et al., 

2017).  In zebrafish, knockdown of the PSEN1 or PSEN2 genes causes abnormal brain 

development and deficits in neuronal functioning (Nornes et al., 2003, Nornes et al., 2009).  

Additionally, knockdown of PSEN1 in zebrafish larvae results in cognitive defects, increased 

β-amyloid deposition and reduced expression of synaptic marker protein PSD-95 (Nery et 
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al., 2017).  Transgenic zebrafish expressing a mutant human APP gene, displayed amyloid 

deposition and angiopathy in the brain, which eventually lead to neurodegeneration (Pu et 

al., 2017).  Similarly, transgenic zebrafish expressing a pathogenic human MAPT gene 

(MAPT-P301L) displayed the hyper-phosphorylated and aggregated tau protein 

characteristic of human Alzheimer’s disease (Paquet et al., 2009).  In the same study, the 

mutant human tau expressing zebrafish model was used to screen thousands of potentially 

therapeutic compounds, one of which one was found to powerfully inhibit a tau kinase which 

contributes to hyper-phosphorylation (Paquet et al., 2009).  Thus, zebrafish models of three 

major familial Alzheimer’s disease genes (APP, PSEN1 and PSEN2), recapitulate some 

aspects of human Alzheimer’s disease pathology including the hallmark deposition of β-

amyloid protein in the brain. 

Parkinson’s disease is primarily characterised by motor symptoms including bradykinesia, 

resting tremor, postural instability and muscle rigidity (Sveinbjornsdottir, 2016).  However, 

Parkinson’s disease can eventually result in non-motor symptoms such as cognitive decline, 

psychiatric symptoms, neuropathic pain and sleep disorders (Moreno et al., 2012, Kalia and 

Lang, 2015).  The primary molecular hallmark of Parkinson’s disease is the presence of 

intracellular inclusions of the α-synuclein protein, often termed Lewy bodies, or Lewy 

neurites, for cell body and neural process inclusions respectively (Spillantini et al., 1997, 

Goedert et al., 2013).  Notably, Parkinson’s disease patients possessing mutations in LRKK2 

or homozygous/compound heterozygous PRKN mutations frequently do not possess Lewy 

body pathology (Poulopoulos et al., 2012).  This has led some to hypothesise that soluble α-

synuclein oligomers, or other misfolded protein species may also be important in Parkinson’s 

disease pathogenesis (Kalia and Lang, 2015).  Parkinson’s disease can be caused by 

autosomal dominant mutations in the genes SNCA (encodes α-synuclein) and LRKK2, or by 

autosomal recessive mutations in genes such as PRKN, PINK1 and DJ-1 (Kalia and Lang, 

2015).  Zebrafish models of Parkinson’s disease most commonly involve silencing of one of 

the zebrafish orthologues of the above mentioned genes.  The ventral diencephalon of the 

zebrafish brain contains dopaminergic neurons which are analogous to the dopaminergic 

neurons of the mammalian nigrostriatal pathway (Rink and Wullimann, 2002).  LRKK2 

knockdown in zebrafish resulted in neurodegeneration which included dopaminergic neuron 

loss (Prabhudesai et al., 2016).  Similarly, knockdown of the PRKN orthologue in embryonic 

zebrafish caused substantial and selective loss of dopaminergic neurons, and reduced 

activity of complex I of the mitochondrial respiratory chain (Flinn et al., 2009).  Loss of 

dopaminergic neurons and reduced complex I activity, are both features typical of human 

Parkinson’s disease (Schapira et al., 1990, Haas et al., 1995, Kalia and Lang, 2015).  Two 

independently generated models in which the zebrafish orthologue of PINK1 was knocked-
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down, resulted in neurodevelopmental impairment (Anichtchik et al., 2008, Xi et al., 2010).  

Additionally, knockout of the PINK1 gene in zebrafish caused dopaminergic neuron loss and 

deficiencies in mitochondrial complex I and III activities (Flinn et al., 2013).  Furthermore, 

knockdown of TigarB (the zebrafish orthologue of human TIGAR) led to rescue of both 

mitochondrial dysfunction and dopaminergic neuron loss in PINK1 null zebrafish (Flinn et al., 

2013).  Intriguingly, the TIGAR protein has previously been identified as a component of 

Lewy bodies and Lewy neurites in human Parkinson’s disease patients (Lopez et al., 2019).  

Loss of PINK1 signalling has also been pharmacologically rescued in zebrafish models by 

utilising drugs which help restore mitochondrial calcium homeostasis or autophagy 

functioning (Soman et al., 2017, Zhang et al., 2017).  Finally, knockdown of DJ-1 in zebrafish 

did not result in dopaminergic neuron loss (Bretaud et al., 2007).  However, when DJ-1 

knockdown zebrafish were exposed to a second stressor, such as oxidative stress or 

proteasomal inhibition, significant loss of dopaminergic neurons was observed (Bretaud et 

al., 2007).  Taken together, these studies indicate that zebrafish models of multiple genetic 

sub-types of Parkinson’s disease recapitulate the dopaminergic neuron loss associated with 

human disease, and have aided in identifying potential therapeutic targets and compounds. 

The clinical presentation of spinal muscular atrophy (SMA) varies widely.  Type I SMA 

typically results in paralysis and death at under 2 years old, whilst type II SMA results in the 

inability to walk during childhood and typically causes death after 2 years old, whereas types 

III and IV SMA result in milder motor symptoms and death during adulthood (Lunn and 

Wang, 2008, Ibrahim et al., 2012).  Greater than 95% of SMA cases are caused by 

homozygous mutations of the SMN1 gene, while the remaining cases are caused by 

mutations of 32 other causative SMA genes (Brzustowicz et al., 1990, Farrar and Kiernan, 

2015).  In the case of SMN1 mutation related SMA, reduced expression of the SMN protein 

causes selective degeneration of spinal and cranial motor neurons (Lefebvre et al., 1997, 

Lunn and Wang, 2008).  Human SMN protein functions as an RNA binding protein (Fallini et 

al., 2012).  The zebrafish SMN protein shares 52% homology with the human SMN protein 

and also possesses RNA binding activity (Bertrandy et al., 1999).  Three independently 

generated SMN1 knockdown zebrafish models showed defects in axonal outgrowth and 

branching (McWhorter et al., 2003, Chitramuthu et al., 2010, Powis et al., 2016).  

Furthermore, the expression of the proteasome associated protein UBA1 was decreased in 

SMA-patient induced motor neurons, this reduced UBA1 expression was also mirrored in 

SMN1 knockdown zebrafish, and co-injection of UBA1 mRNA rescued the abnormal axonal 

outgrowth and axonal branching phenotype of these zebrafish (Powis et al., 2016).  

Zebrafish that are homozygous for knockout of the SMN1 gene display abnormal 

neuromuscular junction structure and die during the larval stage of development (Boon et al., 
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2009).  Using the same SMN1 knockout zebrafish, it was identified that loss of SMN protein 

expression caused a severe reduction in the expression of the plastin 3 protein, and that 

partial rescue of plastin 3 expression was sufficient to rescue the neuromuscular junction 

defects of SMN1 knockout zebrafish (Hao le et al., 2012).  Humans possess an additional 

SMN protein encoding gene named SMN2, this gene is capable of producing small amounts 

of functional SMN protein (Mailman et al., 2002).  Conversely, zebrafish do not possess an 

SMN2 gene, and consequently, homozygous knockout of the SMN1 gene in zebrafish 

ablates all SMN encoding genes from the genome, a genotype which is not representative of 

human SMA (Rochette et al., 2001).  In an attempt to rectify this inconsistency between 

human and zebrafish biology, the human SMN2 gene was expressed in the background of 

an SMN1 null zebrafish (Hao le et al., 2011).  Transgenic expression of human SMN2 in 

SMN1 null zebrafish delayed onset of neuromuscular junction defects and extended survival 

(Hao le et al., 2011).  Hence, expression of the SMN2 gene reduced disease severity 

caused by SMN1 gene loss in zebrafish, as is also the case in human SMA (Mailman et al., 

2002, Jedrzejowska et al., 2009).  Thus, the SMN protein plays an important role in motor 

neuron development and survival in both humans and zebrafish. 

In summary, these studies indicate that there is a disease relevant overlap between 

zebrafish and human neurobiology, which led to zebrafish models providing mechanistic 

insights, therapeutic targets and potential treatments for human diseases.  The disease 

relevant overlap applied to neurodegenerative disorders affecting multiple brain regions, 

motor specific brain regions and motor neuron specific disorders, as evidenced by the 

successful generation of zebrafish models of Alzheimer’s disease, Parkinson’s disease and 

SMA respectively. 

 

1.13. Zebrafish as models of amyotrophic lateral sclerosis 

Multiple models of known ALS causative disease genes have been generated in zebrafish 

using a variety of techniques.  ALS has been modelled in zebrafish by overexpression of 

ALS genes, by expression of physiological levels of mutant ALS genes, and by 

knockdown/knockout of ALS genes.  Current zebrafish models of ALS are outlined below.     

There are multiple mutations in Cu-Zn superoxide dismutase 1 (SOD1) that have been 

identified in ALS patients (Rosen et al., 1993, Elshafey et al., 1994).  Mutant SOD1 RNA 

injected into zebrafish at the 2-4 cell stage results in dose dependent defects in motor 

neuron outgrowth (Lemmens et al., 2007).  Motor axon outgrowth defects were consistently 

observed upon injection of RNA from G93A, G37A or A4V mutant SOD1 variants (Lemmens 

et al., 2007).  Intriguingly, co-expression of wildtype SOD1 and A4V mutant SOD1 caused 

more severe axonal outgrowth defects than expression of A4V mutant SOD1 alone 
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(Lemmens et al., 2007).  A further two independently generated mutant SOD1 RNA injection 

zebrafish models, also reported axonal outgrowth defects at 2 dpf (Sakowski et al., 2012, 

Robinson et al., 2018).  In addition to transient mutant SOD1 zebrafish, germline mutant 

SOD1 zebrafish have also been generated.  Overexpression of the G93A SOD1 mutation 

variant in transgenic zebrafish caused neuromuscular junction defects by 30 weeks post-

fertilisation and motor neuron loss at 40 weeks post-fertilisation (Sakowski et al., 2012).  

Similarly, transgenic overexpression of the human G93R mutant SOD1 gene in zebrafish 

caused defects in the structure of neuromuscular junctions, reduced swimming endurance, 

evidence of motor neuron loss and reduced life expectancy (Ramesh et al., 2010).  Using 

the same G93R model zebrafish, it was identified that a sub-populations of spinal 

interneurons begins to show stress response activation before any detectable motor neuron 

abnormalities were observed (McGown et al., 2013).  The discovery that interneuron 

dysfunction precedes motor neuron dysfunction led the authors to the hypothesis that both 

mutant SOD1 protein pathology and loss of interneuron innervation may contribute to motor 

neuron injury (McGown et al., 2013).  There are, however, potential drawbacks when 

overexpressing mutant SOD1 in zebrafish, firstly because the expression levels of mutant 

SOD1 may be significantly higher than would occur endogenously, and secondly because 

expression of both copies of wildtype zebrafish SOD1 may mask any potential loss of 

function caused by SOD1 mutations.  In order to address these potential drawbacks, an 

additional SOD1 zebrafish model was generated using the targeting induced local lesions in 

genomes (TILLING) genome editing technique to generate zebrafish expressing a 

pathological T70I mutation in the endogenous SOD1 zebrafish gene (Da Costa et al., 2014).  

Neither heterozygous nor homozygous T70I mutation of endogenous zebrafish SOD1 

affected overall SOD1 protein expression levels in comparison to wildtype zebrafish (Da 

Costa et al., 2014).  Physiological expression levels of T70I mutant SOD1 protein caused 

abnormal neuromuscular junction formation, spinal motor neuron loss and motor impairment 

in homozygous zebrafish (Da Costa et al., 2014).   

Mutations in the TARDBP gene (encoding TDP-43 protein) are a known cause of ALS 

(Kabashi et al., 2008).  Overexpression of mutant TARDBP transcripts, or TARDBP 

morpholino mediated knockdown in zebrafish, both resulted in motor axonopathies and 

defects in touch evoked escape response at 2 dpf (Kabashi et al., 2010).  Moreover, 

TARDBP knockdown induced motor axon and touched evoked escape response defects 

could be rescued by co-injection of wildtype but not mutant TARDBP transcripts (Kabashi et 

al., 2010).  A further independently generated zebrafish model, identified that overexpression 

of wildtype or mutant TARDBP caused defects in motor axon outgrowth and increased 

axonal branching, axonal defects caused by mutant TARDBP overexpression could be 
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rescued by co-expression of human progranulin (Laird et al., 2010).  In another 

independently generated zebrafish model, mutant TARDBP or mutant FUS expression 

induced motor axonopathies, which were again rescued by co-expression of human 

progranulin (Chitramuthu et al., 2017).  Mutations in the GRN gene which encodes 

progranulin are a known cause of frontotemporal dementia (Baker et al., 2006, Cruts et al., 

2006).  Progranulin has known functions in cell survival and immune signalling among 

various others functions (Ryan et al., 2009, Zhu et al., 2013).  Intriguingly, overexpression of 

human progranulin also rescued motor axon truncation and branching defects in SMN1 

knockdown zebrafish models of spinal muscular atrophy (Chitramuthu et al., 2010).  

Zebrafish homozygous for a TARDBP null mutation were viable to adulthood and did not 

show significant motor axonopathies when examined at 36 hpf (Hewamadduma et al., 2013).  

Zebrafish possess an additional gene named TARDBPL which encodes a truncated variant 

of the TDP-43 protein, TARDBP knockout precipitated alternative splicing of the TARDBPL 

pre-mRNA which led to the production of a novel mRNA transcript and novel TDP-43-like 

protein, this novel protein was termed TARDBPL-FL (Hewamadduma et al., 2013).  

Morpholino mediated knockdown of TARDBP-FL expression in TARDBP null zebrafish, 

caused axonal outgrowth defects at 36 hpf and death in the early larval stage of 

development, suggesting that TARDBP-FL was at least partially replacing TDP-43 

functionality (Hewamadduma et al., 2013).  Additionally, an independently generated 

TARDBP null zebrafish model confirmed that TARDBP knockout did not result in significant 

motor axonopathy at 30 hpf, and this was also confirmed to be due to at least partial 

functional replacement of TDP-43 by TARDBP-FL generated through a novel splicing event 

(Schmid et al., 2013).  Furthermore, knockout of both TARDBP and TARDBPL genes 

caused motor axon outgrowth defects at 28 hpf, muscle degeneration at 2 dpf and death in 

the early larval stage of development (Schmid et al., 2013). 

Mutations in the RNA-binding protein FUS also cause ALS (Kwiatkowski et al., 2009, Vance 

et al., 2009).  Both knockdown of the ALS associated gene FUS, and over expression of 

mutant FUS in zebrafish, resulted in deficits in the touch evoked escape response and 

impaired motor axon outgrowth (Kabashi et al., 2011).  Importantly in FUS knockdown 

zebrafish, defects in escape response and motor axon outgrowth were rescued by co-

injection of wildtype human FUS mRNA, but not with co-injection of mutant human FUS 

mRNA (Kabashi et al., 2011).  Moreover, knockdown of TARDBP expression also resulted in 

defects in touch evoked escape response and motor axon outgrowth, and these deficits 

were rescued upon co-injection of wildtype FUS RNA (Kabashi et al., 2011).  Conversely 

deficits caused by FUS knockdown could not be rescued by wildtype TARDBP expression, 

suggesting that FUS may act downstream of TDP-43 (Kabashi et al., 2011).  Similarly, 
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expression of mutant FUS, or FUS knockdown in zebrafish, caused early swimming defects 

and defects in transmission across neuromuscular junctions (Armstrong and Drapeau, 

2013).  FUS knockdown phenotype in these zebrafish could be partially rescued by co-

injection of wildtype FUS, but not by co-injection of mutant FUS (Armstrong and Drapeau, 

2013).  Despite FUS knockdown in zebrafish causing an early motor phenotype, stable 

CRISPR mediated ablation of FUS in zebrafish did not result in defects in motor axon 

formation or touch evoked escape responses at 2-3 dpf (Lebedeva et al., 2017). 

ALS causative mutations have also been identified in the SQSTM1 gene which encodes the 

autophagy associated p62 protein (Fecto et al., 2011).  Morpholino-mediated knockdown of 

the zebrafish orthologue of SQSTM1 resulted in defective axonal outgrowth and reduced 

total swimming distance when measured at 2 dpf (Lattante et al., 2015).  Co-injection of 

wildtype SQSTM1 RNA, but not mutant SQSTM1 RNA, was sufficient to partially rescue both 

axonal outgrowth and swimming defects observed upon SQSTM1 knockdown (Lattante et 

al., 2015). 

To date, multiple gain of function and loss of function zebrafish models of C9orf72-ALS have 

been generated.  Loss of function of endogenous zebrafish C9orf72 gene products was 

sufficient to induce a motor phenotype in two out of three reported models (Ciura et al., 

2013).  See section 1.7.1 for a full outline of evidence supporting loss of function toxicity in 

C9orf72-ALS, including the contributions of zebrafish models.  Zebrafish models of gain of 

function toxicity have identified that C9orf72 expansion expression is sufficient to induce 

apoptosis and result in reduced survival of zebrafish (Lee et al., 2013, Ohki et al., 2017).  

Additionally, gain of function C9orf72 zebrafish models have shown that although DPR 

species are likely more toxic than RNA species, both RNA and DPR species may contribute 

to toxicity via independent mechanisms (Ohki et al., 2017, Swinnen et al., 2018).  See 

sections 1.7.2 and 1.8 for a full outline of evidence supporting gain of function toxicity in 

C9orf72-ALS, including the contributions of zebrafish models.  In summary, zebrafish models 

of multiple ALS disease genes have successfully recapitulated features of human ALS.  

Although, current C9orf72 zebrafish models have mainly focussed on elucidating the 

pathomechanisms or specific toxic species which underlie C9orf72-ALS, rather than utilising 

zebrafish as screening tools for potential therapeutic compounds. 

 

1.14. Aims 

Zebrafish models represent an excellent tool for studying neurodegenerative diseases.  At 

the time of the initiation of this project, no stable genetic C9orf72 zebrafish models had been 

created.  We proposed to take full advantage of the unique characteristics of the zebrafish 
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which make it useful as a vertebrate drug screening tool.  Additionally, investigation of 

common proteinopathies in ALS (outlined in section 1.5) has identified abnormal protein 

species which are observed across multiple ALS sub-types, therefore representing a 

potential therapeutic target which could benefit multiple ALS sub-types simultaneously.  

Taking the above points into consideration, the primary aims of the current study are detailed 

below: 

1. To generate stable transgenic C9orf72 expansion model zebrafish lines, and to 

characterise their molecular and phenotypic hallmarks in order to assess whether 

they recapitulate features of human C9orf72-ALS. 

2. To develop C9orf72 expansion model zebrafish lines into a validated drug screening 

paradigm. 

3. To discover common pathological species between C9orf72-ALS and sALS by 

examining neuropathological tissue. 
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2. Chapter 2: Materials and methods 

2.1. Materials 

2.1.1. Antibodies 

The antibodies used in the work throughout this thesis are listed in table 2.1. 

IHC: immunohistochemistry, AR: antigen retrieval 

 

2.1.2. RNA probes 

To detect sense foci (in 5.3 zebrafish lines) RNA probes with sequence (CCCCGG)3 were 

utilised.  To detect antisense foci (2.2 zebrafish lines) RNA probes with sequence 

(GGGGCC)3 were utilised.  Both RNA probes have a 5’ conjugation to the fluorophore 

TYE563 and are locked nucleic acids.  Both probes were obtained custom made from 

Exiqon, and were used at a final concentration of 40nM. 

 

2.1.3. Home office approval and zebrafish husbandry 

Project license approval was obtained from the home office under the title “Aquatic models 

of human neurological disease” (PPL No. 70/8058).  A zebrafish specific personal license 

was also obtained from the home office (PIL No. ICCB97EFC).  Adult, larval and embryonic 

zebrafish were maintained at the University of Sheffield zebrafish facility at 28°C and bred 

according to established procedures (Westerfield, 2000).  All animal experiments were 

conducted in accordance with the Animals (Scientific Procedures) Act 1986. 

 

Table 2.1: List of antibody information 
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2.1.4. Human samples 

Ethical approval for use of human frozen brain samples and human fixed brain samples was 

reviewed by the Sheffield Brain Tissue Bank Management Board, and approval to release 

tissue under REC 08/MRE00/103 was granted.  See table 2.2 for a summary of patient 

information from frozen and fixed human samples used.  In C9-ALS patients, the presence 

of >30 G4C2 expansions was confirmed by repeat primed PCR as part of the clinical 

protocol.  However, the clinical protocol did not include estimation of expansion length by 

southern blotting, therefore expansion length data was not available for patients listed in 

table 2.2. 

Diagnosis Gender Age Use 
Post mortem 

interval 
Cause of death 

Patient 
code 

C9-ALS M 48 IB 23 ALS 6 

C9-ALS F 69 PC/IB 55 ALS 7 

C9-ALS M 72 PC/IB 96 ALS 8 

C9-ALS F 62 PC/IB 63 ALS 9 

C9-ALS F 64 PC/IB 24 ALS 10 

C9-ALS F 67 PC/IB 24 ALS 17 

C9-ALS F 53 PC 48 ALS n/a 

C9-ALS F 58 PC 2 ALS n/a 

C9-ALS F 59 PC 28 ALS n/a 

C9-ALS F 64 PC 7 ALS n/a 

C9-ALS F 66 PC 10 ALS n/a 

C9-ALS M 46 PC 4 ALS n/a 

C9-ALS M 57 PC - ALS n/a 

C9-ALS M 59 PC 72 ALS n/a 

C9-ALS M 64 PC 48 ALS n/a 

C9-ALS M 67 PC 38 ALS n/a 

C9-ALS M 68 PC 31 ALS n/a 

Control M 84 IB 72 wm damage 1 

Control F 63 PC/IB 22 - 2 

Control M 63 PC/IB - 
Ischaemic heart 

disease 
3 

Control M 67 IB 63 
Hepatocellular 

carcinoma 
4 

Control M 58 IB 24 pontine haemorrhage 5 

Control F 59 PC/IB 5 Pneumonia 15 

Control M 47 IB 15 - 16 

Control M 46 IB 20 
Ischaemic heart 

disease 
20 

Control F 61 PC - - n/a 

Control F 76 PC - - n/a 

Control F 82 PC - - n/a 

Control F 87 PC 14 myocardial infarct n/a 
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Control M 40 PC - - n/a 

Control M 51 PC - - n/a 

Control M 70 PC - - n/a 

Control M 72 PC 31 - n/a 

sALS F 64 IB 27 ALS 11 

sALS M 79 IB 48 ALS 12 

sALS F 69 IB 12 ALS 13 

sALS M 40 IB 96 ALS 14 

sALS M 60 IB 9 ALS 18 

sALS F 46 IB 20 ALS 19 

Table 2.2: Human CNS tissue sample information 

Patient codes are also listed next to the relevant sample in western blot and dot blot figures 

so that sample pathology may be linked with patient information.  Patient codes are not listed 

for samples only used in Purkinje cell counts.  F: female, M: male, PC: Purkinje cell counting, 

IB: immuno blotting, - indicates unknown information 

2.2. Methods 

2.2.1. Generation and sequencing of GC rich DNA constructs (performed by Adrian 

Higginbottom and Tennore Ramesh respectively) 

The GGGGCC hexanucleotide repeat gene was generated by first annealing two primers 

with sequence: forward, 5’-TCGAC(GGGGCC)10-3’ and reverse 5’-TCGA(CCCCGG)10-3’.  

Due to the high propensity of GC rich DNA to form secondary structures, a long annealing  

protocol was required in which the annealing temperature is reduced from 95°C to 40°C, in a 

stepwise manner at 5°C/hour.  The annealed primers were then ligated overnight at 16°C 

with standard T4 DNA ligase (New England Biolabs).  The ligation mix was then run on a 1% 

agarose gel and multiple bands representing varying lengths of polymerised primers were 

cut out and purified.  The maximum hexanucleotide repeat length obtained by this method 

was 99 repeats.  The 99 hexanucleotide repeats were then ligated, at both 5’ and 3’ ends, to 

adaptors containing a BsrGI restriction endonuclease site.  BsrGI sites were then 

endonuclease cleaved using the BsrGI restriction enzyme (New England Biolabs) and 

ligated into a construct containing the remaining transgene sequence.  As BsrGI sites were 

present at both 5’ and 3’ DNA ends, this would allow the GC rich insert to ligate in either 

sense (G4C2) or antisense (C4G2) orientations.  DNA constructs were then transformed in 

chemically competent E.coli cells (5-Alpha Competent E. coli, New England Biolabs) by 

incubating for 30 seconds at 32°C.  Bacterial colonies were then grown overnight on 

carbenicillin treated agar plates at 37°C.  A few colonies were picked for each DNA construct 

and grown overnight in 3ml of LB broth at 37°C.  Plasmid DNA constructs were then purified 

from the E. coli using a Miniprep Kit (Qiagen).  GC rich DNA expansions are known to be 

unstable in E. coli so both sense and antisense constructs were sequenced to confirm the 

presence of the hexanucleotide expansion.  In the construct containing the sense 
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orientation, the full 99 G4C2 repeats were confirmed to be present by DNA sequencing 

(Figure 3.1a; see Appendix B for full transgene sequence).  However, in the antisense 

orientation DNA sequencing was not able to read through the entire GC rich region, 

therefore only 89 C4G2 repeats were confirmed to be present (Figure 4.1a; see Appendix C 

for full transgene sequence). 

 

 

2.2.2. Transgene construct 

The expression of GFP, a hexanucleotide repeat expansion (HRE) and an auxin inducible 

degron (AID) gene was driven by a zebrafish ubiquitin promoter (Mosimann et al., 2011), a 

kind gift from Henry Roehl.  In the case of the sense orientation HRE (5.3 zebrafish lines) a 

stop codon was formed after GFP and before the hexanucleotide repeats (Figure 3.1a).  In 

the case of the antisense orientation HRE (2.2 zebrafish lines) a stop codon was formed 

after the HRE but before the AID gene (Figure 4.1a).  The protein product of the AID gene 

becomes ubiquitinated and therefore targeted for proteasomal degradation selectively in the 

presence of auxin.  We planned to exploit this system to selectively degrade the GFP-DPR 

fusion protein, however due to technical difficulties of working with an HRE, the AID gene 

could not be cloned in frame with the GFP and HRE in any of our constructs.  Further 3’ of 

the AID gene, is a DsRed gene driven by a heat shock protein 70 (HSP70) promoter, 

functioning as a fluorescent reporter of generalised cellular stress (Ramesh et al., 2010).  

Flanking both 5’ and 3’ of the transgene regions described above, are I-SceI meganuclease 

restriction sites. 

 

2.2.3. Zebrafish strains used 

All transgenic zebrafish used in the present study, and all non-transgenic zebrafish used as 

controls, were from the AB zebrafish strain.  All subsequent generations of transgenic 

zebrafish were generated by breeding with zebrafish from the AB strain. 

 

2.2.4. Generating transgenic zebrafish (performed by Tennore Ramesh) 

DNA plasmid was digested with ISceI and the transgene containing fragment was purified 

and placed in solution with 1X concentration digestion buffer, 1 U/ml of ISceI, Phenol Red 

and 1X injection buffer (10 mM Tris-HCl, pH 7.5, 0.1 mM EDTA, 100 mM NaCl, 30 µM 

spermine and 70 µM spermidine) to a final concentration of DNA ranging from 80-100 ng/µl.  

DNA solution was then injected into early one-cell stage embryos in a 1nl volume (within 5 

minutes of fertilisation).  At 48 hpf the injected embryos were placed into 96 well PCR plates 

and heat shocked (30 minutes at 37°C followed by 30 minutes at 28°C, for three cycles) in a 

standard thermocycler.  Heat shocking robustly increases hsp70 promoter mediated 
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production of DsRed, thus allowing easy identification of transgenic zebrafish.  Heat shocked 

embryos were examined for DsRed florescence at 72 hpf under a fluorescence microscope 

and highly chimeric embryos showing DsRed expression in a large proportion of their tissues 

were kept and grown to adulthood.  Chimerism was determined by visually examining which 

tissue types expressed the transgene according to visible DsRed fluorescence (GFP 

florescence was also used if visible), zebrafish which showed transgene expression in at 

least muscle, heart and eye tissue were considered to be highly chimeric.  The chimeric 

adult zebrafish (F0s) were outcrossed with AB zebrafish and their resulting offspring were 

screened for transgene expression using the same heat shocking-DsRed expression method 

described above.  Any full transgenic offspring (F1s) identified during the screens were 

separated from their siblings and grown to adulthood.  F1 zebrafish could then be 

outcrossed to AB zebrafish to give rise to an individual transgenic line. 

 

2.2.5. In Situ Hybridisation (with assistance from Adrian Higginbottom) 

At 10 dpf, zebrafish were terminally anaesthetised and then fixed in 4% paraformaldehyde in 

phosphate buffered saline (PBS) overnight at 4°C.  Fixed zebrafish were then washed three 

times in PBS for 5 minutes per wash.  Zebrafish were processed for paraffin embedding in a 

tissue processor and then embedded for longitudinal sectioning in paraffin.  Paraffin 

embedded tissue blocks were sectioned at 10µm and dewaxed by 5 minute sequential 

immersions in each of the following solutions - xylene 100%, xylene 100%, ethanol 100%, 

ethanol 95%, ethanol 70% and dH2O.  Dewaxed sections were then incubated in 150µl of 

pre-hyb buffer (50% formamide, 300mM NaCl, 30mM trisodium citrate dihydrate, 10% 

dextran sulphate, 20mM monobasic sodium phosphate and 30mM dibasic sodium 

phosphate) for 1 hour at 66°C.  A 5’TYE563 conjugated oligonucleotide-probe (for antisense 

foci: 5’-GGGGCCGGGGCCGGGG-3’; for sense foci: 5’-CCCCGGCCCCGGCCCC-3’, 

Exiqon) was diluted in pre-hyb buffer (40nM probe) and the sections were incubated with 

150µl of the probe-hyb buffer over night at 66°C.  Sections were then washed for 10 minutes 

at room temperature with the first wash buffer (300mM NaCl, 30mM trisodium citrate 

dihydrate and 0.1% Tween20), then washed three times for 10 minutes each at 66°C in the 

second wash buffer (15mM NaCl and 1.5mM trisodium citrate dihydrate).  Slides were then 

nuclei stained with Hoechst, mounted in Vectashield and imaged using confocal microscopy 

(TCS SP5II, Leica Microsystems) as described previously (Cooper-Knock et al., 2014). 

 

2.2.6. Immunohistochemistry 

Zebrafish were terminally anaesthetised in 4% tricaine solution and fixed in 4% 

paraformaldehyde at 4°C ON.  Tissue was then embedded in paraffin blocks and sectioned 
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at 5µm using a microtome (RM2245, Leica Microsystems).  Antigen retrieval was carried out 

by gradually heating the sections in a pressure cooker to 125°C while immersed in either 

Access Revelation buffer (pH 6.4, A.Menarini diagnostics) or Access Super RTU buffer (pH 

9.5, A.Menarini diagnostics).  Sections were then washed three times in PBDT (1% dimethyl 

sulfoxide, 0.5% triton X100, 1% bovine serum albumin in phosphate buffered saline) for 15 

minutes per wash, at RT.  Following this, normal goat serum (NGS) was added to PBDT 

(final concentration 0.1% NGS) and the tissue sections were blocked in this solution for one 

hour.  Sections were then incubated in primary antibody at 4°C ON (see materials section for 

antibody manufacturers and dilutions).  The following day, embryos were washed six times 

in PBDT for 15 minutes per wash and incubated in secondary antibody at 4°C ON.  The next 

day, embryos were washed six times in PBDT for 15 minutes per wash, nuclei stained with 

Hoechst and mounted in Vectashield.  Sections were then imaged by confocal microscopy 

(TCS SP5II, Leica Microsystems).  

 

2.2.7. Western blots  

Human cerebellum or motor cortex samples were ground to powder in liquid nitrogen prior to 

lysing.  For adult zebrafish tissue, brain and spinal cord were dissected from deeply 

anaesthetised and decapitated zebrafish and flash frozen in liquid nitrogen.  Laemmli buffer 

(4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.00004% bromophenol blue and 0.125M 

Tris-HCl pH6.8) was added to either human or zebrafish tissue at a ratio of 10µl:1mg of 

tissue.  The samples were then sonicated at 25% power for three rounds of 10s each, with 

30s cooling on ice between each round (Vibra-Cell, Sonics).  Samples were then boiled at 

95°C for 10 minutes, no centrifugation was performed. 

To obtain protein lysates from embryonic (<5.2 dpf) zebrafish, embryos were first terminally 

anaesthetized in 4% tricaine solution, then all media was carefully removed and Laemmli 

buffer was added at a volume of 2µL per embryo.  Samples were then lysed and stored as 

described above. 

The equivalent of 1mg tissue (frozen tissue mass) of protein lysate was separated on a 10% 

tris SDS-polyacrylamide gel for one hour at 110V, protein was then transferred to a poly-

vinylidene difluoride membrane at 110V for 1.5 hours.  The membrane was then blocked for 

one hour using 5% milk in tris buffered saline with 0.1% Tween20 (TBST), before primary 

antibody diluted in blocking buffer was added overnight at 4°C (see Table 2.1 for antibody 

manufacturers and dilutions).  Following this, the membranes were washed three times in 

TBST for 10 minutes per wash, before a secondary HRP conjugated antibody diluted in 

blocking buffer was added for 90 minutes.  Membranes were now washed a further three 

times in TBST for 10 minutes per wash.  Membranes were imaged by incubating with 2ml of 
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EZ-ECL chemiluminescent HRP enzyme substrate (biological industries) for one minute 

before being captured as a sub-saturating image using a G:box imaging system (Syngene).  

Membranes were re-probed using a different species primary antibody by first incubating in 

0.01% sodium azide in blocking buffer for 1 hour, and then proceeding with addition of 

primary antibody as described above. 

 

2.2.8. Embryonic spontaneous locomotor behaviour 

At 5 dpf zebrafish were placed into individual wells of a 96well plate in 200µl aquarium 

water.  The zebrafish were then habituated in in the dark for 10 minutes before a light 

stimulus was turned on for a duration of 10 minutes.  Following this, the light stimulus was 

turned off and zebrafish activity was recorded for 10 minutes under dark conditions, this light 

–dark cycle was repeated once more for 2.2-7 zebrafish experiments, and twice more for 5.3 

zebrafish experiments.  Only activity under dark conditions was used in the analysis.  All 

dark activity periods were combined together before calculating average speed and total 

distance moved values.  Time spent swimming at different speeds was also calculated using 

the flowing speed thresholds: slow (0<x<5mm/sec), intermediate (5<x<15mm/sec) and fast 

(x>15mm/sec).  Recordings were carried out using ZebraBox software (ViewPoint Behaviour 

Technologies). 

 

2.2.9. Embryonic centre avoidance behaviour 

At 5 dpf zebrafish were placed into a 6 well plate at a density of 30 zebrafish per well, in a 

volume of 3ml aquarium water.  After a 30 minute habituation period with the lights on, the 

lights were turned off the moment recording began.  Lights were off for 5 minutes then on for 

5 minutes for 6 cycles.  Beginning at 30 seconds after the lights were turned on, a frame was 

pulled out every minute using the Imagegrab tool, and this was repeated for each of the 6 

lights on periods.  Using ImageJ, circles of the same size were placed around the outside of 

every well so that only the centre of the well was visible, the % of zebrafish present in the 

centre of the well was then blind counted for every image and the average per well was 

calculated. 

 

2.2.10. Developmental analysis of transgenic zebrafish 

To obtain fertilised zebrafish eggs, adult zebrafish pair mates were placed into breeding 

tanks separated by a divider and left overnight.  The following morning the dividers were 

removed and the eggs were collected 2-3 hours later, thus ensuring that all of the zebrafish 

included in the assay were of a similar developmental stage.  In order to standardise water 

quality conditions a water change was performed in the morning immediately following 
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collection of eggs, another water change was performed in the afternoon and again the 

following morning.  At 5 dpf zebrafish were placed into 2L of fresh water and a partial water 

change of roughly 350ml was carried out every day until 13 dpf at which point a constant 

flow of fresh water was applied to the tank.  The zebrafish were genotyped and counted at 

24hpf.  Any zebrafish embryos which were malformed or had died before this point were not 

included in the assay.  The zebrafish were again genotyped and counted at 5 dpf and 15 

dpf. 

 

2.2.11. Weighing zebrafish 

Adult zebrafish were deeply anaesthetised in 4% tricaine solution, before being gently dried 

using a paper towel, zebrafish were then weighed in groups of 5 using a fine lab balance. 

 

2.2.12. Swim tunnel and adult spontaneous locomotor behaviour 

Zebrafish were not fed the day of the swim tunnel test and were allowed to acclimatise to the 

testing room for one hour.  Zebrafish were individually placed into a 1” diameter swim tunnel 

chamber initially with no water flow.  The water flow was then increased in 2L/min 

increments every 5 minutes (for 2-3 month old 5.3-9 zebrafish flow was increased at 1L/min 

every 10 minutes) until the maximum flow rate of 11.6L/min was achieved.  For experiments 

using 2.2 zebrafish a wider 1.5” swimming chamber was used due to a lack of availability of 

the swimming chamber used in 5.3 zebrafish experiments.  Zebrafish that stopped swimming 

during the test were allowed to briefly recover at 4L/min with the timer paused.  Once the 

zebrafish began to swim again the flow was again increased to the rate at which the 

zebrafish previously failed, and the timer was started again once the flow rate had returned.  

Once a zebrafish either stopped swimming twice or successfully swam at 11.6L/min for 5 

minutes, it was removed from the chamber and placed into a recovery tank.  After 5 minutes 

in the recovery tank each zebrafish was placed into a behaviour monitoring tank and 

spontaneous swimming behaviour was monitored for 30 minutes using a camera linked to 

ZebraLab software (ViewPoint Behaviour Technologies).  Average speed and total distance 

moved were then calculated for each individual zebrafish.  Time spent swimming at different 

speeds was also calculated using the following speed thresholds: slow (x<60mm/sec), 

intermediate (60<x<120mm/sec) and fast (x>120mm/sec). 

 

2.2.13. Motor neuron counts and myotome measurements 

Zebrafish body segments just anterior to the pelvic fin were first fixed in 4% 

paraformaldehyde in PBS overnight at 4°C.  Body segments were then washed three times 

in PBS for 5 minutes per wash.  Zebrafish body segments were then decalcified by 
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incubating in 0.5M EDTA solution for 1 week. Body segments were then processed for 

paraffin embedding before being embedded for transverse sectioning in paraffin.  Body 

segments were cut at 10µm thickness and dewaxed by 5 minute sequential immersions in 

each of the following solutions - xylene 100%, xylene 100%, ethanol 100%, ethanol 95%, 

ethanol 70% and dH2O.  Following this, sections were stained with haematoxylin and eosin 

(H&E) by immersion in haematoxylin (1 minute), tap water rinse, 1% acid alcohol (1 minute), 

tap water rinse, Scott’s tap water (30 seconds), tap water rinse, eosin (5 minutes) and a final 

tap water rinse.  Sections were then dehydrated by short immersions in ethanol 70%, 

ethanol 95% and ethanol 100% before being cleared in xylene and mounted in DPX.  Cells 

with a soma size >75µm2 and within 25,000µm2 proximity of the central canal were 

designated as motor neurons.  Three sections were counted per animal, by two independent 

blinded investigators.  The two independent scores were averaged to give the final score for 

each animal. 

The area of each individual body muscle myotome was measured by a blinded investigator 

from 6 images per animal.  All muscle images were obtained from the epaxial muscle region 

just lateral from the dorsal spinal bone.  Any myotome which was incomplete due to being 

partially out of frame was not included in the analysis. 

 

2.2.14. Heat shock cell stress drug screening assay 

At 2 dpf, transgenic zebrafish were removed from the chorion and placed into a 96 well plate 

in 200µl of drug or DMSO containing E3 zebrafish media.  No water changes or additional 

dosing was performed.  At 5 dpf zebrafish embryos were individually placed into the well of a 

V-bottom 96 well plate in 50µl of 4% tricaine solution.  Each well was sonicated for 10s at 

25% power, before the plate was centrifuged at 3000rpm for 10 minutes, 20µl of supernatant 

was then added to a 384 well plate.  The 384 well plate was measured in a microplate 

reader (PHERAstar FSX, BMG Labtech), and both DsRed fluorescence (540nm 

excitation/590nm emission; 1399 gain) and GFP fluorescence (485nm excitation/520nm 

emission; 1865 gain) were quantified.  This method was also used in 5 dpf zebrafish to 

obtain GFP and DsRed levels for comparison.  

 

2.2.15. Embryonic drug injections 

Immediately following fertilisation zebrafish embryos were placed into an injection mould in a 

small volume of E3 zebrafish media.  Injections were carried out using a thinly pulled hollow 

glass pipette (make) attached to a Pneumatic PicoPump (World Precision Instruments).  

Approximately 1-2nl of drug or DMSO (diluted to appropriate concentration in E3 zebrafish 

medium with 1:1000 Texas Red), was injected directly into the embryonic yolk sac. 
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2.2.16. Dot blots 

Human motor cortex or cerebellum tissue was ground to powder in liquid nitrogen, and lysis 

buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.00004% bromophenol blue and 

0.125M Tris-HCl pH6.8) was added at a ratio of 10µl:1mg of tissue before the samples were 

briefly homogenised with an electric homogeniser.  20µl of each sample was vacuum drawn 

onto a PVDF membrane and immunoblotted for tubulin as a loading control.   A second dot 

blot was then prepared using the previous tubulin loading control to adjust the required 

volume of each sample to ensure equal loading.  Each sample was diluted to a total volume 

of 400µl in PBS, before being divided into two 200µl aliquots immediately before being 

vacuum drawn onto a PVDF membrane.  By splitting samples into two aliquots, duplicate 

membranes were generated to allow immunoblotting with two different sets of antibodies.  

Immunoblotting was carried out according to the same protocol descried for western blotting 

in section 2.2.7.  The first duplicate membrane was immunoblotted with an anti-tubulin 

antibody and after treatment with sodium azide (to avoid signal cross over between 

antibodies of different species), was then immunoblotted for poly(PR).  The second duplicate 

membrane was immunoblotted with an anti-poly(GA) antibody followed by sodium azide 

treatment and immunoblotting for anti-poly(GP).  Sub-saturating images were captured using 

a G:box imaging system (Syngene).  As the membranes used were duplicates (derived from 

the same sample preparation), the same tubulin image was used as a loading control for 

poly(PR), poly(GA) and poly(GP) images. 

 

2.2.17. Larval drug dosing 

At 1 dpf zebrafish were genotyped and placed into a 6 well plate containing either drug or 

DMSO in E3 zebrafish medium (30 zebrafish per well).  Daily changes of 50% drug or 

DMSO containing E3 media were carried out.  At 5 dpf, zebrafish were transferred to a 1.2L 

tank in 100ml of drug/DMSO media.  An equal volume of drug/DMSO media was added to 

the tank daily.  Once the water level in the tank had reached 800ml, the media was strained 

until 200ml was remaining and then equal volumes were added daily again.  At 15 dpf 

zebrafish were removed from the tank and terminally anaesthetised in 4% tricaine solution, 

and then frozen at -80°C to later be used for western blotting.  Any zebrafish which became 

sick during the course of the experiment were removed from the tank and terminally 

anaesthetised and the death was recorded. 
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2.2.18. Purkinje cell counts 

Human cerebellum was formalin fixed and processed for paraffin embedding before being 

sectioned coronally at a thickness of 5µm.  To ensure a similar anatomical region was used 

in each patient, only sections containing a portion of the dentate gyrus were used.  Dentate 

sections were then dewaxed by 5 minute sequential immersions in each of the following 

solutions - xylene 100%, xylene 100%, ethanol 100%, ethanol 95%, ethanol 70% and dH2O.  

Following this, sections were stained with haematoxylin and eosin (H&E) by immersion in 

haematoxylin (1 minute), tap water rinse, 1% acid alcohol (1 minute), tap water rinse, Scott’s 

tap water (30 seconds), tap water rinse, eosin (5 minutes) and a final tap water rinse.  

Sections were then dehydrated by short immersions in ethanol 70%, ethanol 95% and 

ethanol 100% before being cleared in xylene and mounted in DPX.  Whole mounted H&E 

stained slides were then automatically imaged at 40X zoom using a NanoZoomer Digital 

slide scanner (Hamamatsu).  Images were visualised using the NDP view software 

(Hamamatsu), where the Purkinje cell layer was traced until either 200 Purkinje cells or 1 

entire slide had been counted.  The number of cells counted was then divided by the 

distance of Purkinje layer over which the cells were distributed, to give an average value of 

Purkinje cells per mm for each patient.  Only Purkinje cells where the nucleolus was visible 

were counted, to ensure that cell would not influence the dataset. 

 

2.2.19. Statistical analysis and definition of n number used 

For adult and embryonic zebrafish behaviour experiments, each individual zebrafish was 

considered as one n number.  Zebrafish in each group were derived from a minimum of 

three independent clutches unless otherwise stated. 

For continuous datasets comparing two groups, normality was assessed using the Shapiro-

Wilk test.  Non-normally distributed data were compared using the Mann-Whitney U test.  

Normally distributed data were further assessed for homogeneity of variance using the F 

test.  When variance was equal, datasets were compared using the unpaired t test.  

However, when variance was not equal unpaired t test with Welch’s correction was used. 

For continuous datasets comparing a single factor across more than two groups, normality 

was assessed using the Shapiro-Wilk test.  Normally distributed data were compared using a 

one-way ANOVA.  Non-normally distributed data were compared using the Kruskal-Wallace 

test.  For continuous datasets comparing two factors across two or more groups a two-way 

ANOVA was used.  Correlation between two datasets was analysed using Pearson 

correlation coefficient.  Survival type data was analysed using the log-rank test. 
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Discrete data were analysed using a Chi-squared test for trend.  For all figures in this 

document significance values are denoted as *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 

0.0001.
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3. Chapter 3: RNA-only zebrafish exhibit no ALS phenotype 
3.1. Introduction 

Although previous studies in zebrafish and drosophila have convincingly demonstrated that 

DPR proteins are generally more toxic than RNA foci, the contribution of each to cellular 

stress has thus far only been determined by generic readouts such as neurodegeneration 

and reduced viability (Lee et al., 2013, Mizielinska et al., 2014, Tran et al., 2015, Ohki et al., 

2017).  It is also important to accurately quantify the amount of cellular stress through simple 

molecular readouts, as this can allow early detection of the cell stress which precedes 

neurodegeneration or death (McGown et al., 2013).  Furthermore, although 

neurodegeneration and loss of viability are good quality readouts, simple molecular readouts 

of cell stress can allow for higher throughput screening of potential neuroprotective 

compounds. 

 

3.2. Aims 

In order to address the above points, we aimed to generate two sets of transgenic zebrafish.  

One set of zebrafish would express only RNA foci (without ATG-driven DPRs) and the other 

set of fish would express both RNA foci and ATG-driven DPR proteins.  Both sets of 

zebrafish would also have a tandem drug screening fluorescence reporter readout as used 

previously to successfully screen drugs in a SOD1-ALS zebrafish model (McGown et al., 

2013).  The two sets of zebrafish could therefore be used to identify the relative toxicity of 

RNA foci and DPR, and also screen for drugs which aid in alleviating this toxicity.  Chapter 3 

focuses on the generation and characterisation of RNA-only zebrafish. 

 

3.3. C9orf72 expansion RNA-only transgenic zebrafish express hallmark RNA foci 

At the single cell stage wildtype zebrafish of the AB strain were nuclear injected with a 

C9orf72 expansion containing construct (figure 3.1a).  Expression of GFP and C9orf72 

expansion RNA is driven by a zebrafish ubiquitin promoter.  The C9orf72 expansions used in 

this construct were interrupted (GGGGCC)99 hexanucleotides (strings of G4C2 repeats 

interrupted by TCGAC linkers).  Specifically, the C9orf72 expansion sequence used was: 

(G4C2)12-TCGAC-(G4C2)17-TCGAC-(G4C2)10-TCGAC-(G4C2)22-TCGAC-(G4C2)17-TCGAC-

(G4C2)9-TCGAC-(G4C2)12 (see Appendix B for the full transgene sequence).  The presence 

and size of the expansion was confirmed by DNA sequencing prior to injection.  Further 3’ of 

the C9orf72 expansion is the sequence of an auxin inducible degron (AID) gene.  The AID 

gene was initially included in this construct as a control for its expression in DPR producing 

transgene constructs discussed later (see section 4.3 for a full explanation of the uses of the 

AID gene and production of DPR producing zebrafish).  A start codon was placed at the  
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Figure 3.1: RNA-only 5.3 model zebrafish display RNA foci 

(a) Schematic representation of the transgene inserted into 5.3 zebrafish.  A zebrafish 

ubiquitin promotor drives GFP expression, but a stop codon prevents translation of all 

sequence downstream from GFP.  A hsp70 promotor then drives DsRed production as a 

read out of cellular stress.  (b) In situ hybridisation of paraffin embedded sections of 10dpf 

5.3-9 zebrafish using a Cy3-conjugated (red) GC probe (CCCCGG)x4 showed that RNA 

foci are present in the nuclei of muscle cells. Yellow arrow heads denote RNA foci. Images 

are representative of 3 sections assessed from 3 individual zebrafish per group (not 

quantified). Scale bar = 10µm. 

 

beginning of the GFP gene and a stop codon was placed at the end of the GFP gene, thus 

ensuring that no ATG-driven DPRs are produced (all potential frames are not amenable to 

RAN-translation in this construct due to the presence of stop codons or lack of ATG-like 

initiation codons).  Thus, the ubiquitin promoter drives expression of GFP-C9orf72 

expansions-AID RNA, but only GFP is translated into protein, this is the disease gene 

component of the transgene construct.  Further 3’ of the disease gene is a hsp70 promoter 

driving expression of a DsRed gene, forming the drug screening portion of the DNA 

construct. NTG clutchmate zebrafish were used as controls for transgenics in all 

experiments as they provide the closest possible match for tank conditions, age and 

background genetics.  NTG zebrafish do not express non-disease gene elements of the 

transgene expressed in transgenic zebrafish (e.g. GFP and DsRed).  However, these genes 

have been widely used in zebrafish research and no toxicity has been reported through to 
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adult expression (Ju et al., 1999, Zhu and Zon, 2004, Ramesh et al., 2010, Blackburn et al., 

2011). 

In total approximately 500 zebrafish were injected with the RNA-only transgene construct.  

These zebrafish were referred to by the arbitrary term ‘5.3’ - these zebrafish will be 

henceforth be referred to as 5.3 zebrafish lines.  From those injected, 25 highly chimeric 5.3 

zebrafish were identified.  Chimerism was determined by visually examining which tissue 

types expressed the transgene (according to visible GFP or DsRed fluorescence).  Zebrafish 

which showed transgene expression in at least muscle, heart and eye tissue (indicative of 

early transgene integration into embryos) were considered to be highly chimeric.  These 

highly chimeric 5.3 zebrafish were grown to adulthood, then bred, and their offspring were 

screened for transgene expression by first heat shocking (see section 2.2.4 for details) and 

then examined for DsRed and GFP fluorescence under a fluorescence microscope.  Of the 

25 highly chimeric zebrafish, 7 gave rise to a proportion of full transgenic offspring.  

However, 2/7 exhibited extremely high transgene expression levels, and the offspring died 

within 5-7 dpf, thus preventing the establishment of a full transgenic line.  The remaining 5/7 

highly chimeric zebrafish gave rise to full transgenic offspring which were grown to adulthood 

and used to establish a full transgenic line.  From each of the 5 full transgenic 5.3 zebrafish 

lines, a few embryos were examined by eye under a fluorescence microscope to judge the 

strength of their fluorescence relative to one another.  High, middle and low expressing lines 

were selected for further examination, these lines were named 5.3-9, 5.3-5 and 5.3-6 

respectively.  As 5.3-9 demonstrated the highest transgene expression, this line was used 

for further characterisation.  Transgenic 5.3-9 embryos and their NTG clutchmates were 

grown to 10 dpf and then processed for in situ hybridisation to test whether RNA foci from 

the C9orf72 expansion could be observed.  Numerous GGGGCC orientation RNA foci were 

observed in muscle cells of the 5.3-9 zebrafish, but not in their NTG clutchmates (Figure 

3.1b).  A limitation of the RNA foci data is that zebrafish were obtained from a single clutch, 

ideally 3 or more zebrafish clutches should be studied so that variation in background 

genetics may be accounted for and statistical comparison may be applied.   

 

3.4. 5.3 zebrafish lines express GFP and DsRed 

It is important to determine how strongly the transgene is expressed in each line of 

transgenic fish as it is likely that the highest expressing zebrafish would be most likely to 

develop a phenotype, if indeed the transgene is conferring toxicity to the zebrafish.  The 

lines 5.3-9, 5.3-5 and 5.3-6 had already been identified as high, middle and low transgene 

expressers by eye.  However, a more quantitative measure of this was required.  For this 

reason, 5 dpf embryos from each of the aforementioned lines were lysed and individual GFP 
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and DsRed fluorescence values of each lysate were determined using a fluorescence plate 

reader.  GFP fluorescence was significantly higher in the 5.3-9 line as compared to both 5.3-

5 and 5.3-6 zebrafish lines (1.7x105 vs. 1.3x105 and 1.7x105 vs. 0.5x105 A.U. respectively; 

Figure 3.2a).  Additionally, 5.3-5 GFP fluorescence was significantly higher than that of 5.3-

6.  GFP fluorescence was used as a convenient readout for transgene expression at the 

protein level.  However, expression of the transgene was not examined at the DNA level 

(transgene copy number analysis) or RNA level (mRNA expression level analysis).  Similar 

patterns were observed when DsRed florescence was measured.  5.3-9 DsRed fluorescence 

was significantly higher than both 5.3-5 and 5.3-6 (1.3x105 vs. 1.2x105 and 1.3x105 vs. 

0.1x105 A.U. respectively; Figure 3.2b).  Additionally, 5.3-5 DsRed fluorescence was 

significantly higher than that of 5.3-6.  Although raw fluorescence values are an important 

measure of transgene expression levels, a better readout of average cell stress levels is 

given by the ratio of DsRed:GFP.  This is because DsRed protein levels can be influenced 

by the number of copies of the transgene present in each individual line, as well as by cell 

stress driving the hsp70 promoter.  Therefore, by normalising DsRed fluorescence levels to 

the GFP florescence levels of the same zebrafish, the influence of transgene copy number 

on DsRed fluorescence will be diminished, giving a more accurate representation of cell 

stress levels.  The DsRed:GFP ratio of 5.3-9 zebrafish was significantly higher than both 5.3-

5 and 5.3-6 zebrafish (0.78 vs. 0.23 and 0.78 vs. 0.12 respectively; Figure 3.2c).  

Interestingly, despite higher raw fluorescence values, the DsRed:GFP ratio of 5.3-5 

zebrafish was not significantly higher than that of 5.3-6 zebrafish. 

As 5.3-9 zebrafish showed significantly higher GFP, DsRed and DsRed:GFP ratio than the 

other 5.3 lines, it was considered that 5.3-9 zebrafish would be the most likely to develop a 

phenotype.  Therefore, the majority of subsequent phenotypic characterisation was 

conducted in the 5.3-9 zebrafish line.  In order to confirm that 5.3-9 zebrafish were producing 

GFP protein alone (i.e. no DPR species were being translated from the C9orf72 expansion), 

5 dpf embryos from the 5.3-9 zebrafish were lysed and western blotted.  Immunoblotting of 

5.3-9 embryonic lysates with an antibody against GFP revealed a single band at 25KDa, the 

exact expected size of the GFP protein (Figure 3.2d).  Both GFP and DsRed were also 

detectable by confocal imaging of endogenous fluorescence in 15dpf cryosectioned 5.3-9 

zebrafish (Figure 3.2e).  Although transgene driven expression of GFP was observed in 

muscle tissue of 15dpf cryosectioned 5.3-9 zebrafish, it was not clear whether GFP 

expression was also present in CNS tissues of 5.3-9 zebrafish. 
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Figure 3.2: RNA-only 5.3 zebrafish lines express GFP and DsRed 

(a) At 5dpf, 5.3-9 zebrafish have significantly higher GFP fluorescence than both 5.3-5 and 5.3-6 

lines.  Additionally, 5.3-5 zebrafish have significantly higher GFP fluorescence than 5.3-6 zebrafish.  

N=9 5.3-9, 10 5.3-5 and 9 5.3-6 zebrafish, derived from a single clutch.  Statistical comparisons 

were carried out using a one-way ANOVA with Tukey’s post-hoc test.  (b) At 5dpf, 5.3-9 zebrafish 

have significantly higher DsRed fluorescence than both 5.3-5 and 5.3-6 lines.  Additionally, 5.3-5 

zebrafish have significantly higher DsRed fluorescence than 5.3-6 zebrafish.  N=9 5.3-9, 10 5.3-5 

and 9 5.3-6 zebrafish, derived from a single clutch.  This dataset (legend continues on next page) 
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3.5. GFP but not DPR proteins are expressed in adult 5.3-9 zebrafish brains 

ALS is primarily a neurological disease, it is therefore critical to determine whether 

expression of the RNA-only transgene is present in the zebrafish CNS.  For this reason, we 

lysed adult 5.3-9 zebrafish brains and western blotted them for GFP.  A GFP 

immunoreactive band was detected at the predicted molecular weight of GFP in the 5.3-9 

adult brain lysates, but not in those of NTG controls brain lysates (Figure 3.3a, top panel).  

GFP levels detected in the 5.3-9 zebrafish brain lysates were statistically significantly higher 

than those detected in the NTG controls (Figure 3.3b).  This demonstrates that the C9orf72 

expansion containing transgene is expressed in the CNS, despite the lack of an ALS-like 

phenotype being observed.  As shown previously at 5 dpf, GFP was detected at 25KDa, the 

expected size of the GFP protein, thus demonstrating that translation of the C9orf72 

expansion is prevented by the stop codon placed at the end of the GFP gene.  However, 

DPR species can be produced from C9orf72 expansions even in the absence of a start 

codon due to the phenomenon of RAN-translation.  Additionally, translation of RAN-

translated DPR species would be initiated in close proximity to the C9orf72 expansion and 

therefore would not allow for translation of GFP.  This means that RAN-translated DPRs 

would not be likely to be detected using a GFP antibody.  In order to assess whether RAN-

translated DPR proteins were being produced from the C9orf72 expansion, we probed 5.3-9 

adult brain lysates with antibodies against poly(GA) and poly(PA) DPRs.  Neither poly(GA) 

nor poly(PA) antibodies detected any specific protein bands in the 5.3-9 zebrafish brain 

lysates (Figure 3.3a, middle two panels).   

Previous validation of the poly(GA) antibody used here, identified that the poly(GA) antibody 

binds both human and recombinant poly(GA) protein, and showed minimal cross reactivity 

with all other DPR species (Gendron et al., 2015).  Similarly, the binding specificity of the  

was not normally distributed according to the Shapiro-Wilk test for normality, and was therefore 

statistically compared with the Kruskal-Wallis test with Dunn’s post-hoc test.  (c) At 5dpf, 5.3-9 

zebrafish have significantly higher DsRed:GFP ratio than both 5.3-5 and 5.3-6 lines.  N=9 5.3-9, 10 

5.3-5 and 9 5.3-6 zebrafish, derived from a single clutch.  This dataset was not normally distributed 

according to the Shapiro-Wilk test for normality, and was therefore statistically compared with the 

Kruskal-Wallis test with Dunn’s post-hoc test.  (d) At 5dpf, whole 5.3-9 zebrafish protein lysates 

produce a single GFP immunoreactive band at 25KDa (the exact size of the GFP protein).  (e) At 

15 dpf, 5.3-9 zebrafish produce GFP and DsRed.  The NTG zebrafish shown for comparison is 5 

dpf.  Transverse body sections.  Scale bar = 100µm.  Images are representative of 9 zebrafish 

imaged (not quantified).  All data are shown as mean +/- standard deviation; *P < 0.05 and ****P < 

0.0001.   
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 poly(PA) antibody used here has been validated previously in a western blot which showed 

that poly(PA) immunoreactive bands were detected only in lysates from poly(PA) expressing 

cells, and not in lysates of cells expressing any other DPR species (May et al., 2014).  

Hence, a lack of poly(GA) or poly(PA) antibody specificity is not likely to be the cause of the 

absence of 5.3-9 specific bands detected in adult brain lysates.  Thus, despite transgene 

expression being detectable in adult 5.3-9 brain tissue as shown by GFP production, no 

poly(PA) or poly(GA) containing DPRs are produced at detectable levels through 

conventional translation or RAN-translation.  Furthermore, muscle tissue from the  

same zebrafish was also western blotted and probed for GFP.  A GFP immunoreactive band 

was also detected at the predicted molecular weight of GFP protein in 5.3-9 adult zebrafish 

muscle tissue, but not in NTG controls (Figure 3.3c).  GFP levels in adult muscle tissue of 

5.3-9 zebrafish were statistically significantly higher than those in NTG control adult muscle 

tissue (Figure 3.3d).  No other GFP immunoreactive bands were detected in adult muscle 

zebrafish tissue, indicating that only GFP protein, and not GFP tagged DPRs are produced 

in this tissue.   

 

3.6. Embryonic 5.3-9 zebrafish show a mild hyperactivity phenotype 

In order to determine whether ALS-like locomotor defects were present in 5.3-9 embryonic 

zebrafish, spontaneous locomotor activity was monitored in 5 dpf embryos.  Swimming 

activity was monitored under dark conditions for 30 minutes, and average speed and total 

distance swam was calculated for each individual zebrafish.  Despite average speed being 

46% higher in 5.3-9 compared with NTG zebrafish, this increase did not reach statistical 

significance (Figure 3.4a).  Similarly, 5.3-9 zebrafish swam on average 45% further than  

Figure 3.3: Adult 5.3-9 zebrafish produce GFP, but not poly(GA) or poly(PA) DPRs 

(a) Adult 26 month old 5.3-9 zebrafish brains produced an immunoreactive band at 25KDa 

that is not present in any NTG lane, this is the predicted weight of the GFP protein. No 

5.3-9 specific bands could be detected with either poly(GA) or poly(PA) antibodies, all the 

bands shown for these antibodies are non-specific bands and are not DPRs. Poly(GA) and 

poly(PA) blots underwent long exposures to help identify any DPR proteins which may 

have been expressed at low levels.  (b) Quantification of GFP/tubulin levels in adult 5.3-9 

zebrafish brains.  Statistical comparison was carried out with an unpaired t-test.  (c) Adult 

26 month old 5.3-9 zebrafish muscle produces an immunoreactive band at 25KDa that is 

not present in any NTG lane, this is the predicted weight of the GFP protein.  (d) 

Quantification of GFP/tubulin levels in adult 5.3-9 zebrafish muscle.  Statistical comparison 

was carried out with an unpaired t-test.  
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Figure 3.4: 5.3-9 zebrafish spend more time swimming at fast speeds 

(a) No difference is observed in the average speed of the 5.3-9 and NTG zebrafish over a 

30 minute recording period.  Statistical comparison was carried out using an unpaired t-

test.  (b) No difference is observed in the average speed of the 5.3-9 and NTG zebrafish 

over a 30 minute recording period. Statistical comparison was carried out using an 

unpaired t-test.  (c) No difference was observed in the time spent swimming at slow speed 

between 5.3-9 and NTG zebrafish over a 30 minute recording period. This dataset was not 

normally distributed according to the Shapiro-Wilk test for normality and was therefore 

statistically compared using the Mann-Whitney U test. (d) No difference was observed in 

the time spent swimming at intermediate speed between 5.3-9 and NTG zebrafish over a 

30 minute recording period. This dataset was not normally distributed according to the 

Shapiro-Wilk test for normality and was therefore statistically compared using the Mann-

Whitney U test. (e) 5.3-9 zebrafish spent significantly more time swimming at fast speeds 

in comparison to NTG zebrafish over a 30 minute recording period. This dataset was not 

normally distributed according to the Shapiro-Wilk test for normality and was therefore 

statistically compared using the Mann-Whitney U test. N=16 individual fish per genotype 

for all comparisons, zebrafish were derived from a single clutch. Speed thresholds used 

were slow (0<x<5mm/sec), intermediate (5<x<15mm/sec) and fast (x>15mm/sec).  All 

data were recorded under dark conditions and are shown as mean +/- standard deviation; 

ns: not significant and *P < 0.05. 
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 NTG zebrafish, however this difference also did not reach statistical significance (Figure 

3.4b).   

In order to analyse swimming behaviour in more detail, zebrafish swimming data were 

subdivided into time spent swimming at slow, intermediate and fast speeds.  No significant 

difference was observed in the amount of time 5.3-9 and NTG zebrafish spent swimming at 

slow or intermediate speeds (Figure 3.4c+d).  However, 5.3-9 zebrafish spent significantly 

more time swimming at fast speeds in comparison to NTG zebrafish (3.6 vs 1.7 seconds for 

5.3-9 and NTG zebrafish respectively; Figure 3.4e). 

Behavioural studies in embryonic zebrafish are known to generate highly variable data, this 

is at least in part due to the propensity of some embryonic zebrafish to not move for long 

periods of time (Liu et al., 2017).  For this reason, large numbers of zebrafish from multiple 

clutches are typically favoured in embryonic zebrafish behavioural experiments.  An 

important limitation of the behavioural data shown in figure 3.4, is that the zebrafish used 

were derived from a single clutch. 

 

3.7. Survival of 5.3-9 zebrafish is normal through to adulthood 

Production of DsRed in 5.3-9 zebrafish indicates activation of the hsp70 promoter.  

Activation of the hsp70 promoter suggests that RNA foci may be driving low level toxicity in 

5.3-9 zebrafish.  To assess whether the C9orf72 expansion and/or RNA foci were impacting 

upon the viability of zebrafish, we monitored survival of 5.3-9 zebrafish up to the early larval 

stage.  At both 5 dpf and 15 dpf no significant difference in survival was observed between 

5.3-9 zebrafish (mix of heterozygous and homozygous resulting from a 5.3-9 X 5.3-9 cross) 

and their NTG clutchmates (84 vs. 86% survival at 15dpf for 5.3-9 and NTG respectively; 

Figure 3.5a).  In order to assess whether toxicity derived from RNA foci may manifest over a 

long period of time, heterozygous 5.3-9 zebrafish survival was monitored into adulthood.    At 

26 months old, the survival of 5.3-9 zebrafish was slightly higher than that of their NTG 

clutchmates (55 vs. 53% survival for heterozygous 5.3-9 and NTG adults respectively; 

Figure 3.5b).  A limitation of these data is that all 3 clutches of fish were maintained in the 

same tank from 1dpf until 26 months old.  Therefore, rather than 3 separate values for 26 

months survival (1 value from each clutch), only a single survival value could be calculated 

(1 value from all three clutches combined).  For this reason statistical comparison of 5.3-9 

and NTG survival at 26 months was not possible.  Although there is no overt loss of viability 

in RNA foci expressing zebrafish up to 26 months, it is important to assess whether RNA foci 

may cause a sub-lethal ALS-like phenotype such as impairments in neuromuscular 

physiology.   
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3.8.  Adult 5.3-9 zebrafish exhibit normal swimming endurance 

 Of the 5.3 zebrafish, the highest transgene expressing zebrafish (5.3-9) exhibit RNA foci 

pathology but do not show any overt reduction in survival when monitored well into 

adulthood.  It is therefore important to determine whether the 5.3-9 zebrafish exhibit a more 

subtle ALS-like phenotype such as impaired motor function.  To assess this, the swimming 

endurance of 5.3-9 zebrafish was measured using a swim tunnel setup.  At 2-3 months old, 

the swimming endurance of 5.3-9 zebrafish showed a small but non-significant reduction 

compared with their NTG clutchmates (98 vs. 100 minutes median swimming time for 5.3-9  

and NTG respectively; Figure 3.6a).  Only 4 fish of each genotype were tested at 2-3 

months old, before it was decided to wait until the 5.3-9 zebrafish were older and were more 

likely to display a clear phenotype.  During this time the protocol used in the swim tunnel was 

optimised to allow faster exhaustion of the zebrafish being tested.  For this reason the swim 

tunnel performance of the two age groups of 5.3-9 zebrafish tested are not directly 

comparable.  At 26 months old, 5.3-9 zebrafish were re-tested using the new swim tunnel  

 

Figure 3.5: 5.3-9 zebrafish have normal survival at 26 months old 

(a) Survival of 5.3-9 zebrafish is not significantly different from NTG clutch mates at 5dpf 

or 15 dpf.  N=4 clutches for each group.  Data were statistically compared using a two-way 

ANOVA with Sidak’s post hoc test.  (b) Survival of 5.3-9 zebrafish is similar to that of NTG 

clutchmates at 26 months old.  N=60 fish of each genotype at 1 dpf.  Data could not be 

compared statistically as survival was only assessed at a single time point, i.e. of the 60 

fish in each group at 1dpf, how many were still alive at 26 months old. All data are shown 

as mean +/- standard deviation; ns: not significant. 
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Figure 3.6: 5.3-9 zebrafish have normal swimming ability at 26 months olds 

(a) At 2-3 months old, swimming ability of 5.3-9 zebrafish was not significantly different 

from that of NTG clutchmates. N=4 fish per genotype.  Statistical comparison was carried 

out using the log-rank test.  (b) At 26 months old, swimming ability of 5.3-9 zebrafish was 

not significantly different from that of NTG clutchmates. N=11 fish per genotype. Statistical 

comparison was carried out using the log-rank test.  (c) At 26 months old, body mass of 

5.3-9 zebrafish was not significantly different compared to their NTG clutchmates.  N=11 

fish per genotype.  Statistical comparison was carried out using an unpaired t-test.  (d) At 

26 months old, body length of 5.3-9 zebrafish was not significantly different compared to 

their NTG clutchmates.  N=11 fish per genotype. Statistical comparison was carried out 

using an unpaired t-test. All data are shown as mean +/- standard deviation; ns: not 

significant 
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 protocol, but still showed no significant difference in swimming performance as compared 

with their NTG clutchmates (25 vs. 25 minutes median swimming time; Figure 3.6b).  To 

ensure that the swimming ability of zebrafish was not being influenced by body mass or body 

length, these factors were measured after removal from the swim tunnel.  Neither body mass 

nor body length was significantly different between 5.3-9 zebrafish and their NTG 

clutchmates (Figure 3.6c+d).   

 

 

3.9. The G-quadruplex unfolding drug TMPYP4 does not influence heat shock 

response activation 

Despite a lack of detectable DPR species, 5.3-9 zebrafish exhibit DsRed production as early 

as 5 dpf, as seen in figure 3.2.  One potential explanation for this is that RNA foci may 

directly or indirectly activate the hsp70 promoter and therefore drive DsRed production.  The 

expression of RNA foci was confirmed in 10 dpf 5.3-9 zebrafish (see figure 3.1), but not in 

adult 5.3-9 zebrafish.  GGGGCC RNA foci are formed by the GC-rich RNA molecules 

adopting G-quadruplex structures (Reddy et al., 2013).  To test whether G-quadruplex RNA 

foci formation can drive the heat shock response, we injected zebrafish with TMPYP4 which 

has previously been demonstrated to unfold G-quadruplex structures (Morris et al., 2012).  

First, preliminary injections were performed in NTG zebrafish immediately after fertilisation, 

in order to identify an appropriate injection dose.  Although some degree of toxicity was 

observed with every dose of TMPYP4 injected, 730 µM was selected as the dose to use in 

the injections of 5.3-9 zebrafish embryos, as it was the maximum dose which did not cause 

substantial death and abnormalities (30% death with 730µM injection vs 70% death with 

7300µM injection; Figure 3.7a).  Injections were then carried out in 5.3-9 zebrafish, where 

immediately after fertilisation embryos were injected with ultra-pure water (1nl), 730µM 

TMPYP4 (single dose, 1nl), 730µM TMPYP4 (double dose, 2nl) or left uninjected.  No 

significant difference was observed between any of the groups (Figure 3.7b).  It is important 

to note that we did not test whether TMPYP4 injection was sufficient to prevent RNA foci 

formation or block typical RNA foci interactions, in the 5.3-9 zebrafish. 

 

3.10. Discussion 

RNA-only zebrafish were generated through nuclear microinjection of transgenic DNA 

constructs.  The DNA constructs used did not contain transposable elements.  

Microinjections of this kind are often considered to be very laborious due to their predicted 

low rate of transgenesis.  However, a combination of spermine and spermidine containing 

injection buffer (keeps DNA in compact conformation) and pre-screening (by eye under a 

fluorescence microscope) for highly chimeric embryos, led to 28% (7/25) of chimeric  
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 zebrafish grown to adulthood giving rise to full transgenic offspring.  Not only does this 

method offer reasonable rates of transgenesis without the need to clone transposons into 

DNA constructs, but it also obviates the lengthy process of backcrossing zebrafish which is 

necessitated when transposable elements have caused transgene integration in more than 

one locus.  2/7 highly chimeric zebrafish showed severely reduced fertility and the few 

fertilised offspring died within the first few days.  The reason why these offspring show an 

embryonic lethal phenotype whereas 5.3-9 zebrafish have no detectable phenotype even 

during adulthood is not fully understood.  It has however, been reported previously that  

injection of C9orf72 expansion containing RNA can lead to toxicity even in the absence of 

DPR proteins (Swinnen et al., 2018).  Therefore there may be a threshold at which C9-

 

Figure 3.7: The G-quadruplex unfolding drug TMPYP4 does not influence heat 
shock response activation 

(a) When a 1nl volume was injected into the yolk sac of NTG zebrafish immediately after 

fertilisation, every concentration of TMPYP4 caused an increase in death compared with 

uninjected zebrafish.  The increase in death rates was markedly higher when 7300µM 

TMPYP4 was injected. 730µM was the highest dose which did not induce high death rates, 

so this was selected to be used in future injections with 5.3-9 zebrafish.  (b) No significant 

change in DsRed fluorescence was observed in 5.3-9 zebrafish when injected with H2O, or 

a single or double injection of 730µM TMPYP4, as compared to uninjected 5.3-9 zebrafish.  

Statistical comparison was carried out using a one-way ANOVA with Tukey’s post hoc 

test. 
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expansion RNA will trigger an early lethal phenotype, but RNA levels below this threshold 

may be manageable over the long term. 

The 5.3-9 zebrafish line showed higher expression levels of GFP and DsRed, as compared 

to 5.3-6 and 5.3-5.  If GFP and DsRed expression levels were solely determined by 

transgene copy number then GFP and DsRed expression should increase in linear 

proportion to one another, and therefore GFP:DsRed ratios should be comparable across all 

5.3 zebrafish lines.  However, the DsRed:GFP ratio was higher in 5.3-9 zebrafish, indicating 

that DsRed production may be influenced by C9orf72 expansion expression levels.  

Additionally, 5.3-5 zebrafish showed significantly higher GFP and DsRed levels as compared 

to 5.3-6, though no significant difference was detected in the DsRed:GFP ratio.  This 

suggests that there may be an expression threshold required before C9orf72 expansions will 

result in hsp70 promoter activation and production of additional DsRed protein. 

No significant locomotor phenotype could be detected in embryonic zebrafish as measured 

by average speed or total distance covered, despite an approximate 45% increase in both 

measurements in 5.3-9 zebrafish.  However, a mild hyperactivity phenotype was detected in 

5.3-9 zebrafish when swimming at fast speeds.  All locomotor data obtained were highly 

variable, this is likely due to a combination of the relatively small sample size used and 

innate variability in zebrafish behaviour at this developmental stage (Liu et al., 2017).   A 

further limitation of these data is that the zebrafish used were obtained from a single clutch.  

Therefore, future experiments should repeat locomotor analysis with a further 2 clutches of 

zebrafish, ideally using a larger sample size, which may help reduce variation in the data. 

The 5.3-9 zebrafish did not show any early or late onset reduction in viability/survival.  

Additionally, 5.3-9 zebrafish did not show any underlying motor impairment as measured by 

swim tunnel testing during adulthood.  These 5.3-9 zebrafish showed GFP expression in 

CNS and muscle tissues during adulthood, but no detectable DPR species.  This is 

consistent with previous reports suggesting that a stop codon in close proximity to the 

C9orf72 expansion, combined with a lack of ATG-like codons upstream of the repeats, will 

effectively prevent the formation of RAN-translation products (Todd et al., 2013, Mizielinska 

et al., 2014, Green et al., 2017).  This suggests that expression of C9orf72 expansion RNA 

alone is not sufficient to induce toxicity at this age.  However, age is a known risk factor for 

ALS (Armon, 2003).  Survival, swim tunnel and DPR expression data were obtained from 

5.3-9 zebrafish at 26 months old.  Zebrafish mean life span typically ranges between 36 and 

42 months old depending on the strain (Gerhard et al., 2002).  Therefore, on average 5.3-9 

zebrafish may be expected to live 10-16 months longer, and should continue to be monitored 
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during this time to assess the role of aging on C9orf72 expansion pathogenicity in this 

zebrafish model.   

Early injection of 5.3-9 zebrafish with the proposed G-quadruplex unfolding molecule 

TMPyP4 (Morris et al., 2012), did not result in amelioration of the heat shock stress 

response.  It is important to note that it was not assessed whether TMPyP4 was able to 

enter the cell/nucleus, or whether indeed the molecule was able to unfold the secondary 

structure of RNA foci.  Accurately measuring these two factors in future experiments will be 

important to determine whether TMPyP4 can unfold the G-quadruplex structures formed by 

RNA foci and whether this may help reduce cellular stress. 

It will also be important to re-analyse tissue from any 5.3-9 zebrafish which develops a 

phenotype in the future, to test for the presence of DPR proteins so that the relative 

contribution of toxicity from RNA and DPR may be further assessed.  Finally, determining 

whether RNA foci or perhaps minute undetectable levels of DPRs are causing the heat 

shock mediated production of DsRed in the 5.3-9 zebrafish will help provide clues to the 

relative contributions to toxicity from these two species.
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4. Chapter 4: RNA+DPR zebrafish show ALS/FTD features 

4.1. Introduction 

Reports from drosophila models indicate that RNA foci expression in isolation results in no 

neurodegenerative phenotype (Mizielinska et al., 2014, Tran et al., 2015).  Zebrafish models 

expressing RNA foci have been reported to show a mild phenotype which is not indicative of 

ALS (cardiac oedema) (Ohki et al., 2017).  These findings are somewhat corroborated by 

data presented in chapter 3 of this thesis, showing that zebrafish expressing RNA foci do not 

develop any measurable ALS-like phenotype when studied well into adulthood.   

On the other hand, when DPR proteins are expressed, a previously reported zebrafish 

model shows a more severe form of the cardiac oedema phenotype and are no longer viable 

(Ohki et al., 2017).  Additionally, drosophila models expressing DPR proteins show a 

neurodegenerative phenotype (Mizielinska et al., 2014, Tran et al., 2015).  Whilst these 

studies are informative about the relative toxicities of RNA foci and DPR species, they do not 

accurately recapitulate an ALS phenotype.  Furthermore, stable BAC mouse models which 

do recapitulate an ALS-like phenotype are not amenable to high throughput drug screening 

(Jiang et al., 2016, Liu et al., 2016).  Therefore, there is currently a need for an in vivo model 

which can accurately recapitulate the ALS symptoms observed in human C9orf72 patients, 

and which can be used to efficiently test potential therapeutic compounds. 

 

4.2. Aims 

In order to address the above points, we aimed to generate C9orf72 expansion zebrafish 

expressing both RNA foci and DPR proteins.  These RNA+DPR zebrafish could then be 

used to both study the molecular pathology generated by DPR species, and identify 

therapeutic compounds which may alleviate DPR toxicity.  This chapter describes the 

generation and characterisation of RNA+DPR expressing zebrafish.   

 

4.3. C9orf72 expansion RNA+DPR transgenic zebrafish express hallmark RNA foci 

At the single cell stage wildtype zebrafish of the AB strain were nuclear injected with a 

C9orf72 expansion containing construct (figure 4.1a).  The constructs begins with a ubiquitin 

promotor which drives expression of a GFP gene and C9orf72 expansions (encoding a GFP-

DPR fusion protein).  The C9orf72 expansions used in this construct were interrupted 

(CCCCGG)89 hexanucleotides (strings of C4G2 repeats interrupted by GTCGA linkers).  89 

hexanucleotide repeats were counted, however more may be present as sequencing reads 

were not able to traverse the entire C9orf72 expansion.  Specifically, the C9orf72 expansion 

sequenced was: (C4G2)12-GTCGA-( C4G2)9-GTCGA-( C4G2)17-( C4G2)22-GTCGA-( C4G2)17- 
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Figure 4.1: RNA+DPR 2.2 model zebrafish display RNA foci 

(a) Schematic representation of the transgene inserted into 2.2 zebrafish.  A zebrafish 

ubiquitin promotor drives GFP-DPR expression.  The AID gene is out of frame and a stop 

codon prevents it from being translated into protein.  A hsp70 promotor then drives DsRed 

production as a read out of cellular stress.  (b) In situ hybridisation of paraffin embedded 

sections of 10dpf 2.2-7 zebrafish using a Cy3-conjugated (red) GC probe (GGGGCC)x4 

showed that RNA foci are present in the nuclei of muscle cells. Yellow arrow heads denote 

RNA foci.  Scale bar = 5µm.  Images are representative of 6 body muscle sections 

assessed from 3 individual zebrafish per group.  (c) Blinded quantification of RNA foci in 

2.2 lines and NTG zebrafish muscle.  Quantified images were taken from 3 zebrafish (6 

sections were assessed for each group) from a single clutch per condition. 

 

GTCGA-( C4G2)12 (see Appendix C for full transgene sequence).  The presence of the 

C9orf72 expansion was confirmed by DNA sequencing prior to injection.  Further 3’ of the 

C9orf72 expansion is an AID gene.  Upon co-expression of the TIR1 protein and exposure to 

the plant hormone auxin, the AID protein can be utilised to target itself, and other proteins 

with which it is fused, for proteasomal degradation (Nishimura et al., 2009).  The AID gene 
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had been planned to encode the final portion of a GFP-DPR-AID fusion protein, which we 

hypothesised may allow for efficient proteasomal degradation of DPR species.  However, 

due to unforeseen cloning difficulties, the AID gene was out of frame with respect to the start 

codon for GFP in this construct, this generated a premature stop codon, which resulted in 

the entire AID gene not being translated into protein.  Thus, only a GFP-DPR fusion protein 

was encoded by this construct.  As the C9orf72 expansion prevents polymerase 

processivity, frame correction of the AID gene with standard cloning techniques was not 

possible.  It is possible that due to RAN-translation of all frames, some RAN-translated DPR-

AID fusion protein may be produced, however this is likely a small percentage of the total 

DPR protein, due to RAN-translation being significantly less efficient than ATG-mediated 

translation (Kearse et al., 2016).  Hence, AID mediated degradation of RAN-translated DPR-

AID proteins was not considered a worthwhile avenue to pursue further.  A start codon was 

placed at the beginning of the GFP gene and a stop codon was present at the end of the 

C9orf72 expansion.  Thus, from this construct GFP and the C9orf72 expansion will be 

translated into a GFP-DPR fusion protein.  The ubiquitin promoter driving GFP, C9orf72 

expansions and AID (not translated) is the disease gene component of the construct.  

Further 3’ of the disease gene is a hsp70 promoter driving expression of a DsRed gene, this 

forms the drug screening portion of the DNA construct.  For clarity, the 3 differences 

between the RNA-only construct used to generate the zebrafish described in chapter 3 and 

the RNA+DPR construct described here are: 1) C9orf72 expansions are of opposite 

orientation, G4C2 for RNA-only and C4G2 for RNA+DPR; 2) C9orf72 expansion length, 99 

confirmed repeats for RNA-only and 89 confirmed repeats for RNA+DPR; 3) The position of 

disease gene stop codon, after GFP for RNA-only (codes for GFP protein only) and after 

C9orf72 expansion for RNA+DPR (codes for GFP-DPR fusion protein).  The orientation of 

the repeats was reversed in RNA+DPR constructs due to the G4C2 expansions being too 

unstable in this context.  NTG clutchmate zebrafish were used as controls for transgenics in 

all experiments as they provide the closest possible match for tank conditions, age and 

background genetics.  NTG zebrafish do not express non-disease gene elements of the 

transgene expressed in transgenic zebrafish (e.g. GFP and DsRed) however these genes 

have been widely used in zebrafish research and no toxicity has been reported even when 

expressed throughout adulthood (Ju et al., 1999, Zhu and Zon, 2004, Ramesh et al., 2010, 

Blackburn et al., 2011).  Furthermore, 5.3 zebrafish also express transgene elements such 

as GFP and DsRed and do not exhibit ALS-like phenotypic alterations.  We therefore reason 

that it is highly unlikely that non-disease gene elements of the transgene contribute to the 

ALS-like phenotype, and NTG zebrafish may be used as a suitable control for further 

experimentation. 
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In total, approximately 500 zebrafish were injected with this RNA+DPR transgene construct.  

These zebrafish were referred to by the arbitrary term ‘2.2’.  These zebrafish will be 

henceforth be referred to as 2.2 zebrafish lines.  From those injected, 7 highly chimeric 2.2 

zebrafish were identified.  Chimerism was determined by visually examining which tissue 

types expressed the transgene (according to visible GFP or DsRed fluorescence).  Zebrafish 

which showed transgene expression in at least muscle, heart and eye tissue (indicative of 

early transgene integration into embryos) were considered to be highly chimeric.  These 

highly chimeric 2.2 zebrafish were grown to adulthood, then bred, and their offspring were 

screened for transgene expression by first heat shocking (see methods section for details) 

and then examined for DsRed and GFP fluorescence under a fluorescence microscope.  Of 

the 7 highly chimeric zebrafish, 3 gave rise to a proportion of full transgenic offspring.  

However, 1/3 exhibited extremely high transgene expression levels, and the offspring died 

within 5 dpf, thus preventing the establishment of a full transgenic line.  The remaining 2/3 

highly chimeric zebrafish gave rise to full transgenic offspring which were grown to adulthood 

and used to establish a full transgenic line.  The 2 separate zebrafish lines generated using 

the RNA+DPR transgene were arbitrarily named 2.2-2 and 2.2-7.  A few embryos from 2.2-2 

and 2.2-7 zebrafish lines were grown to 10 dpf and then processed for in situ hybridisation to 

test whether RNA foci from the C9orf72 expansion could be observed.  In a blinded analysis, 

50% (11/22) of muscle nuclei from 2.2-7 zebrafish contained foci, 30% (6/20) of 2.2-2 

zebrafish nuclei contained foci and only 4% (1/25) of NTG zebrafish nuclei contained foci 

(Figure 4.1b+c).  It is presumed, that the single focus observed in the NTG zebrafish was 

due to non-specific binding of the in situ probe.  For 2.2-2 and 2.2-7 zebrafish all foci 

observed were localised to the nucleus and only a single focus per nucleus was observed.  

A limitation of the RNA foci data is that zebrafish were obtained from a single clutch, ideally 

3 or more zebrafish clutches should be studied so that variation in background genetics may 

be accounted for and statistical comparison may be applied.  As it had now been confirmed 

that 2.2 zebrafish express RNA foci, the next step was to test whether these zebrafish also 

produced DPR species. 

 

4.4. Multiple DPR species and stress response activation can be detected in 

embryonic 2.2 zebrafish 

The various DPR species are known to have differential toxicity, with arginine rich species 

being considered the most toxic.  To investigate whether there is a relationship between 

molecular weight (MW) and species toxicity, western blot was performed on 5 dpf 2.2-2 and 

2.2-7 zebrafish lysates.  The transgene construct expressed in both 2.2-zebrafish lines 

causes the production of GFP tagged DPR proteins via canonical ATG (start codon) 
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dependent translation, these GFP tagged DPRs are produced from C4G2 transcripts and can 

be detected at 5 dpf (Figure 4.2a, top panel).  Interestingly, multiple GFP bands are 

detected in both the 2.2-2 and 2.2-7 zebrafish lines, and these bands were often unique to 

specific zebrafish lines.  It was noted that, across multiple clutches of 5 dpf zebrafish 

embryos (>10 different clutches) that 2.2-2 zebrafish express 5 major GFP tagged DPR 

bands with 3 being common (3 lowest MW) and 2 being unique (2 highest MW), and 2.2-7 

zebrafish express 6 major GFP tagged DPR bands with 3 being common and 3 unique (3 

highest MW).  The differential expression of DPRs between 2.2-2 and 2.2-7 zebrafish also 

holds true when probing for the DPR proteins directly (i.e. using antibodies which directly 

bind the dipeptide motifs).  Poly(PA), poly(PR) and poly(GP) bands are each detectable at 5 

dpf and are differentially expressed between 2.2-2 and 2.2-7 zebrafish lines (Figure 4.2a, 

middle three panels).  Probing with poly(PA), poly(PR) and poly(GP) antibodies also 

revealed that some DPR bands detected did not co-localise with any of the ATG-dependent 

translation bands detected when using the GFP antibody, thus suggesting that these bands 

are likely to be produced via non-canonical RAN translation (Figure 4.2a, middle panels 

marked with asterix).  Poly(GP) and poly(PR) antibodies were both purified from rabbit 

serum, however specific bands could be distinguished based on molecular weight. 

In addition to the poly-PA, PR and GP DPRs produced from the antisense (C4G2) RNA 

transcripts, we were also able to detect poly(GA) DPR produced from the sense (G4C2) RNA 

transcript, however poly(GA) was only detected in the 2.2-7 zebrafish line (Figure 4.2b, top 

panel).  Poly(GA) immunoblotting was carried on a separate PVDF membrane to GFP 

immunoblotting, in order to avoid cross reactivity (both poly(GA) and GFP antibodies are 

purified from mouse serum).  The detection of poly(GA) indicates that bidirectional 

transcription of the C9orf72 expansion is occurring from our transgene.  As the transcription 

of the RNA transcript containing the sense (G4C2) expansion is not driven by a conventional 

promoter region, this strongly suggests that poly(GA) protein is indeed produced via RAN 

translation.   

The binding specificity of the poly(PR) and poly(GP) antibodies used here has previously 

been validated using an enzyme-linked immunosorbent assay to demonstrate that each 

antibody binds its target DPR antigen, and exhibits minimal cross-reactivity to all other DPR 

species (Davidson et al., 2016).  Additionally, both poly(PR) and poly(GP) antibodies have 

been previously used to detect DPR species in C9orf72-ALS post mortem tissue samples 

(Davidson et al., 2016).  Validation of the binding specificities of both poly(GA) and poly(PA) 

antibodies is discussed in section 3.5. 
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Figure 4.2: Both 2.2 zebrafish lines produce multiple DPR species and 2.2-7 
zebrafish produces more DsRed 

(a) Anti-sense DPRs (predominately ATG-driven) detected in 5dpf embryonic lysates. 

Asterix (*) denotes protein bands which are proposed to have been produced via RAN-

translation. (b) Sense Poly(GA) DPRs (exclusively RAN-translation driven) detected in 

5dpf embryonic lysate of 2.2-7 zebrafish. Asterix (*) denotes protein bands which are 

proposed to have been produced via RAN-translation.  (c) GFP fluorescence at 5dpf does 

not differ between 2.2-2 and 2.2-7 zebrafish.  Statistical comparison carried out using an 

unpaired t-test.  (d) DsRed fluorescence at 5dpf is higher in 2.2-7 zebrafish compared with 

2.2-2 zebrafish.  This dataset was not normally distributed according to the Shapiro-Wilk 

test for normality, and was therefore statistically compared using the Mann-Whitney U 

test.  (e) The ratio of DsRed/GFP at 5dpf is higher in 2.2-7 zebrafish compared with 2.2-2 

zebrafish. This dataset was not normally distributed according to the Shapiro-Wilk test for 

normality, and was therefore statistically compared using the Mann-Whitney U test. N=75 

2.2-2 and 76 2.2-7 individual zebrafish for all comparisons. All data are shown as mean +/- 

standard deviation; ****P < 0.0001 and ns: not significant. 

 
 

Due to the presence of multiple bands of variable strength, quantifying transgene expression 

in each 2.2 zebrafish line by immunoblotting for GFP would have proven difficult.  Instead 

individual embryos of each 2.2 zebrafish line were lysed and GFP and DsRed fluorescence 

were measured using a plate reader.  The GFP fluorescence of 2.2-7 and 2.2-2 zebrafish 

was not significantly different (4.2x104 vs. 3.9x104 A.U. respectively; Figure 4.2c), 

suggesting similar transgene expression levels in both 2.2 zebrafish lines.  However, despite 

similar GFP expression levels in both 2.2 zebrafish, DsRed fluorescence of 2.2-7 zebrafish 

was significantly higher than that of the 2.2-2 zebrafish (1.1x105 vs. 0.71x105 A.U. 

respectively; Figure 4.2d). Furthermore, the DsRed:GFP ratio of 2.2-7 zebrafish was 

significantly higher than that of 2.2-2 zebrafish (2.8 vs. 2.0 respectively; Figure 4.2e).   

Embryonic expression of GFP and DsRed in 2.2 zebrafish, was also confirmed by confocal 

imaging of endogenous fluorescence in 5 dpf cryosections (Figure 4.3).  GFP expression 

appeared to mainly localise to the nucleus of cells, although GFP and DAPI co-localisation 

was not quantified.  In order to assess whether DPR/RNA foci expression leads to toxicity in 

2.2 zebrafish, phenotypic characterisation of both 2.2 lines was next carried out.  
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Figure 4.3: 2.2 zebrafish produce GFP and DsRed at 5dpf 

At 5 dpf, both 2.2-7 and 2.2-2 zebrafish produce predominately nuclear localised GFP and 

diffusely expressed DsRed.  Scale bar = 100µm.  Transverse body sections.  Images are 

representative of 9 zebrafish imaged (not quantified).  

 

 

4.5. Embryonic 2.2-7 zebrafish show increased spontaneous locomotor activity 

Neither 2.2-zebrafish lines showed any overt morphological abnormalities during embryonic 

development (0- 5 dpf).  To assess whether RNA foci and DPR pathology was causing any 

underlying motor deficits, the spontaneous locomotor activity of 2.2 zebrafish was monitored 

at 5 dpf.  Embryonic 2.2 zebrafish were monitored in 96 well plates using the Viewpoint 

behaviour monitoring setup.  Under dark conditions, the average speed of movement of 2.2-

7 zebrafish was significantly higher than that of both 2.2-2 and NTG zebrafish, over the 20 

minute recording period (2.1 vs 1.7 and 1.8 mm/s average speed for 2.2-7, 2.2-2 and NTG 

zebrafish respectively; Figure 4.4a).  Similarly, under dark conditions the total distance 

moved by 2.2-7 zebrafish was significantly higher than that of both 2.2-2 and NTG zebrafish, 

over the 20 minute recording period (2440 vs 1950 and 1940 millimetres moved for 2.2-7, 

2.2-2 and NTG zebrafish respectively; Figure 4.4b).   
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Figure 4.4: 2.2-7 zebrafish show increased average speed and total distance moved 
at 5dpf 

(a) The average speed of 2.2-7 zebrafish is significantly higher than that of both 2.2-2 and 

NTG zebrafish.  (b) The total distance moved over a 20 minute recording period is 

significantly higher in 2.2-7 zebrafish as compared to both 2.2-2 and NTG zebrafish.  (c) 

There is no significant difference in the time spent swimming at slow speed between NTG, 

2.2-2 and 2.2-7 zebrafish over a 20 minute recording period.  (d) 2.2-7 zebrafish spent 

significantly more time swimming at intermediate speeds in comparison to both 2.2-2 and 

NTG zebrafish over a 20 minute recording period.  (e) There is no significant difference in 

the time spent swimming at fast speed between NTG, 2.2-2 and 2.2-7 zebrafish over a 20 

minute recording period.  N=144 NTG, 71 2.2-2 and 60 2.2-7 individual fish per genotype 

for all comparisons, zebrafish were derived from three separate clutches.  All datasets 

were not normally distributed according to the Shapiro-Wilk test for normality, and were 

therefore statistically compared using the Kruskal-Wallis test with Dunn’s post-hoc test. 

Speed thresholds used were slow (0<x<5mm/sec), intermediate (5<x<15mm/sec) and fast 

(x>15mm/sec).  All data were recorded under dark conditions and are shown as mean +/- 

standard deviation; ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 

0.0001. 
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In order to analyse swimming behaviour in more detail, zebrafish swimming data were 

subdivided into time spent swimming at slow, intermediate and fast speeds.  No significant 

difference was detected in the time spent swimming at slow speed between NTG, 2.2-2 and 

2.2-7 zebrafish (Figure 4.4c).  However, 2.2-7 zebrafish spent significantly more time 

swimming at intermediate speeds in comparison to 2.2-2 and NTG zebrafish (53 vs 32 and 

32 seconds for 2.2-7, 2.2-2 and NTG zebrafish respectively; Figure 4.4d).  No significant 

difference was observed in the time spent swimming at fast speeds between 2.2-7, 2.2-2 

and NTG zebrafish (Figure 4.4e).  Thus, at the embryonic stage (5dpf) 2.2-7 zebrafish show 

signs of hyperactivity.  We next set out to determine whether other behavioural or 

developmental abnormalities were present in either of the 2.2 zebrafish lines during 

embryonic and larval development. 

 

4.6. Early behavioural abnormalities, reduced viability and reduced body mass are 

detected in 2.2-7 zebrafish 

As expansions in human ALS cause a spectrum of both motor and cognitive deficits, we 

examined whether normal zebrafish behaviour was affected in 2.2-7 zebrafish at 5 dpf.  

Centre avoidance behaviour assays are a validated means of measuring willingness to 

explore in zebrafish (Schnorr et al., 2012), and are comparable to the open field test 

performed in mice.  It was determined that 2.2-7 zebrafish were significantly less likely to 

venture into the centre of the well when compared to their NTG clutchmates (27% of 2.2-7 in 

centre vs. 34% of NTG zebrafish in centre; Figure 4.5a+b). 

To determine if the early embryonic expression of RNA foci and DPR impacted upon the 

viability of the zebrafish, we carried out early (1-15 dpf) survival analysis.  Heterozygous 2.2-

2 zebrafish did not show any change in survival within 15 dpf as compared to NTG zebrafish 

(data from NTG clutchmates of all genotypes are pooled; Figure 4.5c).  In contrast, 

heterozygous 2.2-7 zebrafish did show a significant decrease in survival within 15 dpf as 

compared to NTG zebrafish (79% vs. 92% survival for 2.2-7 and NTG respectively at 15dpf; 

Figure 4.5c). 

It was noted that during early development, the 2.2-7 zebrafish appeared smaller than their 

NTG clutchmates.  At 30 dpf there was a significant decrease in total body mass of 2.2-7 

zebrafish compared to their NTG clutchmates (1.7mg (21%) vs. 9.9mg (100%) mean body 

mass for 2.2-7 and NTG respectively; Figure 4.6a).  However, 2.2-2 zebrafish did not show 

a significant difference in body mass as compared to their own clutchmates at the same age 

(Figure 4.6b).  In summary, 2.2-7 zebrafish but not 2.2-2 zebrafish, showed significant 

reduction in survival at 15 dpf, and reduction in body mass at 30 dpf.  At 5 dpf, 2.2-7 

zebrafish also displayed signs of atypical behaviour as measured by centre avoidance. 
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Figure 4.5: 2.2-7 zebrafish show early behavioural defects and reduced viability 

(a) Representative images of the plate set-up used to monitor centre avoidance behaviour 

in zebrafish.  30 fish were placed in each well and one image every minute was analysed.  

Image shown as recorded (top) and then following removal of the region around the edge 

of the plate for analysis (bottom). In these representative images 2.2-7 zebrafish are 

placed across the top 3 wells and NTG zebrafish across the bottom 3 wells. (b) 

Quantification of centre avoidance behaviour showing 2.2-7 zebrafish are significantly less 

often found in the plate centre.  N=6 clutches per genotype. Datasets were found to have 

unequal variance according to the F test, and were therefore statistically compared using 

a t-test with Welch’s correction.  (c) Survival of zebrafish did not change by 5dpf, however 

by 15dpf survival of the 2.2-7 line was significantly reduced compared to NTG and 2.2-2.  

N=4 clutches per genotype. Datasets were statistically compared using a two-way ANOVA 

with Sidak’s post hoc test.  All data are shown as mean +/- standard deviation; ns: not 

significant, *P < 0.05, **P < 0.01 and ***P < 0.001. 
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Figure 4.6: 2.2-7 zebrafish have reduced body mass at 30dpf 

(a) At 30dpf 2.2-7 zebrafish have reduced average body mass in comparison to their NTG 

clutch mates.  N=3 clutches per genotype (48 x 2.2-7 and 79 x NTG zebrafish in total).  

Statistical comparison was carried out using an unpaired t-test.  (b) At 30dpf there was no 

difference in average body mass between 2.2-2 zebrafish and their NTG clutch mates.  

N=3 clutches per genotype (82 x 2.2-2 and 79 x NTG zebrafish in total). Statistical 

comparison was carried out using an unpaired t-test. All data are shown as mean +/- 

standard deviation; ns: not significant and ***P < 0.001. 

 

The increased phenotypic severity of 2.2-7 zebrafish is consistent with their increased hsp70 

promoter mediated DsRed production, as compared with 2.2-2 zebrafish.  Transgene 

expression, DPR pathology and the motor/behavioural phenotype have now been 

characterised in developing zebrafish.  The next step was therefore to characterise the 

expression of the transgene and associated phenotype in adult 2.2 zebrafish.   

 

4.7. Adult 2.2 zebrafish express nuclear localised DPR proteins 

Previous reports indicate that DPR species often localise to the nucleus.  This is particularly 

true for the arginine rich DPRs poly(PR) and poly(GR) (Mizielinska et al., 2014).  To examine 

the cellular localisation of the DPR species produced in 2.2 zebrafish, immunofluorescence 

with DPR antibodies was carried out in adult zebrafish muscle.  The majority of poly(GP), 

poly(PA) and poly(PR) DPR signal was found to be localised to the nucleus (Figure 4.7, 

Figure 4.8 and Figure 4.9).  The 2.2 zebrafish express interrupted C9orf72 expansions, 

meaning that runs of pure C4G2 are linked together with 5 non-GC base pairs.  As there are 

5 non-GC base pairs, this effectively shifts the reading frame for subsequent C4G2 

expansions.  Therefore, most individual DPR species produced in the 2.2 zebrafish will likely 

contain a mixture of multiple DPR species, as can be seen in figure 4.2a, in which the same 

protein band can be detected with multiple DPR antibodies.  This is likely the reason why  
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Figure 4.7: Both 2.2 model zebrafish express nuclear localised poly(GP) DPRs 

GFP and poly(GP) immunostaining of adult (12 months old) zebrafish muscle tissue 

shows that GFP tagged DPRs and poly(GP) containing DPRs localise to the nucleus in 

2.2-2 and 2.2-7 zebrafish.  For all DPR images nuclei are stained with Hoechst (blue), 

GFP is stained with GFP antibody (green) and DPR proteins are stained with the poly(GP) 

antibody 24494-1-AP (purple).  Scale bar = 25µm. 
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Figure 4.8: Both 2.2 model zebrafish express nuclear localised poly(PA) DPRs 

GFP and poly(PA) immunostaining of adult (12 months old) zebrafish muscle tissue shows 

that GFP tagged DPRs and poly(PA) containing DPRs localise to the nucleus in 2.2-2 and 

2.2-7 zebrafish.  For all DPR images nuclei are stained with Hoechst (blue), GFP is 

stained with GFP antibody (green) and DPR proteins are stained with the poly(PA) 

antibody MABN1790 (purple).  Scale bar = 25µm. 
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Figure 4.9: Both 2.2 model zebrafish express nuclear localised poly(PR) DPRs 

GFP and poly(PR) immunostaining of adult (12 months old) zebrafish muscle tissue shows 

that GFP tagged DPRs and poly(PR) containing DPRs localise to the nucleus in 2.2-2 and 

2.2-7 zebrafish.  For all DPR images nuclei are stained with Hoechst (blue), GFP is 

stained with GFP antibody (green) and DPR proteins are stained with the poly(PR) 

antibody 23979-1-AP (purple).  Scale bar = 25µm. 
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signal for multiple DPR species are all localised to the nucleus in 2.2 zebrafish.  Based on 

previous reports, the nuclear localisation is most likely mediated by poly(PR) DPR proteins 

(Wen et al., 2014).  DPR expression in muscle tissue from 2.2 zebrafish had now been 

confirmed.  However, in ALS expression of C9orf72 expansions is primarily associated with 

neurodegeneration.  Therefore, we next planned to test whether transgene expression in 2.2 

zebrafish was also present in central nervous system tissues. 

 

4.8. DPR species are produced in 2.2 zebrafish CNS tissues 

In human ALS, toxicity occurs primarily in cells of the central nervous system (CNS), and so 

it is essential to ascertain whether DPR species are also produced within the CNS of this 

zebrafish model.  In adult spinal cord and brain of both 2.2-zebrafish lines, GFP-tagged DPR 

species and DPR species which were not immunoreactive with GFP antibodies, could be 

detected (Figure 4.10a+b).  This suggests that both ATG-dependent translation and RAN 

translation of DPR species occurs within the CNS of the 2.2-zebrafish.  DPR bands which 

are not immunoreactive for GFP and are therefore proposed to be produced via RAN-

translation are marked with an asterix.  In both 2.2-zebrafish lines, the band pattern of DPRs 

detected largely remains constant from 5 dpf until adulthood, although higher molecular 

weight (>50KDa) poly(PR) positive bands are more abundant in adult tissue.  Of all the DPR 

species examined here, poly(PR) generally has the highest propensity to form high MW 

RAN-translation mediated bands.  Poly(GP) and poly(GA) immunoblotting was not carried 

out due to the presence of multiple specific and non-specific bands already produced by 

antibodies derived from the same species.  Poly(GP) and poly(PR) were both purified from 

rabbit serum, and poly(GA) and GFP antibodies were both purified from mouse serum.  As 

multiple DPR species are produced in the CNS of adult 2.2 zebrafish, we next planned to 

investigate whether there was an adult onset phenotype in these zebrafish. 
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Figure 4.10: Both 2.2 zebrafish lines produce multiple DPR species in brain and 
spinal cord 

(a) Anti-sense DPRs (predominately ATG-driven) detected in adult spinal cord lysates. 

Asterix (*) denotes protein bands which are proposed to have been produced via RAN-

translation.  (b) Anti-sense DPRs (predominately ATG-driven) detected in adult brain 

lysates.  Asterix (*) denotes protein bands which are proposed to have been produced via 

RAN-translation.  

 
 

4.9. Reduced swimming endurance is observed in adult 2.2-7 zebrafish 

To assess the neuro-muscular integrity of the 2.2-7 transgenic zebrafish, swimming 

endurance was tested using a swim tunnel, the aquatic equivalent to a treadmill.  Due to 

equipment availability, the swim tunnel setup used previously to test the 5.3 zebrafish was 

not available when testing 2.2 zebrafish.  Instead, this swim tunnel setup had a wider 

swimming chamber and so was not able to fully exhaust every zebrafish tested.  Flow into 

the swimming chamber began at 2L/min and then was increased in 2L/min increments every 

5 minutes until 11.6L/min (maximum flow rate for this setup) had been reached, at which 

point the experiment was halted.  For this reason, direct comparisons cannot be drawn 

between 5.3 zebrafish and 2.2 zebrafish swim tunnel performance.  Despite the swim tunnel  

not being able to fully exhaust every zebrafish, at 9 months of age 2.2-7 zebrafish showed 

significantly reduced swimming endurance as compared to their NTG clutchmates (38% vs. 

77% still swimming at maximum flow rate for 2.2-7 and NTG respectively; Figure 4.11a).  

Zebrafish size can affect swimming ability, therefore the body length and body mass of each 

zebrafish used in the swim tunnel was measured.  Despite decreased body mass during 

early development, neither variable was significantly different between 2.2-7 and NTG clutch 

mates at 9 months of age (Figure 4.11b+c).  The swim tunnel test was repeated using the 

same experimental setup and the same cohort of zebrafish three months later (zebrafish 

were now 12 months old).  Again, 2.2-7 zebrafish showed significantly reduced swimming 

endurance compared to their NTG clutchmates (23% vs. 85% still swimming at maximum 

flow rate for 2.2-7 and NTG respectively; Figure 4.11d).  Furthermore, neither body length 

nor body mass was significantly different between transgenic and NTG groups at 12 months 

old (Figure 4.11e+f).  Immediately, following removal from the swim tunnel zebrafish were 

transferred to a recovery tank where their spontaneous locomotor activity was monitored.  
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Figure 4.11: 2.2-7 zebrafish show adult onset swimming endurance deficits 

(a) At nine months old, 2.2-7 transgenic zebrafish failed to continue swimming at earlier 

time points than their NTG clutch mates. N=13 fish per genotype.  Statistical comparison 

was carried out using the Log-rank test.  (b) At nine months old there was no difference in 

body mass between 2.2-7 zebrafish and their NTG clutchmates. N=13 fish per genotype. 

Statistical comparison was carried out using an unpaired t-test.  (c) At nine months old 

there was no difference in body length between 2.2-7 zebrafish and their NTG 

clutchmates. N=13 fish per genotype. Statistical comparison was carried out using an 

unpaired t-test. (d) At twelve months old, 2.2-7 transgenic zebrafish failed to continue 

swimming at earlier time points than their NTG clutch (legend continues on next page) 
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mates. N=13 fish per genotype.  Statistical comparison was carried out using the Log-rank 

test. (e) At twelve months old there was no difference in body mass between 2.2-7 

zebrafish and their NTG clutchmates. N=13 fish per genotype. Statistical comparison was 

carried out using an unpaired t-test. (f) At twelve months old there is no difference in body 

length between 2.2-7 zebrafish and their NTG clutchmates. N=13 fish per genotype. 

Statistical comparison was carried out using an unpaired t-test. All body mass and body 

length data are shown as mean +/- standard deviation; ns: not significant and *P < 0.05. 

 

 

4.10. 2.2-7 zebrafish show normal locomotor activity following swim tunnel testing 

Zebrafish were removed from the swim tunnel after testing, placed into a recovery tank and 

allowed 5 minutes to recover before spontaneous locomotor activity recordings began.  At 9 

months of age there was no difference in average speed of movements made or the total 

distance moved by the zebrafish over a 30 minute recording period (Figure 4.12a+b).  

Similarly, at 12 months old there was no difference in average speed of movements made or 

the total distance moved by the zebrafish over a 30 minute recording period (Figure 

4.12c+d).   

In order to analyse swimming behaviour in more detail, zebrafish swimming data were 

subdivided into time spent swimming at slow, intermediate and fast speeds.  No significant 

difference was observed in the time spent swimming at slow, intermediate or fast speed 

between 9 month old 2.2-7 and NTG zebrafish (Figure 4.13a-c).  Similarly, no significant 

difference was observed in the time spent swimming at slow, intermediate or fast speeds 

between 12 month old 2.2-7 and NTG zebrafish (Figure 4.13d-f).  Following the swim 

tunnel/locomotor testing of the 2.2-7 zebrafish, it was noted that some of the 2.2-7 zebrafish 

were rapidly losing body muscle (no zebrafish displaying this phenotype were included in the 

swim tunnel/locomotor experiments).   
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Figure 4.12: After swim tunnel, 2.2-7 zebrafish show normal swimming activity 

(a) After being removed from the swim tunnel, 9 month old 2.2-7 fish did not show any 

significant difference in average speed of movements made over a 30 minute recording 

period in comparison to NTG zebrafish. N=12 fish per genotype. (b) After being removed 

from the swim tunnel, 9 month old 2.2-7 fish did not show any significant difference in total 

distance moved over a 30 minute recording period in comparison to NTG zebrafish. N=12 

fish per genotype.  (c) After being removed from the swim tunnel, 12 month old 2.2-7 fish 

did not show any significant difference in average speed of movements made over a 30 

minute recording period in comparison to NTG zebrafish. N=13 fish per genotype.  (d) 

After being removed from the swim tunnel, 12 month old 2.2-7 fish did not show any 

significant difference in total distance moved over a 30 minute recording period in 

comparison to NTG zebrafish. N=13 fish per genotype.  All statistical comparisons were 

carried out using an unpaired t-test.  All data are shown as mean +/- standard deviation; 

ns: not significant. 
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Figure 4.13: After swim tunnel, the time spent swimming at different speeds is not 
significantly different between 2.2-7 and NTG zebrafish 

(a) There is no significant difference in the time spent swimming at slow speeds between 

2.2-7 and NTG zebrafish at 9 months old. Statistical comparison was carried out using an 

unpaired t-test.  N=12 fish per genotype. (b) There is no significant difference in the time 

spent swimming at intermediate speeds between 2.2-7 and NTG zebrafish at 9 months 

old. Statistical comparison was carried out using an unpaired t-test.  N=12 fish per 

genotype. (c) There is no significant difference in the time spent swimming at fast speeds 

between 2.2-7 and NTG zebrafish at 9 months old. This dataset was not normally 

distributed according to the Shapiro-Wilk test for normality and was therefore statistically 

compared using the Mann-Whitney U test. N=12 fish per genotype. (d) There is no 

significant difference in the time spent swimming at slow speeds between 2.2-7 and NTG 

zebrafish at 12 months old. Statistical comparison was carried out using an unpaired t-

test.  N=13 fish per genotype. (e) There is no significant difference in the time spent 

swimming at intermediate speeds between 2.2-7 and NTG zebrafish at 12 months old. 

Statistical comparison was carried out using an unpaired t-test.  N=13 fish per genotype. 

(f) There is no significant difference in the time spent swimming at fast speeds between 

2.2-7 and NTG zebrafish at 12 months old. This dataset was not normally distributed 

according to the Shapiro-Wilk test for normality and was therefore statistically compared 

using the Mann-Whitney U test. N=13 fish per genotype. All data were recorded over a 30 

minute period after zebrafish had been removed from the swim tunnel and allowed to rest 

for 5 minutes. Speed thresholds used were slow (x<60mm/sec), intermediate 

(60<x<120mm/sec) and fast (x>120mm/sec).Data are shown as mean +/- standard 

deviation; ns: not significant. 
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4.11. Early mortality is observed in 2.2-7 zebrafish 

While visually inspecting tanks containing 12 month old 2.2-7 zebrafish, it was noted that a 

small proportion of the 2.2-7 zebrafish showed marked loss of body muscle.  These 2.2-7 

zebrafish were then closely monitored, and it became clear that the loss of body mass was 

progressive and was beginning to interfere with the normal tank swimming behaviour of the 

2.2-7 zebrafish.  At this point specific criteria were decided upon in order to determine when 

a zebrafish had reached end-stage, and would need to be culled to prevent unnecessary 

suffering.  A zebrafish was defined as having reached end-stage once it had lost the ability 

to maintain normal swimming (showing signs of paralysis) to the extent where it was no 

longer able to obtain food.  End-stage 2.2-7 zebrafish displayed  severe wasting in the body 

muscle region, had very poor locomotor skills and would often rest at the bottom of tank 

completely still (this is very abnormal for zebrafish who typically maintain almost constant 

swimming whilst awake).  Over time more 2.2-7 zebrafish developed this progressive muscle 

wasting phenotype, and by 36 months there was a significant reduction in survival of the 2.2-

7 zebrafish compared with that of NTG zebrafish (22% vs. 86% survival for 2.2-7 and NTG 

respectively at 36 months old; Figure 4.14).  In contrast to 2.2-7, no NTG zebrafish 

displayed this muscle wasting phenotype.  We next planned to assess adult muscle integrity 

of the 2.2 zebrafish using histological techniques. 

 

Figure 4.14: 2.2-7 zebrafish have reduced survival 

Adult transgenic 2.2-7 zebrafish have reduced survival from 8-36 months in comparison to 

their NTG clutch mates which are housed in the same tank.  N=17 2.2-7 and 27 NTG at 8 

months.  Statistical comparison was carried out using the Log-rank test.  ****P < 0.0001. 
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4.12. Both 2.2 zebrafish show abnormal muscle histology 

Progressive muscle atrophy is observed in all ALS patients and similar muscle atrophy was 

observed in end-stage 2.2-7 zebrafish.  In order to investigate the nature and severity of this 

muscle atrophy, we H&E stained epaxial muscle sections from NTG, 2.2-2 and end-stage 

2.2-7 zebrafish to examine their muscle structure.   End-stage 2.2-7 zebrafish muscle 

displayed widespread severe atrophy, muscle fibres were sparse and disorganised (Figure 

4.15a).  The muscle of 2.2-2 zebrafish displayed more subtle changes.  To assess 2.2-2 

zebrafish, muscle integrity myotome size and number was counted from 2.2-2 and NTG 

epaxial muscle sections in a blinded analysis.  Myotomes of 2.2-2 zebrafish muscle were 

significantly smaller and more numerous compared to NTG muscle myotomes (1.1 vs. 

1.7mm2 median myotome size for 2.2-2 and NTG respectively; Figure 4.15a+b).  End-stage 

2.2-7 zebrafish muscle fibre size and number was not quantified, as 2.2-7 myofibres were so 

severely disorganised that it was not possible to discern individual myotomes.  It was now 

clear that end-stage 2.2-7 zebrafish have severely atrophied muscle tissue.  We next 

planned to examine what the cause of muscle atrophy in these fish may have been.   

 

4.13. 2.2-7 zebrafish show motor neuron loss 

In ALS patients, the underlying molecular pathology ultimately leads to motor neuron death, 

which in turn leads to atrophy of denervated muscle.  To investigate whether motor neuron 

loss underlies the muscle atrophy observed in 2.2-7 zebrafish, we counted motor neurons 

from the ventral spinal cord of NTG, 2.2-2 and end-stage 2.2-7 H&E stained zebrafish 

sections.  Significant loss of motor neurons was observed in end-stage 2.2-7 zebrafish as 

compared with NTG controls (1.0 vs. 3.2 mean number of motor neurons per body section of 

2.2-7 and NTG respectively; Figure 4.16a+b).  A small, non-significant reduction in motor 

neurons was observed in 2.2-2 zebrafish as compared with NTG controls (Figure 4.16a+b). 

As mentioned previously the 2.2 zebrafish lines were generated with the aim of producing an 

in vivo model which recapitulates key aspects of the ALS/FTD phenotype and can be used 

to screen potential neuroprotective compounds using hsp70 promoter driven DsRed as a 

cellular stress readout.  As already described, the 2.2 zebrafish show behavioural and motor 

defects.  Additionally, we have already shown that embryonic DsRed is higher in the 

phenotypically severe 2.2-7 zebrafish, compared with the phenotypically less severe 2.2-2 

zebrafish.  We next aimed to characterise how DsRed levels change over time in the CNS of 

2.2-7 zebrafish as their phenotype becomes more severe. 
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Figure 4.15: Both 2.2 zebrafish lines display abnormal muscle histology 

(a) Representative H&E staining of zebrafish epaxial muscle (body muscle) myotomes.  

Scale bar = 50µm.  (b) Frequency distribution of 2.2-2 and NTG myotome sizes.  N=6 

individual zebrafish per genotype, 6 sections were analysed for each individual zebrafish 

(36 sections per genotype in total). 2.2-7 zebrafish were culled once they had reached 

phenotypic end stage (age matched NTG zebrafish were culled alongside end stage 2.2-7 

zebrafish), average age of culling was 12.6 months (8, 11, 13, 14, 15 and 15 months 

individually for both 2.2-7 and NTG zebrafish).  2.2-2 zebrafish were all culled at 12 

months old.  Statistical comparison was carried out using the Chi-squared test for trend.  

Myotome size data are shown as the frequency of myotome sizes binned into defined 

ranges.   ****P < 0.0001.  
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Figure 4.16: 2.2-7 zebrafish display motor neuron loss 

(a) Representative H&E staining of zebrafish spinal cord sections in which motor neurons 

are denoted by yellow arrowheads.  Scale bar = 25µm. (b) 2.2-7 zebrafish have significant 

motor neuron loss compared to NTG. N=6 individual fish per genotype, 3 sections were 

analysed for each individual zebrafish (18 sections per genotype in total). 2.2-7 zebrafish 

were culled once they had reached phenotypic end stage (age matched NTG zebrafish 

were culled alongside end stage 2.2-7 zebrafish), average age of culling was 12.6 months 

(8, 11, 13, 14, 15 and 15 months individually for both 2.2-7 and NTG zebrafish).  2.2-2 

zebrafish were all culled at 12 months old.  Statistical comparison was carried out using a 

one-way ANOVA with Tukey’s post hoc test.  Data are shown as mean +/- standard 

deviation; ns: not significant and **P < 0.01. 
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4.14. DsRed production correlates with disease severity in 2.2-7 zebrafish and heat 

shock activation occurs in human C9orf72-ALS 

To examine whether CNS DsRed production changes as disease severity is increasing in 

2.2-7 zebrafish, brains of end-stage 2.2-7 zebrafish (ages 15, 15 and 19 months), pre-

symptomatic 2.2-7 zebrafish (all aged 7 months) and NTG zebrafish (age matched to end-

stage) were lysed and western blotted.  Pre-symptomatic was defined as fish which did not 

show any overt swimming or musculature abnormalities, and were of a younger age than the 

age at which the earliest swim tunnel abnormalities had been detected.  GFP tagged DPRs 

were increased in the brains of end-stage zebrafish in comparison to the brains of pre-

symptomatic zebrafish (1.0 vs. 0.17 A.U. for end-stage and pre-symptomatic respectively; 

Figure 4.17a+b).  Similarly, DsRed was also increased in the brains of end-stage zebrafish 

in comparison to the brains of pre-symptomatic zebrafish (1.0 vs. 0.43 A.U. for end-stage 

and pre-symptomatic respectively; Figure 4.17a+c), suggesting that there is a correlation 

between DPR production, phenotypic severity and hsp70 promoter driven DsRed production.   

Activation of the heat shock response due to cellular stress driven by aberrant protein 

expression is an already well characterised pathway (Dedmon et al., 2005, Bukau et al., 

2006).  However, as this system lies at the foundation of our proposed drug screening 

strategy in the C9orf72 model zebrafish, we deemed it necessary to examine the role of the 

heat shock protein system in C9orf72-ALS patients.  To assess whether the heat shock 

response is activated in human C9orf72-ALS, cerebellum grey matter from C9orf72-ALS 

patients or healthy controls was lysed and western blotted for HSP70 protein (the most 

ubiquitous and abundant heat shock protein).  Indeed, HSP70 protein expression was 

significantly higher in C9orf72-ALS patients as compared to healthy controls (1.1 vs. 0.58 

HSP70/tubulin for C9orf72 patients and controls respectively; Figure 4.17d+e).  Activation of 

the heat shock response in human ALS cases validates that identification of compounds 

which are able to alleviate heat shock activation may have neuroprotective effects in 

C9orf72-ALS.  To further validate the heat shock activation drug screening system, we next 

planned to identify a positive control compound which can reduce DsRed production in the 

C9orf72 zebrafish model. 
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Figure 4.17: Heat shock stress response activation is increased by C9orf72 
expansions 

(a) In end-stage 2.2-7 zebrafish brains, levels of GFP tagged DPR and DsRed proteins 

are increased compared with pre-symptomatic 2.2-7 and NTG.  (b) Quantification of GFP 

tagged DPR protein normalised to tubulin in adult zebrafish brains.  N=3 adult brains per 

condition. Statistical comparison was carried out using a one-way ANOVA with Tukey’s 

post hoc test. (c) Quantification of DsRed protein normalised to tubulin in adult zebrafish 

brains. N=3 adult brains per condition. Statistical comparison was carried out using a one-

way ANOVA with Tukey’s post hoc test. (d) In human cerebellum samples, HSP70 protein 

levels are higher in C9-ALS patients as compared to controls.  N=5 samples per group.  

The patient code is listed above each sample (see table 2.2 for full patient information).  

(e) Quantification of HSP70 protein levels normalised to tubulin in human cerebellum. 

Statistical comparison was carried out using an unpaired t-test.  All data are shown as 

mean +/- standard deviation; *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. 
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4.15. Riluzole treatment reduces DsRed production in 2.2-7 zebrafish 

The first choice to use as a positive control compound in order to test the validity of the 

DsRed drug screening system in zebrafish was riluzole.  The reason for this, is that riluzole 

is known to have neuroprotective effects and is currently the only disease modifying 

treatment prescribed for ALS patients in the UK.  In order to test the efficacy of riluzole in our 

DsRed drug screening paradigm, 2.2-7 zebrafish were treated with either 10µM riluzole or 

vehicle control (DMSO) from 2-5 dpf.  At 5 dpf, zebrafish were lysed and their individual 

DsRed florescence levels were measured using a plate reader.  Riluzole treatment resulted 

in a significant reduction in hsp70 promoter driven production of DsRed protein, as 

compared with DMSO treatment (0.87 vs. 1.0 fold change in DsRed for riluzole and DMSO 

treatments respectively; Figure 4.18a).  As the DsRed readout had now been validated by 

demonstrating that it could identify riluzole as a hit, two compounds named ivermectin and 

selamectin were also tested using the same treatment paradigm.  The reason for selecting 

ivermectin and selamectin was that they had both previously been identified as hits in a 

SOD1-ALS drug screening zebrafish model (Ramesh lab, unpublished data).  Interestingly, 

10µM riluzole, 1µM ivermectin and 10µM selamectin treatments all significantly reduced 

DsRed production in 2.2-7 zebrafish, as compared to DMSO treatment (0.68, 0.73, 0.62 and 

1.0 fold change in DsRed for riluzole, ivermectin, selamectin and DMSO treatments 

respectively; Figure 4.18b).  Elucidating the mechanism by which drugs are reducing the 

heat shock response activation is an important step in targeting future therapies.  Ivermectin 

has previously been shown to inhibit α and β nuclear importins (Wagstaff et al., 2012).  This 

led us to hypothesise that ivermectin may reduce cellular stress by blocking nuclear import 

of poly(PR) DPR species.  To test this hypothesis, we treated zebrafish with the β-importin 

specific blocker importazole.  However, neither 1µM or 5µM importazole treatments 

significantly changed DsRed production in 2.2-7 zebrafish, as compared to untreated 2.2-7 

zebrafish (Figure 4.18c).  Further, work is required to elucidate the mechanism by which 

ivermectin or any of the other compounds tested are reducing activation of the heat shock 

stress response.    Andrographolide is a potent nuclear factor E2-related factor 2 (nfr2) 

activator (Mead et al., 2013), which reduces motor neuron toxicity mediated by co-culture 

with astrocytes derived from C9orf72 patients (Ferraiuolo lab, unpublished data).  However, 

treatment of 2.2-7 zebrafish with 10µM or 40µM andrographolide did not result in a 

significant change in DsRed production, as compared to untreated 2.2-7 zebrafish (Figure 

4.18d).  As the ALS/FTD and drug screening capability of the 2.2-7 zebrafish was now 

established, we next set out to identify a drug with known neuroprotective properties which 

may have therapeutic potential in treating C9orf72-ALS. 
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Figure 4.18: Riluzole, selamectin and ivermectin can all alleviate stress response 
activation in 2.2-7 zebrafish 

(a) Treatment with 10µM riluzole from 2-5dpf significantly reduced the DsRed fluorescence 

in 2.2-7 zebrafish.  N=36 DMSO treated and 27 riluzole treated individual zebrafish.  This 

dataset was not normally distributed according to the Shapiro-Wilk test for normality and 

was therefore statistically compared using the Mann-Whitney U test.  (b) Treatment with 

10µM riluzole, 10µM selamectin or 1µM ivermectin from 2-5 dpf significantly reduced the 

DsRed fluorescence in 2.2-7 zebrafish.  N=33 DMSO treated, 34 riluzole treated, 34 

selamectin treated and 34 ivermectin treated individual zebrafish.  Statistical comparison 

was carried out using a one-way ANOVA with Tukey’s post hoc test.  (c) Treatment with 

either 1µM or 5µM importazole from 2-5 dpf did not significantly change DsRed production 

in 2.2-7 zebrafish, as compared to untreated 2.2-7     (legend continues on next page) 
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zebrafish.  N=8 untreated, 3 importazole 1µM treated and 5 importazole 5µM treated, 

these zebrafish were derived from a single clutch.  Statistical comparison was carried out 

using a one-way ANOVA with Dunnett’s post hoc test.  (d) Treatment with either 10µM or 

40µM andrographolide from 2-5 dpf did not significantly change 2.2-7 DsRed production 

as compared to untreated 2.2-7 zebrafish.  N=10 untreated, 10 andrographolide 10µM 

treated and 8 andrographolide 40µM treated individual zebrafish, these zebrafish were 

derived from a single clutch. Statistical comparison was carried out using a one-way 

ANOVA with Dunnett’s post hoc test. All data are shown as mean +/- standard deviation; 

ns: not significant, **P < 0.01, ***P < 0.001 and ****P < 0.0001. 

 

 

4.16. Over activation of PARP1 does not drive toxicity in 2.2-7 zebrafish 

In a subset of patients with cerebellar ataxia caused by XRCC1 mutations, 

neurodegeneration was discovered to be driven by over-activation of the DNA damage 

sensing protein PARP1 (Hoch et al., 2017).  Additionally, deletion of the PARP1 gene in 

XRCC1 mutant mice ameliorated the loss of cerebellar neurons (Hoch et al., 2017).  Given 

the current evidence suggesting chronic DNA damage as a mechanism of C9orf72 

expansion mediated toxicity (Lopez-Gonzalez et al., 2016, Farg et al., 2017, Walker et al., 

2017), we hypothesised that PARP1 over-activation may also contribute to C9orf72-ALS.  In 

order to test this hypothesis, we treated zebrafish with the PARP1 specific inhibitor olaparib.  

To assess olaparib target engagement, we treated 2.2-7 zebrafish from 2-5 dpf with 10µM 

and 1µM olaparib.  These zebrafish were then lysed and immunoblotted for PAR chains (the 

product of PARP1 enzymatic activity).  Both 10µM and 1µM olaparib treatments reduced the 

amount of PAR chains produced in 2.2-7 zebrafish, however the 10µM treatment was 

markedly more effective (Figure 4.19a).     

Next, to assess whether inhibiting PARP1 activity could ameliorate C9orf72 expansion 

driven toxicity, we treated zebrafish with olaparib from 2-15 dpf and assessed whether this 

would rescue the reduced survival observed in 2.2-7 zebrafish at 15 dpf.  Unexpectedly, 

10µM olaparib treatment caused clear toxic effects on both 2.2-7 and NTG zebrafish.  At 

around 10 dpf the zebrafish became lethargic, and over the next three days of treatment the 

condition of the zebrafish worsened, with many zebrafish appearing morphologically 

abnormal.  The 10µM olaparib treatment was stopped at 13 dpf and all zebrafish were 

culled.  The 10µM olaparib treatment resulted in a significant reduction in survival in both 

2.2-7 and NTG groups (28% vs 17% 2.2-7 survival and 85% vs 67% NTG survival, for 

DMSO and 10µM olaparib treatments respectively; Figure 4.19b+f).  The dose of olaparib 

was then lowered to 1µM and the water change protocol was altered in attempt to reduce 
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water quality stress on the zebrafish, as even the DMSO treated 2.2-7 zebrafish showed 

poor survival in the previous experiment.  However, at 10 dpf the same signs of toxicity were 

observed in the 2.2-7 zebrafish, and zebrafish were culled at 12 dpf.  With 1µM olaparib 

treatment a significant reduction in the survival of 2.2-7 zebrafish was observed, however the 

reduction in the survival of NTG zebrafish was not significant (80% vs 62% 2.2-7 survival 

and 95% vs 90% NTG survival, for DMSO and 1µM olaparib treatments respectively; Figure 

4.19c+f).  The dose of olaparib was again lowered to 0.1µM, and the same water change 

protocol as previously described was used.  However, at 10 dpf the same signs of toxicity 

were observed in the 2.2-7 zebrafish, and zebrafish were culled at 11 dpf.  With 0.1µM 

olaparib treatment there was a strong trend towards a reduction in the survival of 2.2-7 

zebrafish (P = 0.0504), however there was no change in survival of NTG zebrafish (90% vs 

76% 2.2-7 survival and 95% vs 95% NTG survival, for DMSO and olaparib treatments 

respectively; Figure 4.19d+f).  The effect of olaparib on the heat shock response was also 

assessed by treating 2.2-7 with 5µM olaparib from 2-5 dpf and then measuring DsRed 

production.  Treatment with 5µM olaparib did not significantly change the heat shock stress 

response activation as measured by DsRed florescence (Figure 4.19e). 

Heat shock response activation gives a general readout of cellular stress conditions.  For 

this reason we next aimed to compare the level of heat shock response activation in 5.3 

(RNA-only) and 2.2 (RNA+DPR) zebrafish lines. 
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Figure 4.19: Olaparib treatment reduces PAR production but does not rescue 
reduced viability in 2.2-7 zebrafish 

(a) Treatment of 2.2-7 zebrafish from 2-5 dpf with the PARP1 specific inhibitor olaparib 

markedly reduced the production of PARylated proteins at 10µM, and to a lesser extent at 

1µM also.  (b) Treatment with 10µM olaparib from 2-13 dpf was toxic, and caused a 

significant reduction in survival of 2.2-7 zebrafish and their NTG clutchmates, as 

compared to DMSO treated zebrafish of the same genotype.  N=60 individual zebrafish 

per condition, zebrafish derived from 3 clutches.  Statistical comparison was carried out 

using the Log-rank test.  (c) Treatment with 1µM olaparib from 2-12dpf was also toxic and 

caused a significant reduction in survival in 2.2-7 zebrafish but not in NTG zebrafish, as 

compared with DMSO treated zebrafish of the same genotype. N=60 individual zebrafish 

per condition, zebrafish derived from 3 clutches. Statistical comparison was carried out 

using the Log-rank test. (d) Treatment with 0.1µM olaparib from 2-11 dpf caused a strong 

trend towards reduced survival in 2.2-7 zebrafish but did not have any effect on NTG 

survival, as compared to DMSO treated zebrafish of the same genotype.  N=60 individual 

zebrafish per condition, zebrafish derived from 3 clutches. Statistical comparison was 

carried out using the Log-rank test. (e) Treatment with 5µM olaparib from 2-5 dpf did not 

significantly change DsRed production in 2.2-7 zebrafish, as compared to DMSO treated 

2.2-7 zebrafish.  N=26 DMSO treated and 29 olaparib treated individual zebrafish, derived 

from 3 clutches.  Statistical comparison was carried out using an unpaired t-test.  (f) 

Summary of the olaparib treatment and water change protocols used in each of the 3 

survival experiments.  Olaparib treatment was planned for 2-15 dpf, but was ended early 

in every experiment to protect the welfare of the zebrafish after observing signs of early 

toxicity. DsRed fold change data is shown as mean +/- standard deviation; ns: not 

significant, *P < 0.05. 

 

4.17. Heat shock response activation is higher in 2.2 than 5.3 zebrafish lines 

In both 5.3 (RNA-only) and 2.2 (RNA+DPR) zebrafish, activation of the hsp70 promoter 

drives production of the DsRed protein.  Due to this, it is possible to compare the relative 

expressions of DsRed by each line of zebrafish and use this as a generic readout of the 

amount of cellular stress being exhibited.  Cell stress influences DsRed production by 

increasing the drive on the hsp70 promoter.  However, transgene copy number can also 

influence the amount of DsRed produced by each line of zebrafish.  For this reason, in order 

to compare the relative stress levels of each zebrafish line, we normalised DsRed to GFP 

production, thus controlling for transgene expression levels within each zebrafish line.  There 

was no significant difference in DsRed/GFP levels between any of the 5.3 zebrafish lines 

(Figure 4.20).  However, 2.2-2 zebrafish had significantly higher DsRed/GFP levels than  
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Figure 4.20: 2.2 (RNA+DPR) zebrafish lines exhibit higher heat shock response 
activation than 5.3 (RNA-only) zebrafish lines when normalised to GFP expression 

The ratio of DsRed:GFP does not differ between any zebrafish in the 5.3 lines.  

Additionally, Both 2.2 zebrafish lines exhibit a significantly higher DsRed:GFP ratio than 

every 5.3 zebrafish line.  Finally, 2.2-7 zebrafish also have a higher DsRed:GFP ratio than 

2.2-2 zebrafish. N=76 x 2.2-7, 75 x 2.2-2, 9 x 5.3-9, 10 x 5.3-5 and 9 x 5.3-6 individual 

zebrafish, zebrafish from 5.3 lines were derived from a single clutch. This dataset was not 

normally distributed according to the Shapiro-Wilk test for normality, therefore statistical 

comparisons were carried out using the Kruskal-Wallis test with Dunn’s post hoc test.  All 

data are shown as mean +/- standard deviation; ns: not significant, **P < 0.01 and ****P < 

0.0001. 

 

all three 5.3 zebrafish lines (2.0 vs 0.78, 0.23 and 0.12 A.U., for 2.2-2, 5.3-9, 5.3-5 and 5.3-6 

respectively; Figure 4.20).  Additionally, 2.2-7 zebrafish had significantly higher DsRed/GFP 

levels than 2.2-2 and all three 5.3 zebrafish lines (2.8 vs 2.0, 0.78, 0.23 and 0.12 A.U., for 

2.2-7, 2.2-2, 5.3-9, 5.3-5 and 5.3-6 respectively; Figure 4.20).  Therefore, DsRed/GFP levels 

correlate with phenotypic severity.  It is important to note however that the zebrafish from 

each of the 5.3 lines were all derived from a single clutch.  Therefore, figure 4.20 should be 

considered as preliminary data until it has been repeated with a further 2 clutches for 5.3 

zebrafish. 
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4.18. Discussion 

As previously mentioned in discussion of RNA-only zebrafish injections, the 

microinjection/pre-screening method used here allows for highly efficient rates of 

transgenesis without the additional effort and potential pitfalls when using transposable 

elements.  RNA+DPR zebrafish were generated with an even higher rate of transgenesis.  

Of the highly chimeric zebrafish grown to adulthood, 43% (3/7) gave rise to full transgenic 

offspring.  This further highlights the efficiency of this system for producing transgenic 

zebrafish.  One of the highly chimeric RNA+DPR zebrafish, the highest expresser as 

determined by eye, showed severely reduced fertility and produced offspring which died 

within the first few days of life.  This phenotype is identical to the phenotype observed in high 

expresser RNA-only chimeric zebrafish.  Thus, these data suggest that high enough 

expression of C9orf72 expansion RNA is sufficient to generate a toxic phenotype.  However, 

it would be difficult to prove that RNA-only zebrafish are not also producing DPR species 

due to a lack of sample tissue caused by the low fertility of their chimeric founder 

(approximately 1 in 200 eggs is fertilised, and only a maximum of 50% of these are expected 

to be transgenic).  Previous reports have also identified that high expression of C9orf72 RNA 

(with no detectable DPRs) is sufficient to generate an early lethal phenotype, albeit the 

phenotype was less severe and less frequently observed than the phenotype of zebrafish 

which expressed poly(GA) encoding DPR constructs under the same promoter (Ohki et al., 

2017).  These data clearly indicate that C9orf72 expansion RNA can contribute to early 

toxicity in stable transgenic animal models.   

Of the two RNA+DPR zebrafish which did not show early lethality, the GFP expression 

levels of both zebrafish were not significantly different at 5 dpf.  However, the DsRed level 

and DsRed:GFP ratio of the 2.2-7 zebrafish was significantly higher.  These data suggest 

that different DPR species may have a differential ability to activate the heat shock stress 

response.  This would be consistent with previous reports showing that different DPR 

species have variable levels of in vivo toxicity (Mizielinska et al., 2014, Tran et al., 2015).  

Interestingly, adult 2.2-7 zebrafish also show a more severe phenotype than 2.2-2 zebrafish, 

exhibiting reduced swimming endurance, reduction in body mass, motor neuron loss and 

advanced muscle atrophy.  This suggests that the level of heat shock activation is a good 

predictor of phenotypic severity in 2.2 zebrafish.  Furthermore, hsp70 promoter-mediated 

DsRed production was significantly higher in end-stage vs pre-symptomatic zebrafish, 

further demonstrating that within the same zebrafish line heat shock activation correlates 

with disease severity.  Zebrafish of the 2.2-7 line also exhibited centre avoidance behaviour, 

decreased early viability and an adult onset reduction in survival.  It will be important in the 

future to assess 2.2-2 zebrafish using these assays also so that it can be determined 
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whether the observed milder phenotype of the 2.2-2 zebrafish is present in all phenotypic 

readouts. 

Reduced body mass was observed in the 2.2-7 zebrafish at 30 dpf, however the reduction 

had recovered to normal levels by adulthood.  This suggests that the reduction in body mass 

was not caused by tissue degeneration, but rather by a developmental delay which can be 

compensated for given enough time.   

Interestingly, not only did DsRed production increase from pre-symptomatic to end-stage in 

zebrafish brains, but levels of GFP-tagged DPRs were also more abundant in end-stage 

tissue.  The reason for this increase in DPR abundance is not currently known.  One 

possibility is that a reduction in the efficiency of protein clearance mechanisms leads to DPR 

accumulation.  Certainly impairment of protein clearance pathways is a well characterised 

feature of ALS /FTD pathogenesis (Shahheydari et al., 2017).  Another potential explanation 

for the progressive increase in DPR abundance could be due to increased drive through the 

ubiquitin promoter with age.  DPR species have previously been shown to bind ubiquitin in 

intracellular inclusions (Mackenzie et al., 2014, May et al., 2014, Zhang et al., 2014).  This 

ubiquitin binding may cause increased transcriptional drive on the ubiquitin promoter thus 

producing more C9orf72-RNA and more DPR protein (C9orf72 expansion expression is 

driven by the ubiquitin promoter in 2.2 zebrafish), resulting in the formation of a positive 

feedback loop.  These possibilities deserve careful exploration in the future. 

DPR expression in the CNS, activation of the stress response in the CNS, centre avoidance 

behaviour and motor neuron loss all provide evidence of neurological dysfunction in 2.2-7 

zebrafish.  Muscle tissue in 2.2-7 zebrafish also expresses DPR species, and may therefore 

contribute to the adult onset motor neuron loss through cell to cell transmission of DPR 

species, or by loss of trophic support for motor neuron axon terminals due to muscle 

degeneration (Griesbeck et al., 1995, Westergard et al., 2016).  It is important to note that, 

contribution to motor neuron pathology from muscle tissues has also been suggested in 

human ALS, as muscle tissue from ALS patients frequently contains abnormal protein 

aggregates such as p62 positive inclusions (Al-Sarraj et al., 2014).  In contrast, centre 

avoidance is primarily a behavioural abnormality and as such is unlikely to be influenced by 

muscle expression of DPR species.  The reason why abnormal centre avoidance behaviour 

is detectable at 5dpf, while reduced swimming endurance and motor neuron loss are not 

observed until adulthood, is not fully understood.  It is possible that this may reflect the cell 

type specific toxicity which is frequently reported with DPR proteins (Mackenzie et al., 2013, 

Gendron et al., 2015, Schludi et al., 2015).  In the future, careful time course analysis of 
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muscle and motor neuron pathology in 2.2-7 zebrafish would help to distinguish myogenic 

from neurogenic pathologies.  

Overall, it is clear from the characterisation of the RNA+DPR zebrafish that the phenotype 

expressed is more severe than the phenotype observed in RNA-only zebrafish.  This is 

discussed further in chapter 6.
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5. Chapter 5:  C9orf72 expansions induce upregulation of TDP1 

and SOD1 proteinopathy 

5.1. Introduction 

Dysregulation of multiple seemingly unrelated pathways have now been reported in C9orf72-

ALS cases.  It is difficult to separate pathways which are driving ALS pathogenesis from 

those which are consequences of neurodegeneration, unrelated to disease progression.  

These problems are further complicated by a lack of translation of animal model data.  For 

example, it is now clear that in animal models DPR drive toxicity to a larger extent than RNA 

foci (Tran et al., 2015, Ohki et al., 2017).  However, in human pathological studies, DPR 

expression poorly correlates with disease severity (Mackenzie et al., 2013).  In particular, 

most human pathological studies seem to agree that in the motor cortex, DPR expression is 

low and disease severity is high, whereas in the cerebellum the reverse is true (Mackenzie 

et al., 2013, Gendron et al., 2015, Mackenzie et al., 2015, Schludi et al., 2015).  In order to 

further test the argument that DPRs do not correlate with clinical phenotype, it is important to 

carefully quantify DPR levels in disease affected areas using robust techniques, and 

investigate whether early toxicity can be observed in the cerebellum. 

 

5.2. Aims 

We aimed to first assess whether DPR proteins can be reliably detected in disease relevant 

areas of human post-mortem samples using a quantitative immunoblotting technique.  

Following this, we aimed to characterise in detail whether the cerebellum shows any early 

signs of toxicity. Finally, we aimed to further interrogate the types of pathology induced by 

C9orf72 expansions in human post-mortem tissue. 

 

5.3. Multiple DPR species are detectable in cerebellum but only poly(GA) is 

detectable in motor cortex 

Post-mortem grey matter samples from the cerebellum and white matter samples from the 

motor cortex (white matter motor cortex was selected due to lack of grey matter motor cortex 

patient tissue availability at the time of the experiment) were lysed and drawn through a 

vacuum onto a PVDF membrane which was then immunoblotted.  To obtain loading 

controls, each lysed sample was divided into two tubes immediately before being vacuum 

drawn onto the PVDF membrane.  Thus, two duplicate membranes were obtained, one 

membrane was immuno blotted with tubulin (raised in mouse) followed by poly(PR) (raised 

in rabbit), while the other membrane was immunoblotted with poly(GA) (raised in mouse) 

followed by poly(GP) (raised in rabbit).  Tubulin images were used as a loading control for all 
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DPR antibodies, as both membranes contained duplicates of the same samples.  For more 

details see methods section 2.2.16.   

Poly(GA) protein levels were significantly higher in motor cortex and cerebellum samples 

from C9orf72 patients as compared with equivalent samples from non-neurological disease 

controls (1.1 vs 0.022 poly(GA)/tubulin for motor cortex samples from C9orf72 and control 

patients respectively; Figure 5.1a-c; 5.1 vs 0.0043 poly(GA)/tubulin for cerebellum samples 

from C9orf72 and control patients respectively; Figure 5.1d-f).  In both motor cortex and 

cerebellum samples, poly(GA) protein levels in sALS patients were not significantly different 

compared to those in non-neurological disease controls (Figure 5.1a-f). 

Poly(GP) protein levels were not significantly different in white matter motor cortex samples 

from C9orf72 patients or sALS patients when compared with non-neurological disease 

controls (Figure 5.2a-c).  However, poly(GP) protein levels in grey matter cerebellum 

samples from C9orf72 patients were significantly higher compared with non-neurological 

controls (4.3 vs 0.043 for C9orf72 and control samples respectively; Figure 5.2d-f).  No 

difference in poly(GP) levels was observed in grey matter samples from sALS patients as 

compared to non-neurological controls.   

No significant difference was observed in poly(PR) protein levels in white matter motor 

cortex samples from C9orf72 patients as compared with non-neurological controls (Figure 

5.3a-c).  Unexpectedly, poly(PR) protein levels from motor cortex were higher in sALS 

samples as compared to non-neurological disease controls (0.44 vs 0.10 poly(PR)/tubulin for 

sALS and control samples respectively; Figure 5.3a-c).  This difference was primarily driven 

by a single sample suggesting that this patient could potentially harbour a poly(PR) encoding 

expansion in another genetic locus.  Finally, poly(PR) protein levels were significantly higher 

in grey matter cerebellum samples from C9orf72 patients as compared to non-neurological 

disease controls (8.7 vs 0.15 poly(PR)/tubulin for cerebellum samples from C9orf72 patients 

and controls respectively; Figure 5.3d-f).   

There are some limitations to the dot blots described above.  As the same tubulin image was 

used as a loading control for both duplicate membranes used, this assumes that protein 

levels bound to each membrane were equal.  Additionally, only one protein concentration of 

each sample was used, rather than a dilution series.  Furthermore, unlike western blots, dot 

blots do not allow for the separation of specific and non-specific immunoreactive protein 

species by molecular weight.  Therefore, the precise proportion of signal which is contributed 

by actual DPR proteins in C9-ALS cases cannot be determined. 
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Figure 5.1: Poly(GA) DPR proteins are produced in both motor cortex and 
cerebellum of C9orf72 ALS patients 

(a) Dot blots of motor cortex white matter protein show similar loading in all groups, as 

measured by tubulin signal.  (b) Dot blots of motor cortex white matter proteins show a 

markedly higher poly(GA) signal in samples from C9-ALS patients.  (c) Quantification 

showing that in motor cortex white matter, significantly higher poly(GA) signal is detected 

in C9-ALS samples in comparison to control samples, when normalised to tubulin.  As this 

dataset was not normally distributed according to the Shapiro-Wilk test for normality, 

statistical comparison was carried out using the Kruskal-Wallis test with Dunn’s post hoc 

test.  (d) Dot blots of cerebellum grey matter protein show similar loading in all groups, as 

measured by tubulin signal.  (e) Dot blots of cerebellum grey matter proteins show a 

markedly higher poly(GA) signal in samples from C9-ALS patients.  (f) Quantification 

showing that in cerebellum grey matter, significantly higher poly(GA) signal is detected in 

C9-ALS samples in comparison to control samples, when normalised to tubulin. As this 

dataset was not normally distributed according to the Shapiro-Wilk test for normality, 

statistical comparison was carried out using the Kruskal-Wallis test with Dunn’s post hoc 

test. For all samples, the patient code is listed above each sample (see table 2.2 for full 

patient information). Con: Control, sALS: sporadic-ALS, C9: C9-ALS. All data are shown 

as mean +/- standard deviation; ns: not significant and **P < 0.01. 
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Figure 5.2 : Poly(GP) DPR proteins are produced in cerebellum but not white matter 
motor cortex of C9orf72 ALS patients 

(a) Dot blots of motor cortex white matter protein show similar loading in all groups, as 

measured by tubulin signal.  (b) Dot blots of motor cortex white matter protein show similar 

levels of poly(GP) signal in all groups. (c) Quantification showing that in motor cortex white 

matter, no significant difference in poly(GP) is observed between any group, when 

normalised to tubulin.  Statistical comparisons were carried out using a one-way ANOVA 

with Dunnett’s post hoc test. (d) Dot blots of cerebellum grey matter protein show similar 

loading in all groups, as measured by tubulin signal. (e) Dot blots of cerebellum grey 

matter proteins show a markedly higher poly(GP) signal in samples from C9-ALS patients. 

(f) Quantification showing that in cerebellum grey matter, significantly higher poly(GP) 

signal is detected in C9-ALS samples in comparison to control samples, when normalised 

to tubulin. As this dataset was not normally distributed according to the Shapiro-Wilk test 

for normality, statistical comparison was carried out using the Kruskal-Wallis test with 

Dunn’s post hoc test. For all samples, the patient code is listed above each sample (see 

table 2.2 for full patient information). Con: Control, sALS: sporadic-ALS, C9: C9-ALS. All 

data are shown as mean +/- standard deviation; ns: not significant and **P < 0.01. 
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Figure 5.3: Poly(PR) DPR proteins are produced in cerebellum but not white matter 
motor cortex of C9orf72 ALS patients 
(a) Dot blots of motor cortex white matter protein show similar loading in all groups, as 

measured by tubulin signal.  (b) Dot blots of motor cortex white matter proteins show a 

markedly higher poly(PR) signal in samples from sALS patients, but not C9-ALS patients. 

(c) Quantification showing that in motor cortex white matter, a significantly higher poly(PR) 

signal is observed in the sALS samples in comparison to control samples, when 

normalised to tubulin. As this dataset was not normally distributed according to the 

Shapiro-Wilk test for normality, statistical comparison was carried out using the Kruskal-

Wallis test with Dunn’s post hoc test. (d) Dot blots of cerebellum grey matter protein show 

similar loading in all groups, as measured by tubulin signal.  (e) Dot blots of cerebellum 

grey matter proteins show a markedly higher poly(PR) signal in samples from C9-ALS 

patients. (f) Quantification showing that in cerebellum grey matter, significantly higher 

poly(PR) signal is detected in C9-ALS samples in comparison to control samples, when 

normalised to tubulin. As this dataset was not normally distributed according to the 

Shapiro-Wilk test for normality, statistical comparison was carried out using the Kruskal-

Wallis test with Dunn’s post hoc test. For all samples, the patient code is listed above each 

sample (see table 2.2 for full patient information). Con: Control, sALS: sporadic-ALS, C9: 

C9-ALS. All data are shown as mean +/- standard deviation; ns: not significant, *P < 0.05 

and **P < 0.01. 

 

These data show that a diverse range of DPR proteins are readily detectable in cerebellum 

tissue samples from C9orf72 patients.  Given the reported toxicity of DPR proteins, we next 

aimed to assess whether sub-clinical neurodegeneration may be detected in C9orf72 

cerebellum samples. 

5.4. Purkinje cell loss is not a feature of C9orf72-ALS 

In order to assess whether DPR load in the cerebellum of C9orf72-ALS patients is capable 

of causing sub-clinical neurodegeneration, we counted Purkinje neurons from sections of the 

cerebellum adjacent to the dentate gyrus.  Beginning at the bottom of each slide, the contour 

of the Purkinje cell layer was followed until 200 Purkinje cells had been counted or the top of 

the slide had been reached (Figure 5.4a).  To control for the effect of any potential cell 

shrinkage, only Purkinje neurons in which the nucleolus was visible were counted during the 

blinded quantification (Figure 5.4b).  Surprisingly, despite the presence of DPR proteins in 

C9orf72 patient cerebellum samples, there was no significant difference between Purkinje 

cell counts of C9orf72 patients and those from non-neurological disease controls (Figure 

5.4c).  As there was no detectable neurodegeneration of Purkinje cells, we next focussed on 

identifying whether molecular pathologies could be detected in the cerebellum. 



125 
 

 



126 
 

 

5.5. The DNA repair factor TDP1 is upregulated in C9orf72-ALS and sALS 

Previous reports indicate that C9orf72 expansions cause DNA damage and inhibit DNA 

repair pathways (Lopez-Gonzalez et al., 2016, Farg et al., 2017, Walker et al., 2017).  Loss 

of function of the DNA repair factor Tyrosyl-DNA phosphodiesterase 1 (TDP1) has been 

identified as a cause of neurodegeneration in patients suffering from SCAN-1 (El-Khamisy et 

al., 2005).  We set out to assess whether TDP1 is among the multitude of DNA repair factors 

inhibited by C9orf72 expansions and may therefore contribute to C9orf72 expansion driven 

neurodegeneration.  We lysed post-mortem tissue samples from the grey and white matter 

of the motor cortex and the grey matter of the cerebellum, separated the proteins by SDS-

PAGE and then immuno blotted for TDP1.  In the grey matter of the cerebellum, TDP1 

protein levels were significantly higher in C9orf72 patients samples as compared to non-

neurological disease control samples (0.45 vs 0.017 TDP1/tubulin for C9orf72 patient and 

control samples respectively; Figure 5.5a+d).  TDP1 protein levels in grey matter 

cerebellum samples from sALS patients were not significantly different compared to non-

neurological control samples.   

Interestingly, in the white matter of the motor cortex TDP1 levels in sALS patients were 

significantly higher than in non-neurological controls (0.71 vs 0.27 TDP1/GAPDH, for sALS 

and controls samples respectively; Figure 5.5b+e).  However, in white matter of the motor 

cortex TDP1 levels in C9orf72 patient samples were not significantly different than in non- 

Figure 5.4: C9orf72 ALS patients have normal cerebellar Purkinje cell counts 

(a)  Representative image of cerebellar folia adjacent to the dentate gyrus.  The red 

dashed line indicates the Purkinje cell layer, from which Purkinje cells were counted.  

Scale bar = 2mm.  (b) Representative image showing three Purkinje cells in the Purkinje 

cell layer (red dashed line).  The red circles indicate Purkinje cells that would not be 

counted in the analysis as the nucleolus is not visible.  Whereas, the green circle indicates 

a Purkinje cell which would be included in the analysis as the nucleolus is visible.  Scale 

bar = 250µm.  (c) In the Purkinje cell layer adjacent to the dentate gyrus of the 

cerebellum, there is no significant difference in the number of Purkinje cells per mm in 

C9orf72 ALS patients as compared with non-ALS controls.  In order to control for potential 

cell shrinkage, only Purkinje neurons in which the nucleolus was visible were included in 

the analysis.  N=11 controls and 16 C9-ALS patients.  Statistical comparison was carried 

out using an unpaired t-test.  Data are shown as mean +/- standard deviation; ns: not 

significant. 
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Figure 5.5: TDP1 protein is upregulated in sALS and C9-ALS patient brains 

(a) In cerebellum grey matter, TDP1 protein is markedly increased in C9-ALS patient 

samples.  (b) In motor cortex white matter, TDP1 protein is markedly increased in sALS 

patient samples.  (c) In motor cortex grey matter, TDP1 protein is markedly increased in 

C9-ALS samples.  (d) Quantification shows that cerebellar grey matter TDP1 levels are 

significantly higher in C9-ALS samples compared to controls, when normalised to tubulin. 

This dataset was not normally distributes according to the Shapiro-Wilk test for normality 

and was therefore statistically compared using the Kruskal-Wallis test followed by Dunn’s 

post hoc test.  (e) Quantification shows that motor cortex white matter TDP1 levels are 

significantly higher in sALS samples compared (Legend continues on next page)              
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to controls, when normalised to tubulin.  Statistical comparisons were carried out using a 

one-way ANOVA with Dunnett’s post hoc test.  (f) Quantification shows that motor cortex 

grey matter TDP1 levels are significantly higher in C9-ALS samples compared to controls, 

when normalised to tubulin.  This dataset was not normally distributes according to the 

Shapiro-Wilk test for normality and was therefore statistically compared using the Mann-

Whitney U test.  For all samples, the patient code is listed above each sample (see table 

2.2 for full patient information).  All data are shown as mean +/- standard deviation; ns: not 

significant and *P < 0.05. 

 

neurological controls.  Finally, in the grey matter from the motor cortex, TDP1 levels in 

C9orf72 patients were significantly higher than in non-neurological disease controls (0.17 vs 

0.019 TDP1/tubulin, for C9orf72 patient samples and control samples respectively; Figure 

5.5c+f). 

Taken together, these data indicate that protein expression of the DNA repair protein TDP1 

is not inhibited by C9orf72 expansions, but is actually upregulated in C9orf72-ALS and 

sALS, depending on tissue type.  As it seems that loss of TDP1 function does not drive 

neurodegeneration in C9orf72-ALS, we next set out to investigate whether wtSOD1 

proteinopathy may be implicated in C9orf72 expansion pathology. 

 

 

5.6. C9orf72 expansions induce wtSOD1 and TDP-43 proteinopathy in disease 

relevant areas 

To date, the role of wtSOD1 pathology in ALS has typically been studied using misfolded-

SOD1 specific antibodies in histological CNS sections, which thus far have suggested that 

misfolded-wtSOD1 is not a component of pathology (Da Cruz et al., 2017).  To examine 

wtSOD1 pathology in ALS patients, we probed total protein lysates from brain samples with 

a conventional SOD1 antibody (not misfolded-SOD1 specific) raised against amino acids 1-

100 of the wtSOD1 protein.  We identified that a high molecular weight (HMW) form of SOD1 

detected at just above 35KDa, was significantly more abundant in white matter from motor 

cortex of  ALS patients, as compared to comparable regions in non-neurological-disease 

control samples (Figure 5.6a+b).  Fragmentation of TDP-43 is a common feature observed 

in the majority of ALS cases, this primarily results in the formation of 35KDa and 25KDa 

TDP-43 fragments (Inukai et al., 2008, Tsuji et al., 2012, Kametani et al., 2016).  Here, we 

focussed on the 35KDa fragment of TDP-43 (TDP-35) as this was more abundant in our 

samples.  We identified that TDP-35 was also significantly more abundant in white matter 

from motor cortex of C9orf72-ALS patients, as compared to comparable regions in non- 
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Figure 5.6: HMW-SOD1 and TDP-35 are increased in C9-ALS motor cortex white 
matter 

(a) A marked increase in 35KDa SOD1 and 35KDa TDP-43 immunoreactive bands is 

observed in C9-ALS samples.  (b) Quantification shows that the signal of 35KDa SOD1 

immunoreactive bands is significantly higher in C9-ALS patient samples compared with 

controls, when normalised to tubulin.  Statistical comparisons were carried out using a 

one-way ANOVA with Dunnett’s post hoc test.  (c) Quantification shows that the signal of 

35KDa TDP-43 immunoreactive bands is significantly higher in C9-ALS patient samples 

compared with controls, when normalised to tubulin. Statistical comparisons were carried 

out using a one-way ANOVA with Dunnett’s post hoc test. (d)  There is a significant 

correlation between normalised TDP-35KDa and SOD1-35KDa irrespective of genotype.  

Correlation was analysed using the Pearson correlation coefficient. For all samples, the 

patient code is listed above each sample (see table 2.2 for full patient information).  

Western blot quantification data are shown as mean +/- standard deviation; ns: not 

significant, *P < 0.05 and ****P < 0.0001. 

 

neurological-disease control samples (Figure 5.6a+c).  Intriguingly, we also observed that 

those patients who showed abundant TDP-35 also showed abundant HMW-SOD1.  Indeed, 

there was a strong positive correlation between the abundance of TDP-35 and the 

abundance of HMW-SOD1 across all white matter motor cortex samples (Figure 5.6d).   

Furthermore, in grey matter samples from the motor cortex, HMW-SOD1 protein was again 

significantly more abundant in C9orf72 patient samples as compared with non-neurological 

disease control samples (Figure 5.7a+b).  Likewise, in grey matter samples from the motor 

cortex fragmented TDP-43 was also significantly more abundant in C9orf72 patient samples 

in comparison to non-neurological disease control samples (Figure 5.7a+c).  Similarly to 

findings from white matter, samples from grey matter of the motor cortex also showed a 

strong positive correlation between the abundance of TDP-35 and the abundance of HMW-

SOD1 (Figure 5.7d). 
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In order to identify whether HMW-SOD1 and TDP-35 pathology is specific to disease 

affected areas, we also examined the abundance of these molecular species in cerebellum 

tissue.  The abundance of HMW-SOD1 was not significantly different between either sALS 

or C9orf72-ALS patients when compared to non-neurological-disease controls, in grey 

matter samples from the cerebellum (Figure 5.8a+b).  Similarly, the abundance of TDP-35 

was not significantly different between either sALS or C9orf72-ALS patients and non-

neurological-disease controls, when examined in grey matter samples from the cerebellum 

(Figure 5.8a+c).  Interestingly, despite no change in the abundance of HMW-SOD1 and 

TDP-35 in cerebellum samples, there was still a strong positive correlation between the two 

molecular species (Figure 5.8d).  This suggests that there may be a fundamental 

association between TDP-35 and HMW-SOD1, even under non-pathological conditions.  

This human pathological tissue data suggests that there may be a link between C9orf72 and 

SOD1 ALS pathologies. 

 

 

 

 

 

Figure 5.7: HMW-SOD1 and TDP-35 are increased in C9-ALS motor cortex grey 
matter 

(a) A marked increase in 35KDa SOD1 and 35KDa TDP-43 immunoreactive bands is 

observed in C9-ALS samples.  (b) Quantification shows that the signal of 35KDa SOD1 

immunoreactive bands is significantly higher in C9-ALS patient samples compared with 

controls, when normalised to tubulin. This dataset was not normally distributed according 

to the Shapiro-Wilk test for normality and was therefore statistically compared using the 

Mann-Whitney U test.  (c) Quantification shows that the signal of 35KDa TDP-43 

immunoreactive bands is significantly higher in C9-ALS patient samples compared with 

controls, when normalised to tubulin. This dataset was not normally distributes according 

to the Shapiro-Wilk test for normality and was therefore statistically compared using the 

Mann-Whitney U test.  (d)  There is a significant correlation between normalised TDP-

35KDa and SOD1-35KDa irrespective of genotype.  Correlation was analysed using the 

Pearson correlation coefficient. For all samples, the patient code is listed above each 

sample (see table 2.2 for full patient information).  Western blot quantification data are 

shown as mean +/- standard deviation; *P < 0.05 and ****P < 0.0001. 
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Figure 5.8: No difference in HMW-SOD1 and TDP-35 in C9-ALS cerebellum grey 
matter 

(a) Similar levels of 35KDa SOD1 and 35KDa TDP-43 immunoreactive bands are 

observed across all three groups.  (b) Quantification shows that the signal of 35KDa 

SOD1 immunoreactive bands is not significantly different between all three groups, when 

normalised to tubulin.  Statistical comparison were carried out using a one-way ANOVA 

with Dunnett’s post hoc test.  (c) Quantification shows that the signal of 35KDa TDP-43 

immunoreactive bands is not significantly different between all three groups, when 

normalised to tubulin. Statistical comparison were carried out using a one-way ANOVA 

with Dunnett’s post hoc test. (d)  There is a significant correlation between normalised 

TDP-35KDa and SOD1-35KDa irrespective of genotype. Correlation was analysed using 

the Pearson correlation coefficient. For all samples, the patient code is listed above each 

sample (see table 2.2 for full patient information). Western blot quantification data are 

shown as mean +/- standard deviation; ns: not significant and ****P < 0.0001. 

 

 

5.7. Discussion 

Unexpectedly, poly(PR) levels were significantly higher in sALS patient motor cortex white 

matter samples, although this increase was predominately driven by a single sample.  There 

are exactly 24 hexanucleotide sequences which could potentially encode poly(PR) proteins, 

G4C2 is only 1 of these.  Therefore it may be beneficial to screen sALS patients for additional 

DNA repeat expansions in other genetic loci which may also be causative of ALS/FTD.  It is 

noteworthy that the nature of DNA repeat expansions made C9orf72 hexanucleotides 

difficult for researchers to detect with traditional techniques and therefore allowed them to 

remain hidden for many years. 

A wider variety of DPR species were detectable in cerebellum grey matter samples from 

C9orf72 patients (poly(GA+GP+PR) detectable) vs motor cortex white matter samples from 

C9orf72 patients (only poly(GA) detectable).  Additionally, poly(GA) levels in cerebellum (300 

fold higher than sALS cerebellum samples) were markedly higher than levels in motor cortex 

(8 fold higher than sALS cerebellum samples).  This is consistent with other reports of higher 

DPR expression in the cerebellum compared with other brain regions (Mackenzie et al., 

2013, Mann et al., 2013, Baborie et al., 2015, Davidson et al., 2016).   

Despite substantial DPR load, the number of cerebellar Purkinje neurons was not decreased 

in C9orf72 patient brains.  Purkinje cells were originally selected as a readout of cerebellar 

neurodegeneration as they are the largest neurons in the cerebellum, and therefore may be 
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more susceptible to DPR mediated dysregulation.  The theory that large cell types may have 

increased susceptibility to certain pathologies has been suggested in an attempt to explain 

why motor neurons are selectively lost in ALS cases.  However, in the case of the C9orf72-

ALS patients studied presently, large Purkinje neurons suffered no decrease in cell number 

despite DPR loads in local regions.  Previous studies indicate that multiple DPR species are 

detectable in molecular, granular and Purkinje cells of the cerebellum of C9orf72 patients 

(Mackenzie et al., 2013, Mackenzie et al., 2015, Saberi et al., 2017).  This may suggest that 

resistance of cerebellar neurons to DPR mediated pathology may be conferred due to 

epigenetic differences in gene regulation in these types of neurons in comparison with 

ALS/FTD affected motor neurons and pyramidal neurons.  The precise gene expression 

profile which may confer DPR resistance to cerebellar neurons may be investigated in the 

future by using laser capture followed by single cell RNA sequencing to determine 

transcriptomic profile differences between Purkinje cells and motor neurons.  Additionally, 

counting of cerebellar granule or molecular cell layer neurons may be informative as to 

whether sub-populations of neurons in the cerebellum are differentially susceptible to 

C9orf72 expansion mediated toxicity. 

Upregulation of HMW-SOD1 and fragmented TDP-43 was also discovered in motor cortex 

grey and white matter from C9orf72-ALS patients.  The nature of these species is discussed 

at length in chapter 6.  Most interestingly, the abundance of HMW-SOD1 strongly correlated 

with levels of fragmented TDP-43 in all tissue types tested, including non-neurological 

control tissue and tissue from disease unaffected areas.  This correlation therefore appears 

to be fundamental and occurs regardless of other pathological features.  This suggests that 

fragmented TDP-43 may induce expression of HMW-SOD1 or vice versa (also discussed 

further in chapter 6).  However, it is important at this point not to rule out that there may be a 

third, currently unknown species, which drives expression of both fragmented TDP-43 and 

HMW-SOD1 simultaneously.    
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6. Chapter 6: Discussion 
6.1. RNA foci vs DPR toxicity 

We have generated two distinct types of C9orf72 zebrafish, these are RNA-only and 

RNA+DPR zebrafish models.  Our RNA-only zebrafish express RNA foci and GFP protein 

(GFP detectable in embryonic and adult tissues).  Despite sustained transgene expression, 

no DPRs could be detected in RNA-only zebrafish at adulthood.  In this respect, RNA-only 

zebrafish were successful in segregating RNA foci and DPR expression.  Additionally, the 

highest expressing RNA-only zebrafish did not show any reduction in survival or underlying 

reduction in swimming endurance at 26 months (although a mild hyper activity phenotype 

was detected at 5dpf).  These data are consistent with previous reports indicating that RNA 

foci expression alone is not sufficient to produce a toxic phenotype in drosophila models 

(Mizielinska et al., 2014, Tran et al., 2015).  Conversely, another report identified RNA foci 

mediated toxicity in zebrafish even when the absence of DPRs was confirmed (Swinnen et 

al., 2018).  These data suggest that C9orf72 expansion RNA may have to be expressed 

above a certain threshold for toxicity to be observed. 

The second type of zebrafish generated were RNA+DPR zebrafish.  These zebrafish 

showed RNA foci and RAN-translated DPR expression.  RNA+DPR zebrafish also exhibited 

increased average speed of movement and increased total distance moved at 5dpf in 

comparison to NTG zebrafish.  The identification of a hyperactivity phenotype in both RNA-

only and RNA+DPR zebrafish at 5dpf was unexpected.  The cause of this early hyperactivity 

phenotype remains unclear, although motor neuron hyperexcitability has been previously 

reported in the early stages of ALS and is thought to contribute to the fasciculations 

characteristic of ALS onset in many patients (Iwai et al., 2016).  RNA+DPR zebrafish also 

exhibited centre avoidance behaviour at 5dpf.  This suggests an unwillingness to explore the 

environment and is consistent with similar results from open field tests conducted in RNA 

foci and DPR expressing C9orf72 BAC transgenic mice (Liu et al., 2016).  These features 

then progressed to reduced body mass, reduced swimming endurance, motor neuron loss, 

muscle atrophy and early mortality.  These data are consistent with the motor neuron loss 

and early mortality reported in a BAC transgenic mouse model expressing RNA foci and 

DPR species (Liu et al., 2016), as well as the motor deficits reported in two independently 

generated virally transduced mouse models expressing RNA foci and DPR species (Chew et 

al., 2015, Herranz-Martin et al., 2017). 

It is important to highlight that RNA-only and RNA+DPR zebrafish have different C9orf72 

expansion orientations (G4C2 and C4G2 respectively) and different expansion lengths (99 

repeats and 89 confirmed repeats respectively).  The presence of uncontrolled variables 

makes direct comparison of RNA-only and RNA+DPR zebrafish more difficult.  For example, 
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comparison of RNA foci abundance and distribution between the two lines was not possible 

as two different in situ hybridisation RNA probes with potentially different 

affinities/specificities were required.  For these reasons it is difficult to make precise 

comparisons between the molecular pathologies of the RNA-only and RNA+DPR zebrafish 

reported here.  However, it is reasonable to conclude that within our zebrafish models, 

expression of RNA foci + DPR species cause a more severe phenotype than expression of 

RNA foci alone.   

Other in vivo model data supports the conclusion that RNA foci + DPR expression is more 

potently toxic than RNA foci alone (Mizielinska et al., 2014, Tran et al., 2015, Ohki et al., 

2017).  It is possible that RNA foci contribute towards toxicity to a lesser extent than DPRs, 

or that RNA foci and DPRs act additively/synergistically to generate toxicity (2 hits theory).  

Certainly, previous data in zebrafish models suggest that RNA foci and DPR may both 

contribute towards toxicity via independent mechanisms (Swinnen et al., 2018).  It is 

important to note that use of alternate codons have allowed DPR species to be encoded 

without use of G4C2 C9orf72 RNA (Mizielinska et al., 2014).  However, alternate codons 

encoding DPR species still require expression of repetitive exogenous RNA species, and 

therefore do not fully eliminate the potential of RNA mediated toxicity.  Therefore, data 

presented here and previously, indicate that DPR and RNA foci are both toxic in C9orf72 in 

vivo models, with DPR presence usually correlating with a more severe phenotype. 

 

6.2. Zebrafish DPR expression profiles 

Western blotting of RNA+DPR zebrafish lysates revealed that multiple DPR species were 

present, producing a laddered appearance.  Both sense and antisense DPRs were detected, 

and DPRs could be produced via both conventional ATG-driven translation and RAN-

translation.  Detection of species of varying MW has also been reported during RAN-

translation of CAG repeats (Zu et al., 2011), and during RAN-translation of GGGGCC in C9-

ALS patients (Zu et al., 2013).  In both previously mentioned cases the RAN-translation 

products formed a smear rather than distinct laddered protein bands as in our C9-zebrafish.  

The reason for this discrepancy may be due to the interruptions in the CCCCGG sequence 

used to generate our model causing the translation machinery to uncouple, thus consistently 

producing protein species of the same size.  It is also possible that due to instability of the 

repeat DNA, multiple concatemerised transgene copies may contain variable repeat lengths 

and could therefore be producing multiple RNA transcripts of variable length, and thus 

multiple DPRs of variable length.  Certainly, this reasoning may also explain why different 

DPR band expression profiles are observed between 2.2-2 and 2.2-7 zebrafish.   
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More RAN-translation mediated bands were detected in adult 2.2-7 zebrafish CNS 

compared to adult 2.2-2 zebrafish CNS.  Additionally, poly(GA) expression was only 

detected in 5dpf 2.2-7 zebrafish, suggesting that bidirectional transcription is only occurring 

in 2.2-7 zebrafish.  It is not currently known whether bi-directional transcription and 

increased formation of RAN-translation products during adulthood may be partially 

responsible for the increased toxicity observed in the 2.2-7 zebrafish line.  Activation of 

cellular stress pathways has been shown to potentiate RAN-translation, potentially forming a 

feedforward loop (Green et al., 2017, Cheng et al., 2018).  Given that heat shock stress 

activation is higher in 2.2-7 zebrafish, this may potentiate RAN-translation thus resulting in 

the observed increased number of bi-directionally transcribed and RAN-translated products, 

in comparison to 2.2-2 zebrafish.  Whether activation of the heat shock response influences 

RAN-translation efficiency in 2.2 zebrafish is an interesting line of investigation for the future.  

Interestingly, poly(PR) species were detected at higher MWs than other DPR species.  In the 

future, it may be important to investigate whether poly(PR)s tendency to form high MW 

species is related to its potent in vivo toxicity. 

 

6.3. Use of interrupted C9orf72 expansions 

Both RNA+DPR model zebrafish lines contained an interrupted C4G2 transgene construct.  

The advantages in using this construct are: 1) Only anti-sense RNA foci have been found to 

co-localise with TDP-43 mislocalisation (a common molecular hallmark of neurodegeneration 

in ALS) (Cooper-Knock et al., 2015b).  2) Anti-sense repeats will produce a greater 

proportion of the highly toxic proline-arginine repeat peptide (Mizielinska et al., 2014) and 3) 

Interruptions in the expansion allow for largely equal expression levels of all three anti-sense 

DPR proteins.   

There are also potential disadvantages of using interrupted C9orf72 expansions. 

Interruptions may increase the biochemical stability of DNA/RNA in comparison to pure 

repeat expansion DNA/RNA.  Although, interrupted C9orf72 expansions and pure repeat 

expansions are reported to produce similar levels of RNA foci, it has also been noted that 

larger expansions are more stable when interruptions are present (Mizielinska et al., 2014).  

This suggests that interruptions in C9orf72 expansions may alter DNA/RNA structure, which 

could potentially influence the affinity with which RNA foci sequester RNA-binding proteins.  

Additionally, there is conflicting evidence as to whether interrupted expansions increase or 

decrease genomic instability once incorporated into genomic DNA in a cellular setting,  

which further suggests that there are fundamental differences in the biochemical properties 

of interrupted and pure repeat expansions (Ananda et al., 2014, Landrian et al., 2017).  A 

further disadvantage of the use of interrupted repeats is that frameshifting interruptions will 
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result in all three DPR species (either 3 sense orientation or 3 antisense orientation DPRs) 

being encoded into a single protein.  DPR species have distinct biochemical properties.  In 

drosophila models where DPR proteins are individually expressed, poly(PR) localises to the 

nucleus, whereas poly(PA) and poly(GP) primarily localise to the cytoplasm (Mizielinska et 

al., 2013, Tran et al., 2015).  In contrast, in the 2.2 zebrafish reported in this thesis, all three 

antisense DPR species are expressed in a single protein, and all three antisense DPRs are 

primarily localised to the nucleus (likely due to the biochemical nature of the poly(PR) 

containing regions of this protein).  This is an example of how frameshifting interruptions can 

result in the production of protein species which have distinct characteristics from protein 

species encoded by pure repeat expansions. 

Due to the technical difficulty of sequencing large DNA repeat expansions, it is currently 

unknown whether C9orf72 expansion bearing patients possess interrupted repeats or pure 

repeats.  Notably, other repeat expansion disorders such as spinocerebellar ataxia are 

known to contain interruptions in some cases (Chung et al., 1993).  Ultimately, 

improvements in DNA expansion sequencing technologies which allow the presence or 

absence of interruptions in C9orf72 patient repeats to be confirmed will likely inform whether 

future C9orf72 expansion models should contain interrupted or pure C9orf72 expansions.   

 

6.4. Gain of function or loss of function mechanisms as drivers of C9orf72-

ALS/FTD 

Both RNA foci and DPR protein production are gain of function mechanisms of potential 

toxicity in C9orf72 expansion ALS.  However, an additional toxic mechanism proposed for 

C9orf72 expansion ALS/FTD, is loss of function of C9orf72 endogenous gene products 

leading to haploinsufficiency.  This mechanism was first proposed after the observation that 

mRNA encoding C9orf72 endogenous protein products was reduced in expansion bearing 

patients (DeJesus-Hernandez et al., 2011).  Furthermore, recent mass spectrometry 

analysis revealed decreased expression of the long isoform of the C9orf72 protein in the 

frontal cortex of C9orf72 expansion harbouring FTD patients (Viode et al., 2018).  Loss of 

C9orf72 protein function in two transient zebrafish models, and a stable C9orf72-knockout C. 

elegans model, all resulted in motor neuron pathologies (Ciura et al., 2013, Therrien et al., 

2013, Yeh et al., 2018).  Conversely, early data from stable C9orf72 knockout zebrafish 

suggest that no neurodegenerative or motor phenotype is observed (Stepto et al., 2014).  

Indeed, it has been reported that the transient knockdown phenotype observed in zebrafish 

is often not consistent with the phenotype exhibited upon stable knockout of the same gene 

(Kok et al., 2015).  Furthermore, multiple C9orf72 loss of function mouse models did not 

display any ALS/FTD phenotype (Koppers et al., 2015, Atanasio et al., 2016, Jiang et al., 
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2016, O'Rourke et al., 2016, Sudria-Lopez et al., 2016, Ji et al., 2017).  Moreover, multiple 

C9orf72 expansion gain of function mouse models have accurately recapitulated key 

disease features of ALS/FTD (O'Rourke et al., 2015, Liu et al., 2016, Herranz-Martin et al., 

2017, Walker et al., 2017).  Taken together, the conflicting data from in vivo models of 

C9orf72 loss of function, and the success of gain of function mouse models in recapitulating 

key features of ALS/FTD have caused haploinsufficiency of the C9orf72 protein to fall out of 

favour as a proposed driving mechanism of ALS/FTD.   

Some researchers argue that, although haploinsufficiency of the C9orf72 protein is unlikely 

to drive ALS/FTD progression, it may be a modifier of RNA/DPR toxicity (Webster et al., 

2016b, Nassif et al., 2017, Shi et al., 2018).  The C9orf72 protein itself has been identified as 

being crucial in the initiation of autophagy (Farg et al., 2014, Sellier et al., 2016, Webster et 

al., 2016a).  Importantly, C9orf72 knockout mice have been reported to show impaired 

autophagy functioning (Ji et al., 2017), and impaired autophagy has been associated with 

ALS causative genetic mutations in SQSTM1 and UBQLN2 genes (Goode et al., 2016, 

Osaka et al., 2016).  Taken together, these data form the basis of the argument that 

haploinsufficiency of the C9orf72 protein may cause defects in normal autophagy processing 

which can potentially augment RNA/DPR mediated toxicity.  In line with this, induced motor 

neurons from C9orf72 patients, exhibit reduced autophagy-mediated clearing of DPR 

aggregates, which has been identified as contributing toward neurodegeneration (Shi et al., 

2018).  Moreover, knockout of the mouse orthologue of the C9orf72 gene in the background 

of a previously described BAC transgenic mouse expressing human C9orf72 expansions 

with flanking regulatory regions (Liu et al., 2016), caused a more severe motor phenotype in 

these mice (Shao et al., 2019).  However, most C9orf72 patients are heterozygous for the 

hexanucleotide expansion, and therefore retain a single wildtype functional copy of the 

C9orf72 gene.  Therefore, patients homozygous for C9orf72 hexanucleotide expansions may 

be expected to show an even greater reduction of C9orf72 endogenous protein and 

therefore more severe autophagy defects, thus modifying RNA/DPR toxicity to produce more 

severe clinical outcomes.  However, a case report of a single patient with homozygous 

C9orf72 expansions displayed a clinical profile which was within the expected pattern of 

disease progression of heterozygous patients, thus suggesting that homozygous reduction 

of C9orf72 protein production did not further augment RNA/DPR toxicity in this case (Fratta 

et al., 2013).  A possible experiment to resolve this issue, would be to measure C9orf72 

protein/mRNA levels in disease affected areas of post-mortem ALS/FTD patient CNS tissue, 

and test whether C9orf72 expression levels correlate with severity of clinical outcome.   
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6.5. Clinicopathological correlations of DPRs in ALS/FTD 

A significant obstacle in our understanding of the driving pathomechanisms of C9orf72-

ALS/FTD is the relative lack of DPR pathology in disease affected regions.  In vivo models of 

C9orf72-ALS/FTD, including the present study, have clearly identified that DPR species are 

more toxic than RNA foci alone (Mizielinska et al., 2014, Tran et al., 2015, Ohki et al., 2017).  

However, multiple neuropathological studies have identified that DPR burden in disease 

affected areas (spinal cord, motor cortex, frontal cortex and temporal cortex) is typically 

lower in comparison to disease unaffected areas (basal ganglia and cerebellum) of C9orf72-

ALS/FTD patients (Mackenzie et al., 2013, Mann et al., 2013, Baborie et al., 2015, Davidson 

et al., 2016).  A potential explanation is that neurons exhibiting substantial DPR burden in 

disease affected areas may have completely degenerated when end-stage ALS/FTD is 

reached, and are therefore not detectable in post-mortem tissues.  This argument however 

does not explain why areas such as the cerebellum have a substantial DPR load, yet in the 

present study and a previous study, cerebellar DPR load did not correlate with significant 

neurodegeneration (Mackenzie et al., 2013).  As discussed previously, this may indicate a 

difference in the ability of different neuronal sub-populations to resist DPR-mediated toxicity.  

Investigation of the transcriptomic and epigenetic differences between affected and 

unaffected CNS regions in ALS/FTD patients is an attractive option to highlight pathways for 

potential therapeutic modulation.  More recently, poly(GR) DPR species have been identified 

to correlate with neurodegeneration in C9-ALS patients (Saberi et al., 2017, Sakae et al., 

2018).  Additionally, the majority of poly(GR) DPR inclusions were also positive for TDP-43 

(Saberi et al., 2017).  TDP-43 positive inclusions have also previously been shown to 

correlate with the extent of neurodegeneration in C9orf72-ALS/FTD post-mortem tissue 

(Mackenzie et al., 2013).  Taken together, these data indicate that most DPR species show 

poor spatial correlation with neurodegeneration and TDP-43 proteinopathy, with the 

exception of poly(GR).  This suggests that further studies should be directed towards 

studying poly(GR) specific mechanisms of toxicity.   

In order to compare the spatial distribution of various DPR species, most neuropathological 

studies rely heavily on immunohistochemical staining and occasionally western blotting 

using standard protocols (Mackenzie et al., 2013, Mann et al., 2013, Baborie et al., 2015, 

Mackenzie et al., 2015, Davidson et al., 2016, Saberi et al., 2017).  Whilst analysing CNS 

DPR levels in the present study, both immunohistochemical staining and western blotting 

were attempted, but both techniques resulted in difficult to interpret results in which control 

samples showed apparently high levels of DPR-like inclusions and multiple protein bands.  

Eventually, dot blotting tissue lysates under a vacuum was utilised as this method was able 

to detect significantly higher signal in C9orf72 patient cerebellum samples compared to 



142 
 

sALS or non-neurological control samples.  This may be because dot blotting removes the 

opportunity for DPR species to become trapped in western blot gels during electrophoresis.  

However, dot blotting of samples also has limitations due to an inability to separate specific 

and non-specific protein species bound by DPR antibodies (see section 5.7 for a full 

discussion of limitations of the dot blot technique).  The limitations of current DPR detection 

techniques highlights the need for the development of more sensitive DPR detection 

methods.  More sensitive detection methods will help reveal whether disease affected areas 

such as spinal cord may be expressing low levels of DPR species.  Additionally, multiple 

lysis buffers were tested when optimising DPR extraction from both zebrafish and human 

tissues.  Conventional RIPA or even high triton X-100 buffers were found to be inadequate 

when attempting to extract DPR species.  Furthermore, DPR species were found to readily 

pellet out during centrifugation.  For these reasons, tissue was lysed directly in loading buffer 

and no centrifugation step was used (see section 2.2.7 for lysis method details).  These 

techniques allowed much more sensitive detection of both zebrafish and human DPRs and 

may therefore be worthwhile to be adopted in future studies in replacement of standard lysis 

protocols.   

 

6.6. The heat shock response in ALS 

The heat shock response involves the up-regulation of heat shock proteins in response to 

the presence of aberrant cellular proteins in an attempt to refold, or target these aberrant 

proteins for degradation (Dedmon et al., 2005, Bukau et al., 2006).  Activation of the heat 

shock response was observed to some degree in both RNA-only and RNA+DPR zebrafish.  

Normalising for transgene expression levels by comparing ratios of DsRed:GFP between 

lines showed that both RNA+DPR zebrafish had significantly higher hsp70 promoter 

mediated production of DsRed, as compared with all RNA-only zebrafish lines.  These data 

suggest that DPRs drive heat shock activation more potently than RNA foci alone.  

Additionally, activation of the heat shock response was also detected in post-mortem 

cerebellum samples from C9orf72-ALS/FTD patients.  This is in line with previous reports, 

which identified activation of the heat shock response at the RNA level, in both cerebellum 

and frontal cortex of C9orf72-ALS/FTD patients (Prudencio et al., 2015, Mordes et al., 2018).  

Furthermore, the ALS causative G93R mutant SOD1 protein causes activation of the heat 

shock response in zebrafish (McGown et al., 2013). 

The G93R SOD1-ALS model zebrafish described previously also contained the same 

hsp70:DsRed drug screening construct used in the C9orf72 zebrafish reported in this thesis 

(Ramesh et al., 2010).  In the SOD1 zebrafish, treatment with riluzole (a disease modifying 

ALS treatment) ameliorated the extent of heat shock response activation (McGown et al., 
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2013).  Therefore, in SOD1 zebrafish, heat shock promoter mediated DsRed production was 

used as a disease biomarker against which to screen potentially therapeutic compounds.  

Approximately 2000 compounds have now been screened using these SOD1-ALS zebrafish 

models, and two of the top hits identified were the compounds ivermectin and selamectin 

(Ramesh lab, unpublished data).  Taking this into consideration, riluzole, ivermectin and 

selamectin were also tested in C9orf72 model zebrafish, and were shown to ameliorate heat 

shock promoter mediated DsRed production.  Ivermectin has previously been administered 

to SOD1-ALS transgenic mouse models by an independent lab, and was found to increase 

survival in these mice (Andries et al., 2007).  These data further demonstrate that 

compounds identified by hsp70:DsRed screening in zebrafish show genuine potential as 

prospective ALS treatments.  Ivermectin has been demonstrated to both ameliorate 

excitotoxicity and block specific nuclear importers, although the precise mechanism of the 

therapeutic properties of ivermectin in ALS models is not currently known (Andries et al., 

2007, Wagstaff et al., 2012).  Determining the mechanism of action of both selamectin and 

ivermectin in ALS models will be an important next step, which would allow additional 

compounds acting via similar mechanisms to be assessed in ALS models. 

However, there are also limitations to the use of the heat shock response as a drug 

screening readout for ALS.  As the drug screening readout relies upon hsp70 promoter 

mediated production of DsRed, it is possible that hits identified in each drug screen may 

mediate their effect by directly blocking heat shock response activation (through blocking 

transcription factor binding at the hsp70 promoter or by other means), rather than by 

reducing cellular stress.  Similarly, it is also possible that increased heat shock activation in 

ALS models and patient tissue is caused by disease associated mechanisms which are not 

directly related to disease progression.  In this case, drugs which reduce heat shock 

response activation would be unlikely to have significant therapeutic benefit to ALS patients.  

Both of the above mentioned limitations of the hsp70:DsRed drug screening system may be 

addressed by secondary validation of identified drugs using a phenotypic readout.  A simple 

paradigm which may address the limitations of the hsp70:DsRed system, would be to 

conduct higher throughput screening of compounds using the hsp70:DsRed system in 

zebrafish, and then to validate the top hits from these screens using survival, or time until 

onset of motor symptoms in ALS model zebrafish or mice as a phenotypic readout. 

In summary, activation of the heat shock response in C9orf72-ALS patient post-mortem 

tissue has been reported by two independent sources, and amelioration of heat shock 

activation by treatment with riluzole, ivermectin or selamectin can be achieved in in vivo 

models of two distinct genetic sub-types of ALS.  These data suggest that heat shock 

response activation may be a robust readout for identifying hits from compound libraries in 
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C9orf72 and SOD1-ALS zebrafish, before secondary validation of identified hits by 

phenotypic readouts. 

 

6.7. DNA damage and neurodegeneration in ALS 

The DNA damage response associated proteins PARP1 and TDP1 were identified as 

potential targets for investigation in C9orf72-ALS/FTD pathology due to their known role in 

other neurodegenerative disorders (El-Khamisy et al., 2005, Hoch et al., 2017), and the 

known involvement of DNA damage in C9orf72-ALS/FTD (Lopez-Gonzalez et al., 2016, Farg 

et al., 2017, Walker et al., 2017).  We did not find any evidence for over-activation of PARP1 

driving C9orf72-ALS/FTD pathogenesis.  Unexpectedly, PARP1 inhibition with olaparib had 

a detrimental effect on the survival of 2.2-7 C9orf72 zebrafish, and seemed to be selectively 

toxic to 2.2-7 zebrafish and not NTG zebrafish at lower doses.  These data indicate that 

PARP1’s crucial role in recruiting DNA repair factors to local DNA lesions was likely 

protective in C9orf72 zebrafish rather than detrimental as previously thought (Ciccia and 

Elledge, 2010).  Moreover, we did not find evidence of loss of TDP1 function, the reported 

cause of neurodegeneration in SCAN-1 patients (El-Khamisy et al., 2005).  Rather, TDP1 

protein was found to be upregulated in grey matter samples of cerebellum and motor cortex 

in C9orf72 patients and in white matter samples from motor cortex of sALS patients.  Taken 

together, these data support the notion that C9orf72 expansions cause DNA damage, and 

also suggest that a component of DNA damage may be present in sALS patient tissue.  

Finally, over activation of PARP1 or loss of TDP1 function are not likely candidates as 

drivers of ALS/FTD pathogenesis. 

 

6.8. Relationship between C9orf72 expansions, TDP-43 and SOD1 

A contentious question that is raised within ALS research, is whether a common mechanism 

exists which accounts for the pathogenesis of multiple ALS-subtypes.  Nearly all sporadic 

and familial (except SOD1-ALS and FUS-ALS) ALS cases show ubiquitinated cytoplasmic 

TDP-43 positive aggregates which co-localise with disease affected areas (Arai et al., 2006, 

Neumann et al., 2006, Mackenzie et al., 2007, King et al., 2015).  However, the role of SOD1 

in non-SOD1 ALS is more controversial, with multiple studies reporting 

misfolded/aggregated SOD1 in spinal cord tissue from sALS patients (Bosco et al., 2010, 

Forsberg et al., 2010, Pokrishevsky et al., 2012, Grad et al., 2014), and multiple other 

studies refuting this finding (Kerman et al., 2010, Brotherton et al., 2012, Liu et al., 2012, 

Ayers et al., 2014, Da Cruz et al., 2017).   

In the present study, HMW-SOD1 protein was found to be significantly more abundant in 

post-mortem white and grey matter motor cortex of C9orf72-ALS patients.  This is in line with 
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a recent study which identified misfolded SOD1 staining in the CNS of 15 C9orf72-ALS/FTD 

cases (10/15 of these cases showed positive misfolded SOD1 staining in the motor cortex) 

(Forsberg et al., 2019).  The reason why SOD1 forms HMW species in C9orf72 patient 

motor cortex is not known.  Although, formation of high molecular weight species has also 

been reported in cell models expressing multiple variants of mutant SOD1 protein (Brown 

and Borchelt, 2014).  HMW-SOD1 species also showed a non-significant increase in sALS 

patient samples from motor cortex white matter.  Given that the increase in HMW-SOD1 in 

C9orf72 patient samples was much clearer in grey matter motor cortex, it will be vital to 

examine HMW-SOD1 expression in this region of sALS patients also.  Additionally, we 

confirmed a previous report of increased abundance of fragmented TDP-43 in the frontal 

cortex of C9orf72-ALS patients (Tsuji et al., 2012).  Unexpectedly, fragmented TDP-43 was 

not increased in white matter motor cortex samples from sALS patients, and future 

investigation of grey matter samples from these patients will be of vital importance.  

Importantly, both HMW-SOD1 and fragmented TDP-43 pathology were only more abundant 

in the motor cortex of C9orf72 patients, and not in the cerebellum, indicating that both 

proteinopathies were specific to disease affected areas of C9orf72-ALS patients.   

Interestingly, in all analysed post-mortem tissues, there was a strong positive correlation 

between fragmented TDP-43 and HMW-SOD1, thus suggesting that there may be a 

fundamental association between the two species.  It has previously been reported that 

TDP-43 proteinopathy can induce wtSOD1 pathology in cultured cells (Pokrishevsky et al., 

2012, Pokrishevsky et al., 2016).  Certainly, this mechanism may explain why TDP-43 

pathology is rarely observed in fALS patients harbouring a mutation in the SOD1 gene 

(Mackenzie et al., 2007).  As a SOD1 mutation may be sufficient to alter SOD1 protein 

conformation, TDP-43 proteinopathy may no longer be a prerequisite for the initiation of 

SOD1 proteinopathy.  It is important to note that, the presence of wtSOD1 pathology in ALS 

remains highly controversial, and whether TDP-43 proteinopathy may induce wtSOD1 

pathology in ALS patients would require much further investigation of the temporal 

relationship between the two proteinopathies.  Furthermore, correlation of fragmented TDP-

43 and HMW SOD1 protein levels does not prove that one species induces the expression 

of the other, as it is also possible that another currently unknown process may drive 

expression of both fragmented TDP-43 and HMW SOD1 simultaneously.  The finding of 

SOD1 pathology in C9orf72 patients is of particular importance, due to the ongoing SOD1 

antisense oligonucleotide clinical trials being conducted in ALS patients with SOD1 

mutations (clinical trial identifier: NCT03070119).  It remains to be seen whether 

manipulation of SOD1 protein levels in patients with C9orf72-ALS may confer therapeutic 

benefit. 
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A final note on SOD1 and TDP-43 proteinopathies in ALS, is that previous studies have 

relied very heavily upon the use of immunohistochemical staining and misfolded SOD1 

specific antibodies.  In the present study we used a conventional SOD1 antibody (not 

misfolded-SOD1 specific) raised against amino acids 1-100 of the wtSOD1 protein to detect 

pathological HMW-SOD1.  Previous studies have indicated that use of misfolded SOD1 

specific antibodies would be unlikely to detect these HMW-SOD1 species, even when native 

gels are utilised to maintain endogenous protein structure (Brown and Borchelt, 2014).  

Additionally, western blotting of protein samples is a much more efficient and quantitative 

method to use when analysing the extent of TDP-43 proteinopathy.  Furthermore, use of 

misfolded SOD1 specific antibodies has led to the publication of conflicting data.  For these 

reasons, future studies could also include western blotting with conventional antibodies as a 

potentially more quantitative method of assessing both SOD1 and TDP-43 proteinopathy. 

 

6.9. Conclusions 

The body of in vivo and in vitro evidence from various C9orf72 expansion models is now 

clearly pointing toward DPRs being the most toxic species in C9orf72-ALS/FTD.  RNA foci 

formation almost certainly contribute to toxicity in C9orf72 models also, but the presence of 

DPR species are often required for toxicity to be observed, suggesting a second hit may be 

required in order to overwhelm the cells compensatory mechanisms.  Future therapies such 

as antisense oligonucleotides against RNA foci are a very attractive option, as they would 

allow for the simultaneous reduction of both RNA and DPR burden.  Haploinsufficiency of 

the C9orf72 protein seems unlikely as a disease driving mechanism and does not represent 

an easily druggable target.  As such therapies addressing loss of function of the C9orf72 

protein may be a less valuable prospect.  The obstacle of DPR protein expression not 

correlating with disease affected CNS regions is slowly being overcome, as careful analysis 

of poly(GR) has highlighted its correlation with disease affected regions and TDP-43 

proteinopathy.  The development of more sensitive detection methods for DPR species will 

be required before low level expression of DPRs in disease affected areas can be entirely 

ruled out. 

Activation of the heat shock response is a feature of both SOD1 and C9orf72-ALS.  

Additionally, heat shock activation has successfully been used to identify riluzole as a hit in 

both SOD1 and C9orf72 zebrafish models, thus validating heat shock activation as a good 

quality readout against which potential therapeutic compounds can be screened. 

C9orf72 expansions drive fragmentation of TDP-43 and SOD1 proteinopathy, and increased 

abundance of these species was detected in motor cortex, but not in cerebellum of C9orf72-

ALS patients.  Although the study of TDP-43 and SOD1 proteinopathy as a common ALS 
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mechanism seems to have fallen out of favour recently, future studies should carefully 

consider the roles of these pathological species.  If indeed it exists, finding a common 

mechanism for ALS pathogenesis may allow for the development of neuroprotective 

therapies targeted against multiple sub-types of ALS/FTD. 

 

 

 

  



148 
 

8. Bibliography 
 

Abe, K., Aoki, M., Tsuji, S., et al. Safety and efficacy of edaravone in well defined patients 
with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled 
trial. Lancet Neurol, 16, 505-512. (2017) 

Al-Sarraj, S., King, A., Cleveland, M., et al. Mitochondrial abnormalities and low grade 
inflammation are present in the skeletal muscle of a minority of patients with 
amyotrophic lateral sclerosis; an observational myopathology study. Acta 
Neuropathol Commun, 2, 165. (2014) 

Al-Sarraj, S., King, A., Troakes, C., et al. p62 positive, TDP-43 negative, neuronal 
cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define 
the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol, 122, 691-
702. (2011) 

Almeida, S., Gascon, E., Tran, H., et al. Modeling key pathological features of frontotemporal 
dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta 
Neuropathologica, 126, 385-399. (2013) 

Ananda, G., Hile, S. E., Breski, A., et al. Microsatellite interruptions stabilize primate 
genomes and exist as population-specific single nucleotide polymorphisms within 
individual human genomes. PLoS Genet, 10, e1004498. (2014) 

Andries, M., Van Damme, P., Robberecht, W., et al. Ivermectin inhibits AMPA receptor-
mediated excitotoxicity in cultured motor neurons and extends the life span of a 
transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis, 25, 8-16. 
(2007) 

Anichtchik, O., Diekmann, H., Fleming, A., et al. Loss of PINK1 function affects development 
and results in neurodegeneration in zebrafish. J Neurosci, 28, 8199-207. (2008) 

Anzai, I., Tokuda, E., Mukaiyama, A., et al. A misfolded dimer of Cu/Zn-superoxide 
dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. 
Protein Sci, 26, 484-496. (2017) 

Arai, T., Hasegawa, M., Akiyama, H., et al. TDP-43 is a component of ubiquitin-positive tau-
negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral 
sclerosis. Biochem Biophys Res Commun, 351, 602-11. (2006) 

Arai, T., Nonaka, T., Hasegawa, M., et al. Neuronal and glial inclusions in frontotemporal 
dementia with or without motor neuron disease are immunopositive for p62. Neurosci 
Lett, 342, 41-4. (2003) 

Armon, C. An evidence-based medicine approach to the evaluation of the role of exogenous 
risk factors in sporadic amyotrophic lateral sclerosis. Neuroepidemiology, 22, 217-28. 
(2003) 

Armstrong, G. A. & Drapeau, P. Loss and gain of FUS function impair neuromuscular 
synaptic transmission in a genetic model of ALS. Hum Mol Genet, 22, 4282-92. 
(2013) 

Ascherio, A., Weisskopf, M. G., O'Reilly E, J., et al. Vitamin E intake and risk of amyotrophic 
lateral sclerosis. Ann Neurol, 57, 104-10. (2005) 



149 
 

Ash, P. E., Bieniek, K. F., Gendron, T. F., et al. Unconventional translation of C9ORF72 
GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. 
Neuron, 77, 639-46. (2013) 

Atanasio, A., Decman, V., White, D., et al. C9orf72 ablation causes immune dysregulation 
characterized by leukocyte expansion, autoantibody production, and 
glomerulonephropathy in mice. Sci Rep, 6, 23204. (2016) 

Auer, T. O. & Del Bene, F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in 
zebrafish. Methods, 69, 142-50. (2014) 

Ayers, J. I., Fromholt, S., Koch, M., et al. Experimental transmissibility of mutant SOD1 
motor neuron disease. Acta Neuropathol, 128, 791-803. (2014) 

Baborie, A., Griffiths, T. D., Jaros, E., et al. Accumulation of dipeptide repeat proteins 
predates that of TDP-43 in frontotemporal lobar degeneration associated with 
hexanucleotide repeat expansions in C9ORF72 gene. Neuropathol Appl Neurobiol, 
41, 601-12. (2015) 

Baker, M., Mackenzie, I. R., Pickering-Brown, S. M., et al. Mutations in progranulin cause 
tau-negative frontotemporal dementia linked to chromosome 17. Nature, 442, 916-9. 
(2006) 

Baldwin, K. R., Godena, V. K., Hewitt, V. L., et al. Axonal transport defects are a common 
phenotype in Drosophila models of ALS. Hum Mol Genet, 25, 2378-2392. (2016) 

Bannwarth, S., Ait-El-Mkadem, S., Chaussenot, A., et al. A mitochondrial origin for 
frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 
involvement. Brain, 137, 2329-45. (2014) 

Beard, J. D. & Kamel, F. Military service, deployments, and exposures in relation to 
amyotrophic lateral sclerosis etiology and survival. Epidemiol Rev, 37, 55-70. (2015) 

Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of 
embryonic stem cells in the midgestation mouse embryo. Development, 105, 733-7. 
(1989) 

Bennett, C. L., Dastidar, S. G., Ling, S. C., et al. Senataxin mutations elicit motor neuron 
degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human 
patients. Acta Neuropathol, 136, 425-443. (2018) 

Bennion Callister, J., Ryan, S., Sim, J., et al. Modelling C9orf72 dipeptide repeat proteins of 
a physiologically relevant size. Hum Mol Genet, 25, 5069-5082. (2016) 

Bensimon, G., Lacomblez, L. & Meininger, V. A controlled trial of riluzole in amyotrophic 
lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med, 330, 585-91. (1994) 

Bertrandy, S., Burlet, P., Clermont, O., et al. The RNA-binding properties of SMN: deletion 
analysis of the zebrafish orthologue defines domains conserved in evolution. Hum 
Mol Genet, 8, 775-82. (1999) 

Bigio, E. H., Weintraub, S., Rademakers, R., et al. Frontotemporal lobar degeneration with 
TDP-43 proteinopathy and chromosome 9p repeat expansion in C9ORF72: 
clinicopathologic correlation. Neuropathology, 33, 122-33. (2013) 



150 
 

Bjorkoy, G., Lamark, T. & Johansen, T. p62/SQSTM1: a missing link between protein 
aggregates and the autophagy machinery. Autophagy, 2, 138-9. (2006) 

Blackburn, J. S., Liu, S., Raimondi, A. R., et al. High-throughput imaging of adult fluorescent 
zebrafish with an LED fluorescence macroscope. Nat Protoc, 6, 229-41. (2011) 

Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer's disease. Lancet, 368, 387-403. 
(2006) 

Boeynaems, S., Bogaert, E., Kovacs, D., et al. Phase Separation of C9orf72 Dipeptide 
Repeats Perturbs Stress Granule Dynamics. Mol Cell, 65, 1044-1055.e5. (2017) 

Boon, K. L., Xiao, S., McWhorter, M. L., et al. Zebrafish survival motor neuron mutants 
exhibit presynaptic neuromuscular junction defects. Hum Mol Genet, 18, 3615-25. 
(2009) 

Borchelt, D. R., Lee, M. K., Slunt, H. S., et al. Superoxide dismutase 1 with mutations linked 
to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad 
Sci U S A, 91, 8292-6. (1994) 

Borroni, B., Bonvicini, C., Alberici, A., et al. Mutation within TARDBP leads to frontotemporal 
dementia without motor neuron disease. Hum Mutat, 30, E974-83. (2009) 

Bosco, D. A., Morfini, G., Karabacak, N. M., et al. Wild-type and mutant SOD1 share an 
aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci, 13, 
1396-403. (2010) 

Braak, H. & Del Tredici, K. Where, when, and in what form does sporadic Alzheimer's 
disease begin? Curr Opin Neurol, 25, 708-14. (2012) 

Bradford, Y. M., Toro, S., Ramachandran, S., et al. Zebrafish Models of Human Disease: 
Gaining Insight into Human Disease at ZFIN. Ilar j, 58, 4-16. (2017) 

Bradley, A., Evans, M., Kaufman, M. H., et al. Formation of germ-line chimaeras from 
embryo-derived teratocarcinoma cell lines. Nature, 309, 255-6. (1984) 

Branchu, J., Boutry, M., Sourd, L., et al. Loss of spatacsin function alters lysosomal lipid 
clearance leading to upper and lower motor neuron degeneration. Neurobiol Dis, 
102, 21-37. (2017) 

Bretaud, S., Allen, C., Ingham, P. W., et al. p53-dependent neuronal cell death in a DJ-1-
deficient zebrafish model of Parkinson's disease. J Neurochem, 100, 1626-35. (2007) 

Brettschneider, J., Toledo, J. B., Van Deerlin, V. M., et al. Microglial activation correlates 
with disease progression and upper motor neuron clinical symptoms in amyotrophic 
lateral sclerosis. PLoS One, 7, e39216. (2012) 

Brotherton, T. E., Li, Y., Cooper, D., et al. Localization of a toxic form of superoxide 
dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad 
Sci U S A, 109, 5505-10. (2012) 

Brown, H. H. & Borchelt, D. R. Analysis of mutant SOD1 electrophoretic mobility by Blue 
Native gel electrophoresis; evidence for soluble multimeric assemblies. PLoS One, 9, 
e104583. (2014) 



151 
 

Brown, R. H. & Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N Engl J Med, 377, 162-172. 
(2017) 

Brzustowicz, L. M., Lehner, T., Castilla, L. H., et al. Genetic mapping of chronic childhood-
onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature, 344, 540-1. 
(1990) 

Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. 
Cell, 125, 443-51. (2006) 

Bunina, T. L. [On intracellular inclusions in familial amyotrophic lateral sclerosis]. Zh 
Nevropatol Psikhiatr Im S S Korsakova, 62, 1293-9. (1962) 

Burberry, A., Suzuki, N., Wang, J. Y., et al. Loss-of-function mutations in the C9ORF72 
mouse ortholog cause fatal autoimmune disease. Sci Transl Med, 8, 347ra93. (2016) 

Byrne, S., Heverin, M., Elamin, M., et al. Aggregation of neurologic and neuropsychiatric 
disease in amyotrophic lateral sclerosis kindreds: a population-based case-control 
cohort study of familial and sporadic amyotrophic lateral sclerosis. Ann Neurol, 74, 
699-708. (2013) 

Byrne, S., Walsh, C., Lynch, C., et al. Rate of familial amyotrophic lateral sclerosis: a 
systematic review and meta-analysis. J Neurol Neurosurg Psychiatry, 82, 623-7. 
(2011) 

Cautain, B., Hill, R., de Pedro, N., et al. Components and regulation of nuclear transport 
processes. Febs j, 282, 445-62. (2015) 

Cedarbaum, J. M., Stambler, N., Malta, E., et al. The ALSFRS-R: a revised ALS functional 
rating scale that incorporates assessments of respiratory function. J Neurol Sci, 169, 
13-21. (1999) 

Chen, T., Huang, B., Shi, X., et al. Mutant UBQLN2(P497H) in motor neurons leads to ALS-
like phenotypes and defective autophagy in rats. Acta Neuropathol Commun, 6, 122. 
(2018) 

Chen, Y. Z., Bennett, C. L., Huynh, H. M., et al. DNA/RNA helicase gene mutations in a form 
of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet, 74, 1128-35. 
(2004) 

Cheng, W., Wang, S., Mestre, A. A., et al. C9ORF72 GGGGCC repeat-associated non-AUG 
translation is upregulated by stress through eIF2alpha phosphorylation. Nat 
Commun, 9, 51. (2018) 

Chew, J., Gendron, T. F., Prudencio, M., et al. Neurodegeneration. C9ORF72 repeat 
expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. 
Science, 348, 1151-1154. (2015) 

Chió, A., Calvo, A., Mazzini, L., et al. Extensive genetics of ALS: A population-based study in 
Italy. Neurology, 79. (2012) 

Chio, A., Logroscino, G., Traynor, B. J., et al. Global epidemiology of amyotrophic lateral 
sclerosis: a systematic review of the published literature. Neuroepidemiology, 41, 
118-30. (2013) 



152 
 

Chitramuthu, B. P., Baranowski, D. C., Kay, D. G., et al. Progranulin modulates zebrafish 
motoneuron development in vivo and rescues truncation defects associated with 
knockdown of Survival motor neuron 1. Mol Neurodegener, 5, 41. (2010) 

Chitramuthu, B. P., Kay, D. G., Bateman, A., et al. Neurotrophic effects of progranulin in vivo 
in reversing motor neuron defects caused by over or under expression of TDP-43 or 
FUS. PLoS One, 12, e0174784. (2017) 

Choi, S. Y., Lopez-Gonzalez, R., Krishnan, G., et al. C9ORF72-ALS/FTD-associated 
poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo. Nat 
Neurosci, Epub ahead of print. (2019) 

Chow, C. Y., Landers, J. E., Bergren, S. K., et al. Deleterious variants of FIG4, a 
phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet, 84, 85-8. 
(2009) 

Chung, M. Y., Ranum, L. P., Duvick, L. A., et al. Evidence for a mechanism predisposing to 
intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet, 5, 
254-258. (1993) 

Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. 
Mol Cell, 40, 179-204. (2010) 

Cirulli, E. T., Lasseigne, B. N., Petrovski, S., et al. Exome sequencing in amyotrophic lateral 
sclerosis identifies risk genes and pathways. Science, 347, 1436-41. (2015) 

Ciura, S., Lattante, S., Le Ber, I., et al. Loss of function of C9orf72 causes motor deficits in a 
zebrafish model of amyotrophic lateral sclerosis. Annals of Neurology, 74, 180-187. 
(2013) 

Cooper-Knock, J., Bury, J. J., Heath, P. R., et al. C9ORF72 GGGGCC Expanded Repeats 
Produce Splicing Dysregulation which Correlates with Disease Severity in 
Amyotrophic Lateral Sclerosis. PLoS ONE, 10, e0127376. (2015a) 

Cooper-Knock, J., Higginbottom, A., Stopford, M. J., et al. Antisense RNA foci in the motor 
neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta 
Neuropathologica, 130, 63-75. (2015b) 

Cooper-Knock, J., Moll, T., Ramesh, T., et al. Mutations in the Glycosyltransferase Domain 
of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Rep, 26, 
2298-2306.e5. (2019) 

Cooper-Knock, J., Walsh, M. J., Higginbottom, A., et al. Sequestration of multiple RNA 
recognition motif-containing proteins by C9orf72 repeat expansions. Brain, 137, 
2040-51. (2014) 

Couthouis, J., Hart, M. P., Erion, R., et al. Evaluating the role of the FUS/TLS-related gene 
EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet, 21, 2899-2911. (2012) 

Couthouis, J., Hart, M. P., Shorter, J., et al. A yeast functional screen predicts new candidate 
ALS disease genes. Proc Natl Acad Sci U S A, 108, 20881-90. (2011) 

Cox, L. E., Ferraiuolo, L., Goodall, E. F., et al. Mutations in CHMP2B in lower motor neuron 
predominant amyotrophic lateral sclerosis (ALS). PLoS One, 5, e9872. (2010) 



153 
 

Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., et al. Proteomic analysis of the mammalian 
nuclear pore complex. J Cell Biol, 158, 915-27. (2002) 

Cruts, M., Gijselinck, I., van der Zee, J., et al. Null mutations in progranulin cause ubiquitin-
positive frontotemporal dementia linked to chromosome 17q21. Nature, 442, 920-
924. (2006) 

Da Costa, M. M., Allen, C. E., Higginbottom, A., et al. A new zebrafish model produced by 
TILLING of SOD1-related amyotrophic lateral sclerosis replicates key features of the 
disease and represents a tool for in vivo therapeutic screening. Dis Model Mech, 7, 
73-81. (2014) 

Da Cruz, S., Bui, A., Saberi, S., et al. Misfolded SOD1 is not a primary component of 
sporadic ALS. Acta Neuropathol, 134, 97-111. (2017) 

Dadon-Nachum, M., Melamed, E. & Offen, D. The "dying-back" phenomenon of motor 
neurons in ALS. J Mol Neurosci, 43, 470-477. (2011) 

Dantzer, F., Ame, J. C., Schreiber, V., et al. Poly(ADP-ribose) polymerase-1 activation 
during DNA damage and repair. Methods Enzymol, 409, 493-510. (2006) 

Dantzer, F., de La Rubia, G., Menissier-De Murcia, J., et al. Base excision repair is impaired 
in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry, 39, 7559-
69. (2000) 

Davidson, Y., Robinson, A. C., Liu, X., et al. Neurodegeneration in frontotemporal lobar 
degeneration and motor neurone disease associated with expansions in C9orf72 is 
linked to TDP-43 pathology and not associated with aggregated forms of dipeptide 
repeat proteins. Neuropathol Appl Neurobiol, 42, 242-54. (2016) 

De Strooper, B., Saftig, P., Craessaerts, K., et al. Deficiency of presenilin-1 inhibits the 
normal cleavage of amyloid precursor protein. Nature, 391, 387-90. (1998) 

Dedmon, M. M., Christodoulou, J., Wilson, M. R., et al. Heat shock protein 70 inhibits alpha-
synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem, 
280, 14733-14740. (2005) 

DeJesus-Hernandez, M., Finch, N. A., Wang, X., et al. In-depth clinico-pathological 
examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta 
Neuropathol, 134, 255-269. (2017) 

DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., et al. Expanded GGGGCC 
hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-
linked FTD and ALS. Neuron, 72, 245-56. (2011) 

Deng, H. X., Chen, W., Hong, S. T., et al. Mutations in UBQLN2 cause dominant X-linked 
juvenile and adult-onset ALS and ALS/dementia. Nature, 477, 211-5. (2011) 

Deng, J., Yang, M., Chen, Y., et al. FUS Interacts with HSP60 to Promote Mitochondrial 
Damage. PLoS Genet, 11, e1005357. (2015) 

Doetschman, T., Gregg, R. G., Maeda, N., et al. Targetted correction of a mutant HPRT 
gene in mouse embryonic stem cells. Nature, 330, 576-8. (1987) 



154 
 

Dormann, D., Rodde, R., Edbauer, D., et al. ALS-associated fused in sarcoma (FUS) 
mutations disrupt Transportin-mediated nuclear import. EMBO J, 29, 2841-57. (2010) 

El-Khamisy, S. F., Saifi, G. M., Weinfeld, M., et al. Defective DNA single-strand break repair 
in spinocerebellar ataxia with axonal neuropathy-1. Nature, 434, 108-13. (2005) 

Elden, A. C., Kim, H. J., Hart, M. P., et al. Ataxin-2 intermediate-length polyglutamine 
expansions are associated with increased risk for ALS. Nature, 466, 1069-75. (2010) 

Elshafey, A., Lanyon, W. G. & Connor, J. M. Identification of a new missense point mutation 
in exon 4 of the Cu/Zn superoxide dismutase (SOD-1) gene in a family with 
amyotrophic lateral sclerosis. Hum Mol Genet, 3, 363-4. (1994) 

Factor-Litvak, P., Al-Chalabi, A., Ascherio, A., et al. Current pathways for epidemiological 
research in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal 
Degener, 14 Suppl 1, 33-43. (2013) 

Fallini, C., Bassell, G. J. & Rossoll, W. Spinal muscular atrophy: the role of SMN in axonal 
mRNA regulation. Brain Res, 1462, 81-92. (2012) 

Farg, M. A., Konopka, A., Soo, K. Y., et al. The DNA damage response (DDR) is induced by 
the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet, 26, 
2882-2896. (2017) 

Farg, M. A., Sundaramoorthy, V., Sultana, J. M., et al. C9ORF72, implicated in amytrophic 
lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum 
Mol Genet, 23, 3579-95. (2014) 

Farrar, M. A. & Kiernan, M. C. The Genetics of Spinal Muscular Atrophy: Progress and 
Challenges. Neurotherapeutics, 12, 290-302. (2015) 

Fasana, E., Fossati, M., Ruggiano, A., et al. A VAPB mutant linked to amyotrophic lateral 
sclerosis generates a novel form of organized smooth endoplasmic reticulum. 
FASEB J, 24, 1419-30. (2010) 

Fecto, F., Yan, J., Vemula, S. P., et al. SQSTM1 mutations in familial and sporadic 
amyotrophic lateral sclerosis. Arch Neurol, 68, 1440-1446. (2011) 

Ferraiuolo, L., Meyer, K., Sherwood, T. W., et al. Oligodendrocytes contribute to motor 
neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci U S A, 
113, E6496-e6505. (2016) 

Ferrari, R., Kapogiannis, D., Huey, E. D., et al. FTD and ALS: a tale of two diseases. Curr 
Alzheimer Res, 8, 273-94. (2011) 

Flinn, L., Mortiboys, H., Volkmann, K., et al. Complex I deficiency and dopaminergic 
neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain, 132, 1613-1623. 
(2009) 

Flinn, L. J., Keatinge, M., Bretaud, S., et al. TigarB causes mitochondrial dysfunction and 
neuronal loss in PINK1 deficiency. Ann Neurol, 74, 837-847. (2013) 

Force, A., Lynch, M., Pickett, F. B., et al. Preservation of duplicate genes by complementary, 
degenerative mutations. Genetics, 151, 1531-45. (1999) 



155 
 

Forsberg, K., Graffmo, K., Pakkenberg, B., et al. Misfolded SOD1 inclusions in patients with 
mutations in C9orf72 and other ALS/FTD-associated genes. J Neurol Neurosurg 
Psychiatry. (2019) 

Forsberg, K., Jonsson, P. A., Andersen, P. M., et al. Novel antibodies reveal inclusions 
containing non-native SOD1 in sporadic ALS patients. PLoS One, 5, e11552. (2010) 

Forstl, H. & Kurz, A. Clinical features of Alzheimer's disease. Eur Arch Psychiatry Clin 
Neurosci, 249, 288-90. (1999) 

Fraher, D., Sanigorski, A., Mellett, N. A., et al. Zebrafish Embryonic Lipidomic Analysis 
Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep, 14, 
1317-1329. (2016) 

Fratta, P., Mizielinska, S., Nicoll, A. J., et al. C9orf72 hexanucleotide repeat associated with 
amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-
quadruplexes. Sci Rep, 2, 1016. (2012) 

Fratta, P., Poulter, M., Lashley, T., et al. Homozygosity for the C9orf72 GGGGCC repeat 
expansion in frontotemporal dementia. Acta Neuropathol, 126, 401-409. (2013) 

Freibaum, B. D., Lu, Y., Lopez-Gonzalez, R., et al. GGGGCC repeat expansion in C9orf72 
compromises nucleocytoplasmic transport. Nature, 525, 129-33. (2015) 

Freischmidt, A., Wieland, T., Richter, B., et al. Haploinsufficiency of TBK1 causes familial 
ALS and fronto-temporal dementia. Nat Neurosci, 18, 631-6. (2015) 

Fukunaga, K., Shinoda, Y. & Tagashira, H. The role of SIGMAR1 gene mutation and 
mitochondrial dysfunction in amyotrophic lateral sclerosis. J Pharmacol Sci, 127, 36-
41. (2015) 

Garate, Z., Davis, B. R., Quintana-Bustamante, O., et al. New frontier in regenerative 
medicine: site-specific gene correction in patient-specific induced pluripotent stem 
cells. Hum Gene Ther, 24, 571-83. (2013) 

Gendron, T. F., van Blitterswijk, M., Bieniek, K. F., et al. Cerebellar c9RAN proteins 
associate with clinical and neuropathological characteristics of C9ORF72 repeat 
expansion carriers. Acta Neuropathol, 130, 559-73. (2015) 

Gerhard, G. S., Kauffman, E. J., Wang, X., et al. Life spans and senescent phenotypes in 
two strains of Zebrafish (Danio rerio). Exp Gerontol, 37, 1055-68. (2002) 

Gill, C., Phelan, J. P., Hatzipetros, T., et al. SOD1-positive aggregate accumulation in the 
CNS predicts slower disease progression and increased longevity in a mutant SOD1 
mouse model of ALS. Sci Rep, 9, 6724. (2019) 

Goedert, M., Spillantini, M. G., Del Tredici, K., et al. 100 years of Lewy pathology. Nat Rev 
Neurol, 9, 13-24. (2013) 

Goedert, M., Wischik, C. M., Crowther, R. A., et al. Cloning and sequencing of the cDNA 
encoding a core protein of the paired helical filament of Alzheimer disease: 
identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A, 
85, 4051-4055. (1988) 



156 
 

Goff, S. P. & Berg, P. Construction of hybrid viruses containing SV40 and lambda phage 
DNA segments and their propagation in cultured monkey cells. Cell, 9, 695-705. 
(1976) 

Goode, A., Butler, K., Long, J., et al. Defective recognition of LC3B by mutant SQSTM1/p62 
implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. 
Autophagy, 12, 1094-1104. (2016) 

Gordon, P. H. Amyotrophic Lateral Sclerosis: An update for 2013 Clinical Features, 
Pathophysiology, Management and Therapeutic Trials. Aging and Disease, 4, 295-
310. (2013) 

Grad, L. I., Pokrishevsky, E., Silverman, J. M., et al. Exosome-dependent and independent 
mechanisms are involved in prion-like transmission of propagated Cu/Zn superoxide 
dismutase misfolding. Prion, 8, 331-335. (2014) 

Graf, M., Ecker, D., Horowski, R., et al. High dose vitamin E therapy in amyotrophic lateral 
sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind 
study. J Neural Transm (Vienna), 112, 649-60. (2005) 

Granieri, E., Carreras, M., Tola, R., et al. Motor neuron disease in the province of Ferrara, 
Italy, in 1964-1982. Neurology, 38, 1604-1608. (1988) 

Green, K. M., Glineburg, M. R., Kearse, M. G., et al. RAN translation at C9orf72-associated 
repeat expansions is selectively enhanced by the integrated stress response. Nat 
Commun, 8, 2005. (2017) 

Greenway, M. J., Andersen, P. M., Russ, C., et al. ANG mutations segregate with familial 
and 'sporadic' amyotrophic lateral sclerosis. Nat Genet, 38, 411-3. (2006) 

Griesbeck, O., Parsadanian, A. S., Sendtner, M., et al. Expression of neurotrophins in 
skeletal muscle: quantitative comparison and significance for motoneuron survival 
and maintenance of function. J Neurosci Res, 42, 21-33. (1995) 

Haas, R. H., Nasirian, F., Nakano, K., et al. Low platelet mitochondrial complex I and 
complex II/III activity in early untreated Parkinson's disease. Ann Neurol, 37, 714-22. 
(1995) 

Hadano, S., Hand, C. K., Osuga, H., et al. A gene encoding a putative GTPase regulator is 
mutated in familial amyotrophic lateral sclerosis 2. Nat Genet, 29, 166-73. (2001) 

Haeusler, A. R., Donnelly, C. J., Periz, G., et al. C9orf72 nucleotide repeat structures initiate 
molecular cascades of disease. Nature, 507, 195-200. (2014) 

Hammer, R. P., Jr., Tomiyasu, U. & Scheibel, A. B. Degeneration of the human Betz cell due 
to amyotrophic lateral sclerosis. Exp Neurol, 63, 336-46. (1979) 

Hao le, T., Burghes, A. H. & Beattie, C. E. Generation and Characterization of a genetic 
zebrafish model of SMA carrying the human SMN2 gene. Mol Neurodegener, 6, 24. 
(2011) 

Hao le, T., Wolman, M., Granato, M., et al. Survival motor neuron affects plastin 3 protein 
levels leading to motor defects. J Neurosci, 32, 5074-84. (2012) 



157 
 

Hardiman, O., Al-Chalabi, A., Chio, A., et al. Amyotrophic lateral sclerosis. Nat Rev Dis 
Primers, 3, 17071. (2017) 

Hardiman, O. & van den Berg, L. H. Edaravone: a new treatment for ALS on the horizon? 
Lancet Neurol, 16, 490-491. (2017) 

Hautbergue, G. M., Castelli, L. M., Ferraiuolo, L., et al. SRSF1-dependent nuclear export 
inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated 
motor deficits. Nat Commun, 8, 16063. (2017) 

He, Y., Vogelstein, B., Velculescu, V. E., et al. The antisense transcriptomes of human cells. 
Science, 322, 1855-1857. (2008) 

Herranz-Martin, S., Chandran, J., Lewis, K., et al. Viral delivery of C9orf72 hexanucleotide 
repeat expansions in mice leads to repeat-length-dependent neuropathology and 
behavioural deficits. Dis Model Mech, 10, 859-868. (2017) 

Hewamadduma, C. A., Grierson, A. J., Ma, T. P., et al. Tardbpl splicing rescues motor 
neuron and axonal development in a mutant tardbp zebrafish. Hum Mol Genet, 22, 
2376-86. (2013) 

Higelin, J., Catanese, A., Semelink-Sedlacek, L. L., et al. NEK1 loss-of-function mutation 
induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell 
Res, 30, 150-162. (2018) 

Higgins, C. M., Jung, C. & Xu, Z. ALS-associated mutant SOD1G93A causes mitochondrial 
vacuolation by expansion of the intermembrane space and by involvement of SOD1 
aggregation and peroxisomes. BMC Neurosci, 4, 16. (2003) 

Highley, J. R., Kirby, J., Jansweijer, J. A., et al. Loss of nuclear TDP-43 in amyotrophic 
lateral sclerosis (ALS) causes altered expression of splicing machinery and 
widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl 
Neurobiol, 40, 670-85. (2014) 

Hoch, N. C., Hanzlikova, H., Rulten, S. L., et al. XRCC1 mutation is associated with PARP1 
hyperactivation and cerebellar ataxia. Nature, 541, 87-91. (2017) 

Hofmann, A., Kessler, B., Ewerling, S., et al. Efficient transgenesis in farm animals by 
lentiviral vectors. EMBO Rep, 4, 1054-1060. (2003) 

Howe, K., Clark, M. D., Torroja, C. F., et al. The zebrafish reference genome sequence and 
its relationship to the human genome. Nature, 496, 498-503. (2013) 

Humphreys, P. N., Bellamy, D., Stevenson, A., et al. A comparison of the breeding success 
of two strains of laboratory rats in relation to age at mating. J Reprod Fertil, 48, 421-
422. (1976) 

Hyman, A. A., Weber, C. A. & Julicher, F. Liquid-liquid phase separation in biology. Annu 
Rev Cell Dev Biol, 30, 39-58. (2014) 

Ibrahim, S., Moatter, T. & Saleem, A. F. Spinal muscular atrophy: clinical spectrum and 
genetic mutations in Pakistani children. Neurol India, 60, 294-8. (2012) 

Inukai, Y., Nonaka, T., Arai, T., et al. Abnormal phosphorylation of Ser409/410 of TDP-43 in 
FTLD-U and ALS. FEBS Lett, 582, 2899-2904. (2008) 



158 
 

Ivics, Z., Mates, L., Yau, T. Y., et al. Germline transgenesis in rodents by pronuclear 
microinjection of Sleeping Beauty transposons. 9, 773-93. (2014) 

Iwai, Y., Shibuya, K., Misawa, S., et al. Axonal Dysfunction Precedes Motor Neuronal Death 
in Amyotrophic Lateral Sclerosis. PLoS One, 11, e0158596. (2016) 

Jain, S., Wheeler, J. R., Walters, R. W., et al. ATPase-Modulated Stress Granules Contain a 
Diverse Proteome and Substructure. Cell, 164, 487-98. (2016) 

Jedrzejowska, M., Milewski, M., Zimowski, J., et al. Phenotype modifiers of spinal muscular 
atrophy: the number of SMN2 gene copies, deletion in the NAIP gene and probably 
gender influence the course of the disease. Acta Biochim Pol, 56, 103-108. (2009) 

Jensen, L., Jorgensen, L. H., Bech, R. D., et al. Skeletal Muscle Remodelling as a Function 
of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int, 2016, 
5930621. (2016) 

Ji, Y., Ugolino, J., Brady, N. R., et al. Systemic Deregulation of Autophagy Upon Loss of 
ALS- and FTD-linked C9orf72. Autophagy, 13, 1254-1255. (2017) 

Jiang, J., Zhu, Q., Gendron, T. F., et al. Gain of Toxicity from ALS/FTD-Linked Repeat 
Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting 
GGGGCC-Containing RNAs. Neuron, 90, 535-50. (2016) 

Jinek, M., Chylinski, K., Fonfara, I., et al. A programmable dual-RNA-guided DNA 
endonuclease in adaptive bacterial immunity. Science, 337, 816-21. (2012) 

Johnson, J. O., Mandrioli, J., Benatar, M., et al. Exome sequencing reveals VCP mutations 
as a cause of familial ALS. Neuron, 68, 857-64. (2010) 

Johnson, J. O., Pioro, E. P., Boehringer, A., et al. Mutations in the Matrin 3 gene cause 
familial amyotrophic lateral sclerosis. Nat Neurosci, 17, 664-666. (2014) 

Jovicic, A., Mertens, J., Boeynaems, S., et al. Modifiers of C9orf72 dipeptide repeat toxicity 
connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci, 18, 1226-
1229. (2015) 

Ju, B., Xu, Y., He, J., et al. Faithful expression of green fluorescent protein (GFP) in 
transgenic zebrafish embryos under control of zebrafish gene promoters. Dev Genet, 
25, 158-67. (1999) 

Kabashi, E., Bercier, V., Lissouba, A., et al. FUS and TARDBP but not SOD1 interact in 
genetic models of amyotrophic lateral sclerosis. PLoS Genet, 7, e1002214. (2011) 

Kabashi, E., Lin, L., Tradewell, M. L., et al. Gain and loss of function of ALS-related 
mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet, 19, 
671-83. (2010) 

Kabashi, E., Valdmanis, P. N., Dion, P., et al. TARDBP mutations in individuals with sporadic 
and familial amyotrophic lateral sclerosis. Nat Genet, 40, 572-574. (2008) 

Kalia, L. V. & Lang, A. E. Parkinson's disease. Lancet, 386, 896-912. (2015) 

Kamel, F., Umbach, D. M., Bedlack, R. S., et al. Pesticide exposure and amyotrophic lateral 
sclerosis. Neurotoxicology, 33, 457-62. (2012) 



159 
 

Kamel, F., Umbach, D. M., Lehman, T. A., et al. Amyotrophic lateral sclerosis, lead, and 
genetic susceptibility: polymorphisms in the delta-aminolevulinic acid dehydratase 
and vitamin D receptor genes. Environ Health Perspect, 111, 1335-1339. (2003) 

Kametani, F., Obi, T., Shishido, T., et al. Mass spectrometric analysis of accumulated TDP-
43 in amyotrophic lateral sclerosis brains. Sci Rep, 6, 23281. (2016) 

Kapeli, K., Martinez, F. J. & Yeo, G. W. Genetic mutations in RNA-binding proteins and their 
roles in ALS. Hum Genet, 136, 1193-1214. (2017) 

Kato, M., Han, T. W., Xie, S., et al. Cell-free formation of RNA granules: low complexity 
sequence domains form dynamic fibers within hydrogels. Cell, 149, 753-67. (2012) 

Kawamata, T., Akiyama, H., Yamada, T., et al. Immunologic reactions in amyotrophic lateral 
sclerosis brain and spinal cord tissue. Am J Pathol, 140, 691-707. (1992) 

Kawasaki, T., Saito, K., Mitsui, K., et al. Introduction of a Foreign Gene into Zebrafish and 
Medaka Cells Using Adenoviral Vectors. Zebrafish, 6, 253-258. (2009) 

Kearse, M. G., Green, K. M., Krans, A., et al. CGG Repeat-Associated Non-AUG Translation 
Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic 
Proteins. Mol Cell, 62, 314-322. (2016) 

Kenna, K. P., McLaughlin, R. L., Byrne, S., et al. Delineating the genetic heterogeneity of 
ALS using targeted high-throughput sequencing. J Med Genet, 50, 776-83. (2013) 

Kenna, K. P., van Doormaal, P. T., Dekker, A. M., et al. NEK1 variants confer susceptibility 
to amyotrophic lateral sclerosis. Nat Genet, 48, 1037-42. (2016) 

Kerman, A., Liu, H. N., Croul, S., et al. Amyotrophic lateral sclerosis is a non-amyloid 
disease in which extensive misfolding of SOD1 is unique to the familial form. Acta 
Neuropathol, 119, 335-44. (2010) 

Kim, H. J., Kim, N. C., Wang, Y. D., et al. Mutations in prion-like domains in hnRNPA2B1 
and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495, 467-73. 
(2013a) 

Kim, H. J. & Taylor, J. P. Lost in Transportation: Nucleocytoplasmic Transport Defects in 
ALS and Other Neurodegenerative Diseases. Neuron, 96, 285-297. (2017) 

Kim, N. C., Tresse, E., Kolaitis, R. M., et al. VCP is essential for mitochondrial quality control 
by PINK1/Parkin and this function is impaired by VCP mutations. Neuron, 78, 65-80. 
(2013b) 

Kim, S. H., Stiles, S. G., Feichtmeier, J. M., et al. Mutation-dependent aggregation and 
toxicity in a Drosophila model for UBQLN2-associated ALS. Hum Mol Genet, 27, 
322-337. (2018) 

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., et al. Stages of embryonic development of the 
zebrafish. Developmental Dynamics, 203, 253-310. (1995) 

Kimmel, C. B., Sepich, D. S. & Trevarrow, B. Development of segmentation in zebrafish. 
Development, 104, 197-207. (1988) 



160 
 

Kimura, Y., Hisano, Y., Kawahara, A., et al. Efficient generation of knock-in transgenic 
zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome 
engineering. Sci Rep, 4, 6545. (2014) 

King, A., Troakes, C., Smith, B., et al. ALS-FUS pathology revisited: singleton FUS 
mutations and an unusual case with both a FUS and TARDBP mutation. Acta 
Neuropathol Commun, 3, 62. (2015) 

Kok, F. O., Shin, M., Ni, C. W., et al. Reverse genetic screening reveals poor correlation 
between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell, 32, 97-
108. (2015) 

Koppers, M., Blokhuis, A. M., Westeneng, H. J., et al. C9orf72 ablation in mice does not 
cause motor neuron degeneration or motor deficits. Ann Neurol, 78, 426-38. (2015) 

Kraft, A. D., Resch, J. M., Johnson, D. A., et al. Activation of the Nrf2-ARE pathway in 
muscle and spinal cord during ALS-like pathology in mice expressing mutant SOD1. 
Exp Neurol, 207, 107-17. (2007) 

Kwiatkowski, T. J., Jr., Bosco, D. A., Leclerc, A. L., et al. Mutations in the FUS/TLS gene on 
chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 323, 1205-
1208. (2009) 

Kwon, I., Xiang, S., Kato, M., et al. Poly-dipeptides encoded by the C9orf72 repeats bind 
nucleoli, impede RNA biogenesis, and kill cells. Science, 345, 1139-45. (2014) 

Lacorte, E., Ferrigno, L., Leoncini, E., et al. Physical activity, and physical activity related to 
sports, leisure and occupational activity as risk factors for ALS: A systematic review. 
Neurosci Biobehav Rev, 66, 61-79. (2016) 

Lagier-Tourenne, C. & Cleveland, D. W. Rethinking ALS: the FUS about TDP-43. Cell, 136, 
1001-1004. (2009) 

Laird, A. S., Van Hoecke, A., De Muynck, L., et al. Progranulin is neurotrophic in vivo and 
protects against a mutant TDP-43 induced axonopathy. PLoS One, 5, e13368. 
(2010) 

Lambert, R. Breeding Strategies for Maintaining Colonies of Laboratory Mice. Jackson 
Laboratory Resource Manual. (2009) 

Landrian, I., McFarland, K. N., Liu, J., et al. Inheritance patterns of ATCCT repeat 
interruptions in spinocerebellar ataxia type 10 (SCA10) expansions. PLoS One, 12, 
e0175958. (2017) 

Largaespada, D. A. Generating and manipulating transgenic animals using transposable 
elements. Reprod Biol Endocrinol, 1, 80. (2003) 

Lattante, S., de Calbiac, H., Le Ber, I., et al. Sqstm1 knock-down causes a locomotor 
phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Hum Mol 
Genet, 24, 1682-90. (2015) 

Lawrence, C., Adatto, I., Best, J., et al. Generation time of zebrafish (Danio rerio) and 
medakas (Oryzias latipes) housed in the same aquaculture facility. Lab Anim (NY), 
41, 158-65. (2012) 



161 
 

Lebedeva, S., de Jesus Domingues, A. M., Butter, F., et al. Characterization of genetic loss-
of-function of Fus in zebrafish. RNA Biol, 14, 29-35. (2017) 

Lee, K. H., Zhang, P., Kim, H. J., et al. C9orf72 Dipeptide Repeats Impair the Assembly, 
Dynamics, and Function of Membrane-Less Organelles. Cell, 167, 774-788.e17. 
(2016) 

Lee, Y. B., Chen, H. J., Peres, J. N., et al. Hexanucleotide repeats in ALS/FTD form length-
dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep, 
5, 1178-86. (2013) 

Lefebvre, S., Burlet, P., Liu, Q., et al. Correlation between severity and SMN protein level in 
spinal muscular atrophy. Nat Genet, 16, 265-269. (1997) 

Leigh, P. N., Anderton, B. H., Dodson, A., et al. Ubiquitin deposits in anterior horn cells in 
motor neurone disease. Neurosci Lett, 93, 197-203. (1988) 

Leigh, P. N., Whitwell, H., Garofalo, O., et al. Ubiquitin-immunoreactive intraneuronal 
inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. 
Brain, 114 ( Pt 2), 775-88. (1991) 

Lemmens, R., Van Hoecke, A., Hersmus, N., et al. Overexpression of mutant superoxide 
dismutase 1 causes a motor axonopathy in the zebrafish. Hum Mol Genet, 16, 2359-
2365. (2007) 

Levine, T. P., Daniels, R. D., Gatta, A. T., et al. The product of C9orf72, a gene strongly 
implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. 
Bioinformatics, 29, 499-503. (2013) 

Li, M. & Yu, X. Function of BRCA1 in the DNA damage response is mediated by ADP-
ribosylation. Cancer Cell, 23, 693-704. (2013) 

Lin, W. C., Sanchez, H. B., Deerinck, T., et al. Aberrant development of motor axons and 
neuromuscular synapses in erbB2-deficient mice. Proceedings of the National 
Academy of Sciences of the United States of America, 97, 1299-1304. (2000) 

Lin, Y., Mori, E., Kato, M., et al. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat 
Expansion Target LC Domain Polymers. Cell, 167, 789-802.e12. (2016) 

Liscic, R. M. Molecular basis of ALS and FTD: implications for translational studies. Arh Hig 
Rada Toksikol, 66, 285-90. (2015) 

Liu, H. N., Tjostheim, S., Dasilva, K., et al. Targeting of monomer/misfolded SOD1 as a 
therapeutic strategy for amyotrophic lateral sclerosis. J Neurosci, 32, 8791-8799. 
(2012) 

Liu, S. & Leach, S. D. Zebrafish models for cancer. Annu Rev Pathol, 6, 71-93. (2011) 

Liu, Y., Ma, P., Cassidy, P. A., et al. Statistical Analysis of Zebrafish Locomotor Behaviour 
by Generalized Linear Mixed Models. Sci Rep, 7, 2937. (2017) 

Liu, Y., Pattamatta, A., Zu, T., et al. C9orf72 BAC Mouse Model with Motor Deficits and 
Neurodegenerative Features of ALS/FTD. Neuron, 90, 521-34. (2016) 



162 
 

Logroscino, G., Traynor, B. J., Hardiman, O., et al. Descriptive epidemiology of amyotrophic 
lateral sclerosis: new evidence and unsolved issues. J Neurol Neurosurg Psychiatry, 
79, 6-11. (2008) 

Lopez-Gonzalez, R., Lu, Y., Gendron, T. F., et al. Poly(GR) in C9ORF72-Related ALS/FTD 
Compromises Mitochondrial Function and Increases Oxidative Stress and DNA 
Damage in iPSC-Derived Motor Neurons. Neuron, 92, 383-391. (2016) 

Lopez, K. L. R., Simpson, J. E., Watson, L. C., et al. TIGAR inclusion pathology is specific 
for Lewy body diseases. Brain Res, 1706, 218-223. (2019) 

Lowe, J., Lennox, G., Jefferson, D., et al. A filamentous inclusion body within anterior horn 
neurones in motor neurone disease defined by immunocytochemical localisation of 
ubiquitin. Neurosci Lett, 94, 203-10. (1988) 

Lunn, M. R. & Wang, C. H. Spinal muscular atrophy. Lancet, 371, 2120-33. (2008) 

Luty, A. A., Kwok, J. B., Dobson-Stone, C., et al. Sigma nonopioid intracellular receptor 1 
mutations cause frontotemporal lobar degeneration-motor neuron disease. Ann 
Neurol, 68, 639-49. (2010) 

Mackenzie, I. R., Arzberger, T., Kremmer, E., et al. Dipeptide repeat protein pathology in 
C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol, 126, 
859-79. (2013) 

Mackenzie, I. R., Bigio, E. H., Ince, P. G., et al. Pathological TDP-43 distinguishes sporadic 
amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. 
Ann Neurol, 61, 427-34. (2007) 

Mackenzie, I. R., Frick, P., Grasser, F. A., et al. Quantitative analysis and clinico-
pathological correlations of different dipeptide repeat protein pathologies in 
C9ORF72 mutation carriers. Acta Neuropathol, 130, 845-61. (2015) 

Mackenzie, I. R., Frick, P. & Neumann, M. The neuropathology associated with repeat 
expansions in the C9ORF72 gene. Acta Neuropathol, 127, 347-57. (2014) 

Magrane, J., Cortez, C., Gan, W. B., et al. Abnormal mitochondrial transport and morphology 
are common pathological denominators in SOD1 and TDP43 ALS mouse models. 
Hum Mol Genet, 23, 1413-24. (2014) 

Maier, M., Welt, T., Wirth, F., et al. A human-derived antibody targets misfolded SOD1 and 
ameliorates motor symptoms in mouse models of amyotrophic lateral sclerosis. Sci 
Transl Med, 10. (2018) 

Mailman, M. D., Heinz, J. W., Papp, A. C., et al. Molecular analysis of spinal muscular 
atrophy and modification of the phenotype by SMN2. Genet Med, 4, 20-26. (2002) 

Mann, D. M., Rollinson, S., Robinson, A., et al. Dipeptide repeat proteins are present in the 
p62 positive inclusions in patients with frontotemporal lobar degeneration and motor 
neurone disease associated with expansions in C9ORF72. Acta Neuropathol 
Commun, 1, 68. (2013) 

Markovinovic, A., Cimbro, R., Ljutic, T., et al. Optineurin in amyotrophic lateral sclerosis: 
Multifunctional adaptor protein at the crossroads of different neuroprotective 
mechanisms. Prog Neurobiol, 154, 1-20. (2017) 



163 
 

Martire, S., Mosca, L. & d'Erme, M. PARP-1 involvement in neurodegeneration: A focus on 
Alzheimer's and Parkinson's diseases. Mech Ageing Dev, 146-148, 53-64. (2015) 

Maruyama, H., Morino, H., Ito, H., et al. Mutations of optineurin in amyotrophic lateral 
sclerosis. Nature, 465, 223-226. (2010) 

May, S., Hornburg, D., Schludi, M. H., et al. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide 
repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol, 
128, 485-503. (2014) 

McClintock, B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A, 
36, 344-355. (1950) 

McGown, A., McDearmid, J. R., Panagiotaki, N., et al. Early interneuron dysfunction in ALS: 
insights from a mutant sod1 zebrafish model. Ann Neurol, 73, 246-58. (2013) 

McWhorter, M. L., Monani, U. R., Burghes, A. H., et al. Knockdown of the survival motor 
neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and 
pathfinding. J Cell Biol, 162, 919-31. (2003) 

Mead, R. J., Higginbottom, A., Allen, S. P., et al. S[+] Apomorphine is a CNS penetrating 
activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast 
models of amyotrophic lateral sclerosis. Free Radic Biol Med, 61, 438-52. (2013) 

Meerang, M., Ritz, D., Paliwal, S., et al. The ubiquitin-selective segregase VCP/p97 
orchestrates the response to DNA double-strand breaks. Nat Cell Biol, 13, 1376-82. 
(2011) 

Meyer, A. & Schartl, M. Gene and genome duplications in vertebrates: the one-to-four (-to-
eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol, 11, 
699-704. (1999) 

Mirkin, S. M. Expandable DNA repeats and human disease. Nature, 447, 932-40. (2007) 

Mizielinska, S., Gronke, S., Niccoli, T., et al. C9orf72 repeat expansions cause 
neurodegeneration in Drosophila through arginine-rich proteins. Science, 345, 1192-
1194. (2014) 

Mizielinska, S., Lashley, T., Norona, F. E., et al. C9orf72 frontotemporal lobar degeneration 
is characterised by frequent neuronal sense and antisense RNA foci. Acta 
Neuropathol, 126, 845-57. (2013) 

Mizielinska, S., Ridler, C. E., Balendra, R., et al. Bidirectional nucleolar dysfunction in 
C9orf72 frontotemporal lobar degeneration. Acta Neuropathol Commun, 5, 29. (2017) 

Mizuno, Y., Amari, M., Takatama, M., et al. Immunoreactivities of p62, an ubiqutin-binding 
protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. 
J Neurol Sci, 249, 13-18. (2006a) 

Mizuno, Y., Amari, M., Takatama, M., et al. Transferrin localizes in Bunina bodies in 
amyotrophic lateral sclerosis. Acta Neuropathol, 112, 597-603. (2006b) 

Molliex, A., Temirov, J., Lee, J., et al. Phase separation by low complexity domains 
promotes stress granule assembly and drives pathological fibrillization. Cell, 163, 
123-33. (2015) 



164 
 

Mordes, D. A., Prudencio, M., Goodman, L. D., et al. Dipeptide repeat proteins activate a 
heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol 
Commun, 6, 55. (2018) 

Moreno, C. B., Hernandez-Beltran, N., Munevar, D., et al. Central neuropathic pain in 
Parkinson's disease. Neurologia, 27, 500-503. (2012) 

Mori, K., Weng, S. M., Arzberger, T., et al. The C9orf72 GGGGCC repeat is translated into 
aggregating dipeptide-repeat proteins in FTLD/ALS. Science, 339, 1335-1338. (2013) 

Morris, M. J., Wingate, K. L., Silwal, J., et al. The porphyrin TmPyP4 unfolds the extremely 
stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to 
enhance translation in eukaryotic cells. Nucleic Acids Res, 40, 4137-45. (2012) 

Mosimann, C., Kaufman, C. K., Li, P., et al. Ubiquitous transgene expression and Cre-based 
recombination driven by the ubiquitin promoter in zebrafish. Development, 138, 169-
77. (2011) 

Nassif, M., Woehlbier, U. & Manque, P. A. The Enigmatic Role of C9ORF72 in Autophagy. 
Front Neurosci, 11, 442. (2017) 

Naumann, M., Pal, A., Goswami, A., et al. Impaired DNA damage response signaling by 
FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat 
Commun, 9, 335. (2018) 

Nery, L. R., Silva, N. E., Fonseca, R., et al. Presenilin-1 Targeted Morpholino Induces 
Cognitive Deficits, Increased Brain Abeta1-42 and Decreased Synaptic Marker PSD-
95 in Zebrafish Larvae. Neurochem Res, 42, 2959-2967. (2017) 

Neumann, M., Sampathu, D. M., Kwong, L. K., et al. Ubiquitinated TDP-43 in frontotemporal 
lobar degeneration and amyotrophic lateral sclerosis. Science, 314, 130-133. (2006) 

Nicolas, A., Kenna, K. P., Renton, A. E., et al. Genome-wide Analyses Identify KIF5A as a 
Novel ALS Gene. Neuron, 97, 1268-1283.e6. (2018) 

Nihei, K., McKee, A. C. & Kowall, N. W. Patterns of neuronal degeneration in the motor 
cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol, 86, 55-64. (1993) 

Nishimura, A. L., Mitne-Neto, M., Silva, H. C., et al. A mutation in the vesicle-trafficking 
protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral 
sclerosis. Am J Hum Genet, 75, 822-31. (2004) 

Nishimura, K., Fukagawa, T., Takisawa, H., et al. An auxin-based degron system for the 
rapid depletion of proteins in nonplant cells. Nat Methods, 6, 917-22. (2009) 

Nornes, S., Groth, C., Camp, E., et al. Developmental control of Presenilin1 expression, 
endoproteolysis, and interaction in zebrafish embryos. Exp Cell Res, 289, 124-32. 
(2003) 

Nornes, S., Newman, M., Wells, S., et al. Independent and cooperative action of Psen2 with 
Psen1 in zebrafish embryos. Exp Cell Res, 315, 2791-2801. (2009) 

O'Rourke, J. G., Bogdanik, L., Muhammad, A. K., et al. C9orf72 BAC Transgenic Mice 
Display Typical Pathologic Features of ALS/FTD. Neuron, 88, 892-901. (2015) 



165 
 

O'Rourke, J. G., Bogdanik, L., Yanez, A., et al. C9orf72 is required for proper macrophage 
and microglial function in mice. Science, 351, 1324-1329. (2016) 

Oakes, J. A., Davies, M. C. & Collins, M. O. TBK1: a new player in ALS linking autophagy 
and neuroinflammation. Mol Brain, 10, 5. (2017) 

Ohki, Y., Wenninger-Weinzierl, A., Hruscha, A., et al. Glycine-alanine dipeptide repeat 
protein contributes to toxicity in a zebrafish model of C9orf72 associated 
neurodegeneration. Mol Neurodegener, 12, 6. (2017) 

Okamoto, K., Hirai, S., Amari, M., et al. Bunina bodies in amyotrophic lateral sclerosis 
immunostained with rabbit anti-cystatin C serum. Neurosci Lett, 162, 125-128. (1993) 

Okamoto, K., Mizuno, Y. & Fujita, Y. Bunina bodies in amyotrophic lateral sclerosis. 
Neuropathology, 28, 109-15. (2008) 

Orlacchio, A., Babalini, C., Borreca, A., et al. SPATACSIN mutations cause autosomal 
recessive juvenile amyotrophic lateral sclerosis. Brain, 133, 591-8. (2010) 

Osaka, M., Ito, D. & Suzuki, N. Disturbance of proteasomal and autophagic protein 
degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2. 
Biochem Biophys Res Commun, 472, 324-31. (2016) 

Paquet, D., Bhat, R., Sydow, A., et al. A zebrafish model of tauopathy allows in vivo imaging 
of neuronal cell death and drug evaluation. Journal of Clinical Investigation, 119, 
1382-1395. (2009) 

Parkinson, N., Ince, P. G., Smith, M. O., et al. ALS phenotypes with mutations in CHMP2B 
(charged multivesicular body protein 2B). Neurology, 67, 1074-1077. (2006) 

Pasinelli, P., Belford, M. E., Lennon, N., et al. Amyotrophic lateral sclerosis-associated 
SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. 
Neuron, 43, 19-30. (2004) 

Pederson, T. The nucleolus. Cold Spring Harb Perspect Biol, 3, a000638. (2011) 

Pedrini, S., Sau, D., Guareschi, S., et al. ALS-linked mutant SOD1 damages mitochondria by 
promoting conformational changes in Bcl-2. Hum Mol Genet, 19, 2974-86. (2010) 

Peters, O. M., Cabrera, G. T., Tran, H., et al. Human C9ORF72 Hexanucleotide Expansion 
Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in 
BAC Transgenic Mice. Neuron, 88, 902-909. (2015) 

Phukan, J., Elamin, M., Bede, P., et al. The syndrome of cognitive impairment in 
amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg 
Psychiatry, 83, 102-108. (2012) 

Piao, Y. S., Wakabayashi, K., Kakita, A., et al. Neuropathology with clinical correlations of 
sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 
and 2000. Brain Pathol, 13, 10-22. (2003) 

Pokrishevsky, E., Grad, L. I. & Cashman, N. R. TDP-43 or FUS-induced misfolded human 
wild-type SOD1 can propagate intercellularly in a prion-like fashion. Sci Rep, 6, 
22155. (2016) 



166 
 

Pokrishevsky, E., Grad, L. I., Yousefi, M., et al. Aberrant localization of FUS and TDP43 is 
associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS One, 7, 
e35050. (2012) 

Poulopoulos, M., Levy, O. A. & Alcalay, R. N. The neuropathology of genetic Parkinson's 
disease. Mov Disord, 27, 831-42. (2012) 

Powis, R. A., Karyka, E., Boyd, P., et al. Systemic restoration of UBA1 ameliorates disease 
in spinal muscular atrophy. JCI Insight, 1, e87908. (2016) 

Prabhudesai, S., Bensabeur, F. Z., Abdullah, R., et al. LRRK2 knockdown in zebrafish 
causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci 
Res, 94, 717-35. (2016) 

Protter, D. S. W. & Parker, R. Principles and Properties of Stress Granules. Trends Cell Biol, 
26, 668-679. (2016) 

Prudencio, M., Belzil, V. V., Batra, R., et al. Distinct brain transcriptome profiles in C9orf72-
associated and sporadic ALS. Nat Neurosci, 18, 1175-82. (2015) 

Pu, Y. Z., Liang, L., Fu, A. L., et al. Generation of Alzheimer's Disease Transgenic Zebrafish 
Expressing Human APP Mutation Under Control of Zebrafish appb Promotor. Curr 
Alzheimer Res, 14, 668-679. (2017) 

Ramesh, T., Lyon, A. N., Pineda, R. H., et al. A genetic model of amyotrophic lateral 
sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease. Dis 
Model Mech, 3, 652-62. (2010) 

Ratovitski, T., Corson, L. B., Strain, J., et al. Variation in the biochemical/biophysical 
properties of mutant superoxide dismutase 1 enzymes and the rate of disease 
progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet, 8, 
1451-60. (1999) 

Reaume, A. G., Elliott, J. L., Hoffman, E. K., et al. Motor neurons in Cu/Zn superoxide 
dismutase-deficient mice develop normally but exhibit enhanced cell death after 
axonal injury. Nat Genet, 13, 43-47. (1996) 

Reddy, K., Zamiri, B., Stanley, S. Y., et al. The disease-associated r(GGGGCC)n repeat 
from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-
quadruplex structures. J Biol Chem, 288, 9860-9866. (2013) 

Reimer, M. M., Kuscha, V., Wyatt, C., et al. Sonic hedgehog is a polarized signal for motor 
neuron regeneration in adult zebrafish. J Neurosci, 29, 15073-15082. (2009) 

Renton, A. E., Majounie, E., Waite, A., et al. A hexanucleotide repeat expansion in 
C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72, 257-68. 
(2011) 

Richard, G. F., Kerrest, A. & Dujon, B. Comparative genomics and molecular dynamics of 
DNA repeats in eukaryotes. Microbiol Mol Biol Rev, 72, 686-727. (2008) 

Rink, E. & Wullimann, M. F. Connections of the ventral telencephalon and tyrosine 
hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an 
ascending dopaminergic system in a teleost. Brain Res Bull, 57, 385-387. (2002) 



167 
 

Robinson, K. J., Yuan, K. C., Don, E. K., et al. Motor Neuron Abnormalities Correlate with 
Impaired Movement in Zebrafish that Express Mutant Superoxide Dismutase 1. 
Zebrafish, 16. (2018) 

Robinson, M., Lee, B. Y. & Hane, F. T. Recent Progress in Alzheimer's Disease Research, 
Part 2: Genetics and Epidemiology. J Alzheimers Dis, 57, 317-330. (2017) 

Rochette, C. F., Gilbert, N. & Simard, L. R. SMN gene duplication and the emergence of the 
SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum 
Genet, 108, 255-66. (2001) 

Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol Med, 12, 
440-50. (2006) 

Rosen, D. R., Siddique, T., Patterson, D., et al. Mutations in Cu/Zn superoxide dismutase 
gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59-62. 
(1993) 

Rotunno, M. S. & Bosco, D. A. An emerging role for misfolded wild-type SOD1 in sporadic 
ALS pathogenesis. Front Cell Neurosci, 7, 253. (2013) 

Ryan, C. L., Baranowski, D. C., Chitramuthu, B. P., et al. Progranulin is expressed within 
motor neurons and promotes neuronal cell survival. BMC Neurosci, 10, 130. (2009) 

Saberi, S., Stauffer, J. E., Jiang, J., et al. Sense-encoded poly-GR dipeptide repeat proteins 
correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of 
repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol, 135, 459-
474. (2017) 

Saberi, S., Stauffer, J. E., Schulte, D. J., et al. Neuropathology of Amyotrophic Lateral 
Sclerosis and Its Variants. Neurol Clin, 33, 855-76. (2015) 

Sakae, N., Bieniek, K. F., Zhang, Y. J., et al. Poly-GR dipeptide repeat polymers correlate 
with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain 
disease. Acta Neuropathol Commun, 6, 63. (2018) 

Sakowski, S. A., Lunn, J. S., Busta, A. S., et al. Neuromuscular effects of G93A-SOD1 
expression in zebrafish. Mol Neurodegener, 7, 44. (2012) 

Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting 
genomes. Nat Biotechnol, 32, 347-55. (2014) 

Sareen, D., O'Rourke, J. G., Meera, P., et al. Targeting RNA foci in iPSC-derived motor 
neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med, 5, 
208ra149. (2013) 

Sasaki, S. & Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic 
amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 66, 10-16. (2007) 

Sato, K., Otomo, A., Ueda, M. T., et al. Altered oligomeric states in pathogenic ALS2 
variants associated with juvenile motor neuron diseases cause loss of ALS2-
mediated endosomal function. J Biol Chem, 293, 17135-17153. (2018) 



168 
 

Schapira, A. H., Mann, V. M., Cooper, J. M., et al. Anatomic and disease specificity of NADH 
CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem, 55, 
2142-2145. (1990) 

Scheuner, D., Eckman, C., Jensen, M., et al. Secreted amyloid beta-protein similar to that in 
the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 
2 and APP mutations linked to familial Alzheimer's disease. Nat Med, 2, 864-70. 
(1996) 

Schiffer, D., Cordera, S., Cavalla, P., et al. Reactive astrogliosis of the spinal cord in 
amyotrophic lateral sclerosis. J Neurol Sci, 139 Suppl, 27-33. (1996) 

Schludi, M. H., May, S., Grasser, F. A., et al. Distribution of dipeptide repeat proteins in 
cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. 
Acta Neuropathol, 130, 537-555. (2015) 

Schmid, B., Hruscha, A., Hogl, S., et al. Loss of ALS-associated TDP-43 in zebrafish causes 
muscle degeneration, vascular dysfunction, and reduced motor neuron axon 
outgrowth. Proc Natl Acad Sci U S A, 110, 4986-91. (2013) 

Schnorr, S. J., Steenbergen, P. J., Richardson, M. K., et al. Measuring thigmotaxis in larval 
zebrafish. Behav Brain Res, 228, 367-74. (2012) 

Sellier, C., Campanari, M. L., Julie Corbier, C., et al. Loss of C9ORF72 impairs autophagy 
and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell 
death. EMBO J, 35, 1276-97. (2016) 

Shahheydari, H., Ragagnin, A., Walker, A. K., et al. Protein Quality Control and the 
Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol 
Neurosci, 10, 119. (2017) 

Shang, Y. & Huang, E. J. Mechanisms of FUS mutations in familial amyotrophic lateral 
sclerosis. Brain Res, 1647, 65-78. (2016) 

Shao, Q., Liang, C., Chang, Q., et al. C9orf72 deficiency promotes motor deficits of a 
C9ALS/FTD mouse model in a dose-dependent manner. Acta Neuropathol Commun, 
7, 32. (2019) 

Shi, Y., Lin, S., Staats, K. A., et al. Haploinsufficiency leads to neurodegeneration in 
C9ORF72 ALS/FTD human induced motor neurons. Nat Med, 24, 313-325. (2018) 

Smith, B. N., Ticozzi, N., Fallini, C., et al. Exome-wide rare variant analysis identifies 
TUBA4A mutations associated with familial ALS. Neuron, 84, 324-31. (2014) 

Soman, S., Keatinge, M., Moein, M., et al. Inhibition of the mitochondrial calcium uniporter 
rescues dopaminergic neurons in pink1(-/-) zebrafish. Eur J Neurosci, 45, 528-535. 
(2017) 

Soraru, G., D'Ascenzo, C., Nicolao, P., et al. Muscle histopathology in upper motor neuron-
dominant amyotrophic lateral sclerosis. Amyotroph Lateral Scler, 9, 287-93. (2008) 

Soraru, G., Orsetti, V., Buratti, E., et al. TDP-43 in skeletal muscle of patients affected with 
amyotrophic lateral sclerosis. Amyotroph Lateral Scler, 11, 240-243. (2010) 



169 
 

Spillantini, M. G., Schmidt, M. L., Lee, V. M., et al. Alpha-synuclein in Lewy bodies. Nature, 
388, 839-40. (1997) 

Sreedharan, J., Blair, I. P., Tripathi, V. B., et al. TDP-43 mutations in familial and sporadic 
amyotrophic lateral sclerosis. Science, 319, 1668-72. (2008) 

Stephens, B., Guiloff, R. J., Navarrete, R., et al. Widespread loss of neuronal populations in 
the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J 
Neurol Sci, 244, 41-58. (2006) 

Stepto, A., Gallo, J. M., Shaw, C. E., et al. Modelling C9ORF72 hexanucleotide repeat 
expansion in amyotrophic lateral sclerosis and frontotemporal dementia. Acta 
Neuropathol, 127, 377-89. (2014) 

Stopford, M. J., Higginbottom, A., Hautbergue, G. M., et al. C9ORF72 hexanucleotide repeat 
exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by 
partial depletion of Pten. Hum Mol Genet, 26, 1133-1145. (2017) 

Streisinger, G., Walker, C., Dower, N., et al. Production of clones of homozygous diploid 
zebra fish (Brachydanio rerio). Nature, 291, 293-6. (1981) 

Sudria-Lopez, E., Koppers, M., de Wit, M., et al. Full ablation of C9orf72 in mice causes 
immune system-related pathology and neoplastic events but no motor neuron 
defects. Acta Neuropathol, 132, 145-147. (2016) 

Sveinbjornsdottir, S. The clinical symptoms of Parkinson's disease. J Neurochem, 139 Suppl 
1, 318-324. (2016) 

Swaminathan, A., Bouffard, M., Liao, M., et al. Expression of C9orf72-related dipeptides 
impairs motor function in a vertebrate model. Hum Mol Genet, 27, 1754-1762. (2018) 

Swinnen, B., Bento-Abreu, A., Gendron, T. F., et al. A zebrafish model for C9orf72 ALS 
reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathol, 135, 427-443. 
(2018) 

Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., et al. The double-strand-break repair 
model for recombination. Cell, 33, 25-35. (1983) 

Takahashi, Y., Fukuda, Y., Yoshimura, J., et al. ERBB4 mutations that disrupt the 
neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum 
Genet, 93, 900-905. (2013) 

Tao, Z., Wang, H., Xia, Q., et al. Nucleolar stress and impaired stress granule formation 
contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet, 24, 
2426-41. (2015) 

Taylor, J. S., Braasch, I., Frickey, T., et al. Genome duplication, a trait shared by 22000 
species of ray-finned fish. Genome Res, 13, 382-90. (2003) 

Therrien, M., Rouleau, G. A., Dion, P. A., et al. Deletion of C9ORF72 results in motor neuron 
degeneration and stress sensitivity in C. elegans. PLoS One, 8, e83450. (2013) 

Thiyagarajan, N., Ferguson, R., Subramanian, V., et al. Structural and molecular insights 
into the mechanism of action of human angiogenin-ALS variants in neurons. Nat 
Commun, 3, 1121. (2012) 



170 
 

Thomason, L., Court, D. L., Bubunenko, M., et al. Recombineering: genetic engineering in 
bacteria using homologous recombination. Curr Protoc Mol Biol, Chapter 1, Unit 
1.16. (2007) 

Thompson, S., Clarke, A. R., Pow, A. M., et al. Germ line transmission and expression of a 
corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell, 56, 
313-21. (1989) 

Ticozzi, N., Vance, C., Leclerc, A. L., et al. Mutational analysis reveals the FUS homolog 
TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am J Med 
Genet B Neuropsychiatr Genet, 156b, 285-90. (2011) 

Todd, P. K., Oh, S. Y., Krans, A., et al. CGG repeat-associated translation mediates 
neurodegeneration in fragile X tremor ataxia syndrome. Neuron, 78, 440-55. (2013) 

Tran, H., Almeida, S., Moore, J., et al. Differential Toxicity of Nuclear RNA Foci versus 
Dipeptide Repeat Proteins in a Drosophila Model of C9ORF72 FTD/ALS. Neuron, 87, 
1207-14. (2015) 

Troost, D., Van den Oord, J. J. & Vianney de Jong, J. M. Immunohistochemical 
characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. 
Neuropathol Appl Neurobiol, 16, 401-10. (1990) 

Tsuji, H., Arai, T., Kametani, F., et al. Molecular analysis and biochemical classification of 
TDP-43 proteinopathy. Brain, 135, 3380-91. (2012) 

Turner, M. R. Increased premorbid physical activity and amyotrophic lateral sclerosis: born 
to run rather than run to death, or a seductive myth? J Neurol Neurosurg Psychiatry, 
84, 947. (2013) 

van den Heuvel, D. M., Harschnitz, O., van den Berg, L. H., et al. Taking a risk: a therapeutic 
focus on ataxin-2 in amyotrophic lateral sclerosis? Trends Mol Med, 20, 25-35. 
(2014) 

Vance, C., Rogelj, B., Hortobagyi, T., et al. Mutations in FUS, an RNA processing protein, 
cause familial amyotrophic lateral sclerosis type 6. Science, 323, 1208-1211. (2009) 

Veldink, J. H., Kalmijn, S., Groeneveld, G. J., et al. Intake of polyunsaturated fatty acids and 
vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol 
Neurosurg Psychiatry, 78, 367-71. (2007) 

Viode, A., Fournier, C., Camuzat, A., et al. New Antibody-Free Mass Spectrometry-Based 
Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the 
Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers. Front Neurosci, 12, 
589. (2018) 

Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., et al. Ivermectin is a specific inhibitor of 
importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and 
dengue virus. Biochem J, 443, 851-856. (2012) 

Walker, C., Herranz-Martin, S., Karyka, E., et al. C9orf72 expansion disrupts ATM-mediated 
chromosomal break repair. Nat Neurosci, 20, 1225-1235. (2017) 



171 
 

Wang, H., Guo, W., Mitra, J., et al. Mutant FUS causes DNA ligation defects to inhibit 
oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat Commun, 9, 3683. 
(2018) 

Wang, M. D., Little, J., Gomes, J., et al. Identification of risk factors associated with onset 
and progression of amyotrophic lateral sclerosis using systematic review and meta-
analysis. Neurotoxicology, 61, 101-130. (2017) 

Wang, W. Y., Pan, L., Su, S. C., et al. Interaction of FUS and HDAC1 regulates DNA 
damage response and repair in neurons. Nat Neurosci, 16, 1383-91. (2013) 

Webster, C. P., Smith, E. F., Bauer, C. S., et al. The C9orf72 protein interacts with Rab1a 
and the ULK1 complex to regulate initiation of autophagy. EMBO J, 35, 1656-76. 
(2016a) 

Webster, C. P., Smith, E. F., Grierson, A. J., et al. C9orf72 plays a central role in Rab 
GTPase-dependent regulation of autophagy. Small GTPases, 9, 399-408. (2016b) 

Wei, Q., Zhou, Q., Chen, Y., et al. Analysis of SOD1 mutations in a Chinese population with 
amyotrophic lateral sclerosis: a case-control study and literature review. Sci Rep, 7, 
44606. (2017) 

Wen, X. M., Tan, W. Z., Westergard, T., et al. Antisense Proline-Arginine RAN Dipeptides 
Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro 
and In Vivo Neuronal Death. Neuron, 84, 1213-1225. (2014) 

Wenk, G. L. Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry, 64 Suppl 9, 
7-10. (2003) 

Westerfield, M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 
Eugene, Univ. of Oregon Press. (2000) 

Westerfield, M., McMurray, J. V. & Eisen, J. S. Identified motoneurons and their innervation 
of axial muscles in the zebrafish. J Neurosci, 6, 2267-77. (1986) 

Westergard, T., Jensen, B. K., Wen, X., et al. Cell-to-Cell Transmission of Dipeptide Repeat 
Proteins Linked to C9orf72-ALS/FTD. Cell Rep, 17, 645-652. (2016) 

White, M. R., Mitrea, D. M., Zhang, P., et al. C9orf72 Poly(PR) Dipeptide Repeats Disturb 
Biomolecular Phase Separation and Disrupt Nucleolar Function. Mol Cell, 74, 1-16. 
(2019) 

Wiedemann, F. R., Winkler, K., Kuznetsov, A. V., et al. Impairment of mitochondrial function 
in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci, 156, 
65-72. (1998) 

Wilke, C., Pomper, J. K., Biskup, S., et al. Atypical parkinsonism in C9orf72 expansions: a 
case report and systematic review of 45 cases from the literature. J Neurol, 263, 558-
74. (2016) 

Wilkins, B. J. & Pack, M. Zebrafish models of human liver development and disease. Compr 
Physiol, 3, 1213-30. (2013) 

Wilkinson, R. N., Jopling, C. & van Eeden, F. J. Zebrafish as a model of cardiac disease. 
Prog Mol Biol Transl Sci, 124, 65-91. (2014) 



172 
 

Wilkinson, R. N. & van Eeden, F. J. The zebrafish as a model of vascular development and 
disease. Prog Mol Biol Transl Sci, 124, 93-122. (2014) 

Williams, K. L., Topp, S., Yang, S., et al. CCNF mutations in amyotrophic lateral sclerosis 
and frontotemporal dementia. Nat Commun, 7, 11253. (2016) 

Wu, C. H., Fallini, C., Ticozzi, N., et al. Mutations in the profilin 1 gene cause familial 
amyotrophic lateral sclerosis. Nature, 488, 499-503. (2012) 

Xi, Y., Ryan, J., Noble, S., et al. Impaired dopaminergic neuron development and locomotor 
function in zebrafish with loss of pink1 function. Eur J Neurosci, 31, 623-33. (2010) 

Xu, Z., Poidevin, M., Li, X., et al. Expanded GGGGCC repeat RNA associated with 
amyotrophic lateral sclerosis and frontotemporal dementia causes 
neurodegeneration. Proc Natl Acad Sci U S A, 110, 7778-83. (2013) 

Yang, Y., Hentati, A., Deng, H. X., et al. The gene encoding alsin, a protein with three 
guanine-nucleotide exchange factor domains, is mutated in a form of recessive 
amyotrophic lateral sclerosis. Nat Genet, 29, 160-165. (2001) 

Yeh, T. H., Liu, H. F., Li, Y. W., et al. C9orf72 is essential for neurodevelopment and motility 
mediated by Cyclin G1. Exp Neurol, 304, 114-124. (2018) 

Yin, S., Lopez-Gonzalez, R., Kunz, R. C., et al. Evidence that C9ORF72 Dipeptide Repeat 
Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients. Cell 
Rep, 19, 2244-2256. (2017) 

Zelko, I. N., Mariani, T. J. & Folz, R. J. Superoxide dismutase multigene family: a 
comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene 
structures, evolution, and expression. Free Radic Biol Med, 33, 337-49. (2002) 

Zhang, H., Duan, C. & Yang, H. Defective autophagy in Parkinson's disease: lessons from 
genetics. Mol Neurobiol, 51, 89-104. (2015a) 

Zhang, K., Daigle, J. G., Cunningham, K. M., et al. Stress Granule Assembly Disrupts 
Nucleocytoplasmic Transport. Cell, 173, 958-971.e17. (2018) 

Zhang, K., Donnelly, C. J., Haeusler, A. R., et al. The C9orf72 repeat expansion disrupts 
nucleocytoplasmic transport. Nature, 525, 56-61. (2015b) 

Zhang, Y., Nguyen, D. T., Olzomer, E. M., et al. Rescue of Pink1 Deficiency by Stress-
Dependent Activation of Autophagy. Cell Chem Biol, 24, 471-480.e4. (2017) 

Zhang, Y. J., Gendron, T. F., Grima, J. C., et al. C9ORF72 poly(GA) aggregates sequester 
and impair HR23 and nucleocytoplasmic transport proteins. 19, 668-77. (2016) 

Zhang, Y. J., Jansen-West, K., Xu, Y. F., et al. Aggregation-prone c9FTD/ALS poly(GA) 
RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta 
Neuropathol, 128, 505-24. (2014) 

Zhou, B., Geng, Y., Liu, C., et al. Characterizations of distinct parallel and antiparallel G-
quadruplexes formed by two-repeat ALS and FTD related GGGGCC sequence. Sci 
Rep, 8, 2366. (2018) 



173 
 

Zhu, H. & Zon, L. I. Use of the DsRed fluorescent reporter in zebrafish. Methods Cell Biol, 
76, 3-12. (2004) 

Zhu, S., Tai, C., Petkau, T. L., et al. Progranulin promotes activation of 
microglia/macrophage after pilocarpine-induced status epilepticus. Brain Res, 1530, 
54-65. (2013) 

Zu, T., Gibbens, B., Doty, N. S., et al. Non-ATG-initiated translation directed by microsatellite 
expansions. Proc Natl Acad Sci U S A, 108, 260-265. (2011) 

Zu, T., Liu, Y., Banez-Coronel, M., et al. RAN proteins and RNA foci from antisense 
transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A, 
110, E4968-77. (2013) 



174 
 

Appendix A Table of in vivo C9orf72 models 

Gain or 
loss of 

function 
Type of model Species RNA Foci 

Sense 
DPR 

Antisense 
DPR 

Motor or 
cognitive 
defects 

Neuro-
degen. 

Expression 
type 

Reference Notes 

Gain 
Expansion containing 

BAC 
Mouse Yes Yes Not tested No No Stable 

(Peters et al., 
2015) 

Exons 1-6 of human C9orf72 gene with 140.5 
Kb of upstream sequence was expressed.  
G4C2 repeats lengths of both ~300 and ~500 
were reported within the same mice. 

Gain 
Expansion containing 

BAC 
Mouse Yes Yes Not tested No No Stable 

(O'Rourke et 
al., 2015) 

Full length human C9orf72 gene was 
expressed.  G4C2 repeat size ranged from 
~100-1000 repeats 

Gain 
Expansion containing 

BAC 
Mouse Yes Yes Not tested 

Motor and 
Cognitive 

Yes Stable 
(Liu et al., 

2016) 

Full length human C9orf72 gene was 
expressed with 52Kb upstream and 19 Kb 
downstream sequence.  Multiple lines of mice 
were generated with the following G4C2 
repeat sizes (500), (500 and 32), (36 and 29) 
and (37), all lines were phenotypic with the 
exception of (37).  Mice displayed anxiety like 
behaviour, paralysis and motor neuron loss.  
Only BAC mouse model to report TDP-43 
pathology. 

Gain 
Expansion containing 

BAC 
Mouse Yes Yes Not tested Cognitive Yes Stable 

(Jiang et al., 
2016) 

Exons 1-5 of the human C9orf72 gene with 
140Kb of upstream sequence was expressed.  
G4C2 repeat lengths of ~110 or ~450 were 
reported in different mouse lines.  Mice 
expressing ~450 repeats showed anxiety like 
behaviour and impaired working memory.   

Gain 
Viral overexpression 
of G4C2 expansion 

Mouse Yes Yes Not tested 
Motor and 
Cognitive 

Yes 
Viral 

expression 
(Chew et al., 

2015) 

66 G4C2 repeats were virally overexpressed by 
intracerebroventricular injection of virus.  
Mice showed anxiety like behaviour and 
rotarod performance deficits.  Cortical neuron 
loss was also observed 
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Gain 
Viral overexpression 
of poly(GA) encoding 

construct 
Mouse NA Yes NA 

Motor and 
Cognitive 

Yes 
Viral 

expression 
(Zhang et al., 

2016) 

50 poly(GA) encoding repeats were virally 
overexpressed by intracerebroventricular 
injection of virus.  Mice showed anxiety like 
behaviour and rotarod performance deficits. 

Gain 
Viral overexpression 
of G4C2 expansion 

Mouse Yes Yes No 
Motor and 
Cognitive 

No 
Viral 

expression 
(Herranz-

Martin et al., 
2017) 

102 G4C2 repeats were virally overexpressed 
by cisterna magna injection of virus.  Mice 
showed defects in gait analysis and object 
recognition tests.  Increased cleaved-PARP1 
was reported in cerebellar regions but no cell 
loss was observed. 

Gain 
Viral overexpression 
of poly(GA) encoding 

construct 
Mouse NA Yes NA Motor Yes 

Viral 
expression 

(Walker et al., 
2017) 

69 poly(GA) encoding repeats were virally 
overexpressed by cisterna magna injection of 
virus.  Mice showed defects in gait analysis 
and neuron loss in the brainstem 

Gain 
DPR encoding 

construct 
Mouse NA Yes NA Cognitive Yes Stable 

(Choi et al., 
2019) 

Mice stably expressing 80 poly(GR) encoding 
repeats in the forebrain.  Mice showed defects 
in tests of social interaction and increased 
anxiety in the elevated plus maze test. 

Loss 
C9orf72 gene 

knockout 
Mouse NA NA NA No No Stable 

(Koppers et al., 

2015, Atanasio 

et al., 2016, 

Sudria-Lopez et 

al., 2016, Jiang 

et al., 2016, 

O’Rourke et al., 

2016, Ji et al., 

2017) 

6 independently generated models C9orf72 
knockout mice reported similar results 

Both 

Expansion containg 
BAC combined with 

C9orf72 gene 
knockout 

Mouse 
Not  

tested 
Not 

tested 
Not  

tested 
Motor 

Not 
tested 

Stable 
(Shao et al., 

2019) 

Phenotypic BAC mice generated previously by 
Liu and other authors were crossed with 
C9orf72 knockout mice.  The precise BAC 
expansions size was not reported for these 
mice.  Knockout of one or both copies of  
mouse C9orf72 increased the severity of the 
motor phenotype observed in BAC expansion 
mice. 
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Gain 
Expansion containing 

construct 
Zebrafish Yes No Not tested Not tested No Stable 

(Ohki et al., 
2017) 

80 G4C2 repeats without an upstream ATG 
start codon. Mild cardiac phenotype. 

Gain 
Poly(GA) producing 

expansion 
Zebrafish Yes Yes Not tested Not tested No Stable 

(Ohki et al., 
2017) 

80 G4C2 repeats with an upstream start codon 
in the frame of poly(GA).  Severe cardiac 
phenotype. 

Gain 
Expansion containing 

construct 
Zebrafish Yes 

Not 
tested 

Not tested Not tested 
Not 

tested 
Chimeric 

expression 
(Lee et al., 

2013) 

72 G4C2 repeat containing constructs were 
injected into zebrafish at the one cell stage.  
An increase in apoptotic markers was reported 
but not specifically in neural tissue 

Gain 
Expansion containing 

construct (sense) 
Zebrafish Yes No Not tested Not tested 

Motor 
axonop

-athy 
Transient 

(Swinnen et al., 
2018) 

0.844µM of 3, 4, 10, 35, 70 and 90 G4C2 
repeat RNA was injected at the 1-2 cell stage.  
Motor axonopathy was observed with 35 
repeats or more.  Poly(GR) was not detected in 
any condition.  Poly(GP) was present at just 
above the limit of detection in 90 repeat 
condition only in an immunoassay. 

Gain 
Expansion containing 
construct (antisense) 

Zebrafish Yes No No Not tested 
Motor 
axonop

-athy 
Transient 

(Swinnen et al., 
2018) 

0.844µM of 35 and 70 C4G2 repeat RNA was 
injected at the 1-2 cell stage.  Motor axon 
abnormal branching was observed in both 
conditions.  Poly(PR) and poly(GP) were not 
detectable in any condition 

Gain 
DPR encoding 

constructs 
Zebrafish NA Yes Yes Not tested 

Motor 
axonop

-athy 
Transient 

(Swinnen et al., 
2018) 

0.844µM of 50 codon optimised repeats of 
poly(GR), poly(PR), poly(GP), poly (PA) and 
poly(GA) repeat RNA was injected at the 1-2 
cell stage.  Motoraxonopathy was observed in 
poly(GR) and poly(PR) injected conditions, but 
not in poly(GA), poly(PA) or poly(GP) 
conditions 

Gain 
Expansion containing 
construct (RNA-only) 

Zebrafish See notes See notes See notes Not tested 
Motor 
axonop

athy 
Transient 

(Swinnen et al., 
2018) 

0.844µM of RNA-only RNA of repeat lengths 
70 (sense), 108 (sense), 70 (antisense) and 108 
(antisense) were injected at the 1-2 cell stage.  
Motor axonopathy was observed in all 
conditions.  Although RNA foci and DPR 
production was not investigated in the present 
study, the presence of RNA foci and absence 
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of DPR when expressing these constructs in 
drosophila has been reported previously 
(Mizielinska et al., 2014) 

Loss C9orf72 knockdown Zebrafish NA NA NA Motor 
Axonop

-athy 
Transient 

(Ciura et al., 
2013) 

Morpholino mediated knockdown. Defects in 
spontaneous swimming and touch evoked 
escape responses were observed.  Defects in 
early axonal outgrowth were also reported. 

Loss 
Non-functional 

C9orf72 expression 
Zebrafish NA NA NA Motor Yes Transient 

(Yeh et al., 
2018) 

Injection of non-functional C9orf72 RNA 
(lacking various DENN domain segments).  Also 
confirmed with C9orf72 morpholino 
knockdown.  Defects in touch evoked escape 
response and neuronal apoptosis observed 

Loss 
C9orf72 gene 

knockout 
Zebrafish NA NA NA No No Stable 

(Stepto et al., 
2014) 

Details of model are not yet published 

Gain 
Poly(PR) encoding 

construct 
Drosophila NA NA Yes Not tested Yes Stable 

(Wen et al., 
2014) 

50 poly(PR) encoding repeats resulted in 
neurodegeneration, however an equal number 
of poly(PA) and poly(GA) encoding repeats did 
not 

Gain 
Expansion containing 

construct 
Drosophila Yes Yes Yes Not tested Yes Stable 

(Mizielinska et 
al., 2014) 

103 G4C2 repeats, produced poly(GP) and 
poly(GR) DPR proteins 

Gain 
Expansion containing 
construct (RNA-only) 

Drosophila Yes No No Not tested No Stable 
(Mizielinska et 

al., 2014) 
108 RNA-only G4C2 repeats.  RNA-only repeats 
were generated by inserting bi-directional 
multi-frame stop codons every 12 repeats 

Gain 
Poly(PR) encoding 

construct 
Drosophila NA NA Yes Not tested Yes Stable 

(Mizielinska et 
al., 2014) 

100 poly(PR) encoding repeats.  The same 
results were also obtained with 100 poly(GR) 
encoding repeats 

Gain 
Poly(GA) encoding 

construct 
Drosophila NA Yes NA Not tested No Stable 

(Mizielinska et 
al., 2014) 

100 poly(GA) encoding repeats.  A small 
reduction in lifespan was observed in this 
model.  The same results were obtained with 
100 poly(PA) encoding repeats, however no 
change in lifespan was observed in this case 

Gain 
Expansion containing 

construct 
Drosophila Yes Yes Not tested No No Stable 

(Tran et al., 
2015) 

160 G4C2 intronic repeats expressed between 
exon 1 and exon 3 of the human C9orf72 gene.  
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A poly(A) tail was not present in this construct.  
Poly(GP) was detected, but not poly(GR). 

Gain 
Expansion containing 

construct 
Drosophila Yes Yes Not tested Not tested Yes Stable 

(Tran et al., 
2015) 

34 G4C2 repeats expressed in the context of a 
poly(A) tail.  Poly(GP) and poly(GR) were 
detected. 

Loss 
C9orf72 gene 

knockout 
C. elegans NA NA NA Motor Yes Stable 

(Therrien et al., 
2013) 

Paralysis and motor neuron degeneration was 
observed 

Neurodegen: Presence of neurodegeneration.  Studies which utilised multiple distinct animal models have been separated into 

multiple table entries for clarity.
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Appendix B Sequence of 99 G4C2 containing transgene 
 

______      ISceI meganuclease restriction site 

______      Zebrafish ubiquitin promotor 

______      GFP 

______      Start codon 

______      Stop codon 

______      (G4C2)99 C9orf72 expansions 

______      Heat shock promotor 70 

______      DsRed 

 

Listed below is the entire DNA sequence contained in a single transgene copy 

-  

cagggtaatagcttttaatctcaaaaaacattaaatgaaatgcatacaaggttttatcctgctttagaactgtttgtatttaatt

atcaaactataagacagacaatctaatgccagtacacgctactcaaagttgtaaaacctcagatttaacttcagtagaag

ctgattctcaaaattgttagtgtcaagcctagctcttttggggctgaaaagcaatcctgcagtgctgaaaagcctctcaca

ggcagccgatgcgggaagaggtgtattagtcttgatagagaggctgcaaatagcaggaaacgtgagcagagactcc

ctggtgtctgaaacacaggccagatgggtttaaacgaattcgtcgagaccagcaaagttctagaatttgtcgaaacattt

atgttatatatttcctgaaaaaaattctgagtaagttcttaagtgttattgccagcaacataaacaacagacggcaaaatga

ataaatgataacaaagcagtaggcttaaataaacctaatttttataggctgttctctacaaccctcaaacagtgattagtttt

gtacttataaacttgccctttcattcatatttcaagaaaattggttcagaagatctggatattctagcagttgttcaagctcat

ggagggatcagtgacctgattccacaatgactaggcctaatccagaaattagatgactgtcaacataaaaaggcacag

cactcactagctgccctatatattttattatattttacatatattattttatttatttagctctgagtgctgtactttctggttaaaga

aaactgcttacaacagctaacctgtactacctcaggctcagggaatttggaacaggtttgtctggtttgtttctttaaccat

gcatgcttgttttcaactatggcaacacagtcacatgggacattacagaaatgatttgtcgatgacatgcgacttttctttaa

taaagcgcaaagatcccaaaaagcaaacttttaacaaaaatcatataattatattttcaatccagctttgtagcaactttgt

gctgctgttcactcagcaacagatagtcagtataaggtcagtgtgtctcaaagcagtgccatctgtttcacacattgcgtt

ctatatataagtgtgctggttgacacgacactgtataaggcctaggctaaaacacaaacaatgtagaatgacactgtgtt

ttttttgtaaacaaatgttgtttttggttaaacatctttgtgaaaacatcctcctgtcatgtatttgctatattcaaatgttaaacc

cgtgcagaatagaacatatacaaaaaaaaacaacacaacacatttttaaacattattaaatatcaagtattgctggcagtt

ctgtttctgttttacagtaccctttgccacagttctccgcttttcctggtccagattccacaagtctgattcaccaatagcaaa

gcgaataaacaaccaaagcagccaatcactgcttgtagactgtcctgcgagaccggcccattccagcacattctgga

aacttcctttatatgataattataaatacatttaaattattgatacaaaacatgtaattcctagaacataaccatagcaatcatt

agttttcagggtaattatgtatttttaggatttgactgcggaaagatctggtcatgtgacgtctcatgaacgtcacggccct

gggtttctataaatacagtaggactctcgaccatcggcagatttttcgaagaagaagatcagtttcaggagccgtactgtt

ccgtttcaacgcaaatattaacggtaagagcgaatttcctagtttgttttcatgccattctttaaaaccatagcgtattacttta

attatagtaaactttcgctttctttattacaagagacgttttgtgttgattctccgcggacattttcggtcagacaatcagaaa

atgaccgcggaggaccagtaacttgcattacacgtaagttaaatcttcgtgtattaaaatggttaggttgttaacgtcaaat

aggttaccgtgtttgcgtgtgatcaggttggttttgttagatttttgtcagtatttttaatttatttgttttagtttatttattttttttgct

gaatcatagtttgtgaacaaagaacccggatgttacatacagtacagccgccatgttacagagagttataacttaatcatt

ttaaaaataattttgccttacttttagtttgtcatgttgagaaatgaggaaatgttaaaatgaggaaatatccaattaatttaat

atatcaaaataatccatgattacaatgcactgaactggagaaaattaagatgttttctagtgtcatgaaacaaatgtaaga

gatgtacattgtagatgttttatgtcaagaattggctagttgatgcagcatactggcgatactcagttgtaataacagtaac
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gttacatgttaatagactactgagtatgctgttctgtctatgtatgctctgtaagctacgagaaggacttttttaaacagtaaa

gggtgcaatatttttacaaattgaattaaataaaggctgtctattaagtaatatgcttgatatttttcttacttgatcggaaataa

gaaaaaatataaacgttgttgctctaaaaatcctagttcagtttagccaaccacaaatacctttttgttcctccaacagttttt

ttttcttctctataatatttggcagtctatagtactccaaatgtttccccacagtctaactaattggtacagccaaaatcatga

cacttattgcaataataattttggttcattggcattgttgatagcctgtgccactaatatggtcgattgatcatgcttcaggaa

gaaaactatattgtttgatgtaagattattaaatcttcacctgcttccattacaaactattcccatcttattgaattctggtatgt

cttaaaggattagttcacttcccaaatcaaaatttacttagccttttttcatccatgatccctttttttcatcattaatgaagaaat

tgtttttgaaaaagtttcaagatttttttctctatattgtggagcttgttagtttaaaattccaaaatgcaatatgtggcttcaaat

ggttctaaatgatcccagtcaaggaataacagtcttatctaatgaaaccattagacctttaaaaataaaaaaaataaaagt

atttatttttaaatgactgagtgattaagttgaatttcagcgtttccttactgtgtagaagtccttccttactggccccacccttt

ggttctctgccaatctgctacctaatgtaatgttgtggaacattattattctttatttcttaattttttattttttattttaaaacaatgt

aaactgcacagatgtgcagtttgtttaaaatggccaatgctttggaaatgcatgacataattagatttcatgatgcacaaa

gccaaatctcagagcttgtgcaaaatgagctatcatttcactaggtaagaccctaaattttcatataggatcatttggacaa

ttttgctgcaggtaaaatgcattctatagtccactgtcagccattgttttggatagtatttatttttctctacaagtatagtcaat

agttttctattattttaaaggtttgtaacatttaagggtgaccaaatgcaaagtaaaatttcattttcgggtgaactatctcgttt

aacatgggagaagtgcaaaacatacattattggctagaacattgtagtattttttaaatggaaatgtgtgattgctaatctta

ctttgaatttgtttacagggatctataacttcgtatagtataccttatacgaagttatcgagctcataacttcgtataggatact

ttatacgaagttataacgtcgagataacttcgtatagcatacattatacgaagttataggatcaatggtgagcaagggcg

aggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtc

cggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgt

gccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcag

cacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaacta

caagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaa

ggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaa

gcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgacc

actaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccg

ccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactct

cggcatggacgagctgtacaaaaaagcaggctttaaagggaggtagtgagtcgacggggccggggccggggccg

gggccggggccggggccggggccggggccggggccggggccggggccggggcctcgacggggccggggc

cggggccggggccggggccggggccggggccggggccggggccggggccggggccggggccggggccgg

ggccggggccggggccggggcctcgacggggccggggccggggccggggccggggccggggccggggcc

ggggccggggccggggcctcgacggggccggggccggggccggggccggggccggggccggggccgggg

ccggggccggggccggggccggggccggggccggggccggggccggggccggggccggggccggggccg

gggccggggccggggcctcgacggggccggggccggggccggggccggggccggggccggggccggggc

cggggccggggccggggccggggccggggccggggccggggccggggccggggcctcgacggggccggg

gccggggccggggccggggccggggccggggccggggccggggcctcgacggggccggggccggggccg

gggccggggccggggccggggccggggccggggccggggccggggccggggcctcgagatatctagaccca

gctttcttgtacatgtagaattcatgatgggcagtgtcgagctgaatctgagggagactgagctgtgtcttggtcttcccg

gtggagatacagtggctccggtaaccggaaacaagagagggttctcagagacggttgatctgaagctaaatctgaat

aatgagcctgcaaacaaggaaggatctacgactcatgacgtcgtgacttttgattccaaggagaagagtgcttgtccta

aagatccagccaaacctccggccaaggcacaagttgtgggatggccaccggtgagatcataccggaagaacgtgat

ggtttcctgccaaaaatcaagcggtggcccggaggcggcggcgttcgtgaaggtatcaatggacggagcaccgtac

ttgaggaaaatcgatttgaggatgtataaaagctacgatgagctttctaatgctttgtccaacatgttcagctcttttaccat

gggcaaacatggaggagaagaaggaatgatagacttcatgaatgagaggaaattgatggatttggtgaatagctggg

actatgttccctcttatgaagacaaagacggtgattggatgctcgtcggcgacgttccttggccaatgttcgtcgatacat

gcaagcgtttacgtctcatgaaaggatcggatgccattggtctcgctccgagggcgatggagaagtgcaagagcaga

gcttagcccggcggcatggacgagctgtacaagtaatacgtagatccagacatgataagatacattgatgagtttgga

caaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagc

tgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaattcgc

ggccaactttattatacatagttgataattcactggccgtcgttttacggtactacggtacggatccttcaggggtggatcc

ttcaggggtgtcgcttggtgatttccaaaaatcaaattaattttattaaactattagaacgagcatgttttgtctatatgctaca
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gaagataaaaaataataggagttaacagttataaaacaacacactttgtttctattgattgttgaccacactggggtctcat

taagttagattaaagacacactaactgggtcaaatgcagcagattgatttcatggcaccagggtaaactttctaacacttt

tacggcaatcatatacatcaaaattaaatacaggccacgactgaacaaggaggatgatctccaaaattaaacaaagag

acttgtgcctatttctctgagggtaaacatgacctctcaagttagcaagttgtttttaacactacaaaaatagttaagactgc

aatcccagaataaagtattggttttaaccaatcaatatagtacagtaaacatccatttgttttgttgaaacgttaaacgaatc

tgaccaagctattagcttatataaaacaggtttgccttttatgtagctgaaaataccacaggcccgattttgctactgtgtaa

aacatttcagcaagattttttttatattgcatttttttctactgaatcgttcaaacattttatcattttagtttgttcattcattgcaact

ggaaaaacaacacaccacacaaccgcacatttttcagcaataagtacaataaaacactcaaataaaaaaaaacttttta

aatctctttgtatttttgaccgctgtttcgcgtaatttcacggtaaaactctggaaatctccactacattcctctcagcggctc

ctctcaatgacagctgaagaagtgacgcggctgcctgctgtgttttgattggtcgaattcactggaggcttccagaaca

gtgtagagtctgaacgggtgcgcgctctgctgtatttaaagggcgaaagagagaccgcagagaaactcaaccgaag

agaagcgacttgacaaagaagaaaagagcagcctgacaggacttttccccgacgaggtgtttattcgctctatttaaga

atctactgtaaggtaagtctcaatatattgtactctagtggctaatcaaaattttatagagattatatgtacttaatgtcaaaaa

atctactttgtatatgtaatctttttacatgtggactgcctatgttcatcttattttaggtctactagaaaattatatttcccgttttc

acaataaggatttaaaaaaaaagcaatgaacagactggcatttactttatgttgctgacattattatatatgagcataataa

ccataaatactagcaaatgtcctaaatgaatttgtgttaatgttgtctacaaaagaaaagaaaattagcgttttacttgtaca

actaataataacttagttattaagagaatttcacttgttgactagaaaaatcctttcataatgaaacaattgcaccataaattg

tataaatataaaattaattctaattgtttttttttttcctgcagtcgagcgccaccatggcctactccgagaaagtcatcaccg

agttcatgcgcttcaaggtgcgcatggagggcaccgtgaacggccacgagttcgagatcgagggcgagggcgagg

gccgcccctacgagggccacaacaacgtgaagctgaaggtgaccaagggcggccacctgcccttcgcctgggac

atcctgtcccaccagttccagtacggctccaaggtgtacgtgaagcaccccgccgacatcaccgactacaagaagct

gtcattccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggcgacagtgacccagga

ctcctccctgcaggacggctgcttcatctacaaggtgaagttcatcggagtgaacttcacctccgacggccccgtgatg

cagaagaagaccatgggctgggaggcctcaaccgagcgcatgtacccccgcgacggcgtgctgaagggcgaga

cccacaaggccctgaagctgaaggacggcggccactacctggtggagttcaagtccatctacatggacaagaagcc

agtgcagctgaccggctactactacgtggacgccaagctggacatcacctcccacaacgaggactacaccatcgtg

gagcagtacgagcgcaccgagggccgccaccacctgttctaagcggccgcgactctagatcataatcagccatacc

acatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttg

ttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcact

gcattctagttgtggtttgtccaaactcatcaatgtatcttaggtacctagggataa 
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Appendix C Sequence of 89 C4G2 containing transgene 
 

______      ISceI meganuclease restriction site 

______      Zebrafish ubiquitin promotor 

______      GFP 

______      Start codon 

______      Stop codon 

______      (C4G2)89 C9orf72 expansions 

______      Heat shock promotor 70 

______      DsRed 

 

NB: Due to difficulties in sequencing GC rich DNA we were not able to obtain a 

sequencing read which spanned the entire C4G2 expansion, therefore 

expansion size is listed as 89 C4G2 repeats which is the minimum known size 

ascertained by comparing forward and reverse sequencing reads through the 

expansion.  Additionally, as sequencing reads could not span the C4G2 

expansion, the reading frame could not be determined and the precise location 

of the stop codon is not known. 

 

Listed below is the entire DNA sequence contained in a single transgene copy 

-  

cagggtaatagcttttaatctcaaaaaacattaaatgaaatgcatacaaggttttatcctgctttagaactgtttgtatttaatt

atcaaactataagacagacaatctaatgccagtacacgctactcaaagttgtaaaacctcagatttaacttcagtagaag

ctgattctcaaaattgttagtgtcaagcctagctcttttggggctgaaaagcaatcctgcagtgctgaaaagcctctcaca

ggcagccgatgcgggaagaggtgtattagtcttgatagagaggctgcaaatagcaggaaacgtgagcagagactcc

ctggtgtctgaaacacaggccagatgggtttaaacgaattcgtcgagaccagcaaagttctagaatttgtcgaaacattt

atgttatatatttcctgaaaaaaattctgagtaagttcttaagtgttattgccagcaacataaacaacagacggcaaaatga

ataaatgataacaaagcagtaggcttaaataaacctaatttttataggctgttctctacaaccctcaaacagtgattagtttt

gtacttataaacttgccctttcattcatatttcaagaaaattggttcagaagatctggatattctagcagttgttcaagctcat

ggagggatcagtgacctgattccacaatgactaggcctaatccagaaattagatgactgtcaacataaaaaggcacag

cactcactagctgccctatatattttattatattttacatatattattttatttatttagctctgagtgctgtactttctggttaaaga

aaactgcttacaacagctaacctgtactacctcaggctcagggaatttggaacaggtttgtctggtttgtttctttaaccat

gcatgcttgttttcaactatggcaacacagtcacatgggacattacagaaatgatttgtcgatgacatgcgacttttctttaa

taaagcgcaaagatcccaaaaagcaaacttttaacaaaaatcatataattatattttcaatccagctttgtagcaactttgt

gctgctgttcactcagcaacagatagtcagtataaggtcagtgtgtctcaaagcagtgccatctgtttcacacattgcgtt
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ctatatataagtgtgctggttgacacgacactgtataaggcctaggctaaaacacaaacaatgtagaatgacactgtgtt

ttttttgtaaacaaatgttgtttttggttaaacatctttgtgaaaacatcctcctgtcatgtatttgctatattcaaatgttaaacc

cgtgcagaatagaacatatacaaaaaaaaacaacacaacacatttttaaacattattaaatatcaagtattgctggcagtt

ctgtttctgttttacagtaccctttgccacagttctccgcttttcctggtccagattccacaagtctgattcaccaatagcaaa

gcgaataaacaaccaaagcagccaatcactgcttgtagactgtcctgcgagaccggcccattccagcacattctgga

aacttcctttatatgataattataaatacatttaaattattgatacaaaacatgtaattcctagaacataaccatagcaatcatt

agttttcagggtaattatgtatttttaggatttgactgcggaaagatctggtcatgtgacgtctcatgaacgtcacggccct

gggtttctataaatacagtaggactctcgaccatcggcagatttttcgaagaagaagatcagtttcaggagccgtactgtt

ccgtttcaacgcaaatattaacggtaagagcgaatttcctagtttgttttcatgccattctttaaaaccatagcgtattacttta

attatagtaaactttcgctttctttattacaagagacgttttgtgttgattctccgcggacattttcggtcagacaatcagaaa

atgaccgcggaggaccagtaacttgcattacacgtaagttaaatcttcgtgtattaaaatggttaggttgttaacgtcaaat

aggttaccgtgtttgcgtgtgatcaggttggttttgttagatttttgtcagtatttttaatttatttgttttagtttatttattttttttgct

gaatcatagtttgtgaacaaagaacccggatgttacatacagtacagccgccatgttacagagagttataacttaatcatt

ttaaaaataattttgccttacttttagtttgtcatgttgagaaatgaggaaatgttaaaatgaggaaatatccaattaatttaat

atatcaaaataatccatgattacaatgcactgaactggagaaaattaagatgttttctagtgtcatgaaacaaatgtaaga

gatgtacattgtagatgttttatgtcaagaattggctagttgatgcagcatactggcgatactcagttgtaataacagtaac

gttacatgttaatagactactgagtatgctgttctgtctatgtatgctctgtaagctacgagaaggacttttttaaacagtaaa

gggtgcaatatttttacaaattgaattaaataaaggctgtctattaagtaatatgcttgatatttttcttacttgatcggaaataa

gaaaaaatataaacgttgttgctctaaaaatcctagttcagtttagccaaccacaaatacctttttgttcctccaacagttttt

ttttcttctctataatatttggcagtctatagtactccaaatgtttccccacagtctaactaattggtacagccaaaatcatga

cacttattgcaataataattttggttcattggcattgttgatagcctgtgccactaatatggtcgattgatcatgcttcaggaa

gaaaactatattgtttgatgtaagattattaaatcttcacctgcttccattacaaactattcccatcttattgaattctggtatgt

cttaaaggattagttcacttcccaaatcaaaatttacttagccttttttcatccatgatccctttttttcatcattaatgaagaaat

tgtttttgaaaaagtttcaagatttttttctctatattgtggagcttgttagtttaaaattccaaaatgcaatatgtggcttcaaat

ggttctaaatgatcccagtcaaggaataacagtcttatctaatgaaaccattagacctttaaaaataaaaaaaataaaagt

atttatttttaaatgactgagtgattaagttgaatttcagcgtttccttactgtgtagaagtccttccttactggccccacccttt

ggttctctgccaatctgctacctaatgtaatgttgtggaacattattattctttatttcttaattttttattttttattttaaaacaatgt

aaactgcacagatgtgcagtttgtttaaaatggccaatgctttggaaatgcatgacataattagatttcatgatgcacaaa

gccaaatctcagagcttgtgcaaaatgagctatcatttcactaggtaagaccctaaattttcatataggatcatttggacaa

ttttgctgcaggtaaaatgcattctatagtccactgtcagccattgttttggatagtatttatttttctctacaagtatagtcaat

agttttctattattttaaaggtttgtaacatttaagggtgaccaaatgcaaagtaaaatttcattttcgggtgaactatctcgttt

aacatgggagaagtgcaaaacatacattattggctagaacattgtagtattttttaaatggaaatgtgtgattgctaatctta

ctttgaatttgtttacagggatctataacttcgtatagtataccttatacgaagttatcgagctcataacttcgtataggatact

ttatacgaagttataacgtcgagataacttcgtatagcatacattatacgaagttataggatcaatggtgagcaagggcg

aggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtc

cggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgt

gccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcag
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cacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaacta

caagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaa

ggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaa

gcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgacc

actaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccg

ccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactct

cggcatggacgagctgtacaagaaagctgggtctagatatctcgaggccccggccccggccccggccccggcccc

ggccccggccccggccccggccccggccccggccccggccccgtcgaggccccggccccggccccggcccc

ggccccggccccggccccggccccggccccgtcgaggccccggccccggccccggccccggccccggcccc

ggccccggccccggccccggccccggccccggccccggccccggccccggccccggccccggccccggccc

cggccccggccccggccccggccccggccccggccccggccccggccccggccccggccccggccccggcc

ccggccccggccccggccccggccccggccccggccccggccccggccccggcccctcgaggccccggccc

cggccccggccccggccccggccccggccccggccccggccccggccccggccccggccccggccccggcc

ccggccccggccccggccccgtcgaggccccggccccggccccggccccggccccggccccggccccggcc

ccggccccggccccggccccggccccgtcgactcactacctccctttaaagcctgcttttttgtacatgtagaattcatg

atgggcagtgtcgagctgaatctgagggagactgagctgtgtcttggtcttcccggtggagatacagtggctccggta

accggaaacaagagagggttctcagagacggttgatctgaagctaaatctgaataatgagcctgcaaacaaggaag

gatctacgactcatgacgtcgtgacttttgattccaaggagaagagtgcttgtcctaaagatccagccaaacctccggc

caaggcacaagttgtgggatggccaccggtgagatcataccggaagaacgtgatggtttcctgccaaaaatcaagcg

gtggcccggaggcggcggcgttcgtgaaggtatcaatggacggagcaccgtacttgaggaaaatcgatttgaggat

gtataaaagctacgatgagctttctaatgctttgtccaacatgttcagctcttttaccatgggcaaacatggaggagaaga

aggaatgatagacttcatgaatgagaggaaattgatggatttggtgaatagctgggactatgttccctcttatgaagaca

aagacggtgattggatgctcgtcggcgacgttccttggccaatgttcgtcgatacatgcaagcgtttacgtctcatgaaa

ggatcggatgccattggtctcgctccgagggcgatggagaagtgcaagagcagagcttagcccggcggcatggac

gagctgtacaagtaatacgtagatccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagt

gaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaaca

acaattgcattcattttatgtttcaggttcagggggaggtgtgggaggttttttaattcgcggccaactttattatacatagtt

gataattcactggccgtcgttttacggtactacggtacggatccttcaggggtggatccttcaggggtgtcgcttggtgat

ttccaaaaatcaaattaattttattaaactattagaacgagcatgttttgtctatatgctacagaagataaaaaataatagga

gttaacagttataaaacaacacactttgtttctattgattgttgaccacactggggtctcattaagttagattaaagacacac

taactgggtcaaatgcagcagattgatttcatggcaccagggtaaactttctaacacttttacggcaatcatatacatcaa

aattaaatacaggccacgactgaacaaggaggatgatctccaaaattaaacaaagagacttgtgcctatttctctgagg

gtaaacatgacctctcaagttagcaagttgtttttaacactacaaaaatagttaagactgcaatcccagaataaagtattg

gttttaaccaatcaatatagtacagtaaacatccatttgttttgttgaaacgttaaacgaatctgaccaagctattagcttata

taaaacaggtttgccttttatgtagctgaaaataccacaggcccgattttgctactgtgtaaaacatttcagcaagattttttt

tatattgcatttttttctactgaatcgttcaaacattttatcattttagtttgttcattcattgcaactggaaaaacaacacaccac

acaaccgcacatttttcagcaataagtacaataaaacactcaaataaaaaaaaactttttaaatctctttgtatttttgaccg
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ctgtttcgcgtaatttcacggtaaaactctggaaatctccactacattcctctcagcggctcctctcaatgacagctgaag

aagtgacgcggctgcctgctgtgttttgattggtcgaattcactggaggcttccagaacagtgtagagtctgaacgggt

gcgcgctctgctgtatttaaagggcgaaagagagaccgcagagaaactcaaccgaagagaagcgacttgacaaag

aagaaaagagcagcctgacaggacttttccccgacgaggtgtttattcgctctatttaagaatctactgtaaggtaagtct

caatatattgtactctagtggctaatcaaaattttatagagattatatgtacttaatgtcaaaaaatctactttgtatatgtaatc

tttttacatgtggactgcctatgttcatcttattttaggtctactagaaaattatatttcccgttttcacaataaggatttaaaaaa

aaagcaatgaacagactggcatttactttatgttgctgacattattatatatgagcataataaccataaatactagcaaatgt

cctaaatgaatttgtgttaatgttgtctacaaaagaaaagaaaattagcgttttacttgtacaactaataataacttagttatta

agagaatttcacttgttgactagaaaaatcctttcataatgaaacaattgcaccataaattgtataaatataaaattaattcta

attgtttttttttttcctgcagtcgagcgccaccatggcctactccgagaaagtcatcaccgagttcatgcgcttcaaggtg

cgcatggagggcaccgtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcc

acaacaacgtgaagctgaaggtgaccaagggcggccacctgcccttcgcctgggacatcctgtcccaccagttcca

gtacggctccaaggtgtacgtgaagcaccccgccgacatcaccgactacaagaagctgtcattccccgagggcttca

agtgggagcgcgtgatgaacttcgaggacggcggcgtggcgacagtgacccaggactcctccctgcaggacggct

gcttcatctacaaggtgaagttcatcggagtgaacttcacctccgacggccccgtgatgcagaagaagaccatgggct

gggaggcctcaaccgagcgcatgtacccccgcgacggcgtgctgaagggcgagacccacaaggccctgaagctg

aaggacggcggccactacctggtggagttcaagtccatctacatggacaagaagccagtgcagctgaccggctact

actacgtggacgccaagctggacatcacctcccacaacgaggactacaccatcgtggagcagtacgagcgcaccg

agggccgccaccacctgttctaagcggccgcgactctagatcataatcagccataccacatttgtagaggttttacttgc

tttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagctt

ataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtcca

aactcatcaatgtatcttaggtacctagggataa
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Appendix D PhD outputs 

The data described in this thesis have been presented at various stages of my PhD in the 

form of poster presentations at the University of Sheffield research day and in the form of 

oral presentations in the SITraN seminar series. 

Additionally, data generated during this thesis have been published in the journal Acta 

Neuropathologica Communications: 

Shaw MP, Higginbottom A, McGown A, Castelli LM, James E, Hauterbeurgue GM, 

Shaw PJ* and Ramesh TM*  Stable transgenic C9orf72 zebrafish model key aspects 

of the ALS/FTD phenotype and reveal novel pathological features.  Acta Neuropathol 

Commun. 6:125. (November 2018) 

* These authors contributed equally to this work 

 

A further manuscript including the data on ‘5.3’ RNA-only zebrafish models is currently in 

preparation. 


