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Abstract 
	

The purpose of this thesis was to investigate brain anatomy and 

physiology of subjects with impaired glucose tolerance (IGT – 12 subjects), 

type-2 diabetes (T2DM - 17 subjects) and normoglycemia (16 subjects) using 

multi-modal magnetic resonance imaging (MRI) at 3T.  

Perfusion imaging using quantitative STAR labeling of arterial regions 

(QUASAR) arterial spin labeling (ASL) was the core dataset. Optimization of the 

post-processing methodology for this sequence was performed and the 

outcome was used for hemodynamic analysis of the cohort. Typical perfusion-

related parameters, along with novel hemodynamic features were quantified. 

High-resolution structural, angiographic and carotid flow scans were also 

acquired and processed. Functional acquisitions were repeated following a 

vasodilating stimulus. Differences between the groups were examined using 

statistical analysis and a machine-learning framework. 

Hemodynamic parameters differing between the groups emerged from 

both baseline and post-stimulus scans for T2DM and mainly from the post-

stimulus scan for IGT. It was demonstrated that quantification of not-typically 

determined hemodynamic features could lead to optimal group-separation. 

Such features captured the pattern of delayed delivery of the blood to the 

arterial and tissue compartments of the hyperglycemic groups. Alterations in 

gray and white matter, cerebral vasculature and carotid blood flow were 

detected for the T2DM group. The IGT cohort was structurally similar to the 

healthy cohort but demonstrated functional similarities to T2DM. When 

combining all extracted MRI metrics, features driving optimal separation 

between different glycemic conditions emerged mainly from the QUASAR scan. 

The only highly discriminant non-QUASAR feature, when comparing T2DM to 

healthy subjects, emerged from the cerebral angiogram. 

In this thesis, it was demonstrated that MRI-derived features could lead 

to potentially optimal differentiation between normoglycemia and 

hyperglycemia. More importantly, it was shown that an impaired cerebral 

hemodynamic pattern exists in both IGT and T2DM and that the IGT group 

exhibits functional alterations similar to the T2DM group. 
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Introduction 
 

 Whether to gain insight into the underlying structure and function of body 

organs by means of dissection has been a matter of debate for centuries. In 

antiquity and medieval times, the human body was considered sacred and 

dissection was either limited or totally prohibited. It was in Alexandria in the 4th 

century BC where for the first time, physicians reported their observations 

based on cadaver dissection. However, the practice of dissection was 

abandoned and subsequently prohibited mainly due to religious reasons (1). It 

was not until the 14th century that anatomy was reinstated in Italy. At first, 

dissection was used for autopsy but as the years passed, it became clear that 

both the scientific community and society could have a lot to gain if they 

invested in it (2). From being considered an unethical practice for a period of 

more than 1500 years, in the 15th century, dissection became extremely popular 

and in the 16th century anatomy theaters were built around Italy and the rest of 

Europe. Such was its impact in society that even renowned painters such as 

Leonardo da Vinci and Rembrandt were inspired by it to create some of their 

masterpieces (figure 1).  

 
Figure 1: Rembrandt, The Anatomy Lesson of Dr. Nicolaes Tulp, signed and dated 
‘Rembrandt ft. 1632’. Canvas, 169,5 x 216,5 cm, The Hague, Mauritshuis 

 

It was in the 16th century, in Italian cities and universities, where it 

became clear that empirical observations and dissection of animals was a 
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limiting factor in understanding the human body and disease. A proper 

understanding would require a window into the living human body and at that 

time, the only window available was human cadaver dissection. 

In 1895 the emergence of X-ray imaging, discovered by Wilhelm 

Rontgen, gave for the first time the opportunity to study body organs in living 

humans. In the 1980s another breakthrough would change the way the human 

body was imaged. The emergence of Magnetic Resonance Imaging (MRI), 

attributed to Paul Lauterbur, Peter Mansfield and Raymond Damadian, allowed 

for non-ionizing imaging of the 3-dimensional structure of the body (3, 4).  

Within a few centuries, humanity has progressed from ignorance of what 

is happening inside the body, to the acceptance that understanding of a disease 

requires an insight inside the body that only dissection could provide, and finally 

to medical imaging approaches based on manipulation of atomic, chemical and 

physical properties of tissues. In general, progression in these approaches 

moves from ionizing and invasive techniques to being totally non-ionizing and 

non-invasive. MRI is one of the core bio-imaging modalities used nowadays and 

along with ultrasound is the safest modality for anatomical imaging. Ultrasound 

imaging, however, is limited in its ability to provide an image of the brains 

interior since the skull shields it from acoustic waves (except in newborns). 

Hence, MRI is currently the only imaging modality with the ability to provide high 

quality brain images using a non-ionizing approach. 

Although initially able to extract only structural information, nowadays 

MRI can also be used for functional assessment. MR images can be acquired 

from a wide range of body organs using a variety of specific MRI protocols.  

Medical imaging techniques, in particular MRI, are increasingly used for 

understanding, diagnosis and assessment of a disease’s severity. Another 

more recent field of interest is the identification of imaging biomarkers for 

disease prognosis. This requires that large longitudinal datasets and powerful 

processing methods are available in order for reliable predictions to be made. A 

great example is the BioBank initiative where numerous MRI scans and 

biometric factors are being collected from 500.000 individuals (5). The evolution 

of medical imaging continues, with research ongoing aimed at improving 

several aspects, ranging from the hardware and acquisition techniques to the 

highly specialized post-processing approaches. This thesis aims to be a part of 
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this effort, by being at the intersection of image processing and clinical 

research. 

The purpose of this thesis is to gain a deep insight into the brain of 

subjects with impaired glucose tolerance (IGT – pre-diabetes) and type-2 

diabetes mellitus (T2DM) patients. Diabetes currently affects 415 million people 

globally and 4 million in the UK (6). The prevalence of the disease and the fact 

that it is a risk factor for conditions such as stroke and Alzheimer’s disease 

renders its early diagnosis or even prognosis a necessity. It has previously 

been reported that the brain, amongst other organs, shows alterations of a 

structural and functional nature in individuals with diabetes. Uncovering the 

underlying brain changes could provide useful diagnostic and prognostic 

biomarkers for the disease.  

 In this study, several MRI techniques were used to evaluate cerebral 

structural and functional characteristics in a cohort comprised of healthy 

volunteers, subjects with IGT, and T2DM. Software tools were built for 

processing MRI images and new image analysis approaches were introduced. 

The developed processing pipelines have been made publically available in 

Matlab’s file exchange to promote reproducibility and dissemination. 

 The core imaging technique used in this study was arterial spin labeling 

(ASL) MRI, a technique used for blood perfusion assessment. In addition, high-

resolution structural scans were used to shed light on anatomical changes, 

diffusion weighted imaging was used to evaluate the microscopic water mobility 

within brain tissues and angiographic scans provided information about the 

cerebral vasculature. Flow inside the internal carotid artery was also evaluated, 

providing a window into the input the brain gets from the wider cardiovascular 

system. 

 

This thesis is organised as follows: 

In Chapter 1, relevant background material is presented. A brief 

overview is given of basic brain anatomy, diabetes and known changes 

occurring in the diabetic brain.  

In Chapter 2, an overview of MRI theory is provided. In the second part, 

techniques relevant to the work performed in this thesis are discussed, mainly 

focused on the core modality of this project, ASL.  
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In Chapter 3, brain image processing techniques and machine learning 

approaches utilised for data analysis are presented.   

In Chapter 4, the available cohort, acquired imaging modalities and 

utilised software tools are summarised. 

In Chapter 5, the methodology developed for processing multi inversion 

time-point ASL data is described, evaluated and discussed. 

In Chapter 6, the developed ASL processing pipeline is applied to the 

available cohort and the resulting hemodynamic data are analysed in a novel 

way. Machine learning is used to extract the most significant hemodynamic 

feature combinations. 

In Chapter 7, structural, diffusion-weighted and angiographic MR images 

are analysed and optimal processing approaches are discussed.  

In Chapter 8, all the results from the individual MRI modalities are 

brought together in a single model to unravel potential disease biomarkers. The 

general study conclusions along with future directions are presented. 
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Chapter 1: 
Diabetes and the brain 

	
1.1 The brain  
1.1.1 Essential brain anatomy 

The brain is separated into three main structures: the cerebral cortex, the 

cerebellum and the brainstem. Nerve fibers forming the spinal cord conduct 

signals to and from the brain, and in their posterior location they form a 

structure known as the brainstem. This structure is associated with functions 

such as breathing, body temperature and blood pressure control. At the top of 

the brainstem lies the cerebellum, which is associated with movement 

coordination. 

The cerebral cortex can be separated into two hemispheres and 

comprises four main lobes: the frontal, temporal, parietal and occipital lobe. 

Although these lobes are associated with distinct functions, they are highly 

interconnected and are interacting constantly with each other. The occipital 

lobes are specialized for visual information processing. Information processing 

for input coming from the muscles, joints, and skin is combined with information 

from visual and acoustic inputs within the parietal lobes. The temporal lobes are 

associated with higher perceptual functions such as face recognition and 

meaning comprehension. They accommodate areas that are unique to the 

human brain such as Wernicke’s area, associated with speaking and 

comprehension. The frontal lobes accommodate the motor cortex and they are 

associated with ‘executive functions’ such as planning (7). 

The brain contains billions of neurons, the essential constituents of the 

central nervous system. Every neuron is directly connected with around 1000-

10,000 other neurons via synapses. A neuron consists of its dendrites, its soma 

and its axon. The bundles of axons form what is called white matter (WM) and 

the gray matter (GM) is formed by the soma, dendrites and axon terminals. 

Cerebrospinal fluid (CSF) is a fluid circulating within and around the brain, 

stemming from the ventricles to the subarachnoid space where it forms a 

protective layer surrounding the brain and the spinal cord. Other key cellular 
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and microstructural elements found inside the mammalian brain are glial cells, 

blood vessels and neural stem cells. 

The brain is a highly protected organ. The principal external protection 

comes from the skull. On the inside, CSF provides protection since one of its 

functions is the absorption of vibrations. There is an additional level of 

protection called the blood brain barrier (BBB), which protects the brain from 

potential physiological threats coming via the bloodstream (figure 1.1).  The 

BBB in a healthy individual prohibits potential pathogens from entering brain 

tissue from the blood stream. Tight junctions between the endothelial cells of 

brain capillaries form the BBB. This membrane is semi-permeable allowing 

substances such as oxygen, glucose, water and several molecules to cross. 

The BBB can be disrupted in diseases such as Alzheimer’s, brain tumors, 

multiple sclerosis (8, 9) and type-2 diabetes (10). 

 
Figure 1.1: The blood brain barrier illustration.  
 
 
1.1.2 Neurovascular coupling 

The neurovascular unit comprises a collection of structures and cells 

working together to ensure that the vascular tone is adequately adapted to meet 

changing energy demands from activated neurons (11). This functional complex 
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is responsible for the maintenance of an appropriate regional blood supply in 

the brain.  

The neurovascular unit comprises mainly three distinct levels: neurones, 

glial cells (astrocytes, microglia and oligodendroglia) and vascular cells 

(endothelial cells, pericytes and vascular smooth muscle) (12). The interface 

between the neuronal and vascular components is considered to be the 

astrocyte, which via ‘endfeet’ is in contact with pericytes and vascular smooth 

muscle. Additionally, it is in close communication with neuronal activity, playing 

a role in the manufacture and exchange of neurotransmitters and 

neuromodulators and with receptors for a range of neurotransmitter substances. 

Endothelial cells have the ability to produce and secrete substances regulating 

vascular tone such as nitric oxide (causing dilation), endothelin and 

thromboxane (constriction) (13).  

Neurovascular coupling refers to the close interplay between the 

vasculature and the neurons for the maintainance of the vascular tone and its 

adjustment of local cerebral blood flow (CBF) when necessary. It is mediated by 

the neurovascular unit which enables the appropriate adjustment of cerebral 

blood flow to meet energy demands in metabolically activated areas. 

Neurovascular uncoupling is a common finding in diseases such as 

Alzheimer’s, hypertension and stroke (14), whereby the local regulation of CBF 

becomes ‘uncoupled’ to changes in neuronal or metabolic activity. Early 

neurovascular uncoupling has also been reported in T2DM (15). In this T2DM 

study, functional MRI was used to evaluate the shape of the hemodynamic 

response function (HRF) to a visual stimulus. The examined subjects were 

cognitively assymptomatic and had no apparent lesions. The HRF differed in 

both the amplitude and the time-couse between healthy controls and T2DM 

patients.  

The neurovascular coupling concept suggests that increases in neuronal 

activation lead to increases in local blood flow. There exists also the vasculo-

neural or hemo-neural hypothesis according to which the neuronal activation is 

adjusted based on the changes in blood flow, having glial cells and mainly 

astrocytes as a mediator of the process (16). Both concepts describe a two-way 

communication between neurons and the vasculature via glial cells (mainly 
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astrocytes), the endpoint being blood flow adjustment for the maintainance of 

homeostasis. 

 
1.1.3 Brain arterial supply. 

The brain is a greedy organ since it accounts for 2% of the total body 

mass but consumes 20% of the utilised oxygen and 25% of the consumed 

glucose (12). The needs for nutrient and oxygen supply are constant and even 

a short interruption in supply (ischemia) can cause significant damage to brain 

tissue. Long-term interruptions in blood supply have been connected with 

cognitive decline and vascular dementia (17). The internal carotid arteries and 

the vertebral arteries are the brain’s main vascular supply. Inside the cranium 

the aforementioned arteries form a circular structure, the Circle of Willis. The 

carotids supply the anterior part of the brain, whereas the basilar/vertebral 

arteries supply the posterior part and structures such as the brain stem (18).  

Cerebral anatomy in relation to the brain’s blood supply and 

cerebrovascular disease has been recently reviewed by Chandra et al. (19). 

The internal carotids arise from the common carotid arteries. The right common 

carotid emerges from a bifurcation of the brachiocephalic truck. The left 

common carotid emerges directly from the aorta. The common carotids split to 

internal and external at the level of the neck. The external carotids supply the 

facial skin. The vertebral arteries emerge from the subclavian arteries. At the 

level of the pons they come together to form the basilar artery. The frontal lobes 

are supplied by the anterior cerebral artery (ACA), the middle cerebral artery 

(MCA) supplies part of the frontal, temporal and parietal lobes (figure 1.2). The 

posterior cerebral circulation supplies the temporal and occipital lobes and is 

responsible for about 1/3 of perfusion. The ACA, MCA and the anterior 

choroidal artery (AChA) are responsible for 72% of total CBF. 
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Figure 1.2: Coronal and axial maximum intensity projections of an MR angiogram 
demonstrating the brain vasculature. 
 
 
1.1.4 Oxygen and glucose path to the brain 

Oxygen and glucose are necessary for catabolic reactions taking place in 

the organism. The products of glucose breakdown are used for the generation 

of adenosine triphosphate and neurotransmitters.  

Oxygen is attached to hemoglobin molecules within erythrocytes (red 

blood cells), forming oxyhemoglobin. Every hemoglobin molecule has four 

heme groups with the potential to transfer up to one oxygen molecule each, so 

four oxygen molecules are transported by one hemoglobin molecule. When red 

blood cells pass through the lungs, oxygen molecules are attached and 

subsequently travel through the bloodstream (20). From the arteries, they 

progress to the arterioles and from there they enter the capillary bed. Inside, the 

microvasculature oxygen and nutrient exchange occurs, with oxygen being 

transferred from the hemoglobin molecules into the extravascular local tissue. 

Oxygen has the ability to diffuse freely across the BBB (21). 

Glucose is retained following a meal, it can also be stored in the body for 

use when required in the form of glucogen. When in the bloodstream, it travels 

around the body, in order to be taken up by the cells and used for energetic 

purposes. The brain’s glucose uptake is mediated by insulin and glutamate 
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transporters (GLUT-1, GLUT-3) (Mergenthaler et al 2013). Glucose in the brain 

is used by both neurons and glial cells. 

Transportation of both oxygen and glucose is based on the existence of 

a concentration gradient between the intravascular and extravascular 

compartments with the intravascular concentration being higher in both cases. 

 

1.2 Type-2 diabetes mellitus 
1.2.1 T2DM background  

Diabetes mellitus is a metabolic syndrome that has two dominant forms: 

Diabetes mellitus type-1 (T1DM) and diabetes mellitus type-2 (T2DM). T1DM is 

more common in people under the age of 40 years and the most common type 

in childhood accounting for 10% of diabetic patients. T2DM is the most 

prevalent form of diabetes mellitus after the age of 40 years and it accounts for 

90% of diabetic patients. T1DM, is attributed to insulin deficiency, whereas 

T2DM occurs due to insulin resistance (6). The main risk factors for developing 

T2DM are: eating habits; sedentary lifestyle; age; and family history (22). 

Insulin, a hormone produced in the pancreas is responsible for the 

stimulation of glucose uptake by the cells. Glucose is the end product of food 

breakdown in the stomach, it is the basic ‘fuel’ of the organism and its uptake is 

crucial for the maintenance of homeostasis. In T2DM cells develop insulin 

resistance. The first response of the organism to this condition is the production 

of higher levels of insulin by the pancreas to compensate for the reduced insulin 

uptake (hyper-insulinemia). Insulin resistance results in reduced glucose uptake 

and glucose remains in the bloodstream resulting in hyperglycemia (23). The 

organism after a certain point becomes dysregulated, as the amount of energy 

needed by the cells in order to function properly is not met. Impaired glucose 

tolerance (IGT) and impaired fasting glucose are considered to be pre-diabetic 

conditions, whereby insulin production and glucose uptake are impaired. 

However, the subjects do not fulfil the clinical criteria to be categorised as 

diabetic. IGT is considered to be reversible with lifestyle changes (24) and anti-

diabetic drug usage (25), but it has a high rate (70%) of progression to T2DM 

(26). 

Diabetes can affect several organs such as: the eyes (retinopathy), being 

one of the main causes of blindness in adulthood (27); kidneys (nephropathy) 
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affecting 20-40% of patients with diabetes who develop diabetic nephropathy 

(28); and nerves (neuropathy) affecting 15-26% of individuals suffering from 

diabetes (29). Furthermore, it is one of the main risk factors for developing 

cardiovascular disease, which accounts for 52% of deaths in type-2 diabetics 

(30). 

Usually diabetes is diagnosed following the onset of diabetic symptoms 

such as excessive urination, or by performing tests targeted to detect high 

glucose in urine or in the blood. A factor typically used to evaluate the diabetic 

status is the amount of circulating glycated hemoglobin (HbA1c) with a 

physiological level being below 6% (31). HbA1c reflects directly the amount of 

glucose inside the bloodstream. As described earlier, oxygen binds to 

hemoglobin molecules, circulates via the bloodstream and is delivered to 

tissues to participate in metabolic reactions. When the amount of glucose is 

excessive in the organism, glucose binds to hemoglobin molecules. This 

renders hemoglobin molecules dysfunctional in terms of O2 delivery to tissues, 

since its affinity for it is increased leading to a shift in its oxygen dissociation 

curve (32). 

 

1.2.2 Brain imaging findings in T2DM 
The brain is not typically considered one of the organs affected by 

T2DM. The main reason for that is that the impact of T2DM can be detrimental 

for multiple organs (eyes, kidneys, nerves) creating conditions that need to me 

managed and closely monitored. Its effect on the brain might become prominent 

in the long-term and usually emerges with other complications, for example 

stroke and dementia.  

Neuroimaging studies focused on T2DM report findings suggestive of 

functional and anatomical brain alterations (33, 34). Some of the most common 

structural abnormalities involve: Cortical and subcortical atrophies (35-38), WM 

hyper-intensities (35, 37, 39), hippocampal atrophy (40) and increase in CSF 

volume (36). A 6-year longitudinal study by Umemura, Kawamura (41) has 

shown that there is an association between the number of silent brain 

infarctions, WM lesion progression and endothelial dysfunction in T2DM.  

 In terms of functional abnormalities, impaired cognition has been 

reported in T2DM patients (35, 39). The affected cognitive skills involve 
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processing speed, memory and learning. Studies focused on the ‘default mode 

network’ have shown alterations in connectivity. Findings regarding cerebral 

perfusion have been inconsistent. Some studies report hypo-perfusion (36, 42, 

43), whereas others have concluded that there is no difference between T2DM 

patients and healthy subjects (44, 45). A few studies (46, 47) have reported 

increased perfusion in T2DM. These inconsistencies are highly likely to reflect 

differences in the utilised perfusion imaging techniques rather than actual 

pathophysiological alterations. Imaging of the brain hemodynamic pattern can 

be conducted using a wealth of imaging techniques, each one measuring a 

slightly different property trying to capture the underlying perfusion pattern. 

Some techniques are focused on the blood velocity pattern at the level of the 

carotids (phase contrast- magnetic resonance angiography), whereas other try 

to image directly the delivery of water molecules to the brain tissue (ASL).  

 The ability of the cerebrovascular network to deliver the appropriate 

amount of nutrients and oxygen to the targeted tissues via the bloodstream can 

be disturbed in diabetes, rendering the brain sensitive to ischemia. This 

reduced perfusion is often attributed to impaired function of the endothelial cells 

and alteration in permeability of the BBB (36, 48) and has been found in both 

hyper- and hypo-glycemic conditions (10). Especially in T2DM, impaired 

endothelial function is found in nearly all cases and is closely connected to 

insulin resistance and small-vessel disease caused by prolonged exposure to 

hyperglycemic conditions (49-51). Hyperglycemia and insulin resistance initially 

cause inflammation and oxidative stress, triggering structural or functional 

alterations in the microvasculature, resulting in impaired endothelial function 

(52).  One of the main functions of the endothelial cells, that becomes impaired 

in T2DM, is their ability to trigger vessel dilation in response to a stimulus in 

order to meet the increased need for blood. This property is described as 

Cerebrovascular Reactivity (CVR). 

Findings regarding CVR, normally quantified as the % increase in blood 

flow following a vasodilating stimulus, have been more consistent with a lower 

CVR observed in T2DM patients (36, 42, 44, 53). The study by Selvarajah et al. 

(53) has reported a decrease in flow in both T2DM and IGT. CVR 

measurements are thought to capture changes in neurovascular coupling. 
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The consistency of the reported structural brain imaging findings might 

be linked to the fact that the utilised techniques are well-established, acquired 

with relatively high resolution and are reasonably well standardized. By 

contrast, perfusion imaging techniques are less well established with many 

different techniques in development, each one having its own advantages and 

disadvantages. This lack of standardization, along with the small disease effect 

relative to acquisition noise and limited study populations performed to date are 

some of the key contributors to the contradictory findings that have been 

obtained when perfusion imaging methodologies have been applied to T2DM 

patients. Another confounding factor to the inconsistent findings could be that 

some diabetic subjects might have developed a multitude of conditions such as 

hypertension (54) or peripheral neuropathy (55) which are connected with 

impaired perfusion.  

Consequently, for diseases such as T2DM where the perfusion deficits 

are not prominent especially in the absence of cognitive impairment, no clear 

answer has emerged as to whether and how perfusion in the brain is altered. 

Hence, when evaluating the results of a study, one needs to examine 

thoroughly the characteristics of the cohort, the utilised perfusion imaging 

technique, its limitations, which property coupled to the underlying perfusion is 

measured and in which anatomical location it is measured.  

 

1.2.3 Potential mechanism driving changes in the diabetic brain 
One of the macrovascular complications of T2DM is atherosclerotic 

plaque formation inside major vessels (56). Additionally, hyperglycemia is 

connected with high blood viscosity. These effects could lead to flow alterations 

with reduced oxygen and nutrients reaching the tissue within a certain time-

frame. 

Excessive amounts of circulating glucose have a deleterious effect and 

are considered to affect the production and secretion of neurotransmitters such 

as nitric oxide, which is a vasodilatory neurotransmitter. This could lead to 

reduced CVR compared to healthy population.  

The disruption of homeostasis due to the alterations in insulin production, 

increased circulating glucose and reduced glucose uptake, affects the function 

of the endothelial cells (57) and mainly their ability to initiate dilation or 
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constriction of the blood vessels (58, 59). Potential disruption of the BBB could 

lead to altered tissue CVR and perfusion. Under-expression of the glucose 

transporter GLUT-1 found in several animal studies could also drive changes in 

the diabetic brain (10).  

Finally the amount of HbA1c circulating in the bloodstream of T2DM 

patients is high, suggesting that the appropriate amount of O2 needed by the 

cells to function properly might not be met, since glycated hemoglobin does not 

deliver oxygen as efficiently as non-glycated (32). The implications of these 

effects can be multiple, ranging from structural to functional alterations due to 

changes occurring in the vasculature and the vascular supply. 

 

Study hypothesis 
Our study hypotheses were formulated based on existing findings and 

well-established pathophysiological mechanisms associated with diabetes. We 

hypothesise that cerebral hemodynamics are impaired in T2DM and in its 

prodromal syndrome, IGT. To examine this hypothesis we scanned a cohort 

comprised cognitively and neurologically asymptomatic IGT and T2DM patients 

and healthy volunteers. We also hypothesise that IGT and T2DM subjects 

present structural abnormalities in their GM and cerebral vasculature. Finally, 

we hypothesise that the patient cohort has an impaired carotid velocity and 

mean diffusivity pattern. 

The described hypotheses were investigated using MR imaging 

modalities as the means to gain an insight into the brain of pre-diabetic and 

diabetic subjects. Our ultimate goal was to determine MR image-extracted 

metrics to be used in the future as disease biomarkers.  
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Chapter 2: 
Magnetic Resonance Imaging theory and 

modalities 
 

This thesis examines structural, functional and physiological changes in 

the brain of T2DM patients and subjects with IGT using a multitude of MRI 

techniques. The core modality investigated in this work is perfusion MR imaging 

using multi-time-point ASL. In the first part of this chapter, basic MRI theory is 

presented. In the second part, the focus is transferred to perfusion MRI and 

more specifically to ASL. In the final part of this chapter structural, diffusion 

weighted, fluid attenuation recovery (FLAIR) MRI and time-of-flight (TOF) and 

phase contrast (PC) magnetic resonance angiography (MRA) which were also 

used in this project are presented. 

 
2.1 Nuclear magnetic resonance 

Numerous imaging modalities have been developed over the last few 

decades for brain imaging (neuroimaging), with a view to extracting structural 

and functional information from acquired medical images. Structural 

neuroimaging can be used for identification of anatomical biomarkers, whilst 

functional neuroimaging enables assessment of changes occurring in the 

brain’s physiological processes, such as alterations in hemodynamic or 

metabolic parameters. The three imaging modalities mainly used for cross-

sectional brain imaging are: Positron Emission Tomography (PET) (60), 

Computed Tomography (CT) (61), and MRI. From these three modalities only 

MRI is completely non-ionising, making it the preferred choice when repeated 

scans need to be performed. The remainder of this Chapter describes basic 

Nuclear Magnetic Resonance theory relevant to the work presented in this 

thesis. PET and CT theory are not discussed, since they are out of the context 

of this thesis. The subsequently discussed MRI theory is based mainly on (62-

65). 

MRI is completely non-ionizing and does not require the introduction of a 

radioactive tracer, neither to acquire the signal of interest, nor to provide 
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contrast, thus making it a safe scanning technique. At the core of conventional 

MRI is the hydrogen nuclei, which consists of a single proton. Hydrogen atoms 

are by far the most abundant chemical species in the human organism. Protons 

are positively charged and spin round their symmetry axis, acting thus as a 

small magnet, giving rise to a magnetic moment. MRI measures the 

magnetization of a collection of atoms situated in a volume unit (voxel). The 

magnetization vector can be analysed as two constituent components: a 

longitudinal and a transverse vector. 

When there is no external magnetic field applied, the magnetic moments 

of the protons are randomly oriented. When a magnetic field is applied, 

magnetic moments align either parallel (low energy state) or antiparallel (high 

energy state) to the applied field and precess around their axis with a 

characteristic frequency termed the Larmor frequency. There is a slight excess 

in the number of nuclear magnetic moments that align parallel to the applied 

magnetic field which is the low energy state (figure 2.1). This number can be 

determined by a Boltzmann distribution as in equations 2.1-2.3. The energy 

difference between the distinct spin states can be determined using the 

Zeeman equation (ΔΕ = hγBz). 
𝑁↑
𝑁↓
= 𝑒&

∆(
)*+ = 𝑒&

ℏ-./
)*+ 		[2.1]				

𝑁↑
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≈ 1 −
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𝑘.𝑇

	[2.2]						𝑛 ≈
𝑁ℏ𝛾𝐵:
2𝑘.𝑇

	[2.3]						 

 

Where kB is the Boltzmann constant, T is the system’s temperature, ΔΕ 

is the energy difference between the distinct energy levels. 

Magnetic moments precess with the same frequency, however their 

phase, remains random. Phase alignment can be induced using a radio 

frequency (RF) pulse of a certain duration and amplitude. The characteristics of 

the RF pulse are modulated so that the longitudinal magnetization is tipped 

towards the transverse plane by a factor α, which is called the ‘flip angle’.  

The applied RF pulse needs to have the same frequency as the Larmor 

frequency in order for the resonance condition to be fulfilled. Only then will the 

magnetization vector be effectively tipped by the flip angle. In order to create a 

delta-shaped function, which is an infinitely small rectangular-shaped pulse we 
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would require to apply in the time-domain an infinitely long sinc function. Hence, 

the RF pulse is not a delta-shaped function at the required Larmor frequency, 

but a narrow bandwidth pulse centered on the Larmor frequency (equation 2.4) 

created using a sinc pulse in the time-domain, thus exciting protons precessing 

within a certain frequency range. 

𝜔 = 𝛾 ∗ 𝛣B							[2.4] 

Here, ω is the precessional frequency, γ is the gyromagnetic ratio (atom-

specific) and B0 is the applied constant external magnetic field. The value of M0, 

which determines the NMR signal, is described by equation 2.5.  

𝑀B =
𝛾EℎE𝑁G𝐵B
4𝑘𝑇 		[2.5] 

Where Ns is the number of spins. From this equation it follows that the 

NMR signal can be increased by either increasing the B0 field strength or 

decreasing the temperature of the system. 

Following application of the RF pulse, two phenomena take place in 

order for the system to return in equilibrium: recovery of longitudinal 

magnetization characterised by the T1 time-constant, a procedure involving 

energy transfer from the spin to the lattice; and loss of transverse magnetization 

governed by T2 time-constant, resulting from spin-spin interactions and loss of 

phase coherence in the transverse plane. This is the philosophy of the simplest 

MRI experiment that can be performed, which gives rise to a signal that can be 

measured with a coil. This resulting signal is termed the free induction decay 

(FID).  

Regaining of the longitudinal magnetization results from re-emitting the 

absorbed energy back to the lattice in a process achieving thermodynamic 

equilibrium. The T1 relaxation time depends on two factors, the molecular 

tumbling rate and correlation time. The excited spins are subject to molecular 

motion, described as molecular tumbling, which involves vibration, rotation and 

translation. Free water molecules have a high tumbling rate since they move 

freely, whereas bound molecules have a lower tumbling rate. The second factor 

to be considered, correlation time (τc), describes the duration of the interaction 

of water molecules with macromolecules. Prolonged contact between the 

excited molecules and macromolecules will result in faster loss of the absorbed 

energy due to molecular interactions. Hence, water molecules have a high 
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tumbling rate but short correlation time, giving rise to a long T1. Molecules 

within soft tissues have a slower tumbling rate close to the Larmor frequency 

and a larger correlation time, hence T1 will he shorter. Molecules within solids 

have reduced tumbling rate but high correlation time, hence a long T1.  

 The loss of transverse magnetization can be attributed to the combined 

influence of two effects, one attributed to the random interactions between spins 

and one attributed to field inhomogeneities. The relaxation time incorporating 

the effects of field inhomogeneities, termed T2*, is shorter than the intrinsic T2 

relaxation time. The part attributed to field inhomogeneities can be regained by 

applying a 180o refocusing pulse, giving rise to spin-echo techniques, where the 

resultant echo signal depends on T2, rather than T2*. T1 and T2 relaxation 

times form the basis for numerous imaging sequence designs, with T1-weighted 

sequences generally preferred for examination of structural information and T2-

weighted sequences preferred for demonstration of pathology. 

T1 and T2 relaxation times are tissue specific and are influenced by the 

chemical environment in which the hydrogen protons are situated (figure 2.2). 

The 1H protons contributing to the NMR signal are mainly found in water 

molecules. Water is 50-70% of the human body and its movement can be 

relatively free or more restricted. Generally, more restricted or solid structures 

tend to have shorter relaxation times. These differences between T1 and T2 

relaxation times between different tissues are the reason for the excellent soft 

tissue contrast in MRI.  

When MRI sequences are designed, there are typically two key 

acquisition parameters that define the sensitivity of the sequence to T1 and T2 

effects: the time between two excitations (repetition time - TR) and the time 

between one excitation and the readout (echo time - TE). In spin-echo imaging 

a 180o refocusing RF pulse is applied, refocusing spins that were initially 

defocused after the initial applied pulse. As the spins refocus following 

application of the 180o pulse, the signal measured in the transverse plane 

increases to a peak and then decreases again.  This rise and fall in signal is 

known as a spin-echo. In gradient-echo sequences a defocusing gradient is 

applied during the FID. Subsequently a refocusing gradient of the same 

magnitude and opposite polarity refocuses the defocused spins generating an 
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echo. For example, in a spin-echo sequence, the measured signal S is 

associated with the following equation (2.6) 

𝑆 = 𝑘 ∗ 𝑃𝐷 L1 − 𝑒&
+M
+NO 𝑒&

+(
+E							[2.6] 

In equation 2.2, k represents an instrumental scaling factor and PD is the 

proton density. The term inside the brackets determines the T1-weighting and 

the exponential outside the brackets the T2-weighting. Hence, for a T1-

weighted experiment the effect of term inside the brackets needs to be 

maximum, so a short TR is required, and the effect of the exponential outside 

the brackets needs to be a minimum, so a short TE is required. For a T2-

weighted experiment, TR and TE need to be long. When TE is short and TR is 

long, the contributions from the T1 and T2 terms are minimised and that leaves 

us with a proton density image. The combination of short TR and prolonged TE 

is not generally used. 

 
Figure 2.1: Magnetic moment orientation with and without the application of an external 
magnetic field. On the left, magnetic moments are randomly oriented when no field is applied. 

After the application of an external magnetic field B0 (green arrow), a slight excess of magnetic 

moments tend to align parallel to the field (blue arrows). 
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Figure 2.2: MRI principle for the main 3 tissue types in the brain. When a magnetic field is 

applied protons align with the field and precess with the Larmor frequency. An RF pulse is 
applied which causes a phase shift and aligns the phases, eliminating longitudinal 

magnetization (Mz), and creating a transverse magnetisation (Mxy). When the pulse is removed 

two phenomena take place: regaining of longitudinal magnetization governed by time T1 (the 

convention is that this time describes the recovery of Mz to 63% of its peak value) and loss of 

transverse magnetization in time T2 (which describes the time at which Mxy decays to 37% of its 

peak value).  

 

The spin-echo sequence can be modified so that an initial RF pulse of 

180o is applied prior to the 90o pulse.  This leads to the definition of another 

commonly encountered acquisition parameter, the inversion time (TI), which is 

defined as the time between the initial 180o pulse and the following 90o pulse. In 

such a case, the opportunity is given to null signals from certain tissue types if 

the 90o pulse is applied at the zero-crossing time for that particular tissue type.  

This method is commonly used to null the signal from either CSF in the FLAIR 

sequence or from fat (short TI inversion recovery (STIR) sequence), but can 

also be used to introduce additional contrast between certain tissues. 
 

2.2 MR image formation 
In order for an image to be reconstructed from the MR signal, the 

information needs to be encoded spatially. This is feasible by using magnetic 

field gradients, which cause the magnetic field to vary with position.  The 
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precessional frequency at each position will be dependent on the magnetic field 

strength at that position, as determined by the Larmor Equation.  Hence, the 

signal strength at every image position along the gradient direction can be 

inferred by the strength of the signal at every frequency. The higher the applied 

magnetic field gradient, the greater the frequency separation is between 

adjacent points. At the time of writing this thesis, typical maximum gradient 

strengths on 1.5T and 3T clinical scanners range between 30 and 45 mT/m. 

The rising time of the gradients are typically in the vicinity of 0.1 - 0.3 ms and 

considered along with the gradient strength they give rise to the slew rate 

(gradient strength / rising time). Thus, typical slew rates are in the range of 150 

- 200 mT/m/ms. The applied RF pulses have a typical maximum amplitude of 10 

– 50 μΤ and duration between 2 – 10 ms (66). 

 

Slice selection 

A linear gradient is typically used along the head-foot axis, so that the 

Larmor frequencies along this axis vary according to the position. Based on the 

desired slice thickness, the RF pulse bandwidth is modulated accordingly to 

excite only the limited range of frequencies corresponding to the spatial position 

of the slice. This gradient is termed the slice selective gradient (Gz). 

 

In plane localization 

Once the slice has been excited using the slice selective gradient and 

frequency selective RF pulse, the spatial position in the x-y plane needs to be 

encoded. This can be done by turning on and off the phase (Gy) and frequency 

(Gx) encoding gradients in order to induce position-specific changes in the 

precessional frequency and phase of the spins, which will be interpreted as 

spatial differences from the Fourier transform. The phase encoding gradient is 

briefly switched on along one axis (conventionally denoted y) following the slice 

selective gradient. This results in a position-dependent phase difference 

encoded in the magnetization across the axis on which the Gy gradient is 

applied. Subsequently, a frequency encoding gradient GX is applied along the x-

axis during readout of the echo signal inducing frequency differences in the 

spins along the axis of implementation (figure 2.3).  
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Figure 2.3: Phase and frequency encoding in 2D depiction. 
 

In order to record multiple slices, the Gz gradient is applied for each slice 

location, with the central frequency of the slice selective RF pulse shifted to 

correspond to the desired slice position and the 2D localization procedure 

repeated, as described above, once the slice has been excited. The magnetic 

field gradients can be depicted in a pulse sequence diagram (figure 2.4) that 

shows the timing of the gradients relative to the applied RF pulses and signal 

readout.  These diagrams can be particularly useful to provide a visual 

representation that helps to understand the intricacies of complicated pulse 

sequence designs. 

 
Figure 2.4: Example pulse sequence diagram. RF is the radiofraquency pulse applied to tip 
the magnetic moments by 90o in this case. The gradient pulse in Gz is the slice selective pulse, 

RF	

90o	

Gz	

Gy	

Gx	
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exciting a certain slice, Gy is the phase encoding gradient and Gx is the frequency encoding. In 

Gx two equal and opposite pulses can be seen, this gradient reversal forms a gradient echo 

from which the signal (echo) is measured. 

 
k-space 

An RF coil records the generated MR signals, which are digitised and 

stored in a format organized to accommodate the recorded signals according to 

their spatial frequency termed the k-space. The number of samples forming k-

space and its size depend on the acquisition’s field-of-view (FOV) and voxel 

size (Δx). In particular, the distance between two k-space samples (Δk) is equal 

to 1 / FOV and the dimension of k-space (2*kmax) is 1 / Δx. The horizontal axis 

in k-space is termed the ‘frequency-encoding’ axis (kx) and the vertical axis is 

termed the ‘phase-encoding’ axis (ky). An interesting parallel between lenses 

and k-space was drawn by R. Mezrich (67). In his paper, he explained how k-

space can actually be described as an equivalent to a lens, which is the 

intermediate Fourier space between an image and its idol; an explanation 

facilitating understanding of the complex nature of k-space. 

Every line of k-space corresponds to a certain value of the phase 

encoding gradient. The peak of the echo is centered along the vertical ky axis of 

k-space. The higher frequency components reside in the periphery and are 

associated with more fine details, whereas, the low frequency components are 

at the centre of k-space and are associated with properties such as contrast. 

The sampling rate of the acquired signals determines the resulting image 

resolution.  

In conventional imaging (gradient-echo, spin-echo imaging) the phase-

encoding gradient is pulsed every TR and hence one line of k-space is filled 

every TR. In echo-planar imaging (EPI) the whole k-space is filled in time TR 

(68). Full 3-D encoding in k-space utilises the addition of a secondary phase-

encoding gradient in the 3rd spatial dimension (69) instead of a slice-selective 

gradient. Important variants of the conventional approaches are fast gradient-

echo or fast spin-echo acquisitions (70, 71) which are used extensively and 

provide multiple phase-encodes per TR but not in a blipped fashion as in EPI.  

The conventional way to fill k-space is a line-by-line ‘Cartesian’ way, as 

illustrated in figure 2.5. The main alternative k-space trajectories include spiral, 



	 24	

zig-zag (utilised in EPI) and radial; each one with its own advantages and 

disadvantages (72, 73). Radial and spiral sampling’s competitive advantage is 

that they are less sensitive to motion artifacts, an attribute leading to their 

increasing utilisation.  

Conversion between k-space and the image space, is performed by 

using the discrete Fourier transform. 

 
Figure 2.5: Representation of k- space trajectory for conventional and 2D single shot EPI 
readouts. With the green line, the EPI readout philosophy is represented. Every line is read in 
the frequency encoding direction, subsequently the readout is blipped and a line is read at the 

opposite direction. The whole of k-space is read in time TR. In conventional imaging (blue line) 

the phase gradient is pulsed every TR localizing the readout in a particular line in the phase 

encoding direction starting every time from the centre of k-space. This particular line of k-space 

is read in time TR. 

	
 
2.3 EPI imaging and artifacts 

In single-shot EPI all information needed for image reconstruction can be 

acquired in a “single-shot”, hence it is commonly used for rapid imaging. The 

pulse sequence diagram for an EPI acquisition can be found in figure 2.6. 

Following a slice-selective RF excitation pulse, a train of gradient pulses is 
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applied in the frequency encoding direction. Every echo can be encoded in the 

vertical (phase encoding) axis.  

	
Figure 2.6: EPI pulse sequence diagram. Adaptation based on Haacke et al. 1999 [64]. 

The fast readout combined with the fact that every line in k-space is read 

in alternate directions, introduces a multitude of artifacts which might be present 

in the final image, distorting the result (69). One of the artifacts commonly found 

in a single-shot EPI acquisition, is termed “water-fat shift” or “chemical shift” 

artifact. It is attributed to the different resonance frequencies of the water and 

the fat and may result in distortions of the image, with a ‘ghost’ image of the fat 

appearing in the region of interest (figure 2.7). This effect is caused due to 

interpretation of different frequencies by the inverse Fourier transform as 

different spatial locations. As a result the fat signal might end up displaced by 

numerous voxels in the phase encoding direction. The higher the field applied 

for imaging, the higher is the frequency separation of fat and water and thus the 

distance between them increases (74). Techniques for the mitigation of this 

artifact have been developed (for example fat suppression pulses), however all 

of them deal with its presence at the level of the acquisition of the image (75).  

Another common artifact in EPI acquisitions is the “ghost” (N/2 Nyquist) 

artifact, which appears as a ghost image in half the field of view (figure 2.7). 

This artifact occurs due to the very fast k-space scanning in the frequency 

encoding direction in alternate directions. As a result the odd and even echoes 

might be misaligned (76). A magnetic susceptibility artifact (figure 2.7) might be 
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present in the final image attributed to field inhomogeneities caused by the 

magnet or from the patient (69).  

 
Figure 2.7: Example EPI artifacts. left: Example of a N/2 ghost present at half the field of view. 

Centre: example of the chemical artifact, right: example of one form that the susceptibility 

artifact can acquire. 

 

2.4 Perfusion and CVR imaging 
 One of the functional characteristics that can be evaluated with MRI is 

perfusion, which is indicative of nutrients and oxygen delivery in tissues via the 

blood flowing in the vasculature and is connected to a tissue’s viability (77). The 

gold standard for perfusion quantification is considered to be 15O H2O- PET 

(78). Other techniques used are single-photon emission computed tomography 

(SPECT) (79), transcranial Doppler ultrasound (TCD) (80) and MRI-based 

techniques. 

Exogenous or endogenous contrast agents aside, the rationale behind 

perfusion imaging is common. A tracer is followed through the vasculature and 

the concentration in the tissue at a given time affects the measured MRI signal. 

The contrast agent when the BBB is intact in the case of dynamic susceptibility 

contrast (DSC)-MRI remains intravascular, hence the induced susceptibility 

effect is monitored. In ASL, since the hydrogen protons are monitored, the 

actual tissue delivery can be detected. 

A vibrant area of research in the MRI field is physiological and functional 

imaging. As part of this effort, a multitude of MRI methods for brain perfusion 

imaging have been developed, namely: DSC-MRI (81), ASL-MRI (82), 

intravascular incoherent motion (IVIM) (83), phase contrast magnetic resonance 

angiography (PC-MRA) and vascular space occupancy (VASO) (84). A more 

Suscep'bility	N/2	ghost	 Water-fat	shi9	

ar'fact	

ar'fact	

ar'fact	 ar'fact	
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recent development, which is still at an experimental state, is the use of 

hyperpolarised Xenon as a contrast agent (85). Functional blood oxygen level 

dependent (BOLD) functional MRI (fMRI) can also be used for CVR 

quantification (86) but it cannot provide quantitative perfusion measurements. 

All these techniques capture slightly different aspects of perfusion, such as 

water delivery to the tissue, blood velocity and changes in arterial blood volume. 

DSC-MRI is a popular perfusion imaging modality owing to its simple 

implementation and good contrast. ASL is also a popular technique with an 

undisputable momentum at the moment due to: concerns about gadolinium 

toxicity (Gd is the main contrast mechanism in DSC-MRI), widespread 

introduction of 3T systems into clinical settings, commercial availability of ASL 

by all major scanner manufacturers and due to the numerous developments in 

the ASL acquisition strategies. VASO and IVIM have been occasionally 

implemented in clinical studies; however they are not as popular. PC-MRA does 

not explicitly measure perfusion, it bares similarities with TCD since both 

techniques measure blood velocity.  

 While there are several metrics of interest related to perfusion, including 

CBF, cerebral blood volume, arterial transit time (ATT) and oxygen extraction 

fraction, the physiological metric that is most commonly studied in perfusion 

imaging is CBF. Evaluation of CBF has been routinely used in dementia 

(including Alzheimer’s disease) (87), brain tumours (88) and cerebrovascular 

disease (89) in order to account for perfusion patterns (mainly regional hyper-

perfusion or hypo-perfusion) which could be associated with the condition under 

examination.  

The ability of the brain to increase perfusion as a response to a 

vasodilating stimulus is indicative of the existing cerebrovascular reserve. 

Decreased CVR has been found in Alzheimer’s (90) and has been connected 

with cognitive changes in T2DM (91). CVR quantification requires a vasodilating 

trigger, to allow for measurement of relative CBF changes compared to 

baseline. Typical stimuli used include: pharmacological challenge; hypercapnia; 

reduction of blood pressure and carotid stent placement (92, 93).  

A pharmacological stress test is usually performed by injecting a potent 

vasodilator, such as acetazolamide (ACZ), intended to increase vasodilation, by 

means of vascular smooth muscle relaxation (93). The response to the 
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implemented stimulus is different between healthy individuals and individuals 

with reduced cerebral vasodilative capacity (94, 95).  The response of healthy 

individuals to the stimulus is an increase in local perfusion of about 20-40% in 

all vascular territories (96). On the contrary, in individuals with impaired 

perfusion the response can vary between mild, no response, or even a 

reduction in perfusion (97). This might imply that their system has reached the 

maximum vasodilatory capacity previously during normal function (98, 99).  

 Okazawa, Yamauchi et al. (98) have questioned whether a reduction, or 

an increase lower than expected, in regional CBF after ACZ challenge in 

patients with cerebrovascular disease, is indicative of reduced ability to 

vasodilate.  Instead, they have suggested that this phenomenon could also be 

explained by the fact that blood volume is not increased. Demolis et al.  (100) 

have questioned whether ACZ can accurately cause the same effect as 

autoregulatory vasodilation. 

Three methods have been used in the past for hypercapnia challenge: 

breath-hold, re-breath and gas mixture administration containing an elevated 

concentration of carbon dioxide (101). It has been shown in vivo that increased 

concentration of CO2 results in vascular smooth muscle relaxation via a 

mechanism involving alteration of extracellular pH, activation of potassium 

channels, membrane hyperpolarization and reduction of calcium concentration 

inside the cells (102). 

 

2.4.1 Arterial spin labeling 
ASL is a perfusion imaging technique that doesn’t require the injection or 

inhalation of contrast agents, as it uses water molecules as a freely diffusible 

tracer (82). Being an MRI technique, ASL is also completely non-ionising. Using 

water as the tracer has the inherent advantage of having a short half-life so it 

can be used multiple times (103). ASL allows multiple measurements to be 

made on the same person, with the only considerations being the duration of 

the scanning session and the comfort of the scanned individual who might 

move, giving rise to motion artifacts. 

The rationale behind ASL is that the subtraction of images acquired with 

(labeled) and without (control) magnetically labeled hydrogen protons gives rise 

to perfusion weighed images (figure 2.8). After labeling, a short time-gap (inflow 
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time) is allowed for the protons to reach the tissue of interest and exchange 

water. The labelled protons at the time of imaging have not fully recovered; this 

gives rise to subtle differences between control and labelled images (104, 105). 

Subtraction renders this technique sensitive to motion artifacts (106).  

Induction of differences in the magnetization vector between control and 

labelled acquisitions is common in all ASL techniques. However, the control 

image is not always one with non-inverted spins. For example, in some 

techniques the difference between the control and the labelled experiments is 

achieved with global inversion (control) followed by local inversion (labeled). 

 

 
Figure 2.8: Philosophy of ASL MRI. Pairs of control and labeled images are acquired. Their 

subtraction yields information about perfusion.  

 

Major disadvantages of ASL are its low signal-to-noise ratio (SNR) and 

low spatial and temporal resolution. In order to account for low SNR, averaging 

of multiple acquisitions is utilised, whereby pairs of images are acquired 

approximately every 4 seconds. Typical acquisition times are on the order of 5-

10 minutes. Other means to increase SNR include using increased magnetic 

field strength or by using a phased array receiver (107). This inherently low 

180	inversion	pulse	Control	image	 Labeled	image	
Post-labeling	delay	
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SNR is attributed to the fact that only 1% of tissue water is replaced every 

second by perfusion in GM (108). For a bolus duration of 1 - 2 seconds, the 

captured signal difference is at the level of 1 – 2 %, since the introduced delay 

between labeling and acquisition further reduces the signal due to 

magnetization relaxation. 

In ASL, spiral or EPI sequences are typically used to ensure rapid 

imaging (109). Other utilised read-out schemes include: Rapid Acquisition with 

Relaxation Enhancement (RARE) (70), Gradient and Spin Echo (GRASE) (110) 

and balanced Steady-State Free Precession (bSSFP) (111).  The distinctive 

characteristics between different ASL methods has to do with both the pulse 

sequences used for labeling and the readout strategy (112) . 

Compared to BOLD fMRI, ASL has better spatial localization as it images 

the delivery in the tissue and not the susceptibility effects created by an 

endogenous intravascular tracer (113). Its temporal resolution though is worse 

than BOLD. Its major advantage is that it allows for quantitative perfusion 

measurement. In BOLD, a baseline acquisition and an acquisition after a task 

are typically performed, allowing only for qualitative assessment of the 

difference between the two (113). The BOLD signal relies on the local changes 

in concentration of oxy- and deoxy-hemoglobin and the magnetic susceptibility 

differences that induces, whereas ASL images the hydrogen protons within the 

vasculature directly. 

 

2.4.1.1 CASL, PASL, pCASL and other ASL variants 
The four major ASL categories are: pulsed ASL (PASL), continuous ASL 

(CASL), pseudo-continuous ASL (pCASL) (figure 2.9) and spatially non-

selective ASL (114). Sometimes pCASL is presented as part of CASL, however 

due to its hybrid nature it can formulate a category on its own. 
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Figure 2.9: CASL, PASL and pCASL philosophy. In CASL the labeling is continuous, in PASL 

a short pulse is applied and in pCASL a train of short pulses instead of a continuous labeling is 

applied. A post-labeling delay allows for the tracer to arrive in the tissue of interest and perfuse 

it. Subsequently, in the readout period, the image is acquired. 

 
CASL, uses a long RF pulse along with a slice-selective gradient, the 

slice being relatively thin. The spins passing through this slice are continuously 

inverted using flow-driven adiabatic inversion. It has a higher SNR compared to 

the other techniques (82). PASL uses short RF pulses to tag a blood volume in 

a thick slab and its competitive advantage is its high tagging efficiency (115, 

116). 

CASL was the first ASL technique suggested. Nowadays its usage is 

limited due to the hardware requirements and the high RF deposition to the 

scanned individual. This results from the requirement for a continuous long RF 

labeling pulse. Pulsed ASL on the other hand has limited hardware 

requirements compared to continuous ASL, lower RF deposition, better 

inversion efficiency but lower SNR. pCASL is a pseudo-continuous technique 

achieving labeling by using multiple short RF pulses. The SNR of pCASL is 

higher compared to PASL but the inversion efficiency is lower since the pulses 

used are not adiabatic (117). Four popular ASL techniques are shown 

schematically in figure 2.10. 
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Figure 2.10: Control, label and imaging planes shown schematically for four ASL 
implementations. FAIR, PICORE and EPISTAR are all pulsed ASL variants. In the last 
column, the pCASL scheme is depicted. Green (labeling) and blue (control) regions represent 
the areas whereby inversion pulses are applied. The red slice represents the anatomical area 
which is imaged.  
 

Spin inversion is of utmost importance in ASL since labelling is either 

applied in a big slab for a small time-window or in a small slab for a more 

extended time-frame and the labelling of moving spins needs to be effective. 

Non-effective spin labelling could result in erroneous perfusion estimation since 

the ASL contrast relies on the difference between labelled and non-labelled 

images. Hence an inversion efficiency of 70% would imply that around 30% of 

the perfusion differences could be masked out due to identical signal between 

the control and labelled images. As a result, an approach that reassures spin 

inversion will be efficient needs to be utilised. In order for the inversion to be 

successful (i.e. the majority of spins to be inverted efficiently) the adiabatic 

condition needs to be fulfilled, that is, the moving spins need to be inverted at a 

particular rate so that their magnetization is effectively tipped. During the 

adiabatic inversion the B1 field passes gradually from off-resonance to on-

resonance and then beyond resonance. This is achieve by modifying its 

frequency and holding steady its amplitude. Application of an initial off-

resonance field results in the magnetization precessing around an effective 
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field. The gradual increase of the frequency of the B1 field will result in the net 

magnetization vector following the effective field in its transition from off to on 

and finally beyond resonance. The adiabatic pulses utilised in PASL, are 

frequency and magnitude modulated hence they influence spins in different 

positions differently and more effectively than flow-driven adiabatic inversion 

does. The conventional RF pulses utilised in MRI are simply amplitude 

modulated and not frequency modulated as the adiabatic pulses. 

Pulsed ASL utilises adiabatic pulses and this is what gives the PASL 

techniques higher inversion efficiency. In CASL and pCASL the adiabatic 

inversion can be achieved using flow-driven adiabatic inversion which is not as 

effective (117). This is the reason for the lower inversion efficiently of (p)CASL. 

Being a hybrid technique, pCASL (118) combines some of the 

advantages of CASL and PASL, as it has higher SNR than PASL and higher 

inversion efficiency than CASL. Instead of a continuous pulse, a sequence of 

RF pulses with short duration along with a slice selective gradient are applied. 

This technique is heavily used for perfusion quantification, providing results in a 

good agreement with the gold standard PET (119, 120).  

In 2015, scientists across Europe decided to produce a recommended 

ASL protocol to provide some standardization, without it being a 

discouragement to the development of new methods (108). They realised that 

the multitude of available labeling and readout schemes was having a negative 

impact on the translation of ASL-MRI into a standard clinically used protocol. 

Their recommendations suggest using pCASL as the optimal labeling scheme 

with one inversion time, no crusher gradients and a 3D readout scheme such as 

RARE or GRASE. In this ‘white paper’ the writers stress that using multiple 

inversion times renders processing more difficult, but might have the potential to 

provide more accurate quantification of CBF and the capacity to quantify ATT 

(108).  

One of the major disadvantages of the aforementioned techniques in 

their regular implementation (one inversion time, no-crusher gradients) is that 

they are not insensitive to the time that it takes for the labelled bolus to reach 

the tissue of interest (ATT). ATT is one of the most important parameters that 

characterise the perfusion process and needs to be taken into account for 

perfusion evaluation. It has been suggested that in patients with Moya-Moya 
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disease, atherosclerosis (105) and steno-occlusive disease (112), CBF might 

be overestimated due to residual label in the vasculature. On the other hand, 

especially in elderly cohorts, CBF might be underestimated due to increased 

ATT (121, 122). Two suggested methods that account for ATT are the use of a 

multi-PLD technique, or to estimate ATT by dividing CBF from a non-crushed 

experiment with CBF from a crushed experiment (123). 

Spatially non-selective ASL is a conceptually different technique, using a 

velocity or acceleration threshold as the criterion for imaging rather than a 

spatial constriction (114). The VS-ASL signal is the signal attributed to the 

spins, which at the time of labeling, have a velocity more than a specified 

threshold, but at the time of imaging, less than this threshold (124).  

Indicative of the proactivity of the ASL community, is that following the 

publication of the consensus paper in 2015, there have been at least three 

review papers discussing exciting new developments (125-127). The primary 

areas of current research can be summarised as the development of 

techniques that are ATT-insensitive without SNR compromise (time-encoded 

ASL), territory mapping ASL, ASL fingerprinting, combined angiography and 

perfusion ASL and spatially non-selective ASL (125). 

Since its introduction, ASL has been used to assess perfusion changes 

mainly in the brain (128) but also in the kidney (129), liver (130), skeletal 

muscle (131), bone marrow (132), placenta (133), pancreas (134), lungs (135) 

and myocardium (136). Conditions affecting the brain that have been 

investigated include: Traumatic brain injury (137), schizophrenia (138), 

depression (139), Parkinson’s (140), Alzheimer’s (141), chronic fatigue 

syndrome (142), multiple sclerosis (143), sickle cell disease (144) and diabetes 

(36). Following the ASL white paper which focused on the description of the 

optimal labeling and readout schemes, a guide targeted at neuroradiologists 

has been released by members of the consortium covering mainly the topics of 

acquisition parameters and clinical conditions in which ASL has identified 

successfully perfusion deficits (145). 

 

2.4.1.2 Multi-TI/PLD ASL 
There are numerous ways to acquire measurements with multiple post-

labeling delays in order to capture differences in ATT. The first and crudest 
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solution is to acquire images at multiple inversion times in separate 

acquisitions, which is time-consuming. A second approach is to use a Look-

Locker readout strategy (146) which has the ability to sample the recovering 

magnetization at multiple times by using low flip-angle EPI excitations (147). 

This allows for the retention of the whole magnetization recovery curve, 

however, every excitation reduces the magnitude of the signal and hence the 

SNR. 

Time-encoded ASL with Hadamard encoding aims to create multiple 

sub-boli within the labeling scheme and the PLD time (148). It can be 

implemented using either CASL or pCASL. Sub-boli, either label or control, are 

interleaved within the labeling scheme based on a Hadamard matrix. The 

driving idea behind this scheme is to use non-identical repetitions in order to 

make full use of the scanning time (148-150).  

 

2.4.1.3 Perfusion quantification 
Quantification of perfusion relies on the indicator-dilution theory 

proposed by Zierler (151) and aims to quantify perfusion by employing a bolus 

tracking philosophy. Transit times of individual particles of the tracer forming the 

bolus are monitored and modelled as a distribution. The bolus can be either a 

magnetically labelled bolus (as in ASL), or an injected or inhaled contrast agent. 

Let the probability density function (PDF) of the transit times for every particle in 

the bolus be named h(t) (equation 2.7). Then: 

Q ℎ(𝜏)𝑑𝜏 = 1									[2.7]
W

B
 

The residual bolus in the tissue of interest is modelled as the cumulative 

distribution of transit times remaining in the tissue at the imaging time, thus 

taking the form of a residue function R(t). At a time-point t, the residue signal 

can be calculated as follows (equation 2.8): 

Q ℎ(𝜏)𝑑𝜏 = 1 ⇛ Q ℎ(𝜏)𝑑𝜏 + Q ℎ(𝜏)𝑑𝜏 = 1 ⇛
W

Z

Z

B

W

B
𝐻(𝑡) + 𝑅(𝑡) = 1 ⇛ 

𝑅(𝑡) = 1 − 𝐻(𝑡)		[2.8] 

The volume of interest (VOI) has a single arterial input (Cart) and a single 

venous (Cven) output (figure 2.11). The amount of tracer that has entered and 

left from this system in a time interval [0,t] is as in equation 2.9. 
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𝑡𝑟 a = 𝐹Q𝐶deZ	(𝜏)𝑑𝜏							,								𝑡𝑟ghZ = 𝐹Q𝐶ija(𝜏)𝑑𝜏
Z

B

Z

B

					[2.9] 

where F is the volume flow. The tracer inside the VOI will be trvoi = trin - trout 

From the system in figure 2.10, it follows (equations 2.10 - 2.12) that: 

𝐶ija(𝑡) = 𝐶deZ(𝑡)lℎ(𝑡)		[2.10]		 

𝑡𝑟ig` = 𝐹	Q(
Z

B

𝐶deZ(𝜏) − 𝐶ija(𝜏))𝑑𝜏 = 𝐹Q[𝐶deZ(𝜏) − Q𝐶deZ(𝜏)ℎ(𝜏 − 𝑢)𝑑𝑢]𝑑𝜏
o

B
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by taking into account that ∫𝑓(𝑡)𝛿(𝑡 − 𝜏)𝑑𝑡 = 𝑓(𝜏) 

𝑡𝑟ig` = 𝐹Q𝐶deZ(𝜏)Qs𝛿(𝜏 − 𝑢) − ℎ(𝑡 − 𝑢)t𝑑𝑢𝑑𝜏 = 𝐹Q𝐶deZ(𝜏)𝑅(𝑡 − 𝜏)𝑑𝜏			[2.11]
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CBF is calculated as 𝐶𝐵𝐹 = u
vwxy

  

Hence, the venous output is: 𝐶ija(𝑡) = 𝐶𝐵𝐹 ∗ 𝐶deZ(𝑡)⨂𝑅(𝑡)				[2.12] 

 
Figure 2.11: Schematic representation of a voxel (VOI) in perfusion MRI. The arterial signal 
(Cart) is the input, the venous (Cven) signal is the output and inside the VOI  capillary water 
exchange occurs. (Figure recreated based on Fieselmann et al. 2011). 
 

For techniques that measure tissue perfusion, the tissue signal is 

modelled as a multiplication of the CBF by the convolution between the Arterial 

Input function (AIF) (or else Cart) and the residue function (R) multiplied by the 

CBF value (equation 2.13). Following the described approach, the perfusion 

system when an ASL acquisition whereby tissue signal is recorded is 

implemented can be approximated as a system with AIF as an input, CBF * R(t) 

as an impulse response and the tissue signal C(t) as the output (figure 2.12).  

Cart	 Cven	

VOI	
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Figure 2.12: Perfusion system at the tissue level. AIF is the input, C(t) is the output and the 
transfer function of the system is CBF*R. 
 

𝑇𝑖𝑠𝑠𝑢𝑒	𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝐶𝐵𝐹 ∗ 𝐴𝐼𝐹(𝑡) ⊗ 𝑅(𝑡)		[2.13] 

 

Buxton’s general kinetic model (equation 2.14) is the most heavily used 

model in pulsed ASL. The acquired tissue signal is denoted ΔM(t) and is 

modelled as follows: 

𝛥𝛭(𝑡) = 2 ∗ 𝑀d,B ∗ 𝑓 ∗ Q 𝑐(𝜏) ∗ 𝑟(𝑡 − 𝜏) ∗ 𝑚(𝑡 − 𝜏)𝑑𝜏		[2.14]
Z

B
	 

• Ma,0 is the arterial blood equilibrium magnetization  

• f is the CBF value,   

• r(t-τ) is the remaining label in the vasculature after time τ,  

• c(τ) is the tissue delivery function and  

• m(t-τ)  is the magnetization relaxation term.  

 

Theory suggests that the residue function decreases monotonically and 

has its maximum at time t = 0 s. However, dispersion effects, vascular anatomy 

and pathology, usually cause the residue function to deviate from the theoretical 

shape. In order to account for this effect, CBF is calculated as the maximum of 

the residue function. In signal processing, the impulse response (the residue 

function) is typically determined by taking the Laplace transform of the equation, 

ending up with a multiplication rather than a deconvolution. A transfer function 

can be calculated and by taking the inverse Laplace transform, the impulse 

function can be determined, if the AIF and tissue signal are known. When the 

signal is discrete, the Z-transform is used instead. An alternative technique for 

the determination of the transfer function, is to use an algebraic approach, more 

specifically, singular value decomposition (SVD) based techniques (152). 

Finally, model-based approaches can be used to model the shape of the 

residue function as an exponentially decaying function (153) . 
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The AIF is one of the most important parameters that need to be 

determined in order to quantify perfusion, since it constitutes the input function 

of the system. Perfusion quantification requires that the actual shape of the AIF 

in the tissue of interest is known in order to be able to differentiate between a 

narrow AIF with a high value and a wide AIF with a lower value. The AIF can be 

measured either globally from a large artery, or locally, giving rise to numerous 

regional AIFs. A local approach is usually adopted when a cohort with 

pathology affecting the vasculature is examined. The most commonly used 

model for the AIF is a gamma-variate function (153). Other models commonly 

applied for the AIF are a box-car function and a gamma-variate function 

multiplied by a dispersion kernel (154). 

 

2.4.1.4 QUASAR ASL  
In 2006, a new model-free ASL approach for perfusion quantification was 

proposed (155). In this approach, the PULSAR (pulsed STAR labeling of arterial 

regions) labeling scheme (156), was combined with a Q-2 TIPS pulse scheme 

(157), which permits accurate definition of a labeling bolus. A multi-slice single-

shot gradient-echo EPI readout was combined with a Look-Locker readout 

sampling (146). In this work, quantification of CBF by means of deconvolution 

was compared to fitting the acquired signal to Buxton’s general kinetic linear 

model (158). Both approaches were used on the same dataset derived by using 

the newly developed quantitative STAR (signal targeting by alternating 

radiofrequency pulses) labeling of arterial regions (QUASAR) scheme and their 

efficiency was evaluated using simulations. SVD deconvolution for SNR = 10 

and 15, led to CBF underestimation whereas parameter fitting to CBF 

overestimation. 

As part of the QUASAR technique, pairs of control and labelled images 

were acquired for two different sets of experiments (with and without crusher 

gradients). The crusher gradients null the signal emerging from fast flowing 

spins due to residual tracer in major arteries, which is responsible for bright 

artifacts. Crusher gradients are particularly important as intraluminal artifacts 

can imply perfusion overestimation, leading in multiple cases in the need to 

exclude scans (89). However, they are not used in neonates due to 

unacceptably low SNR (159). Subtraction of these two images with and without 
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crusher gradients, delineates the shape of AIF. In order for the AIF to be 

defined in its wholeness, it needs to be normalized so as to take into account 

arterial Blood Volume (aBV). Hence when using QUASAR two distinct signals 

can be retained, one emerging from the intravascular compartment connected 

to aBV and one emerging from the extravascular compartment connected to 

CBF (figure 2.13). 

	
Figure 2.13: Qualitative depiction of the crushed (arterial compartment) and non-crushed 
(CBF compartment) signals obtained during the QUASAR acquisition.  

In 2007, a short while after the technique was introduced, Petersen et al. 

(160) suggested a method to account for field inhomogeneities by including a 

low flip angle acquisition, which allows spatial mapping of the actual flip angle, 

rather than just assuming the nominal one. Chappell et al. (154) have proposed 

a correction factor for the calculated flip angle.  After the introduction of 

QUASAR ASL, a multi-centre study took place in order to evaluate its 

effectiveness in perfusion quantification and its reproducibility, with very 

promising results (161).  

The use of a Look-Locker readout, allows for retention of images at 

multiple inversion times, making the acquisition insensitive to ATT (162, 163). 

The fact that QUASAR ASL allows for quantitative CBF, aBV and ATT maps to 

be generated, the ability to label different vascular territories (164) and to 

calculate regional AIFs, render it a conceptually different technique from the 

commonly used single inversion time techniques. In particular, it can be useful 
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for studies focused on conditions, which can affect the transit time of the label 

from the arterial to the tissue compartment. QUASAR ASL has been used for 

perfusion imaging in studies investigating disease related hemodynamic 

changes in: multiple sclerosis (143); carotid stenosis (165);  Parkinson disease 

(166); tumour, mainly gliomas (167, 168); Alzheimer’s disease (141); and 

cognitive decline in middle-aged men (169). It has proven to be adept for 

quantification of CBF in GM, although with a tendency to underestimate it (170). 

QUASAR ASL has been shown to provide comparable results to PET (171) and 

good correlation has been found between QUASAR ASL and DSC-MRI (106). 

The QUASAR pulse sequence as described in the original QUASAR 

publication, is shown in figure 2.14. An initial WET saturation scheme, which is 

typically used in spectroscopy, is applied in the imaging region (156). 

Subsequently, labelling takes place at the level of the carotids. The labelled 

acquisition comprises an 180o pulse. The control acquisition comprises two 

180o pulses of half the power to induce identical magnetization transfer effects 

to the imaging region. Following that, a post-saturation scheme is applied. After 

a certain time, which in the typical QUASAR scheme is 650ms, the labelling 

region is saturated using a QUIPSS II scheme for a well-defined duration of the 

bolus. Subsequently, a small flip angle excitation (35o) is applied followed by 

crusher gradients where applicable (crushed acquisition). Finally, a 2D EPI 

readout is used. 13 such small flip angle excitations and EPI acquisitions are 

applied allowing for dynamic signals to be acquired. 
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Figure 2.14: QUASAR pulse sequence; figure adapted based on Petersen et al. 2006. An 
intial pre-saturation WET pulse scheme is applied in the imaging area. Subsequently the 
labeling scheme is applied (light blue when the control scan is acquired). Post-saturation is 
applied in the imaging region. After a certain time a small flip angle excitation is applied and a 
QUIPSS II bolus saturation scheme is used for an accurate definition of the time-duration of the 
bolus (light pink). Crushers (light green) are turned on for the crushed acquisition. Finally an 
image is acquired using an EPI-readout. 

 

2.4.2 Dynamic Susceptibility Contrast MRI (DSC-MRI) 
In DSC-MRI a contrast agent (typically gadopentetate dimeglumine) is 

injected and passes through the vasculature. In the case of an intact BBB it 

remains largely intravascular within the brain and perfusion quantification relies 

on the induced susceptibility effects. One of the issues with this technique is 

that since the site of injection tends to be a vein in the arm, the injected tracer 

has a high degree of dispersion by the time it reaches the brain. At the time of 

imaging (7-10 seconds after injection), gadopentetate dimeglumine which is a 

paramagnetic agent, induces non-uniformities in the local magnetic field 

(susceptibility effects) which are imaged (172). Significant considerations 

regarding perfusion quantification with DSC-MRI include the definition of an 

accurate AIF and the second passage of the contrast agent (153). 
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The main drawback of using DSC-MRI is the injection of the contrast 

media. In 2006, a study connected Gadolinium to the development of 

nephrogenic systemic fibrosis, a very serious condition, in patients with 

abnormal kidney function (173). Following this, multiple studies investigated 

whether gadolinium-based contrast agents had any impact in persons without 

kidney dysfunction. It is now well-established that gadolinium is deposited in the 

brain, bones, liver and skin (174). Kanda et al. (175) have shown that there is 

an increase in gadolinium deposition in the brain, especially in dentate nucleus 

and globus pallidus in subjects without impaired renal function. In the 

meantime, a study group for Gadolinium toxicity found that people subjected to 

MRI scans with the use of gadolinium are reporting pain, skin irritation and 

confusion (176). 

DSC-MRI has been for years the primary choice of clinicians for MR 

perfusion imaging due to its straightforward implementation and good contrast. 

Despite the quantification challenges, with an accurate AIF identified (153), it is 

more straightforward in interpretation, implementation and quantification 

compared to ASL variants (145). However, due to the increased concerns 

regarding gadolinium deposition, a trend toward techniques such as ASL is 

noted. 

 

2.4.3 Vascular space occupancy MRI 
The main idea behind vascular space occupancy (VASO) MRI is that the 

blood signal is nulled, resulting in an image dominated by tissue signal. Any 

change in the tissue signal can be attributed to changes in the inflowing blood, 

reducing the signal of the static tissue (177). VASO is an indirect technique to 

measure cerebral blood volume and it provides relative quantification, rather 

than absolute values. Variants of the VASO scheme have been proposed such 

as inflow-based VASO (iVASO) (178) and iVASO with dynamic subtraction 

(iVASO-DS) (179).  

VASO is sensitive to both changes in arterial and venous compartments. 

The variant, iVASO, nulls only the signal from the blood directly beneath the 

imaging slice moving upwards, leading to a higher SNR and to selective 

sensitivity to the arterial compartment (178). In iVASO-DS, an additional control 

image without nulling is acquired, following a similar approach to the ASL 



	 43	

principle of control-label pairs (179). Good agreement of the cerebral blood 

volume values obtained with VASO and PET and iVASO and DSC-MRI has 

been reported (105). 

  

2.4.4 Intravoxel incoherent motion MRI 
Le Bihan et al. (83) developed a technique utilising motion sensitising 

diffusion gradients for perfusion assessment, so called intravoxel incoherent 

motion (IVIM). Perfusion was thus approached as a diffusion-associated 

process. At low b-values the signal attenuation in a diffusion weighted image is 

greater than expected solely from diffusion, due to the additional contribution to 

signal losses from water perfusing in the capillary bed.  This additional signal 

attenuation can be modelled and used to calculate parameters associated with 

the perfusion contribution.  Fitting the signal acquired over a range of relevant 

b-values to a bi-exponential model allows for separation of diffusion from 

microcirculatory perfusion effects. One of IVIM’s interesting advantages is that 

both the microvasculature and the microstructure can be evaluated 

simultaneously (46). A direct equivalence between parameters calculated with 

IVIM and with conventional perfusion MRI techniques has been drawn. IVIM 

parameters involve blood perfusion fraction (f), diffusion coefficient (D) and 

pseudo-diffusion coefficient (D*) of intravascular water, from these fD* is the 

direct equivalent to CBF, f equivalent to CBV and D* equivalent to mean transit 

time (180).  

The technique has been used in the field of T2DM unravelling abnormal 

perfusion patterns in the hippocampus (46). Good agreement between IVIM 

and DSC-MRI in a study examining gliomas has been shown where the 

equivalence of fD* to CBF was validated, but not the relationship between MTT 

and D* (181). High correlation has also been found between IVIM and CBF 

calculated using pCASL (182, 183).  

IVIM is a promising perfusion imaging technique, however the utilised 

fitting algorithms, range of b-values and quantification efficiency have not been 

thoroughly investigated (181). Compared to DSC-MRI it is non-invasive without 

the need to use contrast agents and measures perfusion at the level of the 

capillaries, on the contrary DSC-MRI depends on how leaky the BBB is and 

contamination from big arteries might be prominent. The technique, when 
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implemented for brain imaging, suffers from low SNR since the signal attributed 

to microcirculatory perfusion is at the level of 4%. IVIM is particularly popular for 

studying organs other than the brain (for example kidneys, prostate and liver) 

(184). 

 

2.5 Structural, diffusion weighted MRI and MRA  
Being an extremely versatile tool, MRI can provide many different ways 

to gain an insight of the brain’s structure, function and physiology. In the 

following subsection a brief overview of some of the most important MR-based 

imaging modalities used in the present thesis is presented. The description of 

each technique was based mainly on Haacke and Brown (64). 

 

2.5.1 3D T1-weighted image 
As mentioned previously, to acquire a T1-weighted image the TR and TE 

times need to be short (with respect to underlying tissue T1 and T2) in order for 

the T1 effect to provide the majority of image contrast. Typical T1-weighted 

acquisitions are of high resolution and, depending on the vendor, they have 

commercial names such as magnetization-prepared rapid gradient-echo 

(MPRAGE) (185) and spoiled gradient echo (SPGR). MPRAGE is a purely 3D 

acquisition in the sense that data are not acquired slice by slice but rather the 

3D encoding is achieved by using an additional phase encoding gradient in the 

slice encoding direction. Compared to its spin-echo counterparts, MPRAGE 

being a gradient-echo sequence is faster, more prone to artifacts and has a 

lower SAR. 3D T1-weighted images are popular in clinical settings since they 

are of high resolution and provide great anatomical details. Due to these 

attributes they are the main images used for brain volumetry. Useful biomarkers 

such as cortical thickness, GM, WM and CSF volume can be extracted from 

these images using appropriate software tools. 3D T1-weighted scans such as 

MPRAGE have been used in the past for studying structural changes in the 

diabetic brain, unraveling atrophies and regional differences in structures of 

interest (40). 
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2.5.2 Anatomical T2-weighted imaging  
For T2-weighted imaging, the TR needs to be prolonged to enhance the 

T2 effect and reduce the T1 effect. In standard T2-weighted imaging long TR 

and TE (with respect to the underlying T1 and T2) times are used. Basic T2-

sequences are: turbo spin echo (TSE) and FLAIR. With T1 values being on the 

order of 1s and T2 values being on the order of millisecond, T2 imaging is 

extremely useful in detecting abnormalities associated with an underlying 

condition. FLAIR is an inversion recovery imaging technique where the CSF 

signal is nulled (186). TR and TE are chosen in order to introduce heavy T2 

weighting. Without the suppression of the CSF signal, typical T2 weighted 

images are of limited diagnostic usefulness since the tissue signal decays faster 

than the CSF signal (186).  FLAIR is adept for depiction of white matter 

hyperintensities and tumors and can detect them with greater accuracy than T1-

weighted sequences and T2-weighted sequences without CSF suppression 

(187). FLAIR has been used in diabetes studies to detect leukoaraiosis in WM 

with the findings being inconsistent (188). 

 

2.5.3 MR Angiography 
MRI can also be used for vasculature imaging. MRA imaging techniques 

are based on the fact that spins inside the vasculature are in motion. MRA 

acquisitions can be contrast enhanced MRA, using gadolinium as a contrast 

agent or non-contrast enhanced. The non-contrast enhanced methods include 

TOF-MRA and PC-MRA (189). Both are gradient-echo techniques with a short 

TR. Recently, ASL implementations have been used for quantitative MR 

Angiography (190). 

 In TOF MRA multiple RF pulses are used in the imaging region resulting 

in a steady state for static spins, while moving spins inside the vasculature do 

not experience all the RF pulses so they are left with a higher magnetization. 

One of the important factors to be carefully controlled when TOF-MRA is used 

is the applied flip angle to avoid saturation of the spins within the labeling slab; 

a large flip angle implies quicker saturation with a lower number of RF pulses 

(64).  

In 2D phase contrast MRI, flow is acquired in one thick slice. The 

rationale is that velocity information can be encoded in the phase of the spins 
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using bipolar gradients. When a flow-encoding gradient is used, spins flowing in 

the gradient direction accumulate a phase. When a second opposite gradient is 

implemented then for every pixel there is an accumulated phase difference Δφ. 

One of the most important parameters to be determined by the user is velocity 

encoding (Venc), a velocity threshold introduced to de-phase fast moving spins 

above a certain velocity. Velocities lower than the chosen threshold are 

represented with a phase shift within the range from -180o to 180o. Velocities 

higher than the applied threshold are suppressed since they are assigned 

values greater than 180o, this results in mapping them to lower angles. For 

example a velocity exceeding Venc by 25% would be mapped to 225o and this is 

indistinguishable from -45o. The value of Venc is controlled by changing the 

amplitude, time separation and duration of the bipolar gradients. 

A single acquisition is not sufficient to resolve phase difference due to 

field inhomogeneities and susceptibility effects. Hence, two sets of 

measurements are typically acquired, the difference being that the polarity of 

the gradients is inverted. These two images are subtracted (ΔΜ) and the result 

is proportional to velocity. The pulse sequence diagram for PC-MRA is shown in 

figure 2.15. 

 

Velocity is proportional to the phase difference and the quantities are 

connected by the following relationships (equation 2.15): 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝛥𝜑 ∗ v���
�
= ��

-∗��
     [2.15] 

In PC-MRA the typical recorded images are hence a magnitude image, a 

complex phase difference image and a phase difference image (191). 

The choice of the velocity threshold is a trade-off between a high value to 

avoid potential aliasing effects and a lower value since the SNR is reduced with 

a higher threshold and the ability to decouple slower velocities is influenced. 

Having calculated the velocity inside a big vessel, it is trivial to quantify the flow 

in the vessel by multiplying the mean velocity over the pixels with the area of 

the vessel. 

A recent study by Yashiro et al. (192), has shown changes in the 

vasculature of T2DM patients using TOF-MRA analysis. PC-MRA has been 



	 47	

used in the past to assess flow in diabetes pointing towards reduced carotid 

flow (193). 

	
Figure 2.15: Pulse sequence diagram for PC MRA based on Haacke et al. 1999 [64]. 

 

2.5.4 Diffusion weighted MRI 
Diffusion imaging focuses on the determination of the displacement of 

water molecules due to thermal energy. The contrast of the technique depends 

on the accumulated dephasing due to random spin movement.  In the pulsed 

gradient spin-echo implementation one dephasing and one rephasing gradient 

are applied after the 90° RF pulse either side of a 180° pulse resulting in the 

dephasing of moving spins (figure 2.16) (194). In a gradient echo 

implementation the pair of diffusion gradients differs in polarity and follows the 

90o pulse. High mean displacement results in greater signal attenuation and 

corresponds to darker regions on a diffusion-weighted image (195). The 

readout is usually a fast one such as EPI. 

The sequence’s sensitivity to molecular diffusion is determined by the ‘b-

value which incorporates information about the amplitude, duration and 

separation of the applied gradients and can be calculated using the following 

equation 2.16, where the gradient and timing parameters are defined as in 

figure 2.16: 

𝑏 = 𝛾E𝐺E𝛿E L𝛥 −
𝛿
3O [2.16] 
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Figure 2.16: Diffusion weighted imaging pulse sequence diagram based on Haacke et al. 
1999 [64]. 

The simplest diffusion imaging technique is diffusion weighted imaging 

(DWI) whereby data are acquired in three orthogonal directions to characterize 

the water movement in 3D. The diffusion apparent coefficient (ADC) can be 

quantified by measuring the signal (S) obtained from an acquisition with a non-

zero b-value and a signal with b = 0 (S0) which is actually a conventional T2-

weighted image (equation 2.17). The signal at a certain b-value can be 

calculated as the geometric mean of the signal from the three orthogonal 

directions. The higher the b-value the stronger the diffusion weighting. 

However, the higher the b-value the lower the achieved SNR due to TE 

prolongation 
𝑆
𝑆𝑜 = 𝑒&���� 	⇒ 𝐴𝐷𝐶 =

1
𝑏 ln	(

𝑆B
𝑆 )			[2.17]

 

  

Equation 2.12 demonstrates that two b-values typically suffice to 

determine ADC, however, acquisition of additional b-values can allow for a 

more accurate estimate. Two b-values is sufficient for the calculation of ADC 

when using a monoexponential model where ADC can be calculated from the 

slope of the b=f(S) plot which is a straight line, as in equation 2.12. However, 
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inclusion of more b-values can allow for more complex models to be fitted to the 

data than the simple monexponential model.  At present, the vast majority of 

clinical diffusion imaging sequences in the neuroimaging domain use two b-

values of approximately 0 and 1000 s / mm2. 

More advanced diffusion imaging modalities allowing for the complete 

characterization of the displacement of water molecules include diffusion tensor 

imaging (DTI), diffusion kurtosis imaging (DKI), diffusion spectrum imaging 

(DSI), q-ball imaging (195). The basic difference of these techniques from a 

DWI acquisition has to do with the fact that acquisitions are performed for a 

bigger set of b values and gradient orientations. Diffusion kurtosis imaging 

differs from DWI in that it avoids assuming a Gaussian distribution as a pattern 

for the water diffusivity (196). DSI and Q-ball imaging are capable to resolve 

small differences in the directionality of the tracts within a voxel (197).  

 Neuroimaging studies have reported increases in mean diffusivity (198) 

and decreases in fractional anisotropy (199) in patients with T2DM. 

 

In the present study, QUASAR ASL was used to evaluate cerebral 
hemodynamics in IGT and T2DM. An MPRAGE and a FLAIR scan were 
acquired to detect structural changes in the brain. TOF and PC-MRA 
scans were acquired to investigate the cerebral vasculature and finally a 
DWI scan was acquired to detect alterations in water movement. 
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Chapter 3: 
Brain MR Image Processing 

 

The output from every medical imaging modality is a clinical image 

providing structural, physiological or functional information. The varying 

intensity levels present in the image are associated with the structural or 

physiological parameter under consideration. Through image analysis, regions 

or properties affected by a potential disease, and existing patterns indicative of 

the pathological condition, can be unveiled. In terms of image processing, the 

image comprises of entities termed pixels (2D) or voxels (3D). The number of 

pixels comprising an image depends on its field of view and sample array size. 

The intensity of each pixel is associated with the parameter that the specific 

technique is measuring. Image resolution in MRI can vary from small voxels (i.e. 

0.125mm3) to voxels of several mm depending on the implementation and the 

desirable SNR.  Functional imaging techniques are often constrained by SNR 

and have larger voxel sizes than structural imaging methods. 

While it is often desirable to make imaging “measurements” on a single 

individual, as in traditional diagnostic imaging, research studies frequently 

perform group comparisons to try and identify general differences in measured 

parameters between specific cohorts (or groups) of patients.  To enable these 

group comparisons, several pre-processing steps have been developed. Motion 

correction and registration of the image to a standard template coordinate 

system by applying a geometrical transformation are examples of such pre-

processing steps which might be implemented. Temporal filtering and spatial 

smoothing can be used in order to filter out frequencies that might not be of 

interest, or frequencies irregularly high (101, 200). These pre-processing steps 

are widely used to ensure that images from different subjects are comparable.  

Numerous software tools have been developed with a focus on 

processing of brain images. Some of the most popular ones used in 

neuroimaging research are: Statistical Parametric Mapping - SPM (201); 

FMRIB’s Software Library - FSL (202); FreeSurfer (203) and Analysis of 

functional neuroimages - AFNI (204).   
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In this chapter image processing techniques utilised in the present thesis 

are discussed in the context of the existing research and bibliography. These 

techniques range from regular pre-processing to advanced methods based on 

machine learning. Focus is put on segmentation using fuzzy c-means clustering 

(FCM), voxel-based morphometry (VBM), linear support vector machine (SVM) 

classifiers and feature ranking with SVM – RFE (recursive feature elimination). 

 

3.1 Pre-processing steps  
An example slice from an individual is shown in figure 3.1 before and 

after bias field correction, brain extraction and tissue segmentation. 

 
Figure 3.1: Preprocessing steps demonstrated in one coronal slice. The original/acquired 
image, is bias field corrected, the brain is extracted and subsequently segmented. 
 
 

3.1.1 Bias field correction 
Bias field correction (BFC) attempts to account for signal variation 

introduced by field inhomogeneities during the image acquisition process. 

These inhomogeneities cannot be attributed to a single factor. One of the 

potential sources is the RF coil(s) used for MRI signal transmission and 

reception, which does not have a perfectly uniform field (205). The bias field is 

not always visually obvious; but it can greatly influence the subsequent 

Original	 Bias	field	corrected	 Brain	extracted	

GM	map	 CSF	map	WM	map	
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analysis. Its presence might imply intensity changes in the same tissue type 

across the image, independent of underlying pathology, and it usually increases 

the variance within individual tissue classes, thereby reducing sensitivity to 

detecting abnormal tissue. Several methods have been developed for BFC. 

Two broad categories exist: correction at the level of acquisition by adjustments 

in the hardware and approaches relying on the acquired image and in some 

cases prior knowledge. The latter approaches can correct for bias introduced 

both by the scanner and by the scanned object (206). 

The typical model used to describe the acquired image is given in 

equation 3.1, where the acquired image (I) is modelled as the original 

uncorrupted image (Ioriginal) with a multiplicative slow varying field (B) and 

additive noise (n). Other suggested models are as on equations 3.2 & 3.3 (206, 

207). 

𝐼 = 𝐵 ∗ 𝐼ge`�`ad� + 𝑛																																					[3.1] 

𝐼(𝑥) = s𝐼ge`�`ad� + 𝑛t ∗ 𝐵																											[3.2] 

𝑙𝑜𝑔𝐼 = logs𝐼ge`�`ad�t + 𝑙𝑜𝑔𝐵 + log(𝑛)			[3.3] 

All cases tend to assume that n is approximately Gaussian. When B is 

determined, it is removed from the image and the resulting image is described 

as bias field corrected. 

Currently, the most popular and robust bias field correction algorithm is 

N4ITK (208), which is based on the N3 (non-parametric non-uniformity 

normalization) algorithm (209). This algorithm uses the first model for BFC and 

determines via an iterative procedure the bias field. The idea is that the 

histogram of the acquired image is a convolution of the histogram of the true 

image and the histogram of the bias field. The algorithm utilises deconvolution 

to determine the bias field. A deconvolution step is followed by an updated 

estimation of the bias field. The procedure ends when the difference of the 

standard deviation between two subsequent bias field estimations falls bellow a 

pre-defined threshold (210). Differences between the N4 and N3 algorithm are 

centered on the estimators used for the calculation of the bias field and 

equation used for iterative estimation, with the N4 using in every iteration the 

residual bias field from the previous iteration and not the total bias field. For 
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more details the reader is referred to Larsen et al. (210) and Tustison et al. 

(208). 

 

3.1.2 Brain extraction  
Extraction of the brain, otherwise known as ‘skull-stripping’ is of great 

importance as remaining non-brain tissue (i.e. skull, skin, eyes) might distort the 

results of the subsequent analysis. Manual extraction is an extremely time-

consuming task even for experienced radiologists. Hence, automated skull 

stripping is regularly used and the resulting brain mask can be inspected for 

potential failures.  

Available brain extraction methods can be classified into several distinct 

categories: morphological algorithms, intensity-based, deformable surface 

approaches and atlas-based models (211). The morphological approaches aim 

to use thresholding and/or edge detection for an initial stripping followed by 

morphological operations such as erosion or dilation. Intensity based 

approaches are usually based on the image intensity histogram and changes in 

local intensity gradient to separate tissue and non-tissue entities. Deformable 

surface models rely on an initial closed curve that dynamically evolves using 

energy metrics until it fits the surface limit. Atlas-based methods utilise prior 

information from generated atlases in order to exclude the skull, following 

registration of the subject’s brain into the atlas space. Hybrid and more 

sophisticated methods have been developed as well, with the recent trend 

being to use deep neural networks (212) for the task.  

The major neuroimaging research software tools have all incorporated 

brain extraction methods into their pipelines. FSL’s BET (213) uses deformable 

surface models and SPM’s algorithm relies on an atlas-based model used for 

tissue segmentation (214). AFNI’s (204) 3dSkullStrip utilises a modified BET 

technique and Freesurfer’s tool (215), combines a watershed algorithm with 

deformable surface models and an atlas. 

 

3.1.3 Image registration 
Image registration is concerned with the determination of an appropriate 

geometrical transformation that maps the pixels of one image (moving image) to 

a reference image. The major linear geometrical operations are translation, 
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rotation, scaling and shearing (216). Rigid transformation comprises translation, 

and rotation, whereas affine transformation comprises all four linear geometrical 

operations.  The optimum transformation is identified as that which minimises 

(or maximises) a defined similarity metric between the two images, such as 

normalized cross-correlation, normalized mutual information, etc. Once the 

optimum transformation has been found, the moving image is warped using the 

resulting transformation so that it is in spatial registration (or as close as 

possible) to the reference image. Linear registration can be used when there 

are no major differences between the two images.  

A linear registration takes the form of y = Ax where y is the resulting 

image, x is the moving image and A is the transformation matrix. The 

transformation matrix can be represented as a matrix multiplication of the 

individual translation, rotation, scaling and shear matrices. 

While linear registration may be sufficient for intra-subject motion 

correction, the consensus in medical imaging is that linear registration is not 

sufficient for successful inter-subject anatomical structure alignment. A study 

published in 2009 examined in great depth 14 non-linear registration algorithms 

and came up with certain recommendations (217). The best two algorithms 

were the SyN (218) and the ART (219). Another popular non-linear method, 

aimed at preserving topological information and utilised by SPM, is 

diffeomorphic registration, which approaches registration as a problem of an 

image flowing to match another image (220). This algorithm came fourth in the 

evaluation of non-linear registration algorithms. 

Registration is used for motion correction, to match images of different 

resolutions, images from different subjects, different imaging modalities, or to 

register images to an already existing atlas (normalization). It is important to 

use a robust registration approach, although care must be taken as the original 

image values are usually modified in the procedure due to interpolation. 

Additionally, it is important to evaluate the registration result to reassure that the 

automated process has been successful and that there are no gross 

misalignments between the registered image and the target. Potential imperfect 

registration might imply that the extracted metrics do not reflect the actual 

values from the region under consideration.  
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Spatial normalization utilises image registration in order to align the 

subjects image space with a reference image space such as the Montreal 

Neurological Institute (MNI) (221) or the Talairach-Tournoux (222) coordinates 

system. Registration into a “standard” reference space is commonly used in 

neuroimaging, as it allows for easy correspondence of spatial information 

between studies and for utilisation of developed atlases. 

 

3.1.4 Tissue segmentation 
Medical image segmentation can be described as the task of assigning 

each voxel to a distinct category/class. Specifically, for a healthy brain, the most 

typical considered classes are GM, WM and CSF. Segmentation results from 

this procedure are typically used for volumetric quantification. Complex 

segmentations are also possible, where the brain is separated into detailed 

anatomical sub-regions.  Segmentation is frequently performed so that 

measurements can be obtained from the region, or tissue of interest.  These 

can be physiological and functional parameters, which can be calculated by 

registering the segmented region of interest (usually emerging from a structural 

scan) onto quantitative images (e.g. emerging from functional acquisitions). 

The main segmentation approaches are: manual, region-based, 

threshold-based, classification-based and clustering-based (223). Region-

based approaches for segmentation are very similar to brain extraction region-

based approaches, in that starting from a certain region, they expand an initial 

curve or seed point until a termination criterion (usually energy-related) is met. 

Threshold-based approaches are among the most popular for image 

segmentation. Thresholding can be local, adaptive or global. The optimal 

threshold in all cases can be determined using techniques such as Otsu 

thresholding and entropy-based criteria (223).  

Classification based segmentation approaches relying on SVM 

classifiers (224), deep neural networks (225) and k- nearest neighbors (226) 

have also been use for tissue segmentation.  

Tissue segmentation can be approached as a problem of clustering 

using algorithms such as K-means (227) and FCM clustering (228). Clustering 

for tissue segmentation can have two forms: soft (whereby a voxel does not 
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need to belong to one class exclusively, as in FCM and mixture models); or 

hard (where a voxel belongs only to one class, as in k-means). 

The first category of soft clustering-based approaches involves mixture 

models. Usually the segmentation problem is addressed by fitting Gaussian 

shaped curves to the histogram of the image, or of a region, and assigning to 

every voxel a probability of belonging to a certain class. FSL’s FAST tool 

utilises an expectation maximization algorithm combined with Gaussian Mixture 

Models (GMM). SPM’s segmentation routine also makes use of GMM along 

with prior probability maps. Mixture models have the disadvantage of making 

assumptions about the underlying intensity distribution, i.e. the data conforms to 

a Gaussian distribution with a certain number of tissue classes. Utilising prior 

probability atlases introduces an additional bias to the segmentation task, so 

their use needs to be weighed carefully against the potential for increased 

robustness.  

FCM clustering originally proposed by Dunn (229) and adapted by  

Bezdek et al. (228) is a classification technique of great interest for image 

segmentation and is based on the fuzzy logic theory (230). In fuzzy logic, a 

function termed the “membership function” determines the degree of belonging 

to a specific cluster. The concept of fuzziness intends to describe variables with 

vague edges, in an attempt to avoid a binary logic of belonging or not 

belonging. This property renders FCM a promising technique for tissue 

segmentation and partial volume estimation (231).  

The philosophy underlying FCM is that a pixel does not belong explicitly 

to a class, but has a degree of membership in all clusters with a value in the 

interval [0 1], with 1 suggesting strong membership in a cluster. Calculation of 

the membership level is an iterative process. Initially, an informed estimate is 

made about the centroid locations of every cluster. Subsequently, equation 3.4 

is minimized. Minimization occurs when pixels with values close to the centroid 

acquire a high membership function for this particular cluster. The membership 

value and the centroid of every cluster are updated until convergence is 

achieved (equation 3.5) (228, 232). 

J = ¡¡u£¤¥ ¦§x¤ − v£§¦	E			[3.4]
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Where, c is the number of clusters, uij is the membership value, xj is the 

pixel under consideration, m is the degree of fuzziness and vi is the centroid of 

a cluster. 
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In its original implementation, FCM does not take into account the local 

neighborhood of a pixel. Techniques to circumvent this limitation have been 

suggested, mostly focused on modifying the membership function to 

incorporate spatial information, thus making the classification dependent on the 

information from the local neighborhood. Focusing on medical image 

segmentation, one such algorithm performing spatial fuzzy c-means (SFCM) 

clustering was proposed by Chuang et al. (232). The algorithm incorporates 

information from a 5*5 window in the classification task and modifies 

accordingly the membership function (equation 3.6).  

u£¤µ =
u£¤
¶h£¤

·

∑ u¯¤
¶ h¯¤

·ª
¯«N

				,						where	h£,¤ = ¡ u£¯								[3.6]	
¯∈¹£º(»¼)

 

Where win (xj) is a k*k size window centered at pixel j. 

 Ahmed et al. (233) introduced a technique to incorporate BFC to FCM 

(not accounting for spatial information). In some studies an effort was made to 

incorporate in the fuzzy classification both spatial information and BFC by 

modifying the membership function accordingly (234, 235). Recently all FCM 

based algorithms for MR image segmentation have been compared (236) and 

the best performance was demonstrated by SFCM. 

 

 

WMH segmentation 

Segmentation of hyper-intense WM regions is a non-trivial problem. 

Several software tools have been developed, however, none of them is 

considered a gold standard. The difficulty arises from the fact that WMH regions 

can have an unpredictable appearance; they can consist of very small localized 

regions, large diffuse areas, or a combination of both (237). Their distinct 
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intensity profile makes them recognizable with a bare eye, however automated 

detection has generally proved to be suboptimal. Currently, the most reliable 

and commonly used approach is to use an automated tool with subsequent 

manual correction for regions that have been missed, or were mistakenly 

labeled as abnormal. Some of the automated tools are: Lesion segmentation 

toolbox (238) and BIANCA (FSL) (239). 

 
3.2 Partial volume phenomenon and correction 

The lower the resolution of an image the bigger the volume of the voxel 

or area of the pixel for a given field of view. This means that there is a higher 

probability of a pixel/voxel containing information from more than one tissue 

type. This problem is dubbed the ‘partial volume effect’ (PVE). Another factor 

associated with PVE is the imperfect point spread function of the imaging 

system, which is more important in PET imaging. In higher resolution images, it 

is less of a problem, however, in perfusion imaging, and especially in ASL, it 

can lead to underestimation of GM CBF. Asllani et al. (240) have shown that in 

an ASL experiment, the GM CBF value can be underestimated by up to 50% 

and have proposed a method to account for PVE based on linear regression. 

This method introduces a degree of smoothing to the data, as it assumes 

relatively stable perfusion values in a kernel. Chappell et al.  (241) have shown 

that an alternative to this method for multiple inversion time-point ASL, could be 

to fit the signal with kinetic curve equations based on Buxton’s model for every 

tissue type. This technique has also been used in single-PLD ASL (242). Both 

approaches use a high-resolution anatomical image to generate fractional 

volume maps.  

Ahlgren et al. (243) have implemented a different approach for partial 

volume correction (PVC), using only the information obtained from the 

QUASAR ASL sequence, without reliance on a high-resolution anatomical 

image. Tissue maps were generated by fitting Gaussian distributions to the low 

resolution ASL-derived images for every tissue type (244). The saturation 

recovery signal was modelled as a linear combination of the saturation recovery 

from the tissue types (GM, WM and CSF).  
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3.3 Group-comparisons 
In cross-sectional and longitudinal studies, comparisons are made 

between different scans of different individuals, or of the same person, in order 

to unravel patterns of localized or global differences. Various approaches exist 

to perform comparisons between different scans. One approach is to use 

manual or semi-automated segmentation of regions of interest (ROI), usually 

focusing on areas known to be affected by the examined condition and any 

differences can be identified by statistical comparisons. Another option is to use 

morphometric approaches, which avoid making assumptions about the extent, 

location and number of ROIs. 

The most heavily used morphometric technique is VBM, which is 

designed to detect regions in the brain (typically GM) that differ in volume 

between groups, by applying group comparisons at a voxel level (245). The 

pipeline behind VBM has been implemented in both FSL and SPM with both 

implementations being highly similar. In its regular implementation, the initial 

step of the pipeline is brain extraction. Subsequently all brains need to be 

normalized to a common space to facilitate group-wise comparisons. It is a 

common approach for a study-specific template to be constructed at this stage 

from some, or all scans. This template is used as a registration target for the 

next step where all segmented PV maps, are registered to the common space. 

At this stage an optional processing step described as ‘modulation’ which 

preserves volumetric information can be applied. The GM and WM segments 

are subsequently smoothed using a Gaussian filter (with kernels ranging from 

6mm to 18mm FWHM) to render the intensity more normally distributed, in 

order to facilitate parametric statistical tests. The endpoint result of the pipeline 

is therefore a series of images in a common space, where the information in 

each voxel effectively describes the density of tissue for each subject. 

Subsequently, statistical tests between equivalent voxels determine 

whether these voxels differ significantly between the groups. Usually, these 

comparisons take place using the partial volume maps. Comparisons are 

typically based on the general linear model and study-specific designs are 

generated and implemented. The applied statistical tests depend on the cohort, 

time-points and states. Due to the thousands of comparisons equivalent to the 
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number of non-zero voxels it is of utmost importance to correct for multiple 

comparisons and account for the false positive rate.  

The VBM implementation in SPM and FSL is almost identical, but 

differences arise in the specific pre-processing tools, which are used to achieve 

the same conceptual steps.  

Alternative suggested morphometric approaches involve deformation-

based morphometry (focused on the position of the structures), tensor-based 

morphometry (focused on the shape of structures) (246) and pattern-based 

morphometry (247). 

Morphometric techniques, such as VBM, are mass-univariate 

(comparisons are conducted at a single voxel level) and cannot capture a 

spatially distributed pattern, nor can they be used as a stand-alone model for 

individual prediction (248). These concerns are addressed by using machine 

learning approaches. Such approaches have been used extensively in 

dementia classification and more specifically in Alzheimer’s using mainly 

structural scans (249).  

When using machine learning, the scans need to be registered to a 

common space. The whole image can be used as an input to a classification 

algorithm along with the respective classes in order to determine optimally 

differentiating regions. Due to the high resolution of the structural scans, the 

classification task involves thousands of features (each voxel can be one 

feature) so the dimensionality of the problem needs to be greatly reduced. An 

approach is to down-sample the considered image and utilise methods for 

dimensionality reduction. Of utmost importance when detection of regions of 

difference is of interest, is to retain the original features, hence a feature 

preserving technique ought to be used (250, 251).  

The important difference of such approaches compared to VBM is that 

they can be used for classification of a single individual and not just in the 

context of group-wise comparisons once a model is constructed (250). 

Additionally these techniques are multivariate (248). 

 

3.4 Feature extraction and classification 
In the era of big data, processing using machine learning, or more 

recently deep learning, is a particularly appealing approach. The difference 
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between machine learning and deep learning, is that deep learning is purely 

neural network - based with numerous hidden layers (hence the term ‘deep’), 

whereas, in machine learning there is no such hidden deep neuronal structure. 

In the context of medical imaging, numerous characteristics can be extracted 

from one, or multiple, modalities and multiple regions. Every such characteristic 

is considered to be a feature. Every subject is characterised by a collection of 

features; comprising its feature vector. The task of classification is essentially 

the task of classifying the feature vector, referred sometimes as ‘pattern’ into 

one of the categories, or else ‘classes’, under consideration. The extracted 

features can be used as an input to a classifier, with a view to classifying 

individuals into specific categories based on extracted features.  

The two main categories of learning are supervised (for example 

classification and regression) and unsupervised (e.g. clustering). In supervised 

machine learning both input data and their corresponding classes are used as 

input to the algorithm for training purposes. Classification techniques are used 

for categorical outputs, whereas regression techniques are used for continuous 

outputs. In unsupervised techniques, the algorithm finds intrinsic data patterns. 

Learning techniques are not confined to supervised or unsupervised; but 

learning can also be semi-supervised or reinforced. 

 

3.4.1 Feature extraction 
Multiple features can be extracted from an image. For example, features 

that characterise the shape of structures include their circularity, area, or 

perimeter. Textural analysis is a term reserved to describe the investigation of 

changes in the gray level pattern of an image. Textural features involve 

amongst others statistical features of first or higher order and spectral features. 

This type of features has been used for analysis of gray level patterns in 

conditions such as brain tumors, epilepsy and multiple sclerosis (252). First 

order statistical features are the mean, standard deviation, skewness and 

kurtosis. The gray-level co-occurrence matrix (253) is a popular approach for 

textural feature determination. The features derived from this matrix are 

second-order statistical features such as entropy, energy and contrast.  

Transform-based features can be determined using transformations 

analysing the frequency content of the image. Such methods can utilise 
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amongst others: Fourier, wavelet and Gabor transforms (254). The Fourier 

transform is capable of disentangling the spatial frequencies present in an 

image by using a number of superimposed sinusoidals. Wavelet transforms are 

less restricted than Fourier, since the basis functions used for the frequency 

content analysis are not confined to sinusoidals (252). Gabor filters are 

sinusoidal waves modulated by a Gaussian. Their interesting property is that 

they approximate the way the human visual system works. By implementing 

several modifications, they can be rotationally invariant (255).  

Following calculation of features of interest with one or more of the 

described methodologies, all extracted features are positioned in a feature 

vector.  

 

3.4.2 Dimensionality reduction 
An important step prior to classification, particularly when the 

dimensionality of the problem is higher than the number of available 

observations, is dimensionality reduction. Especially in the medical field, the 

number of features can greatly outweigh the number of available observations, 

giving rise to the ‘curse of dimensionality’. Dealing with this ‘curse’ mandates 

that an appropriate feature selection, or reduction, technique is used to reduce 

the number of features used in the classification task. This step is of great 

importance since it is crucial in order to avoid overfitting. Classification 

algorithms, trained on a large number of features, might present a superficially 

high performance for the training set (overfitting), however, when the classifier 

is used on a testing set, the performance might be very poor (256). Overfitting 

results from the classifier having learned the idiosyncrasies of the available 

training dataset and when presented with a new one it cannot generalise. The 

smaller the available dataset, the more likely it is for the classifier to identify 

patterns with poor generalisability. 

Feature selection techniques choose a subset of the available features, 

whereas feature reduction techniques might reduce dimensionality by using 

linear combinations of the features.  A multitude of feature reduction and 

selection techniques have been developed and under the main branches 

numerous subcategories have emerged (256). 
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Examples of popular dimensionality reduction algorithms include 

principal component analysis (PCA) and linear discriminant analysis (LDA), 

both these algorithms do not examine non-linear feature relationships. An 

alternative approach, capable of unravelling non-linear relationships between 

the features, is a feature ranking technique which can be used for feature 

selection known as SVM-RFE (257). 
SVM-RFE which was used in the present thesis, was introduced as a 

feature ranking method by Guyon et al. (257). The philosophy behind the 

technique is that the weights of a SVM classifier are used as a criterion to rank 

the features. Following feature ranking, a subset of the features can be retained 

for further analysis leading to dimensionality reduction. An important advantage 

of SVM-RFE is that the features are maintained in their original form, following 

feature reduction, allowing for further analysis. The pseudo-code for its 

execution is as follows (257, 258): 

1) Train a classifier and retain the weights of every feature. 

2) Select a subset of features (higher weights). 

3) Proceed with a backwards elimination approach eliminating one, or 

multiple, features per iteration. 

4) Repeat until all features are removed. 

5) Rank the features based on the sequence of their removal. 

 

In their paper introducing SVM-RFE, Gyuon et al. (257) decided to 

analyse the top-7 features with the highest weighs in a study about colon 

cancer. One of the top-scoring features for distinguishing colon cancer patients 

from normal volunteers had to do with a parasitic protozoon, trypanosoma. 

Initially, they thought this was a failure of their method; however, they actually 

found out that people infected by trypanosoma develop resistance to colon 

cancer, thus demonstrating the robustness of the developed technique and the 

potential new insight it can offer. Especially for classification tasks in the 

medical field, such a method allowing for retention of the top features in their 

original form and their further analysis could be of great importance and could 

provide us with candidate disease biomarkers. 

 



	 65	

3.4.3 Classification techniques 
A binary classifier utilises a decision function D(x) which if positive the 

pattern is assigned to the +1 class, if negative, the pattern is assigned to the -1 

class. There are two main classifier types, those that rely on Bayesian theory 

and those that attempt to optimize a cost function by determining a decision 

boundary (259). Classification based on Bayesian inference usually assumes a 

PDF of a certain type (typically Gaussian) and seeks to optimize the parameters 

of the function to better describe the data (i.e. mean and covariance matrix). 

The within class PDF needs to be known or estimated before the classification 

task. Estimation of the PDF can be performed using maximum likelihood 

estimation or by using mixture models combined with an expectation-

maximization algorithm (259). 

Classifiers based on a decision surface rather than on PDF estimation 

seek to deduce the optimally differentiating surface separating the classes in 

the N-dimensional space. These classifiers can result in better classification 

when the available data-points are limited. Examples of these algorithms 

include the perceptron, the least-squares classifier and SVMs (259). 

 

3.4.3.1 Support Vector Machines (SVM) 
One of the most popular classification algorithms is the SVM classifier, 

which is adept for two outcomes of a particular state but can be expanded to 

more than one outcome categories. SVMs introduced by Cortes and Vapnik 

(260) are particularly stable, well-studied, with open-access and easy to 

implement software  (libraries are available in Matlab, Python, etc.) and more 

importantly they work well with relatively small data sizes, which doesn’t tend to 

be the case with neural network based methods. For these reasons, they were 

the preferred classifier in this project. 

SVM attempts to separate the data by determining an optimally 

separating hyper-plane (maximum margin) (260). The dimensionality of the 

problem is determined by the number of available features. In a toy problem 

where 2 or 3 features are available, the problem is equivalent to finding the 

optimally separating hyper-plane in 2D or 3D where the axis is determined by 

the feature value (figure 3.2). For problems defined in a higher dimensional 

space it is mathematically trivial to expand the methodology, but difficult to 



	 66	

visualize and depict the hyper-plane. In this case, all instances are placed in the 

N-D space, with N determined by the dimensionality of the feature vector and 

the SVM algorithm determines a N-D hyper-plane. SVM is one of the classifiers 

that is considered to be relatively robust regarding overfitting. 

 
Figure 3.2: SVM optimally differentiating hyper-plane in 2D and 3D.  
	

Non-linear SVM operates by projecting the feature vector in a higher 

dimension using a kernel function. Kernel functions can be: polynomial, radial 

basis function and sigmoid. The linear SVM is a particular case of polynomial 

SVM whereby there is no projection to a higher dimension using a kernel 

function. 

In the rest of this section the mathematical concepts underpinning SVM 

are briefly discussed, following the lectures of Professor Patrick Winston (261)  

and tutorials from (262-264). 

A linear classifier has the form of wTx+b=0 where x is the feature vector, 

w are the weights associated with each feature and b corresponds to a bias. 

Numerous planes can separate the data into two classes and SVMs search for 

the hyper-plane that maximizes this margin. 

In SVM, the optimally separating hyper-plane is defined by wTx + b = 0 

and the maximum margin is defined by two hyper-planes: wTx + b = 1 and wTx 
+ b = -1. The distance between the two hyper-planes defining the margin is 2 / 

||w||. This distance arises by considering the distance between a point and a 

hyper-plane. For the sake of simplicity in the distance calculation we will 

consider the 2D case where we calculate the distance between a point and the 

2D	 3D	
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hyper-plane, which for the 2D paradigm is a line. Let a point on the line 

consisting the hyper-plane (i.e. w1x1 + w2x2 + b = 0) be C(x1o,y1o) and a line of 

the form wTx + b = 1 (one of the two lines defining the maximum margin), which 

could be written as w1x1 + w2x2 + b – 1 = 0. Then for point C, it follows that w1x1o 

+ w2x2o + b = 0 

The distance between them is given by equation 3.7. 

𝑑 =
|𝑤N𝑥Ng + 𝑤E𝑥Eg + 𝑏 − 1|

¿𝑤NE + 𝑤EE
=

|0 − 1|

¿𝑤NE + 𝑤EE
=

1
||𝑤||					[3.7] 

 

It follows that the distance between a point situated on one of the lines 

defining the maximum margin and the hyper-plane (being a line in this 2D 

example) is 1 / ||w||. As mentioned previously the goal of SVM is to maximize 

this margin; it follows that 1 / ||w|| needs to be maximized so ||w|| needs to be 

minimized, having in mind that all observations need to be situated outside this 

margin. 

The classifier should have the following behavior based on whether the 

class y of every instance is 1 or -1 which could be summarised in the following 

expression (equation 3.8):  

𝑦 ∗ (𝑤+𝑥 + 𝑏) ≥ 1					[3.8] 

So when wTx + b > 1 then y = 1 and when wTx + b < -1 then y = -1 

The optimization task seeks to maximize 1 / ||w|| (or minimize ||w||) so 

the distance between the hyper-planes is maximized according to constraints. 

Minimizing ||w|| is actually the same as minimizing 0.5 * |w||2. One of the 

advantages of formulating the problem as such, is that the function to be 

minimized is convex, meaning that the minimum will be global. Problems 

involving a cost function minimization with equality and / or inequality 

constraints can be solved using Lagrange multipliers. The basic idea is that the 

gradient of the function to be optimized is equal to the gradient of the constraint 

multiplied by ai - the Lagrangian multipliers.  

So, the problem becomes an optimization problem with the following 

constraint (equation 3.9) where the equality holds only for the points situated on 

the margin. 

min
¹,Ã

1
2 §
|𝑤|§E	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝑦(𝑤𝑥 + 𝑏) − 1 ≥ 0		[3.9] 
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This is the so-called ‘primal’ problem when the optimization is focused on 

finding the weights. The Lagrangian for this problem is: 

𝐿 =
1
2 §
|𝑤|§E −	¡𝑎`[𝑦`(𝑤𝑥` + 𝑏) − 1]		[3.10] 

In order to find the extremes of L, the partial derivatives with respect to w 

and b are calculated as follows: 
𝜕𝐿
𝜕𝑤 = 0	 ⇒ 𝑤 −¡𝑎`𝑥`𝑦` = 0 ⇒ 𝑤 =¡𝑎`𝑥`𝑦`					[3.11] 

𝜕𝐿
𝜕𝑏 = 0 ⇒¡𝑎`𝑦` = 0							[3.12] 

By substituting 3.11 and 3.12 into 3.10, the problem becomes 

𝑚𝑎𝑥𝐿d = ¡𝑎𝑖 −
1
2¡¡𝑎)𝑎Ç𝑦)𝑦Ç < 𝑥), 𝑥Ç >

Ê

Ç«N

Ê

)«N

Ê

)«N

			[3.13] 

Subject to the following constraints: ai ≥ 0 and ∑ 𝑎`𝑦` = 0Ê
`«N .  

This is the so-called dual problem, since the focus has been shifted from 

the weights (primal problem) to the Lagrangian multipliers (dual). In equation 

3.13, αi are the Lagrangian multipliers. The majority of them are zeros and 

those with non-zero values are the support vectors.  

The final decision function for SVMs is D(x) = wTx + b with  

𝑤 =¡𝑎`𝑦`𝑥`	
`

				[3.14] 

In other words, having calculated the Lagrangian multipliers, in order to 

decide the class of a pattern we only need to calculate its inner product from 

some of the vectors, those with positive ai values or in other words: the support 

vectors. 

For non-linear SVM classifiers equation 3.13 is slightly different, in the 

sense that instead of the product of the two vectors, the product is < φ(x), φ(xj) 

> where k(xi,xj) = < φ(x), φ(xj) > is the kernel function mapping the vectors into a 

higher dimension.  

 

3.4.4 Cross-validation 
In order for the classification results to be generalisable, the available 

data points are normally separated into a training and a testing set. When large 

datasets are available the algorithm is usually trained on a percentage of them 
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(ranging between 60-80%) and tested on the rest. The performance is usually 

reduced when the test data are presented to the classification algorithm. The 

disadvantage of these hold-out techniques is that not all available data-points 

are used for training. This problem is particularly important when small datasets 

are considered and using all of the available sample is highly desirable. Cross-

validation aims to use all available samples and evaluate the model’s 

performance through repeated resampling (265).  

Numerous techniques exist for cross-validation and these can be 

exhaustive or non-exhaustive. An example of exhaustive cross-validation is 

“leave-p-out” cross-validation whereby p observations are used for testing and 

the classifier is trained on the remaining ones; subsequently it is tested on the 

remaining p. This approach runs for every possible partitioning of the data 

hence it can be computationally expensive depending on the available features 

and data-points. A special case of leave-p-out cross validation is leave-one-out 

cross-validation (LOOCV) whereby a single observation is left out in every 

iteration. For every iteration, the mean square error in classification of the 

testing sample (s) is measured. The performance of the classifier is calculated 

as the mean performance over all iterations (265). 

An example of a non-exhaustive method is k-fold cross-validation where 

the data points are separated in k-folds and in every iteration, one fold is kept 

for testing and the rest for training. In all cases, the average performance is 

reported and is indicative of the generalisability of the model. This method is 

less computationally expensive than exhaustive methods examining all possible 

partitions. It has been shown that using LOOCV reduces bias, however k-fold 

has been shown to have less variance (266). 

It needs to be noted that as the sample size decreases the ‘curse of 

dimensionality’ might lead to underestimation of the generalisation error when 

cross-validation is used (267). 

 

3.4.5 Machine learning and MR brain imaging 
Classification based on features extracted from MRI images is used at 

an increasing rate in studies investigating conditions such as: mild cognitive 

impairment and Alzheimer’s, (246, 249, 268), brain tumors (269), Parkinson’s 

(270), mental disorders (271) and mild traumatic brain injury (272).  
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Structural MRI is by far the most thoroughly examined modality when 

attempting to detect patterns of difference between examined groups and 

perform classification of subjects into a certain class. The majority of studies 

looking into patient classification using structural MR images, seek to identify 

regions leading to optimal class-separation, hence the initial feature vector 

comprises all the image voxels. When machine learning approaches are used 

to detect differences at a voxel-wise level, it is essential that the images are 

registered to a common space as is the case with voxel-based morphometry 

since every voxel is examined individually in terms of its classification power. 

Only a few studies have evaluated features from MRI modalities outside 

of structural imaging, such as resting state fMRI, DSC-MRI and diffusion 

imaging (249, 269). In terms of ASL only two studies have incorporated single-

PLD ASL-derived metrics and these were limited to values extracted from the 

CBF maps (273, 274). One of the most popular classifiers used in such studies 

is SVM due to its competitive advantages such as good generalisation, stability 

and most importantly good performance in small datasets. A review from 2012 

nicely summarises the use of SVM classifiers in neurological and psychiatric 

disorders for classification, prediction of conversion to un-healthy state and 

response to treatment (275). 

In Alzheimer’s disease, classification and feature selection based on 

structural MRI images is highly popular and multiple algorithms have been 

explored (249, 268). The popularity of such methods led to a global challenge 

for classification of Alzheimer’s using information from T1-weighted structural 

MRI scans (CADDementia 2015 challenge - https://caddementia.grand-

challenge.org/).  

Currently there is no published study looking into classification of T2DM 

patients using MRI data. This could be due to multiple reasons. First of all, 

diabetes is not considered to be a neurological disease, but rather a disease 

with several neurological complications, which are not present in every patient. 

In Alzheimer’s disease, structural and functional changes are prominent and 

consistently seen in the brain. For this reason, structural scans with high 

resolution are heavily used for feature extraction and classification. In T2DM 

though, the pattern is more subtle and depending on the disease stage, 

neurological complications might not be present. The disease’s indistinct 
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pattern is a hindering factor to using such techniques, since it is difficult to 

capture the disease’s spectrum in the typically small samples used for training. 

Additionally, diabetes patients can present with a wide range of microvascular 

complications, which can have their own distinct neurological pattern such as 

retinopathy and neuropathy. Diabetes might be well controlled or non-well 

controlled, the subjects might or might not be on insulin. All these factors 

contribute to complicating the classification process, since the disease’s 

spectrum is broad and the structural abnormalities may or may not exist. 

With the majority of research to-date being focused on using structural 

scans for brain MRI based classification, it does not come as a surprise that the 

neuroimaging field in T2DM is not rife with papers attempting classification of 

T2DM vs healthy controls. 

 

3.5 Theory Summary 
In this, and the previous chapters, the theoretical background of the MR 

imaging modalities used in this study was presented, along with the brain image 

processing and machine learning approaches chosen to analyse the available 

datasets. The condition under investigation, T2DM, and the relevant 

neuroimaging findings have also been presented. ASL was discussed in detail 

and QUASAR ASL, the core modality in this project used for perfusion imaging, 

was introduced. The described brain image processing techniques ranged from 

brain extraction, segmentation and registration to VBM. Finally, the triplet of 

feature extraction, feature selection and classification was introduced and the 

theory of the classifier used in this project, SVM, was discussed. 
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Chapter 4: 
Retrospective cohort - MR protocol - Utilised 

software 
 

The aim of this PhD thesis was to provide a deep insight into the 

changes occurring in the brain of type-2 diabetes patients and in subjects with 

pre-diabetes. The key imaging modality was QUASAR ASL, used for perfusion 

quantification. At the same anatomical level where QUASAR was acquired, T1- 

and T2-weighted scans were conducted to shed light onto structural 

abnormalities. DW images were acquired as a means to detect potential 

changes in the diffusivity of water molecules. A TOF-MRA scan was acquired to 

delineate the whole cerebral vasculature of the subjects and finally PC-MRA 

was used to determine the velocity of the inflowing blood at the level of the 

carotids. The approximate spatial coverage of the considered MRI techniques is 

as in figure 4.1. 

 
Figure 4.1: Approximate anatomical coverage of the utilised MRI protocol 

QUASAR	coverage	
	
MPRAGE,	FLAIR,	
DWI	coverage	
	
TOF-MRA	coverage	
	
PC-MRA	coverage	
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4.1 Available cohort 

Data from 45 subjects (table 4.1) were collected in 2011 as part of the 

“Magnetic Resonance characterisation of Cerebrovascular Disease in type-2 

Diabetes” study. The participants belonged to one of the following groups: 

healthy individuals; individuals with IGT; and T2DM patients who were 

neurologically asymptomatic. Individuals having suffered stroke or other acute 

neurological conditions were excluded from the study. Ethical approval was 

obtained by the NHS South Sheffield Research Ethics Committee (REC 

reference number 06/Q2305/57). All subjects provided written, informed 

consent. The analysis, storage and management of the data was in line with 

this ethical approval. Data were kept at all times in STH and University of 

Sheffield premises and equipment, all files were anonymised before processing. 

 
Table 4.1: Details of the retrospective cohort 

 HV IGT T2DM 

N 16 12 17 

Age (y) 50.0±12.0 54.8±5.3 55.6±12.5 

sex 8♀  8 ♂ 5♀  7 ♂ 8♀  9 ♂ 

BMI (kg/m2) 26.0±34.7 32.3±3.2 31.3±3.7 

Hypertension 
(subjects) 

4 6 7 

Diabetes 
duration (y) 

N/A N/A 10.0±4.4  

HbA1c (%) - - 9.5±1.8 

Microvascular 
complications 

- - 5 neuropathy 

3 retinopathy 

1 nephropathy 

insulin - - 4 

Smoking history 3 ex-smokers 3 ex- 3 current 7 ex – 2 current 

 

 

The sample size for the present study was quite small, hence conclusions 

drawn from the subsequent analysis should be interpreted with caution. This is 
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a preliminary study which will be used as a pilot study to examine subtle 

changes occurring in subjects with pre-diabetes and T2DM without neurological 

or cardiovascular complications. The groups were age matched (p = 0.2), 

however the HV group was on average younger (but not significantly). 

Additionally, the age range was quite large, hence some of the effects that 

might be observed could be attributed to age differences. The ultimate goal of 

this study is to use the pilot results in a larger study population to examine 

whether the observed effects generalise to the T2DM and pre-diabetes 

population. 
	
4.2 MR Imaging Protocol 

Imaging was performed at 3T (Achieva 3T, software version 2.1.3.5, 

Philips, Healthcare, Best, NL). Radiofrequency transmission utilised the in-built 

body resonator for all subjects. Radiofrequency reception used an 8-channel 

localised head coil enabling sensitivity encoding (SENSE) methodology when 

appropriate. The magnet gradient system (dual mode Quasar, Philips) had a 

maximum peak amplitude of 80 mT/ m with a slew rate of 100 mT/ m/ ms. The 

superconducting magnet had a 0% liquid helium cryogen boil-off rate. Data 

acquisition was conducted in 2010, five years prior to the commencement of the 

PhD resulting in the present thesis. 

Details of the sequences acquired in the imaging protocol, the reasons 

why they were acquired (i.e. key project contribution) and the methods used to 

analyse those images are provided below: 

 

4.2.1 QUASAR ASL 
 
Key project contribution: Evaluation of multiple perfusion-related parameters. 

Following pilot scans for localization of intracranial anatomy, five 

QUASAR ASL scans were acquired for every individual, one before and four 

after they were subjected to an ACZ pharmacological stress test. After the first 

QUASAR scan the participants were intravenously administered with 1g of ACZ 

(Diamox Sodium parenteral, Wyeth laboratories, Maidenhead, UK) through a 

cannulated antecubital vein while they remained in the scanner over 10 

minutes. Following this step, 4 further consecutive QUASAR scans without a 
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time-gap between them were acquired to evaluate the response of the subjects 

to the hemodynamic vasodilating stimulus.  

The characteristics of the QUASAR acquisition were as follows: 

TR/TE/ΔTI/TI1=4000/23/300/40ms, 13 inversion time-points (40 - 3640ms) 

Matrix = 64x64, 7 slices, in-plane resolution=240x240 (mm2), flip angle (FA) = 

35/11.7°, SENSE factor = 2.5, inversion slab=150mm. 84 averages were 

acquired (48 with Venc = 4cm/s, 24 without crusher gradients and 12 low flip 

angle acquisitions), all implemented in a single sequence (interleaved). The 

duration of every scan was 5min 36s.  The gap between slices was 2mm and 

the thickness of every slice was 6mm. The readout was conducted using single-

shot Look-Locker EPI (147). 

 
Analysed with: Software developed in-house using the Matlab platform 

(described in detail in chapter 5) and the QUASIL ASL tool (154) from FSL. 

QUASAR data from the cohort were analysed in detail in chapter 6. 

 

4.2.2 3D- T1 weighted (MPRAGE) 
 
Key project contribution: Evaluation of brain structure, atrophy and volumetric 

changes. 

A high-resolution 3D magnetization prepared rapid gradient echo 

(MPRAGE) scan was acquired with the following characteristics: TR/TE = 

7.2/3.2ms, FOV= 218.5x240x162 mm3, Matrix = 288x288x180, scan duration 

5min 52s and a FA=8o. 

 
Analysed with: Software developed in-house using the Matlab platform, FSL 

(276, 277), SPM (214) and Freesurfer (203). Detailed description and analysis 

results are presented in chapter 7. 

 

4.2.3 FLAIR 
 
Key project contribution: White matter hyperintensities detection and 

quantification of their number and volume. 
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The parameters for the FLAIR acquisition were as follows: 

TR/TE=11s/120ms, inversion time=2.8s, FOV=230x172.5x141.5mm3, 

matrix=512x512, scan duration 4min 24s, slice thickness=5mm, gap =1.5mm, 

22 slices and FA=90o.  

 

Analysed with: Brain lesion toolbox (238) and textural analysis. Detailed 

results can be found in chapter 7. 

 

4.2.4 PC-MRA 
 
Key project contribution: Measurement of flow and velocity at the level of the 

carotids. 

The parameters for this acquisition were as follows: TR/TE=8/4.39ms, 

FOV=220x178.75 mm2, matrix size=256x256, scan duration 1min 53s, slice 

thickness=5mm, max number of cardiac phases=40, FA=10o and 

Venc=120cm/s along the slice encoding direction. One scan was acquired 

before and one after ACZ injection. The acquisition was optimised for the right 

carotid. 

 

Analysed with: Software developed in-house using the Matlab platform. 

Description of the software and analysis results can be found in chapter 7. 

 

4.2.5 DWI 
 
Key project contribution: Local and global quantification of the apparent 

diffusion coefficient. 

The scanning parameters for the DWI scan were: TR/TE=2667.41/88ms, 

FOV=230x230mm2, matrix=256x256, slices=22, scan duration 50.7s, slice 

gap=1mm, slice thickness=5mm, FA=90o, at b-values of 0 and 1000 s/mm2, 

number of diffusion orients: 3. 

 

Analysed with: Software developed in-house using the Matlab platform. 

Results can be found in chapter 7. 
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4.2.6 TOF-MRA 
 
Key project contribution: Evaluation of the cerebral vasculature. 

The parameters of the TOF-MRA scan were set as follows 

TR/TE=25/3.45ms, FOV=210x199.5x111mm3, matrix size= 512x512, 

slices=222, slice thickness=1mm, scan duration 6min 55s and FA=20o.  

 

Analysed with: Software developed in-house using the Matlab platform. Details 

about the software tools and analysis results are in chapter 7. 

 

4.3 Overview of utilised software tools 
Processing took place using a MacPro under OS X (Apple, Inc., 

Cupertino, California, US). Images were exported from the scanner in 

.PAR/.REC  format (Philips Healthcare, Best, NL). 

Software tools were built on the Matlab 2016a platform (The MathWorks, 

Inc., Natick, Massachusetts, US) for all the aforementioned modalities. 

Wherever applicable the results were compared with those obtained with other 

post-processing tools. The Matlab toolboxes used in this thesis were: fuzzy 

logic toolbox, image processing toolbox, statistics and mathematics toolbox and 

LibSVM (278). Additional downloaded functions from third parties found on the 

Matlab file exchange were: fuzzy c-means clustering (279) used for image 

segmentation, SVM-RFE (280) used for feature ranking, registration toolbox 

(281) used for all registration steps implemented in Matlab and Frangi’s 

vesselness filter (282) used for segmentation of the acquired angiogram. 

ITK SNAP (283) was used to generate an affine transformation to be 

used for normalization to the Montreal Neurological Institute (MNI) space. The 

MNI map used was the 2mm smoothed map (91x109x91 voxels) based on 152 

individuals. The transform was implemented using the convert3D tool provided 

as part of the ITK-SNAP toolkit. 

Software tools utilised throughout the thesis apart from Matlab were: 

advanced normalization toolbox (ANTs) (208, 218) for registration and bias field 

correction purposes, ITK-SNAP for registration and FSL, Freesurfer and SPM 

for analysis of the MPRAGE scan. A more detailed description of the specific 

tools used from FSL, Freesurfer and SPM can be found in the associated 
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chapters where they are explained as part of the methodology. For statistical 

comparisons either Matlab or SPSS (IBM Corp. Released 2017. IBM SPSS 

Statistics for Mac, v. 25, Armonk, NY: IBM Corp) were used.	  
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Chapter 5: 
Developments in brain perfusion image 

processing 
	
Abstract 

Cerebral perfusion evaluation using QUASAR ASL has had limited 

clinical uptake due to the technique’s low SNR, image artifacts and non-trivial 

quantification of blood flow. The aim of this part of the study was to improve the 

QUASAR processing pipeline by introducing three modifications: weighted AIF 

assignment, AIF re-evaluation and artifact detection. Additionally, we evaluated 

approaches for PVC using linear regression based on both high and low-

resolution T1-weighted data. Changes were evaluated using the model-free 

QUASAR ASL variant whereby determination of the CBF relies on 

deconvolution of the tissue and arterial signals rather than on fitting the signals 

to well-defined curves. 

In this Chapter, a k-radius AIF weighting method is introduced, where 

AIFs are assigned to every voxel based on a weighted average of neighboring 

AIFs within a sphere of radius k. The AIF re-evaluation step relies on an initial 

CBF calculation used to determine and exclude from the AIF assignment step 

voxels with unrealistic CBF values. A technique based on edge detection on the 

ASL difference images was built for artifact detection. Simulated and in-vivo 

data (twelve healthy subjects) were used to evaluate the methods. CBF from 

the in-vivo data was compared to values obtained using available QUASAR 

processing software. Additionally, CBF values were calculated by creating 

pseudo-single time-point pulsed ASL experiments for every time-point to 

evaluate inter-subject variability in the timing of the perfusion peak.  

Simulations indicated that k-radius AIF weighting results in accurate GM 

CBF estimates with lower mean absolute percentage errors for voxels with high 

GM content, especially in the presence of hyper/hypo intense regions which are 

typically present in pathology (e.g. stroke). The QUASAR artifact detection 

algorithm effectively identified a water-fat shift artifact in simulated and in-vivo 

data. PV maps generated based on a combination of PV estimates from high 
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and low-resolution data demonstrated good performance in terms of variance 

and structural similarity to QUASAR-T1 maps. The CBF values obtained for the 

examined subjects were physiologically realistic when using the developed 

pipeline, which also demonstrated a lower inter-subject coefficient of variation in 

GM CBF estimation when compared to existing analysis software. Variation in 

the timing of the perfusion peak was observed in this healthy cohort, suggesting 

that due to transit time variability, in general, multi-PLD approaches might be 

beneficial for accurate perfusion quantification.  

The novel model-free QUASAR processing pipeline described in this 

chapter produced realistic perfusion values with reduced variance and provided 

an effective mechanism for artifact detection. These improvements can be 

targeted toward enhancing the applicability of the QUASAR method to clinical 

studies. 

 

5.1 Introduction 
Cerebral perfusion relates to nutrient and oxygen delivery to brain tissue 

by the bloodstream and can be measured using a medical imaging technique 

such as ASL MRI (82). Multiple ASL variants have been devised and can be 

grouped in different categories using criteria such as the labeling technique, the 

read-out method and the PLD. In 2015 the ISMRM Perfusion Study Group 

recommended the use of a particular ASL implementation, that of pCASL (284) 

with a single PLD, along with the preferred readout schemes (108). The 

advantages of this method included relatively high SNR, simplicity in 

implementation and sequence availability. 

One disadvantage of the proposed pCASL scheme is its sensitivity to 

ATT variations. ATT is an important factor to be considered when CBF is 

quantified, since in aging or neurodegenerative conditions, an increase in ATT 

can result in erroneous perfusion estimates when single-PLD approaches are 

used (121, 122). A promising multi-PLD approach termed time-encoded ASL is 

based on adding multiple labeling/control sub-boli within the previously ‘empty’ 

PLD of pCASL. The distribution of these boli is based on a Hadamard-encoded 

matrix (150, 285). One of the early multi-time-point ASL techniques that 

overcame the single-PLD limitation by acquiring images at multiple inversion 

times (TI) is QUASAR ASL. This pulsed ASL technique, combines vascular 
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signal crusher gradients with a Look-Locker EPI read-out strategy (146, 155). 

Its reproducibility has been validated in a multi-center study (161). 

 The Look-Locker read-out involves small flip angle excitations allowing 

for rapid read-out in multiple time-points (147). Sampling of the recovering 

magnetization at multiple time-points (13 for the regular QUASAR 

implementation) allows for signals rather than single data-points to be acquired. 

Hence the term ‘signal’ in the rest of the chapter, when used, will refer to the 

evolution of the measurement under consideration (e.g. tissue signal) during the 

acquired 13 time-points at a voxel-wise level.  Vascular crushing is achieved by 

applying gradients of the same magnitude and inverse polarity to suppress 

signal from fast moving spins exceeding a certain velocity threshold.  

Perfusion evaluation using QUASAR ASL can be a cumbersome task 

due to the technique’s relatively low SNR and non-trivial quantification. The goal 

of this part of the thesis was to improve the QUASAR model-free processing 

pipeline by introducing and evaluating a number of modifications. Several parts 

within the pipeline lend themselves to optimization. We have focused on the AIF 

assignment strategy, detection of a water-shift artifact and partial volume 

correction. A strategic choice was made to avoid techniques that might 

introduce bias in the processing by means of model fitting and introduction of 

normality assumptions, since the pipeline is to be used in a non-healthy cohort. 

One of the advantages of QUASAR is that based on the difference signal 

between non-crushed and crushed acquisitions, multiple local AIFs can be 

identified. AIFs are typically determined in voxels with aBV exceeding 1.2%. 

Alternative approaches for AIF determination are their statistical reduction using 

factor analysis of dynamic studies (FADS) (163) and de-noising by fitting the 

arterial signal to a gamma-variate function (154). The common characteristic of 

these methods is that a single input function is assigned to every voxel by 

means of its closest neighboring AIF. A weighted approach accounting for noisy 

AIFs and the possibility of multiple inputs from more than one source has not 

yet been evaluated. Such an approach could be of great importance where, for 

example, disease-related topological changes in blood supply, for example 

Moya-Moya disease (286), may exist. 

Caveats associated with QUASAR ASL often relate to low SNR (a 

generalised ASL issue), a relatively large voxel size leading to PVE (240) and 
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acquisition-related artifacts. One such artifact that has been alluded to in 

several studies has been described as resulting from a ‘water-fat’ interface shift 

(106, 168). This effect can be cancelled during control-labeled subtraction; 

however, potential imperfect anatomical alignment between the experiments 

may result in non-physiological hyper- or hypo- intense regions in calculated 

CBF maps. Currently the mitigation technique to avoid potential impact of this is 

to exclude hyper-intense voxels from the analysis following CBF quantification. 

However, this approach does not ensure artifactual voxels are not used to 

determine AIFs and they may hence influence CBF values in neighboring 

voxels. 

Choosing a technique for PVC for the QUASAR data requires a decision 

over whether the PV estimates will be extracted from a high resolution T1-

weighted scan or directly from ASL data. The first approach requires 

segmentation of a high-resolution T1 scan, down-sampling and registration to 

the ASL data (240, 241). Considerations pertinent to this approach are the 

imperfect registration and the difference in point spread functions between the 

different scans (242). An alternative approach, FRASIER (FRActional Signal 

mapping from InvErsion Recovery), seeks to determine the tissue content of 

every voxel based on the QUASAR data. This is feasible by expressing the 

signal in every voxel as a linear combination of the signals arising from three 

different compartments- GM, WM and CSF (243, 244). The advantage of this 

technique is that it does not require registration; however it utilises low SNR 

data and hence it is susceptible to noise. When opting for a technique based on 

a high resolution scan, two of the most popular approaches are linear 

regression (240) and an approach based on spatially adaptive priors used in a 

Bayesian context (241).  

The developed pipeline described in detail in this chapter was 

constructed with a view to improving the model-free CBF quantification 

procedure. This new pipeline was validated using both simulated and in-vivo 

data and was compared with existing processing software.  
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5.2 Post-acquisition QUASAR ASL processing strategy 
 
5.2.1 Noisy scan rejection 

The acquired ASL data can be separated into six groups: high FA 

crushed control (24); high FA crushed labelled (24); high FA non-crushed 

control (12); high FA non-crushed labelled (12); low FA control (6); and low FA 

labelled (6). For every acquisition in each group, 13 time-points were acquired. 

In order to account for excessive motion, an algorithm for rejection of pairs of 

control-labelled images evidencing excessive motion was implemented 

following Knutsson et al. (163). Labelled images were subtracted from their 

controls and a mean image was generated. An artifact level was calculated for 

every pair of images by measuring the absolute difference from the mean 

image and summing up the values for every voxel. If the result exceeded the 

mean artifact level by more than one standard deviation, then the pair of images 

was rejected. Average images were generated for every acquisition, for every 

slice and every time-point.  

For the generation of brain masks, every slice’s histogram was 

thresholded using Otsu thresholding (287) and minor morphological operations 

(dilation, image filling) were carried out. The mask was manually corrected 

when not visually optimal. Following brain masking, a registration step was 

added to the processing pipeline to account for subject motion between the 

numerous QUASAR acquisitions. Every 2D image was registered using rigid 

registration to the first non-crushed control acquisition of each experiment using 

the Matlab registration function part of the Image Processing Toolbox. This 

procedure took place for every time-point. New average images were generated 

after registration and were used for the subsequent analysis.  

 

5.2.2 Tissue relaxation and magnetization quantification 
Effective values for tissue relaxation time, T1t (T1t,eff) and tissue 

equilibrium magnetization,  M0t (M0teff) were calculated by means of fitting to a 

saturation recovery curve (equation 5.1). The fitting procedure takes place for 

both the low (φn,low) and high (φn,high) flip angle data (155).  
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𝑆(𝑡) = 𝑀0𝑡jËË Ì1 − 𝐴 ∗ 𝑒
& Z
+NZ,jËËÍ		[5.1] 

The method used for the fitting was mean square error fit. The effective 

values are lower than the actual T1t and M0t, an effect attributed to signal 

reduction due to the application of small flip angle excitations as part of the 

Look-Locker EPI acquisition. The connection between the effective and actual 

values is as in equations 5.2 & 5.3. 

𝑀0𝑡jËË = lim
a→W

𝑀:[𝑛] = 𝑀0𝑡 ∗
L1 − 𝑒
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				[5.2]		 

1
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=
1
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−
ln(cos(𝜑))

𝛥𝑇𝐼
						[5.3] 

Where φ is the actual flip angle and ΔΤΙ is the time between excitations. 

 The true relaxation time of the tissue is not dependent on the applied flip 

angle, hence an angle correction factor (g) incorporating the effects of field 

inhomogeneities can be calculated by minimizing the expression in equation 5.4 

(160) which is based on minimizing the difference between the true relaxation 

times calculated for both applied flip angles based on equation 5.3.  

1
𝑇1𝑡jËË�gÒ

−
1

𝑇1𝑡jËËÓ`�Ó	
+ ln Ì

𝑐𝑜𝑠(𝜑a�gÒ 	∗ 𝑔)
𝑐𝑜𝑠s𝜑aÓ`�Ó 		∗ 𝑔t

Í			[5.4] 

In order to minimize this expression, g values from 0 to 1 with a step of 

0.01 were evaluated and the one minimizing the equation was selected. When 

there was more than one such value, the average was taken into account. 

Having determined the angle correction factor at a voxel-wise level, it was 

feasible to calculate the actual values (accounting for the actual and not the 

nominal flip angle) for T1t and M0t by using equations 5.2 & 5.3.  

5.2.3 Arterial transit time calculation  
Arterial transit time can be evaluated by measuring the time interval 
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during which the tracer traveled from the site of the arterial input to the 

microvasculature. This calculation is feasible by identifying the arrival time of 

the signal in the tissue (τm) and subtracting from it the time of arrival in the 

arterial input (τα). The arterial and tissue signals were defined at a voxel-wise 

level based on the 13 inversion time-points. One suggested method to quantify 

τm and τα is to identify the rising edge of the signals by using Canny edge 

detection (155). The method applies convolution of the initial signal (tissue or 

arterial) with a Gaussian function to account for the noisy high frequency 

components. Subsequently Canny filter, which is capable of localizing the 

position of edges with great accuracy is used (288).  

In the present thesis localization of the rising edge of the tissue and 

arterial signals was conducted as follows: The signals were linearly 

interpolated. The peaks of the signals were identified and moving backwards in 

time the time-point at which the 30% of the maximum value of the signal was 

reached was determined. This procedure was implemented for every image 

voxel and voxel-wise estimates of τm and τα were extracted. Arterial Transit 

Time (ATT) was calculated using: ATT = τm - τα. 

 

5.2.4 Arterial blood volume and arterial input function calculation 
Arterial blood volume is modelled as the area underneath the curve 

formed by the subtraction of the crushed (ΔΜcr) from the non-crushed (ΔΜncr) 

signal, multiplied with an exponential factor to account for T1t relaxation of the 

blood and divided by the theoretical bolus area (equation 5.5).  

aBV = ∫ s×ØÙÚÛ(Ü)&×ØÚÛ(Ü)tÝ
Þ

ßàáâÜã
äã

E∗åBæ∗çè∗æ∗ªéêÙ ë
							[5.5],   

• T1a Longitudinal arterial blood relaxation time   

• τb temporal length of the bolus  

• α inversion efficiency and  

n =
floor(τ¥ − τî)

ΔΤΙ
	[5.6] 
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The term cosnφ is used to account for incomplete renewal of the arterial 

blood between different acquisitions (289) and n is calculated based on 

equation 5.6. M0α can either be measured in a voxel filled with blood usually in 

the sagittal sinus (290), or it can be mapped as follows: M0α = M0t / λ, where λ 

is the blood-brain partition coefficient. 

Given the arterial blood volume (aBV), voxels with aBV of more than 

1.2% (as suggested by Petersen et al. (155)) can be used as candidate voxels 

to calculate regional AIFs by using equation 5.7. In published QUASAR papers, 

an AIF is assigned to every tissue voxel by means of its closest rAIF voxel. If 

more than one AIF is at the same distance then their average is used (155). 

𝐴𝐼𝐹(𝑡) =
s𝛥𝑀aòe(𝑡) − 𝛥𝛭òe(𝑡)t𝑒

Z
+Nd

𝑎𝐵𝑉
∗ 𝑒&

Zó(oô&	oõ)
+Nd 	[5.7] 

Another suggested approach relying on a model-based post-processing 

identifies candidate voxels using the same 1.2% threshold by fitting the arterial 

signal with a gamma variate function and choosing the voxels for which the 

peak amplitude of the fitted signal scaled by M0α exceeds 1.2% (154) or by 

using a statistical method (FADS) for reduction of the available AIFs (106). 

k-radius AIF weighting 
Typically, the closest AIF (or average if more than one) is assigned to 

every voxel. In this chapter, a novel method for AIF assignment termed, ‘k-

radius AIF weighting’, is introduced. The rationale behind this method is that 

AIFs are assigned to every voxel using a weighted average of a varying number 

of neighboring candidate AIFs situated within a certain radius of the voxel of 

interest (figure 5.1). The distances (radii) considered for each AIF component 

were as follows: the reference distance (d) was that of the closest neighboring 

AIF(s) (k = 1) following the conventional QUASAR AIF assignment approach. 

For increasing k, the considered radius was calculated as in equation 5.8. 

Hence for k = 1, this approach is the same as for the regular QUASAR 

processing. 

𝑟𝑎𝑑(𝑘) = 𝑑 + (𝑘 − 1) ∗ 1.5									[5.8] 

where k = 1…N and rad(N) is the maximum radius considered which in the 

following simulations was N=6. The weight (w) assigned to each of the 
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component AIFs was given by wk = 1 / rad(k)3, and thus depended on their 

distance from the voxel of interest within the sphere of radius rad(k). The AIF 

assigned to each voxel was a weighted average of the neighbor component 

AIFs (equation 5.9). All distances were calculated between the voxel centers 

and rad(k) distance was measured in voxels rather than in mm.   

𝐴𝐼𝐹(𝑡) =
∑ (𝑤) ∗ ∑ 𝐴𝐼𝐹Ç)

ö())
Ç«N

÷
)«N 	
∑ (𝑤) ∗ 𝑀(𝑘)÷
)«N )

											[5.9] 

Where M(k) is the number of identified AIFs at each considered radius, k. 

The resulting CBF was then quantified using a model-free approach 

(155). The deconvolution method used was singular value decomposition with 

an oscillatory index of 0.15 (oSVD) and was based on the implementation by 

Ahlgren et al.  (291). 

 

Figure 5.1: AIF weighting approach. The candidate AIFs situated within a sphere of a certain 
radius k are assigned a weight based on their distance from a voxel of interest. The procedure 
takes place in 3D but 2D slices are shown for simplicity. 

AIF re-evaluation 
Following CBF quantification it was noticed in some cases that several 

voxels had non-physiological CBF values, either extremely small positive (CBF 

< 5 ml/ 100g/ min) or negative, or excessively large (CBF > 150 ml/ 100g/ min). 

To account for the fact that these potentially noisy voxels might have been used 

as voxels for AIF determination, an ‘AIF re-evaluation’ step was added to the 
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pipeline. During this step, the voxels with non-physiological values that were 

used as for AIF determination were identified and the whole AIF assignment 

and CBF quantification step was re-run without them. This procedure was run a 

single time to avoid excessive regularization but has the potential to be applied 

numerous times.  

Following re-evaluation, voxels exceeding the chosen CBF thresholds 

were masked out in the end of the procedure. It is worth mentioning that mean 

normal values for GM CBF and WM CBF are considered 60 ml/ 100g/ min and 

20 ml/ 100g/ min respectively (241). Currently there is no mitigation technique 

for this effect. The typical approach is to threshold the final calculated CBF map 

with a threshold between 120-150 ml/ 100g/ min; this approach does not 

address the fact that even for the typical QUASAR quantification with k = 1, 

these noisy AIFs might have been used for AIF assignment thus impacting 

directly the whole area around them. Potential inclusion of voxels with 

artifactually high CBF values in perfusion quantification would imply over-

estimation of both GM and WM CBF values. Especially in a small cohort such 

as the one utilized in the present study this effect could directly impact on the 

drawn conclusion following estimation of perfusion in every considered group. 

Hence, it is of utmost importance to account for these artefactual voxels as 

early as possible in the analysis pipeline to reassure that they do not influence 

neither their local neighborhood nor the final estimated CBF values. 

 
5.2.5 Residue function and CBF estimation 

The residue function (R) and from this the CBF (f) can be calculated by 

means of deconvolution. SVD is an algebraic solution to the deconvolution 

problem, which can be used since the signal is discrete, so the deconvolution 

problem is reduced to a matrix problem (equation 5.10). In matrix formation, ΔM 

(which when both crushed and non-crushed data are acquired is typically the 

crushed acquisition - ΔΜcr) and the residue function acquire the form of vectors 

having as elements their values for every time-point. 

𝚫𝚳 = 𝐟 ∗ 𝐀𝐈𝐅 ∗ 𝐑			[5.10] 
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With the AIF matrix comprising weighted elements as in equation 5.11, in 

order to reduce noise (292).  

𝑎`,Ç = ÿ
1
6 ∗ (𝛥𝑇𝐼(𝐴𝐼𝐹(𝑡`&Ç&N) + 4𝐴𝐼𝐹s𝑡`&Çt + 𝐴𝐼𝐹(𝑡`&ÇóN	))	, 0 ≤ 𝑗 ≤ 𝑖

0		,																																																																																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	[5.11] 

A block-circulant matrix can be constructed for every voxel to account for 

potential lag of the arterial signal compared to the tissue signal and can be used 

for circular SVD deconvolution. The square matrix dimensions (L*L) must be at 

least double the size of the initial AIF matrix (in order to meet the criteria of the 

Nyquist limit). The elements of the new matrix (B) are equal to the elements of 

the initial AIF matrix for j < I; for j > i the matrix lines are shifted one position to 

the right each time, resulting in a new matrix B (292). In order to calculate the 

residue function, the inverse of the B matrix needs to be found. If the B matrix is 

non-singular, there exists an SVD decomposition of the matrix (B = U*S*VT). If 

the matrix is singular, then the SVD algorithm returns the closest decomposition 

possible in a least-square sense (293). In SVD it is a common approach to 

threshold the diagonal elements of the W matrix (W = 1/S) to account for high 

frequency noise. This truncation is thought to underestimate the calculated CBF 

result (153). The scaled residue function can be calculated as follows (equation 

5.12): 

𝐑 = 	𝐕 ∗𝐖 ∗ 𝐔𝐓 ∗ 𝚫𝚳𝐳𝐩 [5.12]   

where ΔΜzp is the ΔΜ signal zero-padded to length L.                        

Circular deconvolution can be modified to account for the excessive 

oscillations, attributed to high frequency noise by using an oscillatory index (OI) 

(equation 5.13) (292).  

OI =
1
L
∗

1
max	(R)

∗¡ |	R(k) − 2R(k− 1) + R(k− 2)|	[5.13]
-&N

¯«E
 

For the present implementation, a block-circulant matrix was constructed 

for every voxel. The matrix had double the size of the AIF matrix moving from 

an initial size of 13*13 (for the 13 time-points comprising the AIF discrete signal) 
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to a size of 26*26. The tissue signal was zero-padded at a length of N=26. To 

account for excessive oscillations, a threshold was used for the eigenvalues of 

the diagonal matrix (S) emerging from the SVD decomposition. The starting 

value for the threshold was 20% of the maximum eigenvalue. Any value lower 

than that was zeroed. The OI was calculated again after zeroing; if it was higher 

than OI = 0.15 then the threshold value was increased by 1%. This step was 

repeated until the calculated OI had a value below the permitted 0.15.  

5.2.6 Artifact detection 
In several QUASAR ASL images the presence of an artifact was noticed 

as in figure 5.2A. A similar artifact has been reported in the literature as a 

‘chemical water-fat’ shift artifact (106). The existence of such an artifact can be 

attributed to absence of fat suppression pulses in the QUASAR pulse 

sequence. Potential inclusion of such pulses would require a longer and more 

complicated preparation scheme with an increased inversion time, which would 

end up in further attenuation of the signal and SNR reduction. Additionally, a 

separate background suppression scheme as instructed by the ASL consortium 

is not applied in QUASAR, however, the applied low flip angles compensate for 

this effect. 

By examining the QUASAR .PAR/REC files there appears to be a 

displacement between the water and the fat of 12-13 pixels in the phase 

encoding direction. In QUASAR ASL background suppression and fat 

suppression pulses are not used, to reduce the complexity of the acquisitions. 

The absence of such pulses is a potential confound to the artifact. A method 

described in QUASAR literature to compensate for its presence, is to exclude 

from the analysis voxels with values more than three times the average value of 

CBF (106, 168). However, this approach does not correct for the fact that some 

of these voxels might have been used for the calculation of regional AIFs.  

A new approach is presented in this chapter to compensate for the 

artifact. An algorithm was built to localize its position (figure 5.2). Initially, the 

crushed data were subtracted from the non-crushed data, giving rise to images 

whereby the arterial signal is brightened. The gradient magnitude image which 

highlights the regions with a sudden change in the intensity pattern of the 

resultant difference image was calculated and multiplied with the initial ΔΜncr-
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ΔΜcr image to amplify the effect of the edges. The result was squared for further 

effect amplification. This manipulation resulted in the artifactual voxels being 

brighter than the non-artifactual ones (figure 5.2A). As a result, a threshold 

could be used in the image to separate the artifact (figure 5.2B). This approach 

was run for every time-point, hence the application of the algorithm resulted in 

13 separate masks (one per time-point).  

It was noticed that some of the voxels were not influenced by the artifact 

in every time-point so the masks differed. The developed technique used a 

weighting approach allowing a maximum of three time-points to be influenced 

by the artifact. Weighting also accounted for the arterial bolus arrival (voxels 

exceeding the defined threshold at the 2nd and 3rd time-points when the 

intravascular signal will be at its peak had to be identified in at least 7 time-

points as being artifactual) and attenuation of the labeling effect (at the 13th 

time-point the inverted magnetization is expected to be fully recovered so all 

voxels exceeding the threshold at this time-point were considered artefactual 

even if they were not picked by the algorithm in earlier time-points). The 

resultant masks for every time-point, were weighted and summed up giving rise 

to an image as in figure 5.2C (middle). Voxels with a lower resultant weight 

were more likely to be artifactual. For their exclusion, a threshold was applied 

yielding an inclusive mask to define non-artifactual voxels. This mask was 

applied to every time-point and to both crushed and non-crushed data. The 

optimal threshold used was based on the results obtained by simulations (see 

section 5.2.10 case 3). Optimal thresholds ranged from a value of 3 (more 

relaxed criterion) to a value of 9 (stricter criterion). 
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Figure 5.2: Artifact detection and rejection methodology. (A) The artifact is apparent in the 
D=ΔΜncr-ΔΜcr difference image. D is multiplied by its gradient magnitude and then squared.  A 
threshold identifies voxels with excessive values.  (B) This procedure runs for all 13 time-points 
in every slice. Artifactual voxels in every iteration are assigned a value of 0. (C) After all 13 time-
points are considered for each slice, the masks are summed. A voxel which never exceeds the 
threshold, is allocated a value of 13; a voxel identified as artifactual each time has a value of 
zero. At this point a weighting is implemented followed by thresholding. 

	
5.2.7 Partial Volume Correction 

The main cause of partial volume effects in ASL is the large voxel size 

used to account for the inherently low SNR of the technique. The extent of the 

problem can be grasped if one compares the voxel of a high-resolution T1 scan 

and an ASL voxel (QUASAR in this case) (figure 5.3). An ASL voxel is highly 

unlikely to contain only one tissue type and more likely to contain a combination 

of GM/WM, GM/CSF, or GM/WM/CSF. If the issue is left unaddressed then GM 

CBF might be greatly underestimated. In this study, the primary utilised PVC 

technique was the Asllani, Borogovac (240). In its regular implementation, this 

approach makes use of PV estimates extracted from a high resolution T1-scan 

to correct for PVE.  
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Figure 5.3: Partial volume effects in one Quasar voxel with respect to a 256*256 structural 
image. A QUASAR voxel can fit 112 voxels emerging from a high-resolution structural scan. For 
simplicity voxels emerging from the structural are depicted free of PVE. 

The linear regression method works as follows: The ΔMcr signal can be 

modelled as having only two components: a component attributed to GM and a 

component attributed to WM, omitting inclusion of the arterial vascular signal. 

The contribution of CSF was considered as negligible (241, 243). PVC was 

implemented to the CBF maps (equation 5.14). In its original implementation 

the method was implemented in the ΔΜ data, however it has been shown that it 

can be directly implemented in the final CBF images (243).  

CBF0é»Ý1 = PV3å ∗ CBF3å + PV4å ∗ CBF4å	[5.14] 

In PVC with linear regression, tissue specific CBF is considered to be 

stable in a certain pixel window. In matrix formation the expression takes the 

form: 

𝐂𝐁𝐅𝐧𝐞𝐢_𝐯𝐨𝐱𝐞𝐥 = 𝐏𝐕𝐧𝐞𝐢_𝐭𝐢𝐬𝐬𝐮𝐞 ∗ 𝐂𝐁𝐅𝐭𝐢𝐬𝐬𝐮𝐞	[5.15] 

 
Where CBFnei_voxel is a vector comprised the CBF values in the defined 

kernel, the PVnei_tissue matrix has a size of 2*nei (nei is the number of 

neighbouring voxels, 2 tissue types) and comprises the tissue specific PV 

values for every voxel and CBFtissue is a vector containing CBFGM and CBFWM, 

stable quantities inside this kernel. PV values range from 0 to 1 and indicate the 



	 96	

volume of the voxel covered by a certain tissue type (1 for 100%). By 

determining the pseudo-inverse matrix of PVnei_tissue it is feasible to calculate 

CBF in the two different tissue types over the neighborhood for which the CBF 

values for the two tissue types are considered as stable (equation 5.16).  

CBFÜ£êêCÝ = sPVºÝ£_Ü£êêCÝD PVºÝ£_Ü£êêCÝt
&NPVºÝ£_Ü£êêCÝD ∗ CBFºÝ£EFGHI 		[5.16] 

 

Ahlgren et al. (243) have compared PVC results based on PV estimates 

extracted from the ASL data (FRASIER) and PV estimates from a 3D T1-

weighted scan. They have shown that the partial volume corrected GM CBF 

map generated based on the high-resolution scan tends to be less 

homogeneous, a factor they attributed to mis-registration between the high and 

the low-resolution scan.  

In this chapter, we have looked into both techniques for PV estimate 

extraction and also evaluated two ‘hybrid’ methods combining both the high and 

the low resolution extracted PV estimates. PVC was implemented directly on 

the CBF maps (240, 243). Overall, four variants were evaluated for the 

determination of the final PV maps. 

For variant 1, partial volume maps were generated from the MPRAGE 

image using SFCM clustering (232). This unsupervised algorithm does not 

require priors and does not make assumptions about the distribution of the T1 

relaxation times. For PVC based on MPRAGE-derived estimates, the adopted 

PVC pipeline comprised:  

1. N4 bias field correction of MPRAGE images. 

2. Identification of overlapping QUASAR and MPRAGE slices, as 

described in Section 5.2.8 (approximately 7 MPRAGE slices 

extracted in the transaxial plane overlap with each QUASAR 

slice). 

3. SFCM clustering (5x5 window) in the stack of T1-weighted data 

with the same anatomical coverage as the QUASAR slices. 

4. For every QUASAR slice, averaging of the respective MPRAGE, 

GM and WM PV maps. 

5. Down-sampling of the averaged PV and MPRAGE-T1 maps to the 

QUASAR spatial resolution. 
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6. 2D registration of the resultant low resolution MPRAGE-T1 to the 

QUASAR anatomical-1/T1 maps using affine transformation with a 

normalized cross-correlation cost function.  

7. Registration of the PV maps to the QUASAR anatomical-T1 maps, 

using the previously generated affine transformation matrix 

(variant 1). 

For the generation of PV maps using the ASL data (variant 2) the 

FRASIER method (243) was used. In this method Gaussian distributions are 

fitted to the QUASAR-derived T1 image histogram and the T1 of GM and WM 

are extracted. In the suggested implementation, due to the difficulty to detect 

the CSF peak in the histogram, a fixed value is used (T1CSF = 4.3s). 

Subsequently the signal in every voxel is expressed as a linear combination of 

the signal attributed to a certain tissue type and the tissue content. Hence, the 

tissue content of every voxel can be determined by solving a least square 

estimation problem (243, 294). 

More specifically, the recorded ASL signal attributed to all components 

can be written as: 

S(t) =¡[fê,£Mêê,£(1 − Ae
& Ü
DNHNN,O

£

)]	[5.17] 

where 

Mêê,£ =
1 − e

×PQ
DNO

1 − cosφe
×PQ
PNS

			[5.18] 

In matrix formation S = X*Fs where Fs is the CBF vector for every tissue 

and X is the signal without it being scaled with the CBF for every tissue. It is, 

hence, feasible to solve for the fractional values as follows using the pseudo-

inverse: Fs = (XTX)-1XTS. 

The third and fourth evaluated PVC variants in this study were hybrid 

methods combining FRASIER and MPRAGE-derived estimates. In the first of 

these two, the FRASIER estimates were used as a reference image for more 

accurate registration of the down-sampled MPRAGE estimates due to their 

similarity in contrast and measured information (variant 3). In the second, a 

mean PV estimate between variant 2 and variant 3 was constructed (variant 4).   
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In all approaches, the concept of the pseudo-inverse matrix instead of 

the inverse was used. The pseudo-inverse is typically used to calculate the best 

solution of a linear system of equations, in a least square sense, in cases where 

the system lacks a solution or when the optimal between multiple solutions 

needs to be determined (by choosing the one with the minimum Euclidean 

norm) (295). 

 

5.2.8 Correction for scan alignment and identification of overlapping 
slices 

The angulation between the slices and the reference axes of the scanner 

was different between the QUASAR and the MPRAGE scans for every subject. 

This misalignment was a result of the QUASAR labelling and acquisition 

strategy. Labelling took place based on the maximum intensity projection of the 

acquired cerebral angiogram so that it would be perpendicular to the flow. 

In order to account for that, the MPRAGE image was rotated into the 

same orientation as the QUASAR scan as a rotation to the reference 

coordinates would require a rotation of the QUASAR scan as well. The latter 

comprises of 7 slices with gaps between them, so interpolation would introduce 

significant re-sampling errors. As a result of rotation, the initial MPRAGE axial 

resolution changed from 288*180 pixels to a patient-specific value. The 

resulting images were resampled to 256*256 in-plane resolution to facilitate the 

PVC step. Downsampling to the 64*64 QUASAR in-plane resolution was 

applied by averaging over 4*4 voxel regions. 

The requirement for automated processing, requires that the equivalent 

anatomical slices to the low-resolution QUASAR slices are identified by an 

algorithm without manual intervention. The developed algorithm chose the 

slices for which the difference in the z-axis (head-foot) values between the two 

scans with respect to the initial coordinates was minimized. Subsequently 

based on these slices, the algorithm identified the overlapping QUASAR and 

MPRAGE slices based on the thickness of QUASAR slices. The anatomical 

slices overlapping spatially with the QUASAR slices were subsequently 

averaged. The similarity between the average slices and the R (1/T1t) QUASAR 

maps was visually assessed. In case the slices were not visually identical an 

offset was added or subtracted from the MPRAGE off-centre distance.  
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5.2.9 Brain-blood partition coefficient (λ) 
Having calculated fractional volume maps, it was possible to account for 

the different values of the brain blood partition coefficient for GM and WM. The 

PV values in every voxel needed to be scaled for the amount of WM and GM 

present to avoid underestimation of the λ value due to the presence of CSF. 

The blood-brain partition coefficient was calculated by equation 5.19. 

𝜆igUj� =
𝑃𝑉Vö

𝑃𝑉Vö + 𝑃𝑉Wö
∗ 𝜆Vö +

𝑃𝑉Wö

𝑃𝑉Vö + 𝑃𝑉Wö
∗ 𝜆Wö	[5.19] 

5.2.10 Simulated data 
Every voxel can be approximated as a simplified system having an AIF 

as an input and the measured magnetization difference signal (ΔM) as an 

output. The system’s response is defined as R(t) = r(t)*m(t), where r(t) is the 

residue function and m(t) is the magnetization relaxation function. This system 

can be described using the general kinetic model (equation 5.20). 

 

ΔΜ(t) = 2M0Ãa ∗ CBF ∗ AIF(t)⨂r(t) ∗ m(t)								[5.20] 

With AIF(t), r(t) and m(t) as described by equations 5.21-5.22. 

 

AIF(t) = Yαe
& Ü
Dàè				, Δt < t < Δt+ τ				[5.21]

0,																		elsewhere
 

		r(t) = e&[\]
Ü
^																	m(t) = e&

Ü
DNHNN 	[5.22] 

 

By substituting AIF(t), r(t) and m(t) in equation 5.20 and solving the 

convolution integral, the crushed simulated signal is modeled as: 

 

ΔΜª_(t) =

⎩
⎪
⎨

⎪
⎧

																																0																																													,					t < τæ__
2aM0ÃCBFe&Ü∗dáeese&çáÛÛ×d − e&Ü×dt

ΔR
	,					τæ__ < t < τæ__ + τÃ	

2aM0ÃCBFe&Ü∗dáeese&çáÛÛ×d − e&(çèóçáÛÛ)×dt
ΔR

,				t > τæ__ + τÃ

	[5.23] 
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Where M0b is the blood equilibrium magnetization, α is the inversion 

efficiency, Ræ¶¶ =
N
DNÜ

+ [\]
^

, ΔR = N
DNÃ

− Ræ¶¶ , T1t and T1b are the T1 of the 

tissue and blood respectively, λ is the blood-brain partition coefficient, τarr is the 

bolus arrival time and τb is the bolus duration. Values used in the simulations 

were: λGM = 0.98, λWM = 0.82, CBFGM = 60 ml/ 100g/ min, CBFWM = 20 ml/ 100g/ 

min, T1GM = 1.3s, T1WM = 0.83s, T1CSF = 4s, T1b = 1.65s, τb = 0.65s, α = 0.95, τarr 

= 0.6s and ΔΤΙ = 300ms (241, 296). 

M0a and aBV maps were generated from the in-vivo data (equations 5.1 

and 5.5). Masks for the whole brain, gray matter, white matter (WM) and 

cerebrospinal fluid (CSF) were generated from the same individual, based on 

segmentation of its MPRAGE scan (variant 1; 5.2.7 section).  

The non-crushed signal (ΔΜncr) was simulated as the summation of the 

crushed signal considered to emerge solely from GM, WM and CSF and the 

arterial signal (ΔΜart) (equations 5.24-5.25).  

 

ΔΜæ_Ü(t) = 2 ∗M0æ ∗ AIF(t) ∗ aBV																[5.24] 

 

ΔΜºª_(t) = ΔΜª_(t) + ΔΜæ_Ü(t)																						[5.25] 

 

 

Simulation cases 
In order to validate the new pipeline, simulations were run for the following 

cases based on the data generated as described above: 

a) Case 1 - homogeneous GM (60 ml/ 100g/ min) and WM (21 ml/ 100g/ 

min) flow regions were simulated and the pipeline was assessed for k = 

1,…6. 21 was used instead of 20 for WM since this value is divided by 

6000 during the simulation steps. 

b) Case 2 – GM hyper-intense (90 ml/ 100g/ min) and hypo-intense (10 ml/ 

100g/ min) regions were added (to Case 1) at one slice to simulate 

regions with abnormal perfusion. As in Case 1, the pipeline was 

assessed for k = 1,...6. 

c) Case 3 – the described artifact (as outlined in section 5.2.6, above) was 

added in both ΔΜcr and ΔΜncr simulated datasets with a single-pixel 
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offset between the crushed and non-crushed images. A random artifact 

pixel-value was assigned to every voxel in the interval between the 

maximum intensity value in the dataset and double this value. In this 

case the pipeline was assessed for k = 1, 4 & 6 and for each value of k. 

In order to determine the optimal threshold to be used as part of the 

newly introduced artifact detection algorithm, 7 thresholds values were 

tested. These thresholds were: thr1 = 1020, thr2 = 5*1019, thr3 = 1019, 

thr4 = 5*1018, thr5 = 1018, thr6 = 5*1017 and thr7 = 1017. The chosen 

values were based on the maximum intensity values, which are at the 

level of 106. Subsequent processing of the image using the developed 

algorithm (filtering, square, multiplication) leads voxels not influenced by 

the artifact having values at the level of up to 1014. Any value above 

these thresholds was considered artifactual. 

For Cases 1 and 2, three regression kernels for PVC were evaluated: one 

involving the four direct neighbors (minimum smoothing, PVC = 5 voxels); a 

3x3x1 voxel kernel (PVC = 9) and a 5x5x1 voxel kernel (PVC = 25). In Case 3, 

only PVC=5 (i.e. minimum smoothing) was considered. For all simulations, 

Gaussian noise was added to the ΔΜcr and ΔΜncr signal to produce simulated 

data with a SNR = 20 dB (161). PV maps generated from a single individual 

were used. The AIF re-evaluation step was evaluated for simulation cases 1 

and 2. 

 

5.2.11 In-vivo data 
The in-vivo analysis was run for 12 subjects (mean age 47.8 ± 17.4) out 

of the 16 available HV in the present study, with AIF re-evaluation, artifact 

detection where applicable (2 cases) and PVC = 5 for all examined k-values. 

The broad range of ages in our cohort could result in a quite variable AIF shape 

and potentially to more re-evaluated AIFs. Due to the small sample size, the 

effect of age was not examined in the present thesis, however, it could be an 

interesting further extension to this study. 
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5.2.12 Comparison with QUASIL (in-vivo data) 
 

Due to the lack of a gold standard pipeline for quantification of CBF in 

QUASAR ASL, the results were compared with a publicly available tool 

(QUASIL) provided as part of the FSL software package (154). FSL-based 

tools, require input images in a Nifti format, so Nifti QUASAR images were 

generated based on the .PAR/.REC images using dcm2niix (297). Based on its 

published description, QUASIL fits the local AIF signals using gamma variate 

functions and rejects from potential AIFs those curves that deviate from this 

specific shape. It has two modes, model-free and model-based, whereby the 

data are fitted to hemodynamic curves based on the Buxton model for CBF 

determination in order to avoid deconvolution. For comparison purposed the 

same PVC strategy was applied to the QUASIL derived CBF maps.  

 

5.2.13 Performance evaluation 
 
Simulated data 

To evaluate the performance of the developed methodologies, and to 

optimize values for weighting of neighboring AIFs, thresholds for the artifact 

detection step and PVC kernel size, eight metrics were used: 

• M1 - the estimated GM CBF value. 

• M2 - the estimated WM CBF value.  

• M3 - the voxel-wise mean absolute percentage error (MAPE) (equation 

5.27) for the calculated CBF map. 

• M4 - the voxel-wise MAPE for voxels with GM > 50%, for the final CBF 

map.  

• M5 - the voxel-wise MAPE for voxels with GM > 80%, for the final CBF 

map.  

• M6 - the voxel-wise MAPE for voxels with GM > 50%, for the GM CBF 

map calculated based on PVC.  

• M7 - the voxel-wise MAPE for voxels with GM > 80%, for the GM CBF 

map calculated based on PVC.  
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• M8 - the voxel-wise MAPE for voxels with WM > 50%, for the WM CBF 

map calculated based on PVC.  

𝑀𝐴𝑃𝐸 = 100 ∗
1
𝑁¡

|𝑀Z −𝑀j|
𝑀Z

÷

`«N

		[5.27] 

where Mt is the true value, Me is the estimated value and N the total number of 

instances.  

Metric M3 was calculated for the non-PVC CBF maps; all other metrics were 

calculated for both non-PVC and PVC-corrected CBF maps. For metrics M1 

and M2 and the non-PVC scenario GM and WM CBF were calculated as the 

mean value in voxels with GM or WM content higher than 50% respectively.  

Focus was put on GM as ASL is known to be adept for GM perfusion 

estimation. The signal in WM by the time of imaging due to the higher transit 

time is attenuated. Only a few ASL techniques such as the ones utilising 

background suppression are known to be adept for WM CBF quantification 

(108).  

Pipeline evaluation – in vivo data 
 

AIF re-evaluation 

For all subjects the analysis was run with and without AIF re-evaluation 

in order to record the number of re-evaluated AIFs and the impact on the final 

GM CBF value.  

 

Comparison with QUASIL 

The analysis was run with both the model-free and the model-based 

QUASIL modes and the same PVC strategy as previously described was 

implemented. The coefficient of variation for each technique was calculated as 

CoV = 100* σ / μ, where σ is the standard deviation and μ is the mean. 

 

Partial volume correction 

The metric used for evaluation of the PVC variants was the structural 

similarity index (SSIM) (equation 5.28), calculated between the QUASAR T1-

maps and the generated GM PV maps. This metric was chosen to evaluate the 

ability of the segmentation algorithms to preserve anatomical information. 



	 104	

𝑆𝑆𝐼𝑀(𝜉, 𝜂) =
s2𝜇j𝜇k + 𝐶Nts2𝜎jk + 𝐶Et

s𝜇jE + 𝜇kE + 𝐶Nts𝜎jE + 𝜎kE + 𝐶Et
			[5.28] 

 

where ξ and η are two different images, μ refers to the mean and σ to the 

standard deviation. C1 = (0.01*DR)2 and C2 = (0.03*DR)2, where DR is the 

dynamic range calculated as the ratio between the maximum and the minimum. 

The SSIM for the different variants were compared using two-sample t-tests. 
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5.3 Results 
 
5.3.1 k-radius AIF weighting 
 
Simulation case 1 - homogeneous GM and WM regions 
 

Results for the first simulation case are shown in figure 5.4. No – PVC 

leads to lower estimated GM CBF values (k = 1 - 45.7 ± 0.09 ml/ 100g/ min; k = 

6 - 44.04 ± 0.08 ml/ 100g/ min) and higher WM CBF values (k = 1 – 24.56 ± 

0.03; k = 6 – 23.7 ± 0.01 ml/ 100g/ min). Calculated values for all PVC kernels 

can be found in figure 5.4 A,B. The performance of the developed pipeline was 

stable between repetitions with low standard deviation. Based on figure 5.4 (A), 

PVC = 5 with k = 2, 3 and PVC = 9 with k = 1, 2 consistently produce values 

closer to the simulated ones. This first set of results suggests that values are 

stable for an increasing weighting AIF kernel and PVC = 5, 9 are optimal.  

Figure 5.4 (E) suggests that errors in metrics M3, M4 and M5 reflecting 

voxel-wise CBF estimates are lower for an increasing k (except for k = 2). No-

PVC is connected with higher errors in GM estimation in voxels with high 

content of GM (figure 5.4 F, G) and lower error in voxels with high content of 

WM compared to instances where PVC was applied (figure 5.4 H). MAPEs are 

lower for a high PVC kernel (increased smoothing) when examining voxel-wise 

GM CBF values and higher when examining WM CBF values. Focusing on GM 

(figure 5.4 F, G), higher k-weighting is associated with slight reduction in errors 

with the only exception for k = 2 where an increase in the MAPE is observed. A 

good balance between voxel-wise MAPEs and global estimates is achieved 

with PVC = 5 with k = 3, 4 and PVC = 9 with k = 3. 
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Figure 5.4: Simulation Case 1 (homogeneous GM and WM). Mean GM (A) and WM (B)  

whole brain CBF values calculated using PVC (mean value in voxels with GM > 50% or WM > 

50% for the non-PVC scenario) are shown. Values are accompanied by error-bars reflecting the 

standard deviation for the 10 repetitions. Along with these, voxel-wise mean estimates for GM 

(C) and WM (D) CBF accompanied by standard deviation bars reflecting the within scan mean 

standard deviation. The dashed lines represent the simulated ground truth. E) voxel-wise 

MAPEs in CBF for the whole brain (blue), voxels with GM > 50% (orange) and voxels with GM > 

80% (yellow), F) voxel-wise MAPE  for the GM CBF maps for voxels with GM > 50%, G) voxel-
wise MAPE for voxels with GM > 80% and H) voxel-wise MAPE for voxels with WM > 50% 

when considering the WM map. 
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Simulation Case 2 – GM hyper- and hypo-intense regions 
Results for simulation case 2 are presented in two figures. The first figure 

(5.5) demonstrates the impact of increased weighting and different PVC kernel 

sizes in the calculated GM and WM CBF values. No-PVC leads to 

underestimation of GM CBF and overestimation of WM CBF (similar to case 1). 

From the examined PVC kernels PVC = 5 with k = 1, 2 and PVC = 9 with k = 1 

lead to values closer to the simulated ones for normal GM and WM. When GM 

hyper and hypo-intense regions were examined (figure 5.6), PVC = 5 and 9 

estimated values closer to the simulated ones. Especially for the hypo-intense 

GM region, PVC = 5 was optimal; PVC = 9 was optimal for the hyper-intense 

region.  

The voxel-wise MAPEs with and without PVC were similar to the ones 

obtained for case 1 for the examined PVC and k-value combinations. Higher k-

weighting results in lower MAPEs and larger PVC kernels were associated with 

reduced error in the mean voxel-wise calculated value when examining the GM 

CBF map. Example maps for a single slice where hyper- and hypo-intense GM 

regions were simulated are shown for an increasing k in figure 5.7. Accurate 

identification of the hyper-intense region is noticed for k > 3. Optimal 

combinations are the ones with lower MAPEs and accurate GM CBF estimates 

such as: PVC = 5 with k = 3, 4 and PVC = 9 with k = 3. 
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Figure 5.5: Simulation Case 2 (hyper and hypo intense areas). Mean GM (A) and WM (B)  
whole brain CBF values calculated using PVC (mean value in voxels with GM > 50% or WM > 

50% for the non-PVC scenario) are shown. Values are accompanied by error-bars reflecting the 

standard deviation for the 10 repetitions. Along with these, voxel-wise mean estimates for GM 

(C) and WM (D) CBF accompanied by standard deviation bars reflecting the within scan mean 

standard deviation. The dashed lines represent the simulated ground truth. E) voxel-wise 

MAPEs in CBF for the whole brain (blue), voxels with GM > 50% (orange) and voxels with GM > 

80% (yellow), F) voxel-wise MAPE  for the GM CBF maps for voxels with GM > 50%, G) voxel-

wise MAPE for voxels with GM > 80% and H) voxel-wise MAPE for voxels with WM > 50% 
when considering the WM map. 
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Figure 5.6: Simulation case 2, hyper and hypo intense GM CBF estimation. Mean GM CBF 
within the hyperintense (A) and hypointense (B) GM regions CBF values calculated using PVC 
(mean value in voxels with GM > 50% or WM > 50% for the non-PVC scenario) are shown. 
Values are accompanied by error-bars reflecting the standard deviation for the 10 repetitions. 
Along with these, voxel-wise mean estimates for GM hyper-intense (C) and hypo-intense (D) 
GM CBF accompanied by standard deviation bars reflecting the within scan mean standard 
deviation. The dashed lines represent the simulated ground truth. 
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Figure 5.7: Example maps for simulation Case 2 without PVC. A) The initial simulated CBF 

map with a hyper- and a hypo-intense region. B) Calculated CBF maps with increasing k-radius. 

 
Simulation Case 3 -artifact detection 

Simulation results for the identified artifactual voxels with a decreasing 

threshold are shown in figure 5.8. For k = 1 (figure 5.9) PVC = 5 is optimal for a 

decreasing threshold when GM CBF is considered. PVC = 5 and 9 are optimal 

when WM is taken into account. When focusing on voxel-wise CBF values 

without PVC (M3, M4 & M5) a decreasing threshold leads to lower voxel-wise 

MAPEs. Errors in the GM CBF maps are lower with a large PVC kernel and the 

general tendency is for them to increase with a decreasing threshold after a 

certain limit (thr4) for the detection of the artifact under consideration. A similar 

pattern is noticed for both k = 4 (figure 5.10) and k = 6 (figure 5.11). Errors in 

WM CBF and voxel-wise estimates are decreasing with a decreasing threshold. 

Κ=1	

Κ=6	Κ=5	Κ=4	
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Optimal combinations based on case 3 are: k = 1 with PVC = 5, 9 and thr3 & 

th4; k = 1 with PVC = 25 and thr1, thr2; k = 4 with PVC = 25 and thr1, thr2; k = 4 

with PVC = 5, 9 and thr3, thr4; k = 6 with PVC = 25 and th4; k = 6 with PVC = 5 

and thr5. 

 

 
Figure 5.8: Artifact detection - Simulation case 3. A) Simulated ΔMncr image with a typical 

artifact plus binary masks with decreasing threshold cutoff levels.  B, C, D) MAPEs for error 

metrics (M2, M3, M4 & M5) and calculated GM CBF with decreasing thresholds for kernel size k 

= 1 (B), k = 4 (C) and k = 6 (D). Where: thr1 = 1020, thr2 = 5*1019, thr3 = 1019, thr4 = 5*1018, 
thr5 = 1018, thr6 = 5*1017 and thr7 = 1017.  
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Figure 5.9: Simulation case 3, metrics M1-M8 with a decreasing threshold and k=1. 

 

 
 
Figure 5.10: Simulation case 3, metrics M1-M8 with a decreasing threshold and k=4. 
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Figure 5.11: Simulation case 3, metrics M1-M8 with a decreasing threshold and k=6. 

 
• An increasing k-radius AIF weighting results in lower errors in the voxel-

wise CBF estimates (M3, M4 and M5 metrics).  

• The GM and WM CBF values (M1, M2) are relatively stable with an 

increasing k following PVC. 

• No-PVC is associated with underestimation of the GM CBF (M1) and 

overestimation of WM CBF (M2). 

• PVC = 5 with k = 3, 4 and PVC = 9 with k = 3 were optimal when 

accurate estimation of the GM CBF value (M1) was of interest. 

• In the presence of hyper and hypo-intense regions (case 2) PVC = 5 

results in better CBF estimates for the affected hypo-intense areas and 

PVC = 9 for hyper-intense areas. 

• Voxel-wise MAPEs in GM CBF for voxels with high GM content (M6 & 

M7) decreased with an increasing k. 

• When an artifact was present (case 3) the developed algorithm 

effectively identified it with a decreasing threshold.  

• MAPEs were reduced for the voxel-wise CBF estimates (M3, M4 & M5) 

and a decreasing threshold. 
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• After a certain threshold (thr5) MAPEs tend to increase (M6, M7) 

especially with a large PVC kernel and GM CBF values are 

underestimated. 

 
5.3.2 AIF re-evaluation 

Results for AIF re-evaluation can be found in figures 5.12 & 5.13. For all 

metrics the results were highly similar so values are shown for M1, M3, M5, and 

CBF within hyper- and hypo-intense regions (simulation case 2). The mean 

number of re-evaluated regional AIFs per k-value was: 7.9 ± 0.7 (k = 1), 79.1 ± 

0.3 (k = 2), 50.9 ± 1.2 (k = 3), 30.7 ± 1.3 (k = 4), 19.2 ± 1.3 (k = 5) and 18 ± 1.2 

(k = 6). 

 

Figure 5.12: AIF reevaluation simulation case 1.  Blue is used for AIF re-evaluation and red 
for no re-evaluation. 
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Figure 5.13: AIF reevaluation simulation case 2. Blue is used for the AIF re-evaluation step 
and red for no AIF re-evaluation. 

Overall, AIF re-evaluation did not have a big impact in the calculated 

MAPEs especially for k = 3, 4 and 5 which were identified in previous steps as 

optimal. A slight difference is noticed for case 2 and the calculated GM CBF 

values. No re-evaluation is connected with slight overestimation inside hyper-

intense and hypo-intense GM areas.   

Based on the simulation findings, when accurate GM and WM CBF 

whole brain values and voxel-wise CBF estimates are of interest, the optimal 

implementation is k-radius AIF weighting with k = 3, 4 or 5 and AIF re-

evaluation with PVC = 5. In case an artifact is present, the implementation of 

the developed algorithm with a threshold in the range 1018-1019 results in 

effective artifact detection and can be used along with the developed pipeline 

with a combination such as k = 4 and PVC = 5. 
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5.3.3 In-vivo results 
Calculated CBF for GM and WM for the examined healthy subjects along 

with the number of AIFs for varying k-radii can be found in table 5.1. QUASIL 

model-based and model-free results are also given in the same table. The PVC 

kernel used in this analysis was PVC = 5. In 10/12 subjects, the described 

chemical-shift artifact was not visually detected in the difference images. The 

lowest CoV in the calculated GM CBF with the developed pipeline was 

observed for k = 1 (CoV = 7.3%) and the highest for k = 5 (CoV = 10.4%). For 

QUASIL model-free analysis the CoV was 16.9% and for the model-based 

analysis, the CoV was 19.5% (CoVs are reported for 10/12 subjects). Within 

this group the mean number of neighboring AIFs identified for every voxel 

ranged from 1.3 ± 0.1 (for k = 1) to 92.2 ± 31.9 (for k = 6). The GM CBF values 

demonstrated stability with increasing number of considered AIFs, a finding 

consistent with the simulation results. Example AIFs obtained from different 

voxels using the 6 k-values can demonstrate varying effects of k on the 

resultant input functions (figure 5.14).  

 
Figure 5.14: AIFs from 10 voxels based on one subject for different degrees of AIF 
weighting (k). Examples in the first row indicate that choice of k impacts on AIF shape whereas 

examples in the second row demonstrate negligible impact. 

For the 5 chosen voxels in the first row in figure 5.14, the value of k 

impacts the shape and amplitude of the voxel AIF, for the other 5 voxels the 
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impact of k appears to be negligible. There is no clear pattern of difference in 

the number of recruited AIFs between the first and the second set of examined 

voxels for each k that could explain in a systematic way the reason for seeing 

noisy AIFs for lower k-values in the first set (figure 5.15). To visually evaluate 

the effect of different combinations of k-values and PVC kernels on the resultant 

CBF, maps are shown for one representative individual in figure 5.16. 

 

 
Figure 5.15: Number of averaged AIFs for each of the examined voxels with an increasing 
k. 
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Figure 5.16: Single slice CBF maps from a representative subject as a function of PVC 
level and k-radius AIF weighting.  As the PVC kernel size increases the blurring effect is more 

prominent. As the k-radius increases de-noising of the image occurs without introducing 

prominent smoothing/blurring. 

Two individuals were influenced by the presence of the multi-parametric 

artifact. The mean CBF values were calculated before and after artifact 

correction (Table 5.1). Correction led to the mean exclusion of 553 ± 141 voxels 

i.e. a 6.8 ± 1.4 % reduction.  

 For the AIF re-evaluation step, the mean CBF without re-evaluation was 

54.7 ± 5.5 ml/ 100g/ min as opposed to 54.5 ± 4.7 ml/ 100g/ min with AIF re-

evaluation. The number of identified AIFs without re-evaluation was 1915.2 ± 

585.2 and with AIF re-evaluation 1719.8 ± 570.5, leading to a mean of 195.3 ± 

60.6 excluded AIFs. The mean number of excluded voxels due to extremely low 

CBF values (<5 ml/ 100g/ min) was 187.3 ± 60.9 and a mean of 8.1 ± 4.5 voxels 

were excluded because their value was very high (150 ml/ 100g/ min). 

 

No	PVC	

PVC=5	

PVC=9	

PVC=25	

K=1	 K=2	 K=3	 K=4	 K=5	 K=6	
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Partial volume correction 

The SSIM was calculated for all PVC variants. When compared to the 

T1-QUASAR maps, the mean SSIM for variant 1 (PV maps generated based on 

the MPRAGE scan down-sampled and registered to the QUASAR-T1) was 0.18 

± 0.05. PVC using the FRASIER method (variant 2) resulted in a SSIM of 0.11 ± 

0.09. When using the FRASIER maps as an intermediate registration target for 

the MPRAGE derived GM PV maps (variant 3) the SSIM was 0.17 ± 0.06 and 

for variant 4 (mean of variant 1 and 2) SSIM was 0.15 ± 0.08. The SSIM value 

was significantly higher for variant 1 compared to variant 2 (p = 0.02). GM and 

WM CBF were quantified for all subjects with all the PV map generation 

methods for PVC = 5 kernel and k = 4 to measure the CoV for the GM CBF 

value. For the first variant the CoV was 10.1%, for the second CoV = 10.3%, for 

the third CoV = 9.1% and for the fourth CoV = 8.7%. 

Example maps for the PV techniques are shown in figure 5.17. 

 

Figure 5.17: Example slice from an individual of a 1/T1 slice and the determined PV maps 
generated with the 4 tested variants. 

 
Overall based on the in-vivo data an increase in the k-values did not lead to big 

differences in the calculated GM and WM CBF values. Artifact detection led to a 

slight reduction in calculated CBF. The CoV was lower with the developed 

technique compared to the QUASIL software. PV maps generated with 

methods based on a high resolution MPRAGE scan had higher structural 

similarity with the QUASAR-T1 maps compared to the FRASIER PV maps. 

Variant	4	Variant	1	 Variant	2	 Variant	3	1/T1	
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Table 5.1: GM CBF, WM CBF and number of identified AIFs for 12 subjects. 2 out of the 12 

subjects were influenced by a multi-parametric artifact. For these two subjects results are 

shown before and after artifact correction. The values shown are for an increasing k-radius and 

the results obtained using QUASIL model-free and model-based analysis. 

 
 
 
 
5.4 Discussion 

In this chapter, several modifications were introduced to the QUASAR 

processing pipeline. Optimization of the model-free post-processing version 

may hold great importance especially when the protocol is applied in clinical 

cohorts where assumptions about the shape of hemodynamic signals 

(introduced when using a model-based approach) might be violated due to the 

presence of pathophysiology. The introduced changes revolved around the AIF 

assignment and the mitigation of a common water-fat shift artifact. Additionally, 

four variants for PV map determination were evaluated. The pipeline was 

developed and evaluated specifically for QUASAR ASL. However, parts within 

the pipeline can also have application in other ASL implementations where the 

chemical-shift artifact is present or in multi-PLD protocols where AIFs are 

calculated at a local level. 

	

Artifact-free 

 k=1 k=2 k=3 k=4 k=5 k=6 QUASIL 

free 

QUASIL 

model 

GM CBF 

(ml/100g/min) 

54.4± 4.0 54.4±4.7 54.2±5.2 54.3±5.5 54.4±5.6 55.6±5.6 58.7±9.9 61.1±11.9 

WM CBF 

(ml/100g/min) 

24.1±1.9 22.8±2.2 22.7±2.4 22.6±2.5 22.7±2.7 22.7±2.7 25.4±3.4 29.9±3.7 

AIFs 1.3±0.1 7.4±1.0 23.1±5.4 44.3±12.8 66.7±21.3 92.2±31.9 N/A N/A 

         Influenced by the artifact before correction 

GM CBF 

(ml/100g/min) 

55.3±0.1 55.4±0.6 55.7±0.8 55.9±0.7 55.8±0.8 57.2±0.6 60.6±0.3 66.5±6.0 

WM CBF  

(ml/100g/min) 

25.7±0.5 25.5±0.1 25.2±0.4 25.3±0.5 25.2±0.6 25.2±0.6 26.7±0.4 31.3±1.3 

AIFs 1.3±0.1 7.3±1.0 22.1±1.9 42.4±5.5 64.3±9.0 90.7±14.6 N/A N/A 

Influenced by the artifact after correction 

GM CBF 

(ml/100g/min) 

53.8±0.1 54.0±0.1 54.2±0.2 54.2±0.2 54.0±0.8 54.5±0.7 N/A N/A 

WM CBF  

(ml/100g/min) 

25.3±0.5 25.1±0.1 24.9±0.2 25±0.3 25.0±.02 25.1±0.4 N/A N/A 

AIFs 1.1±0.0 5.8±0.1 15.8±0.6 28.3±1.5 41.7±2.3 57.0±4.4 N/A N/A 
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k-radius AIF weighting improves perfusion quantification 
Accurate AIF determination is essential in perfusion imaging since it 

directly impacts blood flow quantification (153). The introduction of k-radius AIF 

weighting aims at reaching a ‘golden mean’ between assigning a single, local 

input or an AIF based on a surrounding region (e.g. due to vascular territories or 

global brain blood supply). AIF weighting, leads to AIF de-noising by means of 

weighted spatial smoothing, rather than model-fitting. Considering more than 

one local AIF has the additional benefit of accounting for perfusion resulting 

from more than one local source. This effect is prominent in, for example, 

watershed areas within the brain parenchyma that are supplied by more than 

one arterial input. AIF weighting takes into account the hemodynamic 

characteristics in a sphere centered on the voxel of interest. The findings 

indicate that implementation of this approach can yield more reliable voxel-wise 

perfusion estimates compared to k = 1 which reflects the conventional QUASAR 

post-processing. This effect was captured by both the quantitative and 

qualitative analysis and is clearly depicted in figure 5.7, whereby the hyper and 

hypo- intense regions are clearly identified with k-values greater than 3. 

It was demonstrated that using k-radius AIF weighting can improve 

perfusion quantification, both in the presence of hyper- or hypo-intense regions 

and in normal cases. A consistent finding in simulation Cases 1 (homogeneous 

GM and WM CBF) and 2 (hyper and hypo-intense areas) was that increased 

AIF weighting led to reduced MAPE in voxel-wise CBF values (M3). This finding 

should be taken into account when ROI-specific CBF values are to be extracted 

or voxel-wise comparisons are conducted. On the other hand, a high k-value 

might result in slight GM CBF underestimation.  

The developed isotropic k-radius AIF weighting approach does not 

account for the complex topology of different vascular territories. An AIF 

weighting approach restricted within vascular territories (or within the two 

hemispheres) would be an interesting future development. This would require 

mapping of the vascular territories, for example, using TASL (an implementation 

based on QUASAR) (164) or ASL techniques without explicit territorial labeling 

combined with pre-defined vascular territory maps with which to restrict the AIF 

assignment step. 
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A small PVC kernel size results in lower errors  
Along with the degree of weighting, we evaluated PVC with linear 

regression using different kernel sizes. The use of either PVC = 9 or PVC = 25 

is common, due to superior noise suppression. Additionally, small kernel sizes 

are not typically evaluated since the matrix inversion problem involved in the 

quantification of GM and WM CBF is ill-defined when a small number of voxels 

is used. In the present implementation though, when this was the case, the 

utilized algorithm did not return the actual inverted matrix but a least square 

approximation. Our findings suggest that a kernel of 4 neighbors (PVC = 5) is 

sufficient to solve the regression equation in a stable manner and results in 

minor smoothing. This regression kernel demonstrated high accuracy in CBF 

quantification within hyper- and hypo-intense regions. In addition, final 

estimated GM CBF was closer to the simulated value with the lower kernel size; 

this was concomitant with minor increases in the other variance-related 

parameters (MAPEs). For simulation Cases 1 and 2, MAPEs in voxels with 

lower GM content tended to be higher with an increasing PVC kernel.  

The optimal choice of k-values and PVC kernel size is dependent upon 

subsequent analysis. If the mean GM CBF is of primary interest, then the 

optimal k-PVC combinations are: k = 1, 2 with PVC = 9 and k = 3, 4 with PVC = 

5. For an ROI-based approach, a combination giving the minimal error at a 

voxel-wise level (M3, M4 and M5) would be a better choice. Where hypo- or 

hyper-perfused regions are expected, a combination, which does not smooth 

out these regions and provides results closest to ground-truth values is likely to 

be beneficial such as k = 3, 4, 5 and PVC = 5. The simulation results for case 2 

(figure 5.16) imply that k > 3 delineates the hyper- and hypo-perfused regions 

from normal areas in a more robust manner. This suggests that spatial 

smoothing introduced with k-radius weighting does not smooth out abnormally 

perfused regions, an unwanted effect observed when large PVC kernels are 

implemented for noise reduction. Hence, a small PVC kernel accompanied by 

spatial smoothing at the level of the AIF assignment step might be a viable 

alternative to big linear regression kernels. 
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k-radius AIF assignment with AIF re-evaluation was optimal  
AIF re-evaluation introduced as a step here to account for potentially 

noisy AIFs had little impact on the final calculated CBF values in both the 

simulations and in-vivo data. Simulations indicate that the error in CBF 

estimates is slightly lower when re-evaluation is not used. This step could be 

omitted, however, it is reassuring that AIFs resulting in spurious CBF values are 

not used in the k-radius AIF weighting step and hence do not impact in any way 

on their local neighborhood.  

Of interest is that a mean of 195.3 AIFs (the mean number of identified 

AIFs was 1915.2) gave rise to non-physiological CBF values and the majority of 

them are below 5 ml/ 100g/ min. This effect could be attributed to the fact that 

for CBF quantification the crushed signal is used. Hence, in voxels containing 

large arterial compartments we would expect that the arterial signal will be 

nulled, hence the recorded crushed signal would be particularly low. However, 

the aBV rarely goes beyond 20% in any voxel, so we would expect a tissue 

signal from these voxels to arise as well. Suppression of the arterial signal due 

to the crushers, hence, is not sufficient to explain the unphysiologically low CBF 

values. It needs to be emphasised that these voxels are not excluded from 

subsequent analysis; they are just excluded as candidate AIFs in the AIF 

reassignment step. 

In the future an approach incorporating AIF re-evaluation as a 

regularisation step, implemented iteratively until all AIFs provide CBF values 

within the desired limits could be evaluated. 

 

A water-fat shift artifact was effectively detected  
The artifact detection algorithm is capable of identifying erroneous voxels 

in both simulated and in-vivo data. The artifact was successfully identified in two 

subjects and elimination led to reduction in GM and WM CBF. Simulations 

suggested that voxel exclusion up to a certain point results in a closer 

approximation to the underlying perfusion values. However, exclusion of a large 

number of voxels (i.e. using thr7) may result in higher errors in voxels with GM 

> 50%. Hence, a recommended threshold to be used with the developed 

algorithm ranges between 1018 and 1019. 
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Ideally, artifact mitigation should be a pre-reconstruction technique. 

Following reconstruction, if the artifact is not successfully removed during 

motion correction, only a post-processing technique can be applied. It needs to 

be highlighted that the developed artifact detection algorithm does not correct 

for the artifact; it detects influenced voxels and it relies on the user whether to 

include these voxels in the analysis or not. 

 

Partial volume correction using the MPRAGE-derived estimates was 
optimal 

In terms of the evaluated PVC variants, it was demonstrated previously 

that FRASIER performs well in relatively high SNR scenarios (243). When 

applied to the in-vivo data in this study it demonstrated the resulting GM, WM 

and CSF PV maps were realistic; there were cases though where it failed to 

determine accurately GM and WM, especially in the presence of enlarged 

ventricles. In such cases the generated PV maps were substantially different 

from the maps calculated based on the high-resolution T1-weighed scan, which 

are usually taken as the gold standard. On the other hand, when using the 

MPRAGE approach, in some cases, the registration was suboptimal.  

Accurate registration of the PV maps to the low resolution T1t maps is 

crucial since if there is a small degree of rotation or imperfect translation, the 

PV maps will not overlap with their respective voxels. A combination of these 

two PV generation methods might be beneficial, since the FRASIER map 

provides a good target for direct registration of the down-sampled PV maps. 

Taking into account the SSIM and CoV, the hybrid methods evaluated here 

improved on CoV and demonstrated a higher structural similarity to the 

QUASAR-T1 maps, when compared to FRASIER-derived estimates. In the 

present thesis we chose for subsequent processing variant 1, since the 

generated GM PV maps demonstrated a higher SSIM to the QUASAR-T1 

image. Variant 3 which used the FRASIER maps as a registration target had a 

lower SSIM but also a lower CoV compared to variant 2 and could be used 

alternatively when the between modality registration fails as an intermediate 

registration target. 
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The developed model-free pipeline provides realistic perfusion estimates. 
In a previous study where QUASAR was used (296), mean GM and WM 

CBF were 55.5 ± 9.5 and 21.8 ± 7.7 ml/ 100g/ min, respectively, when using 

stable spline deconvolution, whereas the values were 34.9 ± 5.2 and 17.3 ± 5.5 

ml/ 100g/ min when standard SVD deconvolution was applied. In the QUASAR 

reproducibility study, the mean GM CBF was 47.4 ± 7.5 ml/ 100g/ min (161). 

Finally, in another report (243) where linear regression was used for PVC, the 

mean value for GM CBF was 60.6 ± 1.5 ml/ 100g/ min. Hence, our findings are 

in line with previously reported values for GM CBF. In the majority of studies 

using QUASAR (155, 162, 163, 165, 166, 171), no correction was implemented 

for PVE and only in a few of them ROIs in areas thought to be minimally 

influenced by PVE were used (143, 159). In studies using QUASAR where PVC 

was not used the calculated GM CBF ranged between 34-47 ml/ 100g/ min 

(143, 155).  

It is worth mentioning that, throughout this thesis, a decision was made 

to avoid introduction of assumptions into the processing pipeline wherever 

possible. In the present QUASAR ASL processing optimisation, we tried to 

avoid excessive smoothing, fitting, and use of prior information. The inherent 

advantage of QUASAR is that it is a model-free technique allowing CBF 

quantification without assuming an explicit model for the hemodynamic signals 

and imposing it upon the data. Assumptions about the shape of the arterial 

input function, the tissue signal or the residue function would contradict this 

inherent advantage of the technique. On the other hand, the analysis and the 

results might be more robust and less noisy by fitting data with suggested 

model functions. For example, QUASIL uses priors and spatially adaptive 

priors. Additionally, there is the option to avoid SVD deconvolution by fitting the 

data to the general kinetic model (154). Ahlgren et al. (291) have suggested 

non-linear stochastic regularization for the deconvolution step and Castellaro et 

al. (296) have used stable splines. These literature suggestions were aimed at 

introducing regularisation steps for the residue and the arterial signal assuming 

a certain shape based on physiological models. Such approaches lead to 

beneficial noise suppression, however, they tend to introduce bias in the form of 

prior information based on healthy subjects. We have shown with this analysis 
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that accurate perfusion quantification is possible with the model-free QUASAR 

pipeline and we have contributed four modifications towards its optimisation. 

The net impact on the quantified values for all introduced modifications 

as judged by the final GM CBF and MAPEs is not high, however, an 

improvement is noticed with all introduced modifications. The absolute errors 

are reduced at a voxel-wise level and the values, especially considering the 

simulation steps, are close to the ground truth ones. 

Comparison with QUASIL 
When QUASIL was used (model-free and model-based), the mean GM 

CBF was higher than that obtained with the developed pipeline. The difference 

in mean GM CBF value compared to the model-free QUASIL approach may be 

attributed to the difference in AIF assignment. In QUASIL, local AIFs are fitted 

to a gamma variate function and assigned using a closest neighbour criterion 

(154). Lower GM CBF calculated from a model-free, as opposed to a model-

based approach, is a consistent finding usually attributed to the use of SVD 

deconvolution in the former method. WM CBF values calculated with the model-

based approach are higher compared to both the k-radius AIF weighting 

method and model-free QUASIL, giving a mean value of 30ml/ 100g/ min when 

that expected is 20ml/ 100g/ min. For the two subjects influenced by the multi-

parametric artifact, QUASIL GM and WM CBF were high compared to the 

calculated mean for the subjects not influenced by the artifact, suggesting that 

CBF quantification is influenced by its presence. 

It is worth noting that the coefficient of variation for the GM CBF 

measured with the suggested pipeline is lower than that obtained using the 

QUASIL tool, a result suggestive of a more stable performance, which carries 

potential importance in clinical research studies. When comparing the 

algorithmic execution times, a model-based QUASIL run requires 46s. With our 

pipeline implemented with k = 4 the execution time was 180s, when supplying 

directly the PV maps and 300s when generating PV maps within the pipeline. 

There are several limitations to this study. Firstly, the developed pipeline 

was tested in a limited cohort and it needs to be validated using a larger study 

population. Secondly, a discrete number of radii were considered for the AIF 

weighting step and alternative approaches could be tested to determine the 
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optimal approach, such as, AIF assignment being confined within specific 

vascular territories. Thirdly, in this study, SVD deconvolution was used for the 

determination of the residue function. SVD is known to underestimate perfusion 

values and alternative mathematical approaches could be used to determine 

the transfer function of the system on a voxel-wise basis. Finally, the artifact 

detection and rejection algorithm relies on the principle that hyper-intense 

regions at specific time-points are artifactual rather than reflecting true 

perfusion, an assumption that could be violated resulting in the rejection of non-

artifactual voxels. 

 

5.5 Conclusions 
QUASAR ASL is one of the first methods suggested by the ASL 

community having the potential to image perfusion dynamically in a non-

invasive manner. This technique was first suggested in 2006 (155). Since then, 

the only modification to the acquisition process has been the introduction of a 

small flip angle acquisition in order to map the nominal flip angle at a voxel-wise 

level (160). Petersen et al. have been working over the past years on TURBO-

QUASAR, however, it is still subject to optimization and a full-length paper on 

the technique has not yet been published (298). On the other hand, QUASAR 

post-processing optimization has been a vivid area of interest for some years, 

with the latest paper been published by Castellaro et al. suggesting stable 

spline deconvolution (296). At about the same time, the ASL white paper 

suggested pCASL as an optimal implementation (108). Since then, spatially 

non-selective ASL and time-encoded ASL have emerged as very promising 

alternatives, with promising insensitivity to transit time delays. These last 

techniques have not yet been thoroughly validated and are quite experimental 

(126).  

 The QUASAR post-processing optimization has mainly focused on four 

aspects: AIF assignment, deconvolution – residue determination, partial volume 

correction and modelling of the signals. In this chapter, we contributed towards 

optimization of the AIF assignment step, PVC step and in addition to these, we 

presented an algorithm for artifact detection. Using simulations and in-vivo data, 

we demonstrated an improvement in the quantification procedure and 

determined optimal values and approaches to be used in the subsequent 
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processing. More importantly, we have made our pipeline publicly available to 

be used and tested by the ASL community. This is the 3rd tool available for 

QUASAR- based ASL quantification. The first is the program written in IDL by 

Esben Petersen which is of a ‘black box’ kind, and the other is the QUASIL tool 

available as part of the FSL toolbox. 

 Aside from more challenging post-processing, QUASAR has the very 

important advantage of being ATT insensitive. Additionally, the entire 

hemodynamic signals used for perfusion estimation and not a single time-point 

are acquired at a voxel-wise level. Hence, a robust, open access pipeline, 

making use of the acquired signals without introducing excessive smoothing, 

regularisation or prior assumptions and which demonstrates a stable 

performance, could be a useful tool for clinical studies. This pipeline, with 

values optimised as described in this chapter, was used in the subsequent 

hemodynamic analysis (Chapter 6). 
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Chapter 6: 
Cerebral hemodynamic analysis in type-2 
diabetes and impaired glucose tolerance 

 

Abstract 
Perfusion impairment in T2DM is suspected due to potential 

neurovascular unit dysfunction leading to impaired delivery of energy to the 

tissue. Neuroimaging findings, however, have not been consistent. The aim of 

this part of the thesis was to evaluate cerebral hemodynamics in IGT and T2DM 

using, for the first time, an arterial transit time insensitive ASL technique, 

namely, QUASAR ASL.  

Data from 16 HV, 12 subjects with IGT and 16 T2DM patients were 

processed. Two analysis approaches were utilised, the first one involved 

calculation of commonly quantified QUASAR metrics accompanied by a 

conventional statistical analysis. The second approach involved quantification of 

novel hemodynamic features extracted from the QUASAR signals, which were 

subsequently analysed using a machine learning framework to detect optimally-

differentiating features between the groups. Overall, seven multi-parametric 

models were evaluated, each containing a different combination of 

hemodynamic features. Due to the large number of features and the small 

dataset, dimensionality reduction was implemented. Binary classification tasks 

were conducted using linear SVM.  

Commonly quantified perfusion parameters such as CBF, CVR and ATT 

differed between the groups suggesting hemodynamic differences. Baseline 

CBF in IGT and T2DM was increased, potentially indicating the presence of an 

early compensatory mechanism to account for reduced oxygen delivery to the 

tissue. A multitude of newly quantified hemodynamic features also differed 

between the groups. The applied extended hemodynamic analysis combined 

with a machine learning framework, resulted in high classification performance 

for all binary classification tasks examining HV vs hyperglycemic states, 

suggesting: a) a distinct hemodynamic pattern in the hyperglycemic groups 

compared to HV and b) that QUASAR ASL can provide important hemodynamic 
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information not typically captured by single time-point ASL, which may be 

pertinent to the correct classification of healthy vs. non-healthy brains. 

To evaluate the additional benefit of conducting an extended 

hemodynamic analysis, we compared the discriminatory capacity of the novel 

feature combinations to the commonly quantified QUASAR parameters and 

found that for all considered classification tasks, the classification performance 

increased with the newly considered metrics. The feature combination with the 

best performance was the one involving metrics extracted from non-processed 

QUASAR signals, followed by the one combining non-processed signals and 

typical QUASAR measurements. Interestingly IGT had a distinct hemodynamic 

pattern compared to HV, which was prominent after the administration of a 

vasodilating stimulus and bore similarities with the T2DM group.  

 

6.1 Introduction 
Several techniques have been devised in recent years for cerebral 

perfusion quantification. In the field of T2DM some studies have reported hypo-

perfusion (36, 42, 43), whereas others have concluded that there are no 

differences between T2DM patients and healthy subjects (44, 45). A few studies 

(46, 47) have reported increased baseline perfusion in T2DM with van Bussel et 

al. focusing on the hippocampus. This inconsistency in findings is highly likely to 

reflect differences in the utilised perfusion imaging techniques. Findings 

regarding CVR have been more consistent with a lower value observed in 

T2DM patients (36, 42, 44, 53). The study by Selvarajah et al. (53) has reported 

a decrease in brain blood flow in both T2DM and IGT.  

In these studies, flow has been examined with one of the following 

techniques: PC-MRA, TCD, BOLD fMRI, DSC-MRI, PET, ASL-MRI. When using 

PC-MRA the acquisition typically takes place at the level of the carotids and the 

acquired quantity is a blood velocity measurement. Transcranial Doppler also 

measures blood velocity rather than pure tissue perfusion. Techniques 

capturing a pattern close to the underlying perfusion based on MRI are BOLD 

fMRI, DSC-MRI and ASL MRI. BOLD fMRI captures changes in the amount of 

oxygenated and deoxygenated hemoglobin in response to a stimulus, which are 

coupled to neuronal activation (299). DSC and ASL MRI follow a tracer within 

the vasculature. DSC follows a gadolinium contrast agent that in normal 
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circumstances remains intravascular and creates a susceptibility gradient. 

Perfusion is captured during the first passage of the tracer. In cases of BBB 

disruption though, leakage of the tracer can lead to quantification errors (153). 

In ASL, the labeled hydrogen protons get delivered to the tissue, so perfusion 

measurements relying on ASL can be thought as more direct measurements of 

perfusion compared to the other techniques. In the study reported in this 

chapter we have used a multi-TI ASL technique to investigate in depth cerebral 

hemodynamics in T2DM utilising the assumption-free, model-free, processing 

pipeline explained and validated in detail in the previous chapter. 

 Such a technique accounting for ATT variations could be appropriate for 

perfusion quantification in cohorts of non-healthy subjects. QUASAR ASL is an 

implementation insensitive to ATT delays (155) since it samples the recovering 

magnetisation at multiple time-points. Due to the acquisition of dynamic signals 

at a voxel-wise level, QUASAR can provide rich hemodynamic information 

along with quantitative CBF maps. Such a technique has not yet been used to 

investigate cerebral perfusion in T2DM. 

 QUASAR ASL has the potential to provide multiple hemodynamic 

parameters that can be investigated using a machine learning approach to 

extract the most significant feature combination leading to optimal class-

differentiation. Machine learning approaches are becoming increasingly popular 

in neuroimaging and have been extensively used for MR biomarker 

identification in Alzheimer’s disease (246, 249, 268) and brain tumors (269). 

Structural MRI scans are usually the modality of choice; only a few studies have 

evaluated features derived from alternative MR acquisitions such as BOLD, 

pCASL and DTI (249, 274). In the field of diabetes, machine learning 

techniques have been used for identification of novel biomarkers though not 

relying on features extracted from MR images (300).  

 Typically, when machine learning approaches are applied to MR images, 

the focus is on the intensity of a voxel or of an ROI. Metrics directly connected 

to the intensity, statistical metrics and less frequently textural metrics are 

extracted.  In this study, we shift the processing focus from the 3D intensity 

images reflecting CBF, ATT and aBV to the dynamic ASL signals  acquired at a 

voxel-wise level. To our knowledge, this is the first study examining multi-TI 

ASL derived features using a machine learning analysis approach. Additionally, 
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classification of normoglycemia vs hyperglycemia based on perfusion MR 

features has not been investigated in the past.  

 In the present chapter, we utilised QUASAR ASL, which accounts for 

ATT delays to evaluate cerebral hemodynamics in IGT and T2DM. Multiple 

perfusion-related parameters were quantified in order to retain a descriptive 

hemodynamic pattern for every individual. The dimensionality of the problem 

was reduced by feature selection and the resulting pattern was used for 

supervised classification. The hypothesis under examination was that cerebral 

hemodynamics are altered in T2DM and its prodromal condition IGT. We 

attempted to take advantage of the potential of QUASAR ASL to provide rich 

hemodynamic information not confined to the calculation of CBF maps. We 

investigated the impact of the additional hemodynamic parameters in optimal 

class differentiation by quantifying the classification accuracy using only CBF, 

CVR, aBV and ATT measurements on the one hand, and using all the 

suggested additional hemodynamic parameters on the other. Overall 

classification was performed for 7 different feature combinations and 4 tasks 

(HV vs T2DM, HV vs T2DM & IGT, HV vs IGT and IGT vs T2DM) in order to 

conclude the optimally differentiating pattern. Finally, the data were analysed 

using the pseudo-single-PLD approach described in the previous chapter. 

 

6.2 Methods 
Data from 16 healthy volunteers (HV), 12 people with IGT and 17 

patients with T2DM were acquired on a 3T Philips Achieva scanner. Scans from 

2 subjects with IGT and 1 subject with T2DM were discarded due to poor image 

quality (cohort details in table 6.1). Image quality was deemed poor if following 

registration and noisy scan rejection, the resultant mean crushed and non-

crushed images demonstrated strong motion artifacts that would influence the 

subsequent processing. The quality was assessed visually by a single individual 

(M.E.D). 

 

 

 



	 133	

Table 6.1: Details about the subject cohort analysed in the present chapter. 

 HV IGT T2DM 

N 16 10 16 

Age (y) 50.0±12.0 54.1±5.5 54.9±11.8 

sex 8♀  8 ♂ 5♀  5 ♂ 8♀  8 ♂ 

BMI (kg/m2) 26.0±34.7 31.6±3.4 31.1±3.9 

Hypertension 
(subjects) 

4 5 6 

Diabetes 
duration (y) 

N/A N/A 9.9±4.6  

HbA1c (%) - - 9.4±1.9 

Microvascular 
complications 

- - 5 neuropathy 

2 retinopathy 

1 nephropathy 

insulin   4 

Smoking history 3 ex-smokers 3 ex- 3 current 7 ex – 2 current 

 

 

6.2.1 MR protocol 
1) A T1-weighted MPRAGE scan. 

2) Four QUASAR ASL acquisitions. The first QUASAR scan was acquired 

at baseline and the next three were acquired consecutively 15 minutes 

after ACZ injection.  

For more details regarding the MR protocol, please refer to Chapter 4. 

 

6.2.2 Partial volume correction 
The high resolution anatomical scan was corrected for bias field using 

N4 (208). Subsequently the scan was segmented using SFCM (232). 

Overlapping QUASAR and MPRAGE slices were determined and the PV maps 

were averaged over the overlapping slices. Subsequently the PV maps were 

down-sampled to the QUASAR resolution and registered to the T1-QUASAR 

maps. PVC was implemented using linear regression (240) with a kernel 
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involving the four direct neighbours of a voxel, which was found to be optimal in 

Chapter 5.  

 

6.2.3 Quantified parameters 
Typically, CBF is calculated as the maximum of the residue function, and 

ATT as the difference between the rising time of the tissue curve and the AIF. 

Arterial blood volume is associated with the area under the curve of the non-

crushed – crushed difference signal (155). Hence, this is the current 

hemodynamic information used in QUASAR ASL studies to investigate 

perfusion abnormalities. Other metrics, characteristic of the curves, and hence 

the acquired signals, are currently not considered in the QUASAR 

implementation and quantification. Such metrics were evaluated in the present 

chapter to investigate whether potential hemodynamic information not captured 

by ATT, aBV and CBF can be extracted. 

 As described in Chapters 2 and 5, every voxel can be modelled as a 

system having an AIF as the input, the tissue signal as the output and the 

residue function is the system’s transfer function (figure 6.1). The AIF describes 

the distribution of the ‘tracer’ in the arterial compartment, the tissue curve the 

distribution in the output. The residue curve is associated with the tracer 

retention by the tissue and represents the amount of labeled spins remaining 

inside the system at the time of imaging (151). The tissue signal is considered 

to be the acquired crushed signal (ΔΜcr) and the arterial signal can be 

calculated by subtracting the tissue signal from the mixed arterial & tissue 

signal (ΔΜncr); the residue signal is determined via deconvolution. These three 

signals have the potential to shed light onto the hemodynamic pattern in every 

region allowing for the extraction of multiple perfusion-related parameters.  
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Figure 6.1: Example demonstration of the tissue, arterial and residue function signals. 
Overlapping the AIF are example metrics not currently considered such as the time-to-peak 
(green), full width half maximum (orange) and the peak (red). Modified based on Ahlgren et al. 
2011 (301). 

A multitude of hemodynamic features were quantified at a local and 

global level. These metrics were: the time-to-peak (TTP), peak height, full width 

at half maximum (FW), half width at half maximum of the left (HWL) and the 

right (HWR) part of the signal peak, skewness (SKEW) and kurtosis (KURT). 

The metrics were recorded for: a) the assigned weighted AIFs (AIF), b) the AIFs 

before assignment and weighting (AIFSH), c) the residue function (R), d) the 

tissue signal (ΔΜcr) and e) the mixed tissue & arterial signal (ΔΜncr). In addition 

to this, CBF, ATT and aBV, as normally quantified with QUASAR, were 

determined. It should be noted that the GM CBF value calculated with QUASAR 

differed from the peak of the residue function since PVC was incorporated in 

the pipeline. So, the peak of the residue is actually the non-PVC corrected CBF 

value within that voxel. Additionally, GM and WM CBF were calculated using 

PVC; CVR was determined as the percentage change of the GM CBF following 

ACZ injection. 

 All described metrics were extracted from the following regions of interest 

(ROIs): the whole brain (WB), anterior, medial and posterior cerebral artery 

(ACA, MCA, PCA) vascular territories and watershed (W) areas. A mask 

created by Mutsaerts et al. (121) was used for the vascular territory analysis. 

The mask was registered to the low-resolution GM partial volume maps using 

affine registration with normalized cross correlation. The watershed area mask 

was generated based on the vascular territory mask. A summary of the 

identified hemodynamic curves, the metrics extracted by them and the ROIs 

can be found in figure 6.2. 

C(t)	 AIF(t)	 CBF	*	R(t)	

t	 t	 t	

=	
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 The response time to ACZ is known to vary between individuals (93). To 

address this issue, four scans were acquired following injection; the scan used 

to evaluate the response to the stimulus was the one with the highest residue 

function peak (reflecting CBF). All described features were acquired from the 

baseline and post-ACZ scans. 

 
Figure 6.2: Overview of the calculated hemodynamic metrics. A single slice for a single 
time-point is shown for the 5 considered signals. In the second column we see the signal for a 
single voxel and all time-points, following that there is a representation of the extracted metrics 
from a curve and finally the considered ROIs.  

 
6.2.4 Vascular territory and watershed area analysis 

Maps published by Mutsaerts et al. (121) involved nine separations of 

the vascular territories. In the present analysis the three subdivisions for ACA, 

MCA and PCA were merged and the territory masks were registered as 

previously described. The watershed area masks were defined based on the 

vascular territory maps as in figure 6.3. An overview of the calculated metrics, 

each named according to the vascular territory and the measured parameter is 

shown in table 6.2. In this table, metrics are shown for the three (AIF, R, ΔΜcr)  

out of a total of five considered QUASAR-derived time-signals (AIF, R, ΔΜncr 

ΔΜcr and AIFSH). The omitted ones are the non-crushed signal, referred to as 

1)	ΔΜncr	 2)	ΔΜcr	

5)	Residue	

			3)	ΔΜncr-ΔΜcr	

4)	Weighted	AIF	

1	

2	

3	

4	

5	

Skewness	
kurtosis	

Peak						FW	
HWL						HWR	
									TTP	

				Curves	/single	-me-point								Curves	/single	pixel													Metrics																												ROIs	

W

M
CA

PCA

ACA

+whole brain
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ΔΜncr and the AIFs before assignment (AIFSH). Overall 351 hemodynamic 

features were extracted from the QUASAR signals and used in the subsequent 

analysis. The number of features is very high especially when considering the 

available cohort, hence a number of models examining different feature 

combination was evaluated. Additionally, state-of-the-art feature reduction 

techniques and cross-validation were used to reduce the risk of overfitting and 

noise-modelling. 

 

 
Figure 6.3: Vascular territory masks based on Mutsaerts et al (121) and watershed areas 
for all 7 QUASAR slices. 

 
Table 6.2: An overview of features extracted from 3 curves and the 5 considered ROIs. 
Each feature is named according to the vascular territory (anterior cerebral artery-ACA, middle 
cerebral artery-MCA, posterior cerebral artery – PCA and watershed areas) and hemodynamic 
parameter. 

Metric\ROI WB ACA MCA PCA watershed 
CBF WB CBF ACA CBF MCA CBF PCA CBF W CBF 

ATT WB ATT ACA ATT MCA ATT PCA ATT W ATT 

A
C
A

M
C
A

A
C
A

A
C
A

M
C
A

M
C
A

M
C
A

M
C
A

M
C
A

M
C
A

PCA PCA PCA PCA

A
C
A

A
C
A

A
C
A

A
C
A

White-bands= 
watershed areas
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aBV WB aBV ACA aBV MCA aBV PCA aBV W aBV 

AIF FW WB FWAIF ACA FW AIF MCA FW AIF PCA FW AIF W FW AIF 

AIF HWR WB HWR AIF ACA HWR AIF  MCA HWR AIF  PCAHWR AIF  W HWR AIF 

AIF HWL WB HWL AIF  ACA HWL AIF MCA HWL AIF PCA HWL AIF  W HWL AIF 

AIF TTP WB TTP AIF ACA TTP AIF MCA TTP AIF PCA TTP AIF W TTP AIF 

AIF 
skewness 

WB SKEW 

AIF 

ACA SKEW 

AIF 

MCA SKEW 

AIF 

PCA SKEW AIF W SKEW AIF 

AIF kurtosis WB KURT AIF ACA KURT 
AIF 

MCA KURT 
AIF 

PCA KURT AIF W KURT AIF 

AIF peak WB PEAK  

AIF 

ACA PEAK 

AIF 

MCA PEAK 

AIF 

PCA PEAK AIF W PEAK AIF 

ΔMcr FW WB FW ΔMcr ACA FW ΔMcr MCA FW ΔMcr PCA FW ΔMcr W FW TIS 
ΔMcr 

ΔMcr HWR WB HWR ΔMcr ACA HWR 

ΔMcr 

MCA HWR 

ΔMcr 

PCA HWR ΔMcr W HWR ΔMcr 

ΔMcr HWL WB HWL ΔMcr ACA HWL 

ΔMcr 

MCA HWL 

ΔMcr 

PCA HWL ΔMcr W HWL ΔMcr 

ΔMcr TTP WB TTP ΔMcr ACA TTP ΔMcr MCA TTP ΔMcr PCA TTP ΔMcr W TTP ΔMcr 

ΔMcr 
skewness 

WB SKEW 

ΔMcr 

ACA SKEW 

ΔMcr 

MCA SKEW 

ΔMcr 

PCA SKEW 

ΔMcr 

W SKEW 

ΔMcr 

ΔMcr 
kurtosis 

WB KURT 
ΔMcr 

ACA KURT 
ΔMcr  

MCA KURT 
ΔMcr 

PCA KURT 
ΔMcr 

W KURT 
ΔMcr 

ΔMcr peak WB PEAK 

ΔMcr 

ACA PEAK 

ΔMcr 

MCA PEAK 

ΔMcr 

PCA PEAK 

ΔMcr 

W PEAK 

ΔMcr 

R FW WB FW R ACA FW R MCA FW R PCA FW R W FW R 

R HWR WB HWR R ACA HWR R MC AHWR R PCA HWR R W HWR R 

R HWL WB HWL R ACA HWL R MCA HWL R PCA HWL R W HWL R 

R TTP WB TTP R ACA TTP R MCA TTP R PCA TTP R W TTP R 

R skewness WB SKEW R ACA SKEW R MCA SKEW R PCA SKEW R W SKEW R 

R kurtosis WB KURT R ACA KURT R MCA KURT R PCA KURT R W KURT R 

R peak WB PEAK R ACA PEAK R MCA PEAK R PCA PEAK R W PEAK R 

 

 

6.2.5 Feature reduction and classification 
The primary purpose of implementing a machine learning approach was to 

determine which feature combination provides for a better class-differentiation. 

Due to the large number of features and the limited amount of data with regards 

to the current dataset it is good practice to reduce dimensionality in order to 
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avoid overfitting. A framework proposed by Zacharaki et al. (269) was utilised, 

with minor modifications. The investigated binary classification tasks were:  

a) HV vs T2DM,  

b) HV vs IGT&T2DM,  

c) HV vs IGT and  

d) IGT vs T2DM. 

 

For every task, t-tests were run to retain only the features that were 

significantly different between the groups; the significance threshold was p < 

0.05. Subsequently the retained features were normalized (0 mean, 1 variance) 

and used as an input to the SVM-RFE algorithm (257, 258). SVM-RFE is a 

subset selection method, which allows for the reduction of the problem’s 

dimensionality. This algorithm leaves one feature out in every iteration and 

trains an SVM classifier with the remaining ones. Ranking of the features is 

obtained using the weights assigned to every feature during the classification 

task. The Matlab implementation by Yan and Zhang (280) was utilised. It needs 

to be noted that utilisation of t-tests is highly likely to yield a number of false 

positives resulting from the multiple comparisons between the groups. 

However, the utilised feature dimensionality reduction technique based on the 

SVM classifiers deals with redundant features with overlapping information by 

reducing their associated weights. Hence, it is not necessary to account for 

multiple comparisons since the outcome of t-tests is utilised in a dimensionality 

reduction framework based on SVMs. 

 SVM-RFE was run N times (N is the number of considered subjects in 

the task), leaving one subject out in every iteration ending up with N separate 

rankings for all features which were stored in a table having dimensions [N, 

number of features]. The top-ranked features from every iteration were retained 

and used for the subsequent classification task (figure 6.4). In order to 

determine the classifier’s performance with an increasing number of features 

and identify the ones comprising the optimally differentiating combination, we 

tested several values regarding the number of the retained top-ranked features 

ranging from M = 1 to 50. If, for any of the classification tasks, the number of 

significantly different features between the groups was lower than 50 then the 

actual number of different features was used as a limit. The classification 
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accuracy of linear SVM was evaluated for an increasing M. Following this, the 

optimal M was determined. The number of features associated with this M was 

recorded. Additionally, the number of times every feature occurred in the top-M 

(measured as explained in figure 6.4) was recorded and is presented in the 

results section inside parentheses. 

 
Figure 6.4: Philosophy of the feature ranking and selection method. The SVM-RFE 
algorithm is trained leaving out one subject every time and a ranking occurs for every iteration 
of this procedure, which is stored in a table. Subsequently, a decision is made on the top 
features to be retained. In a simplified experiment with 5 subjects (5 shown rows), retention of 
the top-1 features would end up with 5 features being considered (unique features in the first 
column). If the top-2 features were considered, 7 features would be chosen (8 and 1 occur three 
and two times respectively and so on for an increasing number of top-M retained features. 

 
Classification was run using Matlab functions supplied as part of the 

statistics and machine learning toolbox and linear SVM was chosen. The 

feature combinations evaluated in the classification tasks were: 

1) Hemodynamic features extracted from the ΔΜcr, ΔΜncr, AIFSH curves. 

This feature combination is completely independent from the analysis, as 

these are the original QUASAR curves. The only processing prior to the 
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determination of these signals is the registration of the scans, averaging 

and noisy scan removal (model 1). 

2) Hemodynamic features extracted from the curves comprising the linear 

perfusion system (ΔΜcr, AIF, residue). Both the AIF and residue curves 

depend on the post-processing. The AIF depends on the AIF assignment 

technique and the residue function on the post-processing and 

deconvolution techniques (model 2). 

3) Hemodynamic features extracted from all five hemodynamic curves 

(ΔΜcr, ΔΜncr, AIFSH, AIF, residue) (model 3). 

4) CBF, ATT and aBV maps. These are the typically quantified perfusion 

parameters when the technique is used and are analysis-dependent 

(model 4). 

5) Combination of models 1 & 4 (model 5). 

6) Combination of models 2 & 4 (model 6). 

7) Combination of models 3 & 4 (model 7). 

 

The first three models were built purely to evaluate the ability of the 

hemodynamic curves to provide features leading to an optimal class 

differentiation. With model 4 we wanted to evaluate and present in quantitative 

terms the potential benefit from an analysis approach not confined to the typical 

QUASAR-derived features by evaluating the classification performance based 

solely on these. Hence, we evaluated the accuracy using typically quantified 

QUASAR ASL metrics (CBF, ATT, aBV and CVR) from the considered ROIs. 

We compared the performance of the linear SVM classifier using these, as 

opposed to the performance obtained using a detailed hemodynamic analysis 

as described here. In models 5, 6 and 7 we combined the typically quantified 

QUASAR metrics with the detailed hemodynamic features extracted from the 

first three combinations. For all classification tasks, age, was added in the 

feature vector. In addition to these, the classification was run for models 1, 4 

and 5 only with the baseline data to evaluate the classification accuracy and 

derived patterns assuming the acquisition did not include post-ACZ scans. 

 This combination of t-tests, SVM-RFE and linear SVM was used in order 

to preserve the original features, which cannot be retained if methods such as 

principal component analysis are selected. Hence, it is feasible working 
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backwards to identify the specific features comprising the optimally 

differentiating pattern, potentially leading to biomarker identification.  

 In order to evaluate the classification performance and the 

generalisability of the models leave-one-out cross-validation (LOOCV) was 

used. Cross-validation is an important step in statistical and machine learning 

analysis associated with the predictable power of a model. In small datasets, 

where the ability to separate the available data in training and testing does not 

exist, cross validation is used to evaluate the generalisability of the developed 

model instead.  

 All classification steps were run in Matlab. An SVM model was generated 

using the fitcsvm function, which was used as an input to the crossval function 

by specifying that the desired cross validation scheme is LOOCV. Finally, 

kfoldloss was used to assess the generalisability of the model and the 

prediction accuracy. Furthermore, in order to provide reassurance of the 

reproducibility of our results, the random number generator in Matlab was set to 

‘default’ in every iteration. The alternative approach is to run the classification 

procedure numerous times and record the mean value. Recorded values were: 

accuracy (percentage of correctly classified samples), specificity (percentage of 

correct true positives) and sensitivity (percentage of correct true negatives). A 

model was considered to be optimal by judging the following attributes: a) 

classification accuracy and b) number of features contributing towards optimal 

accuracy. The desirable behaviour of a model is to provide the highest possible 

accuracy with the lowest possible number of features to avoid overfitting. 

 

6.2.6 Statistical comparisons 
Comparisons between the groups were conducted using one-way 

analysis of variance (ANOVA), or its non-parametric equivalent (Kruskal-Wallis), 

when the normality and equality of variance assumptions were violated.  

 

6.3 Results 
6.3.1 Conventional analysis approach 

The mean hemodynamic curves comprising the linear perfusion system 

at a voxel-wise level (AIF, residue, tissue) calculated for every subject group 
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along with a semi-transparent region corresponding to the standard deviation 

are plotted in figure 6.5. 

 
Figure 6.5: Hemodynamic time series curves for every group. From top to bottom AIF, the 

residue function and the tissue curve are shown for the 3 groups for 4 ROIs (ACA, MCA, PCA, 

watershed areas) pre and post-ACZ injection. 
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Results for the whole brain ATT, aBV, GM and WM CBF pre and post- ACZ, 

CVR and the volume of GM, WM and CBF inside the brain volume covered with 

the ASL protocol are shown in table 6.3. 

 
Table 6.3: Quantified values for CBF, aBV, ATT and CVR using the developed QUASAR 
ASL quantification pipeline for the scanned cohort. 

 HV (16) IGT (10) T2DM (16) p-value 
Age (years) 50.0±12.0 54.1±5.5 54.5±11.8 0.47 

GM CBF 

baseline 

(ml/100g/min) 

55±5.9 55.7±4.7 60.8±4.2 0.01 

GM CBF post-

ACZ  

(ml/100g/min) 

63.6±5.9 59.8±3.6 61.2±4.8 0.17 

WM CBF 

baseline 

(ml/100g/min) 

23±2.4 23.3±2.1 24.6±1.6 0.15 

WM CBF post-

ACZ  

(ml/100g/min) 

24.8±1.7 24.8±2.1 24.7±2 0.98 

CVR (%) 16.4±13.1 7.7±6.5 0.8±5.7 < 0.001 

ATT baseline 

(s) 

0.62±0.04 0.61±0.05 0.65±0.05 0.13 

ATT post-ACZ 

(s) 

0.55±0.07 0.62±0.07 0.59±0.08 0.08 

aBV baseline 

(%) 

1.1±0.4 1.3±0.3 1.1±0.3 0.05 

aBV  post-ACZ 

(%) 

0.9±0.3 1.1±0.4 1±0.2 0.19 

 

Significant differences were detected for GM CBF baseline (F(2,39) = 

5.807, p = 0.01), CVR (χ2(2) = 16.826, p < 0.01) and aBV baseline (χ2(2) = 

5.832, p = 0.05). When examining specific ROIs, the only significant difference 
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was for ACA ATT post-ACZ (F(2,39) = 3.89, p = 0.03). The absence of 

differences between the groups in CBF within the examined vascular territories 

and watershed areas (when in the meantime differences were identified for GM 

CBF and CVR) could be attributed to the fact that the CBF values within the 

examined vascular territories were not PV corrected and hence reflect the total 

GM and WM CBF. Following multiple comparison correction with FDR the only 

remaining significant difference was for CVR (p=0.004). 

 

Metrics differing between the groups based on conventional QUASAR analysis 

were: baseline GM CBF, CVR, baseline aBV and ACA ATT post-ACZ.  

 
6.3.2 Extended hemodynamic analysis 

In this section, results based on the newly quantified hemodynamic 

features are presented. Every model is examined separately. Results are also 

presented solely for the baseline perfusion data. For every model, accuracy, 

specificity and sensitivity values are reported for the best performing (highest 

accuracy) feature combination. Additional recorded data involve: a) the number 

of features (NF) giving optimal performance; b) the top-M features, where M 

differs from NF as described in figure 6.4; c) the top features (maximum = 10); 

d) the number of SVM-RFE iterations for which the feature under consideration 

was identified in the top-M. The number of subjects included in a task defines 

the maximum occurrence for a feature. For the HV vs T2DM task maximum 

occurrence was 32; for the HV vs IGT&T2DM 42; for HV vs IGT 26 and for IGT 

vs T2DM 26. 

 
First feature combination 
Overall number of quantified features: 211. 

For the HV vs T2DM task, 59 features were significantly different 

following t-tests. The maximum accuracy was 96.9% (sensitivity = 100%, 

specificity = 93.8%) achieved with 27 features identified in the top-12 of the 

SVM-RFE matrix. 10 out of the 27 features (the ones with maximum 

occurrence) are shown in table 6.4. 
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Table 6.4: Model 1, HV vs T2DM task top-10 features identified with SVM-RFE giving 
optimal performance, accompanied with a number indicating their occurrence (Occ.) in 
the top-M.  

Feature Occ. (times) Feature Occ. (times) 
ACA TTP AIFSH post-ACZ 32 ACA KURT AIFSH 

baseline 

31 

ACA SKEW AIFSH  
baseline 

32 ACA TTP ΔΜncr post-ACZ 28 

ACA HWL AIFSH post-

ACZ 

32 ACA SKEW ΔΜcr post-

ACZ 

27 

PCA HWR ΔΜcr post-ACZ 32 W KURT ΔΜcr baseline 27 

PCA FW ΔΜcr post-ACZ 32 WB HWL AIFSH post-ACZ 25 

 

For the HV vs IGT&T2DM task, 85 features were significantly different. 

Maximum accuracy of 92.9% was achieved (sensitivity = 93.8%, specificity = 

87.5%) with 14 features identified in the top-4 of the SVM-RFE matrix (table 

6.5). 

 
Table 6.5: Model 1, HV vs IGT&T2DM task top-10 features identified with SVM-RFE giving 
optimal performance along with their occurrence in the top-M. 

Feature Occ. (times) Feature Occ. (times) 
PCA HWR ΔMcr post-

ACZ  

42 PCA HWL AIFSH baseline 15 

MCA SKEW ΔMcr post-

ACZ 

35 ACA SKEW AIFSH 

baseline 

7 

ACA SKEW ΔMcr post-

ACZ 

18 ACA HWL AIFSH post-

ACZ 

6 

W KURT ΔMcr  baseline 18 W KURT AIFSH baseline 4 

ACA KURT AIFSH 

baseline 

17 ACA TTP ΔΜncr post-ACZ 3 

 

For the HV vs IGT task 85 features differed significantly between the 

groups. Maximum accuracy of 100% was achieved with 5 features that made it 

to the top-3 of the SVM-RFE matrix; these were: PCA HWL AIFSH post-ACZ  

(26), PCA TTP AIFSH post-ACZ (26), W KURT ΔΜcr post-ACZ (17), PCA HWL 

ΔΜncr post-ACZ (8) and ACA TTP ΔΜncr post-ACZ (1). For the IGT vs T2DM 

task, 6 features differed significantly and the accuracy was 65.4% (specificity = 

40%, sensitivity = 81.3%) with 4 features (top-1 in the SVM-RFE matrix); These 
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were W HWR ΔΜcr baseline (14), MCA TTP AIFSH baseline (8), ACA KURT 

ΔΜncr post-ACZ (2), PCA HWL ΔΜncr post-ACZ (2). 

 
Second feature combination 
Overall number of quantified features: 211. 

For the HV vs T2DM task, 71 features differed significantly. Maximum 

accuracy was achieved with 7 features (top-3 in the SVM-RFE matrix) and was 

84.4% (sensitivity = 87.5%, specificity = 81.3%); these were: WB TTP R post-

ACZ (32), WB HWL R post-ACZ (32), ACA HWL R post-ACZ (25), PCA TTP R 

post-ACZ (4), ACA TTP R post-ACZ (1), MCA HWL R post-ACZ (1) and W 

KURT ΔΜcr baseline (1). For the HV vs IGT&T2DM task 85 features differed 

significantly. Maximum accuracy was 83.3% (sensitivity = 88.5%, specificity = 

68.8%) achieved with 5 features (W KURT AIF baseline (2), WB HWL R post-

ACZ (37), MCA SKEW ΔΜcr post-ACZ (1), WB TTP R post-ACZ (1), PCA HWR 

ΔΜcr post-ACZ (1)) that made it to the top-1 of the SVM-RFE matrix.  

For the HV vs IGT task 86 features were significantly different, maximum 

accuracy was 92.3% (sensitivity = 80%, specificity = 100%) with 7 features that 

made it to the top-3 (SVM-RFE matrix); these were: PCA TTP R post-ACZ (26), 

PCA HWL R post-ACZ (26), PCA HWR AIF post-ACZ (13), PCA FW AIF post-

ACZ (10), W KURT ΔΜcr post-ACZ (1) and PCA HWL AIF post-ACZ (1) and WB 

TTP AIF post-AZC (1). For the IGT vs T2DM task, 10 features differed 

significantly between the groups. Maximum accuracy was 69% (sensitivity = 

87.5%, specificity = 50%) achieved with 5 features that made it to the top-1 of 

the SVM-RFE matrix. These were: MCA HWL R baseline (17), MCA HWL AIF 

baseline (4), W HWR ΔΜcr baseline (2), ACA PEAK AIF baseline (2) and WB 

HWL AIF baseline (1). 

 
Third feature combination 
Overall number of quantified features: 351. 

For the HV vs T2DM task, the significantly different features were 116. 

The maximum accuracy was 93.8% (sensitivity = 87.5%, specificity = 100%) 

achieved with 9 features that made it to the top-3 of the SVM-RFE matrix (table 

6.6). 
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Table 6.6: Model 3, HV vs T2DM task top-10 features identified with SVM-RFE giving 
optimal performance along with their occurrence in the top-M. 

Feature Occ. (times) Feature Occ. (times) 
WB HWL R post-ACZ  32 PCA TTP R post-ACZ 3 

WB TTP R post-ACZ 28 W KURT AIFSH baseline 2 

ACA SKEW AIFSH 

baseline 

18 PCA HWL R post-ACZ 1 

ACA TTP AIFSH post-

ACZ 

7 W KURT ΔΜcr baseline 1 

ACA HWL R post-ACZ 4   

For the HV vs IGT&T2DM task 153 features differed, the maximum 

achieved accuracy was 88.1% (sensitivity = 92.3%, specificity = 81.3%) 

achieved with 42 features (table 6.7) that made it at least for one iteration of the 

SVM-RFE to the top-19 features. 

 
Table 6.7: Model 3, task HV vs IGT&T2DM top-10 features identified with SVM-RFE giving 
optimal performance along with their occurrence in the top-M. 

Feature Occ. (times) Feature Occ. (times) 
WB HWL R post-ACZ 42 ACA HWL ΔΜncr post-

ACZ 

42 

WB TTP R post-ACZ  42 PCA TTP R baseline  41 

ACA TTP ΔΜncr post-

ACZ 

42 PCA HWL R post-ACZ 41 

PCA HWL AIFSH post-
ACZ 

42 PCA HWR ΔΜcr post-
ACZ 

41 

W KURT ΔΜcr 

baseline  

42 W KURT AIFSH baseline  39 

 

For the HV vs IGT task 148 features differed; for 2 features that made it 

to the top-1 (SVM-RFE matrix) the accuracy was 92.3% (70% sensitivity, 100% 

specificity). These features were: PCA HWL AIFSH post-ACZ (21) and PCA TTP 

R post-ACZ (5). For the IGT vs T2DM task 15 features differed significantly, 

maximum accuracy was 69.2% (sensitivity = 75%, specificity = 50%) achieved 

with 11 features that made it to the top-4 (SVM-RFE matrix). These were as in 

table 6.8. 

 



	 149	

Table 6.8: Model 4, IGT vs T2DM task, top-10 features identified with SVM-RFE giving 
optimal performance along with their occurrence in the top-M. 

Feature Occ. (times) Feature Occ. (times) 
W HWR ΔΜcr baseline 21 MCA TTP AIFSH baseline  9 

ACA KURT ΔΜncr post-

ACZ  

20 PCA HWL ΔΜncr post-

ACZ  

6 

W PEAK R baseline  14 MCA HWL AIFSH baseline  4 
MCA HWL R baseline  13 MCA KURT ΔΜncr post-

ACZ  

2 

ACA PEAK AIF baseline  12 MCA HWL AIF baseline  2 

 

Fourth feature combination 
Overall number of quantified features: 34. 

For the HV vs T2DM task, 3 features were different following t-tests, the 

maximum accuracy was 81.3% (sensitivity = 87.5%, specificity = 75%) achieved 

with 1 feature (CVR - 32). For the HV vs IGT&T2DM task 7 features were 

significantly different, maximum accuracy of 81.0% (sensitivity = 92.3%, 

specificity = 62.5%) was achieved with minimum four features (top-3 in the 

SVM-RFE matrix): CVR (42), GM CBF baseline (32), ACA ATT post-ACZ (41) 

and PCA CBF post-ACZ (11).  

For the HV vs IGT task, 6 features were significantly different, maximum 

accuracy was 73.1% (sensitivity = 50%, specificity = 81.3%) with 6 features 

(WB ATT post-ACZ (2), ACA ATT post-ACZ (26), PCA aBV post-ACZ (25), ACA 

CBF post-ACZ (2), W CBF post-ACZ (22) and MCA ATT post-ACZ (1)) 

identified in the top-3 of the SVM-RFE matrix. For the IGT vs T2DM task, 4 

features were significantly different and the accuracy was 73.1% (sensitivity = 

81.3%, specificity = 70%) with all 4 features (GM CBF baseline, CVR, W CBF 

baseline, ACA aBV baseline).  

 

Fifth feature combination 
Overall number of quantified features: 244. 

For the HV vs T2DM, 62 features were different, maximum accuracy was 

90.6% (sensitivity = 93.8%, specificity = 87.5%) with 6 features identified to the 

top-3 of the SVM-RFE matrix (PCA HWR ΔΜcr post-ACZ (3), ACA TTP AIFSH 

post-ACZ (30), ACA SKEW AIFSH baseline (1), ACA HWL AIFSH post-ACZ (27) 
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GM CBF baseline (3), CVR (32)). For the HV vs IGT&T2DM task 92 features 

differed, the maximum accuracy was 92.9% (sensitivity = 96.2%, specificity = 

87.5%) achieved with 11 (table 6.9) features that made it to the top-3 of the 

SVM-RFE matrix. 

 
Table 6.9: Model 5, HV vs IGT&T2DM task top-10 features identified with SVM-RFE giving 
optimal performance along with their occurrence in the top-M. 

Feature Occ.(times) Feature Occ. (times) 
CVR 36 PCA HWL AIFSH post-

ACZ  

2 

MCA SKEW ΔΜcr post-

ACZ 

31 ACA TTP ΔΜncr post-

ACZ  

2 

ACA HWL AIFSH post-
ACZ 

23 GM CBF baseline  2 

PCA HWR ΔΜcr post-

ACZ  

20 W KURT ΔΜcr baseline 1 

ACA SKEW AIFSH 

baseline  

7 ACA TTP AIFSH post-

ACZ  

1 

 

For the HV vs IGT task 91 features differed significantly, accuracy was 

100% with 5 features that made it to the top-3 in the SVM-RFE matrix (W KURT 

ΔΜcr post-ACZ (17), PCA TTP AIFSH post-ACZ (26), PCA HWL AIFSH post-ACZ 

(26), PCA HWL ΔΜncr post-ACZ (8) and ACA TTP ΔΜncr post-ACZ (1)). For the 

IGT vs T2DM task 10 features differed, the accuracy of 80.7% (sensitivity = 

87.5%, specificity = 70%) was achieved with 7 features that were identified to 

the top-1 of the SVM-RFE matrix (GM CF baseline (10), CVR (9), ACA ABV 

baseline (2), PCA HWL ΔΜncr post-ACZ (2), W HWR ΔΜcr baseline (1), ACA 

KURT ΔΜncr post-ACZ (1) MCA KURT ΔΜncr post-ACZ (1)). 

 
Sixth feature combination 

Overall number of quantified features: 244. 
For the HV vs T2DM task 74 features were significantly different. The 

highest accuracy was 93.8% (sensitivity = 93.8%, specificity = 93.8%) achieved 

with three features that made it to the top-2 of the SVM-RFE matrix (WB HWL R 

post-ACZ (31), WB TTP R post-ACZ (26) and CVR (7)). For the HV vs 

IGT&T2DM task, 92 features differed significantly, the maximum accuracy was 
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83.3% (sensitivity = 88.5%, specificity = 75%) achieved with 23 features (table 

6.10) that made it to the top-13 (SVM-RFE matrix). 

 
Table 6.10: Model 6, HV vs IGT&T2DM task top-10 features identified with SVM-RFE 
giving optimal performance 

Feature Occurrence 
(times) 

Feature Occurrence 
(times) 

CVR  42 PCA HWR ΔΜcr post-ACZ 42 

WB HWL R post-ACZ  42 ACA SKEW ΔΜcr post-

ACZ  

42 

MCA SKEW ΔΜcr post-

ACZ  

42 MCA SKEW ΔΜcr post-

ACZ 

42 

  W KURT AIF baseline  40 

WB TTP R post-ACZ 42 W KURT  ΔΜcr baseline 38 

 

92 features were significantly different between the groups for the HV vs 

IGT task. 92.3% (sensitivity = 80%, specificity = 100%) was the maximum 

accuracy achieved with 6 features that made it to the top-3 in the SVM-RFE 

matrix; these were: PCA TTP R post-ACZ (26), PCA HWL R post-ACZ (26), 

PCA HWR AIF post-ACZ (14), PCA FW AIF post-ACZ (10), PCA HWL AIF post-

ACZ (1) and W KURT ΔΜcr post-ACZ (1). For the IGT vs T2DM task 14 features 

differed significantly. Maximum achieved accuracy was 65.4% (sensitivity = 

75%, specificity = 50%) with 11 features that made it to the top-5 of the SVM-

RFE matrix. 

 

Seventh feature combination 
Overall number of quantified features: 384. 

For the HV vs T2DM task, the number of significantly different features 

identified with t-tests was 119. Following SVM-RFE implementation the 

maximum achieved accuracy was 84.4% (sensitivity = 93.8%, specificity = 75%) 

achieved with a minimum of 3 features, these features made it to the top-1 in 

the SVM-RFE matrix and were as follows: WB HWL R post-ACZ (29), WM TTP 

R post-ACZ (2) and ACA TTP AIFSH post-ACZ (1). 

For the HV vs IGT&T2DM task, the significantly different features 

identified with t-tests were 160. The maximum achieved accuracy was 88.1% 
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(sensitivity = 88.5%, specificity = 87.5%) achieved with a minimum of 22 

features that made it at least once to the top-7 in the SVM-RFE matrix. The 

identified top-10 features can be found in table 6.11.  

 
Table 6.11: Model 7, HV vs IGT&T2DM task top-10 features identified with SVM-RFE 
giving optimal performance along with their occurrence in the top-M. 

Feature Occ. (times) Feature Occ. (times) 
WB HWL R post-ACZ  42 ACA TTP ΔΜncr post-ACZ  24 

CVR 35 PCA HWL R post-ACZ 21 

ACA HWL ΔΜncr post-
ACZ 

34 PCA HWR ΔΜcr post-
ACZ  

13 

WB TTP R post-ACZ  32 W KURT AIF baseline 11 

W KURT ΔΜcr baseline 31 PCA TTP R post-ACZ 11 

 

For the HV vs IGT task, the significantly different features identified with 

t-tests were 154. The maximum accuracy was 92.3% (sensitivity 70%; 

specificity 100%) achieved with 2 features (PCA TTPR post-ACZ (5) and PCA 

HWL AIFSH post-ACZ (21)) that made it to the top-1 of the SVM-RFE matrix. For 

the IGT vs T2DM task, the significantly different features identified with t-tests 

were 19. The maximum recorded accuracy was 80.7% (sensitivity = 81.3%, 

specificity = 80%) for 6 features (MCA HWL R baseline (1), W HWR ΔΜcr 

baseline (1), PCA HWL ΔΜncr post-ACZ (2), GM CBF baseline (17), CVR (4), 

ACA aBV baseline (1)), all made it to the top-1 (SVM-RFE matrix) at least once. 

A summary of the model performance, the identified number of features 

and the number of significant features per task, can be found in the Appendix1 

in table A6.1. In table A6.2, the accuracy, sensitivity, specificity, NF and the top-

5 features are shown for the best two performing models per task. Finally, in 

figure 6.6 the classification accuracy as a function of the number of features 

incorporated in the task is plotted for models 1,2,4,5 and 6. 

 

Overall models 1 and 5 had the optimal performance for the HV vs T2DM, HV 

vs IGT&T2DM and HV vs IGT tasks. For the IGT vs T2DM task, models 5 and 7 

were the optimal. Perfect classification (100%) was achieved for the HV vs IGT 

task. Classification was also very high for the HV vs T2DM task (96.9%). The 

performance for IGT and T2DM separation was lower compared to other tasks.  
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Figure 6.6: Model accuracy for every classification task obtained using LOOCV as a 
function of the number of features for models 1,2,4,5 and 6. 
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6.3.3 Classification based just on the baseline scan 
 

Model 1 

106 features were identified, for the HV vs T2DM task, 11 differed 

significantly, the calculated 75% accuracy (sensitivity = 62.5%, specificity = 

68.8%) was achieved with one feature: ACA SKEW AIFSH. For the HV vs 

IGT&T2DM task, 23 features were different; the achieved accuracy was 81.0% 

(sensitivity = 92.3%, specificity = 62.5%), achieved with 6 features (PCA KURT 

ΔΜcr (4), W KURT ΔΜcr (12), ACA SKEW AIFSH (31), W KURT AIFSH (26), ACA 

KURT ΔΜncr (9) and W KURT ΔΜncr (2)) that made it to the top-2 in the SVM-

RFE matrix. For the HV vs IGT task, 24 features were different, the achieved 

accuracy was 61.5% (sensitivity = 40%, specificity = 62.5%) achieved with 10 

features (top-5: W HWR ΔΜcr (16), WB TTP ΔΜncr (14), WB HWL ΔΜncr (6), W 

FW ΔΜcr (5) and MCA TTP ΔΜncr (4)) that made it to the top-2 in the SVM-RFE 

matrix. For the IGT vs T2DM task, 3 features differed significantly and the 

maximum accuracy with all 3 (W HWR ΔΜcr, MCA TTP AIFSH, MCA HWL AIFSH, 

all with an occurrence of 26) was 69.2% (sensitivity = 81.3%, specificity = 50%). 

 

Model 4 

17 features were identified. For the HV vs T2DM task, 2 features differed 

significantly, 71.9% was the maximum accuracy (sensitivity = 62.5%, specificity 

= 62.5%) achieved with minimum 1 feature (GM CBF). For the HV vs 

IGT&T2DM task 1 features differed, maximum accuracy was 64.3% (sensitivity 

= 88.5%, specificity = 18.8%) with 1 feature (GM CBF). For the HV vs IGT task, 

no features differed significantly between the groups. For the IGT vs T2DM 

task, 3 features were significantly different; maximum accuracy was 76.9% 

(sensitivity = 75%, specificity = 80%) with all three features (GM CBF, W CBF, 

ACA aBV). 

 

Model 5 

122 features were identified. For the HV vs T2DM task 13 features 

differed; maximum performance was 75% (sensitivity = 75%, specificity = 75%) 

with 2 features (ACA SKEW AIFSH (29), GM CBF (3)) that made it to the top-1. 

For the HV vs IGT&T2DM task 24 features differed significantly, maximum 
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accuracy of 78.6% (sensitivity = 88.5%, specificity = 62.5%) was achieved with 

7 features (top-5: W KURT AIFSH (15), ACA SKEW AIFSH (32), ACA KURT 

ΔΜncr (18), W KURT ΔΜcr (9), PCA KURT ΔΜcr (6)) that made it to the top-2 in 

the SVM-RFE matrix. For the HV vs IGT task 24 features differed, maximum 

accuracy was 61.5% (sensitivity = 70%, specificity = 86.4%) with 10 features; 

the same as for model 1. For the IGT vs T2DM task 24 features differed 

significantly, maximum accuracy was 61.5% (sensitivity = 40%, specificity = 

62.5%) achieved with 4 features (top-1) these were W HWR ΔΜcr (6), GM CBF 

(18), W CBF (1), ACA aBV (1). In table 6.12 a summary can be found facilitating 

comparisons between the performance based on features derived from the 

baseline scans and for both baseline and post-ACZ for all 4 tasks and the 3 

models. 

 
Table 6.12: Comparison between the performance of models based solely on the baseline 
scan and models based on both pre and post-ACZ scans. NF1 refers to the initial number of 
significantly different features following t-tests. NF2 refers to the number of features contributing 
towards optimal class-differentiation following SVM-RFE and training of the SVM classifier. Acc. 
Is the recorded classification accuracy. 

Model NF1  Acc. (%) NF2  NF1  Acc. (%) NF2 
 Only baseline Baseline & post-ACZ 

Healthy volunteers vs type-2 diabetes 
1 11 75 1 59 96.9 27 

4 2 71.9 1 3 81.3 1 

5 13 75 2 62 90.6 6 

Healthy volunteers vs type-2 diabetes & impaired glucose tolerance 
1 23 81 6 85 92.9 14 

4 1 64.3 1 7 81.0 4 

5 24 78.6 7 92 92.9 11 

Healthy volunteers vs impaired glucose tolerance 
1 24 61.5 10 85 100 5 

4 0 N/A 0 6 73.1 6 

5 24 61.5 10 91 100 5 

Impaired glucose tolerance vs type-2 diabetes 
1 3 69.2 3 6 65.4 4 

4 3 76.9 3 4 73.1 4 
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5 6 76.9 4 10 80.7 7 

 

For every task the performance was increased when using both baseline and 

post-ACZ features. This is particularly noticeable for the HV vs IGT task. The 

results indicate that an additional perfusion acquisition following induced 

vasodilation can provide invaluable information on hemodynamic alterations 

and contribute towards optimal class-separation. 

Optimal features emerged from all vascular territories and mainly captured the 

pattern of delayed and dispersed bolus delivery (e.g. HWL, TTP, KURT). From 

the typically quantified QUASAR metrics, CVR was the one identified most 

often as part of the optimal patterns. The majority of important features 

emerged from the post-ACZ acquisition. 

 

 

 

6.4 Discussion  
	
Increased GM CBF and reduced CVR were detected in hyperglycemia 

Our findings suggest that baseline CBF is increased in T2DM compared 

to HV, and IGT demonstrates a similar pattern to T2DM. This has been found in 

only a few studies and could suggest the existence of a potential compensatory 

mechanism to account for impaired oxygen delivery to the tissue. Vasodilation 

as a response to tissue hypoxia has been found in diabetes (302). Glycated 

hemoglobin (HbA1c), which is higher than normal in both IGT and T2DM has an 

increased heme-oxygen affinity. The oxygen dissociation curve of this 

hemoglobin species is shifted compared to normal and this underlies tissue 

hypoxia (303). Insufficient oxygen and glucose retention by the tissue due to 

insulin resistance could result in the observed compensatory mechanism 

causing dilation with increased amounts of blood flowing to the tissue. Following 

vasodilation a big increase in the GM CBF value was observed for healthy 

individuals. This change captured by CVR was lower in IGT and even lower in 

T2DM compared to HV. 

Increased baseline CBF and reduced CVR in T2DM suggest that 

maximum vasodilation has been reached at baseline since pharmacologically 
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induced vasodilation, which is supposed to mimic the physiological one, does 

not lead to the anticipated blood flow increase. Our findings, regarding the 

response to a vasodilating stimulus, are in line with transcranial Doppler, 

internal carotid blood flow and BOLD studies reporting reduced responses (15, 

42, 53). These techniques are substantially different from ASL since the first 

two are focused on the velocity of red blood cells and the second does not 

quantify baseline and post-stimulus values but rather the observed change. 

There is no published study currently examining cerebral perfusion in T2DM 

using a multi-TI/PLD ASL approach. The single-PLD approaches have detected 

a lower or similar baseline CBF value in T2DM compared to HV and a lower 

CVR (15, 36).  

The increased baseline CBF finding could also be connected with the 

findings of van Bussel et al. (304); in their study examining the default mode 

network they found a better more efficient organization of the network in T2DM 

and pre-diabetes. This finding, similarly to the increased baseline perfusion 

observed here, might indicate an early compensatory mechanism, in a 

cognitively asymptomatic population, preceding cognitive decline. In their study, 

as in ours, the population was neurologically normal. 

Brain perfusion in T2DM is hypothesised to be impaired as a result of 

endothelial dysfunction and BBB disruption (10, 51). The inconsistency of 

perfusion imaging findings in diabetes could be attributed both to cohort 

idiosyncrasies (usually the studies involve small cohorts) and to the utilised 

imaging techniques. When considering the adopted perfusion imaging 

approaches, both sequence parameters and post-processing approaches can 

vary and have the potential to impact the observed perfusion values and affect 

the resulting conclusion.  

One of the factors that can vary, especially in single-PLD ASL MRI 

studies is the PLD value per se. In Moya-Moya patients it has been shown that 

a single-PLD approach underestimates perfusion compared to multi-PLD 

implementations, which also demonstrate a better agreement with PET 

measurements (305). Increased ATT does not necessarily lead to perfusion 

underestimation (the perfusion peak is missed) as it can lead to overestimation 

due to slower magnetization relaxation inside the blood (125). A technique 

insensitive to transit time changes such as the one used in this study is unlikely 
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to miss the perfusion peak and could potentially shed light upon the underlying 

perfusion pattern. In addition to this, time-resolved ASL and in particular 

QUASAR ASL has the potential to provide rich information that can be used to 

unravel abnormal cerebral perfusion patterns. Its competitive advantage is the 

retention of hemodynamic signals allowing for a detailed hemodynamic 

analysis. 

 It is important to emphasise that our results are corrected for potential 

atrophy due to the use of a partial volume correction method, thus reflecting the 

actual perfusion value in the existing cortical GM.  

 Usually in brain perfusion studies, CBF and CVR are quantified and in 

more rare cases arterial or mean transit time are also determined. A more 

detailed hemodynamic analysis is not typically conducted. 

 

Extended hemodynamic analysis of ASL signals provides additional 
insight into hemodynamic impairment. 
	
Per model analysis 

It was shown that the hemodynamic curves representing the pattern of 

delivery of water to the tissue are different between healthy individuals and 

subjects with diabetes and pre-diabetes. By carefully examining figure 6.5 it can 

be seen that baseline T2DM curves have a higher peak and are wider than the 

HV ones. Following ACZ injection, the anticipated increase is observed in the 

peak value in all curves for HV, a lower increase in IGT and an even lower 

increase in T2DM for all examined ROIs. IGT curves at baseline are more 

similar to HV curves and the post-ACZ curves are more similar to the diabetes 

curves. This observation could suggest that a compensatory mechanism has 

not yet been established for IGT. This pattern, which can be characterised in a 

qualitative manner by observing figure 6.5, has also been captured by our more 

detailed hemodynamic analysis. The evaluated models combined 

hemodynamic features extracted from processed and unprocessed QUASAR 

data.  

 It should be noted that the AIFSH, ΔΜcr and ΔΜncr signals are based on 

originally acquired signals and not on any subsequent processing, which can 

have an impact on the observed differences. These signals comprised model 1 

for which a very high accuracy in the examined classification tasks was 
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achieved. This finding is of great importance, since, if a significant pattern was 

not captured by the original unprocessed ASL signals, a potential high 

performance after processing could imply that this was the effect of modelling.  

 The second evaluated model comprised metrics extracted solely from the 

three hemodynamic curves comprising the linear perfusion model (AIF -> 

residue -> ΔΜcr). The third examined model comprised features from all 5 

hemodynamic curves. Along with the detailed hemodynamic features extracted 

for the first time from the QUASAR signals, typically quantified QUASAR 

metrics were also determined. ATT, aBV and CBF are also extracted from the 

hemodynamic curves. CBF is quantified as the peak of the residue function, 

ATT is the difference in the rising times of the AIF and ΔΜcr signals and aBV is 

the area under the arterial signal curve scaled by several parameters related to 

the theoretical bolus area. These typically quantified QUASAR features 

constituted the fourth evaluated model. When model 4 was used, the 

performance for all tasks was reduced with only one exception, task 4, where it 

was one of the three best models. In models 5, 6 and 7, model 4 was combined 

with different combinations of hemodynamic curves.  

 

Per task analysis 
For the HV vs T2DM task, we observed that the best models were model 

1 and model 6. Model 1 had a very high performance achieved with a large 

number of features. Models 3, 5 and 6 also achieved a high performance 

though with a smaller number of features. Interestingly enough, model 6 had a 

high performance with only 3 features. When only the QUASAR-derived 

features were used, the model’s accuracy (model 4) was 81.3%, lower than the 

accuracy of models 1, 5 and 6 indicating that the consideration of additional 

hemodynamic features is beneficial for accurate class-differentiation. Most 

importantly, the features leading to optimal separation between HV and T2DM 

based on the top-performing models emerged mainly from the ACA and PCA 

territories, the whole brain and from GM.  

For the HV vs IGT & T2DM task, high accuracy (lower than the HV vs 

T2DM task) was achieved with model 1 and model 5. This task investigated 

whether the IGT and T2DM groups, if put together, could be accurately 
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separated from HV. The high performance suggests that IGT and T2DM could 

be potentially considered as one distinct group.  

For the HV vs IGT task, when the QUASAR-derived features alone were 

considered, the accuracy was 73.1%. When models 1 and 5 were used, the 

classification accuracy was perfect (100%) and more importantly, achieved with 

a low number of features indicating that the considered extended analysis 

captures better the difference between HV and IGT than a conventional 

QUASAR analysis. These features were the same for both models. They stem 

from the PCA and ACA territories and watershed areas and were all extracted 

from the post-ACZ curves indicating that the main difference between the 

groups was not at baseline but following the vasodilating stimulus. They are all 

capturing the time it takes for the tracer to reach the peak in the PCA and ACA 

territories and the pattern of dispersion in watershed areas.   

The classification accuracy when conducting analysis of the baseline 

scan for the HV vs IGT task was far lower (61.5%) compared to the recorded 

100% when features from both pre- and post-ACZ acquisitions were used. This 

observation is of great importance, since it suggests that at baseline the 

perfusion differences between IGT and HV are less prominent compared to the 

post-ACZ ones. Based on hemodynamic features examining the response to a 

vasodilating stimulus, classification of HV vs IGT was perfect, suggesting that a 

distinct hemodynamic pattern for IGT is absent at rest but has already 

developed for tasks requiring increased blood flow. Hence, when investigating 

early hemodynamic impairment, recording the response to a stimulus could be 

of additional prognostic or diagnostic benefit. 

For the IGT vs T2DM task, all models had a relatively lower performance 

compared to the previous tasks. Model 1, which was optimal for the other tasks, 

provided a low accuracy of 65.4%.  Models 7 and 5 had a higher accuracy 

(80.7%), based mainly on typically quantified QUASAR features. The number of 

significantly different features between the groups also is of great interest since 

on its own it is indicative of an existing pattern. For the first three tasks when 

considering the top performing models examining normoglycemia vs 

hyperglycemia, the number of identified features ranged between 59 and 92 

depending on the task and model. For the fourth task this number ranged 

between 4 and 10. 
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Overall top-scoring features extracted from the hemodynamic curves for 

the first three tasks involved TTP, skewness and HWL, which are indicative of 

the delays in the delivery of the tracer to the tissue and kurtosis and HWR 

which capture the dispersion profile of the delivered bolus. 

 The performance of the model is not the only metric that one should 

focus on. We should not forget that the utilised sample size is small so a large 

number of features comparable to the sample size could imply that the 

classification performance is a result of overfitting. In tasks and models where 

the number of features giving high classification was small (i.e. models 3, 5, 6, 

HV vs T2DM task; models 1, 3, 5, HV vs IGT task) confidence can increase 

about the generalisability of the result. LOOCV, which was used as a safeguard 

for overfitting, is a robust method which is used to address such issues, 

however it is known to provide optimistic values with regards to the 

generalisability error (267).  

 It should be emphasised that the goal of this part of the study was not to 

build a robust classifier to be used as a ‘stand-alone’ model. Rather, based on 

our data and by acknowledging the limitations posed by our sample size, we 

attempted to capture a pattern describing the differences between our groups, 

using methods adept for small datasets. The generalisability of the model was 

assessed using cross-validation. We demonstrated a certain tendency captured 

by QUASAR ASL. This tendency was particularly strong for HV vs T2DM and 

HV vs IGT tasks, where the accuracy was high and the number of utilised 

features by the classifier very low.  

 A detailed hemodynamic analysis, as described in this chapter, is not 

typically conducted. The majority of ASL protocols do not actually allow for such 

an analysis, since they are single time-point or they do not utilise vascular 

crushers. However, this work has shown that considering multiple metrics, 

which can capture the whole shape of the hemodynamic curves, holds great 

potential to better characterise the underlying perfusion pattern and thus 

distinguish subtle differences between normal from abnormal. This 

hemodynamic analysis could be used in other diseases affecting brain 

perfusion, whether severe or subtle, in order to monitor hemodynamic 

alterations over time, or between groups.  
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It is important to note that this pipeline utilised a model-free post-

processing approach, whereby inferences about hemodynamic curves and 

curve-fitting are avoided. This makes the technique less robust to noise, but 

avoids using models based on assumptions that could be violated, particularly 

due to existing pathological alterations. Even in this implementation, not all 

priors could be avoided. A value of 91% inversion efficiency was assumed, 

based on published QUASAR measurements (154). Also, a single value for the 

relaxation time of the blood was used (T1b = 1.65s) for every subject. However, 

it is known that T1b varies with the value of the hematocrit (306), it is also 

known to be different between normoglycemia and hyperglycemia (307). At the 

time when the subjects were scanned, their hematocrit was not recorded. 

Another factor to be taken into account with regards to the acquisition is that for 

all subjects the velocity threshold when the crusher gradients were on, was 

4cm/s. For subjects with athelosclerosis and delayed perfusion, there is a 

chance that the intravascular signal will not be crushed properly due to its low 

velocity compared to healthy volunteers. 

 

6.5 Conclusions 
In this chapter, we investigated in depth cerebral hemodynamics in IGT 

and T2DM using a conventional and an extended hemodynamic analysis 

approach. Conventional perfusion analysis captured several differences of 

interest, such as increased baseline GM CBF, reduced CVR and differences in 

ATT between groups. As part of the applied extended hemodynamic analysis, 

hundreds of features capturing the underlying perfusion pattern were extracted 

from QUASAR data. 

We examined the performance of models comprising different 

hemodynamic feature combinations in the following classification tasks: HV vs 

T2DM, HV vs insulin resistance, HV vs IGT and IGT vs T2DM. Numerous 

metrics differed between the groups and we used t-tests to determine the 

significantly different features. Subsequently, we utilised a machine learning 

pipeline to determine optimally differentiating feature combinations by 

evaluating 7 possible models, each model containing a different feature 

combination. Due to the small dataset, overfitting was a major concern that was 

somewhat addressed by LOOCV. However, claims about model building and 
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biomarker identification cannot be made with a high degree of confidence. We 

determined feature combinations derived from hemodynamic curves that differ 

between our groups and have shown that, for the given dataset, these features 

can capture class-differences. Of particular interest are the features with high 

occurrence, especially in tasks where the optimal feature number leading to 

high accuracy was low.  

The best models were the ones involving the unprocessed QUASAR 

curves (initial crushed, non-crushed signal and their subtraction). This is an 

indication that there is indeed a difference captured by the technique and it is 

not the by-product of the processing pipeline. One of our models comprised the 

typically quantified QUASAR features. This model demonstrated a lower 

accuracy compared to models incorporating the newly quantified metrics. 

Additionally, we have shown that the features with the highest impact in the 

correct classification of the subjects were not the typically quantified QUASAR 

features, which were only occasionally top-ranked features, being outperformed 

by newly evaluated curve-descriptive metrics.  

 The significance of our findings extends in several directions. First and 

most importantly, we found a distinct hemodynamic pattern for both T2DM and 

IGT compared to HV. T2DM differed both pre- and post–ACZ from HV whereas, 

interestingly, IGT at baseline had a similar pattern to HV, while post-ACZ it was 

dissimilar to HV. Class-separation between HV and IGT was optimal, as 

opposed to IGT and T2DM separation, suggesting the existence of more 

hemodynamic similarities between IGT and T2DM rather than between IGT and 

HV. Secondly, we identified metrics that can capture better the hemodynamic 

pattern compared to the typically quantified QUASAR metrics. Thirdly, we have 

shown that there is an additive advantage of having a post-stimulus acquisition 

and combining the metrics of both acquisitions in a single model. Finally, we 

have shown that QUASAR ASL, which is currently under-used as an ASL 

modality given its advantage of acquiring multiple signals, can capture subtle 

hemodynamic patterns and could potentially provide us with hemodynamic 

disease biomarkers. 
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Chapter 7: 
Processing of multi-modal MR images in 

type-2 diabetes and impaired glucose 
tolerance 

	
Abstract 

Retinopathy, neuropathy and nephropathy are some of the most 

common complications of T2DM. In addition, patients are at a higher risk of 

developing Alzheimer’s or having a stroke compared to the healthy population. 

The disease can influence both the macro and microvasculature. Studies have 

shown that the degree of mild cognitive impairment compared to aged-matched 

healthy volunteers is higher in diabetes. The disease’s impact on the 

vasculature, complications such as stroke and its connection with cognition, are 

some of the main drivers for examining the diabetic brain.  

MRI can provide an invaluable window into alterations occurring at both 

a functional and a structural level. In this chapter, we shift the focus from 

perfusion changes in the brain to structural and physiological changes, the latter 

ones connected with the velocity of the inflowing blood at the carotid level and 

the diffusivity of water molecules. Several techniques and pre-processing tools 

were evaluated and optimal suggestions are presented for brain extraction, bias 

field correction and segmentation; three of the most important pre-processing 

steps in brain MR image analysis. By using state-of-the-art techniques for 

structural MRI analysis we have quantified the volume of numerous structures 

of interest (e.g. amygdala, hippocampus), GM, WM, cerebrospinal fluid and 

cortical thickness. Using voxel-based morphometry, we sought to determine 

regions of difference between the groups without defining specific ROIs. FLAIR 

T2-scans were used to quantify the white matter hyper-intensity burden in our 

cohort using available software. PC-MRA images were used to quantify velocity 

of the inflowing blood at the level of the carotids. A detailed analysis of the 

blood velocity pattern was implemented in Matlab using an in-house developed 

semi-automated tool allowing for arterial vessel determination. The apparent 
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diffusion coefficient was quantified for structures of interest using DWI. Finally, 

using in-house software, the coronal maximum intensity projection of 3D TOF-

MRA scans was analysed and several vasculature-descriptive metrics such as 

the vessel length, density and number of branching points were quantified.  

The results for the T2DM patients relative to the healthy volunteers point 

towards: a) increased number of leukoaraiosis; b) lower carotid flow velocity at 

baseline and post-ACZ, c) lower number of branching points in the vasculature 

and d) GM differences in structures such as the thalamus, hippocampus and 

amygdala. The examined IGT subjects had similarities with the HV population 

structurally, however, they demonstrated a similar pattern to the T2DM group 

when carotid flow velocity was examined.  

The results point towards global and localised functional and structural 

differences between T2DM and HV, with the pre-diabetes group demonstrating 

structural characteristics similar to the HV group and functional ones similar to 

the T2DM group. 

 

7.1 Introduction 
The ability to learn and remember, along with the speed of information 

processing, are the main cognitive domains influenced during late-life in 

patients with T2DM (308). Global and local GM atrophy patterns, volume 

reduction in structures such as the hippocampus, white matter lesions, lacunes 

and silent brain infarcts are considered end-point changes, possibly preceded 

by functional alterations (34). Such changes have been thoroughly investigated 

using high resolution T1-weighted and T2-weighted MRI scans (mainly FLAIR) 

and are connected with small vessel disease and cognitive decline (309). 

Findings, based on a large study conducted to investigate structural changes in 

the diabetic brain as a result of the followed treatment protocol, ACCORD-MIND 

(310), suggest that global and local atrophies are connected with diabetes 

duration and that lower GM volume is connected with cognitive decline (311). It 

was found that intensive glucose control was connected with reduction in the 

loss of GM (312). MR imaging has also been used to examine structural 

alterations associated with the integrity of the WM tracts, and changes focused 

on diffusion-related parameters, blood velocity and perfusion (33, 34).  
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Being a multi-purpose imaging technique, MRI allows for the extraction 

of information capturing a variety of structural and functional aspects of the 

examined organ - in our case the brain. As briefly discussed in Chapter 2, 

numerous MRI modalities have been devised that enable the detection of 

abnormalities in the brain structure, diffusion, perfusion, blood velocity and 

vasculature. For some modalities, it might be sufficient to visually inspect the 

resulting image and detect obvious alterations. For instance, when examining a 

T2-FLAIR scan, a neuro-radiologist can spot relatively quickly and accurately 

the presence of white matter hyper-intensities. When examining cerebral 

angiograms, prominent collateral circulation, stenosis or occlusions can be 

detected by carefully examining the image.  

However, when the investigated changes are not eye-catching, a simple 

visual assessment of the scan might result in missing crucial information. For 

example, when a subtle global atrophy pattern exists, only an automated 

technique is capable of successfully capturing this information. A 3D high-

resolution structural image might consist of more than 200 slices; a radiologist 

will have to inspect them one-by-one to segment structures of interest and 

detect potential abnormalities. This laborious task usually requires going back 

and forth in the image to validate the manual selections and is typically 

conducted on MPRAGE and T2-FLAIR scans. In MR Angiography, utilisation of 

the maximum intensity projection is quite common for detection of potential 

abnormalities (313). 

Manual region definition is considered the gold standard for anatomical 

segmentation and is not confined to high resolution T1-weighted and FLAIR 

scans, but is also used for modalities such as PC-MRA. Numerous studies have 

reported high inter- and intra - observer variability when examining manual 

segmentations of T1 and T2-weighted scans (314, 315). Due to this variability 

and the time requirements for the task, significant scientific effort has been 

made over the last decades in developing algorithms to perform such tasks 

automatically. The development of automated tools for segmentation and ROI 

selection has the potential to facilitate, and greatly accelerate, image 

interpretation, while being at the same time easy to use. These tools can also 

boost reproducibility and potentially provide metrics that can be used for 

disease stage evaluation. 
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Processing of a high resolution anatomical scan might involve detailed 

cortical parcellation and ROI analysis usually centered on areas of interest such 

as the hippocampus (46) or other subcortical structures. Another popular 

approach is VBM, whereby comparison at a voxel-wise level between groups is 

conducted following image normalization to a common space (245). However, 

conventional VBM approaches are mass-univariate (248). Multivariate 

approaches, typically based on machine learning and regression models, are 

particularly popular in studies examining brain tumors and Alzheimer’s 

dementia (249, 250). In the field of T2DM, machine learning based MRI 

analysis methods have not yet been tested. The analysis of the structural scan 

in the present study was conducted using well-established methods.  

Along with the structural images used to assess atrophy patterns and 

cortical abnormalities, in this chapter we processed FLAIR, PC-MRA, DWI and 

TOF-MRA images. FLAIR images are usually analysed either manually or by 

using existing WM lesion segmentation tools. Here, we used one of the most 

popular tools for WMH segmentation, namely the lesion segmentation toolbox 

(238). Blood velocity was studied using PC-MRA. Findings based on the PC-

MRA technique are usually presented as flow values. In T2DM and IGT, it has 

been found that flow and velocity at the level of the carotids is decreased. This 

finding is corroborated by PC-MRA and TCD studies (36, 42, 44, 53). In the 

present study, we conducted a detailed velocity pattern analysis based on the 

PC-MRA data.  

Angiogram processing usually involves the construction of maximum 

intensity projections, which are visually inspected to detect obvious stenosis or 

occlusions. Automated tools for vessel segmentation are at an experimental 

stage (313, 316) and neuroimaging software tools have not yet incorporated 

angiogram analysis software. Only one study published recently has looked into 

angiogram-derived metrics in T2DM, which reported a lower number of 

branching points (192). 

Our aim in the present chapter was to process the following MR 

modalities: High resolution T1-weighted (MPRAGE), FLAIR, DWI, PC-MRA, 

TOF-MRA and extract useful metrics that could be evaluated as potential 

disease biomarkers. For processing of the DWI, PC-MRA and TOF-MRA scans, 

in-house Matlab scripts were developed. The MPRAGE images were analysed 
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using cortical parcellation, voxel-based morphometry and a machine-learning 

based technique.  

This chapter describes preliminary evaluation of every modality 

described above (as a series of sub-chapters) as an initial study of 

abnormalities occurring in IGT and T2DM. The goal is to gain an insight into 

changes of structural and physiological nature that could fuel future work 

especially when considered in tandem with the hemodynamic findings reported 

in the previous chapter.  

 

7.2 T1-weighted (MPRAGE) scan analysis 
 
7.2.1 Methods 
7.2.1.1 Brain extraction 

Two approaches were assessed for brain extraction. The first evaluated 

tool was FSL’s BET (213). Several values were tested for the intensity threshold 

(f), separating brain from non-brain tissue, starting from the values suggested 

by Popescu et al.  (317). The second approach used SPM’s tissue 

segmentation tool. The outputs of the segmentation are tissue specific maps. In 

order to construct a brain mask based on the segmentation results, the 

generated GM, WM and CSF masks were summed up to acquire the contour of 

the brain tissue. The masks generated with both approaches were visually 

evaluated for the presence of holes; the masked brains were subsequently 

checked for detection of areas where part of the cortex was masked out. In 

such cases, morphological operations were performed locally (dilation, erosion 

and image filling) to correct for imperfections in the generated mask.  
 

7.2.1.2 Bias field correction and brain segmentation 
Three tools were evaluated for bias field correction and brain tissue 

segmentation. The first tool was FSL’s FAST (318) and the second, SPM’s new 

segment algorithm (214). Both SPM and FSL segmentation routines have BFC 

strategies incorporated in their pipeline and rely on GMMs for tissue 

segmentation.  The main difference is that SPM incorporates spatial priors, 

whereas FSL uses Markov random fields theory to incorporate spatial 
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information. For the third approach, the ANT’s N4 algorithm (208) was utilised 

for the BFC step and SFCMC (232), was used for tissue segmentation.  

BFC can be applied on the masked or the non-masked images. To 

determine the optimal choice, the N4 algorithm was implemented using three 

different approaches. The algorithm was run having as an input: a) the whole 

image, b) a masked version of the image and c) the whole image along with the 

respective mask.  

As described in section 3.1.4, SFCM operates in a local window, which in 

the default implementation is a 5x5 isotropic window (232). To identify the 

optimal neighbourhood size for the spatial extent of the clustering, we tested a 

weighted 5x5 window, no window (equivalent to simple FCM without accounting 

for similarities in a local neighbourhood) and isotropic 3x3, 7x7 and 9x9 

windows. The MAPE was calculated for voxels within the brain mask and for 

voxels with ground truth GM value greater than zero. 

The tissue classification problem was defined as a three-class problem, 

the classes being: GM, WM and CSF. 

The efficacy of the aforementioned algorithms was evaluated by using 

simulated data from the McGill’s brainweb database 

(http://brainweb.bic.mni.mcgill.ca/brainweb/). For the downloaded simulated 

data (involving T1-weighted and segmented GM, WM, CSF maps), the specific 

chosen parameters of 1mm3 isotropic voxel and 25% bias field were based on 

brains of healthy subjects and on manual tissue segmentation. The brainweb 

digital phantom is typically used to evaluate segmentation techniques (319). 

Metrics used to determine the accuracy of the segmentation techniques were 

the MAPE at a voxel wise level for GM and WM maps.  

 
7.2.1.3 Voxel-based morphometry  

Voxel-based morphometry allows for detection of brain regions that differ 

between groups by avoiding specific ROI determination, since it proceeds to 

group-wise comparisons at a voxel level. The pipeline behind VBM in FSL and 

SPM is highly similar. Both these techniques are mass-univariate (comparisons 

are conducted at a single voxel level). 

In this study, FSL’s pipeline was used, since fewer prior assumptions 

compared to SPM are utilized in the analysis. We deviated slightly from the 
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pipeline instructions, so that we could use the brain extracted and BFC images 

generated during the previous steps. The first applied pre-processing step 

outside the VBM FSL pipeline was bias field correction using N4. Subsequently, 

the images were brain extracted as per method two described in the previous 

section (7.2.1.1).  

Following brain extraction, the FSL VBM (276) pipeline was 

implemented. FSL creates a GM study template using the same number of 

subjects from every group. This template is subsequently mirrored and a final 

mean GM template is created and used as a registration target. There are two 

transformation options for the generation of the template, linear or non-linear; in 

the present study the non-linear option was used and the results were visually 

inspected using FSLeyes. Subsequently, this template was used as a 

registration target for normalization of the individual GM PV maps to a common 

space (MNI). 

Group-wise comparisons were conducted for the registered GM partial 

volume maps. The registered maps are typically smoothed to render them more 

normally distributed so that statistical comparisons can take place without 

violation of the normality assumption. In the present study two Gaussian kernels 

were evaluated: a) σ=2 and b) σ=3.  The implementation of two kernels served 

as a means to evaluate whether the extent of the observed effects was larger 

with increasing smoothing. 

The constructed GLM model comprised analysis of variance (ANOVA) (3 

groups HV, IGT, T2DM) tests with age and sex as covariates. These covariates 

were mean centered, by subtracting the study population mean from every 

subject. Registration to the generated study-specific template involves a 

Jacobian modulation step, hence correction for global differences of the brain 

size is a redundant step. The generated model was as in figure 7.1 and was 

constructed using detailed published instructions, part of the FSL VBM (276) 

and FSL GLM (320) guides.  

The regions of difference were detected using the resulting thresholded 

p-value maps and the labeled Harvard-Oxford cortical and subcortical atlases 

with 2mm thickness and 25% threshold provided as part of the FSL software. 

Regions of difference were detected using a dedicated Matlab script.  
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Figure 7.1: GLM generated using FSL’s dedicated tools.  Two covariates were used for the 

three groups.  

 

VBM was run with the TFCE option on (321) and 5000 permutations 

accounting for multiple comparisons, a combination which has demonstrated 

optimal performance according to the FSL documentation (276). The analysis 

was run for 16 HV, 12 IGT subjects and 16 patients with T2DM (1 discarded 

due to poor image quality). New age mean for the T2DM group was 54.4 ± 11.8 

years. 

 
7.2.1.4 Freesurfer analysis 

Freesurfer operates in a conceptually different way compared to the rest 

of the popular neuroimaging software. The 3D brain volume is transformed to a 

2D cortical surface. This surface consists of triangles (described by vertices and 

edges), as opposed to the standard Cartesian image representation in 3D. This 

surface is subsequently inflated, turning into a sphere. The idea is that this 

sphere will be similar amongst subjects, so it can be used for registration to and 

from an atlas-sphere by aligning the gyri and sulci. Subsequently, this sphere is 

used for cortical parcellation based on an existing atlas (203, 322). The 

A)	3-group	comparisons	(F-tests) 	 	 				B)	2-group	comparisons	(t-tests)	
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execution time of “recon-all”, the command used for detailed structural analysis 

is, on average, 17 hours depending on the available processing power. The 

preprocessing steps implemented in this 17h window involve amongst others: 

motion correction, normalization to the MNI space, intensity normalization, neck 

and skull stripping, segmentation, tessellation and sphere inflation and cortical 

parcellation (323) and are described in detail in the Freesurfer online guide 

(https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all). One of the most important 

outcomes of the analysis, unique to the Freesurfer pipeline, is the cortical 

thickness measure. Additionally, PV maps are generated and regional volumes 

of cortical and subcortical structures of interest are quantified. 

Here, we report the values for cortical thickness, GM, WM, CSF, total 

intracranial volume, normalized values for GM, WM and CSF, the volume of 

structures of interest and more specifically the thalamus (RL), amygdala (RL), 

hippocampus (RL), brainstem, caudate, putamen and pallidum. Values were 

extracted from the “aseg.stats” file, one of the main outputs of the Freesurfer 

analysis. Additionally, generated masks for every structure were used to 

calculate volume structures. To account for gross differences in the head and 

brain size between the subjects, GM, WM and ventricular volume were divided 

by the total intracranial volume, as calculated during the Freesurfer analysis. 

The same step was followed for all the subcortical structures.  

 

7.2.1.5 Machine learning approach 
Utilising machine learning-based approaches for detection of patterns of 

difference has the benefit of being multivariate compared to morphometric 

approaches (248). In this chapter, we used a pipeline similar to the one 

described in Chapter 6. Comparisons were conducted for GM PV maps. The T1 

MPRAGE scans were normalized to the MNI space using an affine 

transformation, implemented in ITK-SNAP. These images were first segmented 

to their native space using SFCM; the transformation matrix generated in the 

previous step was used for their registration to the MNI using for this 

registration the c3d software. The registered PV maps were smoothed using a 

Gaussian filter to render them more normally distributed (σ=1.5).  

The registered GM and WM maps were down-sampled giving rise to 

images comprising 23x28x23 voxels (250). T-tests were implemented to keep 
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only the significantly different voxels. Subsequently, SVM-RFE was 

implemented to evaluate the weight of every voxel in the correct classification of 

the subjects. This pipeline is a simplified version of (250). In their study, direct 

neighboring voxels to the voxels with the higher weights identified as part of the 

feature ranking step were also incorporated in the analysis (even if they did not 

differ significantly between the groups), addressing one of SVM’s 

disadvantages, which is that it does not incorporate spatial information in the 

classification task. 

 

7.2.1.6 Statistical comparisons 
The groups were compared initially using binary comparisons, either by t-

tests or using the non-parametric equivalent (Wilcoxon rank sum test) when 

normality assumptions were violated.  Binary comparisons were conducted in 

Matlab. For 3-group comparisons one-way ANOVA, or its non-parametric 

equivalent, the Kruskal Wallis test, was used when ANOVA assumptions were 

violated. These comparisons were conducted using SPSS. The Benjamini-

Hochberg false discovery rate (FDR) methodology (324) was used to correct for 

multiple comparisons using a dedicated Matlab function.  
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7.2.2 Results 
7.2.2.1 Brain extraction 

Brain extraction results using FSL’s BET tool were not consistent. The 

skull was removed along with portions of GM an effect that could impact the 

subsequent registration process and VBM analysis (figure 7.2). Different 

threshold values were tested but there was not a single value providing 

consistently good results. The results shown in figure 7.2 are for f = 0.1 which is 

a very low threshold (maximum: f = 0.5, minimum: f = 0) for the separation of 

brain and non-brain tissue.  

 
Figure 7.2: Example results for FSL's BET tool using bias field and neck cleanup mode 
with a value of f=0.1. The algorithm cuts part of GM in the frontal part, an issue which would 

influence the subsequent registration process and CBF calculation. 

 

The effects were worse when non-healthy individuals were evaluated. 

Especially for diabetic subjects with enlarged ventricles, part of the brain filled 

with CSF was masked out and classified as background. This could greatly 

impact subsequent analysis especially in a batch mode as is usually the case in 

VBM. In figure 7.3 a representative case is shown from one such individual for 

whom BET failed. The approach based on SPM’s segmentation tool was 

chosen for the subsequent analysis since it demonstrated more stable 

performance (figure 7.4; same individual as in figure 7.3).  
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Figure 7.3: Failure of BET in a single subject with enlarged ventricles. 

 

 
Figure 7.4: Successful brain extraction using SPM and minor dilation and filling. 
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7.2.2.2 Bias field correction and tissue segmentation 

N4 bias field correction was implemented in three different ways to 

identify the optimal implementation with regards to the input data in the 

algorithm. These were: unmasked brain, masked brain and unmasked brain 

along with the mask. The results were as in table 7.1. 

 
Table 7.1: GM and WM MAPEs for the three examined approached for N4 BFC. 

 N4 unmasked N4 masked N4 with mask 
MAPE GM  23.56% 26.00% 43.36% 

MAPE WM 13.37% 15.79% 19.70% 

 

Mean absolute percentage errors for the segmentation process were 

calculated for GM and WM. In table 7.2 the results are shown for SPM, FSL and 

N4 unmasked combined with 6 different SFCM windows. Lower errors were 

recorded for both GM and WM with the W2 (isotropic 3x3) and W3 (isotropic 

5x5) windows. With larger kernels (W5 - 7x7 and W6 – 9x9) the errors were 

increased (table 7.2). In figure 7.5 a representative GM slice is presented 

segmented with the evaluated techniques along with the associated error map 

based on the ground truth segmentations. 

 
Table 7.2: MAPEs (%) for GM and WM for voxels belonging in the brain mask (not 
necessarily in the ground truth GM cluster) and for voxels belonging in the GM cluster 
based on the ground truth for all examined segmentation techniques. 

MAPE SPM FSL W1 W2 W3 W4 W5 W6 
GM mask>0 46.49 41.62 26.96 23.31 23.56 23.54 24.12 24.57 

GM GTGM>0 72.85 65.30 42.53 36.85 37.24 37.20 38.11 38.80 

WM mask>0 18.26 16.12 16.07 13.43 13.37 13.51 13.48 13.54 

WM 
GTWM>0 

42.52 37.54 37.44 31.31 31.16 31.49 31.41 31.57 
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Figure 7.5: Segmentation results from a representative simulated slice. Generated GM 

maps along with their associated error maps are shown calculated based on the brainweb 

ground truth data. 

 
7.2.2.3 Voxel base morphometry  

Following F-tests (ANOVA) analysis the first contrast, designed to detect 

voxel-wise differences between HV and IGT did not reveal any significantly 

different clusters with both evaluated Gaussian smoothing kernels. The second 

contrast designed to detect changes between HV and T2DM patients with a p-

value threshold of 0.05 and smoothing level of σ = 3, revealed that 8673 voxels 

were significantly different. With a smoothing level of σ = 2, the number of 

significantly different voxels was 7663 (figure 7.6).  

T-test analysis unraveled that the differences are driven by higher values 

in the healthy volunteer group. The regions of difference as identified by using 

the labeled Harvard- Oxford cortical and subcortical atlases were:  

• subcortical regions identified with both σ = 2 and σ = 3: Left cortical 

WM, left cerebral cortex, left lateral ventricle (LV), left caudate, left 

putamen, brain-stem, left hippocampus, left amygdala, left accumbens, 

right cortical WM, right cerebral cortex, right LV, right caudate, right 

thalamus, right putamen, right hippocampus, right pallidum, right 

SPM	 FSL	 N4	SFCM	W1	 N4	SFCM		W2	

MAPE	GM	(%)	 46.49	 41.62	 23.56	 23.54	

MAPE	WM	(%)	 18.26	 16.12	 13.37	 13.51	
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amygdala and right accumbens. Left pallidum was only identified with 

the σ=3 kernel. 
• cortical regions identified with both σ = 2 and σ = 3: Frontal Pole, 

Insular Cortex, Temporal Pole, Superior Temporal Gyrus – anterior 

division, Middle Temporal Gyrus – anterior division, Inferior Temporal 

Gyrus – posterior division, Inferior Temporal Gyrus – temporooccipital 

part, Lateral Occipital Cortex – inferior division, Intracalcarine Cortex, 

Subcallosal Cortex, Cingulate Gyrus - posterior division, Precuneous 

Cortex, Cuneal Cortex, Frontal Orbital Cortex, Parahippocampal Gyrus - 

anterior division, Lingual Gyrus, Temporal Fusiform Cortex - anterior 

division, Temporal Fusiform Cortex - posterior division, Temporal 

Occipital Fusiform Cortex, Occipital Fusiform Gyrus, Planum Polare. The 

Occipital Pole was detected as a region of difference only with the σ=3 

kernel. 

 
Figure 7.6: VBM representative results with 2mm smoothing kernel. The screenshot is 

taken from FSLeyes. 

 
The percentage of the volume for each of these structures differing between 

the groups was determined. Results are reported for structures for which more 

than 5% of their total volume differed between the groups: 

• σ = 2 kernel:, subcortical regions: Left caudate (28.3%), left putamen 

(40.55%), brain-stem (5.3%), left hippocampus (10.9%), left amygdala 

(79.4%), left accumbens (78.7%), right putamen (28.4%), right 

hippocampus (12.1%), right caudate (9.0%) and right amygdala (36.9%). 

• σ = 2 kernel, cortical regions: Insular cortex (5.6%), Temporal Pole 

(8.2%), Cingulate Gyrus-posterior division (5.9%), Frontal Orbital Cortex 
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(5.5%), Parahippocampal Gyrus - anterior division (37.1%), Lingual 

Gyrus (11.4%), Temporal Fusiform Cortex - posterior division (10.2%), 

Temporal Occipital Fusiform Cortex (11.8%) and Occipital Fusiform 

Gyrus (6.5%). 

• σ = 3 kernel, subcortical regions: Left caudate (28.1%), left putamen 

(46.4%), brain-stem (7.0%), left hippocampus (15.2%), left amygdala 

(86.6%), left accumbens (78.7%), right caudate (7.8%), right putamen 

(21.1%), right hippocampus (9.6%) and right amygdala (39.3%). 

• σ = 3 kernel, cortical regions: Insular Cortex (9.3%), Temporal Pole 

(11.3%), Superior Temporal Gyrus –anterior division (6.5%), Middle 
Temporal Gyrus –anterior division (7.6%), Inferior Temporal Gyrus - 
posterior division (6.1%), Cingulate Gyrus - posterior division (6.8%), 

Frontal Orbital Cortex (6.3%), Parahippocampal Gyrus - anterior division 

(41.1%), Lingual Gyrus (12.3%), Temporal Fusiform Cortex - posterior 

division (12.4%), Temporal Occipital Fusiform Cortex (11.2%), Occipital 

Fusiform Gyrus (6.3%) and Planum Polare (5.3%). 

Highlighted regions are the ones that appeared as significant only in one of 

the two examined kernels. 

 
7.2.2.4 Tissue volume quantification 

The reported results in this section are based on the N4 BFC and SFCM 

clustering combination for segmentation and are as in table 7.3, for our cohort. 

 
Table 7.3:  Tissue volume (normalized for total brain volume and non-normalized) for GM, 
WM and CSF calculated using N4 BFC and SFCM clustering. 

 HV IGT T2DM 

GM volume (cm
3
) 801.02±73.59 812.51±57.63 765.50±86.21 

WM volume (cm
3
) 647.27±71.34 686.95±65.05 630.90±119.15 

CSF volume (cm
3
) 280.10±84.01 295.18±56.4 300.84±97.11 

Normalized GM 0.46±0.02 0.45±0.02 0.45±0.03 
Normalized WM 0.37±0.03 0.38±0.03 0.37±0.04 
Normalized CSF 0.16±0.04 0.16±0.03 0.18±0.05 
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None of the calculated values differed significantly between the groups. 

 

7.2.2.5 Freesurfer analysis 
The Freesurfer analysis results are presented in 3 tables (tables 7.4-7.6). 

In the first table, means for GM, WM, CSF, total intracranial (IV) and brain 

volume are shown for every group. In the second table, the volume of important 

subcortical structures is presented (additional results are tabulated in the 

Appendix2 – table A7.1), and in the final table, the cortical thickness values for 

the right and left hemisphere are reported. 

 
Table 7.4: GM, WM, CSF, intracranial volume and total brain volumes calculated using 
Freesurfer. 

 HV (cm3) IGT (cm3) T2DM (cm3) 
Cortical GM 436.8±40.4 446.8±40.7 418.5±49.2 

Subcortical GM 57.5±5.4 59.5±4.3 55.7±6.9 

Cortical WM 448.1±52.1 471.6±52.7 428.9±84.2 

CSF 0.9±0.2  1.1±0.3 1.0±0.3  

IV volume 1344.8±178.3 1472.2±202.7 1380.3±280.4 

Brain volume 1085.4±93.9 1139.7±99.1 1053.4±139.8 
 

Table 7.5: Volume of subcortical structures of interest for the three groups under 
consideration. 

 HV  (cm3) IGT (cm3) T2DM (cm3) 
Brainstem 20.8±2.2 21.3±2.1 19.5±2.7 

Left hippocampus 4.1±0.5 4.0±0.3 3.9±0.4 

Left lateral ventricles 7.9±4.1 13.0±7.2 14.1±10.6 

Left pallidum 1.4±3.2 1.5±0.2 1.2±0.3 

Left thalamus 7.4±1.0 7.4±0.8 7.4±1.2 

Right hippocampus 4.2±0.4 4.3±0.4 4.0±0.5 

Right lateral ventricles 7.3±3.2 10.5±4.1 12.7±7.9 

Right pallidum 1.6±0.2 1.7±0.2 1.5±0.3 

Right thalamus 6.4±0.8 6.7±0.6 6.2±1 

    

 
The cortical thickness for the left and the right hemispheres for the 

considered groups, as calculated during the Freesurfer analysis was as follows: 
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Table 7.6: Cortical thickness for the left and the right hemisphere as calculated using 
Freesurfer 

 HV IGT T2DM 
Left hemisphere 2.37±0.08 2.33±0.08 2.33±0.13 

Right hemisphere 2.37±0.09 2.34±0.08 2.32±0.12 

 

When performing ANOVA analysis, the differences were significant for: 

right LV (χ2(2) = 7.386, p = 0.03), normalized right LV (χ2(2) = 6.862, p = 0.03) 

and left pallidum (χ2(2) = 6.17, p = 0.05). Following multiple comparison 

correction using FDR none of the differences remained significant.  

 

7.2.2.6 Machine learning approach 
The scans for every subject were registered to the MNI space using ITK-

SNAP. Subsequently a universal brain mask was generated and applied to all 

scans. For every classification task, the voxels contributing towards optimal 

class differentiation were plotted using the following color coding: pink - voxels 

providing optimal classification performance, yellow – second best 

performance, green – third best performance and dark red all the different 

voxels – up to 500. 

 

HV- T2DM comparison 
The number of significantly different voxels for the high-resolution 

smoothed GM maps between the two groups was 39060 (total 265500 voxels). 

Following downsampling, the mean number of non-zero voxels was 4268 and 

the number of significantly different voxels was 851. Maximum classification 

accuracy was 90.6%, obtained with a minimum of 44 and a maximum of 75 

voxels. Classification accuracy was consistently higher than 74% with an 

increasing number of voxels. Accuracy as a function of the number of voxels 

along with the voxels contributing towards optimal class differentiation is plotted 

in figure 7.7. 
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Figure 7.7:  Classification accuracy for the HV vs T2DM task with an increasing number of 
features/ voxels accompanied with a figure showing the voxels contributing towards 
optimal class separation.   

	
HV vs IGT 

In the high-resolution scenario, 23271 voxels were significantly different. 

Following downsampling, 541 voxels differed. Maximum accuracy of 100% was 

achieved, with minimum 18 and maximum of 60 voxels. Results for the task are 

plotted in figure 7.8. 
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Figure 7.8:  Classification accuracy for the HV vs IGT task with an increasing number of 
features/ voxels accompanied with a figure showing the voxels contributing towards 
optimal class separation.   

 
IGT vs T2DM 

In the high-resolution scenario, 11970 voxels were significantly different. 

Following downsampling, 184 voxels differed. Maximum performance of 100% 

was achieved with minimum 17 and maximum 50 voxels. Accuracy and voxels 

contributing towards optimal class differentiation are shown on figure 7.9. 
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Figure 7.9:  Classification accuracy for the T2DM vs IGT task with an increasing number 
of features/ voxels accompanied with a figure showing the voxels contributing towards 
optimal class separation.  
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7.2.3 Discussion 
 

Optimal brain extraction, bias field correction and segmentation 
techniques were identified. 

In this sub-chapter, processing of the acquired high-resolution T1-

weighted scan included in this study was discussed. Initially, we investigated 

three of the most important pre-processing approaches; brain extraction, bias 

field correction and segmentation. It was shown that brain extraction using an 

automated tool, such as the evaluated BET algorithm, can fail when major 

abnormalities are present in the brain, for example very intense atrophy or 

extensive enlargement of the ventricles. The brain extraction result needs to be 

visually inspected every time to reassure that this pre-processing step 

succeeded before proceeding to further processing. Residual skull, or loss of 

tissue, can greatly distort the results when proceeding with further processing. 

Following extraction, the masked brain can subsequently be used for 

segmentation, bias field correction and potentially for partial volume correction. 

Failure at an early pre-processing step can propagate through the whole 

analysis and remain undetectable if it is not captured right after the brain 

extraction task. The scenario of an undetected brain extraction failure can be 

particularly troublesome when VBM or machine learning approaches performing 

voxel-wise comparisons are implemented, since the erroneous masked brains 

will be averaged and compared with error-free images. 

The evaluated segmentation tools were those included in FSL and SPM 

and a method based on a combination of N4 BFC and SFCM clustering. The 

calculated MAPEs indicate that the combination introduced in this work 

outperformed every other. By examining the error maps, we can see that 

especially for the pixels at the edges of different tissue types SFCM 

outperforms the other methods. This finding is of particular importance since 

FSL and SPM are two of the most commonly used neuroimaging processing 

software tools. The comparison between them revealed that FSL has a better 

performance compared to SPM and both of them have an inferior performance 

compared to the introduced segmentation approach. The optimal weighting 

windows for the SFCM algorithm were the 3x3 and 5x5 isotropic ones leading to 

lower errors in both GM and WM. No weighting (simple FCM) resulted in higher 
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errors, whereas a higher degree of weighting (7x7 and 9x9 windows) was also 

connected with an increase in the MAPEs potentially due to the increased 

smoothing effect.  

The segmentation methods were evaluated using a commonly used 

digital phantom (Brainweb) and the ground truth segmentation maps provided 

along with it. This phantom was based on healthy individuals and not on a 

disease population. In the future, these segmentation tools could be evaluated 

using disease phantoms as well. In the past, SFCM clustering has been 

compared with other clustering methods and FCM variants (325), however, 

there is no published study to our knowledge comparing it to typically used 

neuroimaging software segmentation algorithms. Its recorded performance 

combined with N4 BFC, especially when considering the fact that it is 

assumption-free, proves that the technique holds great potential and could be 

the method of choice for tissue segmentation. 

 

Voxel-wise comparisons detected differences between HV and T2DM 
subjects. 

Global and localized gray matter atrophies, a consistent finding in 

neuroimaging studies focused on type-2 diabetes (33, 38, 40) were not 

identified in this study when examining Freesurfer-derived volumes of structures 

of interest. The same finding was observed when tissue volume quantification 

was conducted with the optimal segmentation protocol described previously. 

Our findings are in line with (43, 54), as in these studies, no significant 

differences were found in WM, GM or subcortical structure volumes between 

T2DM and HV. Our findings agree partially with a study by Dale et al. (326), 

where when comparing cognitively normal T2DM patients with HV, no 

differences were found for the hippocampal volume, however lower cortical 

thickness was detected. 

To investigate patterns of difference at a voxel-wise level without defining 

explicit ROIs, the FSL VBM analysis was utilised. The results indicate that 

significant differences exist only between the HV and T2DM groups. The 

analysis was run with two Gaussian smoothing kernels to investigate the effect 

of additional smoothing on the observed results. The applied kernels of σ = 2 

and σ = 3 are typically used in Neuroimaging studies and recommended in the 
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FSL VBM guidelines. F-tests were used for the 3-group comparison and 

subsequent t-tests indicated that the identified differences between HV and 

T2DM were driven by lower values in the T2DM group pixel-wise intensities. To 

identify changes in structures of interest, the areas for which the percentage of 

the voxels differing between the groups was more than 5% were reported. 

Interestingly, a larger smoothing kernel identified an additional 2 structures as 

areas of difference between the groups, as opposed to a smaller kernel. Areas 

of difference identified with both kernels included the caudate (L-R), putamen 

(L-R), hippocampus (L-R), amygdala (L-R) and the left accumbens. When 

considering cortical regions, the temporal gyrus was identified as an area of 

difference only with the σ=3 kernel. This result is of particular importance, since 

it suggests that additional smoothing can imply that structures not differing are 

brought up as different due to additional smoothing. On the other hand, it could 

mean that a smaller kernel masks out differences since individual variations 

might prevail. Lack of standardization for these procedures is likely to yield 

these kind of results. 

Studies using VBM in T2DM have found differences in numerous 

regions. Our results agreed partially (fusiform and cingulate gyri) with a study by 

Zhang et al. (38) where VBM with a larger smoothing kernel (8mm FWHM 

equivalent to a σ = 3.5) was used. The results are in agreement with (199), who 

found using SPM VBM differences in the caudate (L-R), putamen (L-R), left 

amygdala and left thalamus. A study by Moran et al. (40), with a big study 

population (350 T2DM patients, 363 HV), has shown reductions in GM, WM, 

hippocampal volume and GM loss in numerous areas of interest. The 

population though was not cognitively asymptomatic. In this latter study, SPM 

VBM and a cluster approach was used, as opposed to the utilised FSL VBM 

combined with TFCE analysis in the present study. Regions of agreement 

between our study and the Moran et al. study were the parahippocampal gyrus, 

left putamen, left caudate, cingulate gyrus and inferior temporal gyrus. Since 

our cohort was neurologically asymptomatic, these could be early changes 

occurring in diabetes, preceding cognitive decline. 

For the machine learning approach, low-resolution maps were used in a 

machine learning context and demonstrated a good performance for every 

examined classification task. Optimal classification was achieved with only a 
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few voxels. When more voxels were used, the identified areas of difference 

between normoglycemic and hyperglycemic groups were at the periphery of the 

brain and around the ventricles; the pattern was similar for both the IGT and 

T2DM groups when compared with the HV cohort. A higher ventricular volume 

in the IGT and T2DM groups can explain why voxels around the ventricles are 

brought up as optimal. However, identification of voxels at the periphery of the 

cortex could imply two things; either group-differences are driven by changes at 

the edges of the cortex, or mis-registration of the scans led to identification of 

these particular voxels. To resolve this, a larger cohort needs to be examined 

with the available method and more robust non-linear registration methods 

should be applied. Only a few voxels differed between the IGT and T2DM 

groups, however, they were sufficient to provide good classification. The 

classification accuracy was 100% for the HV vs IGT task and 91% for the HV vs 

T2DM task.  

The utilized sample-size in the present study is small but could provide 

useful insight on changes occurring in the examined groups if interpreted with 

caution. The observed results and areas of difference could be attributed to the 

sample idiosyncrasies or to other factors (e.g. age) and existing co-morbidities 

which were not accounted for. Several of our findings are in line with existing 

literature. Other findings will have to be validated using a larger study 

population. Especially the machine learning approach, as despite the utilization 

of a technique optimal for small datasets, there could still be overfitting. 

Processing of this small cohort unveiled several structural differences between 

the groups which is a promising observation. However, we will refrain from 

drawing conclusions about structural alteration occurring in IGT and T2DM and 

suggest that these initial findings can serve as a basis for further exploration. 

Overall, in this sub-chapter, optimal techniques for brain extraction, bias 

field correction and segmentation were described. When analysing the 

structural scans of the available cohort using an ROI-based volumetric analysis, 

no regions emerged as differing significantly between the groups. However, 

detailed voxel-wise comparisons not confined to specific ROIs revealed 

differences between the HV and T2DM cohorts (VBM, machine learning 

approach) and the HV- IGT groups (machine learning approach). 
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These observations are potentially of great importance and the described 

approaches and analysis methods can form the basis for a detailed analysis in 

larger cohorts. 

 

7.3 T2-weighted (FLAIR) processing 
 
7.3.1 Methods 
7.3.1.1 White matter hyper-intensity detection 

Non-physiological hyper-intense regions in WM described as white 

matter hyper-intensities (WMH) or leukoaraiosis are a common finding in elderly 

subjects and subjects with cardiovascular risk factors and are connected with 

an increased risk of stroke and dementia (327). In T2DM, findings have been 

inconsistent since not every study has found a direct correlation between WMH 

and diabetes (33). The hyper-intense regions in WM are connected with 

increased water content in the tissue and myelin destruction and are thought to 

result from prolonged hypo-perfusion (237). Evaluation of the WMH burden can 

be conducted either by using visual assessment, based on scales such as the 

Fazekas scale (328), or by using automated tools to quantify the hyper-intensity 

volume. WMH segmentation is a challenging task since the performance of the 

existing algorithms greatly varies, depending on the examined disease, the 

utilised scanner type and the applied sequence variants (237).  

Tested techniques for automated WMH segmentation were: a) the 

Wisconsin White Matter Hyperintensities Segmentation toolbox (329); b) a 

technique based on FCM clustering (232), similar to the one described 

previously for tissue segmentation in the MPRAGE image; and c) the Lesion 

segmentation toolbox in both its implementations (238). 

The first two approaches had a suboptimal performance, resulting in 

extensive regions being selected as hyper-intense, so we proceeded with our 

analysis using the lesion segmentation toolbox. The toolbox by Schmidt et al 

(238) has two implementations; one based solely on the FLAIR scan (lesion 

prediction algorithm - LPA) and one based on a combination of FLAIR and a 

T1-weighted scan (lesion growth algorithm – LGA). The LPA relies on a binary 

classifier based on logistic regression, which has been trained on 53 MS 

patients and is applied at a voxel-wise level. The LPA was found to perform 
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better than the LGA for our dataset, so for the analysis of our cohort LPA was 

used. 

 

7.3.1.2 FLAIR textural analysis 
Due to the high in-plane resolution and sensitivity to WMHs, FLAIR 

images have the potential to provide rich textural information. This information 

can be extracted from ROIs and the whole brain. For the present analysis, the 

image was divided into sub-regions, having as a central point the centre of 

every slice. The ROIs were as in figure 7.10. 

 
Figure 7.10: Definition of the ROIs used for textural analysis. 

 

From these 6 ROIs, Gabor textural features (330) and features derived 

from the gray-level co-occurrence matrix (253) were determined, these were: 

energy, homogeneity, correlation and contrast. Additionally, the mean, standard 

deviation, kurtosis and skewness from the defined ROIs were quantified. 

Overall 70 rotationally invariant Gabor features were built (255, 269) in 7 

wavelengths (2√2, 4, 4√2, 6, 6√2, 8, 8√2) and 7 orientations (0,30, 60, 90, 120, 

150, 180) with a spatial aspect ratio of 0.5. Each FLAIR image was 

subsequently filtered with every unique Gabor filter (49 overall) separately and 

the magnitude and phase images were derived.  

Gabor features can be made shift and rotationally invariant, which are 

both desirable properties when conducting textural analysis. To achieve this, we 



	 192	

followed the steps suggested by Riaz et al. (331). Mean and standard deviation 

of the magnitude images were calculated and subsequently the mean and 

standard deviation vectors were reshaped to 7x7 matrices reflecting the 7 

orientations and 7 wavelengths. A new 14x7 matrix was formed having at the 

top the means and at the bottom the standard deviations. The FFT of every row 

of the matrix was calculated and the 5 first coefficients were retained (330). The 

maximum number of unique frequency coefficients following FFT is given by the 

formula: orientations / 2 + 1, so in our case the number was 5. These features 

are shift and rotation invariant due to the properties of the discrete Fourier 

transform (331). 

For all extracted statistical and textural features, comparisons between 

pairs of groups were conducted using t-tests. Due to the large number of 

comparisons, multiple comparison correction was implemented by estimating 

the FDR methodology. Finally, we evaluated these features in a machine 

learning context, similar to the one described in Chapter 6. The maximum 

accuracy of the classifier, along with the number of features contributing to this 

performance were recorded. 

This procedure was investigated for 12 HV (4 scans not acquired), 11 

IGT (1 discarded due to poor image quality) and 17 T2DM patients. 

 

7.3.2 Results 
 Results for the examined cohort are shown in table 7.7. 

 
Table 7.7: Number and volume of leukoaraiosis in the examined cohort.  

HV IGT T2DM 

Age (years) 55.0±7.5 54.5±5.7 55.6±12.5 

number 9.5±4.4 11.1±4.9 19.5±11.3 

Volume (ml) 1.0±1.2 1.2±1.1 7.9±12.3 

Hypertension 
(number of 
subjects) 

4 9 8 
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The number of WMH was normally distributed, but the equal variance 

assumption was violated, so to compare the number and volume of WMH the 

non-parametric equivalent of one-way ANOVA, the Kruskal-Wallis test was 

used. Both the number of WMH and their volume differed between the groups 

(χ2(2) = 8.3, p = 0.016 and χ2(2) = 7.8, p = 0.02 respectively). Comparisons 

were also conducted for the number and volume of WMH using, as a grouping 

variable, the hypertensive status. The differences were not significant. 

 

 

T2 FLAIR textural analysis 

An overall of 474 textural features were calculated from 6 ROIs, these 

comprised: 70 Gabor textural features, 5 features from the gray level co-

occurrence matrix and 4 statistical features. Following t-tests, 57 features were 

significantly different for the HV vs T2DM comparison, 12 for the HV vs IGT and 

21 for IGT vs T2DM. Following correction for multiple comparisons, no feature 

was significantly different between the groups based on the adjusted p-values. 

However, we proceeded to machine-learning based analysis. For HV vs T2DM, 

maximum accuracy was achieved by one feature and it was 68.97%. Maximum 

accuracy for HV vs IGT was 65.2%, achieved with 3 features. For the IGT vs 

T2DM comparison maximum accuracy was 71.4% achieved with 6 features. 

Overall, the performance for every task was low based on the extracted textural 

features. 

 

7.3.3 Discussion 
A higher WMH burden was observed in T2DM compared to the healthy 

participants. WMHs were also detected in the HV and IGT groups; however, 

their volume was significantly lower compared to the T2DM participants. An 

increased WMH burden has been found in the past in several neuroimaging 

studies (35, 332), however, it is not a consistent finding (33).  Hypertension is a 

condition connected with increased leukoaraiosis extent, hence we conducted 

additional statistical tests to investigate if the number and volume of WMH 

differed significantly between subjects with and without hypertension. The 

analysis identified non-significant differences, implying that the observed effect 



	 194	

is not attributed to hypertension, but more likely, to diabetes or other existing 

comorbidities in our cohort, which were not accounted for in this study. 

The FLAIR image was also analysed using textural features to unravel 

potential textural differences between the examined groups. This modality was 

chosen for textural analysis due to the increased contrast between WMH and 

other tissues with a view to detecting potential subtle patterns of difference. 

Some features differed between the groups; however, multiple comparison 

correction left no significant differences. Correction for false positives is known 

to give rise to true negatives, so we proceeded to a machine learning-based 

analysis to examine whether the significantly different features between the 

groups provided good class differentiation. The accuracy of the classifier was 

low for all classification tasks indicating that textural analysis of the FLAIR 

image alone is not sufficient for optimal class differentiation. 

 

7.4 Phase Contrast – Magnetic Resonance Angiography (PC-MRA) 
analysis 
	
7.4.1 Methods 

When carotid flow measurements are acquired, their typical processing 

involves using built-in scanner tools (in our case, tools provided as part of the 

Philips workstation) for manual segmentation of the carotids, or any other 

vessel of interest, and velocity, vessel area and flow quantification. This 

procedure can be time-consuming, user-dependent and potentially non-

reproducible. The requirement from the user is to manually select the area of 

interest in the available image. For this to be done optimally, the user might 

have to adjust the contrast for accurate delineation of the vessel limits. In this 

procedure, it is rather common to miss small parts, or include parts outside the 

vasculature, in an effort to select manually the optimal region. Another obstacle 

when using the Philips workstation (as was the case in this study) is that it 

requires direct access to the scanner, which might not be available.  Hence, a 

software tool based on Matlab was built to address these limitations and to 

quantify flow and velocity in an automated and reproducible way.  

The developed algorithm works as follows: The .REC folder is separated 

into three parts, a magnitude image, a phase difference image and a complex 
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difference image from where velocity measurements are extracted. For each of 

these parts, 40 acquisitions reflecting 40 time-points were recorded. For every 

part, the mean is calculated. Subsequently, the mean phase and complex 

difference images are multiplied. Only the positive values are kept to retain the 

signal arising from the arterial supply. The resulting image is normalised by 

dividing by the maximum intensity value. Subsequently, a threshold is used 

(tested values: 0.2, 0.3, 0.4, 0.5, 0.6). The threshold reflects the intensity of the 

voxels that were left out in the thresholding step. Hence, a threshold of 0.2, 

means that voxels with intensity less than 20% of the image’s maximum were 

thresholded out. As a result, voxels without any information from the 

vasculature are excluded.  

The optimal threshold was found to be 0.3, which was adopted for the 

subsequent analysis. Following this step, the retained voxels are overlaid onto 

the magnitude image to manually select an area surrounding the vessel of 

interest. The area of the manually picked ROI does not influence the final result, 

since the manual selection is introduced as a means of choosing an already 

segmented vessel of interest, rendering this approach user-independent. The 

only control the user has is to choose the optimal threshold and to select the 

vessel of interest. The followed steps and the images resulting from every stage 

are depicted in figure 7.11. 
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Figure 7.11: PC-MRA processing steps. A) mean magnitude image, B) mean phase image, C) 

mean velocity image, D) phase multiplied with velocity image (information from the veins is 
zeroed), E) arterial input overlaid on the magnitude image, F) hand drawn ROI, G) selected 

vessel overlaid on the velocity image. 

 
The mean, maximum and minimum velocities were calculated from each 

vessel of interest at each time point and the final reported value was the mean 

of each of them within the vessel. Flow was calculated as the product of the 

mean velocity and the area of the vessel.  
The areas of the vessel varied slightly for every individual and this could 

result in flow, min velocity and mean velocity differences due to the size of the 

vessel area. To account for that, the 10 voxels having maximum intensity inside 

the vessel of interest were retained, in order for the velocities to be compared 

with the same reference vessel area. This approach was run for the whole 

brain, the left and the right hemispheres separately. The retained voxels were 

the ones reflecting laminar flow, since they were situated at the center of the 

vessel. Additionally, to get a clearer picture of the inflowing blood flow pattern, 

results for all arterial input voxels exceeding the defined threshold were 

recorded. 

Of primary interest in the analysis of the PC-MRA data was the inflowing 

velocity pattern, the area of the supplying voxels and the overall inflowing flow. 

A)	

G)	F)	E)	

B)	 C)	 D)	
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During the acquisition, every possible effort was made for the same region to be 

selected for every individual, however that was not always the case. Small 

deviations were noticed. For this reason, we focused more on the velocity 

pattern. 

Two PC-MRA scans were acquired for every individual proximal to the 

right carotid, one at baseline and one following ACZ injection. The acquisition 

was optimized for the right carotid; however, measurements were also 

extracted from the left carotid and from all vessels surviving the thresholding 

procedure. CVR was evaluated as the percentage change in the flow values 

following administration of the vasodilating stimulus. 

Mean and standard deviations for all subjects were calculated and initial 

comparisons took place with t-tests when data were normally distributed and 

with Wilcoxon rank sum test when they were not normally distributed. To 

compare the values between the three groups one-way ANOVA was used and 

when its assumptions were violated, the Kruskal-Wallis test was applied to 

detect potential differences. FDR was used to correct for multiple comparisons. 

The analysis was run for 15 HV (1 discarded due to poor image quality), 12 IGT 

subjects and 16 T2DM patients (1 discarded due to poor localization of the 

carotid).  

 

7.4.2 Results  
Overall, 46 variables were calculated from the PC-MRA scans. The 

mean area covered by feeding vessels for every group when a threshold = 0.3 

was used is reported in number of voxels in table 7.8. 

 
Table 7.8: Mean vessel area (mean ± standard deviation) measured in number of voxels 
for the examined groups.  

 HV IGT T2DM 
Age (years) 48.4±13.6 54.8±5.3 54.4±11.9 

All pre-ACZ 55.73±13.51 63.75±19.58 61.63±23.91 

All post-ACZ 65.80±13.98 69.42±23.10 61.31±19.25 

Right pre-ACZ 18.13±2.29 20.33±4.03 22.69±8.01 

Right post-ACZ 23.20±6.05 24.00±4.86 25.38±10.27 
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Left pre-ACZ 19.60±3.36 19.42±5.47 21.13±8.86 

Left post-ACZ 25.07±6.30 23.83±8.24 21.94±7.67 

 

Differences between the areas covered by the examined vessels were 

not significant when examined using t-tests. Changes in the vessel diameter 

were significant only for the HV group for the right (z = 2.877, p < 0.01), left (z = 

2.749, p = 0.01) and all identified arterial input (z = 2.700, p = 0.01). Age was 

not significantly different between the groups after the exclusion of the 3 noisy 

scans. 

 

7.4.2.1 Flow evaluation 
Flow was calculated for the whole area of the chosen vessel (left and 

right carotids), for the 10 more intense voxels within this vessel (left10, right10) 

and for all the arterial vessels exceeding the selected threshold. Results for the 

baseline and post-ACZ flow are shown in figure 7.12 and for CVR in table. 7.9 

(CVR). 
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Figure 7.12: Baseline and post-ACZ flow for the different ROIs. Shown are the mean values 
per group accompanied with the standard deviation. 

Differences were significant at baseline between HV-T2DM for the 

following: right10 (z = -3.042, p = 0.01), left10 (t(26) = -2.691, p = 0.01). Post-

HV       IGT     T2DM

baseline

baseline

baseline

baseline

baseline

Post-ACZ

Post-ACZ

Post-ACZ

Post-ACZ

Post-ACZ
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ACZ fifferences were significant between HV-T2DM for the following: right (z = -

2.115, p = 0.03), right10 (z = -2.233, p = 0.03), left (t(26) = -3.066, p < 0.01), 

left10 (t(26) = -2.393, p = 0.02) and all (t(26) = -3.879, p < 0.01).  

 
Table 7.9: CVR for the 3 groups and examined areas evaluated as the % change between 
pre and post ACZ flow measurements. 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 54.24±20.47 55.85±26.73 29.49±23.19 29.65±23.91 51.50±11.87 

IGT 49.94±36.54 49.68±37.42 31.5±18.91 27.53±13.71 30.74±19.5 

T2DM 45.43±28.77 38.38±38.48 30.7±18.31 27.84±20.16 34.76±40.00 

 

Differences in CVR were significant between HV and T2DM for: all 

vessels (z = -2.273, p = 0.02), and between HV and IGT for: right (z = -1.976, p 

= 0.05) and all (z = -2.659, p = 0.01). 

 
7.4.2.2 Velocity measurements 

Baseline and post-ACZ velocity values are analysed for the following 

velocities: mean  maximum and minimum. Results are shown in figure 7.13 for 

the left and right carotid and the whole arterial input. Additional results for the 

10-voxel area can be found in the appendix2 (tables A7.2-A7.7). 
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Figure 7.13: Mean, maximum and minimum velocities for the left and right carotids and all 
arterial input for the three considered group 

Significant differences between the groups when using t-tests were identified for 

the following metrics: 

 

• Mean baseline velocity  
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Ø HV - T2DM: right (t(26) = -3.161, p < 0.01), right10 (t(26) = 

-3.409, p < 0.01), left (t(26) = -3.008, p = 0.01), left10 (t(26) 

= -3.257, p < 0.01) and all (t(26) = -2.895, p = 0.01).  

Ø HV and IGT: right (t(26) = -2.557, p = 0.02) and right10 

(t(26) = -2.240, p = 0.03). 

 

• Maximum baseline velocity  

Ø HV - T2DM: right (t(26) = -3.523, p < 0.01), right10 (t(26) = 

-3.529, p < 0.01), left (t(26) = -3.332, p < 0.01), left10 (t(26) 

= -3.333, p < 0.01) and all (t(26) = -3,097, p < 0.01). 

Ø HV – IGT: right (t(26) = -2.215, p = 0.04) and right10 (t(26) 

= -2.215, p = 0.04).  

Ø IGT - T2DM: all arterial input (t(26) = -3.420, p < 0.01).  

• Minimum baseline velocity  

Ø HV - T2DM: right (t(26) = -2.565, p = 0.02), right10 (t(26) = 

-3.169, p < 0.01), left (t(26) = -2.097, p = 0.04) and left10 

(t(26) = -3.088, p < 0.01) and all (t(26) = -3.420, p < 0.01).  

Ø IGT - T2DM: right (t(26) = -2.215, p = 0.04) and right10 

(t(26) = -2.318, p = 0.03). 

 

• Mean post-ACZ velocity  

Ø HV-T2DM: right (z = -2.154, p = 0.03), right10 (z = -2.431, p 

= 0.02), left (t(26) = -2.757, p = 0.01), left10 (t(26) = -3.125, 

p < 0.01) and all (z = -2.194, p = 0.03). 

Ø HV-IGT: right (z = -2.22, p = 0.03),  right10 (z = -2.318, p = 

0.02) and all (z = 2.611, p = 0.01). 

 

• Maximum post-ACZ velocity  
Ø HV-T2DM: right (z = -2.471, p = 0.01), right10 (z = -2.471, p 

= 0.01), left (t(26) = -3.029, p = 0.01), left10 (t(26) = -3.027, 

p = 0.01) and all (z = -2.866, p < 0.01). 

Ø HV-IGT: right (z = -2.123, p = 0.03), right10 (z = -2.123, p = 

0.03) all (z = -2.757, p = 0.01). 
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• Minimum post-ACZ velocity  
Ø HV-T2DM: right10 (z = -2.471, p = 0.01), left10 (z = -3.407, 

p < 0.01) and all (t(26) = -2.620, p = 0.01). 

Ø HV-IGT: right10 (z = -2.123, p = 0.03) and all (z = -2.542, p 

= 0.02) c) IGT-T2: left10 (z = -2.288, p = 0.03). 

 

Result summary 
Overall the differences between the three groups were significant for the 

following metrics:  

Baseline: 
• Right carotid: mean velocity (χ2(2) = 9.5, p = 0.01), max velocity (χ2(2) = 

8.433, p = 0.02), min velocity (χ2(2) = 6.935, p = 0.03), 10-voxel flow 

(χ2(2) = 8.726, p = 0.01), 10-voxel mean velocity (χ2(2) = 8.726, p = 

0.01), 10-voxel  max velocity (χ2(2) = 8.433, p = 0.02), 10-voxel min 

velocity (χ2(2) = 6.911, p = 0.03). 

• Left carotid: max velocity (F(2,40) = 6.042, p = 0.01), 10-voxel flow 

(F(2,40) = 6.875, p < 0.01), 10-voxel mean velocity (F(2,40) = 5.792, p = 

0.01), 10-voxel max velocity (F(2,40) = 6.046, p = 0.01), 10-voxel min 

velocity (F(2,40) = 5.45, p = 0.01),  

• All: mean baseline velocity (χ2(2) = 7.088, p = 0.03), max baseline 

velocity (χ2(2) = 8.668, p = 0.01). 

Post-ACZ: 
• Right carotid: mean velocity (F(2,40) = 3.795, p = 0.03), max velocity 

(χ2(2) = 8.373, p = 0.02), 10-voxel flow (χ2(2) = 9.065, p = 0.01), 10-voxel 

mean velocity (χ2(2) = 9.065, p = 0.01), 10-voxel  min velocity (χ2(2) = 

9.214, p = 0.01),  10-voxel  max velocity (χ2(2) = 8.433, p = 0.02). 

• Left carotid: flow (F(2,40) = 5.749, p = 0.01), mean velocity (F(2,40) = 

4.222, p = 0.02), max velocity (F(2,40) = 5.262, p = 0.01), 10-voxel flow 

(F(2,40) = 5.788, p = 0.01), 10-voxel mean velocity (F(2,40) = 5.671, p = 

0.01), 10-voxel  max velocity (F(2,40) = 5.257, p = 0.01), 10-voxel  min 

velocity (F(2,40) = 6.921, p = 0.01). 
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• All: flow (χ2(2) = 9.217, p = 0.01), mean velocity (χ2(2) = 7.918, p = 0.02), 

max velocity (χ2(2) = 11.298, p < 0.01), min velocity (F(2,40) = 4.412, p = 

0.02). 

CVR as calculated using the PC-MRA data differed significantly between the 

groups for all arterial input (χ2(2) = 8.23, p = 0.02). All the identified metrics 

remained significant following correction for multiple comparisons using FDR. 

 

7.4.3 Discussion 
Typical processing of a PC-MRA scan involves manual selection of the 

vessel of interest and quantification of several metrics from the chosen region. 

Commonly the flow values are reported. A new Matlab-based tool for carotid 

velocity and flow quantification was presented in this chapter. The method for 

arterial selection is user-independent and highly reproducible (unless users 

disagree on which vessel is the carotid). The tool’s novelty relies on a shift in 

the focus from carotid flow to the actual acquired velocity pattern, which can be 

examined in its entirety.  

When processing the PC-MRA scans, focus was put on the vessel for 

which the acquisition was optimised (right carotid) but also on the left part by 

keeping in mind that the acquisition might not have been perpendicular to the 

left side. The whole vessel was chosen in a user-independent manner. 

Additionally, a fixed area of 10 voxels inside the vessel of interest was selected 

to detect differences in the laminar velocity pattern, by considering a region of 

the same size for every subject. The analysis identified that the blood velocity 

was significantly different between the groups for both a set area of 10 voxels 

and the whole vessel region. Three velocities were evaluated, the maximum, 

minimum and mean. The flow value (multiplication between mean velocity and 

the area of the vessel) was also calculated and was found to differ between the 

groups.  

A finding of interest is that the area of the arterial supply was higher at 

baseline (not significantly) in the T2DM group and following ACZ injection there 

was no big increase indicating that the vessel did not dilate in response to the 

stimulus. This finding was not significant; however, it shows a tendency for the 

hyperglycemic groups to have more dilated carotids at baseline. Both the IGT 

and T2DM groups showed a stabilisation of the vessel diameter pre- and post-
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ACZ with only minor changes. On the contrary, the increase in the vessel 

diameter for the HV groups was significant for both left and right carotid and for 

all identified arterial supply. This finding could point towards a maximum 

vasodilation at baseline in the IGT and T2DM groups, associated with the 

presence of a potential compensatory mechanism due to impaired oxygen and 

nutrient delivery to the brain tissue.  

In terms of the evaluated velocities, the HV group demonstrated higher 

mean, min and max velocities compared to the IGT and T2DM groups. IGT 

subjects had values in between HV and T2DM subjects. Flow differed between 

HV and T2DM in the 10-voxel areas for the right and left carotids at baseline. 

For the same groups post-ACZ flow differed for all examined ROIs. CVR at the 

level of the carotids was decreased for the T2DM group in all the examined 

arterial input; in IGT the difference when compared to HV was significant for the 

right carotid and all arterial input. In terms of differences in the velocity pattern, 

for the 10-voxel regions, all examined velocities differed between the three 

groups pre- and post-ACZ, implying a distinct laminar flow pattern. When 

examining the whole vessel areas, differences were recorded at baseline for the 

mean (R, all), min (R) and max (L, R, all) velocities. Post-ACZ the patterns of 

difference were identified for: mean (L, R, all), min (all) and max (L, R, all) 

velocities. These findings were mainly driven by differences between HV and 

T2DM, with differences between HV and IGT mainly detected for the right 

carotid for which the acquisition was optimised. 

These findings ought to be discussed in light of the existing literature 

whereby a detailed velocity pattern analysis is not usually conducted. Only a 

few studies have looked into the carotid flow pattern using either TCD or PC-

MRA in diabetes. Typically, the reported metrics are flow, velocity and metrics 

such as pulsatility index (53). A study using PC-MRA and ACZ as a vasodilator 

found no differences in baseline flow and a decrease in CVR in T2DM; the 

findings were non-significant (333). A study using TCD has reported reduced 

mean flow velocity in T2DM (42), a finding in line with our velocity findings. In 

the same study, CVR was assessed using CO2 inhalation and was found to be 

significantly reduced in the diabetic cohort. Tiehuis et al. (44) did not find 

significant differences after correcting for brain volume. In their study, despite 

using PC-MRA, they focused on the calculation of CBF based on the velocity 
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information after correcting for the total brain volume. A study by Brundel et al. 

(193) showed that CBF, calculated by PC-MRA, was reduced in patients with 

T2DM. In the aforementioned study, CVR was assessed using TCD and was 

found to be increased; the significance of the findings though was not reported.  

To summarise the findings reported in the literature, CVR, when using 

velocity-based quantification strategies, has generally been found to be 

decreased in diabetes. Baseline flow tends to be similar between the groups, 

whereas baseline velocity is decreased.  

The present analysis is the first one of its kind focusing on a detailed 

analysis of the velocity pattern between the groups and findings suggest the 

existence of significant differences. We proposed that a detailed velocity and 

area analysis along with carotid flow calculation can have an additive diagnostic 

value since the observed flow pattern can be attributed either to a large vessel 

area or to a high blood velocity. Such an analysis can disentangle the cause of 

the observed flow differences and shed light on the inflowing velocity pattern. 

Based on the described findings, we suggest that the velocity of the inflowing 

blood is decreased in both IGT and T2DM and there is a non-significant 

increase in the area of the vessels, pointing towards dilation at baseline. 

Following pharmacologically induced vasodilation, we see a lower response 

with regards to vessel dilation, flow and velocity changes in the IGT and T2DM 

groups. 

 

7.5 Time-of-flight – Magnetic Resonance Angiography (TOF-MRA) analysis 
 
7.5.1 Methods  

Three methods were tested for angiogram segmentation. Methods 1 and 

3 were applied directly to the 2D coronal maximum intensity projection (MIP). 

Method 2 applied angiogram segmentation in two stages; an initial 

segmentation was performed in the 3D stack of axial slices of the angiogram. 

Subsequently the initial segmentation was projected (MIP) and a second 

segmentation was applied in the 2D projection. For method assessment two, 

subjects were used, one HV with a normal looking scan and one T2DM patient 

with high degree of collateral circulation.  
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Method 1 
The first method involved using an adaptive threshold calculated locally 

in areas of NxN pixels. The evaluated window sizes (N) were: 15x15, 25x25, 

45x45, 65x65, 85x85 and sensitivity levels of 0.2, 0.3, 0.4, 0.5. The utilised 

algorithm was Matlab’s adaptthresh (334), which calculates a threshold based 

on the calculated mean inside a sliding window. A higher sensitivity level allows 

more pixels to be included in the generated mask. 

 
Method 2 

The second evaluated approach was as follows: the image was initially 

filtered with a wiener filter (5x5) (335). K-means clustering was used to classify 

the voxels into three separate clusters and remove background along with 

voxels with intensity values close to background. A square mask in the area 

(150:350, 150:350) was created to separate each 2D slice into two regions, a 

central and a peripheral. The peripheral region incorporated mainly background 

and branches emerging from the external carotid. Furthermore, the 222 slices 

were separated into three groups. The first group involved the region from the 

base of the neck until the point where the main carotids start converging, the 

second region was defined from the point where the convergence of carotids 

starts until the upper part of the circle of Willis and the third involved the slices 

from that point to the upper slice. These six groupings gave rise to distinct 

groups, each having its own threshold (the values were normalized). Multiple 

thresholds were tested for every individual and every region. 

 

Method 3 
One of the most popular algorithms for vessel segmentation especially 

for retinal images is Frangi’s vesselness filter (336). The method enhances the 

vascular structures by filtering the image to improve vasculature segmentation. 

The filter detects tubular structures by exploiting the eigenvalues of the image’s 

Hessian (336). The Hessian matrix of an image comprises the second order 

partial derivatives. Second order derivatives of a continuous function can be 

used to detect local maxima and minima in a signal/image. These are the points 

where the derivative has a value of zero and the nature of maxima/minima can 

be determined by whether the second order derivative is negative (maximum) 
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or positive (minimum). Hence, the idea behind the Frangi filter is that, following 

smoothing by convolution with a Gaussian, the eigenvalues of the Hessian 

matrix are determined and a high ‘vessel response’ is said to exist when the 

eigenvalues fulfill set criteria (thresholding). For more details on the operating 

principles of the filter, the reader is referred to the original publication (336). The 

evaluated Frangi filters had standard deviation values of σ = 1, 3 and 5. A 

Matlab function built by D.-J. Kroon (282) was used for the implementation of 

the Frangi filter. 

 

Performance evaluation and calculated metrics 
The MIP of the coronal plane was used to visually evaluate the success 

of the segmentation methods. Metrics were extracted to evaluate potential 

differences in the area covered by vessels (indicative of vascular deficits) or the 

number of different branches (indicative of the presence of collateral circulation 

or loss of vasculature) for every individual. To proceed to vasculature-

descriptive metric extraction, the number of non-zero pixels was counted in the 

designated area of interest. Subsequently, the resulting vasculature 

segmentation was ‘skeletonized” using the bwmorph Matlab function with “thin” 

as an argument and 10 iterations and the resulting length of the vascular tree 

was calculated (MATLAB and Image Processing Toolbox 2016a, The 

MathWorks Inc., Natick, Massachusetts, USA). The number of branching points 

was also recorded, again using bwmorph.  

Metrics regarding the vessel density, centerlines (vessel length without 

density information) and number of branching points were recorded for vessels 

arising from the MCA territory. The image region including the MCA was 

manually chosen. To achieve optimal segmentation we used both the 

developed 2nd method and also segmentation based on simple Otsu 

thresholding (287).  

 

7.5.2 Results 
In figures 7.14 & 7.15, results for the 1st developed method are depicted 

with varying values for the adaptive window and threshold level. Visual 

assessment of the segmentation results suggests that optimal segmentation 

was obtained with a window of 45x45 and a sensitivity level of 0.3. These 
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values were used for subsequent comparison of the segmentation result using 

methods 2 and 3.  

 
Figure 7.14: 1st method for angiogram segmentation for one HV.  Every row corresponds to 

a different window size (15x15, 25x25, 45x45, 65x65, 85x85) and every column to a different 

threshold (0.2, 0.3, 0.4, 0.5). 
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Figure 7.15: Segmented MIP for one T2DM subject using the first method. Every row 

corresponds to a different window size (15x15, 25x25, 45x45, 65x65, 85x85) and every column 

to a different threshold (0.2, 0.3, 0.4, 0.5). 

 

For the second method, with 6 distinct ROIs each having a tailor-made 

threshold, angiographic segmentation results are shown in figure 7.16. 

 
Figure 7.16: Segmentation with the 2nd method for one HV (top) and one T2DM patient 
(bottom) 

 
Segmentation results for method 3 (Frangi’s vesselness filter) are shown 

in figures 7.17 & 7.18. 
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Figure 7.17: MIP segmentation using Frangi filter with 3 different standard deviations 
(from left to right, σ = 1, 3 and 5) for one healthy subject. 

 
Figure 7.18: MIP segmentation using Frangi filter with 3 standard deviations (from left to 
right, σ = 1, 3 and 5) for one T2DM patient. 

 

The implemented Frangi vessel segmentation resulted in missing some 

of the smaller vessels at the anterior part of the brain, which were successfully 

identified with the developed methodology due to the various thresholds chosen 

carefully for every individual. This came at the expense of allowing several 

noisy pixels inside the segmented angiogram. For this particular study the 

region encompassing the MCA and ACA territories is of particular interest, since 

it is the region on which the perfusion ASL measurements were conducted, 
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hence it is important to identify the underlying vascular structure. A comparison 

of all three methods side by side for two subjects is shown in figure 7.19. 

 
Figure 7.19: Comparison of the MIP segmentation obtained with the 3 evaluated methods. 
From left to right: MIP, angiogram segmentation with the 1st, 2nd and 3rd method. 

 

Angiographic segmentation is a challenging task, and even after the 

introduced development, noisy regions were not efficiently masked out in 

several scans. As mentioned earlier, segmentation of the MCA territory is of 

particular interest, so results were evaluated for the MCA separately for the best 

performing methods (1 & 2). Results are shown in figure 7.20. 
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Figure 7.20: MCA territory segmentation. From left to right: Segmentation based on Otsu, MIP 

and segmentation with the 2nd angiogram segmentation method. 

 

Optimal segmentation results were obtained for the second method, as 

assessed by visual evaluation of the resulting maps, so it was used for the 

subsequent analysis of the segmented MCA vasculature. Results for the 

evaluated vasculature-descriptive metrics are shown in table 7.10. 

 
Table 7.10: Vasculature-descriptive metrics extracted from the MCA territory for the 3 
groups. 

 HV IGT T2DM 
Vessel density 4385.5±804.8 4146.7±894.7 3712.5±1134.0 
Vessel length 1396.9±209.3 1363.5±251.7 1208.5±336.3 
Branch points 149.9±28.5 138.0±31.6 110.7±40.9 
 

The differences were significant between HV and T2DM for the number 

of branching points (z = -3.103, p < 0.01). The number of branching points also 

differed between IGT and T2DM patients (z = -2.237, p = 0.03). Vessel length 

(p = 0.058) and density (p = 0.054) did not differ between HV and T2DM; an 

underlying tendency was noticed though for a lower vessel length and density in 

the T2DM group. 
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7.5.3 Discussion 
Angiogram segmentation is a cumbersome task and constitutes a vivid 

research area where neural networks have come into play to assist (316). 

Currently, there is no gold standard for this procedure; several tools have been 

developed but are at an experimental stage (337, 338). Here, we presented a 

semi-automated method, which requires the user to evaluate different 

thresholds in six regions in order to achieve optimal segmentation. The 

algorithm initially partitions the scan into two regions, a peripheral and a central 

one and subsequently to three additional sub-regions in the head-foot axis.  

The results for the developed approach were promising and 

demonstrated a good performance compared to alternative techniques 

evaluated for vascular segmentation. Our goal was not to successfully segment 

only the large vessels, but to extract accurately the anatomy and vasculature of 

the smaller arterioles. When the popular Frangi filter was used, even with the 

least degree of smoothing, detail (especially small vessels) was lost. A second 

evaluated approach based on a local adaptive threshold resulted in accurate 

vascular segmentation, although several noisy background voxels were 

included in the segmented mask. However, when this approach was used, the 

vascular anatomy was preserved in greater detail (especially small arterioles) 

and was better separated from the background. Hence, the subsequent 

quantitative analysis was facilitated.  

The main drawback of the introduced technique is that it is semi-

automated, requiring the user to test multiple thresholds. Additionally, it requires 

a subjective visual evaluation of the segmentation result based on the MIP.  

The angiogram analysis revealed significant group differences, although 

large variability existed within the groups. There was no distinct pattern that all 

diabetic patients followed, for some of them an increased collateral blood 

supply was noticed, whereas for others the collateral circulation was totally 

missing. When focusing on the MCA territory, following vasculature analysis, 

the number of branching points was significantly lower in the T2DM cohort 

compared to HV and a tendency for reduced vessel length and density was 

noticed, indicating that the overall tendency was for a reduction in the number 

of vessels. Another possible explanation is that due to slower flow in the 
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diabetes group the moving spins inside smaller vessels were saturated along 

with stationary spins resulting in signal loss.  

Regardless of the cause for this reduced number of vessels, these 

findings are of great importance, since they highlight that the vasculature of the 

examined T2DM cohort is influenced even in the absence of neurological 

complications. A decrease in the number of blood vessels or a slower blood 

flow could result from the build-up of atherosclerotic plaques and especially in 

the case of a slower flow, it could be connected with the increased ATT times 

observed in the cohort in the previous chapter. These findings are not surprising 

based on the diabetic symptomatology since diabetic subjects are in a higher 

risk of ischemic stroke and are likely to develop small vessel disease. Another 

interesting observation is that the IGT cohort was highly similar to the HV cohort 

suggesting that alterations in the vascular anatomy have not yet occurred in this 

pre-diabetic group.  

However, quantification of vasculature-descriptive metrics from the MCA 

angiograms which could lead to useful disease biomarkers is not typically 

conducted. A PubMed search with the terms “MRA”, “diabetes” and “brain” 

conducted in October 2018, returned 44 articles from which only one was 

relevant. This study by Yashiro et al. (192) reported findings similar to ours with 

regards to the number of branches / branching points. In their study, they 

focused on the same area (MCA) as we did in the present study. Their analysis 

involved additional metrics such as stems and vessel tortuosity, which were all 

extracted based on line tracing in the final MIP. 

Quantitative angiogram analysis, typically not conducted due to the 

complex processing and the requirement for vessel segmentation, holds great 

promise for detecting subtle disease patterns. Our study along with the study by 

Yashiro et al. (192) are the only ones to our knowledge that have looked into 

analysing TOF-MRA images from a T2DM cohort in a quantitative way and 

resulted in similar findings. Angiograms hold great potential for extraction of 

vasculature-descriptive metrics and in the long run a detailed fully-automated 

analysis could provide important biomarkers. Being currently a field attracting 

increasing interest due to the segmentation challenges, TOF-MRA images 

could be used in the future for quantification of multiple metrics when their 
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processing is more standardised and the obstacles created by imperfect 

segmentation are surpassed.  

 

7.6. Diffusion Weighted Image analysis 
 
7.6.1 Methods 

DWI scans were acquired at 2 b-values (b = 0 and 1000 s / mm2) and in 

three orthogonal gradient directions. This DWI acquisition allows solely for the 

quantification of the ADC map, which is useful in order to identify how isotropic 

the diffusion pattern is. The higher b-value sensitizes the water molecules to 

motion and the three applied directions determine the directionality of this 

sensitization, whereas b=0 gives a T2-weighted image which allows for 

quantification. The ADC was calculated for every individual for b = 1000 using 

the following equation: ADC = log(S / S0) / b, whereby S0 is the signal for b = 0 

and S the signal for b = 1000. The signals were calculated for every b as the 

geometrical mean from signals emerging from all the directions. A further 

interesting extension to this study would be to apply more b-values and utilize a 

larger number of directions (e.g. 64) to sensitize the acquisition to more 

directions and hence determine other quantities of interest such as fractional 

anisotropy and radial diffusivity. A more detailed DTI acquisition would also 

allow for analysis of the white matter tracts and structural connectivity which 

was not possible in the present study. 

Images were normalized to the MNI space using ANTs registration to 

generate an affine transformation. ADC values were extracted for structures of 

interest using the cortical and subcortical Harvard-Oxford maps from the 

following regions (left and right): amygdala, thalamus, hippocampus, caudate, 

putamen, pallidum, WM, CC, lateral ventricles, brainstem and accumbens. 

Additionally, ADC values were compared for the temporal, parietal, occipital and 

frontal lobes, the insula and thalamus. Overall data from 11 HV (aged 55.9 ± 

7.1), 12 IGT (aged 54.8 ± 5.3) and 16 T2DM (aged 54.5 ± 11.8) patients were 

available. 
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7.6.2 Results 
The ADC values for the different lobes and structures of interest are 

shown in tables 7.11 & 7.12. Example images for one subject are as in figure 

7.21. 

	
Figure 7.21: Example images for one subject for b=0, b=1000 s/mm2 and the associated 
ADC map. 

 
Table 7.11: ADC values for the main lobes, insula and thalamus for the examined groups. 

 HV (*10-3) mm2/s IGT(*10-3) mm2/s T2DM(*10-3)mm2/s 
Frontal lobes 0.99±0.14 0.98±0.10 1.02±0.16 

Temporal lobes 0.82±0.08 0.83±0.06 0.85±0.10 

Parietal lobes 0.98±0.14 0.95±0.11 0.99±0.12 

Occipital lobes 0.84±0.09 0.84±0.06 0.85±0.09 

Insula 0.94±0.12 0.94±0.08 1.03±0.20 

Thalamus 0.93±0.11 0.94±0.16 1.12±0.35 

 
Table 7.12: ADC values in structures of interest for the examined groups. 

 HV(*10-3)mm2/s IGT(*10-3)mm2/s T2DM(*10-3)mm2/s 
Brainstem 1.10±0.15 1.15±0.16 1.27±0.21 

Left accumbens 0.69±0.05 0.73±0.11 0.81±0.32 

Left amygdala 0.84±0.13 0.97±0.09 0.99±0.18 

Left caudate 1.06±0.23 1.15±0.47 1.44±0.65 

Left CC 1.00±.0.12 0.99±0.09 1.02±0.13 

Left 
hippocampus 

0.99±0.09 1.04±0.09 1.15±0.19 

Left LV 2.23±0.38 2.41±0.45 2.44±0.46 

Left pallidum 0.75±0.12 0.69±0.13 0.69±0.14 

Left putamen 0.71±0.07 0.69±0.05 0.71±0.06 

Left thalamus 1.07±0.15 1.07±0.20 1.26±0.41 
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Left WM 0.80±0.05 0.83±0.06 0.90±0.20 

Right 
accumbens 

0.71±0.06 0.70±0.07 0.88±0.27 

Right amugdala 0.87±0.11 0.98±0.06 0.99±0.15 

Right caudate 1.15±0.29 1.29±0.40 1.59±0.59 

Right CC 1.02±0.14 1.01±0.09 1.04±0.13 

Right 
hippocampus 

1.01±0.08 1.05±0.13 1.10±0.19 

Right LV 2.15±0.44 2.28±0.39 2.38±0.40 

Right pallidum 0.61±0.11 0.57±0.19 0.62±0.16 

Right putamen 0.66±0.07 0.64±0.11 0.67±0.10 

Right thalamus 1.03±0.21 1.06±0.20 1.21±0.38 

Right WM 0.79±0.05 0.81±0.04 0.89±0.17 

 

Differences between the HV and the T2DM group were recorded for the 

following structures: brainstem (t(26) = 2.309, p = 0.03), left amygdala (t(26) = 

2.339, p = 0.03), left hippocampus (t(26) = 2.506, p = 0.02), right accumbens (z 

= 2.097, p = 0.04), right amygdala (t(26) = 2.146, p = 0.04) and right caudate 

(t(26) = 2.352, p = 0.03). HV and IGT differed in the following regions: left and 

right amygdala (t(26) = 2.953, p = 0.02 and t(26) = 2.898, p=0.01),  and for IGT-

T2DM for the right accumbens (z = 2.344, p = 0.02). Following FDR correction 

for multiple comparisons, none of the differences remained significant. However 

a tendency was noticed for the ADC values in the regions of difference 

identified prior to FDR correction to be higher in T2DM and IGT compared to 

HV indicating that the molecular diffusion is higher.  

For the 3-group comparisons and the structures identified as significantly 

different in the binary comparisons the results were as follows: brainstem 

(F(2,36) = 6.293, p = 0.04), left amygdala (χ2(2) = 8.467, p = 0.01), left 

hippocampus (χ2(2) = 7.146, p = 0.03), right accumbens (χ2(2) = 7.311, p = 

0.03) and right amygdala (χ2(2) = 6.284, p = 0.04). Following multiple 

comparison correction with FDR none of the differences remained significant 

between the groups. 
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7.6.3 Discussion 
The diffusion pattern in the available cohort was investigated using DWI. 

The acquisition with three directions and two b-values allowed only for the 

calculation of ADC maps and not for a detailed diffusion analysis as would be 

the case with a DTI acquisition. Several significant differences were initially 

identified using statistical comparisons, however, significance was lost following 

multiple comparison correction. The ADC values in T2DM demonstrated a 

tendency to be higher in the amygdala, caudate, hippocampus, accumbens and 

the brainstem; in IGT the ADC was higher in the amygdala. These findings 

might indicate that there is a trend of increased water diffusivity, potentially 

connected to the endothelial dysfunction and BBB disruption observed in T2DM 

(10). Hence, the amygdala could potentially be one of the first areas with 

impaired (increased) water diffusivity in hyperglycemia, since it is the single 

structure brought up in the binary comparisons between hyperglycemia and 

normoglycemia.  

Studies of diffusion patterns in T2DM have found global and local 

increases in ADC values (mean diffusivity) in line with our findings (339, 340). 

The majority of studies have used more advanced multi-directional techniques, 

such as DTI, to examine microstructural changes in WM, so more focus is put 

on non-isotropic/directional metrics such as fractional anisotropy (199). A more 

detailed analysis of the diffusion pattern would be of interest for the present 

cohort; however, the DWI acquisition means that this isn’t possible. In the 

future, DTI or diffusion kurtosis imaging sequences could be incorporated into 

protocols investigating WM changes in T2DM and IGT. 

 

7.7 Summary 
In this chapter a multitude of MRI modalities were processed and 

processing solutions were discussed. These modalities involved high-resolution 

T1-weighted, T2 FLAIR, PC-MRA, DWI and MRA scans. The MPRAGE (T1 

scan) was processed using multiple methods that have been extensively 

validated previously for group-wise comparisons. The burden of WMH was 

quantified from the FLAIR scan using existing software. The PC-MRA scan was 

analysed using a newly developed Matlab-based approach. DWI images were 

processed by implementing in Matlab the theoretical equations for quantification 
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of the ADC. Finally, the angiograms were also segmented using a newly 

developed method and vasculature specific metrics were derived. After proving 

the efficiency of the developed approaches, they were implemented to the 

available dataset.  

For the MPRAGE processing: the brain was extracted based on SPM 

and minor dilation, erosion and filling operations were implemented when the 

results were suboptimal. Segmentation using SFCM with a 5x5 window was 

implemented following BFC with N4. Additionally, MPRAGE images were 

processed using VBM with FSL, Freesurfer, for cortical parcellation and 

structure volume determination and a machine learning-based approach based 

on feature reduction and classification. Key findings from this modality 

regarding the T2DM group (when compared to HV) involved differences in 

areas such as the hippocampi, amygdala and thalami identified using VBM. 

Interestingly there were no differences between HV and IGT subjects. The 

machine learning approach unraveled that high classification performance was 

achieved when considering voxels in the periphery of the cortex and around the 

ventricles. 

For the T2-FLAIR scan, the brain lesion segmentation toolbox was used. 

A significantly higher number and volume of WMH in T2DM was recorded. 

Results for the IGT groups were similar to the HV group. When using textural 

analysis to identify potential subtle textural changes, the achieved classification 

performance was poor for all examined binary tasks. 

The PC-MRA scan was processed using a developed Matlab tool, 

quantifying the velocity pattern at the level of the carotids. The average min, 

mean and max velocities were calculated for the whole arterial input, the left 

and right carotid. These velocities were quantified for the whole vessel area and 

for fixed regions of 10-voxels demonstrating the highest intensity. Key findings 

involved larger vessel area at baseline (non-significant) in the IGT and T2DM 

groups and lower velocity patterns at baseline and following ACZ injection 

compared to the HV group for both hyperglycemic groups. 

The acquired TOF-MRA images were analysed using a developed semi-

automated method. Results indicate that the diabetic group had a lower number 

of branching points. 
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Finally, for the analysis of the DWI a developed Matlab script was 

utilised. Findings following multiple comparison correction were not significant, 

however a tendency was noticed for increased ADC locally in IGT (amygdala) 

and T2DM (hippocampus, amygdala, accumbens, brainstem and caudate). 

Five MRI modalities were processed after having presented a proof of 

concept for the adopted processing approaches. The purpose was to present a 

preliminary analysis of functional and structural changes occurring in the 

examined groups that can be considered along with the extended 

hemodynamic analysis presented in Chapter 6. Further processing optimization 

of the examined techniques could be evaluated in the future. 

An optimal segmentation approach for the acquired MPRAGE scan was 

suggested and implemented. PC-MRA and TOF-MRA data were processed 

with newly developed a semi-automated methods and multiple metrics were 

extracted. These metrics, not typically quantified in neuroimaging studies 

differed significantly between the groups. Voxel-wise comparison for the 

structural scan using machine learning was implemented and high accuracy 

was achieved in the classification tasks. Image analysis unraveled structural 

and functional differences between HV and T2DM. A lower number of 

differences was recorded for IGT compared to both HV and T2DM. Regional 

differences in cortical and subcortical structures of interest (VBM), increased 

WMH burden (FLAIR), lower carotid flow velocity, non-significant carotid dilation 

at baseline (PC-MRA) and a reduction in the number of branching points in the 

MCA vascular territory (TOF-MRA) were the main findings for the T2DM group. 

Interestingly, IGT or else pre-diabetes was structurally similar to the HV group 

(MPRAGE, FLAIR, TOF-MRA). Functionally, differences were identified in the 

velocity pattern at the level of the carotids for IGT. Hence, IGT demonstrates a 

similar structural profile to HV, however, functionally the IGT profile bears 

similarities to the T2DM group. 

The identified differences are of great importance; some of them were 

identified for the first time (velocity pattern, vasculature characteristics) and a 

larger cohort will be needed to assess reproducibility and provide further 

validation. 	  
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CHAPTER 8: 
MRI-derived biomarkers for hyperglycemia 

unraveled 
In the previous three chapters, findings emerging from every examined 

MRI modality were presented and discussed separately, without drawing any 

connections. In Chapter 6 hemodynamic metrics were extracted from the 

QUASAR ASL sequence and were subsequently processed using a developed 

pipeline described in Chapter 5. The data were analysed using two approaches. 

The first was based on conventional QUASAR processing whereby CBF, ATT 

and aBV metrics were of primary interest. The second approach was based on 

the implementation of an extended hemodynamic analysis whereby numerous 

perfusion-related metrics were extracted from the acquired hemodynamic 

signals. In Chapter 7, T1- and T2-weighted structural, ΤOF-MRA, PC-MRA and 

DWI scans were processed and metrics of interest were quantified. Thus, the 

aim of this final chapter is to combine metrics extracted from all modalities 

under one umbrella, to unravel potential structural, functional and physiological 

interactions.  

Before examining such interactions, it is worth coming back to figure 4.1, 

introduced in chapter 4 and reproduced as figure 8.1 below, demonstrating the 

approximate spatial coverage of the utilised MRI techniques.  
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Figure 8.1: Spatial coverage of the utilised MR protocol. 

 
In particular, the PC-MRA scan was acquired at the level of the carotids, 

with every effort being made by the radiographers to perform the scan at the 

same anatomical position for every subject. The metrics obtained from PC-MRA 

related to blood velocity and carotid diameter, and these were combined to 

provide flow measurements. The acquisition was optimized for the right carotid; 

however, velocity and flow measurements were also extracted from the left 

carotid and additional smaller arterial input sources. 

 

Connections between QUASAR and PC-MRA 
Considering the QUASAR ASL acquisition in tandem with the PC-MRA, 

we expect that, for the temporal length of the bolus (τ = 0.65s), the underlying 

carotid flow pattern (both influenced by velocity and vessel cross-sectional 

area) will impact on the number of protons inverted by the ASL labeling pulses. 

As a result, the effect of both the velocity pattern and the number of labeled 

protons will be reflected in the calculated CBF values. Due to the utilisation of 

saturation pulses before and after the control and the labeled phases, the 

temporal length of the bolus is expected to be a well-defined 0.65s for all 

groups (155). If the labeling was continuous, the amount of labeled spins would 

QUASAR	coverage	
	
MPRAGE,	FLAIR,	
DWI	coverage	
	
TOF-MRA	coverage	
	
PC-MRA	coverage	
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be proportional to the velocity of the inflowing spins and to the area covered by 

the feeding vessel. Utilisation of a pulsed labeling scheme with pre- and post-

saturation pulses is nearly instantaneous which means that the amount of 

labeled spins at a given time in the labeling slab depends on the number of 

spins present at the time (connected to the area). Conversely, the amount of 

labeled spins surviving the post-saturation Q2-TIPS scheme (157) will depend 

on the velocity of the spins. These remarks are useful to consider when 

examining the flow pattern at the carotids and relating it to the perfusion 

parameters at the level of the cerebrum. 

Processing of the PC-MRA data established that carotid flow at baseline 

was lower for T2DM subjects compared to IGT and HV. The post-ACZ carotid 

flow was higher in HV, lower in IGT and even lower for the T2DM subjects. The 

mean velocities for the left and right carotids were higher for the HV group both 

at baseline and post-ACZ compared to the other groups, whereas the feeding 

vessel cross-sectional area was larger for the T2DM group at baseline (not 

significant); this pattern was reversed post-ACZ. 

 

Increased baseline CBF could be explained by increased carotid dilation. 
Perfusion-related metrics were extracted from the QUASAR ASL arterial, 

residual and tissue signals at a voxel-wise level along with CBF, aBV and ATT 

measurements. Normally, a finding indicative of increased velocity and carotid 

flow would be expected to co-exist with increased CBF (as is the case for the 

HV group) and a similar connection (decreased carotid flow – decreased CBF) 

would be anticipated for the T2DM group. However, the recorded results at 

baseline point towards an increased CBF for the T2DM group.  

The ASL signal is based on hydrogen protons in water molecules. Thus, 

tissue perfusion, as measured with ASL, relates to the amount of water being 

exchanged at the time of imaging. Even when considering this, a finding of 

increased baseline CBF would normally be connected to a finding of increased 

flow at the level of the carotids. However, as already mentioned, our findings in 

T2DM point towards increased baseline CBF at the cerebrum co-existing with 

reduced carotid blood velocity and increased carotid diameter. This increased 

vessel diameter might explain partially the increased baseline CBF finding in 

T2DM, especially when considering the applied pre- and post- saturation 



	 226	

pulses, implemented for a clear bolus definition. The idea behind Q2-TIPS is 

that the saturation pulses are applied at a time-point where the trailing edge of 

the labeled bolus leaves the labeling area. The amount of label that is saturated 

by the pulse depends on the velocity of the label and is therefore non-

quantifiable. If the blood velocity was sufficient for the trailing edge of the bolus 

to leave the labeling region in time, then this finding could be explained by 

increased vessel dilation.  

 

Increased carotid dilation and CBF at baseline in T2DM might suggest the 
existence of a compensatory mechanism. 

Following ACZ injection, an increase was noticed for all parameters in 

the HV group. The increase was lower for the IGT and T2DM groups for metrics 

emerging from both the QUASAR and PC-MRA scans. High flow-related 

baseline values and lower than expected increases in parameters following 

ACZ injection in the hyperglycemic groups might indicate the presence of a 

compensatory mechanism for impaired oxygen retention at rest, leading to 

vasodilation, especially in the T2DM group. In T2DM studies, it has been 

suggested that due to the shift in the oxygen dissociation curve of glycated 

hemoglobin, tissue hypoxia occurs and an increased baseline flow can be 

observed as a compensatory mechanism (302). This interpretation could 

potentially explain our results as well.  

The overall tendency for T2DM subjects, when examining their cerebral 

vasculature using TOF-MRA, was a reduction in the number of branching 

points. A tendency towards reduced vessel length and density was also noticed 

for the MCA (not significant). This finding could also result from the slower 

velocity of the moving blood inside the vasculature of T2DM patients, which can 

influence the depicted vasculature if the velocity is slow enough for the spins 

inside the vessels to be saturated. 

In chapters 6 and 7, it was found that type-2 diabetes is associated with 

lower CVR, increased baseline CBF, prolonged TTP, HWL and FW values for 

hemodynamic signals, lower velocity at the level of the carotids and increased 

number of WMH. A trend towards increased ADC values, lower cortical 

thickness and increased CSF volume was uncovered. Based on VBM analysis, 

we have identified areas of differences between the groups mainly centered in 
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the caudate, putamen, amygdala, brainstem, hippocampus and thalamus. The 

IGT groups demonstrated a distinct functional pattern, with similarities at 

baseline to the HV groups and post-ACZ to the T2DM group when considering 

the QUASAR scan. Structurally, IGT demonstrated more similarities with the HV 

group.  A slightly larger carotid diameter was discovered at baseline for IGT and 

T2DM. Baseline CBF was higher in T2DM compared to HV for the examined 

vascular territories, a pattern which was not present post-ACZ. The T2DM 

group also demonstrated a higher number of WMH and a smaller number of 

branching points compared to HV. A pictorial summary for quantified measures 

of interest is presented for the three groups in figure 8.2. The mean value is 

shown for the baseline and post-ACZ scans for the following metrics quantified 

in chapters 6 and 7: carotid diameter, carotid velocity (mean, min, max left and 

right), ACA, MCA, PCA, GM and WM CBF, number and volume of white matter 

hyperintensities (shown for convenience in the post-ACZ scan) and density, 

length and number of branching points. 
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Figure 8.2: Summary figure for the three examined groups and metrics of interest. Values 
for carotid velocity, CBF in the examined vascular territories, carotid diameter, number of WMH 
and GM and WM CBF are shown. 
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8.1 Determination of the feature combination leading to optimal class-
differentiation 

The idea, in this sub-chapter, is to detect the feature combination that 

leads to optimal group-differentiation, by taking into account features derived 

from every considered modality using a multi-variate processing approach. To 

achieve this, measures from each MRI technique, based on findings from 

chapters 6 and 7, were chosen in a supervised manner and were incorporated 

into the feature vector under consideration. The resulting vector was analysed 

using a machine learning approach to identify the optimal feature combination 

based on all techniques (figure 8.3). Two models were considered, the first one 

comprised all modalities and the second comprised MPRAGE, TOF-MRA, PC-

MRA and QUASAR scans. This choice was made since FLAIR and DWI scans 

were not acquired for all HV.  

The selected features from the QUASAR acquisition were the ones 

comprising model 5 which demonstrated one of the highest performances when 

examined in Chapter 6 (243 features). The included MPRAGE features were 

cortical and subcortical GM volumes, WM volume, ventricular volume 

(normalised), the volume of the hippocampi, brainstem, thalami, amygdala, 

putamen, accumbens and the left and right cortical thickness (18 features). The 

ADC values from the same structures along with the ADC from the occipital and 

temporal lobes were included only in the first model from the DWI scan (19 

features). 

The number and volume of WMH was included only in the first model. 

Mean, max and min velocities from the 10-voxel regions in the left and right 

carotids examined in Chapter 7 and all the arterial input were included from the 

PC-MRA scan (24 features). The number of branching points, vessel density 

and length were included from the TOF-MRA scan. Additionally, age and sex 

were added into the feature vector. 
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Figure 8.3: A pictorial representation of the machine learning analysis, combining metrics 
from all modalities. 

 

For the first model, 34 subjects were analysed (11 HV, 8 IGT, 15 T2DM). 

These numbers per group were formed due to the absence of 5 scans from the 

HV group: 3 FLAIR/DWI were not acquired, subjects with one noisy MPRAGE 

and 1 noisy PC-MRA scan were excluded, subjects with 2 noisy QUASAR and 

2 noisy FLAIR scans were omitted from the IGT group and subjects with 1 noisy 

QUASAR and 1 noisy MPRAGE scan from the T2DM group. Overall, the 

considered features numbered 311. Results for every task can be found in table 

8.1. 

 
Table 8.1: Accuracy (Acc) sensitivity (Sens) specificity (Spec) features and number of 
features (Nf) for every task and the first model.  The number in brackets accompanying the 
number of features indicates that they were identified in the top-M features. With BOLD the non-
QUASAR features are underlined. 

Task Acc(%) Sens(%) Spec(%) Features Nf 
HV vs T2DM 96.2 93.3 100 CVR (26), ACA HWL AIFSH 

post-ACZ (25), ACA TTP AIFSH 

post-ACZ (25), number of 
branching points (23), W 

SKEW AIFSH post-ACZ (15), W 

KURT AIFSH baseline (6), PCA 

HWR TIS post-ACZ (6), WB 

HWL AIFSH post-ACZ (2), ACA 

10 (5) 

QUASAR	MPRAGE	FLAIR	
PC-MRA	TOF-MRA	DWI	 Machine	

learning	

MACHINE	
LEARNING	

Op7mally	differen7a7ng	
features	

SUPERVISED	
MACHINE	
LEARNING	

LABELS:			HV 	IGT			T2DM	
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SKEW AIFSH post-ACZ  (1), 

ACA TTP TIS post-ACZ  (1) 

HV vs IGT& 
T2DM 

85.3 87.0 81.8 Not shown 68 (49) 

HV vs IGT 
 

89.5 75.0 100 PCA HLW AIFSH post-ACZ (18) 

PCA TTP COMB post-ACZ (1) 
2 (1) 

IGT vs T2DM 87.0 93.3 75.0 ACA HWL AIFSH post-ACZ 

(10), CVR (9), ACA TTP COMB 

post-ACZ (3), MCA SKEW 

COMB post-ACZ (1) 

4 (1) 

 

For the second model, data from 14 HV, 10 IGT patients and 15 patients 

with T2DM were retained and overall 289 features comprised the considered 

feature vector. These numbers resulted from exclusion of subjects with 1 noisy 

MPRAGE and one noisy PC-MRA scan for the HV group, 2 noisy QUASAR 

scans for the IGT group and one noisy QUASAR and one noisy MPRAGE from 

the T2DM group. Results for every task can be found in table 8.2. 

 
Table 8.2: Accuracy (Acc) sensitivity (Sens) specificity (Spec) features and number of 
features (Nf) for every task and the second model.  The number in brackets accompanying 
the number of features indicates that they were identified in the top-M features. Bold is used for 
the non-QUASAR features. 

Task Acc(%) Sens(%) Spec(%) Features Nf 
HV vs T2DM 96.6 93.3 100 CVR (19), ACA HWL AIFSH post-

ACZ (15), ACA TTP AIFSH post-

ACZ (11), PCA HWR ΔΜcr post-

ACZ (7), number of branching 
points (3), GM CBF baseline (2), 
ACA SKEW AIFSH baseline (1) 

7 (2) 

HV vs IGT& 
T2DM 

87.2 92.0 78.6 CVR (26), ACA HWL AIFSH post-

ACZ (5), PCA HWR ΔΜcr post-

ACZ (3), W KURT ΔΜncr baseline 

(3), W KURT AIFSH baseline (2) 

5 (1) 

HV vs IGT 
 

100 100 100 PCA HWL AIFSH post-ACZ (24), 

PCA TTP AIFSH post-ACZ (21), 

PCA HWL ΔΜncr post-ACZ (2), W 
KURT ΔΜcr post-ACZ (1) 

4 (2) 

IGT vs T2DM 68.0 80.0 50.0 CVR (9), GM CBF baseline (9), W 5 (1) 
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HWR ΔΜcr baseline (3), ACA 

KURT ΔΜncr post-ACZ (3), MCA 

HWL AIFSH baseline (1) 

  

The combined analysis of all modalities indicated that QUASAR ASL is 

the main modality contributing information leading towards optimal class-

separation. The only feature not derived from the QUASAR sequence brought 

up as optimal with a high occurrence for the HV vs T2DM task was the number 

of branching points, a feature extracted from the TOF-MRA image. The 

considered analysis, based on features from all modalities combined into a 

single model, emphasizes the importance of incorporating into a study protocol 

a perfusion imaging modality such as QUASAR for pathology detection. The 

number of branching points, which was part of the optimally-differentiating 

pattern for HV versus T2DM, was quantified based on processing of the TOF-

MRA scan, which is not typically conducted, since angiogram evaluation mainly 

involves visual assessment and is aimed at detecting gross changes.  

The dominance of QUASAR features in the final pattern could also be 

attributed to the fact that the number of features from every technique was not 

balanced (249). The approach of concatenating all features into a single vector 

is very common; however, other feature fusion strategies have been suggested. 

An approach, for creating a balanced feature vector, is based on applying 

classification approaches in every technique separately to reduce the features 

emerging from each one and subsequently combining the resulting optimal 

features into a single model (341). Such an approach was adopted to provide 

reassurance that the optimal pattern is not dominated by QUASAR features due 

to their very high number. 

 

Model 1 – balanced number of features 
A balanced number of features was considered for the two models and 

the HV vs T2DM and HV vs IGT tasks. 

For the HV vs T2DM task classification solely with the QUASAR features 

was run and the optimal performance was achieved with 44 features (88.5%). 
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The second highest performance was recorded for 14 features and was 84.6%1. 

These 14 features were retained. Subsequently, classification was run for all 

non-QUASAR features separately and the maximum achieved performance 

was recorded with three features: the number of branching points (occurrence 

of 23 in the top-1 of the SVM-RFE matrix), maximum velocity in the left carotid 

pre (occurrence of 2 in the top-1) and post-ACZ (occurrence of 1) and was 

65.4%. When the 11 significantly different features from all non-QUASAR 

modalities were combined with the 14 QUASAR features, maximum 

performance was 92.3% achieved with 5 features (top-2): number of branching 

points (occurrence of 2 in the top-M of the SVM-RFE matrix), ACA TTP AIFSH 

post-ACZ (occurrence of 3), W SKEW AIFSH post-ACZ  (occurrence of 2), ACA 

HWL AIFSH post-ACZ  (occurrence of 24) and CVR (occurrence of 21). Hence, 

even when using a balanced feature vector, the dominating features emerged 

from QUASAR ASL and were based on the time delays in the delivery of the 

bolus to the tissue post-ACZ and CVR. The only non-QUASAR feature part of 

the optimal pattern, which also dominated the non-QUASAR classification task, 

was the number of branching points. 

For the HV vs IGT task, when only QUASAR features were used, 

maximum performance of 89.5% was achieved with 2 features: PCA HWL 

AIFSH post-ACZ (18), PCA TTP ΔΜncr post-ACZ (1). When non-QUASAR 

features were used, 2 features differed significantly and maximum performance 

was 63.2% achieved with a single feature the ADC of the right amygdala. When 

all features were combined, maximum performance of 89.5% was achieved with 

the QUASAR features. These QUASAR features were both extracted from post-

ACZ curves and in particular from the PCA vascular territory.  

 

Model 2 – balanced number of features 
When examining the HV vs T2DM task and the QUASAR derived 

features, 56 differed significantly and a maximum performance of 86.2% was 

achieved with 29 features. Second best performance was 82.8% with 10 

features, which were kept for the subsequent analysis. When examining the 

	
1	Please note that differences in performance compared to chapter 6 are explained by the 
different subjects used for analysis in this section due to absence of DWI and FLAIR 
acquisitions for several subjects	
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non-QUASAR features, 14 differed (out of the 45) and a maximum performance 

of 79.3% was achieved with 9 features. When combined, maximum 

performance of 96.6% was achieved with 10 features identified to the top-5 of 

the SVM-RFE matrix. These included the number of branching points (29) from 

non-QUASAR features and the other 9 were all derived from QUASAR: PCA 

HWR ΔΜcr post-ACZ  (occurrence in the top-M: 22), W KURT ΔΜcr baseline (2), 

ACA TTP AIFSH post-ACZ (26), ACA SKEW AIFSH baseline (1), W KURT AIFSH 

baseline (1), MCA PEAK AIFSH baseline (1), ACA HWL AIFSH post-ACZ  (27), 

GM CBF baseline (7) and CVR (29). 

 For the HV vs IGT task, 93 features derived from the QUASAR sequence 

were significantly different. Maximum performance of 100% was achieved with 

4 features. When the non-QUASAR features were examined, only one differed 

significantly between the groups and maximum performance was 66.7%; this 

feature was the volume of cortical GM. When combined, maximum performance 

of 100% was achieved solely with the QUASAR features identified in the top-2 

of the SVM-RFE matrix, which were: W KURT ΔΜcr post-ACZ (occurrence of 1), 

PCA TTP AIFSH post-ACZ (21), PCA HWL AIFSH post-ACZ (24), PCA HWL 

ΔΜncr post-ACZ (2). 

Hence, feature fusion to create balanced vectors changed the observed 

results and performance for the first model and the HV vs T2DM task for which 

a lower performance was achieved. The QUASAR feature dominance in the 

optimally differentiating feature pattern is not attributed to the fact that the 

technique contributes the majority of features, but rather to their high 

discriminatory power. For the HV vs T2DM task, an equally strong feature was 

the number of branching points. Similarities in performance, with and without a 

balanced feature vector, could also be attributed to the usage of a 

dimensionality reduction technique retaining only significantly different features, 

which greatly reduces the number of utilised features.  

The reader is reminded that accuracy of 96.9% was achieved with 27 

features (Chapter 6.3.2) for the HV vs T2DM task. Model 2 in the present 

chapter achieved a performance of 96.6% with only 7 features emerging mainly 

from the ACA, PCA territories and from GM. The achieved accuracy was the 

same as in chapter 6.3.2 for the HV vs IGT task with features emerging from 

the post-ACZ curves and the PCA territory and watershed areas. 
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Overall in this subchapter features from all examined modalities were combined 

into a single model. It was shown that optimal feature combinations for the 

examined tasks emerge mainly from the QUASAR sequence. The only non-

QUASAR feature contributing to optimal separation between HV and T2DM 

emerged from the cerebral angiogram. Accuracy for this task was the same 

when solely QUASAR and features from all techniques were considered. 

However, inclusion of the number of branching points (TOF-MRA) led to a 

smaller optimal pattern, which is desirable.   

 

8.2 Overall thesis discussion 
The goal of the work presented in this thesis was to gain a deep insight 

into the brain of subjects with impaired glucose tolerance and type-2 diabetes, 

being particularly focused in cerebral perfusion. To achieve this, MRI modalities 

capturing different aspects of structure and function were analysed using state-

of-the-art processing techniques to capture group-differences and detect 

cerebral areas and MR-derived metrics contributing towards optimal group-

separation. 

 The detailed analysis and described methodologies established that the 

volumetric changes were subtle between the groups especially when focusing 

on specific ROIs; more differences were detected when the image was 

analysed at a voxel-wise level. The number and volume of white matter hyper-

intensities was significantly higher in the T2DM groups compared to HV. 

Processing of the cerebral vasculature was focused on the MCA territory and 

identified that the number of branching points differed. Carotid flow velocity 

analysis unraveled several differences in the velocity pattern between T2DM 

patients and HV, both at baseline and following ACZ injection. Both laminar and 

whole vessel velocity was decreased in both T2DM and IGT. At the level of the 

cerebrum, perfusion analysis conducted using QUASAR ASL and newly 

developed processing tools, identified a multitude of hemodynamic metrics 

differing between all considered groups, suggesting the existence of a distinct 

hemodynamic pattern. 
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Structural alterations were focused on several cortical and subcortical 
regions, WM and cerebral vasculature. 

Global and localized atrophies have been consistently reported in 

diabetic cohorts (33). When analysing the available cohort though, only the 

ventricular volume differed between the groups; a finding which did not remain 

significant following multiple comparison correction. This finding is of great 

importance, since it could potentially mean that the considered diabetic group 

was captured at a disease stage where prominent structural abnormalities 

associated with volume reduction have not yet occurred. Significant structural 

alterations involved WMH and changes in the vasculature. The number of WMH 

was higher in T2DM, a finding not consistently reported in T2DM studies. The 

IGT group had a similar volume and number of WMH to the HV group. The 

number of branching points in the MCA territory was significantly reduced in 

T2DM. The results from the DWI analysis uncovered several areas where the 

water diffusivity was impaired, such as the amygdala, hippocampi, brainstem 

and caudate. The amygdala (left and right) was the only region differing 

between HV and IGT, suggesting that early changes in the diffusivity of water 

molecules might occur there. However, it needs to be emphasised that the DWI 

findings were not significant following multiple comparison correction, hence 

they are suggestive of the existence of a certain pattern regarding water 

diffusivity which warrants further investigation.  

VBM analysis identified several regions of difference between the 

groups. VBM differs from ROI specific approaches, since it focuses on the GM 

PV maps at a voxel-wise level. Hence, it is capable of detecting more dispersed 

patterns of difference between the groups. Structures that differed between IGT 

and T2DM involved the amygdala, thalami, hippocampi and accumbens. The 

IGT group did not differ from the HV group.  

The fact that the cohort was cognitively asymptomatic and without 

prominent atrophy patterns, highlights the importance of conducting a detailed 

functional (in our case hemodynamic) analysis to shed light on potential 

functional alterations that could lead, if prolonged, to structural changes 

observed consistently in T2DM patients.  
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Functional analysis identified the existence of a potential compensatory 
mechanism  

Functional characteristics were explored using PC-MRA, capturing the 

blood velocity pattern at the level of the carotids and QUASAR ASL, capturing 

the CBF pattern at the level of the cerebrum. Starting from the carotid level, the 

velocity of the blood was reduced and vessels appeared more dilated in T2DM 

and IGT (not a significant finding). Following ACZ injection, the increase in the 

carotid diameter was significant only for the HV group indicating the ability for 

vasodilation. The carotid diameter was relatively static in both IGT and T2DM 

following induced vasodilation. These findings, together, point towards 

increased dilation at baseline for the hyperglycemic groups with reduced ability 

to respond to increased needs for oxygen and nutrients, when presented with a 

task requiring dilation to meet energy demands.  

A detailed hemodynamic analysis, conducted using ASL at the level of 

the cerebrum, focused on the vascular territories of the internal carotid and 

watershed areas, identified a delayed, more dispersed, delivery of the labeling 

bolus in the T2DM groups. Interestingly, the results for IGT at baseline were 

more similar to the HV groups and post-ACZ to the T2DM group, indicating that 

functional alterations are also occurring in pre-diabetes. More importantly, 

classification of HV and IGT was perfect and driven by features capturing 

delayed and dispersed bolus delivery post-ACZ, while no structural differences 

were observed between the HV and IGT groups. This finding indicates that a 

potential analysis targeted at unraveling early biomarkers for diabetes, focused 

on subjects with pre-diabetes, might miss early functional changes if it 

investigates only structural changes or functional alterations occurring at rest. 

 The finding of increased baseline CBF was an unexpected finding for the 

cohort. We were expecting decreased CBF both at baseline and post-ACZ and 

a decreased CVR based on previous reports for the T2DM group (33). The two 

latter findings were verified, the former one was not. These findings are of 

particular interest, since increased CBF has only been reported in a few studies 

(46, 47). It might be connected with early stages of tissue hypoxia, whereby the 

oxygen is not sufficiently retained due to hyperglycemia and a compensatory 

mechanism leading to baseline hyper-perfusion is established to meet the 

tissue energy demands (302).  
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This mechanism has also been observed in the early stages of 

Alzheimer’s, when mild cognitive impairment has been detected (342). 

However, this compensatory mechanism fails after a certain point leading to 

structural alterations, hypo-perfusion and cognitive changes. The cohort under 

consideration was neurologically asymptomatic; hence, we might have captured 

this cohort at a stage where the compensatory mechanism built to account for 

tissue hypoxia, has not yet failed. This would potentially explain both the finding 

of increased baseline CBF, increased vessel dilation and reduced CVR. For this 

to be validated, a follow-up scan and detailed cognitive evaluation should take 

place. Potential cognitive changes and failure of the detected compensatory 

mechanism leading to hypo-perfusion would provide a clearer picture of how 

the cascade of alterations occurs in diabetes. 

 

Features that could be evaluated as potential disease biomarkers were 
identified using a machine learning framework 

Currently, there are no MR-derived features connected exclusively with 

T2DM. Global and local atrophy patterns, typically detected in diabetic subjects, 

are also present in other conditions such as Alzheimer’s (343). WMHs, 

occasionally present in T2DM, are also connected with all major cardiovascular 

risk factors, such as hypertension, and are not a consistent finding (327). 

Altered patterns in mean diffusivity, carotid flow, velocity and cerebral blood 

flow are not exclusively connected with diabetes and also occur in other 

diseases such as Alzheimer’s (343, 344). Hence, using a framework examining 

feature combinations and identifying the optimal-ones for the classification task 

in question might have the potential to capture disease-specific patterns of 

pathophysiology. 

The results, especially those based on arterial spin labeling, are 

extremely promising regarding the ability of the technique to capture subtle 

hemodynamic patterns. Optimal classification was achieved with only a few 

QUASAR-derived features that could be evaluated as disease biomarkers 

(Chapter 6). The achieved classification accuracy for the HV versus T2DM task 

reached 96.6% and for the HV versus IGT task 100%, when considering solely 

QUASAR hemodynamic features. These findings suggest that inclusion of a 

perfusion imaging acquisition in clinical protocols, especially in its dynamic 
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form, could be beneficial and of clinical value. Features that were identified as 

highly discriminant for both the HV vs T2DM and HV vs IGT tasks could be 

evaluated as potential biomarkers for hyperglycemia and diabetes. Such 

features capture the pattern of delivery of the labeled bolus to the tissue (how 

delayed and dispersed the pattern is) and were extracted from all acquired 

hemodynamic curves. Also, the majority of optimal features were extracted from 

the post-ACZ scan, emphasizing the importance of incorporating into the 

protocol a vasodilating stimulus to evaluate the ability of the neurovascular unit 

to adapt to higher energy demands. 

In this final chapter, all the techniques were brought together and 

analysed using a machine-learning framework to identify optimally 

differentiating feature combinations. Two methods were applied to detect the 

feature combination leading to high classification performance. The first method 

utilised all QUASAR features and a selection of features from all the other MRI 

modalities, which were significantly different or were expected to differ between 

healthy individuals and diabetic patients. In the second model, a small number 

of highly discriminant features from QUASAR was used along with the same 

selection of features from the other MRI modalities to create a balanced pattern. 

The QUASAR features for both methods, dominated the classification tasks 

leading to optimal class separation, suggesting that the QUASAR-extracted 

hemodynamic metrics are particularly strong features in accurately classifying 

normoglycemia versus hyperglycemia. The only feature emerging from another 

technique was the number of branching points, calculated based on the TOF-

MRA scan, which was one of the top features for HV vs T2DM classification. 

The accuracy was 96.6%, achieved with only 7 features, as opposed to 96.9% 

with 27 features, when utilising only QUASAR features. This suggests that the 

number of branching points is a strong feature leading to a smaller optimal 

pattern of features. Overall, the QUASAR metric dominance when the multi-

modal features were combined into one single model, emphasized even more 

the strength of the considered QUASAR-derived features and their sensitivity in 

separating the groups under consideration. 

The protocol utilised in this study was extensive, capturing different 

aspects of function and structure. However, further information could be 

acquired. Of interest would be, instead of using DWI, to acquire DTI images. 
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DTI images can shed light on the complex diffusion patterns in the brain and 

are not confined to the calculation of a single parameter (ADC). Diffusion 

tractography could be applied, along with graph analysis, to examine structural 

connectivity (345). Additionally, MRS data could be acquired and information 

regarding the concentration of different metabolites quantified (346). Finally, 

resting-state fMRI could shed light into changes in functional connectivity of 

areas of interest (347). This would allow the identification of optimally 

discriminative features based on an even larger collection of MRI features, 

using an approach similar to the one used earlier on this chapter, where 

features from different modalities were combined in a supervised manner. 

In this study, only a small cohort was available and this poses limitations 

for the generalisability of the observations, since we could be modeling cohort 

idiosyncrasies. A larger cohort needs to be recruited, in order to examine if the 

findings of this thesis can be replicated. An interesting extension would be to 

compare QUASAR ASL with time-encoded ASL, which offers high SNR and 

examine them in the same study to see if the same pattern can be captured 

using alternative multi time-point ASL techniques.  

The extracted optimal features from the classification tasks hold great 

potential to be examined as disease biomarkers and are directly connected to 

underlying physiological processes, coupled with the mechanism of water 

delivery to the tissue. Hence, it would be of interest to examine, in a future 

study with a larger cohort, the associated hemodynamic curves. Another 

interesting extension to this study would be to recruit a cohort comprised of 

healthy volunteers, IGT and T2DM subjects with and without cognitive 

impairment to evaluate whether the detected compensatory mechanism fails 

when cognitive decline emerges. 
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Appendix 
Appendix1 
 
Chapter 6 
 
Table A6.1: Summary of classification accuracy and number of features for every task 
and model. Models in bold are the ones for which optimal performance was achieved. 

Model Number of 
features 

Significant 
features 

Accuracy (%) Top-M 
features (M) 

Healthy volunteers vs type-2 diabetes 
1 211 59 96.9 27 (12) 
2 211 71 84.4 7(3) 

3 351 116 93.8 9(3) 
4 34 3 81.3 1(1) 

5 244 62 90.6 6(3) 

6 244 74 93.8 3(2) 
7 384 119 84.4 3(1) 

Healthy volunteers vs type-2 diabetes & impaired glucose tolerance 
1 211 85 92.9 14(4) 
2 211 85 83.3 5(1) 

3 351 153 88.1 42(19) 

4 34 7 81 4(3) 

5 244 92 92.9 11(3) 
6 244 92 83.3 23(13) 

7 384 160 88.1 22(7) 
Healthy volunteers vs impaired glucose tolerance 

1 211 85 100 5(3) 
2 211 86 92.3 7(3) 

3 351 148 92.3 2(1) 

4 34 6 73.1 6(3) 

5 244 91 100 5(3) 
6 244 92 92.3 6(3) 

7 384 154 92.3 2(1) 
Impaired glucose tolerance vs type-2 diabetes 

1 211 6 65.4 4(1) 
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2 211 10 69 5(1) 

3 351 15 69.2 11(4) 

4 34 4 73.1 4(1) 
5 244 10 80.7 7(1) 
6 244 14 65.4 11(5) 

7 384 19 80.7 6(1) 
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Table A6.2: Details for the two best performing models for every task. The accuracy (Acc), 
sensitivity (Sens) and specificity (Spec) for every model are shown. Along with these the 
number of significantly different features (NF1) and the number of features providing optimal 
class differentiation (NF2) are provided. Finally, in the last column, the top scoring features 
(maximum 5) are shown accompanied by a number indicating their occurrence. The maximum 
possible number in the brackets would be for task 1: 32, task 2: 42, task 3: 26 and task 4: 26. 

Task 
 

Model 
 

NF1 Acc. 
(%) 

Sens. 
(%) 

Spec. 
(%) 

NF2 Feature combination 
providing optimal 

accuracy (max 5 shown) 
HV vs 
T2DM 

1 59 96.9 100 93.8 27 PCA HWR ΔΜcr post-ACZ 

(32), PCA FW ΔΜcr post-ACZ 

(32), ACA TTP AIFSH post-
ACZ (32), ACA SKEW AIFSH 

baseline (32), ACA HWL 

AIFSH post-ACZ (32) 

HV vs 
T2DM 

6 74 93.8 93.8 93.8 3 WB HWL Res post-ACZ (31), 

WB TTP Res post-ACZ (26), 

CVR (7) 

HV vs 
IGT&T2DM 

1 85 92.9 96.2 87.5 14 PCA HWR ΔΜcr post-ACZ 

(40), MCA SKEW ΔΜcr post-

ACZ (35), ACA SKEW ΔΜcr 

post-ACZ (18), W KURT ΔΜcr 

baseline (18), ACA KURT 

AIFSH baseline (17) 

HV vs 
IGT&T2DM  

5 92 92.9 96.2 87.5 11 CVR (36), MCA SKEW ΔΜcr 

post-ACZ (31), ACA HWL 

AIFSH post-ACZ (23), PCA 

HWR ΔΜcr post-ACZ (21), 

ACA SKEW AIFSH baseline 
(7) 

HV vs IGT 1 85 100 100 100 5 PCA HWL AIFSH post-ACZ 

(26), PCA TTP AIFSH post-

ACZ (26), W KURT ΔΜcr 

post-ACZ (17), PCA HWL 

ΔΜncr post-ACZ (8), ACA 

TTP ΔΜncr post-ACZ (1) 

HV vs IGT 5 91 100 100 100 5 

IGT vs 
T2DM 

5 10 80.7 87.5 70 7 GM CBF baseline (10), CVR 
(9), ACA aBV baseline (2), 

PCA HWL ΔΜncr post-ACZ 

(2), MCA KURT ΔΜncr post-

ACZ (1) 

IGT vs 
T2DM 

7 19 80.7 81.3 80 6 MCA HWL R baseline (1), 
PCA HWL ΔΜncr post-ACZ 
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(2), GM CBF baseline (17), 

CVR (4), ACA aBV baselne 
(4) 

 

 
Appendix 2 
Chapter 7 
 
A7.1 
 HV  (cm3) IGT (cm3) T2DM (cm3) 
Left accumbens 0.6±0.2 0.7±0.2 0.6±0.1 

Left amygdala 1.7±0.3 1.7±0.2 1.6±0.2 

Left caudate 3.4±0.4 3.7±0.4 3.7±0.9 

Left putamen 5.6±0.7 5.9±0.7 5.5±1.0 

Right accumbens 0.6±0.2 0.7±0.2 0.6±0.1 

Right amugdala 2.2±0.4 2.2±0.3 2.0±0.3 

Right caudate 3.6±0.5 3.7±0.6 3.7±0.8 

Right putamen 5.7±0.6 5.9±0.6 5.3±0.7 

 
Chapter 7.4 
Qflow tables with the mean and standard deviation for the calculated velocities 
 

 
Table A7.2: Baseline mean velocity for the 3 groups and areas of interest. 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 26.36±2.77 24.28±3.78 30.19±2.68 28.09±4.99 22.59±2.77 

IGT 23.54±2.94 22.53±3.78 27.30±4.03 25.31±4.46 20.97±2.22 

T2DM 21.41±5.44 19.32±5.23 24.86±5.45 21.80±5.35 18.89±4.16 

 

 
Table A7.3: Baseline max velocity for the 3 groups and areas of interest. 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 35.38±3.42 32.69±5.97 35.38±3.42 32.69±5.97 36.22±3.77 

IGT 31.96±4.61 29.30±5.22 31.96±4.62 29.30±5.22 34.48±2.78 

T2DM 28.96±6.24 25.31±6.34 28.93±6.25 25.30±6.24 30.18±5.78 
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Table A7.4: Baseline min velocity for the 3 groups and 5 areas of interest. 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 16.89±3.02 15.67±2.99 24.23±2.32 22.77±4.29 11.47±1.88 

IGT 14.54±2.32 14.66±2.93 21.70±3.37 20.23±3.36 10.21±1.90 

T2DM 13.15±4.83 12.78±4.48 19.96±4.72 17.72±4.78 9.82±3.35 

 

 
Table A7.5: Post-ACZ mean velocity for the examined cohort and the areas of interest. 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 32.10±6.33 28.50±6.61 38.32±6.45 34.45±8.26 27.96±4.65 

IGT 29.17±2.93 27.37±4.81 35.39±3.93 32.02±5.07 25.02±3.15 

T2DM 27.11±6.40 23.92±6.20 32.14±6.98 27.82±7.36 23.97±5.62 

 

 
Table A7.6: Post-ACZ max velocity for the examined cohort and the areas of interest. 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 44.43±6.89 39.84±9.36 44.42±6.92 39.82±9.38 46.22±6.13 

IGT 40.85±5.14 33.38±5.56 40.85±5.14 36.53±6.16 41.05±4.90 

T2DM 37.16±7.97 30.77±7.95 37.11±8.00 32.16±8.71 38.60±7.83 

 
Table A7.7: Post-ACZ min velocity for the examined cohort and the areas of interest 

 right (ml/s) left(ml/s) right10(ml/s) left10(ml/s) All (ml/s) 

HV 19.25±6.26 16.71±5.47 30.89±6.50 28.29±7.41 14.10±3.24 

IGT 16.66±2.60 17.20±4.03 28.78±2.94 26.95±4.18 11.96±2.43 

T2DM 15.96±5.14 15.09±4.84 25.94±6.13 22.32±5.99 11.73±3.24 

 

 


