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Summary 

Studying energy metabolism in sperm may be helpful in understanding the relationship between poor 

sperm motility and infertility. Sperm motility is fuelled by Adenosine triphosphate (ATP). Main ATP 

related production pathways are anaerobic glycolysis and oxidative phosphorylation (OXPHOS). These 

pathways yield different metabolic products. By using a labelled substrate, 13C, metabolic pathways for 

ATP production can be tracked by Magnetic Resonance Spectroscopy (MRS). In a previous 13C MRS 

sperm study, only lactate and bicarbonate were detected. Lactate may represent anaerobic glycolysis 

but the origin of bicarbonate is unclear as it could be from OXPHOS associated with pyruvate 

dehydrogenase, pyruvate carboxylase, or the Krebs cycle. Thus, the main aim of this study was attempt 

to detect Krebs cycle intermediates using 13C MRS.  Several variables were investigated including 

Krebs cycle inhibitors, incubation temperature, U-13C glucose and 2-13C pyruvate labelled substrates, 

hyperpolarised 2-13C pyruvate and manipulation of oxygen availability. 

 

Inhibitor, succinate, significantly increased sperm vitality and decreased the MRS lactate integral from 

U-13C glucose after 18 hours incubation. It suggested that inhibition did occur but the Krebs cycle 

intermediate concentration was below the detection level of 13C MRS. By incubating sperm with 2-13C 

pyruvate at 37oC and 39oC, lactate and bicarbonate were consistently detected and their concentrations 

were significantly higher than those derived from U-13C glucose. Yet, no Krebs cycle intermediates 

were detected. However, disappearance of the bicarbonate signal from 2-13C pyruvate metabolism by 

succinate suggests that bicarbonate was indeed produced in the Krebs cycle. Even though dissolution- 

DNP could overcome the sensitivity issue faced by MRS, presently it has limitations in detecting 

metabolites of interest in boar sperm due to the short half-life of the hyperpolarisation substrate. 

Consequently, the origin of the bicarbonate cannot yet be confirmed. The effect of oxygen on sperm 

metabolism showed that the energy producing pathway for boar sperm was dominated by anaerobic 

glycolysis rather than mitochondrial metabolism regardless of the oxygen concentration in the 

environment that they were incubated. Hence Krebs cycle intermediates were not observed even in an 

oxygen rich atmosphere. 
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1 Chapter 1: Introduction to spermatozoa and MRS 

1.1 Spermatozoa and infertility 

Semen analysis plays a crucial role in the diagnosis of male fertility. Infertility is “a disease of the 

reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of 

regular unprotected sexual intercourse” (World Health Organization, 2010). Infertility can be found in 

one of six couples (Cates, Farley and Rowe, 1985; Droździk et al., 2009).  

While the cause of the infertility can be contributed to by various factors, poor semen quality, including 

low motility, is thought to contribute to 30-50% of cases of infertility in heterosexual couples (Peterson 

and Freund, 1974; Barratt, Kay and Oxenham, 2009; Pacey, 2009). Low sperm motility may be due to 

several causes, one of which is mitochondrial dysfunction that could reduce aerobic energy production 

which is the key source for sperm motility (Folgerø et al., 1993). Some of the mitochondrial 

dysfunctions which relate to infertility are reduced activity of the mitochondrial enzyme and abnormal 

spermatogenesis (Folgerø et al., 1993; Demain, Conway and Newman, 2017).  

Studying energy metabolism in sperm plays an important role in understanding the relationship between 

motility and infertility. The assessment of male infertility has traditionally been based on the 

measurement of sperm morphology, motility, and concentration (Khatun, Rahman and Pang, 2018). 

Despite the availability of advanced diagnostic methods for the diagnosis and treatment of infertility, 

the exact cause of infertility is still unknown (Gupta et al., 2013; Barratt, De Jonge and Sharpe, 2018). 

Therefore, there is a need for new signature biomarkers that offer a clearer understanding of every 

aspect of sperm behaviour for the diagnosis and treatment of infertility. 

1.2 Male reproductive system 

The male gametes (spermatozoa) are one of the most differentiated cell types (Freitas, Vijayaraghavan 

and Fardilha, 2016). The special features of spermatozoa include a mosaic plasma membrane, an 

acrosome containing several hydrolytic enzymes, a flattened pear shaped head containing a highly 

condensed nucleus, a helical assembly of mitochondria in the midpiece, and an elaborately constructed 

tail (Eddy et al., 1985; Mortimer, 2018).  

Spermatozoa are specifically designed to facilitate their function (Miki et al., 2004), which is 

transferring male haploid DNA to female DNA through several processes. To achieve that goal, they 

must leave the male body where they are produced and navigate the female reproductive system (Suarez 

and Pacey, 2006).  
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1.3 Spermatozoa 

 

Sperm are formed within the seminiferous tubules of the testes during spermatogenesis and constitute 

approximately 10% of the semen volume with the rest being seminal plasma (Boron and Boulpaep, 

2009). During spermatogenesis, germ cells progress through three phases of development. The first is 

a spermatogoniogenesis in which spermatogonial cells divide mitotically, the second is the meiosis of 

primary and secondary spermatocyte development, and the third is spermiogenesis when the spermatids 

remodel into spermatozoa (Berruti and Paiardi, 2011). In general, the spermatozoa resulting from this 

process are composed of three distinct structures enclosed by a plasma membrane which are the head, 

midpiece and tail.  

1.3.1 Sperm head 

 

The head comprises of two main components which are the nucleus and the acrosome. The nucleus 

houses the paternal DNA to be delivered to the oocyte. It is highly condensed with proteins so that its 

volume is minimized for transport, and transcription is shut down (Alberts et al 2009). The acrosome 

is a unique membranous organelle wrapping the anterior part of the nucleus of the sperm head (Berruti 

and Paiardi, 2011). It contains several hydrolytic enzymes that are crucial for the spermatozoa to 

penetrate through the zona pellucida of the oocyte during fertilisation (Berruti and Paiardi, 2011). 

 

1.3.2 Midpiece 

 

From the connection point of the nucleus, the axoneme extends throughout the length of the midpiece 

to the tail. The exoneme is composed of 9 microtubule doublets and a central pair. The microtubule 

doublets connect to each other by nexin links and connect to the central pair by inward projections, the 

radial spokes (Turner, 2003). Projecting from the microtubule doublets are the inner and outer axonemal 

dynein arms (Freitas, Vijayaraghavan and Fardilha, 2016) (Figure 1.1). There are 9 outer dense fibers 

that lie outside each of the 9 outer axonemal microtubule doublets. It contains a sheath of mitochondria 

that encloses the outer dense fibers and the axoneme (Turner, 2003).  

Mitochondria are sub-cellular organelles composed of four distinct sub-compartments. Starting from 

the outside, they have an outer mitochondrial membrane, an intermembrane space, an inner 

mitochondrial membrane and a matrix. The inner membrane and the matrix contain numerous proteins. 

13 proteins are encoded by mitochondrial DNA (mtDNA) whilst most of the proteins are encoded by 

nuclear DNA in the head (Piomboni et al., 2012). 
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Figure 1.1: Schematic representation of spermatozoa. Spermatozoa are divided into head, midpiece and tail. A cross section demonstrates that the differences 

between the midpiece and tail.  
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All of the mtDNA is located in the inner mitochondrial membrane and forms part of the Oxidative 

phosphorylation (OXPHOS) machinery (Hüttemann et al., 2007). Proteins that are synthesised outside 

of the mitochondria are transported into it by a transporter, which is referred to as mitochondrial import 

machinery (Wiedemann, Frazier and Pfanner, 2004).  

 

Although the function of sperm  mitochondria are similar to somatic mitochondria, they have a number 

of proteins or protein isoforms that are not found in the somatic mitochondria (Turner, 2003). One of 

which is an isoform of lactate dehydrogenase (LDH) (Storey, 2008).   

 

Mitochondria are known as the ‘power plant’ because in here Adenosine triphosphate (ATP) is 

generated by OXPHOS. However, there are many other metabolic pathways which occur inside the 

mitochondria, such as the Krebs cycle, the oxidative decarboxphosoxylation of -ketoacids, the -

oxidation of fatty acids, many reactions of amino acid metabolism and of pyrimidine synthesis 

(Piomboni et al., 2012). 

 

1.3.3 Tail 

 

The tail is surrounded by outer dense fibers and a fibrous sheath around the axenome. It consists of 

principal piece and end piece. The principal piece makes up about two‐thirds of the length of the tail 

and consists two longitudinal dense columns connected by circumferential ribs (Turner, 2003). The 

fibrous sheath provides a rigid support to the tail and may determine its movement, which is known as 

flagellar beat (Eddy et al., 1985). Though it is devoid of mitochondria, it is enriched in glycolytic 

enzymes (Eddy et al., 1985). The end piece is composed of only axoneme surrounded by the plasma 

membrane.  

1.4 Energy needs of spermatozoa and fertilization 

 

Mammalian fertilization consists of several complex processes. This is due to the location of semen 

deposition and the fact that fertilization occurs in the upper reproductive tract (Fallopian tube) (Suarez 

and Pacey, 2006). Hence, cellular processes such as motility, capacitation, hyperactivation and the 

acrosome reaction must occur in a synchronized fashion (du Plessis et al., 2015). All these processes 

require energy.  Bohnensack et al (1986) have studied the relation between motility and respiration in 

sperm. The sperm motility was calculated as the percentage of sperm moving per minute from the 

bottom of the cuvette into the light path. Respiration was measured using the Clark electrode. The 

relationship between them was calculated based on the changes in ATP/ADP that were produced from 

respiration (difference between before and after adding an inhibitor) and motility. They found that most 
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of the ATP was consumed by the motility process, which is 75% of the total produced energy and at 

least 10% of ATP was used by other cellular processes.   

 

The energy is used to fuel sperm motility toward the Fallopian tube and to reach the ovum (Suarez and 

Pacey, 2006). Sperm motility is generated by altering the shape of the dynein molecule. Dynein consists 

of several heavy chains, intermediate chains, and light chains. The core component of the dynein is the 

heavy chain. The heavy chain has all motor domain elements that are needed to convert energy from 

the ATP hydrolysis into sperm motility. It consists of three major parts: the ATPase associated (AAA) 

ring (head), the stalk and the stem (Burgess et al., 2003) (Figure 1.2).  

 

The AAA ring consists of six AAA (AAA 1-6) domains, four of which (AAA1-4) contain nucleotide 

binding Walker A and B (P-loop) signature. Walker A is responsible for binding with the phosphate 

groups of the nucleotide and Walker B is responsible for polarizing H2O for an inline attack on the γ-

phosphate of ATP hydrolysis. AAA1 is mainly the ATPase site (that hydrolyses ATP) (Cho and Vale, 

2012). The function of the remaining AAA domains are unknown but are thought to act in regulatory 

and structural roles (Burgess et al., 2003; Cho and Vale, 2012).  

 

The stalk protrudes out of the head and has a microtubule binding domain at its tip (Cho and Vale, 

2012). Both the stalk and head are formed by two-thirds of the heavy chain. The stem binds the 

intermediate and light chains, and is formed by the aminoterminal region (Cho and Vale, 2012). 

 

Microtubules have an intrinsic polarity, with a plus and minus end. The dynein motor domain moves 

toward the minus end of the microtubule. Absence of the nucleotide on the AAA1 ATPase site, results 

in the motor domain attaching tightly to the microtubule.  However, during the ATP hydrolysis cycle, 

bonded nucleotide at the ATPase site induces dissociation of the motor domain from the microtubule 

(Roberts et al., 2013). 

 

After converting the ATP to ADP and inorganic phosphate (Pi), the dynein components rebind to the 

forward binding site on the microtubule, by a weak binding state. Strong binding to the microtubule 

accelerates the release of Pi from AAA1 (Bhabha et al., 2016). This transition is suggested to represent 

the powerstroke. Energy, from the ATP hydrolysis, is transmitted to the attached ADP and releases the 

ADP from the AAA1 site.  
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Figure 1.2: Structure of outer arm dynein. Schematic subunit structure of outer arm dynein from Ciona sperm flagella. The dynein is divided into three parts; 

head, stalk and stem. Outer arm dynein is composed of two heavy chains (α and β), five intermediate chains (green) and six light chains (blue). Redrawn from 

(Mohri et al., 2012). 
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Electron microscopy has enabled visualization of the conformation changes in dynein due to the sperm 

motility mechanism (Mohri et al., 2012).  The comparison of dynein between, during and post-power 

stroke has showed several conformation differences. One of which is during the power stroke, the head 

is roughly circular whereas during post-power stroke, it has an obviously different shape (Burgess et 

al., 2003).  Moreover, the stem and stalk are closer together for the post-power stroke than during the 

power stroke (Burgess et al., 2003). Besides that, the stalks during the power stroke are curved when 

flexed and straight when extended whereas post-power stroke the stalks are always straight (Burgess et 

al., 2003).  

 

These conformations consequently cause the microtubule doublets to shift to one upon another (Cho 

and Vale, 2012) converting them into bending deformations that transmit along the axoneme. This 

enables the sperm to move through seminal plasma (Roberts et al., 2013).  

 

Although sperm motility is dependent on ATP, how it is generated metabolically is still unclear. A 

major issue in deciding the metabolic pathway responsible for the ATP production for sperm motility 

is the availability of substrate. Therefore, glycolysis substrate, OXPHOS substrate or both should be 

available for sperm in adequate concentration. Pyruvate, lactate, glucose and oxygen are present along 

the female reproductive tract and hence they are commonly used as energy substrates by mammalian 

sperm (Ruiz‐Pesini et al., 2007).  

 

Pyruvate, lactate and glucose concentrations in the human Fallopian tube have been measured by 

Dickens et al. (1995) using a vascular perfusion technique. The Fallopian tubes were obtained from 

women in the follicular phase of their ovarian cycle. They found that the glucose, lactate and pyruvate 

concentrations in the tubal fluid were 0.53, 8.58 and 0.17 mM respectively. In the seminal plasma, 

glucose and lactate concentration found in pig were 5 - 8 and 0.1 mM respectively (Prendergast and 

Veneziale, 1975). Oxygen concentration in the cervix was 15 - 35 mmHg (Hill et al., 2005), 35 - 76 

mmHg in Fallopian tube (Maas et al., 1976; Mastroianni and Jones, 2008; García-Martínez et al., 2018) 

and 6.4 - 32 mmHg in uterus (Ottosen et al., 2006).   

 

Although the metabolic substrates used for ATP generation by sperm vary among species, it has been 

reported that boar sperm could metabolise lactate, pyruvate, citrate, glycerol, and acetate, obtained from 

media (Jones and Bubb, 2000). In contrast, dog sperm was able to survive when it was incubated in the 

media without any substrate. (Fernández-Novell et al., 2011). To understand the peculiar functional and 

anatomical characteristics of sperm between boar and dog sperm, the metabolism of glucose was studied 

(Rodriguez-gil, 2006). Boar sperm is characterized by low average motility and a long tail (40 µm 

(Liebich, 1990)) and dog sperm is characterised by fast average motility and a shorter tail (6.8 µm 
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(Dahlbom et al., 1997)). The results obtained from this study suggested that glycolysis plays an 

important role as an energy source in boar sperm, while the dog sperm shows an active anabolic 

metabolism and even an active pentose phosphate cycle pathway.   

 

1.5 Boar and human sperm: Dominant pathway in producing ATP.  

 

In spite of a long-standing debate on the metabolic pathway responsible for sperm motility, current 

understanding is that the major pathways involved are either anaerobic glycolysis, OXPHOS, or both 

(Rodrigues and Cerdán, 2005; Piomboni et al., 2012; du Plessis et al., 2015). For boar sperm, most of 

the studies have suggested that glycolysis (Marin et al., 2003; Medrano et al., 2006; Ferramosca and 

Zara, 2014) is the main metabolic pathway. Marin et al (2003) have reported that the glycolysis rate in 

boar sperm was higher than mitochondrial metabolism in producing ATP. They assessed the glycolysis 

rate by monitoring lactate production while the Krebs cycle was evaluated by monitoring carbon dioxide 

(CO2) production. Both lactate and CO2 production was calculated after 1 hour incubation with glucose. 

They found that, most of the glucose was converted into lactate while 5.7% of glucose was converted 

into CO2.  They added that all of the lactate was formed through glycolysis because no lactate isotope 

was detected in other lactate producing pathways. 

 

Human sperm has also been reported to favour glycolysis over OXPHOS in producing ATP. The report 

was from Hereng et al (2011) in which they suggested that ATP production was produced by glycolysis 

as they did not detect OXPHOS metabolism from human sperm. They also commented that, exogenous 

pyruvate is able to stimulate glycolysis through the lactate fermentation reaction because pyruvate is 

able to regenerate NAD+ following its conversion to lactate without involvement in mitochondria 

metabolism.  

 

There are differences between boar and human sperm both morphologically and metabolically. 

However, since both boar and human sperm prefer glycolysis over OXPHOS and especially the high 

sperm concentration from boar, it was reasoned that boar sperm could be used as a model for 

comparison with human sperm.  

 

1.6 Glycolysis 

Glycolysis is the process by which six carbons of a single glucose molecule are converted into two 

molecules of a three-carbon pyruvate. It consists of 10 steps divided into 3 stages: (1) glucose is trapped 

and destabilized; (2) two interconvertible three-carbon molecules are generated by cleavage of six-

carbon fructose; and (3) ATP is generated (Berg, Tymoczko and Stryer, 2002a). It is well reported that 

all the enzymes for this process are found in the sperm tail (Ford 2006; Piomboni et al. 2012a). Some 
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of which are hexokinase, glyceraldehyde 3-phosphate dehydrogenase and aldolase (Piomboni et al., 

2012). These enzymes are tightly bound to the fibrous sheath (Storey and Keyhani, 1974). During this 

process, glucose is oxidized to pyruvate as the end product. The energy is released in the form of ATP 

and Nicotinamide adenine dinucleotide (NADH), with a rate of 2 ATP molecules per glucose (Error! 

Reference source not found.).   

 

1.7 Major fate of pyruvate 

 

1.7.1 Lactate fermentation or anaerobic glycolysis 

 

This reaction normally takes place in anaerobic conditions. Pyruvate is used to regenerate Nicotinamide 

adenine dinucleotide (NAD+) from NADH in the reduction into lactate by a bi-directional enzyme LDH. 

LDH is a tetrameric enzyme and there are four LDH genes: LDH-A, LDH-B, LDH-C or LDH-X and 

LDH-D (Lawrence R. Gray, Tompkins and Taylor, 2014). They are enzymatically similar but have a 

slightly different structure and are found in different concentrations in different tissues (Quistorff and 

Grunnet, 2011). LDH-A is predominantly located in skeletal muscle,  LDH-B is mainly found in heart, 

LDH-X is found mostly in testes and sperm, and LDH-D is a yeast specific protein (Lawrence R. Gray, 

Tompkins and Taylor, 2014).  

 

As the NADH formed in glycolysis is consumed in this reaction, there is no net oxidative reduction. 

However this reaction is vital for continuing glycolysis. 

 

1.7.2 Pyruvate carboxylation 

 

This reaction is used for the generation and replenishment of Krebs cycle intermediates, such as 

oxaloacetate. The oxaloacetate produced by PC could condense with the acetyl-coenzyme A (acetyl-

CoA) formed by PDH to initiate the Krebs cycle. This is to ensure that the concentration of substrates 

in the Krebs cycle remains sufficient so that the cycle remains unperturbed (Mccommis and Finck, 

2016). Moreover, oxaloacetate which is generated could be both decarboxylated and simultaneously 

phosphorylated by Phosphoenolpyruvate carboxykinase (PEPCK), either in the cytosol or in the 

mitochondria to produce Phosphoenolpyruvate (PEP) and CO2 (Berg, Tymoczko and Stryer, 2002b).  

1.7.3 Krebs cycle 

 

In order to extract more energy from pyruvate, pyruvate must undergo the Krebs cycle. This reaction 

normally takes place when the concentration of the oxygen is available (aerobic condition). The 

conversion of pyruvate to acetyl-CoA removes the carboxyl group while producing ATP. For this to 
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happen, pyruvate is transported into the mitochondria through a specific protein transporter. Once in 

the mitochondrial matrix, it is oxidized to Acetyl-CoA and CO2 by a Pyruvate dehydrogenase (PDH). 

This reaction is irreversible and tightly regulated.  

Acetyl-CoA then enters the Krebs cycle. The Krebs cycle is composed of eight reactions. The first 

reaction is to form citrate. This happens by condensing the acetyl-CoA, which contain acetic acid, with 

oxaloacetate to form citrate. Acetyl CoA transports acetic acid from one enzyme to another enzyme. 

After that, it is combined with another acetic acid molecule and begins the first reaction again. The 

second reaction is isomerization of citrate in the presence of aconitate hydratase, which creates isocitrate 

and releases water (H2O). Then oxidation of isocitrate to α-ketoglutarate and α-ketoglutarate to 

succinyl-CoA are performed by the NAD+ and NAD+ with CoASH molecules respectively. During these 

reactions, NADH, H+ and CO2 are released. The next reaction is conversion of succinyl-CoA into 

succinate. A GTP, an energy carrying molecule equivalent to ATP, is released during this stage. After 

that, succinate is oxidized by a molecule of Flavin adenine dinucleotide (FAD) to become fumarate. 

Next, water combines with the fumarate to become malate. Lastly, an NAD molecule oxidizes malate 

and produces oxaloacetate. The reduced compounds, 3 NADH and 1 FADH2 (in the single turn of the 

cycle), are used in the OXPHOS process taking place, also in the mitochondria.  

1.8 Oxidative phosphorylation  

Oxidative phosphorylation (OXPHOS) is an important functional process in the inner mitochondrial 

membrane. It is a combination of Electron transport chain (ETC) processes and ATP synthesis. The 

ETC consists of four proteins complexes, NADH-dehydrogenase (complex I), succinate dehydrogenase 

(complex II), ubiquinone, bc1 complex (complex III), cytochrome c (Cyt c), and cytochrome c oxidase 

(CcO; complex IV) (Hüttemann et al., 2007). Most of the electrons transferred by the ETC are from 

NADH. The electrons enter the ETC via complex I. As the electrons are transported across a membrane, 

they translate from a higher to lower energy state and release energy. This energy results in pumping of 

H+ out of the mitochondrial matrix to the inter membrane space. At the end of the chain, oxygen accepts 

the electrons, then splits in half and combines with H+ to form H2O (Berg, Tymoczko and Stryer, 

2002b). ATP is synthesized when protons flow back to the mitochondrial matrix through an ATP 

synthase. 26 of the 30 ATP molecules are formed through OXPHOS when glucose is completely 

oxidized to CO2 and H2O (Berg, Tymoczko and Stryer, 2002b). 
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Figure 1.3: (A) A glucose molecule is converted into two molecules of pyruvate in ten steps of 

glycolysis. (B) Pyruvate could be converted into (i) lactate in which this reaction is mediated by LDH-

X, isoenzyme X of lactate dehydrogenase (cytosolic and mitochondrial isoenzymes), (C) oxaloacetate 

by pyruvate carboxylase or (D) Acetyl CoA by pyruvate dehydrogenase and continue the conversion in 

the Krebs cycle. (D) Produced NADH and FADH from the Krebs cycle initiates the electron transport 

mechanism in OXPHOS. OXPHOS comprises five multimeric enzyme complexes (I–V). Complex V 

is the ATP synthase complex.  Electrons from NADH go down the mitochondrial electron transport 

chain (ETC) and finally reduce O2. Energy is released during each redox reaction creating a proton 

gradient resulting in a proton being dumped into ATP synthase which produces ATP. 
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1.9 Magnetic resonance spectroscopy  

 

Magnetic resonance spectroscopy (MRS) has emerged as an important diagnostic methodology in 

addressing many diseases using different biological fluids and tissue extracts. Apart from identifying 

the constituents of sample cells, it can also provide qualitative and quantitative metabolic information, 

such as metabolite concentrations (Balci, 2005). Primarily, the information acquired can be used 

towards a better understanding of the underlying biological causes of infertility due to sperm. 

 

MRS is able to obtain signal that is proportional to the concentration of a particular metabolite or 

chemical compound with the use of radiofrequency irradiation and external magnetic fields. The 

chemical compound(s) that can be detected depends on the nucleus being studied. The most common 

nucleus used in MRS is the proton, 1H. Some of the other observable nuclei are 13C, 15N, 19F, 31P. Proton 

spectroscopy is widely used because it gives higher signal to noise ratio (SNR) compared to other nuclei 

due to it has higher natural abundance and precession frequency (Balci, 2005). However, MRS using 

13C is ideally suited to the study of metabolism due to the extensive range of metabolites that can be 

detected and the ability to attribute signals to the different carbon atoms within an individual metabolite.  

13C MRS enables detection of magnetic resonance from 13C which is the only stable carbon isotope that 

can produce an MRS signal. The natural abundance for 13C is appropriately 1.1% of the total carbon 

present and its gyromagnetic ratio is roughly ¼ of that of the proton. These two factors cause 13C MRS 

to be less sensitive than proton MRS (Hore, 1989). The sensitivity problem can be partially overcome 

by using 13C labelled substrates (Chance et al., 1983). Utilization of 13C MRS detection and selectively 

labelled 13C substrates has allowed monitoring of the metabolism of various metabolic pathways in 

cells, animals, and humans (Rodrigues and Cerdán, 2005). These include glycolysis, Krebs cycle, 

OXPHOS and others (Beckmann, 1995). 

1.9.1 Basic principle of MRS 

 

Matter is composed of atoms. Combination of several atoms creates molecules. Atoms can be bound 

together with other atoms by sharing their electrons. An atom consists of three main elements: protons, 

positively charged particles, neutral neutrons and negatively charged electrons (Hendee and Ritenour, 

2003). Neutrons and protons are located at the centre of an atom in the nucleus. The electrons are located 

in shells, which surround the nucleus. Atoms can be categorized based on their atomic number and 

atomic weight. The atomic number describes the number of protons in the atom. The atomic weight is 

related to the total number of protons and neutrons. Atoms with the same atomic number but a different 

atomic weight are called isotopes (Brown, Kincaid and Ugurbil, 1982). 
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Nuclei can be characterized based on their spin quantum number, I (Claridge, 2016). The value of I can 

be greater than or equal to zero. Only nuclei that have I greater than zero are MRS active (Balci, 2005). 

Such nuclei have odd atomic number, or odd atomic mass, or both. Nuclei whose atomic number and 

atomic mass are both even have I = 0 and are not MRS active.  

MRS active nuclei possess the quantum property of “spin”. Classically, spin can be described as rotation 

about an axis at a constant velocity. They possess a property known as angular momentum which can 

be represented as a vector with a definite direction and momentum (Brown, Kincaid and Ugurbil, 1982).  

The spin of a nucleus combined with its positive charge produces a magnetic field known as the local 

magnetic field or magnetic moment, µ.  It is parallel to the axis of rotation. The ratio of its magnetic 

moment to its angular momentum, P, is known as the gyromagnetic ratio, γ. This relationship can be 

described by Equation 1.1. 

𝜇 = 𝛾𝑃      Equation 1.1 

In an external magnetic field, the magnetic moment of nuclei becomes oriented in the direction of the 

external field, and determined by I. For instance, for 13C, I = ½, the number of orientations of 13C 

magnetic moments in the external magnetic field is (2 × ½ + 1) = 2. The orientation of µ depends on γ. 

If γ> 0, spin and µ point in the same direction, or parallel. If γ is negative, they will lie in opposite 

directions, or anti-parallel (Posse et al., 2013).  The orientations are distinguished by two different 

energy levels in which the nuclei in the parallel orientation have a lower energy than those in the anti-

parallel orientation.  The difference of energy, ΔE, depends on the external field strength, B0, as given 

in equation shown in Figure 1.4, where h is Planck's constant.  

 

ΔE also relates to polarisation, P. A higher polarisation level provides a better MRS signal. Polarisation 

can be increased by increasing the magnetic field strength, B0.  When an external magnetic field is 

applied, at a temperature, T, the spins reach thermal equilibrium and distribute based on spin orientation 

and the Boltzmann distribution (Equation 1.2) (Barskiy et al., 2017).  

 

𝑃 =  
ℎ𝛾𝐵0

2𝑘𝐵𝑇
                Equation 1.2 

Where kB is the Boltzmann constant ≈ 1:38x10-23 m2 kg s-2 K-1. 

 

In the lower temperature regime, sample nuclei spins will relax to a new equilibrium condition 

increasing the polarisation (Barskiy et al., 2017). Higher MRS signal could also be achieved by 
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increasing the number of nuclei in the sample (Ardenkjaer-Larsen et al., 2003), for instance, by raising 

the sperm concentration of the sperm sample  

 

In addition to the nuclear spin re-orientation, if the nuclei are in the influence of an external magnetic 

field, they begin to rotate or precess at a specific rate. The rate of precession is proportional to the 

strength of the magnetic field and influenced by the gyromagnetic ratio of the particular nucleus (Brown 

and Semelka, 2003) as expressed by the Larmor equation (Equation 1.3). 

 

𝜔0 =
𝛾𝛽0 

2𝜋
     Equation 1.3 

 

 

Where:  

ω0 = Larmor frequency (MHz),  

B0 = magnetic field strength (T), and  

  γ = gyromagnetic ratio, (MHz T–1) 

 

 

Nuclei from different elements have different precession rates (James, 2012) and precess at widely 

different frequencies in the same external magnetic field. The precession rate is also not always uniform 

for all nuclei with the same nominal gyromagnetic ratio. This is because of the influence from internal 

magnetic fields which are produced by neighbouring nuclei, meaning nuclei from the same element can 

also precess at slightly different frequencies. 
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Figure 1.4: Energy level depicted for a I=1/2 spin nuclei. 
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1.9.2 Magnetization 

 

In an MRS experiment, a very large number of nuclei align to produce a macroscopic magnetic moment. 

In the absence of the external magnetic field, the spins are distributed randomly and there will be no net 

magnetisation effect. However, in the presence of an external magnetic field, as explained before, the 

magnetic moments align parallel or anti-parallel to the external magnetic field. Normally, there are more 

nuclei in the parallel than in the anti-parallel direction. Therefore, there is a net magnetic moment when 

the effect of all the spins are added up, proportional to the difference in the number of spins in each 

level. Without a radio frequency pulse being applied and after sufficient time for alignment with the 

magnetic field, the net magnetization is said to be at equilibrium magnetization, M0, aligned with the 

direction of the external magnetic field, B0. B0 is assumed to point along the z direction. MZ is referred 

to as the longitudinal magnetization. No components of transverse magnetization, MY and MX, are 

observed at equilibrium (Figure 1.5). 

 

1.9.3 Data acquisition 

 

To obtain information about nuclei in atoms, radio waves (rf), with a frequency which matches the 

Larmor frequency, 𝜔0 are transmitted. The absorption of a photon of radio frequency will move nuclei 

between different energy states. To create this resonant absorption of energy, E, the photon must have 

exactly the energy difference, ΔE, between the nuclear spin levels. Since ΔE = hv, it follows that 𝜔0 is 

proportional to the magnetic field, B0.         

    

The nucleus absorbs energy from the photon and is excited. After the absorption of the photon, the 

nucleus has extra energy and moves from the lower energy state into the higher energy state (parallel 

to antiparallel) resulting in a reduction in the MZ. In addition, the nuclear magnetic vectors align with 

each other in phase coherence, which results in the generation of transverse magnetisation, MXY (James, 

2012). 
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Figure 1.5: (Right) Parallel and anti-parallel alignment of the nuclear spins in the magnetic field, B0.  (Left)  Longitudinal magnetization, MZ   in numerous nuclei 

produced by the population difference in the number of spins. 



  

32 

1.9.4 Relaxation times 

 

Nuclei cannot hold this extra energy for a long time due to motional interactions with their magnetic 

neighbours and are said to be in an unstable state. To become stable, they have to release energy in the 

form of photons and return to the lower energy state again. The result is a re-generation of the 

longitudinal magnetisation, MZ (Figure 1.6). The period of time required for MZ to return to its 

equilibrium value is known as the T1 relaxation time. Besides that, a cumulative loss of phase coherence 

results in in transverse magnetisation, MXY decay. This is known as T2 relaxation.  

The photon energy emitted by the nuclei after the RF is turned off, is received as a signal by an inductive 

resonant coil surrounding the sample. This signal is measured as an induced voltage, known as a free 

induction decay (FID) (Brown and Semelka, 2003). The FID is in the time domain but can be 

transformed into the frequency domain by using a Fourier transform (FT) (Figure 1.7). The spectrum 

produced contains information on the different resonance frequencies of metabolites within a biological 

sample (Belkic and Belkic, 2010). The same metabolite may have more than one signal peak. This is 

due to the J-coupling and chemical shift effect. 

1.9.5 Chemical shift 

 

In an external magnetic field, B0, the applied magnetic field induces the electron cloud around the 

nucleus to circulate. The electron's magnetic moment orients anti-parallel to B0 and decreases the net 

magnetic moment. Therefore, this results in a decrease in the external magnetic field around the nucleus 

which is called shielding (Balci, 2005) and results in the frequency of that nucleus being shifted “up 

field”. To compensate for this effect, the strength of the external magnetic field can be increased.  The 

opposite of shielding is called deshielding in which the nucleus feels a stronger magnetic field, and its 

frequency is shifted “downfield” (Balci, 2005).  Metabolites may experience different shielding effects 

if the electron density and chemical environment are different and hence resonate at slightly different 

frequencies (Figure 1.8). It is this which makes it possible to distinguish signals from different nuclear 

spins. 

On the horizontal axis the chemical shift is calibrated to a single peak in the spectrum,, e.g. a deuterated 

solvent peak or other identified molecule, with  a known reference value measured in parts per million 

(ppm). Molecules such as Tetramethylsilane (TMS) has been assigned a chemical shift of 0 ppm as a 

reference peak. The difference between the position of the signal of interest and that of the reference 

compound is termed the chemical shift. The purpose of measuring chemical shift in ppm is that it is 

invariant to the applied magnetic field, unlike the use of frequency in Hz which increases with the 

applied magnetic field.   
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Figure 1.6: Tipping of the magnetization vector MZ towards the y-axis under the influence of the radiofrequency (RF) field. After RF is switched off, MXY 

decreases due to T1 (upper) or T2 (bottom) relaxation. 
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Figure 1.7: Free induction decay signal (FID) in the time domain is converted using Fourier transform into frequency domain 
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Reference peaks can also be utilised as an internal standard for concentration determination for the MRS 

signal (Mo and Raftery, 2008). Since the FID is an emission spectrum, the linear relationship between 

MRS signal integration and known concentration from the reference peak can potentially allow any 

detected signal concentration to be calculated. The reference solvent is suited for this purpose because 

of its known chemical shift which eases its observation in the spectrum and the concentration can be 

accurately pre-determined (Shimizu et al., 1994) . 

1.9.6 J-coupling or Spin-spin splitting 

 

The MRS signal produces a spectrum of resonances that correspond to different molecular arrangements 

of the isotope being excited. One metabolite may have several peaks. This is called spin-spin splitting 

(Figure 1.8). Between adjacent nuclei, there is an electron-coupled nuclear spin-spin interaction. The 

spin-coupling can pass through this interaction in both directions. The orientation of the neighbouring 

spin influences the local magnetic field of the observed spin (Brown and Semelka, 2003).  

Spin-spin coupling can split the MRS spectrum into multiplets. Patterns of peak splitting can be 

predicted using the 2nI + 1 formula (Brown and Semelka, 2003). I is the spin quantum number, n is the 

number of other nuclei interacting with the nucleus. For example, for a given nucleus, I=1/2, there are 

three neighbouring methyl protons, then the line will be a quartet. The line separation is always constant 

within a given multiplet and is called the coupling constant, J. The magnitude of J, typically in units of 

Hz, is magnetic field independent (James, 2012). Moreover, the external magnetic field strength does 

affect the chemical shift but not the spin-spin splitting. The spin-spin splitting pattern can be predicted 

by Pascal’s triangle. 

Generally, this circumstance could explain why some metabolites have doublet peaks and some 

metabolites have triplet peaks in the spectra. For instance, lactate has three split peaks when using 13C. 

There is a doublet at 183.5 ppm from the carboxylate proton, a quartet at 69.5 ppm from the CH carbon, 

and a doublet at 22 ppm from the CH3 carbon (Lloyd et al., 2004). 

1.10 13C MRS, metabolic pathways’ biomarker and fertility 

 

Currently, only one study has been complete in human sperm using 13C MRS. This work was carried 

out by Calvert et al (2018). They reported that, lactate was always detected when incubating the human 

sperm with U-13C  glucose, U-13C fructose, and 1-13C pyruvate while bicarbonate was occasionally 

detected after incubation with 3-13C  lactate, 2, 4-13C D-3-hydroxybutyrate, 1-13C butyrate, 5-13C 

glutamate and 2-13C glycine.. Pyruvate and acetate, acetoacetate, and glutamate were also detected in 

the spectra using 3-13C lactate, 2, 4-13C D-3-hydroxybutyrate, 1-13C butyrate, and 5-13C glutamate 
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respectively. They also reported that the conversion rate of 1-13C pyruvate to lactate was three times 

faster than that of U-13C glucose and U-13C fructose.  

 

Typically in this 13C MRS study, observed lactate was suggested to represent lactate fermentation, 

bicarbonate represented OXPHOS, and acetate may have emerged from acetyl-CoA (Calvert et al., 

2018). However, from glycolysis to OXPHOS, there are several reactions that generate bicarbonate, 

some of which are reactions in the Krebs cycle, PDH and PC. Biochemical functions of these pathways 

are different. PDH yields acetyl-CoA for oxidation in the Krebs cycle, PC produces oxaloacetate to 

replenish intermediates of the Krebs cycle and the Krebs cycle produces NADH for further re-oxidation 

in OXPHOS. The relative relationship of these pathways and fertility have been studied previously 

(Matzuk, Brown and Kumar, 2001; Panneerdoss et al., 2012; Siva et al., 2014). 

 

In mammalian sperm energy metabolism, the role of PDH in the fertilization process is thought to be 

regulation of intracellular lactate, pH and calcium during the process of capacitation and the acrosome 

reaction (Panneerdoss et al., 2012). Moreover, Siva et al. (2014) have reported that by inhibiting PDH, 

the successful fertilization rate in the hamster decreased by about 90%. PC is usually associated with a 

decline in the fertility rate due to diabetes mellitus (Gray et al. 2014; Temidayo & Stefan 2018). For 

the Krebs cycle, reduction of aconitase, which is a Krebs cycle enzyme, has shown an effect on human 

sperm motility and in contrast, incubation of human sperm with isocitrate has improved sperm motility 

(Tang et al., 2014).   

 

1.11 Problem statement 

 

Sperm functional tests are typically destructive to sperm. Thus, there is a need for a sperm test that is 

not detrimental to sperm which could also provide diverse information on sperm function. MRS has 

been used in many metabolomic studies, including sperm (Aaronson et al. 2010; Bonechi et al. 2015; 

Paiva et al. 2015; Bone et al. 2000; Calvert et al. 2018). Some of these studies used 13C MRS to estimate 

glycolysis turnover in the presence of a glycolysis inhibitor (Bone et al., 2000) and measured the 

glycolysis and OXPHOS rate (Calvert et al., 2018). Moreover, Calvert et al (2018) have reported that 

human sperm which were incubated with 13C labelled substrate, generated a detectable lactate and 

bicarbonate peak but no intermediates of the Krebs cycle.  
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Figure 1.8: Schematic figure of the spectrum metabolite X which has three carbons; A, B, and C, nuclei in different molecular environments. This 

results in metabolite X having three peaks at chemical shift of δa, δb and δc. Peak A splits into a triplet peak and C splits into a doublet peak due to 

spin-spin coupling.  Amplitude, linewidth W1/2 and intensity are the general parameters for MR spectra.  Redrawn from (James, 2012). 
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Krebs cycle intermediates, measured using 13C MRS has been discovered in several cell types such as 

in the myocardium and brain (Lewandowski et al., 1996; Wijnen et al., 2010) but none of these have 

so far been discovered in sperm. However, their presence in sperm metabolism have been found using 

other methodologies such as mass spectroscopy (Marin et al., 2003), Western blot analyses (Medrano 

et al., 2006) and fluorimetry (Peterson and Freund, 1974). Since MRS is not detrimental to sperm 

(Reynolds et al., 2017), it would be useful if it could detect Krebs cycle intermediates.  

 

It is hypothesized that 13C MRS will be able to detect Krebs cycle intermediates if their concentrations 

are above the detection level. Thus, to enable detection of Krebs cycle intermediates by 13C MRS, a 

range of variables including various inhibitors, incubation temperature, labelled substrates and oxygen 

availability were investigated. A powerful tool, Dynamic nuclear hyperpolarization (DNP), was used 

to overcome the sensitivity issue of 13C MRS.  

 

1.12 Aim and Questions  

Though an exact cause of infertility remains unknown (Gupta et al., 2013; Barratt, De Jonge and Sharpe, 

2018), poor sperm motility was reported as one of the causes of infertility (Pacey, 2009). For a 

successful fertilization, sperm undergo several cellular processes in the female reproduction tract such 

as capacitation and hyperactivation. This raises the biological question as to how sperm manage energy 

metabolism production in order to sustain motility during these processes.  

Since sperm can metabolise several substrates including glucose and pyruvate, concentration of the 

produced metabolite, such as lactate, bicarbonate and possibly Krebs cycle intermediates, depends on 

the oxidation of these substrates by sperm. Therefore, the metabolism pattern between sperm from the 

healthy and infertile subjects may be different. As the Krebs cycle is the key source for ATP production, 

bicarbonate is thought to be generated by the Krebs cycle. Detection of the Krebs cycle could prove its 

involvement in bicarbonate production. Ultimately, the relationship between the Krebs cycle, the ratio 

of bicarbonate from the Krebs cycle or other pathways and lactate production with sperm motility from 

the target group sample can be investigated. In addition, due to its specificity, it has a potential to 

contribute to medicine new methods to improve sperm motility.  

Therefore, this thesis is aimed at answering the following questions: 

 

General question 

 

1. Can Krebs cycle intermediates be detected using 13C MRS? 
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Specific questions 

 

1. What is the ideal sperm washing techniques that can yield the optimum sperm quality for 

experimentation? (see Chapter 3) 

2. What is the ideal sperm incubation time and the volume of the labelled substrate which will 

give an optimum MRS signal? (see Chapter 3) 

3. Could addition of inhibitors increase the concentration of Krebs cycle intermediates in sperm 

metabolism to enable their detection by 13C MRS? (see Chapter 4) 

4. Would the effect of an inhibitor on sperm vitality influence the detected metabolite peaks 

measured by 13C MRS? (see Chapter 4) 

5. Could incubation of sperm at body temperature with strategically selected 13C labelled 

substrates increase the Krebs cycle intermediate concentration? (see Chapter 5) 

6. What is the metabolic rate of the selected 13C labelled substrate? (see Chapter 5) 

7. Could hyperpolarized 13C dissolution-DNP be used to detect intermediates of the Krebs cycle 

in the sperm? (see Chapter 6) 

8. Could manipulating oxygen concentration affect sperm metabolism process particularly on the 

Krebs cycle? (see Chapter 7) 
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2 Chapter 2: Materials and methods 

This chapter describes the samples, sperm washing techniques and centrifugation, sample preparation 

for MR scanning and quality assessments, 13C MR scanning, data analysis, and statistical analysis. The 

exact methodology used for each study is specified within individual chapters. 

 

2.1 Sample: Boar spermatozoa 

 

Sperm rich samples of semen were provided from an artificial insemination (AI) company (JSR Genetic, 

Thorpe Willoughby, UK). The ejaculate was freshly obtained from the same breed of boar and mixed 

with an extender; Beltsville Thawing Solution (BTS) or Duragen extender (Gadea, 2003), Figure 2.1 

(a), prior to dispatch. Components in the extender such as glucose, sodium citrate and potassium, enable 

sperm quality to be preserved for up to three days (Kaeoket et al., 2010). Immediately after arrival, 

semen samples were placed in an incubator oven (INB200, Memmert GmbH + Co. KG, Germany) at 

17◦C, which is the recommended storage temperature for boar sperm. The motility of the spermatozoa 

was pre-screened upon arrival in the laboratory by using a microscope (Olympus BH2 Microscope, 

London, UK) to make sure that the samples contained motile sperm and that they were used before the 

expiry date. 

 

2.2 Sperm washing techniques 

On the day of the experiment, the boar semen (see Section 2.1) was washed through a double gradient 

centrifugation (DGC) process. This decision was based on findings presented later in Section 3.1. 

Briefly, as the boar sperm supplied was a mixture of semen and extender (semen and extender later will 

be referred to as a supporting fluid), it needed to be processed first for MRS. This is because, non-sperm 

cells could be present in the supporting fluid which would consume and metabolise the labelled 

substrate just like sperm does. Therefore, they needed to be removed from the sperm sample so that, 

the metabolite signal detected by MRS was genuinely from the metabolism of the sperm. To isolate the 

sperm from supporting fluid, three techniques were employed: (1) simple washing, (2) single gradient 

centrifugation (SGC), and (3) DGC.  

 

2.2.1  Simple washing 

 

3 ml of the boar semen (with extender), as described in Section 2.1, was pipetted and was placed in a 

clean conical tube (Biologix, Dutscher Scientific Ltd, Brentwood, UK) (Figure 2.1 (b)). This method 

centrifuged the sperm (as stated in Section 2.3) without using any colloid reagent for the density 

gradient. 
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2.2.2 Single gradient centrifugation 

 

For separation using SGC, 2 ml of 70% (v/v) Percoll (see section 2.2.3) was added to a conical tube and 

then 3 ml of the semen (see Section 2.1) was carefully placed on top of the Percoll (Figure 2.1 (c)). 

 

2.2.3 Double gradient centrifugation 

 

Boar semen was washed through a gradient of 70% and 30% (v/v) isotonic Percoll (GE Healthcare Life 

Sciences, Little Chalfont, UK) in PBS (Figure 2.1 (d)). To prepare 30% Percoll, 2.7 mL Percoll was 

mixed with 1 mL of 10 x PBS and 6.3 ml of distilled water (dH2O); to prepare 70% Percoll, 6.3 mL 

Percoll was mixed with 1 mL of 10 x PBS and 2.7 ml of dH2O.  

 

For separation using DGC, 2 ml of 70% (v/v) Percoll was added to a conical tube and then overlaid 

with 2 ml of 30% (v/v) Percoll (Harrison, 1976). The semen (3 mL) was then placed on top of the 

Percoll. This step was done carefully by keeping the tip of the pipette against the wall of the tube just 

above the surface of the Percoll to avoid a splash and mixing between the layers. The formation of a 

meniscus between the interfaces represents a sharp change in density between the gradient layers. 

 

2.3 Centrifugation and recovered sperm  

 

For all washing techniques listed above, the semen in the conical tube was centrifuged at 200 g for 15 

minutes in a Sigma 3–16 K (SciQuip Ltd, Wem, UK), followed by a second centrifugation for 15 

minutes at 1000 g at room temperature. After centrifugation, without disturbing the pellet, the waste 

supernatant which contains Percoll and/or supporting fluid, was gently aspirated and the pellet formed 

in the high density gradient for DGC or at the bottom of the tube for SGC and simple washing, was 

placed into a new, clean snap cap polystyrene round-bottom tube (Falcon, Corning, UK) before it was 

re-suspended with 1 ml of PBS (Figure 2.2). It was necessary to gently re-suspend the pellet so that 

mechanical stress on the sperm was minimized. Sperm remained in the isotonic media to reduce osmotic 

stress.  

 

2.4 Sample preparation for incubation and fresh sample scanning 

 

To prevent any bacterial growth in the recovered sperm sample after the centrifugation process, 12 µl 

penicillin\streptomycin (Pen/Strep), an antibiotic (10000 units/ml penicillin and 10 mg/ml streptomycin 

diluted to 1/3 with PBS, so that in tube concentrations were 90 units/ml penicillin and 90 μg/ml 

streptomycin, Sigma Aldrich) was added to a 100 µl aliquot of sperm.  
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Figure 2.1: (a) sperm in the extender was placed in the conical tube for (b) simple washing, (c) SGC (above the single layer of 70% Percoll) and (d) 

DGC (above the layer of 30% and 70% Percoll) gradients before centrifugation process techniques. 
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Figure 2.2: After the sperm sample was centrifuged using the DGC technique, the pelleted sperm at the bottom of the conical tube was collected and 

gently re-suspended with the PBS. 
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Phosphate buffered saline (PBS) was added to maintain a final volume of the sample (570 µl) for MRS 

experiments. Typical sample volumes for a 5 mm MRS probe are 450 to 600 µl (Aitken and Roman, 

2008). The correct concentration is necessary to acquire an MRS spectrum from sperm with sufficient 

signal to noise ratio (SNR) and resolution for data acquisition in a reasonable amount of time. Since the 

MRS signal is proportional to the metabolite concentration, which is likely to be a function of the sperm 

concentration. Therefore, concentrated samples are obviously desirable. However, samples that are too 

concentrated can lead to problems with sample shimming and yield spectra with poor resolution.  

 

Sperm samples had 60 µl of 100 mM U-13C labelled glucose (Cambridge Isotopes Laboratories, 

Tewksbury, MA, USA) or 2-13C pyruvate (Sigma Aldrich, Missouri, USA ) added depending on which 

metabolic pathway was being studied. The sample was either incubated at 37◦C for 18 h for experiments 

with metabolic inhibitors (see Chapter 4), or 4h for the oxygenation experiments (see Chapter 7). For 

the experiments in Chapter 5 and 6, the sample was either incubated or scanned continuously in the 

MRS, at 37◦C and 39◦C, for 18 h. All incubated samples were incubated in snap cap tubes with the cap 

closed half way to allow gas changing. The incubation time and volume of 100 mM U-13C glucose were 

decided on based upon the preliminary experiments described in Section 3.2). After the incubation 

period, the sample was removed and frozen at -80◦C (InnovaR, SoCal BioMed, Canada) prior to 

scanning in the MRS, without preservation. 

 

2.5 Sperm quality assessments 

 

Sperm quality plays an important role in MRS experiments. This is because, to achieve a reasonable 

high quality of the metabolite signal, a sufficient number of live sperm with an acceptable motility range 

are needed. The guideline for the reference range of vitality for human sperm is 55 - 63% (World Health 

Organization, 2010) and the minimum total motility of fresh boar sperm for AI is set at 70% (Lopez 

Rodriguez et al., 2017). For this study, the cut-off limit for vitality and motility in the initial unprocessed 

sample was 60% since quality declines over the delivery time from the AI Company to the time that the 

boar sperm is stored in the laboratory fridge. The assessed sperm quality included: sperm concentration, 

motility and vitality. 

 

2.5.1 Concentration 

 

Sperm concentration was assessed for each sample by following WHO guidelines (World Health 

Organization, 2010). For sperm concentration using 1:20 dilution, re-suspended samples were diluted 

with formalin. Two 10 µl replicates were placed on the Neubauer haemocytometer (Hawksley, Lancing, 

UK) and left for ∼ 5 minutes allowed for sperm to settle onto the surface of the chamber. Sperm were 

then counted within the central grid of 25 large squares area using a microscope (Olympus BH2 
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Microscope, London, UK) set to 20 × magnification with at least 200 spermatozoa in each replicate 

(see Figure 2.3). Only sperm heads touching the bottom and left lines of the small square were included 

in the count, while those touching the top or right lines were not counted. Sperm counts with acceptable 

difference between replicates, were used to calculate the sperm concentration using Equation 2.1. 

 

   Equation 2.1 

Where: 

 

• N: number of counts 

• n: number of rows in which they were found 

 

2.5.2 Motility 

Sperm motility was measured in accordance with WHO guidelines (World Health Organization, 2010). 

Re-suspended sperm was added to extender in a 1:1 dilution. Two aliquots of 10 µl of diluted semen 

were placed on the glass slide with a (22 x 22 mm) cover slip. They were then placed on a preheated 

stage at 37◦C and graded using a phase-contrast microscope at 20 × magnification (Olympus BH2 

Microscope, London, UK). Progressive motility (PM), non-progressive (NP) motility and immotile 

(IM) sperm were counted for at least 200 spermatozoa in each replicate. Average percentage motility 

was calculated. The sperm motility was graded according to the WHO definitions below: 

• PR: spermatozoa moving actively, either linearly or in a large circle, regardless of speed. 

• NP: all other patterns of motility with an absence of progression, e.g. swimming in small circles, 

the flagellar force hardly displacing the head, or when only a flagellar beat can be observed. 

• IM: no movement. 

 

2.5.3 Vitality 

 

The viability of the samples were assessed and determined using Propidium Iodide (PI) and SYBR 14 

(SYBR) dye (Live/Dead Sperm Viability Kit (L-7011): Molecular Probes, Eugene, Oregon, USA). One 

microliter of SYBR and 2 µl of PI were added to 50 µl of diluted sperm pellet. Samples were mixed 

and incubated for 10 minutes at room temperature. Two replicates (10 µl each) of semen sample were 

placed on a microscope slide and observed under 20 x magnification using an Olympus CKX41 

fluorescence microscope (Olympus, London, UK). Theoretically, viable cells have an intact cell 

membrane which excludes the red dye, whereas for non-viable cells, the dye can infuse into the cell 

membrane and they are stained. Therefore, the green fluorescent spermatozoa were classified as viable 

and red fluorescent spermatozoa were classified as non-viable. A minimum of 200 spermatozoa were 

counted for each replicate. Average percentage vitality was calculated. 
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Figure 2.3: Illustrated image of the grid on the haemocytometer. Sperm were calculated if they were 

located within the central grid only (marked within the red line). 
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2.6 13C MR scanning 

Both thawed or fresh sample scanning (with the final volume of 570 µl) , had 10 µl of 200 mM 13C urea 

added as a concentration and chemical shift reference, and 10 µl of deuterium oxide (D2O), used as a 

field/frequency lock solvent. The sample was then transferred to a 5 mm MRS tube (Norell, Marion, 

NC). 13C urea was used because theoretically the labelled carbon of urea will not be consumed by sperm, 

thus any changes of urea integral would be as a result of inconsistency during data acquisition. 

 

A 9.4 T, Avance III, Bruker (Bruker BioSpin GmbH, Karlsruhe, Germany) scanner, with 5 mm 

broadband observe probe was used for all experiments. The probe coil can be tuned "broadband" to 

measure nuclei such as 13C and 1H. The probe head resonance frequency and match were optimized by 

manually tuning the probe capacitors to the frequency of the corresponding nucleus and matching to 

the standard impedance of the system (50 Ohms). For the 13C study, the 13C probehead was tuned before 

the 1H probehead. 

 

In order to acquire a high resolution spectrum, the magnetic field has to be stable and homogeneous. 

To make sure that the magnetic field was stable during the spectral acquisition, a lock mechanism, 

which uses the resonance signal from the deuterium in D2O to measure the magnetic field, was applied. 

As the D2O signal frequency changes due to any change in the field, an electric current is applied to a 

coil in the magnet to increase or decrease the field strength to ensure the overall magnetic field remains 

constant. 

 

Once the frequency is locked, the magnetic field homogeneity over the whole sample was improved by 

the shimming process. This involves applying different electrical currents to shim coils located around 

the probe to compensate for deficiencies in the B0 field homogeneity. The value of the lock signal was 

maximized by increasing or decreasing the X, Y and Z as well as higher order shim components. A 

single pulse 1H acquisition sequence was acquired to check for ’good’ shimming by calculating the full 

line width at half-height (FWHM). The shim was accepted when the FWHM for water resonance was 

between 10 to 15 Hz. 

 

13C spectra were then acquired using a 1 dimensional 13C {1H} inverse-gated pulse sequence. The 

acquisition parameters were spectral width = 239 ppm, number of acquisition = 4096, acquisition time 

= 0.5 s, delay time = 2 s, time domain point = 24036 and flip angle = 16◦ (for Chapter 4) or 90◦ (for 

Chapter 3, 5, 6, and 7). The spectral acquisition was performed at room temperature (21◦C) for frozen-

thawed samples and 37◦C and 39◦C for fresh sample scanning. 
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2.7 Data analysis 

Data was acquired and processed using the Bruker Topspin 2.1.6 software. Spectra were Fourier 

transformed with automatic phasing and baseline correction to help remove broad baseline signals and 

signal offset. No exponential line broadening function was applied. Chemical shifts were referenced by 

setting the 13C urea peak to 165.5 ppm. 

 

2.7.1 Peak assignment 

 

Identified metabolite signals were integrated if the SNR was more that 3:1. The metabolite peak was 

assigned by matching its chemical shift to the pre-defined chemical shift database (HMDB, 2010) and 

supported with the previous literature. Both database and literature provided the exact chemical shift 

where a metabolite should be detected in the spectra. The predefined integral ranges for substrate 

molecules are: 

 

 2-13C  pyruvate: 207.4 – 207.7 ppm 

 1-13C lactate : 184.9 – 185.7 ppm 

 1-13C Pyruvate : 173.5-172.5 ppm 

 13C urea: 163.5-162.7 ppm 

 13C Bicarbonate : 162.9 – 163.0 ppm 

 13C glucose: 102 - 99.6 ppm,  

 2-13C Lactate : 71.0 – 71.2 ppm 

 

2.7.2 Quantification of metabolite 

 

Relative concentrations of metabolites in the sperm sample were calculated by direct integration of the 

spectral region. The peak area, which is proportional to metabolite concentration, was integrated from 

the far left side of the peak until the far right side of the peak (Figure 2.4). Integral region was decided 

on the control sample spectrum and then copied to other related spectra. 

 

2.7.3 Normalisation 

 

Normalisation is an integral part of MRS data processing as it scales the spectra to the same overall 

concentration accounting for sample variations and inconsistency during the MRS data acquisition 

process (Dieterle et al., 2006). Sample to sample variation results from differences in sperm 

concentration, motility and vitality between samples.  
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These parameters were not adjusted to any specific range so as to achieve as optimum as possible SNR. 

Therefore, to eliminate this variation and inconsistency, the following assumptions were made. First, 

spectral inconsistency can be predicted by urea integral changes. Second, concentration of the detected 

metabolite product depends on the concentration of sperm present in the sample where sperm samples 

with different concentration consume different amounts of 13C substrate. Consequently, to correct 

spectral inconsistency, 13C substrate integrals were divided by the 13C urea integral. To correct sample 

to sample variation, metabolite product integrals were divided by the respective sperm concentration.  

 

2.8 Statistical analysis 

 

All statistical analysis was performed using GraphPad PRISM 7 (GraphPad Software, Inc). Values are 

quoted as mean ± SD unless otherwise stated. The significance value for all tests was p < 0.05. 
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Figure 2.4: Integration area for detected peak in the spectra was assigned (marked with red lines). 
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3 Chapter 3: Preliminary experiments 

This chapter describes two sets of experiments that were performed to optimise the protocols for 

subsequent chapters. These are to define the preparation of the sperm to remove the media in which 

they are supplied and, secondly, to determine the conditions required for incubation of sperm with 13C- 

labelled substrates. 

 

3.1 Sperm motility and vitality between simple, SGC and DGC 

 

3.1.1 Introduction 

 

For an MRS study, it is important to use a separation method that will not be deleterious to the sperm, 

as this will reduce the detected signal and efficiently isolate the sperm from the supporting fluid and 

other media.  Separation methods for boar sperm include swim-up (Berger and Horton, 1988), gradient 

centrifugation (Lessley and Garner, 1983; Grant, Long and Parkinson, 1994; Matás et al., 2010, 2011; 

Kruse, Dutta and Morrell, 2011) or glass wool filtration (Berger and Horton, 1988; Bussalleu et al., 

2009). Among these, density gradient centrifugation is the method most frequently used in separating 

or washing semen (Morrell and Wallgren, 2010). This is because it is not a time-consuming procedure, 

is able to separate a lot of motile spermatozoa, is not deleterious to the sperm, excludes dead sperm and 

other cells and can process a large volume of semen (Tahir Beydola, Sharma and Agarwa, 2014).  

 

Density gradient centrifugation involves a rotation about a fixed axis to produce a centrifugal (g) force. 

This centrifugal force forces sperm down through a density gradient medium and physically separate 

the sperm according to size, shape, density, viscosity of the medium and rotor speed. There are two 

types of centrifugation separations which are separation by density and by the size. Separation by 

density or Isopycnic will separate the particle based on the differences in density, irrespective of size 

while separation by size or Rate Zonal Centrifugation (RZC) will separate the particle according to 

density and the particle size. In Isopycnic, the density gradient is continuous which means the density 

will linearly increase towards the bottom of the tube. In the RZC, the density gradient is discontinuous.  

 

The discontinuous gradient is accomplished by adding layers of the gradient medium with different 

densities into the tube. The top layer of the tube will have the lowest gradient density and the bottom 

layer will have higher gradient density. A mature morphologically normal sperm has a higher density 

of 1.10 g/mL whereas an immature and morphologically abnormal sperm has a lower density between 

1.06 and 1.09 g/mL (Malvezzi et al., 2014). At the end of centrifugation, the highly motile sperm 
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migrate to the bottom of the tube. Poorly motile sperm situated at the interphase between low and high 

density gradient regions while dead spermatozoa, leukocytes, bacteria and debris float at the interphase 

between the low density gradient and seminal plasma (and other supporting fluid) (Figure 3.1). This is 

the preferred technique to select the greater number of motile spermatozoa (Natali, 2011). The most 

applied discontinuous density-gradient method is a double density-gradient (DGC), formed by a top 

layer of 40% (v/v) and a lower layer of 80% (v/v) silane-coated silica colloids. Centrifugal force and 

time should be kept at the lowest possible values (Gardner, 2004) to minimise the mechanical stress on 

sperm. However, this study use 30% and 70% for the gradient density, a centrifugal force of 200 g and 

1000 g for 15 minutes each cycle, following the standard protocol for boar sperm for this laboratory.  

 

The recently developed single density gradient (SGC) utilises only one layer of the gradient 

centrifugation. Usually the colloid medium for gradient density is a species-specific formulation. After 

the centrifugation, the seminal plasma or other media float  on top of the medium whilst sperm move 

down through the medium, with the motile, vital  spermatozoa pelleting in the bottom of the tube 

(Morrell and Wallgren, 2011) (Figure 3.1). 

 

A density gradient can be prepared using various reagents. However, for this study, Percoll was used to 

prepare the gradient following the method that was outlined by Calvert et al. (2018). In boar sperm, 

Percoll density gradients have been used in numerous studies, including boar sperm preparation for a 

reactive oxygen species (ROS) study (Guthrie and Welch, 2006) and the study of the components of 

cytoplasmic droplets (Fischer et al., 2005). One of the characteristics which is advantageous for the 

sperm study, are that it will not penetrate into sperm membranes hence making it non-toxic to sperm 

(Hernandez-Lopez et al., 2005).  

 

Washing of sperm without using any colloid medium is known as the simple washing technique. The 

principle is quite similar to SGC however, the amount of the pelleted sperm at the bottom of the tube 

might be less compared to sperm which is washed using the colloid medium.  

 

Most previous studies have investigated the effect of motility after centrifugation (Lessley and Garner, 

1983; Grant, Long and Parkinson, 1994; Matás et al., 2010; Morrell and Wallgren, 2011; Reynolds et 

al., 2017) but the effect of different washing techniques, between simple, SGC and DGC, on sperm 

vitality and different types of motility, has not previously been reported in the literature. Moreover, it 

would be a time and cost saving if the simple washing technique could produce similar sperm quality 

to SGC or DGC.  
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Figure 3.1: Post-centrifugation diagram for: DGC (Left), the top layer of the centrifuge tube will have the lowest density molecule, and the bottom 

layer will have higher density. For the SGC (Right), sperm move down through the medium, with the motile, vital sperm pelleting in the bottom of 

the tube. 
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Therefore, this preliminary experiment sought to investigate two aims. First to evaluate the effect of 

centrifugation on sperm motility and vitality. Secondly, to choose the best technique from the simple, 

SGC and DGC methods based on the best sperm motility and vitality yielded.  

 

3.1.2 Methodology 

 

Boar sperm from different animals, n = 5 (Section 2.1) was grouped according to the respective washing 

technique. The washing techniques were, as discussed above, simple centrifugation, SGC and DGC. 

The procedure was applied based on the methods outlined in Section 2.2 (Figure 3.2). A control group, 

which was an aliquot of the sperm in the extender, which had not undergone any washing procedure, 

was also prepared. Before centrifugation assessment, the motility and vitality assessments (Section 

2.5.2 and 2.5.3) were performed (time, t = 0 min) for the control group only. After centrifugation and 

dilution of the sperm pellet, the assessment of motility and vitality was performed (t = 45 min) for all 

groups (control, simple, SGC and DGC). During 0 to 45 minutes, the control group was stored at room 

temperature. Average percentage motility and vitality of each group was calculated and compared. 

 

3.1.3 Statistical analysis 

 

One way ANOVA with Tukey’s multiple comparison test was performed to compare differences 

between mean ± SD of PM, NP, IM, motile and vital sperm for simple, SGC and DGC washing methods 

and the control group, t = 45 min. A paired Student’s T-test was used for comparing motility and vitality 

for the control group at 0 min and 45 min.  

 

 

3.1.4 Results 

 

The PM, NP, TMmotility (the sum of PM and NP) and vitality of sperm decreased after 45 minutes but 

were not statistically different for any type of motility ( 

 

 

 

 

Table 3.1). 

 



 

55 

To assess the effect of the different sperm washing techniques on sperm quality, the motility and vitality 

comparisons were made between those in the control group, at 45 minutes, and simple centrifugation, 

SGC and DGC). 

 

 

 

 

Figure 3.2: Paired boar sperm samples were prepared for motility and vitality assessment using (a) 

unwashed control sample (at t = 0 s) and those washed (at t = 45 mins) using (b) simple centrifugation 

(c) SGC and (d) DGC.  
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Table 3.1: Mean percentage ± SD vitality and motility including motile, PM, NP, and IM. Comparison between control 0 min and 45 min was 

made using a Paired t-test. 

 

 

 

 

 

 

 

 

Sample Motile, %  PM, % NP, % IM, % Vitality, % 

Control, t =0 min 76 ± 5 2 ± 2 74 ± 6 24 ± 6 64 ± 1 

Control, t =45 min 63 ± 2 1 ± 1 63 ± 2 36 ± 2 62 ± 8 

Paired T test NS, 0.21 NS, 0.12 NS, 0.23 NS, 0.21 NS, 0.36 
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The percentage of motile sperm decreased after the washing procedure regardless of the technique. This 

was significantly different compared to the control group after washing with the simple technique. 

Among the washed groups, the DGC method retained the highest sperm motility (Figure 3.3 (a)). 

 

The DGC also had the highest PM compared to the other washed groups. The PM of the sperm was 

increased numerically after washing with DGC and SGC. There was a significant difference between 

PM from the DGC technique compared to the control group. The mean difference between the SGC 

and DGC methods was quite similar at 2%. No PM sperm were detected in all the samples from the 

simple washing technique (Figure 3.3 (b)). 

 

Generally NP numbers decreased after sperm were washed with any of the washing techniques. The 

decline was the lowest when washed with DGC, followed by SGC and then the simple washing method. 

The mean number of NP sperm was significantly different using the simple washing technique (Figure 

3.3 (c)). 

 

Conversely, IM of sperm was higher after washing. The highest IM was from washing the sperm with 

the simple technique, followed by DGC and then SGC. (Figure 3.3 (d)). 

 

The vitality of sperm increased slightly after washing with DGC. Otherwise, vitality was decreased 

when washing with other techniques with a small change of ~ 1% between before and after washing 

with SGC (Figure 3.3 (e)). None of these differences were significantly different.  

 

3.1.5 Discussion 

 

In this preliminary experiment, the goal was to determine which washing technique would produce the 

highest or best sperm motility and vitality for subsequent experiments. 

 

Boar sperm can retain vitality and motility for a few hours after ejaculation without extender (Lopez 

Rodriguez et al., 2017) and several days when diluted with the extender (Kaeoket et al., 2010). Special 

attention must be given to the duration of the sperm preparation so that the quality of the sperm does 

not degrade. This then means that an improved SNR can be obtained for the MRS study.  
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(a) Motile                                                       (b) PM              (c) NP 

  

         (d) Immotile                   (e) Vitality 

   

Figure 3.3: Mean percentage ± SD of (a) Motile, (b) PM, (c) NP, (d) IM and (e) vitality, with statistical analysis from One Way ANOVA with 

Tukey’s test for the sperm washed with simple, SGC and DGC techniques. 
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Depending on which washing process is used, a typical centrifugation technique takes 20 minutes to 1 

h. However, all sperm washing methods used in this study required ∼ 45 minutes for a two step 

centrifugation process. Results from the comparison between the control group at 0 and 45 minutes 

suggests that the duration needed for sperm washing is safe and acceptable. Boar sperm are sensitive to 

temperature (Lopez Rodriguez et al., 2017), thus this result might have been different if different 

temperature had been used to store the sperm sample. This could also explain why sperm motility 

decreased after 45 minutes as the recommended storage temperature for AI sperm is at 17°C.  

 

As mentioned previously, the role of the extender is to inhibit sperm motility. This study did not 

calculate or measure the amount of extender or Percoll in the prepared sperm after centrifugation. 

However, high percentages of IM and zero PM of the sperm when washed using the simple washing 

technique suggests that the extender and other supporting fluids were still present in the recovered 

sperm even after washing. However, contamination of the semen by non-sperm cells, could produces a 

detectable metabolite signal. This could cause spectral misinterpretation if those molecules match with 

metabolites produced from sperm 13C metabolism. High sperm vitality when washed using the simple 

washing technique may suggest that the sperm washed using that technique are more susceptible to the 

effect of the mechanical stress compared to other washing techniques. Therefore, from these results, it 

can be concluded that the simple washing technique was ineffective for washing the sperm without 

interfering with the sperm quality and contamination. 

 

In contrast, the significant increase of PM in the DGC group may indicate an efficient separation of 

high quality sperm from the low quality sperm from recovered sperm in the high density gradient. 

Indeed, for this study, DGC was thought to be a better technique than SGC. This was because, (i) DGC 

produced higher PM by ∼ 2%, NP by ∼ 2%, and ∼ 1% for vitality than SGC, (ii) DGC produced the 

highest motility and PM of the sperm out of the other washed groups and (iii) DGC was also able to 

retain motile sperm between 89 - 94% of the control value.  Lastly, sperm vitality improved when sperm 

were washed using DGC.  

 

In short, the findings showed that sperm washing by DGC was effective and the best method to retain 

sperm motility and vitality. 
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3.2 Optimization of MRS spectra: Function of the labelled substrate volume and incubation time 

 

3.2.1 Introduction 

 

The relatively low sensitivity of 13C MRS has limited its application in metabolomics studies owing to 

the low SNR. The sensitivity issue can be improved by using an optimized technique. This includes 

using a 13C labelled substrate. An aspect to be considered when using labelling studies is the integration 

of a sufficient quantity of labelled substrate into the sample to enable detection by MRS. This can be 

calculated by applying a mathematical model to analysis of the metabolic flux of the 13C glucose 

(Buescher et al., 2015).  

 

A simpler method, which might give similar findings, can be achieved by comparing the detected signal 

from 13C spectra between different 13C substrate concentrations. The concentrations must be high 

enough so that substrate availability will not be the limitation for sperm metabolism. Since the 

concentration of the substrate can influence the rate of metabolism where a higher concentration of 

substrate will stimulate the metabolism flux. The goal was to provide the sperm with an unlimited but 

not excessive, supply of labelled substrate so that they can undergo the metabolism process needed.  

 

SNR can also be increased by signal averaging over a longer acquisition time. Instead of continuously 

acquiring the metabolite signal from the sperm, this study allowed a period of time for U-13C glucose 

to be metabolised by the sperm outside of the scanner. It was expected that, as long the sperm were still 

alive, there will be a need for energy which can be provided by 13C glucose metabolism. Therefore 13C 

glucose will be consumed and catabolised over this time period. Accumulation of the U-13C glucose 

end product will increase the signal and enhance the SNR (Barratt, Kay and Oxenham, 2009; Buescher 

et al., 2015).  

 

Therefore, the aims in this preliminary experiment were to determine the sperm sample incubation time 

and the volume, 40 µl and 80 µl, of 100 mM U-13C glucose which will give an optimum MRS signal. 

 

3.2.2 Methodology 

 

Boar sperm (n = 5 ejaculates) were washed using DGC (Section 2.2.3) and then had either 40 µl or 80 

µl of 100 mM of U-13C glucose added. Samples were then incubated in a water bath at 37°C for 

incubation periods of 1, 2, 4, 16, 18 and 21 hours, and subsequently frozen. Thawed samples were 

scanned in the MR scanner and spectra were analysed (see Section 2.6 and 2.7). 
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3.2.3 Statistical analysis 

 

The relationship between metabolite integral, and incubation time for 40 and 80 µl of 100 mM of U-

13C glucose were analysed using Pearson correlation respectively. Two way ANOVA with Sidak’s test 

was carried out to analyse the integral difference between 40 and 80 µl. Commonly Sidak or Bonferroni 

methods are used for comparison between one set of means with another. Sidak assumes that each 

comparison is independent of the others thus family wise error rate could be controlled (Lee, 2018). 

Therefore, it was selected for statistical analysis in this study.  

 

3.2.4 Results 

 

Two metabolites were detected, which were lactate and bicarbonate. Lactate and bicarbonate integrals 

were normalised by their respective sperm concentration. Statistical analysis was performed on the 

lactate integral only as its SNR was higher than the bicarbonate (which was below the detection limit) 

and was constantly produced by all samples, (lactate, N = 5; bicarbonate, N = 2). 

 

The lactate signals for 40 µl and 80 µl of 100 mM U-13C glucose were significantly increased with the 

incubation time (40 µl, r2 = 0.79, 80 µl, r2 = 0.90).  

 

Generally, the lactate signal from 40 µl and 80 µl reached the maximum level at 18 h and decreased 

beyond that point. Lactate signal from the short incubation periods (1, 2 and 4 h) was not significantly 

different from control. Statistical comparison showed significant differences for the longer incubation 

times of lactate levels at 16 and 21 h (Figure 3.4). It was found that, there was a significant different 

between lactate signal for 40 µl and 80 µl at 16 h. and 21 h (Table 3.2). 

 

3.2.5 Discussion 

 

The goal of these experiments were to determine sperm sample incubation time and the volume of 100 

mM U-13C glucose which will give an optimum MRS signal.  

 

U-13C   glucose, the labelled substrate, was fed to, consumed and metabolised by sperm through several 

metabolic pathways. Since all carbons in the glucose were labelled, the carbon will incorporate into all 

carbon positions of the glucose metabolism products through the glycolysis process and this reaction 

can be tracked using MRS. As described in the Section 1.9, lactate might represent a metabolic product 

from pyruvate, which is the end product of glycolysis. The bicarbonate might represent Krebs cycle, 

PDH or PC. 
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Figure 3.4: Lactate integral normalised by sperm concentration at different incubation times (1, 2, 4, 16, 18, and 21 h). 
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Table 3.2: Comparison between mean lactate integrals normalised by sperm concentration for 40 and 80 µl of 100 mm 13C glucose after 

incubated in the sperm for several time points. 

 

 

 

 

 

 1 h 2 h 4 h 16 h 18 h 21 h 

40 µl 0.001 ± 0.002x 10-5 0.02 ± 0.322 x 10-5 0.03 ± 0.416 x 10-5 0.021 ± 0.001 0.024 ± 0.002 0.015 ± 0.003 

80 µl 0.001 ± 0.003x 10-5 0.002 ± 0.001 0.003 ± 0.005 x 10-5 0.026 ± 0.002 0.027 ± 0.003 0.021 ± 0.002 

P value NS, > 0.999 NS, > 0.999 NS, > 0.999 Sig, p < 0.001 NS, p = 0.145 Sig, p < 0.001 
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Figure 3.5: Stack of spectra acquired from incubating sperm with the 40 µl, 80 µl at 1 h and 21 h.  L is lactate peak, G is glucose peaks, B is 

the bicarbonate peak and U is the urea peak. 
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By adding 80 µl of  U-13C glucose into 100 µl of the re-suspended sperm, the sample will contain a 

higher molarity of dissolved 13C glucose than using 40 µl. Higher availability of 13C might increase 

metabolism rate (Berg, Tymoczko and Stryer, 2002b). As expected 80 µl yielded higher integral for 

lactate than 40 µl. Lower lactate signal for 40 µl could also indicate limited availability of the substrate 

that restricted the metabolism process. If there is not enough substrate to be consumed by the sperm, 

catabolism of the substrate cannot be activated. However, the difference between lactate signal for 40 

µl and 80 µl was not significantly different at 18 h.  The results suggest that lactate slowly accumulated 

and reached a peak at 18 h for both 40 µl and 80 µl of the U-13C glucose. Therefore, a U-13C glucose 

volume in between 40 µl and 80 µl, i.e. 60 µl was used for subsequent experiments. 

 

Decrease of lactate signal from 18 h to 21 h may suggest an altered lactate concentration, possibly by 

conversion by another reaction. This includes that lactate was being converted back to pyruvate possibly 

through gluconeogenesis. However, no pyruvate (or other related metabolite) signal was observed in 

the spectra. This might indicate that the concentration of the labelled pyruvate was below the detection 

level of MRS. Pyruvate concentration can be roughly predicted by comparison with the lactate integral. 

If half of the lactate been reconverted into pyruvate, the pyruvate peak would be half of the lactate peak. 

However, since 13C glucose was observed in the spectrum at 21 h for both 40 µl and 80 µl, it suggests 

that there is an excess supply of glucose and therefore gluconeogenesis may not activated (Figure 3.5). 

Furthermore, glucose concentration after 1 hour and 12 hours incubation spectrum were hardly 

differentiate suggesting that its starting concentration was abundant. Therefore, not much information 

could be obtained from the glucose concentration analysis. Although the rate of glucose depletion could 

be calculated and compared to the rate of lactate production, it was not carry out because little 

contribution to this chapter’s aim.   

 

Conversely, for low incubation times, the lactate signal could be low because of little conversion of U-

13C    glucose to lactate. In the condition where the sperm metabolism rate can be stimulated, a short 

incubation period might produce a signal which is comparable to that measured at long incubation times. 

Therefore, a shorter 4 h incubation time was used for oxygenation experiments where such an increase 

in rate could be expected. Also, if an 18 hour incubation time were to be employed for the oxygenation 

study, a high volume of gas would be needed with a probability of gas running out during incubation.  

 

Ideally, for all incubation times, (1, 2, 4, 16, 18, and 21 h) sperm samples should be from the same 

ejaculate so that a paired comparison can be carried out. However, by using a different ejaculate for 

each sample allows higher sperm concentration and hence higher MRS signal. To eliminate variance 

between samples quality (see Figure 3.3 for example), all detected metabolites were normalised by 

sperm concentration respective to each ejaculate. 
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In conclusion, 18 h was an optimum incubation period except for the oxygenation experiment, where 

the shorter incubation time (4 h) was more practical. For the concentration of the 13C glucose (or other 

substrate), 60 µl of 100 mM was considered as an optimum volume.  

 

3.3  Conclusion 

 

DGC will be used in subsequent experiments to prepare sperm samples for MRS experiments. Diluted 

sperm will have 60 µl of 100 mM 13C labelled substrate added and incubated at 4 h for oxygenation 

experiments or 18 h for investigation of the effects of labelled substrates, inhibitors and temperature. 
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4 Chapter 4: The effect of metabolic inhibitors on sperm metabolism and vitality 

 

4.1 Introduction 

 

Several factors affect the rate of enzymatic cell metabolism. These include the temperature, pH, enzyme 

concentration, substrate concentration and the presence of any inhibitors or activators (Harrow and 

Mazur, 1958). This chapter will focus on use of inhibitors to regulate the metabolism reaction of sperm. 

 

An inhibitor is a molecule that decreases activity of an enzyme (Berg, 2008). An enzyme is a molecule 

that can accelerate the catabolic reaction of a substrate into product. It possesses a region called the 

active site, where it binds substrates and also has other binding areas called allosteric sites, which are 

located away from the active site. An allosteric site does not bind a substrate, but instead binds another 

molecule such as an inhibitor (Cox and Nelson, 2008). Decrease of reaction activity due to inhibitors 

can be reversible, where activity may be restored by the removal of the inhibitor or irreversible, where 

activity can be restored by synthesis of a new enzyme (Berg, 2008). Most studies report that inhibitor’s 

effects are reversible (Bhagavan and Ha, 2011). There are two common types of reversible inhibition: 

competitive and non-competitive. 

 

A competitive inhibitor binds to the enzyme’s active site where it competes with the substrate for the 

active site of an enzyme, depending on concentration. If the inhibitor occupies the active site, it prevents 

binding of the substrate to the enzyme. The reaction does not proceed since the inhibitor has a different 

structure compared to the substrate. Even short term inhibitor-enzyme binding could lower the 

efficiency of the enzyme (Devlin, 2006). It can disturb substrate catabolism by slowing or stopping the 

reaction when the substrate concentration is low. However, if the concentration of substrate is high, the 

inhibition reaction can be out-competed. This happens when almost all the enzyme active site is 

occupied by the substrate rather than the inhibitor (Engelking, 2015) (Figure 4.1 (a)). 

 

A non-competitive inhibitor binds with an enzyme at an allosteric site. When inhibitor-enzyme binding 

happens, it alters the enzyme’s shape and changes how the enzyme functions. The substrate may still 

bind with the enzyme at the active site but it will not be converted into a product. Therefore, even though 

substrate-enzyme binding continues, the reaction will never reach its normal maximum rate unless the 

inhibitor is removed from the allosteric site (Figure 4.1 (b)).  

 

Reversible inhibition will result in either accumulation of the substrate or decrease of the product 

generation.  
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Figure 4.1: Competitive inhibitor: (a) the substrate binds with the enzyme and the reaction proceeds. 

However, when an inhibitor which resembles the substrate is present, it will compete with the substrate 

for the active site in the enzyme. When the inhibitor occupies an active site, it binds with the enzyme 

but stops the reaction at that site proceeding. Hence, the overall observed reaction is slowed down 

because some of the available enzyme sites are occupied by the inhibitor. If a dissimilar substance which 

does not fit the active site is present, the enzyme rejects it, accepts the substrate and the reaction 

proceeds normally. Non-competitive inhibitor: (b) the inhibitor binds to an enzyme at the allosteric site 

and altered the enzyme shape and function.  Consequently, the substrate is unable to bind with the 

enzyme.

a 

b 
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The rationale for using an inhibitor to increase Krebs cycle intermediates was taken from an earlier 

finding in a non-sperm cell study by Peter (1953) when he observed the accumulation of citrate after 

addition of oxaloacetate (Krebs, 1953) and succinate accumulation by adding malonate (Quastel and 

Wheatley, 1931; Krebs and Johnson, 1937). In most cases, the substrate acts as a competitive inhibitor 

when it is added at high concentration into the sample. The same effect was found in a rat study of the 

impact of a high concentration of malonate on succinate (Smith et al., 1974). However, there were 

studies which reported the ability of an inhibitor to decrease the respiration process (Macleod, 1943), 

concentration of  malate and fumarate (Smith et al., 2007), and α-ketoglutarate (Selak et al., 2005). 

These finding all suggest that there might be a possibility to detect Krebs cycle intermediates in sperm 

by utilizing an inhibitor.  

 

Indeed, a previous fluorimetric study has succeeded in detecting Krebs cycle metabolites in human 

sperm using an inhibitor in which citrate level increased three to fourfold after addition of a very high 

concentration of succinate (Peterson and Freund, 1974). For this study, the chosen competitive 

inhibitors were malonate and oxaloacetate, which are inhibitors for succinate dehydrogenase (Pardee 

and Potter, 1948; Valls-Lacalle et al., 2016) and succinate, the inhibitor of α-ketoglutarate 

dehydrogenase complex (Smith et al., 2007) (Figure 4.2). The hypothesis was that the presence of these 

inhibitors would slow down or stop the related reaction in the Krebs cycle and result in an accumulation 

of succinate when using malonate or oxaloacetate, and α-ketoglutarate when using succinate or produce 

a reduction of the intermediate/metabolite product at the point in the Krebs cycle after the inhibition 

site.  

 

This raises the biological question as to how boar sperm utilise U-13C glucose, as an energy source, in 

the presence of a Krebs cycle inhibitor: either by activation of the Krebs cycle or by the entry of glucose 

in metabolic pathways other than glycolysis or the Krebs cycle. This is a crucial biological question, 

since a better understanding of energy metabolism could improve the strategies used to increase the 

motile lifetime of sperm in the female reproduction tract.  

 

As inhibition of the Krebs cycle could reduce oxygen uptake and induce toxicity to sperm (Lardy and 

Phillips 1940) there is a need to examine the sperm vitality after being subjected to the inhibitor for a 

period of time. Therefore, this study aimed to: (i) increase the Krebs cycle intermediate concentration 

by using Krebs cycle inhibitors to enable detection by 13C MRS, and (ii) assess sperm vitality after 

incubation with inhibitor for 18 hours. 
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Figure 4.2: Overview of glucose catabolism. Through glycolysis, glucose undergoes several reactions (dashed arrow represents more than one chemical 

reactions) before converted into pyruvate. Pyruvate is subsequently converted either into lactate, Acetyl CoA, before entering the Krebs cycle, or oxaloacetate. 

CO2 (which has a chemical equilibrium with bicarbonate) is produced in several reactions including with pyruvate dehydrogenase, isocitrate dehydrogenase 

and α-ketoglutarate dehydrogenase. The ‘∅’symbol represents inhibition sites in the Krebs cycle for succinate, malonate and oxaloacetate respectively 
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4.2 Methods 

 

4.2.1 Preparing the inhibitors 

 

Prior to experiments, inhibitors: malonic acid (Supelco, Bellefonte, USA), succinic acid (Acros 

Organics, Ceel, Belgium) and oxaloacetic acid (Sigma Aldrich, MA, USA), were transferred into a 

Eppendorf tube and weighed using a balance (Scientific Laboratory Supplies, UK) to obtain their mass 

respectively. The mass was used to calculate the volume of diluent needed for the desired final 

concentration using Equation 4.1. As the inhibitors were in acidic form, they needed to be neutralised.  

The neutralisation process was done by adding 2 M NaOH (Fisher Scientific, UK) into the inhibitors 

and the pH was monitored using a pH meter (IQ150, with an ISFET NMR tube microprobe. Hach, 

Manchester, UK). The solution was stirred well using a mixer (Stuart, Scientific Laboratories Supplies, 

UK) before the pH reading was taken. The process of adding NaOH was repeated until the mixture was 

between pH 7.2 to 7.6. Once they were neutralised, stock inhibitor solutions were prepared by diluting 

the inhibitor with PBS to give a final concentration of 1 M. The stock inhibitors were then aliquoted 

into several clean tubes with a smaller volume and stored at the recommended conditions. 

 

𝐶 =
𝑚

𝑣
          Equation 4.1 

                                                          

Where, 

 C = concentration 

 m = mass 

 v = volume  

 

4.2.2 Sample preparation for MRS and vitality study 

 

Boar sperm, (see Section 2.1) was prepared by washing using Percoll/PBS DGC (Process (a) in Figure 

4.3) (see Section 2.2.3). The MRS sample for aim (i), (Process (b) in Figure 4.3) was prepared from 

each ejaculate using 100 µl of aliquot from re-suspended sperm sample to which was added 60 µl of 

100 mM U-13C labelled glucose, 12 µl of Pen/Strep and the inhibitor with a range of final 

concentrations: 3, 7, 15, 31, 62, 125, 250 and 500 mM.   

To investigate the findings from aim (i) further, a separate vitality experiment was carried out, (aim (ii). 

The sample for this experiment (Process (c) in Figure 4.3), was prepared from different ejaculates using 

100 µl of aliquot from re-suspended sperm samples to which was added 60 µl of 100 mM of unlabelled 

glucose (BDH Laboratory Supplies, England), 12 µl of Pen/Strep and a set of inhibitor concentrations: 
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7, 31, 125 and 500 mM. The final concentration was prepared by diluting the 1 M stock inhibitor 

solution, using Equation 4.2, with PBS so that the final sample volume was 570 µl.  

For both MRS and vitality test samples, control sperm samples with no inhibitor added, were also 

prepared. A total of 30 samples from different ejaculates were used for both MRS and vitality 

experiments (Figure 4.4). Samples with the inhibitor were then incubated in a water bath at 37◦C for 18 

hours (Process (d) in Figure 4.3) and, where possible, more than one inhibitor incubation was conducted 

in parallel.  

For MRS samples, an aliquot from a re-suspended sperm sample was pipetted (Process (e) in Figure 

4.3) for sperm concentration measurement (see Section 2.5.1) and motility assessment (see Section 

2.5.2) while an aliquot of re-suspended sample was pipetted for vitality assessment (see Section 2.5.3). 

All sperm concentration measurements, motility and vitality assessments were conducted before 

incubation.  

After 18 hours incubation, MRS samples were frozen at - 80° C until MR scanning (see Section 2.6) 

(Process (f) in Figure 4.3) while vitality assessment was conducted immediately.  

 

𝑉1𝐶1 =  𝑉2𝐶2         Equation 4.2 

 

Where 

V1 = stock inhibitor volume 

C1 = stock inhibitor concentration 

V2 = final sample volume 

C2 = final sample concentration 

 

4.3 Data analysis 

Visual inspection was performed to compare the control sample MR spectra with the inhibitor sample 

spectra to detect any changes in the detected metabolite peaks and the presence of any new peaks. 

Chemical shift reference was achieved by comparing the detected peaks from the control sample spectra 

to those from 500 mM of inhibitor, which did not have any labelled substrate or sperm sample added 

(Figure 4.5, Figure 4.6). For the succinate peak, the chemical shift value was obtained from an existing 

database (HMDB, 2010). Detected peaks were analysed as described in Section 2.7.  

 

 

Calculated sperm vitality and metabolite integrals were relative to their respective control vitality or 

metabolite integral for each sample. The correlation between metabolite integral or vitality, and 
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inhibitor concentration was determined by Pearson correlation based on the r2 value and significance of 

the correlation. 

 

Ordinary Two way ANOVA with Dunnett’s test was performed to compare differences between 

metabolite integral and vitality for control samples versus each inhibitor concentration. The Dunnet test 

is an analogue to the Tukey test. Both are multiple comparison tests and assume a Gaussian distribution 

of the sample mean (Lee, 2018). If the comparison is between each mean with every other mean, Prism 

will perform a Tukey test. In this chapter the comparison was tested between each mean with the 

control, therefore Dunnet test was performed.  

 

Values are quoted as log10 (for inhibitor concentration) and mean ± SD for vitality and metabolite 

integral.  

 

4.4 Results 

 

4.4.1 Aim (i): Effect of inhibitor on the detected 13C metabolites 

 

The sperm concentration for 15 ejaculates used for MRS experiments was 73 to 188 x 106/ml with a 

progressive motility from 3% to 17% and motility from 66% to 74% (post-preparation calculation). 

 

Two sets of peaks were detected from 13C glucose metabolism in control sample spectra, which were 

from 1, 2 and 3-13C lactate and 13C bicarbonate (Figure 4.7). The conversion into lactate was always 

observed (especially 3-13C lactate peak) in the control sample and in some samples with a low 

concentration of inhibitor (Figure 4.8, Figure 4.9, and Figure 4.10). The lactate integral, normalised to 

sperm concentration, decreased for all inhibitor concentrations and from Pearson correlation analysis, 

there was a significant negative correlation between normalised lactate integral and concentration for 

all inhibitors (Figure 4.11 (a)). The inhibitor concentration which resulted in significant change of 

lactate integral, varied amongst inhibitors. For oxaloacetate, a low concentration resulted in significant 

changes in lactate while for other inhibitors, a higher concentration was needed to produce similar 

changes (Table 4.1).   
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Figure 4.3: Overall schematic diagram of sperm sample preparation for MRS and vitality experiments. a is the centrifugation process. b is the process 

for MRS sample while c is for vitality sample. d, e and f represent the process for incubation, sperm quality assessments and MR scanning 

respectively.  
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Figure 4.4: Summary of sperm sample usage. MRS and Vitality measurements were performed on 

separate samples from different ejaculates. 
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Compared to lactate, bicarbonate was rarely detected in spectra, even in control sample spectra. 

Bicarbonate was observed only twice in samples which were incubated with malonate and their 

respective control samples. There was no significant correlation between normalised bicarbonate 

integral and malonate concentration (Figure 4.11 (b)) and also no significant difference between 

bicarbonate integral for each concentration compared to control samples (Table 4.1).  

 

4.4.2 Aim (ii): Effect of inhibitors on sperm vitality 

 

To investigate whether the pattern of decreasing lactate was due to an inhibition reaction or sperm death, 

a sperm vitality assessment was conducted.  It was found that, after 18 hours, on average, 39 ± 3% of 

the sperm were still alive in the samples that had inhibitors added (malonate, 37 ± 5%; succinate, 41 ± 

5%; oxaloacetate, 39 ± 5%). The vitality of the sperm samples increased with increasing concentration 

of inhibitor, however no significant correlation was found (Figure 4.11 (c)). A comparison of sperm 

vitality between samples which had inhibitors added and their respective controls showed that only a 

sample that was incubated with 500 mM of succinate resulted in a significant higher vitality (Table 4.1).  

 

4.5 Discussion 

The aim of these experiments was to detect Krebs cycle intermediates using 13C MRS by subjecting 

sperm samples to Krebs cycle inhibitors and also to investigate the impact of the inhibitors on sperm 

vitality. The results showed that, with an increasing concentration of all the inhibitors, lactate integral 

significantly decreased and only addition of 500 mM of succinate significantly influenced the sperm 

vitality.  

 

Initial concentration, Ci, for all inhibitors were calculated based on the literature reported by Lahnsteiner 

et al (1999) in which they found significant effects of the inhibitor on fish sperm motility. However, in 

the present experiment, no Krebs cycle intermediates were observed when a concentration of Ci was 

applied. Thus, for this study, the concentration was adjusted several times but the results remained the 

same.  Since Ci varied among inhibitors (malonate = 10 - 50 mM, succinate = 100 -300 mM and 

oxaloacetate = 0 – 10 mM), a final new range of concentration (3 – 500 mM ) was developed for all 

inhibitors to ease subsequent statistical analysis.  
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Figure 4.5: 13C Spectrum of un-labelled malonate where two peaks were detected. This spectrum was set as the reference spectrum when inspecting 

any new peak arising in the 13C spectra of sperm samples incubated with different concentrations of malonate (Figure 4.8). 

 

[rel] 
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Figure 4.6: 13C Spectra of un-labelled oxaloacetate where several peaks were detected. This spectrum was set as the reference spectrum when 

inspecting for any new peaks arising in the 13C spectra of sperm samples incubated with different concentrations of oxaloacetate (Figure 4.10). 

Theoretically, four peaks should be visualised from oxaloacetate acid ( C1 = 168.1, C2 = 199.8, C3 = 49.1 and C4 = 174.8 ppm (Kurz, Ackerman 

and Drysdale, 1985)). Other peaks were detected in the spectra in this experiment suggesting oxaloacetate decarboxylates spontaneously in PBS to 

form pyruvate (Tsai, 1967).  

 

[rel] 
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Figure 4.7: Representative 13C spectrum of the control sample after incubation with U-13C glucose. The spectrum was phased and based line corrected 

and referenced to the (U) 13C urea chemical shift. (L1, L2, L3) Lactate, where number indicates the carbon position, and (B) bicarbonate were detected 

as the metabolite products from (G) U-13C glucose metabolism. 
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Figure 4.8: 13C spectra of sperm samples incubated with different concentrations of malonate.   
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Figure 4.9: 13C spectra of sperm samples incubated with different concentrations of succinate. Succinate chemical shift are 184.94 ppm and 36.83 

ppm (HMDB, 2010). 
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Figure 4.10: 13C spectra of sperm samples incubated with different concentrations of oxaloacetate.   
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Figure 4.11:  Effect of increasing concentration of the inhibitors: malonate, succinate, and oxaloacetate, 

on detected metabolite and sperm vitality. (a) lactate integral (b) bicarbonate integral and (c) sperm 

vitality were normalised  relative to their respective control metabolite integral or vitality for each 

sample. First data point, for (c), is the percentage of alive sperm for control sample after 18 h incubation 

time. Sig = significant, NS = Not significant. 
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Table 4.1: Statistical comparison of lactate, bicarbonate and vitality for malonate, succinate and oxaloacetate using Ordinary Two-way ANOVA with Dunnett's 

mutiple comparison test. Reported concentration value in the statistical analysis column represents the concentration of inhibitor that produced a significantly 

different change compared to the respective control. Sig = significant, NS = Not significant, and NA = Not available. 

 

Inhibitor Lactate Bicarbonate Vitality 

Detection, N Statistical analysis Detection, 

N 

Statistical analysis Statistical analysis 

Malonate 5 Sig, > 250 mM 2 NS NS 

Succinate 5 Sig, 500 mM (p < 0.001) 0 NA Sig, 500 mM (p = 0.008) 

Oxaloacetate 5 Sig, > 31 mM 0 NA NS 
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Apart from the lactate concentration decrease being caused by an inhibition reaction, it could also be 

due to sperm death. The results from vitality experiments showed that there was no significant 

difference between sperm death due to the natural dying process and sperm death due to the inhibitor. 

The decision to carry out the vitality assessment was taken after analysis of the result from the MRS 

experiments. This is because sperm could die over incubation period, hence reduce the glucose intake 

as well its metabolite products such as lactate. Therefore, to investigate whether a lactate decrease, 

measured in the MRS experiment was due to an inhibition process or sperm death, the percentage of 

sperm death was calculated in the vitality experiment. Though sperm from different ejaculates (as well 

as sperm from the same ejaculate) might behave differently with inhibitors, to ensure the validity of the 

analytical approach, only samples with the similar sperm quality (motile) variance and not significantly 

different were used for the vitality experiments (coefficient of variance: MRS = 3.76% , Vitality = 

4.73%; unpaired t-test = 0.702). Therefore, the result from the vitality experiment could represent the 

sperm from the MRS experiment. 

 

Indeed, after incubation with inhibitors, particularly succinate, the sperm vitality improved. These 

findings fit with a previous study where succinate has been reported to be able to stimulate respiration 

in the boar sperm without improving sperm motility (Mann and Lutwak-Mann, 2012).  Respiration is a 

process to generate energy, which involves either mitochondrial OXPHOS or a cytosol related pathway 

such as lactate fermentation and glycolysis (Piomboni et al., 2012). Thus, this  may suggest that, 

succinate, which is the substrate of Complex II of the respiratory chain (Ford and Harrison, 1981), has 

resulted in improvement of boar sperm energy metabolism (Stovell et al., 2018).  Therefore, this may 

indicate that lactate concentration changes were not caused by inhibitor toxicity on sperm but by the 

inhibition reactions.  

 

The fact that lactate in the sperm sample (which may represent lactate fermentation) decreased after 

incubation with Krebs cycle inhibitors, suggests that the inhibitor may have interfered with the 

availability of cofactors which could have been responsible for the observed change in lactate. Thus, as 

hypothesised, it may indicate there might be an accumulation of Krebs cycle intermediates too. This 

assumption fits with the findings reported by (Peterson and Freund, 1974), where lactate decreased 

while citrate increased when they incubated human sperm with succinate and analysed the metabolic 

changes using fluorimetry. The difference between our current findings and those of Peterson may be 

due to a difference in the detection sensitivity. Fluorimetry enabled detection of a single photon thus 

making it a highly sensitive methodology (Malicka et al., 2004). Therefore, fluorimetry, as well as other 

methodologies such as mass spectroscopy and enzyme assays, could be used in future studies to confirm 

the present findings. 
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Unsuccessful detection of intermediates by 13C MRS could be due to the concentration of the 

intermediate being below the level of MRS detection even after a sample was subjected to inhibitors.     

To be detected by non-hyperpolarised MR, the lowest suggested concentration of metabolite is 0.1 

µmol/g (Mishkovsky, Comment and Gruetter, 2012).  

 

The concentration of Krebs cycle intermediates in boar sperm is unclear. However glutamate, which is 

the most concentrated amino acid generated from the Krebs cycle, was hardly detected by 13C MRS 

(Henry et al., 2006). Most of the glutamate detections were from cardiac (Lewandowski et al., 1996) 

and brain (Sonnewald et al., 1993; Gruetter et al., 1998; Shen et al., 1999) studies but none in sperm of 

any species (to the best of our knowledge). The fact that brain cells, for instance, consume much more 

substrate (120 g daily) and require a continuous supply of substrate might have an influence on this 

finding (Berg, Tymoczko and Stryer, 2002b). It is likely that, a higher metabolic rate could enable 

detection of Krebs cycle intermediates.  

 

Although bicarbonate is the end product of the Krebs cycle, analysis of the impact of inhibitors on 

bicarbonate production was difficult as peak detection was not possible due to its low concentration. 

The reason why some samples produced detectable bicarbonate and some did not remains unanswered.  

 

Finally, therefore, it can be concluded that inhibition reactions did take place in sperm incubated with 

inhibitors which resulted in a decrease of lactate concentration. However, accumulation of Krebs cycle 

intermediates was below the level of 13C MRS detection.  
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5 Chapter 5: Effects of temperature, labelled substrate and inhibitors on boar sperm 

metabolism 

5.1 Introduction 

In the previous chapter, the experimental results suggested that the inhibitors; malonate, succinate and 

oxaloacetate, influenced the lactate production which likely affected Krebs cycle intermediates 

production as well. However, Krebs cycle intermediate concentrations changes were unable to be 

observed by MRS. Besides that, even though the lactate peak was always visualized in the spectra, it 

was tricky to analyse due to its relatively small intensity. Therefore, it was hypothesised that if the 

metabolism rate could be increased, it would result in more frequent metabolite peak detection and 

potentially allow detection of Krebs cycle intermediates, if an inhibitor was used. 

 

The boar is an endotherm which can regulate its metabolism reactions to maintain a relatively constant 

body temperature (Lopez Rodriguez et al., 2017) of 39°C ± 0.5 (Mark L. Lorschy, 2005). Below body 

temperature, at 15°C to 20°C, boar sperm become immotile. If the temperature is too low, it could result 

in sperm death (Lasley and Bogart, 1944). However, immotile sperm can regain their motility by re-

warming them to body temperature (Aalbers, Mann and Polge, 1961).  

 

Metabolism is a sum of a complex set of biochemical reactions and the temperature can affect the rate 

of these reactions. The relationship between temperature and the metabolic rate can be described using 

a Boltzmann or Arrhenius factor in Equation 5.1. 

 

𝑄 =  𝑒−𝐸/𝑘𝑇     Equation 5.1 

 

Where; 

Q = metabolic rate, 

E = activation energy for the biochemical reactions of metabolism, kJ/mol  

k = Boltzmann’s constant, 1.381x10-23 J/K 

T = absolute temperature, K 

 

Equation 5.1 describes that the metabolic rate increases exponentially with temperature. The effect of 

temperature on the metabolic rate was modelled by considering the minimum energy that must be 

available for the chemical reaction to occurred. Chemical reactions only occur if the substrate has 

enough energy to overcome the activation energy to form products. Temperature could contribute some 

energy, in form of heat energy, to the substrate to overcome the activation energy for the chemical 

reaction to be occurred  (DeLong et al., 2017).  
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Previous studies using boar sperm have used temperatures between 35 - 40°C (Lasley and Bogart, 1944; 

Monin, Lambooy and Klont, 1995; He, Bailey and Buhr, 2001). They have found that metabolism was 

significantly increased when the incubation temperature increased between 20°C to 37°C (Osinowo, 

1981). Another study reported that boar sperm metabolism rate at 40°C was higher than that at 35°C 

(Monin, Lambooy and Klont, 1995). Eng at al., (1986) also emphasized the importance of conducting 

the experiment at the normal body temperature of the species under investigation. It would be interesting 

to find out the metabolism rate of boar sperm at its normal body temperature, 39°C, compared to 37°C, 

which was used in studies in the previous chapter.  

 

It is known that mammalian spermatozoa meet their energy needs by switching between different 

metabolic pathways depending on the substrate availability (Hereng et al., 2011). Glucose, pyruvate 

and lactate are the preferred substrates for metabolic studies in mammalian sperm (Hoshi, Tsukikawa 

and Sato, 1991; Mukai and Okuno, 2004) however this preference of substrate varies between species 

(Storey, 2008). One of the factors that determines the choice of labelled substrate is the metabolic 

pathway to be studied. By considering specific carbon labelling of the substrate, interesting metabolic 

pathways can be monitored. Even though the end product is the same for both U-13C glucose and 2-13C 

pyruvate, the labelled carbon from 2-13C pyruvate will label specifically carbon position two pyruvate 

and its subsequent product along its the metabolism pathway (Rodrigues and Cerdán, 2005) (Figure 

5.1).  

 

In the previous chapter (Chapter 4), it was found that, there was a possibility that there was an 

accumulation of the Krebs cycle intermediates by incubating the sperm with inhibitors. Therefore, this 

chapter further investigates the effect of one of the inhibitors, succinate, on sperm 2-13C pyruvate 

metabolism. 

 

MRS has the ability to acquire metabolite resonance signals from a sample using the same acquisition 

parameters at multiple time points. This allows measurement of the rate of the labelled substrate 

metabolism throughout the incubation period. 

 

In order for successful fertilization of eggs in vivo, sperm must leave the environment of the seminal 

plasma within minutes following ejaculation and penetrate the cervical mucus. Consequently, sperm 

are subjected to multiple physiological environments that influence their metabolism particularly to 

sustain the energy needed for motility. This includes changes in temperature and substrate availability. 

For example, the temperature for fallopian tube isthmus, which is the sperm storage site, is 1-2° C cooler 

than the fallopian tube ampula (fertilisation site) (Bahat, 2005). These changes are important in order 
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to prolong sperm quality for some time before fertilisation occur. Therefore, the biological purpose for 

this chapter is to evaluate the influence of these factors upon sperm metabolism. 

 

This chapter aims to: (i) identify and compare the metabolism of U-13C glucose and 2-13C pyruvate, as 

the 13C labelled substrates for sperm metabolism, at different incubation temperatures; (ii) measure the 

kinetic rate of U-13C glucose and 2-13C pyruvate metabolism; and (iii) examine the effect of succinate 

on the metabolites derived from 2-13C pyruvate metabolism in boar sperm samples.  

 

5.2 Methods 

After the sperm sample (see Section 2.1) was prepared using Percoll/PBS DGC (see Section 2.2.3), the 

re-suspended sperm were incubated with (aim i) 60 µl of 100 mM U-13C glucose or 2-13C pyruvate 

respectively for 18 hours at 37°C or 39°C (Process (a) in Figure 5.2) before freeze-thawing and scanning 

by MR (see Section 2.6) (Process (b) in Figure 5.2).  

 

For aim ii and iii, (Process (c and d) in Figure 5.2)) the re-suspended sperm had 60 µl of 100 mM U-

13C glucose, 60 µl of 100 mM 2-13C pyruvate or 60 µl of 100 mM 2-13C pyruvate with 500 mM of 

succinate added respectively (selected concentration was based on the experiments from Chapter 4), 

and was scanned continuously in the scanner (see Section 2.6) at 39°C over 18 hours where each scan 

took 3 hours.  

 

For each sample, an aliquot from the re-suspended sperm was pipetted for sperm quality assessment 

(see Section 2.5). The summary of the sample number was illustrated in Figure 5.3. 

 

5.3 Data analysis 

 

5.3.1 U-13C glucose and 2-13C pyruvate metabolism in the sperm sample at 37°C and 39°C (aim i) 

 

The 2-13C lactate peak from U-13C glucose metabolism was obscured by the intense neighbouring peaks 

of the 13C glucose at 71.2 ppm so only half of the quartet peak from 2-13C lactate was integrated. To 

obtain its full concentration, the integrated value was multiplied by two. This is based on the assumption 

that the full concentration was divided into quartet peaks. 3-13C lactate from U-13C glucose was 

integrated as well. Comparison was then made between 2-13C, and 3-13C lactate from U-13C glucose and 

2-13C lactate from 2-13C pyruvate using one-way ANOVA with Tukey’s test. Same statistical test was 

used for 13C bicarbonate from U-13C glucose and 2-13C pyruvate.  In all of these, metabolites integral 

were normalised to the relative sperm concentration.  
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Figure 5.1: Through glycolysis, U-13Cglucose generates 1, 2 and 3-13C pyruvate. Pyruvate can then be 

metabolised either through LDH, PDH, PC or transamination. Through transamination, it is converted 

to 1, 2, and 3-13C alanine. Through LDH, 1, 2 and 3-13C pyruvate yields 1, 2 and 3-13C lactate (Rodrigues 

et al., 2013). Through PDH, 1-13C atom of pyruvate was released as 13C bicarbonate while 2, 3-13C 

pyruvate is transported into the mitochondria for oxidative metabolism as 1, 2-13C Acetyl CoA for the 

Krebs cycle. 1, 2-13C acetyl-CoA, then combine with an unlabelled molecule of oxaloacetate to generate 

citrate labelled at the C4 and C5 position (Henry et al., 2006). Subsequently, α-ketoglutarate becomes 

labelled at the C4 and C5 position (Rodrigues and Cerdán, 2005). The glutamate then becomes labelled 

at the C4 and C5 position through transamination of 4, 5-13C α-ketoglutarate (Rodrigues and Cerdán, 

2005). 13C-label then continues on to label 4, 5-13C glutamine and 1, 2-13C GABA with the release of 

unlabelled bicarbonate. At the same time, 13C label continues to flow into the TCA cycle, labelling 

succinate, fumarate and malate at C4 and C5 or C1 and C2 (since succinate is a symmetric molecule, 

the C1 and C2 positions of succinate cannot be distinguished and become labelled with equal 

probability). The first turn of the TCA cycle is completed when oxaloacetate becomes labelled at the 

C3 and C4 or C1 and C2 positions. Labelled oxaloacetate can combine again with the labelled acetyl-

CoA and labels all the carbon positions of citrate, or 1,2,3 and 4 citrate if combined with unlabelled 

acetyl-CoA, and subsequent labelled decarboxylation at level isocitrate dehydrogenase and α-

ketoglutarate dehydrogenase (Chance et al., 1983).  If the 2-13C pyruvate enters the mitochondria 

through PC, 2, 3-13C oxaloacetate will be labelled, then continuing the labelling on 1, 2-13C α-

ketoglutarate (or incorporated into PEP while releasing CO2). Subsequently, 1-13C and 4-13C succinate, 

fumarate, malate and oxaloacetate are produced (Rodrigues and Cerdán, 2005). 

 

 

5.3.2 Rates of the U-13C glucose, and 2-13C pyruvate metabolism (aim ii) 

 

A single experiment from each ejaculate included six spectra which were sequentially acquired every 3 

hours over 18 hours. Each peak from each spectrum was integrated and collated into a set of peak 

integral time courses. Integral versus time for each detected peak was plotted and fitted using non-linear 

exponential regression. Only experiments that had R2 > 0.5 were retained in order to avoid 

misinterpretation. The mean ± standard error (SE) was determined for each peak from U-13C glucose 

and 2-13C pyruvate. Differences between metabolic rates were analysed using one-way ANOVA with 

Tukey’s test.  
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Figure 5.2: Overview of the MRS sample preparation. 



  

94 

 

 

 

 

 

 

Figure 5.3: Summary of the sample usage. Gluc = U-13C glucose, Pyruvate = 2-13C pyruvate. 
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5.3.3 Effect of succinate on the metabolite products detected from 2-13C pyruvate metabolism (aim 

iii) 

 

For this aim, the spectrum acquired at 18 hours was selected. Each metabolite product peak that was 

detected from the 2-13C pyruvate metabolism was integrated. The same integration range was then used 

as for the spectra of 2-13C pyruvate with succinate. All metabolite integrals were normalised to the 

respective sperm concentration. The comparison was performed using an unpaired t-test with Welch’s 

correction. For comparison between two groups, which have the same sample size and standard 

deviation, a T-test is performed by Prism.  But in this chapter, the standard deviations between groups 

were different. Therefore, the Welch test was chosen. It yields a different t ratio compared to an ordinary 

T-test because it adjusts the P value to control for Type 1 errors (Lee, 2018).  

 

5.4     Results 

5.4.1 U-13C glucose and 2-13C pyruvate metabolism in the sperm samples at 37°C and 39°C 

 

At both the 37°C and 39°C incubation temperatures, lactate and bicarbonate were detected in the 

spectra. At 37°C, only 3-13C lactate (C3) was detected following incubation with U-13C glucose but at 

39°C, all lactate carbons, (C1, C2, and C3), were detected. For 2-13C pyruvate, lactate was detected in 

all samples regardless of the temperature (Table 5.1) and the 2-13C lactate integral was significantly 

increased when the incubation temperature was 39°C compared to 37°C. The 2-13C lactate integral from 

2-13C pyruvate metabolism was statistically higher than 2-13C lactate from U-13C glucose at both 37°C 

and 39°C (Figure 5.4 (a)). The same result was found when a comparison was made between 2-13C 

lactate from pyruvate and 3-13C lactate from the U-13C glucose (Figure 5.4 (b)). Bicarbonate was always 

detected in the spectra when the sperm samples were incubated with 2-13C pyruvate at 37°C and 39°C, 

and U-13C glucose at 39°C only. The bicarbonate integral from 2-13C pyruvate was statistically higher 

at 39°C than 37°C (Figure 5.4 (c)). 

 

5.4.2 Rates of the U-13C glucose and 2-13C pyruvate metabolism 

Sequentially acquired spectra showed a rise and decline in metabolite products and substrates 

respectively. For U-13C glucose, detected metabolite products were lactate and bicarbonate. The 3-13C 

lactate peak was first detected in the spectrum acquired at the 9 h time point, where the magnitude of 

the 3-13C lactate peak was > 2 fold greater than 1-13C lactate. 2-13C lactate was visualised, however it 

was quite difficult to quantify as the peak for the 13-C glucose obscured the 2-13C lactate (Figure 5.5). 

The lactate peak then rapidly built up but then slowed down after reaching 15 h scanning time. The 

bicarbonate peak was first visualised in the spectrum acquired at 15 h and slowly increased up to 18 h.  
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For 2-13C pyruvate, both lactate and bicarbonate were first seen in the first scan at 3 h (first spectrum) 

where the magnitude of the lactate peak was about the same size as the 3-13C lactate from U-13C glucose 

at 15 h scanning. Both lactate and bicarbonate peaks slowly increased and reached maximum 

concentration at 15 h and 18 h respectively. Apart from 2-13C lactate and bicarbonate, there was 

visualisation of natural abundance 1-13C lactate in the 2-13C pyruvate metabolism spectra (Figure 5.6).  

For 2-13C pyruvate with 500 mM of succinate, no metabolite products were detected in any of the spectra 

(Figure 5.7). 

 

 

The rates of lactate and the bicarbonate formation are listed in Table 5.2. From a statistical comparison 

between 1-13C lactate, 2-13C lactate and 3-13C lactate from U-13C glucose metabolism, there was no 

statistical difference between those rates, therefore only 3-13C lactate was chosen for subsequent rate 

comparisons. There were no significant difference between 3-13C and 2-13C lactate rate (p = 0.801) for 

U-13C glucose and 2-13C pyruvate. The same result was observed for bicarbonate rate (p = 0.548). 

However the rate of lactate and bicarbonate conversion from 2-13C pyruvate (lactate = 0.19 ± 0.01 s-1, 

bicarbonate =  0.39 ± 0.10 s-1) was faster than U-13C glucose (lactate = 0.05 ± 0.03; s-1, bicarbonate = 

0.21 ± 0.12 s-1).  

 

5.4.3 The effect of succinate on the metabolite products detected from 2-13C pyruvate metabolism 

 

Lactate and bicarbonate were detected from 2-13C pyruvate metabolite rate measurement spectra but 

not after succinate was added to 2-13C pyruvate. The presence of succinate significantly affected 

conversion of pyruvate into lactate (p < 0.001) and bicarbonate (p = 0.004) (Figure 5.8). The detected 

peaks in the spectra were 1, 2 and 3-13C succinate and 2-13C pyruvate.  

 

5.5 Discussion 

 

In this chapter, U-13C glucose and 2-13C pyruvate metabolism by boar sperm incubated at 37°C and 

39°C were compared. Their conversion rate at 39°C as well as the effect of succinate on the 2-13C 

pyruvate metabolism was also studied. The result showed that 2-13C pyruvate generated higher lactate 

and bicarbonate concentrations which were consistently detected especially when the sperm was 

incubated at 39°C. Moreover, both lactate and bicarbonate were not visualised in the 2-13C pyruvate 

metabolism spectra after succinate had been added.  
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Table 5.1: Number of visually detected metabolites peaks in the spectra when the sperm was incubated at 37°C and 39°C with U-13C glucose and 2-13C 

pyruvate. 

 

 

 

 

 

 

 

Temperature Substrate Lactate, N Bicarbonate, N 

37°C U-13C glucose       3 (C3) 1 

2-13C pyruvate 5 (C2) 5 

39°C U-13C glucose 3 (C1), 3(C2), 5(C3) 5 

2-13C pyruvate 5 (C2) 5 
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Figure 5.4: Graphs of normalised (by sperm concentration) integrals for (a) 2-13C lactate, (b) 2-13C 

lactate (from pyruvate) and 3-13C lactate (from glucose) and (c) bicarbonate, from U-13C glucose (Glc) 

and 2-13C pyruvate (Pyr) respectively.  p = p value.
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Figure 5.5: (Bottom) Six U-13C glucose rate spectra which were sequentially acquired every 3 hours over 18 hours. Each spectrum is shift in the chemical shift 

axis to aide visualisation; with the left most spectrum (dark blue) the 1st acquired spectrum, followed by red, dark green, light green, light blue and orange. 13C-

urea was added as a chemical shift reference peak. Integrated detected peak: 2-13C lactate (Left, upper); and bicarbonate (Right, upper) were plotted versus time 

and fitted using non-linear exponential regression (R2 > 0.5). A1-A5 is the number of the boar sperm sample. 



  

100 

0 5 1 0 1 5 2 0

0

5  1 0
0 7

1  1 0
0 8

2  1 0
0 8

2  1 0
0 8

H o u r , h

L
a

c
t

a
t

e
 i

n
t
e

g
r

a
l

A 3

A 2

A 1

A 4

A 5

  

5 1 0 1 5 2 0

- 5 . 0  1 0
0 6

0

5 . 0  1 0
0 6

1 . 0  1 0
0 7

1 . 5  1 0
0 7

2 . 0  1 0
0 7

2 . 5  1 0
0 7

H o u r , h

B
ic

a
r

b
o

n
a

t
e

 i
n

t
e

g
r

a
l

A 3

A 2

A 1

A 4

A 5

 

 

Figure 5.6: (Bottom) Six 2-13C pyruvate rate spectra which were sequentially acquired every 3 hours over 18 hours. Each spectrum is shift in the chemical shift 

access and zoom in (top of pyruvate peak was purposely cut off) to aide visualisation. Dark blue is the 1st acquired spectrum, followed by red, dark green, light 

green, light blue and orange. Urea was added to provide a chemical shift reference peak. Integrated detected peak: lactate (Left, upper); and bicarbonate (Right, 

upper) were plotted versus time and fitted using non-linear exponential regression (R2 > 0.5). A1-A5 is the number of the boar sperm sample. 
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Figure 5.7: Six 2-13C pyruvate with succinate rate spectra which were sequentially acquired every 3 hours over 18 hours. Each spectrum is shift in the chemical 

shift access and zoom in (top of pyruvate and succinate peaks were purposely cut off) to aide visualisation Dark blue is the 1st acquired spectrum, followed by 

red, dark green, light green, light blue and orange. Urea was added to provide a chemical shift reference peak. 

 

Urea 
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Table 5.2: Mean rate of metabolite production from U-13C glucose and 2-13C pyruvate metabolism (N = 10). 

 

Metabolite substrate Metabolite product Mean rate ± SEM, s-1 No of spectra in where R2 > 

0.5. 

U-13C  glucose 1-13C lactate 0.03±0.05 3 

2-13C lactate 0.02±0.01 2 

3-13C lactate 0.05±0.03 4 

13C bicarbonate 0.21±0.12 5 

2-13C pyruvate 2-13C lactate 0.19±0.01 5 

13C bicarbonate 0.39±0.10 4 
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Figure 5.8:  (Left) Bicarbonate integral for 2-13C pyruvate and 2-13C pyruvate with succinate (succ). (Right) lactate integral for 2-13C pyruvate and 2-13C 

pyruvate with succinate (succ). p = p value. Bicarbonate and lactate integral were normalised to sperm concentration. 
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A previous study by Eng et al (1986) found that at 39°C, the rate of pig polar body formation during 

oocytes development was better than at 37°C. Even though they focused on oocyte development, it is 

known that oocyte development requires higher energy compared to the immature oocyte stage 

(Babayev and Seli, 2015). Their finding is interesting for the experiments outlined in this chapter which 

found that at 39°C, sperm metabolism was increased markedly. More lactate and particularly 

bicarbonate were derived from both U-13C glucose and 2-13C pyruvate. As expected, higher temperature 

results in a higher metabolic rate. This happens when the energy, which is produced from the collision 

of molecules, is converted into chemical potential energy of the molecules. That chemical potential 

energy was provided to the substrate and may cause it to change its chemical state. Consequently  more 

chemical reaction will occur (Cooper, 2000). Furthermore, high temperature increases the probability 

of collision and binding between enzyme and substrate, thus greater substrate will be converted into 

product (Wharton, 2007). Although Shelby and Foley (1971) reported that lactate concentration 

accumulated more at 38°C rather than 39°C, the difference between current findings and Shelby and 

Foley (1971) may be due to a difference in the incubation period (6 hours incubation for Shelby and 

Foley study and 18 hours incubation for this study). This suggests that the combination of incubation 

time and temperature may influence lactate production.  

 

2-13C pyruvate was chosen rather than U-13C glucose in the subsequent experiment with succinate for 

two reasons. Firstly, it was found that lactate and bicarbonate were consistently detected in the spectra 

and their concentrations were significantly higher than those from U-13C glucose regardless of the 

incubation temperature. This was also supported by the results from the rate experiments (aim ii) where 

the conversion of 2-13C pyruvate into 2-13C lactate and 13C bicarbonate was faster than with U-13C 

glucose. This is to be expected as the production of lactate from glycolysis involves 11 reactions 

compared to a single reaction for pyruvate. Secondly, despite achieving increased U-13C glucose and 2-

13C pyruvate metabolism rates by sperm, Krebs cycle intermediates were still not detected by MRS. 

However, consistent detection of bicarbonate from 2-13C pyruvate might be from the Krebs cycle. For 

U-13C glucose, bicarbonate may emerge from several different metabolism pathways, such as PDH, PC, 

or a forward turn of the Krebs cycle after PC (Comment and Merritt, 2014). However, for 2-13C 

pyruvate, C2 pyruvate is transported into the Krebs cycle by incorporation into Acetyl CoA. Thus, any 

detected metabolite from 2-13C pyruvate is most likely from Krebs cycle processes. Clark et al (1994) 

reported the detection of lactate, alanine, glutamate and acetate when they used 2-13C pyruvate in glial 

cells. Citrate is one of the intermediates of the Krebs cycle while glutamate is a flux through exchange 

reactions with α-ketoglutarate, which is an intermediate of the Krebs cycle (Henry et al., 2006). 

Therefore, 2-13C pyruvate is a more useful substrate in determining the origin of bicarbonate under the 

influence of succinate than U-13C glucose.  
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The experiments conducted in aim iii shown that both bicarbonate and lactate, which were always 

detected from the 2-13C pyruvate metabolism in the sperm samples without addition of succinate, were 

not visualised in the spectra during the 18 h incubation time with succinate. This may suggest that 

detected bicarbonate in the control sample (without succinate) may have emerged from a subsequent 

turn of the Krebs cycle from 4-13C isocitrate, 1-13C α-ketoglutarate, or 1- 13C glutamate (Chance et al., 

1983). As shown in Figure 5.1, in the first turn of 2-13C pyruvate metabolism, bicarbonate is not labelled, 

however, due to rapid exchange with a symmetric molecule of succinate, fumarate and malate 

respectively, a labelled bicarbonate molecule will be produced in a further turn of the Krebs cycle. Most 

probably, production of the bicarbonate did not occur due to the fact that succinate blocked the reaction 

between α-ketoglutarate to succinate, resulting in obstruction of bicarbonate production in the further 

turn.  

In the normal equilibrium state, the carbon 2 atom from pyruvate incorporates into acetyl-CoA which 

then enters the Krebs cycle. However, an excessive concentration of acetyl-CoA may incorporate in 

other pathways. As the pyruvate concentration was much higher than physiological levels, the excess 

acetyl-CoA produced may have changed the equilibrium state and led to incorporation into other 

pathways (Cruz et al., 2001; Park et al., 2013). Possible metabolic pathways include: (i) conversion 

into ketone bodies, (ii) lipogenesis, and (iii) synthesis of cholesterol and other steroids (Hu et al., 2012). 

Typically, most of the detected metabolites, for instance 1,3-13C acetoacetate which represent ketone 

bodies, and 1-13C acetylcarnitine which represent lipogenesis (Schroeder et al., 2009; Hu et al., 2012), 

were detected when MRS was used in conjunction with the highly sensitive methodology, which is 

DNP, along with an excessive amount of hyperpolarised  2-13C pyruvate or inhibitor. Therefore, the 

next chapter will utilise DNP in order to confirm this finding.  

 

Though the exact relationship between α-ketoglutarate inhibition and lactate production by pyruvate is 

unclear, the result showed that, apart from resulting in the decrease of the bicarbonate concentration, α-

ketoglutarate also decreased the lactate concentration. This might suggest that the effect of the α-

ketoglutarate inhibition influenced the conversion of pyruvate to lactate. For example, Corbet at al., 

(2018) reported that inhibiting the transport of pyruvate into the mitochondria can block lactate 

metabolism in cancer cells and also reduces oxygen consumption rate.  
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In summary, the incubation of boar sperm samples at 39°C with 2-13C pyruvate was shown to be 

superior to the U-13C glucose in increasing the conversion rate into lactate and bicarbonate as well as 

increasing their concentrations. Succinate utilisation with 2-13C pyruvate was unable to increase the 

Krebs cycle intermediates to a level detectable by MRS. However, disappearance of the lactate and 

bicarbonate signal from 2-13C pyruvate metabolism after addition of succinate suggests that bicarbonate 

was indeed produced in the Krebs cycle and there is a link between the Krebs cycle and lactate 

production. 
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6 Chapter 6: Sperm metabolism measured using hyperpolarised 2-13C pyruvate 

 

6.1 Introduction 

In the previous chapter, bicarbonate detection from 2-13C pyruvate was assumed to be the result of 

reactions from the Krebs cycle. This assumption was confirmed when the bicarbonate peak disappeared 

completely after introducing succinate into the boar sperm sample. As the lactate peak also disappeared, 

it may indicate, there is a relationship between the Krebs cycle and lactate production.  Therefore, this 

chapter is intended to further confirm this observation by using a higher MR detection sensitivity 

methodology, known as Dynamic Nuclear Polarisation (DNP).   

 

As explained in Chapter 1, in the presence of an external magnetic field, two energy populations will 

be created among nuclei. The energy difference between these two populations (known as polarisation) 

determines the MR signal intensity (Schroeder et al., 2012). At body temperatures and routine external 

magnetic field strength found in research and clinical practice, the difference in these populations is 

very low (Hurd et al., 2012). A potential strategy to overcome this drawback is by using a 

hyperpolarisation technique. This technique increases MR signal intensity by increasing spin 

polarisation. It temporarily aligns more of the nuclei in the lower energy state, which results in a bigger 

difference in populations, and stronger MR signal (Rodrigues et al., 2013). 

 

DNP operates on the principle of the Nuclear Overhauser Effect which was proposed by Overhauser 

(Overhauser, 1953). He suggested the transfer of spin polarisation from electron spins to nuclear spins 

by microwave irradiation of the electron spins. The idea was extended by Beljers (1954) and Griesinger 

et al. (2012) in which the polarisation was transferred from free radicals to solvent molecules. The 

potential use of DNP in metabolomics studies became clear after Ardenkjaer-Larsen et al. (2003) 

demonstrated that a hyperpolarised sample in the solid state can be rapidly dissolved into a liquid 

solution while preserving its nuclear polarisation. It has been shown that, dissolution-DNP method 

could enhance 13C nuclear polarisation to almost 50% (Hurd et al., 2012) with a SNR > 10, 000 times 

compared to conventional MRS in the solution state (Marjańska et al., 2010).  

   

Dissolution-DNP transfers hyperpolarised electron polarisation to nuclear spins of a 13C- labelled 

molecule by microwave irradiation (Comment and Merritt, 2014). This is achieved by adding unpaired 

electrons (typically from an organic radical agent) into the proximity of the 13C molecules. The choice 

of radical agent depends on several factors: (i) it should be chemically stable and dissolve quickly in 

the 13C molecule solution, and (ii) the electron paramagnetic resonance (EPR) spectrum of the radical 

should possess a width that allows DNP to be effective for the nucleus of interest (Hurd et al., 2012). 

Based on those factors, typical radical agents utilized in DNP are nitroxide and trityl (Marco-Rius, 
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2014). For 13C, trityl is superior to nitroxides in term of line width. The line width for trityl radicals is 

0.80% of the resonance frequency. It is a suitable match with 13C, which has 0.37% of the resonance 

frequency (Hurd et al., 2012). As a consequence, this increases the probability of polarisation transfer 

to 13C spins hence producing a larger maximal 13C polarisation (Weissleder, 2010).  

 

The radical agent molecule has a tendency to crystallize as a saturated aqueous solution. This prevents 

the radical agent from forming a homogeneous distribution around the 13C molecules and results in poor 

polarisation efficiency. To ensure that 13C molecules stay amorphous when frozen, a solvent such as 

dimethylsulfoxide (DMSO) is added into the mixture of 13C molecules and radical agent (Marco-Rius, 

2014).  

 

The polarisation process begins by freezing the mixture at very low temperature in a high magnetic 

field. The final temperature, which is ~ 1 K, is achieved using liquid helium and vacuum pumping the 

mixture to very low pressure (~ 1 mbar) (Schroeder et al., 2012). At 1 K and high magnetic field, for 

instance  5 T, electron spin polarisation can reach almost 100% (in which all electrons align in the 

antiparallel direction to the external magnetic field) compared to 77 K (liquid nitrogen temperature) 

where the polarisation is ~ 4% (Comment and Merritt, 2014). The electron spin polarisation can be 

increased more by lowering the temperature and increasing the magnetic field, however, the time to 

build up the electron polarisation could become very long. To transfer polarisation from the electrons 

to the 13C molecule molecules, microwave irradiation at a frequency determined by the properties of 

the 13C molecule, the radical and the magnetic field strength, is then applied (Maly et al., 2008). This 

procedure commonly takes between 30 minutes to a few hours for 13C molecules which result in a 13C 

polarisation of up to 50% (Schroeder et al., 2012). By increasing the power for microwave irradiation, 

polarisation build up time (for the certain radical agent (Smith et al., 2012)) could be reduced, but this 

would generate excessive heating to the mixture and might actually result in a decrease in polarisation 

efficiency (Comment and Merritt, 2014).  

 

To make the polarised solid 13C molecule useful for in vivo experiments, it needs to be dissolved in a 

suitable buffer which will increase its temperature from 1 K to a physiological temperature. This is 

achieved by rapidly dissolving the solid sample with a superheated and pressurised bolus of aqueous 

solvent.  Depending on the 13C molecule, the solution may need to be neutralised in order to maintain 

pH within the physiologic range of 6.8 to 8.1 (Comment and Merritt, 2014). The polarisation is 

preserved almost completely in the dissolution step. The polarisation produced then steadily decays 

back to the normal thermal equilibrium level at a rate dependent on the relaxation properties of the 

molecule under study (typically 1 – 2 min) (Chen et al., 2009). Thus, to preserve the nuclear 

polarisation, the polarised agent to be transferred rapidly into the sample under study, followed by 

efficient and rapid 13C spectroscopic imaging sequences.  
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The polarisation, irradiation and dissolution process requires hardware known as a hyperpolariser. Thus, 

the location of the hyperpolariser with respect to the MR system is of importance. It should be located 

close to the MR scanner.  Its main components are: (i) a superconducting magnet, to provide the external 

magnetic field, (ii) a helium cryostat which is connected to vacuum pumps in order to cool the mixture 

sample to ∼ 1 K, and (iii) a microwave source to allow the polarisation transfer from electron spins to 

the nuclear spins and a dissolution system (Comment and Merritt, 2014).  

 

Commonly, dissolution DNP for 13C MR studies has used 13C pyruvate as the labelled substrate  because 

it polarises efficiently, has a relatively long decay (time constants of signal decay are approximately 45 

s) and speed of uptake (Comment and Merritt, 2014). 13C studies have been conducted on the cardiac 

system, brain, prostate, breast and cancer cells, following infusion of hyperpolarised 1-13C pyruvate. 

These have shown that pyruvate catabolism and its products can be measured effectively. In sperm, 

only one study has been reported which was conducted by Reynolds et al. (2017) to investigate the 

relationship between sperm energy metabolism and motility. However, pyruvate labelled at the C1 

position does not allow investigation of the Krebs cycle involvement for detected bicarbonate as 

discussed in the previous chapter. This is due to the labelled C1 nucleus being transferred to 

bicarbonate/CO2 following the PDH reaction, and hence does not incorporate into Krebs cycle 

intermediates.  

 

By using 2-13C pyruvate, incorporation of the enriched pyruvate C2 into the Krebs cycle can be 

monitored. It has been shown that hyperpolarised 2-13C pyruvate can be used to assess Krebs cycle 

metabolism (Schroeder et al., 2009; Marjańska et al., 2010; Josan et al., 2014). Some of the related 

metabolites which were detected from 2-13C pyruvate metabolism include 1-13C citrate in the first turn 

of the Krebs cycle, 5-13C glutamate, which is in exchange with the Krebs cycle intermediate α-

ketoglutarate, 1-13C acetylcarnitine generated from acetyl-CoA via carnitine acetyltransferase and 1,3-

13C acetoacetate, which is a ketone body produced from two molecules of acetyl-CoA (Josan et al., 

2014). As this chapter is intended to confirm the assumption from the previous chapter, which involved 

reactions in the Krebs cycle, 2-13C pyruvate seemed a more suitable candidate compared to other 

substrates, particularly 1-13C pyruvate.  

 

Therefore, the biological purpose of this chapter is to determine the source of the detected bicarbonate, 

focusing on rapid changes of pyruvate metabolism through the Krebs cycle. Thus, not only can the 

relationship with sperm motility be investigated but information concerning the kinetics of 2-13C 

pyruvate could be studied. The aim in this chapter was to acquire hyperpolarised 2-13C pyruvate 

metabolism in boar sperm using dissolution-DNP. 

 

 



  

110 

6.2  Methods 

6.2.1 Sperm preparation  

 

The sperm sample (see Section 2.1) was prepared using Percoll/PBS DGC (see Section 2.2.3), after 

which the supernatant was aspirated and the sperm pellet was re-suspended in ~ 400 - 600 ml of PBS. 

An aliquot from the re-suspended sperm sample was then prepared for concentration and motility assays 

(see Section 2.5.1 and 2.5.2) in which concentration of the re-suspended sperm was adjusted using PBS 

and a haemocytometer so that the final sperm concentration was < 100 x 106/ml.  Once the desired 

sperm concentration was achieved, 400 µl of the re-suspended sperm was added to a NMR tube with 

10 µl D2O for immediate MR scanning (if needed, the sperm sample was kept at the specified 

temperature (37°C or 39°C) before being scanned in the MRS system) (Figure 6.1 (a)).  

 

6.2.2 Hyperpolarisation  

 

For hyperpolarisation experiments, a mixture consisting of ~ 2.5 – 5 mg of 2-13C labelled pyruvate acid, 

15 mM OXO63 (Oxford Instruments, Abingdon, UK) and ~ 1.5 mM of Dotarem (Guerbet, Roissy. 

France) was polarised using a HyperSense dissolution DNP polariser (Oxford Instruments). The 

mixture was polarised until it achieved > 90% of its maximum polarisation which took approximately 

40 minutes (Figure 6.1 (b)).  

The hyperpolarised 2-13C pyruvate acid was dissolved with a superheated 40 mM HEPES buffer 

solution and transferred to 20 µl of 2.0 M NaOH solution via an open vessel for the neutralisation 

process. The final dissolved 2-13C pyruvate had a concentration of 19 mM and a pH of ~ 7.2 - 7.5. 20 

µl of dissolved 2-13C pyruvate solution was immediately pipetted into the sperm sample and well mixed. 

The final pyruvate concentration after it was added to the sample was ∼ 0.9 mM. The time from sample 

dissolution to initiation of the spectrum acquisition was 20 – 30 seconds. 

Immediately after infusion of hyperpolarised 2-13C pyruvate, MR acquisition was initiated.  

6.2.3 MRS experiment 

 

All experiments were performed on a 9.4 T Bruker Avance III NMR spectrometer, with a 5 mm 

broadband observe probe at 37◦C or 39◦C (Figure 6.1 (c)). The acquisitions were acquired using a 13C 

{1H} inverse-gated pulse sequence for every 1 second over the course of 3 minutes (Time Domain 

Points = 38458, Flip Angle = 16◦, Sweep Width = 239 ppm, Number of Averages = 1, Repetition Time 

= 1 s, Number of Repeats = 180). 
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Figure 6.1:   Summary of the experiment.   (a) Sperm sample was prepared using DGC technique and then the sperm pellet was re-suspended with PBS.   Sperm 

sample concentration was adjusted to the desired concentration before it was aliquoted into an NMR tube. (b) The sample had dissolved hyperpolarised 2-13C 

pyruvate added, which was polarised to > 90% of its maximum value in the DNP polariser beforehand (c) The sample was immediately scanned in the MR 

scanner for 3 minutes. 
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6.3 Data analysis 

 

Raw time domain data was Fourier transformed (FT) into a stack of 1D spectra. The first 40 spectra 

were summed together to create a single 1D spectrum for detection of low SNR metabolite peaks.  Both 

1D and 2D spectra were inspected visually for the evidence of 2-13C pyruvate metabolism and the 

appearance of metabolic products. They were also compared to the 1D spectra of a 2-13C pyruvate 

phantom which was carried out according to the same protocol as the hyperpolarisation experiment 

except without the addition of the sperm sample. Assignment of the detected peaks was based on 

previous reported literature. 

 

6.4 Results 

 

Figure 6.2 shows the spectrum acquired from boar sperm (N = 2), where 5 mg of pyruvate acid was 

polarised and the sample was scanned at 37°C. The signal from 2-13C pyruvate peak had the highest 

intensity at 207.8 ppm. The maximal intensity for 2-13C pyruvate was at time zero which decreased over 

180 s. Another detected peak was pyruvate hydrate at 94.5 ppm, which is in chemical equilibrium with 

pyruvate. Naturally abundant 1-13C pyruvate at 170.7 ppm appeared after the 40 first spectra were 

summed. None of the metabolite products from 2-13C pyruvate were observed. 

 

With an assumption that the intense 2-13C pyruvate peak hindered visualisation of the small peak, which 

might be derived from pyruvate metabolism, the experiment setting was slightly modified.  Two further 

samples were added with the dissolved solution from the polarised 2.5 mg pyruvate acid. The 

hyperpolarised spectra (Figure 6.3) showed the same peaks with a slightly lowered intensity of pyruvate 

and pyruvate hydrate. To ascertain whether sperm may require a longer time to metabolise pyruvate, 

after the sperm sample hyperpolarisation experiment was performed, the same sample was subsequently 

incubated in a water bath for 18 h at 37°C (without transferring into another tube or adding any other 

chemical compound) and re-scanned after a freeze and thaw process (see Section 2.6). From the 

incubation spectrum analysis (see Section 2.7), there was visualization of the 2-13C lactate peak (N = 2) 

(Figure 6.3).  

 

To investigate further, another sperm sample was added with the dissolved solution from polarised 2.5 

mg (N = 2) and 5 mg (N = 2) of 2-13C pyruvate acid, respectively, and was scanned at 39°C (each 

sample was subsequently incubated and re-scanned as described in the paragraph above). From the 

hyperpolarised spectra (Figure 6.4), the same peaks were detected for the sample which were prepared 

from 2.5 mg of 2-13C pyruvate acid (N = 2). However, there were new peaks detected in the sperm 

sample which was prepared from 5 mg of 2-13C pyruvate acid (N = 2) (Figure 6.5). Their chemical shifts 

were at 181.7 ppm (peak 1) and 85.8 ppm (peak 2).  
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Lactate was detected in the incubation spectra for all samples (N = 4).  From a comparison with the 2-

13C pyruvate phantom (Figure 6.6 and Figure 6.7), those new peaks were confirmed as impurities that 

were present in the supplied 2-13C pyruvate.  

6.5 Discussion 

 

The aim for this chapter was to confirm the origin of bicarbonate observed in Chapter 5 by acquiring 

hyperpolarised 2-13C pyruvate metabolism in sperm using dissolution DNP. The result has shown that, 

despite several experimental modifications, no pyruvate metabolic products were observed in the 

spectra.  

 

This study followed a similar experimental protocol as implemented in the Reynolds  et al. (2017) study 

except they used 1-13C pyruvate, as the hyperpolarised substrate and human sperm as the sample. A few 

changes were applied in this study to better suit boar sperm; for instance, the sperm preparation and 

temperature setting during MR acquisition. Reynolds et al (2017) found evidence of 1-13C pyruvate 

metabolism in human sperm by detecting 1-13C lactate and 13C bicarbonate. However, this study did not 

detect any of those products (2-13C lactate instead of 1-13C lactate for this study). This study attempted 

to compare 1-13C and 2-13C pyruvate metabolism in boar sperm however this was difficult due to 

impurities detected in 1-13C pyruvate spectrum. 

 

However, isotopically, 1-13C pyruvate and 2-13C pyruvate label the pyruvate at different carbon 

positions within a molecule. Isotopic labelling replaces those carbon atoms by their nuclear isotope, but 

this process does not change their chemical properties. For example, both 1-13C and 2-13C pyruvate are 

converted to lactate by the same enzyme which is LDH. However, the nuclear spin lattice relaxation 

time, T1, might be different between them, given that lactate carbon position 1 is in a carbonyl group 

whist lactate carbon position 2 is a methane group (Gebelin 1987). This is because, T1 is influenced by 

other nuclei in the same molecule and other molecules (Landheer et al., 2016). Due to carbonyl lactate 

not having any protons directly bound to it (the neighbouring proton is three bonds away from 1-13C), 

it relaxes slowly, compared to a methane lactate, which has a directly attached proton (Marjańska et al., 

2010). T1 for the 1-13C lactate is thus expected to be longer than that for 2-13C lactate. This will result 

in different peak intensities between them if the same acquisition time is used; the former will be higher 

than the latter (Golman, in ’t Zandt and Thaning, 2006; Shchepin, Pham and Chekmenev, 2014). This 

is in accordance with the findings of Marjańska et al. (2010). They reported that, infusion of 1-13C 

pyruvate and 2-13C pyruvate into rat brain, produced a 2-13C lactate SNR which was lower than 1-13C 

lactate (Marjańska et al., 2010).
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Figure 6.2: Spectra obtained from boar sperm which had polarised 5 mg 2-13C pyruvate and acquired at 

37°C. (Top) Dynamic spectra acquired every 1 s showed that the Pyr-C2 and Pyr-OH signal decreased 

over 180 s. (Bottom) The spectrum is the sum of first 40 rows and the observed peaks were: (i) 2-13C 

pyruvate (Pyr-C2), (ii) 1-13C pyruvate derived from natural abundance (Pyr-C1) and (iii) C2-pyruvate-

hydrate (Pyr-OH).  
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Figure 6.3: Spectra obtained from the boar sperm which had polarised 2.5 mg 2-13C pyruvate and 

acquired at 37°C. (Top) Dynamic spectra acquired every 1s showed Pyr-C2 and Pyr-OH that the signal 

decreased over 180 s. (Middle) The spectrum is the sum of first 40 rows and the observed peaks were: 

(i) 2-13C pyruvate (Pyr-C2), (ii) 1-13C pyruvate (Pyr-C1) and (iii) pyruvate-hydrate (Pyr-OH). (Bottom) 

Same peaks were detected in the 18 h incubation spectra except 2-13C lactate (Lac-C2). 
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Figure 6.4: Spectra obtained from the boar sperm which had polarised 2.5 mg 2-13C pyruvate and 

acquired at 39°C. (Top) Dynamic spectra acquired every 1 s showed that the Pyr-C2 and Pyr-OH signal 

decreased over 180 s. (Middle) The spectrum is the sum of first 40 rows and the observed peaks were: 

(i) 2-13C pyruvate (Pyr-C2), (ii) 1-13C pyruvate (Pyr-C1) and (iii) pyruvate-hydrate (Pyr-OH). (Bottom) 

Same peaks were detected in the 18 h incubation spectra except for 2-13C lactate (Lac-C2).  
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Figure 6.5: Spectra obtained from boar sperm which had polarised 5 mg 2-13C pyruvate and acquired at 

39°C. (Top) Dynamic spectra acquired every 1 s showed that the Pyr-C2 and Pyr-OH signal decreased 

over 180 s. (Middle) The spectrum is the sum of the first 40 rows and the observed peaks were: (i) 2-
13C pyruvate (Pyr-C2), (ii) 1-13C pyruvate (Pyr-C1) and (iii) pyruvate-hydrate (Pyr-OH). Other 

identifiable peaks were Peak 1 and 2. (Bottom) Only 2-13C lactate (Lac-C2) peak was detected in the 

18 h incubation spectra. Absence of the 2-13C pyruvate and pyruvate hydrate peak might be due to they 

being completely converted into 2-13C lactate. 
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Figure 6.6: Spectra obtained from polarised 5 mg 2-13C pyruvate (phantom spectra) and acquired at 39°C. (Left) The spectrum is the sum of first 40 rows and 

the observed peaks were: (i) 2-13C pyruvate (Pyr-C2), (ii) 1-13C pyruvate (Pyr-C1), (iii) pyruvate-hydrate (Pyr-OH) and (iv) impurity (Imp). (Right) Dynamic 

spectra acquired every 1s showed that the Pyr-C2 and Pyr-C1 signal decreased over 180 s.  
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Figure 6.7: Comparison between spectra of the 2-13C pyruvate phantom (red line) and the boar sperm sample which had polarised 5 mg 2-13C pyruvate and 

acquired at 39°C (blue line). Peaks 1 and 2 match the peaks (impurities) visualised in the 2-13C pyruvate phantom spectrum.  
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This suggests that, if the human and boar sperm metabolise the hyperpolarised substrate at a similar 

rate, metabolite peaks derived from the 2-13C pyruvate in boar sperm should be detected too. Typically, 

in other hyperpolarised studies, undetectable or relatively small peaks during dynamic acquisition 

became visible when multiple rows were added together (Schroeder et al., 2009). In this study, even 

after 40 rows were summed, no metabolite product peaks were detected. Therefore, this may indicate, 

the difference in relaxations time between pyruvate carbon positions was not the reason for the absence 

of a lactate peak in this study but species variation.  

 

Interestingly, by allowing a longer incubation time (18 h) for the same sperm samples, which had 

undergone the hyperpolarisation experiment, lactate and bicarbonate peaks were then visible in the 

spectra. This suggests that pyruvate metabolism has taken place in the sperm sample over the incubation 

period. This accumulation of lactate and bicarbonate after 18 h, was enough to be detected by MRS (as 

found in experiments in Chapters 4 and 5). It also suggests that, 3 minutes, which was the time frame 

for this hyperpolarisation study, was not enough for boar sperm to metabolise pyruvate sufficiently so 

that the metabolism product’s concentration was detectable by MRS.  

 

This phenomenon may suggest that the flux of pyruvate through LDH or OXPHOS in boar sperm is 

lower than for human sperm. Especially for the pyruvate metabolism taking place in the mitochondria, 

the process requires a pyruvate transporter, known as a Mitochondrial Pyruvate Carrier (MPC or MCT) 

(Mccommis and Finck, 2016). MPC acts as a regulatory point and as a pyruvate transporter across the 

inner mitochondrial membrane for further metabolism reactions to take place (Bucci et al., 2011; 

Piomboni et al., 2012; Mccommis and Finck, 2016). It is likely that, existence, location and distribution 

of these MPC in boar sperm is not the same (or lower) as for human sperm. Moreover, the fact that 

freshly ejaculated human sperm has very high glycolytic activity (it can generate 95% more ATP than 

boar sperm (Marin et al., 2003)) might contribute to this observed result.  

 

Pyruvate has a long signal half-life, ~ 30 s, compared to other labelled hyperpolarised substrates for 

Krebs cycle assessment such as glucose and citrate. Perhaps by adding (or increasing the concentration) 

other enriched atoms, such as deuterium could prolong pyruvate’s half-life as was observed for 

hyperpolarised U-13C glucose (Allouche-Arnon et al., 2013) thus enabling the observation of pyruvate 

metabolism. Furthermore, the impurity signal became prominent when the boar sperm was scanned at 

higher temperature and higher concentration of hyperpolarised 2-13C pyruvate. Due to the fact that 2-

13C pyruvic acid is a reactive compound, the generation of impurities are difficult to prevent. As the 2-

13C pyruvic acid is polarised, the 13C labelled carbon of these impurities will be hyperpolarised too 

(Harris et al., 2018). Using higher hyperpolarised 2-13C pyruvate concentration, these impurities 

become more noticeable. 
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It is well known that mitochondrial metabolism requires an aerobic environment whereas glycolysis 

requires an anaerobic environment in order to work efficiently. However, all previous experiments were 

done under ambient oxygen concentration. By considering this requirement, it is likely that results might 

be influenced by oxygen concentration. 

 

In conclusion, even though dissolution-DNP could overcome the sensitivity issue faced by MRS, 

presently it has limitations in detecting metabolites of interest in boar sperm due to the short half-life 

of the hyperpolarisation substrate. As a consequence, the origin of the bicarbonate measured in the 

previous chapter cannot yet be confirmed.
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7 Chapter 7: The effect of oxygen concentration on sperm metabolism 

7.1 Introduction 

 

In the previous chapters, all experiments were performed at ambient oxygen concentration. Therefore, 

there was a possibility that the oxygen concentration, during sperm incubation, affected all the previous 

findings, especially on the DNP experiments (Chapter 6). So, in this chapter, the oxygen concentration 

in the sperm incubation atmosphere was manipulated and the changes were observed using MR 

spectroscopy.  

 

Mammalian sperm, including boar sperm, are specialised cells. They can undergo both anaerobic and 

aerobic metabolism (Rodríguez-Gil and Bonet, 2016). An aerobic atmosphere contains oxygen 

molecules while an anaerobic atmosphere does not. ATP generation through glycolysis take place in 

anaerobic conditions while OXPHOS occurs in an aerobic atmosphere (Berg, Tymoczko and Stryer, 

2002a). The former occurs in the cytosol at the principal piece of the flagellum and the latter occurs in 

the mitochondrial mid-piece (Piomboni et al., 2012). This has been suggested due to the principle piece 

being devoid of mitochondria and the presence of enzymes which are responsible for glycolysis, such 

as hexokinase, phosphoglucokinase isomerase, phosphofructokinase, glyceraldehyde 3-phosphate 

dehydrogenase, and aldolase (Krisfalusi et al., 2006). 

 

Glycolysis occurs in the absence of oxygen. However, at the end of glycolysis, at the step where 

pyruvate is produced, the subsequent fate of pyruvate metabolism depends on oxygen. Oxygen may be 

used for OXPHOS in the mitochondria  or reduction may take place in the cytosol without using oxygen 

(Berg, Tymoczko and Stryer, 2002b). The former will convert the pyruvate to Acetyl CoA while the 

latter will produce lactate. This choice is influenced by several factors including the role played by an 

electron carrier, namely, the NADH molecule.   

 

In glucose metabolism, NADH is formed in step six of glycolysis, which is the conversion of 

glyceraldehyde-3-phosphate into 1, 3-Biphosphoglycerate (Error! Reference source not found.). 

Regardless of whether aerobic or anaerobic metabolism is taking place, the NADH molecule must be 

re-oxidised to NAD+.  

 

The ratio of NADH/NAD+ is constant. As the NADH was being produced through glycolysis, the ratio 

of NADH/NAD+ will be changed as the concentration of NADH is higher than NAD+. This will result 

in an accumulation of NADH, especially in anaerobic conditions, when the re-oxidation of NADH in 

the mitochondria is not possible due to an absence of the electron acceptor, O2. To maintain NAD+ 

levels, as well as to allow further glycolysis to occur in the absence of oxygen, pyruvate is forced to 
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undergo an oxidation-reduction reaction with NADH.  This leads to oxidation of NADH to NAD+ and 

the formation of lactate via the enzyme LDH (Cruz et al., 2001).  In aerobic conditions, the NADH 

molecule will continue the reduction in OXPHOS (Storey, 2008).  

 

Sperm are able to switch between different energy pathways based on the available substrate, process 

and oxygen concentration of the environment in which they operate (Ferramosca and Zara, 2014). The 

preferred metabolic pathway seems to be highly species specific (Piomboni et al., 2012). Oxygen 

tension from spermatogenesis up to the final fertilization site,  which is the oviduct, varies (Free, 

Schluntz and Jaffe, 1976; Yedwab et al., 1976; Aitken and Roman, 2008).  For most mammalian 

species, in the oviduct, oxygen tension is between 2-8%, (Yedwab et al., 1976) which is lower than in 

ambient air (García-Martínez et al., 2018). The level of oxygen tension depends on several factors. One 

of which is supply of oxygen to the cell (Aitken and Roman, 2008).  Poor vascularization of the testes 

indicates that oxygen tension in the testes is low. 

 

In a normal ambient atmosphere, or normoxia, the concentration of oxygen is 20 – 21% in air 

(McKeown, 2014). A condition where the concentration of oxygen is lower than in air is called hypoxia 

and when it is higher it is called hyperoxia. There is a possibility that the sperm will shift their energy 

producing pathway in different oxygen concentrations. It was hypothesized that sperm will favour use 

of anaerobic glycolysis rather than OXPHOS during hypoxia as the latter is impaired by lack of oxygen 

to oxide NADH. In hyperoxia, as electron receptor is in abundance, OXPHOS (and Krebs cycle) will 

dominate rather than anaerobic glycolysis.  

 

The detrimental effects of high oxygen concentration on spermatozoa in humans has been known for 

many years (Macleod, 1943). When human sperm were exposed to high oxygen concentrations, 95%, 

sperm rapidly lost motility. Of the total uptake of oxygen for the respiration process by sperm, 0.2 – 2% 

is thought to be converted to reactive oxygen species (ROS) (Harper et al., 2004; Murphy, 2009). ROS 

are a group of free radicals which can interact with other molecules. They include superoxide anions, 

hydrogen peroxide, hydroxyl radicals, lipid hydroperoxides, peroxyl radicals and peroxynitrite 

(Guerriero et al., 2014). In sperm, mitochondrial Complex I and Complex III are the major sites for 

ROS production (Koppers et al., 2008). Complex I produces the superoxide in the mitochondrial matrix 

while Complex III releases superoxide into both sides of the inner membrane of mitochondria 

(Piomboni et al., 2012).  

 

When the ROS concentration in the sperm mitochondrial membrane becomes too high, sperm might 

enter oxidative stress, potentially leading to alteration of mtDNA (Hagedorn et al., 2012). 

Consequently, mtDNA alteration is likely to have an effect on sperm motility (Aitken and West, 1990; 

Kumar et al., 2009).  
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On the contrary, it has been found that small amounts of ROS are beneficial for spermatozoa as they 

can stimulate sperm capacitation, hyperactivation, acrosome reaction and oocyte fusion (Griveau et al., 

1994; Aitken, 1995; Kodama et al., 1996). ROS can therefore have beneficial or detrimental effects on 

sperm quality in dependence on concentration. 

 

Sperm also have an ability to respond to and counteract the adverse effects of oxidative stress. For 

instance, sperm have an enzyme, a catalase (CAT), that is able to efficiently reduced superoxide 

(Macleod, 1943; Kovalski, de Lamirande and Gagnon, 1992). CAT has a signal sequence at its N 

terminus. This helps in directing and binding CAT to the receptor protein, protease, which is located in 

the mitochondrial membrane (Alberts et al, 2002). Once in the mitochondrial matrix, this signal 

sequence is rapidly removed and binds with the superoxide (hydrogen peroxide). CAT is able to remove 

the hydrogen peroxide by converting it into water and oxygen (Heck et al., 2010). However, boar sperm 

has very low CAT concentration, hence, superoxide has been suggested to be a major ROS responsible 

for oxidative damage (Awda, Mackenzie-Bell and Buhr, 2009). Possibly, adding exogenous CAT to the 

boar sperm could reduce the ROS effect when sperm are incubated in a high oxygen atmosphere.  

 

Previous studies, Nevo (1969) and Aalbers (1961) using fructolysis have shown that lactate production 

from fructose metabolism in boar sperm was higher in anaerobic compared to aerobic conditions. 

However, for hyperoxia, to the best of our knowledge, the effect of oxygen concentration on sperm 

metabolism has not been investigated, particularly in the boar. Most of the previous studies have focused 

on the effect on the acrosome reaction and motility in other sperm species such as human (Macleod, 

1943; Whittington and Ford, 1998) and salmon (Bencic et al., 2000).  

 

Therefore, the biological purpose was to find out how the hyperoxia and hypoxia conditions affect boar 

energy metabolism. It is hypothesised that the OXPHOS rate will increase together with an increase in 

the Krebs cycle intermediates and bicarbonate formation in hyperoxia while lactate production will 

increase in hypoxia. This will answer the question of which pathway dominates energy production in 

boar sperm. Ultimately, the role of the Krebs cycle in supporting sperm motility, both aerobically and 

anaerobically, associated with in vivo fertilization could be investigated. This study aimed to: (i) 

intentionally induce hypoxic and (ii) hyperoxic atmospheres in which the sperm are incubated with U-

13C glucose and measure the metabolism changes using MRS, and (iii) to compare sperm energy 

metabolism with and without the present of CAT in a hyperoxic atmosphere.  

 

7.2 Methods 

 

7.2.1 Oxygenation chamber for hyperoxia experiment 
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An air and water tight clear plastic container, 12 cm x 12 cm x 8 cm, was used to construct an 

oxygenation chamber for producing a hyperoxic atmosphere. Two small holes were made at the centre 

of the lid’s container to fit 4 mm outer diameter (OD) push fittings (IMI Norgren Ltd, UK). Those 

fittings were connected with polyurethane tubing (Norgren Ltd, UK), which had 4 mm OD and 2.5 mm 

in inner diameter (ID), as an inlet Port A, and an outlet Port B (Figure 7.1).  

 

Tubing for Port A allowed flow of the gas mixture from the gas cylinders (Medical grade, Compressed 

Oxygen and Nitrogen (oxygen free), BOC, UK). In order to mix the gases, a Y connector (4 mm OD) 

(IMI Norgren Ltd, UK) was used. Each inlet for the Y connector connected with the tubing for oxygen 

and nitrogen gas while the outlet connected to the push fitting on the lid. Another tube was inserted into 

the push fitting located inside the container. This tubing was connected during the media equilibration 

process only and removed afterwards. Its end was inserted almost to the bottom of the tube which 

contained the media to eliminate the medium surface barrier and provide a humidified condition in the 

chamber. This provided effective diffusion of the gas into the media and speed up the media equilibrium 

process.  

 

Port B allowed flow of gas from the container to the oxygen monitor (Crowcon, UK) in the fume hood. 

Another four holes were made in the base of the container to fit a 10 mm OD cable gland 

(HellermannTyton, UK) and were sealed with a nut and washer. Gas leakage was tested using a soapy 

water solution to monitor the presence of bubbles forming in the water when the gas flowed into the 

container. Any leakage was sealed using nuts and washers and araldite glue.  

 

On the day of experiment, the conical tubes (which contained media) were inserted into the glands 

which were subsequently tightened and the gas tubing was inserted into each sample tube. The container 

was then closed with the lid and placed on a rack. A 3.5 liter per minute (LPM) flow of oxygen and 0.2 

LPM of the nitrogen gas were mixed in order to provide a 95% oxygen concentration atmosphere in the 

container (the flowrates were determined based on the calibration curve, see section 7.2.2 for detailed 

information). The gas flow was controlled by a flowmeter with a valve (Cole-Parmer, UK). Once the 

desired flow rate was achieved, flow was maintained constant during the media equilibration process 

and the hyperoxia experiments.  

 

After the media was treated, the container lid was opened to allow for the sperm sample to be added 

into the media. This process was done quickly to minimise the time that the media was exposed to 

ambient oxygen concentration. The container was then closed, and the sample was checked to ensure 

that the entire sample was in the water bath. The timer for the total incubation time was initiated after 

~ 5 minutes to allow restoration of the hyperoxic oxygen atmosphere in the chamber. 
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Figure 7.1: Diagram of the oxygenation chamber for the hyperoxia experiment. (1) is the diagram after sample was added into the equilibrated media. The flow 

rate of the oxygen and nitrogen gases were controlled using the flowmeters. To obtain mixed gases, they flowed through the Y connector before entering the 

sealed oxygenation chamber through Port A. Port B was the gas outlet connected to the oxygen gas monitor in the fume hood. The chamber was supported by 

a rack to make sure that the whole sperm sample was in the water bath (blue boxes). Panel (2) represents the setup during the media equilibration process. 

Tubing was inserted almost to the bottom of the media tubes and removed afterwards.  
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7.2.2 Oxygen calibration curve 

 

To obtain the gas calibration curve, various Oxygen gas flows, XLPM, (XLPM = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 

1.2 LPM), and 3.5 LPM nitrogen gas, YLPM, flowed into the oxygenation chamber and the Oxygen gas 

concentration, Z, in %, obtained from the Oxygen monitor was tabulated. This step was repeated three 

times for each XLPM. XLPM was then converted into Oxygen concentration percentage, Equation 7.1.  

 

𝑋𝑐𝑎𝑙 =
𝑋𝐿𝑃𝑀

𝑋𝐿𝑃𝑀+𝑌𝐿𝑃𝑀  
× 100   Equation 7.1  

 

A linear regression graph of Xcal versus Z was plotted (Figure 7.2) to get the calibration equation, 

Equation 7.2. Using the calibration equation to obtain Z = 95%, yielded Xcal of 95.95%. To convert into 

flow rate, (using Equation 7.1) to achieve Xcal = 95.95%, the required flow rate was 3.5 LPM for Oxygen 

and 0.2 LPM for Nitrogen. This yielded 95% Oxygen concentration with 1% percentage error between 

Xcal and Z.  

 

𝑍 = 1.01 × 𝑋𝑐𝑎𝑙      Equation 7.2  

 

7.2.3 Sample preparation for oxygenation experiments.  

 

Boar sperm (see Section 2.1), was prepared by washing using Percoll/PBS DGC (see Section 2.2.3). 

100 µl of re-suspended sperm was added to the media (see Section 2.4) of the respective groups without 

taking the media out from the oxygenation chamber, Figure 7.1. For the hypoxia group (aim i), the 

media was equilibrated for > 19 h prior to the day of the experiment, in a hypoxic chamber (Baker 

Ruskinn, Maine, USA) which contained 0.8% oxygen, 5% carbon dioxide and 94.2% nitrogen . For the 

normoxia group, the media was left untreated at atmospheric oxygen concentration (21% oxygen, 78% 

nitrogen, 0.04% carbon dioxide and other gases). For the hyperoxia group (aim ii), the media was 

equilibrated for 2 h prior the experiment, in a hyperoxia chamber (95% oxygen, 5% nitrogen). To 

investigate aim iii, a sample which was from the same re-suspended sperm as for the hyperoxia sample, 

had 10 µl of CAT (Sigma Aldrich, Missouri, USA)  added per 1 x106 sperm (the concentration of the 

catalase varied depending on the sperm concentration). It was calculated based on the catalase 

concentration used by Hagedorn et al. (2012). All groups were incubated for 4 hours at 37°C in their 

respective oxygen condition before freezing. For each sample, an aliquot from the re-suspended sperm 

was pipetted for sperm quality assessment in the normoxia atmosphere (see Section 2.5). MR scanning 

was done as described in Section 2.6). Detected spectra was then analysed (see Section 2.7). The 

summary of the sample number and methods was summarised in the Figure 7.3 and 7.4).
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Figure 7.2: Linear regression graph of oxygen concentration, Xcal versus oxygen concentration, Z was 

plotted in order to obtain the calibration equation. 

 

 

 

 

 

 

 

 

Figure 7.3: Summary of the sample numbers used for Chapter 7. 

 

Chapter 7

Hypoxia, n = 10
Hyperoxia group vs Normoxia group 

(Paired sample)

Hyperoxia, n = 10
Hyperoxia group vs Hyperoxia + CAT group 

vs Normoxia group (Paired sample)
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Figure 7.4: Summary of the sperm sample preparation method for the oxygenation experiments. After the sperm sample was prepared using the DGC technique, 

the re-suspended sample was added into the respective media and incubated in (1) hyperoxic, (2) normoxic, and (3) hyperoxic environment at 37°C for 4 h. 

After that, they were subsequently frozen before thawing and scanning in the MR scanner. CAT represents catalase.   

 

 

 



  

130 

7.3 Data analysis 

A paired Student’s t-test was used for comparison between metabolite product integrals, for the 

normoxia and hypoxia groups whereas a one-way ANOVA with Sidek’s test was used for comparison 

between metabolite product integrals, for the normoxia, hyperoxia and hyperoxia + CAT groups. In all 

of these, metabolite integrals were normalised to the relative sperm concentration.  

 

7.4 Results 

Sperm concentrations used for all oxygenation experiments were 107 – 402 x 106/ml with progressive 

motility between 3% and 16% and motility between 30% to 95%. The calculations were made on the 

sample without undergone any oxygenation treatment (ambient oxygenation condition). 

 

No Krebs cycle intermediates were observed but lactate and bicarbonate were detected in the spectra 

(Figure 7.5 and Figure 7.6). Lactate was always observed in each sample for all groups but bicarbonate 

was intermittently detected.  

 

For aim (i), lactate integrals in the hypoxia group were significantly higher (4.97 ± 1.28 x 10-4, n = 10) 

than in the normoxia group (0.75 ± 0.85 x 10-4, n = 10) (p < 0.001) (Figure 7.7). No bicarbonate peak 

was detected in the hypoxia group but the sperm incubated under normoxia group (n = 3), produced a 

detectable bicarbonate peak (0.13 ± 0.45 x 10-4). Therefore statistical analysis was not carried out.  

 

For aims (ii) and (iii), lactate was always detected in the spectra but its integral was not significantly 

different between all groups (normoxia = 0.80 ± 0.88 x 10-4; hyperoxia = 1.87 ± 1.55 x 10-4; hyperoxia 

+ CAT = 2.47 ± 2.15 x 10-4) (Figure 7.8). Bicarbonate was detected in only one sample from hyperoxia 

+ CAT group, therefore statistical analysis was not carried out.  

 

7.5 Discussion 

 

The aims of this chapter were to investigate the effect of low and high oxygen atmospheres (with or 

without adding CAT) on boar sperm metabolism. It was found that the change of oxygen concentration 

during sperm incubation, from a normal to hypoxic condition, resulted in a significant increase in the 

lactate integral. Moreover, hyperoxia produced a higher (but not significant) lactate integral than 

normoxia.    
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Figure 7.5: Incubation 13C spectra of sperm metabolism for normoxia (blue) and hypoxia (orange) groups. 
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Figure 7.6: 13C spectra of sperm metabolism for incubation in normoxia (blue), hyperoxia (red) and hyperoxia with CAT (green) groups.  
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Figure 7.7: Normalised (to sperm concentration) lactate integral with statistical p value for sperm incubated under normoxia and hypoxia conditions. Sample 

number, n = 10; lactate, n = 10. Sig represents significance. 
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Figure 7.8: Normalised (to sperm concentration) lactate integral with the statistical p value for the sperm sample in normoxia, hyperoxia and hyperoxia + CAT 

groups. Sample number, n = 10 and lactate, n = 10. NS represents not significant. 



 

135 

The concentrations of oxygen used in this work were 0.8% and 95%, to avoid nitrogen and oxygen 

toxicity on sperm based on the reported literature (Macleod, 1943; Whittington and Ford, 1998). 

Macleod (1943) reported that sperm loss motility in 95% oxygen atmosphere but have maximal motility 

in 95% nitrogen. Contrary, Whittington (1998) did not found any significant different of motility 

between samples incubated under 95% oxygen and 95% nitrogen. Although their finding are different, 

toxicity is expected to occur more abundantly as more oxygen or nitrogen are available (Catt, 2000). 

Whilst these values are not physiologically realistic for the female reproductive system (see Section 1.4 

for details), they allow investigation of which pathway is dominant and the ability of the boar sperm to 

change their metabolism according to oxygen availability.  

 

The increase in concentration of lactate may indicate that pyruvate was converted more rapidly into 

lactate by LDH. As mentioned briefly in Chapter 1, this reaction could happen in the cytosol or in the 

mitochondrial matrix by LDH-X, a specific LDH isoform for the sperm LDH (Piomboni et al., 2012).  

As the re-oxidation of NADH in the mitochondria is limited due to very little O2 in the hypoxia 

atmosphere, the significant increase in concentration of lactate may indicate that the needed energy was 

predominantly provided by LDH-X in the cytosol. This finding fits with a previous study which showed 

a  higher lactate concentration for boar sperm which had been incubated in an anaerobic (achieved by 

constant overflow of the nitrogen gas) than in the aerobic condition (achieved by constant stirring with 

air) (Nevo et al., 1970).  

 

The higher lactate which was detected under hyperoxia compared to normoxia may indicate that some 

proportion of the detected lactate in the hyperoxia experiment was generated from the mitochondria 

LDH-X. Medrano et al (2006) could support this assumption whereas they found LDH-X in boar sperm. 

They also added that this enzyme is located mainly at the principal piece of the tail. Compared to 

normoxia, hyperoxia possibly gives rise to a higher number of NADH molecules being produced by the 

Krebs cycle. It is likely that this NADH is used to facilitate mitochondrial pyruvate to lactate conversion 

and consequently an increasing in the lactate concentration. 

 

Moreover, the presence of mitochondrial LDH-X might be considered to be one of the possible reasons 

for the scarce OXPHOS reactions found in this study. This may suggest that low OXPHOS was not due 

to the low rate of the Krebs cycle but due to the NADH, the product of the Krebs cycle, competing with 

LDH-X to facilitate mitochondrial pyruvate to lactate conversion (as discussed in the previous 

paragraph). This hypothesis is supported by a report from Peterson & Freund (1974) where they found 

that the respiration rate of human sperm increased after addition of succinate. In fact, a similar result 

was observed in Chapter 4, where sperm vitality was found to increase after addition of succinate. 

Succinate is a substrate of Complex II, which is one of the protein complexes in OXPHOS. By adding 
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exogenous succinate into the cell, extra electrons will be generated, beside the ones from NADH, for 

the subsequent OXPHOS process.  

 

It was thought that bicarbonate detection would be detected more frequently with a higher possibility 

to detect Krebs cycle intermediates when the boar sperm was incubated in an aerobic atmosphere 

especially hyperoxia. However, the fact that boar sperm produced lactate more than bicarbonate in these 

conditions might be explained by several reasons, one of which is the ATP shuttle system (Kamp et al., 

2003). For sperm motility, it is necessary for the produced ATP to be diffused (or be transported) to the 

dynein ATPases (Kamp et al., 2003). Consequently, ATP which is generated in the mid-piece (from the 

Krebs cycle or OXPHOS in the mitochondria), must be transported to the principal piece (which 

contains dynein ATPases). This process requires an ATP protein transporter, for instance 

phosphorylcreatine - creatine kinase (Piomboni et al., 2012). However, boar spermatozoa do not have 

this transporter (Kaldis et al., 1997). Consequently, ATP production in the principal piece (from the 

anaerobic glycolysis) is crucial and dominant, compared to that from the mid-piece, for boar 

spermatozoa to function properly.  

 

No significant difference of lactate concentrations measured for sperm samples that were incubated in 

exogenous CAT and those that were not (both incubated in the same oxygen condition) indicates that 

addition of CAT did not influence metabolism. This could be due to the fact that there was no ROS 

produced under hyperoxic conditions.  Therefore, CAT could not further reduce the level of ROS. This 

is supported by the findings of Whittington & Ford (1998) where incubation of normal sperm under 

95% O2 and 5% CO2 did not produce detectable levels of ROS. The adverse effect of ROS was only 

observed in samples that had a history of ROS production (Whittington and Ford, 1998). However, it 

would be helpful if the ROS level for the sperm sample to be used in future studies is assessed 

beforehand. 

 

Considering only one sperm sample (from hyperoxia + CAT group) produced detectable bicarbonate 

and undetectable Krebs cycle intermediates may suggest that increasing the oxygen concentration alone 

was not adequate to increase their concentrations to the detection level of MRS.  Another possibility is 

that the protein complexes in the OXPHOS chain are not of sufficient concentration to accommodate 

any higher OXPHOS activity. Typically, cells which have a very high OXPHOS activity have a 

prominent intra-mitochondrial inner membrane crest, which is localised by protein complexes (Berg, 

Tymoczko and Stryer, 2002b). However, boar sperm have almost flat inner membrane crests 

(Rodriguez-gil, 2006). Therefore, it is not surprising that bicarbonate concentration was unable to be 

detected by the MRS.  
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A separate study to investigate the effect of CO2 on sperm metabolism during oxygenated incubation 

would be interesting. Most commercial oxygenation chambers have CO2 control. CO2 is used for 

maintaining a proper pH level. Typically 5% CO2 is used in oxygenation chambers to maintain an 

acceptable pH level for several days of incubation (Wenger et al., 2015). The pH for diluent used in 

this study was PBS, was ~ 7.4 (Nallella et al., 2005). The pH matches those of boar sperm which is 

between 7.2 to 7.5 in freshly ejaculated semen (Johnson et al., 2000). Therefore, while further 

investigation would be useful, these issues are not thought to drastically affect the results presented 

here. 

 

Other methodology could be used to confirm the present findings, for instance, by NADH/NAD+ 

cytochemical staining. It could demonstrate NAD+ distribution in the cytosol and mitochondria 

(VanLinden et al., 2015). Thus, differences in NAD+ production between mitochondria and cytosol 

metabolism under hypoxia or hyperoxia can be investigated. However, NADH might be retained in the 

cytoplasm during spermatogenesis (Zini et al., 1998; Riammer et al., 2016). Therefore, precautions 

should be taken when measuring NADH/NAD+ concentration between mature and immature sperm.   

 

As a conclusion, the energy producing pathway for boar sperm is dominated by anaerobic glycolysis 

rather than OXPHOS regardless of the oxygen concentration in the environment that they operate. 

Consequently, Krebs cycle intermediates were not observed even in an oxygen rich atmosphere.  
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8 Chapter 8: General discussion, conclusions and future work 

For sperm analysis, numerous analytical techniques have been utilised, but the advantages offered by 

MRS metabolomics potentially make it as a useful methodology for in vivo sperm studies.  

MRS analyses can be categorised into two groups: targeted or untargeted analyses. Untargeted analysis 

focuses on the detection of naturally abundant metabolites in the sperm. The advantage of using this 

technique is the high number of metabolites that can be detected simultaneously in a few minutes. For 

instance, 1H MRS spectrum can quantify around 42 metabolites in a sample of human sperm (Paiva et 

al., 2015). This contributes a huge amount of information on human metabolism at a given point in 

time. Whilst this is an excellent capability of 1H MRS, there is an issue in terms of determining the 

source of the metabolite because of the complicated background signals (Dona et al., 2016). 

 

The targeted metabolomics technique focuses on the detection of selected metabolites, for instance, 

metabolite production in a specific metabolic pathway as the product of drug administration or of 

substance intake by sperm. In targeted analysis, the metabolites under investigation are usually 

predictable. This technique employs isotopically labelled nuclei such as 13C. One important advantage 

of 13C over 1H studies is the chemical shifts cover a larger range of values which is over 20 times that 

of 1H MRS (Dona et al., 2016). Thus, it can be used to monitor the ability of sperm to metabolise a 

range of labelled substrates and the conversion process through various metabolic pathways. In 

addition, it could detect small metabolic changes occuring during capacitation and hyperactivation and 

directly monitor the substrate metabolism process and kinetic rates in live sperm (Clendinen et al., 

2014). The non-destructive and high reproducibility of MRS mean that several analyses can be carried 

out on the same sperm sample, which makes MRS suitable for this study.  

 

In this study, the main aim was to attempt to detect Krebs cycle intermediates by 13C MRS in boar 

sperm. Several variables were investigated including Krebs cycle inhibitors, incubation temperature, U-

13C glucose and 2-13C pyruvate labelled substrates, hyperpolarised 2-13C pyruvate and manipulation of 

oxygen availability.  

 

8.1 Summary of the results 

 

Present findings shows that boar sperm efficiently utilises U-13C glucose and 2-13C pyruvate as sole 

energy sources in the absence of other energy substrates, as reflected by the detection of lactate and 

bicarbonate peaks in the 13C MRS spectrum, induced by both substrates. This utilisation may take place 

through anaerobic glycolysis and the Krebs cycle. U-13C glucose conversion into lactate was always 

observed, especially in the control samples, whereas bicarbonate was rarely detected in spectra. In 
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contrast, both lactate and bicarbonate were consistently detected in the spectrum when 2-13C pyruvate 

was used as the sole substrate for boar sperm.    

 

The lactate integral significantly decreased after addition of the inhibitors to sperm samples suggesting 

that there might be an accumulation of Krebs cycle intermediates. However, unsuccessful detection of 

intermediates by 13C MRS could be due to the concentration of those accumulated intermediates being 

below the MRS detection level. This assertion is reinforced by the fact that the lactate decrease was not 

the result of sperm death.  Furthermore, the results also indicate that addition of succinate boasted sperm 

vitality.   

 

By incubating the sample with 2-13C pyruvate, lactate and bicarbonate concentrations were significantly 

higher and were consistently detected compared to when using U-13C glucose. Indeed, these changes 

became obvious when the sperm samples were incubated at 39°C. Despite achieving increased lactate 

and bicarbonate concentration, the Krebs cycle intermediates were still not detected by MRS. However, 

it was expected that detected bicarbonate had emerged from the Krebs cycle. This assumption was 

confirmed by the finding that inhibition of the Krebs cycle by succinate where it prevents the formation 

of bicarbonate (and lactate) from 2-13C pyruvate, thus indicating that bicarbonate is indeed metabolised 

through the Krebs cycle. Furthermore, disappearance of the lactate peak suggests that there is a link 

between the Krebs cycle and lactate production. Possibly, by inhibiting the Krebs cycle, it also inhibits 

formation of the cofactor that it is needed for lactate production.  

 

Unfortunately, an attempt to confirm the association of bicarbonate and the Krebs cycle using DNP was 

unsuccessful as no evidence of 2-13C pyruvate metabolism was detected throughout the acquisition 

period. The result may indicate that 3 minutes, which was the time frame for this hyperpolarisation 

study, was not enough for boar sperm to metabolise pyruvate sufficiently so that the metabolism 

product’s concentration was detectable by 13C MRS. This assumption was proven when lactate and 

bicarbonate peaks were detected in the spectra by allowing a longer time for the same samples to 

metabolise.  

 

The energy production pathway for boar sperm takes place mainly through anaerobic glycolysis rather 

than the Krebs cycle as the rate of lactate and bicarbonate production showed in the hypoxic and 

hyperoxic experiments. The change of oxygen concentration during sperm incubation, from a normal 

to hypoxic condition, resulted in a significant increase in the lactate integral. Sperm which were 

incubated in the normoxia atmosphere produced a lower lactate integral than hyperoxia. This may 

suggest that in a hypoxic atmosphere, lactate generation was switched from mitochondrial to cytosol 

metabolism. Thus, under conditions of hypoxia, lactate was predominantly generated by LDH-X in the 
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cytosol while part of the detected lactate in the hyperoxia experiment was generated from mitochondrial 

LDH-X.  

 

8.2 Contribution to the wider knowledge and other methodology.  

 

The use of other techniques in future studies, such as liquid chromatography (LC)-Mass Spectroscopy 

(MS), as well gas chromatography-Mass Spectroscopy (GC/MS) could confirm the present findings. 

MS could separates different isotopes of an element based on their mass to charge ratio (Choi and 

Antoniewicz, 2011). 13C is heavier than 12C, thus allowing 13C labelled compounds to be differentiated 

from unlabelled compounds containing 12C (Choi and Antoniewicz, 2011). However, a well-known 

drawback of MS is only isotopologues can be distinguished unless tandem MS analysis is used (Henry 

et al., 2011). The coupling technique could be by using gas or liquid chromatography. By coupling the 

chromatography to MS, it can potentially increase the amount of labelled data (Choi and Antoniewicz, 

2011).   

 

Marin et al (2003) have reported similar findings to the present study where they used GC/MS to 

investigate the involvement of the Krebs cycle in boar sperm metabolism. They investigated the 

distribution of 1,2-13C2 glucose on glycolysis and the pentose phosphate pathway and 14C glucose on 

14CO2. They also investigated the contribution of PDH and PC to the Krebs cycle using an inhibitor for 

PC. Though MS is more sensitive than 13C MRS, apparently MS was unable to detect Krebs cycle 

intermediates too. They assessed the involvement of the Krebs cycle by monitoring glutamate 

production and reported that glutamate was produced equally from PC and PDH before adding an 

inhibitor. However, in the presence of the inhibitor, more glutamate was produced from PDH compared 

to those from the PC pathway hence suggesting that the Krebs cycle is active in boar sperm metabolism 

with a very low flux rate. 

 

Contrary to this, this study proved the involvement of the Krebs cycle in boar sperm metabolism by 

monitoring bicarbonate production. As described in Chapter 1, bicarbonate can be generated via several 

metabolic pathways. These pathways, for example PDH, PC, and Krebs cycle, may influence sperm 

motility differently.  

 

The Krebs cycle not only contributes mostly to the production of ATP but it also provides an 

intermediate for other biosynthetic reactions intersecting the Krebs cycle. For instance, α-ketoglutarate 

is an importance intermediate for the biogenesis of glutamine, glutamate, arginine, and proline, while 

oxaloacetate is used to generate aspartate and asparagine (Owen et al., 2002). Oxaloacetate and citrate 

also contribute to gluconeogenesis and lipogenesis, respectively. The key role of the Krebs cycle is 

providing an electron, from NADH and FADH, to OXPHOS so that more ATP can be generated. 
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Therefore, any aberration in Krebs cycle regulation could result in various cellular processes being 

affected, with the motility process being particularly vulnerable because of its dominant reliance on 

ATP production.  

 

Given the Krebs cycle’s role in mitochondrial metabolism, therapeutics modulating Krebs cycle 

metabolism may be a fruitful area for future study in the treatment of infertility. For example, 

investigating the ratio or relationship of bicarbonate production from the PDH, PC, and Krebs cycle 

between infertile and healthy sperm samples might provide insight on how to control the pathway 

producing bicarbonate and ultimately the ability of sperm to fertilise. 

 

It was reported that by incubating boar sperm with bicarbonate, which is a stimulator of adenylyl 

cyclase, increased sperm motility (Holt and Harrison, 2002). Bicarbonate activates the motility by 

stimulating adenylyl cyclase to produce an increased level of cyclic adenosine monophosphate (cAMP) 

hence initiating the protein  phosphorylation pathway (Holt and Harrison, 2002). Protein 

phosphorylation influences ATP production where it is involved in esterifying the phosphate from ATP 

to amino acids by protein kinases. Holt et al (2002) reported that after incubating boar sperm with 

bicarbonate, a subpopulation of them had a faster, more linear type of progressive motility while the 

other population was not affected by bicarbonate. The response was maintained for up to 2 hours before 

declining. The response was significantly increased for sperm which contained few progressive motile 

sperm before the incubation process. They claimed that the difference in response to bicarbonate 

stimulation was not due to sperm death but due to genetic variability of the protein in individual sperm 

hence, difference respond to bicarbonate treatment could be expected.  

 

Therefore, it suggests that, by stimulating specific bicarbonate producing pathways, potentially it may 

be possible to increase motility for all populations. Reynolds et al (2017), who studied human sperm 

metabolism using hyperpolarised 1-13C pyruvate, reported that there was a relationship between the 

bicarbonate, which was generated by PDH and human sperm fast progressive motility. To investigate 

the ability of sperm to metabolise pyruvate over the time, bicarbonate production was analysed at two 

different time points. The first time point was when the pyruvate was added immediately after sperm 

wash. The second time point was addition of pyruvate to the same sample after one hour from the first 

addition. They reported that only the second pyruvate addition was significantly correlated with sperm 

fast progressive motility. Since they also found a correlation between lactate from the first pyruvate 

addition and sperm fast progressive motility, they suggested that there was a change from anaerobic 

glycolysis to OXPHOS over time.  

 

Although there were several variations in the experimental parameters used, there are some differences, 

which have been noticed between human and boar sperm metabolism. Firstly, no bicarbonate peak was 
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detected using 13C MRS when human sperm was incubated with the labelled pyruvate (Calvert et al., 

2018) but rather, bicarbonate was always observed in boar pyruvate metabolism for this study. 

Secondly, by using hyperpolarised pyruvate, both bicarbonate and lactate peaks were observed in 

human sperm (Reynolds et al. 2017) but not in boar sperm.  

 

These differences might be due to different phenotypes characteristic between human and boar sperm. 

Boar sperm was reported to have a lower average motility than human sperm (Rodríguez-Gil and Bonet, 

2016). This low motility problem is more apparent in the AI provided sperm. Therefore, by using a 

freshly ejaculated boar sperm, this issue might be overcome.  

 

8.3 Limitations and strength  

 

Whilst the link between Krebs cycle metabolism (which might be observed by the bicarbonate 

production) and sperm motility could be investigated in this study, some aspects should be further 

improved so that the result is more reliable. One of which is to assess the boar sperm motility using a 

computer-assisted analyser with increased sample size. This would reduce the well-known errors which 

are associated with visual motility assessment such as bias and inaccuracy (Amann and Waberski, 

2014). In addition, to perform MRS and other related experiment, such as vitality assessment, on the 

sample from the same ejaculate. Although each sperm might has different sperm quality but it will avoid 

potential limitation and could show that, the sperm from the other experiment are truly representative 

of the sperm from the MRS experiment. 

 

However, the present findings showed the strength of this work when the metabolism of 2-13C pyruvate 

was consistently detected with a relatively high SNR. In addition, the metabolism process can be frozen 

at a desired time point to track live metabolic conversion to several pathways over an 18 hours period. 

Therefore, the present technique is potentially able to track different stages of sperm life, such as during 

capacitation and hyperactivation. 

 

8.4 Recommendations and future studies 

There are several recommendations, which can be suggested for future work. Firstly, for the 

oxygenation experiments, use of a gas analyser or a pre-mixed gas cylinder is recommended. This would 

provide more accurate gas concentration in the oxygenation chamber particularly if using a mixture of 

gasses.  Besides that, exploration of other oxygen concentrations would be useful. Extremely low and 

high oxygen levels were chosen in this study because the oxygen level for the hypoxic chamber could 

not be changed and the latter was based on previous literature which had succeeded in detecting Krebs 

cycle intermediates (Schroeder et al., 2009). In addition, the present oxygenation study investigated the 
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influence of the oxygen at 37°C only.  It might be useful if the work could be repeated at 39°C in the 

different incubation atmospheres. This might need a new variable temperature oxygenation chamber 

because the present hypoxic chamber temperature setting is fixed for communal usage.   

 

Lastly, increase sample size, especially for the hyperpolarisation experiment would be useful. As DNP 

is a very sensitive methodology, the result shown here is believed to be reliable even though the sample 

size was relatively small (n = 8). Although the hyperpolarisation method offers a new approach to 

understanding sperm metabolism, presently it has limitations in detecting metabolite of interests in boar 

sperm metabolism due to the fast decay rate of the hyperpolarised substrate.  There are other factors 

which could improve metabolite product detection.  These could include decreasing the time between 

substrate dissolution and transfer to the sample, using a highly motile sperm sample and adding or 

increasing other enriched atoms to prolong the hyperpolarised substrate’s decay rate.   

 

8.5 Conclusion 

 

None of the investigated variables, in this study, enabled the detection of Krebs cycle intermediates 

using 13C MRS. However, from the present findings, it can be concluded that bicarbonate indeed 

emerged from the Krebs cycle suggesting that Krebs cycle metabolism is involved in boar sperm energy 

production. In addition, anaerobic glycolysis is a dominate pathway compared to OXPHOS in 

producing energy for boar sperm. 
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