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Summary 

Osteosarcoma (OS) is the most common type of primary bone cancer affecting 

adolescents and children attributed to rapid bone growth and turnover, it is a rare 

incurable and often fatal disease. Current treatments include standard chemotherapy, 

limb salvage surgery or amputation. Survival statistics have remained constant with 

no advances in treatments options for decades. Patients with metastasis continue to 

have a poor 5-year survival rate of around 20%. This highlights an urgent need for 

development of novel therapeutic strategies for the treatment of OS. 

Purinergic signalling, involves extracellular nucleotides binding to purinergic receptors 

and has been found on osteoblasts with different functions including differentiation, 

apoptosis and bone remodelling. They are also highly expressed on many cancers. 

ATP is at a high concentration in the tumour microenvironment, yet absent from 

surrounding healthy tissue. ATP can modify the tumour microenvironment in favour of 

cancer growth and potentially result in disease progression. The P2X7 receptor 

(P2X7R) is a ATP gated ion channel which has received an increasing amount of 

attention due to evidence of its overexpression and function in carcinogenesis of a 

range of different tumours. Studies exploring the role of the P2X7R in OS are limited. 

In this thesis the hypothesis that the P2X7R and related splice variants play a role in 

OS progression and metastasis and it’s potential as therapeutic target has been tested 

both in vitro and in vivo. 
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1.1 Introduction to OS 

Cancer defines a diverse range of different diseases with various traits, prognosis, 

treatment regimens and survival outcomes. Although diverse, a central aspect of 

cancer biology is that they must have common “hallmarks” that facilitate growth and 

metastasis. Six essential hallmarks were originally described, these include: self-

sufficiency in growth signals, Insensitivity to growth-inhibitory (antigrowth) signals 

evasion of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis (Hanahan & Weinberg, 2000). After 

further progression in the cancer field four hallmarks were then added to include: 

reprogramming of energy metabolism, evading immune destruction, genomic 

instability and tumour promoting inflammation (Hanahan & Weinberg, 2011). These 

hallmarks provide information about the underlying complex process that cancer cells 

acquire and have aided in the development of effective therapeutics. As many different 

cancers exist they are determined based on their tissue of origin, and whether they 

are benign or malignant. OS is a rare and orphan malignant tumour of mesenchymal 

origin with highly heterogeneous subtypes. OS mainly affects children and 

adolescences and has two peak incident ages being described at 18 and 60 years of 

age with males affected more than females (Mirabello et al., 2009). In 80% of cases 

OS affects the limbs (Figure 1.1), in particular the long bones, which can be attributed 

to rapid bone growth and turnover during adolescence (Savage & Mirabello, 2011). 

The remainder of cases occur in the axial skeleton (Longhi et al., 2006) and in rarer 

cases the jaw (Baumhoer et al., 2014) or the hand (Pradhan et al., 2015). Worldwide 

incidence occurs at a rate of approximately 1-5 cases per million people per year 

(Mirabello et al., 2009) and these tumours represent < 0.2% of malignant tumours 

registered in the EUROCARE database (Stiller et al., 2001). 
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Figure 1.1: A palpable OS tumour occurring in the limb of a patient. A) An OS of the left proximal 

humerus showing a prominent tumour palpation in a 21-year-old male. Image adapted from Atlas of 

Diagnostic Oncology (Skarin, & Canellos, 2002) used with permission under the terms of the creative 

commons attribution licence (CC-BY). B) A computer tomography (CT) scan showing an OS tumour. 

Image courtesy of Professor Dominique Heymann (Sheffield University, UK, INSERM, France) from the 

cover of Bone Cancer (Ed Heymannn D, academic press 2010) used with permission. Arrows indicate 

the tumour palpation and the outgrowth of the tumour mass in the bone. 

OS cells originate from mesenchymal stem cells (MSC) of the osteoblastic 

differentiation pathway, and as such OS cells express typical markers of osteoblast 

cells (alkaline phosphatase, osteocalcin and/or bone sialoprotein) and the resultant 

tumour is characterized by the presence of a mineralized osteoid-type matrix produced 

by the OS cells. Several OS subtypes exist (Figure 1.2) and the type depends upon at 

what stage of differentiation the oncogenic event occurs (Heymann & Rédini, 2011). 

An osteoblastic subtype is seen with the most differentiated cells. In this case, OS 

cells produce large quantities of osteoid matrix. This is organized in a complex 

trabecular structure, often external to the normal bone and described as a “sunburst” 

pattern (due to expansion of the tumour, mineralization and formation of periosteal 

spicules or “streamers”) when seen on radiography. A chondroblastic OS subtype 

results from mutations in less differentiated cells, where OS cells produce a more 

cartilaginous matrix in addition to the osteoid matrix as is reminiscent of endochondral 

A) B) 
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ossification. A fibroblastic OS arises from the least differentiated OS cells and gives a 

morphology reminiscent of fibroblastic matrix tissue 

1.2 OS aetiology and risk factors 

Whilst between 10% and 15% of OS cases have an identifiable potential cause, the 

majority of cases are of unknown aetiology. Certain risk factors have been suggested 

including bone infarct, osteochondroma, Paget’s disease, and previous irradiation 

(Gerrand et al., 2016). The rapid bone growth and turnover that occurs during 

adolescence, especially at the metaphysis of long bones, may explain the association 

with the frequent occurrence of OS at these sites and stages of development. Tall 

stature has also been suggested to be a predisposing factor, with OS patients being 

significantly taller than the average population, particularly those with OS occurring in 

the femur, the largest and quickest growing bone, compared with occurrence at other 

sites (Cotterill et al., 2004). 

1.3 Inherited disorders associated with OS 

A number of genetic risk factors for OS are known, with several cancer predisposing 

syndromes and inherited disorders being associated with increased rates of OS (Table 

1.1). Li-Fraumeni syndrome (so named in recognition of the researchers who 

characterized the families with high rates of sarcomas and other cancers in 1969 (Li 

& Fraumeni, 1969) is caused by an autosomal dominant germline mutation in TP53 

which encodes the p53 protein. p53 is a well-known regulator of cell proliferation and 

apoptosis-induced cell death, and as such is critical for normal cell growth. Mutations 

B) 

Figure 1.2: The three main histological subtypes of conventional OS. A) Osteoblastic OS B) 

Chondroblastic OS C) Fibroblastic OS. Images courtesy of Dr M.F. Heymann (Institut de Cancerologie, 

Nates, France) used with permission. 

A) C) 
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in TP53 result in the loss of its tumour suppressor function and thus oncogenic 

transformation. Many, but not all, OS cases have a mutation in TP53, which is thus 

considered a risk factor. However, TP53 mutations do not correlate with clinical 

outcome in high grade OS and cannot effectively be used as a prognostic marker for 

metastasis development or response to chemotherapy (Wunder et al., 2005). 

Hereditary retinoblastoma is caused by a mutation in RB1, the gene that encodes 

Retinoblastoma protein (Rb). Rb interacts with E2F transcription factors to regulate 

the cell cycle and is also involved in normal differentiation processes. Mutation in RB1 

results in loss of the tumour suppressor activity and its inactivation is a common 

characteristic of a range of cancers (Weinberg, 1995). In patients with RB1 mutations 

OS is the most commonly occurring tumour, aside from retinoblastoma itself. A 500-

fold increase is observed in the risk of OS development in people with RB1 mutations 

compared to the general population. Aside from inherited inactivation, sporadic cases 

of OS mutations in RB1 occur in 60% of cases (Thomas et al., 2001). A meta-analysis 

of 12 studies with 461 patients concluded that RB1 mutations can be a prognostic 

marker for OS, as loss of Rb correlated with an increase in metastasis and mortality, 

with a decrease in response to chemotherapy (Ren & Gu, 2015). These inherited 

disorders, as well as the others listed in Table 1.1, which include three germline 

mutations in DNA helicase genes, only explain a very small proportion of the incidence 

of OS. Indeed, the vast majority of OS cases are complex and have inconsistent 

genetic alterations. Known tumour suppressor genes undergo deletions and mutation 

events, whilst for established oncogenes gains of portions of chromosomes are found 

in OS (Martin et al., 2012). Although the majority of these chromosome lesions in OS 

occur in known cancer genes, they can still contribute towards understanding why OS 

can occur. 
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Table 1.1: Common genetic conditions in which OS can occur. 

Genetic conditions predisposing to 

OS development 

Chromosome 

location 

Abnormality 

Li-Fraumeni syndrome 17p13.1 Rearrangement 

Hereditary retinoblastoma 13q14.2 Deletion 

Rothmund-Thomson syndrome 8q24.3 Rearrangement 

Bloom syndrome 15q26.1 Rearrangement 

Werner syndrome 8p12 Rearrangement 

Rapadilino 8q24.3 Rearrangement 

Diamond–Blackfan anaemia Numerous Deletion/Rearrangement 

 

1.4 Symptoms, diagnosis and treatment 

The most common symptom of OS is pain, with other symptoms such as 

swelling/lumps and tenderness, stiff joints, an unexplained limp and bone fractures 

occurring later (Taran et al., 2017). Patients usually only seek medical attention after 

an event such as a trauma or vigorous exercise. Given that the annual incidence of 

OS is 7.9 per million (~380 people diagnosed in England per year), the likelihood of a 

general practitioner ever seeing a patient with OS in their working life time is extremely 

low (Gerrand et al., 2016). This often means that delays occur in the diagnosis of OS 

and the duration of symptoms is on average 3 months, although patients can have 

persisted with symptoms for several months or even years before a diagnosis is made. 

A diagnosis can be missed by GPs as pain is attributed to growing pains or trauma 

such as a sprain or fracture. However, pain that gradually increases in intensity, and 

bone pain at night should always be considered as “red flag symptoms” that require 

investigation for potential OS. A variety of procedures should be used for diagnosis 

starting with a plain X-ray. Any feature of bone destruction, bone formation and 

periosteal or soft tissue swelling are suggestive of OS, with urgent referral to a bone 

multidisciplinary team (MDT) and magnetic resonance imaging and CT scans 
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subsequently required (Oryan et al., 2015). However, a normal x-ray cannot 

definitively rule out OS and further investigations should also be done following red 

flag symptoms. Additionally, in older patients, more extensive investigations with a 

whole body positron emission tomography scan often used to rule out metastatic bone 

cancer. In order for a definitive OS diagnosis to be made, an invasive biopsy must be 

performed by an experienced oncologist or pathologist, with histology performed on 

the sample to evaluate stage and prognosis. Different biopsy types include: fine-

needle aspiration, percutaneous core-needle biopsy and incisional biopsy. The choice 

of which to use is dependent upon tumour size and location (Errani et al., 2013). 

Although there is some dispute regarding which biopsy is the optimal to diagnose bone 

cancers, a recent study concluded that percutaneous core needle biopsy should be 

the first line diagnostic test when OS is suspected. This is where a section of tissue is 

removed to be examined as oppose to fine needle aspiration which only removes a 

small amount of cells and an incisional biopsy which requires open surgery. The study 

found percutaneous core needle biopsy had a 93% sensitivity, 100% specificity, 100% 

positive predictive value and 99.9% negative predictive value in 73 patients (Taupin et 

al., 2016). Percutaneous core needle biopsies present numerous advantages over 

open surgical biopsies which can have a range of complications such as seromas, 

infections and bone fractures (Taupin et al., 2016; Errani et al., 2013). In addition to a 

patient’s full history and imaging, biochemical laboratory testing of blood and urine is 

done. It is generally normal, with the exception of raised alkaline phosphatase (ALP), 

lactate dehydrogenase (LDH) levels and erythrocyte sedimentations rates which are 

of prognostic value in OS. 

Treatment options and survival rates for OS have not changed very much in the past 

30 years unfortunately. Within the UK, OS patients should be referred to and seen by 

a fully accredited bone sarcoma MDT under the 2-week wait pathway. Treatment 

options should then be discussed by the MDT with a surgeon, radiologist, pathologist 

and oncologist (Gerrand et al., 2016). In nearly all cases, surgery is required to remove 

the primary tumour, surgical intervention should aim to remove the tumour completely, 

with wide margins. Whereas amputation was the only surgical option 30 years ago, 

limb salvage surgery has now become possible through technological and surgical 

advancements. Limb salvage surgeries include endoprosthetic replacement, 

biological reconstruction using allografts or autografts, or a combination of both. For 
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tumours around the knee (in the distal femur or proximal tibia) rotationplasty can be 

used (Ando et al., 2013). This is where the affected bones are removed, the lower part 

of the tibia and ankle preserved, rotated through 180 degrees and attached to the 

femoral stump to function as a “knee” joint. Whilst this type of procedure is relatively 

rare, and has major cosmetic and psychological disadvantages, it does offer more 

functional advantages to the growing child, which have been shown to extend into 

adulthood (Benedetti et al., 2016, Potter, 2016). 

In addition to curative surgery, chemotherapy-based treatments are also given to OS 

patients. This regimen remains largely the same as the first adjuvant chemotherapy 

treatment used in 1970, with Doxorubicin and Methotrexate being the main drugs of 

choice, with Cisplatin and Ifosfamide later added (Ando et al., 2013). This toxic cocktail 

of DNA intercalators, DNA/RNA synthesis inhibitors and alkylating agent improved the 

5-year disease-free survival of OS patients to over 70% (Bacci et al., 2002). Further 

attempts were made in the late 1970’s to improve treatment by the introduction of 

neoadjuvant chemotherapy (chemotherapy before surgery). As well as reducing the 

tumour burden, this gave the perceived advantage of being able to histologically 

determine the response of the tumour to the chemotherapy, so that post-operative 

therapy could be tailored. Since then, neoadjuvant therapy has become the standard 

treatment for OS patients – with the UK guidelines indicating 10 weeks of neoadjuvant 

induction chemotherapy with high-dose Methotrexate (HDMTX), Doxorubicin and 

Cisplatin (MAP) before surgical intervention, followed by adjuvant chemotherapy 

(Gerrand et al., 2016). However, the actual benefit of this regime is not proven. In a 

controlled study performed to formally assess whether neoadjuvant chemotherapy in 

addition to surgery and adjuvant chemotherapy was better than surgery and adjuvant 

surgery alone, no significant difference was found for event-free survival rates 

between treatment groups (Goorin et al., 2003). The advantage of this type of therapy 

is that there is often a rapid improvement of symptoms and earlier treatment of micro-

metastatic disease. Most OS patients are thought to have microscopic metastasis at 

the time of diagnosis, as evidenced by the low survival rate previously observed in 

patients without chemotherapy treatment, and the fact that up to 90% develop 

recurrent metastasis when treated with surgical resection (Taran et al., 2017). 

Unfortunately, there are numerous side effects to the chemotherapy used in OS such 

as: alopecia, hypersensitivity reactions, nausea, vomiting, immunosuppression, 
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nephrotoxicity, neurotoxicity and cardiomyopathy (Minotti et al., 2004, Florea & 

Büsselberg, 2011). Additionally, there could be an issue with regards to future fertility, 

affecting both males (Schrader et al., 2001) and females (Blumenfeld, 2012) and which 

is often overlooked or not discussed. 

1.5 Prognosis 

Whilst it is difficult to predict a patient’s response to treatment, the stage, location and 

metastasis of the OS at time of diagnosis are major prognostic factors and determine 

the grade of the tumour. The higher the grade the lower the chance a patient will live 

disease-free beyond 5 years. Metastasis is a major clinical problem and refers to the 

spread of cancer cells to distant organs, and can be present at diagnosis. It is a 

complex process of events which can be divided into different stages: invasion through 

extracellular matrix, invasion into blood and lymphatic vessels, survival in the 

circulation or lymphatics, extravasation into secondary distant tissue and colonisation 

and survival in the new environment. Many drug successfully target the primary tumour 

but not the disseminating metastatic cells which have increased heterogeneity (Chiity 

et al., 2018, Zhu et al., 2013, Posthumadeboer et al., 2011, Hanahan & Weinberg, 

2011). Obvious overt metastasis at presentation, tumours located in the proximal 

extremities or in the axial skeleton, high serum levels of ALP and LDH, old age and 

high body mass index are all associated with poor prognosis. Recurrence of OS 

reduces the long-term survival rates to ~30%, with early relapse and distant non-lung 

metastases associated with the poorest prognosis (Gelderblom et al., 2011). Another 

indicator of poor prognosis is chemoresistance, a major issue in OS due to 

heterogeneity of the disease as well as the multitude of mechanisms that have been 

reported to mediate chemoresistance in OS cells (He et al., 2014). In order to improve 

prognosis and overcome some of these issues in OS, a number of laboratory based 

pre-clinical models have been developed to recapitulate the OS disease. These can 

be utilised both in vitro and in vivo. 

1.6 Pre-clinical OS models 

1.6.1 In vitro models 

Representative models of OS are an important tool that have contributed a substantial 

amount of knowledge about a wide range of OS characteristics and are often used as 
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the first step when trying to identify new therapeutic targets. Both human and murine 

in vitro immortalized cell lines exist, originally isolated from OS patients and murine 

OS models respectively; these cell lines have been extensively characterized and 

used for many years (Table 1.2). 

Table 1.2: Commonly used human OS cell lines and their characteristics. 

Cell line Year Gender Age Phenotype ALP 

activity 

Tumourgenicity  

in vivo 

Pulmonary  

metastasis 

References 

U2OS 1964 Female 15 Very early osteoblast/ 

fibroblastic 

Low Low No (Pautke et al., 

2004, Orimo et 

al., 2008, Pontén 

& Saksela, 1967) 

SaOS-2 1973 Female 11 Mature osteoblast High Low Rare (Pautke et al., 

2004, Fogh et al., 

1977, Czekanska 

et al., 2012) 

MG-63 1977 Male 14 Immature osteoblast Low Low No (Clover & Gowen, 

1994, Heremans 

et al., 1978, 

Czekanska et al., 

2012) 

HOS-

Te85 

1971 Female 13 Immature osteoblast Low No No (Clover & Gowen, 

1994, McAllister 

et al., 1971) 

KHOS/NP 1975 Female 13 Osteolytic/osteogenic Low Yes Yes (Rhim et al., 

1975b, Uluçkan 

et al., 2015)  

MNNG-

HOS 

1975 Female 13  Osteolytic/osteogenic Low Yes Yes (Rhim et al., 

1975a, Uluçkan 

et al., 2015) 

143B 1979 Female 13 Osteolytic Low Yes Yes  (Campione-

Piccardo et 

al.,1979).  
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1.6.2 Human derived cell lines 

The first human cell line used was U2OS in 1964, isolated from the tibia of a 15-year-

old female (Pontén & Saksela, 1967) and was followed by the HOS-Te85 OS cell line 

derived from a 13 year old female in 1971 (McAllister et al., 1971), the SaOS-2 cell 

line derived from an 11 year old female (Fogh et al., 1977) and the MG-63 cell line 

derived from a 14 year old male (Heremans et al., 1978). The MNNG-HOS, KHOS 

and 143B OS cell lines are all derivatives of the HOS-Te85 parental OS cell line. 

MNNG-HOS OS cells were created by chemically transforming HOS-Te85 OS cells 

with 0.01 µg/mL N-methyl-N'-nitro-N- nitrosoguanidine (MNNG) (Rhim et al., 1975a). 

The KHOS OS cell line was formed by transforming the HOS-Te85 parental OS cell 

line with the Kirsten murine sarcoma virus (Rhim et al., 1975b, Carloni et al., 1988) 

and the 143B OS cell line is a K-Ras oncogene transformed HOS-Te85 derivative 

(Campione-Piccardo et al.,1979). When comparing in vitro characteristics of these 

HOS derivatives, the 143B OS cell line has the highest rate of proliferation and cell 

migration, is the least adherent, and forms the most colonies in a type I collagen 

suspension. The MNNG-HOS OS cell line is not as aggressive as 143B, but is more 

aggressive than the HOS-Te85 OS parental cell type, which displays the least 

aggressive characteristics (Luu et al., 2005). 

Although originating from an OS patient, SaOS-2 OS cells have been extensively used 

as an in vitro model of “normal” osteoblast behaviour and represent a mature 

osteoblast phenotype with high ALP activity (Czekanska et al., 2012). Derivatives of 

SaOS-2 OS cells have different characteristics and are known as SaOS-LM2 to SaOS-

LM7; these were isolated from the lung metastasis of SaOS-2 OS cells previously 

injected into the tail vein of mice (Jia et al., 1999) and therefore represent a metastatic 

phenotype. When comparing the parental SaOS-2 OS cell line to the SaOS-LM5 and 

SaOS-LM7 metastatic variants, the derivatives have a similar level of ALP activity and 

response to chemotherapeutics, but are less adhesive and have smaller morphology 

with higher nuclear instability which likely contributes to their metastatic phenotype 

(Muff et al., 2007). 
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1.6.3 Rodent derived cell lines 

Most murine-derived cell lines originate from spontaneous mouse tumours; the Dunn 

cell line is an osteogenic cell line with high ALP activity (Muff et al., 2012) and was 

established from a tumour in the tail of a C3H mouse (Dunn & Andervont, 1963). LM8 

(lung metastatic variant 8) is derived from Dunn cells and was developed by 

inoculating the Dunn parental cell line into the tail vein of C3H mice and collecting the 

pulmonary metastasis; these cells were then grown in culture and again injected into 

the tail vein of C3H mice. This in vivo passage of the cells was repeated 8 times until 

lung metastasis occurred with 100% efficiency in the mice. When the parental Dunn 

and LM8 cells were then compared in vitro, the results demonstrated that LM8 cells 

grew faster, and had higher vascular endothelial growth factor (VEGF) expression, 

matrix metalloprotease (MMP) activity, invasiveness, and ALP activity (Asai et al., 

1998). Further cell lines were developed from a spontaneous OS originating in the 

distal femur of an 894-day-old female BALB/c mouse. Thirty-six single cell clones were 

grown in vitro, from which 5 cell lines were established (known as K7, K8, K12, K14 

and K37). These were selected to be representative of the different cells growing in 

culture based on morphology. Further analysis demonstrated that there were 

additional differences as K7 cells had the highest rate of growth, while K12 cells had 

the largest ALP activity (Schmidt et al., 1988). A derivative of the K7 cell line called 

K7M2 was established by injecting the K7 parental cell line into the proximal tibia of a 

BALB/c mouse and collecting the pulmonary metastasis. This was then implanted 

again into the tibia of a mouse and collected, and the “in vivo passaging” was repeated 

until establishment of the highly metastatic cell line (Khanna et al., 2000). 

The MOS-J OS cell line was established from a spontaneous chondroblastic OS from 

the right femur of a C57BL/6J mouse. This cell line displays features in vitro which are 

characteristics of osteoblasts, for example high ALP activity and calcium deposition 

along with the ability to promote osteoclast differentiation (Joliat et al., 2002). 

Unlike the previously discussed murine cell lines, rat OS cell lines were predominantly 

established through radiation exposure. One of the most common rat OS cell lines 

UMR-106 was developed through the serial injection of 32-P into Sprague-Dawley rats 

(Martin et al., 1976). UMR-106 cells are an osteogenic cell line with osteoblast 
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morphology, and display high ALP activity and adenylate cyclase activation in 

response to parathyroid hormone (Partridge et al., 1983). 

1.6.4 Advantages and limitations of in vitro OS models 

Immortalized cell lines possess a range of advantages; they have been used for a long 

period of time and are able to be stored frozen, enabling generations of researchers 

to continue vital in vitro research across various laboratory groups. They are relatively 

cheap, don’t have any ethical considerations and can be manipulated to cover a range 

of experimental conditions precisely as intended, e.g. regulation of temperature, pH 

and oxygen levels. Additionally, individual characteristics of the OS cell lines (e.g. 

migration, invasion, gene expression, and angiogenesis) can be investigated either 

alone or in combination with other constituents of the tumour microenvironment such 

as the cell matrix or interactions with other cell types. A final advantage is that they 

decrease the use of animals used for research purposes. 

However, comprehensive in vitro modelling of a complicated disease like OS is limited. 

This is due to constant progression and changes caused by intricate interactions with 

various components of the bone and tumour microenvironment – in vitro cell lines fail 

to recapitulate this. Indeed the SaOS-2 derived LM7 and LM2 cell lines display a poor 

correlation of gene expression in vitro compare to in vivo (Lisle et al., 2008). 

Additionally, there is a high chance of genetic diversity within a cell population due to 

cells being in culture for several years leading to differences in results across the years 

and even across laboratories. Finally, there are additional considerations for in vitro 

cell use, for example, contamination can occur easily with bacteria, mycoplasma, or 

other cell lines, again affecting the results. Therefore, whole animal models of OS are 

ultimately needed. 

1.6.5 In vivo OS models 

Animal models provide substantial information towards understanding OS behaviour 

and progression along with the ability to test pre-clinical compounds as potential new 

therapeutics. An animal model must therefore be representative of the course of the 

OS disease; this has remained challenging as OS is complex and diverse, and its 

pathology is not completely understood. No single OS model fully represents the 

clinical aspects of the disease and a variety of different approaches have been used 
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to model OS including: spontaneous cases induced through animal exposure to 

radiation, human and murine cell injection, xenotransplantation, and genetically 

modified mouse models (Guijarro et al., 2014, Janeway & Walkley, 2010). Early 

models used techniques that involved implanting radiation into animals. For example, 

in the early 1970’s 32P-impregnated polyvinyl chloride discs were inserted into the 

distal femoral metaphysis of rats, but only a 28% incidence rate occurred after 18 

months (Cobb, 1970). The process of using radiation has various limitations: the 

optimum dose for a suitable time period that induces OS is hard to establish, too low 

a dose doesn’t have a high enough incidence, whilst multiple OS tumours in different 

and unpredictable locations occur with too much radiation (Cobb, 1970). 

1.6.6 Genetically engineered murine models of OS 

Transgenic mouse models can be designed to demonstrate and study a genetic 

initiating and driving event for a disease. However, in the case of OS, a genetically 

engineered model may not fully replicate the genetic diversity seen in OS, although 

this type of model does demonstrate characteristics similar to human OS. One of the 

earliest transgenic models of OS is the c-fos overexpressing mouse; c-fos is important 

in a variety of cell processes such as cell growth, differentiation, transformation, and 

regulation of specific gene expression. Mice lacking c-fos expression develop 

osteopetrosis, however, c-fos is also considered a proto-oncogene (Wang et al., 1995) 

and is a target for transcriptional stimulation by p53 (Elkeles et al., 1999). 

Overexpression of c-fos in osteoblast cells led to OS with a 100% success rate in the 

founder mice. The cells lines established from the tumours express high levels of type 

I collagen, ALP, and osteopontin/2ar however, osteocalcin/BGP expression was either 

low or absent (Grigoriadis et al., 1993). Since this period, other transgenic models 

have been developed that capitalize on the role that loss of function of p53 and Rb 

play in OS pathogenesis. Transgenic mice models were developed in Osterix-Cre 

mice where conditional deletion of p53 or Rb alleles lead to OS pathogenesis with 

similar characteristics to human OS such as gene expression signatures, histology, 

and metastatic behaviour (Walkley et al., 2008). 
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1.6.7 Human xenograft murine models of OS 

Various human OS cell lines are capable of forming OS tumours in vivo in immune-

deficient mice (a lack of immune system being required to prevent the rejection of the 

human cells) using different inoculation sites and techniques. The first study to asses 

HOS-Te85, MNNG-HOS and 143B OS cells using intratibial injection found graded 

difference between the cell lines. HOS-Te85 OS cells were both none tumourigenic 

and none metastatic, MNNG-HOS OS cells were tumourigenic with tumours being 

predominantly osteolytic and showing some pulmonary metastasis. The 143B were 

the most aggressive being both tumourigenic, again with tumours being predominantly 

osteolytic, and displaying high levels of pulmonary metastasis (Luu et al., 2005). 

SaOS-2 cells tumourigenicity can vary, but when tumours do form they have an 

osteoblastic phenotype (Gvozdenovic et al., 2013). The method of injection used can 

affect the growth of the cells, for example when injected subcutaneously or 

intramuscularly no tumours occur (Mohseny et al., 2011), however, when injected with 

an intratibial injection in BALB/c nude mice, tumours will form (Lin et al., 2014). 

Within our laboratory a paratibial injection of OS cells is utilized. This procedure 

scratches the surface of the tibia just before injection of the cells close to the 

periosteum. 

1.6.8 Syngeneic murine models of OS 

Of the previously discussed murine OS cell lines, many are used as in vivo models 

(Table 1.3), and are predominantly divided into the parental cell line and its more 

metastatic derivative. The K7 cell line, when injected either paratibially or 

intraosseously develops osteolytic tumours with rare pulmonary metastasis (Schmidt 

et al., 1988), whilst its derivative, K7M2, forms pulmonary metastasis in 90% of mice 

(Khanna et al., 2000). The Dunn cell line and its derivative LM8, both form primary 

tumours when injected either subcutaneously, intraosseously or intravenously; 

however, the Dunn cell line only forms micrometastases whereas the LM8 is highly 

metastatic in 100% of mice (Dunn & Andervont, 1963; Asai et al., 1998). The MOS-J 

cell line displays a chondroblastic OS subtype and forms primary tumours when 

injected paratibially or intraosseously with an osteogenic phenotype (Joliat et al., 
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2002). Intramuscular injection of 4×106 MOS-J cells results in tumours in contact with 

the tibia approximately 8 days later (Gobin et al., 2014). 

The only commercially available rat OS cell line that is capable of forming tumours in 

vivo is UMR-106. When 1×106 UMR-106 cells are injected directly into the rat femur, 

there is a 100% yield of tumour formation and pulmonary metastasis. Histologically 

the tumours from the UMR-106 cell line represent a poorly differentiated OS (Yu et al., 

2009). 

 

Table 1.3: Commonly used rodent OS cell lines and their characteristics. 

Cell 

line 

Animal Year Phenotype Tumourgenicity  

in vivo 

Pulmonary  

metastasis 

References 

Dunn Mouse 1963 Osteogenic Yes Yes/Rare  (Dunn & Andervont, 

1963) 

LM8 Mouse 1998 Osteogenic Yes Yes (Asai et al., 1998) 

K7 Mouse 1988 Osteolytic Yes Yes/Rare (Schmidt et al., 1988) 

K7M2 Mouse 2000 Osteolytic Yes Yes (Khanna et al., 2000) 

MOS-J Mouse 2002 Chondroblastic Yes Yes (Joliat et al., 2002) 

UMR-

106 

Rat 1976 Osteogenic Yes Yes (Martin et al., 1976) 

(Partridge et al., 1983) 

1.6.9 Canine models of OS 

OS is the most frequent bone tumour in dogs with incidence rate 27 times higher than 

in humans (Simpson et al., 2017) and in particular in large breeds such as St. 

Bernard’s and Rottweilers (Misdorp, 1980). Human and canine OS have many 

similarities: they share the same environmental factors, males are affected more often 
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than females, it mainly occurs in the long bones, metastasis to the lungs occurs, the 

pathogenesis is unknown, and treatment regimens are similar (Rowell et al., 2011). 

Canines have previously been used in OS research as they were originally used in 

clinical trials on limb salvage techniques, and many of those techniques developed 

are now commonly used in humans (Rowell et al., 2011). Additionally, a canine cell 

line called D-17 is commercially available and was derived from the lung metastasis 

of a poodle in 1969 (LaRue et al., 1989). More recently, researchers, veterinary 

practitioners and dog owners are taking advantage of the fact that naturally occurring 

OS in dogs is closely related to human OS. Owners tend to be heavily invested in their 

pet’s wellbeing and they often seek the best treatments for their pets, should they be 

diagnosed with OS. Thus, canine OS can be used as a valid clinical model for new 

therapeutics, with the potential for adequately sized clinical trials to be performed due 

to the large population sizes (Fenger et al., 2014). 

1.6.10 Zebrafish models of OS 

Results of sequencing of the zebrafish genome showed that approximately 70% of 

human genes have at least one obvious zebrafish orthologue and can therefore model 

various diseases (Howe et al., 2013). This combined with the ability to easily and 

rapidly produce transgenic zebrafish models means that they are an attractive model, 

and have increasingly been used in the cancer research field to complement murine 

and in vitro models. In addition, the use of zebrafish to study bone development and 

disease has dramatically increased in recent years and has proven important for 

validating candidate human disease genes (Luderman et al., 2017; Spoorendonk et 

al., 2010). 

Zebrafish models have a number of advantages: studies involving zebrafish embryos 

have fewer ethical implications, are very inexpensive, and are able to produce 

hundreds of embryos in one mating, which grow fast and can be easily imaged due to 

transparency or with fluorescent reporters. The main disadvantages of zebrafish 

models are due to problems with sectioning tissue due to size, a lack of antibodies to 

their proteins, and leakage of injected cells (Brown et al., 2017). 

Development of zebrafish models to study OS are limited and are still emerging, one 

reason for this is due to the high genetic variability of the disease, meaning a 
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transgenic strain is difficult to achieve. The effects of MNNG, which was used to 

transform HOS-Te85 OS cells, on tumour induction in different ages of zebrafish 

demonstrated the zebrafish were more sensitive when treated as embryos rather than 

when older, and MNNG predominantly produced tumours of mesenchymal histology 

including chondromas and various sarcomas except OS (Spitsbergen et al., 2000). 

More recently, parental mouse mesenchymal stem cells (MSCs) or transformed 

oncogenic MSCs, which are more comparable to OS, were injected into zebrafish and 

whole genome expression analysis was performed. The results from the zebrafish 

embryo experiments complemented the earlier in vivo mice studies and showed that 

angiogenesis and migration-related genes were upregulated in the transformed 

MSCs, further validating the zebrafish as a model for OS (Mohseny et al., 2012). 

1.6.11 Advantages and limitations of common in vivo OS models 

In vivo approaches used to model OS have various advantages over in vitro cell lines, 

the main advantage being that the in vivo model provides a more representative 

environment, as it involves a living, integrated system. The in vivo approach allows 

interactions with other components of the host and tumour microenvironment to be 

involved rather than a single cell line, which can affect results and response to 

therapeutics. Disadvantages of in vivo models include ethical considerations, high 

costs compared to in vitro cell work, and a higher level of technical skill required to 

perform the studies. 

Within the in vivo approaches previously discussed, there are several advantages and 

limitations. Human xenograft murine models form OS in a short time frame and are 

reproducible across many different laboratories. However, they use cell lines, which 

are genetically similar, whereas OS in patients is a highly diverse disease. Human 

xenografts are also performed in immunocompromised mice and therefore do not 

recapitulate the immune response and are less useful for immunoncology research. 

Syngeneic models have the advantage of having the host and tumour cells of the same 

species, with a functional immune response providing a realistic environment. 

However, results from studies of murine cell lines are often difficult to translate to 

humans, and the results can be controversial and/or opposing (Dass & Choong, 2007 

Piperno-Neumann et al., 2016). 
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1.6.12 Patient-derived orthotopic xenograft (PDOX) murine model of OS 

PDOXs are a novel preclinical model of OS. The technique uses patient-derived 

tumour samples and surgically grafts them to an immunocompromised mouse, which 

then develops into an OS model. Development of one OS PDOX model used tissue 

from a 17-year-old female with OS of the right femur, which then relapsed 24 months 

after the initial diagnosis with new tumours in the right tibia, both lungs and the 

mediastinum. The xenograft was established by drilling into the tibia of BALB/c nude 

mice and inserting a 1 mm3 tumour fragment into the bone marrow. The resultant 

tumour was then passaged in mice a further 2 times; during this in vivo passaging, 

increased tumourgenicity was observed, as the time to tumour development reduced 

from 40 days to 20 days. The patient tumour was also grown in culture to develop a 

primary cell line called OS-RH-2011/5, which was similarly passaged into mice twice, 

with 100% tumour take at 2 weeks (Blattmann et al., 2015). When the genetic and 

histological parameters of the xenograft, primary cell line and initial tumour were 

analysed and compared, they were found to display similarity to each other and to the 

initial patient’s tumour, demonstrating a model that closely resembles the initial OS. 

Interestingly, there were differences in the subcutaneous and orthotopic tumours. A 

limitation of this initial study was that pulmonary metastasis was not detected until 60 

days after implantation. A recent study analysed 15 different solid tumour PDOX’s 

including OS; a total of 31 samples were injected with a take rate of 49%. Using whole-

genome sequencing and whole-exome sequencing, the study matched the patient 

tumour with the xenograft tumour and of all the tumours analysed, OS had the best 

clonal preservation (Stewart et al., 2017). This was also shown to be the case when 

xenografts were compared to primary tumours morphologically. (Mayordomo et al., 

2010). 

A major problem with current OS treatment is that response to the different drugs 

varies and is hard to predict. In addition to providing a useful model to study OS 

behaviour, PDOX’s provide a platform for drug screening and to predict response to 

chemotherapy (Bruheim et al., 2004, Igarashi et al., 2017, Stebbing et al., 2014). 

PDOXs possess a range of advantages as a research tool including recapitulating the 

clinical characteristics, screening for chemotherapy resistance, and potentially offering 

the opportunity for personalized OS treatment. However, there are also some 
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limitations: low patient tumour source availability due to low incidence of the disease, 

the need for immunocompromised rather than immunocompetent mice, long time 

frames, the required high level of technical skill, and required patient consent. They 

also often fail to establish in vivo, which could potentially be due to treatments the 

patient has already received. 

Ultimately, the choice of OS model used should be carefully considered and 

dependent on the research questions but will invariably be limited by the laboratories 

resources and skill sets. However, it is best to use a number of pre-clinical models to 

fully validate any new target or drug, and to maximize the chance of it making it to 

clinical trials and patient use for OS. In this thesis both an in vitro model and in vivo 

model has been utilised and will enable both the OS tumour and the OS bone 

microenvironment to be targeted to potentially identify a novel treatment for OS. 

1.6.13 The need for new treatments in OS 

Studies aiming to improve the prognosis for OS patients are currently ongoing, 

encompassing a range of different approaches and techniques. The high amount of 

heterogeneity in OS tumors, as well as the rarity of the disease has limited therapeutic 

developments and novel breakthroughs, meaning that treatments for OS have 

remained the same since around the 1970s (Saraf et al., 2018), with the 5-year survival 

rate of OS patients remaining unchanged over the last 30 years or more (Gerrand et 

al., 2016). As well as targeting the cancer cells in OS, consideration for the 

microenvironment the cells reside in is of paramount importance in understanding the 

disease initiation and progression. ATP is a major constituent of both the bone and 

tumour microenvironment (Rumney et al., 2012, Di Virgilio & Adinolfi, 2017) with the 

process of purinergic signalling found to influence many aspects of the bone 

microenvironment (Agrawal & Gartland, 2013) and the growth of many different 

cancers (Di Virgilio & Adinolfi, 2017) Therefore, targeting purinergic signalling in OS 

could provide a new therapeutic option. 

1.7 Purinergic Signalling historical overview 

The first study recognising the physiological action of extracellular purines was 

published in 1929. In this study adenine extracts from various tissue were found to 

regulate cardiac rhythm and blood vessel pressure (Drury & Szent-Györgyi, 1929). 
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However, it wasn’t until 1972 that Professor Geoffrey Burnstock devised the term 

‘Purinergic’ and showed that ATP could act as an extracellular messenger responsible 

for nonadrenergic, non-cholinergic transmission in the gut and bladder (Burnstock, 

1972). The purinergic hypothesis was met with initial resistance as ATP was already 

an accepted intracellular energy source. It was therefore considered unlikely such a 

molecule would also be involved in extracellular signalling. Since this initial period, 

ATP acting as a neurotransmitter and extracellular messenger is now widely accepted 

and implicated in many different physiological processes and pathological conditions. 

It would however be another 20 years after the finding that ATP could act as an 

extracellular messenger before the receptors were cloned and characterised, starting 

with the P1 receptors for adenosine (Burnstock, 2012). After this came the P2Y1 

receptor (Webb et al., 1993) and P2Y2  receptor originally termed P2U (Lustig et al., 

1993); the first P2X receptors were characterised the year after those (Brake et 

al.,1994, Valera et al.,1994). After the initial classification into P1 and P2 receptors 

and then the many new receptors were discovered which meant a subdivision into 

P2Y and P2X with the nomenclature clearly defined based on agonist potency, signal 

transduction and molecular structure (Abbracchio & Burnstock, 1994). 

1.7.1 Purinoceptors 

The P1 (adenosine) receptors are G-protein coupled receptors (GPCRs) and have 4 

subtypes. P2 receptors are subdivided into P2Y GPCRs of which there are 8 human 

subtypes and P2X ligand gated ion channels of which there are 7 subtypes (Table 

1.4). 

Table 1.4: Purinergic receptor physiology, agonist and subtypes 

Receptor Type Agonist Subtypes 

P1 GPCR Adenosine A1, A2A, A2B, A3 

P2Y GPCR ATP, ADP, UTP P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, 

P2Y12, P2Y13, P2Y14 

P2X Ligand-gated ion 

channels 

ATP P2X1, P2X2, P2X3, P2X4, P2X5, 

P2X6, P2X7,   
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P2Y G-protein coupled receptors all have seven hydrophobic transmembrane regions 

consisting of three extracellular and 3 intracellular loops, they each contain an N 

terminus and intracellular C terminus which has the protein kinase binding motif. P2Y 

receptors form homo and heterodimers similar to GPCRs (Kugelgen & Hoffmann, 

2016). The P2X ligand gated ion channels were first cloned in 1994 and range from 

388 to 595 amino acids which form both homo and heterotrimeric receptors. 

Structurally they contain two hydrophobic transmembrane domains capable of 

spanning the plasma membrane, with intracellular amino and carboxyl terminals and 

a large extracellular loop containing ~280 amino acids and 10 cystine residues capable 

of forming disulfide bridges to stabilize the protein structure. ATP binds to this 

extracellular region and three molecules are required to activate the channel, upon 

activation of the channel cells become permeable to various small ions such as Na+ 

and Ca2+ (North, 2002). Of particular interest in this thesis is the P2X7R. 

The P2X7R, although having some related sequence and functional characteristics to 

other P2X ion channels, is quite distinct. The P2X1–P2X6 subunits are 379–472 amino 

acids long, however, the P2X7R monomeric subunit is the largest of the P2X family 

with 595 amino acids (Syed & Kennedy., 2012). This is due to a much longer carboxyl 

terminal (Bartlett et al., 2014, Syed & Kennedy., 2012) amongst P2X receptors the C 

terminal has approximately 40-50% similarity with the P2X7 the most dissimilar (North 

2002., Syed & Kennedy 2012). The mechanism of P2X7R pore formation has two 

different proposed hypothesises, one is that a conformational change occurs dilating 

the P2X7R itself, thereby allowing larger molecules through. The second is that the 

pore is a separate distinct molecular structure or recruits a secondary complex 

activated by P2X7R (Young & Górecki, 2018, Alberto et al., 2013, Pelegrín, 2011), 

pannexin hemi-channels have been suggested to play this role (Alberto et al., 2013). 

In addition to the full length P2X7R, termed P2X7RA, nine different human P2X7R 

splice variants have been discovered and termed P2X7RB-P2X7RJ. Of these splice 

variants P2X7RB is unique in that it retains its ability to act as a functional ion channel 

(Feng et al., 2006, Cheewatrakoolpong et al., 2005) and shares a similar tissue 

distribution as the full length receptor (Sluyter & Stokes, 2011). P2X7RB preserves an 

intron between exons 10 and 11, this causes the insertion of a stop codon which 

eliminates translation of the last 249 amino acids of the C terminus and the addition of 
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an extra 18 amino acids after residue 346. These alterations still enable receptor 

stimulation by ATP or Benzoyl ATP (BzATP) but P2X7RB lacks the typical P2X7R 

pore formation response (Adinolfi et al., 2010), it therefore displays a non-functional 

phenotype. Non-functional P2X7Rs have been found to be essential for tumour cell 

growth (Gilbert et al., 2019). P2X7RA and P2X7RB share the same antagonists 

(Giuliani et al. 2014) with various companies developing them for a wide range of 

applications. First generation P2X7R antagonists include: Reactive Blue 2, Suramin 

and derivatives, Coomassie Brilliant Blue G (BBG), pyridoxal phosphate-6-azophenyl-

2-4-disulfonic acid (PPADS), 1-N,O-bis (5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl-4-

phenylpiperazine (KN-62), and oxidized ATP (oATP) (Young & Górecki, 2018). 

Second generation P2X7R antagonists have increased specificity and include 

tetrazoles such as A438079 and cyanoguanidines such as A740003 both produced 

by Abbott Labs, GSK314181A produced by GalaxoSmithKline and AZ11645373 

produced by AstraZeneca with the latter two blood brain barrier permeable. These 

have further been followed by AZD9056 (AstraZeneca) and CE-224,535 (Pfizer) 

(Young & Górecki, 2018). 

1.7.2 Purinergic signalling in the musculoskeletal system 

Purinergic signalling has been found throughout the musculoskeletal system with both 

P1 and P2 receptors expressed on bone cells (Orriss, 2015). MSCs differentiate into 

osteoblasts, and have been found to be influenced through selective purinergic 

receptors involved in proliferation and differentiation as interestingly MSCs 

spontaneously expel ATP (Kaebisch et al., 2015). 

Purinergic receptors have also been found to be expressed on human OS cell lines 

SaOS2 and Te85, and also primary human bone derived cells. However, the Te85 OS 

cells were found to have no functional receptor despite having P2X7R expression at 

the mRNA level, demonstrating receptor expression is related to the stage of cell 

differentiation (Gartland et al., 2001). Using rat calvarial osteoblasts it was 

demonstrated that P2XR expression shifted to P2YR expression through 

differentiation in culture (Orriss et al., 2006). There is also P2X7R and P2X4R 

expression in SaOS2 and MG63 OS cell lines which both demonstrated pore formation 

(Alqallaf et al. 2009). Studies using the human MG63 OS cell line found that DNA 
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synthesis can be mediated via extracellular ATP acting on P2XR but not P2YR, 

subsequently increasing cell proliferation (Nakamura et al., 2000). 

Effects of purinergic signalling in osteoclasts have been demonstrated, interleukin 6 

which is involved in osteoclast formation, was increased in response to ATP acting on 

P2YR thus demonstrating the role of purinergic signalling on bone remodelling (Ihara 

et al., 2005). It has been additionally demonstrated that ATP did not directly increase 

resorption by acting on osteoclasts, but rather through increasing expression of 

receptor activator of nuclear factor Kappa-B ligand (RANKL) which then had a 

synergistic effect of increasing osteoclast resorption (Buckley et al., 2002). Other 

effects of purinergic receptors on osteoclasts have since been established with 

multiple P2XR and P2YR expressed on osteoclasts (Orriss et al., 2010). Osteoclasts 

express P2X7R that is functionally active and contributes towards the initial cell linage 

commitment. Blocking the receptor prevented the fusion of osteoclast precursors 

forming larger atypical differentiated multinucleated osteoclasts (Gartland et al., 2003). 

The role of purinergic signalling in these different bone cells has clearly made 

significant advancements since its initial discovery, with the identification of a range of 

functions that may potentially provide therapeutic targets for a variety of bone 

disorders. The effects of purinergic receptors including both P2Y and P2X receptors 

in the musculoskeletal system are summarised in Table 1.5. The effect specifically by 

P2X7R in the musculoskeletal system in vitro are summarised in Table 1.6 and P2X7R 

KO models in Table 1.7 (Agrawal & Gartland, 2013). Many studies routinely use OS 

cell lines as a model for osteoblasts to investigate purinergic signalling in bone, their 

interaction in an oncogenic setting is still unclear. This therefore warrants more in-

depth studies to be carried out with the potential to identify novel prognostic markers 

and therapeutic options for OS.  
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Table 1.5: P2 receptor expression, function and phenotype in the musculoskeletal system. Adapted with permission under the terms of the creative commons 

attribution licence (CC-BY). Gene (Lenertz et al., 2015), with additional information included (Kanaya et al., 2016, Orriss et al., 2011, Orriss & Arnett, 2012, 

Hoebertz et al., 2002). 
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Table 1.6: P2X7R effects on bone cells. Used with permission under the terms of the creative commons attribution licence (CC-BY). Journal of Molecular 
Endocrinology BioScientifica (Agrawal & Gartland, 2013). 
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Table 1.7: Bone phenotype of existing P2X7R KO mice models. Imaged used with permission under 
the terms of the creative commons attribution licence (CC-BY). Journal of Molecular Endocrinology 
BioScientifica (Agrawal & Gartland, 2013). 

 

  

Model Sex 

examined 

Bone strength 

measurement 

Histomorphometric 

analysis 

Remarks Reference 

Pfizer KO Males and 

females 

(overall 

reduced 

bone mass) 

Low BMC in 

trabecular, 

cortical and 

total bone, 

smaller bone 

diameters 

decreased 

periosteal and 

endocortical 

circumferences 

in femora. 

Decreased 

periosteal bone 

formation 

(mineralising 

surface, bone 

formation rate) with 

an increase in 

parameters of bone 

resorption 

(osteoclast number, 

percentage 

osteoclast surface). 

Reduced osteogenesis in 

response to mechanical 

loading, impaired fracture 

repair. 

Ke et al., 

(2003), Li et 

al., (2005, 

2009) 

GSK KO Females 

(no overall 

overt 

skeletal 

phenotype) 

Unchanged 

BMD, increase 

in cortical 

thickness 

No significant 

difference in 

cancellous bone 

volume in tibia, no 

significant difference 

in the number of 

osteoclasts in 

femora. 

 
Gartland et 

al., (2003) 

C57Bl/6 

KO (451L 

allele) 

Females Increase in 

whole body 

BMD, increase 

in bone 

strength. 

Significant increase 

in trabecular 

thickness in the tibia 

and vertebrae. 

 
Syberg et 

al., (2012) 

BALB/cJ 

KO (P451 

allele) 

Females High total 

BMD, BMC 

and bone area, 

increased 

femoral 

strength. 

Reduced serum 

CTX, ALP and no 

changes in 

osteocalcin. 

C57Bl/6 WT carrying the 

naturally occurring 541L 

allele has lower BMD, 

femoral strength and 

concentration of bone 

markers compared with 

BALB/cJ WT. In addition, 

lower markers for bone 

formation and resorption in 

the C57Bl/6 WT vs 

BALB/cJ WT. 

Syberg et 

al., (2012) 
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1.7.3 Purinergic signalling and cancer 

Given that purinergic receptors are found on the majority of cell types in humans 

(Burnstock, 2017) with a variety of functions, as previously discussed, there is likely a 

role in pathophysiological conditions. Extensive studies are now discovering how the 

surrounding tumour microenvironment can influence tumour characteristics. ATP is at 

a high concentration in the tumour microenvironment (Adinolfi, 2013, Qiu et al., 2014) 

yet absent from surrounding healthy tissue (Pellegatti et al., 2008), and potentially 

implicates purinergic signalling with cancer development and progression to 

metastasis. The therapeutic targeting of these receptors hasn’t been explored to its 

full potential (Burnstock, 2017). This could be due to some contentious views and 

discrepancies in the role that purinergic receptors play in cancer. 

Treatment of cancer with intravenous ATP infusions was suggested to improve quality 

of life of patients by preventing weight and muscle loss, this was found to be the case 

in a clinical trial of advanced non-small lung cell lung cancer, where 28 patients 

received ATP (Agteresch et al., 2000). However, this study has various limitations, for 

example quality of life measurement is subjective and self-reported and could be 

linked to the patients knowing that they were receiving a treatment as the study wasn’t 

blinded. The empirical evidence presented actually demonstrated only a small 

difference in mean quality of life scores with additional weight loss prevention only 

minimal. The difference in initial weight and weight gain wasn’t measured at baseline 

which could mean the data just naturally varies amongst participants. Over half the 

participants either passed away or dropped out, therefore data could potentially be 

biased as the ones dropping out or facing death are the participants most likely to 

report a lower quality of life score. A second study concluded that ATP could safely be 

administered in a home setting in advanced cancer patients, despite reporting 192 

different side effects from the procedure (Beijer et al. 2007). 

The above studies may just be demonstrating the effects on different systems in 

general, as ATP is a major constituent of the tumour microenvironment and 

consequently a direct effect on tumour physiology would be expected (Qiu et al., 2014, 

Adinolfi 2013). ATP has been found to be significantly higher than surrounding healthy 

tissue (Pellegatti et al., 2008). ATP depletion in combination with anti-cancer therapy 
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was found to cause a significant reduction in breast tumour size and in some instances 

complete regression in mice (Martin et al., 2000).  

Due to the dual nature of the P2X7R it can cause an increase in cell proliferation with 

low tonic amounts of ATP present. However, high concentrations of ATP were capable 

of decreasing cell number in human cutaneous squamous cell carcinoma A431 cells 

(Greig et al., 2003). This was thought to be due to P2X7R, as it has the ability to form 

a larger pore at higher concentrations of ATP, this would cause an influx of intracellular 

Ca2+ ions and hence activate cell death pathways. Furthermore, one study found that 

the melanoma cell line A375 expressed P2X7R with its activation causing a decrease 

in cell number through apoptosis (White & Butler, 2005). 

There is evidence suggesting purinergic receptors are found and implicated in cancer 

as P2X7R is found to be present on a variety of malignant cells (Di Virgilio et al., 2009). 

P2X7R expression increases invasiveness in vivo in HEK-293 tumours (Adinolfi et al., 

2012). In pancreatic ductal adenocarcinoma overexpression of P2X7R causing 

increased proliferation, invasiveness and survival, treatment against P2X7R with an 

allosteric inhibitor (AZ10606120) reduced these characteristics (Giannuzzo et al., 

2015). In addition, P2X7R has been shown to trigger the release of growth factors for 

cells increasing proliferation in neuroblastoma (Di Virgilio et al., 2009). 

1.7.4 Purinergic signalling in bone cancer 

With regards to bone cancer itself, despite the fact that purinergic signalling has a 

variety of known functions on bone cells and implications in cancer, research 

concerning bone cancer is limited. Interestingly the chromosome location of P2X7R is 

12q24 (Sluyter & Stokes, 2011). One study reported that chromosome 12 

abnormalities are common in mesenchymal tumours with overexpression of 12q 

sequences particularly in OS (Gisselsson et al., 2002). This correlates P2X7R and OS 

onset and development. 

Studies mainly focus on metastasis to bone and the subsequent bone pain 

experienced. By blocking P2X3R involved in pain regulation, mice injected with 

mammary carcinoma cells in the tibia experienced less pain (Kaan et al., 2010, Wu et 

al., 2012). P2X7R in OS has initially been investigated, in one study 54 advanced 

stage IV OS patient tissue samples were analysed using P2X7R antibodies and found 
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that over 80% of the samples had the P2X7R present (Giuliani et al., 2014). However, 

this is yet to be confirmed on a larger scale or on samples that include tumours at 

different stages of the disease to fully demonstrate P2X7R involvement in 

aggressiveness and progression of OS.  

The same study then subsequently transfected P2X7R variants into Te85 OS cells. 

The results indicated that that having a truncated B isoform led to a greater increase 

in cell proliferation and higher cell density, although transfection with any P2X7R into 

the Te85 OS cell line resulted in increased cell growth (Giuliani et al., 2014). Nuclear 

factor of activated T cells complex (NFATc1) was found to have a greater increase in 

expression when P2X7R was present, this has a role in osteoblast proliferation and 

bone growth and could explain the increased growth rate. Additionally, stimulation with 

BzATP increased proliferation in all transfected clones through stimulating P2X7R. 

RANK-L expression was reduced suggesting a role in altered bone remodelling which 

is a common trait in OS, again demonstrating how P2X7R expression can alter bone 

cell behaviour. The findings of this study support the role of P2X7R in OS pathogenesis 

(Giuliani et al., 2014) and contradicts the findings of decreased cell proliferation in 

other cancers through activation of apoptosis (White & Butler, 2005). Finally, the study 

provides initial data to build on with regards to the role of P2X7R in OS. 

1.8 Summary and hypothesis 

A harsh treatment regime exists for OS patients including amputation, chemotherapy 

and limb salvage surgery, which hasn’t changed for a number of years. This is similar 

for the survival statistics of this often fatal disease. The evidence for purinergic 

receptors involvement in other cancers is well documented, as is its role in bone cell 

function. Currently purinergic receptor antagonists have been found to be safe and 

well tolerated in humans (Silverman et al., 2008) in a clinical trial for rheumatoid 

arthritis. Therefore, if OS can be treated with P2X7R antagonists, there could 

potentially be a quick transition from the bench to benefiting patients directly. 

The proposed hypothesis to be tested is that P2X7R plays a role in the development 

of OS, which can be exploited as a therapeutic target. To test this hypothesis this 

thesis has a number of objectives: 
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 To determine the functional characteristics of the P2X7R variants in OS cells, 

this will be achieved using end-point PCR, qPCR, calcium assays, and pore 

formation assays. 

 To determine the effect of P2X7R expression and antagonism on OS cell 

proliferation using an MTS assay. 

 To determine the effect of P2X7R expression on OS cell adhesion to type 1 

collagen. 

 To determine the effect of P2X7R expression on OS cell migration using a 

scratch assay. 

 To determine the effect of P2X7R expression on OS cell invasion using 

transwells. 

 To form a suitable OS in vivo model for targeting of the P2X7R. 

 To determine if P2X7R expression and antagonism can affect the primary OS 

tumour size in vivo using calliper measurements. 

 To determine if P2X7R expression and antagonism can affect the histology of 

the OS tumours by H&E staining. 

 To determine if P2X7R expression and antagonism affects proliferation and cell 

death in vivo using Immunohistochemistry (IHC). 

 To determine if P2X7R expression and antagonism affects the bone phenotype 

using micro-CT analysis. 

 To determine if P2X7R expression and antagonism affects the osteoclast 

number at the tumour-bone interface. 

 To determine if P2X7R expression and antagonism affects OS pulmonary 

metastasis.     
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Chapter 2 - Materials and Methods 
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2.1 Cell culture 

2.1.1 Cell maintenance and passage 

Te85 OS cells were obtained from the laboratory of Professor Jim Gallagher 

(Liverpool, UK). HEK-293 cells were obtained from the laboratory of Dr Elena Adinolfi 

(Ferrara, Italy). MNNG-HOS OS cells were provided by Professor Dominique 

Heymann (Sheffield, UK, INSERM, France). The Te85 OS cell line used is of human 

origin, specifically a 13-year-old Caucasian female with OS. The MNNG-HOS cell line 

is a derivative of the Te85 parental OS cell line and has been chemically transformed 

with 0.01 µg/mL MNNG (Rhim et al., 1975a). The HEK-293 cell line used is of human 

origin, specifically from human embryonic kidney cells from a healthy aborted foetus 

(Stepanenko & Dmitrenko, 2015). 

Cells lines were defrosted to 37°C and cultured in T75-cm2 flasks (ThermoFisher 

scientific, Roskilde, Denmark) in 10 mL DMEM©+Glutamax™ medium (Life 

Technologies Paisley, UK) containing 10% (v/v) foetal bovine serum (FBS) as a growth 

supplement with 100 Units/mL penicillin and 100 μg/mL streptomycin antibiotics 1% 

(v/v) (Life Technologies) (referred to as complete medium). To passage cells, the 

medium was discarded and cells were washed twice using calcium and magnesium 

free phosphate buffer saline (PBS) (Life Technologies) Cells were then detached by 

the addition of 2.5 mL per flask of 0.25% (v/v) trypsin containing 0.01% (v/v) 

ethylenediaminetetraacetic acid (EDTA) (Sigma, Poole, UK). After detachment by 

incubating the cells for 5 minutes in a standard 37°C incubator with a 5% CO2 stream, 

10 mL of complete medium was added to inhibit any additional action by trypsin. The 

cell suspension was then centrifuged at 300g for 5 minutes, the subsequent pellet was 

resuspended in 1 mL complete medium to then be counted using a trypan blue stain 

(Sigma) and haemocytometer. Cells were maintained by splitting at 60-70% 

confluence with a limit of 25 passages. Frozen vials of cell supplies were stored in 

FBS containing 10% dimethyl sulfoxide (DMSO) and were slowly cooled using a Mr 

Frosty™ freezing container (ThermoFisher Scientific) at an approximate rate of -

1°C/minute. All cell culture work was performed under sterile conditions. 
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2.1.2 Cell transfections  

Te85 OS cells previously used in Professor Gartland’s laboratory (Giuliani et al., 2014) 

have been stably transfected with P2X7R variants including the wild type full length 

P2X7RA and a truncated P2X7RB isoform. Additionally, Te85 OS cells were 

transfected with both isoforms to produce a P2X7RAB variant. For the P2X7RA variant 

G418 (Life Technologies) at a concentration of 0.8 mg/ml was used for selection. For 

the P2X7RB variant 0.2 mg/ml hygromycin (ThermoFisher Scientific) was used for 

selection. 

MNNG-HOS OS cells were transfected with the mammalian expression vector 

pcDNA3 (ThermoFisher Scientific) containing a P2X7RB cDNA construct or 

transfected with an empty mock pcDNA3 vector. Cells were transfected using 

Lipofectamine® LTX & PLUS Reagent™ kit (ThermoFisher Scientific). 50,000 cells 

were plated into 6 well plates and left overnight in complete medium. Cells were then 

changed into OPTI-MEM® reduced serum medium containing PLUS Reagent™ and 

diluted plasmid DNA. DNA concentration was optimised initially by transfecting with 2, 

3 and 4 µg/per well. After a 5-minute incubation at room temperature, Lipofectamine® 

LTX Reagent was added with a further 30-minute incubation at room temperature. 

Cells were then left overnight before been changed back in to complete medium and 

left for a further 48 hours before the addition of 0.2 mg/ml hygromycin.  

2.1.3 Measurement of intracellular calcium concentrations 

In accordance with the kit instructions, 10 mL Fluo-4 Direct™ calcium assay buffer 

and 200 µL of a 250 mM probenecid stock solution was added to one bottle of Fluo-4 

Direct™ calcium reagent to create a 2X Fluo-4 Direct™ calcium reagent loading 

solution (Invitrogen, Paisley, UK). 

Cells were plated out at a density of 15,000 per well in 96-well plates and left overnight 

to adhere, the medium was changed into an equal solution of complete medium and 

the 2X Fluo-4 Direct™ calcium reagent loading solution. Cells were incubated for 1 

hour at 37°C before been stimulated with 100 µM BzATP (ThermoFisher Scientific) 

and then 0.8 µM ionomycin (Sigma, Poole, UK). Calcium concentrations were 

detected using a FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices, 
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Sunnyvale USA) with excitation at 490 nm and emission at 525 nm with a cut off 

wavelength of 515 nm. 

2.1.4 P2X7R dependent pore formation (ethidium bromide dye uptake) 

Cells were plated out at a density of 15,000 per well in 96-well plates and left overnight 

to adhere, the medium was then changed to 80 µL Hank’s Balanced Salt Solution 

(HBSS) (ThermoFisher Scientific) and incubated at 37°C with or without 10 µM of the 

P2X7R inhibitor A740003 (Tocris Biosciences, Bristol, UK) for 1 hour. BzATP was 

diluted in ultra-pure ethidium bromide (Invitrogen) to a final concentration of 300 µM 

and 100 µM with 20 µL added to make a final volume of 100 µL. Induction of P2X7R 

pore formation was then detected on a FlexStation 3 Multi-Mode Microplate Reader at 

360 nm excitation and 580 nm emission with a cut off wavelength of 570 nm for 45 

minutes after an initial 5-minute baseline reading, with readings taken every 2 minutes. 

2.1.5 MTS proliferation assay 

Te85 OS cells were seeded at various cell densities of 1250, 2500 and 5000 per well 

in a 96-well plate in 100 µL phenol-free DMEM (Life Technologies) complete medium. 

After 24 hours, cells were washed twice with PBS and the medium was changed to 

medium containing either 0.5%, 2% or 10% FBS medium. At each time-point of day 0, 

1, 3, 5 and 7, a previously prepared 1 mL aliquot of [3-(4, 5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS), and 

phenazine methyl sulphate (PMS), mixture in the ratio of 20:1 was diluted in 1:5 in 

phenol-free DMEM with 100 µL added directly to the 100 µL clear growth medium 

already in the well to make a total volume of 200 µL. The cells were incubated for 3 

hours at 37°C. The absorbance was read at 490 nm using the SpectraMax M5e 

Microplate Reader (Molecular Devices). For MNNG-HOS cell lines the experiment was 

performed using the same protocol but using 2500 cells per well. For inhibition studies 

using Te85 OS cell lines the cells were seeded at 5000 and MNNG-HOS 2500 per 

well in 0.5% FBS. After 24 hours, cells were treated with 100 µM of A740004 or 

AZ11645373 P2X7R antagonists and absorbance was read at day 3. 
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2.1.6 Cell adhesion assay 

Type 1 rat tail collagen (Life Technologies) was diluted in distilled water to a 

concentration of 50 µg/ml.  100 µL was added to the wells of a 96 well plate for 1 hour 

before removing excess collagen to form a layer along the bottom of the well. 7500 

cells per well were then added in medium containing only 0.5% FBS to the collagen 

coated plate and left for 4 hours at 37°C before washing 4 times with PBS to removed 

unattached cells. Cells were then lysed using 50 µL lysis buffer (20 mM tris, 0.05 M 

MgCl2), after 50 µL of diluted Quant-iT™ PicoGreen® dsDNA Reagent was then added 

to detect the DNA of the lysed remaining cells. Fluorescence was detected and 

quantified at 485 nm excitation and 530 nm emission with a cut off wavelength of 530 

nm using the SpectraMax M5e Microplate Reader. 

2.1.7 Cell migration (scratch assay) 

The scratch assay was performed in 12 well plates containing 200,000 cells in 2 mL 

complete medium, once seeded the cells were left overnight to form a confluent 

monolayer. This was then changed into complete medium containing 5 µg/mL 

mitomycin C (Sigma) to inhibit cell proliferation, and left to incubate for 2 hours at 37°C. 

A scratch was then made using a 10 µL pipette tip down the centre of the well. The 

medium was removed, and the cells were washed twice with PBS to remove the 

unattached cells made from the scratch. Microscopic images were taken using an 

EVOS™ FL Auto Imaging System  (ThermoFisher Scientific) every 2 hours for a 

24-hour period. For low serum experiments the same procedure was performed but in 

medium containing 0.5% FBS as an alternative to 10% FBS medium. In addition, 10 

µM BzATP was used in studies activating the P2X7R again in low 0.5% FBS medium. 

Scratch assay images were analysed automated using T-scratch software.   

2.1.8 Cell invasion 

Matrigel (Corning, New York, USA) at a concentration of 1.5 mg/mL was used to form 

a layer to invade by adding 30 µL to the Corning® FluoroBlok insert to cover the entire 

surface forming a homogenous layer. The wells were left to set for 2 hours at 37°C. 

Cells were incubated with 5 µg/mL mitomycin C, to inhibit proliferation, whilst in culture 

in a T75 flask containing 10 mL complete medium for 2 hours. The cells were then 

trypsinised, counted and added to the matrigel coated FluoroBlok insert in serum free 
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medium with the addition of 10 µM BzATP, 10% FBS was used as a chemoattractant 

in the lower chamber of the well. The FluoroBlok inserts have a light-tight polyethylene 

terephthalate (PET) membrane which blocks any transmission of light between 400 

and 700 nm, therefore any emission from cells in the inserts upper chamber is blocked 

and only emission from the invaded cells will be detected. To detect these cells, 

transwell inserts were washed twice in PBS and stained with Calcein AM cell permeant 

dye (ThermoFisher Scientific) by incubating the inserts in a concentration of 5 µM for 

30 minutes at 37°C. The inserts were then washed twice again in PBS and imaged 

using an EVOS™ FL Auto Imaging System (ThermoFisher Scientific). Images were 

analysed using Image J (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

2.1.9 P2X7R antagonists 

A740003 and AZ11645373 (Tocris Biosciences) are both specific antagonist for 

P2X7R, with A740003 acting competitively (Honore et al., 2006) and AZ11645373 

being allosteric (Michel et al., 2009) they were both dissolved in DMSO to a stock 

concentration of 10 mM and stored at -80˚C in aliquots. 

Figure 2.1: Representative example of an analysed invasion transwell. Cells were seeded into the 

top transwell in FBS free medium containing BzATP and left to invade towards 10% FBS for 24 hours. 

Cells were then washed with PBS and stained green. A) Invaded cells stained with Calcein AM cell 

permeant dye B) Invaded cells analysed using Image J. 

A) B) 
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2.2 Molecular Biology 

2.2.1 RNA extraction  

RNA was extracted from T75 cell flasks using the ReliaPrep™ RNA Miniprep System 

kit (Promega, Southampton UK) in accordance with the manufacturers protocol. Firstly 

500 µL BL+TG buffer (proprietary buffer provided with the kit) was added to the flask, 

vigorously pipetted and passed through a 20-gauge needle to fully lyse the cells. Next 

170 µL of 100% isopropanol was added and the samples vortexed for 5 seconds. 

Samples were then loaded into a mini column and centrifuged at 12,000g for 30 

seconds. The flow-through solution was then discarded. This step was repeated using 

500 µL of an RNA wash solution. A DNAse 1 incubation mix was added to each sample 

and left at room temperature for 30 minutes. After incubation a column wash solution 

was added to the mini column containing the samples and was and centrifuged at 

12,000g for 15 seconds. Two washes were performed with RNA wash solution firstly 

adding 500 µL centrifuging at 12,000g for 30 seconds, and then with 300 µL again at 

12,000g for 2 minutes. A final elution wash was performed using 50 µL of nuclease 

free water to collect the RNA. 

2.2.2 First strand cDNA synthesis 

RNA was reverse transcribed using the Applied Biosystems™ high capacity RNA to 

cDNA™ Kit (Foster City, CA, USA) in accordance with the manufacturers protocol. 1 

µg/µL RNA samples were added to 10.0 µL 2X RT Buffer Mix, 1.0 µL 20X RT Enzyme 

Mix and made up to 20 μL per reaction with nuclease free water per reaction. For 

reverse transcription (RT) negative (-ve) samples no RT Enzyme Mix was added to 

the samples. Samples were kept cool on ice before incubation at 37°C for 60 minutes, 

followed by 5 minutes at 95°C to heat inactivate the reverse transcriptase, samples 

were then held at 4°C prior to collection and storage at 4°C. 

2.2.3 End-Point Polymerase chain reaction (PCR) primers 

End point PCR primers were designed using Pubmed gene sequences (Figure 2.3 & 

2.4). P2X7R mRNA expression was determined with two sets of primers for the 

P2X7R. The first primer set was designed (Table 2.1) early in the gene sequence with 

the forward primer on the exon boundary between exon 3 and 4 and the reverse 
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between exon 7 and 8. This N terminal region is present on both the full length and 

truncated P2X7RB (product length 413 BP). The second primer set was designed 

further along the gene sequence with the both the forward primer and reverse primer 

designed to bind to exon 13 (product length 399 BP) this C-terminal region is only 

present on the full length P2X7RA and thereby unable to be detected in the cells with 

the truncated P2X7RB (Figure 2.2). 

 

 

 

 

 

 

ATGCCGGCCTGCTGCAGCTGCAGTGATGTTTTCCAGTATGAGACGAACAAAGTCACTCGGATCCAGAGCATGAATTATGGCACCATTAAGT

GGTTCTTCCACGTGATCATCTTTTCCTACGTTTGCTTTGCTCTGGTGAGTGACAAGCTGTACCAGCGGAAAGAGCCTGTCATCAGTTCTGT

GCACACCAAGGTGAAGGGGATAGCAGAGGTGAAAGAGGAGATCGTGGAGAATGGAGTGAAGAAGTTGGTGCACAGTGTCTTTGACACCGCA

GACTACACCTTCCCTTTGCAGGGGAACTCTTTCTTCGTGATGACAAACTTTCTCAAAACAGAAGGCCAAGAGCAGCGGTTGTGTCCCGAGT

ATCCCACCCGCAGGACGCTCTGTTCCTCTGACCGAGGTTGTAAAAAGGGATGGATGGACCCGCAGAGCAAAGGAATTCAGACCGGAAGGTG

TGTAGTGTATGAAGGGAACCAGAAGACCTGTGAAGTCTCTGCCTGGTGCCCCATCGAGGCAGTGGAAGAGGCCCCCCGGCCTGCTCTCTTG

AACAGTGCCGAAAACTTCACTGTGCTCATCAAGAACAATATCGACTTCCCCGGCCACAACTACACCACGAGAAACATCCTGCCAGGTTTAA

ACATCACTTGTACCTTCCACAAGACTCAGAATCCACAGTGTCCCATTTTCCGACTAGGAGACATCTTCCGAGAAACAGGCGATAATTTTTC

AGATGTGGCAATTCAGGGCGGAATAATGGGCATTGAGATCTACTGGGACTGCAACCTAGACCGTTGGTTCCATCACTGCCGTCCCAAATAC

AGTTTCCGTCGCCTTGACGACAAGACCACCAACGTGTCCTTGTACCCTGGCTACAACTTCAGATACGCCAAGTACTACAAGGAAAACAATG

TTGAGAAACGGACTCTGATAAAAGTCTTCGGGATCCGTTTTGACATCCTGGTTTTTGGCACCGGAGGAAAATTTGACATTATCCAGCTGGT

TGTGTACATCGGCTCAACCCTCTCCTACTTCGGTCTGGCCGCTGTGTTCATCGACTTCCTCATCGACACTTACTCCAGTAACTGCTGTCGC

TCCCATATTTATCCCTGGTGCAAGTGCTGTCAGCCCTGTGTGGTCAACGAATACTACTACAGGAAGAAGTGCGAGTCCATTGTGGAGCCAA

AGCCGACATTAAAGTATGTGTCCTTTGTGGATGAATCCCACATTAGGATGGTGAACCAGCAGCTACTAGGGAGAAGTCTGCAAGATGTCAA

GGGCCAAGAAGTCCCAAGACCTGCGATGGACTTCACAGATTTGTCCAGGCTGCCCCTGGCCCTCCATGACACACCCCCGATTCCTGGACAA

CCAGAGGAGATACAGCTGCTTAGAAAGGAGGCGACTCCTAGATCCAGGGATAGCCCCGTCTGGTGCCAGTGTGGAAGCTGCCTCCCATCTC

AACTCCCTGAGAGCCACAGGTGCCTGGAGGAGCTGTGCTGCCGGAAAAAGCCGGGGGCCTGCATCACCACCTCAGAGCTGTTCAGGAAGCT

GGTCCTGTCCAGACACGTCCTGCAGTTCCTCCTGCTCTACCAGGAGCCCTTGCTGGCGCTGGATGTGGATTCCACCAACAGCCGGCTGCGG

CACTGTGCCTACAGGTGCTACGCCACCTGGCGCTTCGGCTCCCAGGACATGGCTGACTTTGCCATCCTGCCCAGCTGCTGCCGCTGGAGGA

TCCGGAAAGAGTTTCCGAAGAGTGAAGGGCAGTACAGTGGCTTCAAGAGTCCTTACTGA 

Figure 2.3: The full length P2X7R base pair sequence. Primers were designed that bind early on in 

the gene sequence highlighted in red, a second set were then designed further along the gene that only 

bind to the full length P2X7RA shown in green, highlighted in blue is where the P2X7RB truncates. 

Primer 
Set 

Primer 
Set 

Primer 
Set 

Full length 

P2X7RA 

Truncated 

P2X7RB Primer 
Set 

Figure 2.2: Representation of the P2X7R primer design. Two primer sets were designed, one set 

binds to both the full length P2X7RA and truncated P2X7RB (N-terminal specific), whereas the second 

set can only bind to the full length P2X7RA (C-terminal specific) as P2X7RB is truncated and missing 

that region. 
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ATGCCGGCCTGCTGCAGCTGCAGTGATGTTTTCCAGTATGAGACGAACAAAGTCACTCGGATCCAGAGCATGAATTATGGCACCATTAAGT

GGTTCTTCCACGTGATCATCTTTTCCTACGTTTGCTTTGCTCTGGTGAGTGACAAGCTGTACCAGCGGAAAGAGCCTGTCATCAGTTCTGT

GCACACCAAGGTGAAGGGGATAGCAGAGGTGAAAGAGGAGATCGTGGAGAATGGAGTGAAGAAGTTGGTGCACAGTGTCTTTGACACCGCA

GACTACACCTTCCCTTTGCAGGGGAACTCTTTCTTCGTGATGACAAACTTTCTCAAAACAGAAGGCCAAGAGCAGCGGTTGTGTCCCGAGT

ATCCCACCCGCAGGACGCTCTGTTCCTCTGACCGAGGTTGTAAAAAGGGATGGATGGACCCGCAGAGCAAAGGAATTCAGACCGGAAGGTG

TGTAGTGCATGAAGGGAACCAGAAGACCTGTGAAGTCTCTGCCTGGTGCCCCATCGAGGCAGTGGAAGAGGCCCCCCGGCCTGCTCTCTTG

AACAGTGCCGAAAACTTCACTGTGCTCATCAAGAACAATATCGACTTCCCCGGCCACAACTACACCACGAGAAACATCCTGCCAGGTTTAA

ACATCACTTGTACCTTCCACAAGACTCAGAATCCACAGTGTCCCATTTTCCGACTAGGAGACATCTTCCGAGAAACAGGCGATAATTTTTC

AGATGTGGCAATTCAGGGCGGAATAATGGGCATTGAGATCTACTGGGACTGCAACCTAGACCGTTGGTTCCATCACTGCCATCCCAAATAC

AGTTTCCGTCGCCTTGACGACAAGACCACCAACGTGTCCTTGTACCCTGGCTACAACTTCAGATACGCCAAGTACTACAAGGAAAACAATG

TTGAGAAACGGACTCTGATAAAAGTCTTCGGGATCCGTTTTGACATCCTGGTTTTTGGCACCGGAGGAAAATTTGACATTATCCAGCTGGT

TGTGTACATCGGCTCAACCCTCTCCTACTTCGGTCTGGTAAGAGATTCTCTTTTCCATGCTTTAGGAAAATGGTTTGGAGAAGGAAGTGAC

TAA 

Figure 2.4: The P2X7RB base pair sequence. Primers were designed that bind early on in the gene 

sequence highlighted in red. 

Table 2.1: Summary of P2X7R primers and their product length 

Primers Forward primer Reverse Primer Product 

size 

Tm 

°C 

Annealing 

temperature 

°C 

P2X7R 

N-Terminal 

TTGTGTCCCGAGTATCCCAC TCAATGCCCATTATTCCGCC 413 57.6 55 

P2X7R 

C-Terminal 

ACCAGAGGAGATACAGCTGC TACTGCCCTTCACTCTTCGG 399 58.3 55 

Beta actin TGGCACCACACCTTCTACAA CTATCCCTGTACGCCTCTGG 182 58.7 55 

 

2.2.4 End-Point PCR reaction 

The cDNA was amplified using Promega GoTaq Flexi DNA polymerase kit. The 

reaction mix was as follows: DNA Polymerase (5 u/µL), 5X GoTaq® Reaction buffer, 

dNTPs (0.2 mM), MgCl2 (1.5 mM) upstream and downstream primer (0.5 µM) and 

template cDNA (1 µg). The PCR samples were denatured for 2 minutes at 95°C for 

one cycle, followed by 35 cycles of denaturation at 90°C for 30 seconds, annealing 

temperature (Table 2.1) for 30 seconds, and extension at 72°C for 30 seconds. A final 

extension was then performed at 72°C for 5 minutes for one cycle before samples 

were held indefinitely at 4°C. Successful cDNA synthesis was confirmed by visualising 
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the amplified products on an electrophoretic gel. No template RT-ve were used in 

parallel with the RT+ve samples to detect genomic contamination in samples. 

2.2.5 Gel electrophoresis 

PCR products were identified using gel electrophoresis. A 2% agarose gel was made 

using 100 mL 1 X Tris-borate-EDTA (TBE) buffer with 2 g agarose (Fisher Scientific, 

Loughborough, UK) added. This was then microwaved for 2 minutes and left to cool 

for five minutes. Finally, 3 µL ethidium bromide at a concentration of 500 µg/mL was 

added for visualisation of the DNA. Gels were run at 200V for 30 minutes and were 

visualised using a Bio-Rad GelDoc TM XR+ Gel imaging system with a Quantity One 

software (Bio-Rad Laboratories, Hercules, CA, USA). 

2.2.6 TaqMan® Real Time quantitative PCR (qPCR) 

Equipment was treated using a UV light hood for 45 minutes prior to performing the 

reaction which was carried out in a 384 well plate. Each 10 μL reaction consisted of 5 

μL 2x Universal Master Mix, 0.5 μL of the Taqman® gene expression assay, 2.5 μL 

nuclease free water (Applied Biosystems™) and 2 μL cDNA template. Plates were 

sealed, centrifuged at 300 g for 5 minutes. The qPCR was carried out on an Applied 

Biosystems 7900HT Real-Time PCR machine. The following Taqman probes were 

used: Human P2X7R Taqman® gene expression assay, ID: Hs00951600_m1  

Catalog: 4351372, human HPRT Taqman® gene expression assay, ID: Hs02800695 

Catalog: 1621448. 

  

https://www.thermofisher.com/taqman-gene-expression/product/Hs00951600_m1?CID=&ICID=&subtype=
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2.3 In vivo studies in murine models of OS 

Animal work was carried out at the University of Sheffield Biological Services Unit. The 

work was performed under the project licence number: PF61050A3 (Professor Alison 

Gartland) in accordance with UK Home Office regulations and complied with the UK 

Animals (Scientific Procedures) Act 1986 which was reviewed and approved by the 

local Research Ethics Committee of the University of Sheffield (Sheffield, UK). Studies 

were designed using the Experimental Design Assistant (EDA) produced by the 

National Centre for the replacement, refinement and reduction of animals in research. 

Animal power calculations were designed in consultation with a statistician from the 

University of Sheffield School of Maths and Statistics.  

2.3.1 Animals  

7-9-week-old female BALB/c nude mice (Charles River Margate, UK) were housed 

under pathogen free conditions. All animals were healthy and pathogen-free at the 

start of each study and once each study had commenced they were monitored for any 

unexpected adverse effects. Animals were housed in their respective groups and the 

numbers per group were determined in consultation with a statistician from the 

University of Sheffield School of Maths and Statistics. A power calculation was 

performed, assuming that the mean and SD of 5.6 BV/TV (%) and 1.4 based on the 

pilot experiment (Chapter 5). A sample size of 10 mice would provide 80% power to 

see a 25% reduction in to 4.48 BV/TV (%) in the legs given a sham injection, at the 

5% significance level. To allow for potential deaths/non-tumour take 12 mice per group 

were used. Mice were maintained under the same environmentally controlled 

conditions at room temperature with a 12-hour light/dark cycle, body weight 

measurements were taken twice a week to monitor health. If the body weight reduced 

below 20% of that before tumour implantation or tumours reached a mean width of 

>10 mm in any dimension, then animals were euthanised immediately using schedule 

1 procedures. 

2.3.2 Establishing a xenograft model of OS (pilot study) 

Mice were anesthetized by inhalation of 100% w/v isoflurane (IsoFlo® Zoetis, London, 

UK) and 2% oxygen before a paratibial injection of 500,000 Te85, Te85+P2X7RA, 

Te85+P2X7RB, Te85+P2X7RAB, MNNG-HOS, or MNNG-HOS+GFP+LUC OS cell 
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lines suspended in 20 µL PBS (n= 3 mice/group). An example of an established OS 

tumour on a mouse limb is shown in Figure 2.5. Mice injected with MNNG-

HOS+GFP+LUC and MNNG-HOS naïve OS cells were euthanised after 3 weeks and 

mice injected with Te85 or Te85 OS cells expressing the P2X7R isoforms were 

euthanised after 5 weeks by cervical dislocation. Both hind limbs with surrounding 

tissue remaining intact were collected along with the lungs, all tissue was fixed in 10% 

neutral buffered formalin at 4°C for 48 hours before been changed into 70% ethanol. 

Analysis of tumour burden and bone disease were performed as described below. 

2.3.3 Targeting the P2X7RB in vivo in the MNNG-HOS model using A740003 

Mice were anesthetized by inhalation of 100% w/v isoflurane and 2% oxygen before a 

paratibial injection of PBS (scratch control, n=12 mice), 250,000 MNNG-HOS (n=36 

mice) or MNNG-HOS+P2X7RB (n=36 mice) cells in the left leg only. Mice were then 

divided into 7 groups (Table 2.2). After 2 days the mice were treated with either vehicle 

Figure 2.5: A representative OS tumour growing around a mouse tibia. Mice injected with 500,000 

MNNG-HOS naïve OS cells formed palpable tumours after 9 days and after 12 days when 250,000 cells 

were injected paratibially. Both hind legs were collected for analysis with surrounding tissue left intact to 

preserve tumour architecture.  
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(PBS+DMSO), Ifosfamide (30 mg/kg) or A740003 (50 µg/kg) administered by 

intraperitoneal (IP) injection 3 times a week for a total of 3 weeks (9 injections in total).  

Table 2.2 Treatment groups in the MNNG-HOS xenograft model of OS. 

Cell line Mouse number Treatment Concentration 

MNNG-HOS 12 Vehicle N/A 

MNNG-HOS 12 Ifosfamide 30 mg/kg 

MNNG-HOS 12 A740003 50 µg/kg 

MNNG-HOS+P2X7RB 12 Vehicle N/A 

MNNG-HOS+P2X7RB 12 Ifosfamide 30 mg/kg 

MNNG-HOS+P2X7RB 12 A740003 50 µg/kg 

Scratched only 12 N/A N/A 

All animals were anesthetized (100% w/v isoflurane and 2% oxygen by inhalation) for 

cardiac bleeding and euthanised by cervical dislocation. Both the left and right hind 

limbs were then collected with tissue remaining intact, the lungs were also collected. 

All tissue was fixed in 10% neutral buffered formalin at 4°C for 48 hours before been 

changed into 70% ethanol. Analysis of tumour burden and bone disease were 

performed as described below. 

2.3.4 Calliper measurements 

Basic calliper measurements were performed at the end of the experiment to 

determine the size of the tumour on the mouse leg. In addition, measurements were 

made on the legs ex vivo using scanned images from the micro-CT analysis. Tumour 

width were measured at the widest part of the tumour when the bone was orientated 

facing the same direction (Figure 2.6). 
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Figure 2.6: Tumour size measured using a micro-CT scan of the tumour bearing mouse leg. 

Each mouse was injected with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB 

paratibially, suspended in 20 µL PBS. They were then treated with either vehicle, Ifosfamide or 

A740003 every 2 days for 3 weeks via an IP injection. The mice were euthanised and both legs 

collected, micro-CT scanned and analysed for the tumour size by measuring the widest part of the 

tissue. Legs were all orientated facing the same direction. 
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2.3.5 Micro-CT scanning 

Mouse left and right tibia and fibulas were scanned on a Skyscanner micro-CT scanner 

(1272, Bruker, Belgium) set to take medium sized images (2016 X 1344) using a 0.5 

mm aluminium filter and a detection pixel size of 8μm. Images were captured every 

0.7°. Scanned images were reconstructed using Skyscan NRecon software (v. 1.6.9, 

Bruker, Belgium) and datasets were resized using Skyscan CTAn (v. 1.14.4, Bruker, 

Belgium). The region of interest (ROI) for the total bone volume included both the tibia 

and fibula and was determined at the top of the bone as soon as the tibia enters the 

image and femur is excluded, the bottom of the bone was determined at the point 

where the tibia and fibula meet (Figure 2.7). These regions were then produced by 

drawing on two-dimensional acquisition images.  

 

  

A) B) 

C) 

Figure 2.7 Example ROI for analysis of the total bone volume using micro-CT. Each mouse was 

injected with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB paratibially. The mice were 

euthanised and both legs collected, micro-CT scanned and reconstructed. The ROI was drawn on the 

image around the bone and included both the tibia and fibula in the analysis A) Scan image of the full 

bone B) The ROI where the femur ends and tibia begins C) The ROI where the tibia and fibula meet. 
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2.3.6 Bone processing, embedding and sectioning  

After micro-CT scanning bones were decalcified in 10% EDTA (20 x bone/leg volume) 

changing the solution twice a week for 3 weeks, these were then checked using the 

micro-CT that calcium had been removed. After decalcification tissues were then 

processed on the Leica TP1020 carousel tissue processor according to the following 

steps (Table 2.3): 

Table 2.3: Bone processing stages on the Leica TP1020 

 Station  Solution  Time Vacuum 

2 70% Ethanol 2 hours No 

3 70% Ethanol 2 hours No 

4 70% Ethanol 2 hours No 

5 95% Ethanol 2 hours No 

6 95% Ethanol 2 hours No 

7 100% Ethanol 2 hours No 

8 100% Ethanol 2 hours No 

9 Xylene 2 hours No 

10 Xylene 2 hours No 

11 Leica 08605E wax melting point 56ºC 2 hours Yes 

12 Leica Wax (as above) 2 hours Yes 

After processing, the bones were wax embedded at a specific orientation which was 

the same for each bone. When sectioning, the wax block was first cooled on ice for 15 

minutes before being attached to the Leica Microsystems Microtome and sectioned at 

5 μm the sections were taken when the tumour was visible and fully exposed then put 

on to a 45°C water bath to “float” and be picked up using super-frost positively charged 
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slide. Finally, they were placed in an oven at 37°C to fully adhere to the slides over-

night. 

2.3.7 Bone histology and IHC- KI-67 and annexin V staining 

Wax sections (3 μm) of the left tibiae were dewaxed in xylene, rehydrated through 

graded alcohols before performing heat mediated antigen retrieval using a water bath 

at 80°C for 20 min with citrate buffer at pH6 (Abcam, Cambridge, UK). Endogenous 

peroxidase was blocked with 3% hydrogen peroxide (VWR, Lutterworth, UK) for 30 

min at room temperature, washed twice in PBS-tween (PBST) and blocked in 1% 

Normal goat serum in PBST (Vector Laboratories, Peterborough, UK) for 20 min at 

room temperature. Primary rabbit anti-human Ki-67 antibody (Abcam 1 mg/ml) or 

primary rabbit anti-human annexin V antibody (Abcam 1.5 mg/ml) was added to the 

sections at a dilution of 1:100 for Ki-67 and 1:200 for annexin V. Additionally, rabbit 

IgG (Abcam 5 mg/ml) was added to the sections at a dilution of 1:500 both in 1% 

casein. They were incubated for 1 hour at room temperature. After 2 washes in TBST, 

the sections were treated with biotinylated goat anti-rabbit IgG secondary antibody 

(Vector Laboratories) at 1:200 in 1% casein for 20 minutes at room temperature. 

Sections were washed twice in PBST then treated with an ABC kit (Vector 

Laboratories) for 20 min at room temperature and the bound antibody detected with 

Impact-DAB substrate-chromagen system (Vector Laboratories) for 5 min at room 

temperature. The sections were washed in tap water for 3 minutes, counter stained in 

Gills haematoxylin (VWR, Merck, Birmingham, UK) for 5 seconds, dehydrated through 

graded alcohols, and cleared with xylene. Coverslips were mounted using DPX. The 

slides were scanned using a Pannoramic 250 Flash III (3D HISTECH, Budapest, 

Hungary) and percentage of Ki-67/ annexin V cells quantified using QuPath software 

(Figure 2.8). 
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Figure 2.8: Example of a IHC ROI quantified using QuPath software. Each mouse was injected with 

250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB paratibially, they were then treated with 

either vehicle, A740003 or Ifosfamide every 2 days for 3 weeks via IP injection. The mice were then 

euthanised and dissected. The legs were collected processed, embedded into wax blocks and sections 

were taken to be stained for Ki-67 or annexin V. The sections were then analysed using QuPath. A) IHC 

staining B) Cells detected using Qupath C) The detection of positively stained cells red and the negatively 

stained cells blue. 
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2.3.8 Tartrate-resistant acid phosphate (TRAP) staining 

Samples were dewaxed by passing them through xylene and graded alcohols, they 

were then incubated in pre-warmed acetate-tartrate buffer (0.1 M Sodium tartrate in 

0.2 M acetate buffer [Both Sigma pH 5.2) at 37°C for 5 minutes. Followed by a 30 

minute incubation at 37°C in 20 mg/mL Naphthol AS-BI phosphate Dimethylformamide 

(Sigma/Fisher Scientific) in acetate-tartrate buffer. The samples were then incubated 

in acetate-tartrate buffer hexazotised pararosaniline solution for 15 minutes at 37°C, 

counterstained in haematoxylin for 10 seconds, washed in tap water for 5 minutes, 

dehydrated by passing through graded alcohols and cleared with xylene. Coverslips 

were then mounted using DPX. Osteoclasts were analysed at the bone-tumour 

interface using an osteomeasure (Figure 2.9). 

 

 

 

 

 

 

 

 

 

 200µM 

A) 

B) 

Figure 2.9: Representative TRAP stained tibia section showing osteoclasts in red. To visualize 

TRAP activity, Naphthol AS-BI phosphate is used as a substrate for TRAP. The product of this reaction 

can then react with a diazonium salt (hexazotised pararosalinine) which will leave a red precipitate and 

can be visualised. A) The tumour is shown forming at the surface of the bone B) Osteoclasts visibly 

stained red at the point in which the tumour cells meet the bone surface. 
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2.3.9 Haematoxylin & eosin staining  

Sections were added to xylene twice for 5 minutes to remove the wax. They were 

rehydrated through graded alcohols for 5 minutes each and tap water for 1 minute. 

The nuclei were then stained by Gill’s II haematoxylin (VWR). for 90 seconds and wash 

using tap water for 3 minutes. 1% aqueous eosin (VWR) with 1% calcium carbonate 

(Sigma) was used to stain the cytoplasm for 5 minutes. The slides were then quickly 

dehydrated through tap water (30 seconds) to remove eosin, 70% IMS (10 seconds), 

95% IMS (10 seconds), 99% IMS (30 seconds), and 99% IMS (30 seconds). Finally, 

the slides were passed through xylene to remove IMS and mounted with coverslips 

using DPX. 

2.3.10 Lung analysis 

Lungs were collected and fixed in 10% neutral buffered formalin for 48 hours at 4 °C 

before been changed into 70% ethanol, they were then processed as above and 

embedded in wax cassettes. To section the lungs 6 µm sections were cut every 100 

µm deep to cover the entire lung and stained using Gill’s II haematoxylin and eosin as 

above. Lung sections were visualised under a light microscope and observed for the 

presence of any metastasis. 

2.3.11 Statistics 

All data was analysed using GraphPad Prism version 7.00 for Windows (GraphPad 

Software, La Jolla California, USA). Statistical outliers in the data were removed using 

the ROUT method, and normality tested using the D’Agostino and Pearson omnibus 

normality test. Statistical significance was tested using parametric or non-parametric 

tests as appropriate. For comparing two groups, either a paired or unpaired t-test was 

used depending upon the groups to be compared, with a Mann-Whitney test for non-

parametric data. For comparing more than two groups, Ordinary One-way ANOVA 

was used with Tukey’s multiple comparison test for parametric data and a Kruskal-

Wallis test with Dunn’s comparison for non-parametric data. Slopes were compared 

using linear regression. The difference was considered significant for P<0.05. 
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Chapter 3 – P2X7R expression and function in Te85 

OS cells in vitro 
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3.1 Introduction  

Investigation of the tumour microenvironment has gained great importance for the 

understanding of tumour formation and progression, with various processes playing a 

role in OS. P2X7R signalling is ubiquitous and found to influence almost every cell 

system in the human body (Morandini et al., 2014) with a variety of different cancers 

expressing P2X7Rs (Burnstock, 2017). The P2X7R is the least sensitive P2X receptor 

to ATP and requires a 100 fold greater level of ATP to activate than for other P2X 

receptors (North, 2002). Studies have identified ATP to be at a high concentration in 

the tumour microenvironment in the range of hundreds of micromoles (Adinolfi, 2013, 

Qiu et al., 2014), yet low (10-100 nM) in surrounding healthy tissue (Pellegatti et al., 

2008). This is particularly pertinent in the case of the bone tumour microenvironment 

where mechanical loading can stimulate ATP release (Rumney et al., 2012, Genetos 

et al., 2010). Additionally ATP can be released through tumour cell death caused by 

stresses such as inflammation, hypoxia, and non-targeted therapies (Gilbert et al., 

2019). Dependent upon its level of activation mediated by extracellular ATP the 

P2X7R plays a role in both cell apoptosis and cell proliferation, the pore formation 

ability is mediated by the C terminal (Smart et al., 2003) and is responsible for the 

apoptosis activated with high concentrations of ATP (Roger et al., 2015). Cells become 

capable of allowing molecules with a mass of up to 900 Da to enter the cell (Volonte 

et al., 2012). Without this feature P2X7Rs are referred to as having a non-functional 

phenotype (Figure 3.1) (Barden et al., 2014). Changes in P2X7R expression and 

function can vary dependent on tissue type and stage of differentiation, or can occur 

through splice variants and single nucleotide polymorphisms (Worthington et al., 

2006).  
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Over-expression of a possible cytotoxic P2X7R by cancer cells is confusing, however, 

a non-functional receptor with oncogene-like properties may provide an explanation 

for this. The non-functional variants still retain the ability to signal with Ca2+, Na+ and 

K, and in a tumour setting leads to various morphological changes related to 

metastatic potential. This includes; membrane blebbing, loss of various adhesion 

proteins such as L-selectin, matrix metalloproteinase and cathepsins, influence 

cytokine release, increase cell survival, proliferation, migration and cancer cell 

invasion (Barden et al., 2014, Gilbert et al., 2019). Expression of non-functional 

P2X7Rs has been demonstrated in a range of different cancer types and have been 

found to be upregulated when compared to corresponding healthy tissue. Expression 

of non-functional P2X7Rs have been examined using a specific non-functional specific 

P2X7R antibody in tissue originating from: Mesothelioma, lymphoma, thyroid papillary 

carcinoma, Hodgkin’s lymphoma, oligodendrogliomas, glioblastomas, astrocytomas, 

bowel adenocarcinoma, ovarian serous tumour, cervical cancer, endometrial 

carcinoma of the uterus, small cell lung cancer, hepatocellular carcinoma, transitional 

cell carcinoma of the bladder and Barrett’s mucosa with adenocarcinoma. Additionally, 

Figure 3.1 The contrasting roles played by the P2X7R in the cell microenvironment. P2X7R 

stimulation with low levels of ATP under tonic conditions can stimulate cell survival and proliferation, 

however when a high amount of ATP is present a large cytolytic pore can form and induce P2X7R-

dependnt lysis.  
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tumours of mesenchymal origin express non-functional P2X7Rs including 

gastrointestinal stromal tumour, endometrial stromal tumour and Ewing’s sarcoma 

(Barden et al., 2014). 

P2X7R expression and functional characteristics in OS and osteoblast cells is varied, 

one study showed P2X7R expression at the mRNA level for both Te85 and Saos-2 

OS cell lines. In addition, P2X7R surface expression was detected in Saos-2 cells, but 

not Te85 OS cells (Gartland et al., 2001). To further confirm the characteristics of the 

P2X7R in Saos-2 and Te85 OS cells pore formation was assessed and consistent with 

the P2X7R mRNA expression data, Saos-2 cells, but not Te85 OS cells, were found 

to form transmembrane pores when stimulated with BzATP (Gartland et al., 2001). 

Other studies have found that P2X7R was expressed in bone marrow-derived stromal 

cells and in primary human trabecular osteoblasts, with only the mature cell type 

having fully functional P2X7R (Agrawal et al., 2017) however, they are also found on 

MSC cells (osteoblast precursors) and contribute towards cell differentiation and 

osteogenesis (Kaebisch et al. 2015). 

To determine the role that P2X7Rs play in the pathology of OS, demonstration of their 

presence and of their functional characteristics is required for them to be targeted in 

the bone OS microenvironment therefore this chapter has the following aims: 

 To determine if P2X7R mRNA is present in transfected Te85 OS cells, this will 

be assessed using end-point PCR and qPCR. 

 To determine P2X7R intracellular calcium activation in the different Te85-

P2X7R variant OS cells using Fluo-4AM. 

 To determine if the transfected variants have P2X7R pore formation activity. 

  



74 
 

3.2 Expression of P2X7R variants in naïve and transfected Te85 OS cells using 

end-point PCR 

The Te85 human OS cell line normally lacks endogenous P2X7R protein expression, 

therefore, this cell line acts as a suitable model to investigate the effects of expressing 

the receptor, which was achieved by stable transfection. Te85 OS cell lines were 

previously transfected with plasmids containing the full length P2X7RA, the truncated 

isoform P2X7RB and a co-transfected P2X7RAB variant, (courtesy of a previous 

Gartland Bone Group member Dr Eric Wang). HEK-293 cells were used as a positive 

control and had previously been transfected with the full length P2X7RA variant 

(courtesy of Dr Elena Adinolfi, Ferrara Italy). 

RNA was isolated from the above cell lines and cDNA synthesized (Chapter 2 section 

2.2). The success of the cDNA reactions was confirmed with the housekeeping gene 

beta actin with a clear band at 182 BP. RT+ve and a RT-ve control were used (Figure 

3.2). 

P2X7R mRNA expression was determined with two sets of primers for the P2X7R. 

The first primer set was designed early in the gene sequence with the forward primer 

on the exon boundary between exon 3 and 4 and the reverse between exon 7 and 8. 

This region is present on both the full length and truncated P2X7RB, (product length 

413 BP). The second primer set was designed further along the gene sequence with 

the both the forward primer and reverse primer designed to bind to exon 13 (product 

length 399 BP) this region is only present on the full length P2X7RA and thereby 

unable to be detected in the cells with the truncated P2X7RB.  

The results demonstrate that bands were produced in the HEK-293 positive control 

cells with very little P2X7R expression in Te85 naïve OS cells; this was increased in 

Te85 OS cells transfected with the P2X7R variants (A, B, and AB, Figure 3.3). 
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Figure 3.2: Confirmation of successful cDNA synthesis using the beta actin housekeeping gene 

in Te85 OS cells with different P2X7R variants. Lanes 1 & 2 Te85 naïve OS cells, RT+ve and RT-ve, 

lanes 3 & 4 Te85+P2X7RA OS cells, RT+ve and RT-ve, lanes 5 & 6 Te85+P2X7RB OS cells, RT+ve 

and RT-ve, lanes 7 & 8 Te85+P2X7RAB OS cells, RT+ve and RT-ve. All beta actin product lengths are 

at 182 BP. 

1 2 3 4 5 6 7 8 9 10 9 10 

Figure 3.3: P2X7R expression in transfected Te85 OS cells with HEK-293+P2X7RA control. 

Expression of P2X7R mRNA in Te85 OS cells was determined with two different P2X7R sets of primers, 

one set binding to both P2X7RA and P2X7RB, the second set binding to a region on P2X7RA that is 

truncated on P2X7RB (product length 413 BP and 399 BP respectively). DNA from each cell type was 

amplified with both primer sets. Lane 1 & 2: Te85 naïve OS cells, lane 3 & 4: Te85+P2X7RA OS cells, 

lane 5 & 6: Te85+P2X7RB OS cells, lane 7 & 8: Te85+P2X7RAB OS cells, lane 9 & 10: HEK-

293+P2X7RA cells (control). 
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3.3 Expression of P2X7R variants in Te85 OS cells using qPCR 

In addition to end-point PCR showing bands for P2X7R expression, qPCR was used 

to demonstrate gene expression changes in transfected cells. Delta cycle threshold 

(ΔCT) values were calculated by normalising target templates to HPRT a 

housekeeping gene, delta delta CT values and fold changes were then calculated. 

Transfected cells were compared to the untransfected Te85 naïve OS cells with results 

plotted as fold change. The human P2X7R Taqman® primer used is not isoform 

specific and will therefore detect both P2X7RA and P2X7RB. 

The results demonstrate that there is a significantly increased P2X7RA average fold 

change expression in transfected Te85 OS cells (P=0.0148, Figure 3.4) a significantly 

increased P2X7RB expression in transfected Te85 OS cells (P=0.0027, Figure 3.4) 

and a significantly increased P2X7R expression in the P2X7RAB co-transfected 

variant (P=0.0012, Figure 3.4) compared to Te85 naïve OS cells. There was no 

significant difference in the levels of P2X7R expressions amongst the transfected cell 

lines. 
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Figure 3.4: Quantification of P2X7RA, P2X7RB and P2X7RAB expression in Te85 OS cells. RNA 

was extracted from Te85 OS cells reverse transcribed to cDNA then amplified using qPCR, HPRT was 

used as a housekeeping gene with data expressed relative to this and the Te85 naïve P2X7R 

expression levels shown green, Te85+P2X7RA OS cells shown red, P2X7RB OS cells shown blue and 

P2X7RAB OS cells shown black. Data is from three biological repeats with six technical repeats per 

experiment with three technical repeats using the P2X7R Taqman probe and three using the HPRT 

Taqman probe. Results were analysed using a one-way ANOVA with Tukey's multiple comparisons 

test, * = P <0.05 ** = P <0.01. 
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3.4 Measurement of intracellular calcium activation in P2X7R transfected Te85 

OS cells  

Changes in cytosolic free calcium concentrations were measured in naïve and 

transfected cells. Cells were plated out at a density of 15,000 per well in 96-well plates 

and left overnight to adhere, the media was then changed into an equal solution of 

complete medium and 2X Fluo-4 Direct™ calcium reagent loading solution. Cells were 

incubated for 1 hour at 37°C before been stimulated with BzATP (100 µM) and then 

ionomycin (0.8 µM). 

The results for calcium activation were plotted relative to its ionomycin response 

(Figure 3.5 A). The area under the curve (AUC) (Figure 3.5 B) and peak intensity 

(Figure 3.5 C) were plotted. The results demonstrate that there was a significantly 

increased AUC in cells when transfected with P2X7RA (Te85+P2X7RA 550.9 ± 22.13 

SEM vs 378.4 ± 13.22 SEM Te85 naïve, P<0.0001, Figure 3.5 B) when transfected 

with P2X7RB (Te85+P2X7RB 470.9 ± 14.71 SEM vs 378.4 ± 13.22 SEM Te85 naïve, 

P<0.0001, Figure 3.5 B) and when transfected with P2X7RAB (Te85+P2X7RAB 542.7 

± 20.97 SEM vs 378.4 ± 13.22 SEM, Te85 naïve, P<0.0001, Figure 3.5 B) when 

compared to Te85 naïve OS cells. 

The results for the peak intensity demonstrate that there was a significantly increased 

peak intensity in cells transfected with P2X7RA (Te85+P2X7RA 2.99 ± 0.1254 SEM 

vs 1.8 ± 0.6541 SEM Te85 naïve, P<0.0001, Figure 3.5 C) when transfected with 

P2X7RB (Te85+P2X7RB 2.486 ± 0.4863 SEM vs 1.8 ± 0.6541 SEM Te85 naïve, 

P=0.0006, Figure 3.5 C) and when transfected with P2X7RAB (Te85+P2X7RAB 3.239 

± 0.1458 SEM vs 1.8 ± 0.6541 SEM Te85 naïve, P= <0.0001, Figure 3.5 C) when 

compared to Te85 naïve OS cells. 
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Figure 3.5: Measurement of intracellular calcium activation in P2X7R transfected Te85 OS cells 

after P2X7R stimulation with BzATP. Cells were seeded at 15,000 cells in 96-well plates and left 

overnight to adhere. The media was then changed into an equal solution of complete medium and 2X 

Fluo-4 Direct™ calcium reagent loading solution. Cells were then incubated for 1 hour at 37°C before 

been stimulated with BzATP (100 µM) and then ionomycin (0.8 µM) A) Calcium response for the 

different P2X7R variants, B) The AUC C) The maximum peak intensity. Te85 naïve OS cells are shown 

green, Te85+P2X7RA OS cells shown red, P2X7RB OS cells shown blue and P2X7RAB OS cells 

shown black. Results are from 3 biological repeats with 6 technical replicates. Results were analysed 

comparing each group to the Te85 naïve OS cells using an unpaired T-test **** = P <0.0001. 
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3.5 Measurement of P2X7R pore formation in transfected Te85 OS cells 

Sustained stimulation of the P2X7R with its agonist ATP enables the P2X7R to form 

a large irreversible pore permeable to molecules with a molecular weight of up to 900 

Daltons (Da) (Volonte et al., 2012). This includes large organic dyes such as ethidium 

bromide (molecular weight 394). This function is unique to the P2X7R subset of 

purinergic receptors and has a variety of roles. Therefore, this function was assessed 

in Te85 OS cells transfected with the different variants, with HEK-293 cells used as a 

positive control. A density of 15,000 cells/well were cultured in a 96 well plate, left 

overnight to form a monolayer and incubated in HBSS buffer for 1 hour prior to 

analysis. The pore formation function was then stimulated using 300 µM BzATP in the 

presence of 100 µM ethidium bromide and monitored for 45 minutes to assess the dye 

uptake by fluorescence emission at an excitation/emission wavelength couple of 

360/580 nm. Cells were also treated with 10 µM of A740003, a P2X7R specific 

inhibitor, to confirm the pore was due to P2X7R expression. 

The results demonstrate that as expected, activation  with BzATP of the fully functional 

P2X7RA variant in HEK-293 cells led to uptake ethidium bromide, hence 

demonstrating pore formation and was used as a positive control to compare to pore 

formation in the Te85 OS cells, this effect was attenuated with the addition of A740003 

shown in (Figure 3.6 A, C, E, G).  

The assay demonstrated as expected, no functional pore formation ability in the 

untransfected Te85 naïve OS cells (Figure 3.6 B). However, the Te85 OS cells 

transfected with the full length P2X7RA variant also did not demonstrate functional 

pore formation, (Figure 3.6 D). There was no pore formation in the Te85+P2X7RB 

variant (Figure 3.6 F). The Te85+P2X7RAB variant did demonstrate the ability to 

produce a fully functional pore typical of the classical P2X7R, this effect was 

attenuated with the addition of A740003 (Figure 3.6 H). 
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Figure 3.6: Ethidium bromide uptake in response to P2X7R activation in Te85 OS cells. Cells 

were plated out into 96-well plates and left overnight to adhere, the media was then changed to HBSS 

and incubated at 37°C with or without 10 µM of the P2X7R inhibitor A740003 for 1 hour. BzATP was 

diluted in ultra-pure ethidium bromide to a final concentration of 300 µM BzATP and 100 µM ethidium 

bromide. Induction of the P2X7R pore formation was detected for 45 minutes after an initial 5-minute 

baseline reading, with readings taken every 2 minutes. A, C, E, G) Transfected HEK-293+P2X7R cells 

known to form pores used as a positive control. B) Te85 naïve OS cells D) Te85+P2X7RA OS cells F) 

Te85+P2X7RB OS cells H) Te85+P2X7RAB OS cells. Red are cells stimulated with BzATP, green are 

stimulated with BzATP but containing the A740003 inhibitor, black indicates the cells incubated with 

ethidium bromide only and no BzATP stimulation. Results are from three biological repeats with six 

technical replicates. 
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3.6 Discussion 

This purpose of this chapter was to demonstrate P2X7R expression and function in 

the Te85 OS cell line. Te85 naïve OS cells have a very negligible expression of P2X7R 

at mRNA level, don’t have P2X7R calcium activation or the typical P2X7R pore 

formation response to stimulation with BzATP, this is in accordance with previous 

studies (Gartland et al., 2001, Giuliani et al., 2014). In order to investigate the role that 

P2X7R plays in OS the full length P2X7RA and truncated P2X7RB were transfected 

into Te85 OS cells along with a co-transfected cell line expressing both P2X7RA and 

P2X7RB, the transfected variants were then checked for mRNA expression calcium 

activation, and pore formation. 

After transfection there is a clear band for mRNA expression in all transfected Te85 

variants. There is also an increased calcium response when stimulated with BzATP in 

P2X7R expressing cell lines. The Te85 OS cell line transfected with full length 

P2X7RA didn’t demonstrate the pore formation, this was unexpected as the P2X7RA 

is usually capable of this response in other cell lines, such as the HEK-P2X7RA control 

cells (Adinolfi et al., 2010).This is also the case for the Te85+P2X7RB OS cell line but 

this was an expected result as this isoform is truncated and missing the C terminal 

region responsible for pore formation. The co expressing P2X7RAB variant did 

produce the P2X7R pore, suggesting some subunit interactions, its again been shown 

in HEK-293 cells that co transfection with both variants produced a pore formation 

response higher than in P2X7RA expressing cells alone (Adinolfi et al., 2010). 

The results in this chapter provide a future basis to target P2X7R variants by 

confirming successful transfection of the Te85 OS cell line, thereby they can be used 

as a suitable in vitro model system. The increased level of ATP in tumour sites would 

be enough to stimulate P2X7R pore formation and could potentially be exploited to 

induce cancer cell death, drug delivery or chemotherapy loading. There is some 

evidence that P2X7R-dependent lysis could reduce cell proliferation of chronic 

lymphocytic leukaemia cells in vitro due to the cytotoxic effect of high ATP 

concentrations (Adinolfi et al., 2011). However the mechanism relating to pore 

formation isn’t fully understood, whether pore formation even occurs in vivo is 

unknown, and the P2X7R pore function isn’t always present depending upon cell type 

(Di Virgilio et al., 2018). This chapter provides data demonstrating that the P2X7R 
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variants in the Te85 OS cells don’t have the typical P2X7R pore formation and thereby 

they present a non-functional phenotype. Basal activation of P2X7Rs has previously 

been shown to contribute towards cell survival and proliferation by increasing internal 

ATP content and supporting mitochondrial activity whereas the pore formation function 

paradoxically contributes towards mitochondrial catastrophe and P2X7R-dependent 

lysis (Di Virgilio et al., 2018). It could be the case that P2X7R expression may drive 

growth or cell survival and other important OS disease promoting properties when 

expressing the non-functional variants shown here. The effect that P2X7R variant 

expression has in the context of OS can be explored in future chapters now that the 

OS P2X7R cell lines have been generated and confirmed here. 

  



84 
 

Chapter 4 – The effect of P2X7R expression on Te85 

OS cell properties in vitro 
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4.1 Introduction  

Tumour survival and growth relies on the capability to acquire a phenotype displaying 

rapid uncontrolled proliferation of cells, which can be influenced by a variety of 

molecular, genetic and growth sustaining/promoting changes (Hanahan et al., 2000) 

OS tumours in most cases exhibit a highly aggressive and malignant phenotype of 

proliferating transformed osteoblasts, the underlying mechanisms of which are yet to 

be revealed and targeted (Evola et al., 2017). Despite the expression of P2X7Rs in 

OS cell lines and implications in various other cancer models, the role of the P2X7R 

in the context of OS physiology has been minimal. However, in this chapter using the 

previously transfected Te85 OS cells with P2X7RA, P2X7RB, and P2X7RAB isoforms, 

investigations have been performed to determine if its expression affects various 

cancer properties in OS. Te85 OS cells expressing P2X7R variants have previously 

been shown to increase proliferation under serum free conditions (Giuliani et al., 

2014), yet other properties that P2X7R variants may influence such as cell adhesion, 

cell migration and cell invasion have not been assessed previously. This chapter 

presents the results of these experiments and discusses the possible implications. 

P2X7R expression could potentially contribute to tumour progression, and metastasis. 

This chapter will demonstrate if the P2X7R can provide a viable target for inhibiting 

OS growth through receptor antagonism in vitro using A740003 and AZ11645373. 

Although several studies have demonstrated the role of P2X7Rs in both diseased and 

normal physiological conditions both in vitro and in vivo, there are contrasting views in 

the cancer field of the role P2X7Rs plays in tumour growth and progression. On the 

one hand it can support cell growth and proliferation, and on other hand it can have a 

paradoxical cytolytic role in ATP mediated cell death/apoptosis through activation of a 

large non-selective pore (Di Virgilio & Adinolfi, 2017) This bi-functional phenotype has 

led to increasing debate over the part that P2X7Rs play in modulation of the tumour 

microenvironment. It is yet to be determined fully if P2X7R can be used as a 

therapeutic target for pharmacological intervention in cancer (Roger et al., 2015). 

Increased proliferation of cell lines was initially attributed to P2Y receptors, the first 

study correlating P2X7R expression to an increase in proliferation was performed in 

1999 using k562 and LG14 leukaemia cell lines (Baricordi et al., 1999). Since this 

period a number of studies have shown that P2X7R expression can influence not only 
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cell proliferation but also adhesion, migration, and invasion, and that P2X7R 

antagonism can reduce these effects (Di Virgilio & Adinolfi, 2017). 

To determine the role that P2X7Rs play in the pathology of OS a number of 

experiments were performed in this chapter, which has the following aims 

 To determine if expression of the P2X7R variants can affect proliferation in 

Te85 OS cells in vitro in varying concentrations of FBS. 

 To determine if antagonism of the P2X7R variants using A740003 and 

AZ11645373 can affect the proliferation of Te85 OS cells in vitro. 

 To determine if expression of the P2X7R variants affect Te85 OS cell adhesion 

to a type 1 collagen matrix in vitro. 

 To determine if expression of the P2X7R variants affects Te85 OS cell 

migration in various concentrations of FBS and when stimulated with BzATP in 

vitro. 

 To determine if expression of the P2X7R variants affects Te85 OS cell invasion 

when stimulated with BzATP in vitro. 
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4.2 Effect of P2X7R expression on Te85 OS cell proliferation 

Having established that the transfected Te85 OS cell lines do indeed contain mRNA 

for the P2X7R, and validated their typical P2X7R responses for each variant including 

intracellular calcium responses, and pore formation (Chapter 3), the effect of receptor 

expression on cell physiology was determined. The first parameter that was examined 

was the Te85 ability to grow in varying serum concentrations. Te85 OS cells were 

grown to 50% confluence then counted and seeded into 96 well plates at various cell 

densities (1250, 2500, and 5000). After 24 hours, the media was changed to either 

0.5%, 2% or 10% FBS. Cell proliferation was assessed using an MTS assay at days 

0, 1, 3, 5 and 7. 

Te85 OS cells that had been transfected with either the P2X7RA isoform 

(Te85+P2X7RA) the P2X7RB isoform (Te85+P2X7RB) or both P2X7RA and P2X7RB 

(Te85+P2X7RAB) when cultured in 0.5% FBS had a significant increase in 

proliferation (p<0.05) compared to Te85 naïve OS cells across all seeding densities 

and at all the time points (Figure 4.1 A, B, C). At 2% FBS there was a significant 

increase in proliferation for Te85+P2X7RA OS cells on all days when seeded at 1250 

cells, on day 3 and 5 at 2500 cells and on day 3 only at 5000 cells. This was the same 

for P2X7RB expressing cells. For P2X7RAB expressing cells there was an increase 

in proliferation on day 3 and 7 but not on day 5 across all seeding densities (Figure 

4.1 D, E, F). At 10% FBS there was an increase in proliferation for Te85+P2X7RA and 

Te85+P2X7RB on days 3 and 5. However, the Te85 naïve OS cell proliferation 

reached similar levels by day 7 when the cell density became saturated and growth 

reached a plateau. Te85+P2X7RAB expressing cells had a significant increase in 

proliferation at day 3 across all seeding densities at day 5 and 7 with 1250 cells and 

day 7 at 5000 cells (Figure 4.1 G, H, I). 
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Figure 4.1: The effect of P2X7RA, P2X7RB or P2X7RAB expression on Te85 OS cell proliferation. 

Te85 OS cells were seeded into 96 well plates at various cell densities of 1250, 2500, and 5000 per 

well in either 0.5% A-C) 2% D-F) 10% FBS G-I). Cell proliferation was assessed using an MTS assay 

with OD values plotted (absorbance measured at 490 nm) on days 0, 1, 3, 5 and 7. Te85 naïve OS cells 

are shown in green, Te85+P2X7RA OS cells in red, Te85+P2X7RB OS cells in blue, and 

Te85+P2X7RAB OS cells in black, data is from 3 biological repeats with 4 technical repeats per 

experiment and was analysed using a one-way ANOVA with Tukey's multiple comparisons test to 

compare days 3, 5 and 7. * = P<0.05 comparing Te85 naïve and Te85+P2X7RA OS cells $ = P<0.05 

comparing Te85 naïve and Te85+P2X7RB OS cells and ƒ = P<0.05 between Te85 naïve and P2X7RAB 

OS cells. 
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4.3 Effects of P2X7R variant inhibition using A740003 and AZ11645373 P2X7R 

antagonists on Te85 OS cells 

As previously shown P2X7RA, B and AB all increased the growth of Te85 OS cells, 

therefore whether this increased growth could be attenuated using specific P2X7R 

antagonists was next investigated. By varying the cell seeding density and serum 

concentration in the previous experiments, optimum conditions were established to 

successfully detected cell growth in the linear range of the MTS assay. Based on these 

results, 5000 cells at 0.5% FBS was selected for inhibition studies with Te85 OS cells. 

The concentration of inhibitor used was 100 µM, derived from the previously used 

concentration (Giuliani et al., 2014). 

Treatment of Te85 naïve OS cells with A740003 or AZ11645373 had no significant 

effect on cell growth (A740003 1.106 ± 0.042 SEM vs 1 ± 0.002 SEM Te85 naïve, 

P=0.0506, Figure 4.2 A) and (AZ11645373 1.002 ± 0.002 SEM vs 1 ± 0.002 SEM Te85 

naïve, P= 0.9576, Figure 4.2 A) 

In Te85 OS cells transfected with P2X7RA, growth was significantly decreased by both 

A740003 and AZ11645373 (A740003 0.3583 ± 0.011 SEM vs 1 ± 0.002 SEM vehicle, 

P<0.0001, Figure 4.2 B) and (AZ11645373 0.3903 ± 0.008 SEM vs 1 ± 0.002 SEM 

vehicle, P<0.0001, Figure 4.2 B). This was the same for P2X7RB transfected Te85 

OS cells (A740003 0.5977 ± 0.026 SEM vs 1 ± 0.180 SEM vehicle, P<0.0001, Figure 

4.2 C) and (AZ11645373 0.6368 ± 0.044 SEM vs 1 ± 0.180 SEM vehicle, P<0.0001, 

Figure 4.2 C) Finally, this was the same for P2X7RAB transfected Te85 OS cells 

(A740003 0.5769 ± 0.025 SEM vs 1 ± 0.053 SEM vehicle P<0.0001, Figure 4.2 D) and 

(AZ116455373 0.5662 ± 0.045 SEM vs 1 ± 0.053 SEM vehicle, P<0.0001 Figure 4.2 

D). 
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Figure 4.2: The effect of A740003 and AZ11645373 P2X7R inhibitors on the proliferation of Te85 

OS cells. Cells were plated out in a 96 well plate at a density of 5000 cells in 0.5% FBS, and left to 

adhere for 24 hours, the medium was then changed to medium containing vehicle or 100 µM of either 

A740003 or AZ11645373. The cell activity was assessed using an MTS assay (absorbance measured 

at 490 nm) at 3 days. A) Te85 naïve OS cells B) Te85+P2X7RA OS cells C) Te85+P2X7RB OS cells 

D) Te85+P2X7RAB OS cells. Data is from 3 biological repeats with 6 technical repeats per experiment. 

Data was analysed comparing the treatment groups to Te85 naïve OS cells using an unpaired T-test, 

**** = P <0.0001. 
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4.4 The effects of P2X7R expression on Te85 OS cell adhesion  

The loss of adhesion to an extracellular matrix is an essential step in OS metastasis, 

in order to measure this process, type 1 rat tail collagen was coated inside a 96 well 

plate and cells were left to adhere for a set period of 4 hours (previously determined 

empirically as an optimum time). The coated wells containing cells were then washed 

and the remaining cells quantified by lysing the cells with lysis buffer and detecting the 

DNA present using Quant-iT™ PicoGreen® dsDNA Reagent. Fluorescence was 

detected at excitation 485 nm and emission 530 nm with a cut off at 530 nm.  

Cells expressing the P2X7RA or the P2X7RB variants had significantly decreased 

adhesion to the type I collagen matrix when compared to the Te85 naïve OS cells 

(Te85+P2X7RA 0.4815 ± 0.02322 SEM vs 1.008 ± 0.03864 SEM vehicle, P<0.0001) 

Figure 4.3 A) and (Te85+P2X7RB 0.5484 ± 0.02465 SEM vs 1.008 ± 0.03864 SEM 

vehicle, P<0.0001, Figure 4.3 B) This was in contrast to the cells expressing the 

P2X7RAB which had no significant difference in cell adhesion when compared to Te85 

naïve OS cells (Te85+P2X7RAB 0.9775 ± 0.022 vs 1.000 ± 0.02287 SEM vehicle, P= 

0.4847 Figure 4.3 C). 
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Figure 4.3: The effect of P2X7RA, P2X7RB and P2X7RAB on OS cell adhesion. For each experiment 

7500 cells were plated into a 96 well plate pre-coated with type 1 rat tail collagen and left for 4 hours at 37°C. 

Wells were then washed 4 times with PBS to removed unattached cells. Remaining attached cells were lysed 

using lysis buffer and detected using Quant-iT™ PicoGreen® dsDNA Reagent. Fluorescence was detected 

at excitation 485 nm and emission 530 nm (cut off 530 nm). A) Te85+P2X7RA OS cells B) Te85+P2X7RB 

OS cells C) Te85+ P2X7RAB OS cells. All data is plotted relative to the Te85 naïve OS cells, which are shown 

in green, Te85+P2X7RA OS cells in red, Te85+P2X7RB OS cells in blue, and Te85+P2X7RAB OS cells in 

black. Data shown is from 3 biological repeats with 6 technical repeats per experiment and was analysed 

using an unpaired T-test. **** = P <0.0001. 
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4.5 The effect of P2X7R expression onTe85 OS cell migration  

An important step in OS metastasis is the ability of the cells to migrate away from the 

primary site (Sahai., 2005). To determine the role of P2X7R on Te85 OS cell migration, 

a scratch assay was used. The OS cell lines were seeded into a 12 well plate at a 

density of 200,000 in complete medium and left overnight to adhere and form a 

monolayer. Cells were then changed over into complete medium containing 5 µg/ml 

mitomycin C and left for 2 hours at 37°C. After this, monolayers were scratched down 

the centre of each well using a 10 µL pipette tip. After washing twice with PBS the cells 

were left in either 10% FBS medium, 0.5% FBS medium or 0.5% FBS medium with 10 

µM BzATP. Images were taken every 2 hours for 24 hours.  

In 10% FBS medium, there was no significant difference in migration between Te85 

naïve OS cells and Te85 OS cells expressing P2X7RA or P2X7RB (P= 0.3817 & 

0.1974, Figure 4.4 & 4.5 A, B). However, cells expressing P2X7RAB migrated slower 

than Te85 naïve OS cells (P= <0.0001, Figure 4.4 & 4.5 C). In 0.5% FBS, there was 

no significant difference in migration between Te85 naïve OS cells and Te85 OS cells 

expressing P2X7RA (P= 0.053, Figure 4.6 & 4.7 A). However, both the P2X7RB and 

P2X7RAB variants migrated significantly faster than Te85 naïve OS cells (P= <0.0001, 

Figure 4.6 & 4.7 B, C). Finally, when cells were cultured in 0.5% FBS and stimulated 

with 10 µM BzATP to activate the P2X7R variants, there was a significant increase in 

migration in all Te85+P2X7R variants when compared to stimulated Te85 naïve OS 

cells. (P= <0.0001, Figure 4.8 and 4.9 A, B, C). 
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Figure 4.4: Representative images showing the effect of P2X7RA, P2X7RB or P2X7RAB 

expression on Te85 OS cell migration in 10% FBS medium. Cells were seeded into a 12 well plate 

at a density of 200,000 in complete medium and left overnight to adhere and form a monolayer. Cells 

were then changed over into complete medium containing 5 µg/ml mitomycin C and left for 2 hours at 

37°C after this, monolayers were scratched down the centre of the well using a 10 µL pipette tip. After 

washing twice with PBS the cells were left in 10% FBS with images taken every 2 hours for 24 hours. 

The images are representative of 0 hours, 12 hours and 24 hours only. The images were analysed, and 

pseudo coloured using Tscratch software. A) Te85 naïve OS cells B) Te85+P2X7RA OS cells C) 

Te85+P2X7RB OS cells D) Te85+P2X7RAB OS cells  
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Figure 4.5: The effect of P2X7RA, P2X7RB or P2X7RAB expression on Te85 OS cell migration in 

10% FBS medium. Cells were plated out into a 12 well plate at a density of 200,000 in complete 

medium and left overnight to adhere and form a monolayer. Cells were then changed over into complete 

medium containing 5 µg/ml mitomycin C and scratched down the centre of the well using a 10 µL pipette 

tip. After washing twice with PBS the cells were left in 10% FBS with images taken every 2 hours for 24 

hours. A) Te85+P2X7RA OS cells shown red B) Te85+P2X7RB OS cells shown blue C) 

Te85+P2X7RAB OS cells shown black, data plotted compared to Te85 naïve OS cell migration shown 

green. The slopes were compared by linear regression. Data from 3 biological repeats with 3 technical 

repeats per experiment. **** = P <0.0001.  
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Figure 4.6: Representative images showing the effect of P2X7RA, P2X7RB or P2X7RAB 

expression on Te85 OS cell migration in 0.5% FBS medium. Cells were seeded into a 12 well plate 

at a density of 200,000 in complete medium and left overnight to adhere and form a monolayer. Cells 

were then changed over into complete medium containing 5 µg/ml mitomycin C and left for 2 hours at 

37°C.After this, monolayers were scratched down the centre of the well using a 10 µL pipette tip. After 

washing twice with PBS the cells were left in 0.5% FBS medium with images taken every 2 hours for 

24 hours. The images are representative of 0 hours, 12 hours and 24 hours only. The images were 

analysed, and pseudo coloured using Tscratch software. A) Te85 naïve OS cells B) Te85+P2X7RA OS 

cells C) Te85+P2X7RB OS cells  D) Te85+P2X7RAB OS cells.  

  

A) Te85 naive 

B) Te85+P2X7RA 

C) Te85+P2X7RB 

D) Te85+P2X7RAB 



97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 The effect of P2X7RA, P2X7RB or P2X7RAB expression on Te85 OS cell migration in 

0.5% FBS medium. Cells were plated out into a 12 well plate at a density of 200,000 in complete 

medium and left overnight to adhere and form a monolayer. Cells were then changed over into complete 

medium containing 5 µg/ml mitomycin C and scratched down the centre of the well using a 10 µL pipette 

tip. After washing twice with PBS the cells were left in 0.5% FBS medium with images taken every 2 

hours for 24 hours. A) Te85+P2X7RA OS cells shown red B) Te85+P2X7RB OS cells shown blue C) 

Te85+P2X7RAB OS cells shown black. Data plotted compared to Te85 naïve OS cell migration shown 

green. The slopes were compared by linear regression. Data from 3 biological repeats with 3 technical 

repeats per experiment **** = P <0.0001. 
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Figure 4.8: Representative images showing the effect of P2X7RA, P2X7RB or P2X7RAB 

expression on Te85 OS cell migration in 0.5% FBS medium stimulated with BzATP. Cells were 

plated out into a 12 well plate at a seeding density of 200,000 in complete medium and left overnight to 

adhere and form a monolayer. Cells were then changed over into complete medium containing 5 µg/ml 

mitomycin C and scratched down the centre of the well using a 10 µL pipette tip. After washing twice 

with PBS the cells were left in medium containing 0.5% FBS and 10 µM BzATP with images taken every 

2 hours for 24 hours. The images are representative of 0 hours, 12 hours and 24 hours. The images 

were analysed and pseudocoloured using Tscratch software A) Te85 naïve OS cells B) Te85+P2X7RA 

OS cells C) Te85+P2X7RB OS cells D) Te85+ P2X7RAB OS cells.  
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Figure 4.9: The effect of P2X7RA, P2X7RB or P2X7RAB expression on Te85 OS cell migration in 

0.5% FBS medium stimulated with BzATP. Cells were plated out into a 12 well plate at a seeding 

density of 200,000 in complete medium and left overnight to adhere and form a monolayer. Cells were 

then changed over into complete medium containing 5 µg/ml mitomycin C and scratched down the 

centre of the well using a 10 µL pipette tip. After washing twice with PBS the cells were left in medium 

containing 0.5% FBS and 10 µM BzATP with images taken every 2 hours for 24 hours. A) 

Te85+P2X7RA OS cells shown red B) Te85+P2X7RB OS cells shown blue C) Te85+P2X7RAB OS 

cells shown black, data plotted compared to Te85 naïve OS cell migration shown green. The slopes 

were compared by linear regression. Data from 3 biological repeats with 3 technical repeats per 

experiment. **** = P <0.0001.  
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4.6 The effects of P2X7R expression on Te85 OS cell invasion  

Before OS cells can migrate away from the primary site to metastasize to different 

parts of the body they must degrade the surrounding extracellular matrix and penetrate 

into surrounding tissue. Thereby, in addition to the migration assay which only tracks 

cell motility an invasion assay was performed to analyse ability to break down an 

extracellular matrix to facilitate invasion. Invasion is considered one of the first stages 

of metastasis (Sahai, 2005). In order to determine the effect of P2X7R expression on 

OS invasion in vitro the cells were cultured in mitomycin C to inhibit proliferation, before 

being plated into a pre-coated matrigel transwell FluoroBlok insert in serum free 

medium containing 10 µM BzATP. The lower chamber contained complete medium 

as a chemoattractant. After 24 hours the inserts were removed, washed in PBS and 

stained with Calcein AM cell permeant dye and imaged, these were then quantified 

using Image J and plotted as the amount of invaded cells detected.  

The results show that there was no significant difference in invasion when Te85 OS 

cells were expressing P2X7RA when compared to Te85 naïve OS cells 

(Te85+P2X7RA 107.3 ± 33.41 SEM vs 49.11 ± 14.8 SEM Te85 naïve, P= 0.9098 

Figure 4.10 E). However, there was significantly increased ability to invade the 

matrigel layer with the Te85+P2X7RB OS cells (Te85+P2X7RB 297.9 ± 49.74 SEM 

vs 49.11 ± 14.8 SEM Te85 naïve, P= 0.00374, Figure 4.10 E) and with the 

Te85+P2X7RAB OS cells (Te85+P2X7RAB 76.3 ± 107.6 SEM vs 49.11 ± 14.8 SEM 

Te85 naïve, P=0.0039, Figure 4.10 E). 

There was no significant difference between Te85+P2X7RA and Te85+P2X7RB OS 

cells 107.3 ± 33.41 SEM vs 297.9 ± 49.74 SEM, P=0.1526, Figure 4.10 E) or between 

Te85+P2X7RB OS cells and Te85+P2X7RAB OS cells (297.9 ± 49.74 SEM vs 376.3 

± 107.6 SEM, P=0.8077 Figure 4.10 E). However, the Te85+P2X7RAB OS cells 

invaded significantly more than the Te85+P2X7RA OS cells 376.3 ± 107.6 SEM vs 

107.3 ± 33.41 SEM, P=0.0216 Figure 4.10 E). 
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Figure 4.10: The effect of P2X7RA, P2X7RB and P2X7RAB on Te85 OS cell invasion. Cells were 

incubated in culture with 5 µg/ml mitomycin C and left for 2 hours at 37°C. They were seeded into a 24 

well plate at a density of 100,000 cells in serum free medium containing 10 µM BzATP, in an upper 

fluoroblok chamber pre-coated with 1.5 mg/ml Matrigel. The lower chamber contained complete 

medium. After 24 hours the upper fluoroblok transwells were washed twice in PBS and left for 30 

minutes at 37°C in Calcein AM cell permeant dye. Images were taken of underside of the smaller insert. 

For representative images A) Te85 naïve OS cells B) Te85+P2X7RA OS cells, C) Te85+P2X7RB OS 

cells D) Te85+P2X7RAB OS cells. E) Te85 naïve OS cells green, Te85+P2X7RA OS cells red, P2X7RB 

OS cells blue and P2X7RAB OS cells black. The data is from 3 biological repeats with 3 technical 

repeats per experiment, Data was analysed using a one-way ANOVA with Tukey's multiple 

comparisons test, * = P <0.05 ** = P <0.01.  
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4.7 Discussion 

Although P2X7R expression and function has been studied in bone physiology and in 

other cancers there is minimal data relating to the role it plays in OS. This chapter 

examined the effect of P2X7RA, P2X7RB and P2X7RAB expression on important OS 

properties including proliferation, cell adhesion, migration, and invasion in Te85 OS 

cells in vitro. Specific P2X7R inhibitors A740004 and AZ11645373 were used in cell 

proliferation studies, along with BzATP (a potent P2X7R agonist) in migration and 

invasion studies. This chapter provides novel insights about the role P2X7R variants 

play in the OS microenvironment.  

When the effect of P2X7R expression on proliferation was examined under normal in 

vitro conditions with 10% FBS over 7 days the proliferation was similar, this was also 

the case in 2% FBS. Under low 0.5% FBS conditions transfection with any P2X7R 

variant provided a strong growth stimulus. The blunted effect of P2X7R expression in 

the higher serum concentrations could be attributed to the fact that FBS in the in vitro 

culture contains ATPases (Michel et al., 2001) which will rapidly degrade ATP and 

thereby making P2X7R activation in these conditions less likely to occur.  

The results of the proliferation data are consistent with previously studies showing a 

growth increase in Te85 OS cells (Giuliani et al., 2014) and in a range of other cell 

types with various studies demonstrating the same findings. In a first study transfection 

of P2X7R increased the growth of K562 and LG14 leukemic cells under serum free 

conditions in comparison to mock transfected cells (Baricordi et al., 1999). This was 

also the case in P2X7R transfected HEK-293 cells (Adinolfi et al., 2005). In chronic B 

lymphocytic leukaemia it was found that when comparing the indolent slow growing 

cell type to a more aggressive type, the more aggressive type had increased cell 

proliferation correlating with increased P2X7R expression (Adinolfi et al., 2002). 

Further support for the role of P2X7R in cell proliferation has been shown in 

mesothelioma, P2X7R expressing malignant pleural mesothelioma cell lines showed 

increased growth when compared to healthy cells (Amoroso et al., 2016). In 

neuroblastoma there was an increase in proliferation when stimulated with BZATP in 

ACN neuroblastoma cells (Raffaghello et al., 2006). Additionally, serum deprivation 

was shown to increase P2X7R transcript and protein levels in N2a and SHSY5Y cells. 

The P2X7R expression caused by serum deficiency enhanced neuroblastoma cell 



103 
 

proliferation through the PI3K/Akt signalling pathway (Gómez-Villafuertes et al., 2015). 

P2X7R effect on proliferation was examined in pancreatic stellate cells and supports 

the findings in this chapter, when examining proliferation over an 8-day period in vitro 

comparing cells isolated from wild type or P2X7R KO mice the KO mice had 

approximately 50% less cell growth. Furthermore, they found that proliferation 

increased with exposure to ATP and was decreased when apyrase was added, 

(Haanes et al., 2012). 

To determine whether the increased growth seen in the transfected cells was due to 

receptor expression and if the P2X7R could provide a suitable therapeutic target two 

different P2X7R antagonists, A740003 and AZ11645373, were used in the 

proliferation assay. Due to the P2X7R providing the largest growth stimulus at low 

serum conditions this condition was used for the inhibition study. The results 

demonstrated that both antagonists had no effect on Te85 naïve OS cells, as would 

be expected given the previous evidence that Te85 OS cells do not expression 

functional P2X7R (Chapter 3 results and [Gartland et al., 2001). However, in all cell 

lines expressing P2X7R variants there was a decrease in cell growth when grown in 

the presence of the P2X7R antagonists. 

The anti-proliferative effect of targeting P2X7R has been shown in Te85 OS cells, as 

treatment with A740003 or apyrase reduced the proliferation of the P2X7R expressing 

cells (Giuliani et al., 2014). The effects of targeting the P2X7R in other cancers also 

support the findings in this chapter. Two human ovarian cancer cell lines SKOV-3 and 

CAOV-3 express endogenous P2X7Rs, when treated with AZ10606120 in vitro had 

reduced growth compared to control cultures (Vázquez-Cuevas et al., 2014). This was 

also the case using AZ10606120 again but in fibrogenic pancreatic stellate cells 

(Haanes et al., 2012), pancreatic ductal adenocarcinoma cells (Giannuzzo et al., 2015) 

and PancTu-1 pancreatic cancer cells (Giannuzzo et al., 2016) The results in this study 

confirm that the growth increase was P2X7R expression dependent and that targeting 

the P2X7R may be a viable therapeutic option in OS as is the case in other cancers in 

vitro. 

Whilst proliferation is a key feature of OS, other characteristics were examined. The 

ability of the cells to break away from the primary site due to a loss of adhesion to an 

extracellular matrix is an initial stop towards metastasis. 
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The results suggest that the P2X7R could play a role in OS metastasis. The P2X7RA 

and P2X7RB expressing Te85 OS cells showed a decreased ability to anchor to the 

collagen extracellular matrix but the co-transfected P2X7RAB didn’t. This decrease in 

adhesion suggests that single non-functional P2X7R variants are more likely to be 

metastatic and supports the idea that non-functional P2X7Rs have a pro tumour effect 

(Gilbert et al., 2019). This effect could be due to down regulation of cell adhesion 

proteins as previously P2X7R has been demonstrated to downregulate E-cadherin in 

breast cancer cells (Xia et al., 2015). P2X7Rs also induce expression of various MMPs 

which are capable of digesting the extracellular matrix, allowing the cells to break away 

from the primary site. ATP acting on P2X7Rs has been shown to induce the release 

of MMP 9 in human peripheral-blood mononuclear cells which could be attenuated 

with P2X7R antagonists oATP and KN-62 (Gu & Wiley, 2006). P2X7Rs have 

additionally been shown to increase MMP-13 expression in the cartilage tissues of rats 

with osteoarthritis and was again reversed by P2X7R inhibitors (Hu et al., 2016). 

Another important feature of cancer cell behaviour is migration; cells migrate to other 

parts of the body during metastasis. The results in this chapter for migration show that 

in 10% FBS medium for P2X7RA expressing Te85 OS cells and P2X7RB expressing 

Te85 OS cells there was no difference, however P2X7RAB again showed a less 

aggressive phenotype as the expressing cells migrated slower than Te85 naïve OS 

cells. Under low 0.5% serum conditions, the P2X7RA expressing Te85 OS cells 

showed no difference compared to Te85 naïve OS cells but the P2X7RB and 

P2X7RAB expressing Te85 OS cells had increased migration. These results 

demonstrate that under low serum conditions, where ATP availability is increased 

possibly stimulating the P2X7R, an increase in migration is demonstrated. Finally, 

when Te85 OS cells were stimulated with 10 µM BzATP, all P2X7R expressing 

variants increased cell migration, with the cells expressing the P2X7RB migrating the 

most. Due to migration being increased when BzATP was present to activate P2X7R, 

invasion experiments were performed with BzATP added to the top transwell, this 

measures the ability of the Te85 OS cells to invade through a matrigel layer towards 

a chemoattractant. The results from this show that all the P2X7R variants increased 

the invasion of Te85 OS cells with the P2X7RAB and P2X7RB expressing cells 

displaying the most invasion compared to Te85 naïve OS cells. P2X7Rs playing a role 

in migration and invasion of cancer cells has not been demonstrated in OS but has 
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previously in other cancers, with various studies supporting the results from this 

chapter. Migration and invasion of MDA-MB-435S breast cancer cells was increased 

due to P2X7R activating cysteine cathepsins (Jelassi et al., 2011) whilst in TD47 

breast cancer cells P2X7R downregulated the protein level of E-cadherin and 

upregulated the production of MMP-13 and the AKT pathway (Xia et al., 2015) driving 

migration and invasion. This was particularly increased when stimulated with ATP or 

BzATP (Jelassi et al., 2011, Xia et al., 2015). In a further study using MCF7 and MDA-

231 breast cancer cells hypoxia was shown to upregulate P2X7R expression which 

then drove cell invasion through the phosphorylation of Akt and Erk1/2 resulting in a 

nuclear increase of NF-B sustaining expression of MMPs (Tafani et al., 2011). Two 

studies have demonstrated the that the P2X7R can increase the migration of H292 

and PC-9 lung cancer cells supporting the results in this chapter which was attenuated 

with the addition of P2X7R antagonists (Takai et al., 2014). In a second study TGF-β1 

stimulation evoked ATP release from A549 lung cancer cells which subsequently 

activated P2X7Rs and an increase in cell migration, this could again be attenuated 

with P2X7R antagonists (Takai et al., 2012). Migration of glioma cells was assessed 

using a scratch assay and demonstrated that migration was increased when 

stimulated with BzATP using U87 and U251 cells and acts via the MEK/ERK pathway, 

treating the cells with BBG a P2X7R antagonist decreased this effect (Tafani et al., 

2011). The effect of P2X7R expression on migration and invasion has been explored 

in prostate cancer with results again supporting that P2X7R can increase migration 

and invasion, three prostate cancer cell lines 2B4, 1E8 and DU-145 were treated with 

ATP which caused an increase via ERK1/2 and PI-3 K/AKT pathways and increased 

expression of MMP-3 and MMP-13 (Zhang et al., 2010). This was also the case when 

22RV1 prostate cancer cells were transfected with P2X7R, these cells then had 

increased migration, invasion and decreased E-cadherin expression (Qiu et al., 2014). 

A final study that supports the results in this chapter shows that in pancreatic ductal 

adenocarcinoma using Panc-1 cells migration and invasion were both were increased 

when treated with BzATP or ATP, and subsequently reduced with AZ10606120 

(Giannuzzo et al., 2015). 

The results from this chapter demonstrate that OS cell behaviour including 

proliferation, adhesion, migration and invasion is influenced in vitro by expression and 

stimulation of the P2X7R variants. It also shows that of the P2X7R variants the 
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P2X7RB was implicated in affecting all of the parameters assessed and therefore 

targeting this variant could provide the most promising option. Finally, this chapter 

provides preliminary data to support the use of targeting the P2X7R in animal models 

in future OS studies, with the hope of exploiting P2X7R as a therapeutic option for 

patients in the future. 
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Chapter 5 – A pilot in vivo study to establish an OS 

xenograft model and the effect of P2X7R expression 

on OS tumorigenesis. 
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5.1 Introduction 

The Te85 OS cell line has historically been shown not to form tumours in mice. 

However, modified derivatives of this cell line such as MNNG-HOS have (Luu et al., 

2005). In the previous chapters it has been demonstrated that the Te85 OS cells have 

the P2X7R variants transfected in, and that this can alter the in vitro properties of the 

cells including cell growth, cell adhesion, cell migration and cell invasion. Therefore, it 

is possible that modulation of the Te85 OS cell line by P2X7R variants could provide 

a strong stimulus to enhance Te85 OS cells into inducing tumour formation in 

immunocompromised BALB/c mice. This would then enable the cell line to be used as 

a suitable in vivo model. By establishing an OS xenograft model the P2X7R can be 

targeted in vivo in future studies. This will determine if inhibition of the receptor could 

be a viable therapeutic option and will provide a means to validate the previously 

shown in vitro data in OS. The OS model developed in this chapter should also ideally 

provide the ability to metastasize to the lungs, as this is an important aspect of OS 

progression with P2X7R expression has been linked to increasing metastasis in other 

cancers (Di Virgilio, 2016). 

The effect of P2X7R expression on tumorigenesis in other cell lines in vivo has been 

explored. HEK-293 cells are only weakly tumorigenic in vivo as mock transfected cells 

produced tumours in approximately 50% of injected mice, this increased to 80-100% 

when transfected with human P2X7R (Adinolfi et al., 2012). Tumours were also 

detected earlier at day 17 post inoculation for P2X7R transfected cells compared to 

21 days for HEK-293-mock transfected cells. The P2X7R expressing HEK-293 

tumours were also significantly larger in size with a higher cell density, decreased 

apoptosis and increased Ki-67 staining (Adinolfi et al., 2012). In a second study J6-1 

leukaemia cells that had a P2X7R mutant due to a A559-to-G substitution had a hypo-

functional P2X7R receptor with reduced agonist sensitivity compared to the fully 

functional P2X7R. This P2X7R mutant when implanted into nude mice had 

significantly larger, heavier and faster growing tumours compared to wild type P2X7R 

(Chong et al., 2010). This demonstrates how P2X7R variants can influence the 

progression of a tumour especially when displaying a more non-functional phenotype. 
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This chapter aims to determine:  

 If Te85 OS cells can be used as a suitable in vivo model in BALB/c nude mice 

as they have previously been shown not to form tumours (Luu et al., 2005). 

 If transfection with P2X7R variants can modify Te85 OS cell behaviour causing 

tumorigenesis. 

 If Te85+P2X7R OS cell variants have any effect on total bone volume or lung 

metastasis. 

 If MNNG-HOS+GFP+LUC OS cells are different to the MNNG-HOS naïve OS 

cells. 

 If the MNNG-HOS model can used as an OS model in vivo to target P2X7R. 
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5.2 The tumourgenicity of OS cell lines  

MNNG-HOS+GFP+LUC, MNNG-HOS naïve, Te85 naïve, Te85+P2X7RA, 

Te85+P2X7RB, Te85+P2X7RAB, and were used, in this in vivo pilot study. For each 

cell line 500,000 cells were suspended in 20 µL PBS and injected paratibially into 3 7-

9 week old female BALB/c nude mice per condition. Both MNNG-HOS+GFP+LUC and 

MNNG-HOS OS cells formed tumours in 6/6 mice, were palpable after 9 days. None 

of the Te85 OS cell lines formed tumours when left for 6 weeks. 
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5.3 Histological analysis on H&E stained mouse limb sections 

Histological analysis assesses the tumour and surrounding architecture, itis the gold 

standard for a diagnosis in almost all types of cancer (Gurcan et al., 2009) H&E 

staining can be used to assess characteristics such as the tumour grade, phenotype, 

nuclei, morphological appearance, size, and shape. At the end of the experiment, the 

mouse legs were collected processed, embedded, sectioned and H&E stained. The 

Te85 and Te85+P2X7R variants didn’t form any detectable tumours in either bone or 

muscle tissue (Figure 5.1). The MNNG-HOS+GFP+LUC and MNNG-HOS OS cells 

formed tumours that were high-grade undifferentiated OS tumours, with very little 

osteoid matrix and collagen production (Figure 5.1). 
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A) MNNG-HOS+GFP+LUC  B) MNNG-HOS naive 

C) Te85 naive D) Te85+P2X7RA 
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E) Te85+P2X7RB F) Te85+P2X7RAB 

Figure 5.1: Representative H&E stained sections of mice legs injected with MNNG-HOS naïve OS cells 

or Te85+P2X7R variants. For each group 3 female BALB/c 7-9 week old mice were injected paratibially with 

500,000 cells of either MNNG-HOS+GFP+LUC OS cells, MNNG-HOS naïve OS cells, Te85 naïve OS cells, 

Te85+P2X7RA OS cells, Te85+P2X7RB OS cells or Te85+P2X7RAB OS cells suspended in 20 µL PBS. The 

tumours were left to grow untreated. The mice were then euthanised and dissected. The legs were collected 

processed, embedded into wax blocks and sections were taken to be H&E stained A) MNNG-HOS+GFP+LUC 

OS cells B) MNNG-HOS OS cells C) Te85 OS cells D) Te85+P2X7RA OS cells E) Te85+P2X7RB OS cells 

F) Te85+P2X7RAB OS cells. 
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5.4 Ki-67 IHC staining for the detection of proliferating cells  

Each female BALB/c 7-9 week old was injected with 500,000 cells of either MNNG-

HOS+GFP+LUC, MNNG-HOS naïve, Te85 naïve, Te85+P2X7RA, Te85+P2X7RB or 

Te85+P2X7RAB paratibially and the tumours were left to grow untreated. The mice 

were then euthanised and dissected. The legs were collected processed, embedded 

into wax blocks and sections were taken to be stained for Ki-67, a marker for cell 

proliferation (Scotlandi et al., 1995). 

There was Ki-67 staining in the mice legs bearing the MNNG-HOS+GFP+LUC and 

MNNG-HOS tumours (Figure 5.2 A, B). The percentage of cells stained positive for Ki-

67 in MNNG-HOS+GFP+LUC bearing mice was not statistically different from the mice 

bearing MNNG-HOS naïve OS cells (MNNG-HOS+GFP+LUC OS cells 67.24% ± 5.87 

SEM vs 59.79% ± 3.324 SEM MNNG-HOS OS cells, P= 0.331, Figure 5.3). There was 

no Ki-67 staining of tumour cells in the mice legs containing Te85+P2X7R variants as 

there was no tumour formation, however, some staining was detected due to some 

proliferating cells in the bone marrow (Figure 5.2 C, D, E, F). 
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A) MNNG-HOS+GFP+LUC B) MNNG-HOS naive 
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E) Te85+P2X7RB F) Te85+P2X7RAB 

Figure 5.2: Representative Ki-67 stained sections of mice injected with MNNG-HOS naïve OS cells 

or Te85+P2X7R variants. For each group 3 female BALB/c 7-9 week old mice were injected paratibially 

with 500,000 cells of either MNNG-HOS+GFP+LUC OS cells, MNNG-HOS naïve OS cells, Te85 naïve OS 

cells, Te85+P2X7RA OS cells, Te85+P2X7RB OS cells or Te85+P2X7RAB OS cells suspended in 20 µL 

PBS. The tumours were left to grow untreated. The mice were then euthanised and dissected. The legs 

were collected processed, embedded into wax blocks and sections were taken to be Ki-67 stained. A) 

MNNG-HOS+GFP+LUC OS cells B) MNNG-HOS OS cells C) Te85 OS cells D) Te85+P2X7RA OS cells 

E) Te85+P2X7RB OS cells F) Te85+P2X7RAB OS cells. 
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Figure 5.3: Ki-67 staining for proliferating cells comparing MNNG-HOS+GFP+LUC and MNNG-HOS 

mice. For each group 3 female BALB/c 7-9 week old mice were injected paratibially with 500,000 cells of 

either MNNG-HOS+GFP+LUC OS cells, MNNG-HOS naïve OS cells suspended in 20 µL PBS. The 

tumours were left to grow untreated. The mice were then euthanised and dissected. The legs were collected 

processed, embedded into wax blocks and sections were taken to be Ki-67 stained and analysed using 

QuPath. MNNG-HOS+GFP+LUC bearing mice were compared to MNNG-HOS bearing using an unpaired 

T-test. N= 3 mice per cell type.  
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5.5 The effect of MNNG-HOS and Te85 tumours on total bone volume  

Micro-CT analysis was performed according to chapter 2 to determine the total bone 

volume on the left tumour bearing leg and the contralateral right leg (non-tumour). Of 

the 18 BALB/c nude mice used in this pilot study when viewing the 3D reconstruction 

of the legs there was clear osteolysis, and some ectopic bone formation in the tumour 

bearing injected legs of the MNNG-HOS+GFP+LUC and MNNG-HOS mice (Figure 

5.5). Despite these findings, the total bone volume of the MNNG-HOS+GFP+LUC 

tumour bearing leg was not statistically different to the contralateral non-tumour 

bearing leg (tumour bearing leg 4.930 mm3 ± 0.333 SEM vs 5.665 mm3 ± 0.086 SEM 

contralateral leg, P= 0.155, Figure 5.4 A). Similarly, the average total bone volume of 

the MNNG-HOS tumour bearing leg was not statistically different to the non-tumour 

bearing leg (tumour bearing leg 4.242 mm3 ± 0.428 SEM vs 4.701 mm3 ± 0.332 SEM 

contralateral leg, P=0.250, Figure 5.4 B). 

No bone lysis or ectopic bone formation was observed in the mice injected with Te85 

OS cells, Te85+P2X7RA, P2X7RB or P2X7RAB when viewing the 3D reconstruction 

of the legs (Figure 5.6 & 5.7 A, B, C, D). The total bone volume of the Te85 tumour 

bearing leg was not statistically different to the contralateral non-tumour bearing leg 

(tumour bearing leg 5.921 mm3 ± 0.169 SEM vs 6.117 mm3 ± 0.244 SEM contralateral 

leg, P= 0.012, Figure 5.4 C). This was also the case for the mice injected with P2X7RA 

(tumour bearing leg 5.902 mm3 ± 0.093 SEM vs 5.651 mm3 ± 0.016 SEM contralateral 

leg, P= 0.143, Figure 5.4 D) with P2X7RB (tumour bearing leg 6.052 mm3 ± 0.1061 

SEM vs 6.138 mm3 ± 0.113 SEM contralateral leg, P= 0.496, Figure 5.4 E) and with 

P2X7RAB (tumour bearing leg 5.516 mm3 ± 0.255 SEM vs 5.414 mm3 ± 0.182 SEM 

contralateral, P= 0.400, Figure 5.4 F) 
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Figure 5.4: Micro-CT total bone volume of BALB/c nude mice legs injected with Te85 or MNNG-HOS 

OS cells compared to contralateral non-injected legs. For each group 3 female BALB/c 7-9 week old 

mice were injected paratibially with 500,000 cells of either MNNG-HOS+GFP+LUC OS cells, MNNG-HOS 

naïve OS cells, Te85 naïve OS cells, Te85+P2X7RA OS cells, Te85+P2X7RB OS cells or Te85+P2X7RAB 

OS cells suspended in 20 µL PBS. The tumours were left to grow untreated. The mice were then euthanised 

and dissected. Micro-CT was used to assess total bone volume A) MNNG-HOS+GFP+LUC B) MNNG-HOS 

naïve C) Te85 naïve D) Te85+P2X7RA E) Te85+P2X7RB F) Te85+P2X7RAB. No significant difference was 

observed when comparing tumour bearing legs to the it’s contralateral leg using a paired T-Test. N=3 mice 

per group. 
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A) MNNG-HOS+GFP+LUC B) Contralateral leg 

C) MNNG-HOS naive D) Contralateral leg 

Figure 5.5: Representative 3D micro-CT images of BALB/c nude mice left legs injected with MNNG-

HOS OS cells compared to contralateral legs: For each group 3 female BALB/c 7-9 week old mice were 

injected paratibially with 500,000 cells of either MNNG-HOS+GFP+LUC OS cells, MNNG-HOS naïve OS 

cells suspended in 20 µL PBS. The tumours were left to grow untreated. The mice were then euthanised and 

dissected. Micro-CT was used to assess total bone volume. A) MNNG-HOS+GFP+LUC tumour bearing left 

leg B) Contralateral right leg, C) MNNG-HOS tumour bearing left leg D) Contralateral right. The models 

demonstrate evidence of both ectopic bone formation and osteolysis in the tumour-bearing legs.  
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A)Te85 naive B) Contralateral leg 

C)Te85+P2X7RA D) Contralateral leg 

Figure 5.6: Representative 3D micro-CT reconstruction of a BALB/c nude mouse leg after injection 

of 500,000 of the Te85 +P2X7R variant OS cells: For each group 3 female BALB/c 7-9 week old mice 

were injected paratibially with 500,000 cells of either Te85 OS cells or Te85+P2X7RA OS cells suspended 

in 20 µL PBS. The tumours were left to grow untreated. The mice were then euthanised and dissected. 

Micro-CT was used to assess total bone volume. A) Te85 tumour bearing left leg B) Contralateral right 

leg, C) Te85+P2X7RA tumour bearing left leg D) Contralateral right leg. No evidence of ectopic bone 

formation or osteolysis is demonstrated. 



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A) 

C) Te85+P2X7RAB D) Contralateral leg 

A)Te85+P2X7RB B) Contralateral leg 

Figure 5.7: Representative 3D micro-CT reconstruction of a BALB/c nude mouse leg after injection 

of 500,000 of the Te85 +P2X7R variant OS cells. For each group 3 female BALB/c 7-9 week old mice 

were injected paratibially with 500,000 cells of either Te85+P2X7RB OS cells or Te85+P2X7RAB OS cells 

suspended in 20 µL PBS. The tumours were left to grow untreated. The mice were then euthanised and 

dissected micro-CT was used to assess total bone volume. A) Te85+P2X7RB tumour bearing left leg B) 

Contralateral right leg C) Te85+P2X7RAB tumour bearing left leg D) Contralateral right leg. No evidence of 

ectopic bone formation or osteolysis is demonstrated. 



121 
 

5.6 Lung analysis for OS metastasis 

The lungs from each mouse were collected, processed, embedded into wax blocks, 

serial sectioned every 100 µm and H&E stained. The corresponding slides were then 

examined for the presence of OS metastasis.  

In the mice inoculated with MNNG-HOS+GFP+LUC one mouse presented with an OS 

metastasis (Figure 5.8 A), this is distinct from normal lung tissue, it has a high amount 

of condensed chromatin, and a high cell density with a disorganised shape.   

There was no metastasis in the mice inoculated with the MNNG-HOS OS cells (Figure 

5.8 B). This was also the case in the mice inoculated with Te85 and Te85+P2X7R 

variants, in addition to no palpable tumour formation, no OS metastasis was present 

in any of the mice lungs (Figure 5.8 C, D, E, F).  
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Figure 5.8: Representative histology images of lung tissue from tumour bearing MNNG-HOS+GFP+LUC, 

MNNG-HOS and Te85+P2X7R variant mice stained with H&E. For each group 3 female BALB/c 7-9 week old 

mice were injected paratibially with 500,000 cells of either MNNG-HOS+GFP+LUC OS cells, MNNG-HOS naïve 

OS cells, Te85 naïve OS cells, Te85+P2X7RA OS cells, Te85+P2X7RB OS cells or Te85+P2X7RAB OS cells 

suspended in 20 µL PBS. The tumours were left to grow untreated. The mice were then euthanised and dissected. 

The lungs were collected processed, embedded and sectioned, then stained with H&E. A) MNNG-

HOS+GFP+LUC with an OS metastasis (1/3 mice) B) MNNG-HOS naïve mice lungs C) Te85 naïve mice lungs 

D) Te85+ P2X7RA mice lungs E) Te85+P2X7RB mice lungs F) Te85+P2X7RAB mice lungs. 
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5.7 Expression of P2X7RB in transfected MMNG-HOS cells using end-point 

PCR 

The previously used Te85 OS cells did not form an OS model in vivo and therefore 

cannot be used further. An alternative model is subsequently required. In order to 

overcome this MNNG-HOS naïve OS cells were checked for endogenous P2X7R 

expression which was absent. This results in a P2X7R variant needing to be 

transfected. The P2X7RB variant was chosen as this led to an increase rate of 

proliferation, decreased cell adhesion and increased migration and invasion (when 

stimulated with BzATP) in Te85 OS cells previously. HEK-293 cells were used as a 

positive control and have previously been transfected with the full length P2X7RA 

variant (courtesy of Dr Elena Adinolfi, Ferrara Italy). 

RNA was isolated from the above cell lines and cDNA synthesized (according to 

Chapter 2). The success of the cDNA reactions was confirmed with the housekeeping 

gene beta actin with a clear band at 182 BP RT+ve and a RT-ve controls were used 

(Figure 5.9). 

P2X7R mRNA expression was determined with two sets of primers for the P2X7R. 

The first primer set was designed early in the gene sequence with the forward primer 

on the exon boundary between exon 3 and 4 and the reverse between exon 7 and 8. 

This region is present on both the full length and truncated P2X7RB, (product length 

413 BP). The second primer set was designed further along the gene sequence with 

the both the forward primer and reverse primer designed to bind to exon 13 (product 

length 399 BP) this region is only present on the full length P2X7RA and thereby 

unable to be detected in the cells with the truncated P2X7RB.  

The results demonstrate that bands were produced in the HEK-293+P2X7RA positive 

control cells. MNNG HOS naïve cells did not show P2X7R mRNA expression (Figure 

5.10), however the MNNG-HOS OS cells transfected with the P2X7RB variant showed 

expression at the expected regions (Figure 5.10). 
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Figure 5.10: MNNG-HOS naïve and transfected MNNG-HOS+P2X7RB OS cells P2X7R expression 

with HEK-293+P2X7RA control. Expression of P2X7RB mRNA was determined with two different 

P2X7R sets of primers, one set binding to both P2X7RA and P2X7RB, the second set binding to a 

region on P2X7RA that is truncated on P2X7RB (product length 413 BP and 399 BP respectively). DNA 

from each cell type was amplified with both primer sets. Lanes 5 & 6 MNNG-HOS naïve OS cells, lanes 

7 & 8 HEK-293+P2X7RA cells lanes 9 & 10 MNNG-HOS+P2X7RB OS cells lanes 11 & 12 HEK-

293+P2X7RA cells. 

 

  

Figure 5.9: Confirmation of successful cDNA synthesis using the beta actin housekeeping gene 

in MNNG-HOS OS cells. The beta actin housekeeping gene was used to confirm cDNA synthesis for 

RT+ve and RT-ve samples in MNNG-HOS naïve OS cells and MNNG-HOS+P2X7RB OS cells. Lanes 

1 & 2 MNNG-HOS naïve OS cells RT+ve and RT-ve. Lanes 3 & 4 MNNG-HOS+P2X7RB OS cells 

RT+ve and RT-ve. All beta actin product lengths are at 182 BP. 
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5.8 Expression of P2X7RB in MNNG-HOS naïve OS cells confirmed using qPCR 

In addition to end-point PCR showing bands for P2X7R expression, qPCR was used 

to demonstrate gene expression changes in transfected cells. ΔCT values were 

calculated by normalising target templates to HPRT a housekeeping gene, delta delta 

CT values and fold changes were then calculated. Transfected cells were compared 

to the untransfected MNNG-HOS naïve OS cells with results plotted as fold change. 

The human P2X7R Taqman® primer used is not isoform specific and will therefore 

detect the full length P2X7RA and P2X7RB 

The results also demonstrate that there is a significant increase in P2X7RB expression 

in transfected MNNG-HOS OS cells when compared to MNNG-HOS naïve OS cells 

(P=0.0067, Figure 5.11). 
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Figure 5.11: Quantification of P2X7RB expression in MNNG-HOS OS cells RNA was extracted from 

MNNG-HOS OS cells reverse transcribed to cDNA then amplified using qPCR, HPRT was used as a 

housekeeping gene with data expressed relative to this and the MNNG-HOS naïve P2X7R expression 

levels. MNNG-HOS naïve OS cells are shown in green and MNNG-HOS+P2X7RB OS cells are shown 

in blue. Data shown is from 3 biological repeats with 6 technical repeats per experiment 3 using P2X7R 

Taqman probe and 3 using HPRT Taqman probe. ** = P <0.01. 
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5.9 Measurement of intracellular calcium concentrations in P2X7R transfected 

MNNG-HOS OS cells  

Changes in cytosolic free calcium concentrations were measured in naïve and 

transfected cells. Cells were plated out at a density of 15,000 into 96-well plates and 

left overnight to adhere, the media was then changed into an equal solution of 

complete medium and 2X Fluo-4 Direct™ calcium reagent loading solution. Cells were 

incubated for 1 hour at 37°C before been stimulated with BzATP (100 µM) and then 

ionomycin (0.8 µM). 

The results for calcium concentrations were plotted relative to its ionomycin response 

which is shown in Figure 5.12 A) The AUC (Figure 5.12 B) and peak intensity (Figure 

5.12 C) were plotted. The results demonstrate that there was a significantly increased 

AUC in cells when transfected with P2X7RB compared to MNNG-HOS naïve OS cells 

(MNNG-HOS+P2X7RB 480.4 ± 21.38 SEM vs 417.0 ± 22.03 SEM MNNG-HOS naïve, 

P= 0.0266, Figure 5.12 B) The results for the peak intensity demonstrate there was a 

significantly increased peak intensity in cells transfected with P2X7RB compared to 

MNNG-HOS naïve OS cells (MNNG-HOS+P2X7RB 2.556 ± 0.09239 SEM vs 2.045 ± 

0.1052 SEM MNNG-HOS naïve, P=0.0018, Figure 5.12 C). 
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Figure 5.12: Measurement of intracellular calcium concentrations in P2X7RB transfected MNNG-

HOS OS cells after P2X7R stimulation with BzATP. Cells were seeded at 15,000 cells in 96-well 

plates and left overnight to adhere. The media was then changed into an equal solution of complete 

medium and 2X Fluo-4 Direct™ calcium reagent loading solution. Cells were then incubated for 1 hour 

at 37°C before been stimulated with either BzATP (100 µM) or ionomycin (0.8 µM) A) Calcium response 

B) The area under the curve C) The maximum peak intensity. MNNG-HOS naïve are shown in green 

and MNNG-HOS+P2X7RB are shown in blue. Results are from 3 biological repeats with 6 technical 

replicates and were compared using an unpaired T-test. * = P <0.05 ** = P<0.01. 
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5.10 Measurement of P2X7R pore formation in transfected MNNG-HOS OS cells 

Sustained stimulation of the P2X7R with its agonist ATP enables the P2X7R to form 

a large irreversible pore permeable to molecules with a molecular weight of up to 900 

Da (Volonte et al., 2012). This includes large organic dyes such as ethidium bromide 

(molecular weight 394). This function is unique to the P2X7R subset of purinergic 

receptors and has a variety of roles. Therefore, this function was assessed in MNNG-

HOS OS cells transfected with the P2X7RB variant with HEK-293 cells used as a 

positive control. A density of 15,000 cells/well were cultured in a 96 well plate, left 

overnight to form a monolayer and incubated in HBSS buffer for 1 hour prior to 

analysis. The pore formation function was then stimulated using 300 µM BzATP in the 

presence of 100 µM ethidium bromide and monitored for 45 minutes to assess the dye 

uptake by fluorescence emission at an excitation/emission wavelength couple of 

360/580 nm. Cells were also treated with 10 µM of A740003, a P2X7R specific 

antagonist, to confirm if any pore formation was due to P2X7R expression. The 

MNNG-HOS naïve OS cells lack P2X7R expression but were checked for any non-

specific pore formation. The P2X7RB is a naturally truncated isoform of the P2X7RA 

and lacks the typical pore function. Therefore, no ethidium bromide uptake was 

anticipated; however, this was still checked.  

The results demonstrate that as expected, activation of with BzATP the fully functional 

P2X7RA variant in HEK-293 cells led to uptake ethidium bromide, hence 

demonstrating pore formation and was used as a positive control to compare to pore 

formation, this effect was attenuated with the addition of A740003 shown in (Figure 

5.13). 

The assay demonstrated no functional pore formation ability in the untransfected 

MNNG-HOS naïve OS cells or in the MNNG-HOS+P2X7RB expressing OS cells 

(Figure 5.13). 
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Figure 5.13: Ethidium bromide uptake in response to P2X7R activation in MNNG-HOS and 

MNNG-HOS+P2X7RB OS cells. Cells were plated out into 96-well plates and left overnight to adhere, 

the media was then changed to HBSS and incubated at 37°C with or without 10 µM of the P2X7R 

inhibitor A740003 for 1 hour. BzATP was diluted in ultra-pure ethidium bromide to a final concentration 

of 300 µM BzATP and 100 µM ethidium bromide. Induction of the P2X7R pore formation was detected 

for 45 minutes after an initial 5-minute baseline reading, with readings taken every 2 minutes. A) and 

C) Transfected HEK-293+P2X7RA cells known to form pores used as a positive control. B) MNNG-

HOS naïve OS cells D) MNNG-HOS+P2X7RB OS cells. Red coloured lines indicate the cells stimulated 

with BzATP, green lines indicate cells stimulated with BzATP but containing the A740003 inhibitor, black 

coloured lines indicate the cells incubated with ethidium bromide and no BzATP stimulation. Results 

are from three biological repeats with six technical replicates.
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5.11 Effect of P2X7R on MNNG-HOS OS cell proliferation 

Having established that the transfected MNNG-HOS cell lines do indeed contain 

mRNA for the P2X7RB, and having validated the typical P2X7RB responses including 

intracellular calcium responses (Chapter 5, sections 5.7 – 5.10), the effect of receptor 

expression on cell physiology was determined. The first parameter that was examined 

was the MNNG-HOSs ability to grow in varying serum concentrations. MNNG-HOS 

OS cells were grown to 50% confluence then counted and seeded into 96 well plates 

at 2500 cells. After 24 hours, the media was changed to either 0.5%, 2% or 10% FBS 

medium. Cell proliferation was assessed using an MTS assay at days 0, 1, 3, 5 and 7. 

MNNG-HOS OS cells that had been transfected with the P2X7RB isoform when 

cultured in 0.5%, 2% or 10% FBS had a significant increase in proliferation across all 

day 3 and 5 (P= <0.0001, Figure 5.14 A, B, C) and for day 7 (P= 0.0008 for 10% FBS, 

P= 0.0006 for 2% FBS and P= <0.0001 for 0.5% FBS Figure 5.14 A, B, C) compared 

to MNNG-HOS naïve OS cells. 
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Figure 5.14: The effect of P2X7RB expression on MNNG-HOS OS cell proliferation. MNNG-HOS 

OS cells were seeded into 96 well plates at a density of 2500, in either A) 0.5% FBS) B) 2% FBS or C) 

10% FBS  Cell proliferation was assessed using an MTS assay (absorbance measured at 490 nm) on 

days 0, 1, 3, 5 and 7. MNNG-HOS naïve OS cells are shown in green with MNNG-HOS+P2X7RB OS 

cells in blue, data is from 3 biological repeats with 6 technical repeats per experiment. Data was 

analysed using an unpaired T test for days 3, 5, 7. *** = P< 0.001 **** = P < 0.0001.  
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5.12 Effect of A740003 and AZ11645373 on MNNG-HOS OS cell proliferation 

As previously shown P2X7RB increased the growth of MNNG-HOS OS cells, therefore 

whether this increased growth could be attenuated using specific P2X7R antagonists 

was next investigated. The amount of cells used was 2500 in 0.5% FBS medium. The 

concentration of inhibitor used was 100 µM, derived from a previously used 

concentration (Giuliani et al., 2014). 

Treatment of MNNG-HOS naïve OS cells with A740003 or AZ11645373 had no 

significant effect on cell growth (A740003 0.735 ± 0.069 SEM vs 1.000 ± 0.087 SEM 

vehicle, P=0.060, Figure 5.15 A) and (AZ11645373 0.982. ± 0.080 SEM vs 1.000 ± 

0.087 SEM vehicle, P= 0.912, Figure 5.15 A). 

In MNNG-HOS OS cells transfected with P2X7RB, growth was significantly decreased 

by both A740003 and AZ11645373 (A740003 0.4831 ± 0.045 SEM vs 1.000 ± 0.079 

SEM vehicle, P<0.0001, Figure 5.15 B) and (AZ11645373 0.650 ± 0.058 SEM vs 1.000 

± 0.079 SEM, P= 0.0007, Figure 5.15 B). 
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Figure 5.15: The effect of two different P2X7R inhibitors on the proliferation of MNNG-HOS and 

MNNG-HOS OS cells. Cells were plated out in a 96 well plate at a density of 2500 cells in 0.5% FBS, 

and left to adhere for 24 hours, the medium was then changed to medium containing vehicle or 100 µM 

of either A740003 or AZ11645373. The cell activity was assessed using an MTS assay (absorbance 

measured at 490 nm) at 3 days. A) MNNG-HOS naïve OS cells, B) MNNG-HOS+ P2X7RB OS cells. 

Data is from 3 biological repeats with 6 technical repeats per experiment. Data was analysed comparing 

the treatment groups to the vehicle control using a Mann Whitney test as data was considered non-

parametric. ** = P< 0.01 ****= P<0.0001. 
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5.13 The effect of P2X7R expression on MNNG-HOS OS cell adhesion 

For cell adhesion studies assessing the ability to adhere to type 1 collagen coated to 

a 96-well plate. The same experiment was performed for the MNNG-HOS OS cells as 

per the Te85 OS cells, a 4-hour time point used, the wells containing cells were 

washed and the remaining cells quantified by lysing the cells with lysis buffer and 

detecting the DNA present using Quant-iT™ PicoGreen® dsDNA Reagent. 

Fluorescence was detected at excitation 485 nm and emission 530 nm with a cut off 

at 530 nm. 

MNNG-HOS OS cells expressing the P2X7RB had significantly decreased adhesion 

to the type I collagen matrix when compared to the MNNG-HOS naïve OS cells 

(MNNG-HOS+P2X7RB 0.724 ± 0.047 SEM vs 1.000 ± 0.042 SEM, MNNG-HOS naïve 

P= <0.0001, Figure 5.16). 
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Figure 5.16: The effect of P2X7RB on OS cell adhesion. For each experiment 7500 cells were plated 

into a 96 well plate pre-coated with type 1 rat tail collagen and left for 4 hours at 37°C. Wells were then 

washed 4 times with PBS to removed unattached cells. Remaining attached cells were lysed using lysis 

buffer and detected using Quant-iT™ PicoGreen® dsDNA Reagent. Fluorescence was detected at 

excitation 485 nm and emission 530 nm. MNNG-HOS naïve vs MNNG+P2X7RB OS cells. data is 

plotted relative to the MNNG-HOS naïve OS cells which are shown in green, MNNG-HOS+P2X7RB OS 

cells in blue. Data shown is from 3 biological repeats with 6 technical repeats per experiment. Data was 

analysed using an unpaired T-test. **** = P <0.0001. 
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5.14 The effect of P2X7R expression on MNNG-HOS OS cell migration  

Migration was performed using the same method as the Te85 OS cells, a scratch 

assay was used. The OS cell lines were seeded into a 12 well plate at a density of 

200,000 in complete medium and left overnight to adhere and form a monolayer. Cells 

were then changed over into complete medium containing 5 µg/ml mitomycin C and 

left for 2 hours at 37°C. After this, monolayers were scratched down the centre of each 

well using a 10 µL pipette tip. After washing twice with PBS the cells were left in either 

10% FBS, 0.5% FBS medium or 0.5% FBS medium with 10 µM BzATP. Images were 

taken every 2 hours for 24 hours. 

In 10% FBS, there was no significant difference in migration between MNNG-HOS 

naïve OS cells and MNNG-HOS OS cells expressing P2X7RB (P= 0.058, Figure 5.17). 

In 0.5% FBS, there was no significant difference in migration between MNNG-HOS 

naïve OS cells and MNNG-HOS OS cells expressing P2X7RB (P= 0.123, Figure 5.18). 

However, when cells were cultured in 0.5% FBS and stimulated with 10 µM BzATP to 

activate the P2X7RB, there was a significant increase in migration in MNNG-

HOS+P2X7RB OS cells when compared to stimulated MNNG-HOS naïve OS cells. 

(P= <0.002, Figure 5.19). 
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Figure 5.17: The effect of P2X7RB on MNNG-HOS OS cell migration in 10% FBS medium. Cells 

were plated out into a 12 well plate at a seeding density of 200,000 in complete medium and left 

overnight to adhere and form a monolayer. Cells were then changed over into complete medium 

containing 5 µg/ml mitomycin C and left for 2 hours at 37°C, monolayers were then scratched down the 

centre of the well using a 10 µL pipette tip, after washing twice with PBS the cells were left in 10% FBS 

with images taken every 2 hours for 24 hours. The images are representative of 0 hours, 12 hours and 

24 hours only. The images were analysed and pseudocoloured using Tscratch software. Data from 3 

biological repeats with 3 technical repeats per experiment. A) MNNG-HOS naïve OS cells B) MNNG-

HOS+P2X7RB OS cells. C) MNNG-HOS naïve OS cells in green vs MNNG-HOS+P2X7RB OS cells 

blue. Linear regression was used to compare the slopes.  
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Figure 5.18: The effect of P2X7RB, on MNNG-HOS OS cell migration in 0.5% FBS medium. Cells 

were plated out into a 12 well plate at a seeding density of 200,000 in complete medium and left 

overnight to adhere and form a monolayer. Cells were then changed over into complete medium 

containing 5 µg/ml mitomycin C and left for 2 hours at 37°C, monolayers were then scratched down the 

centre of the well using a 10 µL pipette tip, after washing twice with PBS the cells were left in medium 

containing 0.5% FBS with images taken every 2 hours for 24 hours. The images are representative of 

0 hours, 12 hours and 24 hours only. The images were analysed and pseudocoloured using Tscratch 

software. Data from 3 biological repeats with three technical repeats per experiment. A) MNNG-HOS 

naïve OS cells B) MNNG-HOS+P2X7RB OS cells. C) MNNG-HOS naïve OS cells in green vs MNNG-

HOS+P2X7RB OS cells blue. Linear regression was used to compare the slopes.  
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Figure 5.19: The effect of P2X7RB, on MNNG-HOS OS cell migration in 0.5% FBS medium 

stimulated with BzATP. Cells were plated out into a 12 well plate at a seeding density of 200,000 in 

complete medium and left overnight to adhere and form a monolayer. Cells were then changed over 

into complete medium containing 5 µg/ml mitomycin C and left for 2 hours at 37°C, monolayers were 

then scratched down the centre of the well using a 10 µL pipette tip, after washing twice with PBS the 

cells were left in medium containing 0.5% FBS and 10 µM BzATP with images taken every 2 hours for 

24 hours. The images are representative of 0 hours, 12 hours and 24 hours only. All images were 

analysed, and pseudo coloured using Tscratch software. Data from 3 biological repeats with 3 technical 

repeats per experiment. A) MNNG-HOS naïve OS cells B) MNNG-HOS+P2X7RB OS cells C) MNNG-

HOS naïve OS cells in green vs MNNG-HOS+P2X7RB OS cells in blue. Linear regression was used to 

compare the slopes. ** = P <0.01.  
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5.15 The effects of P2X7R expression on MNNG-HOS OS cell invasion  

Invasion in MNNG-HOS OS cells was performed according to the same method used 

for Te85 OS cells. The cells were cultured in mitomycin C to inhibit proliferation, before 

being plated into a pre-coated matrigel transwell FluoroBlok insert in serum free 

medium containing 10 µM BzATP. The lower chamber contained 10% FBS medium 

as a chemoattractant. After 24 hours the inserts were removed, washed in PBS and 

stained with Calcein AM cell permeant dye and imaged, these were then quantified 

using Image J and plotted as the amount of invaded cells detected. 

The results show that there was a significantly increased ability to invade the matrigel 

layer in the MNNG-HOS+P2X7RB OS cells compared to MNNG-HOS naïve OS cells 

(MNNG-HOS+P2X7RB 661.7 ± 173.0 SEM vs 180.9 ± 66.73 SEM MNNG-HOS, P= 

0.025, Figure 5.20). 
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Figure 5.20: Representative images of the effect of P2X7RB on MNNG-HOS OS cell invasion and 

the analysed results. Cells were incubated in culture with 5 µg/ml mitomycin C and left for 2 hours at 

37°C. They were seeded into a 24 well plate at a density of 100,000 cells in serum free medium 

containing 10 µM BzATP, in an upper fluoroblok chamber pre-coated with 1.5 mg/ml Matrigel. The 

medium in the lower chamber contained complete medium. After 24 hours the upper fluoroblok 

transwells were removed and washed twice in PBS and left for 30 minutes at 37°C in calcein AM cell 

permeant dye to stain live invaded cells. Images were taken covering 60% of the underside of the 24-

well, this covered the entire surface of the smaller insert, these were analysed using Image J, shown 

are representative images of A) MNNG-HOS OS cells B) MNNG-HOS+P2X7RB OS cells C) MNNG-

HOS naïve OS cells shown in green vs MNNG-HOS+P2X7RB OS cells shown in blue. Data is from 3 

biological repeats with 3 technical repeats per experiment. * = P< 0.05 data was analysed using an 

unpaired T-test. 
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5.16 Discussion 

The purpose of this chapter was to determine if Te85 OS cells could be used as an in 

vivo model of OS to target the P2X7R Due to the P2X7R providing a growth increase 

in Te85 OS cells (Chapter 4) and having previously been reported to increase the 

growth of cell lines injected in vivo (Adinolfi et al., 2012) this chapter tested the 

hypothesis that P2X7R expression would increase the tumourgenicity of the Te85 OS 

cells in vivo. However, this was not the case and therefore the second aspect of the 

chapter was to determine if an alternative MNNG-HOS model could be used. The 

MNNG-HOS OS cell line is a derivative of the Te85 parental OS cell line which was 

treated with MNNG and increases the carcinogenesis of the cells (Rhim et al.,1975a). 

The results from this in vivo pilot study demonstrate that the Te85 OS cell line when 

injected paratibially into 3 BALB/c nude mice do not form palpable tumours after 6 

weeks, in addition no micro-tumours were detected in the H&E and Ki-67 stained leg 

sections. There was also no effect on bone phenotype, such as osteolysis or ectopic 

bone formation as determined using micro-CT reconstructions of the bones and total 

bone volume determination as there was no difference in total bone volume when 

comparing the Te85 injected limb to the contralateral limb in any variants. The cells 

didn’t form any metastasis in the lungs when they were collected and analysed. The 

observed results are in accordance with previously reported findings regarding the use 

of Te85 OS cells in vivo (Luu et al., 2005). This means that the Te85 OS cell line or 

Te85+P2X7R expressing variants cannot be used as a suitable in vivo model and an 

alternative OS cell line would need to be used to target P2X7R. 

Mice injected with MNNG-HOS+GFP+LUC and MNNG-HOS naïve OS cells did form 

palpable tumours in all 6 mice 9 days’ post injection. Tumours were shown clearly on 

the H&E and Ki-67 stained sections. Additionally, the bones had both osteolysis and 

ectopic bone formation which was visible on the 3D micro-CT reconstruction. The total 

bone volumes also showed an average decrease in the injected limbs, this was 

however considered not significant most likely due to the low N number used in the 

pilot study. There was only one incidence of pulmonary metastasis with MNNG-

HOS+GFP+LUC mice and none in the MNNG-HOS mice suggesting this model may 

not provide the ability to study OS metastasis. 
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Due to the MNNG-HOS+GFP+LUC and MNNG-HOS naïve OS cells forming a reliable 

OS model when paratibially injected into BALB/c nude mice, which was palpable in a 

fast time frame, these cells could be used as an alternative to the Te85 OS cells as a 

xenograft model to be used to target the P2X7R. 

P2X7R was found not to be expressed in MNNG-HOS naïve OS cells so a P2X7R 

isoform was required to be transfected. The P2X7RB is a naturally occurring splice 

variant of the full length P2X7RA, with a non-functional P2X7R phenotype lacking the 

pore formation function (Sluyter & Stokes, 2011). It is highly expressed in OS patient 

samples (Giuliani et al., 2014) however, when P2X7R has been examined in various 

other cancers studies only focus on the full length receptor. Based on this and the data 

from chapter 4 showing that transfection with the P2X7RB increases OS proliferation, 

decreases cell adhesion, and increases migration and invasion, the P2X7RB isoform 

could provide a novel therapeutic target that has yet to be widely explored. MNNG-

HOS naïve OS cells were subsequently transfected with P2X7RB and confirmed with 

end point PCR, qPCR and receptor functional assays. Its effect on cell proliferation 

adhesion migration and invasion were then further assessed. The results 

demonstrated transfection with the P2X7RB variant lead to an increase rate of 

proliferation, decreased cell adhesion and increased migration and invasion when 

stimulated with BzATP. These findings concur with the Te85 OS cell line when 

transfected with P2X7RB and has been discussed in the previous chapter. 

In conclusion, the Te85 model cannot be used in vivo, however, this chapter 

demonstrates that a MNNG-HOS model can be used which has led to the formation 

of a MNNG-HOS+P2X7RB OS cell line which will now be used for further in vivo 

studies. 
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Chapter 6 - Targeting the P2X7RB in vivo using the 

MNNG-HOS OS xenograft mouse model 
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6.1 Introduction 

The previous chapters have demonstrated that the expression of P2X7R contributes 

towards OS cell growth, adhesion, migration and invasion in both Te85 and MNNG-

HOS cell lines in vitro; and that targeting the P2X7R with A740003 could provide a 

novel therapeutic target for the treatment of OS as it significantly reduced OS cell 

growth. 

Previously, P2X7R targeting has been performed in vivo in different cancers, and the 

application of P2X7R antagonists has had encouraging effects on reducing tumour 

growth. In an orthotopic xenograft mouse model of pancreatic ductal adenocarcinoma 

the P2X7R antagonist AZ10606120 administered via IP injection was shown to 

decrease tumour size (Giannuzzo et al., 2016) similar effects were also observed 

using the same antagonist in vivo on mesothelioma tumours (Amoroso et al., 2016), 

although in the latter case the antagonist was delivered intra mass directly to the 

tumour. Another study showed a similar effect looking at three different cancer types. 

Growth of CT26 mouse colon cancer cells was reduced in vivo using the P2X7R 

antagonist oATP administered intra mass. The growth of B16 melanoma cells was 

reduced using the P2X7R antagonist AZ10606120 again administered intra mass. The 

study then further demonstrated that genetic silencing of the P2X7R using short 

hairpin RNA decreased tumour growth of the neuroblastoma cell line ACN in vivo, 

(Adinolfi et al., 2012). 

In order to further validate the in vitro findings of P2X7R influencing OS growth and 

P2X7R antagonism reducing it (Chapter 4 & 5) a xenograft mouse model of OS was 

used. The Te85 OS cells used in previous in vitro studies were shown to be an 

unsuitable model to use in vivo as they didn’t form any palpable tumours or pulmonary 

metastasis (Chapter 5). However, the MNNG-HOS cell line did provide a reliable 

model (Chapter 5). Therefore, the MNNG-HOS cell line was transfected with the 

P2X7RB variant as the in vitro data for P2X7RB transfected cells showing a consistent 

pro tumour effect (Chapter 4&5). P2X7R caused an increase in growth which was 

attenuated with A740003, a decrease in cell adhesion and an increase in migration 

and invasion when stimulated with BzATP. Due to its truncation it naturally doesn’t 

have the pore forming ability related to cell apoptosis (Cheewatrakoolpong et al., 

2005). Additionally OS patient samples which express the P2X7RB have a higher cell 



147 
 

density possibly suggesting they are more aggressive and contribute towards disease 

progression (Giuliani et al., 2014).  

In this chapter BALB/c nude mice were paratibially injected in their left leg with either 

MNNG-HOS naïve OS cells or MNNG-HOS+P2X7RB OS cells. The mice were then 

treated every two days with either vehicle, Ifosfamide (a common chemotherapy drug 

used for human OS treatment) (Fan et al., 2015) or A740003 (a competitive P2X7R 

antagonist) (Honore et al., 2006). The mice were then euthanised and ex vivo analysis 

was performed assessing the primary tumour, bone phenotype and metastasis. 

The aims of this chapter were to examine the following: 

 The effect of P2X7RB expression and treatment with A740003 on tumour 

growth. This was measured using both external callipers and micro-CT imaging.  

 The effect of P2X7RB and treatments on histology of the MNNG-HOS tumours 

using H&E staining. 

 The effect of P2X7RB expression and A740003 treatment on tumour 

proliferation using Ki-67 IHC. 

 The effect of P2X7RB expression and A740003 treatment on tumour apoptosis 

using annexin V IHC. 

 The effect of P2X7RB expression and A740003 treatment on the total bone 

volume using micro-CT. 

 The effect of P2X7RB expression and A740003 treatment on osteoclast 

coverage at the tumour-bone interface. 

 The effect of P2X7RB expression and A740003 treatment on OS pulmonary 

metastasis. 
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6.2 Tumorigenicity of MNNG-HOS and MNNG-HOS+P2X7RB OS cells injected 

into BALB/c nude mice 

Initially 72 mice were paratibially injected with 250,000 cells (MNNG-HOS or MNNG-

HOS+P2X7RB) in 20l PBS in order to replicate the OS tumour microenvironment by 

ensuring that cells were in close proximity to the bone. Mice were then randomised 

into 3 treatment groups (vehicle, Ifosfamide or A740003 via IP injection every 2 days) 

for each cell line. For each treatment group the N number was 12 mice. For the mice 

injected with MNNG-HOS naïve OS cells, the group treated with vehicle resulted in 

9/12 mice with palpable tumours, with Ifosfamide 11/12 mice had palpable tumours 

and with A740003 10/12 mice had palpable tumours (Figure 6.1). For the mice injected 

with transfected MNNG-HOS+P2X7RB OS cells, the group treated with vehicle 

resulted in 6/12 mice with palpable tumours, with Ifosfamide 10/12 mice had palpable 

tumours and with A740003 8/12 mice had palpable tumours (Figure 6.1). In total of 

54/72 mice had palpable OS tumours. An additional group of 12 mice were used as a 

paratibially injected control, these were scratched with the injection needle but not 

injected with any tumour cells and therefore did not have any palpable tumours. 
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Figure 6.1: Tumourgenicity in the different in vivo conditions. For each treatment group 12 female 

BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-

HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 every 

2 days for 3 weeks via IP injection and the number of mice with palpable tumours at the end of the procedure 

plotted. An additional group of 12 mice were used as a paratibially injected control, these were scratched with 

the injection needle but not injected with any tumour cells and therefore did not have any palpable tumours. 
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6.3 The effect of P2X7RB expression and drug treatments on primary tumour 

size measured using external callipers  

External calliper measurements were taken at the end of the in vivo experiment. This 

was to determine if P2X7RB expression or if treatment with Ifosfamide or A740003 

had an effect on tumour size. 

The size of the MNNG-HOS+P2X7RB tumour bearing mice legs was not statistically 

different to the size of the MNNG-HOS tumour bearing mice legs (MNNG-

HOS+P2X7RB 6.983 mm3 ± 0.350 SEM vs 8.323 mm3 ± 0.514 SEM MNNG-HOS, P= 

0.071, Figure 6.2).  

The average size of the MNNG-HOS tumour bearing mice tumours treated with 

Ifosfamide were not statistically different to the size when treated with vehicle 

(Ifosfamide 7.570 mm3 ± 0.356 SEM, vs 8.323 mm3 ± 0.514 SEM vehicle, P= 0.231, 

Figure 6.3 A) or when mice were treated with A740003 (A740003 7.083 mm3 ± 0.404 

SEM vs 8.323 mm3 ± 0.514 SEM vehicle, P= 0.0725, Figure 6.3 A). This was similarly 

the case in the MNNG-HOS+P2X7RB tumour bearing mice, where mice treated with 

Ifosfamide did not have statistically different tumour sizes compared to mice treated 

with vehicle (Ifosfamide 6.739 mm3 ± 0.1602 SEM, vs 6.983 mm3 ± 0.3507 SEM 

vehicle, P= 0.4898, Figure 6.3 B) or when mice were treated with A740003 (A740003 

7.001 ± 0.3418 SEM vs 6.983 mm3 ± 0.3507 SEM vehicle, P= 0.9719, Figure 6.3 B). 
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Figure 6.2: End-point primary tumour size comparing the MNNG-HOS and MNNG-HOS+P2X7RB OS 

bearing mice using external callipers. For each treatment group 12 female BALB/c 7-9 week old mice 

were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 

20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP 

injection. Tumour size was determined at the end of the experiment using external callipers to measure 

the tumour bearing limb only (left leg). MNNG-HOS treated with vehicle was compared to MNNG-

HOS+P2X7RB treated with vehicle using an unpaired T-test. N= 9 mice for MNNG-HOS and 6 mice for 

MNNG-HOS+P2X7RB. 
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Figure 6.3: End-point primary tumour size in MNNG-HOS and MNNG-HOS+P2X7RB OS bearing 

mice receiving treatments measured using external callipers. For each treatment group 12 female 

BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-

HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 

every 2 days for 3 weeks via IP injection. Tumour size was determined at the end of the experiment 

using external callipers to measure the tumour bearing limb only (left leg) A) MNNG-HOS tumour 

bearing mice treated with vehicle, Ifosfamide or A740003. B) MNNG-HOS+P2X7RB tumour bearing 

mice treated with vehicle, Ifosfamide or A740003 .The treatment groups were compared to vehicle using 

an unpaired T-test. N= 9-11 mice for MNNG-HOS groups and 6-9 mice for MNNG-HOS+P2X7RB 

groups.  
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6.4 The effect of P2X7RB expression and drug treatments on tumour size 

measured using the entire tissue size of the left leg from micro-CT scans 

As no treatment group for both cell lines had a significant difference measured with 

external callipers (despite the presence of tumours) there were concerns with the 

accuracy of the measurements which can be influenced by observer subjectivity, 

tumour compressibility, skin thickness, subcutaneous fat level and differences in 

tumour shape (Kersemans et al., 2013) therefore micro-CT calliper measurements 

were also made. The micro-CT calliper measurements were made using Skyscan 

CTAn software by drawing across the width of the entire leg tissue including the tumour 

from the widest point in a straight line (see Chapter 2). Only tumour bearing left legs 

were analysed. To determine if this method would be able to detect a difference in 

tumour bearing legs.  

Using this method, the tumour size of the legs injected with MNNG-HOS naïve OS 

cells had a significantly increased size compared to the scratched control leg sizes 

(vehicle 8.170 mm3 ± 0.544 SEM vs 4.693 mm3 ± 0.153 SEM scratched only leg, P= 

<0.0001, Figure 6.4 A). This was also the case for legs injected with MNNG-P2X7RB 

OS cells (vehicle 7.232 mm3 ± 0.249 SEM, vs 4.693 mm3 ± 0.153 SEM scratched only 

leg, P= <0.0001, Figure 6.4 B). 

Similar to the external calliper measurement observations the MNNG-HOS+P2X7RB 

tumour bearing mice leg tissue was not statistically different to the size of the MNNG-

HOS tumour bearing mice leg (MNNG-HOS+P2X7RB 7.232 mm3 ± 0.249 vs 8.170 

mm3 ± 0.544 SEM vs SEM MNNG-HOS, P= 0.207, Figure 6.4 C). Next, there was no 

significant effect of either Ifosfamide or A740003 treatment on the average size of the 

MNNG-HOS bearing tumour size compared to vehicle (Ifosfamide 7.057 mm3 ± 0.402 

SEM vehicle 8.170 mm3 ± 0.544 SEM vehicle, P=0.110 Figure 6.5 A) and (A740003 

7.238 mm3 ± 0.327 SEM vs 8.170 mm3 ± 0.544 SEM vehicle, P= 0.151, Figure 6.5 A).  

Finally, treatment of the MNNG-HOS+P2X7RB bearing mice with Ifosfamide 

significantly reduced tumour size compared to vehicle (Ifosfamide 6.339 mm3 ± 0.276 

SEM vs 7.232 mm3 ± 0.249 SEM vehicle, P= 0.045 Figure 6.5 B) but not when treated 

with A740003 (A740003 6.621 mm3 ± 0.371 SEM vs 7.232 mm3 ± 0.249 SEM vehicle, 

P= 0.227, Figure 6.5 B).  
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Figure 6.4: Measurement of tumour size using micro-CT scans comparing the MNNG-HOS and MNNG-

HOS+P2X7RB performed on the BALB/c tumour bearing mice left legs. For each treatment group 12 

female BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or 

MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 

every 2 days for 3 weeks via IP injection. Tumour size was determined using micro-CT images measuring 

the tumour bearing limb only and including the entire width of the leg. MNNG-HOS treated with vehicle were 

compared to MNNG-HOS+P2X7RB treated with vehicle using an unpaired T-test. N= 9 mice for MNNG-HOS 

and 6 mice for MNNG-HOS+P2X7RB. 
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Figure 6.5: Measurement of tumour size in MNNG-HOS and MNNG-HOS+P2X7RB OS bearing 

mice receiving treatments using micro-CT scans performed on the BALB/c tumour bearing mice 

left legs. For each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 

250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then 

treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. Tumour size was 

determined using micro-CT images to measure the tumour bearing limb only measuring the entire width 

of the leg. Each group was compared to the vehicle and scratched control A) MNNG-HOS tumour 

bearing mice treated with vehicle, Ifosfamide or A740003 and the scratched only leg B) MNNG-

HOS+P2X7RB tumour bearing mice treated with vehicle, Ifosfamide or A740003 and the scratched only 

leg. The groups were compared to using an unpaired T-test. N= 12 mice scratched only, 9-11 mice for 

MNNG-HOS and 6-10 mice for MNNG-HOS+P2X7RB. 
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6.5 The effect of P2X7RB expression and drug treatments on the histology of 

the OS tumours 

Histological analysis is the gold standard for a diagnosis in almost all types of cancer 

including OS (Gurcan et al., 2009), therefore, this was performed to assess the 

MNNG-HOS and MNNG-HOS+ P2X7RB OS tumours and surrounding bone 

architecture which can also have been affected. H&E staining was used to assess 

tumour characteristics such as the grade, phenotype, nuclei, morphological 

appearance, size and shape. At the end of the experiment  mice legs were collected 

processed, embedded, sectioned and H&E stained. There was no overt difference in 

the histology of both the MNNG-HOS and MNNG-HOS+P2X7RB tumours, and no 

overt difference when Ifosfamide and A740003 were administered. Both cell lines 

formed tumours that were high-grade undifferentiated OS tumours with cells, with very 

little osteoid matrix and collagen production (Figure 6.6). 
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A) MNNG-HOS naive 
 

B) MNNG-HOS+P2X7RB 
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Figure 6.6: Representative H&E stained sections of mice legs injected with MNNG-HOS naïve and 

MNNG-HOS+P2X7RB OS cells. For each treatment group 12 female BALB/c 7-9 week old mice were 

injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL 

PBS. Mice were then treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. 

The mice were then euthanised and dissected. The legs were collected processed, embedded into wax 

blocks and sections were taken to be H&E stained A) MNNG-HOS tumour B) MNNG-HOS+P2X7RB 

tumour. 
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6.6 The effect of P2X7RB expression and drug treatments on OS cell 

proliferation in vivo detected using Ki-76 IHC 

To assess if any of the treatments had an effect on the primary tumour’s rate of 

proliferation IHC was performed. Mice legs were collected, processed, embedded into 

wax blocks, sectioned and stained for Ki-67. 

The amount of cells stained positive for Ki-67 in MNNG-HOS+P2X7RB tumours were 

not statistically different to the amount stained positive in MNNG-HOS tumours 

(MNNG-HOS+P2X7RB 37.98% ± 8.185 SEM vs 27.82% ± 2.288 SEM MNNG-HOS, 

P= 0.178, Figure 6.7).  

The cells stained positive for Ki-67 in the tumours of mice injected with MNNG-HOS 

naïve OS cells showed no difference when treated with Ifosfamide (Figure 6.9) 

(Ifosfamide 30.26% ± 4.144 SEM vs 27.82% ± 2.288 SEM vehicle, P= 0.633, Figure 

6.8 A) or when treated with A740003 (Figure 6.9) (A740003 26.49% ± 5.079 SEM vs 

27.82% ± 2.288 SEM vehicle, P= 0.822, Figure 6.8 A). 

The cells stained positive for Ki-67 in the tumours of mice injected with MNNG-

HOS+P2X7RB OS cells showed no difference when treated with Ifosfamide (Figure 

6.10) (Ifosfamide 25.88% ± 6.287 SEM, vs 37.98% ± 8.185 SEM vehicle, P= 0.259, 

Figure 6.8 B) or when treated with A740003 (Figure 6.10) (A740003 22.00% ± 7.654 

SEM vs 37.98% ± 8.185 SEM vehicle, P= 0.183, Figure 6.8 B). 
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Figure 6.7: Measurement of proliferating cells in leg sections from MNNG-HOS and MNNG-

HOS+P2X7RB OS bearing BALB/c mice using Ki-67 IHC. For each treatment group 12 female BALB/c 

7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-

HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 every 

2 days for 3 weeks via IP injection.  The mice were then euthanised and dissected. The legs were collected 

processed, embedded into wax blocks and sections were taken to be stained for Ki-67. The sections were 

then analysed using QuPath. MNNG-HOS tumour bearing mice treated with vehicle were compared to 

MNNG-HOS+P2X7RB tumour bearing mice treated with vehicle. Results were compared using an 

unpaired T-Test. N= 9 mice for MNNG-HOS and 6 mice for MNNG-HOS+P2X7RB.  
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Figure 6.8: Measurement of proliferating cells in leg sections from MNNG-HOS and MNNG-

HOS+P2X7RB OS bearing BALB/c mice receiving treatments using Ki-67 IHC. For each treatment 

group 12 female BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-

HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, 

Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were then euthanised and 

dissected. The legs were collected, processed, embedded into wax blocks and sections were taken to 

be stained for Ki-67. The sections were then analysed using QuPath. Treatment groups Ifosfamide and 

A740004 were both compared to the vehicle control. A) MNNG-HOS tumour bearing mice. B) MNNG-

HOS+P2X7RB tumour bearing mice. Groups were compared using an unpaired T-test. N= 9-11 mice 

for MNNG-HOS and 6-10 mice for MNNG-HOS+P2X7RB. 
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A) MNNG-HOS naïve + vehicle B) MNNG-HOS naïve + Ifosfamide 

C) MNNG-HOS naïve + A740003 D) MNNG-HOS naïve +isotype 
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Figure 6.9: Representative images of Ki-67 stained MNNG-HOS tumour bearing left leg sections. 

For each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 250,000 

cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated 

with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were then 

euthanised and dissected. The legs were collected processed, embedded into wax blocks and sections 

were taken to be stained for Ki-67. A) Vehicle treatment B) Ifosfamide treatment C) A740003 treatment 

D) Isotype control. 
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A) MNNG-HOS+P2X7RB + vehicle 

 

B) MNNG-HOS+P2X7RB + Ifosfamide 
 

 

C) MNNG-HOS+P2X7RB + A740003 

 

D) MNNG-HOS+P2X7RB + isotype 
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Figure 6.10: Representative image of Ki-67 stained MNNG-HOS+P2X7RB tumour bearing left leg 

sections. For each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 

250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then 

treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were then 

euthanised and dissected. The legs were collected processed, embedded into wax blocks and sections 

were taken to be stained for Ki-67. A) Vehicle treatment B) Ifosfamide treatment C) A740003 treatment D) 

Isotype control. 
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6.7 The effect of P2X7RB expression and drug treatments on cell apoptosis 

detected using annexin V IHC 

Phosphatidylserine is externalised and expressed on early apoptotic cell membranes, 

annexin V binds to phosphatidylserine and therefore is routinely used to indicate cell 

death. 

Mice legs were collected, processed, embedded into wax blocks, sectioned and IHC 

was performed to detect cells undergoing apoptosis to see if any of the treatments had 

an effect on the primary tumour or if MNNG-HOS and MNNG-HOS+P2X7RB tumour 

bearing mice had any difference. 

The percentage of cells stained positive for annexin V in MNNG-HOS+P2X7RB 

tumour bearing mice was statistically higher than the amount stained positive in 

MNNG-HOS tumour bearing mice (MNNG-HOS+P2X7RB 97.15% ± 0.267 SEM vs 

57.91% ± 12.620 SEM MNNG-HOS, P= 0.026, Figure 6.11).  

The percentage of cells stained positive for annexin V in mice injected with MNNG-

HOS OS cells showed a significant increase when treated with Ifosfamide (Figure 

6.13) (Ifosfamide 98.25% ± 0.768 SEM vs 57.91% ± 12.620 SEM vehicle, P= 0.0008, 

Figure 6.12 A) there was no difference when treated with A740003 (Figure 6.13) 

(A740003 85.57% ± 4.954 SEM vs 57.91% ± 12.620 SEM, P= 0.112, Figure 6.12 A). 

The percentage of cells stained positive for annexin V in mice injected with MNNG-

HOS+P2X7RB OS cells showed no difference when treated with Ifosfamide (Figure 

6.14) (Ifosfamide 96.75% ± 0.343 SEM vs 97.15% ± 0.267 SEM vehicle, P=0.5006, 

Figure 6.12 B) or when treated with A740003 (Figure 6.14) (A740003 97.10% ± 0.343 

SEM vs 97.15% ± 0.267 SEM vehicle, P= 0.910, Figure 6.12 B). 
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Figure 6.11: Measurement of cell death in leg sections from MNNG-HOS and MNNG-HOS+P2X7RB OS 

bearing BALB/c mice using annexin V IHC. For each treatment group 12 female BALB/c 7-9 week old 

mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended 

in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP 

injection. The mice were then euthanised and dissected. The legs were collected processed, embedded into 

wax blocks and sections were taken to be stained for annexin V. The sections were then analysed using 

QuPath. MNNG-HOS tumour bearing mice treated with vehicle were compared to MNNG-HOS+P2X7RB 

tumour bearing mice treated with vehicle. Results were compared using an unpaired T-Test. N= 9 mice for 

MNNG-HOS and 6 mice for MNNG-HOS+P2X7RB. 
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Figure 6.12: Measurement of cell death in leg sections from MNNG-HOS and MNNG-

HOS+P2X7RB OS bearing BALB/c mice receiving treatments using annexin V IHC. For each 

treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of 

either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with 

vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were then euthanised 

and dissected. The legs were collected processed, embedded into wax blocks and sections were taken 

to be stained for annexin V. The sections were then analysed using QuPath. Treatment groups 

Ifosfamide and A740004 were both compared to the vehicle control. A) MNNG-HOS tumour bearing 

mice. B) MNNG-HOS+P2X7RB tumour bearing mice. Groups were compared using an unpaired T-test 

for parametric data and Mann-Whitney test for non-parametric data. N= 9-11 mice for MNNG-HOS and 

6-10 mice for MNNG-HOS+P2X7RB 
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A) MNNG-HOS naïve + vehicle 
 

B) MNNG-HOS naïve + Ifosfamide 
 

C) MNNG-HOS naïve + A740003 
 

 

D) MNNG-HOS naïve + isotype 
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Figure 6.13: Representative image of annexin V stained MNNG-HOS tumour bearing left leg 

sections. For each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 

250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then 

treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were 

then euthanised and dissected. The legs were collected processed, embedded into wax blocks and 

sections were taken to be stained for annexin V. A) Vehicle treatment B) Ifosfamide treatment C) 

A740003 treatment D) Isotype control. 
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A) MNNG-HOS+P2X7RB + vehicle  B) MNNG-HOS+P2X7RB + Ifosfamide 

 

C) MNNG-HOS+P2X7RB + A740003 

 

D) MNNG-HOS+P2X7RB + isotype 
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Figure 6.14: Representative image of annexin V stained MNNG-HOS+P2X7RB tumour bearing 

left leg. For each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 

250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then 

treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were 

then euthanised and dissected. The legs were collected processed, embedded into wax blocks and 

sections were taken to be stained for annexin V. A) Vehicle treatment B) Ifosfamide treatment C) 

A740003 treatment D) Isotype control. 
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6.8 The effect of P2X7RB expression and drug treatments on total bone 

volume determined by micro-CT analysis  

Micro-CT analysis was performed according to chapter 2 to determine the total bone 

volume on the left tumour bearing leg and the contralateral right leg (non-tumour). 

However, since scratching the needle against the mouse bone when injecting the cell 

lines for the paratibial injection could potentially have an impact on the bone volume 

by affecting bone turnover, a group of 12 non-tumour bearing mice had the bone 

scratched and PBS injected as an external control (scratched only group). 

On analysis, there was no significant effect of scratching the bone on the total bone 

volume compared to the contralateral right leg (Figure 6.16) (scratched leg 5.809 mm3 

± 0.204 SEM vs 5.664 mm3 ± 0.159 SEM contralateral leg, P= 0.158, Figure 6.15). 

The total bone volume of the MNNG-HOS tumour bearing left leg was not statistically 

different to the contralateral non-tumour bearing right leg (MNNG-HOS tumour bearing 

6.262 mm3 ± 0.228 SEM vs 5.763 mm3 ± 0.1401 SEM contralateral leg, P= 0.1030, 

Figure 6.17 A). The total bone volume of the MNNG-HOS+P2X7RB tumour bearing 

leg was statistically increased compared to the contralateral non-tumour bearing right 

leg (MNNG-HOS+P2X7RB tumour bearing 6.117 mm3 ± 0.2358 SEM vs 5.507 mm3 ± 

0.1381 SEM contralateral leg, P= 0.0341, Figure 6.17 B). Despite the lack of a 

statistically significant effect on bone volume in the MNNG-HOS injected mice, when 

viewing the 3D reconstructions of the tumour-bearing limbs there was clearly an effect 

on the bone with a mixed phenotype of osteolysis and ectopic bone formation (Figure 

6.19). 

In order to compare total bone volume across the treatment groups each tumour 

bearing leg was normalised to its contralateral leg. The normalised total bone volume 

of the MNNG-HOS tumour bearing group wasn’t statistically different to the scratched 

only group (MNNG-HOS vehicle 1.025 ± 0.01644 SEM vs 1.092 ± 0.048 SEM 

scratched leg, P= 0.1534, Figure 6.18 A). Ifosfamide had no significant effect on the 

total bone volume (Ifosfamide 1.061 ± 0.03162 SEM vs 1.092 ± 0.048 SEM vehicle, 

P= 0.5765, Figure 6.18 A) neither did A740003 (A740003 1.016 ± 0.03161 SEM vs 

1.092 ± 0.048 SEM vehicle, P=0.1949, Figure 6.18 A).  
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The total bone volume of the MNNG-HOS+P2X7RB tumour bearing group was 

statistically higher than the scratched only group (MNNG-HOS+P2X7RB vehicle 1.118 

± 0.03238 SEM vs 1.025 ± 0.01644 SEM scratched leg, P= 0.0107, Figure 6.18 B). 

Ifosfamide had no effect on the increased bone volume (Ifosfamide 1.057 ± 0.01911 

SEM vs 1.118 ± 0.03238 SEM vehicle, P= 1.069, Figure 6.18 B) but A740003 gave a 

statistically significant reduction in bone volume (A740003 0.9928 ± 0.03299 SEM vs 

1.118 ± 0.03238 SEM vehicle, P= 0.0183, Figure 6.18 B).  
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Figure 6.15: Micro-CT analysis to determine the total bone volume of the scratched control left legs 

and contralateral right legs. In order to demonstrate that a paratibial injection did not have an effect on 

the total bone volume 12 female 7-9 week old BALB/c mice were used as a scratched only control group 

where no tumour cells were injected but a paratibial injection was performed, after 3 weeks the mice were 

euthanised and both legs collected and micro-CT scanned. The total bone volume starting from the point 

at which the femur wasn’t visible and the fibula meets the tibia was determined for each leg and compared 

to its contralateral leg. The groups were compared using a paired T-test. N= 12 mice per group. 
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B) Contralateral 
 

A) Scratched 

Figure 6.16: Representative 3D reconstructed models using micro-CT scanning to show the effects of 

a paratibial scratch on the total bone volume as a control group. In order to demonstrate that a paratibial 

injection did not have an effect on the total bone volume 12 female 7-9 week old BALB/c mice were used as 

a scratched only control group where no tumour cells were injected but a paratibial injection was performed, 

after 3 weeks the mice were euthanised and both legs were collected for micro-CT scanning and 

reconstruction.  Representative micro-CT images of A) scratched left leg and B) contralateral leg. 
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Figure 6.17: The total bone volume of the MNNG-HOS and MNNG-HOS+P2X7RB tumour bearing 

left legs compared to the contralateral right legs analysed by micro-CT. For each treatment group 

12 female BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS 

or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or 

A740003 every 2 days for 3 weeks via IP injection. The mice were euthanised and both legs collected 

and micro-CT scanned, the total bone volume starting from the point at which the femur wasn’t visible 

and the fibula meets the tibia was determined for each leg and compared to its contralateral leg. A) 

MNNG-HOS left tumour bearing leg compared to its contralateral leg. B) MNNG-HOS+P2X7RB left 

tumour bearing leg compared to its contralateral right leg. Groups were compared using a paired T-test. 

N= 9 mice for MNNG-HOS and 6 mice for MNNG-HOS+P2X7RB. 
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Figure 6.18: The total bone volume of the MNNG-HOS and MNNG-HOS+P2X7RB tumour bearing 

mice when receiving treatments analysed by micro-CT. For each treatment group 12 female BALB/c 

7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-

HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 

every 2 days for 3 weeks via IP injection. The mice were then euthanised and both legs were collected 

and micro-CT scanned, the total bone volume starting from the point at which the femur wasn’t visible 

and the fibula meets the tibia was determined for each leg and normalised to its own contralateral leg. 

A) MNNG-HOS injected cells B) MNNG-HOS+P2X7RB injected cells. An unpaired T-test was used to 

compare groups. N= 12 mice for the scratched group, 9-11 mice for MNNG-HOS and 6-10 mice for 

MNNG-HOS+P2X7RB. 
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Figure 6.19: Representative 3D reconstructed models using micro-CT scanning show the effects of 

P2X7R expression on the total bone volume and the effects of treatment. For each treatment group 12 

female BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-

HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 every 2 

days for 3 weeks via IP injection. The mice were euthanised and both legs collected, micro-CT scanned and 

reconstructed.  A) MNNG-HOS tumour bearing mice treated with vehicle B) Treated with Ifosfamide C) Treated 

with A740003 D) MNNG-HOS+P2X7RB tumour bearing mice treated with vehicle E) treated with Ifosfamide 

F) treated with A740003.  
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6.9 The effect of P2X7RB expression and drug treatment on osteoclasts at the 

tumour-bone interface  

OS can cause, increased osteoclast activity which is associated with OS 

aggressiveness (Avnet et al., 2008). The amount of osteoclasts in this study were 

detected using TRAP staining, the osteoclast perimeter was measured at the bone-

tumour interface. This is where the tumour comes into contact with the bone as shown 

in chapter 2. 

The percentage of the tumour-bone interface that is covered with osteoclasts in the 

vehicle treated MNNG-HOS+P2X7RB tumour bearing mice was not statistically 

different to the percentage of osteoclasts in the vehicle treated MNNG-HOS tumour 

bearing mice (MNNG-HOS+P2X7RB 48.3% ± 14.810 SEM vs 34.79% ± 5.440 SEM 

MNNG-HOS, P= 0.3337, Figure 6.20). 

In the MNNG-HOS tumour bearing group treatment with Ifosfamide had no significant 

effect on the percentage of osteoclasts at the tumour-bone interface when compared 

to the vehicle group (Ifosfamide 39.66% ± 11.11 SEM vs 34.79% ± 5.44 SEM vehicle, 

P= 0.6769, Figure 6.21 A) treatment with A740003 also had no significant effect when 

compared to vehicle group (A740003 43.44% ± 8.133 SEM vs 34.79% ± 5.44 SEM 

vehicle, P= 0.3914, Figure 6.21 A). In the MNNG-HOS+P2X7RB tumour bearing group 

treatment with Ifosfamide had no significant effect on the percentage of osteoclasts at 

the tumour-bone interface when compared to the vehicle group (Ifosfamide 37.04% ± 

5.378 SEM vs 48.3% ± 14.81 SEM vehicle, P= 0.4611, Figure 6.21 B) treatment with 

A740003 also had no significant effect when compared to vehicle group (A740003 

32.59 ± 8.062 SEM vs 48.3% ± 14.81 SEM vehicle, P= 0.3384, Figure 6.21 B). 

  



176 
 

 

 

 

 

 

 

 

  

Figure 6.20: Osteoclast quantification at the bone tumour interface using TRAP staining 

comparing MNNG-HOS tumour bearing mice to MNNG-HOS+P2X7RB tumour bearing mice. For 

each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially with 250,000 cells 

of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with 

vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice were then euthanised 

and dissected. The legs were collected processed, embedded into wax blocks and sections were taken 

to be stained for TRAP. The osteoclasts at the tumour-bone interface were quantified and expressed as 

osteoclast percentage along the bone tumour surface. Groups were analysed using an unpaired T-test. 

N= 8 mice for MNNG-HOS and 5 mice for MNNG-HOS+P2X7RB. 
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Figure 6.21: Osteoclast quantification at the bone tumour interface using TRAP staining 

comparing MNNG-HOS and MNNG-HOS+P2X7RB tumour bearing mice when receiving 

treatments. For each treatment group 12 female BALB/c 7-9 week old mice were injected paratibially 

with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. Mice were 

then treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The mice 

were then euthanised, legs collected processed, embedded into wax blocks and sections were stained 

for TRAP. Osteoclast perimeter was measured at the bone-tumour interface. A) MNNG-HOS tumour 

bearing mice treated with vehicle, Ifosfamide and A740003 B) MNNG-HOS+P2X7RB tumour bearing 

mice treated with vehicle, Ifosfamide and A740003. Groups were analysed using an unpaired T-test. 

N= 6-8 mice for MNNG-HOS and 5-7 mice for MNNG-HOS+P2X7RB. 
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100 µm Figure 6.22: Representative images of TRAP stained MNNG-HOS and MNNG-HOS+P2X7RB tumour 

bearing left leg sections. For each treatment group 12 female BALB/c 7-9 week old mice were injected 

paratibially with 250,000 cells of either MNNG-HOS or MNNG-HOS+P2X7RB suspended in 20 µL PBS. 

Mice were then treated with vehicle, Ifosfamide or A740003 every 2 days for 3 weeks via IP injection. The 

mice were then euthanised and dissected. The legs were collected processed, embedded into wax blocks 

and sections were taken to be TRAP stained. Osteoclast perimeter was measured at the bone-tumour 

interface in MNNG-HOS bearing mice treated with A) MNNG-HOS vehicle B) MNNG-HOS Ifosfamide C) 

MNNG-HOS A740003 D) MNNG-HOS+P2X7RB vehicle E) MNNG-HOS+P2X7RB Ifosfamide and F) 

MNNG-HOS+P2X7RB A740003. 
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6.10 The effect of P2X7RB expression and drug treatment on OS pulmonary 

metastasis 

The most common site for OS metastasis is the lungs accounting for 80% of all 

metastatic cases. Patients present with metastasis at initial diagnosis approximately 

20% of the time (Zhu et al., 2013, Lindsey et al., 2017, Posthumadeboer et al., 2011) 

and these patients have the worst prognosis (Lindsey et al., 2017). Therefore, to 

investigate if the P2X7RB plays a role in OS metastasis the lungs were collected from 

each mouse then processed and embedded in wax cassettes. To section the lungs 6 

µm sections were cut every 100 µm to cover the entire lung and stained using H&E. 

All slides were examined under a light microscope for any incidence of OS metastasis 

scored by two independent researchers. In all MNNG-HOS tumour bearing mice out 

of 20 with primary OS tumours there was no incidence of lung metastasis.  

In mice bearing MNNG-HOS+P2X7RB tumours, out of 24 mice with primary OS 

tumours 5 had incidence of metastasis which was determined by two independent 

researchers: 1 in the vehicle treatment group, 2 each in the Ifosfamide and A740003 

groups (Figure 6.23).  
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Figure 6.23: Detection of lung metastasis in MNNG-HOS and MNNG-HOS+P2X7RB tumour 

bearing mice including representative histological images. For each treatment group 12 female 

BALB/c 7-9 week old mice were injected paratibially with 250,000 cells of either MNNG-HOS or MNNG-

HOS+P2X7RB suspended in 20 µL PBS. Mice were then treated with vehicle, Ifosfamide or A740003 

every 2 days for 3 weeks via IP injection. The mice were then euthanised and dissected. The lungs 

were collected processed, embedded into wax blocks and sections were taken to be H&E to enable the 

detection of any OS metastasis. N= 9-11 mice for MNNG-HOS and 6-10 mice for MNNG-HOS+P2X7RB 

A) Lungs from MNNG-HOS naïve tumour bearing mice. B) Lungs from MNNG-HOS+P2X7RB tumour 

bearing mice C) OS metastasis incidence across each group. 
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6.11 Discussion 

The aim of this chapter was to explore the role of P2X7RB in OS in vivo. Therefore, 

MNNG-HOS OS cells and MNNG-HOS+P2X7RB OS cells were injected paratibially 

into BALB/c nude mice. The mice were then treated with either vehicle, Ifosfamide a 

standard chemotherapy for OS patients (Fan et al., 2015) or A740003 which is a 

competitive P2X7R antagonist (Honore et al., 2006). 

The results from this chapter demonstrate that the MNNG-HOS model did not form 

tumours in all instances when injected paratibially. Out of 72 mice 54 formed a 

palpable tumour that could have their properties further assessed. This could be due 

to injecting only 250,000 cells, as the injection of 500,000 cells showed a take rate of 

100% (Chapter 5). Some studies have used as much as 1-1.5 million MNNG-HOS OS 

cells in vivo, Chalopin et al., 2018). However, a lower seeding rate was chosen in order 

to extend the time that the cells were in the mouse to enable a suitable treatment 

regime to be administered and better facilitate lung metastasis. 

Determination of tumour size in xenograft mice is used to evaluate tumour progression 

and response to treatment, the current standard technique is external calliper 

measurements (Kersemans et al., 2013, Jensen et al., 2008, Ayers et al., 2010). 

Therefore, in this study the tumour size was examined using this method at the end of 

the experiment. The results showed that there wasn’t a difference between any of the 

treatment groups or between cell lines. This included the Ifosfamide chemotherapy 

positive control which has been previously shown to cause a decrease in tumour 

growth in MNNG-HOS tumour bearing mice (Chalopin et al., 2018). Although calliper 

measurements have the advantage of been non-invasive, cheap and quick 

(Kersemans et al., 2013) they have been shown to be susceptible to inaccuracy. This 

can be due to observer subjectivity, tumour compressibility, skin thickness, 

subcutaneous fat level and differences in tumour shape (Kersemans et al., 2013) with 

one study finding there could be up to 25% inter operator variability between 

measurements (Delgado San Martin et al., 2015).  

With regards to osteosarcoma, the developing tumour disrupts local architecture 

resulting in the loss of an anatomical landmark producing unreliable calliper placement 

and further inaccuracy (Cole et al., 2011). In order to avoid this two studies have 
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determined tumour growth by drawing, using Image-J, around the entire tissue volume 

of the leg defined by soft tissue silhouettes show on radiographs, (Cole et al., 2011, 

Cole et al., 2014). This proved to be more precise than external calliper measurements 

(Cole et al., 2011, Cole et al., 2014). Studies have further demonstrated that micro-CT 

scanning can be used to determine tumour size for other cancers in mice, such as 

lung cancer (Haines et al., 2009) and gliomas (Crespigny et al., 2009), additionally 

micro-CT has been used to image tumour dimensions in patient breast lumpectomy 

specimens (Tang et al., 2016). As the external calliper measurements demonstrated 

no effect on tumour size even with Ifosfamide treatment, in an attempt to improve this, 

mice legs were assessed using micro-CT scans. Due to not been able to distinguish 

between normal tissue and tumour, the entire leg tissue was measured at the widest 

part. The calliper measurements performed using micro-CT showed an increased leg 

tissue size in all groups compared to the scratched control legs, demonstrating that 

this was a valid way to measure the tumour. It also demonstrated that the positive 

control Ifosfamide chemotherapy drug had an effect on the leg tissue size of tumour 

bearing MNNG-HOS+P2X7RB mice. Consistent with the external calliper 

measurements, there was no difference between MNNG-HOS tumour size and 

MNNG-HOS+P2X7RB tumour size using micro-CT measurements. Whilst this is 

inconsistent with the results of the in vitro data (Chapter 5), it is consistent with another 

similar study using a xenograft model of pancreatic ductal adenocarcinoma. In that 

study P2X7R antagonist administration in vivo was shown not to affect tumour size 

when measured with external callipers, although a difference in tumour size was 

determined using bioluminescent imaging (Giannuzzo et al., 2016).  

After these measurements demonstrated no effect with the treatments on tumour size, 

other lines of investigation were performed that assessed the primary tumour. This 

included histology which showed that the tumours in all groups correlate to other in 

vivo studies which have shown MNNG-HOS OS cells have a high grade (Mohseny et 

al., 2011), undifferentiated (Avril et al., 2016) phenotype. They also produced 

osteolytic lesions and ectopic bone, all of these characteristics are often found in 

human OS cases (Yuan et al. 2010, Casali et al., 2014, Mohseny et al., 2011). Ki-67 

IHC staining was performed on the primary tumour; due to its presence during active 

phases of the cell cycle (G1, S, G2 and mitosis) and its absence from quiescent cells 

(G0). Ki-67 is considered a marker of cell proliferation (Mussig et al., 2012) and it has 
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been used as a biomarker for identification of cancer subtypes and their prognosis. It 

was shown that in both breast cancer and non-Hodgkin’s lymphoma patients that with 

a higher Ki-67 value there was a worse overall survival rate (Soliman & Yussif, 2016, 

Kim et al., 2007), additionally Ki-67 staining correlated with increased incidence of 

metastasis in breast cancer (Soliman & Yussif, 2016) and was able to distinguish 

between high grade and low grade lung cancer (Soomro et al, 1998). 

In a study that analysed Ki-67 expression in 205 samples from various bone tumours; 

a higher Ki-67 value compared to high grade and malignant tumours, whereas a lower 

Ki-67 score compared to benign and low grade tumours. A further correlation was 

demonstrated in both chondrosarcoma and osteosarcoma histological grades. After a 

24 month follow up a worse prognosis was associated with higher Ki-67 scores. 

(Scotlandi et al., 1995). This has been supported in an independent study of 56 

osteosarcoma cases, which showed that the expression of Ki-67 correlated with 

reduced disease‑free rates and reduced overall survival (Mardanpour et al., 2016). In 

the current study Ki-67 was used as a proliferation biomarker to assess the effect of 

P2X7RB expression and the effect of treatment with Ifosfamide and A740003. The 

results again demonstrated no statistically significant difference between the treatment 

groups. However, there was a slight trend towards a reduction in the treated MNNG-

HOS+P2X7RB mice for both drugs suggesting that the Ifosfamide positive control may 

have reduced proliferation as expected and P2X7RB antagonism could also potentially 

reduce OS cell proliferation. There was also no statistical difference in Ki-67 

expression when comparing MNNG-HOS to MNNG-HOS+P2X7RB tumours. 

However, there was again a slight trend towards MNNG+P2X7RB having increased 

Ki67 staining meaning that the transfected cells could potentially display a more 

aggressive phenotype. This could potentially correlate to the in vitro findings which 

showed that expression of the P2X7RB variant increased proliferation rates. 

A final parameter that was assessed on the primary tumour was annexin V staining. 

Annexin V is a phospholipid binding protein that binds to phosphatidylserine which is 

externalised and expressed on early apoptotic cell membranes as a cell death signal. 

Therefore, the amount of annexin V binding to phosphatidylserine correlates with cell 

apoptosis (Kenis et al., 2007, Cummings et al., 2004). The MNNG-HOS+P2X7RB 

bearing mice did have an increased amount of cells expressing annexin V when 
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compared to MNNG-HOS tumour bearing mice. This could potentially demonstrate 

that there was a higher cell density in these tumours resulting in them growing out of 

control and developing regions of hypoxia with apoptosis occurring due to the tumour 

being unable to sustain itself. This is due to not been able to meet the necessary 

nutritional and oxygen demands (Eales et al., 2016). This process results in cancer 

cell adaptation and increased metastasis (Muz et al., 2015). This could correlate to the 

increased incidence of metastasis in MNNG-HOS+P2X7RB tumour bearing mice. Due 

to the high level of  annexin V staining in the vehicle MNNG-HOS+P2X7RB bearing 

mice there was no further increase in staining possible for the treatment groups. 

However, in MNNG-HOS bearing mice treatment with Ifosfamide increased the 

amount of cell death which you would anticipate due to it been the positive control, but 

A740003 showed no difference. 

The formation of ectopic bone is a characteristic of human OS and the MNNG-HOS 

model does recapitulate this phenotype (Jacques et al., 2018). This means that this 

important parameter can be examined in this study using micro-CT scanning. The total 

bone volume in MNNG-HOS bearing mice did not have an increased bone volume 

compared with its contralateral leg however, the MNNG-HOS+P2X7RB mice did. This 

means that P2X7RB potentially contributes towards more of an ectopic bone formation 

phenotype. Treatment with the P2X7R antagonist A740003 reduced the production of 

ectopic bone in MNNG-HOS-P2X7RB mice. It’s been previously shown in OS cells 

that when the P2X7RA and P2X7RB were co-transfected into Te85 OS cells 

mineralisation is increased, however, this wasn’t the case for P2X7RB alone in vitro 

(Giuliani et al., 2014). P2X7Rs are expressed on osteoblasts both in vitro and in 

primary in vivo tissue (Gartland et al., 2001, Panupinthu et al., 2008, Grol et al., 2009) 

with less differentiated osteoblasts producing less bone formation and expressing less 

P2X7Rs (Panupinthu et al., 2008). In rat calvarial cell cultures treatment with BzATP 

increased mineralization and ALP activity by approximately 40%. It also up-regulated 

osterix and osteocalcin which are markers of osteoblast differentiation and bone 

production (Grol et al., 2009) this data supports the total bone volume results for the 

MNNG-HOS-P2X7RB mice in this study. Additionally, cultures from P2X7R KO mice 

when compared to control cultures had 33% less mineralization and less ALP activity 

(Panupinthu et al., 2008). This was also shown in a similar study where the bone 

phenotype from KO P2X7R mice and WT mice showed that deletion of the P2X7R 
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reduced periosteal bone formation, periosteal mineralizing surface, mineral apposition 

rate and bone formation rates with decreased periosteal osteoblast number and 

activity. There was also significantly lower total bone content and higher trabecular 

bone resorption in KO mice (Ke et al., 2003) supporting the total bone volume results 

that P2X7R expression can increase bone formation. An additional consideration is 

that P2X7R KO mice have accelerated bone loss in an osteoporosis model. They 

demonstrate fewer osteoblasts and increased osteoclasts covering the bone surface 

(Wang et al., 2018). Furthermore, SNPs can downregulate P2X7R function and have 

been linked to low lumbar spine bone mineral density and accelerated bone loss in 

post-menopausal women (Gartland et al., 2012). These studies support the role of the 

P2X7R in bone formation it is therefore possible that expression of this receptor 

contributes towards the ectopic bone phenotype in the OS microenvironment. As 

demonstrated in this study P2X7R antagonism may provide a novel therapeutic to 

prevent ectopic bone build up in OS. 

OS can disrupt bone remodelling due to increased osteoclast activity, this is 

associated with OS aggressiveness (Avnet et al., 2008). In this study, the osteoclasts 

at the tumour-bone interface were analysed to examine if P2X7RB expression or 

treatments had an effect on osteoclast number. P2X7Rs in bone can modulate 

osteoclast formation and activity (Gartland et al., 2003), application of P2X7R 

antagonists have been shown to inhibit osteoclast formation and reduce the amount 

of resorption in vitro (Agrawal et al., 2010) this study suggests you would anticipate an 

increase in osteoclasts with P2X7R expression and a decrease with A740003. There 

were no differences in osteoclast numbers in P2X7RB expressing tumours, or with 

Ifosfamide and A740003 treatment. In another previous in vitro study using Te85 OS 

cells transfected with P2X7RB osteoprotegerin (OPG) mRNA was significantly 

increased (Giuliani et al., 2014). OPG regulates osteoclast function and inhibits bone 

resorption (Sisay et al., 2017) Additionally RANKL was reduced, (Giuliani et al., 2014) 

this binds to RANK on osteoclasts and initiates cell fusion and formation of mature 

multinucleated osteoclasts, this is essential for osteoclast function and survival 

(McClung., 2007). This suggests that P2X7RB may not have the same effect on 

increasing osteoclast activity that the full length P2X7R has and therefore the results 

not showing an increase in osteoclast number, and the A740003 having no effect could 
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be due to the P2X7RB been the isoform that was examined in vivo rather than the fully 

functional P2X7R. 

Metastatic dissemination is considered the final step in primary tumour development, 

(Hanahan & Weinberg, 2000). This process involves invasion through the extracellular 

matrix at the primary site, travel and survival in the blood stream, evasion of the host 

immune system, extravasation into foreign tissue and finally colonisation/growth at the 

secondary site (Zhu et al., 2013, Posthumadeboer et al., 2011, Hanahan & Weinberg, 

2011). The most common site for OS metastasis is the lungs accounting for 80% of all 

metastasis cases. Patients present with metastasis at initial diagnosis approximately 

20% of the time, Posthumadeboer et al., 2011) these have the worst prognosis 

(Lindsey et al., 2017). Prior to the mid-1960s presence of any lung metastasis resulted 

in death in under a year (Mittal et al., 2013). Currently the five year survival rate for 

OS is around 60-70% which decreases to 20-30% with metastasis (Posthumadeboer 

et al., 2011, Zhu et al., 2013 Mittal et al., 2013). Therefore, anything that promotes 

metastasis could be a potential therapeutic target.  

To examine this process in the current study, the lungs were collected from the mice 

at the end of the experiment and examined for the presence of pulmonary metastasis. 

Studies using MNNG-HOS in vivo have reported a low incidence of pulmonary 

metastasis with no macroscopic surface metastases (Luu et al., 2005). However, they 

have been detected in some instances, one study showed that in MNNG-HOS+LUC 

injected mice there was bioluminescent signals in the lungs 34 days after injecting 2 

million cells (Avril et al., 2016). In another study, cell bioluminescent signals were 

detected in excised lung lobes at day 28 with a total of 26/56 mice having pulmonary 

metastasis, this was after the injection of 1 million cells (Le Nail et al., 2018). The 

results from the current study demonstrated no pulmonary metastasis in 30 MNNG-

HOS tumour bearing mice when injected with 250,000 cells and observed for three 

weeks. In contrast to this, in 24 MNNG-HOS+P2X7RB tumour bearing mice a total of 

5 mice had OS pulmonary metastasis. This demonstrates that P2X7R could play a 

role in promoting OS metastasis. P2X7R expression has previously been linked to 

metastasis of other cancers. One study demonstrated that in a neuroblastoma mouse 

model, when injecting cells I.V and looking at the dissemination to the bone marrow 

and liver, P2X7R antagonism with BBG drastically reduced metastasis (Ulrich et al., 
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2018). In a prostate cancer in vivo model in control cells metastasis was detected in 

the kidney in 3/8 mice and the lymph nodes in 7/8 mice. However, in P2X7R 

knockdown cells using shRNA no metastasis was detected in the kidney, and only in 

1/8 mice for the lymph nodes. In breast cancer using a zebrafish model of metastasis 

MDA-MB-435s cell metastasis was reduced with the P2X7R antagonist A438079 

(Jelassi et al., 2011). In a lymphoma study P388D1 cells were injected into the foot 

pad of mice and metastasis was detected in the lymph nodes (Ren et al., 2010), in the 

P2X7R knockdown condition the metastasis was reduced and overall survival was 

increased compared to control cells. The amount of metastasis was also reduced 

when a P2X7R antibody was administered (Ren et al., 2010). These studies 

demonstrate P2X7R expression increases metastasis and that targeting may 

potentially provide a therapeutic option. The results in this chapter demonstrate a 

novel finding that P2X7RB increases metastasis to the lungs in an OS in vivo model, 

however P2X7RB antagonism with A740003 didn’t prevent this, which could suggest 

a higher concentration is needed. 

To conclude, the parameters assessed in this study have demonstrated various novel 

findings, P2X7RB may play a role in the formation of ectopic bone in OS which could 

be abolished with A740003 administration. Finally, expression of P2X7RB increased 

incidence of OS pulmonary metastasis and could therefore be a novel drug target to 

prevent this. 
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Chapter 7 – Discussion 
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7.1 Thesis findings 

In this thesis the role of the P2X7R and targeting it therapeutically with a P2X7R 

antagonist has been explored in the OS microenvironment both in vitro and in vivo. 

The overall hypothesis is that the P2X7R enhances OS progression and metastasis, 

and that it could provide a novel therapeutic target to treat OS. 

The findings in this thesis in vitro include: 

 Confirmation of P2X7R expression in Te85 and MNNG-HOS OS cells, Te85 

OS cells had negligible P2X7R expression at mRNA level and MNNG-HOS 

naïve OS cells completely lacked P2X7R expression. This was increased when 

transfected with P2X7R variants. 

 Confirmation of P2X7R function when transfected with P2X7R variants in Te85 

and MNNG-HOS OS cells, calcium activation was increased in all variants 

when stimulated with BzATP. However, only a co-transfected A+B variant in 

Te85 OS cells had the typical P2X7R pore formation. 

 P2X7R increased the proliferation of both Te85 and MNNG-HOS OS cells in 

vitro in 10%, 2% and 0.5% FBS concentrations. This increase in proliferation 

was reduced with the application of A740003 and AZ11645373. 

 Expression of P2X7RA and P2X7RB in Te85 OS cells and P2X7RB in MNNG-

HOS OS cells reduced cell adhesion to an extracellular collagen matrix. 

 P2X7RA, P2X7RB and P2X7RAB in Te85 OS cells and P2X7RB in MNNG-

HOS OS cells increased cell migration when in low FBS concentrations and 

stimulated with BzATP. 

 P2X7RA, P2X7RB and P2X7RAB in Te85 OS cells and P2X7RB in MNNG-

HOS OS cells increased cell invasion when stimulated with BzATP. 

The findings in this thesis in vivo include: 

 Te85 OS cells were unable to form tumours when paratibially injected into 

BALB/c nude mice. 

 P2X7R expression did not provide enough of a stimulus in Te85 OS cells to 

induce tumour formation in vivo. 
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 There was no difference in tumour size between MNNG-HOS and MNNG-

HOS+P2X7RB injected mice, measured either with external callipers or micro-

CT.  

 There was no effect of the drug treatments on either MNNG-HOS or MNNG-

HOS+P2X7RB tumours when measured with external callipers. However, 

tumour size could be detected by micro-CT and a significant decrease in size 

was detected in MNNG-HOS+P2X7RB tumour bearing mice treated with 

Ifosfamide. 

 Histologically tumours formed from both cell lines were high-grade 

undifferentiated OS tumours with very little osteoid matrix and collagen 

production. 

 There was no difference in Ki-67 staining between MNNG-HOS and MNNG-

HOS+P2X7RB tumours, and treatment with Ifosfamide or A740003 had no 

effect. 

 MNNG-HOS+P2X7RB had higher expression of annexin V than MNNG-HOS 

tumours with neither treatment further increasing this level. MNNG-HOS 

tumours treated with Ifosfamide increased annexin V staining, whilst there was 

no effect of A740003 treatment. 

 MNNG-HOS and MNNG-HOS+P2X7RB both produced tumours with ectopic 

bone formation and osteolysis. 

 MNNG-HOS+P2X7RB tumours had an increased total bone volume which 

could be decreased with A740003 treatment. 

 MNNG-HOS and MNNG-HOS+P2X7RB tumours did not have a difference in 

osteoclast coverage at the tumour-bone interface when untreated or when 

treated with Ifosfamide or A740003. 

 MNNG-HOS tumours after 3 weeks demonstrated no presence of pulmonary 

metastasis, whereas MNNG-HOS+P2X7RB tumours had incidence in ~20% of 

the mice. 

7.2 Limitations of this study 

This thesis provides some understanding of the role of the P2X7R in OS progression, 

but the studies performed do have some limitations. The cell lines used were 

transfected cells and thereby have P2X7R overexpression. Although this does allow 
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a link to be made between protein expression and phenotypic changes, it is an artificial 

system and may not be completely representative of normal physiology. Transfection 

of cells with a stable vector and an antibiotic resistance gene can cause off target 

effects and stress to the cells which can then cause genomic, transcriptomic and 

phenotypic changes (Jacobsen et al., 2009, Stepanenko & Heng., 2017). Some of the 

experiments performed in this thesis were done in vitro using cell lines. This possesses 

a number of limitations: the cells are not in their natural environment and therefore can 

contain genetic changes from the original tumour losing its natural heterogenicity. 

They can also have genetic drift over long periods in culture or contain cross 

contamination with other cell lines or mycoplasma (Ferreira et al., 2013). They are 

cultured individually, without considering the other cell types that contribute to the 

tumour microenvironment. A final consideration of the cell lines used in vitro was the 

Te85 OS cells only represent one subtype of OS. When compared with primary human 

bone cell cultures Te85 OS cells exhibit a low amount of alkaline phosphatase activity 

and low amount of osteocalcin, these are both used as markers of bone formation and 

therefore the low amount of these are not representative of human OS, as patients 

often have an osteogenic phenotype (Clover & Gowen, 1994). In order to overcome 

this, PDOX models are now emerging in OS research and could be used in future 

studies to fully recapitulate the heterogeneity of OS tumours and potentially offer 

personalised responses to drugs.  

Animal models have been essential in the development of novel cancer therapeutics; 

however, they do have a number of limitations in this study. The animals used are 

BALB/c nude mice, these lack T cells in order to overcome recognition of the implanted 

cells as foreign. They therefore don’t mount an immune response and reject the cells 

enabling successful engraftment (De La Rochere et al., 2018). Although this allows 

the model system to be used it lacks an immune response. This is an important aspect 

of the tumour microenvironment, osteoimmunology is an emerging field in OS 

research with phase I and phase II trials in progress using immunotherapy as a 

potential treatment (Heymann & Heymann, 2017) this process has been overlooked 

in this study. It could therefore benefit from the use of a syngeneic mouse model of 

which there are numerous available for OS and are described in chapter 1. The type 

of injection and injection site can influence tumour growth (Holen et al., 2017). In this 

study the cells were injected paratibially, this requires a high technical level of skill and 
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can suffer reproducibility problems (Guijarro et al., 2014). The majority of in vivo results 

failed to reach statistical significance although showed some trends. A limitation that 

may have contributed to this was the drug dose, administration and regime. The 

treatment regime was started two days after cell injection, treatment could however be 

administered when the palpable tumour had already formed. This is clinically relevant 

as tumours are treated after it has already formed and been detected. This could 

potentially improve the study N number. An N of 12 mice per group was used, 

however, no group had the full 12 form a palpable tumour, with one group having an 

N of 6. This therefore should be repeated to determine fully if any of the trends were 

novel findings. The tumours additionally had a high amount of annexin V staining 

meaning that the tumours were undergoing cell death. This could have again 

contributed to the low N number meaning the cells did not take in the mice due to 

dying, and could be overcome by not leaving the tumours too long to grow, using a 

lower amount of initial cells or an alternative OS in vivo model such as the 143B OS 

cell line or syngeneic model. 

The chemotherapy drug Ifosfamide failed to have a significant effect for many of the 

in vivo results, an alternative chemotherapy could have been used such as 

Methotrexate, Cisplatin or Doxorubicin or a higher Ifosfamide dose could have been 

used, this was also the case for A740003, which again could have been increased or 

given more frequently. It could also have been delivered intra mass which has shown 

an effect in other cancer types (Adinolfi et al., 2012, Amoroso et al., 2016).  

As the Ifosfamide and A740003 wasn’t showing a decrease in tumour size in this study 

using calliper measurements, bioluminescent techniques could have been used to 

provide a more accurate measurement of tumour size. In a previous study into 

pancreatic ductal adenocarcinoma P2X7R antagonist administration in vivo was 

shown not to affect tumour size when measured with external callipers, but a 

difference in tumour size was determined using bioluminescent imaging (Giannuzzo 

et al., 2016).  

A further limitation of the MNNG-HOS model used is that it only has a low incidence 

of pulmonary metastasis (Luu et al., 2005) (Chapter 5 & 6). Therefore, this important 

parameter wasn’t fully examined, the mice were unable to be left longer due to 

restrictions limiting the size of the primary tumour and therefore a different OS cell line 
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that has increased metastasis could be used in future OS studies, such as the 143B 

OS cell line. The MNNG-HOS model failed to show a significant increase in total bone 

volume despite having a high amount of ectopic bone formation when viewing the 

reconstructed model image. This could again be repeated to improve the N number. 

The total bone volume can be complicated by the presence of osteolytic lesions 

therefore, a method to measure only the ectopic bone could be developed using micro-

CT rather than the entire total bone volume. 

The limitations described can be addressed by repeating the in vivo investigations with 

an improved N number and the slight modifications mentioned. This will then fully 

elucidate the potential to target the PX7R in OS.  

7.3 Future studies  

This thesis suggests that P2X7R expression may contribute towards OS progression 

and metastasis, however it does require further future investigation. P2X7R 

expression in vitro showed many effects that contribute towards OS disease. This 

includes increased growth, decreased cell adhesion and increased migration and 

invasion. However, the reason for this is unknown and therefore details of the 

mechanism and pathways that P2X7R expression affects is needed. It is likely that 

P2X7R expression will upregulate and downregulate various genes related to OS 

progression, in a previous study using Te85 OS cells the increased growth was due 

to 1 NFATc1 activation (Giuliani et al., 2014). However, there is no known mechanism 

for the adhesion, migration or invasion differences caused by P2X7R in OS. However, 

these have been linked to processes in other cancers which have been discussed in 

chapter 4. There are various other cancer properties that could have been examined 

in vitro which P2X7R expression may affect, or be affected by. This includes 

angiogenesis and hypoxia which have been shown in other cancers (Virgilio & Adinolfi, 

2017) these are additional important aspects of OS which haven’t been examined 

here.  

With regards to the in vivo study, some initial trends could be examined further. 

P2X7RB expressing MNNG-HOS tumours metastasised to the lungs whereas MNNG-

HOS tumours did not. In order to really determine if this effect is significant the 

experiment could be repeated or done with an alternative OS cell line which produces 
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more pulmonary metastasis such as the 143B human OS cell line, the mouse LM8, 

K7M2 and MOS-J, a final alternative model could also include the use of PDOXs from 

metastatic patients. 

The P2X7RB expressing cells also appeared to have an increase in ectopic bone 

formation, this could be again repeated or a method developed to detect just ectopic 

bone rather than the entire total bone volume, which may result in the detection of 

slight changes and can account for the any osteolysis changing the overall total bone 

volume.  

P2X7R antagonists are always improving in specificity and potency with the intention 

of human therapeutic use (Young & Górecki, 2018, Bartlett et al., 2014) they can 

therefore be exploited in future studies. It could also be possible to develop P2X7R 

antagonists that are targeted to the bone so therefore become more specific for OS. 

This could potentially be done by conjugating the antagonists to bisphosphonates. 

Bisphosphonates have a high affinity to bone and specifically bind to hydroxyapatite 

(Farrell et al., 2018) they are used to treat a variety of bone disorders individually but 

have been previously conjugated to small molecule drugs, proteins, antibiotics, and 

imaging agents. This results in reduced systemic contact and increased target 

exposure (Farrell et al., 2018). This could therefore provide a suitable method to 

improve drug potency when targeting the P2X7R in OS and may result in seeing an 

improved effect. Additionally, P2X7R antagonists could be used as a combination 

therapy with currently available chemotherapy treatments or rather than only using 

antagonists, gene editing technologies could be used to knockout P2X7R in OS cells. 

This has had success in breast cancer cells (Xia et al., 2015) and in pancreatic ductal 

adenocarcinoma cells (Giannuzzo et al., 2016) using siRNA but could also use 

recently developed clustered regularly interspaced short palindromic repeats 

(CRISPR). This technology originated from a prokaryotic adaptive immune system 

defence mechanism, where it protects against invading nucleic acids such as viruses 

(Martinez-Lage et al., 2018). It has now been developed and utilised as a gene editing 

technique whereby a guide RNA binds to the target DNA to be modified and is attached 

an endonuclease (such as Cas9) which recognises and then cuts the DNA at the 

desired location (Richter et al., 2013). A new custom sequence can then be integrated 

where the cut is made and repaired using DNA repair mechanisms already present in 
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the cells (Richter et al., 2013, Martinez-Lage et al., 2018). This technique has now 

emerged at the forefront of gene editing technology and is fast and affordable 

(Martinez-Lage et al., 2018). Due to genomic instability and mutations occurring in all 

cancers, the potential to edit genes that may be causing cancer cells to proliferate 

more, or become resistant to treatment is now being explored (Tian et al., 2019). 

CRISPR could therefore be potentially used to target the P2X7R gene. There are 

limited studies exploring the use of CRISPR to knockout P2X7R, however, a recent 

study generated P2X7R deficient cells using a mouse BV-2 microglial cell line (Dhuna 

et al., 2019) and P2X7R CRISPR/CAS9 knockout plasmids are commercially available 

for future use. 

The P2X7R could potentially be exploited using its pore formation function as a drug 

delivery system, the formation of the larger pore could facilitate the entry of hydrophilic 

molecules into the cell (Pacheco et al., 2016, Alves et al., 2018). This has been 

demonstrated in a study to increase methylene blue (319 Da) uptake into the 

cytoplasm of macrophage cells treatment with only methylene blue resulted in a 4.7% 

rate of entry. However, treatment with methylene blue and ATP increased this rate to 

90.2% (Pacheco et al., 2016). This process could be applied in OS. 

Patient samples for OS are rare, however, in a previous study P2X7R expression was 

found in 80% of OS cases examined (Giuliani et al., 2014), this finding could be built 

upon and performed in a larger number of samples, correlated with stage of the 

disease, or the presence of metastasis. Overall, the final future goal of this research 

would be to reach a clinical trial stage for P2X7R targeting in OS and use of P2X7R 

antagonists as a novel therapeutic. 

A final consideration of P2X7R targeting could be to apply it to other types of bone 

sarcoma such as Ewing’s sarcoma, chondrosarcoma or chordoma, this could be done 

using the techniques presented in this thesis and may be a translatable therapy in 

addition to OS. 
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The International Purine Meeting ‘Basic and translational science on purinergic 

signalling and its components for a healthy and better world’ Foz Do Iguazu, 

Brazil 2018 

P2X7R in primary bone cancer 

Tattersall. L1, De Marchi. E2, Williamson. A1, Di Virgilio. F2, Lawson. M.A1, 

Adinolfi. E2, Gartland. A1  

1 The Mellanby Centre for Bone Research, the University of Sheffield, Sheffield, UK.  

2 Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology 

and Experimental Biology, University of Ferrara  

Osteosarcoma is the most common type of primary bone cancer affecting adolescents 

attributed to rapid bone growth and turnover. The 5-year survival rate remains 65% 

and with metastasis this decreases to 20%. This highlights the need for development 

of novel therapeutics to treat osteosarcoma. In this study we have investigated the 

role of purinergic signalling in osteosarcoma, as this is particularly pertinent in the bone 

tumour microenvironment which could contribute towards disease progression. 

When Te85 osteosarcoma cells were transfected with P2X7R variants in vitro, we 

observed increased growth compared to naïve cells (p<0.05) which was attenuated 

upon treatment with P2X7R inhibitors (P<0.0001). Te85 cell adhesion to collagen was 

significantly reduced (P<0.0001) and migration was significantly increased when cells 

were treated with BzATP (P<0.0001). As Te85 cells have historically not formed 

osteosarcoma tumours in mice, we next looked at the effect of P2X7RB expression in 

an MNNG-HOS cell line, an aggressive tumorigenic derivative of Te85 cells. As with 

the parental Te85 cells, P2X7RB expression decreased cell adhesion (P<0.0001) and 

migration was increased when treated with BzATP (P<0.0025). 

Next, we injected 250,000 MNNG-HOS+P2X7RB cells paratibially into 7-week old 

female BALB/c mice. Two-days after cell inoculation treatment with 50 µg/kg of 

A740003 or PBS vehicle control was administered by IP injection 3 times a week for 

3 weeks. All groups developed palpable tumours which did not vary in size as 

measured by basic calliper measurement at the end of the experiment. Analysis of the 

tibia using micro-CT scanning demonstrated that the MNNG-HOS+P2X7RB cells 

resulted in a significant 12% increase in total bone volume in the tumour bearing tibia 
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when compared to its corresponding leg (P<0.0123). This increased bone volume, 

which consists of ectopic bone formation, was ablated when mice were treated with 

A740003 (P<0.0183). 

In conclusion, P2X7R variants were found to influence osteosarcoma cell behaviour 

in vitro. P2X7RB expression in the tumour inducing MNNG-HOS model resulted in a 

significant increase in total bone volume from ectopic bone formation typical of 

osteosarcoma tumours. P2X7R antagonism reduced this bone disease. This study 

provides promising data to support the use of P2X7R inhibitors as a novel therapy for 

osteosarcoma, however, future studies are required to identify the exact role P2X7RB 

has in tumour growth and metastasis.   
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The Bone Research Society Annual Meeting, Winchester, UK 2018. 

Bone Research Society Barbara Mawer Travelling Fellowship update: 

Investigating extracellular ATP in the tumour microenvironment of 

osteosarcoma using the plasma membrane-targeted luciferase (pmeLUC) 

probe. 

Tattersall. L1, De Marchi. E2, Di Virgilio. F2, Lawson. M.A1, Adinolfi. E2, Gartland. 

A1  

1 The Mellanby Centre for Bone Research, the University of Sheffield, Sheffield, UK.  

2 Department of Morphology, Surgery and Experimental Medicine, Section of Experimental 

Pathology, Oncology and Biology, University of Ferrara, Ferrara, Italy. 

Osteosarcoma is the most common type of primary bone cancer affecting adolescents, 

attributed to rapid bone growth and turnover, it is a rare incurable disease. The 5-year 

survival rate remains 65%, which reduces to 20% with metastasis. This highlights the 

need for development of novel therapeutics to treat osteosarcoma. One potential 

avenue to explore in the setting of osteosarcoma treatment is purinergic signalling, 

involving extracellular nucleotides binding to purinergic receptors expressed in many 

cancers and present on osteoblasts. ATP is at a high concentration in the tumour 

microenvironment but absent from surrounding healthy tissue. This is particularly 

pertinent in the bone tumour microenvironment where mechanical loading stimulates 

ATP release. ATP release from osteosarcoma cells which may depend on the P2X7R 

isoform expressed, could contribute towards disease progression. Current techniques 

that quantify ATP levels in biological systems are limited to measuring it in serum or 

cell supernatants which may be orders of magnitude lower than the levels at the 

cellular surface. However, pmeLUC is a novel plasmid that allows the measurement 

of ATP concentrations at the cellular membrane. pmeluc was produced by attaching 

membrane targeting sequences (N-terminal leader sequence and C-terminal GPI 

anchor) derived from a folate receptor to a full-length firefly luciferase sequence and 

was cloned into a pcDNA3 plasmid. Expression of this construct at the outer plasma 

membrane enables ATP released from cells to be detected in the immediate 

extracellular space. During a Bone Research Society Barbara Mawer Travelling 

Fellowship, pmeLUC was transfected into two osteosarcoma cell lines - MNNG-HOS 

and Te85. Successful transfections were confirmed by measuring ATP levels; and 
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these cells are currently being used to assess the effect of ATP and P2X7R isoforms 

on osteosarcoma both in vitro and in vivo. More sensitive and accurate quantification 

of ATP levels at the cell surface would better inform us about P2 receptor activation 

and improve our understanding of the role of purinergic signalling in the tumour 

microenvironment. 
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The UK Purine Club Symposium, Warwick, UK, 2017  

A pilot study to establish an osteosarcoma in vivo model to target the P2X7R 

Authors: Tattersall. L, Lawson. M.A, Gartland. A  

The Mellanby Centre for Bone Research, the University of Sheffield, Sheffield, UK.  

Osteosarcoma is the most common type of primary bone cancer affecting adolescents 

attributed to rapid bone growth and turnover. The 5-year survival rate remains 65% 

and with metastasis this decreases to 20%. This highlights the need for development 

of novel therapeutics to treat osteosarcoma. One potential avenue to explore in the 

setting of osteosarcoma treatment is purinergic signalling, involving extracellular 

nucleotides binding to purinergic receptors present on osteoblasts and many cancers. 

Previous in vitro data demonstrates P2X7R expression in Te85 cells results in 

increased growth which can be attenuated with P2X7R inhibitors. Te85 cells have 

historically not formed osteosarcoma tumours in mice, however aggressive derivatives 

of these cells such as MNNG-HOS have. As P2X7R expression can change 

osteosarcoma cell behaviour it could provide a strong stimulus to enhance Te85 cells 

into inducing tumour formation. The aim of this study is to see if P2X7R expression 

can increase tumorigenesis of the Te85 osteosarcoma cell line in nude mice, this can 

then be used as a model to target the P2X7R in vivo in the future. 

Seven-week-old BALB/c nude mice were used to assess tumour formation, 3 mice 

were used for the following cell lines: Te85, Te85+P2X7RA, Te85+P2X7RB, and 

Te85+P2X7RAB, in addition MNNG-HOS cells known to form tumours were used as 

a positive control. The mice were injected with 500,000 cells in 20 l PBS paratibially.  

MNNG-HOS cells as expected formed palpable tumours after 9 days, mice were 

euthanised after three weeks. Micro-CT analysis demonstrated massive bone loss in 

the injected leg. Te85 cells expressing P2X7R variants did not form palpable tumours 

after a period of 6 weeks. Micro-CT analysis did however demonstrate a significant 

reduction in the trabecular bone volume of the Te85+P2X7RAB cells. Further analysis 

is underway to determine the reason for this loss. 
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The first European Workshop of Translational Research in Bone Sarcoma, 

Sheffield, UK, 2017 

P2X7R confers a growth advantage and increases metastatic potential of 

osteosarcoma cells 

L. Tattersall, KM. Shah, MA. Lawson & A. Gartland 

The Mellanby Centre for Bone Research, the University of Sheffield, Sheffield, UK 

Purinergic signalling, the process of ATP binding to extracellular purinergic receptors, 

is found to be involved in a variety of bone functions such as differentiation, apoptosis 

and remodelling. Purinergic receptors, in particular the ligand gated ion channel 

P2X7R, has been found to be highly expressed by a variety of tumours with 

implications in progression and metastasis. High expression of P2X7R has previously 

been shown in osteosarcoma tumours. In this study, we provide further data to support 

P2X7R as a potential new target in osteosarcoma as it confers a growth advantage 

and increases metastatic potential of osteosarcoma cells in vitro.  

P2X7R expression was confirmed in transfected Te85 cells by PCR, and function 

confirmed through pore formation. The naïve and transfected cells were seeded at 

5x103 cells and changed into media with 10%, 2% or 0.5% FCS. Proliferation was 

assessed by MTS assay at day 0,1, 3, 5 and 7. For inhibition studies, cells were 

seeded at 5x103 in 0.5% FCS and treated with two P2X7R specific antagonists 

(A740003 and AZ11645373). Proliferation was measured at day 3. For cell adhesion 

7.5x103 cells were added to collagen coated 96-well plates and unattached cells were 

washed away after 4 hours. Cells were lysed and dsDNA quantified using Quant-iT™ 

PicoGreen® dsDNA Reagent. Statistical analysis was performed in Graphpad Prism® 

using One-way ANOVA with Tukeys post-hoc test and an unpaired T test for inhibition 

and cell adhesion studies. 

Cells expressing the P2X7R had increased growth rates compared to naïve cells 

(P<0.0001), and both P2X7R inhibitors significantly decreased this (P<0.0001). Te85 

cell adhesion to collagen was significantly reduced when transfected with the P2X7R 

(P<0.0001). 

Our data suggests inhibition of P2X7R may provide a target for treating osteosarcoma. 
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The inhibitors have proven to be safe in clinical trials for other diseases and therefore 

could benefit osteosarcoma patients quickly. 
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The Bone Research Society Annual Meeting, Liverpool, UK, 2016  

‘P2X7RA or P2X7RB expression confers a growth advantage to Te85 osteosarcoma 

cells in vitro’ 

L. Tattersall, K.M. Shah, F.M. Ismail, M.A. Lawson & A. Gartland 

The Mellanby Centre for Bone Research, the University of Sheffield, Sheffield, UK 

Osteosarcoma is the most common type of primary bone cancer mainly affecting 

adolescents, it is a rare incurable disease with current treatments including 

chemotherapy and amputation. Survival statistics have remained constant for a 

number of years suggesting the need for new treatments. Purinergic signalling 

involves the binding of extracellular nucleotides including ATP to purinergic receptors 

and has been found to play a role in many cellular processes. Purinergic signalling 

acting on bone cells has been demonstrated with roles in differentiation, apoptosis, 

and bone remodelling. Additionally, purinergic receptors have been found across a 

variety of cancers with implications in tumour formation, progression and metastasis. 

High concentrations of ATP have been observed within the tumour microenvironment 

which could act on the P2X7 receptor, a type of purinergic receptor that acts as a 

ligand-gated ion channel and plays a role in cell behaviour, including increased cell 

proliferation. This receptor has been previously found on osteosarcoma tumours. In 

this study we provide evidence that expression of P2X7R isoforms modulate 

proliferation of osteosarcoma cells particularly under low serum conditions. 

Te85 osteosarcoma cells, either naïve or previously transfected with the P2X7RA or 

P2X7RB isoform, were seeded at various cell densities (1.25, 2.5 and 5 x103). After 

24 hours, the media was changed to either 10%, 2% or 0.5% FCS. Cell proliferation 

was assessed using an MTS assay at days 0, 1, 3, 5 and 7. Statistical analysis was 

performed in Graphpad Prism® using One-way ANOVA with Tukeys post-hoc test and 

linear regression compared slopes of the growth curves. 

At all serum concentrations and cell seeding densities, P2X7RA and P2X7RB had 

significantly increased growth rates compared to naïve cells (P<0.0001 for both), with 

no difference between the growth rates of P2X7RA and P2X7RB. 
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The naïve cells had a longer lag phase and caught up with the transfected cells 

towards day 5 and 7 under 10% serum conditions only. 

These results suggest that P2X7RA and P2X7RB expression confers a growth 

advantage to Te85 osteosarcoma cells in low serum conditions which may contribute 

to tumour growth and invasiveness. Thus, P2X7R could be a potential new target for 

treating osteosarcoma. 

 

 


