Detection and Identification of Chemical Warfare Agents and Explosives in Complex Matrices

Alexandra Harvey

PhD

University of York and Defence Science Technology Laboratory Chemistry

March 2019
Abstract

This research explores the use of comprehensive gas chromatography (GCxGC) with different detectors for military applications. Two military applications are focused on in this thesis; firstly, the use of GCxGC time of flight mass spectrometry (TOF-MS) for the analysis of samples returned from operational environments and, secondly, for the analysis of operational samples in the field, exploring the possibility of a portable instrument.

Operational samples are highly complex and can contain organic matter such as blood, dirt, oils, diesel and other compounds that are found within that environment. Current methods require operators to send the sample back to the laboratory for analysis where the sample is cleaned using solid phase extraction (SPE) before analysis via analytical equipment. This research demonstrates that a sample containing explosive or chemical warfare agent (CWA) material can be analysed using GCxGC-TOF-MS without the need for SPE, allowing the sample to be untampered thus minimising the loss of sample as well as the possibility of contamination from other sources.

Similarly, in the field where a suspected deposited CWA or explosive is found, a sample is taken and analysed via ion mobility spectrometry or a spectroscopic technique. These techniques can detect the species of interest but struggle when environmental contamination is present which can lead to false alarms. This research demonstrates the use of a 6-port valve to perform GCxGC-FID analysis on explosives and CWAs in simulated operational samples and explores the possibility of creating a fully portable GCxGC system for use in the field.
List of Contents

Abstract 2

List of Contents 3

List of Tables 6

List of Figures 8

List of Equations 13

Acknowledgements 14

Declaration 15

1 Comprehensive Two Dimensional Gas Chromatography Introduction 17

1.1 Introduction 17

1.2 Chromatography 19

1.2.1 Gas Chromatography 20
1.2.2 Rate Theory of Chromatography 26
1.2.3 Van Deemter Curve 26

1.3 Two Dimensional Gas Chromatography 29

1.3.1 Heart-cut separation 29
1.3.2 Comprehensive two-dimensional gas chromatography (GCxGC) 30
1.3.3 Peak Capacity 31
1.3.4 Orthogonality 32
1.3.5 Data Analysis 32
1.3.6 Modulator 33

1.4 Detectors 38

1.4.1 Mass Spectrometry 38
1.4.2 FID 40
1.4.3 NCD 40
2 Comprehensive Gas Chromatography Time of Flight Mass Spectrometry for the Analysis of Threat Materials

2.1 Explosives

2.1.1 Explosive History

2.1.2 Explosive Properties

2.2 Chemical Warfare Agents

2.2.1 CWA History

2.2.2 CWA Properties

2.2.3 Detection

2.3 Experimental

2.3.1 Explosives

2.3.2 Chemical Warfare Agents

2.4 Results and Discussion

2.4.1 Explosives

2.4.2 Complex Mixture Analysis

2.4.3 Chemical Warfare Agent Analysis

3 Valve Modulation Comprehensive Gas Chromatography Flame Ionisation Detection for the Analysis of Threat Materials

3.1 Portable Detection Equipment

3.1.1 Portable Detection Equipment

3.1.2 Valve Modulated GCxGC

3.2 Experimental

3.2.1 Valve Modulated GCxGC System

3.2.2 Test Mixtures, Calibration Standards and Matrices

3.2.3 Matrices

3.2.4 Method Development

3.2.5 GCxGC-FID Method for Analysis of CWA

3.2.6 GCxGC-FID Method for Analysis of Explosives

3.2.7 GCxGC-FID Method with Secondary Heater

3.3 Results and Discussion

3.3.1 Chemical Warfare Agents

3.3.2 Detection of CWA in Complex Matrices
List of Tables

Table 1 8330 standard components 51
Table 2 Limits of detection on column based on 0.05 µg/mL 8330 standard for explosives. n=1, S/N of 3:1 60
Table 3 Limit of Detection and Limit of Quantification in µg/mL using student T value (N=3 for G & V and N=5 for mustard family) 64
Table 4 Table detailing matrices spiked with chemical agent. Green indicates that the agent could be detected and red indicates that it could not be detected. If an extracted ion chromatogram was used a (*) is next to the tick. 65
Table 5 Limit of Detection and Limit of Quantification in µg/mL using student T value (n=4 for G & V and n=5 for mustard family) 68
Table 6 Agents detected in replicate matrices of operational environments. Green shows that the material is detected and red shows that it was not detected. 69
Table 7 Method development table 80
Table 8 Chemical warfare agents used to determine stability of the valve system 82
Table 9 Averages of the volumes detected for each agent and the total average over the 3 weeks. 83
Table 10 Calibration of GB 84
Table 11 GD Calibration first isomer 84
Table 12 GD Calibration second isomer 84
Table 13 GA calibration, 0.5 µg/mL could not be detected 85
Table 14 Mustard calibration, in first repeat of 0.5 µg/mL mustard could not be detected 85
Table 15 GF calibration, in the first repeat of 0.5 µg/mL GF could not be detected 86
Table 16 VM calibration 86
Table 17 VX calibration 86
Table 18 Limit of Detection and Quantification for each agent. RT₁ is the retention time in the first dimension, RT₂ is the retention time in the second dimension. R² is the coefficient of determination. 87
Table 19 Table detailing results of agents detected in complex matrices. Mo3 and Mo4 are aerosol samples from Porton Down range. Green means detected and red means that it was not detected. 92
Table 20 – Calibration of explosives detailing the limit of detection (LoD) and quantification (LoQ) based on n=3. 96
Table 21 Table of matrices detailing which explosives could be detected using the method detailed in section 3.2. Green means detected and red means not detected. 99
Table 22 Matrices Spiked with CWA. A tick means that the agent could be detected and a cross means that it could not be detected. 102
Table 23 List of Matrices with Explosives that could be detected in the matrix. A tick indicates that it was detected, and a cross indicates that it was not detected. 104
Table 24 8330 standard components 109
Table 25 Results table of chemical agents in portable GC 121
Table 26 Comparison of the LOD for explosives in the valve and the cryogenic system 135
Table 27 Mustard (H) calibration data 139
Table 28 HN3 calibration data 139
Table 29 Mustard T (T) calibration data 140
Table 30 GB calibration data 140
Table 31 GD1 calibration data 140
Table 32 GD 2 Calibration data 141
Table 33 GA calibration data 141
Table 34 GF calibration data 142
Table 35 VM calibration data 142
Table 36 VX calibration data 143
Table 37 GB calibration 144
Table 38 GD peak 1 calibration 144
Table 39 GD peak 2 calibration 144
Table 40 GA calibration 145
Table 41 GF calibration 145
Table 42 VM calibration 145
Table 43 VX calibration 145
Table 44 Mustard Calibration 146
Table 45 HN3 calibration 146
Table 46 T Calibration 147
Table 47 2-NT Calibration data 159
Table 48 3-NT calibration 160
Table 49 4-NT Calibration 161
Table 50 1,3-DNB Calibration 162
Table 51 2,6-DNT Calibration 162
Table 52 2,4-DNT Calibration 163
Table 53 1,3,5-TNB 164
Table 54 2,4,6-TNT 165
List of Figures

Figure 1 Cross section of a GC column showing the outer polyamide coating, the middle part is fused silica and the inner is the stationary phase.
Figure 2 Example chromatogram with a non-retained and a retained species defined by t_m and t_r respectively.
Figure 3 Van Deemter plot illustrating the optimum linear velocity where the efficiency of the column is at its greatest, defined by μ.
Figure 4 Typical Golay curves. Golay curves determine the best choice of carrier gas depending on the speed of the separation required. Image from Sigma aldrich.
Figure 5 On the left is a simplistic schematic of how heart-cut separation using two columns can be undertaken, with the switching valve transferring the flow from the primary column to the secondary at a set time period. On the right is an example where there is a co-elution of peaks (highlighted by the red line) in the primary separation. This fraction (or time period) of the primary is then switched onto the secondary column where it is separated out to show the four peaks that have been deconvoluted.
Figure 6 Schematic for comprehensive separation. The compounds are introduced by the injector and separated out in the primary column (red) before reaching the modulator at different points in time. The modulator splits the sample into small fractions and passes this onto the shorter secondary column (blue). The secondary column then completes its separation within 2 – 10 seconds (method dependent) whereupon the sample reaches the detector and the next fraction is then separated in the second dimension.
Figure 7 The number of boxes represented in the image is equivalent to the product of the peak capacity of each column generated along two axes assuming adjacent Gaussian profiles. This demonstrates a large separation space when using two columns in a comprehensive arrangement. Image from Giddings.
Figure 8 A: Co-eluting peak enters the modulator. B: The Modulator fractionates the flow. C: These are injected onto the second column at regular time intervals; second dimension separation is completed before the next fraction is injected. D: The 1D data is then displayed as 2D contour plot. Figure from R.Lidster.
Figure 9 Schematic of a GCxGC using a sweeper. The rotating slotted heater allows for the modulation onto the secondary column which then reaches the detector.
Figure 10 Schematic of how the valve modulation takes place, switching between flow from column one to pushing the fraction onto the secondary column. This takes place very rapidly, however, there is some mass lost during this process (ca. 15 %) leading to it being a less sensitive technique than cryogenic modulation.
Figure 11 Schematic of a quadrupole
Figure 12 Schematic of TOF
Figure 13 Schematic of a FID
Figure 14 8330 standard with 6 of the explosives labelled, TNT, 2- nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene for visual reference of separation. The x- axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.
Figure 15 Diesel spiked with 1 ppm of the 8330 explosive standard. The left image shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the presence of nitro groups in the sample. The white circles indicate the presence of the explosives defined in Figure 11. The x-axis shows the primary retention time and the y-axis shows the secondary retention time.
Figure 16 Perfume spiked with 1ppm of the 8330 explosive standard. The left image shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to
highlight the presence of nitro groups in the sample. The circled compounds are explosives of interest. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 17 London aerosol sample spiked with 1 ppm of the 8330 explosive standard. The left image shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the presence of nitro groups in the sample. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 18 CWAs detected using GCxGC-TOFMS at 1 µg/mL. The agents are labelled on the spectrum and demonstrate that each agent occupies a different separation space in both the primary and secondary dimension. The GD peaks are also separated.

Figure 19 Aviation Fuel spiked with CWA. The spectrum is highly complex and the aviation fuel has aromatic peaks as well as hydrocarbons present. The agents can be detected either as they occupy a different separation space or by zooming into specific regions and relying on the two retention times for a location, like a map. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 20 A swab from clothing spiked with CWA. The CWAs detected are highlighted on the chromatogram in white circles and labelled. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 21 Diesel with 1 ppm of 8330 standard on a cryogenic GCxGC-TOF. The explosives are circled and clearly occupy a different separation space to that of the diesel background.

Figure 22 Diaphragm valve schematic to demonstrate port arrangement.

Figure 23 Calibration standard of CWAs at 5 µg/mL – the circled regions relate to different agents. The axis has been removed to allow for input into the software.

Figure 24 User display of software for data analysis. A chromatogram has been preloaded by using the “Load Image” button.

Figure 25 User display once “detect” has been pressed. Under the alarm section it states “found G/V agent” or “not found”.

Figure 26 User display showing alarm list after “identify” has been pressed. Each agent is displayed as either “found” or “not found” followed by the agent.

Figure 27 Gasoline spiked with CWA of interest. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 28 1 ppm of TNT using the valve GCxGC system. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds. The TNT peak is circled in red.

Figure 29 50 ppm of an 8330 b standard, the explosives of interest are circled in white but it can be seen that there are dark blue streaks before each eluted compound. The dark blue streaks are speculated to be thermal breakdown products of the explosives due to the high inlet temperature. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 30 50 ppm of 8330b explosive standard analysed at 175 °C. Explosives are detected (circled in white) but there is no degradation product present before the compounds. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 31 Detection function in GUI on a 50 ppm standard of the 8330 explosive mix.

Figure 32 Identify function on a 50 ppm standard of explosives. It displays “not found” for each agent and “found” followed by each explosive.

Figure 33 Perfume spiked with 1 ppm of 8330b explosive standard. The explosives detected are circled in white. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 34 Inside of secondary oven, the insulation has had pieces removed to help with airflow and 8 meters of column has been tightly coiled and placed inside.
Figure 35 Secondary oven placed inside the oven. The green and white wire is the thermocouple placed in the centre of the oven. The large white wires continue to outside the GC and connect to the AUX 2 port.

Figure 36 Diesel run using the same method, on the top without a secondary oven and on the bottom with a secondary oven and a 40 °C offset. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 37 Chromatogram of Gasoline spiked with CWA nerve and blister standard. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 38 Light weight oil (LWO) spiked with 8330b explosives standard. The explosives detected are highlighted in white circles. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 39 Picture of the aluminium holder with the column wound inside.

Figure 40 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 20 °C/min. The separation between these compounds has been reduced both in the 1st and 2nd dimension. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 41 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 40 °C/min. The separation between these compounds has been reduced both in the 1st and 2nd dimension. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 42 1 ppm of the 8330 standard analysed using GCxGC-NCD. Only nitrogen containing species are observed using NCD. The peaks are sharp and there is limited wrapping. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 43 1 ppm of the 8330 standard analysed using method 2. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 44 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC.

Figure 45 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC and heated transfer lines.

Figure 46 Heat image of transfer lines and valve. The colour scale is presented on the right hand side and ranges from 18.9 to 97.9 degrees.

Figure 47 Heat image of transfer lines. The colour scale is presented on the right hand side and ranges from 19.6 to 95.2 degrees.

Figure 48 Schematic of the micro GCxGC.

Figure 49 From left to right- Final GCxGC unit WxDxH: 34x20x36 cm, the Arduino Nano set up using a master at the bottom with a screen to allow for a friendly interface and the 5 “slaves” at the top and finally the two GC columns and ovens.

Figure 50 Left represents the valve heating and the connectors into the valve. Right is the inner of the small ovens.

Figure 51 Chromatogram of C7 to C30 alkane standard. Only three of the compounds can be observed – these are broad and starting to wrap. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 52 Separation of five of the alkanes in the C7-C30 standard. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 53 Area inside the valve oven. The green metal piece is the secondary heater that has been added to try to keep the area hot to allow compounds to pass through the system.

Figure 54 Chromatogram of C7 – C30 at 1 µg/mL analysed on the micro GCxGC unit with a secondary heater held at 200 degrees.

Figure 55 Chromatogram of C7 – C30 at 1 µg/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees.
Figure 56 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 57 AV fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 58 LWO spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 59 Gasoline Spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 60 Swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 61 Swab of inside an oven spiked with CWA standard of nerve agents
Figure 63 Aerosol sample from Porton Down spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 64 Aviation Fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 65 A swab of clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 66 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 67 Gasoline spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 68 A swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 69 A swab of the inside of an oven spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 70 Light weight oil used for weapons spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 71 Aerosol sample from PTN range spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 72 GB calibration
Figure 73 GD peak 1 calibration
Figure 74 GD peak 2 calibration
Figure 75 GA calibration
Figure 76 H calibration
Figure 77 GF calibration
Figure 78 VM calibration
Figure 79 VX calibration
Figure 80 2-NT calibration
Figure 81 3-NT calibration
Figure 82 4-NT Calibration
Figure 83 1,3-DNB calibration
Figure 84 2,6-DNT Calibration
Figure 85 2,4 – DNT Calibration
Figure 86 1,3,5-TNB
Figure 87 2,4,6-TNT Calibration
Figure 88 Aviation fuel spiked with CWA
Figure 89 Swab of clothing spiked with CWA
Figure 90 Control swab spiked with CWA
Figure 91 Diesel spiked with CWA
Figure 92 Sahara dust sample spiked with explosives
Figure 93 Swab of a kitchen floor spiked with CWA
Figure 94 Hotel swab 1 spiked with CWA
Figure 95 Hotel swab 2 spiked with CWA
Figure 96 Light weight oil spiked with explosives
Figure 97 Porton Down aerosol sample spiked with CWA
Figure 98 Porton Down aerosol sample 2 spiked with CWA
Figure 99 OMD-90 spiked with CWA
Figure 100 Swab of the inside of an oven spiked with CWA
Figure 101 OX – 24 spiked with CWA
Figure 102 Aviation Fuel Spiked with 1 ppm of explosives
Figure 103 Diesel spiked with 1 ppm of explosives 177
Figure 104 Sahara dust sample spiked with 1 ppm of explosives 178
Figure 105 Gasoline spiked with 1 ppm of explosives 178
Figure 106 Swab sample from a Hotel with known interferents spiked with 1 ppm of explosives 178
Figure 107 Light weight oil – used on guns – spiked with 1 ppm of explosives 179
Figure 108 Porton range aerosol sample spike with 1 ppm of explosives 179
Figure 109 OX-24 spiked with 1 ppm of explosives 180
Figure 110 Diesel spiked with CWA standard of nerve agents 181
Figure 111 AV fuel spiked with CWA standard of nerve agents 181
Figure 112 LWO spiked with CWA standard of nerve agents 182
Figure 113 Gasoline Spiked with CWA standard of nerve agents 182
Figure 114 Swab of a hotel room spiked with CWA standard of nerve agents 183
Figure 115 Swab of inside an oven spiked with CWA standard of nerve agents 183
Figure 116 Swab of Clothing spiked with CWA standard of nerve agents 184
Figure 117 Aerosol sample from Porton Down spiked with CWA standard of nerve agents 184
Figure 118 Sahara Dust aerosol sample spiked with CWA standard of nerve agents 185
Figure 119 Diesel spiked with 8330 standard of explosives 186
Figure 120 AV fuel spiked with 8330 standard of explosives 186
Figure 121 LWO spiked with 8330 standard of explosives 187
Figure 122 Gasoline Spiked with 8330 standard of explosives 187
Figure 123 Swab of a hotel room spiked with 8330 standard of explosives 188
Figure 124 Perfume spiked with 8330 standard of explosives 188
Figure 125 Aerosol sample from Porton Down spiked with 8330 standard of explosives 189
Figure 126 Sahara Dust aerosol sample spiked with 8330 standard of explosives 189
Figure 127 Separation of a C7 to C40 standard using method 3 222
Figure 128 Separation of a C7 to C40 standard using method 4. 222
Figure 129 OMEGA fast PID used to control secondary heater 223
Figure 130 Chromatogram of C7 – C30 at 1 ug/mL analysed on the micro GCxGC unit with a secondary heater held at 200 degrees 224
Figure 131 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees 224
Figure 132 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees 224
Figure 133 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees 225
List of Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1</td>
<td>21</td>
</tr>
<tr>
<td>Equation 2</td>
<td>21</td>
</tr>
<tr>
<td>Equation 3</td>
<td>22</td>
</tr>
<tr>
<td>Equation 4</td>
<td>22</td>
</tr>
<tr>
<td>Equation 5</td>
<td>22</td>
</tr>
<tr>
<td>Equation 6</td>
<td>22</td>
</tr>
<tr>
<td>Equation 7</td>
<td>23</td>
</tr>
<tr>
<td>Equation 8</td>
<td>23</td>
</tr>
<tr>
<td>Equation 9</td>
<td>23</td>
</tr>
<tr>
<td>Equation 10</td>
<td>24</td>
</tr>
<tr>
<td>Equation 11</td>
<td>24</td>
</tr>
<tr>
<td>Equation 12</td>
<td>24</td>
</tr>
<tr>
<td>Equation 13</td>
<td>24</td>
</tr>
<tr>
<td>Equation 14</td>
<td>26</td>
</tr>
<tr>
<td>Equation 15</td>
<td>26</td>
</tr>
<tr>
<td>Equation 16</td>
<td>26</td>
</tr>
<tr>
<td>Equation 17</td>
<td>27</td>
</tr>
<tr>
<td>Equation 18</td>
<td>31</td>
</tr>
<tr>
<td>Equation 19</td>
<td>31</td>
</tr>
</tbody>
</table>
Acknowledgements

Firstly, I would like to thank Dstl for sponsoring my PhD while I was working for them. Also, for all of those that helped me to learn how to write bids so that I could conduct the research. I would like to specifically thank the Chemical Sensing team for letting me use the laboratory space and the training they provided me with.

I am thankful to have had the support of my statistician guru Emily Matthews who helped me learn to code and improve my design of experiments as well as teaching me about machine learning. Also, for all the earl grey tea she supplied me with while I was analysing data.

Tim Ayers and others at the University of York were so welcoming and knowledgeable about engineering. I am extremely grateful for all of the help Tim provided me and for letting me meet Scotty!

I would like to thank my friends and family, specifically Jack, Phoebe, Sarah, Chris, Richard and Siobhan who supported me throughout with advice, food, walks and proof reading!

Finally, I would like to thank Agilent Technologies who have allowed me to finish my thesis while working for them. Without the education time provided to me it would have been much more difficult to achieve.
Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work has not previously been presented for an award at this, or any other, University. All sources are acknowledged as References. Where collaborative work has taken place, this is documented and referenced in the relevant chapter.
Chapter 1

Literature Review on Gas Chromatography and Comprehensive Gas Chromatography
1 Comprehensive Two Dimensional Gas Chromatography

Introduction

1.1 Introduction

In this thesis comprehensive two dimensional gas chromatography (GCxGC) is explored for defence applications. Chapter 1 provides an overview of the history and theory of gas chromatography (GC) and GCxGC. This will provide a basis for understanding the analysis detailed in following chapters.

Chapter 2 details the history and use of explosives and chemical warfare agents (CWA), why there is an interest in detecting them before and after an event and the different ways of analytically detecting the species of interest. The chapter then explores the research undertaken in this thesis on the use of cryogenic GCxGC time of flight mass spectrometry (TOF-MS) to detect explosives and CWAs. This is, to the author’s knowledge, the first comprehensive study on the detection of these chemicals in defence-relevant matrices using GCxGC-TOF-MS.

Chapter 3 explores the use of portable detection equipment to detect explosives and CWAs in both a military and civilian environment. The chapter then details the use of a “portable” GCxGC system that builds upon those developed at the University of York, to detect explosives and CWAs in defence relevant matrices. This provides the possibility of not only being able to analyse more complex samples in the field without the need for sending samples back to an analytical laboratory but also the possibility of creating a man portable system (a system that can be carried by one person and meets criteria set by the military) that could be used without the need for scientific personnel. This is, to the knowledge of the author, the first use of valve GCxGC to detect defence relevant compounds in complex matrices.

Chapter 4 begins by reviewing the use of man portable GCxGC across the literature before detailing the work undertaken to produce a prototype man portable GCxGC system. This research provides a possible approach to produce a system that could allow for detection of defence-related compounds.
in complex matrices in the field. This uses lessons learnt during chapter 2 and 3 to help produce a system that is related to defence requirements.

Chapter 5 details the conclusions and future research that could follow from this body of work.

Chapters 6 and 7 are held by the ministry of defence for security purposes.
1.2 Chromatography

Chromatography, as recognised today, began in the early 1900s and has developed into one of the most commonly used techniques in modern analytical chemistry.1, 2 The first documented research related to modern chromatography was undertaken by Tswett where he focused on the separation of liquids using homemade columns filled with different absorbents.2

In 1941, Martin and Synge reported the theory of partition chromatography which in turn led to the development of the modern gas chromatography (GC) system in 1951 by Martin and James.3, 4 Following this fundamental breakthrough, in 1952 Martin and Synge won the Nobel Prize for their work on the partition theory, as it is the basic theory behind all types of chromatography today from Thin Layer to GC.

Since 1952, chromatography has rapidly improved to become user friendly, more efficient and more effective. New column stationary phases are developed to improve separations and the understanding of chromatography has improved allowing new developments. However, the fundamental principles described by Martin and Synge have not changed and are discussed in detail in the following section.
1.2.1 Gas Chromatography

GC is a method used to separate gas phase molecules, the sample is first injected into a heated inlet and volatilises. A carrier gas (the mobile phase), typically nitrogen, helium or hydrogen, pushes the material from the injector and injects the material in a sharp band, onto a column. Columns can be packed or capillary: only capillary columns were used during this research. The column is a capillary tube with an inner coating known as the stationary phase, Figure 1.

![Cross section of a GC column showing the outer polyamide coating, the middle part is fused silica and the inner is the stationary phase.](image)

Separation of the injected components is determined by the partitioning of each component between the mobile phase and the stationary phase (described by the partition ratio). In simple terms, if a compound has a high affinity for the stationary phase it will be retained and elute later than a compound with less affinity, thus they elute in time order of retention. The compounds then enter a detector, for example, a Flame Ionisation Detector (FID) or a Mass Spectrometer (MS). The detector allows for the detection and/or identification of the compounds.

1.2.1.1 Partition Ratio

The chromatographic separation can be defined as the baseline separation between two compounds. This can be described using the partition ratio defined as ‘the degree to which solutes are separated between the mobile and stationary phase’. To determine the partition ratio, we must view an equilibrium; if the solute species is A, we can define the equilibrium between the stationary and mobile phase by Equation 1.
Equation 1

\[A_{\text{Mobile}} \xrightarrow{K} A_{\text{Stationary}} \]

K is defined as the equilibrium constant between the two. K is the partition ratio which can be defined by Equation 2, where \(C_s \) and \(C_m \) are the molar analytical concentration of a solute in the stationary phase and mobile phase respectively.\(^5\)

\[K = \frac{C_s}{C_m} \]

Equation 2

In an ideal scenario the partition ratio is constant over a wide range of concentrations, thus making \(C_s \) and \(C_m \) directly proportional. However, the partition ratio is linked to several other physical factors; hence \(C_s \) and \(C_m \) are often not directly proportional. Figure 2 illustrates a simple chromatogram to aid the explanation of the following terms: \(t_r \) and \(t_m \).

Figure 2 Example chromatogram with a non-retained and a retained species defined by \(t_m \) and \(t_r \) respectively.

In Figure 2, the peak on the left has not been retained by the stationary phase and thus elutes earlier than the larger peak on the right which interacts with the stationary phase (i.e. has a higher affinity for the stationary phase) and elutes later. The first peak is defined by \(t_m \) which is a measure of the
average rate of migration of the mobile phase and can be described as dead time, i.e. time taken for an un-retained peak to travel through the column. The time required for a retained peak to reach the detector is known as \(t_r \), otherwise known as the retention time.

The average linear rate of solute migration \((V) \) can be defined using the length of the column \((L) \) and the retention time \((t_r) \) as shown in Equation 3.

\[
V = \frac{L}{t_r}
\]

Equation 3

The average linear velocity of the molecules in the mobile phase is described by \(\mu \), using \(t_m \) and the length of the column, Equation 4.

\[
\mu = \frac{L}{t_m}
\]

Equation 4

Combining the above, it is possible to relate the rate of migration of a solute to its partition ratio as a fraction of the velocity of the mobile phase, Equation 5.

\[
V = \mu \times \text{fraction of the time solute spends in the mobile phase}
\]

Equation 5

The fraction described in Equation 5 can be explained in terms of the number of moles of solute in the mobile and stationary phase, Equation 6.

\[
V = \mu \times \frac{\text{Moles of solute in the mobile phase}}{\text{Total number of moles in the solute}}
\]

Equation 6
Therefore, if the total number of moles of the solute in the mobile phase is equal to the concentration \((C_m)\) of the solute in that phase multiplied by the volume of the phase \((V_m)\) and if the number of moles of solute in the stationary phase is described in a similar way \((C_s \times V_s)\) then Equation 7 allows a connection between the terms.

\[
V = \mu x \left(\frac{C_m V_m}{C_m V_m + C_s V_s} \right) = \mu x \left(\frac{1}{1 + C_s V_s / C_m V_m} \right)
\]

Equation 7

Consequently, the rate of solute migration \((V)\) as a function of the partition ratio is given in Equation 8.

\[
V = \mu x \frac{1}{1 + K V_s / V_m}
\]

Equation 8

1.2.1.2 Capacity Factor

The capacity factor is a measure of the retention of a peak. It considers the interaction of a compound with the stationary phase. The partition ratio can be combined with the capacity factor to describe the migration rates of solutes on different columns. For a solute \(A\), the capacity factor \(K_A\) is defined by Equation 9.

\[
K_A' = \frac{K_A V_s}{V_m}
\]

Equation 9

Equation 9 can be substituted into Equation 8 assuming that \(K_A\) is equivalent to the partition ratio for \(A\), giving Equation 10.
The capacity factor can be derived from a chromatogram using retention time (t_r) and the dead time (t_m), producing Equation 11.

\[
K_A' = \frac{t_r - t_m}{t_m}
\]

Equation 11

The capacity factor is dependent upon temperature and the column packing. Thus, if a different capacity factor is required, it can be achieved by changing these variables.

1.2.1.3 Selectivity Factor

In order for separation to occur, two compounds must have different capacity factors. The selectivity factor (α) is the ratio between two compounds’ capacity factors described in Equation 12.

\[
\alpha = \frac{K_{f2}'}{K_{f1}'}
\]

Equation 12

1.2.1.4 Resolution

The resolution, Equation 13 is a measure of the degree of separation between two adjacent peaks taking into account the width of the peaks (W_h) and using the retention time (t_r). The value 1.18 in Equation 13 comes from the calculation of the peak widths. If we defined the peak width at the baseline of a Gaussian peak as 4 standard deviations, at the half height it would be 2.354 standard deviations. Therefore, the factor 1.18 is derived from (2 x 2.354/4).

\[
R = 1.18 \left(\frac{t_{r2} - t_{r1}}{W_{h1} + W_{h2}} \right)
\]

Equation 13
Peak separation and resolution are linked, as in some cases two broad peaks can have equal or better separation than two narrow peaks.
1.2.2 Rate Theory of Chromatography

The Rate Theory allows for a quantitative theoretical description of column efficiency. It considers the possibility of random movement by a molecule as it travels through a column. This theory is described in terms of plate height (H) and the number of theoretical plates (N). The terms are related by Equation 14.

\[N = \frac{L}{H} \quad \text{Equation 14} \]

As the plate height decreases and the number of plates increase, the column efficiency therefore increases.

The plate height can be found if we assume that each peak can be described as a Gaussian curve and that the width is described by the standard deviation (σ), Equation 15.

\[H = \frac{\sigma^2}{L} \quad \text{Equation 15} \]

Equation 15 allows for the efficiency of a column to be defined in terms of variance per unit length of column.

1.2.3 Van Deemter Curve

The average linear velocity and the column efficiency can be related by the Van Deemter equation. The Van Deemter, Equation 16, uses the following terms: height equivalent (h_{min}) to a theoretical plate, average linear velocity (\bar{\mu}), multi-path flow term (A), longitudinal diffusion term (B) and resistance to mass transfer term (C). Note that C in Equation 16 is defined as C_m + C_s.

\[h_{\text{min}} = A + \frac{B}{\bar{\mu}} + C\bar{\mu} \quad \text{Equation 16} \]
If the efficiency is described by h_{min} and plotted against $\bar{\mu}$ for a given column and set of conditions then a Van Deemter plot is obtained, Figure 3.

![Van Deemter plot](image)

Figure 3 Van Deemter plot illustrating the optimum linear velocity where the efficiency of the column is at its greatest, defined by $\bar{\mu}$

The optimum linear velocity often relates to long GC run times. There are circumstances in which a loss of the column efficiency is outweighed by a large reduction in retention time.

The A term can be explained as eddy diffusion and arises due to movement of flow around particles in a packed column. In this work, no packed columns are used (only capillary), so the term needs to be modified. In a capillary column, there is no contribution from the A term to band broadening as there are no particles for the flow to move around. The equation that results from this modification is known as the Golay equation, Equation 17.

$$
H = \frac{B}{\bar{\mu}} + [C_m + C_s] \bar{\mu}
$$

Equation 17

Therefore, the only factors that affect plate height in a capillary column are diffusion coefficient, retention factor, the column dimensions and linear velocity.
The choice of carrier gas also affects the chromatography. If Equation 17 is plotted to produce a curve for different carrier gases, the best theoretical choice of carrier gas can be determined. Plots for helium, nitrogen and hydrogen are shown in Figure 4.

![Golay curves](image)

Figure 4 Typical Golay curves. Golay curves determine the best choice of carrier gas depending on the speed of the separation required. Image from Sigma aldrich⁶

Figure 4 illustrates the range in H for different possible carrier gases. If a fast method is required, theoretically hydrogen would be the best choice as it has the lowest H at high velocities. However, there are safety considerations to take into account when using hydrogen, which may outweigh the decrease in H.
1.3 Two Dimensional Gas Chromatography

1.3.1 Heart-cut separation

In 1958 Simmons et al. devised the first system that combined two or more capillary columns in a manner to allow fractions from the first column to be passed onto a second column for further chromatographic separation. This is known as heart-cut separation and at the time allowed for separation that could not be achieved by one-dimensional chromatography.

Heart-cut separation involves taking small fractions from the first column and transferring this onto a secondary column using a switching valve, as shown in Figure 5. The switching valve most commonly used is a dean switch, which was invented in 1968, approximately 10 years after the first demonstration of heart-cut GC. This allows for fractionation of the primary column’s separated analytes and then injection onto the second column. The secondary column will then separate out the fraction based on an orthogonal physical property; for example, the primary may separate out based on boiling point and the secondary based on polarity.

Figure 5 On the left is a simplistic schematic of how heart-cut separation using two columns can be undertaken, with the switching valve transferring the flow from the primary column to the secondary at a set time period. On the right is an example where there is a co-elution of peaks (highlighted by the red line) in the primary separation. This fraction (or time period) of the primary is then switched onto the secondary column where it is separated out to show the four peaks that have been deconvoluted.
A disadvantage with heart-cut separation is that it is time consuming, as only one fraction can be processed at a time. If there is an instance where several peaks are co-eluting, then several fractions would have to be switched onto the secondary column manually. This leads to partial analysis of the sample in the second dimension and an increase in analysis time. However, despite the disadvantage of slower analysis, the technique proved highly valuable in the analysis of petrochemical samples and is still used today for specific applications.8,10

Naturally, the benefits of heart-cut GC, specifically in the petrochemical industry, led to the requirement for analysis to be continuous so that minimal information was lost. In 1991, Phillips et al. developed the first fully comprehensive GCxGC system.11

\subsection*{1.3.2 Comprehensive two-dimensional gas chromatography (GCxGC)}

Comprehensive GCxGC was developed in 1991 by Phillips et al.11 when the first fully comprehensive separation of an oil sample was completed. As the name suggests, for comprehensive GCxGC to be undertaken, the entire sample must be separated by the primary column and then the secondary column. The key component of a GCxGC instrument is the modulator.12 The modulator fractionates the eluent from the primary column and injects these fractions onto the second column at regular time intervals (the modulation period).13

The secondary separation must be rapid, as the separation must be completed before the next modulation is performed. This separation is generally of the order of 2 – 10 seconds. The separation must be fast enough so that the modulation pulse has finished separating before the next pulse is injected. This helps to minimise the phenomenon called wrap-around but also ensures that sufficient modulations are performed across the first dimension to maintain the separation achieved on the primary column. Typically, a minimum of 4 modulations is performed across a typical primary column peak width to ensure minimal remixing within the modulator. Figure 6 demonstrates this as a schematic for comprehensive separation.
The compounds are introduced by the injector and separated out in the primary column (red) before reaching the modulator at different points in time. The modulator splits the sample into small fractions and passes this onto the shorter secondary column (blue). The secondary column then completes its separation within 2 – 10 seconds (method dependent) whereupon the sample reaches the detector and the next fraction is then separated in the second dimension.

1.3.3 Peak Capacity

The peak capacity in one-dimensional GC is represented by η. If two columns are joined together the peak capacity is η_{tot} and is equivalent to the capacity of each column added together, Equation 18. \cite{Giddings_1973}

Giddings described how to calculate the increase in resolution using the peak capacity.\cite{Giddings_1973}

$$n_{\text{tot}} = n_1 + n_2$$ \hspace{1cm} Equation 18

When observing GCxGC separations, Giddings determined that the peak capacities are multiplied thus allowing for a significant increase in the peak capacity, Equation 19.

$$n_{\text{tot}} = n_1 \times n_2$$ \hspace{1cm} Equation 19

Giddings describes this pictorially in his paper which allows for a better visualisation of the increase in the peak capacity, Figure 7.\cite{Giddings_1973} In heart-cut separation the image would differ to that observed in Figure 7 as it would not represent a square it would be one long line of cubes as the peak capacities are added together thus the peak capacity is lower and less space is available for separation.
1.3.4 Orthogonality

The use of GCxGC requires the two columns to be orthogonal to one another to achieve maximum separation. For orthogonality to be achieved, the separation mechanism in the second dimension must be independent of the primary, for example, the primary separation may be based on boiling point and the secondary based on polarity.

1.3.5 Data Analysis

In a typical GCxGC separation, a peak will be modulated into at least four separate modulated peaks to achieve good primary and secondary separation. Figure 8 provides a simple schematic of how the modulator fractionates the flow from the primary column and into the secondary allowing further separation and finally how this is then represented in a 2D contour plot in the software.
In Figure 8, the GCxGC software is able to build a 2D contour plot that can be made into a 3D plot when the volume of the peak is included. There are some issues associated with this analysis. Commercially available software works by creating a bounding box around the peak in two dimensions thus representing the peak as a rectangle and not as a gaussian peak. The integral is then worked out by using the height of the peak and the bounding box. This can lead to large errors in the volumes recorded but it is a simple approximation that allows for the calculation of the volume under the peak.

1.3.6 Modulator

The modulator can be described as the heart of the instrument. It allows for the trapping and releasing of compounds from the primary column onto the secondary allowing for comprehensive analysis to take place. Since the development of the first GCxGC, three strands of modulators have been developed; thermal, cryogenic and valve. These are discussed in further detail below.

1.3.6.1 Thermal Modulation

The first modulators for comprehensive GCxGC used dual stage thermal desorption. Phillips et al. developed the first system that utilised a metal capillary to retain the analytes. The metal was held at a constant voltage to produce heat and the system worked in two stages to retain and then desorb the analytes. More specifically, the modulation worked by having a temperature programmable box at the head of the second column this box remained at a temperature lower than
that of the oven. In essence, the modulation could be described as fast thermal desorption.12 The oven temperature is then used to allow for release onto the second column which could be held at a higher temperature.9 Although the results from preliminary testing of these modulators appeared promising, the systems were not robust and often needed replacement.17, 18 Geus at al. attempted to use a similar design as Phillips et al. but instead of using a constant voltage to provide current to heat the metal block, Geus et al. used copper wire coiled tightly round the outside of the modulator.19 However, this had similar problems to Phillips et al.’s system, including the loss of volatile analytes.13

In an attempt to overcome some of the issues with the first design, Ledford and Phillips designed a moving modulator known as the sweeper.20 The sweeper was the first thermal modulator that was commercially available; this used a separate heating element that was able to move across the capillary heating it at specific sites. A schematic of a sweeper is shown in Figure 9. The advantage of this system was that the heater block that controlled modulation was stable in temperature allowing efficient trapping.13 However, the system allowed re-injection via desorbing at a large temperature differences so the column limited the applications that the system could be used for thus the application range of volatile compound analysis was limited.13

Figure 9 Schematic of a GCxGC using a sweeper. The rotating slotted heater allows for the modulation onto the secondary column which then reaches the detector.
1.3.6.2 Cryogenic Modulator

Marriott et al. advanced the GCxGC field and developed a cryogenic modulator. This system still makes use of a moving modulator but instead of using heat, they utilised expanding liquid carbon dioxide (CO$_2$) to allow for analytes to be trapped at very low temperatures. This technique focused the analytes at the head of the second column and re-injection occurred by moving the modulator away from that site and allowing the oven to re-heat the column. Although this system addressed some of the pitfalls of the traditional thermal modulators, the application range was still limited as there was breakthrough of the lower volatility analytes.

Over the past few years, several systems have been designed to improve the cryogenic modulation either using liquid CO$_2$, expanding gaseous CO$_2$ or liquid nitrogen to trap the analytes. Some of these systems have become commercially available and have reduced the number of moving parts by using hot and cold jets so that the systems are more robust. The liquid CO$_2$ or nitrogen is used to trap the analytes on the capillary and the cold jet is then switched off to allow injection onto the second column either by using the oven air to heat or more traditionally, a hot jet of air is pulsed onto the trapping region. These systems allow for highly sensitive detection and trapping of some volatile analytes but have some obvious drawbacks such as high consumable costs, freezing of water in samples, and not being portable.

1.3.6.3 Valve Modulation

Using valve modulation means that the system can be made portable as it requires very few consumables and it is very small. The other advantage is that there is minimal breakthrough of the volatile species because using a valve allows the modulation to be independent of the trapping mechanism therefore limiting the breakthrough. Several research groups have used valve modulation for GCxGC, either using a rotary or diaphragm valve. Examples of each are explored briefly below.
Seely et al. first introduced diaphragm valve modulation in 2000.25 Seely et al. used a 2-way 6-port diaphragm valve to allow for eluent to be modulated from the primary to the secondary column. Using this method allowed for removal of expensive consumables but had some limitations for sensitivity. The loss of sensitivity is due to the valve being held in the sampling position for only 80\% of the time thus 20\% of the eluent is flushed to waste. However, to maintain a refocusing capability similar to that of cryogenic modulation, the secondary column flow was at least 20 times higher than the primary thus making it unsuitable for use with a mass spectrometer unless the flow is split.26

Seely et al. also describe a total transfer modulator which uses a microfluidic dean switch to allow for modulation.27 This can be housed outside the GC and is not temperature dependent but the switch limits the users modulation periods and flow ranges that can be used which can cause inconsistent transfer from the primary to the secondary column.28 Agilent now sell a commercial microfluidic switch that can be incorporated into several systems.29

Lidster et al.30 used a design based on Mohler et al.31 and inserted a stopper into the diaphragm and rotary valves to prevent the primary column eluent from being vented to waste, allowing for 100\% mass transfer. This research explored the use of both valves for the analysis of volatile organic compounds (VOCs). The rotary valve did not perform as well as the diaphragm valve as it was less reproducible and was not as robust as the diaphragm.30

Until more recently, the use of a diaphragm valve has limited the temperature ranges and therefore the applications. However, Synovec et al. have described a high temperature diaphragm valve that can allow for separations to occur up to 325°C.32 This valve uses Kalrez O-rings allowing for higher temperatures and therefore analysis of a greater range of volatile and semi-volatile materials. Synovec et al. demonstrated separation of vacuum pump oil and orange oil with high reproducibility using this valve thus extending the application range.32

Figure 10 demonstrates how a valve modulates the flow. The flow from column one fills a fixed sample loop. At a pre-defined time, determined by flows and the size of the sample loop, the flow
will switch and use the auxiliary flow to push the sample in the loop onto the secondary column. This system does result in about 15% of mass being lost and is a less sensitive technique than cryogenic modulation but it allows for portability of the technique to be achieved.

![Figure 10 Schematic of how the valve modulation takes place, switching between flow from column one to pushing the fraction onto the secondary column. This takes place very rapidly, however, there is some mass lost during this process (ca. 15%) leading to it being a less sensitive technique than cryogenic modulation.](image)

The vent position can be filled with a stopper to stop the flow and improve the sensitivity such as in Lidster et al.’s and Mohler et al.’s research.

This chapter will conclude by reviewing the different detectors that GC and GCxGC can be combined with.
1.4 Detectors

Detectors can either provide information that allows for identification or detection. A detector that allows for identification is one that provides additional information about a sample, such as a mass spectrometer (MS) which provides a fragmentation pattern and a m/z allowing for identification. A detector that allows for detection is one that only provides a retention time based on elution from a column, such as a flame ionisation detector (FID) which is a non-selective detector that will provide a response when a material containing carbon is burnt and electrons are produce. Some detectors can provide selective detection such as a nitrogen chemiluminescent detector (NCD) which will only provide a response to a chemical containing nitrogen. The following sections 1.4.1, 1.4.2 and 1.4.3 detail the detectors used during this research.

1.4.1 Mass Spectrometry

Mass spectrometry (MS) is an analytical technique that allows for detection of chemicals based on their mass to charge ratio. In general, a compound will be introduced to a mass spectrometer and ionised. Different ionisation methods can be used depending on how much fragmentation of the molecule is desired. The ions are then sorted depending on their charge by different electronic and or magnetic plates and/or gates before hitting a detector plate. There are several different types of mass spectrometry only two of which we will focus on here; time of flight (TOF) MS and single quadrupole.

1.4.1.1 Quadrupole

A quadrupole, as the name suggests, is four parallel metal rods that are electrically charged in pairs such that opposite pairs have the same polarity (positive or negative polarity). This is achieved by the rods being connected to direct current (DC) and radio frequency (RF). When only the RF is applied to the rods, any m/z value ions can travel down the length of the rods and reach the detector plate. However, when a DC is applied as well, this allows for specification of the m/z ratio that the user wants to identify. Quadrupoles can be described as low sensitivity scanning detectors
but do possess the ability to have some specification of mass to charge allowing for better signal to noise thus increasing the sensitivity of the technique. A schematic of a quadrupole is presented in Figure 11.

Figure 11 Schematic of a quadrupole

1.4.1.2 Time of Flight

A Time of Flight (TOF) MS has a limited dynamic range in comparison to other MS techniques but allows for detection of analytes in the low picogram to femtogram range. In a TOF the species of interest is ionised, and a pulse is applied that provides the ions with a specific kinetic energy. The ions then travel through a drift region where the ions are allowed to move based on their kinetic energy. This is followed by a reflectron which corrects the kinetic energy of ions of the same mass to charge ratio, the correction is needed as although in theory all ions of the same charge should be given the same kinetic energy by the pulse, they start at different potential energies and thus this effect has to be corrected for to avoid broad peaks. The reflectron correction achieves sharper and more gaussian peaks thus providing sensitive detection. A schematic of a TOF is provided in Figure 12.

Figure 12 Schematic of TOF
1.4.2 FID

A flame ionisation detector (FID) is a universal detector, it will detect any species that contains a hydrocarbon element. Figure 13 shows a schematic of how a FID works. The compound (in gas phase) are separated by the GC column and reach the detector at different points in time depending on the separation method, the compound then meets the detector. The compound is burnt in a hydrogen flame and if it contains hydrocarbon species, these are ionised in the flame (at the anode). The ions then hit a conductive plate (the cathode) and that mechanism induces a current that can be measured and related back to concentration of the analyte.

![Figure 13 Schematic of a FID](image)

1.4.3 NCD

Nitrogen chemiluminescent detector is a more selective detector than a FID that will only provide a response to a chemical that contains nitrogen. This is useful when observing a specific species in a complex matrix as the detection method allows for selectivity. An NCD works by burning the material presented to it by the GC column at a very high temperature to produce nitrous oxide (NO), this in turn is then reacted with ozone which produces a chemiluminescent signature (light
signature) which can be detected by a photomultiplier. The response of the photomultiplier has a linear range which defines the dynamic range of the NCD.
Chapter 2

Comprehensive Gas Chromatography Time of Flight Mass Spectrometry for the Analysis of Threat Materials
2 Comprehensive Gas Chromatography Time of Flight Mass Spectrometry for the Analysis of Threat Materials

In the media today, we are faced with news articles of terrorists using explosives or chemical warfare agents (CWAs) to cause harm and disruption to society.33-36 It is unsurprising that the use of explosives is commonplace in both military and civilian environments as they are becoming increasingly more available. Since terrorists can easily produce homemade explosives (HME) to cause disruption and, in areas of military conflict, it is not unusual to see them using HMEs with a military grade explosive. However, the use of CWAs is much more limited. It could be speculated that this is due to the agreement that use of CWAs cause widespread damage and potentially death and that their use is prohibited under the Organisation for the Prohibition of Chemical Weapons (OPCW) act.

Detection and identification of explosives and CWAs is highly important, not just in a military context but also for civilians.

In this chapter, the historical use and properties of explosives (2.1) and CWAs (2.2) will be explored. The chapter will then detail the method development and use of GCxGC-TOF-MS for detection of defence related compounds (2.4).
2.1 Explosives

2.1.1 Explosive History

Explosive use started back in the 15th century and the most common documented use is the use of black powder.37 The use of black powder increased rapidly during industrial mining in the 1800s and since then, high explosives have started to be used for mining as they are easier to predict.37 Explosives have also been commonplace in areas of conflict and in terrorist acts.

Terrorists frequently use improvised explosives devices (IEDs) to cause harm to civilians and military.38 These are often of a simple construction using items that are easily purchased and accessed. However, more recently in areas of military conflict IEDs have begun to use components that are of military origin. The main component of an IED is the explosive, which can be formed from homemade explosives (HMEs) or from military explosive that has either been removed from its shell or stolen.39 Components that form HMEs can be varied depending on what materials can be sourced locally making it very difficult to attribute them back to the source materials. However, the explosive used can be identified if it can be removed from the complex matrix it exists within.

In a civilian context IEDs are typically HMEs and ammonia nitrate fuel mixtures. Several events have taken place across the globe over the last 20 years. This includes organic peroxide attacks in: Finland in 2002, triacetone triperoxide (TATP) in London, Sweden and Denmark.39 It should be noted that there have also been several occurrences of military explosives in IEDs, such as attacks by the IRA and the Lockerbie use of Semtex.

In terms of detection, this means that the components could be anything from acetone or peroxide to swimming pool cleaner and through to military explosives.38 Steps are undertaken to attempt to stop the IED from causing harm in the first instance, which include gathering intelligence and searching at airports and venues.40 Searches involves a number of stages, only one of which we will explore in this report – “trace search”. Trace search involves the use of portable detection equipment including fast GC, Ion Mobility Spectrometry (IMS), Differential Mobility Spectrometry.
(DMS), Raman and IR spectroscopy along with detection dogs.41-44 During a search operation, either the equipment is used to “sniff” areas and/or swabs are collected and taken back to the portable instrument for analysis. If an explosive is detected, a complementary technique will be used to confirm if it is present. However, if in the unfortunate case where there has been no prior knowledge that an attack is going to take place, an IED may function and cause harm.

If an IED functions it is the task, in the UK, for the forensic explosive laboratory (Dstl) to analyse the scene and identify the explosive that was used in the device.45 This is required in order to determine how the device was constructed, i.e. what material was used, how it was made and to search for forensic evidence to link the IED to a suspect for the criminal justice system. In order to search for forensic evidence, the suspected trace explosive must be collected from the items in question. This can be done using swabs, a small vacuum system, solvent extraction or thermal desorption. Once the sample has been collected effective transfer of the explosive from sample medium has to take place, i.e. the sample must be “cleaned up” so that it can be easily analysed using analytical instrumentation. This process currently uses solid phase extraction to remove unwanted particulate.46 However, this process is costly and can cause some mass loss of the analyte of interest.

46 This is explored further later in this report.

\subsection*{2.1.2 Explosive Properties}

Understanding the properties of explosives helps to explain why they range in difficulty to detect. Here we will only explore vapour pressure, as it is the main property that affects detection for GC.

The vapour pressures of explosives is over orders of magnitude, for example highly volatile materials like peroxides to lower/nearly involatile materials such as inorganic salts.47 Different papers supply different vapour pressures for certain explosives thus making it difficult to quote a pressure. The vapour pressure of explosives can vary depending on several properties including composition and temperature of the measurement. In the literature, there are reviews that demonstrate this variability in measurements and results.43,47,48
Direct vapour and particle detection has become the main focus for sampling and analysis, where the use of particle detection is more favourable due to the variable vapour pressures of explosives. Additionally, if a terrorist does not want to be detected, they can contain the explosive within air tight containers making it difficult to detect the vapour.

To give some perspective, trinitrotoluene (TNT) and ammonium nitrate (AN) have relatively low vapour pressures so the detection range for these needs to be around the ppb order of magnitude. In comparison ethylene glycol dinitrate (EDGN), nitroglycerin (NG) and dinitrotoluene (DNT) have a high vapour pressure, so they are easier to detect in the vapour phase. DNT is a common residue in TNT and as it has a higher vapour pressure it can be used as an indicator for further search. Materials such as cyclotrimethylenetrinitramine (RDX) and octogen (HMX) are extremely difficult to detect in the vapour phase due to low evaporation so detection of the particulate is generally favoured.

For vapour detection, pre-concentration of the sample can be used to help achieve better sensitivity. Pre-concentrators work, by drawing in large volumes from the surroundings onto a filter to collect an increased volume of the organic and inorganic sampling material plus the suspected explosive. The filter is then used as the sampling medium and the products are removed via solvent extraction or direct desorption to allow for sampling of the material.
2.2 Chemical Warfare Agents

2.2.1 CWA History

CWAs as we define them today, have been used since WWI where the Germans released chlorine gas in 1915 at Ypres.50 The use of CWAs during WWII and the more limited use in WWII caused an estimated one million casualties from the release of approximately 124,000 tonnes of CWA.51 The research into the production and use of CWAs continued after WWII and it was only in 1997 that the Chemical Weapons Convention was drafted.51-53 197 countries are signatories to the chemical weapons convention that states that stockpile, manufacture or use of chemical weapons is prohibited.54 The only permitted use of CWAs is for defence research. However, three countries are not signatories to the convention: Egypt, North Korea, and South Sudan.55

This has not stopped the use of CWAs over the last few decades and there have been several confirmed and unconfirmed uses of CWAs. For example, in 1991 during the Iran-Iraq war, Iraqi forces released sarin killing hundreds of people and in 1995 a terrorist group called Aum Shinrikyo released sarin in the underground system in Japan, killing seven people and injuring 500.56-58 The most recent examples include; sarin release in 2013 in Syria, where approximately 1,300 people were killed and the use of the Novichok nerve agent in Salisbury in 2018.56-58 These are but a few reported incidences of CWA use. There is still speculated use of CWA in Syria today making it a real threat to UK (and other) forces and Syrian civilians.59

The use of CWA in countries where UK troops are sent means that there is a requirement for portable detection equipment. This allows an early warning device in order to alert military forces to take protective measures, such as donning a respirator. However, there is also a requirement for the UK to act as an accredited laboratory under the OPCW and analyse samples from different countries in order to determine the agent used and the possibility that the sample could be attributed to its source, i.e. who manufactured or supplied the materials.
2.2.2 CWA Properties

CWAs can be classified in a number of different ways based on physical properties or, more commonly, by their medical effect.60-62 The medical effects are listed below with examples of agents:

- **Vesicant (blister agent)** – Sulfur mustard and nitrogen mustard
- **Choking agents** –
- **Blood agents** – Hydrogen cyanide, phosgene
- **Nerve agents** – VX, VM and Sarin (GB)
- **Irritants** – 2-chlorobenzylidene malononitrile (CS) and dibenzoxazepine (CR) gas
- **Incapacitants**

However, it is the physical and chemical properties that will determine when and how an agent will be used and this can help to inform how it can be detected. In general CWAs are liquid and, in order for them to be effective, they must be disseminated effectively.60,61 The classifications above can be further broken down into persistent and non-persistent agents.

Non-persistent agents include sarin and some other G-series agents, which have a moderate to high vapour pressure so will vaporise easily on dissemination.60 The agents can then form an airborne hazard (aerosol and vapour) which can deposit onto surfaces or stay in the atmosphere. If the environment is very cold, a different hazard state will be present.

Persistent agents have a low vapour pressure such as sulfur mustard and the V agents (VX and VM). These materials can be aerosolised for dispersion, otherwise they will be present in droplet form. These agents can be thickened with a polymer to help with dispersion and this can complicate detection.63

Solid agents do exist and in general will be dispersed as a fine power causing an aerosol and fine particulate hazard.63
In all cases the agents will cause disruption, harm to life and potentially death. Therefore, there is a need to be able to detect them before, during and after a possible attack. A forensic investigation would collect soil samples and swab surfaces such as clothing and skin. This presents a complicated matrix that must be separated from the analyte of interest to allow for detection and identification.

For both explosives and CWAs, detection in real world environments can be challenging for portable equipment and high-grade analytical equipment. The analytes of interest can be present in trace amounts in a large complex environmental matrix or they can saturate an area. The issue is that real world environments are a naturally complex matrix – for example, ambient air, water, and soil contain thousands of chemicals that can suppress or interfere with the detection of an explosive or CWA. There are methods to allow detection in these instances, but they can be time consuming, costly and can have poor recovery rates. This research investigates the use of GCxGC to detect explosives and CWAs in complex matrices for defence investigations.

2.2.3 Detection

The most popular method for detecting CWAs since the 1960s has been GC. However, there is no universal method to detect all CWAs and different techniques and methods need to be used to allow for detection and identification. Often, as described above, CWAs are found in a complex environmental mixture and expensive, time-consuming techniques are used to separate them. The University of Nebraska explored the use of GCxGC to separate a mixture of diesel and gasoline from a highly concentrated standard of sarin and soman. The separation was successful but the chromatography is relatively ill defined and the separation needs to be improved.

Separately to this Gravett et al. used GCxGC to separate VX from soil following an accelerant-based fire and liquid decontamination. The authors claimed to be able to detect a break down product of VX but this was not a defined peak and wrapped around the chromatogram in the second dimension.
There has been very limited research in the use of GCxGC for forensic defence applications. This work details the use of GCxGC to detect defence related chemicals starting with a cryogenic system and moving towards a portable valve system. The materials have been detected in matrices of relevance to defence and this is the first study to observe explosives in matrices and the first full study to represent the use of GCxGC in CWA detection.72
2.3 Experimental

2.3.1 Explosives

2.3.1.1 Sample Preparation

A 1000 ppm 8330 explosive standard (Restek) was diluted in ethyl acetate (Sigma Aldrich) to achieve a 10 ppm standard and a 1 ppm standard. Explosives present in 8330 standard can be seen in Table 1.

Table 1 8330 standard components

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-amino-2,6-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>2-amino-4,6-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>1,3,5-trinitrobenzene</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Chemical Structure</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>TNT</td>
<td></td>
</tr>
<tr>
<td>Tetryl</td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td></td>
</tr>
<tr>
<td>RDX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HMX</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>2-nitrotoluene</td>
<td></td>
</tr>
<tr>
<td>3-nitrotoluene</td>
<td></td>
</tr>
<tr>
<td>4-nitrotoluene</td>
<td></td>
</tr>
<tr>
<td>1,3-dinitrobenzene</td>
<td></td>
</tr>
</tbody>
</table>
2,6-dinitrotoluene

2,4-dinitrotoluene

Diesel was provided by the University of York that had been purchased at a local garage and no sample preparation was undertaken. The 10 ppm standard was spiked into the solution to give a resulting 8330 standard concentration of 1 ppm.

Perfume – CK one - was purchased from a department store and was diluted by half with ethyl acetate. The 10 ppm standard was spiked into the solution to give a resulting 8330 standard concentration of 1 ppm.

An environmental organic aerosol sample in ethyl acetate, taken from North Kensington, London, was provided by the University of York. The 10 ppm standard was spiked into the solution to give a resulting 8330 standard concentration of 1 ppm.

2.3.1.2 GCxGC-TOF Parameters

GCxGC-TOF analysis was performed using a 6890B GC from Agilent Technologies fitted with a Leco thermal modulator system interfaced to an Agilent TOF-MS. The primary GC column was a BX5 (30 m x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (4 m x 0.2 mm x 0.2 µm). The primary oven was programmed from 40 °C (2 min) at 7 °C/min to 270 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 7 °C/min to 300 °C (5 min). A dual jet liquid nitrogen modulation
system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1 mL/min. 1 µL of sample was injected using a Gerstal auto-sampler in splitless mode.
2.3.2 Chemical Warfare Agents

2.3.2.1 Sample Preparation

Two stock standards were produced for another study at Dstl Porton Down, from weapons grade (98 + %) CWAs and a small amount of the highly diluted material was used in this study. Standard 1 is a mixture of GA, GB, GD, GF, VX, and VM in isopropyl alcohol (IPA) (Optima Fisher) diluted to 10 µg/mL through to 0.2 µg/mL at even intervals. Standard 2 is a mixture of H, HN3 and T diluted in hexane (high purity Sigma Aldrich) to 10 µg/mL through to 0.2 µg/mL at even intervals.
2.3.2.2 Matrices

Replicate matrices to those found in operational samples have been produced. In some cases, the material has been acquired from military sources such as oil for vehicles or weapons, in other cases surfaces have been swabbed to replicate the samples that may return from operational environments. The swabbing procedure and list of matrices is detailed below.

Swabbing Procedure:

Use of lint free cotton swab soaked in IPA (Optima). The swab is used on no more than 10 surfaces and it is then extracted in 10 mL of IPA using a 30 minute extraction with agitation. The solvent is then vialed and the container and swab are disposed of after set a period of time.

Matrices:

- Hotel room
- Porton Down range aerosol sample
- Sahara Dust
- Diesel
- Aviation fuel (AV)
- Light weight oil (for weapon use) (LWO)
- Clothing that had been worn
2.3.2.3 GCxGC-TOFMS Method

GCxGC-TOFMS analysis was performed using a 7890A GC from Agilent Technologies fitted with a Zoex – Z1 thermal modulator system interfaced to a Markes International Time of Flight Mass Spectrometer. The primary GC column was a HP-5-MS (30 m x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (2 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 60 °C (2 min) at 4 °C/min to 260 °C (2 min). The secondary oven was programmed from 80 °C (2 min) at 4 °C/min to 280 °C (5 min). A dual jet liquid nitrogen modulation system was used with a 3 second modulation period. Helium carrier gas was used at a flow rate of 1.4 mL/min. 1 µL of sample was injected using an Agilent PAL auto-sampler in splitless mode held at 280 °C.

When the matrices were injected, the inlet was used in split mode at 100:1 otherwise all parameters remained the same.

Different instrumentation has been used for the explosives and CWA analysis due to health and safety. CWA analysis can only be conducted at Porton Down.

2.3.2.4 GCxGC-FID Method

GCxGC-FID analysis was performed using a 7890A GC from Agilent Technologies fitted with a Zoex – Z1 thermal modulator system interfaced to a FID running at 200 Hz sampling collection. The primary GC column was a HP-5-MS (30 m x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (2 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 50 °C (2 min) at 4 °C/min to 260 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 7 °C/min to 280 °C (5 min). A dual jet liquid nitrogen modulation system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1.4 mL/min. 1 µL of sample was injected using an Agilent PAL auto-sampler in splitless mode.

When the matrices were injected, the inlet was used in split mode at 100:1 otherwise all parameters remained the same.
2.4 Results and Discussion

2.4.1 Explosives

The contour plot from the GCxGC-TOFMS analysis of the 10 ppm standard of the 8330 standard explosive mix diluted in ethyl acetate is shown in Figure 14.

![Contour plot of GCxGC-TOFMS analysis](image)

Figure 14 shows the separation of a standard explosive standard. The contour plot shows the GCxGC separation from the two columns used, with the non-polar column on the horizontal axis shows the elution order based on the boiling points. The retention on the vertical axis shows the elution based on the polarity. By using these two properties, volatility and polarity, to separate the standard, the isomers of DNT and nitrotoluene are separated out from one another.

RDX and HMX are relatively hard to detect using GC-MS due to their thermal instability and in this instance, HMX cannot be found but RDX has been tentatively identified using the mass spectra. Further method development would be required to enable us to detect these compounds; this could include decreasing column lengths, colder transfer lines and a higher column flow.
Limits of detection were explored using a 0.05 μg/mL standard and are listed in Table 2.*

Table 2 Limits of detection on column based on 0.05 μg/mL 8330 standard for explosives. n= 1, S/N of 3:1

<table>
<thead>
<tr>
<th>Explosive</th>
<th>LoD based on S/N of 3:1 (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-amino-2,6-dinitrotoluene</td>
<td>0.083</td>
</tr>
<tr>
<td>2-amino-4,6-dinitrotoluene</td>
<td>0.073</td>
</tr>
<tr>
<td>1,3,5-trinitrobenzene</td>
<td>0.012</td>
</tr>
<tr>
<td>TNT</td>
<td>0.021</td>
</tr>
<tr>
<td>Tetryl</td>
<td>0.47</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>0.24</td>
</tr>
<tr>
<td>RDX</td>
<td>n/a</td>
</tr>
<tr>
<td>HMX</td>
<td>n/a</td>
</tr>
<tr>
<td>2-nitrotoluene</td>
<td>0.0059</td>
</tr>
<tr>
<td>3-nitrotoluene</td>
<td>0.0081</td>
</tr>
<tr>
<td>4-nitrotoluene</td>
<td>0.006</td>
</tr>
<tr>
<td>1,3-dinitrobenzene</td>
<td>0.015</td>
</tr>
<tr>
<td>2,6-dinitrotoluene</td>
<td>n/a</td>
</tr>
<tr>
<td>2,4-dinitrotoluene</td>
<td>0.28</td>
</tr>
</tbody>
</table>

*LODs were calculated at 3:1 S/N linearly extrapolated from a 0.05 μg/mL standard.
2.4.2 Complex Mixture Analysis

When a person handles an explosive, material is transferred from them to the explosive (and vice versa), such as DNA and fingerprints. If the person, then touches other surfaces there is transfer of the explosive material to the surfaces. Transfer from the person to other objects can occur several times before there are undetectable amounts being transferred. Therefore, if an individual has been involved in the use or manufacturing of an explosive, they could have trace amounts of material present on their belongings or on themselves. This trace material is detectable, but it could be hidden in a complex matrix especially if they are trying to hide the material in the first place.

Similarly, if an explosion has taken place, trace levels of the explosive could be present amongst the brick dust, body fluids, and debris. Essentially forensic samples from the field are highly unpredictable.

A small series of experiments were devised to observe if GCxGC is capable of separating out the explosives present in the 8330 standard from some common interferents, Figures 12-14.

Diesel spiked with 1ppm 8330 standard EIC m/z = 46

Figure 15 Diesel spiked with 1 ppm of the 8330 explosive standard. The left image shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the presence of nitro groups in the sample. The white circles indicate the presence of the explosives defined in Figure 11. The x-axis shows the primary retention time and the y-axis shows the secondary retention time.

Figure 15 shows a common chromatogram of diesel with the separation of the alkanes, mono-aromatics up to the heavier tri-aromatics. The aim of this analysis was to separate the explosives from the diesel and it is clear from Figure 15 that they occupy a different separation space therefore
they are easily detectable. The SIM ion of 46, a common ion for NO\textsubscript{2} containing species, was chosen to quickly view that explosives were being detected in a different separation space.

Perfume spiked with 1ppm 8330 standard
EIC m/z = 46

Figure 16 Perfume spiked with 1ppm of the 8330 explosive standard. The left image shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the presence of nitro groups in the sample. The circled compounds are explosives of interest. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 16 is a good example of a cosmetic that may be present in an airport scenario or if a person is swabbed cosmetic material may also be present on the swab. A perfume contains volatile organic compounds (VOCs) of functionalised terpenoid compounds and muskes, which could cause false alarms in portable detection. Other functionalised fragrance compounds add to the complexity of the sample. In Figure 16 it is apparent that in most instances the explosives are occupying a different separation space to that of the VOCs.

London aerosol sample spiked with 1ppm 8330
EIC m/z = 46

Figure 17 London aerosol sample spiked with 1 ppm of the 8330 explosive standard. The left image shows the total ion chromatogram (TIC) and the image on the right shows the data with m/z of 46 extracted to highlight the presence of nitro groups in the sample. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.
Secondary organic aerosols are formed through complex reactions of anthropogenic and biogenic VOCs with light and atmospheric oxidants which include radicals of OH and Cl, and ozone. These reactions can vary at different temperatures and humidity. These particulates are typically less than 2.5 µm in size and can have adverse effects on human health owing to their ability to penetrate deep into the lung alveoli. It is possible due to the low volatility of some explosives that they could exist in an aerosolised form post explosion; therefore it could become important to detect them in a complex matrix such as an aerosol sample. If released into the environment in an aerosolised form they could form complex particulates and/or aerosol with atmospheric oxidants present making them difficult to detect without some form of extraction. In Figure 17 it is clear that the explosives occupy a different separation space to that of the aerosol sample and that they are easy to detect at the low levels required for explosive exploitation.

It should be noted that there can be a “natural” background of explosives at some sites, therefore in forensic analysis of a scene it might be, for example, that above 5 ng detected is significant. The current UKAS accredited method for cleaning matrices that contains explosives is solid phase extraction (SPE). With some explosive materials, the stationary phase used in SPE can chemically interact with the explosive and decrease the amount of evidential material that is left in the sample. This is known and documented so that it can be taken into account. The method described above using GCxGC-TOFMS allows for detection directly from the matrix with limited sample preparation thus it could improve evidence-based cases for detection of explosives if it is further validated and UKAS approved.
2.4.3 Chemical Warfare Agent Analysis

2.4.3.1 Limit of detection and Limit of Quantification using TOFMS

Standards were made as detailed in section 2.3.2 and were analysed using the method detailed in section 2.3.2.3. Table 3 details the limits of detection and quantification using the student T test. For each agent a 6-point calibration was undertaken and the data for this can be found in Annex 1.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>RT$_1$(min), RT$_2$(sec)</th>
<th>LOD (µg/mL)</th>
<th>LOQ (µg/mL)</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>7.65, 2.5</td>
<td>0.026</td>
<td>0.085</td>
<td>0.9884</td>
</tr>
<tr>
<td>GD1</td>
<td>13.80, 0.5</td>
<td>0.012</td>
<td>0.040</td>
<td>0.9459</td>
</tr>
<tr>
<td>GD2</td>
<td>13.95, 1.0</td>
<td>0.039</td>
<td>0.131</td>
<td>0.9698</td>
</tr>
<tr>
<td>GA</td>
<td>16.75, 2.02</td>
<td>0.033</td>
<td>0.109</td>
<td>0.8412</td>
</tr>
<tr>
<td>GF</td>
<td>19.40, 2.5</td>
<td>0.005</td>
<td>0.016</td>
<td>0.9966</td>
</tr>
<tr>
<td>VM</td>
<td>31.45, 0.0</td>
<td>0.028</td>
<td>0.093</td>
<td>0.9786</td>
</tr>
<tr>
<td>VX</td>
<td>34.65, 0.0</td>
<td>0.010</td>
<td>0.034</td>
<td>0.9704</td>
</tr>
<tr>
<td>H</td>
<td>18.40, 0.5</td>
<td>0.076</td>
<td>0.254</td>
<td>0.9979</td>
</tr>
<tr>
<td>HN3</td>
<td>26.00, 0.5</td>
<td>0.045</td>
<td>0.150</td>
<td>0.9911</td>
</tr>
<tr>
<td>T</td>
<td>41.60, 0.5</td>
<td>0.146</td>
<td>0.488</td>
<td>0.9965</td>
</tr>
</tbody>
</table>

As can be observed in Table 3 the limits of detection and quantification are in the sub µg/mL range, which is useful if low levels of agent detection are required, or if the main agent has started to degrade and low levels are left in the sample.

One of the aims of this research was to determine if, with little clean up, can the instrument detect CWAs in complex matrices. In order to test this, matrices of common interferents and replica
samples that might return from operation were made (section 2.3.2.2) and spiked with chemical agents. The following details the results from the analysis.

2.4.3.2 CWA Detection in Complex Matrices

When a chemical agent attack has happened, depending on the agent and the method of attack, the agent will still be present within that environment. It is therefore important that samples are collected to determine what agent was used and if any evidence of whom co-ordinated the attack can be gathered.

A series of experiments were undertaken to determine if GCxGC-TOFMS could analyse samples from replicate environments with minimal to no sample cleaning. Table 4 details the results of what agents could be detected in the matrices tested. The chromatograms for the matrices can be found in Annex 1.

<table>
<thead>
<tr>
<th>Agent</th>
<th>GB</th>
<th>GD1</th>
<th>GD2</th>
<th>GA</th>
<th>GF</th>
<th>VM</th>
<th>VX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol sample 3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Clothing</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Inside Oven</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Hotel</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gasoline</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>LWO</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>AV Fuel</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Diesel</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* using EIC

The results in Table 4 indicate that almost every agent tested could be detected in a number of complex matrices without any sample preparation. Each of the matrices listed in the table represents a possible operational environment. For example, the AV fuel (aviation fuel) is from military samples at Porton Down. AV fuel contains a wide array of compounds from simple alkanes.
through to heavier aromatic species. These hydrocarbon species occupy the same separation space in one dimensional gas chromatography making it hard to deconvolute the resulting mass spectrums to identify the CWA present. Often clean-up of the sample is undertaken but if an unknown CWA is present it could easily be removed from the sample if the incorrect technique is used. This then requires a costly process using different clean-up methods and different analytical techniques to remove the matrix from the sample. In this research it has been demonstrated that the agent can easily be identified from the matrix, thus allowing a quick screening tool and with further development it should allow for an evidential tool.

Figure 18 provides an example chromatogram for reference. This research provides evidence that GCxGC-TOFMS can be used not only to detect low quantities of agent but also that agents can be detected in complex matrices with limited issues. The methods developed here can now be taken further and used to test real operational samples for orthogonal identification or as a screening tool for unknown samples.

![Chromatogram](image)

Figure 18 CWAs detected using GCxGC-TOFMS at 1 µg/mL. The agents are labelled on the spectrum and demonstrate that each agent occupies a different separation space in both the primary and secondary dimension. The GD peaks are also separated.

In Figure 18 there is 1D separation of all CWAs and some 2D separation can be observed, such as the two peaks for GD appearing at 2 seconds and the peak for GB at 1 second on the secondary axis.

There is a continuous column bleed across the chromatogram, which can make detection of any
compound whose retention time appears in the area difficult. However, as this technique is time of flight mass spectrometry this can be easily corrected for using extracted ion chromatograms.

2.4.3.3 Conclusions of TOFMS Data

GCxGC-TOFMS has proven to be a highly effective tool for the analysis of both explosives and CWAs in complex matrices. The methods developed here can be further validated with real operational samples providing not only a screening tool but also orthogonal identification, which is often required.

The main issue with the instrumentation is the size. If the instrument could be made portable several more defence applications could be explored. In order to start exploring the possibility of a smaller system, the same experiments from the sections above were undertaken using a FID instead of a TOF to determine what differences in analysis would arise.

2.4.3.4 Limit of detection and Limit of Quantification using FID

As a cryogenic GCxGC-TOFMS performs excellently at detecting both explosives and CWAs in matrices of interest, it is of military interest to determine if a portable system could be made and used to detect these materials out in the field. This could provide evidential information in the field or it could act as a warning system that materials are present at a site or on a person. Further to this, the technique is classed as an orthogonal technique of high dimensionality, so it could provide information that could be of importance to defence intelligence.

A further study has taken place replacing the TOF-MS with a FID as it is a more portable detector and this provides the evidence required to move forwards to produce a fully portable system. Although it has no ability to identify, each compound has been run individually to build a retention time library for further analysis. Limit of detection (LOD) and limit of quantification (LOQ) have been studied for CWAs and are listed in Table 5. The LOD has been calculated using $n=4$ (nerve agent family) and $n=5$ (mustard family) to provide a T value multiplied by the standard deviation at the 97.5 % confidence
interval. The LOQ has been calculated using 10 multiplied by the standard deviation. The values listed are expressed in µg/mL and all calibration data can be observed in Annex 1.

Table 5 Limit of Detection and Limit of Quantification in µg/mL using student T value (n=4 for G & V and n=5 for mustard family)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>RT1[min], RT2[sec]</th>
<th>LOD (µg/mL)</th>
<th>LOQ (µg/mL)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>9.91, 1.28</td>
<td>0.59</td>
<td>0.60</td>
<td>0.9957</td>
</tr>
<tr>
<td>GD1</td>
<td>17.08, 2.45</td>
<td>0.59</td>
<td>0.63</td>
<td>0.9952</td>
</tr>
<tr>
<td>GD2</td>
<td>17.17, 2.52</td>
<td>0.47</td>
<td>1.31</td>
<td>0.9987</td>
</tr>
<tr>
<td>GA</td>
<td>20.25, 3.75</td>
<td>0.41</td>
<td>0.56</td>
<td>0.9895</td>
</tr>
<tr>
<td>GF</td>
<td>23.00, 3.72</td>
<td>0.40</td>
<td>0.63</td>
<td>0.9783</td>
</tr>
<tr>
<td>VM</td>
<td>32.25, 4.08</td>
<td>0.40</td>
<td>0.71</td>
<td>0.9799</td>
</tr>
<tr>
<td>VX</td>
<td>38.50, 3.94</td>
<td>0.33</td>
<td>0.68</td>
<td>0.9540</td>
</tr>
<tr>
<td>H</td>
<td>21.90, 3.97</td>
<td>0.70</td>
<td>3.13</td>
<td>0.9904</td>
</tr>
<tr>
<td>HN3</td>
<td>29.75, 4.02</td>
<td>0.18</td>
<td>1.50</td>
<td>0.9929</td>
</tr>
<tr>
<td>T</td>
<td>45.50, 1.04</td>
<td>0.75</td>
<td>0.87</td>
<td>0.9816</td>
</tr>
</tbody>
</table>

The LOD and LOQ in Table 5 are higher than that of the TOF, which is to be expected as FID is a less sensitive technique, but it has a larger dynamic range. This is beneficial as occasionally there is no option to pre-screen an unknown sample and therefore a detector that can take a larger concentration is of benefit and it is easier to clean from contamination. The other benefit of a FID, as mentioned before is that is it moving towards a portable system. However, the obvious disadvantage here is the loss of sensitivity.
2.4.3.5 CWA Matrix Analysis

The possible uses of GCxGC in defence include providing evidential value for samples of significant interest for defence and that further information can be gathered that might provide intelligence.

In this study, the use of GCxGC in the field for defence applications is tested. The possibility of being able to screen in the field not only with standard portable detectors but also GCxGC, will act to separate the sample from the matrix, increases the defence analysis capability in the field significantly.

Matrices were replicated to those that may be found during a military operation such as; a hotel room, oil spills, clothing from a person or aerosol samples. These were then spiked with CWA and the results for detection are detailed in Table 6.

Table 6 Agents detected in replicate matrices of operational environments. Green shows that the material is detected and red shows that it was not detected.

<table>
<thead>
<tr>
<th>Agent</th>
<th>GB</th>
<th>GD</th>
<th>GD</th>
<th>GA</th>
<th>H</th>
<th>GF</th>
<th>VM</th>
<th>VX</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gasoline</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Clothing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oven</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aviation fuel</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aerosol sample</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hotel 2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Light Weight Oil</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

As can be observed in Table 6 almost all agents can be detected in each matrix when using FID. These peaks have been found using retention time and their visibility in the chromatogram. A few example chromatograms are shown in Figure 19 and Figure 20, all other figures can be found in Annex IV.

The possible reasons for why VX and VM cannot be easily detected in diesel or AV gas are that they contain heavy hydrocarbon fractions that co-elute with the agents of interest. The agents nor the
hydrocarbons could be easily moved away from one another, as there is no separation space left in the chromatogram. Another method or a non-universal detector would be required for detection of these compounds in this instance.

Figure 19 Aviation Fuel spiked with CWA. The spectrum is highly complex and the aviation fuel has aromatic peaks as well as hydrocarbons present. The agents can be detected either as they occupy a different separation space or by zooming into specific regions and relying on the two retention times for a location, like a map. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

In Figure 19 it can be observed that the aviation fuel contains several different types of hydrocarbon species. Starting with the alkanes towards the bottom of the chromatogram and as the time increases in the second dimension, the size of the hydrocarbon species to aromatic compounds also increases. This chromatogram can be considered as a fingerprint for this type of aviation fuel as it will be different depending on how the fuel has been treated and its age. This can also be used as evidential value for an investigation.
Figure 20 A swab from clothing spiked with CWA. The CWAs detected are highlighted on the chromatogram in white circles and labelled. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 20 depicts a chromatogram from a swab that has been used to remove material from clothing. It is much less complicated than the chromatogram observed in Figure 19 but there is some material present that could act to mask or suppress a material of interest. In this instance all of the agents were easily detected.

Figure 19 and Figure 20 provide examples of the detection space in the matrices. It is apparent that almost every agent of interest can be detected in the matrices. The clear disadvantage of moving to FID from a TOF is the loss in sensitivity as detailed in Table 5. However, this disadvantage is a small price to pay if portability is desired. The following chapters explore the development of a portable system for defence applications.
Chapter 3

Valve Modulation Comprehensive Gas Chromatography Flame Ionisation Detection for the Analysis of Threat Materials
3 Valve Modulation Comprehensive Gas Chromatography Flame Ionisation Detection for the Analysis of Threat Materials

3.1.1 Portable Detection Equipment

Portable detection equipment is used by military and civilians to detect the presence of explosives or CWAs. The threats related to the use of explosives and CWAs have been increasing recently, thus giving rise to further research and development within the field of portable equipment. The current in service detection equipment meets the criteria set and uses a number of different detectors to identify compounds of interest. The requirements are of a high standard and change continuously due to changes in threat and the need to detect at lower concentrations, thus warranting the need for further research. Requirements include; that the detector must analyse the sample quickly, the equipment should be light weight, have low power requirements, have a user friendly interface, have low limits of detection (LOD), utilise a simple method for sample collection and analysis (for example a swab) and detecting the compounds of interest with minimal interference from other compounds present in the environment.

3.1.1.1 Common Detectors

Raman and infrared (IR) are common types of detectors that would be seen in both a military and civilian detection suite. Both Raman and IR are a form of bulk functional group detection, meaning that they search for a specific set of functional groups that would relate to the compound of interest. They allow for fast detection and in some case can provide a form of standoff detection (at a distance) or through barrier detection (through materials e.g. plastic bottles or envelopes) which can be useful if minimal sample contact is desired. Minimal sample contact is highly important for CWA analysis due to their high toxicity. However, these techniques have their disadvantages, as there are some compounds that they cannot analyse because the functional groups are not IR and/or Raman active and in terms of standoff detection, interaction with the open air can cause
interference. There are other considerations when detecting explosives, as attenuated total reflection IR would not be suitable for shock sensitive explosives due to the need for sample contact.

Ion mobility spectrometry (IMS) is the most popular portable detector as it is a small, cost effective, robust and a low powered instrument. It works by forming reactant ions in air, typically using Ni or corona discharge, the ions then meet the vapour sample presented and form ion clusters. These clusters pass through into the IMS drift cell and each cluster travels through the cell at different speeds depending on their size and shape. Essentially, the smaller and more compact the cluster, the faster it will travel down the drift cell and the larger the compound the longer it will take. This has some obvious disadvantages: several other clusters could have a similar size and shape to that of the compound of interest and, if very small drift cells are used, there is not enough space for the sample to fully separate. When using a radioactive source, there are both environmental and safety considerations, which has shifted focus onto using the corona discharge approach.

However, corona discharge has its own disadvantages as its process of ionisation can cause variability in the reactant ions produced as well as degradation of those ions. Yet due to its popularity and advantages, there is further research in the area developing systems for portable use. These range from using capillary columns or sorbent polymers for pre-separation to changing or adding electronics and dopants to increase ion production or ion focusing.

GC-MS and GC-IMS are also used for field measurements of explosives and CWAs. Normally the size of a mass spectrometer would mean that it is not considered as a field portable piece of equipment but there are some examples where development has been undertaken to vastly reduce the size of the MS. A key example would be the Guardion, which uses a low thermal mass column connected to a miniaturized toroidal ion trap. GC can also be coupled to IMS for detection such as the Thermo EGIS defender, which is utilised in military and civilian defence globally. This provides very fast GC separation which acts as a pre-separation step before the IMS cell allowing for ng range detection in a matter of seconds.
Other techniques are also applicable but are not mentioned here for brevity. In detection it is common that a combination of these techniques are used to provide orthogonal detection and give increased certainty to the users. However, there is always a drive to improve detection capability by making systems, smaller, lighter, faster and more sensitive.

3.1.2 Valve Modulated GCxGC

The cryogenically modulated GCxGC is a highly sensitive piece of equipment and the addition of a TOF allows for EIC, which removes most of the peaks that do not contain an ion of interest. The problem with this is that a cryogenic GCxGC-TOFMS cannot be taken out into the field and used in an operational scenario. If samples are being sent back to the lab, the instrument would enhance capability as the compound of interest could be removed from a large matrix with minimal manipulation of the sample.

However, in the field a portable solution is required. The cryogenic modulation in Figure 21 demonstrates that, in most instances, the compounds of interest occupy a different separation space to the matrix.

![Figure 21 Diesel with 1 ppm of 8330 standard on a cryogenic GCxGC-TOF. The explosives are circled and clearly occupy a different separation space to that of the diesel background.](image)
If this could be translated over to the valve technology (discussed in 1.3.6.3), there is the possibility of undertaking this analysis in the field. This could be integrated into current portable equipment to decrease false alarm rates and allow more challenging areas to be sampled, thus increasing user confidence in the equipment.

A valve modulated GCxGC system from the University of York was established and a FID was used for the detector as it is a more “portable” detector than a mass spectrometer but can also handle the high flow rates required in the second dimension. To the author’s knowledge this is the first time a diaphragm valve has been used to analyse both explosives and chemical warfare agents.
3.2 Experimental

3.2.1 Valve Modulated GCxGC System

An Agilent 6890N GC with a split splitless inlet and a FID was modified to incorporate a 6 port diaphragm valve (AFP valves, Canada) to allow for GCxGC. Actuation of the valve was controlled by an Arduino board programmed to switch a solenoid valve connected to a compressed air line. The valve was actuated at the start of the run and stopped at the end of the run. The valve port setup is shown in Figure 22. Stainless steel tubing (Restek) was used to connect the valve ports to low dead volume unions (Valco Silco Steel), which were then connected to the GC columns.

Visualisation of the 2D data was performed using GC image 2.7™ or R Studio.

Figure 22 Diaphragm valve schematic to demonstrate port arrangement
3.2.2 Test Mixtures, Calibration Standards and Matrices

3.2.2.1 Test Mixtures
A range of test mixtures were used to develop methods for operational samples.

An alkane and aromatic standard - both standards were purchased from Sigma Aldrich at 1 mg/mL and used to obtain a standard of 50 µg/mL in dichloromethane (DCM).

Diesel – diesel purchased from military stocks (unknown origin).

3.2.2.2 Calibration Standards
All CWA work was carried out at Porton Down, Salisbury Dstl at highly dilute concentrations.

Chemical Warfare Agents (CWA) – CWA standards were made from stocks that had been distilled to a purity of 90+ % (checked by NMR). The agents were then diluted in DCM to 1 mg/mL and further diluted for use in the calibration standards. Standards of 50 µg/mL to 0.2 µg/mL were made up in DCM.

Explosive standards – an 8330 B standard from Restek was purchased and diluted accordingly in acetonitrile to produce standards of 50 µg/mL to 0.5 µg/mL.

Drug standard – a drug standard was purchased from Restek and injected directly into the GC.

3.2.3 Matrices
Matrices of relevance to military operations and matrices of relevance to post-event sampling were replicated. The samples can be split into three sections: dirt, fats and oils, and others.

3.2.3.1 Dirt
1. Swab of a kitchen floor
2. Aerosol sample taken in London from the University of York
3. Aerosol sample from Porton Down range x2
4. Swabs of hotels relevant to search operations x2
5. Sahara Desert aerosol sample

3.2.3.2 Fats and Oils

1. Diesel
2. Light weight weapons oil
3. Gasoline
4. Aviation fuel
5. OX-24
6. OM-33
7. OMD-90
8. Swab of the inside of an oven
9. Vacuum pump oil

3.2.3.3 Others

1. One swab was used to swab a pair of shoes (inside and outside), neck/underarm area of a T-shirt, and the waistband of a pair of jeans

In each case the samples were analysed on their own and then spiked with a known amount of CWA or explosive to determine if detection could be achieved.
3.2.4 Method Development

Several different columns, modulation periods and oven ramps were tested to develop the final method. Each method was assessed based on the separation between two hydrocarbons. Table 7 details methods and columns that were tested.

Table 7 Method development table

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Modulation</th>
<th>Pressure</th>
<th>Oven</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m VF-WAX</td>
<td>50 °C (2 min) 8°/min to 250 °C (8 min)</td>
<td>2500 ms 400 ms injection</td>
<td>1 = 80 psi 2 = 40 psi</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5 m VF-WAX</td>
<td>50 °C (2 min) 10°/min to 250 °C (13 min)</td>
<td>3000 ms 300 ms injection</td>
<td>1 = 80 psi 2 = 40 psi</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>20 m Rx-5Sil-MS 0.15 mm 2.0 µm</td>
<td>50 °C (2 min) 5°/min to 250 °C (5 min)</td>
<td>3000 ms 300 ms injection</td>
<td>1 = 80 psi 2 = 40 psi</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>3 m VF-WAX</td>
<td>50 °C (2 min) 10°/min to 150 °C (5 min) 10°/min to 250 °C (8 min)</td>
<td>1800 ms 300 ms injection</td>
<td>1 = 80 psi 2 = 40 psi</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2 m Rtx-50</td>
<td>50 °C (2 min) 10°/min to 220 °C (10 min) 7°/min to 250 °C (3 min)</td>
<td>4700 ms 300 ms injection</td>
<td>1 = 75 psi 2 = 25 psi</td>
<td>22/23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = 60 psi 2 = 25 psi</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
3.2.5 GCxGC-FID Method for Analysis of CWA

GCxGC-FID analysis was performed using a 6890 GC from Agilent Technologies fitted with an AFP modulator valve interfaced to a FID. The primary GC column was a RTX-5Sil-MS (20 m x 0.15 mm x 2.0 µm). The secondary GC column was a DB-Wax-MS (8 m x 0.25 mm x 0.25 µm). The primary oven was programmed from 50 °C (2 min) at 8 °C/min to 250 °C (8 min). The modulation period was 1800 ms with a 300 ms injection period. Helium carrier gas was used at a pressure of 80 psi in the primary and 40 psi in the secondary. 1 µL of sample was injected using an Agilent autosampler in splitless mode with the inlet held at 280 °C.

3.2.6 GCxGC-FID Method for Analysis of Explosives

GCxGC-FID analysis was performed using a 6890 GC from Agilent Technologies fitted with an AFP modulator valve interfaced to a FID. The primary GC column was a RTX-5Sil-MS (20 m x 0.15 mm x 2.0 µm). The secondary GC column was a DB-Wax-MS (8 m x 0.25 mm x 0.25 µm). The primary oven was programmed from 50 °C (2 min) at 8 °C/min to 250 °C (8 min). The modulation period was 1800 ms with a 300 ms injection period. Helium carrier gas was used at a pressure of 80 psi in the primary and 40 psi in the secondary. 1 µL of sample was injected using an Agilent autosampler in splitless mode with the inlet held at 175 °C.

3.2.7 GCxGC-FID Method with Secondary Heater

GCxGC-FID analysis was performed using a 6890 GC from Agilent Technologies fitted with an AFP modulator valve interfaced to a FID. The primary GC column was a RTX-5Sil-MS (20 m x 0.15 mm x 2.0 µm). The secondary GC column was a DB-Wax-MS (8 m x 0.25 mm x 0.25 µm). The primary oven was programmed from 50 °C (2 min) at 10 °C/min to 200 °C (3 min). The secondary oven was programmed from 80 °C (2 min) at 10 °C/min to 230 °C (3 min). The modulation period was 1800 ms with a 300 ms injection period. Helium carrier gas was used at a pressure of 80 psi in the primary and 40 psi in the secondary. 1 µL of sample was injected using an Agilent autosampler in splitless mode with the inlet held at 175 °C. If split was required, the split flow was set at 80:1.
3.3 Results and Discussion

3.3.1 Chemical Warfare Agents

3.3.1.1 CWA Stability

In order to determine the performance and stability of the valve for modulation a study took place using the same samples analysed over the course of a month. Samples of six different CWA at 100 ppm were injected five times and this was repeated every week for a month to establish the stability of the system. The CWAs used can be seen in Table 8.

Table 8 Chemical warfare agents used to determine stability of the valve system

<table>
<thead>
<tr>
<th>Number</th>
<th>CWA</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GB</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GD</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GF</td>
<td></td>
</tr>
</tbody>
</table>
Table 9 Averages of the volumes detected for each agent and the total average over the 3 weeks.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Average</th>
<th>Stdev</th>
<th>% relative</th>
<th>Average</th>
<th>Stdev</th>
<th>% relative</th>
<th>Average</th>
<th>Stdev</th>
<th>% relative</th>
<th>Average</th>
<th>Stdev</th>
<th>% relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>250263.82</td>
<td>624192.60</td>
<td>24.94</td>
<td>1051374.45</td>
<td>125002.32</td>
<td>11.89</td>
<td>1127967.28</td>
<td>142080.31</td>
<td>12.60</td>
<td>1560660.12</td>
<td>816675.72</td>
<td>52.33</td>
</tr>
<tr>
<td>GB</td>
<td>201070.86</td>
<td>34845.41</td>
<td>1.66</td>
<td>92056.45</td>
<td>45829.56</td>
<td>3.21</td>
<td>1420712.72</td>
<td>52064.07</td>
<td>3.71</td>
<td>1457892.51</td>
<td>76450.28</td>
<td>5.24</td>
</tr>
<tr>
<td>GD1</td>
<td>1457128.08</td>
<td>51859.82</td>
<td>3.36</td>
<td>1425855.72</td>
<td>52064.07</td>
<td>3.71</td>
<td>125002.32</td>
<td>92056.45</td>
<td>4.68</td>
<td>1593423.88</td>
<td>98536.27</td>
<td>4.94</td>
</tr>
<tr>
<td>GD2</td>
<td>1799865.77</td>
<td>66431.21</td>
<td>3.69</td>
<td>177919.87</td>
<td>76450.28</td>
<td>5.24</td>
<td>1402672.72</td>
<td>52064.07</td>
<td>3.71</td>
<td>1688806.51</td>
<td>104088.88</td>
<td>6.16</td>
</tr>
<tr>
<td>GF</td>
<td>425768.14</td>
<td>19384.87</td>
<td>2.81</td>
<td>41054.32</td>
<td>124864.98</td>
<td>7.46</td>
<td>1593478.93</td>
<td>86445.46</td>
<td>5.42</td>
<td>1688806.51</td>
<td>104088.88</td>
<td>6.16</td>
</tr>
<tr>
<td>HD</td>
<td>2636017.14</td>
<td>96325.60</td>
<td>3.65</td>
<td>96325.60</td>
<td>153303.47</td>
<td>4.23</td>
<td>5979828.55</td>
<td>156220.32</td>
<td>8.17</td>
<td>1631419.93</td>
<td>177655.74</td>
<td>4.30</td>
</tr>
<tr>
<td>HN3</td>
<td>2632108.10</td>
<td>59485.12</td>
<td>2.26</td>
<td>161381.40</td>
<td>153303.47</td>
<td>12.99</td>
<td>986200.15</td>
<td>20004.64</td>
<td>20.38</td>
<td>1025538.24</td>
<td>200280.37</td>
<td>19.53</td>
</tr>
</tbody>
</table>

Table 9, shows that in general the modulation provided good results and only varied marginally over the weeks which is of great benefit as if an unknown sample is being analysed. A library of known retention times could be developed for comparison to the unknown. Where there are large RSDs this may be due to the compound being analysed decreasing in concentration over the time period. This is an important consideration, as often samples must be stored both before and after analysis for traceability. Samples that contain GA, for example may need to be stored at lower temperatures to avoid losses of the sample. (the samples were stored in a fridge maintained at 10 °C)

3.3.1.2 CWA Calibration

The method used for this analysis was detailed in section 3.2.5. Three standards were analysed over a calibration range of 10 to 0.5 µg/mL and three repeats of each standard were conducted:

- First standard contained GB, GD, GA, H, GF, VM, VX, and T
- Second standard contained VX and VM
- Third standard contained H, T and HN3

The calibration for each agent was calculated individually and are in Table 10 to Table 17. The calibration graphs can be found in the Annex 1. It should be noted that, although T could be detected, it struggled to pass through the system and was often at variable levels and wrapping, therefore the results for T are not presented here.

Table 10 Calibration of GB

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>27997961</td>
<td>33555947</td>
<td>34252463</td>
<td>31935457</td>
</tr>
<tr>
<td>5.0</td>
<td>17338665</td>
<td>21419281</td>
<td>27015435</td>
<td>21924460</td>
</tr>
<tr>
<td>2.5</td>
<td>6711907</td>
<td>7527020</td>
<td>9423401</td>
<td>7887443</td>
</tr>
<tr>
<td>1.0</td>
<td>2065927</td>
<td>2790680</td>
<td>3535423</td>
<td>2797343</td>
</tr>
<tr>
<td>0.5</td>
<td>730617</td>
<td>977470</td>
<td>1092954</td>
<td>933680</td>
</tr>
</tbody>
</table>

Table 11 GD Calibration first isomer

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>17841513</td>
<td>20938874</td>
<td>21706475</td>
<td>20162287</td>
</tr>
<tr>
<td>5.0</td>
<td>11318438</td>
<td>13910646</td>
<td>17437131</td>
<td>14222072</td>
</tr>
<tr>
<td>2.5</td>
<td>4681879</td>
<td>5191845</td>
<td>6172857</td>
<td>5348860</td>
</tr>
<tr>
<td>1.0</td>
<td>1560996</td>
<td>1887125</td>
<td>2509870</td>
<td>1985997</td>
</tr>
<tr>
<td>0.5</td>
<td>634813</td>
<td>705592</td>
<td>866380</td>
<td>735595</td>
</tr>
</tbody>
</table>

Table 12 GD Calibration second isomer

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>17953256</td>
<td>21193933</td>
<td>21208373</td>
<td>20118521</td>
</tr>
<tr>
<td>5.0</td>
<td>12196570</td>
<td>13368475</td>
<td>17079074</td>
<td>14214706</td>
</tr>
</tbody>
</table>
Table 11 and Table 12 demonstrate the two isomers for GD. The isomers are not fully separated in one dimensional GC and methods exist to separate them using super critical fluid chromatography and LC-MS with chiral column. Only two of the isomers have been separated, a chiral column would need to be used for all four isomers to be separated thus allowing for blood studies.

Table 13 GA calibration, 0.5 µg/mL could not be detected

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>19158633 23099542 22551262</td>
<td>21603156</td>
<td>2134669</td>
<td>10</td>
</tr>
<tr>
<td>5.0</td>
<td>14307871 16091174 20191749</td>
<td>16863598</td>
<td>3017032</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>7956862 8290743 10053441</td>
<td>8767015</td>
<td>1126516</td>
<td>13</td>
</tr>
<tr>
<td>1.0</td>
<td>4259903 5322918 7137850</td>
<td>5573557</td>
<td>1455252</td>
<td>26</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It should be noted that in Table 13 that only 1 µg/mL can be detected and not 0.5 µg/mL. This is likely due to the chemical properties of GA and it may be lost during the valve modulation process.

Table 14 Mustard calibration, in first repeat of 0.5 µg/mL mustard could not be detected

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>26346750 30193085 31637566</td>
<td>29392467</td>
<td>2734762</td>
<td>9</td>
</tr>
<tr>
<td>5.0</td>
<td>17331145 21310369 26453164</td>
<td>21698226</td>
<td>4573361</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>8804990 9995767 11703929</td>
<td>10168229</td>
<td>1457144</td>
<td>14</td>
</tr>
<tr>
<td>1.0</td>
<td>4476221 5352495 4332680</td>
<td>4720465</td>
<td>552039</td>
<td>12</td>
</tr>
<tr>
<td>0.5</td>
<td>3373036 4057755 3715396</td>
<td>3715396</td>
<td>484169</td>
<td>13</td>
</tr>
</tbody>
</table>
Table 15 GF calibration, in the first repeat of 0.5 µg/mL GF could not be detected

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>21890931</td>
<td>27721841</td>
<td>27208078</td>
<td>25606950</td>
</tr>
<tr>
<td>5.0</td>
<td>13534787</td>
<td>16064454</td>
<td>20380221</td>
<td>16659821</td>
</tr>
<tr>
<td>2.5</td>
<td>4943004</td>
<td>5284060</td>
<td>7028268</td>
<td>5751777</td>
</tr>
<tr>
<td>1.0</td>
<td>1503135</td>
<td>1759218</td>
<td>638340</td>
<td>1300231</td>
</tr>
<tr>
<td>0.5</td>
<td>607986</td>
<td>355191</td>
<td>481589</td>
<td>178753</td>
</tr>
</tbody>
</table>

Table 16 VM calibration

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>23928001</td>
<td>26379243</td>
<td>25328780</td>
<td>25212008</td>
</tr>
<tr>
<td>5.0</td>
<td>10712498</td>
<td>11124763</td>
<td>12467896</td>
<td>11435052</td>
</tr>
<tr>
<td>2.0</td>
<td>3668087</td>
<td>3491859</td>
<td>3740044</td>
<td>3633330</td>
</tr>
<tr>
<td>1.0</td>
<td>1553160</td>
<td>1485335</td>
<td>1811181</td>
<td>1616559</td>
</tr>
<tr>
<td>0.8</td>
<td>1023990</td>
<td>1085071</td>
<td>1092069</td>
<td>1067043</td>
</tr>
</tbody>
</table>

Table 17 VX calibration

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>Repeats (Intensity)</th>
<th>Mean Intensity</th>
<th>Standard Deviation</th>
<th>Relative StandDev %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>23042503</td>
<td>25874401</td>
<td>24468595</td>
<td>24461833</td>
</tr>
<tr>
<td>5.0</td>
<td>11279512</td>
<td>11607437</td>
<td>13024105</td>
<td>11970351</td>
</tr>
<tr>
<td>2.0</td>
<td>4669233</td>
<td>4572897</td>
<td>4714308</td>
<td>4652146</td>
</tr>
<tr>
<td>1.0</td>
<td>2545966</td>
<td>2443078</td>
<td>890434</td>
<td>1959826</td>
</tr>
<tr>
<td>0.8</td>
<td>1324699</td>
<td>1887439</td>
<td>1243247</td>
<td>1485128</td>
</tr>
</tbody>
</table>
3.3.1.3 Limit of Detection and Quantification

The limit of Detection (LoD) was calculated as three times the standard deviation divided by the gradient of the slope, similarly the limit of quantification (LoQ) was calculated as 10 times the standard deviation divided by the gradient of the slope, Table 18.

Table 18 Limit of Detection and Quantification for each agent. RT1 is the retention time in the first dimension, RT2 is the retention time in the second dimension. R^2 is the coefficient of determination.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>RT$_1$ (min), RT$_2$ (sec)</th>
<th>LOD (µg/mL)</th>
<th>LOQ (µg/mL)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>7.1, 1.9</td>
<td>0.15</td>
<td>0.46</td>
<td>0.9585</td>
</tr>
<tr>
<td>GD</td>
<td>12.5, 0.4</td>
<td>0.01</td>
<td>0.34</td>
<td>0.9525</td>
</tr>
<tr>
<td>GD2</td>
<td>12.6, 0.5</td>
<td>0.18</td>
<td>0.46</td>
<td>0.9473</td>
</tr>
<tr>
<td>GA</td>
<td>14.4, 1.0</td>
<td>1.06</td>
<td>3.92</td>
<td>0.9520</td>
</tr>
<tr>
<td>GF</td>
<td>16.3, 0.8</td>
<td>0.27</td>
<td>0.47</td>
<td>0.9682</td>
</tr>
<tr>
<td>H</td>
<td>15.9, 0.8</td>
<td>0.78</td>
<td>1.92</td>
<td>0.9972</td>
</tr>
<tr>
<td>HN3</td>
<td>20.3, 1.9</td>
<td>0.83</td>
<td>2.28</td>
<td>0.9997</td>
</tr>
<tr>
<td>VX</td>
<td>25.2, 1.7</td>
<td>0.44</td>
<td>1.24</td>
<td>1.000</td>
</tr>
<tr>
<td>VM</td>
<td>23.3, 0.4</td>
<td>0.06</td>
<td>0.14</td>
<td>0.9998</td>
</tr>
</tbody>
</table>

3.3.1.4 Development of Software to Alarm on Detection

The idea behind developing a portable GCxGC is to allow it to be used by non-expert users. With this in mind, a piece of software was developed that allows for detection and identification of the system with the simple input of the GCxGC data. Below is an example to demonstrate the use of this system.

A calibration standard of nerve and blister agents at 5 µg/mL was used as a test subject, Figure 23. This was then converted into a greyscale image and then into a black and white image. Bounding
boxes around each area of interest were set in the software and this was tested to ensure different concentrations of agent were still present within the bounding box.

Figure 23 Calibration standard of CWAs at 5 µg/mL – the circled regions relate to different agents. The axis has been removed to allow for input into the software.

The software allowed for an image to be loaded and for the user to either detect or identify, Figure 24. “Detect” will tell the user if nerve agent or blister agent is present otherwise it will display not detected, Figure 25. Identify will tell the user what the nerve agent is e.g. GB or GD etc. and will then alarm and the user can undertake appropriate action as per their standard operating procedures, Figure 26. The code for this can be found in the Annex.
Figure 24 User display of software for data analysis. A chromatogram has been preloaded by using the “Load Image” button.

Figure 25 User display once “detect” has been pressed. Under the alarm section it states “found G/V agent” or “not found”
The graphical user interface (GUI) shown in Figure 24 to Figure 26, could be used to allow for quick identification and detection of compounds of interest in complex matrices for a non-expert user. This is important in a military and civilian context, as generally the users are not scientists. Therefore, there is a requirement for the software to be simple and easy to use. This GUI only works for the GCxGC method described in 3.2.5, if the method is changed the positions of the agents must be re-calibrated.
3.3.2 Detection of CWA in Complex Matrices

The matrices listed in section 3.2.3 were spiked with a known concentration of: GB, GD, GA, H, GF, VX and VM. The samples were spiked to produce a final concentration of 6 ng on column to enhance the possibility of detection for this investigation. The results are detailed below in Table 19 and an example chromatogram can be observed in Figure 27. Other chromatograms can be found in Annex 2.

![Figure 27 Gasoline spiked with CWA of interest. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.](image-url)
Table 19 Table detailing results of agents detected in complex matrices. Mo3 and Mo4 are aerosol samples from Porton Down range. Green means detected and red means that it was not detected.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>GB</th>
<th>GD</th>
<th>GD</th>
<th>GA</th>
<th>H</th>
<th>GF</th>
<th>VM</th>
<th>VX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gasoline</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Clothing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oven</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kitchen floor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OMD 90</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OM 33</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OX 24</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AV Gas</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mo3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mo4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hotel 1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hotel 2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LWO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dust</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

GA was not detectable in any matrix, in some cases such as aviation fuel, this was due to the overlapping of the peaks, but this could be circumvented with the use of a more selective detector.

VX and VM were not easily detectable in diesel due to the high number of heavy hydrocarbons present in diesel making it harder to detect. However, in general GCxGC-FID was able to detect and separate out CWAs of interest from complex matrices that could be found at a scene or in the field.

It is becoming increasingly important to be able to reduce the amount of sample manipulation before analysing it both in the field and in the laboratory, thus this technique provides a possible route to analyse the sample without manipulating it.
3.3.3 Explosives

3.3.3.1 Method Development

The system was first tested with three explosives, TNT, EDGN and NG. EDGN and NG could not be observed under these conditions, but TNT could be observed, Figure 28.

![Figure 28 1 ppm of TNT using the valve GCxGC system. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds. The TNT peak is circled in red.](image)

Although TNT produced an intense peak, it suffered from wrapping in the second dimension and low sensitivity. This necessitated a redesign of the system and silcosteel sample loops were purchased along with silcosteel zero dead volume unions. This was to try to reduce the number of possible active surfaces that could be causing explosives to either not be detected or to wrap in the second dimension.

3.3.3.1.1 Changing Inlet Temperature

The method used for detection of CWAs was tested with explosives to determine if a common method could be used to detect all compounds. Commonly in the field several different detectors are required for detection of both CWAs and explosives, so if one instrument and method could be
used this would prove beneficial. When the 8330b standard of explosives was analysed at 280 °C streaks before the peaks were observed, Figure 29.

Figure 29 50 ppm of an 8330 b standard, the explosives of interest are circled in white but it can be seen that there are dark blue streaks before each eluted compound. The dark blue streaks are speculated to be thermal breakdown products of the explosives due to the high inlet temperature. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

In Figure 29 it is suspected that the dark blue streaks before each compound were breakdown product of the explosive due to the higher temperature as this effect is greatly decreased with a drop in the inlet temperature. This theory needs to be tested with a detector and a library that would be able to identify the compounds not just detect. Due to the degradation effect, the method for analysing explosives was changed to run the inlet at 175 °C, Figure 30, this provided a decrease in the effect and a better signal to noise ratio (SNR).
Figure 30 50 ppm of 8330b explosive standard analysed at 175 °C. Explosives are detected (circled in white) but there is no degradation product present before the compounds. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Interestingly, comparing Figure 29 and Figure 30, towards the end of the chromatogram in Figure 29, there are three bands between 30 – 32 minutes that are not present in Figure 30. These peaks relate to 2-amino-4,6-dinitrotoluene, 3,5-dinitroaniline and 2-amino-4,6-dinitrotoluene respectively. They are not modulated as they probably interact with the valve or with one of the phases too strongly so appear to bleed through in the chromatography. At the lower temperature they are not observed, which implies that to detect these compounds a re-design of the system would need to take place to elute these compounds. However, they are not currently of military interest so no further work to elute them took place.

3.3.3.2 Explosive Calibration

The final method used to determine the limits of detection is detailed in section 3.2.6. Standards of explosives were made in acetonitrile between 50 – 0.5 µg/mL and repeated three times. The limit of detection has been calculated using a 97.5 % confidence interval using the t-test value multiplied by the standard deviation for the lowest recorded concentration. The limit of detection is ten times the standard deviation of the lowest recorded concentration. The results are shown in Table 20. It should be noted that RDX, HMX, NG and EDGN could not be detected in the system. This could be due to their high activity with active surfaces or sensitivity to heat i.e. they may be breaking down in
the inlet before detection can take place. It is also notable for the higher boiling point explosives; that it became difficult to detect them by eye in the chromatogram as the concentration decreased. This is likely to be due to their higher boiling point, so they may be sticking to an active surface in the valve thus not reaching the detector.

Table 20 – Calibration of explosives detailing the limit of detection (LoD) and quantification (LoQ) based on n=3

<table>
<thead>
<tr>
<th>Compound</th>
<th>RT<sub>1</sub> (min), RT<sub>2</sub> (sec)</th>
<th>LOD (µg/mL)</th>
<th>LOQ (µg/mL)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-NT</td>
<td>14.04, 0.38</td>
<td>0.28</td>
<td>1.10</td>
<td>0.9954</td>
</tr>
<tr>
<td>3-NT</td>
<td>15.60, 0.61</td>
<td>0.41</td>
<td>1.32</td>
<td>0.9956</td>
</tr>
<tr>
<td>4-NT</td>
<td>16.40, 0.72</td>
<td>0.29</td>
<td>0.99</td>
<td>0.9962</td>
</tr>
<tr>
<td>1,3-DNB</td>
<td>16.86, 1.10</td>
<td>0.26</td>
<td>0.84</td>
<td>0.997</td>
</tr>
<tr>
<td>2,6-DNT</td>
<td>21.33, 2.19</td>
<td>0.05</td>
<td>2.71</td>
<td>0.9993</td>
</tr>
<tr>
<td>2,4-DNT</td>
<td>21.39, 1.02</td>
<td>0.78</td>
<td>1.91</td>
<td>0.9986</td>
</tr>
<tr>
<td>1,3,5-TNB</td>
<td>22.77, 0.97</td>
<td>1.25</td>
<td>2.97</td>
<td>0.9997</td>
</tr>
<tr>
<td>2,4,6-TNT</td>
<td>25.32, 0.45</td>
<td>0.59</td>
<td>5.01</td>
<td>0.999</td>
</tr>
</tbody>
</table>

3.3.3.3 Detection of Explosives using Software

The GUI written above for the chemical warfare agents was modified to include explosives. The GUI was tested with five samples of varying concentration. For each concentration the GUI could detect the explosive and, more importantly, it could not find any CWAs meanings the explosives and CWAs occupy different separation space, Figure 31 and Figure 32.
Figure 31 Detection function in GUI on a 50 ppm standard of the 8330 explosive mix.

Figure 32 Identify function on a 50 ppm standard of explosives. It displays “not found” for each agent and “found” followed by each explosive.
3.3.3.4 Detection of Explosives in Complex Matrices

Matrices of relevance to explosive detection were used to simulate environments that could cause false alarms. In this instance as well as some of the matrices from previous sections, perfume was also used as explosive detection often requires screening of a person. The hotel sample was also collected during a military exercise at a hotel and contained interferents that could not be resolved using one piece of equipment during the exercise. Explosives were spiked into each matrix and injected using a 100:1 split producing a final concentration of 1 µg/mL, therefore 1 ng on column.

Table 21 details which explosives were detected in each matrix. An example chromatogram is shown in Figure 33. All other chromatograms can be seen in Annex 3.

Figure 33 Perfume spiked with 1 ppm of 8330b explosive standard. The explosives detected are circled in white. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Perfumes are a typical example of a possible interferant that could be found in aviation detection.

Most perfumes contain musks that can cause some difficulty for explosive detection. However, this is compensated for in the chromatogram above and the explosives are identifiable in the complex mixture.
As observed in Table 21, explosives are difficult to detect in these complex matrices thus false alarms could be caused using this method. In the aim to produce a portable system that would not produce false alarms, modifications to this system took place.

3.3.4 Secondary Oven

In the more commonly used, cryogenic two-dimensional gas chromatography; the secondary column sits within a separate oven. This allows the compounds to be separated by polarity as the oven emulates isothermal conditions thus helping to improve the chromatography in many cases. The issues with a secondary column oven include; higher power requirements, slower run times and slower turn around due to the second oven taking longer to cool. However, despite this a secondary oven was built to test if it could improve separation and if it could then, whether it could decrease false alarm rates and have fast methods.

3.3.4.1 Secondary Oven Design

The secondary oven design was based upon that used in the cryogenic work with a few exceptions. High temperature insulation was fitted in to a rectangle of aluminium and pieces were drilled out to help improve airflow and the column was coiled tightly and placed inside the oven, Figure 34. An engineer at Porton Down, Jack Vincent, helped to build the system due to electrical hazard and health and safety considerations.
Figure 34 Inside of secondary oven, the insulation has had pieces removed to help with airflow and 8 meters of column has been tightly coiled and placed inside.

This system had a lid, again covered in insulation, that had similar pieces removed. Heater wire was coiled and placed inside the holes where the insulation previously was. A thermocouple was placed in the middle of the oven to ensure even heating and finally this was placed inside the GC, Figure 35. The oven was connected to the GC using AUX 2 and controlled using the Chemstation software.

Figure 35 Secondary oven placed inside the oven. The green and white wire is the thermocouple placed in the centre of the oven. The large white wires continue to outside the GC and connect to the AUX 2 port.

Diesel was analysed using the system using the same method but with the secondary oven placed at a 40 °C offset and a difference in the chromatography can be seen quite clearly, Figure 36.
Diesel without secondary oven

Diesel with secondary oven

Figure 36 Diesel run using the same method, on the top without a secondary oven and on the bottom with a secondary oven and a 40 °C offset. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

In Figure 36 it can be observed that the secondary oven allows the alkane series to not wrap around, this can be observed as they are almost in a vertical line across the chromatogram instead of three diagonal lines, thus providing the possibility for separation of this type of matrix from explosives. Further method development took place to improve the separation and speed of separation for analysis of complex matrices.

3.3.4.2 CWA Analysis in Complex Matrices

The matrices listed in section 3.2.3 were spiked with a known concentration of: GB, GD, GA, H, GF, VX and VM. The samples were spiked to produce a final concentration of 6 ng on column to enhance the possibility of detection for this investigation. The results are detailed below in Table 22 and an example chromatogram is shown in Figure 37. Other chromatograms can be found in Annex 2.
Table 22 Matrices Spiked with CWA. A tick means that the agent could be detected and a cross means that it could not be detected

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Agent</th>
<th>GB</th>
<th>GD1</th>
<th>GD2</th>
<th>GA</th>
<th>H</th>
<th>GF</th>
<th>VM</th>
<th>VX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol sample 3</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Clothing</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inside Oven</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hotel</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>LWO</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>AV Fuel</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Sahara Dust</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

In this instance the detection using the secondary oven is worse for the detection of CWAs in complex matrices (Table 22 cf. Table 19). The GC method was modified to create a fast separation method, in an attempt to counteract the increased total run time caused by the secondary oven having to cool. This had a secondary and expected effect of creating less separation space in the chromatogram and thus making it harder to detect some of the agents of interest. Again, a non-universal detector or another separation technique followed by a detector would help to deconvolute the signal. An example of this would be ion mobility (IMS) as it contains a drift region which would allow for further separation followed by a universal detector plate.
Figure 37 Chromatogram of Gasoline spiked with CWA nerve and blister standard. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Figure 37 shows a chromatogram of gasoline spiked with a CWA standard containing both nerve and blister agents. Gasoline contains a much lighter fragment of hydrocarbon species in comparison to a matrix such as diesel, which makes it easier to detect the higher boiling point agents but more difficult to detect the species that sit in the middle of the chromatogram as they have similar retention times to the hydrocarbon species.
3.3.4.3 Secondary Oven for Explosives Detection

The matrices listed in section 3.2.3 were spiked with a known concentration of 8330b explosive standard. This was analysed using GCxGC-FID and the secondary oven to try to improve detection in complex matrices. The results are detailed below in Table 23 and the chromatograms can be found in Annex 2.

Table 23 List of Matrices with Explosives that could be detected in the matrix. A tick indicates that it was detected, and a cross indicates that it was not detected.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Compound</th>
<th>4-NT</th>
<th>1,3-DNB</th>
<th>2,6-DNT</th>
<th>2,4-DNT</th>
<th>1,3,5-TNB</th>
<th>2,4,6-TNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfume</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PTN aerosol</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hotel 2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sahara</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aviation fuel</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Diesel</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Gasoline</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Light Weight Oil</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Figure 38 Light weight oil (LWO) spiked with 8330b explosives standard. The explosives detected are highlighted in white circles. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.
As can be observed in Figure 38 the explosives are in a different chromatographic region and are easily detected in light weight oil. However, none of the explosives could be detected in diesel or aviation fuel, Table 23. In this instance, the loss of chromatographic separation in the first dimension, due to the decrease in run time caused by using a fast oven ramp, caused significant overlap between the explosives and hydrocarbon species. Having a secondary oven, which should have in theory improved the secondary separation, did not compensate this for this effect. However, in stating that it was not improved for those two matrices, the separation was complete for all other matrices in a much shorter time frame than without the secondary oven.
Chapter 4

Portable Valve Modulation Comprehensive Gas Chromatography Flame Ionisation Detection for the Analysis of Threat Materials
Portable Valve Modulation Comprehensive Gas Chromatography

4.1 Introduction

Portable detection equipment is used by military and civilians to detect the presence of explosives or CWAs.40, 49, 78-80 This has been explored in Chapter 3, however we shall highlight the main points of interest again for this chapter.

The threat of CWAs and explosives is increasing rapidly. Some of the raw materials are easily accessible, and the internet allows a platform to not only share notes but detailed videos on how to make materials that are life threatening. Therefore, as highlighted before, there is a need to be able to detect and identify these materials in the field. The current in-service detection equipment must meet regulations set up by users and subject matter experts in the area and is generally broken down into a few techniques; IMS/DMS, Raman, IR, GC and MS. These were explored in Chapter 3.

4.1.1 Portable Gas Chromatography

GC-MS and GC-IMS are also used for field measurements of explosives and CWAs. Normally the size of a mass spectrometer would mean that it is not considered as a field portable piece of equipment but there are some examples where research has been undertaken to vastly reduce the size of the MS. A key example in detection would be the Guardion, this uses a low thermal mass column connected to a miniaturized toroidal ion trap.81

4.1.2 Portable Two Dimensional Gas Chromatography (GCxGC)

Comprehensive two dimensional gas chromatography (GCxGC) has already demonstrated that it has high value in the analytical laboratory for forensic sample analysis, as it has highly increased peak capacity in comparison to GC and the ability to resolve exceedingly complex matrices with minimal sample preparation.
However, conventional GCxGC require cryogenics, typically liquid nitrogen, which makes them non-portable. They also require long analysis times to provide the best results, typically 45 – 60 minutes. This is an issue if a tight turnaround is required. There is a need to be able to analyse complex samples in the field with minimal false alarm rates. If GCxGC is made portable and more accessible, then there is the possibility of using it in a field environment. An example of this in the literature is research undertaken by W.R. Collin et al, J. Lee et al. and S.Edwards et al.95-98

In all of the literature it is clear that it is very difficult to achieve even heating, no cold spots, and the correct balance of flows. Each group took a different engineering approach to the problem, but all had very similar issues with heating and cold spots. A few papers demonstrated that the VOCs measured could be separated despite the engineering problems. However, none of them offer a full solution.

This chapter explores the possibility of producing a portable GCxGC for military operation and threat materials. This research uses a 6-port afp valve similar to that of S.Edwards and uses very similar pressures to try to achieve the correct flows required for using a valve i.e. higher pressure in the primary and lower pressure in the secondary.
4.2 Experimental

4.2.1 Fast GCxGC

4.2.1.1 Sample Preparation

A 1000 ppm 8330 explosive standard (Restek) was diluted in ethyl acetate (Sigma Aldrich) to achieve a 10 ppm standard and a 1 ppm standard. Explosives present in 8330 standard can be seen in Table 24.

Table 24 8330 standard components

<table>
<thead>
<tr>
<th>Explosive</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-amino-2,6-dinitrotoluene</td>
</tr>
<tr>
<td>2-amino-4,6-dinitrotoluene</td>
</tr>
<tr>
<td>1,3,5-trinitrobenzene</td>
</tr>
<tr>
<td>TNT</td>
</tr>
<tr>
<td>Tetryl</td>
</tr>
<tr>
<td>Nitrobenzene</td>
</tr>
<tr>
<td>RDX</td>
</tr>
<tr>
<td>HMX</td>
</tr>
<tr>
<td>2-nitrotoluene</td>
</tr>
<tr>
<td>3-nitrotoluene</td>
</tr>
<tr>
<td>4-nitrotoluene</td>
</tr>
<tr>
<td>1,3-dinitrobenze</td>
</tr>
<tr>
<td>2,6-dinitrotoluene</td>
</tr>
<tr>
<td>2,4-dinitrotoluene</td>
</tr>
</tbody>
</table>
4.2.1.2 GCxGC-TOF Parameters

4.2.1.2.1 Starting Conditions

GCxGC-TOF analysis was performed using a 6890B GC from Agilent technologies fitted with a Leco thermal modulator system interfaced to an Agilent TOF-MS. The primary GC column was a BX5 (30 m x 0.25 mm x 0.25 µm). The secondary GC column was a BX50 (4 m x 0.2 mm x 0.2 µm). The primary oven was programmed from 40 °C (2 min) at 7 °C/min to 270 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 7 °C/min to 300 °C (5 min). A dual jet liquid nitrogen modulation system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1 mL/min. 1 µL of sample was injected using a Gerstal auto-sampler in splitless mode.

4.2.2 Portable GC

A portable GC was designed using a block of aluminium hollowed out and surrounded by a heater band, Figure 39. The heater band was controlled using an OMEGA PID which provides its own software to allow for calibration of the heating.

![Figure 39 Picture of the aluminium holder with the column wound inside.](image)

4.2.2.1 Portable GC Method

GC analysis was performed using a 6890B GC from Agilent technologies fitted with a portable GC as described above fitted to a FID. The GC column was a BX5 (15 m x 0.25 mm x 0.25 µm). The oven was programmed to hold under isothermal conditions at 140 °C. The oven the system was placed in
was held at 100 °C. Helium carrier gas was used at a flow rate of 1.5 mL/min. 1 µL of sample was injected using an Agilent auto-sampler in splitless mode.

4.2.3 Portable GCxGC

A portable GCxGC was designed based on the portable GC and is described in detail below. The system was capable of controlling all heating zones but required an external injector and detector.

A series of experiments were designed to test the code and the chromatography. Note that the code was written by Timothy Ayers and modified by the author as and when bugs in the software were detected.

4.2.3.1 GCxGC Method Development

Method 1:

The primary GC column was a BX5 (17 m x 0.18 mm x 0.36 µm). The secondary GC column was a BX50 (6 m x 0.18 mm x 0.2 µm). The primary oven was programmed from 40 °C at 10 °C/min to 250 °C (5 min). The secondary oven was programmed from 60 °C at 10 °C/min to 270 °C (5 min). A diaphragm valve was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1.5 mL/min. 1 µL of sample was injected using an Agilent autosampler in splitless mode.

Method 2:

The primary GC column was a BX5 (17 m x 0.18 mm x 0.36 µm). The secondary GC column was a BX50 (6 m x 0.18 mm x 0.2 µm). The primary oven was programmed from 55 °C at 14 °C/min to 240 °C (5 min). The secondary oven was programmed from 75 °C at 14 °C/min to 260 °C (5 min). A diaphragm valve was used with a 5 second modulation period, 4700 ms modulation with 300 ms injection. Helium carrier gas was used at a flow rate of 1.5 mL/min. 1 µL of sample was injected using an Agilent autosampler in splitless mode.

Method 3:

Same as above but the front inlet was changed to 50 psi
Method 4:

Same as above but with a ramp rate of 6 °C/min.

Method 5:

Same as above but the primary flow was 60 psi and the secondary was 30 psi.
4.3 Results and Discussion

4.3.1 Fast GCxGC

GCxGC is excellent for an analytical laboratory environment where time constraints are not necessarily a problem. Therefore, a fast GCxGC method with limited loss of resolution is desired. As described above a series of methods were tested to increase the speed of analysis to determine if it is possible with limited loss of information. The “gold” standard of GCxGC was used as a starting point for development of the fast method.

Figure 40 shows the first attempt at trying to decrease the analysis time. The separation was completed in 15 minutes for the 8330b standard and was carried out by increasing the oven ramp. It was clear that the separation efficiency has decreased and that there was less clear definition between each explosive especially the isomers, Figure 40.

Figure 40 “fast GCxGC” a fast increase in the oven temperature by setting a ramp of 20 °C/min. The separation between these compounds has been reduced both in the 1st and 2nd dimension. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

In Figure 41 the separation takes place in less than 6 minutes and it is an example of where separation efficiency has decreased such that explosives are co-eluting with one another.
“fast GCxGC” a fast increase in the oven temperature by setting a ramp of 40 °C/min. The separation between these compounds has been reduced both in the 1st and 2nd dimension. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Further development on creating a short method was carried out using a GCxGC – NCD and a more methodical approach to decreasing analysis times was undertaken with the NCD.

Method 1: The primary GC column was a BX5 (30 m x 0.32 mm x 0.25 µm). The secondary GC column was a BX50 (3 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 40 °C (2 min) at 7 °C/min to 270 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 7 °C/min to 300 °C (5 min). A dual jet liquid nitrogen modulation system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1 mL/min. 1 µL of sample was injected using a Gerstal auto-sampler in splitless mode.

Using method 1 all explosives were detected in less than 34 minutes with good separation between the peaks and only a slight shift in position in the second dimension, this can be observed in Figure 42.
Figure 42 1 ppm of the 8330 standard analysed using GCxGC-NCD. Only nitrogen containing species are observed using NCD. The peaks are sharp and there is limited wrapping. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

Method 2: The primary GC column was a BX5 (30 m x 0.32 mm x 0.25 µm). The secondary GC column was a BX50 (3 m x 0.1 mm x 0.1 µm). The primary oven was programmed from 40 °C (2 min) at 10 °C/min to 270 °C (5 min). The secondary oven was programmed from 70 °C (2 min) at 10 °C/min to 300 °C (min). A dual jet liquid nitrogen modulation system was used with a 5 second modulation period. Helium carrier gas was used at a flow rate of 1.4 mL/min. 1 µL of sample was injected using a Gerstal auto-sampler in splitless mode.

Using method 2 the same standard was analysed, and the analysis was completed in less than 25 minutes. This can be observed in Figure 43. It is clear that the peaks were not as sharp and started to become wider in the second dimension.
Figure 43 1 ppm of the 8330 standard analysed using method 2. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

The Figures above demonstrate that it is possible to get the analysis time below 6 minutes, but this is at the expense of peak shape and clarity, as by just simply ramping the oven there is a significant drop in separation efficiency. Taking a more targeted approach and changing column dimensions allowed for a 25 minute method to be reach that still has excellent separation and good peak shape. Further research needs to be carried out to continue decreasing the analysis time this will include, amongst other things, decreasing the length of column or reducing column ID and increasing flow rates along with a suitable oven ramp rate.

Although 25 minutes is a significant reduction in time, there is still a need for a fast and portable system. Development has taken place to produce a prototype system to allow for portable detection.
4.3.2 Portable GC

In order to produce a “portable” system several components of the GC need to be vastly reduced in size. To try to achieve that, a miniature GC has been developed with the University of York that uses a band heater to heat the column up to 300 °C in less than 120 seconds. The system itself is approximately the size of a roll of duct tape and contains 15 m of column, with the possibility of containing 25 m of column if required.

The GC was only tested under isothermal conditions holding the system at 140 °C, with the outer oven at 100 °C and using FID for detection. 1 ppm of the 8330 standard, described earlier, was analysed using the system and some of the analytes that can be detected with FID were separated out in around 5 minutes with relatively good peak shape, Figure 44. As the run reaches 10 minutes the peak shape is poor, this could be due to the isothermal conditions and the flow rates.

![Figure 44](image)

Figure 44 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC

The system was using the external oven to heat the transfer lines between the inlet and the FID. Heated transfer lines were developed using 1/16 inch copper wrapped in heater wire and Kapton tape. This was then connected to a power supply and set to produce the required temperatures by varying the voltage, the temperature was measured by using an external thermocouple.
Figure 45 details the results for the 1 ppm of the 8330 standard using the same GC method as before but using the new heated transfer lines.

Figure 45 1 ppm of the 8330 standard separated out under isothermal conditions using the micro GC and heated transfer lines.

Figure 45’s chromatography is not as good as that of Figure 44, however, this could be due to uneven heating of the transfer lines, variability of the pressure in the GC oven between the two runs or that 80 °C was not the correct temperature for the transfer line. The transfer lines are now capable of reaching 200 degrees, which should reduce the possibility of a cold spot.

Heat imaging of the transfer lines was undertaken to determine if the heating is even or not, Figure 46.
Figure 46 Heat image of transfer lines and valve. The colour scale is presented on the right hand side and ranges from 18.9 to 97.9 degrees.

It is clear in Figure 46 that the top transfer line which runs to the detector has hot spots within the system, represented by the white areas and that is has cold areas represented by the yellow. Re-wrapping of the heater wire around the transfer line was carried out to try to produce more even heating, Figure 47.

Figure 47 Heat image of transfer lines. The colour scale is presented on the right hand side and ranges from 19.6 to 95.2 degrees.

There is a difference in the final temperature between Figure 46 and Figure 47 but the error on the heat imager accounts for this difference. In Figure 47, there does appear to be more even heating.
but there are still two hot spots demonstrated by the white colour. It is also notable that the connection into the box is only warm and could act as a cold spot. To try to achieve even heating the system is allowed to equilibrate for 30 minutes before testing commences.

4.3.2.1 Portable GC-FID CWA Data

Five chemical agents were tested on the system separately to determine if they could travel through the transfer lines and the columns. The resulting chromatograms can be observed in Table 25. It is clear that there is a shoulder appearing after each peak, which is indicative of poor chromatography likely due to column positioning or column degradation. The agents were introduced at a relatively high concentration of 50 µg/mL but this concentration is not normally expected to have a large tailing effect. However, the system was held under isothermal conditions at 125 °C with the transfer lines at 60 °C and 130 °C respectively which could have caused an issue or there could have been a problem with the inlet.
Table 25 Results table of chemical agents in portable GC

<table>
<thead>
<tr>
<th>Chemical Agent</th>
<th>Graph 1</th>
<th>Graph 2</th>
<th>Graph 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustard (HD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.3 Portable GCxGC

4.3.3.1 Design

Using the micro GC as the building block a GCxGC system was designed in order to fill the requirement for a fully portable system. The entire system in its most basic design is 12 cm x 25 cm x 22 cm, a schematic of the system is shown in Figure 48.
Working closely with the University of York allowed for the development of a man-portable if not transportable GCxGC system. The University provided the Engineering and Electronic know-how, Timothy Ayers helped in the build and electronic coding. The “fully” portable system required the design of a portable small GC unit, using a heater band to heat the column (as described above). The GCxGC system used two of these ovens stacked one on top of the other. There were insulated ports through to the valve to allow the columns to pass through with minimal temperature change. The valve itself was heated to a constant temperature. In developing the prototype, there was not enough time to place an inlet and detector into the system so heated transfer lines (as described above) are used to allow the column to pass between areas. Control of the system used Arduino Nano’s to keep the cost low. This was arranged in a master/slave system to control all of the temperatures. The final product and set up can be seen in Figure 49.

![Figure 49: Final GCxGC unit WxDxH: 34x20x36 cm, the Arduino Nano set up using a master at the bottom with a screen to allow for a friendly interface and the 5 “slaves” at the top and finally the two GC columns and ovens.](image)

The idea was not only to produce a fast and small system but to keep the costs low. There were some compromises in order to keep the costs low e.g. using non-ideal materials, a small screen, and bulky insulation. The system itself was slightly larger than the original design but this is mostly due to using very bulky insulation. In a future design, more thought would be put into the structure itself and insulation requirements.
In terms of heating the code was capable of controlling the two ovens with an offset with relatively high precision. There was slight oscillation around the ramping temperature but this was to be expected due to how power was supplied to the system. Otherwise it was able to ramp very quickly in temperature and the main issue was attempting to cool the ovens quick enough.

4.3.3.2 Heating

Observing the ovens in more detail, thermal imaging was undertaken to observe the valve and the small ovens. There were some issues with this imaging as the ovens were slightly reflective, but the images were simply to provide an overview of the evenness of the heating, Figure 50.

Starting with the valve in Figure 50, it is clear that the base of the valve is heating up significantly and the top of the valve is warm but the outer connections for the column are green suggesting that they are cold and that heat is not being circulated around or creating an oven. If the system is left to equilibrate for 30 minutes or more, the outer connections reach 100 + degrees. On the right in Figure 50 it is clear that the insides of the oven are heating up very quickly and little heat is dissipating to the edges, the oven was more difficult to image as it was metal and not covered so it has not been imaged very well. Again, there does appear to be hot spots represented by the white areas.
4.3.3.3 Complications

As with any prototype there have been a few modifications that have had to take place during testing as the system was not working correctly. This has included;

- Modification of the controlling software – the system would attempt to cool and heat at the same time after one run. This was simply a few lines of code that required changing – see Annex 2 for further details of code and the modified lines.
- The secondary oven column had a hair line fracture from when it was potted into the holder. This was replaced with a new line of column.
- The internal connectors were too large and causing dead volume, smaller zero volume connectors were placed into the system, these are also deactivated.
- Zero dead-volume unions were replaced with silco treated unions so that activate species can be tested in the system
- Cold spots present at the inlet and outlet connections – the connections were insulated

Even with these modifications cold spots/active surfaces were present in the system. This was observed with the following samples.

The alkane standard of C7 to C40 was analysed and only four of the alkanes could be observed. These are widely spread in the second dimension and wrapping. This commonly occurs when a cold spot is present or when an active surface is present. This is demonstrated in Figure 51.
Figure 51 Chromatogram of C7 to C30 alkane standard. Only three of the compounds can be observed – these are broad and starting to wrap. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.

From this data, the method was developed to allow further compounds to elute through the system and using a series of methods listed in the experimental (all data included in the Annex). To produce the final method, method 5, which allowed for separation of five alkanes, Figure 52, but the higher boiling species were still not making it through the system as they were either getting trapped as cold spots or there was a leak in the valve.

Figure 52 Separation of five of the alkanes in the C7-C30 standard. The x-axis shows the primary retention time in seconds and the y-axis shows the secondary retention time in seconds.
The data presented above describes that there was an issue in the system likely related to cold spots being present or hot spots or another issue. The system was redesigned in an attempt to counter act this problem. The results below describe the design change and the results of the changes.

4.3.4 Second Heater

During the cycling of the instrument, the temperature inside the area where the valve sits was measured. The temperature sits at 98 degrees and does not increase over time. This could explain why the larger molecules are not being separated.

A secondary heater was added into this region, Figure 53, the heater is controlled by an external OMEGA fast control PID (see Annex 3 for a picture of the system). The design of the green metal observed in Figure 53 is to help with heat dispersion in the region. The valve heater remains functional at 250 degrees and the secondary heater was set to 200 degrees for testing.

![Area inside the valve oven. The green metal piece is the secondary heater that has been added to try to keep the area hot to allow compounds to pass through the system.](image)
The system was run using the same method conditions as previously stated. The only change to the system was the sample loop, going from 25 µl to 10 µl due to availability of sample loops. This required a change in the modulation time to 1 second.

A C7-C30 standard was analysed using the system, Figure 54, a few more species were detected giving a total of 7 species detected. This result is also repeatable and the chromatograms are in Annex 3.

![Chromatogram of C7 – C30 at 1 µg/mL analysed on the micro GCxGC unit with a secondary heater held at 200 degrees](image)

Figure 54 Chromatogram of C7 – C30 at 1 µg/mL analysed on the micro GCxGC unit with a secondary heater held at 200 degrees

As can be observed in Figure 54 there is some 2D separation and the peaks are wrapping. The system could still have a cold spot somewhere or an active surface, which is causing the loss of the rest of the compounds in the sample. To continue to test the system, a C7-C30 standard spiked with aromatics species was analysed, Figure 55.
Figure 55 Chromatogram of C7 – C30 at 1 µg/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees

Figure 55 and Figure 54 are almost identical suggesting that the larger less volatile aromatics are not making it through the system. It is likely that they are getting stuck on a cold and or active surface or that the flows are still not correctly balanced. However, this result was repeatable, and the other chromatograms can be found in Annex 3.

4.3.5 Conclusions
This work has allowed the portable GCxGC system to be developed and tested. During this process issues have been found in relation to the controlling code and simple issues such as hairline fractures in the column. These have been corrected but the largest issue that still remains is the heating. An engineering approach needs to be taken to the project to find and correct the cold spots.
Chapter 5

Conclusions
5 Conclusions and Future Recommendations

Comprehensive gas chromatography has demonstrated that it can be highly beneficial to the defence sector throughout this research. A new capability for detection of threat materials has been developed for analysis in complex mixtures and this thesis has demonstrated that it could become field portable.

The research detailed in this thesis can be broken down into two distinct areas of defence applications; defence intelligence analysis and in-field analysis. The following sections, 5.1 and 5.2 provide a summary to each area and the future recommendations of research.
5.1 Defence Intelligence Analysis

5.1.1 Conclusion

Within the defence intelligence networks, there is an ongoing requirement to be able to obtain further information from a sample that has returned from areas of interest. Standard practice dictates that the sample will be analysed to determine which, if any, explosive or CWA has been used and what quantity can be found at the site in question. If we take a post-blast environment, the samples collected are in highly complex matrices. These matrices can contain anything from oils, fuels, blood and dust to deposited particulate from cars and weather events. The process for analysing these samples requires the suspected material of interest to be removed from the matrix. This is commonly performed using solid phase extraction (SPE). The problem with SPE is that depending on the chemistry of the target analyte, mass can be lost during the process (10% return) or in some cases the target is removed completely. This is not a problem in the case of CWA detection, as they are not naturally found in the environment. However, at some locations there is a low concentration of explosives present which means that the significant detection level must be set above this to determine that an explosive has been used and was not present in that environment in the first instance.

This research has used cryogenic GCxGC-TOF-MS to analyse explosives and CWAs in representative matrices for operations such as a post-blast event. The samples required no clean up but a small split was used on the inlet to reduce contamination in the system. The technique proved highly useful in analysing these samples without the need for cleaning the samples, and picogram detection levels have been achieved.

The GCxGC-TOF-MS provides four dimensions of data and high separation, which means that not only can the analyte of interest be determined but it is also possible to identify other compounds within that matrix that could provide other evidential value. For example, if the sample is collected
from a road, it is possible to determine if diesel, petrol or other fuels are present; if an accelerant is present this would also be identifiable thus providing further evidence for the investigation.

The methods presented here could provide simply a pre-screening device or evidential detection and identification. There are obvious drawbacks using this technique: it is slow, requires cryogenics, and the sample must be split to avoid high levels of contamination reaching the detector.

5.1.2 Future Recommendations

The research into using GCxGC-TOF-MS for defence purposes has not previously been explored. Future work should look to not only run samples that have returned from operations and other urgent requirements but to begin to research into using headspace analysis to obtain different information from the sample.

Drug analysis should also be explored as it has already been demonstrated within the literature that GCxGC-TOF-MS can provide further detail on drug composition compared to lower resolution techniques such as GC-MS. Therefore, it should be possible to obtain information that would aid the criminal justice system.

The technique should also be validated under UKAS conditions to allow for the analysis of operational samples as it would provide orthogonal data to data often collected.
5.2 In-Field Analysis

5.2.1 Conclusions

When an attack has occurred using explosive or CWAs there are several different responses that take place. Only two are reviewed during this work; firstly, that samples are returned to an analytical laboratory for testing to provide evidence for the defence network and criminal justice system and secondly is the response of service personnel in the field i.e. how to respond to the hazard.

An attack taking place is not the only time that service personnel may be required to undertake chemical analysis in the field. If they are on an operation and discover an area of interest, for example a clandestine laboratory, samples are taken and sent back for analysis. In the meantime, the personnel must decide how to proceed and what chemical hazards are present. GCxGC-FID could provide a portable system that could be used for analysis in the field alongside samples sent back for analysis. It also provides the possibility of being able to analyse samples that may not make it back to the support base.

In this thesis research, has been undertaken looking at a modified Agilent 6890 and a prototype man portable system. The valve system demonstrated in chapter 3 is compared with the cryogenic system for the detection of explosives in Table 26 (a similar trend to that seen in Table 26 also exists for CWA detection). It is clear in the table that there is loss of sensitivity moving from the cryogenic system to the valve system. However, the valve system is more likely to be utilised in an area where a higher concentration of explosives may be present and so the loss of sensitivity may not be a problem.
<table>
<thead>
<tr>
<th>Compound</th>
<th>LOD (µg/mL)</th>
<th>LOD (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-nitrotoluene</td>
<td>0.28</td>
<td>0.0059</td>
</tr>
<tr>
<td>3-nitrotoluene</td>
<td>0.41</td>
<td>0.0081</td>
</tr>
<tr>
<td>4-nitrotoluene</td>
<td>0.29</td>
<td>0.006</td>
</tr>
<tr>
<td>1,3-dinitrobenzene</td>
<td>0.26</td>
<td>0.015</td>
</tr>
<tr>
<td>2,6-dinitrotoluene</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>2,4-dinitrotoluene</td>
<td>0.78</td>
<td>0.28</td>
</tr>
<tr>
<td>1,3,5-trinitrobenzene</td>
<td>1.25</td>
<td>0.012</td>
</tr>
<tr>
<td>2,4,6-trinitrotoluene</td>
<td>0.59</td>
<td>0.021</td>
</tr>
<tr>
<td>Tetryl</td>
<td>n/a</td>
<td>0.47</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>n/a</td>
<td>0.24</td>
</tr>
<tr>
<td>4-amino-2,6-dinitrotoluene</td>
<td>n/a</td>
<td>0.083</td>
</tr>
<tr>
<td>2-amino-4,6-dinitrotoluene</td>
<td>n/a</td>
<td>0.073</td>
</tr>
</tbody>
</table>

The modified 6890 GC to a GCxGC-FID has shown significant promise that it is capable of detecting most compounds of interest to defence, with a few explosives as exceptions due to their chemical activity in the valve, Table 26. Explosives such as TNT have a relatively high boiling point and they will “stick” to active surfaces such as stainless steel and any cold spots. During this research, TNT could only be detected in the valve above 0.59 µg/mL below this concentration no peak could be seen for TNT. Other higher boiling point explosives wrapped in the secondary dimension and were only detectable at high concentrations (above 5 µg/mL). This suggests that active surfaces are present in the valve and when a high enough concentration is analysed on the system, the active surfaces are filled, and some material is able to pass through and be detected. This research did explore the changing the temperature of the inlet to reduce break down of the lower volatility explosives successfully and the use of silcosteel coating to reduce the activity in the valve.
silcosteel coating provided a minor improvement but it still requires further investigation into any possible active sites on the diaphragm.

In comparison, all CWAs were detectable using the valve except agent T that was present but due to its high boiling point it wrapped in the secondary dimension and was not detectable at lower concentrations due to its affinity for active surfaces.

A GUI was developed using Matlab which enables non-scientific users to determine firstly if an explosive or CWA is present and secondly what agent/explosive is present as each one occupies its own separation space. If the method for analysis is modified or if the column lengths are reduced, the GUI model will need to be modified as it is based on bounding boxes around the area where the peak is detected for the analyte of interest (based on a minimum of 5 repeat spectra).

The next stage in building a field portable system was to take the lessons learnt during the production of the 6890 GCxGC-FID system and apply them to build a man-portable system. A prototype portable system was developed and tested in two stages.

The first stage was to make a small GC oven. This was completed using a small heater band wrapped around a circular piece of stainless steel that had been designed to house a column. This design was very successful and could analyse CWAs quickly with good peak shape.

Taking this design, a full GCxGC system was built. This was more problematic to build as there are two independent ovens for the GC columns and a secondary oven to house the valve so that is it is not cooled in between runs. When testing the system with a hydrocarbon standard of C7 to C30 only the first seven hydrocarbon species were detected. They were also offset from one another which would suggest that either the secondary oven was not providing an isothermal separation or that the flows were slightly unbalanced for the valve. The flows were investigated by modifying the primary and secondary flows but a better method could not be achieved, suggesting that there is a secondary effect taking place. The testing also demonstrated that cold spots must be present in the
system as only the first seven hydrocarbons were detected. A secondary heater was added to the valve region and this did slightly improve detection but for further improvements a redesign of the system would be required.

5.2.2 Future Recommendations

Further research should be undertaken to improve the man portable system for field analysis. Hydrogen fuel cells could be used to power the system and research should take place to determine if, similar to the Thermo EGIS defender, the system could run off a scrubbed air pump instead of helium. This would help to produce a fully man portable system that does not need mains power or a cylinder of helium. Engineers should also re-view the design to determine where weight could be removed to make the system much lighter. In order to address the cold spots, a thermal imaging camera should be used to record each of the chambers while the system is running to firstly determine where the cold spots are. Once they have been located, heating wire or cartridges should be used to increase the heating in those areas. If the cold spots cannot be located, a redesign of the system should take place where everything, columns and valve, are in one box. The system should run isothermally with different isothermal methods for different compounds of interest.
Annex 1

I. CWA calibration data FID

It should be noted that if numbers are missing in the tables, the agent could not be detected at that concentration for the repeat. This applies to all data in this section.

Table 27 Mustard (H) calibration data

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1989310</td>
<td>4970072</td>
<td>2195040</td>
<td>1570547</td>
<td>1398491</td>
<td>2424692</td>
<td>1458073</td>
<td>60</td>
</tr>
<tr>
<td>0.75</td>
<td>1756688</td>
<td>2237238</td>
<td>1515638</td>
<td>3550024</td>
<td>4619171</td>
<td>2735752</td>
<td>1313970</td>
<td>48</td>
</tr>
<tr>
<td>1.00</td>
<td>2664467</td>
<td>3446074</td>
<td>3413933</td>
<td>3240689</td>
<td>4508933</td>
<td>3454819</td>
<td>667722.3</td>
<td>19</td>
</tr>
<tr>
<td>2.50</td>
<td>10197362</td>
<td>9100383</td>
<td>10512311</td>
<td>10657700</td>
<td>10033828</td>
<td>10100317</td>
<td>611171.3</td>
<td>6</td>
</tr>
<tr>
<td>5.00</td>
<td>18337972</td>
<td>21637753</td>
<td>23988539</td>
<td>27155093</td>
<td>31792900</td>
<td>24582451</td>
<td>5163007</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 28 HN3 calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1712205</td>
<td>1650289</td>
<td>2564898</td>
<td>3500483</td>
<td>3536582</td>
<td>2592891</td>
<td>919125</td>
<td>35</td>
</tr>
<tr>
<td>0.75</td>
<td>3211495</td>
<td>3433294</td>
<td>3887844</td>
<td>5132944</td>
<td>6433392</td>
<td>4419794</td>
<td>1349009</td>
<td>31</td>
</tr>
<tr>
<td>1.00</td>
<td>4074278</td>
<td>5658000</td>
<td>4055751</td>
<td>6550478</td>
<td>6685367</td>
<td>5404775</td>
<td>1285181</td>
<td>24</td>
</tr>
<tr>
<td>2.50</td>
<td>14200744</td>
<td>14326077</td>
<td>14800745</td>
<td>14880850</td>
<td>14119352</td>
<td>14465554</td>
<td>351517</td>
<td>2</td>
</tr>
<tr>
<td>5.00</td>
<td>25536327</td>
<td>31050658</td>
<td>34378609</td>
<td>38985550</td>
<td>46116640</td>
<td>35213557</td>
<td>7822736</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 29 Mustard T (T) calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>289991</td>
<td>302359</td>
<td>136114</td>
<td>242821</td>
<td>92618</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>180548</td>
<td>232101</td>
<td>141296</td>
<td>151534</td>
<td>856476</td>
<td>632011</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>500849</td>
<td>778220</td>
<td>393808</td>
<td>134118</td>
<td>874938</td>
<td>456635</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>792876</td>
<td>769786</td>
<td>850191</td>
<td>979677</td>
<td>103791</td>
<td>385915</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>664257</td>
<td>211739</td>
<td>231667</td>
<td>285949</td>
<td>350870</td>
<td>233333</td>
<td>106352</td>
<td>46</td>
</tr>
</tbody>
</table>

Table 30 GB calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>208569</td>
<td>220964</td>
<td>214767</td>
<td>8765</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>596009</td>
<td>604413</td>
<td>333336</td>
<td>322954</td>
<td>157172</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>147015</td>
<td>175811</td>
<td>760886</td>
<td>117486</td>
<td>426145</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>123168</td>
<td>856420</td>
<td>103652</td>
<td>862891</td>
<td>173377</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>221805</td>
<td>200231</td>
<td>214312</td>
<td>220554</td>
<td>988877</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table 31 GD1 calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0</td>
<td>158409</td>
<td>158409</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>323274</td>
<td>297661</td>
<td>324728</td>
<td>294927</td>
<td>16047</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>700767</td>
<td>1115819</td>
<td>462104</td>
<td>841003</td>
<td>273149</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>752710</td>
<td>732800</td>
<td>3736104</td>
<td>556190</td>
<td>177077</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>804841</td>
<td>1246140</td>
<td>17872073</td>
<td>12841869</td>
<td>4017453</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>
Table 32 GD 2 Calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>241985</td>
<td>241985</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>379755</td>
<td>1062295</td>
<td>283388</td>
<td>212536</td>
<td>484494</td>
<td>391250</td>
<td>81</td>
</tr>
<tr>
<td>2.50</td>
<td>8902764</td>
<td>3206255</td>
<td>5370280</td>
<td>4535674</td>
<td>5503743</td>
<td>2434938</td>
<td>44</td>
</tr>
<tr>
<td>5.00</td>
<td>13742518</td>
<td>9459751</td>
<td>20795124</td>
<td>10129501</td>
<td>13531724</td>
<td>5194789</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 33 GA calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161790</td>
<td>153427</td>
<td>259147</td>
</tr>
<tr>
<td>1.00</td>
<td>662398</td>
<td>970784</td>
<td>904884</td>
<td>1397374</td>
<td>983860</td>
<td>305908</td>
<td>31</td>
</tr>
<tr>
<td>2.50</td>
<td>975509</td>
<td>2327504</td>
<td>1160824</td>
<td>1936808</td>
<td>1600161</td>
<td>639157</td>
<td>40</td>
</tr>
<tr>
<td>5.00</td>
<td>7381814</td>
<td>7616220</td>
<td>5687949</td>
<td>6147707</td>
<td>6708423</td>
<td>936896</td>
<td>14</td>
</tr>
</tbody>
</table>
Table 34 GF calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>308498</td>
<td>499805</td>
<td>157217</td>
<td>501021</td>
<td>366635</td>
<td>166363</td>
<td>45</td>
</tr>
<tr>
<td>0.75</td>
<td>2449538</td>
<td>987946</td>
<td>1439034</td>
<td>1618749</td>
<td>1623817</td>
<td>611097</td>
<td>38</td>
</tr>
<tr>
<td>1.00</td>
<td>3458999</td>
<td>3651717</td>
<td>2908067</td>
<td>3589229</td>
<td>3402003</td>
<td>338936</td>
<td>10</td>
</tr>
<tr>
<td>2.50</td>
<td>15956108</td>
<td>13825468</td>
<td>12621506</td>
<td>10621227</td>
<td>13256077</td>
<td>2233046</td>
<td>17</td>
</tr>
<tr>
<td>5.00</td>
<td>21841778</td>
<td>22541993</td>
<td>21202542</td>
<td>23069444</td>
<td>22163939</td>
<td>814644</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 35 VM calibration data

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>322588</td>
<td>159348</td>
<td>522320</td>
<td>334752</td>
<td>181791</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1383057</td>
<td>1649801</td>
<td>2088581</td>
<td>1648669</td>
<td>1692527</td>
<td>292335</td>
<td>17</td>
</tr>
<tr>
<td>1.00</td>
<td>1548233</td>
<td>3600388</td>
<td>3314587</td>
<td>2829499</td>
<td>2823177</td>
<td>907572</td>
<td>32</td>
</tr>
<tr>
<td>2.50</td>
<td>12295952</td>
<td>12704615</td>
<td>10991747</td>
<td>7866248</td>
<td>10964641</td>
<td>2190941</td>
<td>20</td>
</tr>
<tr>
<td>5.00</td>
<td>17093944</td>
<td>19155730</td>
<td>17274924</td>
<td>20083471</td>
<td>18402017</td>
<td>1457940</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 36 VX calibration data

<table>
<thead>
<tr>
<th>Conc (Vg/mL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
<th>Stdev</th>
<th>Rsd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td></td>
<td>105839</td>
<td></td>
<td>105839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>421471</td>
<td>1477120</td>
<td>1038892</td>
<td>982178</td>
<td>979915</td>
<td>270871</td>
<td>28</td>
</tr>
<tr>
<td>0.75</td>
<td>1081754</td>
<td>2931328</td>
<td>2334212</td>
<td>2345555</td>
<td>2173212</td>
<td>779240</td>
<td>36</td>
</tr>
<tr>
<td>1.00</td>
<td>2056507</td>
<td>5110474</td>
<td>4075658</td>
<td>4324246</td>
<td>3891721</td>
<td>1300549</td>
<td>33</td>
</tr>
<tr>
<td>2.50</td>
<td>20377073</td>
<td>17380672</td>
<td>15226068</td>
<td>12709923</td>
<td>16423434</td>
<td>3254300</td>
<td>20</td>
</tr>
<tr>
<td>5.00</td>
<td>23708446</td>
<td>24602699</td>
<td>23388587</td>
<td>25728724</td>
<td>24357114</td>
<td>1048879</td>
<td>4</td>
</tr>
</tbody>
</table>
II. GCxGC-TOF CWA Calibration Data

Table 37 GB calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2732486</td>
<td>3051328</td>
<td>4561112</td>
<td>3448309</td>
</tr>
<tr>
<td>0.75</td>
<td>2200604</td>
<td>3666620</td>
<td>767895</td>
<td>2211706</td>
</tr>
<tr>
<td>0.50</td>
<td>2071692</td>
<td>2037094</td>
<td>1153151</td>
<td>1753979</td>
</tr>
<tr>
<td>0.20</td>
<td>595986</td>
<td>934831</td>
<td>238906</td>
<td>589908</td>
</tr>
<tr>
<td>0.10</td>
<td>349071</td>
<td>125434</td>
<td></td>
<td>237253</td>
</tr>
<tr>
<td>0.05</td>
<td>60916</td>
<td>19349</td>
<td></td>
<td>40133</td>
</tr>
</tbody>
</table>

Table 38 GD peak 1 calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2783385</td>
<td>4858943</td>
<td>4123077</td>
<td>3921802</td>
</tr>
<tr>
<td>0.75</td>
<td>1474198</td>
<td>2160731</td>
<td>2431353</td>
<td>2022094</td>
</tr>
<tr>
<td>0.50</td>
<td>1289356</td>
<td>1587528</td>
<td>1732061</td>
<td>1536315</td>
</tr>
<tr>
<td>0.20</td>
<td>728422</td>
<td>558330</td>
<td>665179</td>
<td>650644</td>
</tr>
<tr>
<td>0.10</td>
<td>364482</td>
<td>246688</td>
<td></td>
<td>305585</td>
</tr>
<tr>
<td>0.05</td>
<td>151038</td>
<td>171475</td>
<td></td>
<td>161257</td>
</tr>
</tbody>
</table>

Table 39 GD peak 2 calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2162738</td>
<td>3798252</td>
<td>3515693</td>
<td>3158894</td>
</tr>
<tr>
<td>0.75</td>
<td>1433870</td>
<td>1711596</td>
<td>2531343</td>
<td>1892270</td>
</tr>
<tr>
<td>0.50</td>
<td>930023</td>
<td>1234279</td>
<td>1185439</td>
<td>1116580</td>
</tr>
<tr>
<td>0.20</td>
<td>577066</td>
<td>455785</td>
<td>388340</td>
<td>473730</td>
</tr>
<tr>
<td>0.10</td>
<td>281442</td>
<td>180426</td>
<td></td>
<td>230934</td>
</tr>
<tr>
<td>0.05</td>
<td>80603</td>
<td>136592</td>
<td></td>
<td>108598</td>
</tr>
</tbody>
</table>
Table 40 GA calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1379085</td>
<td>2878191</td>
<td>2274484</td>
<td>2177253</td>
</tr>
<tr>
<td>0.75</td>
<td>726470</td>
<td>980109</td>
<td>668675</td>
<td>791751</td>
</tr>
<tr>
<td>0.50</td>
<td>604960</td>
<td>706939</td>
<td>684958</td>
<td>665619</td>
</tr>
<tr>
<td>0.20</td>
<td>283482</td>
<td>239966</td>
<td>409229</td>
<td>310892</td>
</tr>
<tr>
<td>0.10</td>
<td>132602</td>
<td>174986</td>
<td>153794</td>
<td>153794</td>
</tr>
<tr>
<td>0.05</td>
<td>97963</td>
<td>126272</td>
<td>112118</td>
<td>20017</td>
</tr>
</tbody>
</table>

Table 41 GF calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>5658733</td>
<td>6633578</td>
<td>6127021</td>
<td>6139777</td>
</tr>
<tr>
<td>0.75</td>
<td>3382826</td>
<td>4836892</td>
<td>4736347</td>
<td>4318688</td>
</tr>
<tr>
<td>0.50</td>
<td>2036708</td>
<td>3426543</td>
<td>2451937</td>
<td>2638396</td>
</tr>
<tr>
<td>0.20</td>
<td>729461</td>
<td>1006511</td>
<td>1374803</td>
<td>1036925</td>
</tr>
<tr>
<td>0.10</td>
<td>361072</td>
<td>238846</td>
<td>299959</td>
<td>86427</td>
</tr>
<tr>
<td>0.05</td>
<td>136950</td>
<td>150699</td>
<td>143825</td>
<td>9722</td>
</tr>
</tbody>
</table>

Table 42 VM calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>636097</td>
<td>978820</td>
<td>903024</td>
<td>839314</td>
</tr>
<tr>
<td>0.75</td>
<td>309151</td>
<td>507387</td>
<td>696048</td>
<td>504195</td>
</tr>
<tr>
<td>0.50</td>
<td>233727</td>
<td>310733</td>
<td>382790</td>
<td>309083</td>
</tr>
<tr>
<td>0.20</td>
<td>99759</td>
<td>55145</td>
<td>92138</td>
<td>82347</td>
</tr>
<tr>
<td>0.10</td>
<td>55464</td>
<td>7500</td>
<td>31482</td>
<td>33916</td>
</tr>
<tr>
<td>0.05</td>
<td>14748</td>
<td>3616</td>
<td>9182</td>
<td>7872</td>
</tr>
</tbody>
</table>
Table 43 VX calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th></th>
<th></th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>963574</td>
<td>1519889</td>
<td>1388170</td>
<td>1290544</td>
<td>290723</td>
<td>23</td>
</tr>
<tr>
<td>0.75</td>
<td>721694</td>
<td>864916</td>
<td>825008</td>
<td>803873</td>
<td>73913</td>
<td>9</td>
</tr>
<tr>
<td>0.50</td>
<td>556459</td>
<td>650913</td>
<td>979577</td>
<td>728983</td>
<td>222100</td>
<td>30</td>
</tr>
<tr>
<td>0.20</td>
<td>147256</td>
<td>180605</td>
<td>34974</td>
<td>120945</td>
<td>76297</td>
<td>63</td>
</tr>
<tr>
<td>0.10</td>
<td>41284</td>
<td>52192</td>
<td>46738</td>
<td>7713</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>16715</td>
<td>10233</td>
<td>13474</td>
<td>4583</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Table 44 Mustard Calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th></th>
<th></th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1.00</td>
<td>4824294</td>
<td>4205734</td>
<td>3364057</td>
<td>2751485</td>
<td>2159964</td>
<td>3461107</td>
</tr>
<tr>
<td>0.75</td>
<td>346863</td>
<td>2566022</td>
<td>2440129</td>
<td>1978491</td>
<td>1707818</td>
<td>2432265</td>
</tr>
<tr>
<td>0.50</td>
<td>2161008</td>
<td>2036115</td>
<td>1665898</td>
<td>1376050</td>
<td>1057738</td>
<td>1659362</td>
</tr>
<tr>
<td>0.20</td>
<td>922125</td>
<td>746116</td>
<td>689715</td>
<td>549593</td>
<td>282276</td>
<td>637965</td>
</tr>
<tr>
<td>0.10</td>
<td>374371</td>
<td>226793</td>
<td>193378</td>
<td>204664</td>
<td>135370</td>
<td>226915</td>
</tr>
</tbody>
</table>

Table 45 HN3 calibration

<table>
<thead>
<tr>
<th>Conc (µg/mL)</th>
<th>Repeats</th>
<th></th>
<th></th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Relative sd (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1.00</td>
<td>365567</td>
<td>460195</td>
<td>336595</td>
<td>326951</td>
<td>254547</td>
<td>348771</td>
</tr>
<tr>
<td>0.75</td>
<td>294258</td>
<td>225965</td>
<td>248329</td>
<td>208705</td>
<td>167404</td>
<td>228932</td>
</tr>
<tr>
<td>0.50</td>
<td>182094</td>
<td>150870</td>
<td>172346</td>
<td>157741</td>
<td>129704</td>
<td>158551</td>
</tr>
<tr>
<td>0.20</td>
<td>705021</td>
<td>804769</td>
<td>708142</td>
<td>606866</td>
<td>348901</td>
<td>634740</td>
</tr>
<tr>
<td>0.10</td>
<td>313650</td>
<td>254346</td>
<td>227411</td>
<td>209483</td>
<td>174739</td>
<td>235926</td>
</tr>
<tr>
<td>Conc (µg/mL)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>Average</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1.00</td>
<td>734829</td>
<td>613892</td>
<td>628859</td>
<td>520475</td>
<td>514197</td>
<td>602450</td>
</tr>
<tr>
<td>0.75</td>
<td>581356</td>
<td>443022</td>
<td>440566</td>
<td>397761</td>
<td>320318</td>
<td>436605</td>
</tr>
<tr>
<td>0.50</td>
<td>330290</td>
<td>261357</td>
<td>301820</td>
<td>249964</td>
<td>224245</td>
<td>273535</td>
</tr>
<tr>
<td>0.20</td>
<td>151250</td>
<td>97777</td>
<td>122366</td>
<td>136686</td>
<td>77352</td>
<td>117086</td>
</tr>
</tbody>
</table>
III. GCxGC-TOF Matrix Chromatograms

Figure 56 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 57 AV fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 58 LWO spiked with a CWA nerve and blister agent standard at 2 µg/mL.

Figure 59 Gasoline Spiked with a CWA nerve and blister agent standard at 2 µg/mL.
Figure 60 Swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 61 Swab of inside an oven spiked with CWA standard of nerve agents
Figure 62 Swab of Clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 63 Aerosol sample from Porton Down spiked with a CWA nerve and blister agent standard at 2 µg/mL
IV. CWA GCxGC-FID Matrix analysis

Figure 64 Aviation Fuel spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 65 A swab of clothing spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 66 Diesel spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 67 Gasoline spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 68 A swab of a hotel room spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 69 A swab of the inside of an oven spiked with a CWA nerve and blister agent standard at 2 µg/mL
Figure 70 Light weight oil used for weapons spiked with a CWA nerve and blister agent standard at 2 µg/mL

Figure 71 Aerosol sample from PTN range spiked with a CWA nerve and blister agent standard at 2 µg/mL
Annex 2

Figure 72 GB calibration

Figure 73 GD peak 1 calibration
Figure 74 GD peak 2 calibration

Figure 75 GA calibration
Figure 76 H calibration

![Graph for H calibration](image)

Figure 77 GF calibration

![Graph for GF calibration](image)

Figure 78 VM calibration

![Graph for VM calibration](image)

Figure 79 VX calibration

![Graph for VX calibration](image)
I. Explosive Calibration Data

Table 47 2-NT Calibration data

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.03E+08</td>
<td>1.04E+08</td>
<td>1.57E+08</td>
<td>121181344</td>
<td>31346024</td>
<td>26</td>
</tr>
<tr>
<td>30.00</td>
<td>91266887</td>
<td>96576412</td>
<td>87298484</td>
<td>91713928</td>
<td>4655091</td>
<td>5</td>
</tr>
<tr>
<td>25.00</td>
<td>63076865</td>
<td>57921060</td>
<td>76590995</td>
<td>65862973</td>
<td>9641754</td>
<td>15</td>
</tr>
<tr>
<td>20.00</td>
<td>57072172</td>
<td>57715414</td>
<td>53343041</td>
<td>56043542</td>
<td>2360714</td>
<td>4</td>
</tr>
<tr>
<td>15.00</td>
<td>47751118</td>
<td>42864122</td>
<td>44053271</td>
<td>44889504</td>
<td>2548558</td>
<td>6</td>
</tr>
<tr>
<td>10.00</td>
<td>31479194</td>
<td>27027044</td>
<td>26487818</td>
<td>28331352</td>
<td>2739411</td>
<td>10</td>
</tr>
<tr>
<td>5.00</td>
<td>14059899</td>
<td>14805800</td>
<td>15668944</td>
<td>14844881</td>
<td>805234</td>
<td>5</td>
</tr>
<tr>
<td>2.50</td>
<td>6976879</td>
<td>5287640</td>
<td>6501059</td>
<td>6255193</td>
<td>871045</td>
<td>14</td>
</tr>
<tr>
<td>1.00</td>
<td>2866566</td>
<td>2445786</td>
<td>2891146</td>
<td>2734499</td>
<td>250335</td>
<td>9</td>
</tr>
<tr>
<td>0.75</td>
<td>3000760</td>
<td>2682479</td>
<td>2713664</td>
<td>2798968</td>
<td>175452</td>
<td>6</td>
</tr>
<tr>
<td>0.50</td>
<td>2789400</td>
<td>2830427</td>
<td>2135101</td>
<td>2584976</td>
<td>390143</td>
<td>15</td>
</tr>
</tbody>
</table>

Figure 80 2-NT calibration

\[
y = 2,708,702.1149x + 925,210.4814 \\
R^2 = 0.9954
\]
Table 48 3-NT calibration

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.28E+08</td>
<td>1.27E+08</td>
<td>1.9E+08</td>
<td>148447012</td>
<td>35822248</td>
<td>24</td>
</tr>
<tr>
<td>30.00</td>
<td>1.08E+08</td>
<td>1.13E+08</td>
<td>1.04E+08</td>
<td>108296174</td>
<td>4669772</td>
<td>4</td>
</tr>
<tr>
<td>25.00</td>
<td>76087842</td>
<td>71314698</td>
<td>90821711</td>
<td>79408084</td>
<td>10168525</td>
<td>13</td>
</tr>
<tr>
<td>20.00</td>
<td>70521840</td>
<td>68618463</td>
<td>63936972</td>
<td>67692425</td>
<td>3388699</td>
<td>5</td>
</tr>
<tr>
<td>15.00</td>
<td>56292216</td>
<td>52295980</td>
<td>53045781</td>
<td>53877992</td>
<td>2124125</td>
<td>4</td>
</tr>
<tr>
<td>10.00</td>
<td>36882208</td>
<td>32703206</td>
<td>32746540</td>
<td>34110651</td>
<td>2400336</td>
<td>7</td>
</tr>
<tr>
<td>5.00</td>
<td>16647637</td>
<td>18159100</td>
<td>18069869</td>
<td>17625535</td>
<td>848059</td>
<td>5</td>
</tr>
<tr>
<td>2.50</td>
<td>8140225</td>
<td>6417211</td>
<td>7739687</td>
<td>7432374</td>
<td>901679</td>
<td>12</td>
</tr>
<tr>
<td>1.00</td>
<td>3091903</td>
<td>2981573</td>
<td>3266141</td>
<td>3113206</td>
<td>143475</td>
<td>5</td>
</tr>
<tr>
<td>0.75</td>
<td>3246847</td>
<td>2953673</td>
<td>3177415</td>
<td>3125978</td>
<td>153206</td>
<td>5</td>
</tr>
<tr>
<td>0.50</td>
<td>3499209</td>
<td>3214444</td>
<td>2479604</td>
<td>3064419</td>
<td>526098</td>
<td>17</td>
</tr>
</tbody>
</table>

Figure 81 3-NT calibration

![Graph showing the calibration curve with the equation y = 3,273,846.2389x + 929,047.4946 and R² = 0.9956.]
Table 49 4-NT Calibration

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.35E+08</td>
<td>1.32E+08</td>
<td>1.91E+08</td>
<td>152539289</td>
<td>33072175</td>
<td>22</td>
</tr>
<tr>
<td>30.00</td>
<td>1.08E+08</td>
<td>1.13E+08</td>
<td>1.05E+08</td>
<td>108629982</td>
<td>4024364</td>
<td>4</td>
</tr>
<tr>
<td>25.00</td>
<td>77509017</td>
<td>72604788</td>
<td>91213840</td>
<td>80442548</td>
<td>9645124</td>
<td>12</td>
</tr>
<tr>
<td>20.00</td>
<td>68341044</td>
<td>70206076</td>
<td>64207840</td>
<td>67584987</td>
<td>3069760</td>
<td>5</td>
</tr>
<tr>
<td>15.00</td>
<td>56132970</td>
<td>52120158</td>
<td>54185229</td>
<td>54146119</td>
<td>2006692</td>
<td>4</td>
</tr>
<tr>
<td>10.00</td>
<td>36481827</td>
<td>32639487</td>
<td>32189388</td>
<td>33770234</td>
<td>2359068</td>
<td>7</td>
</tr>
<tr>
<td>5.00</td>
<td>16600795</td>
<td>17477895</td>
<td>17318385</td>
<td>17318385</td>
<td>652622</td>
<td>4</td>
</tr>
<tr>
<td>2.50</td>
<td>8121516</td>
<td>6478202</td>
<td>7341934</td>
<td>7313884</td>
<td>822016</td>
<td>11</td>
</tr>
<tr>
<td>1.00</td>
<td>3170637</td>
<td>2903737</td>
<td>3222103</td>
<td>3098826</td>
<td>170900</td>
<td>6</td>
</tr>
<tr>
<td>0.75</td>
<td>3163157</td>
<td>2982738</td>
<td>3255024</td>
<td>3133640</td>
<td>138522</td>
<td>4</td>
</tr>
<tr>
<td>0.50</td>
<td>3606659</td>
<td>3416528</td>
<td>2832038</td>
<td>3285075</td>
<td>403695</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 82 4-NT Calibration

\[
\text{y} = 3,298,835.2836x + 779,064.8296
\]

\[R^2 = 0.9962\]
Table 50 1,3-DNB Calibration

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.4E+08</td>
<td>1.36E+08</td>
<td>1.96E+08</td>
<td>157348433</td>
<td>33112165</td>
<td>21</td>
</tr>
<tr>
<td>30.00</td>
<td>1.11E+08</td>
<td>1.17E+08</td>
<td>1.08E+08</td>
<td>112095917</td>
<td>4141725</td>
<td>4</td>
</tr>
<tr>
<td>25.00</td>
<td>80511245</td>
<td>75059051</td>
<td>93765436</td>
<td>83111911</td>
<td>9620541</td>
<td>12</td>
</tr>
<tr>
<td>20.00</td>
<td>70927152</td>
<td>71067364</td>
<td>66714310</td>
<td>69569609</td>
<td>2473755</td>
<td>4</td>
</tr>
<tr>
<td>15.00</td>
<td>56888795</td>
<td>53650213</td>
<td>54564412</td>
<td>55034473</td>
<td>1669677</td>
<td>3</td>
</tr>
<tr>
<td>10.00</td>
<td>37037384</td>
<td>33020586</td>
<td>33433707</td>
<td>34497226</td>
<td>2209518</td>
<td>6</td>
</tr>
<tr>
<td>5.00</td>
<td>16713184</td>
<td>17728060</td>
<td>18133086</td>
<td>17524777</td>
<td>731453</td>
<td>9</td>
</tr>
<tr>
<td>2.50</td>
<td>8053962</td>
<td>6712326</td>
<td>7521875</td>
<td>7429388</td>
<td>675583</td>
<td>9</td>
</tr>
<tr>
<td>1.00</td>
<td>3193346</td>
<td>2957330</td>
<td>3270163</td>
<td>3140280</td>
<td>163028</td>
<td>5</td>
</tr>
<tr>
<td>0.75</td>
<td>3324458</td>
<td>3020099</td>
<td>3215229</td>
<td>3186595</td>
<td>154187</td>
<td>5</td>
</tr>
<tr>
<td>0.50</td>
<td>3448904</td>
<td>3444075</td>
<td>2847321</td>
<td>3246767</td>
<td>345939</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 83 1,3-DNB calibration

Table 51 2,6-DNT Calibration

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.13E+08</td>
<td>1.16E+08</td>
<td>1.34E+08</td>
<td>120872191</td>
<td>11106111</td>
<td>9</td>
</tr>
<tr>
<td>30.00</td>
<td>78386800</td>
<td>77359910</td>
<td>73673665</td>
<td>76473458</td>
<td>2478459</td>
<td>3</td>
</tr>
<tr>
<td>25.00</td>
<td>64421815</td>
<td>60328121</td>
<td>63124523</td>
<td>62624820</td>
<td>2092095</td>
<td>3</td>
</tr>
<tr>
<td>20.00</td>
<td>52281054</td>
<td>49042531</td>
<td>51889645</td>
<td>51071077</td>
<td>1767639</td>
<td>3</td>
</tr>
<tr>
<td>15.00</td>
<td>40998011</td>
<td>41898001</td>
<td>40690857</td>
<td>41195623</td>
<td>627365</td>
<td>2</td>
</tr>
<tr>
<td>10.00</td>
<td>30144257</td>
<td>27636221</td>
<td>26647789</td>
<td>28142756</td>
<td>1802430</td>
<td>6</td>
</tr>
<tr>
<td>5.00</td>
<td>15657777</td>
<td>16698665</td>
<td>15532955</td>
<td>15963132</td>
<td>640040</td>
<td>4</td>
</tr>
<tr>
<td>2.50</td>
<td>8274242</td>
<td>10075839</td>
<td>10258876</td>
<td>9536319</td>
<td>1096816</td>
<td>12</td>
</tr>
</tbody>
</table>

\[y = 3,401,589.4271x + 607,140.8359 \]
\[R^2 = 0.9970 \]
Figure 84 2,6-DNT Calibration

Table 52 2,4-DNT Calibration

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.35E+08</td>
<td>1.33E+08</td>
<td>1.58E+08</td>
<td>141899763</td>
<td>13817363</td>
<td>10</td>
</tr>
<tr>
<td>30.00</td>
<td>89827458</td>
<td>91065846</td>
<td>87911451</td>
<td>89601585</td>
<td>1589282</td>
<td>2</td>
</tr>
<tr>
<td>25.00</td>
<td>70901954</td>
<td>67777844</td>
<td>74041145</td>
<td>70906981</td>
<td>3131654</td>
<td>4</td>
</tr>
<tr>
<td>20.00</td>
<td>57248717</td>
<td>57582425</td>
<td>56538895</td>
<td>57123346</td>
<td>532942</td>
<td>1</td>
</tr>
<tr>
<td>15.00</td>
<td>45186069</td>
<td>44707974</td>
<td>44529981</td>
<td>44808008</td>
<td>339290</td>
<td>1</td>
</tr>
<tr>
<td>10.00</td>
<td>29449420</td>
<td>27927448</td>
<td>26827145</td>
<td>28068004</td>
<td>1316776</td>
<td>5</td>
</tr>
<tr>
<td>5.00</td>
<td>13347633</td>
<td>14849982</td>
<td>14550411</td>
<td>14249342</td>
<td>795138</td>
<td>6</td>
</tr>
<tr>
<td>2.50</td>
<td>6652462</td>
<td>5883942</td>
<td>6995517</td>
<td>6510640</td>
<td>569197</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure 85 2,4 – DNT Calibration

Table 53 1,3,5-TNB

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>1.26E+08</td>
<td>1.28E+08</td>
<td>1.45E+08</td>
<td>133124149</td>
<td>10624844</td>
<td>8</td>
</tr>
<tr>
<td>30.00</td>
<td>82436376</td>
<td>83868780</td>
<td>78965301</td>
<td>81756819</td>
<td>2521384</td>
<td>3</td>
</tr>
<tr>
<td>25.00</td>
<td>67352196</td>
<td>66651796</td>
<td>66760065</td>
<td>66921352</td>
<td>377028</td>
<td>1</td>
</tr>
<tr>
<td>20.00</td>
<td>52663102</td>
<td>53044519</td>
<td>53697108</td>
<td>53134910</td>
<td>522896</td>
<td>1</td>
</tr>
<tr>
<td>15.00</td>
<td>40279103</td>
<td>40547457</td>
<td>41758773</td>
<td>40861778</td>
<td>788323</td>
<td>2</td>
</tr>
<tr>
<td>10.00</td>
<td>27968606</td>
<td>25676212</td>
<td>25460627</td>
<td>26368482</td>
<td>1389934</td>
<td>5</td>
</tr>
<tr>
<td>5.00</td>
<td>13534985</td>
<td>13481226</td>
<td>13731772</td>
<td>13582661</td>
<td>131902</td>
<td>1</td>
</tr>
<tr>
<td>2.50</td>
<td>7376013</td>
<td>5771784</td>
<td>6375132</td>
<td>6507643</td>
<td>810282</td>
<td>12</td>
</tr>
</tbody>
</table>

\[y = 3E+06x + 215273 \]

\[R^2 = 0.9986 \]
Figure 86 1,3,5-TNB

Table 54 2,4,6-TNT

<table>
<thead>
<tr>
<th>Concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>mean</th>
<th>SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>77839214</td>
<td>83548059</td>
<td>89116886</td>
<td>83501386</td>
<td>5638981</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>51237548</td>
<td>49817452</td>
<td>47924662</td>
<td>49659887</td>
<td>1662054</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>44086774</td>
<td>45032660</td>
<td>39501826</td>
<td>42873753</td>
<td>2958225</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>36045886</td>
<td>32661581</td>
<td>34328834</td>
<td>34345434</td>
<td>1692214</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>26734790</td>
<td>28139133</td>
<td>28209773</td>
<td>27694565</td>
<td>831940</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>20682781</td>
<td>20388762</td>
<td>20747875</td>
<td>20606473</td>
<td>191332</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>11695179</td>
<td>12183434</td>
<td>11939307</td>
<td>345248</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Figure 87 2,4,6-TNT Calibration

\[y = 1,573,123.6677x + 3,826,662.3812 \]

\[R^2 = 0.9985 \]
II. Matlab Code R2015a

function varargout = duitest8(varargin)
% DUITEST8 MATLAB code for duitest8.fig
% DUITEST8, by itself, creates a new DUITEST8 or raises the existing
% singleton.*.
% H = DUITEST8 returns the handle to a new DUITEST8 or the handle to
% the existing singleton*.
% DUITEST8('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DUITEST8.M with the given input
% arguments.
% DUITEST8('Property','Value',...) creates a new DUITEST8 or raises
% the
% existing singleton*. Starting from the left, property value pairs
% are
% applied to the GUI before duitest8_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
% application
% stop. All inputs are passed to duitest8_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help duitest8

% Last Modified by GUIDE v2.5 20-Jul-2018 14:08:27

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @duitest8_OpeningFcn, ...
 'gui_OutputFcn', @duitest8_OutputFcn, ...
 'gui_LayoutFcn', [], ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

format compact
dbstop if error
% End initialization code - DO NOT EDIT

% --- Executes just before duitest8 is made visible.
function duitest8_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to duitest8 (see VARARGIN)

% Choose default command line output for duitest8
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes duitest8 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = duitest8_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns listbox1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from listbox1

% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function [p] = FindCentroidLimit(c,x1,x2,y1,y2)
% Find where the point is between two limits in x and y.
xi = intersect(find(c(:,1) < x2),find(c(:,1) > x1));
yi = intersect(find(c(:,2) < y2),find(c(:,2) > y1));
p = intersect(xi,yi);

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% Imports the image.

% Prompts user for image using file extensions.
[filename,filepath] = uigetfile({'*.*';'*'.jpg';'*'.png';'*'.bmp'}, 'Search
Image To Be Displayed');
fullname=[filepath filename];

% Read the image.
ImageFile = imread(fullname);

%threshold = 0.5;

%graypic = rgb2gray(ImageFile);
%bwpic = im2bw(graypic,threshold);
%bwpic2 = imcomplement(bwpic);

ud = struct([]);
ud(1).ImageFile = ImageFile;
set(handles.figure1,'userdata',ud);

% Display the image.
axes(handles.axes2)
imagesc(ImageFile);

% clear axes scale
axis off

% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

% This is the image 'detect' button on the GUI.

ud = get(handles.figure1,'userdata');
ImageFile = ud(1).ImageFile;
clear ud
threshold=0.5
picture = (ImageFile);
graypic = rgb2gray(picture);

bwpic = im2bw(graypic,threshold);
bwpic2 = imcomplement(bwpic);

props = regionprops(bwpic2, 'centroid');
centroids = cat(1,props.Centroid);

xf = [120 125; 120 125; 310 315; 295 310; 360 365; 422 427; 660 663; 720 725];
yf = [1 9; 400 450; 35 45; 340 350; 200 244; 207 270; 340 350; 1 40];
nf = char('G agent','G agent','G agent','G agent','Blister','G agent','V
agent','V agent');
for i=1:size(xf,1)
 [p] = FindCentroidLimit(centroids,xf(i,1),xf(i,2),yf(i,1),yf(i,2));
 if isempty(p)
 thistext = ['Not Found ' strtrim(nf(i,:))];
 else
 thistext = ['Found ' strtrim(nf(i,:))];
 end
 if i==1
 mtext = thistext;
 else
 mtext = char(mtext,thistext);
 end
end
set(findobj('tag','listbox1'),'string',mtext,'value',1)

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% This is the image 'detect' button on the GUI.
ud = get(handles.figure1,'userdata');
ImageFile = ud(1).ImageFile;
clear ud
threshold=0.5
picture = (ImageFile);
graypic = rgb2gray(picture);
bwpic = im2bw(graypic,threshold);
bwpic2 = imcomplement(bwpic);
props = regionprops(bwpic2, 'centroid');
centroids = cat(1,props.Centroid);

xf = [120 125; 120 125;310 315;295 310;360 365;422 427;660 663;720 725];
yf = [1 9; 400 450;35 45;340 350;200 244;207 270;340 350;1 40];
nf = char('GB','GB','GA','GD','H','GF','VM','VX');

for i=1:size(xf,1)
 [p] = FindCentroidLimit(centroids,xf(i,1),xf(i,2),yf(i,1),yf(i,2));
 if isempty(p)
 thistext = ['Not Found ' strtrim(nf(i,:))];
 else
 thistext = ['Found ' strtrim(nf(i,:))];
 end
 if i==1
 mtext = thistext;
 else
 mtext = char(mtext,thistext);
 end
end
set(findobj('tag','listbox1'),'string',mtext,'value',1)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
III. CWA Matrices Chromatograms

Figure 88 Aviation fuel spiked with CWA

Figure 89 Swab of clothing spiked with CWA
Figure 90 Control swab spiked with CWA

Figure 91 Diesel spiked with CWA

Figure 92 Sahara dust sample spiked with explosives
Figure 93 Swab of a kitchen floor spiked with CWA

Figure 94 Hotel swab 1 spiked with CWA

Figure 95 Hotel swab 2 spiked with CWA
Figure 96 Light weight oil spiked with explosives

Figure 97 Porton Down aerosol sample spiked with CWA

Figure 98 Porton Down aerosol sample 2 spiked with CWA
Figure 99 OMD-90 spiked with CWA

Figure 100 Swab of the inside of an oven spiked with CWA

Figure 101 OX – 24 spiked with CWA
IV. Explosive Matrices Chromatograms

Figure 102 Aviation Fuel Spiked with 1 ppm of explosives

Figure 103 Diesel spiked with 1 ppm of explosives
Figure 104 Sahara dust sample spiked with 1 ppm of explosives

Figure 105 Gasoline spiked with 1 ppm of explosives
Figure 106 Swab sample from a Hotel with known interferents spiked with 1 ppm of explosives

Figure 107 Light weight oil – used on guns – spiked with 1 ppm of explosives

Figure 108 Porton range aerosol sample spike with 1 ppm of explosives
Figure 109 OX-24 spiked with 1 ppm of explosives
V. CWA Matrices with Secondary Heater

Figure 110 Diesel spiked with CWA standard of nerve agents

Figure 111 AV fuel spiked with CWA standard of nerve agents
Figure 112 LWO spiked with CWA standard of nerve agents

Figure 113 Gasoline Spiked with CWA standard of nerve agents
Figure 114 Swab of a hotel room spiked with CWA standard of nerve agents

Figure 115 Swab of inside an oven spiked with CWA standard of nerve agents
Figure 116 Swab of Clothing spiked with CWA standard of nerve agents

Figure 117 Aerosol sample from Porton Down spiked with CWA standard of nerve agents
Figure 118 Sahara Dust aerosol sample spiked with CWA standard of nerve agents
VI. Secondary Oven data with Explosives Spiked into Matrices

Figure 119 Diesel spiked with 8330 standard of explosives

Figure 120 AV fuel spiked with 8330 standard of explosives
Figure 121 LWO spiked with 8330 standard of explosives

Figure 122 Gasoline Spiked with 8330 standard of explosives
Figure 123 Swab of a hotel room spiked with 8330 standard of explosives

Figure 124 Perfume spiked with 8330 standard of explosives
Figure 125 Aerosol sample from Porton Down spiked with 8330 standard of explosives

Figure 126 Sahara Dust aerosol sample spiked with 8330 standard of explosives
Annex 3

I. GC Slave

GC Slave

#include <Wire.h>
#include <Adafruit_MAX31856.h> // thermocouple library

#define rx 0 // receiving pin
#define tx 1 // transmission pin
#define LED 2 // LED pin
#define H2 3 // heater output pin
#define SSR 4 // heater output pin
#define H1 5 // heater output pin
#define H4 6 // heater output pin
#define H3 9 // heater output pin
#define CS 10 // pin 10, chip select
#define DI 11 // pin 12, data out of Arduino
#define DO 12 // pin 12, data in to Arduino
#define CLK 13 // pin 13, clock
#define ID0 5 // binary identifier analog pin
#define ID1 6 // binary identifier analog pin
#define ID2 7 // binary identifier analog pin
#define maxPower 250 // maximum allowed power output
#define heaterNum 1 // number of heaters
#define transInterval 150 // interval between data transmission
#define calcInterval 1000 // milliseconds between calculations
#define pulsePeriod 1024 // milliseconds between SSR output pulses
#define packet 12 // number of bytes in the message stream
#define tempOffset 16 // temperature offset for serial transmission
#define inletPower 30 // PWM power (of 255)
#define outletPower 240 // PWM power (of 255)

byte myByte = 0; // the byte that this slave reads
byte valvePower = 0; // logging requested power going to the valve
bool dataIsGood = LOW; // flag if checksum is good
byte dataByte[packet] = {0}; // define array of output bytes
byte checksum = 0; // for calculating checksum of transmission
long lastSerial = 0; // time stamp of last good serial communication
long lastRead = 0; // time stamp of last temperature read
long lastCalc = 0; // time stamp of last power calculation
long nextPulse = 0; // time stamp of next SSR pulse
long onTime = 0; // time that the SSR has been on
long offTime = 0; // time that the SSR will turn off
bool pulse = LOW; // SSR pulse state
int ID = 1; // calculated in setup() but always starts from 1
int setPoint = 0; // setPoint for this device
int lastSP = 0; // storing the last setpoint
int error = 0; // for passing on errors
float temperature[heaterNum]; // array of sensor temperatures, in °C
float lastTemp[heaterNum]; // array of previous sensor temperatures, in °C
float power[4]; // array of power outputs
float deltaTemp[heaterNum]; // rate of change of temperature

Adafruit_MAX31856 max = Adafruit_MAX31856(CS);

// ***

void setup() {
 Serial.begin(115200); // serial comm baud rate
 max.begin(); // start thermocouple board
 pinMode(rx, OUTPUT); // serial transmit pin
 pinMode(tx, INPUT); // serial transmit pin
 pinMode(LED, OUTPUT); // for LED blink
 pinMode(SSR, OUTPUT); // for SSR output
 pinMode(H1, OUTPUT); // for PWM output
 pinMode(H2, OUTPUT); // for PWM output
 pinMode(H3, OUTPUT); // for PWM output
 pinMode(H4, OUTPUT); // for PWM output
 max.setThermocoupleType(MAX31856_TCTYPE_K); // set thermocouple type

 // which slave am I? determined by binary input on analog inputs
 if (analogRead(ID0) > 512) { ID += 1; } // add 1
 if (analogRead(ID1) > 512) { ID += 2; } // add 2
 if (analogRead(ID2) > 512) { ID += 4; } // add 4

 blink_LED(ID, 50, 250); // blink the LED to confirm slave ID
 myByte = 2 * ID - 1; // calculate which byte to read based on ID
 read_temperature(); // read the thermocouple temperature/error

 while (millis() <= 2500) {} // wait until timer is at 2 seconds
 nextPulse = 5000; // update nextPulse (not needed?)
 lastSerial = millis();
}

// ***

void loop() {
 // check for incoming serial data
 receive_serial(); // always check for incoming data

 // compute and resend data
if (dataIsGood){
 compute_data();
 transmit_serial();
 dataIsGood = LOW;
 blink_LED(1, 10, 0);
} if (millis() - lastRead >= calcInterval/2){
 read_temperature();
 lastRead = millis();
}

// calculate power factor
if (millis() - lastCalc >= calcInterval){
 lastCalc = millis();
 read_temperature();
 if (ID == 1) {
 valve_power();
 } else if (ID == 2) {
 heater_power();
 } else if (ID == 3 || ID == 4) {
 column_power();
 } else if (ID == 5) {
 transfer_power();
 }
 set_pulse();
 set_outputs();
// check for errors
if (millis() - lastSerial > 2500){
 setPoint = 0;
 digitalWrite(LED, HIGH);
 delay(10);
}

void receive_serial() {
 if (Serial.available() >= packet){
 delay(1);
 checksum = 0;
 dataIsGood = LOW;
 for (int i = 0; i < packet; i++){
 dataByte[i] = Serial.read();
 checksum = checksum ^ dataByte[i];
 }
 dataByte[packet-1] = Serial.read();
 // compare checksums & check first byte is a header
 if (dataByte[packet-1] == checksum && dataByte[0] == 1){
 // if serial has been received and is good
 // read setPoint and update the data
 // send serial data
 // clear flag
 // one blink, 10ms on, 0ms off
 // read temperature twice per calculation
 // read temperatures
 // update last calculation time
 // calculate power factor
 // only change power at set times
 // update last calculation time
 // read temperatures
 // calculate valve power factor
 // calculate valve heater power factor
 // calculate column power factor
 // calculate valve power factor
 // set SSR pulse length
 // write the output power
 // turn off heaters
 // set LED high
 // this delay seems to help!
 // clear the checksum
 // clear data good flag
 // loop through each byte
 // store to array of inputs
 // calculate checksum on the fly
 // read in the last byte
 }
 }
}
lastSerial = millis(); // log the last time good data was received

dataIsGood = HIGH; // flag it as good data to process

while (Serial.available() > 0){ // if there is still data in the buffer
 byte trash = Serial.read(); // read it to trash
}

// **
void compute_data() {
 byte statusByte = dataByte[myByte]; // read my status byte to variable
 if (statusByte == 5){ // status 5: confirms that this is incoming data
 if (!error){ // assuming there are no internal errors
 setPoint = dataByte[myByte+1] + tempOffset; // update the local setPoint from my data byte
 if (setPoint){ // if heating is on (i.e. setPoint not zero)
 int p = map(power[0], 0, maxPower, 0, 100); // convert power to percentage
 dataByte[myByte] = 128 + p; // send power percentage
 } else { dataByte[myByte] = 6; } // return an acknowledgement but heater is off
 } else { dataByte[myByte] = error; } // return an error code
 } else { dataByte[myByte] = 21; } // return error that the incoming data is not correct

 dataByte[myByte+1] = temperature[0] - tempOffset; // always return live temperature data

 // read valve temperature for
 if (dataByte[1] >= 128){ // read the power requested from the valve block slave
 valvePower = map(dataByte[1], 128, 228, 0, maxPower); // convert to one byte power factor
 valvePower = constrain(valvePower, 0, maxPower);
 } else { dataBytes[6] = error; }

 error = 0; // clear errors in case they are fixed
}

// **
void transmit_serial() {
 checksum = 0; // clear the checksum
 for (int i = 0; i < packet - 1; i++){
 Serial.write(dataByte[i]); // send serial data
checksum = checksum ^ dataByte[i]; // calculate checksum on the fly
}
dataByte[packet-1] = checksum; // last byte is the checksum
Serial.write(dataByte[packet-1]); // send the last byte

// **
void read_temperature(){
 if (ID == 5) { // for the transfer lines
 if (setPoint == 0)
 temperature[0] = 32;
 else
 temperature[0] = constrain(setPoint, 22, 254); // just return the setpoint
 delay(50);
 }
 else {
 for (byte h = 0; h < heaterNum; h++){ // for each of the heaters
 temperature[h] = max.readThermocoupleTemperature(); // read in live temperature
 if (temperature[h] <= 5) { error = 38; }
 }
 int fault = max.readFault(); // check for thermocouple errors
 if (fault) {
 if (fault & MAX31856_FAULT_CJRange) { error = 30; }
 if (fault & MAX31856_FAULT_TCRange) { error = 31; }
 if (fault & MAX31856_FAULT_CJHigh) { error = 32; }
 if (fault & MAX31856_FAULT_CJLow) { error = 33; }
 if (fault & MAX31856_FAULT_TCHigh) { error = 34; }
 if (fault & MAX31856_FAULT_TCLow) { error = 35; }
 if (fault & MAX31856_FAULT_OVUV) { error = 36; }
 if (fault & MAX31856_FAULT_OPEN) { error = 37; }
 }
 }

 // **
void column_power(){
 for (byte h = 0; h < heaterNum; h++){ // for each of the heaters
 if (setPoint){ // if heaters are turned on
 float tempToSet = setPoint - temperature[h]; // distance to setPoint
 float deltaTemp = temperature[h] - lastTemp[h]; // change in temperature
 float deltaSP = setPoint - lastSP; // change in setpoint
 double newPower = 0;
 double oldPower = power[h]; // more than 1° below setpoint
 if (tempToSet > 1){
 newPower = power[h] + 0.5 * tempToSet + 70 * (deltaSP - deltaTemp);
 }
 // less than 0.5° above setpoint
 else if (tempToSet > -0.5){

newPower = power[h] + 0.5 * tempToSet + 50 * (deltaSP - deltaTemp);
}

void valve_power(){
 for (byte h = 0; h < heaterNum; h++) {
 if (setPoint) {
 float tempToSet = setPoint - temperature[h]; // distance to setPoint
 float deltaTemp = temperature[h] - lastTemp[h]; // change in temperature
 double newPower = 0;

 // newPower = [oldPower] + [temp to setPoint] - [change in temp] + [change in setpoint]
 // ** // more than 10° below setpoint
 if (tempToSet > 10) {
 newPower = power[h] + 1.0 * tempToSet - 200 * deltaTemp;
 }
 // ** // less than 0.5° above setpoint
 else if (tempToSet > -0.5) {
 newPower = power[h] + 0.25 * tempToSet - 60 * deltaTemp;
 }
 // ** // more than 0.5° above setpoint
 else {
 newPower = power[h] + 8.0 * tempToSet - 20 * deltaTemp;
 }
 power[h] = constrain(newPower, 0, maxPower); // limit power output

 }
 else { // if heaters are turned off
 power[h] = 0; // set power to zero
 lastSP = 250; // set lastSP high to stop initial spike
 }
 }
}

power[h] = 0; // set power to zero
lastSP = 250; // set lastSP high to stop
initial spike
}
lastTemp[h] = temperature[h]; // backup last temperature
}

// ***
void heater_power(){
 for (byte h = 0; h < heaterNum; h++){
 if (setPoint){
 // if heaters are turned on
 float tempToSet = setPoint - temperature[h]; // distance to setPoint
 float deltaTemp = temperature[h] - lastTemp[h]; // change in temperature
 double newPower = 0;
 // newPower = [oldPower] + [temp to setPoint] - [change in temp] + [change in setpoint]
 // *** // more than 10° below setpoint
 if (tempToSet > 10){
 newPower = power[h] + 2.0 * tempToSet - 120 * deltaTemp;
 }
 // *** // less than 0.5° above setpoint
 else if (tempToSet > -0.5){
 newPower = power[h] + 1 * tempToSet - 60 * deltaTemp;
 }
 // *** // more than 0.5° above setpoint
 else {
 newPower = power[h] + 8.0 * tempToSet - 20 * deltaTemp;
 }
 power[h] = constrain(newPower, 0, valvePower); // limit power to that of the valve
 if (deltaTemp < 0.1 && power[h] == 100){ // check for slow temp change
 blink_LED(1, 100, 0);
 // error = 40; // set heater error
 }
 }
 else { // if heaters are turned off
 power[h] = 0; // set power to zero
 lastSP = 250; // set lastSP high to stop
 initial spike
 lastTemp[h] = temperature[h]; // backup last temperature
 }
 // ***
 }
}

void transfer_power(){
 if (setPoint){
 // if heaters are turned on
 power[0] = map(setPoint, 32, 270, 0, 178); // line between col2 and detector
 }
}
void set_pulse(){
 // set SSR output
 if (millis() >= nextPulse){
 onTime = millis();
 // when time for next pulse
 // note the time that SSR turned on
 offTime = onTime + (4 * power[0]);
 // calculate the off time
 if (power[0] > 1){
 // if the power is more than 1
 // (1 is too low!)
 pulse = HIGH;
 } else{
 pulse = LOW;
 }
 nextPulse += pulsePeriod;
 // using += in case of delays elsewhere in code
 } else{
 if (millis() >= offTime){
 SSR
 // if it is time to turn off
 pulse = LOW;
 } else{
 digitalWrite(LED, LOW);
 // set the SSR pin LOW
 }
 }
}

void set_outputs(){
 // set PWM power
 analogWrite(H1, power[0]);
 // set the power output
 analogWrite(H2, power[1]);
 // set the power output
 analogWrite(H3, power[2]);
 // set the power output
 analogWrite(H4, power[3]);
 // set the power output
 // set SSR output
 digitalWrite(SSR, pulse);
 // set the SSR pin LOW
 // set LEDs?
}

void blink_LED(int count, int on, int off) {
 while(count > 0){
 count--;
 digitalWrite(LED, HIGH);
 delay(on);
 digitalWrite(LED, LOW);
 delay(off);
 }
II. GC Master

/***/

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hd</td>
<td>S1</td>
<td>D1</td>
<td>S2</td>
<td>D2</td>
<td>S3</td>
<td>D3</td>
<td>S4</td>
<td>D4</td>
<td>S5</td>
<td>D5</td>
<td>Ck</td>
</tr>
</tbody>
</table>

Header byte:
01 Start of data packet

Status byte:
05 Enquiry - master sent data
06 Acknowledge - slave response, but heaters are off
07 Error - slave returning an error
21 Negative - acknowledge receipt but data is incorrect
30 Cold Junction Range Fault
31 Thermocouple Range Fault
32 Cold Junction High Fault
33 Cold Junction Low Fault
34 Thermocouple High Fault
35 Thermocouple Low Fault
36 Over/Under Voltage Fault
37 Thermocouple Open Fault
99 heater too slow responding
128-228 Power - if heating, this is the % power being applied (-128)

***/

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_ILI9340.h>
#include <Fonts/FreeSans9pt7b.h>
#if defined(__SAM3X8E__)
 #undef __FlashStringHelper::F(string_literal)
 #define F(string_literal) string_literal
#endif
#define rx 0 // receiving pin
#define tx 1 // transmission pin
#define encA 2 // encoder A pin
#define encB 3 // encoder B pin
#define button 4 // jog dial button pin
#define relay 5 // relay output
#define fan 6 // PWM fan output
#define shtdwn 7 // stop button input
#define _rst 8 // define screen pins
#define _dc 9 // define screen pins
#define _cs 10 // define screen pins
#define _mosi 11 // define screen pins
#define _miso 12 // define screen pins
#define _sclk 13 // define screen pins
#define packet 12 // number of bytes in the message
#define slaves 5 // number of slave devices in the system
#define tMax 265 // maximum temperature system can read
#define tMin 40 // minimum temperature system can read
```c
#define screenInt 1000 // interval between screen prints
#define transInt 500 // interval between sending data
#define tempOffset 16 // temperature offset for serial transmission

Adafruit_ILI9340 tft = Adafruit_ILI9340(_cs, _dc, _rst);

#define RED 0xF800
#define BLUE 0x041F
#define BLUE2 0x020   // setpoints are darker
#define WHITE 0xFFFF
#define GREY1 0x31A6
#define GREY2 0x9492
#define GREY3 0xD69A
#define BLACK 0x0000
#define gYmin 40   // top of the graph area
#define gYmax 170 // bottom of the graph area
#define gXmin 30   // left of the graph area
#define gXmax 225 // right of the graph area

const int line[2 * slaves] = {0x8400, 0x0400, 0x0410, 0xA014, 0x8180, // setpoints are darker
                             0xFFE0, 0x07E0, 0x07FF, 0xFA1F, 0xFB00}; // temperatures are brighter
char* slaveName[slaves] = {"Valve Body", "Valve Heater", "Primary Column", "Secondary Column", "Transfer Lines"};

int menu0[] = {170, 220, 250, 200}; // valve target, modulator heater, modulator time, transfer lines
int menu1[] = {50, 240, 20}; // primary start & end, secondary offset
int menu2[] = {40, 1, 0}; // ramp rate, hold time, run time

bool dataIsGood = LOW; // flag if checksum is good
bool printOnce = LOW; // for printing backgrounds only one
bool lastButton = LOW; // flagging last button state
bool buttonPress = LOW; // flagging when button is pressed
bool jogTurn = LOW; // flagging movement in the jog
dial/button
bool heatersOn = LOW; // flag for relay controlling power
bool heatersReady = LOW; // flag for heaters at temperature
int dataByte[packet]; // define array of output bytes
int targetSetpoint[slaves]; // ramping target setpoint
int startSetpoint[slaves]; // ramping start setpoint
int slaveSetpoint[slaves]; // array of live slave setpoint
int slaveStatus[slaves]; // array of slave returned status
int slaveTemp[slaves]; // array of slave returned temperatures
int lastTemp[slaves]; // array of last slave temperatures (for graph only)
int lastSet[slaves]; // array of last setpoints (for graph only)
int slavePower[slaves]; // array of slave power percentages
byte checksum = 0; // for calculating checksum of transmission
int errorCount = 0; // for counting errors
```
int column = 0; // graph column
int menu = 0; // program number
int jog = 0; // multi-use variable when the jog dial is turned
int editVal = 0; // flag for editing a value
int lineNo = 0; // line number for printing menus
int overTemp = 0;

long startTime = 0; // start time of GC run
long runTime = 0; // calculated run time
long estRunTime = 0; // estimated run time from settings
long lastTransmit = 0; // time stamp for last transmission
long lastSerial = 0; // time since last good serial communication
long lastScreen = 0; // time of last screen print
long lastGraphic = 0; // time of last graphic display
long buttonText = 0; // counting long button presses
float rampRate = 0; // degs per minute to ramp

void setup() {

 Serial.begin(115200); // serial comm baud rate
 pinMode(rx, OUTPUT); // serial transmit pin
 pinMode(tx, INPUT); // serial transmit pin
 pinMode(encA, INPUT_PULLUP); // rotary signal A
 pinMode(encB, INPUT_PULLUP); // rotary signal B
 pinMode(button, INPUT_PULLUP); // button pin
 pinMode(shtdwn, INPUT_PULLUP); // stop button pin
 pinMode(relay, OUTPUT); // relay driving pin
 pinMode(fan, OUTPUT); // fan driving pin

tft.begin();
tft.setRotation(2); // rotate screen by 180°
tft.fillScreen(BLACK); // print black background
print_heading(String(F("System Startup"), 0);
delay(250);
tft.setFont();
tft.setTextSize(1);
tft.setCursor(0, 36);

// check all slaves are present
int systemReady = 0; // system ready flag
tft.print((char)16); tft.println(F(" Starting DSTL GC concept program"));
tft.print((char)16); tft.println(F(" Testing serial"));
while (!dataIsGood) { // keep transmitting until all slaves are ready
 prepare_serial(); // prepare serial data to be sent
 transmit_serial(); // transmit serial
 tft.print(F(" .")); // print a dot to indicate transmission
 delay(250); // short delay
 receive_serial();
}

compute_data(); // read what was returned and look for errors
dataIsGood = LOW; // clear flag
tft.println(F(".")); // one last dot and new line

for (int sl = 0; sl < slaves; sl++){ // for each slave (slaves are zero indexed)
 tft.print(" ");
 tft.print(slaveName[sl]); // print the slave name
 if (slaveStatus[sl] == 5){ // serial not picked up
 tft.println(F(" is missing"));
 } else if (slaveStatus[sl] == 6){ // serial returned good data
 tft.println(F(" is ready")); systemReady++;
 } else { // anything else is an error
 tft.print(F(" returned error "));
 tft.println(slaveStatus[sl]);
 }
 delay(250);
 tft.print((char)16); tft.print(F(" "));
 tft.print(systemReady); tft.print(F("/"));
 tft.print(slaves); tft.println(F(" ready"));
 tft.print((char)16); tft.println(F(" Testing fan"));
 digitalWrite(fan, HIGH); // turn on fan
delay(1000);
 tft.print((char)16); tft.print(F(" Starting GUI"));
 digitalWrite(fan, LOW); // turn off fan
delay(1000);
 tft.setTextWrap(false);
}

delay(250);
for (int sl = 0; sl < slaves; sl++){ // for each slave (slaves are zero indexed)
 tft.print(" ");
 tft.print(slaveName[sl]); // print the slave name
 if (slaveStatus[sl] == 5){ // serial not picked up
 tft.println(F(" is missing"));
 } else if (slaveStatus[sl] == 6){ // serial returned good data
 tft.println(F(" is ready")); systemReady++;
 } else { // anything else is an error
 tft.print(F(" returned error "));
 tft.println(slaveStatus[sl]);
 }
 delay(250);
 tft.print((char)16); tft.print(F(" "));
 tft.print(systemReady); tft.print(F("/"));
 tft.print(slaves); tft.println(F(" ready"));
 tft.print((char)16); tft.println(F(" Testing fan"));
 digitalWrite(fan, HIGH); // turn on fan
delay(1000);
 tft.print((char)16); tft.print(F(" Starting GUI"));
 digitalWrite(fan, LOW); // turn off fan
delay(1000);
 tft.setTextWrap(false);
}

// ***
void loop() {

 // ********* if heaters are off
 if (heatersOn) { // if heaters are on
 digitalWrite(relay, HIGH); // turn on the relay
 } else { // for heaters off
 clear_setpoints(); // clear all setpoints
 digitalWrite(relay, LOW); // turn off relay
 }

 // ********* set fan speed
 fan_control(); // should the fan be on

 // ********* read input buttons
 read_button(); // read digital buttons

 // ********* check for incoming serial data
receive_serial(); // check and read incoming serial

if (dataIsGood){ // if serial has been received and is good
 compute_data(); // read what was returned
 and look for errors
 dataIsGood = LOW; // clear flag
}

// ********** send serial data at set interval
if (millis() - lastTransmit >= transInt){ // at set transmission intervals
 lastTransmit = millis(); // update last transmission
 prepare_serial(); // prepare serial data to be sent
 transmit_serial(); // transmit serial
}

// ********** print live temperatures
if (millis() - lastScreen >= screenInt){ // at set screen intervals
 lastScreen = millis(); // update screen interval
 print_temps(); // print bottom temperatures
}

// ********** check for errors
if (millis() - lastSerial > 5000 || errorCount > 10){ // if no serial for more than 5 seconds
 if (menu != 99){ // move to error program
 menu = 99; // for printing new screen
 printOnce = HIGH;
 }
}

errorCount--; // reduce error count
errorCount = constrain(errorCount, 0, 128); // constrain error count

switch (menu) {
 case 0:
 // ********** PRINT ONCE (0)*************
 if (printOnce){ // print this once
 lineNo = 50; // set row starting point
 print_heading(F("Preheat & Modulation"), 1); // clear background and print heading line
 print_line(F("Valve Body"), menu0[0], 1, "C", WHITE);
 print_line(F("Valve Heater"), menu0[1], 1, "C", WHITE);
 print_line(F("Modulator Pulse"), menu0[2], 0, "ms", WHITE);
 print_line(F("Transfer Lines"), menu0[3], 1, "C", WHITE);
 print_button(170, lineNo, 70, F("NEXT"), 1);
 tft.fillTriangle(230, lineNo-2, 230, lineNo-10, 234, lineNo-6, WHITE);
 }

 // ********** MENU 0 ***********************
 }
heatersOn = LOW; // make sure heaters are off
printOnce = LOW; // clear print once
jog = 0; // set pointer to first line
editVal = -1; // not editing a line
jogTurn = HIGH; // force jog turn high

// *************** SCROLLING THROUGH MENU (0)***************
if (editVal < 0){ // if NOT editing a line
 if (jogTurn){ // if dial has been turned
 jog = constrain(jog, 0, 4); // limit jog to number of options on a menu
 lineNo = jog * 25 + 50; // calculate line number
 tft.fillRect(5, 40, 5, 130, BLACK); // clear old triangles
 tft.fillTriangle(5, lineNo-2, 5, lineNo-10, 9, lineNo-6, WHITE); // draw a pointer
 jogTurn = LOW; // clear the change flag
 }
}
if (buttonPress){ // if the button has been pressed
 editVal = jog; // move to edit setpoint
 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED); // draw red box
 if (editVal >= 4){ // if moving on to next menu
 menu++; // move to next menu
 printOnce = HIGH; // set printonce
 } else { // move menu setting to jog
 jog = menu0[editVal];
 buttonPress = LOW; // clear button press
 jogTurn = HIGH; // force setpoint to be re-written
 }
}

// **************** EDITING VALUES (0)*****************
else { // so if edit val is greater than 0
 lineNo = editVal * 25 + 50; // calculate line number
 if (jogTurn){ // if dial has been turned
 if (editVal == 2) { // limit pulse width
 jog = constrain(jog, 50, 750);
 } else { // limit jog to max/min temps
 jog = constrain(jog, tMin, tMax - 15);
 }
 }
 print_value(lineNo, jog, WHITE); // update the value edited
 jogTurn = LOW; // clear the change flag
}
if (buttonPress){ // if the button has been pressed
menu0[editVal] = jog; // update value from jog

 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, BLACK); // draw black box
 jog = editVal;
 editVal = -1; // clear editVal
 buttonPress = LOW; // clear button press
 }
}

break;

// ********************** MENU 1 *******************
// ********************** PRINT ONCE (1)******************

 case 1:
 // **************** PRINT ONCE (1)******************
 if (printOnce){ // print this once
 lineNo = 50; // set row starting point
 print_heading(F("Column Temperatures"), 1); // clear background and print heading line
 print_line(F("Primary Initial"), menu1[0], 1, "C", WHITE);
 print_line(F("Primary Final"), menu1[1], 1, "C", WHITE);
 print_line(F("Secondary Offset"), menu1[2], 1, "C", WHITE);
 print_button(170, lineNo, 70, F(" BACK"), 1);
 tft.fillRect(180, lineNo-2, 180, lineNo-10, 176, lineNo-6, WHITE);
 lineNo += 25;
 print_button(170, lineNo, 70, F("NEXT"), 1);
 tft.fillRect(180, lineNo-2, 180, lineNo-10, 176, lineNo-6, WHITE);
 heatersOn = LOW; // make sure heaters are off
 printOnce = LOW; // clear print once
 jog = 0; // set pointer to first line
 editVal = -1; // not editing a line
 jogTurn = HIGH; // force jog turn high
 }
 // ************** SCROLLING THROUGH MENU (1)************
 if (editVal < 0){ // if NOT editing a line
 if (jogTurn){ // if dial has been turned
 jog = constrain(jog, 0, 4); // limit jog to number of options on a menu
 lineNo = jog * 25 + 50; // calculate line number
 tft.fillRect(5, 40, 5, 130, BLACK); // clear old triangles
 tft.fillRect(5, lineNo-2, 5, lineNo-10, 9, lineNo-6, WHITE); // draw a pointer
 jogTurn = LOW; // clear the change flag
 }
 if (buttonPress){ // if the button has been pressed
 editVal = jog; // move to edit setpoint
 }
 }
 if (editVal == 3){ // if moving on to next menu
menu--; // move back a menu
printOnce = HIGH; // set printonce
}
else if (editVal >= 4) {
 menu++; // move to next menu
 printOnce = HIGH; // set printonce
}
else { jog = menu1[editVal]; } // move menu setting to
jog
buttonPress = LOW; // clear button press
jogTurn = HIGH; // force setpoint to be re-written
}

// ********************** EDITING VALUES (1)*****************
else { // so if edit val is
greater than 0
 lineNo = editVal * 25 + 50; // calculate line
number
 if (jogTurn) { // if dial has been
turned
 if (editVal == 2) { jog = constrain(jog, 0, 50); } // limit jog to column
offset
 else { jog = constrain(jog, tMin, tMax-15); } // limit jog to max/min
temps
 print_value(lineNo, jog, WHITE); // update the value
being edited
 jogTurn = LOW; // clear the change
flag
 }
 if (buttonPress) { // if the button has
been pressed
 menu1[editVal] = jog; // update value from
jog
 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, BLACK); // draw black box
jog = editVal;
eeditVal = -1; // clear editVal
buttonPress = LOW; // clear button press
}
break;

// ********************** MENU 2 ***********************
case 2: // ********************** PRINT ONCE (2)*****************
if (printOnce) { // print this once
 lineNo = 50; // set row starting
point
print_heading(F("Ramp Settings"), 1); // clear background and
print heading line
print_line(F("Ramp Rate"), menu2[0], 1, "/m", WHITE);
print_line(F("Hold Time"), menu2[1], 0, "min", WHITE);
print_line(F("Est. Runtime"), menu2[2], 0, "min", GREY2);
print_button(170, lineNo, 70, F(" BACK"), 1);
tft.fillTriangle(180, lineNo-2, 180, lineNo-10, 176, lineNo-6, WHITE);
lineNo += 25;
print_button(170, lineNo, 70, F("NEXT"), 1);
tft.fillTriangle(229, lineNo-2, 229, lineNo-10, 233, lineNo-6, WHITE);
heatersOn = LOW; // make sure heaters are off
printOnce = LOW; // clear print once
jog = 0; // set pointer to first line
editVal = -1; // not editing a line
jogTurn = HIGH; // force jog turn high
}

// **************** SCROLLING THROUGH MENU (2)************
if (editVal < 0){ // if NOT editing a line
 if (jogTurn){ // if dial has been turned
 jog = constrain(jog, 0, 4); // limit jog to number of options on a menu
 lineNo = jog * 25 + 50; // calculate line number
 tft.fillRect(5, 40, 5, 130, BLACK); // clear old triangles
 tft.fillTriangle(5, lineNo-2, 5, lineNo-10, 9, lineNo-6, WHITE); // draw a pointer
 jogTurn = LOW; // clear the change flag
 } else if (buttonPress && (jog != 2)){ // if the button has been pressed (except option 2)
 editVal = jog; // move to edit setpoint
 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED); // draw red box
 if (editVal == 3){ // if moving on to next menu
 menu--; // move back a menu
 printOnce = HIGH; // set printonce
 } else if (editVal >= 4){
 menu++; // move to next menu
 printOnce = HIGH; // set printonce
 } else {
 jog = menu2[editVal]; }
 jogTurn = HIGH; // force setpoint to be re-written
 } else if (buttonPress){ // so in when selecting an uniditable item
 jogTurn = HIGH; // fake a jog turn
 jog--; // move arrow to previous item
 buttonPress = LOW; // clear button press
 }
}

// **************** EDITING VALUES (2)*****************
else { // so if edit val is greater than 0
lineNo = editVal * 25 + 50; // calculate line number
if (jogTurn){ // if dial has been turned
 jog = constrain(jog, 1, 60); // limit jog to ramp rate and hold time
 print_value(lineNo, jog, WHITE); // update the value being edited
 jogTurn = LOW; // clear the change flag
}
if (buttonPress){ // if the button has been pressed
 menu2[editVal] = jog; // save the value from jog
 if (menu2[2] >= 60){ // for long or no runtime
 print_value(100, menu2[2], RED); // print the runtime in RED!
 } else {
 print_value(100, menu2[2], GREY2); // print the run time
 }
}
tft.drawRoundRect(170, lineNo-16, 70, 21, 4, BLACK); // draw black box over red edit box
 jog = editVal;
 editVal = -1; // clear editVal
 buttonPress = LOW; // clear button press
}
break;

// ********************************_MENU 3 ***
// ********************************_PRINT ONCE (3)**********************************
case 3:
if (printOnce){ // print this once
 lineNo = 50; // set row starting point
 print_heading(F("Preheating - NOT READY"), 1); // clear background and print heading line
 print_button(20, lineNo, 70, F(" BACK"), 1);
tft.fillTriangle(29, lineNo-2, 29, lineNo-10, 25, lineNo-6, WHITE);
 print_button(170, lineNo, 70, F("START"), 0);
 tft.fillTriangle(5, 48, 5, 40, 9, 44, WHITE); // draw a pointer
 // move menu setting to setpoints
 slaveSetpoint[0] = menu0[0]; // injector setpoint
 slaveSetpoint[1] = menu0[1]; // modulator setpoint
 slaveSetpoint[2] = menu1[0]; // primary column
 slaveSetpoint[3] = menu1[0] + menu1[2]; // secondary column
 (calc from offset)
 slaveSetpoint[4] = menu0[3]; // transfer lines (not sure how this will work yet)
targetSetpoint[2] = menu1[1]; // primary column ramp

(calc from offset)

startSetpoint[2] = slaveSetpoint[2]; // note the start setpoint of primary

startSetpoint[3] = slaveSetpoint[3]; // note the start setpoint of secondary

thermometer_background(); // print the thermometer background

// turn on power relay <<<<<<

heatersOn = HIGH; // set heaters on flag

printOnce = LOW; // clear print once

jog = 0; // set pointer to first line

editVal = -1; // not editing a line

jogTurn = HIGH; // force jog turn high

heatersReady = HIGH; // <<<<<<<< for testing only

)

if (millis() - lastGraphic >= screenInt){ // at set intervals

lastGraphic = millis(); // update last graph

print

print_thermometer(); // print the live thermometer

}

// ****************** SCROLLING THROUGH MENU (3)************

if (buttonPress){ // if the button has been pressed

 tft.drawRoundRect(20, 34, 70, 21, 4, RED); // draw red box

 menu--; // move back a menu

 printOnce = HIGH; // set printOnce flag

 buttonPress = LOW; // clear button press

}

// check setpoints are at temperature, if so set heatersReady flag

if (heatersReady){

 menu++;

 printOnce = HIGH;

}

break;

// ****************** SCROLLING THROUGH MENU (4)************

// *************** MENU 4 ***********************

case 4:

// *************** PRINT ONCE (4)***********************

if (printOnce){ // print this once

 print_heading(F("Heaters are READY"), 0); // clear background and print heading line

 print_button(170, lineNo, 70, F("START"), 1);

 printOnce = LOW;

}

// *************** SCROLLING THROUGH MENU (4)************
if (jogTurn) {
 jog = constrain(jog, 0, 1); // limit jog to number of options on a menu
 int col = 5 + (jog * 150); // arrow moves by column
 tft.fillRect(5, 40, 5, 9, BLACK); // clear old triangles
 tft.fillRect(155, 40, 5, 9, BLACK); // clear old triangles
 tft.fillTriangle(col, 48, col, 40, col+4, 44, WHITE); // draw a pointer
 jogTurn = LOW; // clear the change flag
}
if (buttonPress) { // if the button has been pressed (except option 2)
 editVal = jog; // move to edit setpoint
 if (editVal == 0) {
 // if moving on to next menu
 tft.drawRoundRect(20, 34, 70, 21, 4, RED); // draw blue box
 menu = 2; // move back 2 menus
 printOnce = HIGH; // set printOnce flag
 } else if (editVal >= 1) {
 tft.drawRoundRect(170, lineNo-16, 70, 21, 4, RED); // draw RED box
 menu++; // move to next menu
 printOnce = HIGH; // set printOnce
 }
 buttonPress = LOW; // clear button press
}
if ((millis() - lastGraphic >= screenInt) { // at set intervals
 lastGraphic = millis(); // update last graph
 print print_thermometer(); // print the live thermometer
}
break;

// *********************** MENU 5 ***********************
case 5:
 // *********************** PRINT ONCE (5)***********************
 if (printOnce) { // print this once
 lineNo = 50; // set row starting point
 print_heading(F("Temperature Ramp"), 1); // clear background and print heading line
 rampRate = 60000 / menu2[0]; // calculate ramp rate
 estRunTime = (60000 * menu2[1]) + (rampRate * (menu1[1] - menu1[0])); // calculate run time
 graph_background(); // print the graph background
 heatersOn = HIGH; // check that heaters on is enabled
 printOnce = LOW; // clear print once
 column = gXmin + 1; // set first column
 startTime = millis(); // note the start time
}
// update setpoints
runtime = millis() - startTime; // convert to time
for (int sl = 2; sl <= 3; sl++) { // for each of the two heaters
 if (slaveSetpoint[sl] >= targetSetpoint[sl]) { // at the top of the ramp
 slaveSetpoint[sl] = targetSetpoint[sl]; // hold at temp....
 } else { // else keep ramping
 slaveSetpoint[sl] = startSetpoint[sl] + (runtime / rampRate);
 }
}
if (runtime >= estRunTime) { // if run time has reached the end
 print_graph(); // print the graph
 menu++; // move to next stage
 printOnce = HIGH; // print new screen
}
if (millis() - buttonTime >= 3000 && buttonPress) {
 print_graph(); // print the graph
 menu++; // move to next stage
 printOnce = HIGH; // print new screen
 buttonPress = LOW; // clear button press before next screen
}
if (millis() - lastGraphic >= screenInt) { // at set intervals
 lastGraphic = millis(); // update last graph
 print time
 print_graph(); // print the graph
 print_serial();
}
break;

// ************************** MENU 6 **************************
case 6:
 // **************** PRINT ONCE (6) ****************
 if (printOnce) { // print this once
 print_heading(F("Ramp Complete"), 0); // clear background and print heading line
 print_button(75, 75, 90, F("Repeat"), 1); // to repeat with same settings
 print_button(75, 100, 90, F("Change"), 1); // to change the settings
 print_button(75, 125, 90, F("Shutdown"), 1); // to shut down the system
 // move menu setting to setpoints
 slaveSetpoint[2] = menu1[0]; // primary column
 slaveSetpoint[3] = menu1[0] + menu1[2]; // secondary column
 (calc from offet)
 heatersOn = HIGH; // heaters should still be on
 digitalWrite(fan, HIGH); // turn on fan
 tft.fillTriangle(64, 73, 64, 65, 68, 69, WHITE); // draw a pointer
 jog = 0; // set jog to 0
 lineNo = 75; // preset line number
printOnce = LOW; // clear print once

// ******************* SCROLLING THROUGH MENU (6)*************
if (jogTurn){ // if dial has been turned
 jog = constrain(jog, 0, 2); // limit jog to number of options on a menu
 lineNo = jog * 25 + 75; // calculate line number
 tft.fillRect(64, 65, 5, 60, BLACK); // clear old triangles
 tft.fillTriangle(64, lineNo-2, 64, lineNo-10, 68, lineNo-6, WHITE); // draw a pointer
 jogTurn = LOW; // clear the change flag
 if (buttonPress){ // if the button has been pressed
 tft.drawRoundRect(75, lineNo-16, 90, 21, 4, RED); // draw red box
 if (jog == 0){ menu = 3; } // menu 3 for same settings
 else if (jog == 1){ menu = 0; } // menu 0 to change
 else { menu++; } // move on to shutdown
 printOnce = HIGH; // set printonce
 buttonPress = LOW; // clear button press
 }
}
break;

// ******************* MENU "default" *********************
default:
// ******************* PRINT ONCE (d)**********************
if (printOnce){ // print this once
 print_heading(F("Shutdown"), 1); // clear background and print heading line
 tft.setCursor(4, 50); // set position
 tft.print("System is cooling"); // print line
 clear_setpoints(); // set all setpoints
 low_thermometer_background(); // print the thermometer background
 digitalWrite(fan, HIGH); // turn on fan
 printOnce = LOW; // clear print once
}
if (millis() - buttonTime >= 3000 && buttonPress){ // to escape from shutdown
 menu = 0; // move to menu 0
 printOnce = HIGH; // print new screen
 buttonPress = LOW; // clear button press before next screen
}
if (millis() - lastGraphic >= screenInt){ // at set intervals
 lastGraphic = millis(); // update last graph print
 print_thermometer(); // print the live thermometer
}
}
break;
} /* *************** END OF MENU ***************/

// **

void receive_serial() {
 if (Serial.available() >= packet) { // if there is enough
 data int the buffer
 delay(1); // wait in case of extra
 bytes
 checksum = 0; // clear the checksum
 dataIsGood = LOW; // clear data good flag
 for (int i = 0; i < packet-1; i++) {
 dataByte[i] = Serial.read(); // store to array of
 inputs
 checksum = checksum ^ dataByte[i]; // calculate checksum on
 the fly
 }
 dataByte[packet-1] = Serial.read(); // read in the last byte
 // compare checksums && check first byte is a header
 if (dataByte[packet-1] == checksum && dataByte[0] == 1) {
 dataIsGood = HIGH; // flag it as good data
 to process
 lastSerial = millis(); // log the last time good
 data was received
 }
 while (Serial.available() > 0) { // if there is still data
 in the buffer
 char trash = Serial.read(); // read it to trash
 }
 }
}

// **

void compute_data() {
 for (int sl = 0; sl < slaves; sl++) { // for each slave (slaves
 are zero indexed)
 slaveStatus[sl] = dataByte[2 * sl + 1]; // move slave status from
 serial to local variable
 if (slaveStatus[sl] == 6) { // slave is present but
 heating is off
 slaveTemp[sl] = dataByte[2 * sl + 2] + tempOffset; // then update the live
 temperature (note temperature offset)
 slavePower[sl] = 0; // note that slave is off
 }
 else if (slaveStatus[sl] == 5) { // no slave[sl] found
 slaveTemp[sl] = 0;
 } // slave was not found
 and so set nul valve
 }
 else if (slaveStatus[sl] >= 128 && slaveStatus[sl] <= 228) { // slave returned a
 power factor
 temperature (note temperature offset)
slavePower[sl] = slaveStatus[sl] - 128; // update the slaves
power percentage
}
else { // if slave status
 slaveTemp[sl] = 0; // slave was not found
 and so set null value
 errorCount++; // increment error count
}
}

// **
void prepare_serial() {
dataByte[0] = 1; // set byte zero to be a header
for (int sl = 0; sl < slaves; sl++) { // for each slave
 int b = 2 + (2 * sl); // calculate the serial byte number
 dataByte[b - 1] = 5; // set status
 if (heatersOn) { dataByte[b] = slaveSetpoint[sl] - tempOffset; } // if the heaters are on transmit the setpoint
 else { dataByte[b] = tempOffset; } // otherwise transmit zero (note offset!)
}
// dataByte[11] is the checksum byte
}

// **
void transmit_serial() {
 checksum = 0; // clear the checksum
 for (int i = 0; i < packet - 1; i++) { // for header and all data bytes
 Serial.write(dataByte[i]); // send serial data
 checksum = checksum ^ dataByte[i]; // calculate checksum on the fly
 }
dataByte[packet - 1] = checksum; // last byte is the checksum
 Serial.write(dataByte[packet - 1]); // send the last byte
}

// **
void print_serial() {
 Serial.println(); // start new line
 Serial.print(runTime); // print time
 for (int sl = 2; sl <= 3; sl++) { // for each slave
 Serial.print("\t"); Serial.print(slaveTemp[sl]); // print temperature
 }
 Serial.println(); // start new line
}

// **
void temp_background() { // print the temperature background
tft.setFont();
tft.setTextSize(1);
for (int sl = 0; sl < slaves; sl++) { // for each slave
 int row = 27 * sl + 186; // calculate a TFT line position

 // print slave name
 tft.setTextColor(WHITE, BLACK);
 tft.drawLine(0, row, 239, row, GREY1); // draw grey line
 tft.setCursor(4, row + 4); // set first line
 tft.print(slaveName[sl]); // print slave name
 // print "setpoint" and "temperature"
 tft.drawLine(115, row + 7, 147, row + 7, line[sl]); // draw setpoint line
 tft.drawLine(115, row + 19, 129, row + 19, line[sl + 5]); // draw temperature line
 tft.setCursor(152, row + 4); // top right
 tft.setTextColor(GREY3, BLACK); // change to grey on black
 tft.print(F("Setpoint")); // print "setpoint"
 tft.setCursor(134, row + 16); // bottom right
 tft.print(F("Temperature")); // print "Temperature"
}

// ***
void print_temps() {
 tft.setFont(); // set basic font
 tft.setTextSize(1); // make it small
 /*
 debug printing
 tft.setTextColor(WHITE, BLACK);
 tft.setCursor(4, 165);
 tft.print(errorCount);
 tft.print(" ");
 */
 for (int sl = 0; sl < slaves; sl++) { // for each slave
 int row = 27 * sl + 186; // calculate a row offset
 tft.setCursor(4, row + 16); // move position to below slave name
 if (slaveStatus[sl] == 6) { // 6 acknowledges receipt only
 tft.setTextColor(GREY2, BLACK); // grey on black for heaters off
 tft.print(F("Power Off ")); } // print "heaters off"
 else if (slaveStatus[sl] >= 128 && slaveStatus[sl] <= 228) {
 tft.setTextColor(BLUE, BLACK); // blue on black for power %
 tft.print(F("Power ")); tft.print(slavePower[sl]); tft.print(F("/ "));
 } else if (slaveStatus[sl] == 5) { // when serial is returned un-seen
 tft.setTextColor(RED, BLACK); // red on black for no slave
 tft.print(F("Offline ")); }
 else {
 tft.setTextColor(RED, BLACK); // red on black for error
 tft.print(F("Error ")); tft.print(slaveStatus[sl]); tft.print(F(" ")); } // print slave setpoint and temperature
 tft.setTextColor(WHITE, BLACK); // white on black for numbers
 tft.setCursor(206, row + 4); // move to top right
if (!heatersOn) { // if the heaters are off
tft.print(F("Off")); } // print off
else { // else print the temp
 tft.print(slaveSetpoint[sl]); tft.print((char)247); tft.print("C");
tft.setCursor(206, row + 16); // move to bottom right
 tft.print(slaveTemp[sl]); tft.print((char)247); tft.print("C");
 read_button(); // read button mid print
 if (buttonPress || jogTurn) { // and exit print if something has changed
 break;
 }
}

void thermometer_background() { // print the temperature
 background
 tft.setFont(); // set basic font
 tft.setTextSize(1); // make it small
 for (int sl = 0; sl < slaves; sl++) { // for each slave
 int col = 16 + sl*47; // the column ID for each thermometer
 int sp = 67 + map(slaveSetpoint[sl], 0, 255, 98, 0); // calculate setpoint level
 tft.setTextColor(line[sl]); // setpoint colour
 if (slaveSetpoint[sl]) { // if the setpoint is greater than 0
 tft.setCursor(col + 12, sp - 3); // set cursor setpoint
 tft.print(slaveSetpoint[sl]); // print the setpoint
 tft.drawLine(col-2, sp, col+8, sp, line[sl]); // draw a setpoint line
 }
 tft.fillRect(col+2, 67, 3, top-67, BLACK); // clear thermometer
tft.drawRoundRect(col, 66, 7, 100, 3, WHITE); // draw thermometer
tft.drawCircle(col+3, 170, 7, WHITE); // draw bulb
tft.fillCircle(col+3, 170, 6, BLACK); // clear bottom of rod
tft.fillRect(col+1, 162, 5, 3, BLACK); // clear top of bulb
tft.fillCircle(col+3, 170, 5, line[sl+5]); // draw liquid in bulb
tft.setRotation(1); // turn the screen
 tft.setCursor(158, col - 11); // cursor to side of thermometer
 tft.print(slaveName[sl]); // print the name of the heaters
 tft.setRotation(2); // return screen rotation
 }
}

void print_thermometer() { // print the temperature
 background
 tft.setFont(); // set basic font
 tft.setTextSize(1); // make it small
 for (int sl = 0; sl < slaves; sl++) { // for each slave
 int col = 16 + sl*47; // the column ID for each thermometer
 int top = 67 + map(slaveTemp[sl], 0, 255, 98, 0); // calculate top of level
 int bot = 67 + 98 - top; // bottom of thermometer
 int sp = 67 + map(slaveSetpoint[sl], 0, 255, 98, 0); // calculate setpoint level
 tft.fillRect(col+2, 67, 3, top-67, BLACK); // clear thermometer
}
```c
if (slaveSetpoint[sl]){
    // if the setpoint is greater than 0
    tft.drawLine(col+1, sp, col+5, sp, line[sl]); // draw a setpoint line
}
tft.fillRect(col+2, top, 3, bot, line[sl+5]); // draw level
tft.setTextColor(line[sl+5], BLACK); // print the live temperature
tft.setCursor(col + 14, 167);                         // move cursor
tft.print(slaveTemp[sl]);                             // print live temperature
if (slaveTemp[sl] < 100){ tft.print(" "); }           // print blank spaces
if (slaveTemp[sl] < 10){ tft.print(" "); }           // print blank spaces
}

// ******************************************************
void graph_background() {
    tft.drawLine(gXmin-1, gYmin-2, gXmin-1, gYmax+1, GREY2); // draw Y Axis
    tft.drawLine(gXmin-1, gYmax+1, gXmax+2, gYmax+1, GREY2); // draw X Axis
    tft.setFont();                                          // set basic font
tft.setTextSize(1);                                     // make it small
    int spMax = targetSetpoint[3] + 10;                     // note the max temperature
    for (int sl = 2; sl <= 3; sl++){                        // for each slave that we want to draw
        tft.setTextColor(line[sl]);                           // print the setpoint
        int mark = map(slaveSetpoint[sl], tMin-10, spMax, gYmax, gYmin);  // convert setpoint to position
        tft.drawLine(gXmin-5, mark, gXmin-2, mark, line[sl]); // draw low setpoint mark
        tft.setCursor(4, mark + 17 - (8 * sl));               // set cursor above or below mark
        if (slaveSetpoint[sl] < 100){ tft.print(" "); }       // print leading space
        tft.print(slaveSetpoint[sl]);                         // print start setpoint
        mark = map(targetSetpoint[sl], tMin-10, spMax, gYmax, gYmin); // convert target setpoint to position
        tft.drawLine(gXmin-5, mark, gXmin-2, mark, line[sl]); // draw target setpoint
        tft.setCursor(4, mark + 17 - (8 * sl));               // set cursor above or below mark
        if (targetSetpoint[sl] < 100){ tft.print(" "); }      // print leading space
        tft.print(targetSetpoint[sl]);                        // print end setpoint
        lastSet[sl] = slaveSetpoint[sl];                      // pre-fill last setpoint
        lastTemp[sl] = slaveTemp[sl];                         // pre-fill last temp
    }
    print_time(210, gYmax+4, estRunTime, GREY2, 0);
}

// ******************************************************
void print_graph() {
    column++;

    if (column > gXmax){ // at end of graph
        column = gXmin + 1; // reset column number
        tft.drawLine(gXmax + 1, gYmin-2, gXmax+1, gYmax, BLACK); // clear end line
        tft.drawLine(gXmin, gYmin, gXmin, gYmax, BLACK); // clear first line before printing graph
    }
    tft.drawLine(column, gYmin-2, column, gYmax, BLACK); // clear column
```

217
tft.drawLine(column + 1, gYmin, column + 1, gYmax, GREY1); // grey column before lines

int spMax = targetSetpoint[3] + 10; // note the max temperature
for (int sl = 2; sl <= 3; sl++) {
 // for each slave that we want to draw
 int yNew = map(slaveSetpoint[sl], tMin-10, spMax, gYmax, gYmin); // scale setpoint
 yNew = constrain(yNew, gYmin, gYmax);
 int yOld = map(lastSet[sl], tMin-10, spMax, gYmax, gYmin); // scale last setpoint
 yOld = constrain(yOld, gYmin, gYmax);
 tft.drawLine(column - 1, yOld, column, yNew, line[sl]); // draw setpoint point
 lastSet[sl] = slaveSetpoint[sl]; // copy setpoint to last setpoint
}
for (int sl = 2; sl <= 3; sl++){
 // for each slave
 int yNew = map(slaveTemp[sl], tMin-10, spMax, gYmax, gYmin); // scale temp
 yNew = constrain(yNew, gYmin, gYmax);
 int yOld = map(lastTemp[sl], tMin-10, spMax, gYmax, gYmin); // scale last temp
 yOld = constrain(yOld, gYmin, gYmax);
 tft.drawLine(column-1, yOld, column, yNew, line[sl+5]); // draw temp line
 lastTemp[sl] = slaveTemp[sl]; // copy current temp to last temp
}
print_time(175, gYmax+4, runTime, GREY3, 0);
}

// **
void print_time(int x, int y, long t, int c, bool b){ // for converting and printing a time
 tft.setFont(); // set basic font
 tft.setTextSize(1); // make it small
 tft.setTextColor(c, BLACK); // colour on black
 tft.setCursor(x, y); // set cursor below time axis
 if (b) { tft.print("("); } // print bracket
 int minutes = t / 60000; // calc minutes
 int seconds = (t % 60000)/ 1000; // calc seconds
 tft.print(minutes); // print minutes
 tft.print(":"); // print colon
 if (seconds < 10) {tft.print("0"); } // print leading zero
 tft.print(seconds); // print seconds
 if (b) { tft.print(")"); } // print bracket
}

// **
void print_heading(String heading, bool blank){ // clear the top screen
 if (blank) { tft.fillRect(0, 0, 240, 185, BLACK); } // draw rectangle over top screen
 tft.fillRect(0, 0, 240, 25, BLUE2); // dark blue heading background
 tft.setFont(&FreeSans9pt7b); // set font
 tft.setTextColor(WHITE); // set text colour
 tft.setCursor(4, 17); // set position
}
tft.print(heading); // print heading
tft.drawLine(0, 25, 239, 25, WHITE); // draw grey line under heading
}

// **
void print_line(String text, int val, int degs, String unit, int colour) {
 tft.setTextColor(colour); // change text colour
 tft.setCursor(15, lineNo); // set cursor for each line
 tft.print(text); // print the name
 tft.setCursor(175, lineNo); // set cursor for setpoint
 if (val < 10) { tft.print(F(" ")); } // add a spaces to shift low numbers
 if (val < 100) { tft.print(F(" ")); } // add a spaces to shift low numbers
 tft.print(val); // print the current setpoint
 if (degs) { tft.setCursor(215, lineNo); // if degrees move next unit
 tft.drawCircle(210, lineNo-10, 2, colour); // draw ° symbol
 } else { tft.setCursor(206, lineNo); // not degrees, unit straight after value
 tft.print(unit); // print the current setpoint
 }
 lineNo += 25;
}

// **
void print_value(int y, int val, int c) {
 tft.fillRect(175, y-12, 30, 13, BLACK); // clear old value
 tft.setFont(&FreeSans9pt7b); // set font
 tft.setTextColor(c); // set text colour
 tft.setCursor(175, y); // set cursor last (it works better that way!)
 if (val < 10) { tft.print(F(" ")); } // add a spaces to shift low numbers
 if (val < 100) { tft.print(F(" ")); } // add a spaces to shift low numbers
 tft.print(val); // print the current setpoint
}

// **
void print_button(int x, int y, int w, String but, int c) {
 tft.setTextColor(WHITE); // change text colour
 if (c) {
 tft.fillRect(175, y-12, 30, 13, BLACK); // fill blue box
 tft.drawRoundRect(x, y - 16, w, 21, 4, BLUE2); // draw blue box
 } else { // if not C, grey
 tft.fillRect(170, y-16, w, 21, 4, GREY1); // fill grey box
 tft.drawRoundRect(170, y-16, w, 21, 4, GREY2); // draw draw box
 }
 tft.setCursor(x + 6, y); tft.print(but); // print button option
// **
void encoderA_change(){
 cli(); // stop interrupts
delayMicroseconds(10); // delay helps, don't know why
bool encoderA = digitalRead(encA); // read encoderA
bool encoderB = digitalRead(encB); // read encoderA
delayMicroseconds(500); // delay before moving on
if (!encoderA && encoderB){ // A low, B high
 jog--; // CCW
 jogTurn = HIGH; // flag that there has been a change
} else if (!encoderA && !encoderB){ // A low, B low
 jog++; // CW
 jogTurn = HIGH; // flag that there has been a change
}
sei(); // resume interrupts
}
// **
void fan_control(){
 overTemp = 0; // for cumulative temperature measurement
 int fanSP = 0; // fan setpoint
 for (int sl = 2; sl <= 3; sl++) { // for each column
 if (heatersOn){ fanSP = slaveSetpoint[sl]; }
 else { fanSP = 40; }
 }
 if (slaveTemp[sl] == 0) { overTemp += 100; } // if there is a heater error
 else if (slaveTemp[sl] > fanSP){ // if temp above setpoint
 overTemp += slaveTemp[sl] - fanSP; // add the difference
 }
 if (overTemp > 40){ digitalWrite(fan, HIGH); } // turn on fan
 if (overTemp < 5){ digitalWrite(fan, LOW); } // turn on fan
}
// **
void clear_setpoints(){
 for (int sl = 0; sl < slaves; sl++){ // for each slave (slaves are zero indexed)
 slaveSetpoint[sl] = 0; // make sure the setpoints are zero
 }
 heatersOn = LOW; // clear heaters on flag
}
// **
void read_button(){
 if (!digitalRead(shtdwn)){ // if shutdown button is low
 heatersOn = LOW; // turn off heaters
 if (menu < 50){ // if in a normal menu
printOnce = HIGH;
menu = 100;
}

if (digitalRead(button) && lastButton){
 delay(15);
 lastButton = LOW;
}
pressed, flag low

if (!digitalRead(button) && !lastButton){
 delay(5);
 buttonPress = HIGH;
edge for elsewhere in code
buttonTime = millis();
press
lastButton = HIGH;
}
state

// **
void blink_LED(int count, int on, int off) {
 while(count > 0){
 count--;
 digitalWrite(13, HIGH);
 delay(on);
 digitalWrite(13, LOW);
 delay(off);
 }
}
III. Portable GCxGC – other data

Figure 127 Separation of a C7 to C40 standard using method 3

Figure 128 Separation of a C7 to C40 standard using method 4.
IV. Secondary Heater

Figure 129 OMEGA fast PID used to control secondary heater
V. C7-C30 Analysed Using Secondary Heater Unit

Figure 130 Chromatogram of C7 – C30 at 1 ug/mL analysed on the micro GCxGC unit with a secondary heater held at 200 degrees

Figure 131 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees

Figure 132 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees
Figure 133 Chromatogram of C7 – C30 at 1 ug/mL spiked with aromatic species analysed on the micro GCxGC unit with a secondary heater held at 200 degrees.
References

