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ABSTRACT

With the increasing demand for optimal control and operation
of plant, in particular chemical reactors, the need for detailed
models which can be solved by computer in a reasonable time is
apparent, Clearly, since the model is used repeatedly in each
iteration of the computation, this will normally mean that it must
be relatively simple, Unfortunately, this results in loss of
detailnecessary to take full advantege of the optimisation.

A technique for model reduction, suitable for the two-
dimensional heterogeneous catalytic reactor has been developed,
which results in substantial reduction in dimensionality of the
system, but which retains the essential detail. A general reaction
scheme with first order kinetics has been considered, Furthermore,
it is possible to relate the well defined physical parameters,

0,8. transport coefficients and rate constants, etc, to the
parameters in the reduced model., Significant savings in -
computation time are made which makes it feasible to use the

reduced model in optimisation and control schemes,
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A plausible impossibility is always preferable to an

inoonvincing possibility.
ARISTOTLE, (384 - 322 BC)



"Contrariwise," continued Tweedledee, "if it was so, it
might be; and if it were so, it would be; but as it isn't, it
ain't, Thats logic."

Through the looking glass, LEWIS CARROLL,



Addondwem

1. Relation of the thesis to the work of the Lceds fixed bed

reactor group.

The principle aim of the group, under the supervision of Dr, C. McGreavy,
is tho computer control of a fixed bed catalytic reactor in which
strongly exothermic reactions, such as the partial oxidation of

benzene to malaic anhydride, are occurring, The group is split up into
throe scotions, (1) practical experimental work to derivo tho physical
data for the system, i,c, for heat and mass transfer and chemical
kinetics, and to build and operate the pilot rcactor; (2) tho develop-
ment of optimisation methods and automatic control schemes for the rcac-
tor, ddrcoted towards optimal design and opcration of the pilot

reactor through a computer; (3) the deveclopment of mathematical models
which can reliably predict the performence of the reactor in real time
situations in order that thcy may be included in the optimisation and
control algorithms, This thesis is concerned with the latter section

which i3 now considerod in xﬁore detail,

Both Cresswell(27) and ﬂ.‘ho:::-ni-.on(35 ) » in this Department, devolopod
methods of modelling the fixed bed reactor, for simple and complex
roaction schemes respootively, and identified the minimum dogroe of
complexity called for in the model, Although the mathematical models
generate an adequate prediction of performance and doseription of
the systcm, the computation times are cxcessive with rospect to prace
tical optimisation and control studies. It was therefore nocessary
that a method should bo developed which would producc models with a
radicelly reduced computation time which replaced tho original
complex models, This introduced the concept of simplifiying the
models while retaining tho esscntial detail in teorms of physically

identifiable properties, and is roferrcd to as modcl reduction,



The development of these techniques forms tho basis of the work
presented in this thesis, and applies specifically to the fixed bed

reactor,

2, Recommendations for future work,

This study has been restricted to the steady state and has considered
only first order kinetioc systems, In order to rondor the work more
practically applicable, model reduction must be applied to non-first
order and non-integer order kinetic system to determine whether or
not the reduced model and its associated profiles and pseudo-

raremeters maintain their same general form,

As control studies are associated with tho unsteady state, it will
also be necessary to apply the technique to the unsteady state
models, Onc approach could consider the fact that the unstoady state
can be represcnted by a scries of psecudo-steady states; or enother
possibility the capacitance effects on the form of the profiles and

psoudo=parameters,

Another possible objective is to further reduce the stoady state model
to a complotely algebraic system by considering the various limiting
conditions of the model; and a consideration which has not yet been
made is the problem of applying the model of a single tube to a multi-
tubular environment for which tho extra~tubuler conditions are a

function of the position in the overall reactor.



Model reduction has been formally definod and specifically applied
to the fixed bod reactor, although it is the author's opinion

that the techniques could be applied to any distributed systenm,



CHAPTER 1

INTRODUCTION

To meet the increasing demand for the optimal control and
operation of fixed bed reactofs, detailed mathematical models are
required which can be solved by computer in a reasonable time,
The model should be as comprehensive as possible and based on a
mathematical interpretation of the physical processes taking
place, This will result in all the model parameters being
physically identifiable and capable of independent measurement 25
estimation from accepted correlations,

The level of sophistication demanded of the model will
usually depend on the context of the problem, eg. design,
optimisation and/or control, and should be consistent with its .
desired objectives. TFor example, if it is to be used in an
optimisation algorithm, it must predict the performance of the
reactor more accurately than the expected improvement anq
accommodate all the problem constraints.

1,1 Development of the Fixed Bed Reator Model.

Congsider the fixed bed reactor in more detail. The reactor
normally consists of a number of cylindrical tubes packed with
catalyst particles with the gaseous reactants passing through the
tubes., Many of the chemical reactions which occur in equipment
of this type are associated with large heats of reaction. In
order to rotain control of the reactor and to prevent irreversible
damage to the catalyst, external cooling around the tubes is
utilised. In such a situation radial temperature gradients exist

(i.e. perpendicular to the direction of reactant flow), in

-l=



addition to the axial gradient due to convective flow,

Therefore, the mathematical model for a non-isothermal reactor
would be expected to be at least two-dimensional, However; the
design of fixed bed reactors has generally been based on a one
dimensional model, for which gradients are assumed to occur only
in the axial direction, and the radial transport of heat and mass
in the reactor assumed to be unimportant, i.e. the resistance to
heat transfer being effectively lumped at the tube wall. In
fact, substantial radial temperature gradients and, consequently,
concentration gradients can occur which have an appreciable
effect on the overall predicted performance of the reactor,

With the advent of high specd computers, it has become
possible to consider models of a greater complexity than the one-
dimensional system, so that more reliable predictions of the
performance can be made, Froment (1) has considered a quasi-
homogeneous two-dimensional model in which he assumed radial
transport occurs by effective diffusive and conductive processes,
Axial diffusion of heat and mass can generally be neglected for
the normal high rates of throughput experienced in a practical
reactor, The effective radial diffusivity and conductivity of
the fixed bed can be easily determined from correlations of Peclet
numbers for mass and heat transfer respectively and Reynold's
nunber, and for the normal turbulent conditions the Peclet numbers
are essentially coastant, But, although Froment dealt
extensively with the global transport phenomena he made no
attempt to distinguish between the reacting fluid and solid
catalyst phases, i.e., resulting from the assumption of a quasi-

homogeneous system, Such models which take no account of the
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potential rate controlling mechanisms such as fluid film and
particulate heat and mass transfer, are characterised by a
susceptability to temperature 'mun-away', which often occurs near
to the practical operating region of the reactor, i,e. reactors
normally operate in a region in which the rate of reaction and
particulate modes of heat and mass transfer are comparable.
Unfortunately, inclusion of all the additional physical processes
produces an almost intractable problem from the point of view of
obtaining a solution in a time sufficiently short for routine
design and optimisation studies., Extensive studies have been
carried out in order to represent the overall rate of reaction
occuring inside the catalyst pellets in terms of the fluid field
observables (2—13), and normally the results are expressed in
terms of an effectiveness factor, I+ has been the practice to
assume the surface temperature and concentration of the catalyst
pellet are equal to those of the gas stream, Except in the case
of the method given by Petersen (11), the effort involved in
solving the equations is equivalent to the numerical solution of
the fuily digtributed problem, FHowever, Petersen's solution is
an asymptotic expression which has limited application for
general problems, Recently MeGreavy and Cresswell (14), have
reduced the distributed parameter intra-particle field equations
to an algebraic lumped parameter form, The result is an
expression for the effectiveness factor with a definition which
is based on observables in the bulk fluid phase in the presence
of inter-phase as well as intra~-phase heat and mass transfer
resistances, All evidence secems to indicate that the overall

rate process is dominated by mass transfer, resulting from high



film resgistance to heat transfer, and the particle essentially
operates at isothermal conditions, although the temperaturs is
not that of the fluid, So far only a simplzs first order
irreversible reaction has been considered, but McGreavy and
Thornton (15) have extended the above treatment to more complex
reaction schemes which in general are more practically applicable.
At this point it may be advantageous to the reader to be
familiar with the relatigﬁ'computing times of the various types of
steady state model. The three types are, (1) the fully
distributed model which takes account of all transport phenomena
in the reactor and the catalyst pellet, (2) the two-dimensional
reactor model which uses the isothermal pellet epproximation for
the effectiveness factor and (3) the corresponding one-dimensional
model, The relative computing times for (1) : (2) : (3) are
T20 : 20 ¢ 1, The time for the most complex model is approxi-
mately tﬂree hours on an I,C.L. K.D.F.9 computer, programming in
Algol 60. It may be noted that a transient state model can be
considered as a series of steady states, from which it can be
easily seen that both models (1) ard (2) would bo computationally
intractable especially when considering rcal time situations,

1,2 The Necessity for Model Reduction.

In the above terms adequate models for the fixed bhed
catalytic reactor are available which fulfill the constraints of
accuracy, general reliability and description as discussed at the
beginning of this chapter. They are esscntially two dimensional
and direct simplification to a one-dimensional system is not
generally acceptable, becausc of the important effects of the

radial gradients. This generally means that dynamic reactor



studies cannot be made as the resulting three-~dimensional model is
intractable, Further, the steady state two-dimensional model is
not suitable for optimisation studies etc., because of the
iterative nature of the procedure which becomes computationally
egxcessive. In order to avoid this difficulty most workers (16-20)
have made gross simplifying assumptions and considered special
cases in order to justify the use of a one-dimensional model, by
assuming thot the radial gradients are flat., No-one has made
any attempt at rational analysis to take account of the effect of
the radial gradients in the one-dimensional model except Shah (21)
who used an approdach which was a compromise between the exact
solution of the model equations and a completely arbitrary
regression-type model, Although the formulation of the model is
empirical, it is based on the asymptotic behavicur of the basic
differential equations of the physical system. This approach
along with the statistical methods employed in developing
regression models are no¥ gonerally applicable and the results
cannot be extrapolated,

It is obvious that some method is required to produce a less
computationally domanding procedure which has a general
applicability and bears all the features of the fully distributed
model, There are several alternatives of approach which can be
adopted., (i) A statistical approach has already been rejected,
and normally assumes the existence of an operational plant.

(i1) A method which would increase the efficiency of the
numerical technique used to solve the two-dimensional model.

This is not really feasgble as the existing methods are rcstricted

by the non-linecar naturc of the modcl. Simplifying the
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numerical methods would lead to unrelisble solutions. (iii) A
lumped parameter approach which accounts for the existence of the
radial gradients would favourably improve the existing one-
dimensional models, but knowledge of the radial gradients is lost;
and as, for example, the temperature at the tube axis is a
parameter necessary for control and optimisation of the reactor,
the lumped parameter model would have limited application.
However, it is to be noted that substantial reduction of
computational load of a model is generally coupled with reduction
of the dimensionality.

Therefore a technique is required which will both reduce the
dimensionality of the model and retain some knowledge of the
behaviour of the radial profile. A satisfactory method has
already been outlined by McGreavy and Turner (22) which is
sultable for a fixed bed reactor in which a simple first order
irreversible reaction is taking place.

l.3 Research Objectives

Until now, no attempt has been made to develop a generally
applicable and reliable reducad model of the fixed bed reactor.
The analysis entails examining the solutions of tho exact
distributed model for reaction schemes of increasing complexity,
ard to decide upon a reliable lumped parameter approach to reduce
the dimensionality of the reactor model. A sccend and coupled
objective is to develop solutions for the radial profiles of
température and concentration which are related to the original
reactor model in their espplication and have a sufficiently simple
form for easy manipulation to minimise the computation time.

Overall, the reduced model replaces the original model rather

e s s o
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than becomes an approximation to it,

(NOTE: This work has been restricted to the steady state and to
first order reaction systems, then in order that the gencrality of
the approach be extended (i) non-integer and second order reactions
must be considered, and (ii) an analysis of the unsteady state

mst be made by future work in the new field of model reduction.)



CHAPTER 2

DETATLED OBJECTIVES AND PHILOSOPHY OF VNMODEL REDUCTION

2,1 Definition of Model Reduction

In order to know what is implied by model reduction, it is
necessary to define a mathematical model, While it may be
intuitively obvious to see how it has relevance to the problems in
which it will be used, it is both convenient and necessary to have
a formal definition. For the purpose of this thesis, a
mathematical model will be regarded as a set of mathematical
equations, descriliag all essential characteristics quantitatively,
while using parameters which relate to the physically identifiable
phenomena which characterise the process. Generally the model
camnot be solved analytically, but making use of high speed
computers, numerical solutions are feasgble., For example, if the
model is in the form of a set of differential equations, efficient
finite difference techniques are available. Invariably the
computational load of the solution of the model is prohibitive for
use in optimisation and control algorithms, so that some method is
needed which will reduce the computing time, eg. a less complex
form of the model which can be solved more quickly. It is this
phase which may be referred to as model reduction. It is a
procedure which attempts to substantially reduce the time of
computation of the process model, whilst retaining the features
described above, namely, those of accuracy and description and
still making use of the physical parameters if only implicitly.,
Consider as an example the use of a reduced model in an

optimisation algorithm., It should be capable of predicting the
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verformance more accurately than the expected improvement and at
the same time describe the process adequately in order that all
the relevant constraints may be applied., This must be possible
without the repeated use of the algorithm being a limitation with
respect to computation time, A similar criterion also applies
for use of reduced models in control and design algorithms. It
is to be expected that reduction of computational load will
generally be related to a reduction in the dimensionality of the
model.

2.2 The General Approach.

Suppose we have a mathematical model of some process which
exhibits all the esgential features described above, but which is
computationally time consuming. Even if an analytical solution
exists for the model, it does not necessarily follow that it is
quicker to evaluate the resulting analytic expression, than to
solve the original model equation by a numerical method, For
example, this is often true where a series solution may not be
rapidly convergent, as in the case of the transient fixed bed heat
exchanger model (23), for which the analytical solution model is
very complex, The evaluation of the solution requires more
computational effort than the numerical solution of the original
models, In both cases the computation time is excessive., VWhere
it is feasible, the most direct way of overcoming the difficulties
is to reduce the dimensionality of the model.

2,3 Generalised Reduction.

As noted, the first stage is to reduce the dimensionality of

the model. The most convenient method is to 'lump' the effects



in one or more dimensions, Choice of the dimensions will depend
on the characteristics of the process, and the method of condensing
the dimensions will depend on the most useful form of the result,
The reduced model must be described by terms which may necessitate
the definition of certain pseudo-parameters in the resulting
equations.

In lumping distributed variables some of the original
constraints of the model are usually violated. Normally some
loss of description of the model results from such simplification
and many of the new model pseudo-parameters will not relate to
physically identifiable phenomena. Compensation for these
violations can be made by suitable analysis of the original model
by obtaining solutions to each of the model dimensions. The
pseudo-parameters should be expressed in terms of the reduced
model by carrying out numerical simulations on the original model
over the practical operating range.

Special cases which may occur must be avoided, by taking care
in the choice of data., Sensitivity tests must be carried out on
parameters so that the resulting expressions are valid over the
prractical operating region of the process. Although such a
rigorous analysis is tedious, it need only be carried out once for
a particular type of process, Modification of the reduced model
for a process of the same general type need only mean
reassessment of coefficients in a solution, the structure of which
is already known.

2.4 Regeneration of Description.

In regenerating the detailed description of the original

=] 0=



model, it is necessary to examine the constraints, since in
solving the original model to provide the required description,
some redundant information will be produced. For example, the
case often arises that the complete solution along a dimension is
produced because of the structure of the numerical method used to
solve the complex modei, when in fact only a part of the solution
is required. Therefore an extra bonus in reduction of computing
time can be gained by providing the minimum of information for
solving the model,

To regenerate the physical detail, the reduced model,
solutions must be constructed for the dimensions which have been
eliminated, The structure of these solutions is restricted in
order to comply with the general philosophy of model reduction.
As stated above, the solutions must be generally applicable over
the whole of the practical operating range. They should be of
the simplest elgebraic form possible for ease of manipulation and
to minimise the computing time, For example, in a computational
procedure it is less time consuming to calculate termsto an
integer power than a non-integer power, i.e. 3:2 may be expressed
as X x X which is one operation but :.cl'3 is evaluated from
1.3 log X and subsequently determining the antilog. Each
operation requires the sua;tion of a series, Therefore, in order
to minimise computational effect it would be better to consider
integral powers only.

Over a practical range of the model parameters, the solutions
are examined for the relevant dimensions to gain some insight as

to their basic structural properties for the proposing suitable
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algebraic expressions,

This particular aspect of the numerical approach belongs to
the same class of methods as Galerkin and collocation, and in
particular to the more recently developed technique of cubic
splines (36), for two point boundary value problems for ordinary
differential equations.

The Galerkin and collocation (51) methods represent the
solution for the dependent variable, o by a finite sum of trial

functions th,

(m) = 4
@ o (":f = Z aL(m)g\bi + &\u o 2,00
t=1

For a problem of dimension P, the ai(m) are constants or functions
of 1, 2, eseis P=1 of the independent variables, depending on the
number of independent variables that are included in the functions
<5Li. For parabolic partial differential eguations the usual
choice ig to let the aiﬂm) be functions of one independent
variable and the.fLibe functions of the remaining independent
variables, The method which is used represents a solution for

the dependent variable é? by,

S~ &= . VY X a;@); 1) 2,01
1=]

which can be satisfied by definition of {);,of the form,

)
20 §0-97 2
HT et o
i =
@ 4 e ation 10 ©
where J'“/ is the i~th order approximation to . If the

problem is of dimension P , then the ai(m) are constants or

functions of (P-1) of the independent variables, or alternatively,

a function of the dependent variables and system coefficients,



The trial function, {L , 18 the first approximation to &, and
fulfills the boundary conditions in the dimension considered.
Therefore the first derivatives of the JALi at the boundary
limits are consequently zero., The Sl.i are functions of the
independent variable in the dimension being considered,
Normally, it will be expected that the a;™{}; will be small
and the integer 1£ 2,

The basic difference between the proposed method and the
method of orthogonal collocation is that the latter is merely
an alternative numerical method of solution to the finite
difference methods (eg. Crank - Nicolson CED), whereas the former
produces a generally applicable reduced model. Both methods are
superficially similar, they propose the use of trial functions
which satisfy the boundary conditions and ultimately both require
the solution of a set of simultaneous ordinary differential
equations, But, for the case of orthogonal collocation an
ordinary differential equation must be solved along the principal
dimension at each collocation point, whereas there is only one
for the reduced method. Hence the comparison of computation
times will depend on the number of collocation points used,s The
use of only one collocation point effectively produces a lumped
parameter system with a resultant loss of description. In
addition, the coefficients used in the collocation method are
arbitrary whereas in the reduced method they are related to the
physical processes occuring. An outline of the method of
orthogonal collocation is given in appendix 4.

2.5 TFormulation of the Pseudo-parameters.

There is no general method for the formulation of the

-13-



pseudo~parameters in the reduced equations, although some of
the techniques inveolved are well known » Any theoretical
analysis, no matter how coarse, is performed to provide some
information as to the general form of the pseudo-parameter, The
functional forms (which include the ai‘m)) may, for example
represent asyg}otic forus which will be established along the
dimension to which the model has been reduced, to be referred to
as the principal dimension., The gradual transition of the
pseudo~-parameter ai(m) from its initial value, aogm) to its

asymptotic form, aasm) is represented by a development term along

the principal dimension,

2™ w2 ® e (-5 ) 4o (- 0 )) 205

where the bi(m) sre constants or functions of the dependent or
independent variables,

From the coarse analysis, the parametric groups are
determined which it will be necessary to correlate in order to
calculate the constants of the function which describes the
pseudo~-parameters. Additional information is gained by
observing the bechaviour of the pseudo-parameter at the limiting
values, so that logical arcument may be used to suggest the
functional dependence of these on each system coefficient. A
detailed analysis is carried out to cover all the model
coefficients, so that the resulting expression is generally
applicable in any practical operating region of the process,
Once this analysis has been completed for the process ( or type of
process), it is not necessary to repeat it.

This approach, although not formally developed in this



manner, is often used in the solution of a wide range of

chemical engineering problems for which an analytical solution
does not exist (eg. boundary layer theory, the determination of
pressure drop in a pipe; heat transfer from fluids flowing
through pipes; etc.) For the case of boundary layer theory (24),
arbitrary profiles are assumed bubthe included coefficients are
not related to the physical parameters of the system.

2.6 Further Simplification of the Reduced Model,

Once a reduced model which is generally applicable,has been
developed, (and in fact replaces the original more complex model)
it may be possible to simplify it even further for ranges of
operation in which some effects become unimportant, thus giving
further savings in computing time,

Normally extensive simplification cannot be made if the
accuracy is to be retained, although, in certain cases an
approximate model could be used during, say, the initial approach
work of an optimisation problem, Then in the region pf the
optimum a more sophisticated model is used, resulting in an overall
increase in speed.

The Specific Problem,

So far in the chapter, model reduction has been discussed
with respect to a quite general systems, The fixed bed catalytic
reactor in which a highly exothermic reaction is taking place is
a typical case to which model reduction could profitably be
applied, The model is a set of coupled partial differential
equations (see Chapter 4) which contain highly non-linear terms
(i.e. the reaction rate terms due to the Arrhenius rate expression),

There is no analytical solution for the model due to the coupled

~15=



non-linear nature of the system, In the succeeding chapters

the fixed bed reactor is considered in increasing complexity
about which the techniques of model reduction are illustrated and
developed. It is convenient to reduce the fixed bed reactor in
three stages, firstly considering the fixed bed heat exchanger
model (in the next chapter) i.e. a reactor for which there is no
heat source, The analysis is subsequently extended to the case
of a simple irreversible first order reactor with a heat source
and finally more complex reaction schemes are considered., Each

stage is used as the first approximation to the next.
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CHAPTER 3
REDUCTION OF THE FIXED BED HEAT EXCHANGER MODEL

3.1 Introduction,

The data used for this particular analysis is related to the
reactor situations to be considered later and in chapter four a
discussion of this choice will be made, The particular set of
data about which the conditions are varied is listed in table 3,01,
The flow through the reactor iz turbulent so that the Peclet
numbers for heat and mass transfer can be assumed constant at a
value of 10, Froment (16) has shown that the model is not
particularly sensitive to this parameter, The inside wall film
heat transfer coefficient, hw is calculated according to Yagi and
Wahga (25), and the composite heat transfer coefficient, U for the
whole tube wall is calculated in the normal waé}. The data
available for h,, 1s not particularly reliable and as in the
reactor situation the model is particularly sensitive to its value,
the data should be eventually !trimmed! by comparison of predicted
and practical heat exchanger performance,

3.2 The Model

A cylindrical heat exchanger, length L and radius T is
considered packed with spherical pellets, radius b. The fluid is
assumed to pass through the bed in plug flow and axial dispersion
terms are neglected, The modes of heat transfer considered are
axial convection and radial conduction, Heat from the bed is
transferred through the tube wall to a coolant fluid which is at

constant temperature. The model state equation may be written:

~17=



Table 3,01

Reactor Data Heat Transfer Data
Go = 0,449 g/cm?/sec. U=4. 4x 102 j./cm?/sec./oK

€; = 5.68x 107 g./cnd Ap = 4462 x 1072 3,/cn./sec./°K.
Sp = 245 3./8./K

Dimensionless Groups

~ c" 0.4
PeT = 0,84
P = 0,2l em
NU = 2,0
B = 2,1 em
tmo = 1.18
L = 125 cm
o
Qmo = 590°K
o
T, =.500°%K

PR L g_(r?_f) -0 3,01
2x r Ar r

where the boundary conditions are,

T = f (Tmo’r) x=0 0 &r &B
3T Lo r=0 0&x&y
Ar 5.02

“ARYM = U (PT-T) r=B3 04&x4L
dr

The model is shown diagramatically in fig., 3,01,

The inlet temperature profile is here expressed as an arbitrary
function of the radial mean inlet temperature, Tmo and the radial
coordinate; a discussion of the inlet profile will be given in

section 3.45.

The complete set of model equations are rendered dimensionless



Coolant T,

Figure 3.0l . Diagram of the fixed bed heat exchanger.



80 that the model is characterised by two dimensionless groups,

Pe,, and NU defined below:

T
-roy B2 1 9 (Wm) - o 3.05

w \ W

% y Oy

vwvhere the boundary conditions are,

to= £ty ¥) z=0, 08y%1
-0 y=0, 0dz&l 3.04
oy
-t = W (t-1) y=1, 0$z€1
Uy
The characteristic groups are defined in the usual way -

2
Effective Peclet number for heat transfer, Pen = chf B

L

P3006
fluid Nuss@lt number = (RU
E)
§ -
The remaining dimensionless variables are,
tnz’zaf’yni 307
Te L B gdution

Equations 3.03, 4 are usually non-linear and so "a.nalytica.llis not
possible but they can be convsniently and efficiently solved by a
Crank - Nicolson finite difference scheme using the Thomas method
for the resulting algebraic equations ( sec Appendix 2 ); it is
only in very speciel circumstances that an analytical solution is
possible,

3.3 The Analytic Solution,

In those cases where it is possible to solve equations

3.03, 4 analytically, a separable solution is assumed,



(t-1) = Y.z
3.08

Y=Y (), z = 2 ()

%063
By substitution in equatioqi,and separation of the variables,

equation 3,03 becomes,
' =2 ' = -
A : 309
Y yY Z

where q is a constant, The partiel differential equation has now

been separated into two ordinary differential equations, which can

be solved analytically (26).

y2 " + yY' 4+ q2y2Y = 0 3.10
2

' =

2' o+ E Z o 3,11
PeT

The combined solution of 3.10, 11 is

2 X\
S iy, 0B
(1-1t) = anv :EE Jo(Any). e Fer 3.12
n=0 (X§+ NUZ) JO (An)

In solving equation 3,10, the inlet temperature profile is assumed

to be flat, i.e. 1o (¥) = tmos

3.4 Generalised Reduction of the Model,

The structure of the analytical solution for the heat transfer
model is unsuitable for extension to the reactive case due to the
series nature of the expression. There is no computational
advantage gained in solving the model analytically rather than
numerically as the computing times are similar,

A lumped parameter approach may be used to reduce the model

and the description lost can be regenerated by constructing a



solution in the dimension which is eliminated,

Keeping in mind that the heat exchanger model is to be used
as the first approximation for the reactor model with resspect to
the choice of the principal dimension and the terms in which the
reduced model equations are to be expressed, the principal
dimension is chosen as the exial direction and the reduced model
will be expressed in terms of radial mean values. The radial

mean value, em 6f & dependent variable © (y) is defined by,

1l 1
@m = fe(y)oycdy = 2 /e(y).y.dy 3613
o} (o]
T ,

jy-dy
0

Considering the state equation 3,03, multiply each term by

2y « dy end integrate over the bed radius,

1
° 3z ¥y 4°
Assuming that,
1 | 1
°~2PeTéﬁydy=PeTE(°f2t.y.dy)3315
'8z dz
then substituting for the boundary conditions (equations 3.,04) in

in equation 3,14.

dtp, - aw (+Q)-1) = O 3.16

‘emmssnsy

dz

- PeT
A pseudo~parameter the effective Nusselt number NU' is defined,
such that,
NU' = NU t (1) - 1 3417
tn - 1

=2l



The model 1is now expressed in terms of the radial mean temperature

only:

Pe, dtp + 200" (tg -~ 1) = O 3,18

dz

T

It will be shown that NU' is independent of tm, so that equation

3,18 can be solved analytically. o NU*
- 2 3.19
Pe

(m-1) = (= 1) |, e VP

In order to evaluate the effective Nusselt number, NU', a knowledge

of the radial temperature profile is required.

3,5 The Radial Temperature Profile.

3.5+1 General Analysis,

The radial temperature profile is examined for a practical
range of values of PeT, NU in order to gain some insight as to its
bagic general structure for the purpose of suggesting a suitable
approximate form., TFurther information can be derived by
inspecting the analytical solution of the model (summarised in
section 3.2), that the radial solution is separable from the axial
solution, hence it should be poesible to basa the radial solution
on a temperature at a specific radial position; the analytical
solution considers the temperature differcnce between fluid and
coolant rather than the absolute valuz of fluid temperature, and a
similar policy will be used here.

3s5:2 The First Approximation

From the above analysis, the radial temperature is assumed to
be approximately represented by an even order polynomial function,

of which the second degree is taken as a first approximation. By

22



applying the boundary conditions (equation 3.,04) to the function,
2
(t (y)p -~ 1) = W, + WY + W, ¥ 3,20

where t (y)p is the radial temperature profile given by the

approximation, it can be shown that
(t(), = 1)=(1+05Mm (1-3°)) (s(1)-1) 3.2

where t (1) is the temperature at the tube wall, obtained by
differentiating equation 3,20 with respect to y and substituting
for the boundary conditions to evaluate the coefficients Wie
The function (t (y) o~ 1 ) represents.flo in equation 2,01,

In the next stage a $n31d-is considered, where

(m) (o)
€5<oi
from equation 2,02, and ea(o) is equivalent to S)%f

353 Profile Correction

From equation 3.22 a correction funetion fl (y) is defined by

£4 (¥) = ty = 1 - 1

t -
. 1

3i23

which will be s radially dependent function. Fig. 3.02 shows the
typical form of the correcction function, which has the boundary

conditions,

£, (1) = o

3424
fi (o) = fi 1) = o
An neceptable functional form for £ (y) is,
fG) =wy (1= 3% 4 2P) 3,25

=23~
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NU = 2

0.05
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Y= r‘/B.

Figure 3.02 . Typical form of the correction function fy(y)



For particular values of PeT and NU, irrespective of the
form of the inlet temperature profile, the function fl (y) tends
to an asymptotic form, i.e. the value of f; (y) for o€y&1 is
independent of axial position; therefore w3 is a function of PeT

and NU only,

3¢5.4 Determination of w5
By carrying out a sensitivity test, w5 is found to be

independent of Pe,,, and hence is a function only of NU, Fig. 3,03

T’
shows the relationship of w3 to NU obtained by plotting on
logarithmic co-ordinates, From the curve it can be seen that

lim W3 = constant and 1lim w5 = constant xNUz, 80 that
NU & o NU >0

a relationship would be expected of the form,
) 2
NU
Y5 = 3426
o, T+ By

By expanding equation 3.26 we have,

(50 / Afvg) = w W0+ u,

then if ( NU / ‘\}ws) and NU are plotted on cdrtesian co-ordinates,
the result is a straight line, gradient u.l and intercept Uy

which is demonstrated in figure 3.04, hence W3 is written,

2 .
W3 = ( XU 3027
1.2 NU + 4

It is interesting to note the similarity of this coefficient
and the coefficient in the analytical solution. (equation 3,12)

The correction function, fl (y) is not exactly and generally
described by equation 3.25 and although the difference is small,
it must be examined, The variation of the form of fj (y)

w

3
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Figure 3.03 . The variation of the coefficient w3 with respect

to the Nusselt number Ju.
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Figure 3.04 . Determinatiton of the exact form of the
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is shown in fig, 3.05. The parametric analysis of this error is
deseribed in Appendix I; for a secondary correction function

defined by,
N . £ () -1 3,28

n

then |D_, caen be satisflactorily represented by,

ﬂna 0.4y2 1-05y(2-y)NU+12 3,29

1+ 0,580 (1~ y°)
The major contribution of ‘D"JI is in the region of the tube wall
and hence in the value of the effective Nusselt number; its
contribution is zero in the prediction of the axis temperature

t (o).

3:545 The Radial Temperature Profile,

The radial temperature profile may be represented by,

-

(6 (g = 1) = [*g (1-52 s 290+ L) + 1] peosm - yz)]usm-n

3430
where w3 and .Q. i 2T defined by equations 3.27, 3.29 respectively,
The secondary correction function, S).znneed not necessarily be
included in the expression unless a great emphasis is placed on
accuracy. As stated above, the effect of -nanis zero at the tube
axis (y = o) and is also zero at the tube wall as £, (1) =0,
although 1lts effect is greatest in the region of the tube wall,
mereforet;::;:ror in excluding »ﬂ)nis best seen by considering its
effect on the effective Nusselt number rather than on the
rrediction of the temperature profile, which will be discussed in
section 3%.5,

Examining equation 3,30, it is clear that the axially

dependent reference temperature difference (t (1) - 1) may be
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y:r‘/B

Figure 5,05 . The deviation of fl(y) from its predicted form.



o
replaced by a reference temperature (t (Y) - l)jany value of
¥y = Y; in this case the reference temperature is the mean radial
temperature, The advantage of equation 3.20 over the analytical
solution, equation 3.12, is that the expression is simple and
finite so that the profiles are easily computed. Equation 3,30
is in a form which can be used as the trial function for the
reactor with an exothermic reaction,

3,5,6 The Inlet Temperature Profile.,

Normally, in the literature it has been assumed that the
inlet temperature profile is flat, which in a real situation is
unlikely. Numerically this assumption produces a discontinuity
at the tube wall, and this causes difficulties with the numerical
solution in the region of the inlet. Figure 3.06 shows how
sensitive the resulting axial profile is to the assumed inlet
radial temperature profile. Since the peak temperature is often
near the inlet region it is apparent that some care is needed in
specifying the appropriate inlet radial profile if the peak
axial temperature is to be specified with any accuracy. A
distributed inlet temperature profile, which fulfills the radial
boundary conditions, is physically more reasonable than the usual
flat inlet profile and will produce & more reliable solution in
the inlet region. Therefore, in view of this, all cases, except
where stated otherwise, are solved for the distributed inlet
profile, described by equation 3.30,

3,6 The Effective Nusselt Number.

The effective Nusselt number was defined in equation 3,17 as,
NU' = NU t (1) - 1
tm -1

7 -
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Figure 3.06 . Effect of the form of the inlet profile

on the axial temperature profile.
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and (tp - 1) is defined by,
[
(tm = 1) = 2 J (t+ Mt - 1) y. ay 3,31
o]

from equation 3,13, By substitution for (t (y)y4 - 1) from
equation 3,30 integrating and rearranging, an expression for NU'
is derived:

Ng? = .M 3,32

(1 + 0,25 NU) + Wy (0.3286 + 0,1545 NU)

where W3 is given by equation 3.27. Due to the error in
estimating NU (i.e. the wall heat transfer coefficient and the
effective thermal conductivity), the constants in equation 3,32

will be expressed to the second decimal place only,

Nt = Ny 3,33
(1 + 0.25 NU) + vy (0.33 + 0,15 NU)

If the secondary correction function ‘O"II is neglected (as will be

the usual case for the reactive system), then the value of the

constants change slightly

ot = o 3.34
(1 + 0,25 NU) + Wy (0.30 + 0,11 NU)

The error of estimating NU' when ignoring KLn is plotted against
NU in figure 3,0§, These expressions are analogous to that
derived by Froment for the analytic solution (which is summarised

in section 3,2)

Not = v 3,35

1 + 0,25 NU
Equation 3,35 is the expression for NU' which would be derived if
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Figure 3.07 . The error of ignoring the secondary
correction function with respect'to
the effective Nusselt number, NU.
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a parabolic radial temperature profile is agsumed i,e. w3 = 0,
This is only a valid approximation for low values of NU, A
comparison of the predicted values and actual value of NU' is
given in figure 3,08; it can be seen that the predicted value
(given by equation 3.34) almost exactly coincides with the actual
valus of NU', vwhereas the Froment prediction always overestimates
the value of NU',
3.7 Conclusions.

The reduced model for heat transfer from a packed bed may now

be written,
2Nyt

PeT

(tn=1) = (4 -1)}, ., e (

2
(t (y) - 1) = [( - ) (L -35° +27) + 1”1 + 0,5N0 (1 - yz)](t(n)-t)

1.2NU+4

wr [+ Q)-1 1

NU . - 1 [(1 + 0,25 NU) + (NU )2(0.30 + o.mmil
m
1.,28U+4

A comparison of the original and reduced models is given in
figure 3.09. The above model retains the generality and
quantitative and qualitative description of the original model
described by equations 3.03, 4, while radically reducing the
computing by a factor of 60 : 1, The relative reduction of
computational load is not important for this case, as it has been
considered solely as a special case of the chemical reactor, and
because the temperature profile is used as a first approximation
for the case with exothermic chemical reaction, Nevertheless

it does indicate how effective model reduction can be,
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CHAPTER 4
REDUCTION OF THE FIXED BED CATALYTIC REACTOR MODEL

= SIMPLE IRREVERSIBLE REACTION A — B,

4,1 Choice of Model,

The system considered is a tubular fixed bed catalytic
reactor in which the chemical change is highly exothermic. The
model is multi-dimensional in that it considers the spatial
variations of concentration and temperature in both the fluid and
s0lid phases, The simplifying assumptions which render the
solution tractable are amply enumerated by Cresswell (27), whose
model (14) is to be used. A conventional tubular reactor is
considered, packed with spherical catalyst pellets, (1) The
pellets are of a uniform size and both physically and chemically
identifiable. A diagramatic representation of the reactor and
pellet is given in figure 4,01, The pellets are randomly packed
to produce a homogeneous assembly having no preferred flow
directions, (2) Heat from the reactor is removed via the tube
wall to o coolant at constant temperature with respect to the
axial direction, (3) The reactant flows through the packing
in plug flow., (4) Axial dispersion in the direction of flow may
be neglected compared with the eddy diffusional processes. For
a practical range of flow rates this assumption is valid <28'29).
(5) The physical properties and heat of reaction are assumed
constant with respect to the range of concentration and
temperature in the reactor, (6) The individual pellets are
assumed to be quasi homogencous, the internal mass and heat

transfer being by ‘'effective! diffusion and conduction processes,

both of which are measurable properties.
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Figure 4.01 . Diagram ofthe fixed bed reactor.
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Allowing for finite rates of heat snd mass transfer across
the fluid film surrounding the pellets, inside the catalyst
pellets and radially in the fluid phase, the recactor state

equations may be written:

Fluid:
-G df'aT+1>~f’3 (r.'@T)- 3 (1-e))~p T Lo .00
o em—— —— ——— w—— — —
x T o Br b ds ts=h
'ﬁ°?f.+ _];Df_a(r.?ﬁ)-z(l—e) Dp iczj =0 4,02
£ % r Or r/ b sy L p
Solids
2
.]; Ap E (9 .‘.139)"' (- AH) R(CS’ TS) = 0 4,03
82 ds ds
2
.]; Dp i(s .d_c-s) - R (Cs’ 'rs) = 0 4.04
g2 ds ds
Where the boundary conditions are
T = Th't (r)
x = 0, 042 &3 4405
Cc = C
o
?;T-" ?_C. = 0 r = 0, 0$X£L 4,06
3z Or
ég - 0 r = B, 0&x¥%1 4,07
or
")'fBT = U (T—TW) r=38 0% x41L 4,08
dr
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dCg = daTg = O 8=0 7}

ds ds ¢ » B

~Dp d4C; = kg (C,-Cy s=0 4409

ds 0

-Xpiizs = h, (T,-T) s=b
ds

It has been demonstrated that the pellet is essentially
isothermal (M) although not at the £luid temperature, so that
equations 4,03, 4, 9 can be solved analytically, and by use of
an effectiveness factor, Tl » are replaced by algebraic expressions.

The state equations are now reduced to the form:

Fluid:
-Gogp O + 1A, ) (r. BT) + 3 (1=-e)h (TS-T)|Snb=o
_ ° — i 4410
ox r 'ar Br b
..cobc+1n 3_( ?_c)+_3_(1-e)kg(cs-c)ts_b 1
Qf ax r o Or b ’
Solids
-3_ he (7g - '1')‘ ab = (-AH)J'L. R(C,T) = O 4,12
b
-3 kg (cs-c)’ A =7’1.R(C. T) = O 4413
z oa
b

the effectiveness factor for a first order irreversible reaction

is given by,



q - . 4.14

8
Dp
4.15
—
g = b\/ko exp (m)
DP

The set of equations are conveniently and efficiently solved by
the Crank-Nicolson finite difference method for equation 4.10, 1l
(see Appendix 2)

The choice of reactor data is extremely important as all the
characteristics of interest must be fully demonsfrated. For
example there must be a temperature maximum in the axial direction
and appreciable radial temperature and concentration gradients,
An unusually large (as far as a practical reactor is concerned)
inlet temperature difference between reacting fluid and coolant is
used to encourage large radial temperature and hence concentration
gradients, ~The reactor data is sumrarised on table 4,01 together
with the corresponding dimensionless groups.

4.2 Definition of the Required Model Description.

Before attempting to reduce the model, it is necessary to
define exactly the description required of the model with respect

to its uses in design, optimisation and control algorithms.
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Table 4.01

Reactor Data. Transfer Data.

G, = 0.449 g./cm2/sec. U = 4.4 x 1072 j./cm?/sec./oK.

@r = 5.68x 10™2 g./cm? Ap = 4e62x 1072 3./cm./sec./°K.

2
6r = 2445 3./8./°K D, = 332 cmi/sec.
me = 0.4
b = 0,21 cm. Pellet Data
B = 2,10 cm. hy = 7.86 x 1072 j./cm*/sec./%K.
L = 125 co. Ns = 3302 x 107 j./cm./sec./ K.
0
Tmo a2 590 Ko Kf =2 1045 cmo/seco
o 2
T, = 500 °K. D:p = 0,05 en“/sec,
Dimensionless Groups Kinetic Data
8 -1
PeT = PeM = 0,84 kg = 2,27 x 10" sec ~,

4
NU, = 64.31, SHy = 16,58, E = 9,6 x 107 j,/mole.

- AH = 2,27 x 10° j./mole.

2 -2
= 1,697 x 10°%; B = 0,6623
@ P Co = 2,03 x 1072 g,/cm?

X = 23,09 3 NU = 2,0

=33



A knowledge of the radial mean concentration along the length
of the reactor is required but a description of the radial
variation of concentration is not normally necessary. The
description of the temperature distribution is localised at the
axis where it is the radial maximum and which it is important to
control in order to retain the stability of the catalyst and to
prevent temperature run-away, If the problem is concerned with
catalyst decay vwhich is temperature dependent, it may be necessary
to generate the complete radial temperature profile, But, as
most catalyst decays over a period of years, the process is so slow
that the effective catalyst activity need only be updated
relatively infrequently eg. monthly.

4.3 Generalised Reduction of the Reactor Model.

In order to ease the analysis the reactor state equations

are rendered dimensionless.

Fluiad:
—PeT'.a..E i3 (y' ’?_E) + N (= 0) o = O 46
’bz y ay 3}'
= Pey ?_c_:_ * }. '@__(y°@i) + S (°s—°) 1v=l = 0 417
9z y Oy \ ¥y
Solid:
- (t -t) - B @2‘;] R' (e, t) 4.18
L SHS (cs - c) = @ 2 'q R* (c, t) 4019
with boundary conditions,
t = )
tht Z = 0’ OS ¥y S 1 4.20
c = 1



Bt e = O y = 0, 043z%1 4.21
Ay ¥y
De 0 y = 1, 0¢z £l 4422
(2%
-t W(t-1 y =1, 0%z%1 4.23
Oy
where
b B L
Ty ' Co
Cq ‘C_s_
Co
Pop = G o, B s Pe, = G B
>~ 1 CH o
L
£ QfoL

NU

2
3(1-e)B h, SH, = 3(1-e) B kg

Ap b D, b
Af Rg Tc

(-AH) Co D . B2 . (1-¢) Bk, exp (-f)
>\f Te D

f



There is no general analytical solution for the fixed bed
reactor model, so that approximate methods are used in order to
gain some insight as to the basic structure of solution. Consider

the locally linearised version of equations 4,16, 17 :

Uy

-Pey A + 1 7 (y.’at)+ at + bo + d = O 4,24
0z y ihy

2 v dr N\ By

Froment (2) has shown that the solutions of the equations may take

-Pey, Yo + 1 7 (y 3c>+ alt + blc + d' = 0 4,25

the form,
oy
ce 2 n @Y, ® 4
s
1-1%)= g, (2) §n (¥) . < 4427
n=0

Although these are not generally applicable, it may be possible to
suggest basic forms for the reduced solutions, eg, that the radial
and axial solutions are separable and that it is better to consider
the temperature difference with respect to the ambient temperature,
rather than the absolute value of temperature.

The reactor model is reduced by a lumped parameter approach
and the description is regenerated by constructing solutions in
the dimensions which have been eliminated, in a similar manner to
that used in the previous chapter, The principle dimension is
chosen as the axial direction,

Maltiplying the state equations 4.16, 17 through by 2y.dy and

integrating over the bed radius,

~36=



~Pey at - 2N (¢ (1) - 1) +ﬁ H* (113* (c)8) ) = O 4.28

dz

- Poy do, - é? (7112* (crt) )y = O 4429
dz

so long as,

dz n dz dz o dz

In order that the reduced model is expressed in terms of radial

mean temperature and concentration only two pseudo-parameters are

defined.

The effective Nusselt number, NU' = NU (t(l) - 1) 4.5
‘bm -1

and a distribution factor @ = ('fl R (eyt) )p 4.51

for the reactor tube 'Tl (m) R*(cm,tm)

which is analogous to the effectiveness factor,')] and is a local
value, Satisfactory agreement between the solutions of the
complex and reduced models will be dependent on reliable methods
of estimating these two parameters, which will be discussed in the

succeeding chapter, The resulting reduced model may now be

written:
- Pey, Sim - N (t - 1) +ﬁ§2$ 1‘1(m) R (o 0t)) =0 4,32
dz
- ray a5, - DD N@) B (o 1)) = O 4.33
dz

vhere the boundary conditions are,

t a %
m mo
z = O 4,34
e, = 1



The problem is to reproduce the detailed description by
constructing solutions for the radial concentration and temperature
profiles,

4.4 Regeneration of Description.

4.,4,1 Introduction.

Before carrying ou: the numerical experiments to determine
the functional forms of the radial profiles, the basic model data
must be chosen in order that all the general features of the model
are described, eg., large radial temperature gradients, and a
maximum temperature, axially, as discussion earlier in section 4.1.

4.4.,2 The Radial Concentration Profile.

By observation of typicael solutions of the complex model,
the radial concentration profile, representing the two point
boundary problem, can be adequately described by an odd power
polynomial function. The simplest form of the trial function is
a cubic of the form,

c(y) = g + €,y +€,5 + E ¥ 4435

) 1 2 3
where the Ed.ame axially dependent coefficients. Applying the
boundary conditions of the complex model (given by equations

4,21, 2, 3) to the polynomial function, and substituting for

°p = 2°f1°(y);y.dy:

m
3_: = él = 0
‘H
N 4436
%ﬁﬁ = 2€, + 3 £3 = 0
ay| o, |

~38-~



and,

o, = &

m

o * 05§ + 0.4€; 4.37

then

o) = &5 (¥ - 155 + 035) + o 438

A pseudo~parameter, the overall radial concentration difference is
defined as,

Qe = o) - 5(0) 4.39
where o (0) is the concentration at the tube axis end @ (1) the
concentration at the tube wall, Substituting for Ac in equation
4,38 the coefficient 55 is eliminated from the expression,

2 3
°(Y)=Ac(3y "2.y -O.7)+c!11 4,40

BothAc and ¢ are axially dependent functions, FEquation 4.40
is equivalent to the type of function proposed by the Galerkin

and collocation methods, where m = 1, ie.

c Nc(l) = al(l).fbl +|.D_'° 4.41
where ¢ ='S)"o , (3y2_2y3 - 0.7) -D.ll andAo - al(l).

The prédicted concentration profile given by equation 4.40 is
accurate to within 0.5% of the computed from the complex model,
(see fig. 4.02) so that it is unnecessary to consider any form of
correction term,

In order to use equation 4.40 in the reduced model an
expression forb ¢ is required which is related to radial mean
parameter values, eg., Ct tm’ k* (tm) etc., but discussion will be

deferred until the succeeding chapter.

4.,4.3 The Radial Temperature Profile,

As stated in section 3.1, the fixed bed heat exchanger has
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Figure 4.02 . Comparison of the act?al and predicted forms

of the radial concentration profile.



been taken as a special case of the fixed bed reactor model

( ie. whereﬁn- o), and the temperature profile which has been
developed for that model will be used as a first approximation for
the reactor model. Graphically, it is assumed that the
temperature profile is distorted by the presence of an exothermic

chemical reaction. If a correction function is defined by,

f2 () = (t-l )-— 1l 4442
g = L

where the reference temperature is that at the tube wall,

(ie. t (1), where £, (1) = 0), then £, (y) is similarly

constrained as f; (y) (sce section 3.4.3)

f2 (1) = 0

f2' 0) = f2' (1) = 0 443

from the boundary conditions of the original reactor model, By
observation of the solutions for a practical range of reactor
operating condition, the correction functien, f, (y) can ve
adequately represented by a simple algebraic function:

£, (¥) = Wy (1- Byz + 2y3) 4.44
It would be expected that the coefficient, Wy would be solely a
function of the reaction terms and is in fact primarily
dependent upon the overall radial concentration difference,zsc
which could be physically interpreted as the gzzzgi to which the
temperature profile is distorted by the presence of an exothermic

chemical reaction., From an exhaustive analysis of the model

coefficients, the coefficient, w4 may be adequately represented by,

10 .
W4 = /BﬁAC 4.45

=40~



In figure 4,03, Wy amd pAc are correlated, As may be seen, the
relationship is not exactly linear as proposed by equation 4.45
But it is always the policy of model reduction to preferably
make use of simple algebraic relationships even if slightly less

accurate than more complex forms. . Nevertheless use of the simple

-

ielationship must be justified with respect to the error.

In the direction of increasing temperature (i.e. when
approachihg the temperature maximum) and in the region of the
temperature maximum, which on figure 4.03 is along the line from
the origin through AB, equation 4.45 holds almost exactly. But
in the direction of decreasing temperature, through BC to the
origin on figure 4,03, the error increases to a maximum and falls
to zero. Therefore equation 445 always holds in the region of
practical importance (i.e. up to and around the temperature
maximum), and no great concexrn need be caused by the error in the
region in which the temperature is falling as normally this is
beyond the normal limits of the reactor, i.e. before this
situation can occur the exit of the reactor has been reached.

When the exothermicity, P, is zero thén, as would be expected,
the temperature profile is that for the fixed bed heat exchanger,

The radial temperature profile may be written as,
2
- 10 2 3\ .14 NU _z 2 3
(t (y) - 1) =[ /3pﬁc (1—3y + 2y )+f“ ) (1 3y + 2y )+1}
« 2NU+4

x[1+05mw@-3]¢ @ -1) 4046 -
The temperature adjacent to the wall, t(1) can be eliminated from
equation 4,46 by integrating with respect to 2y‘ dy to introduce

the mean radial temperature, tm’ where,

=41~
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(t(1) - 1) = (t, = 1)
[(1+0.25NU)+(w3+w4)(O.llNU+0.3O)+w3w4(0.47NU+0.17)}

and Wz Wy exe defined by equations 3,27, 4.45 respectively.

4.5 Conclusions

The reduced model for the exothermic fixed bed chemical

reactor may now be written,
~ Pe, dt_ - NU' (% -1)+,l3§2® (m) R (e., t.)=0
T - m m Tl n' m
dz

- Py do, - @ %‘)‘l(m) R (o t) =0
dz

and the radial profile may be obtained by using,

e(y) = Aec (3y2 - zy3 - 0.7) + ¢

4.4%

4.4%

4.4%

t(3)-1= {00, 13, 242 210) (w5 (103, B2, D) 41) (140, 58002, D)) (1,-1)] 450

((1+0.25NU)+(W3+W4)(0.3+0.11NU)+w3w4(0.17+0.47NU))

N\ 10,
where w3 a H Wy o= BIBAc
1,2NU0+4

It must be noted that although some of the expressions appear
complex, in fact, for a specific reactor system, they ars constant
eg. Wz o This tends to radically simplify the expression for the
radial temperature profile.

Unlike all other one dimensional models which have been
proposed, the above model accounts for the effect of the presence
of an exothermic chemical reactor upon the effective Nusselt

number, NU 'and differentiate$ between the radial mean reaction rate



and the reaction rate at the radial mean conditions through the
distribution factor,ga. The model has the additional ability to
construct the radial profiles of tempersture and concentration if
required. Indeed, all these features have been made available
with minimal addition of complexity to the basically attractive
simplicity of the one dimensional model, It must be stressed
that the reduced model is generally applicable over the parameter
range for which it has been developed and at no stage can it be
considered to be an empirical model. The one~dimensional state
equations are an exact and direct development from the original
two-dimensional model and their reliability is dependent on the
accuracy of estimating the pseudo-parameters NU! andd. 1o
consider parametric sensitivity would be meaningless as the two
models are directly related over a wide range of conditions. The
two models are compared in figure 4,04 for the basic data, which
can be considered to be a atringent test for the reduced model, as
the system is 'finely balanced' which necessitates parallel
characteristics of the two model if comparative results are to be
produced,

In this chapter, a very simple first order reaction has been
considered, which is not at all typical, and in Chapter 7, more
typical reaction schemes are considered. Nevertheless, the
analysis in this chapter has proved that model reduction is

possible, and indicates the direction it might profitably take.
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CHAPTER 5
CORRELATION OF THE AXIALLY DEPENDENT PSEUDO PARAMETER

5.1 Discussion,

The overall radial concentration difference, Nc is
physically identified as the concentration difference between the
tube wall and axis, at any axial position,

De =« (1) - c(0)
As the reduced model is solved exially in terms of the radial mean
values of the system parameters, i.e., concentration and
temperaturs, the value of Dec is not directly available in terms
of the reduced model; but it is required in order to estimate the
distribution factor,@ and the effective Nusselt number, NU' (see
the succeeding chapter) and to generate the radial concentration
and temperature profiles (see section 4.5). Therefore, an
alternative approach is required for the estimation of De in
conjunction with the formulation and solution of the reduced model.

5.2 Preliminary Analysis.

As no analytical solution exists for the original reactor
model, no information as to the functional form of Ac is
immediately availadble. In order to determine the principal
parameters or parametric groups on which Ac is dependent, a
radically simplified reactor model is considered. Assume that
the axial convection terms are negligible compared with the radial
diffusion and conduction terms, and that the radial transport is

mass trangfer limiting, An approximate relation,

Ac ~u D2 (” (0)R" (c(0), £(0) ->7(1)R* (c(1), £(1))) 5.0

is assumed, which expanding the reaction rate terms gives,



Ac ny $° (e(0) K (3(0)- o(1) K™ (£(1))) 5.02
Using equation 4.40, the radial concentration profile, c(0) and

c(1) are expressed in terms of ¢, and Ac, t.e.

e(0) = o = O0.7TAc

5.03
c(l) = e, + 03Ac
vhich when substituted in equation 5,02, and rearranged gives,
Ac K (4(0)) - X (1))
o ~ <0.7 K (4(0))+ 0.3 K (+(1)) + 1/§2 >
This expression is clearly a gross approximation and to
render it generally applicable a modified solution is proposed
which has the same general form, i,e.
Be - K (tm) - 1 ;
o 1)1 T* (tm) ™ 1)2 Y 03 /@z 5.05
wvhere n is an arbitrary power not necessarily an integer and the
~D1 are coefficients dependent on the model coefficients which
have not yet been considered.
When NU = O, i.e. the reactor is adiabatic and Ac = 0; but
vhen NU has a large value but is finite, Ac is independent of NU
since the radial transport process is mass transfer limiting.
Therefore the expected form of the coefficients, 1)1 should be,
'Di - F@u) + 1} ©® 5,06

¢ (NU)

where m is an arbitrary power and F(NU), G(NU) are functions of NU,
Account must be taken of the general inlet condition where
o ¥ 1, from which X' (tm o) 4 1, so that equation 5,05 does not

fulfill the inlet boundary condition for concentration that



Ac ‘ zmo ™ 0. In this case the function, Ac approaches its
its asymptotic form (given by equation 5.05) from the inlet
(Ac = 0) in a manner described in section 2.5 by equation 2,03,

i.e.’

Ae - Ac‘ exp(-'?) -Q»Aca (l-exp(-'%)) 5.07

which can be simplified to,
Ac = Do, G - o ( -F)) 5.08

where Aca is the asymptotic value of Ac and '? is & pseudo-

Z2=0

parameter,

From the above analysis, numerical experiments may be
designed to verify the form of the proposed solutions and to
determine the constants and pseudo-parameters which have been
introduced.

5.3 The Parametric Analysis,

5¢3.1 The Power, n.

*
The parametric groups, (x (tm) - 1) and _A_: -AC are
c
m

correlated for a range of reactor operating conditions, of which
figure 5,01 is typical, For reducing values of (k' (t ) = 1) the
gradient (on logarithmic co-ordinates) tends asymtoticelly to a
value of 2, which is the value of n. For increasing values of
(k* (t m) - 1), A o asymptotically approacl{.zs a constant value as
predicted by equation 5,05, so that the basic structure of the
predicted solution forAc is verified.
5.3.2 The General Form of Aec,

Having established the basic structure for the solution

proposed for e, the coefficients ) 4 are evaluated by plotting
*
(k (tm) - 1) end k' (tm) for a range of values of @ 2 and

A
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constant NU, The gradient of the straight line isy); and the
intercept (for k' (tz) = 0) is (V, + (D /'q’;z) ) as
demonstrated in figure 5.02. Physically X (t m) cannot take
values below 1, which is the value at the coolant temperature,

In the region of X (tm) close to 1, (k* (tg) - 1) and Ac‘% are
almost zero, and in evaluating the ratio, 'round-off' error is
encountered which can distort the results, Therefore in
correlating the results care must be taken to ignore the points in
this region.,

The coefficient 1)1 is constant with respect to § 2. In
figure 5.03, (V, + Vs /@2) from figure 5.02 and 1/@2 are
plotted in order to evaluate Vp and vV 3, which are the intercept
(for 1/§2 = 0) and the gradient of the straight line
respectively.,

5.3.3 Dependence of #MAc on NU,

The coefficients, ) 4» are evaluated by the above method of
correlation for a practical range of values of Nusselt number, NU,
As discussed in section 5,2 the dependence of 1) j on NU, given by
equation 5,06,

The coefficient, 1)2 is found to be constant with respect to
NU., By correlating<)j and V3 with NU on logarithuic
co-~ordinates, the integer m (from equation 5.06) is the limiting
gradient of the curves for decreasing values of NU, which can be
soon from figures 5.04, 5., In both cases m = « 1, and '\)3 is
inversely proportional to NU, i.e.,

Yy =V, wol 5,09
where 1)4 is the constant of proportionality. The cosfficients

1)2 and '03 may be grouped together as,
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(1)2 NU -+ '1)4/@2
NU

which is of the general form given by equation 5,06, If 1)1 is

dependent upon NU by the relation,

v - (‘)5 N+ ")6)

NU

then 1)5 and -‘)6 are evaluated by plotting 1)1. NU and NU on
cartesian co-ordinates, as demonstrated in figurs 5.06.

Ac is found to be insensitive to the remaining model
coefficients i.e. /5 ' Pemand PeT, so that the resulting

expression for the asymptotic value of Ac may be written as,

. 2
Ae _ ( W0 (6 () - 1) )
o 1,18 k' (ty) (NU + 0.25) + 7.2NU + 1/@2

where the value of the constants have been included.

5.4 The Development Function,

As stated in section 5.2, the expression given by equation
5.11 represents the asymptotic form of Ac for the general inlet
condition wherse X (tmo) # 1. The type of development function
considered for the actual value of A ¢ from the initial value

Aci = 0 to the asymptotic value Aca is given by equation 5,08,
De - Aca 1 - exp (-?) )

where 7 is an axially dependent function which is zero at z = O,
The principal dependent variable of the .t‘unction? is the radial

mean conversion, (1 ~ cm) ‘which has the required initial condition.

c

As mey be seen in figure 5,07, which is a graph of In (1_1.4.0_.)
a
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against (1 - cm), the relationship is linear, i,e.
7 a -1)7 Q - cp) 5,13
where \)7 is a coefficient which is dependent upon the model

parameters (as shown below).

5.4.1 Determination of the coefficient,1)7

From figure 5.06, the coefficient,\)7 is constant for any
*
particular reactor situvation when k (tmo) = 1% gshen 1)7 =g, as
Ae - ﬁca;a.nd for X' (% mo)>> 1 the process will be mass transfer
limiting, i.e. dependent on §2, so that an expression analogous to

the inverse of Ac is proposed,

1) n
Voo [V 0 (g) - 1)« 9/@3) 5.14
(" (t,) - 1)

where n is a power and 1)8, 1)9 are coefficients, In the limit
* * -n

for decreasing values of k (tmo) -1, 1)7 ot (k (tmo) - 1) ,

so that n may be evaluated by the method described in section

531, The valuc of the power is found to be 2, Figure 5,08

verifies the proposed form of-\) 7 showing that the limiting

conditions are satisfied, The coefficients 1)8,1)9 are determined

» Y - *
by correlation of Y., 2 (k* (¢. ) -1) 1ana (k" (t.)=1) as
T mo mo
recounted in section 5.32 and are found to be independent of the

remaining model parameters., The function F may now be written,

2
¥ - ( 2.0 (" (¢,)-1) + 1/P2| (@-¢) 5.15
(K (4) = 1) -

In comparing this function with the asymptotic functional form of
the overall concentration difference, A ¢ a similarity can be
seen in that ? is an inverse form of Ac at the reactor inlet

conditions,

al G
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5.5 Conclusion,

Even though the analysis for the overall concentration
difference, Ac is semi-empbrical, the resulting expression is
generally applicable for any reactor, The basic functional
structure is verified by the preliminary theoretical analysis,

The expression covers a wide range of conditions; for example over
1 1)

three orders of magnitude of the Nusselt number, NU, ( 10 ~ to 10
The expression is applicable for all conceivable practical values
of @2 ag may be seen from figure 5.03 and the fact that when the
radial effective diffusivity is infinite, i.e. §2 « 0, as would
be expected NAc = 0. When the reactor is adiabatic (NU = 0),
Ac is correctly predicted as zero. Although inlet temperature
differences of over 100°K have been considered for the analysis
of this effect on Ac, practically inlet temperature differencesof
less than 10%K are usually encountered, Therefore, the
expressions derived to predict Ac from the dependent variables
of the reduced model, adequately span the possible range of
reactor conditions., The only error encountered during the
correlations was either statistical i.e. manmal errors or
manipulative, eg. determining the difference K (tg) = 1 when

X' (tp) was so close to unity, that round off error became
important,

So far A ¢ has been considercd in a physical sense as the
overall concentration, but it is used in a more abstract sense
with respect to the evaluation of the temperature profile, the
effective Nusselt number and the distribution factor. It is
considered as reflecting the effect of the presence of an

exothermic chemical reaction on the form of the radial profiles.
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The functional form of A ¢ reflects the interdependence on
concentration and temperature through the chemical rate

expression, Thereafter Ac is therefore no longer considered as a
physical quantity, and the semi-empirical expression forA c can be
congidered in a new light, i.e. the measure of the interdependence
of the concentration and temperature profiles in the presence of
an exothermic reaction with respect to the several possible rate
limiting processes of heat and mass transfer characterised by @2

and NU,
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CHAPTER 6,
THE EFFECTIVE NUSSELT NUMBER AND THE DISTRIBUTION FACTOR.

6,1 Introduction.

Both the effective Nusselt number, NU' and the distribution
factor,&were defined in section 4.3 by equations 4,30, 1 which

may be rewritten,
NU' = WU 1) - 1 ) 6.01
tn - 1

% - ('n R (cy t) )m 6,02
M) & (epty)

The values of these pseudo-parameters must be known in order that

and

the solution of the one~dimensional model equations will be
comparable with the two-dimensional model equations, i.e, axial
correspondence of the two models,

6,2 The Effective Nusselt Number,

Several workers (16-20) have attempted to derive an
expression for the effective Nusselt number, particularly an
effective overall heat transfer coefficient, but none have
explicitly taken into account the presence of an exothermic
chemical reaction or scheme of reactions. In particular it has
been assumed in the cases considered that the presence of the
exothermic chemical reaction is negligible. In all cases the
effective overall heat transfer coefficient has been assumed to
be constant with respect to the length of the reactor, whereas if
the actual value varies along the reactor length it can be seen
that considerable variation can take place as shown in the sketch

below (figure 6,01)
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The curve shown above is typical for a reactor in which there
exists an axial maximum temperature. As the minimum value of the
effective overall heat transfer coefficient, h o generally coincides
with the temperature maximum, it is in this region particularly
that account must be taken for the axial variation of ho, end the
reason why the gross ass::mption that ho is constant produces
invalid results.

The expression for the effective Nusselt number, NU is
derived by making use of the radial temperature profile, which was
developed in section 4.43 for the reactor in which an exothermic

reaction is taking place, (i.e. equation 4.45).
2

t(y) =1 = (10/5/3Ac (1-3}'2 + &VS) +1 l! NU ) (1-3Y2+2y3)+ 1
1,2NU+4

-

x (1+0,5N (1~-y2)) (t@)-1)
If this relation is substituted in the expression for the radial

mean temperature difference,

=53



1
ty = 1 = 2of (tG) - Voyeay

and the integral evaluated the radial meaﬂ temperature difference
and the temperature difference at the tube wall are related by,

(t, = 1) = { (1+0,2580) +{ N \24 1°/3ﬁAc}(o.11m+o.5)

{ (1.2NU+4)
+ 1°/5,Bﬂc( NU )2 (0.4750:0,17) | (£(2)-1) 6,03
1,.2NU+4

When this expression is substituted in equation 6.01 to eliminate
(t, = 1) and (+(1) - 1), the effective Nusselt number is given by,

NU' =

NU
(1+o.25uu).{( NU Y + 1°/3pAc} (o.3+o.1mu)+1°/5pAc

1.2NU+4

6,04
X ( ] ) (0,17 + 0,47N0)
1,2NU0+4
The expression for NU' can thus be generally wxritten as,
Nt - Nu 6,05
1+ 0,25NU + P(NU) + Q (Nv,ﬂbc)
where P(NU) is a function of NU only and Q (NU,’BZSG) is a
function of NU and /3Ac and defined by,
P(NU) = NU )2 (0.30 + 0,11NU) 6.06
(o
Q (NU,pAc) =PAc(o.93 + 0,36NU) +ﬁAc NU ’ (0.5641,55NU0) 6,07
1.2N0eg

If P,Q are assumed to be zero or negligible then NU' is the

effective Nusselt number for a parabolic temperature profile (or



that predicted by the analytical solution for heat transfer only),
Hence P,Q can be considered to be correctif:ns which allow for the
fact that the temperature profile is not parabolic for the heat
transfer case only and for the presence of an exothermic chemical
reaction which distorts the profile, respectively. For a
particular value of the Nusselt number, NU, P is constant and Q a
linear function of ﬁAc. For a particular set of reactor
conditions, the maximum value of Ac for high values of reaction
rate constant, X (tm) at the mean radial temperature may be

written as,

2
_é_c_max = Nu ) 6.08
e 1.18(NU+0,25)

from equation 5,11. From this, the maximum value, Q* of Q may be
expreseced as a linear function of ﬂcm by substitution of Ac nax in
equation 6,07, The term pcm is the total quantity of heat
available from reaction at the particular axial position, Q* is
also a function of the Nusselt number NU, Therefore the maximum
range of wvalues of Q may be determined for a particular reactor
situation expressed as,

0<q (N‘U,IBAc) £ (Nu,ﬁcm) 6+09
where Q (NU,P c,) can be determined, From such an analysis it
can be established whethexr it is necessary to take account of the
presence of the exothermic chemical reactor in estimating the
effective Nusselt number, NU' for a particular case. Such a
treatment may enable extra savings in computing time to be made,
In figures 6,01 and 6.02, (Acmax/ °m) and (Q* /ﬁcm) are plotted

against NU, The function (Q* /ﬁ c m) is approximately linear with
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Figure 6.0l . The dependence of Aomax on the

Nugselt number, NU.
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Figure 6.02 . The dependence of the function,Q’on
the Nugselt number, NU.
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respect to NU,
6.3 The Distribution Factor.

The distribution factor,gb.is defined in an analogous manner
to the effectiveness factor for the catalyst pellet, i.e. the ratio.
of the radial mean reaction rate to the reaction rate at the radial
mean conditions at any axial position. It is a correction factor
for the radial fluid temperature and concentration in the one-
dimensional model. There is no easy method of constrhcting a
simple algebraic form for it, in terms of the radial mean fluid
val&éé only which complies with the structure of the reduced model,
Indeed, the usually accepted treatment is to assume that the
distribution factor is unity which ih some cases is a gross
assumption, as may be seen from figure 6,03 which is a typical plot
of the distribution factor,&), along the reactor length. The
figure also demonstrates the non-linear nature ofsa'which prevents
a straight-forward prediction of its behaviour.

It is possible to generate the radial reaction rate profile
from the radial temperature and concentration profiles, from which
the radial mean reaction rate can be determincd by direct
numerical integration using Simpson's rule. In gensrating the
reaction rate at each radialnode, it is necessary to solve the
pellet equations to determine the effectiveness factor, so that
the reduced model could be said to be dogenerating back to a two-
dimensional system. Therefore the number of radial points used
in the radial integration should be kept to a minimum when

evaluating,

1
By = ZLOS R (v) y. dye 6.10
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In the form of Simpson's rule becomes,

2n=2
Bp = 1 22 4 (i -1) R*(.i_'_l_) + 24 R*(_f_)
I W on 2n
12

* -
where (2n+l) is the +11f4(2n-1) (2n 1\, & (1) 6.11
number of radial : én 2o 2n
positions,

It can be easily scen that it is not necessary to evaluate Rf(o).
As Simpson's rule fits the integration curve to a parabola
between each three points, and the rcaction rate profile can be
said to be approximately represented by a parabola, then the
value of n, for a reliable result should be small, In fact the
difference between n = o0 and n = 1 is less than 2% for a typical
cagse tuken in the region of the temperature maximum., Therefore
R*m can be adequately predicted from only two values of R(y),

uging the simplest form of Simpson's integration rule, i.e,

P +

* * +* LT et P
Rn = AR @) + Y38 () 777 4 5 e
and the distribution factor, can be written,

@ = [2 R* (%) + R* (1) 6,13
3R (m)

It ig now necessary only to solve the pellet equations at the
three radial points at each axial integration step whereas when
using the Crank-Nicolson finite differencc method to solve the
two-dimensional state equations at least 20 radial increments are
required for a stable and reliable solution. Figure 6.03 also

compares the predicted value from equation 6,13 with the actual



value of the distribution factor along the reactor length., As
the reactor data were specifically chosen in order to generate
large radial gradients, the situation which has been modelled can
be considered to be an extreme case, In the more practical
reactor situation, the mean inlet temperature and the coolant
temperature are equal or ncarly equal, so that the distribution
factor is unity at the reactor entrance instead of the relatively

high value as shown in the example,
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CHAPTER 7
REDUCTION OF THE FIXED BED CATALYTIC REACTOR MODEL

-~ COMPLEX RPACTION SCHEME

A > B —» C

g

7.1 Introduction.

In Chapter 4, the reaction scheme considered was that for a
simple first order irreversible reaction, which in general is not
typical of the type of chemical reactions which are normally
asgsociated with industrial fixed bed reactors. Nevertheless the
enalysis was valuable in that it demonstrated that model reduction
techniques can be applied to the fixed bed rcactor, Considering
a more general reaction scheme represented by,

1 2

A — B = ¢C
3\'D
where A is the reactant (in partial oxidation reactions the air is
usually in excess and its concentration is effectively constant);
B is the desired product for which the process is designed. As
catalysts are not generally 100% selective towards the desired
product, 'side! reactions occur which for the simplefication of
analysis can be lumped into one reaction, whore D represcnts the
unwanted products from the side reactions, Finally, B could
react further to another set of undesired products, for example by
continued reaction with the reactant in excess which could be
sequential oxidation, halogenation etc. Then, both competitive
and consecutive reactions are occuring.

In this chapter, a reaction schems of the type described above



is considered, for a first order kinetic systems The techniques,
as developed in Chapter 4, for the simple reaction are extesnded to
this system without any increase in the complexity of the reduced
model or the functions which describe the radial profiles and the
pseudo~parameters.,

T.2 The Reactor Model,

The same reactor geometry is considered as in Chapter 4, and
the reactor equations are written in the same form except for the

introduction of a mass balance for the required product.

Fluid:
—G Oy aT + 1 )s ’b r 97T -3 ( l-e))\p dTs =0 7,01
ax T 31‘ 'br b ds |s=b
-8 Uy ., Dfi_@(ra%)-z (1-e) D, aC, -0 7.02
Qf Ix r 9\ Or b ds | s=b
"G ¥ v % .l.l(r‘f'-) A T
Qf ax r'O:r: 'ar b ds | s=b
Solid:
.'_L_Xp f..(szfe +(kl (-88)) + ks (-AH3))CAs
sz ds ds
+ k, ("AHZ) Chpg = O 7.04
3._ DAp E—(szdgég)— (k.l + k2) Chpg = O 7.05
52 ds as
2
1 ny _d_(s chs)+kchs - k, Cp, = O 7.06
8? as ds
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whero the boundary conditions are,

T o= T ()
¢, = € x=0, 0 £r &3 7,07
¢g = O
Br = Jc, = dcy =0 =0, 0 £x 41 7,08
’br 31‘ ar
Ve, =We; =0 ‘r=3B 0%£xf1 7,09
2= 9
-)\f U - v (-t) r=3 04%£x &1 7.10
r
dTs = chsa dCBSBO Sﬁow
ds ds ds
- D, 4ac k, (¢, - ¢,)
Ap As = TAg As A T 0 £=x é:L
ds
0 érr:é:B
Tell
=Dy, A0y = Ik (Cp - Op) > 5 =b
ds
“Ap s = n. (2, - ) )
ds

- E
where k; =k, exp (T "/ BT )

As for the case of the simple first order reaction, McGreavy and
Thornton (15) have shown that the catalyst pellet is essentially
isothermal with a relatively large temperature rise across the
fluid fil&. Undoer such conditions it is possible to solve

equations 7,05 and 7,06 in terms of the unknown pellet temperature, Ts’

8l



The resulting non~linear algebraic equation is solved to complete
the solution, An effectiveness factor,?? is defined by the

expression,

Tl = Kb (C - As " b) Ts12
Y3RY (kyy exp (- E1/RT) +Xos exp (= B3/RD) ) €,

and for a desired product, B the selectivity,\y ig defined by,

Wa kp. (Cpgs up = Cp)-

ko (cA - Gy 7.13
The model equations are now rewritten in dimensionless form,
incorporating the effectiveness factor and selectivity.
Fluid:
- Pe,, ’-a_i + 19 y@i)+ NO_ (b, = t)],q =0 7.14
‘3 z b4 33’ %3’
2 % 2 %
- P, Yo, +1 l(y'acA)-Tl( 2 e®iig)o =0 75
z y ay' Y/
2 #
%o, op+ 1 9 y'do) 'qv@ @2k ) ey -0 7,16
(P y i)y
where the boundary conditions are,
o, = 1 z = 0, 0%y £ By
Cy = 0
3t = 0¢, = 0o, =0 ym=0, 05542 7.18



'bcA . Q3% = O y=1, 0 £z £1 7419

Vy ?

-9t = NU(t-1) y=1, 0 £z 41 7,20
(5

At this stage the analyeis is concentrated on the fluid field so
that the pellet equations 7.04, 7.05 and 7,06 have not been
rewritten, The dimensionless model parametors are consistent
with the previous definitions. The model is solved as before
uging the Crank~Nicolson finite difference scheme (see Appendix 2).

T+3 Generalised Reduction of the Reactor Model.,

The generalised model reduction is carried out as before by
integrating the reactor state equations 7.14, 7.15 and 7,16 with

respect to 2.y. dy to eliminate the radial transport terms to give,

-Pep dt. -~ 2N (4 (1) -1) + NUS[(tS~t)’v=]_JmuO 7.21

T w——
dz
--Pem :‘iA_m - [Tl(@ik: +@§ k;)cA]m = 0 Te22
dz
“roy doy + (MW@ S+ B2 o], -0
dz

where the boundary conditions are,

T = o
o Am = I b4 = 0
®pn = 4]

In order that the reduced model is expressed in terms of radial

mean concentration and temperature only, pscudo-parameters are

w3



defined,

Te24

The effective Nusselt number, NU' = NU [/ +(1) - 1 )
tm - 1,

Three distribution factors,

®T = [(ts - t)'v=1] m 7.25

(tsm - tm)lval

gm = [Tl(éi k—f + @; k; ) CA] m 7.26
Ui (m)[@f i () +Q2 1 (w)] C\

8Rz = [’t‘V@ikﬁf +§§k§)cﬂm 7.27
(M@ Y@ (g @ +§5 5 @) ey,

The estimation of the pseudo-parameters is discussed later in this

chapter, in section 7.,5. The reduced state equations may now be

rewritten as,

- Pep at, - 2NU (tm- 1) +4>9T U (tsm - tm)tv,=1 = 0 7,28

dz

“P"Mﬁm'@m’? @ (@2 @+ P2k @) oy, =0 7,29
dz

= Pey deg, -9 R2 7? (m) v (m) @f k; (m) +@§ k; ()., =0 7.30
dz

*
(where k{ (n) is evaluated at #m).

The result is a set of non-linear first order ordinary differential
equation, and in order to solve them it is necessary to have some

knowledge of the radial concentration and femperature profiles,
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1.4 Regeneration of Description.

- To simplify the analysis, the complex reaction scheme is
initinlly considered decoupled into (1) a competitive and (2)

a consecutive reaction scheme, i.e.

1 1 2
(1) A — B (2) A => B -3 ¢

3\-‘1)
The systems are then combined for the final analysis, The bases
for the analysis are the profiles which have been developed for

the simple reaction scheme,

T.4.1 The Radial Concentration Profile for the Competitive
Reaction Scheme,

The concentration profile for the reactant, A is of the same
form as for the simple reaction as would generally be expected

and can be written,

CA (y) = ACA (syz - ‘?‘P - 0.7) + cAm 7.31

vhere ZSCA, the overall radial concentration difference is
considered as the composite of the two possible reaction routes,

i.e.

Ae, - AL

A v+ Deg 7432

Effectively, two simple rcactions arc being considered which may

be summed so that [&Ghl and chhs are treated as being derived

from two different species, This approach is also used later in
deriving the functionaliform onS ¢,. In figure 7.0l a typieal
comparison is given of the actual radial concentration profile

with the profile derived from the expression given in equation 7,31,

As can be seen the differcnce between the two profiles is small,
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As stated above, [Schl and [SGAB are considered as being
derived from two seporate reactions and by inspection oflScB and
[\cb, which correspond to the above values respectively, under
various reactor conditions for a differing range of kinetic data,
the general expression forAcAl and Do 43 may be derived by

carrying out the analysis described in Chapter 5 on both ASCB and

A,

Ac, = NU (k] (t) - 1) 7.33

“m \LI8 K] (5,) (W 4 0.25) + 7.2 MU + Y/ G2

together with the analogous expression accounting for the entrance
effects, This result is reasonable as the following equation

shows,

Aoy = Doy +A oumo) (7 (0) - 1 (1))EF +7(@) (55(0) - 5N ES

7434

which is analogous to equation 5,01 in Chapter 5.

Js:4.2 The Radial Concentration Profile for the Consecutive
Heaction Scheme

Consider the reaction scheme,
A2 3 250
the concentration profile of the reactant, A will obviously be
that for the simple reaction considered in Chapter 4. If reaction
2 in the scheme did not take place then the concentration profile
of the desired product, B would be the mirrm image of that of the
reactant A, At the stage when reaction 1 becomes less than

reaction 2, then the radial concentration profile of the product,

‘¢
B will approach the form of the reactant A,  Therefore, it would
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be expected that the radial concentration profile of the desired
product B will be in the form of a cubic function, but the value
of the overall concentration difference could possibly change

sign af around the stage where the overall concentration of B is

a maximugt In fact from observation of actuzl profiles the
functional form of the concentration profile behaves as expected,
except near the region where the overall concentration difference
cha;ges sign, but as it approaches zero then the error is
negligible, Then the functional form of the radial concentration

profile of B may be written,
op 1) = Bep (37 -2 =0.7) + ep 7.35

This profile is compared with the actual profiles for various
étages of the reaction in figure 7.02.

It is now necessary to formulate a general expression for the
overall radial concentration difference of the desired product B,

De.. A simple relationship is considered as before, i.e.
B

Boy v -2 @ (@) -5 @) B2 (-5 @) 136
and using the selectivity \/f ,

Doy ~nv =32 (WO O -YOE @) 7.37
This is now assumed to take the more convenient form,

Begmo -Y @ &2 (-8 1) 7,38

which may be rewritten,

Aoy, -)Jf[(m)’Ach 7.39
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where qf(m) is evaluated at the radial mean conditions, This
relationship is tested in figure 7.03, The maximun deviation
from this relationship occurs whereyV(nﬂ = 0, which is also the
region in which the predicted profile deviates most from the actual
profile; but the expression given in equation T.39 provides an
adequate and simply formulated prediction for l)eB which is in
terms of the reduced model parsmeters. Indeed when the complete
reaction scheme is considered, this relationship still holds,

T.4.3 The Badial Concentration Profile for the Combined
Reaction Scheme,

The analysis of sections T.4.1 and 7.4.2 are now conjoined in

order to consider the complete complex reaction scheme.  Then,

the concentration profiles for the reaction schene, A-‘k# B'-g+ C
33>
may be represented by,
Ca (y) = ACA ( 3}"2 - 2)’3 - 0.7 ) + GAm 7.40
where A"A = AcAl + A"A} and both A°Al and AcAi are
estimated from equation 7.33.
y) = A (By? - 2.2 - 0.7) +o T.41
CB y C3 5 v . Bn .
where AeB = - w(m) AcA T.42

These are essentially the results from the previous two sections,

T.4.4 Comments on the Radial Concentration Profiles.

Although it is not a constraint of the complex reactor model
that it should provide a description of the radial concentration
profile, i.c. it is only necessary to know the mean radial value

for any function of the model, an extensive analysis of the profiles
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has been made in the previous sections which must be justified,

As the values of the distribution factors are estimated
numerically by integretion of the radial reaction rate profile
with respect to 2.y. dy, which has previously been constructed
from the concentration and temperature profiles for a
predetermined set of radial points, it becomes obvious why it has
been necessary to rroduce functional representations of the radial
concentration profiles. As the reduced model is not extremely
sensitive to the accuracy of the estimations of the distribution
factor, (the effective Nusselt number is the most important texm),
then it is unnecessary to go to extreme lengths to predict a very
accurate value of the radial concentration, when the only
requirements are that the profiles should exhibit all the essential
characteristics to a reasonable degrec of accuracy,

The values of the overall radial concentration difference
play an important role in predicting the radial temperature profile,
hence it is necessary to provide a reliable estimate of their
values, as the effective Nusselt number is directly related to tho
temperature profile, Therefors the prediction of the radial
concentration difference in its abstract sense, (i.e. tho effect
of the presence of an exothermic reaction) is biasgod towards its
role in the generation of the temperature profile rather than the
concentration profile,

Te4.5 The Radial Temperature Profile for the Competitive
Reaction Scheme,

If the heat balance for the reoactor is considered for the
general reaction scheme, i.e. equation 7.14, a total amount of

heat is considered to be gained from the exothermic chemical
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reactions through heat transfer at each radial position., So that,
effectively with respect to the fluid, only one reaction is
occuring which will affect the form of the radial temperature
profile, Consequently in the particular case for the competitive
reactlon scheme, the two forward reactions could perhaps be

single
considered as a simpie heat source.

A correction function, f3 (y) is defined in a similar manner

to that of f, (y) in section 4.4.3, i.e.

f; (Y) = t(y) -1 -1 743
t(y)ht - 1.

wvhere t(y) is the radial temperature profile for the competitive

reaction scheme, The function i‘3 will have the same boundary

conditions as f2, written as,

£3om 1) = o
T.44
f3;m (©) = £ (1) =0
where again t(1) is the reference temperature. As would be
expected f3 has the same functional form as fz,
f3 (y) em = Y5 1- 5y2 + 2y3) 7445

and Vg is the axially dependent coefficient., For the limiting
cases where reactions one and three are zero, then from the

analysis in section 4.4.3 w5 will take the values,

W5 = 10/3/33 Ac3 ’ reaction 1 = 0
7446

Wp = lo/Bﬂl Acl , reaction 3 = O
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The simplest combination for the case is,
10
Vo= /3 (Byhe; + F’B Ac5) 7447

This relationship is simply tested by a plot of

Vi and 10/3 (ﬁl Acl + ﬁi Aci) for various values of

,81, ﬂ3(see figure 7.04),the gradient being unity, and the line
passes through the origin,

As mentioned earlier in this chapter, reaction three is
considered to represent the several possible side reactions which
have been lumped into one for the sake of simplifying the analysis,
The form of equation T7.47 lends itself to this approach so that the

reaction three term could be written,

n
ﬁBAOS = E ﬁ iAci 7.48
i = 1
where n is the number of side reactions, and the reaction term in

the heat balance state equation has an equivalent form,

/e’5 R3 (e,t) = iii 1 ﬁi R, (eyt). 749

It may be seen that these expressions are analogous, so that it is
possible to predict the form of the coefficient, wScm by inspection
of the heat generation term in the heat balance and replacing the

rate term Ri (e, t). by Aoi.

]e4.6 The Radial Temperature Profile for the Consecutive
Reaction Scheme,

As in section T.4.2, the effect of the first reaction of the

consecutive scheme is that of the simple reaction on the
temperature profile as described in section 4.43, so that if the

exothermicity, /52 of the second reaction is zero, the correction
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function £, will be,

3
£ = Opple, -324 27 7.50
The major interest of this section is the effect of the
second reaction on the form of the temperature profile when
ﬁz # 0, It would be expected from the previous analysis the
term ( pZA cB) in some form will represent the effect of the
second reaction on the functional form of the correction function,
f3. The bshaviour of f3 and Vg is observed for a case where
ﬁl = ﬁZ' s0 that each recaction stage has a comparable and
measurable effect and the value of AcB changes sign over the
reactor length. By observation, when ( /SZACB) is negative,
(i.e. when AcB is negative), the effect of reaction two is
additive to that of reaction one on the coefficient, w5; the
converse is also true, when ﬂzAcB is positive, Consider
figure 7.05 ( a & b ), which diagramatically shows the two above
cases, from which it is possible to physically explain the above
observations. When ACB is negative (figure 7.05 (a)), the rate
of heat generation Athe second reaction will be greater at the tube
axis than at the tube wall, and hence will add to the distortion
of the temperature profile. Conversely when ACB is positive
this would expect the effect of the second reaction to be negative.
It mst be noted here that in order for ACB to change sign the
heats of reaction mst be very high and the reaction allowed to go
towards completion (i.,e, the product goes through its maximum
value), so that this region is of more academic than practical
interest, A ¢p changes sign as the rate of loss of CB exceeds

the rate of production of OB.
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The functional form of f3 still closely approximates to the
cubic form, and as would be expected, the greatest deviation occurs
when w5 changes sign, although at this stage the absoluté%rr value
of Vg is closc to zero (see £iy. 7.06). The simplest form which

could be expected for w5 would be,

Yo = 10/3 (ﬁl +/5211/(m) )AcA 7.51
(where AoB - - ’.P(m) AcA) so that V5o and 10/5 (Pl +ﬁ2¢(m) )x

AOA are correlated for varicus values of ﬁl and ,82 to test the
relationship., As in the last section the line should have unity
gradient and pass through the origin (see fig. 7.07).
Summarising, the correction function, i‘3 retaina the same
functional form with respect to the radial dimension, y, and W5

maintains a simple algebraic relation to AoA and AOBo iseey

1+4.7 The Badial Temperature Profile for the Combined
Reaction Scheme.

The reaction schemes of the two previous scctions are now
combined for the general reaction schemes. As shown in section
T¢4.5, the effects of all primary reactions (i.e, the first stages
of each sequential reaction scheme), it would be expected that the
effects of the competitive and consecutive reaction on the
correction function, f3 are merely additive with respect to the
coefficient, LY and also the functional form of f3 is the same in

all cases with respect to the radial coordinate, ¥y« Therefore for

the reaction scheme,
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the correction function, f5 to the heat transfer temperature

profile, t,, (y) may be written,

2500 = 23] BiBoy + Bsboys - Boboy] (- 322%) 153

but as AcA = A°Al + A(’AS and AoB = - lp(m) AdA then

f3(¥) = %O/B[F’]_AOA]_ + ﬁBAoAB +/G21P(m) A OAJ (1~ 3y2 + 2}}) 7.54

This relationship has been tested and found to be true, (see fig.
7.08).

The temperature profile which has been developed for the
complex reaction scheme has retained the simplicity of form with
respect to y of the simplé reaction scheme., The only increase in
complexity has been isolated in the coefficient, ws, which involves
more terms in order to account for each exothermic reaction step,
No increase in complexity of the functional representation of tho
radial temperaturc profile has been incurred in the extension to
the complex reaction scheme,

1.4.8 Comments,

As may be seen throughout section 7.4, extension to a complex
reaction scheme has been shown to be possible and made with a
minimal increase in complexity, while all the required information
about the radial profiles has been presented. Although it is not
claimed that the final expressions are exact, they are valid over
the practical operational range of the reactor to an accuracy
comparable with that of estimating the physical parametors used
in the model, It must be emphasised that the expressions are

eneral, although approximate, solutions of the radial profiles
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for both temperature and concentration,

It is important to note that the overall concentration
difference, Ac is not used in terms of its physical sense when
used in the radial temperature profile, but rather as the ffect
of the presence of an exothermic chemical reaction., This still
indicates the complex 'coupled' nature of the original model.

It is now necessary to derive the pseudo=-parameters defined
in section 7,3 from the radial profiles which have been developed
above, in order to complete the analysis.

1.5 The Pseudo~parameters.
7.5.1 The Effective Nugselt Number, NU!'.

As the effective Nusgelt number maintains its original

definition, i,e.

NU' = NU t(1)~1>
(7

m

and the functional form of the radial temperature profile has
changed only in the expression for the cocfficient, Vg from that
for the simple reaction, the samo expression for NU!' (derived in

section 6,2) can be written down, replacing Wy by Ve

NUt NU
1+o.25mr)+{( NU )2+ Ws | (0.3+0,1100) 4w ) MU )2 (0.1740,47NU)
1,.2NU+4, 1,.2NU+4
755
This expression is rewritten to collect the terms in ws, so that,
L. :
e i 7.56

(1+0,25NU) + P(NU) + Q (ws, NU)



where,

P(NU) -(; NU )2 (0u3 + 0,11N7)
«2NU+4

> 797

1,2NU+4

Qw5 0) .WS[(o.m.mm»( NU )2 (0.17+0.4757)

For a particular reactor situwation, the Nusselt number, NU is
constant, so that P(NU) is constant, and Q (w5,NU) is a direct
linear function of w., and NU' is inversely related to Vge 88

5
discussed in section 6.2, Consider the coefficient Vg in more

detail,

W5 =3 1/3 (pl AGM. +ﬁ5 AOAB '*‘ﬁz“;/ (m) (AOAl + AOAB) ) 7.58

The terms P and Q are considered as corrections to the effecotive
Nusselt number derived from a purely parabolic temperature profile
which assumes the overall heat transfer coefficlent to be constant,
The constant term, P corrects NU' to that for a purely heat
transfer situation, which was carried out in the early stages of
this work, The separate effects of the three exothermic
reactions are considered dn the texrm, Q. In fact both reactions
one and three have the same type of effect in that they produce a
positive contribution to the value of g and honce Q, so that
their overall effect is to always reduce the value of the effective
Nusselt number, Considering the second reaction, although its
overall term is positive, the mean selectivity, l}/(m) can tako
negative values, In most practical cases ‘IV(’”) will be gonerally
always positive, (between spproximately 0.2 and 1,0) it is
unlikely that the reaction would be allowed to go 8o far to

completion, wnless of course if either the preduct of the second



reaction is desired or the reactor is out of control, so the two
limiting cases will at first be discussed scparately, At the
entrance of the reactor when the reaction is initiated, the
selectivity is at its maximum velue of one, as the reactions
proceed this value will decrease, but as the product, B reaches
its maximm, the value of | (m) is still positive, although
approaching zero. Therefore, in such a reactor situation, the
second reaction will always make a positive contribution to the
value of the coefficient, W and the value of the effecctive
Nusselt number will be reduced from its value for the case of heat
transfer only. As the reaction proceeds further, W (m)
continues to decrease until it becomes negative and a situation
can be reached where,

'ﬁz‘/fﬁn) (A°Al * A°A3), > (F’1A°A1 *ﬁs L 03)
(especially for the case where reaction three does not take place,
or /333 = 0), so that v takes on negative values and (P + Q) £ 0,
_ This usually occurs in the region of the axial tempernture maximum,
and means that the radial temperature profile is very neaxly
parabolic, If the inlet temperature to the reactor and coolant
temperature are equal or nearly equal, then in the inlet region
of the reactor even though the assumption that the radial
temperature profile was purely parabolic would perhaps produce
large relative orrors, (of approximately 25 - 30%) the absolute
errors would be small as (t(y) - 1) would be close to zoro.
Therefore in some region of reactor operation it would be quite
reasonable to assume a pursly parabolic temperature profile,

where the effective Nusselt number is given by,



N = NU - 7,59

1+ 0,25 XU
In conclusion, although the above case could exist, in the
normal region of reactor operation W(m) and hence ws will always
be positive (as is easily seen from figure 7.09), so that no
major simplifications can be made,

{¢5¢2 The Distribution Factors

No detailed discussion need be made on the method of
evaluation of the distribution factor as this has already been
amply covered in section 6,3, and the same expression is used for
their estimation which may be summarised as,

~rl
ir O - Zoj R(y)s v. dy
R(m)
then o) is estimated by <O = (2 R (%) + R (1) ) 7.60
3 R(m)

1.6 Conclusion,

In this chapter the techniques of model reduction have been
applied to a more general reaction scheme., This has been
successfully achieved with minimal increase in complexity of tho
reduced model, which was in fact the major point of interest of
this section of the work., - Because the techniques of model
reduction could be applied to reactor in which a simple rcaction
was taking place, it did not necessarily follow that the some
techniques could be applied to a reactor in which a more complox
scheme of reactions was occuring. In addition the question was
asked, if model reduction was successfully achieved, was the

resulting model tractable as far as optimisation studies ate., are
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concerned, as it is pointless producing a reduced model which is
more complex than the original model, In fact the reduced model
produced in this chapter is marginally more complex then that for
the simple reaction, but is still very satisfactory.

The general forms of the radial profiles and the related
pseudo-parameters are summarised in table 7,01, and the general
form of the reduced state equations are,

- Poy dt, - 200" (t,-1) +08, Mg (4 = %) g = O

dz

—PeM-de-gRlTl(m) (@iq (n) + §k; (n) ) ¢y = ©

dz
- Pem_‘_i_f;g “9 Rsz(m)lll(m) (@i k;f (m) +§§ k; (m) )o, =0
dz
and
NO* - i
(140, 2550)+ ( w )2 + ws} (0.3+0.11NU)+w5( U2 )(o.17+o.47m:)
1.2NU+4 1,2NU+4

and the general form of the distribution factor is,

B = (23(%) ¥ R(l))

3 R (m)

Reductions of computing time of 20 : 1 are possible, but when
the reduced model is programmed to produce exactly to same amount

of information as the two-dimensionless model reductions of 10 § 1

are achieved,



Table 7.01.

Reaction scheme Form of Vg
Simple A“'}"’B 10/3 [51A6A
1 10
Competitive A = B /3 ( o, + be,,)
o~y Prllogy +f5 Qoyg
Consecutive A TN B 2 C 10/3 (Bl + Ip(m)pg)ﬁc‘&
Mixod A i B-2 ¢ 10/3()61&‘“7336%) ¥ @ De,
33D

ACB = -Iy(m) AcA (where AcA - Ac’Al + A°A3) for all the
above cases,

General forms of the radial profiles,

Temperature:
(t(y) = 1) = v a-3v22) + Y[ w \? @-35%2r) + 1
J 1.2NU+4

x [1 + 0,580 (1 - y2)] (¢(Q) - 1)

where w5 is defined above,

Concentration:

¢; (¥) = Aci (3% = 2° = 0.7) + J




CHAPTER 8
METHOD OF SOLUTION OF THE REDUCED MODEL

The reduced model comprises a set of simultaneous ordinary
differential equations coupled with a set of algebraic equations
representing the radial profiles and the pseudo~parameters, which

have the general form,

e'mi (z) =& (8 ’ emZ’ eva 83 ) 8.01
61 (v, z) = hi (eml’ emzv 6m3. S3y ¥) 8,02
S«j = SJ (eml) emzt em3) 8003

1
where Gm = 2 ofei- Y. dy

and L =1, 4o y I, J =1, eve y J, whore I and J are the
number of dependent variable and pseudo-parameters respectively.
The © mi 20d & 4 are the mean radial velues and the values of the
dependent variables, i.e. t, o A and G and the functions 8y and
hi represent the right hand sides of the ordinary differcntial
equation and the algebraic expressions for the radial profiles
respectively (secg equations 4.47, 4.48, 4.49 and 4,50 for typical
examples). The S, are the pssudo-parameters (eg Lo o Doy N
etc,), Equations 8,01, 8,02 and 8,03 are considered

simaltaneously. The ordinary difforcntial equations are solved
by the Rung@-Kutta-Merson method as described in appendix 3, It
is necessary to evaluate the functions 8y at each internal axial
step of the integration procedure, and a separate algorithm is
required to calculate them.

The algorithm is entersd with the values of the dependent



variables, f%i’ from which the pseudo~-parameters and
subsequently the functions g; are evalwated. This, in fact, is
the basic reason for developing the expressions for the pseudo-
parameters in terms of the radial mean fluid values. It ensures
that they can be evaluated directly from variables which are
readily available, Hence, the overall integration procedure is
only a little more complex than that for the simplified one-
dimensional model which has been found so attractive because of
the small computational effort required for solution. For
example, in order to evaluate the chemical rate term, the
effectiveness factor, the concentration and the kinetic rate
constant are required which are the only variables necessary to
determine the overall concentration difference, Ac. This in
turn is the only term required for the calculation of tha effective
Nusselt number, NU',

Consider & specific example of the use of tho above-mentioned
algorithm for the simple reaction scheme, using tho standard test
data (see table 4.01)., This data was specifically designed to
represent a physical system which exhibited large radial gradionts,
as discussed in section 4,1, The right hand sides of the
ordinary differential equations are written, for the case under
consideration, as

g = dt =~ 20 (t -1)+ ;3@2&)7](111) R (o t) 8.04

az

g = do, = - P2 RN B (o t,) 8.05

a .

or, rewritten with the numerical values of the constants,
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- *
g = dt =~ 2NU' (4= 1) + 1,124 x 10 2@?!(1:1) R (o, t)

dz

&5 =Eim =~ 1,697 x 1072 @ 7?(m) R (cm, tm)

dz

On entering the algorithm the valuess of cy and tm are known,

The pellet equations are solved iteratively to determine the
*

effectiveness factor ’7 (m). The rate constant k (tm) is

computed from,
K (1) =7) (@) exp (23,18 (3, = 1) / ¢,)

For first order kinetics,

N B (op 1) = o X ()

The overall concentration differcnce can be simply written as, -

* 2
As - ( X (t) -1 .
3*
1.35 k (tm) + 36,65
when the relevant values of the constants in equation 5.11 are

substituted.

(Poot note: For non-optimising compilers where exponentiation
is used for evaluating integer exponcnt, it may be avoided in the

computational procedure by evaluating Ac in the following manner,

Ac’ - X (tm) -1 and Ac = Aot x Aet x c,

135 K (t) + 36.65

vhich consequently requires less computational effort)
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Since t # 1, the above expression for Ac gives the asymptotic
value, and the corrected value of Ac is given by,

Ac = Aca (1-exp (-13.7Q0 - cm) ) ) 8.11

from equation 5,12, The axial profiles of Ac and Aca are
compared in figure 8,01, from which it can be seen that Aca
rapidly approaches Aec.  The exponentional term monetonically
approaches zero at a rate dependent on the constant, i.e. 13,7 in
this case, As the evaluation of an exponential term is relatively
time consuming, its elimination from the computational procedure
would help to minimise the overall computing time. This can be
achieved when the exponential has fallen below a preprescribed
value, dependent on the required accuracy, e.g. by using a
conditional statement such as the 'if! statement in Algol.

Once Ac is known, the effective Nusselt number, NU' can be

easily calculated from,

Nt - 1 8,12
(0,776 + 0.736 (5) A e)

It will be noted that this expression is far simpler than the
general form of NU' as given by equation 6.04, as will always be
the case when numerical values for a spacific system are used,
It pnow only remains to caleculate tho distribution factor,
from the expression,
A= 2@ @ +NQOE Q) 613
37 @) B (w)

This requires the solution of the paellet equations for the

effectiveness factor at y = 4 and y = 1. The value of the

dependent variables are given by,
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t(1) =80 (5, ~1) +1 , e(l) =c +034c . 8

2
t(3) = (2,027 Ac + 1.836) (t(1)-1)+ 1, ¢ () = o, ~0.2A0 8,15

Subsequently the rcaction rate terms can be calculated, The
axial profiles of the distribution factor, a@ a8 dorived from the
above approximation and from the exact integration procedure for
this particular set of data arc compared in figure 6.03, where it
is seen that the agreement is very good, If equations 8,06 and
8.07 are examined the overall rate term which is required is

D n(m) R' (m), which if equation 8,13 is rearranged, is given
by,

D) & @ =5 2@ & @ @) & Q) 016
Therefore it is not necessary to calculate the renction rate at
the mean conditions. Finally the right hand sides of the
differential equations are evaluated,

4 block diagram of the procedure is shown in figure 8,02,

It can be seen that there is an efficient flow of information
throughout the algorithm and there is no redundent information
produced, which helps to maintain a low computational load. The
only significant increase in required effort is that the solid
equations have to be golved three times as opposed to once for the
Simple case. The extra computation ig due to the fact that the
reaction rates at y = 4 and y = 1 are required in order to
calculate the distribution factor. ‘

At this stage the integration process is complete and the
remaining computation depends on the nature and the use of the

reaction model. For example, if the model is being used in an
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optimisation algorithm, then the axis temperature need only be
calculated from,

t(0) = (4.840 Ac + 2.195) (t(1) « 1) +1 8,17
ags it is the only constraint associated with the radial profiles.
In addition it will be only necessary to calculate the axis
temperature in the rcgion of the maximum temperature. On the
other hand, if the model is used in conjunction with catalyst
decay problem, then the full extent of the radial temperature
profile is required for updating the catalyst profiles. But, as
generally, catalyst decay is a relatively slow process, then it
may only be necessary to carry out such a procedure at infrequent

intervals,
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APPENDIX 1

DETERMINATION OF T SECOND ORDER
CORRECTION FUNCTION, Su11

The function, LQ»JI is defined by,

&, Wy of f; (yo NU) -1 A1.01
T
L RGP
1,2N0+4

and represents the deviation of the function, i‘l from & simple
cubic functional form, In figure M.Ol,&nis plotted against

Nusselt number, NU at various radial positions. As may be seen

from the figure,

when NU —> 0, fk x> constant value,
andi NO — 0, '-Q‘I_-—-—> constant value,

from which a posgible form for tD.o]Iat constant y may be proposed,

*D-'n" (Yl N+ Yz) 41,02

Y3m+1

where Yi are functions of the r»adial coordinate, y, only.

The limits of S),E may now be written,
. Y.

Undb =y, , unlk = ( Iy, ) 41,03
NU —-> 0 NU —> o0
The Yi are detormined at the various values of y, by setting

up three simultaneous equation in Yi after substituting for

at three different values of NU, The rcemaining values of

HE(NU) arc used to check the results, which are tabulated

below.
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Table Al,01.

Y Y Y, T
0.9 0,478 0,520 0,099
0.7 0,313 0,215 0.255
0.5 0.174 0,126(5)| 0,375
0.3 0,070 0.056 0,455
0.1 o.o1 0,010 0.495

In figure Al.02, Y3 ’ [(Yl/Yg) - 1] and Y2 are plotited along
the radius., The function [ (Yl/Yz) - 1] ig the mirror image of

YB' In fact, the function Y3 is a simple algebraic function

represented by,

Y, = 05 (1-37) A1,04
so that,
M1/v,) = 140,57 (2 - 32) A1,05

Unfortunately Y2 is non-integer order with respect to y, but is

nevertheless of the simple form,

Y2 = 0.4 Yy 1.6 A1¢06

Since &II only ropresents a second order effect Y2 is adequately

approximated by,

Y, = 0.43° : AL,07

2
to simplify the analysis.

The complete function &ﬁ may now be sumnarised by the form,

Ly = 0.4y° {1 + 0,5y (2 - y)}NU + 1 A,08
pi 2
1+0.5 Q-5

=38~
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APPFNDIX 2

THE FINITE DIFFERENCE SOLUTION OF THE TWO-DIMENSIONAL
REACTOR MODEL

The state equations for the general two-dimensional model

are of a general form, and may be written as,

~ Po, 2—9 + 1 ra Yo 'ae)+ F,8+ F,=0 42,01
Yz yow\ ¥
with the boundary conditions,

€; = e)c) z =0

P
Q_Qno y=0, 0 £z7 £1 22,02
Ay
-M::F} +F3F4 y-:l, Oéz él
dy

The parameters 6 , Pe; and Fi are listed below in table A2,01,

Table 42,01

WED) T T, ¥ | ¥,

t Por, - N NU %, NU | =1

o |y | -M(@Eig - PE i 0 o | o
2. % Jo H

°s | Py 0 ‘W@l P50 0 0

*
NOTE. (1) For the simple reaction scheme let k; - k3 ERY
* * *
(2) For the fixed bed heat exchanger kl =k, = k5 =0
Equations A2,01 and A2,02 are solved by using the Cro.nk-ﬂ‘:tcoltaon(35 )
finite difference analogue, for which gradients in the radial

direction are represented by the central difference approximation

and in the axial direction by a first order finite difference

-89~




approximation, which may be expressed as,

2
20 . (6n+1’ el “2€n, 1 *€n1, me )

| 42,03
* (en+l, n "2611, o +Q’z—l,m)

372 ol
1= 1 (6n+1,m+1 "en-l,m+1) + (Sml’m -%-l'm)] £2,04

’é_e = 3'_ (en,m+l _en,m) 42,05

az k

Fle= l (Fl n,m'l‘l en,m+l + Fl n’m e n’m) A2006

n

(Fb n,m+l + Fb n,m ) 42,07

The subscripts n and m represent the radial and axial positions
respectively., If the number of radial and axial steps are N and

M, then the radial and axial increment are given by

h = (L/N)andk= (%/M) respectively.
As the problem is initial valued in the axial direction so that
all the values at the 'm position' are known quantities,

The finite difference expressions of equations A2,03-7 are

substituted into equation A2,01 to give,

D 42,08

+ Cnen‘-l,m-kl " "n

A
nen+l, ml t Bnen, m+l
where

A = §% (1 + Y/2n) 42,09

2
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2

B, = -N +Pe M + O5F | 4 A2,10
C, = N2 (1-1/2n) 42,11

2

2

D, = = N° -+ l/2:1) en+1,m + (0« Poyll - 05 Fy n,m)en,m

2 A2.12

- (1 -1/2n)0 - 0.5 (R + )
_ n-1,m ¢ 2 n,m+l Rz n,m
2

This expression is wvalid for 1 é n 5 N-1, where N end O represent
the positions of the finite difference nodes at the tube wnll and

axis respectively,

At the tube axis, 0O =0, hence 1 ¥E is indeterminate.

Dy y Oy
Applying 1t'Hopital's Rule, equation A2,01 becomes

- Po, 29 + 2_—&‘9 +FO +F, = 0
dz (s

Because of the syn'j%try of the problem, f_, = f; the finite

difference equation can be written,

Aoel,m+1 + B, eo,m+1 - D A2.13
where
A, = 2N° 42,14
n - oN@
B, 2N +Poy N4+ O5Fy 42,15
D = 206, + (N -PeM-F O
o l,n i o,m’ > o,m
: 42,16
- 0.5 (%, o, M1 T T2 o,m)

At the tube wall, the boundary condition ia writton in finite

difference form.
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0.25N (9N+1,m+1 "eN-l,m+l) + (eN+l,m +eN—1,m)
A2,17
+ 0.5 Fy (QN,m+l +eN’m) + F;F =0
Equation A2,17 is substituted in equation A2,08 in order to
eliminate the hypothetical function values, fh41, o4l and rﬁ+l,m
to give,
5Oy, m1 * §%1, w1 = A2.18
where
2
BN = - N 4 Pei M+ 0,5 Fi N, m+1 " F3 (N+1) A2,19
C = ¥ 42420
Dy = (I + Pe M = 0.5 B) gt ¥y (1) )O
2 A2,21
Fquations A2,08, A2,13 and A2,18 represent a systom of
similtaneous algebraic equations,
E 8 = D A2,22
vwhere,
r‘ -
‘E = BO A.O 0O 0 0
G B 4 0
C B A
n n xzﬁaz
L
A |

Equation A2.22 is solved by using the Thomas (34) mathod
described below*. It is necessary to solve the pellet cquations

at each node of the finite differcnce scheme, for which method
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are well described by Cresswell (27) end Thornton (35).

*
The Thomas Method.

The unknowns are eliminated by letting,

Wn = Bn - Cn qn—l = l’ 2, eeey N A2024
Ga = A £2,25
Yn-1
go = DO AZ. 26
gn = Dn - Cn gn.-l Nl = 1, 2’ eseey N A2.27
wn

These equations transform to,

eN =2 gN A2.28

en = gn - qnen+l n"N"‘l, N"zy [ XN RN oo A2.29



APPENDIX

THE 40 RUNGE XUTTA MERSON METHOD FOR THE SOLUTICN
OF A SET OF SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

The Runge Kutta Merson method (2) is a slight modification
of the fourth order Runge Kutta technique, which gives an automatie
and rapid method for determining the maximum intarval to be used

for a preprescribed accuracy. The formulae for the integration

of,
' ) = ¢ (x,0) 3,01
may be written,
Opp =0, + % (g + 4k, + k) + 0 (0) 43,02
where,
K, = Y3n g (x,,© n) 43,03
k, = Y/3h g(x, + /55,0, +x) 23,04
ks = /3h g (x,+ /50,0, +dk +3k,) 43,05
k, = Y3h g (z,+30,8, + /8% +7/8) 43,06
ks = /3h g (x,+h O +7/2k -5k +6k,) £3,07

The advantage of this method is that an estimation of the truncation
ervor, £ can be made.
5¢ =k1-9/2k3+4k4-§;k5 4,308
The interval changing criteria is the following, if the right hand
side of equation A3,08 is grenter than 5 times the preassigned
accuracy, the interval, h is halved and the computation for the
step is begun again, But if the right hand side of equation
43,08 is less than 5/32 of the preassigned accurncy, then the

interval may be doubled and the calculation for the stap ropeated.



This method is 20% faster and more reliable than the standard
fixed interval procedurc,

It may be noted that the computation time incrcases with
specification of greater prescribed accuracy. If the method is
to be used for solution of the reduced model in an optimisation
algorithm, during the preliminary approach to the optimum low
accuracy could be prescribed to minimise the overall
computation time, with a higher accuracy used in the region of

the optimum for the final stages of computation,
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APPENDIX 4

MBETHOD OF ORTHOGONAL COLLOCATION

The orthogonal collocation method was developed by
Villadsen and Stewart (30) who give complete details of 1ts
implementation., The basic procedure is as follows, Consider an
unknown function f£(y) which satisfies the linear or non-linear
differential equation,

() = 0 in V A4.oi
and the linear or non-linear boundary condition

1°(y) = 0 on S 24,02
where y is a position vectefand S is a boundary adjoining the
volume V., The dependent variable f is approximated by a series
‘expansion f(n) containing n undetermined parameters; tho parameters
are then determined by applying equations 44,01 or AM,02 ot ench
of n selected points. Interior collocation requires that the
function f(n) satisfies the boundary condition identically.

Consider the fixed bed reactor which has the generalised

boundary conditions,

] =0 or £ = £ (3% A4,03

oy y=0

adf +bfec, y=l A 04
Ay

where a, b and ¢ are constants.
The solution is expanded in the form, M

f (y,2) = ¢ (1,2) + (1 - y2) g ay (t) Pi—l (y2) 24405

where Piy (y2) is & polynomial of degree i-l in y2 and is

defined by the relation,
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f ACORANCO B NCD ISl JE I B,

vhere w = 1-y2 gives o form of Jacobi polynomials, and w=l gives

Lagendre polynomials, The constant, a =1, 2, 3 for planar,
cylindrical and spherical geometry. This form automatically
satisfics the first boundary condition (equation Mh03). The
exact form of the polynomials is not needed however., The
collocation points are the roots to

2
Pn (yz) = 0 for y2 = ya J=lyeeeynn

The roots are tabulated below for degendre polynomials and
spherical geometry.

n=1 0,70711 1,0

n=2 0,45970 0,88807 1.0

n=3% 033571 0,70711 0,941965 1,0

The complete results are tabulated by Villadsen and Stowart (30).

To apply collocation to

e o= Voo (¥ : + F(£)
?z 3y

S - (r-£),v=l

3y

the terms are evaluated at the collocation points o
n+l n+l

af =T, X (Z
-1 Bjifi+'t2 =
dz

n+l

-'g§£ A, fy - Qj% (£ = o)

2
Aji fi) +F(fi), d-l..oo,nc

Equations 44,10 and A4,11 give n+l equations for the n+l

unknowns at the collocation points and the boundary conditien,

14,06

A4,07

A4,08

M09

.10

44.11



The set of ordinary differential equations are solved by a

standard séheme, i.e. Runge Xutta, =nd the coefficients Ci, B:j i

and Aj ; can be computed from algorithms found in Villadsen and
?

Stewart,

~58~



NOMENCLATU.E.

A(@) ~
i arbitrary coeffient,
ey

i
b pellet radius,

B tube radius,

Cy Cpy Oy

}dimensionless fluid and solid concentration,

¢
8! %ag? Cpg

°n radial mean concentration,
€y Cy» Cy

} fluid and solid concentration.
Cgr Crgr Cpg
CO inlet fluid concentration.
De effective fluid diffusivity.
Dp pellet diffusivity.
& distribution. factoxr,
e bed voidage,
E activation energy.
fi(y) correction funotion,

F(NU), G(NU) arbitrary functions of Nusselt number.

Fy goneralised state equation coeffient,

8; right hand side of the ordinary differential
equations,

gn(z) dini series polynomial for mass transfer

he 501id/fluld heat transfer coefficient,

h, right hand side of radial profile,

ho overall heat transfer coefficient.

h, inside £ilm wall heat transfor coefficient,

h (z) dini scries polynomial for heat: transfer,

JD( r\n) Bessel function.

w



=

NU
NU!

NU
s

Pe

PeM

Pe,_E

gas/s0l1d mass tfansfer coefficient.

rate constant,

reduced rate constant,

pre-exponential constant,

reactor length.

axial increment of finite difference matrix,
number of axial increments,

radial increment of finite difference matrix,
nunber of radial increments.,

Nusselt number.,

effective Nusselt number.

effective pellet Nusselt number,

effective Peclet number,

effective Peclet number for mass transfer,

effective Peclet number for heat transfer,

P (NU)' Q(NU,ISAc) corrections functions to approximate effective

Nusselt number, =

radial distance.

reaction rate,

reduced reaction rate,

Gas constant,

reduced pellet randial distance,
pseudo~parameter,

effective Sherwood number,
effective reactor Sherwood number,

dimensionless fluid, radial mean fluld and solid

temperature,
radial temperature for heat transfer only.



t(y)p

T, T

mo

parabolic approximate temperature profile,
fluid and solid temperature,
radial mean inlet temperature,
constant coolant temperature,
constant,

wall heat coefficient.

pellet radial distance,
temperature profile coefficient,
axial distance.

reduced radial distance,
radially dependent coeffients,

reduced axial distance,

thermicity group.

activation energy group.

overall radial concentration difference for the

reactant and product.
heat of reaction,
coefficient in radial concentration profile,
axially dependent coefficient.
effectiveness factor,

dependent variable,

n'B approximation to 8.

effective radial thermal conductivity,
solid conductivity.

coefficient in the expression for Ac.
dini series polynomial for heat transfer.

fluid density,



O

fluid specific heat,
a fluid reaction modulus,
a s0lid reaction modulus,

effective reactor reaction modulus,

selectivity.

dini series polynomial for mass transfer,

trial function,

second order correction function.
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