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ABSTRACT 

With the increasing demand for optimal control and operation 

of plant, in particular chemical reactors, the need for detailed 

models which can be solved by computer in a reasonable time is 

apparent. Clearly, since the model is used repeatedly in each 

iteration of the computation, this will nor.mal~ mean that it must 

be relatively simple. Unfortunately, this results in loss of 

detailnecessar,y to take full advantage of the optimisation. 

A technique for model reduction, suitable for the two­

dimensional heterogeneous catal~~io reactor has been developed, 

which results in substantial reduotion in dimensionality of the 

system, but which retains the essential detail. A general reaction 

scheme with first order kinetics has been considered. Furthermore, 

it is possible to relate the well defined physical parameters, 

e.g. transport coefficients and rate constants, etc. to the 

parameters in the reduced model. Significant savings in . 

computation tim~ are made which makes it feasible to use the 

reduced model in optimisation and control schemes. 
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A plausible impossibility is always preferable to an 

inoonvinoing possibility. 
ARISTOTLE. (384 - 322 Be) 



"Contrariwise," continued Tweedledee, "if it was so. it 

might be; and if it were so, it would be; but as it isn't. it 

ain't. Tha.ts logic." 

Through the looking glass. LEWIS CARROLL. 



AddendVin 

1. Relation of tho thesis to the nork of the Loeds fixed bed 

reaotor grouP. 

The principle aim of the group, under the supervision of Dr. C. McGreavy, 

is tho computer control of a fixed bed catalytio reactor in which 

strong~ exothermic reactions, such as the partial oxidation of 

bonzene to malaic anh,ydride, aro occurring. Tho group is split up into 

three seotions, (1) practioal experimental work to derivo the physical 

data for the system, i.e. for heat and mass transfer and chcmicru. 

kinetios, and to bulld and operate the pilot reactor; (2) tho dovelop­

ment of optimisation methods and automatic control sohemes for tho reao­

tor, dirooted towards optimal design and operation of tho pilot 

reaotor through a oomputer; (3) the development of mathematioal models 

which can reliably prodict the performanoe of the reactor in real time 

situations in order that they IIlll;1 be included in tho optimisation and 

oontrol algorithms. This thosis is oonoernod with the latter seotion 

whioh is now oonsiderod in more detail. 

Both Cresswoll(27) and Thornton(35), in this Department, developed 

methods of modelling tho fixed bed reactor, for simplo and oomplex 

reaction sohemos rospeotive~, and identified the minimum dogroe of 

oomplexity oalled for in tho modol. Although the mathomatioal modols 

genorate an adequate prediotion of performanoe and desoription of 

the system, the computation times are exoessive with respeot to prao­

tioal optimisation and oontrol studies. It waS therefore nooess~ 

that a method should bo d~veloped which would produco modols with a 

radicaJ.ly roducod oomputation time which roplaced tho original 

oomplex models. This introduood the ooncept of simplifYing the 

modols while rotci.ning tho essential dotail in terms of' physioally 

identifiable properties. and is roferrod to as model reduction. 
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The development of' these techniques f'orms tho basis of' the work 

presented in this theSiS, and applies speoifioally to the :fixed bed 

reactor. 

2. Reoommendations :for fUture work. 

This study has been restricted to the steady state and has oonsidered 

only :first order kinetio systems. In order to ronder the work more 

Praotioal~ applicable, model reduction must be applied to non-first 

ordor and non-integer order kinetic system to determine whether or 

not the reduced model and its assooiated profiles and pseudo­

parameters maintain their same general. f'orm. 

As oontrol studies are associated with the unsteady state, it will 

also be necessary to apply the technique to the unsteady state 

models. One approach could oonsider the :fact that the unsteady state 

can be represented by a series o:f pseudo-steady states # or another 

possibility the oapacitanoe effects on the :form of the prof'iles and 

pseudo-parameters. 

Another possible objective is to further reduco the stoady state model 

to a oomplQt~ algebraio system by oonsidering the various limiting 

oonditions of' the model; and a oonsideration whioh has not yet beon 

made is the problem of applying the model of a single tube to a multi­

tubular environment f'or which tho extra-tubulnr condi tiona are a 

tunotion of the position in the overall reaotor. 
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Model reduotion has boon forma~ definod and speoifically applied 

to the fixed bod reactor, although it is tho authorta opinion 

that the teohniques oould be applied to any distributed system. 



CHAPTER 1 

INTRODUCTIOl~ 

To meet the increasing demand for the optimal control and 

operation of fixed bed reactors, detailed mathematical models are 

required which can be solved by computer in a reasonable time. 

The model should be as comprehensive as possible and based 'on a 

mathematical interpretation of the physical processes taking 

place. This will result in all the model parameters being 
ot' 

physically identifiable and capable of independent measurement ~ 

estimation from accepted correlations. 

The level of sophistication demanded of the modol will 

usually depend on tho context of the problem, eg. design, 

optimisation and/or control, and should be consistent with its 

desired objectives. For example, if it is to be used in an 

optimisation algorithm, it must predict the performance of the 

reactor more accurately than the expected improvement and 

accommodate all the problem constraints. 

~ Development of the Fixed Bed Reator Model. 

Consider the fixod bed reactor in more detail. The reactor 

normally consists of a number of cylindrical tubes packed with 

catalyst particles with the gaseous react~~ts passing through the 

tubes. Many of the chemical reactions which occur in equipment 

of this type are associated with large heats of reaction. In 

order to retain control of the reactor and to prevent irreversible 

damage to the catalyst, external cooling around the tubes is 

utilised. In such a situation radial temperature gradients exist 

(i.e. perpendicular to the direction of reactant flow), in 

-1-



addition to the axial gradient due to convective flow. 

Therefore, the mathematical model for a non-isothermal reaotor 

would be expected to b~ at least two-dimensional. However, the 

design of fixed bed reactors has generally been based on a one 

dimensional model, for which gradients are assumed to occur only 

in the axial direction, and the radial transport of heat and mass 

in the reactor assumed to be unimportant, i.e. the resistance to 

heat transfer being effectively lumped at the tube wall. In 

fact, substantial radial temperature gradients and, consequently~ 

concentration gradients can occur which have an appreciable 

effect on the overall predicted performance of the reactor. 

With the advent of high speed computers, it has become 

possible to consider models of a greater complexity than the one-

dimensional system, so that more reliable prediotions of the 

performance can be made. Froment (1) has considered a quasi-

homogeneous two-dimensional model in which he assumed radial 

transport occurs by effective diffusive and conductive processes. 

Axial diffusion of heat and mass can gener~lly be negleoted for 

the normal high rates of throughput experienced in a practical 

reactor. The effective radial diffusivity and conductivity of 

the fixed bed can be easily determined from correlations of Peolet 

numbers for mass and heat transfer respectively and Reynold's 

number, and for the normal turbulent conditions the Peclet numbers 

are essentially co~stant. But, although Froment dealt 

extensively with the global transport phenomena he made no 

attempt to distinguish between the reacting fluid and solid 

catalyst phases, i.e. resulting from the assumption of a quasi-

homogeneous system. Such models which take no account of the 
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potential rate controlling mechanisms such as fluirl film and 

particulate heat and IT~SS transfer, arc characterised by a 

susceptability to temperature 'run-away', which often occurs near 

to the practical operating region of the reactor, i.e. reactors 

normally operate in a region in which the rate of reaction and 

particulate modes of h~at ~~d mass transfer are comparable. 

Unfortunately, inclusion of all the additional physical processes 

produces an almost intractable problem from the point of view of 

obtaining a solution in a time sufficiently short for routine 

design and optimisation studies. Extensive studies have been 

carried out in order to represent the overall rate of reaction 

occuring inside the catalyst pellets in torms of the fluid field 

observables (2-13), and normally the results are expressed in 

terms of an effectiveness factor. It has been the practice to 

assume the surface temperature and concentration of the catalyst 

pellet are equal to those of the gas stream. Except in the case 

of the method given by Petersen (11), the effort involved in 

solving the equations is equivalent to the numerical solution of 

the fully distributQd problem. However, Petej~sen's solution is 

an asymptotic expression which has limited application for 

general problems. Recently HcGreavy and Cresswell (14), have 

reduced the distributed parameter intra-particle field equations 

to an algebraic lumped parameter form. The result is an 

expression for the effectiveness factor with a definition which 

is based on observables in the bulk fluid phase in the presence 

of inter-phase as well as intra-phase heat and mass transfer 

resistances. All evidence seems to indicate that the overall 

rate process is dominated by mass transfer, resulting from high 
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film resistance to heat transfer, and the particle essentially 

operates at isothermal conditions, although the tampcrnturG is 

not that of the fluid. So far only a simpl3 first order 

irreversible reaction has been considered, but McGreavy and 

Thornton (15) have extended the above treatment to n~re complex 

reaction schemes which ~n general are more practically applicable. 

At this point it may be advantageous to the reader to be 

familiar with the relati~ computine times of the various types of 

steady state model. The three types are, (1) the fully 

distributed model which takes account of all transport phenomena 

in the reactor and the catalyst pellet, (2) the two-dimensional 

reactor model which uses the isothermal pellet approximation for 

the effectiveness factor and (3) the corresponding one-dimensional 

model. The relativo computing times for (1) : (2) : (3) are 

720 : 20 : 1. The time for the most complex model is approxi-

mately three hours on an I.C.L. K.D.F.9 computer, programming in 

Algol 60. It may be noted that a transient state model can be 

considered as n series of steady states, from which it "can be 

easily seen that both models (1) and (2) would bo computatio~~lly 

intractable especially when considering real time si~~tions. 

1.2 The Necessity for Model Reduc~. 

In the above terms adequate models for the fixed bed 

catalytic reactor are available which fulfill the constraints of 

accuracy, general reliability and description as discussed at the 

beginning of this chapter. They are essentially two dimensional 

and direct simplification to a one-dimensional system is not 

generally acceptable, because of the important effects of tho 

radial gradients. This Generally means that ~~c reactor 
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studies cannot be made as the resul ting three-dimensional model is 

intractable. Further, the steady state t'IJ10-dimcnsional model is 

not suitable for optimisation studies etc., because of the 

iterative nature of the procedure which becomes computationally 

excessive. In order to avoid this difficulty most workers (16-20) 

have made gross simplifying assumptions and considered special 

cases in order to justify the use of a one-dimensional model, by 

assuming that the radial gradients are flat. No-one has made 

any attempt at rational almlysis to take account of th,') effect of' 

the radial gradients in the one-dimensional model except Shah (21) 

who used an approd.c;h "lhioh \V8.S a compromise b0tween the exact 

solution of the model equations and a completely arbitrary 

regression-type model. Although the formulation of the model is 

empirical, it is based on the aSJ~ptotic behaviour of the basic 

differential equations of the physical system. This approach 

along with the statistical methods employed in developing 

regression modele are not generally o.ppUcable and the results 

cannot be extrapolated. 

It is obvious that some r..lethod is required to produce a less 

computationally dl3manding procedure which has a gcnera:i 

app1ioability and beurs all the features of the fully distributed 

model. ~lere are several alternatives of approach which can be 

adopted. (i) A statistical approach has already been rejected, 

and normally assumes the existence of an operational plant. 

(ii) A method which would increase the efficiency of the 

numerical tecrJ1ique used to solve the two-dimensional model. 

This is not really £easable as the existing methods are rostricted 

by the non-linear naturQ of the modol. Simplifying the 
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numerical methods would lead to unreliable solutions. (iii) A 

lumped parameter appro~ch which accounts for the existence of the 

radial gradients would favourably improve the existing one-

dimensional models, but knowledge of the radial gradients is lost; 

and as, for example, the temperature at the tube axis is a 

parameter necessary for control and optimisation of the reactor, 

the lumped parameter model would have limited application. 

However, it is to be noted that substantial reduction of 

computational load of a model is generally coupled with reduction 

of the dimensionality. 

Therefore a technique is required which will both reduce the 

dimensionali ty of the moddl and retain some lmOl'lledgo of the 

behaviour of the radial profile. A satisfactory method has 

already been outlined by McGreavy and Turner (22) which is 

suitable for a fixed bed reactor in which a simple first order 

irreversible reaction is taking place. 

1il Research Objectives 

Until now, no attempt has been made to develop a generally 

applicable and reliable reduced model of th~ fixed bed reactor. 

The analysis entails examining the solutions of tho exact 

distributed model for reaction schemes of increasing complexi V, 

and to decide upon a reliable lumped parameter approach to reduce 

the dimensionali~y of the reactor model. A second and coupled 

objective is to de7elop solutions for the radial profiles of 

temperature and concentration which are related to the original 

reactor model in their application and have a sufficiently simple 

form for easy manipulation to minimis~ the computation time. 

Overall, the reduced model ~:~~a~e~ the original model ~ther 
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than becomes an approximation to it. 

(NOTE: This work has been restricted to the steady state and to 

first order reaqt10n systems, then in order that the generality of 

the approach be extended (1) non-integer and second order reactions 

must be considered, and (1i) an analysis of the unsteady state 

must be made by future work in the new field of model reduction.) 

"7-



CHAPTER 2 

DETAILED OBJECTIVES MiD PHILOSOPHY OF hODEt REDUCTION 

~ Definition of Model Reduction 

In order to know what is implied by model reduction, it is 

necessar,y to define a mathematical model. While it may be 

intuitively obvious to see how it has relevance to the problems in 

which it will be used, it is both convenient and necessar,y to have 

a formal definition. For the purpose of this thesis, a 

mathematical model will be regarded as a set of mathematical 

equations, descri1~~5 all essential characteristics quantitatively, 

while using parameters which relate to the physically identifiable 

phenomena which characterise the process. Generally the model 

cannot be solved analytically, but making use of high speed 

computers, numerical solutions are feasible. For example, if the 

model is in the form of a set of differential equations, efficient 

finite difference techniques are available. Invariably the 

computational load of the solution of the model is prohibitive for 

use in optimisation and control algorithms, so that some method is 

needed which will reduce the computing time, ego a less complex 

form of the model which can be solved more quickly. It is this 

phase which may be referred to as model reduction. It is a 

procedure which attempts to substantially reduce the time of 

computation of the process model, whilst retaining the features 

described above, namely, those of accuracy and description and 

still making use of the physical parameters if only implicitly. 

Consider as an example the use of a reduced model in an 

optimisation algorithm. It should be capable of predicting the 
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performance more aocurately than the expected improvement and at 

the same time describe the process adequately in order that all 

the relevant constraints may be applied. This must be possible 

without the repeated use of the algorithm being a limitation with 

respect to computation time. A similar criterion also applies 

for use of reduced models in control and design algorithms. It 

is to be expected that reduction of computational load will 

generally be related to a reduction in the dimensionality of the 

model. 

2.2 The General Approach. 

Suppose we have a mathematical model of some process which 

exhibits all the essential features described above, but \nlich is 

computationally time consuming. Even if an analytical solution 

exists for the model, it does not necessarily follow that it is 

quicker to evaluate the resulting analytic expression, than to 

solve the original model e~uation by a numerical method. For 

example, this is often true where a series solution may not be 

rapidly convergent, as in the case of the transient fixed bed heat 

exchanger model (23), for which the analytical solution model is 

ver.y complex. The evaluation of the solution requires more 

computational effort than the numerical solution of the orieinal 

model • • In both cases the computation time is excessive. ¥lliere 

it is feasible, the most direct way of overcoming the difficulties 

is to reduce the dimensionality of the model. 

~ Generalised Reduction. 

As noted, the first stage is to reduce the dimensionality of 

the model. The most convenient method is to 'lump' the effects 
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in one or more dimensions. Choice of the dimensions will depend 

on the characteristics of the process, and the method of condensing 

the dimensions will depend on the most useful form of the result. 

The reduced model must be described by terms which may necessitate 

the definition of certain pseudo-parameters in the resulting 

equations. 

In lumping distributed variables some of the original 

constraints of the model are usually violated. Normally some 

loss of description of the model results froD such simplification 

and many of the new model pseudo-parameters will not relate to 

physically identifiable phenomena. Comperlsation for these 

violations can be made by suitable analysis of the original model 

by obtaining solutions to each of the model dimensions. The 

pseudo-parameters Should be expressed in terms of the reduced 

model by carrying out numerical simulations on the original model 

over the practical operating range. 

Special cases which may occur must be avoided, by taking care 

in the choice of data. Sensitivity tests must be carried out on 

parameters so that the resulting expressions are valid over the 

practical operating region of the process. Although such a 

rigorous analysis is tedious, it need only be carried out once for 

a particular type of process. Modification of the reduced model 

for a process of the same general type need only mean 

reassessment of COefficients in a solution, the structure of which 

is alrea~ known. 

~ Regeneration of Description. 

In regenerating the detailed description of the original 
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model, it is necessary to examine the constraints, since in 

solving the original model to provide the required description, 

some redundant information will be produced. For example, the 

case often arises that the complete solution along a dimension is 

produced because of the structure of the numerical method used to 

solve the complex mode~, when in fact only a part of the solution 

is required. Therefore an extra bonus in reduction of computing 

time can be gained by providing the minimum of information for 

solving the model. 

To regenerate the physical detail, the reduced model, 

solutions must be constructed for the dimensions which have been 

eliminated. The structure of these solutions is restricted in 

order to comply with the general philosophy of model reduction. 

As stated above, the solutions must be generally applicable over 

the whole of the practical operating range. They should be of 

the simplest algebraic form possible for ease of manipulation and 

to minimise the computing time. For example, in a computational 

procedure it is less time consuming to calculate terms to an 

integer power than a non-integer power, i.e. ~2 may be expressed 

as ~ x:;C which is one operation but ;:.:1. 3 is evaluated from 

1.3 log ~ and subsequently determining the antilog. Each 

operation requires the s~tion of a series. Therefore, in order 

to minimise computational effect it would be better to consider 

integral powers oruy. 

Over a practical range of the model parameters, the solutions 

are examined for the relevant dimensions to gain some insight as 

to their basic struotural properties for the proposing suitable 
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algebraic expressions, 

This particular aspect of the numerical approach belongs to 

the same class of methods as Galerkin and collocation, and in 

particular to the more recently developed technique of cubic 

splines (36) t for two point boundary value problems for ordinary 

differential equations. 

The Galerkin and collocation (31) methods represent the 
" 

solution for the dependent variable, t; by a finite sum of trial 

functions J'l.1.. 

(m) 
8 ,..~: E; 

m 

" L 
("" 1 

(m) n i'" a • .J (J' + ~ /.J 
.... t. 0 

2.00 

For a problem of dimension P, the ai(m) are constants or functions 

of 1, 2, ••••• P-l of the independent variables, depending on the 

number of independent variables that are included in the functions 

~~i' For parabolic partial differential equations the usual 

choice is to let the a£(m) be functions of one independent 

variable and the ~). i. be functions of the remaining independent 

variables. The method which is used represents a solution for 

the dependent variable ~ by, 

e ~ e(m) "" '~)'o * (ai (m)S'l i. + 1 ) 
1.""1 

which can be satisfied by definition of nit10f the form, 

f·' ~:I.n'i~ ~ 9- ~ ~ 
. e~1.) ,.. (1.) . 

t; is the 1. -th order approximation to g , If the where 

problem is of dimension P , then the ai(m) are constants or 

functions of (P-l) of the independent variables, or alternatively, 

a function of the dependent variables and system coefficients. 
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~le trial function, [1 is the first appro:d~tion to E3 , and 
o 

fulfills the boundary conditions in the dimen3ion considered. 

Therefore the first derivatives of the Jit i at the boundary 

limits are conse~uently zero. The ~1, i are functions of the 

independent variable in the dimension being considered. 

Normally, it will be expected that the a i(m) J1 i will be small 

and the integer i. ~ 2. 

The basic difference between the proposed method and the 

method of orthogonal collocation is that the latter is merely 

an alternative numerical method of solution to the finite 

difference methods (eg. Crank - Nicolson (33)), whereas the former 

produces a generally applicable reduced model. ]bth methods are 

superficially similar, they propose the use of trial functions 

which satisfy the boundary conditions and ultimately both require 

the solution of a set of simultaneous ordinary differential 

equations. But, for the case of orthogonal collocation an 

ordinary differential equation must be solved along the principal 

dimension at each collocation point, whereas there is only one 

for the reduced method. Hence the comparison of computation 

times will depend on the number of collocation points used. The 

use of only one collocation point effectively produces a lumped 

parameter system with a resultant loss of description. In 

addition, the coefficients used in the collocation method are 

arbitrary whereas in the reduced method they are related to the 

physical processes occuring. An outline of the method of 

orthogonal collocation is given in appendix 4. 

~ Formulation of the Pseudo-parameters. 

There is no general method for the formulation of the 
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pseudo-parameters in the reduced equations, although some of 

the techniques involved are well known Any theoretical 

analysis, no matter how coarse, is performed to provide some 

information as to the general form of the pseudo-parameter. The 

functional forms (which include the afm» may, for example 
l' 

represent asymrotiC for~ which will be established along the 

dimension to which the model has been reduced, to be referred to 

as the principal dimension. The gradual transition of the 

pseudo-parameter Bi(m) from its initial value, a ~m) to its 
0 .. 

asymptotic form, aafm) is represented by a development term along 

the principal dimension, 

a .(m) 
t 

... a (m) 
01 

where the bi(m) are constants or functions of the dependent or 

independent variables. 

From the coarse analysis, the parametric groups are 

determined which it will be necessary to correlate in order to 

calculate the constants of the function which describes the 

pseudo-parameters. Additional information is gained by 

observing the behaviour of the pseudo-parameter at the limiting 

values, so that logical arsument n~y be used to sugrrost the 

functional dependence of these on each system coefficient. A 

detailed analysis is carried out to cover all the model 

coeffioients, so that the resulting expreSSion is generally 

applicable in any practical operating region of the process. 

Once this analysis has been oompleted for the process ( or type of 

process), it 'is not necessary to repeat it. 

This approach, although not formally developed in this 

-14-



manner, is often used in the solution of a wide range of 

chemical engineering problems for which an ~~lytical solution 

does not exist (eg. boundary layer theory, the determination of 

pressure drop in a pipe; heat transfer from fluids flowing 

through pipes; etc.) For the case of boundary layer theory (24), 

arbitrary profiles are assumed butthe included coefficients are 

not related to the physical parameters of the system. 

2.6 Further Simplification of the Reduced Model. 

Once a reduced model which is generally applicable,has been 

developed, (and in fact replaces the original more complex model) 

it may be possible to simplify it even further for ranges of 

operation in which some effects become unimportant, thus giving 

further savings in computing time. 

Normally extensive simplification cannot be made if the 

accuracy is to be retained, although, in certain cases an 

approximate model could be used during, say, the initial approach 

work of an optimisation problem. Then in the region of the 

optimum a more sophisticated model is used, resulting in an overall 

increase in speed. 

The Specific Problem. 

So far in the chapter, model reduction has been discussed 

with respect to a quite general system. The fixed bed catalytic 

reactor in which a highly exothermic reaction is taking place is 

a typical case to which model reduotion could profitably be 

applied. The model is a set of coupled partial differential 

equations (see Chapter 4) which contain highly non-linear term~ 

(i.e. the reaction rate terms due to tho Arrhenius rate expression). 

There is no analytical solution for the model due to the coupled 
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non-linear nature of the system. In the succeeding chapters 

the fixed bed reactor is considered in increasing complexity 

about which the techniques of model reduction are illustrated and 

developed. It is convenient to reduce the fixed bad reactor in 

three stages, firstly considering the fixed bed heat exchanger 

model (in the next chapter) i.e. a reactor for which there is no 

heat source. The analysis is subsequently extended to the case 

of a simple irreversible first order reactor with a heat source 

and finally more complex reaction schemes are considered. Each 

stage is used as the first approximation to the next. 
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CHAPTER 3 

REDUCTION OF THE FIXED BED HEAT EXCHANGER 110DEL 

~ Introduction. 

The data used for this particular analysis is related to the 

reactor situations to be considered later and in chapter four a 

discussion of this choice will be made. The particular set of 

data about which the conditions are varied is listed in table 3.01. 

The flow through the re~ctar is turbulent so that the Peclet 

numbers for heat and mass transfer can be assumed constant at a 

value of 10. Froment (16) has shown that the model is not 

particularly sensitive to this parameter. The inside wall film 

heat transfer coefficient, h is calculated according to Yagi and w 

W~~ (25), and the composite heat transfer coefficient, U for the 

whole tube wall is calcula. ted in the normal waB. The d.a. to. 

available for h w is not p~rticularly reliable and as in the 

reactor situation the model is particularly sensitive to its value, 

the data should be eventually 'trimmed' by comparison of predicted 

and praotioal heat exohanger performanoe. 

hl The Model 

A cylindrical hea.t exchanger~ length L and ra.dius L is 

considered packed with spherical pellets, radius b. The fluid is 

assumed to pass through the bed in plug flow and axial dispersion 

terms are neglected. The modes of heat transfer considered are 

axial convection and radial conduction. Heat from the bed is 

transferred through the tube wall to a coolant fluid which is at 

constant temperature. The model state equation may be written: 
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Table 3.01 

Reactor Data Heat Transfer Data 

Go .,. 0.449 g/cm~/sec. 0-2 . / 2/ /0 U ... 4. 4 x 1 J. em. sec. K 

6 -3 / 3 er ... 5. 8 x 10 g. cm. Ar == 4.62 x 10-2 j./cm./sec./oK. 

eSr a 2.45 j./g./oK 

., e= 0.4 
Dimensionless Groups 

b == 0.21 cm 
NU = 2.0 

B .,. 2.1 em 

L 125 em 
t mo == 1.18 ... 

T "" 5900 K mo 

Tw "'.500
0
K 

- G d aT + ~1 o r -
~x r 

where the boundary conditions are, 

T III r (T r) mo, x ... 0 0 ~r ~B 

- A ~ .. U (T - Tw) r aBO ~ X ~ L 

Or 

... 0 

The model is shown diagramatically in fig. 3.01. 

3.01 

The inlet temperature profile is here expressed as an arbitrary 

runction or the radial mean inlet temperature, Tmo and the radial 

coordinate; a discussion or the inlet profile will be given in 

section 3.45. 

The complete set of model equations are rendered dimensionless 
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Coolant Tw 

Figure 3.01 • Diagram of the fixed bed heat exchanger. 



so that the model is characterised by two dimensionless groups, 

PeT and NU defined below: 

so 0 

where the boundary cond! tions are, 

t = f ( t mo , y ) z &: 0 , o.fyf·l 

~t so 0 y ... 0 , O~z-'l 3.04 
C)y 

-',h co NU ( t - 1 ) y co 1 , O~z~l 

IY 
Tho characteristic groups are defined in the usual way 

Effeotive Peolet number for heat transfer, PeT ... (Got$f i) 
\ L 3.06 

fluid Nusselt number ~ (;) 

The remaining dimensionless variables are, 

t .. T z ... x y .. r - , 
Co:ll"t; c.o"C't 

Equations 3.03, 4 are usually non-linear and so ilnalyticall is not 

Tc L 13 

possible but they can be conveniently and efficiently solved by a 

Crank - Nioolson f!nita difference soheme USil~ the Thomas method 

for the resulting algebraio equations ( see Appendix 2 ); it 1s 

only in very speciel oircumstances that an analytical solution is 

possible. 

~ The Analytic Solution. 

In thoge cases where it is possible to solve equations 

3.03, 4 analytically, a separable solution is assumed, 

-19-



( t - 1) ... Y. Z 

Y ... Y (y) , Z ... Z (z) 

'!,.Ol 

3.08 

By substitution in equationj,and separation of the variables., 

equation 3.03 becomes, 

Y" + 1 Y' 

y yY 

Pe Z' T_ 
Z 

2 
0:1 - q 

where q is a constant. The partial differential equation has now 

been separated into two ordinary differential equations, which can 

be solved analytically (26). 

2 Y" Y' + q2
v

2 Y _ 0 y + y ,,-

3.11 

The combined solution of 3.10, 11 is 

(1 - t) Jo ( An y) • 3.12 
n=o 

In solving equation 3.10, the inlet temperature profile is assumed 

to be flat, i.e. to (y) "" t mo • 

2d:. Generalised Reduction of tl1e Nodel. 

The structux3 of the analytical solution for the heat transfer 

model is unsuitable for extension to the reactive case due to the 

series nature of the expression. There is no computational 

advantage gained in solving the model analytically rather than 

numerically as the computing times are similar. 

A lumped parameter approach may be used to reduce the model 

and the description lost can be regenerated by constructing a 
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solution in the dimension which is eliminated. 

Keeping in mind that the heat exchanger model is to be used 

as the first approximation for the reactor model with respect to 

the choice of the principal dimension and the terms in which the 

reduced model equations are to be expressed, the principal 

dimension is chosen as the exial direction and the reduced model 

will be expressed in terms of radial mean va1ues~ The radial 

mean value, em of a. dependent varia.ble e (y) is defined by, 

em - 0 J ~ (7) • 7 • ely • 20 J e (7) • 7 • ely 3.13 

011 

7. ely 

Considering the state equation 3.03, multip~ each term by 

Zy • dy and integrate over the bed radius. 

Assuming that, 
1 

oJ 2 PeT 

It . y • dy + - 0 3.14 -Oz 

1 

~t Y dy = PeT d (Jr 2 t • y • dy) 3.15 
- - 0 
~z d z 

then substituting for the boundary conditions (equations 3.04) in 

in equation 3.14. 

2NU (t (1) - 1) - 0 3.16 

A pseudo-parameter the effective Nusse1t number NUl is defined, 

such that, 

NUl = NU 
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The model is now expressed in terms of the radial mean temperature 

only: 

PeT dtm + 2NU' (tm - 1) III 0 

dz 
, 

It will be shown that NUt is independent of tm. so that equation 

3.18 can be solved analytically. 

(tm-l) - (tm - 1) \ z-o e 

In order to evaluate the effective Nusselt number, NU', a kno\o,ledge 

of the radial temp~rature profile is required. 

~ The Radial Temperature Profile. 

3.5.1 General Analysis. 

The radial temperature profile is examined for a practical 

range of values of PeT' NU in order to gain soma insight as to its 

basic general structure for the purpose of suggesting a suitable 

approximate form. Further information can be derived by 

inspecting the analytical solution of the model (summarised in 

section 3.2), that the radial solution is separable from the axial 

solution, hence it should be possible to bas~ the radinl solution 

on a temperature at a specific radial position; the analytical 

solution considers the temperature difference between fluid and 

coolant rather than the absolute value of fluid temperature, and a 

similar policy will be used here. 

3.5.2 The First Approximation 

From the above analYSiS, the radial temperature is assumed to 

be approximately represented by an even order polynomial function, 

of which the second degree is taken as a first approxim.~tion. B,y 
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applying the boundary conditions (equ.o.tion 3.04) to the function, 

where t (Y)p is the radial temperature profile given by the 

approximation, it can be shown that 

( t (y) - 1) = ( 1 + 0.5 NU ( 1 - y2 ) ) ( tel) - 1) 3.21 p 

where t (1) is the temperature at the tube wall, ob~~ined by 

differentiating equation 3.20 with respect to y and substituting 

for the boundary conditions to evaluate the coefficients Wi. 

The function (t (y) - 1) represents Jl in equation 2.01. , po. 

In :the next stage a imn1 is conSider~d, where 

e-
e(o) 

from equation 2.02, and ~(o) is equivalent to ~ • 
o 

3.5.2 Profile Correction 

3.22 

From equation 3.22 a correction function f1 (y) is defined by 

f 1 (y) .. 

which \'lill be a radially dependent function. Fig. 3.02 shows tho 

typical form of the corroction function, which has the boundary 

conditions, 

.An acceptable functional form for f1 (y) is, ' 

f1 (y) - w3 ( 1 - 3y2 + 2~) 
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, 
\ , 

~(Y).-----~--------------------------~ 
0.10 

NU = 2 

0.05 

o 
o 0.2 0.4 0.6 0.8 1.0 

y= riB. 

Figure 3.02 • Typical form of the correction function f1(Y) 



For particular values of PeT and NU, irrespective of the 

form of the inlet temperature profile, the function fl (y) tends 

to an asymptotic form, i.e. the value of fl (y) for o~y~l is 

indep~ndent of axial position; therefore \'1,5 is a function of PeT 

and NU only. 

3.5.4 Determination of W3 

B,y carrying out a sensitivity test, w,5 is found to be 

independent of PeT' and hence is a function only of NIT. Fig. 3.03 

shows the relationship of w3 to Ncr obtained by plotting on 

logari thmic co-ordinates. From the curve it can be seen that 

lim W,3 co constant and lim w~... constant x w2, so that 
NU+t\:) NU~O 

a relationship would be expected of the form, 

2 

:By expanding equation .3.26 we have, 

(NU/~) ... ~NU + u2 

then if ( NU I ~) and NU are plotted or. c<1rtesian co-ordinates, 

the result is a. straight line, gradient ~ and intercept u2' 

which is demonstrated in figure 3.04, hence "'3 is written, 

"3· ( 1.2 : + 4) 2 3.27 

It is interesting to note the similarity of this coefficient 

and the coefficient in the analytical solution. (equation 3.12) 

The correction function, fl (y) is not exactly and generally 

described by equation 3.25 and although the difference is small, 

it must be examined. The variation of the form of fl (y) 

,., 
3 
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limit:: 0.694 
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gradient = 2 

10-3 ~-L ____________ ~ ____ ~ ______________ ~ ______ ~ ____ -J 

16' 
NU. 

10' 

Figure 3.03 • The vnrintion of the coefficient w3 gith respect 

to the Nussel t number Jiu. 
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30 

20 

NU 

10 

'oi 
W3 I 

o 

Intercept = 4.0 

5 

gradie nt = 1.20 

10 15 20 
NU 

Figure 3.04 • Determinati~on of the exact form of the 

coefficient W,je 



is shown in fig. 3.05. The parametrio analysis of this error is 

described in Appendix I; for a secondary correction function 

defined by, 

;.28 

then JJJ can be satis!actorily represented by, 

fin"'" 0.4y2 [ (1 - 0.5 y (2 - y» NU + 1] 

1 + 0.5 NU (1 _ y2) 

The major contribution of n.lI is in the region of the tube wall 

and hence in the value of the effeotive Nusselt number; its 

oontribution is zero in the prediction of the axis temperature 

t (0). 

3.5.5 The Radial Temperature Profile. 

The radial temperature profile may be represented by, 

(t (Y)ht - 1) • [W3 (1 - 3l + ~)(1 + S1J + 1J [1 + 0.5N11 (1 - l)] (t(l)-J 

3.30 

where 'i; and n]I are defined by equations 3.27, 3.29 respeo ti vely. 

The seoondary oorreotion funotion,JlL]!need not necessarily be 

included in the expression unless a great emphasis is placed on 

aocuracy_ As stated above, the effect Of~JtiS zero at the tube 

axis (y = 0) and is also zero at the tube wall as fl (1) "'" 0, 

although its effeot is greatest in the region of the tube wall. 
t;~e 

Therefore)error in exoluding ~ltiS best seen by considering its 

effect on the effe~tive Nusselt number rather than on the 

prediction of the temperature profile, which will be disoussed in 

section 3.5. 

Examining equation 3.30, it is olear that the axia.lly 

dependent reference temperature difference (t (1) - 1) may be 
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1.0 

as 

NU= 20 

NU=2 

0.5 1.0 
Y= r/ 8 

Figure j.05 • The deviation of f 1 (Y) from its predicted form. 



ai: 

replaced by a reference temperature (t (y) - l)Jany value of 

y = Y; in this case the reference temperature is the mean radial 

temperature. The advantage of equation 3.30 over the analytical 

solution, equation 3.12, is that the expression is simple and 

finite so that the profiles are easily computed. Equation 3.30 

is in a form which can be used as the trial function for the 

reactor with an exothermic reaction. 

3.5.6 The Inlet Temperature Profile. 

Normally, in the literature it has been assumGd that the 

inlet temperature profile is flat, which in a real situation is 

unlikely. Numerically this assumption produces a discontinuity 

at the tube wall, and this causes difficulties with the numerical 

solution in the region of the inlet. Figure 3.~ shows how 

sensitive the resulting axial profile is to the assumed inlet 

radial temperature profile. Since the peak temperature is often 

near the inlet region it is apparent that some care is needed in 

specifying the appropriate inlet radial profile if the peak 

axial temperature is to be specified with any accuracy. A 

distributed inlet temperature profile, which fulfills the radial 

boundar,y conditions, is physically more reasonable than the usual 

flat inlet profile and will produce a more reliable solution in 

the inlet region. Therefore, in view of this, all cases, except 

where stated otherwise, are solved for the distrjbuted inlet 

profile, described by equation 3.30. 

~ The Effective Nusselt Number. 

The effective Nusselt number was defined in equation 3.17 as, 

NU' = NU t (1) - 1 

tnt - 1 
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590 distrOlbut ed i nl et. 

570 

flat Inlet 

550 

530 

o 0.2 0.4 0.6 0.8 1.0 
Z= x./L..o 

Figure 3.05 • Effect of the fo~ of the inlet profile 

on the axial temperature profile. 



and (tm - 1) is defined by, 

"1 

(tm - 1) a 2 ~ (t (Y)ht - 1) y. dy 
o 

from equation 3.13. By substitution for (.t (Y)ht - 1) from 

equation 3.30 integrating and rearranging, an expression for NU' 

is derived: 

NU' ... NU 

(1 + 0.25 NIT) + w3 (0.3286 + 0.1545 NO) 

where W} is given by equation 3.27. Due to the error in 

estimating NU (i.e. tho wall heat transfer coefficient and the 

effective thermal conductivity), the constants in equation 3.32 

will be expressed to the second decimal place only. 

NU' ... NU 

(1 + 0.25 NU) + w3 (0.33 + 0.15 NU) 

If the secondary correction function ~D is neglected (as will be 

the usual case for the reactive system), then the value of the 

constants change slightly 

NU' ... NU 

(1 + 0.25 NU) + w3 (0.30 + 0.11 NU) 

The error of estimating NU' when ignoring nu is plotted against 

NU in figure 3.0". These expressions are analogous to that 

derived by Froment for the analytio solution (whioh is summarised 

in seotion 3.2) 

NU' .. NU 

1 + 0.25 NU 

Equation 3.35 is the expression for NU' which would be derived if 
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limit =0.11 ~ 

0.10 

error, ~ 

0.05 

o 10 
NU 

Figure 3.07 • The error or ignoring the secondary 
correction function with respect to 
the effective NUeeelt number, NU~ 

2':) 



a parabolic radial temperature profile is assumed i.e. w] = O. 

This is only a valid approximation for low values of 1m. A 

comparison of the predicted values and actual value of NU' is 

given in f'igure ;.01; it can be seen that the predicted value 

(given by equation ).34) almost exactly coincides with the actual 

value of NU', whereas the Froment prediction always overestimates 

the value of NU'. 

~ Conclusions. 

The reduced model for heat transfer from a packed bed may now 

be written, 

(~- 1) = (tm - 1)' e z = 0 

_(~t) Z 

PeT 

A comparison of the original and reduced models is given in 

figure 3,09. The above model retains the generality and 

quantitative and qualitative description of the original model 

described by equations 3.03, 4, while radically reducing the 

computing by a factor of 60 : 1. The relative reduction of 

computational load is not important for this case, as it has been 

considered solely as a special case of the chemical reactor, and 

because the temperature profile is used as a first approximation 

f'ox the case with exothermic chemical reaction. Nevertheless 

it does indicate how effective model reduction can be. 
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Figure 3.08 • Comparison of the act.al and predicted 

values of the effective NUBselt number.NU: 
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Figure 3.09 • Comparison of the actual and predicted 

performance of the fixed bed heat exohanBer. 



CHAPTER 4 

REDUCTION OF THE FIXED BED CATALYTIC REACTOR MODEL 

- S]}~LE IRREVERSIBLE REACTION A ==tB. 

~ Choice of Model. 

The system considered is a tubular fixed bed catalytic 

reactor in which the chemical change is highly exothermic. The 

model is multi-dimensional in that it considers the spatial 

variations of concentration and temperatUr: in both the fluid and 

solid phases. The simpl.fying assumptions which render the 

solution tractable are amply enumerated by Cresswell (27), whose 

model (14) is to be used. A conventional tubular reactor is 

conSidered, packed with spherical catalyst pellets. (1) The 

pellets are of a uniform size and both phySically and chemically 

identifiable. A diagramatic representation of the reactor and 

pellet is given in figure 4.01. The pellets are randomly packed 

to produce a homogeneous assembly having no preferred flow 

directions. (2) Heat from the reactor is removed via the tube 

wall to a coolant at constant temperature with respect to the 

axial direotion. (3) The reactant flol',s through the packins 

in plug flow. (4) Axial dispersion in the direction of flow may 

be neglected oompared with the eddy diffusional processes. For 

a practical range of flow rates this assumption is valid (28,29). 

(5) The phySical properties and heat of reaotion are assumed 

constant with respect to the range of concentration and 

temperature in the reactor. (6) The individual pellets are 

assumed to be quasi homogeneous, the internal mass and heat 

transfer being by 'effective' diffusion and conduction processes, 

both of which are measurable Droperties. 

-29-



L 

Feed 

----~~-~~------­
Go,Co,Too 

Catalyst pellet. 

Figure 4.01 • Diagram of the fixed bed reaotor. 



Allowing for finite rates of heat end mass transfer across 

the fluid film surrounding the pellets, inside the catalyst 

pellets and radially in the fluid phase, the reactor state 

equations may be written: 

Fluid: 

_ G d ?iT + l" '0 
o £- - £-ex r dr (r. ~rT)- ~ (1 - e)~p ~sl 

v b ds sab 

Solid: 

1 "p _d (S 2 
_dTs ) + (- AH) R (0 T) s, 8 

8
2 ds ds 

d . (s2 dOs ) _ R (0 
- - s, 
ds ds 

T) ... 0 
S 

Where the boundary condi tiona are 

T ... Tht (r) 

x '" 0, 0 ~ r ~:s 

1T... () 0 ... 0 r COl 0, 0 ~ x ~L 
Or 3r 

00 
- 0 

'ar 
r .. B, 0 ~ :x: f L 

-"f "!.: ... U (T - Tw) r ... B, 0 ~ x ~ L 

<)r 
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dCs .. dTs .. 0 8 .. 0 

ds ds 0 r B 

-Dp dOs :It kg (0 '- O).J S a b 4.09 s 

ds 
0 L x 

- AI' dTs ... hf (T - T) s s ... b 

ds 

It has been demonstrated that the pellet is essentially 

isothermal (14) although not at the fluid temperature, so that 

equations 4.03, 4, 9 can be solved analytically, and by use of 

an effectiveness faotor'1J t are replaced by algebraic expressions. 

The state equations are now reduced to the form: 

Fluid: 

- Go O'f Orr + 1 Af 0 (r. f)T) + 3 (1 - e) hf (Ts - T) I s-b a 0 
- - - - 4.10 

lx r 'Or 4r b 

- Go aC + .: Df 1. ( r. ~. ) + 3 (1 - e) kg (as - C)t 8ab ... 0 

~f Ox r ar ()r b 
4.11 

Solid: 

- 3 hf (Ts - T)I sab ... (-~H).'t. R (c, T) ... 0 4.12 

b 

... 11 · R (e, T) ... o 

the effectiveness factor for a first order irreversible reaotion 

is given by, 
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3 Sh' ( 

where, 

¢ ... 
s 

4.15 

... b ko exp {~ET ) 

The set of equations are conveniently and effioient~ solved by 

the Crank-Nicolson finite difference method for equation 4.10, 11 

(see Appendix 2) 

The choice of reactor data is extremely important as all the 

characteristios of interest must be fully demonstrated. For 

example there must be a temperature maximum in the axial direction 

and appreciable radial temperature and concentration gradients. 

An unusually large (as far as a practical reactor is concerned) 

inlet temperature difference between reacting fluid and coolant is 

used to encourage large radial temperature and hence concentration 

gradients. The reactor data is s~arised on table 4.01 together 

with the corresponding dimensionless groups. 

~ Definition of the Required Model Description. 

Before attempting to reduce the model, it is necessar,y to 

define exactly the description required of the model with respect 

to its uses in design, optimisation and control algorithms. 

-32-



Table 4.01 

Reactor Data. 

G "" 0.449 g./em2/see. 
° 

~r "" 6 -3 / 3 5. 8 x 10 g. em. 

Or "" 2.45 j./g./oK. 

.. e .. 0.4 

b "" 0.21 em. 

B -= 2.10 cm. 

L "" 125 em. 

T - 590 oK. mo 

T ... 500 oK. 
w 

Dimensionless Groups 

Transfer Data. 

-2 / 2/ /0 U .. 4.4 X 10 j. em. sec. K. 

~r'" 4.62 x 10-2 j./em./see./oK. 

Dr" 3 .. 32 em~/see. 

Pellet Data. 

hr .. 1.86 x 10-2 j./cm~/sec./oK. 

As .. 3.302 x 10-2 j./cm./sec./oK. 

Kr "" 1.45 em./sec. 

Dp .. 0.05 em2/see. 

Kinetic Data 

8 -1 PeT ... PeM a 0.84 ko '" 2.27 X 10 sec • 

NU .. 64.31, S1L .. )J6.51. E .. 9.6 x 10
4 

j./mole. 
s -~ 5 

ih2 2 -AH ... 2.27x10 j./mole. 
~ ... 1.697 x 10- ; P ... 0.6623 -5 3 

Co a 2.03 X 10 g./em. 
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A knowledge of the radial mean concentration along the length 

of the reactor is required but a description of the radial 

variation of concentration is not normally necessary. The 

description of the temperature distribution is localised at the 

axis where it is the ra.dial maximum and which it is important to 

control in order to retain the stability of the catalyst and to 

prevent temperature run-away. If the problem is concerned with 

catalyst decay which is temperature d~pendent, it may be n~cessary 

to generate the complete radial temperature profile. But, as 

most catalyst decays over a period of years, the process is so slow 

that the effective catalyst activity need only be updated 

relatively infrequently eg. monthly. 

~ Generalised Reduction of the Reactor Model. 

In order to ease the analysis the reactor state equations 

are rendered dimensionless. 

Fluid: 

- PeT at + 1 

Oz Y 

- PeM Cc + 1 

~z y 

Solid: 

- NUs (ts - t) ... {3 ~ 2'l R* (c, t) 

- SHs (cs - c) co 1> 2 "1 R* (c, t) 

with boundar,y conditions, 

t co ~t 
z ... 0, o~ y ~ 1 

c o:a 1 

... ° 



ot ... 0 0 0:: 0 Y = 0, O~z!:l 4.21 
-

Oy l)y 

'"l»o :: 0 y 0:: 1 , o ~z b1 4.22 -
'3y 

- at = NU (t - 1) y COl 1 , Of-z6.1 4.23 

'a y 

where 

v .. s y COl r z ... x 

b :a L 

t .. T . ts ... ~ 
. 0 ... C , , 

~ Tw Co 

Os ... C 
-.!!. 
Co 

PeT #I Go d r B2 
PeM G B2 ... 

0 

"r L 
~r Dr L 

2 2 NU ... 3 (1 - e) B hr SH 3 (1 - e) B kg s .. 
s 

Ar b Dr b 

NU ... W • ~ ... E , 

~r Rg To 

~:a (- l\.R) Co Dr t2 .. (1 - e) B2 ko exp (-I) 

Ar To Dr 
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There is no general rok~lytical solution for the fixed bed 

reactor model, so that approximate methods are used in order to 

gain some insight as to the basic structure of solution. Consider 

the locally 1inearised version of equations 4.16, 11 

- PeT at + 1 l. (y. 'at) + at + be + d a 0 4.24 

Qe 

Oz 

y Oy "Oy 

+ :: l.. (y ~) + 90
1 
t + b' c + d I 

Y ~y 'ay 

III 0 4.25 

Froment (1) has shown that the solutions of the equations may take 

the form, 

c ... 

(1 - t) R ~ (z) ~n (y) 

Although these are not generally applicable, it may be possible to 

suggest basic forms for the reduced solutions, eg. that the radial 

and axial solutions are separable and that it is better to consider 

the temperature difference with respect to the ambient temperature, 

rather than the absolute value of temperature~ 

The reactor model is reduced by a lumped p~~eter approach 

and the description is regenerated by constructing solutions in 

the dimensions which have been eliminated. in a similar manner to 

that used in the previous chapter. The principle dimension is 

chosen as the axial direction. 

Multiplying the state equations 4.16, 17 through by 2y.dy and 

integrating over the bed radius, 
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- PeT ~m 

dz 

- PeM dCm - 22 ('l} R* (e,t) )m .. 0 

dz 

so long as, 

.. dt 
m 

dz 

and 

(~) 
m dz 

In order that the reduced model is expressed in terms of radial 

mean temperature and concentration only two pseudo-parameters are 

defined. 

The effective Nusselt number, NUl = NU (t(l) - l) 

t - 1 m 

and a distribution factor [t) sa ('1 R* (c, t) )m 

for the reactor tube * "l em) R (Om' tm) 

which is analogous to the effeotiveness factor'i] and is a local 

value. Satisfactor.y agreement between the solutions of the 

complex and reduced models will be dependent on reliable methods 

of estimating these two parameters, which will be discussed in the 

succeeding chapter. The resulting reduced model may now be 

written: 

- PeT ~m - NUl (tm - 1) +fo~2i) 1 em) R* (om,tm) .. 0 4.32 

dz 

- p~ ~ - ~2~ '(em) n* (om' tm) .. 0 

dz 

where the boundary condl tions are, 

.. 
z .. o 
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The problem is to reproduce the detailed description by 

constructing solutions for the radial concentration and temperature 

profiles. 

~ Regeneration of Description. 

4.4.1 Introduction. 

Before carrying oui; the numerical experiments to determine 

the functional forms of the radial profiles, the basic model data 

must be chosen in order that all the general features of the model 

are described, ego large radial temperature gradients, and a 

~ temperature, axially, as discussion earlier in section 4.1. 

4.4.2 The Radial Concentration Profile. 

B.1 observation of typical solutions of the complex model, 

the radial concentration profile, representing the two point 

boundary problem, can be adequately described by an odd power 

polynomial function. The simplest form of the trial function is 

a cubic of the form, 

c (y) .. + 

where the Ei are axially dependent coefficients. Applying the 

boundary conditions of the complex model (given by equations 

4.21, 2, 3) to the polynomial function, nnd substituting for 

om .. 2 of 
1 

0 (y) ~ y • dy- . , 

00 
sa tl 0 sa 0-; 

ywo 

~1 
4.36 

III 2£2 + 3 £3 1:1 0 

Oy y=l 
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and, 

then 

A pseudo-parameter, the overall radial concentration difference is 

defined as, 

o (1) -' 0 (0) 

where 0 (0) is the concentration at the tube axis and e (1) the 

concentration at the tube wall. Substituting for~c in equation 

4.38 the coefficient£} is eliminated from the expression. 

c (y) a Llc (3 2 - 2 3 - 0.7) + c 4.40 y.y m 

:BothAc and c are axially dependent functions. Equation 4.40 m 

is equivalent to the type of function proposed by the Galerkin 

and collocation methods, where mal, ie. 

c rv c(l) a a (1) JL + Jl.
O 1 1 

where cm == JLo ' (3y
2 

- 2y3 - 0.7) &I~ and~c 

The predicted concentration profile given by equation 4.40 is 

accurate to within 0.5% of the computed from the complex model, 

(see fig. 4.02) so that it is unnecessary to consider any form of 

correction term. 

In order to use equation 4.40 in the reduced model an 

expression forb 0 is required which is related to radial mean 

* parameter values, ego c , t , k (tm) etc., but discussion will be m m 
deferred until the succeeding chapter. 

4.4.3 The Radial Temperature Profile. 

As stated in section 3.1, the fixed bed heat exchanger has 
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been taken as a special case of the fixed bed reactor model 

( 1e. where f3.. 0), and the temperature profile which has been 

developed for that model will be used as a first approximation for 

the reactor model. Graphically,. it is assumed that the 

temperature profile is distorted by the presence of an exothermio 

chemical reaction. If a correction function is defined by, 

where the reference temperature is that at the tube wall, 

(ie. t (1), where f2 (1) .. 0), then f2 (y) is similarly 

constrained as fl (y) (soe section 3.4.3) 

from the boun~ry conditions of the original reactor model. B,y 

observation of the solutions for a practical range of reactor 

operating condition, the correotion function, £2 (y) can be 

adequately r~presented by a simple algebraic function: 

It would be expected that the coefficient, w4 would be solely a 

function of the reaction terms and is in fact primarily 

dependent upon the overall radial concentration dif£erenee,~c 
~t~t: 

which could be physically interpreted as the aesian to which the 

temperature profile is distorted by the presence of an exothermio 

ohemical reaction. From an exhaustive analysis of the model 

ooefficients, the coefficient, w
4 

may be adequately represented by, 

4.45 

-40-



In figure 4.03, w4 a:n:d.f3l:lo are correlated. As may be seen, the 

relationship is not exactly line~r as proposed by equation 4.45 

But it is always the policy of model reduction to preferably 

make use of simple algebraic relationships even if slightly less 

accurate than more complex forms. Nevertheless use of the simple 
- -. 

relationship must be justified with respeot to the error • ., 
In the direction of inoreasing temperature (i.e. when 

approaching the temperature maximum) and in the region of the 

temperature maximum, whioh on figure 4.03 is along the line from 

the origin through All, equation 4.45 holds almost exactly. But 

in the direction of decreasing temperature, through ]C to the 

origin on figure 4.03, the error increases to a maximum and falls 

to zero. Therefore equation 445 always holds in the region of 

praotical importance (i.e. up to and around the temperature 

maximum), and no great concern need be caused by the error in the 

region in which the temperature is falling as normally this is 

beyond the normal limits of the reactor, i.e. before this 

situation can occur the exit of the reactor has been reached. 

\fuen the exothermiCity,j3, is zero thin, as would be expected, 

the temperature profile is that for the fixed bed heat exchanger. 

The radial temperature profile may be written as, 

(t (y) - 1) _[10/3P6c (1-3/ + 2/)+jt:+J 2 (1-3/ + 2/)+~ 

The temperature adjacent to the wall, t(l) can be eliminated from 

equation 4.46 by integrating with respect to 2y ' dy to introduce 

the mean radial temperature, t , where, m 
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(t(l) - 1) a (tm - 1) 

[(1+0. 25NU)+(w3+w4) (0. 11NU+0. 30)+W3W4(0.47NU+O.17») 

and w;, w
4 

are defined by equations ;.27, 4.45 respectively. 

~ Conclusions 

Tne reduced model for the exothermic fixed bed chemical 

reactor may now be written, 

- PeT ~m - NUt (tm - 1) +f3 '4 2~ l1(m) R* (cm' tm) A 0 4.41 

dz 

- PeM ~m - ~ ~"'l(m) R* (cm' tm) A 0 

dz 

and the radial profile may be obtained by using, 

c(y) a ~c (3 2 _ 2; - 0.7) + c 4.4~ 
y y m 

t(Y)-la~W4(1-;y2+2y;)+1)(W3(1-3y2+2y2)+1)(l+O.5NU(1-y2)) (tm-l)] +.SO 

«1+0.25NU)+(w3+w4) (0.3+O.1lNU)+w3W4(0.17+O.47NU» 

where w3 co (NU )2 
1.2NU+4 

It must be noted that although some of the expre~sions appear 

complex, in fact. for a specific reactor system, they are constant 

ego w3 • This tends to radically simplify the expression for the 

radial temperature profile. 

Unlike all other one dimensional models which have been 

proposed, the above model accounts for the effect of the presence 

of an exothermic chemical reactor upon the effective NUBselt 

number, NU'and differentiateS between the radial mean reaction rate 
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and the reaction rate at the radial mean conditions through the 

distribution factor,~. The model has the additional ability to 

construct the radial profiles of temperature and concentration if 

required. Indeed, all these features have been made available 

with minimal addition of complexity to tho basically attractive 

simplicity of the one dimensional model. It must be stressed 

that the reduced model is generally applicable over the parameter 

range for which it has been developed and at no stage can it be 

considered to be an empirical model. The one-dimensional state 

equations are an exact and direct development from the original 

two-dimensional model and their reliability is dependent on the 

accuracy of estimating the pseudo-parameters NU' and<f). To 

consider parametric sensitivity would be meaningless as the two 

models are directly related over a wide range of conditions. The 

two models are compared in figura 4.04 for the basic data, which 

can be considered to be a stringent test for the reduced model, as 

the system is 'finely balanced' which necessitates parallel 

characteristics of the two model if comparative results are to be 

produced. 

In this chapter, a very simple first order reaction has been 

conSidered, which is not at all typical, and in Chapter 7, more 

typical reaction schemes are considered. Nevertheless, the 

analysis in this chapter has proved that model reduction is 

possible, and indi~ates the direction it might profitably take. 
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CHAPTER 5 

CORRELATION OF THE AXIALLY DEPENDENT PSEUDO PARAMETER 

~ Discussion. 

The overall radial concentration difference, ~o is 

physically identified as the concentration difference between the 

tube wall and axis, at any axial position, 

Ie c(l) c(o) 

As the reduced model is solved axially in terms of the radial mean 

values of the system parameters, i.e. concentration and 

temperature, the value of 6. 0 is not directly available in terms 

of the reduced model; but it is required in order to estimate the 

distribution factor,.@and the effective Nusselt number, NU' (see 

the succeeding chapter) and to generate the radial concentration 

and temperature profiles (see section 4.5). Therefore, an 

alternative approach is required for the estimation of ~o in 

conjunction with the formulation and solution of the reduced model. 

~ Preliminary Anall2is. 

As no analytical solution exists for the original reaotor 

model, no informs. tion as to the functional form of 6 c is 

immediately available. In order to determine the principal 

parameters or parametric groups on which 6 c is dependent, a 

radioally simplified reaotor model is considered. Assume that 

the axial convection terms are negligible compared with the radial 

diffusion and conduction terms, and that the radial transport is 

mass transfer limiting. An approximate relation, 

~c rv ~ 2 (7] (O)R* (0(0), teO) -~ (l)R* (e(l), t(l» ) 5.01 

is assumed, which expanding the reaction rate terms gives, 
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D.c "" ~2 (c(O) k* (t(O»)- c(l) k* (t(l» ) 

Using equation 4.40, the radial concentration profile, c(O) and 

c(l) are expressed in terms of em and !lo, i.e. 

0(0) 

0(1) 

.. 

.. + 

which when substituted in equation 5.02, and rearra.Rged gives, 

This expression is clearly a gross approximation and to 

render it generally applicable a modified solution is proposed 

which has the same general form, i.e • 

.. 

Where n is an arbitrary power not necessarily an integer and the 

;)i are coefficients dependent on the model coefficients which 

have not yet been conSidered. 

When NU .. 0, i.e. the rea.ctor is adiabatic and a c .. 0; but 

when NU has a large value but is finite, b c is independent of NU 

since the radial transport process is mass transfer limiting. 

Therefore the expected form of the coeffioients',)i should be, 

(
F (NU) + 1) 

G (NU) 

m 

where m is an arbitrary power and F(NU), G(NU) are functions of NU. 

Account must be taken of the general inlet oondi tion where 

t mo ~ 1, trom which k* (tmo ' ~ 1, so that equation 5.05 does not 

fulfill the inlet boundary condition for concentration that 
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Ac, ... o. z-o In this case the function, ~c approaches its 

its asymptotic torm (given by equation 5.05) trom the inlet 

(~c D 0) in a manne~ described in section 2.5 by equation 2.0~, 

i.e., 

which can be simplified to, 

6 c - !:lca (1 - exp ( - t) ) 
where 6ca is the asymptotic value ot flc and t is a; pseudo­

parameter. 

From the above analysis, numerical experiments may be 

designed to verify the form of the proposed solutions and to 

determine the constants and pseudo-parameters which have been 

introduced. 

hl The Parametric Analysis. 

i.3.l The Power, n. 

* ~o A * The parametric groups, (k (tm) - 1) and _ -lJ c are 
cm 

correlated tor a range of reactor operating conditions, of which 

* figure 5.01 is typical. For reducing values of (k (tm) - 1) the 

gradient (on logarithmic co-ordinates) tends asymtotically to a 

value of 2, which is the value of n. For increasing values of 

* * e (k (t) - 1), A 0 asymptotically approachs a constant value a.s m ~ A 

predicted by equation 5.05, so that the basic structure of the 

predicted solution tor ~ c is verified. 

5.3.2 The General Form of ~c. 

Having established the basic structure for the solution 

proposed tor~c. the coefficients ,)1 are evaluated by plotting 

I k* (tm) - l' and k* (tm) for a range of values of ~ 2 and 

~ ~c*i 1 
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constant NU. The gradient of the straight line is,)l and the 

intercept (for k * (tnt) - 0) is ( "2 + ( ,), /92) ) as 

* demonstrated in figure 5.02. Physically k (tm) cannot take 

values below 1, which is the value at the coolant temperature. 

In the region of k* (t
m

) close to 1, (k* (tm) - 1) and llc** are 

almost zero, and in evaluating the ratio, 'round-oft' error is 

encountered which can distort the results. Therefore in 

correlating the results care must be taken to ignore the points in 

this region. 

The coefficient ,) 1 is constant with respeot to i 2. In 

figure 5.03, ( ,) 2 + V 3 / ~ 2) from figure 5.02 and 1/ ~2 are 

plotted in order to evaluate V 2 and ,) 3, which are the intercept 

(for 1/~2 _ 0) and the gradient of the straight line 

respectively. 

5.3.3 Dependence of l>c on NU. 

The coefficients, ,)1' are evaluated by the above method of 

correlation for a practical range of values of Nusselt number, NU. 

As discussed in section 5.2 the dependence Of,)i on NU, given b.1 

equation 5.06. 

The coefficient, ,)2 is found to be constant with respect to 

NU. l3;y correIa. ting ,) 1 and oJ 3 with NU on logeri thmio 

co-ordinates, the integer m (from equation 5.06) is the limiting 

gradient of the curves for decreasing values of NU, which can be 

Been from figures 5.04, 5. In both cases m - - 1, and" 3 is 

inversely proportional to NU, i.e., 

"3 .. V 4 NU -1 5.09 

where "4 is the constant of proportionality. The ooeffioients 

"2 and V 3 may be grouped together as, 
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which is of the general form given by equation 5.06. If"l is 

dependent upon NU by the relation, 

then V 5 and ,)6 are evaluated by plotting ,)1. NU and NU on 

cartesian co-ordinates, as demonstrated in figure 5.06. 

~c is found to be insensitive to the remaining model 

coefficients i.e." t ,Pe,.,and PeT' so that the resulting 

expression for the asymptotic value of A c may be written as, 

... NU (k <"tm) - 1) * )2 
t,le k* (t,.) (NU + 0.25) + 7.2NU + 1/~2 

where the value of the constants have been included. 

~ The Development Function. 

As stated in section 5.2, the expression given by equation 

5.11 represents the asymptotic form of ~c for the general inlet 

* condition where k (~o) ~ 1. The type of development function 

considered for the a.ctual value of A 0 from the ini tiel value 

~ci - 0 to the asymptotic value ~Ca is given by equation 5.08. 

5.10 

5.11 

ilc .. .1ca (1 - exp (-1) ) 5.12 

where ~ is an axially dependent function which is zero at z .. O. 

The principal dependent variable of the runc~ion l' is the radial 

mean con~ers1on, (1 - c ) 'which has the required initial condition. m 

As may be seen in figure 5.07, which is a graph of In (l_/Ao ) 
~ca 
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against (1 - om)' the relationship is linear, i.e. 

,... -,}7 (1 - om) 

where ,)7 is a coefficient which is dependent upon the model 

parameters (as shown below). 

5.4.1 Determination of the coefficient',)7 

From figure 5.06, the coefficient',)7 is constant for any 

particula.r reac tor si tu.a. tion when k * (tmo ) ... 1,; uhen ,) 7 = c:J:J , as 

he ... 6e #,and for k * (t »> 1 the process will be mass transfer a mo 

lim! ting, i.e. dependent on f 2, so that an expression analogous to 

the inverse of ~c is proposed, 

where n is a power and ,) 9' ,)9 are coefficients, In the lim! t 

for de~reasing values of k* (tmo) - 1, ,) 7 c£ (k* (tmo) - 1) - n, 

so that n may be evaluated by the method described in section 

5.31. The valuo of the power is found to be 2. Figure 5.09 

verifies the proposed form of,) 7 showing that the lim! ting 

conditions are satisfied. The coefficients -U 8',)9 are determined 

by correlation of "7 i (k* (tmo ) - 1)- 1 and (k* (tmo ) - 1) as 

recounted in section 5.32 and are found to be independent of the 

remaining model parameters. The function ~ may now be written, 

5.14 

2 

1 a (2.0 (k: (tmo) - 1) + 1 If 2\ (1 - Om) 5.15 

(k (tmo ) - 1) 1. 
In comparing this function with the asymptotic functional form of 

the overall ooncentration difference, ~ c a similarity can be 

seen in that r is an inverse fom of A c at the reactor inlet 

oondi tiona. 
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~ Cono1usion. 

Even though the analysis for the overall ooncentration 

differenoe, Ac is semi-emptrical, the resulting expression is 

generally applicable for any reactor. The basio functional 

structure is verified by the preliminary theoretical analysis. 

The expression covers a wide range of conditions; for example over 

three orders of magnitude of the Nusselt number, NU, ( 10-1 t9 101). 

The expression is applicable for all oonceivab1e practical values 

of ~2 as may be seen from figure 5.03 and the fact that when the 

radial effeotive diffusivi ty is infinite, i.e. t2 .. 0, as would 

be expected flc ... O. When the reactor is adiabatio (NU a 0), 

~o is correctly predicted as zero. Although inlet temperature 

differences ot over lOOoX have been considered for the analysis 

of this effect on~c, practically inlet temperature difference$of 

less than lOoK are usually encountered. Therefore, the 

expressions derived to predict ~c from the dependent variables 

of the reduced model, adequately span the possible range of 

reactor conditions. The only error encountered during the 

correlations was either statistioal i.e. manual errors or 

* manipulative, ego determining the differenoe k (tm) - 1 when 

* k ( tm) was so close to unity, that round off error became 

important. 

So far l:l c has been considered in a physioal sense as the 

overall concentration, but it is used in a more abstract sense 

with respect to the evaluation ot the temperature profile, tho 

effective Nusselt number and the distribution factor. It is 

considered as ref1eoting the effect of the presence of an 

exothermic chemical reaction on the form of the radial profiles. 

-50-



The functioIk'lJ. form of fi c reflects the interdependence on 

concentration and temperature through the chemical rate 

expression.Thereafter ~c is therefore no longer considered as a 

physical quantity, and the semi-empirical expression for A c can be 

considered in a new light, i.e. the measure of the interdependence 

of the concentration and temperature profiles in the presence of 

an exothermic reaction with respect to the several possible rate 

limiting processes of heat and mass transfer characterised by g?2 
and NU. 
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CHAPTER 6. 

THE EFFECTIVE NUSSELT NUMBER Al~ THE DISTRIBUTION FACTOR. 

6.1 Introduction. 

Both the effeotive Nusselt number, NU' and the distribution 

factor, ~ were defined in section 4.3 by equations 4.30, 1 whioh 

may be rewritten, 

NU' - NO 

and 

( 

t(l) 

tm' 

The values of these pseudo-parameters must be known in order that 

the solution of the one-dimensional model equations will be 

comparable with the two-dimensional model equations, i.e. axial 

oorrespondence of the two models. 

6.2 The Effective Nusselt Number. -
Several workers (16-20) have attempted to derive an 

expression for the effective Nusselt number, particularly an 

effeotive overall heat transfer ooeffioient, but none havo 

exp1ioit~ taken into aooount the presence of an exothermio 

ohemioa1 reaction or scheme of reaotions. In particular it has 

been assumed in the cases oonsidered that the presenoo of the 

exothermio ohemical reaction is negligible. In all oases the 

effeotive overall heat transfer coefficient has been assumed to 

be constant with respect to the length of the reactor, whereas if 

the actual value varies along the reactor length it can be seen 

too t considerable variation can take place as ShOl'lIl in the sketoh 

bolow (figure 6.01) 
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\. b~1: t.raos~~ only 

-.... ...... ...---

figure 6.01. 

-;z 

The curve shown above is typical for a reactor in which there 

exists an axial maximum temperature. As the minimum va.lue of the 

effective ~,erall heat transfer coefficient, ho generally coincides 

with the temperature maximum, it is in this region particularly 

tha.t account must be taken for the axial variation of ho' and the 
• 

reason why the gross assumption that ho is constant produces 

invalid results. 

The expression for the effective Nusselt number, NU is 

derived by making use of the radial temperature profile, which was 

developed in sectio~ 4.43 for the reactor in which an exothermic 

reaction is taking place, (i.e. equation 4.45). 

t(y) - 1 • (10/3(36c (1_3y2 + ~) + li/1lU \ 2 (1-3;r2+~)+ 1J 

~} 

x ( 1 + 0.5 NU (1 - y2» (t(l) - 1) 

If this relation is substituted in the expression for the radial 

mean temperature differenoe, 
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1 

tm - 1 - 2 oj (t(y) - l).y.dy 

and the integral evaluated the radial mean temperature difference 

and the temperatura difference at the tube wall are related by, 

(tm - 1) • «1<M5NO) + {(~~2NU<J + 10/3 p60 } (O.11NUtO.3) 

+ lO/3filJ.c (NO )2 (Ot41NU+O.11)] (t(l)-l) 

1.2NU+4 

When this expression is substituted in equation 6.01 to eliminate 

(tm - 1) and (t(l) - 1), the effective Nusselt number is given by, 

The expression for NUl can thus be generally w:t'itton as, 

NUl .. 1m 

1 + 0.25NU + peW) + Q (NU, fJAc) 

where P(NU) is a function of NU only and Q (NU, P /lo) is Q. 

funotion of NU and (!JAc and defined by, 

p(NTJ) co (NU )2 (0.30 + O.llNU) 

1.2NU+4 

Q (NO. pile) • ~t.O(0.93 + 0.36NO) + fJ. 0/ NO Y (0. 56+1. 55NU) 

~.2NU+41 
It P,Q are assumed to be zero or negligible then NUl is the 

effective Nusselt number tor a para.bolic temperature profile (or 
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that predicted by the analytical solution for heat transfer only), 

Hence P,Q can be consiaered to be corrections which allow for the 

fact that the temperature profile is not parabolic for the heat 

transfer case only and for the presence of an exothermic chemical 

reaction which distorts the profile, respectively. For a 

particular value of the Nussel t number, NO, P is constant ana Q a 

linear function of ~ flc. For a particular set of reactor 

conditions, the maximum value of ~c for high values of reaction 

* rate cons tan t, k ( tm) at the mean radial tempera. tare may be 

written as, 

* from equation 5.11. From this, the maximum value, Q of Q may bo 

expreseea as a linenr function of {3 om by subst! tution of tJ0
max 

in 

equation 6.07. The term P>0m is the total quantity of heat 

* available from reaction at the partioular axial position. Q is 

also a function of the Husse1t number NU. Therefore the maximum 

range of values of Q may be dotermined for a partioular reaotor 

situation expressed as, 

o ~ Q (NU, fo 60) ~ Q* (NU, fo om) 

* A -where Q (NU'r cm) can be determined. From suoh an analysis it 

can be established whether it is necessar,y to take acoount of tho 

presence of the exothermic chemioal renctor in estimating the 

effeotive Nusselt number, NU' for a particular case. Such a 

treatment may enable extra savings in computing time to be made. 

In figures 6.01 and 6.02, (6.°max 10m) ana (Q* lf3om) are plotted 

against NU. The funotion (Q* I~cm) is approximately linear with 
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respect to NU. 

~ The Distribution Factor. 

The distribution factor,~ is defined in an analogous manner 

to the effectiveness factor for the catalyst pellet, i.e. the ratio 

of the radial mean reaction rate to the reaction rate at the radial 

mean conditions at ~ axial position, It is a correction factor 

for the radial fluid temperature and concentration in the one-

dimensional model. There 1s no easy method of constructing a 

simple algebraic form for it, in terms of the radial mean fluid 

vnlues only which complies with the structure of the reduced model. 

Indeed, the usually accepted treatment is to assume that the 

distribution factor is unity which ih some cases is a gross 

assumption, as may be seen from figure 6.0} which is a typical plot 

of the distribution faotor,~, along tho reactor length. Tho 

figure also demonstrates the non-linear nature Of~which prevents 

a straight-forward prediction of its behaviour. 

It is possible to generate the radial reaction rate profile 

from the radial temperature and concentration profiles, from which 

tho radial mean reaction rate can be determinod by direct 

numerical integration using Simpson's rule. In generating the 

reaction rate at each radial node , it is necessary to solve the 

pellet equations to determi~a the effectiveness faotor, so that 

the reduced model could be snid to be degenerating back to ~ two-

dimenSional system. Therefore the number of radial points used 

in the radial integration should be kept to a minimum whon 

evnluating, 
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In the form of Simpson's rule becomes, 

~
2n-2 

R~ "" ...:... 2~ 
12 2 ~ 

n 

where (2n+l) is the 

number of rndi~l 

positions. 

* It can be easi~ seen that it is not necessnr,y to evaluate R (0). 

As Simpson's rule fits the integration curve to a pa~bola 

between each three points, and the reaction rnte profile can be 

said to be approximately represented by a parabola, then the 

value of n, for a reliable result should be small. In fact the 

difference between n = ~ and n a 1 is less than 2% for a typical 

case taken in the region of the temperature maximum. Therefore 

* R m can be adequately predicted from only two values of R(y), 

using the simplest form of Simpson's intesration rule, i.e. 

* Rm ... , -, . r: 

and the distribution factor, can be written, 

.. [2 R* (!) * + R* (1)] 
3 R (m) 

{, :.led , 

" i".' . , ' 

It is now necessary only to solve the pellet equations at the 

three radial points at each axial integration step whereas when 

using the Crank-Nicolson finite differenco method to Bolve the 

two-dimensional state equations at least 20 radial increments are 

required for a stable and reliable solution. Figure 6.03 also 

compares the predicted vnlue from equation 6.13 with the actual 
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value o~ the distribution factor along the re~ctor length. As 

the reactor data were specifically chosen in order to generate 

large radial gradients, the situation which lk~s been modelled can 

be considered to be an extreme case. In the more practical 

reactor situation, the mean inlet temperature and the coolant 

temperature are equal or nearly equal, so that the distribution 

factor is unity at the reactor entrance insteoU of the relatively 

high value as shown in the example. 
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CHAPTER 7 

REDUCTION OF THE FIXED BED CATALYTIC REACTOR MODEL 

1ih Introduction. 

- COMPLEX REACTION SCHEME 

A~B--+C 

~D 

In Chapter 4, the reaotion scheme oonsidered was that for a 

simple first order irreversible reaction, which in general is not 

typical of the type of chemical reactions which are normally 

associated with industrial fixed bed reactors. Nevertheless the 

analysis was valuable in that it demonstrated that model reduotion 

teohniquos can be applied to the fixed bed reactor. Considering 

a more general reaction scheme represented by, 

1 2 
A~ B--:) C 

3~ D 

where A is the reaotant (in partial oxidation reactions the air is 

usually in excess and its ooncentration is effectively constant); 

B is the desired product for which the process is desi~1ed. As 

catalysts are not generally 100% selective towards the desired 

produot, 'side t reactions occur which for the s1mplef1cat1on of 

analysis can be lumped into one reaction, whore D represents the 

unwanted produots from the side reactions. Finally, B could 

react further to another set of undesired produots, for example by 

continued reaction with the reactant in excess which could be 

sequential oxidation, halogenation etc. Then, both competitiv~ 

and consecutive reactions are occuring. 

In this cllaptcr, a reaction schem0 of the typo desoribed above 
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is considered, for a first order kinetic system. The techniques, 

as developed in Chapter 4, for the simple reaction are extended to 

this system without any increase in the complexity of the reduced 

model or the functions which describe the radial profiles and the 

pseudo-parameters. 

~ The Reactor Model. 

The same reactor geometry is considered as in Chapter 4, and 

the reactor equations are written in the same form except for tho 

introduction of a mass balance for the required product. 

- G -2", 

Solid: 

1 

S2 

+ 1 ). f ~ (r~) -~ (l-e)~ P dTs I 
r or ~ r b -;- sab 

... 0 

.. 0 

~ (82 
dTe ) + (kl (-~) + k3 (-~H3)) CAs 

ds ds 
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whero the bound.o.ry conditions are, 

T '" Tht (r) 

CA ... CAO x .. 0, 0 J. -r bB 

CB ... 0 

roT ... ~ '" ~ .. 0 r .. 0, 0 l--x iL 
'a r ar Or 

~ ... aCB ... 0 r .. 13, o ~x f L 

Or (); 

-~f ~T ... U (T - T ) r ... 13, o f x ~L c ra; 

dTs ... dCAs .. dC
Bs 

... 0 

ds ds ds 

-D dCAs ~ (CAs - CA) Ap .. 
ds 

- DBp dC
Bs 

... k:sg (CBs - C
B

) 

d.s 

-Ap dTs - hf (Ts - T) 
de 

whero ki .. kot exp ( - Eij RT ) 
a 

As for the case of the simple first order reaotion, McGreavy and 

Thornton (15) hav~ shown that the catalyst pellet is essentially 

isothermal with a relatively large temperature rise across tho 

fluid film. Und~r such conditions it is possible to solve 

7.07 

7.08 

7.09 

7.10 

equations 7.05 and 7.06 in tenns of the unknown pollet temperature, Ta' 
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The resulting non-linear algebraic eQ~~tion is solvad to complete 

the solution. An effectiveness factor,'} is defined by tho 

expression, 

~ '" 4~b2 kAg (CA - CAs ... b) 1.12 

4/3 ~b3 (kOl exp (- ~/RT) + k03 exp (- ~/RT) ) CA 

and for a desired product, B the selectivity, ~ is defined by, 

"Y'" kl3g (CBs.,. b - CB)· 

kAg (CA - CAs ... b) 

The model equations are now rewritten in dimensionless form, 

incorporating the effectiveness factor and selectivity. 

Fluid: 

- PeT l: + 1 1. ( Y~) + NUs (ta - t) Iv ... l .. 0 

'a z y ~y l1 

1. (y QO A) -1 (~~ k~ + ~ ~ k; ) 0 A .. 0 
ay a;. 

~ (Y'OOB) +l1V'(~i k~ +~; k; ) °A ... ° 
6y ()y 

where the boundary conditions are, 

t ... ~t (y) 

°A .. 1 z ... 0, o ~ y f 1 

°B .. 0 

at .. aC
A 

co l'0.a .. 0 y .. 0 • Ofz~l 
-

Oy 'Oy Oy 



... o y ... 1, ... 

y a 1, o!:. z f 1 

At this stage the analysis is concentrated on the fluid field so 

that the pellet equations 7.04, 7.05 nnd 7.06 have not been 

rewritten. The dimensionless model parametors are consistent 

with the previous definitions. The model is solved as before 

using the Crank-Nicolson fin1 te difference scheme (see Appelldix 2). 

hl Genera.lised Reduction of the Reactor !-1odel. 

The generalised model reduction is carriod out as beforo by 

integrating the reactor state equations 7.14, 7.15 and 7.16 with 

respect to 2.y. dy to eliminate the ~dial transport terms to give, 

- Pem dCAm - [11 (q>i ~ + ~ ~ k;) C A] m .. 0 

dz 

- Pem dCftn + (~,(~i ~ + ~~ k;) cAJm ... 0 7.23 

dz 

where the boundn.ry condi tiona nre, 

... I z ... o 

o 

In order that the reduced model is expressed in terms of mdial 

mean concentration and temperature only, pseudo-parameters are 

-6 -



de.fined. 

The efreotive Nus.aU nwnber, NU' ~ NU (:1) - ~) 7.24 

Three distribution .faotors, 

... [ ( t s - t) I V-I] m 

(tsm - t m) IVaI 

~Rl - [ll(~i ~ + ~~ k; ) CA ] m 

11 (m)[~i ~ em) +~~ k; (m)]CAm 

fJ R2 a ['It 1J' (~i ~ + ~ ~ k; ) CA] m 

[11 (m) '¥ em) (~i ~ em) +q;~ k; (m) ) CAm 

The estimation of the ps~udo-parameters is discuss~d Inter in this 

chapter. in section 7.5. The reduced state equations may now be 

rewritten as, 

- PeT ~m - 2NU' (tm - 1) +tBT NUs (tsm - t m) t val .. 0 7.28 

dz 

- p~ dCAm - ~ Rl ~ (m) (Pi ~ (m) + ~; k; (m) ) 0 Am III 0 7.29 

dz 

- PeM dClin - ~ R2 "1 (m) V (m) (~i k~ (m) +~~ k; {m)p'Dn III 0 7.30 

dz 

(where ki em) is evaluated at t m}. 

The result is a set o.f non-linear first order ordinary differuntinl 

equation, and in order to solve them it is necessar,y to have some 

knowledge of the radial concentration and temperature profilos. 
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~ Regeneration of Description. 

To simplify the analysis, the complex reaction scheme is 

initinlly considered decoupled into (1) a competitive and (2) 

a consecutive reaction scheme, i.e. 

1 1 2 
(1) A ~ B (2) A ~ B ---.., C 

~D 

The systems are then combined for the final analysis. The bases 

for the analysis are the profiles which have been developed for 

the simple reaction scheme. 

~ The R~dia1 Concentration Profile for the Competitive 
Reaction Scheme. 

The concentration profile for the reactant, A is of the same 

form as for the simple reaction as would generally be expected 

and can be written, 

where ~CA' the overall radial concentration difference is 

considered as the composite of the two possible reaction routes, 

i.e. 

Effectively, two simple reactions are being considered which may 

be summed so that LJ. cAl and 6 cA3 are treated as being derived 

from two different species. This approach is also used later in 

" deriving the functional form of ~ cA. In figure 7.01 a typical 

comparison is given of the actual radial concentration profile 

with the profile derived from the expression given in equation 7.31. 

As can be seen the difference between the two profiles is srnal1. 
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As stated above, 8 0Al end ~ 0A3 a.re oonsidered o.s baing 

derived from two separate rGo.ctions and by inspection Of~cE and 

£lCD' which correspond to the above values respectively, under 

'ntrious reactor conditions for a differing range of kinetic data, 

the general expression for A 0.Al and 6oA} may be derived by 

carr,ying out the analysis described in Chapter 5 on both ~cB and 

l'l cD' 

together with the analogous expression aocounting for the entrance 

effects. This result is reasonable as the following equation 

shows, 

which is analogous to equation 5.01 in Chapter 5. 

1.4.2 The Fk~dial Concentration Profile for the Consecutive 
Reaction Scheme 

ConSider the reo.ction scheme, 

A-4:a~C 

the concentration profile of the reactant, A will obviously be 

that for the simple reaction considered in Chapter 4. If reaction 

2 in the scheme did not take pla.ce then the concentration profile 

of the desired product, 1l would be the m:in-zr .image of the. t of the 

reactant A. At the stage when reaction 1 becomes less than 

reaction 2, then the radial concentration profile of the product, 
jl 

B will approach the form of the reactant A. Therefore, it would 
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be expected that the radial concentration profile of the desired 

product B will be in the form of a cubic function, but the value 

of the overall concentration difference could possibly chango 

Sign at around the stage where the overall concentration of B is .. 
a maximum. In fact from observation of actual profiles the 

functional form of the concentration profile behaves as expected, 

except near the region where the overall concentration difference 
.' 

changes sign, but as it approaches zero then the error is 

negligible. Then the functional form of the radial concentration 

profile of B may be written, 

This profile is compared with the actual profiles for various 

stages of the reaction in figure 7.02. 

It is now necessar,y to formulate a general expression for the 

overall radial concentration difference of the desired product B, 

~cB. A simple relationship is considered as before, i.e. 

and using the selectivity vr ' 

This is now assumed to take the more convenient form, 

which may be rewritten, 

~ - lit (m) flo 
'r .il. 
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where ¥'(m) is evaluated at the radial mean conditions. This 

relationship is tested in figure 7.03. The max~ deviation 

from this rel~tionship occurs where tf' (m) ... 0, which is also the 

region in which the predicted profile deviates most from the actual 

profile; but the expression given in equation 7.}9 provides an 

adequate and simply formulated prediction for f:l0r3 which is in 

terms of the reduced model parameters. Indeed when the complete 

reaction scheme is considered, this relationship still holds. 

7.4.3 The Radial Concentration Profile for the Combined 
Reaction Scheme. 

The analysis of sections 7.4.1 and 7.4.2 are now conjoined in 

order to consider the complete complex reaction scheme. Then, 
1 2 the concentration profiles for the reaction scheme, A~ B--+ C 

0D 
may be represented by, 

estimated from equation 7.33. 

These are essentially the results from the previous two sections. 

7.4.4 Comments on the Radial Concentration Profiles. 

Although it is not a constraint of the complex reactor model 

that it should provide a description of the radial concentration 

profile, i.e. it is only necessar,y to know the mean radial value 

for any function of the model, an extensivG rok~lysis of the profiles 
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has been cada in tho previous s~ctions wllich must be justified. 

As the vnlues of the distribution factors are estimated 

numarically by integration of the radial re~ction rate profile 

with respect to 2.y. dy, which has previously been constructed 

from the concentration and teoperature profiles for a 

predetermined set of radial points, it becomes obvious why it ~~S 

been necessar,y to produce functional repres~ntations of the radial 

concentration profiles. As the reduced model is not extremely 

sensitive to the accuracy of the estimations of the distribution 

factor, (the effective Nusselt number is the most important term), 

then it is unnecessar,y to go to extreme·lengths to predict a very 

accurate value of the radial concentration, whan the only 

requirements are that the profiles should exhibit all the essential 

characteristics to a rQasonable degreo of accuracy. 

The vnlues of the overall radial conoentration differenoe 

pl~ an important role in predicting the radial temperature profile, 

hence it is necessary to provide a reliable estimate of their 

values, as the effoctive Nusselt number is directly related to tho 

temperature profilo. Therefore the prediction of the radial 

concentration difference in its abstract sense, (i.e. tha effect 

of the presence of an exothermic reaction) is bias_cd towards its 

role in the generation of the temperatura profile rather than the 

concentration profile. 

7.4'2 The Radial Temperature Profile for the Competitive 
Reaction Scheme. 

If the heat balance for the reactor is considerod for the 

general reaction scheme, i.e. equation 7.14, a total amount of 

heat is considered to be gain0d from the exothermic chemical 
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reactions through heat transfer at each radial position. So that, 

effectively with respect to the fluid, only one reaction is 

occuring which will affect the form of the radial temperature 

profile. Consequently in the particular case for the competitive 

reaction scheme, the two forward reactions could perhaps be 
Gingle. 

oonsidered as a eim,l~ heat source. 

A correction function, £3 (y) is de£ined in a similar manner 

to that of f2 (y) in section 4.4.3, i.e. 

[( 
t(y) - 1 ) - lJ 

t(Y)ht - 1 

where t(y) is the radial temperature profile for the competitive 

reaction schema. The function f3 will have the same boundar,y 

oonditions as £2' written as, 

where again tel) is the reference temperature. As would be 

expected f 3 has the same functional form as f 2' 

and w5 is the axially dependent coefficient. For the limiting 

oases ~here reaotions one and three are zero, then from the 

analysis in section 4.4.3 w5 will take the values, 

w5 - lO/3f33 llc3 ' reaction 1 - ° 
Ws - 1°/3#1 6c1 , reaction 3 - 0 
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The simplest combination for the case is, 

7.47 

This relationship is simply tested by a plot of 

wScm and 10/3 (p 1 /lcl + /33 Ac3) for various values of 

(31' f33(see figure 7.04)) the gradient being unity, and the lino 

passes through the origin. 

As mentioned earlier in this chapter, reaction three is 

considered to represent the several possible side reactions which 

have been lumped into one for the sake of simplifying the analysis. 

The form of equation 7.47 lends itself to this approaCh so that the 

reaction three term could be written, 

n 

2: A ibci 
i .. 1 , 

where n is the number of side reactions, and the reaction term in 

the heat balance state equation has an equivalent form, 

/'..>3 1) {o,t} ... ~ fJ... i Ri (c,t). 
i - 1"'" 

It may be seen that these expressions are analogous, so that it is 

possible to predict the form of the coefficient, w5cm by inspeotion 

of the heat generation term in the heat balance and replacing the 

rate term Ri (0, t). by lloi. 

7.4.6 The Radial Temperature Profile for the Consecutive 
Reaction Scheme. 

As in section 7.4.2, the effect of the first reaction of the 

consecutive scheme is that of the simple reaction on the 

temperature profile as described in section 4.~, so that if the 

exothermicity, /32 of the second reaction is zero, the correction 
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function £3 will be, 

£3 (y) - 10/3/31 fjoA (1 - 3y 
2 + 2~) 

The major interest of this section is the effect of the 

second reaction on the form of the temperature profile when 

{!>2 f. O. It would be expected from the previous analysis the 

term (fo2/j cB) in some form will represent the effect of the 

second reaction on the fUnctional form of the correotion function, 

f 3• The b9haviour of £3 and w5 is observed for a case where 

fo 1 ... fl2' so that each reaction stage has a comparable and 

measurable effect and the value of bCB changes sign over the 

reactor length. By observation, when <i32 AcB) is negative, 

(i.e. when ~cB is negative), the effect of reaction ~o is 

additive to that of reaction one on the coefficient, w5; the 

converse is also true, when ~2~cE is positive. Consider 

.figure 7.05 ( a & b ), which dia.gra.ma.tically shows the two above 

casea, from which it is possible to physically explain the above 

observations. When ~cB is negative (figure 7.05 (a», the rate 
J-

of heat generat10nJthe second reaction will be greuter at the tube 

axis than at the tube wall, and hence will add to the distortion 

ot the temperature protile. Conversely when D. cD is positive 

this would expect the effect of the second reaction to be negative. 

It must be noted bere that in order for ~CB to change sign the 

heat a of reaction must be very high and the reaction allowed to go 

towards completion (i.e. the product goes through 1 ts maximum 

value), so that this region is of more academic than practical 

interest. b 013 changes sign as the rate of loss of CD exceeds 

the rate ot production ot cB" 
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The functional form of f; still closely approximates to the 

cubic form, and as would be expected, the greatest deviation occurs 
e 

when w5 changes sign, although at this stage the absolut~ value 

of w5 is closo to zero (see fi~. 7.06). The simplest form which 

could be expected for w5 would be, 

W5CN sa 10/3 (~l + (->2f(m) ) hOA 

(where L\0]3 co - lJs (m) /)"cA) so that wSCN and 10/3 ({\ + ~2'(m) ) x 

ADA are correlated for variou..q values of f;l and f32 to test the 

relationship. As in the last section the line should have unity 

gradient and pass through the origin (see fig. 7.07). 

Summarising, the correction function, f; retains the same 

functional form with respect to the radial dimension, 1', and Ws 
maintains a simple algebraic relation to Ao.A and .1°13, i.e., 

7.4.7 The Radial Temperature Profile for the Combined 
Reaction Scheme. 

The reaction schemes of the two previous sections are now 

combined for the general reaction schemes. As shown in section 

7.4.S, the effects of all primary reactions (i.e. the first stages 

of each sequential reaction scheme), it would be expeoted that the 

effects of the competitive and consecutive reaction on the 

correction function, f; are merely additive with respect to the 

ooefficient, w
5
' and also the funotional form of f3 is the same in 

all cases with respect to the radial coordinate, y. Therefore for 

the reaction scheme, 
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the correction function, f3 to the heat transfer temp~ratura 

profile, ~t (y) may be written, 

f3(Y) - 10/} [/!lilOAl + fo3/jOA3 - ~2Ao:a] (1 - 3y2+~) 7.5} 

but as IJ,cA = /jon + f:10A3 and /JcB - - 0/ (m) ~ dA then 

This relationship has been tested and found to be true, (see fig. 

7.08). 

The temperatura profile which has been developed for the 

complex reaotion scheme has retained tile simplicity of form wi til 

respeot to y of the simple r~aotion scheme. The only inorease in 

oomplexity has been isolated in the ooefficient, w5, which involves 

more terms in order to account for each exothermio reaotion step. 

No increase in complexity of the functional representation of tho 

radial temperature profile has been incurred in tho extension to 

the complex roaction scheme. 

7.4.8 Comments. 

As may be seell throu,g'hout section 7.4, extension to a. complex 

reaction scheme has been shown to be possible and made with a. 

minimal increase in complexity, while all the required information 

about the radial profiles has been present~d. Although it is not 

claimed that the final expressions are exaot, they are valid over 

the practical operational range of the reactor to an accuracy 

comparable with that of estimating the physical paramet~rs usod 

in the model. It must be emphasised that tho expressions are 

general, although approximate, solutions or the radial prorilos 
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for both temperature and concentration. 

It is important to note that the overall concentration 

difference, /1c is not used in terms of its physical sense when 

used in the radial temperature profile, but rather as thecffact 

of the presence of an exother.mic ohemical reaction. This still 

indicates the complex 'coupled' nature of the original modal. 

It is now necessary to derive the pseudo-parameters defined 

in section 7.3 from the radial profiles which have been developed 

above, in order to complete the analysis. 

~ The Pseudo-parameters. 

7.5.1 The Effective Nusselt Number, NUl. 

As the effective Nusselt number maintains its original 

definition, i.e. 

NU' - t (1) - 1 ) 

t - 1 m 

and the functional form of the radial temperature profile has 

changed only in the expression for the coefficient, Ws from that 

for the simple reaction, the sama expression for NU' (derivod in 

section 6.2) can be written down, replacing w4 by Wst 

NU' NU 

This expression is rewritten to colleot the terms in w5, so that, 

NUt _ NU 

(l+O.25NU) + P(NU) + Q (w5' NU) 
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where, 

P(NU) _( NU )2 (O.} + O.IING) 

l.i.2NU+4 

Q(wS'NU) .. w5 [(O.}-tO.lllW>+( NO )2 (O.l1+O.47NU)1 

l.2NU+4 J 
For a particular reactor situation, the Nussalt number. NU is 

constant, so that P(NU) is constant, and Q (w5,NU) is a. direct 

linear function of w
5

, and NU' is inversely related to w5, a.s 

discussed in section 6.2. Consider tho coefficient w5 in more 

detail, 

The terms P and Q are considered as corrections to the effective 

7.51 

Nusselt number derived from a purely parabolic temperature profile 

which assumes the overall he~t transfer coefficient to be constant. 

The constant term, P corrects NU' to that for a purely heat 

transfer situation, which was carried out in the early stages of 

this work. The separate effects of the three exothermio 

reactions are considered ~n the term, Q~ In fact both re~otions 

one and three have the same type of effect in tha. t they produce 0. 

positive contribution to the value of w5 and hence Q, so that 

their ove~ll effect is to alw~ys reduce the value of the effootive 

Nusselt number. Considering the second reaotion, although its 

overall term is pOSitive, the mean selectivity, rem) oan to.ke 

negative values. In most practical cases rem) will be generally 

always positive, (between approximately 0.2 and 1.0) it is 

unlikely that the reaction would be allowed to go so far to 

completion, unless of course if either the product of the socond 



reaotion is desired or the reactor is out of control, so tho two 

limiting cases will at first be discussed separately. At the 

entrance of the reactor when the reaction is initiated, the 

selectivity is at its maximum value of one, as the reaotions 

proceed this value will deorease, but as the product, B reaohes 

its maximum, the value of P (m) is still positive, although 

approaching zero. Therefore, in such a reactor situation, the 

second reaction will always make a positiv~ contribution to the 

value of the coeffioient, w5 and the value of the effective 

Nusselt number will be reduoed from its value for the case of hent 

transfer only. As the reaction proceeds further, lJI (m) 

continues to deorease until it becomes negative and a si~tion 

can be reaohed where, 

t P2 rem) (!J°Al + ~OA3)t ~ (PlIlOAl +A b °A3) 

(especially for the case where reaction threo does not take plnee, 

or 133 ... 0), so that w5 takes on negative values and (p + Q) I:. o. 

This usually ocours in the region of the axial temperature maximum, 

and meana that the radial temperature profile is very nearly 

parabolic. If the inlet temperature to tho reactor and ooolant 

tempera ture are equal or nearly equal, then in the inlet region 

of the reactor even though the assumption that the radial 

temperature profilo ~taS purely parabolic would perhaps produoe 

large relative errors, (of approximately 25 - 3~) the absolute 

errors 1-rould be small as (t (y) - 1) would be olose to zoro. 

Therefore in some region of reactor operation it would ba quito 

reasonable to assume a purely parabolic temperature profile. 

where the affective Nusselt number is given by, 
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NU' 

1 + 0.25 NU 

In conclusion, although the above case could exist, in tho 

no:rmal region of reactor operation t (m) and hence w5 will always 

be positive (as is easily seen from figure 7.09), so that no 

major simplifications can be made. 

1,5.2 The Distribution Factors 

No detailed discussion need be made on the method of 

evaluation of the distribution factor as this has alrea~ been 

amply covered. in section 6.3, and the same expression is used for 

their estimation which may be summarised as, 
., 1 

if ~ IS 201 R(y). y. dy 

R(m} 

then J) is estimated by <f)... (2 Rei) + R (1) ) 

3 R(m) 

~ Conclusion. 

In this chapter the techniques of model reduction have been 

applied to a more general reaction scheme. This has been 

successfully achieved \of! th minimal increase in complexity of tho 

reduced model, which was in faot the major point of interest of 

this section of the work. . Because the techniques of model 

roduction could be applied to reactor in which a simple reaction 

was taking place, it did not necessarily tollow that the same 

techniques could be applied to a reactor in which a moro complox 

scheme of reactions was occur!ng. In addition the question was 

asked, if model reduction ,-tas successfully achieved, we the 

resulting model tractable as far as optimisation studies atc., are 
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~(m) 

o 
0.2 

-1.0 

Figure 7.09 • Variation ot the selectIvity at the radial 

mean conditions with to the ~d1al mean 

ooncentration ot the desired produot along 
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concerned, as it is pointless producing a reduced modol which is 

more complex than the original model. In fact the reduced model 

produced in this chapter is marginally more complex than that for 

the simple reaction, but is still ver,y satisfactor,y. 

The general forms of the radial profiles and the'related 

pseudo-parameters are summarised in table 1.01, and the general 

form of the reduced state equations are, 

- PeT ~m - 211U' (tm-l) +08T NUS (tsm - t m>lval co 0 

dz 

- P~ dCA -~ 11 em) (~i ~ em) + q,; k; em) ) CAm • 0 

dz 

- PeM ~'13 - ~ R2 "l em) l/' (m) (~i ~ (m) +~~ k; (m) ) a Am - 0 

dz 

and. 

NUl. w 

(l+O.25NU)+ [( NU ,2 + W51 (O.3+0111NU)+W5( NU
2 

)(O.17+O.41NU) 

1.2NU+4J J 1.2NU+4 

and the general form of the distribution factor is, 

(
2 R (i) + R (1») 

3 R (m) 

Reductions of computing time of 20 : 1 are possible, but when 

the reduced model is programmed to produce exactly to same amount 

of information as the two-dimensionless model reductions of 10 I 1 

are achieved. 
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Table 1.01. 

Reaction scheme Form ot w5 

Simple A ~ B 1°/3 ~l ~OA 

Competitive A ~ B 1°/3 (Pl flo A1 + A ~OA3) 
~D 

Consecutive A...l.. B ~ C 1°/3 (~l + ty(m)p>2)l:lc A 

Mixed A ....L B ~ C 10/3(~IJriAl+A~A3) +t~ ~(m){jOA 
~D 

fleB ... -'f(m) bo A (where L\c A a !lc.Al +.60 A3) for all the 

a.bove ca.ses. 

General forms of the radial Erofiles. 

TemEerature: 
.. 

(t(y) - 1) a [W5 (1-3:r2+~) + l(; NIl' r (l-}l+~) + j 
1.2NU+4 .. 

X [1 + 0.5NU (1 - y2) J (tCl) .. 1) 

where w5 is defined above. 

Concen tra tion: 

0
1 

(y) ... ~oi (3y2 - 2;> - 0.7) + ~1m 
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CHAPTER 8 

METHOD OF SOLUTION OF TlIE REDUCED MODEL 

The reduced model comprises a set of simultaneous ordinary 

differential equations coupled with a set of alg~braic equations 

representing the radial profiles and the pseudo-parameters, which 

have the general form, 

Simi (z) .. gi (eml , 9m2 , Sm3' Sj ) 

6 i (y, z) = hi (e ml' e m2' e m3' Sj. y) 

Sj - Sj (emlt 8 m2 , 9m3 ) 

where emi = 2 of ~ i' y. dy 

and i = 1, .'0 , I, j = 1, ••• , J, whore I and J are the 

8.03 

number of dependent variable and pseudo-parameters respectively. 

The e mi and a i are the mean radial values and the values of the 

dependent variables, Le. t, Q.
A 

and C,B' and the functions gi and 

hi represent the right hand sid3s of the ordinary differ~ntial 

equation and the algebraic expressions for the radial profiles 

respectively (see equations 4.41, 4.48, 4.49 und 4.50 for typical 

examples). The Si are the pS3udo-paramaters (Og tac A' Acn, NUl 

etc.). Equations 8.01, 8.02 and 8.03 are considered 

simultaneously. The ordinary difforential equations are solved 

by the Runge.-Kutta.-~lerson method as described in appendix 3. It 

is necessary to evaluate tho functions gi at ea.ch internal axial 

step of the integration procedure, and a separate algorithm is 

required to calculate them. 

The algorithm is entered with the values of the dependent 
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variables, ~, from which the pseudo-paramoters and 

subsequently the functions gi are eval~ted. This, in faot, is 

tho basic reason for developing the expressions for the pseudo-

parameters in terms of the radial mean fluid valuos. It ensures 

that they can be evaluated directly from variables which are 

readily available. Henco, the overall integration procedure is 

only a little more complex than that for the simplified one­

dimensional model which has been found so attractive because of 

the small computational effort rsquired for solution. For 

example. in order to evaluate the chemical rate term, the 

effectiveness factor, the concentration and the kinetic rate 

constant are required which are the only variables necossary to 

determine the overall ooncentration difference, /jc. This in 

turn is the only term required for the calculation of tho effective 

Nussel t nlmlber, NU'. 

Consider a specific example of the usa of tho above-mentioned 

algorithm for the simple reaction scheme, using tho s~dard test 

data (sea table 4.01). This data was speoifioally designGd to 

represent a physical system which exhibited lar~ radial gradionts, 

as discussed in section 4.1. The right hand sides of tho 

ordinar,y differential equations are written, for the case under 

consideration, as 

gl" ~m" - 2NU' (tm - 1) + 13~2£)'l(m) R* (Om' tm> 8.04 

dz 

~ co ~m .. - ~2 ~ 'lei) R* (om' t m) 

dz 

or, rewritten with the numerical values of the constants, 
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gl .. ~m .. - 2NU' (tm - 1) + 1.124 x 10-
2 ~"1 (m) R* (om' tm) 8.06 

dz 

g2 ... ~m .. - 1.697 x 10-
2 "£J 11 (m) 

dz 

On entering the algorithm the valuas of cm and tm are mown. 

Tha pellet equations are solved iteratively to determine the 

* effectiveness faotor ~ (m). The rate constant k (tm) is 

computed from, 

For first order kinetics, 

11. (m) R* (cm' t m).. cm k* (tm) 

The overall concentration ditferGnce can be simply written as, 

.. ( k* (t ) _ 1 \2 
1.35 k*m(t

m
) + 36.65) 

when the relevant values of the constants in equation 5.11 ara 

substituted. 

(Foot note: For non-optimising compilers where exponentiation 

is used for evaluating integer axponGnt, it may be avoided in tho 

computational procedure by ~vnluating ~o in the following manner, 

k* (t ) - 1 m 
.. and. 6.0" /Jot x 60 t x 0 m 

whioh consequent~ requires less oomputationA1 effort) 
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Since t I: 1, the abovo expression for 6.c gives the asymptotio mo 

value, and the corrected v~lue of i\c is given by, 

= 8.11 

from equa.tion 5.12. The nxial profiles of l:J.c and a0o. are 

oompared in figure 8.01, from which it can be seen that ~oa 

rapidly approaches bc. The exponentional term mora toni cally 

approaches zero at a rate dependent on the constant, i.e. 13.7 in 

this case. As the evaluation of an exponential term is relatively 

time consuming, its elimination from the computational procodure 

would help to minimise the overall computing timo. This can be 

achieved when the exponential has fallen below a proprescribed 

value, dependent on the required accuracy, e.g. by using a 

conditional statement such as the 'if' statement in Algol. 

Once Ac is known, the effective Nussel t number, NUt can be 

easily calculated from, 

NU' ... 1 8.12 

(0.776 + 0.736 (5) c1 c) 

It will be noted that this expression is fur simpler tik~ the 

general form of NU' as given by equation 6.04, as will o.lwo.ya be 

the case when numorical values for a specifio system are usod. 

It pow only remains to calculate tho distribution faotor, 

from the expression, 

2". (i) R* (~) + 11 (1) R* (1) 

* 3 11 (m) R (m) 

This requires the solution of the pollet equations for the 

effectiveness factor at y • ! and y ... 1. 

dependent variables are given by, 
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tel) .,. NU' (tm - 1) + 1 , c(l) - cm + 0.3 6. c 

2 

• 8.14 

t(~) sa (2.027 Ac + 1.836) (t(l)-l)+ I, c (~) .. cm - 0.2 60 8.15 

Subsequently the reaction rate terms can be calculated. The 

axial profiles of the distribution factor,~as dorived from the 

above approximation and from the exact integration procedure for 

this particular set of data are oompared in figure 6.03. whore it 

is seen that the agreement is very good. If equations 8.06 a.nd 

8.01 are examined the overall ~ta term which is required is 

tlJ '1 (m) R* (m), which if equn.tion 8.13 is rC9.l.'ra.nged, is given 

by, 

~'1 (m) R* (m) Q 1/3 (21](i) R* (1) +~(l) R* (1) ) 

Therefore it is not necessary to calculate tho reaction rate at 

the mean conditionS. Finally the right hand sides of the 

differential equations are evaluated. 

A block diagra.m of the procedure is shown in figure 8.02. 

It con be seen that there is an efficient flow of information 

throughout tho algorithm and thero is no redundant information 

produced, which helps to maintain a low computational load. The 

only significant increase in required offort is thnt the solid 

equations have to be solved three times as opposed to once for the 

Simple case. The extra computation is duo to the fact that the 

reaction rates at y _ ~ and y a 1 are requirod in ordor to 

calculate the distribution factor. 

At this stage the integration process is complete and the 

remaining computation depends on tho nature and the use of tho 

reaction model. For examplo, if the model is baina used in nn 
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tel) • c(l) ... 

t(t) • c(t) 
j 

Solve the pellet equations twice. 
1 (1) ,1 (t) 

• 
Calculate '1 (m )R" (m). 1 

~ 

Calculate the right hand aides ot the 
differential equations. 

Sl ' Sa 
~ 

r Elci t./ , 

Figure 8.02 • Elock dIagram of the method of evaluating 

the right hand sides ot the ordinary 

differential equations of the reduoed 
model. 



optimisation algorithm, then the axis temperature need only bo 

oaloula.ted from, 

t(O) = (4.840 l\o + 2.195) (t(l) - 1) + 1 

as it is the only oonstraint assooia.ted with the r~diol profiles. 

In addition it will be only necessary to calcula.te the axis 

temperature in the rcgion of the maximum temperaturo. On the 

other hand, if the model is used in conjunction with catalyst 

decay problem, thon the full extent of the ra.dial temperature 

profile is required for updating the catalyst profiles. But, ns 

generally, catalyst decay is a rela.tively slow process, then it 

may only be neoessary to carry out such n procedure at ir.frcquent 

intervals. 
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DETERNINATION OF TFI::TI SECOND ORDER 
CORREC'rION FUNCTION, ..n..n 

The function, J1n is defined by, 

Jb (y, NU) =f fi (y. NU) - 1 

JI t( NU ) 2 (1 _ 3y2 + 2~) 
1.2NU+4 

and represents the deviation of the funotion, f1 from n simple 

cubic functional form. In figure Al.Ol,tlL. is plottod against 
II 

Nussel t number, NU at various radio.l positions. As may be seen 

from the figure, 

when NU ~ 0 , Jli]t ~ constant valuel 

and NO ~ tJ:) , llJt. ~ constant valuo2 

from which a possible form for ~Itat constant y may bo proposed, 

where Yi are functions of the redinl coordinate, y, only. 

The lim! ts of r1.It may now be wri ti:;en, 

lim ~lt a Y2 lim!1 a (Y1/y ) 
NU~O NU4~ 3 

The Yi are detormined nt the various values of y, by setting 

up three simultaneous equation in Y1 after substitutin~ for 

a.t three different values of NU. The remaining values of 

~ (NO) arc used to check the results, which are tabulated 
Ir 

below. 
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Table Al.Ol. 

I 
, • 

Y' Yl Y2 Y3 

0.9 0.418 0.320 0.099 
0.7 0.313 0.215 0.255 
0.5 0.174 0.126(5) 0.375 
0.3 0.010 0.056 0.455 
0.1 0.011 I 0.010 0.495 , ! , 

In figure Al.02, Y
3 

' ((Yl/Y2) - 1J and Y2 are plotted along 

the radius. The function [(Y1/Y2) - 1] is the mirror image of 

Y,. In fact, the function Y
3 

is a. simple algebraic funotion 

represented by, 

0.5 (1 - :/) 

.. . ( 2 1 + 0.5y 2 - y ) 

Unfortunately Y2 is non-integer order with respeot to y, but is 

nevertheless of the simple form, 

Y2 Q 0.4 Y 1.6 

Since Jr.LJIonlY represents a socond ordor effect Y2 is adoquntely 

approximated by, 

2 
0= 0.4 y 

to simplify the analysis. 

The complete function J1 may now be stumll.."lriaed by the form, 
1I 

Al.06 

Al.07 

['Un- 0.4y2 [{l + 0.5;1" (2 - ;1") }2NU + L1 AL.oe 

1 + 0.5 (1 - y ) ] 
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APP}O"lIDrx 2 

THE FINITE DIFFEP..Er~CE SOLUTION OF TIlE TW0-nnm:NSIONAt 
RiMCTOR HODEL 

The state equations for the gonerol t~lo-dimensiorull modol 

a.re of a. general form. nnd DUly be written as, 

with the boundar.y conditions, 

e =9 0 

de Q 0 

0-; 
-~ ... F _ 3 

3y 

z ... 0 

y ... 0, 0 = z ~l 

The parameters e • Pei and Fi are listed below in table A2.0l. 

Table A2.0l 

e Pei Fl. F2 F, 
t POT -NtT s NUets NT] 

°A PaM ~2 * ~2 * -1 ( 1 ~ - 3 k3) 0 0 

cB Pe:r.l 0 V ~2 * ~2 * -1} ( 1 ~ - ,k3 ) 0 

NOTE. - * * (1) For tho simple reaotion scheme let k2 - k3 - 0 

* * * (2) For the fixed bed heat exch~r ~ • k2 - k3 - 0 

.A2.02 

F4 

-1 

0 

0 

Equations A2.01 and A2.02 are solved by using the Crank~lcolson(33) 

finito difference analogue, for which grndients in the radial 

direction are represented by the central difference npproximation 

and in tho axio.l direction by n first order finlto differonco 
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approximation, which may be expressed ns, 

: ~ ca ~[(en+l,m+l - ~-l,m+l> + (Et+l,m -l:fi-l,m>] 

Y OY 4nh2 

oS a 1 (6 -e) n,m+l n,m 
Oz k 

Flee: 1 ( Fl n,m+l e n,m+l + Fe) 1 n,m n,m 

2 

F2 = 1 (F2 n,m+l + F2 n,m ) 

2 

The su~scripts n and m represent the mdial and axial positions 

respectively. If the number of radial and axial steps ara N and 

}f, then the mdinl o.nd axial increment are gi van by 

As the problem is il1itial valued in tho ~~ial direotion so thnt 

all the values at the 1m position' aro known q~~tities. 

The finite difforence expressions of equations A2.03-7 are 

substituted into equation A2.01 to give, 

An 9 n+l, m+l + BnSn, m+l + cnen_l,m+l - Dn 

where 
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2 
- N + Pei M + 0.5 Fl n, m+1 

( 1 _ 1/2n ) 

2 

co _ N2 (1 + 1/2n) en+l,m + (N
2 

+ Peil{ - 0.5 F1 n,m)9n,m 

2 

- ~2 (1 - 1/2n)~n_l,m - 0.5 (R2 n,m+l + E2 n.m) 

2 

A2.10 

A2.11 

A2.12 

This expression is valid for 1 ~ n ~ N-l, where N and 0 represont 

the posi tiona of the fin! to difforenoe nodes at the tubo l,ull and 

axis respeotively. 

At the tube axis, ~ ... 0, hence 1. ~e is indetermino.te. 
,?>y y ,y 

Applying lfHopitnlfs Rule, equation A2.01 becomes 

- Pei ~e + 2 a2e + F1 e + F 2 .. 0 

Oz (} y2 

'" Eeo~use of the a~try of the problem, f_l = fl the finite 

differenca equation can be l-1Z'i tten, 

Ao 9 1,m+l + :Bo So,m+l .. Do 

where 

Do .. - 2N
2e l,m + (2N

2 
- Peil-t - F! 0,m)9o,m 

- 0.5 (F2 0, m+l + F2 o,m) 

At the tube wall, the boun~~ oondition is writtun in finite 

difference; form. 

-91-

A2.14 

A2.15 

A2.16 



0.25N (9N+l ,m+l -6N- l ,m+l) + (9N+l ,m +9N_1,m) 

+ 0.5 F3 (gN,ID+l +eN,m) + F3 F4 sa 0 

Equation A2.l7 is substituted in equation A2.08 in ordar to 

eliminate the hypothetical function values, fN+l , m+l and fN+1•m 

to give, 

where 

III ... - N
2 

+ Pei M + 0.5 Fl N, m+l - F3 (N+l) 

ON ... ~ 

~ - (~ + PeiM - 0.5 Fl N,m + F3 (N+l) ) e N,m 

- N
2e N_l , m - 0.5 (F2 N, m+l + F2 N,m) + F3 F4 (2N+l) 

Equntions A2.08, A2.l3 and A2.18 represent a system of 

simultaneous algebraic equntions, 

E a ... D 

where, 

E ... BO AO 0 0 0 

°1 11. ~ 0 

On Bn A nl« 
L-

0 0 ~ l1f 

Equation A2.22 is solved by using the Thomo.s (34) method 

* described below. It is necessary to solve the pallot oquations 

at each node of the finite differGnce scheme, for which method 
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A2.17 

A2.l8 

A2.19 

A2~20 

A2.21 

A2.22 



are well described by Crosswell (27) and Thornton (35). 

* The Thomas Method. 

The unknowns are elimina.ted by letting, 

W =B -C 01 n n n "n-

Gt. ... D-C;t -n n n '"'Il-l 

n • 1, 2, ••• , N 

n = 1, 2, •••• , N 

These equations transform to, 

... g 
n - ~ ~ n+1 n = N-l, N-2, ••••• , O. 
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A2.24 

A2.25 

A2.26 

A2.27 



APPENDIX 3 

THE 40 RUNGE KUTTA HERSON }mrnOD FOR THE SOLUTION 
OF A SET OF SIMULTANEOUS ORDINARY DIFFBREtfl'IAL EgUATIONS 

The Runge Kutta Merson method (;2) is a. slight moditiootion 

of the fourth order Runge Kuttn. technique, which gives an a.utomt!o 

and rapid method for determining the maximum int~al to be used 

for a preprescribed accuracy. The .formulae tor the integration 

of, 

e' (x) ... g (x, e ) 
may be written, 

en+1 ""en + i (~ + 4 k4 + k5) + 0 (h5) 

where, 

~ = 1/3 h g (xn, e n) 

k2 ... 1/3 h g (xn + 1/3 h, en + kJ.) 

k3 ... 1/3 h g (xn + 1/3 h, en + i k1 + i k2) 

k4 = 1/3 h g (xn + t h,en + 3/8 ~ + 9/8 k3) 

k5 ... 1/3 h g (xn + h, en + :; /2 ~ - 9/3 k3 + 6 k4) 

The advantage of this method is that an estimation of tho truno~t1on 

error, e. CM be made. 

The interval changing criteria is the followinG, if the right hand 

sida of equation A3.08 is greater than 5 times the preassignad 

accuracy, the interval, h is halved and the computation tor the 

step is begun again. But if the right hand side of equation 

A3.0e is less than 5/32 of tho preassigned accurncy, then tho 

interval may be doubled and the calculation tor the st~p repoated. 
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This method is 20% faster and more reliablo than the stan~d 

fixed interval proceduro. 

It may be noted that the computation time increases with 

specification of greater prescribed accuracy. If the method is 

to be used for solution of the reduced model in an optimisation 

algorithm, during the preliminar.y approach to the optimum low 

accuracy could be prescribed to minimise the overall 

computation time, with a higher accuracy used in the region of 

the optimum £or the final stages of computation. 
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APPENDIX 4 
METHOD OF ORTHOGONAL COLLOCATION 

The orthogonal collocation method was developed by 

Villadsen and Stewart (~o) who give complete det~ils of its 

implementation. The basic procedure is as follows. Consider an 

unknown function f(y) which satisfies the linear or non-linear 

differential equation, 

LV (r) -= a in V 

and the linear or non-linear boundary condition 

LS (y) = a on S 

M.al 

where y is a position vectctand S is a boundar,r adjoining the 

volume V. The dependent variable r is approx~ted by a series 

expansion f(n) containing n undetermined pnrameters; tho plU'CJIlotors 

are then determ1ned by applying equations ~.Ol or Af.02 nt ench 

of n seleoted points. Interior collocation roquires thnt the 

fUnction f(n) satisfies the boundary condition identioally. 

Consider the fixed bed roactor which has the generalised 

boundary conditions, 

IQ 0 

where n, b and c are constants. 

The solution is expanded in the form, M 

f (y,z) ... f (1,2) + (1 - y2) ~ ai (t) Pi - l (y2) 
i ... l 

where Pj - 1 (y2) is a polynomial of degree i-l in y2 and is 

defined by the relation, 
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1 

of w (i) Pi (i) Pj (i) "a-1 - Ci ' ij i,j-1, ... ,n 
where w ... l_y2 gives a. form of Ja.cobi polynomials. and w-l givGS 

L~gendre polynomials. The constant, a ... 1, 2, :3 for plano.r, 

cy11ndrica.l and spherical g30metry. This form automatically 

satisfies the first boundary condition (equation ~03). The 

exact form of the polynomials 1s not needed however. The 

collocation points are the roots to 

A4.06 

Pn (y2) a 0 for y2 • YS j-l, •••• n A4.07 

The roots are tabulated below f'or .legendre polynomials and 

spherica.l geometry. 

n ... 1 0.70711 1.0 

n ... 2 0.45970 0.88807 1.0 

n a 3 0.33571 0.70711 0.941965 1.0 

The complete results a.re tabulated by Villadsan and Stowart (;0). 

To apply collocation to 

ot = 11. ~Ff + -; &y2~ Y + F(t) 

Oz 

(:r - f ) , y a 1 
C 

Equations A4.10 and A4.11 give n+l equations f'or the n+l 

unknowns at the collocation points and the boundary coniition. 

-97-

A4.0a 



The set or ordinar,y differential equ~tions are solved by a 

standard soheme, i.e. Runge Kutta, nnd tho coefricients 0i' Bj • i 

and A. i can be computed from algorithms found in Villndsen and J, 
Stewnrt. 
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NOJ.1ENCLATU, ~. 

arbit~J ooeffient. 

b pellet radius. 

B tube radius. 

0, cA' 0D } 
dimensionless fluid and solid ooncentration. 

cs ' cAs' cBs 

radial mean concentration. 

C, CA, CD } 
fluid and solid ooncentration. 

Cs ' CAs' CBs 

e 

E 

fi(y) 

F(NU) , G(NU) 

Fi 

gi 

inlet fluid concentration. 

effective fluid diffusivit;y. 

pellet diffusivity. 

distribution.faotor. 

bed voidage. 

aotivation energy. 

correction funotion. 

arbitrar,y functions of Nusselt number. 

generalised state equation coeffiont. 

right hand side of the ordinary differential 

equations. 

dini series polynomial for mass transfer 

solid/fluid heat transfer coeffioient. 

right hand side of radial profile. 

overall heat transfer ooefficient. 

inside film wall heat transfer coefficiont. 

dini sories polynomial for he~t·t~~sfGr. 

Bessol function. 



k g 

ki(t) 

ki(t) 
k o 

L 

m 

M 

n 

N 

NU 

NU' 

gas/solid mass tfansfer coefficient. 

rate constant. 

:reduced rate constant. 

pre-exponential constant. 

reactor length. 

axial increment of finite difference matrix. 

n~ber of axial increments. 

radial increment of finite difference matrix. 

number of radial increments. 

·Nuseel t number. 

effective Nusselt number. 

effective pellet Nusselt number. 

effective Peclet number. 

effectiv~ Peolet number for mass transfer. 

effeotive Peolet number for heat transfer. 

P(NU) , Q(NU,~6o) corrections functions to approximate effective 

Nussel t number. '1 

r radia.l distance. 

R(o,t) rell.otion rate. 

* R (o,t) reduced rell.ction rate. 

R g Ga.s constant. 

s reduced pellet radial distance. 

Sj pseUdo-parameter. 

Sh' effective Sherwood number. 

SH s effective rea.ctor Sherwood number. 

t, t , t 
Dl s dimensionless fluid, radia.l mean fluid and Golid 

temperature. 

*'( . 
\I Y)hJIi radisl temperature for hest transfer only. 



i? 

t(y)p 

T, T s 

v 

x 

Greek. 

if • 

parabolic approximate temperature profile. 

fluid and solid temperature. 

radial mean inlet temperature. 

constant coolant temperatura. 

constant. 

wall heat coeffioient. 

pellet radial distance. 

temperature profile coefficient. 

axial distance. 

reduced radial distance. 

radially dependent coeffients. 

reduced axial distance. 

thermicity group. 

activation energy group. 

overall radial concentration difference for the 

reactant and product. 

heat of reaction. 

coefficient in radial concentration profile. 

axially dependent coefficient. 

effectiveness factor. 

dependent variable. 

m th approxim::l. tion to e. 
effective radial thermal conductivity. 

solid conduotivity. 

coefficient in the expression for~c. 

din! series polynomial for heat transfer. 

f'luid density • 



fluid speoifio heat. 

a fluid reaotion modulus. 

a solid reaotion modulus. 

effective reaotor reaction modulus. 

selectivl ty. 

dini series polyno~al for mass transfer. 

trial function. 

second order correction funotion. 
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