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ABSTRACT 

The discovery of petrous bone as an excellent repository for ancient biomolecules has been a 

turning point in biomolecular archaeology, especially in the recovery of ancient genomes. 

Although the information extracted by the biochemical analyses of petrous bone can be valuable, 

the processes are destructive, expensive and time-consuming, while excessive and uncontrolled 

sampling could result in loss of this valuable resource for future research.  

This study reports on the histological (optical microscopy), physical (FTIR-ATR), elemental 

(CN), biomechanical (nanoindentation) and biochemical (collagen and DNA analysis) 

preservation of 272 bones spanning from c. 10.000 BC to c. 1850 AD, including 108 petrous 

bones. Through the combined application of a number of diagenetic parameters (general 

histological index; infrared splitting factor; carbonate/phosphate ratio; amide/phosphate ratio; col 

wt. %; % C, % N and C/N of whole bone and collagen; hardness, elastic modulus, % endogenous 

DNA), new insights into petrous bone micromorphological and diagenetic characteristics, inter-

site, intra-site, intra-individual and intra-bone diagenetic variability, and new evidence to enhance 

successful screening of archaeological bone prior to aDNA and collagen analysis is presented.  

Specifically, the petrous bone microstructure consists of highly osteocytic woven and lamellar-

like tissues, and osteons occur in at least two directions (transverse and longitudinal). Despite its 

stunning micromorphological characteristics, the biomechanical properties and diagenetic 

characteristics of petrous bone do not differ significantly from those of long bones. Inter-site and 

intra-site diagenetic variability is mostly affected by the site hydrology, while different types of 

burials can influence the microenvironment conditions and leave distinctive marks on bone 

histology. No intra-individual patterns, which could also favour the gut origin of microbial attack 

in bone, or intra-bone variability are observed in any of the diagenetic parameters. Screening 

archaeological bone for collagen preservation can be enhanced using the % C of whole bone 

which is equally strong as % N of whole bone collagen predictor, while the IRSF (< 3.7) and C/P 

(> 0.15) indices can distinguish bones containing >1 % endogenous DNA with a success rate of 

c. 85 % as bioapatite preservation is associated with loss of DNA.  
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CHAPTER 1: INTRODUCTION 

The information that can be extracted from the analysis of histology, bioapatite (BAp), collagen, 

and ancient DNA (aDNA) preserved within archaeological bone has shaped the way we interpret 

the past (e.g. Bentley 2006; Brown and Barnes 2015; Buckley et al. 2009; Cappellini et al. 2018; 

Colonese et al. 2015; Hendy et al. 2018; Katzenberg 2008; Lee-Thorp 2008; Orlando and Cooper 

2014). Bone histology can be used for the study of the age-at-death, pathology and to distinguish 

between human and non-human or burned and unburned bone (e.g. Assis, Santos and Keenleyside 

2016; Cattaneo et al. 1999; Cuijpers 2006; De Boer, Van der Merwe and Maat 2013; Dominguez 

and Crowder 2012; Hanson and Cain 2007; Mulhern and Ubelaker 2001; Stout and Teitelbaum 

1976). Bioapatite is important in archaeological research for the study of past human and animal 

movement (phosphate), dietary habits (carbonate) and environments (phosphate and carbonate) 

(e.g. Hedges 2003; King, Tayles and Gordon 2011; Lee-Thorp and van der Merwe 1991; Wright 

and Schwarcz 1996). Bone collagen is used to determine chronological age (i.e. 14C dating), past 

lifeways (e.g. palaeodietary reconstruction, weaning practices), taxonomic identification, and 

occasionally for screening (e.g. amino acid racemization) (e.g. Ambrose 1991; Asara et al. 2007; 

Buckley et al. 2009; Collins et al. 2009; DeNiro and Weiner 1988; Douka et al. 2017; Poinar et 

al. 1996; Van Klinken 1999), while aDNA can offer unique insights into the genetic change 

through time for the study of evolutionary and ecological processes (e.g. Orlando and Cooper 

2014). 

The post-mortem preservation of bone is affected by the complexity of diagenesis, a universal 

phenomenon controlled by the interplay between biological, chemical and physical processes (e.g. 

Kendall et al. 2018). The microbial attack of the composite, the chemical deterioration of the 

inorganic matter (dissolution/recrystallization), and the chemical and biological deterioration of 

the organic matter alter the microstructure and the biogenic chemical signals of bone post-mortem 

(Collins et al. 2002; Kendall et al. 2018). Microbial activity can modify bone microstructure (Bell 

2012; Hackett 1981; Hedges, Millard and Pike 1995; Turner-Walker and Jans 2008) and in 

addition to the apparent modifications in bone histology, microbial attack can also enzymatically 

degrade collagen using collagenases. Temperature also has a profound effect on collagen 

degradation (Collins et al. 2002; Kendall et al. 2018 Fig.7). Any collagen preserved in 

archaeological bone can be protected by the bioapatite crystals (BAp) (Grupe 1995), however, 

post-mortem changes of the mineral phase can expose collagen to chemical hydrolysis (Collins 

et al. 2002; High et al. 2015).  

Such a reorganization or growth of BAp crystals occurs through dissolution and recrystallization 

when the conditions of the burial environment are greatly under-saturated, primarily due to active 
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hydrology (recharging with fresh water) or pH (Berna, Matthews and Weiner 2004; Hedges 2002; 

Hedges and Millard 1995; High et al. 2015; Piepenbrink 1989) and it leads to a considerable loss 

of DNA (Allentoft et al. 2012; Götherström et al. 2002; Lindahl 1993; Parsons and Weedn 2006). 

Identifying the diagenetic pathway each bone has followed post-mortem can therefore offer a 

unique insight into the preservation potential of archaeological bone, in different burial 

environments and across timescales which are of great importance to archaeological, 

anthropological and forensic research. 

The recent discovery that the petrous bone (a massive portion of the endocranial aspect of the 

temporal bone) is an excellent repository for long term DNA survival (Gamba et al. 2014; Hansen 

et al. 2017; Pinhasi et al. 2015) represents a major breakthrough in aDNA research, as the expense 

of genome sequencing can often be prohibitive due to the low abundance of endogenous DNA 

(e.g. Green et al. 2010). Collagen extracted from petrous bone has also been identified as a 

potential indicator of fetal and early years diet (Jørkov, Heinemeier and Lynnerup 2009), as 

ossification of the petrous pyramid is mainly completed in utero (Jeffery and Spoor 2004; 

Sørensen 1994; Richard et al. 2010). Similarly, through strontium isotope analysis, petrous bone 

can potentially provide information on the geographic area in which individuals had spent their 

childhood (Harvig et al. 2014), complementing strontium analyses of teeth. However, although 

the information extracted by the biochemical analyses of petrous bone can be valuable, the 

processes are destructive, expensive and time-consuming, while excessive and uncontrolled 

sampling could result in loss of this valuable resource for future research. 

This thesis is the first study to present evidence on the micromorphological and diagenetic 

characteristics of archaeological petrous bone. This research project has three primary aims: 

1. to understand to what extent petrous bone can constitute a reservoir of surviving 

biomolecules,  

2. to provide new data for the successful screening of archaeological bone prior to collagen and 

DNA analyses, and 

3. to provide a foundation for future investigations to further explore bone diagenesis. 

To achieve this, the following objectives were undertaken: 

1. Examination of the micromorphological characteristics of the petrous bone, as one of the 

least accessible areas of the skull and possibly densest part of the skeleton. 

2. Comparison of the diagenetic characteristics of the petrous bone compared to other 

skeletal elements, in order to unveil if the petrous bone is the most effective skeletal 

element for sampling for collagen and DNA analyses. 

https://paperpile.com/c/EyiG9J/EeOa
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3. Assessment of inter-site, intra-site, intra-individual and intra-bone variations to reveal the 

preservation potential of archaeological bone in different environments and micro-

environment conditions. 

4. Assessment of the relationship between different diagenetic parameters and the survival 

of collagen and DNA in archaeological bone, in order to identify reliable screening 

techniques for collagen and aDNA. 

The thesis consists of six chapters and three appendices (tables, figures, and papers produced by 

this PhD research). Chapter 2 provides the background information on bone biology from the 

micro- to the nano-level that is necessary for an understanding of bone diagenesis. A thorough 

synthesis of the different diagenetic pathways in which bone can be changed post-mortem, 

highlighting the research that has attempted to explain bone diagenetic processes using a range of 

analytical techniques is outlined in Chapter 3. Sections of this chapter have been published in 

Kendall C., Eriksen A. M., Kontopoulos I., Collins M. J., and Turner-Walker G. (2018). 

Diagenesis of archaeological bone and tooth. Palaeogeography, palaeoclimatology, 

palaeoecology, 491, pp.21–37. [Online]. Available at: doi:10.1016/j.palaeo.2017.11.041. 

Chapter 4 provides some general information on the samples that were drawn from several 

geographic regions (Belgium, Britain, Central Asia, Denmark, Germany, Greece, Jordan) and a 

variety of depositional environments (coastal and inland open-air sites, caves) ranging from the 

Mesolithic (~10.000 BC) to post-medieval assemblages (1850 AD). The details on the techniques 

and methodological approaches applied in this study, and a practical guide to petrous bone 

sampling are also provided. This research employs analytical techniques which have been 

commonly used in past studies (histology, collagen analysis, elemental analysis, endogenous 

DNA content), new developments building upon existing knowledge (FTIR-ATR using a newly 

developed protocol by Kontopoulos I., Presslee S., Penkman K., and Collins M.J. (2018). 

Preparation of bone powder for FTIR-ATR analysis: The particle size effect. Vibrational 

spectroscopy, 99, pp.167–177), and novel approaches to bone diagenesis which can potentially 

provide useful additional data (2nd derivative analysis of mid-IR spectra, nano-indentation, 

synchrotron micro-CT). 

Chapter 5 builds on the work developed in this study and published in the following papers: 

• Kontopoulos I., Presslee S., Penkman K., and Collins M.J. (2018). Preparation of bone 

powder for FTIR-ATR analysis: The particle size effect. Vibrational spectroscopy, 99, 

pp.167–177. [Online]. Available at: doi:10.1016/j.vibspec.2018.09.004.  

• Kontopoulos, I., Penkman, K., McAllister, G. D., Lynnerup, N., Damgaard, P. B., 

Hansen, H. B., Allentoft, M. E., and Collins, M. J. (2019). Petrous bone diagenesis: A 

multi-analytical approach. Palaeogeography, palaeoclimatology, palaeoecology. Special 

issue: Advances in the study of diagenesis of fossil and subfossil bones and teeth. 
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• Kontopoulos, I., Penkman, K., Liritzis, I., and Collins M. J. (under review). Bone 

diagenesis in a Mycenaean secondary burial (Kastrouli, Greece). Archaeological and 

Anthropological Sciences.  

It is divided into subsections that present the results and discuss the preservation of bone 

histology, bioapatite (BAp), collagen, and DNA in petrous versus other bones. New data on inter-

site, intra-site, intra-individual, and intra-bone variability is also explored and put into context, 

while new screening methods for collagen and DNA are proposed. Chapter 6 summarizes the 

key findings of this research project, with a focus on the petrous bone micromorphological and 

diagenetic characteristics, and the relationship between histological modifications, bioapatite 

recrystallization/dissolution, collagen degradation, and DNA decay. The limitations of the current 

techniques are highlighted and potential routes for future research are proposed. 
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CHAPTER 2: BONE BIOLOGY 

Mammalian bone is a highly specialized, complex tissue with a hierarchical structure (Figure 2.1) 

and its function in all vertebrates is the mechanical support, locomotion, protection and activity 

as a metabolic reservoir. The formation of the skeleton initiates in utero via two different 

processes: a) endochondral and b) intramembranous ossification, while postnatally bone 

remodelling and resorption occur by the collective action of three main types of cells (osteoblasts, 

osteocytes, and osteoclasts). 

Bone nanostructure contains both inorganic and organic components. The organic matter/osteoid 

(approximately 20-30 % by dry weight or 30-45 % by volume) is consisted of 90 % collagen 

(mainly type I collagen), while the remaining is type V collagen, trace amounts of collagen types 

II, III, XI, XIII, and non-collagenous proteins. The inorganic content (bioapatite crystals) covers 

approximately 60-70 % by dry weight or 30-45 % by volume, while the remaining is water, lipids 

and other complex macromolecules. 

At the next hierarchical level (microstructure), the production of a collagen-bioapatite composite 

structure (biomineralization) results in two histological types of bone, the woven or immature and 

the lamellar or mature bone that display distinct structural motifs. Morphologically (i.e. 

macrostructure), bones exhibit two different types of tissue: a) cortical and b) cancellous, and are 

distinguished in long (e.g. humerus, femur), short (e.g. metacarpals), flat (e.g. scapula, parietal), 

and irregular (e.g. vertebrae) bones with different physical characteristics. 

This chapter deals with bone formation and structural characteristics, with the sections being 

arranged accordingly, commencing with ossification processes and continuing with bone’s 

hierarchical structure from the nano (collagen and bioapatite) to the macro (whole bone) level.  
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Figure 2.1. The hierarchical structure of bone from the nano- to the macro-scale (Hamed and Jasiuk 2012). 
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2.1. FORMATION 

2.1.1. BONE CELLS 

OSTEOBLASTS 

Osteoblasts are the bone-forming cells that synthesize the organic components of the bone and 

contribute to the composition of the inorganic component during bone formation and remodelling 

(Ortner and Turner-Walker 2002; Ross and Pawlina 2011). They are mononuclear cells that 

differentiate from the osteoprogenitor cells which derive from the primitive mesenchymal stem 

cells (MSC) found in bone marrow (Figure 2.2; Ducy, Schinke and Karsenty 2000; Stevens and 

Lowe 2005). They are typical protein producing cells that secrete the osteoid, the initial 

unmineralized bone consisted of type I collagen embedded in a non-collagenous, calcium-binding 

gel (Ross and Pawlina 2011; Stevens and Lowe 2005). When fully active, osteoblasts are 

recognized by their cuboidal or polygonal shape (Figure 2.2) and they live for about 6 months 

(Ortner and Turner-Walker 2002; Ross and Pawlina 2011; Stevens and Lowe 2005). When active 

bone formation ceases, osteoblasts turn into bone lining cells (Figure 2.2) that enclose the bone 

surface and prevent bone resorption (Ortner and Turner-Walker 2002). 

 

Figure 2.2. Osteoblast formation, maturation, and transformation into osteocytes and bone lining cells 

(Titorencu et al. 2014). 

OSTEOCYTES 

Osteocytes are inactive osteoblasts that have completed the producing of the osteoid (Stevens and 

Lowe 2005; White, Black and Folkens 2012). They are trapped within the mineralized matrix 

(Figure 2.2) and comprise about the 90% of bone cells (Ortner and Turner-Walker 2002). They 

are smaller than osteoblasts and they reside in oval shape depressions in the bone matrix called 

lacunae (Figure 2.3; Ortner and Turner-Walker 2002; Ross and Pawlina 2011). Their cytoplasmic 
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extensions travel through very fine channels called canaliculi that allow osteocytes to 

communicate with each other (Figure 2.3), with each osteocyte having around 50-70 such 

channels (Ortner and Turner-Walker 2002; Ross and Pawlina 2011). Canaliculi are generally 

aligned perpendicular to the lamellar boundary plane (Reznikov, Shahar and Weiner 2014a). 

Osteocytes are involved in the physiological activities of bone (e.g. mineralization/mineral 

control) and the secondary mineralization which is a much slower process than primary 

mineralization due to the smaller number of cells present in the tissue (Ortner and Turner-Walker 

2002; Teti and Zallone 2009). Osteocytes also regulate the flow of calcium and phosphorus and 

can live for several years (Ortner and Turner-Walker 2002).  

 

Figure 2.3. Osteocyte lacunae and canaliculi in human compact bone (magnification x1200) (Clermont, 

Lalli and Bencsath-Makkai 2013). 

They have a flattened, almond-like appearance and their average size differs between species (e.g. 

in human cortical tissue is about 18.9 ± 4.9 μm in length, 9.2 ± 2.1 μm in width and 4.8 ± 1.1 μm 

in depth) (Ardizzoni 2001; Dong et al. 2014; Hannah et al. 2010; Noble 2008). The lacunar size 

and number decrease significantly towards the Haversian canal in osteons and with increasing 

age, while the lacunar shape and density can also vary within the same skeletal element (Ardizzoni 

2001; Busse et al. 2010; Carter et al. 2013; Hannah et al. 2010). More specifically, in a study by 

Carter et al. (2013) the anterior and posterior regions exhibited a lower number and more 

elongated lacunae comparing to lateral and medial tissues in normal human femora (Carter et al. 

2013). However, no volume or orientation related differences between the different regions have 

been identified (Carter et al. 2013). 
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OSTEOCLASTS 

Osteoclasts are tissue-specific macrophage polykaryons that derive from the merging of blood-

borne mononuclear macrophage precursors that derive from haematopoietic stem cells (Figure 

2.4; Boyle, Simonet and Lacey 2003; Ortner and Turner-Walker 2002). They are very large, bone-

resorbing cells, identified on surfaces when calcified bone tissue is being remodelled or removed 

(Ortner and Turner-Walker 2002). When osteoclast activity is triggered (e.g. receptor activator 

nuclear factor/RANK-induced signalling, hormonal control), osteoclasts often cluster together 

and create resorption cavities called Howship lacunae (Asagiri and Takayanagi 2007; Ortner and 

Turner-Walker 2002). 

 

Figure 2.4. Osteoclast formation and activity (Senba, Kawai and Mori 2012). 

Osteoclasts have developed a very efficient mechanism to dissolve bioapatite crystals and degrade 

the organic phase in bone (Väänänen et al. 2000). Bone resorption requires migration of the 

osteoclast to the site of interest, its attachment to bone, polarization and formation of new 

membrane domains, dissolution of bioapatite and degradation of organic matrix, removal of 

degradation products from the Howship lacunae, followed either by the apoptosis of the 

osteoclasts or their return to the non-resorbing stage (Asagiri and Takayanagi 2007; Väänänen et 

al. 2000).   

2.1.2. OSSIFICATION 

Ossification (osteogenesis or simply bone formation) is the process of formation of new bone by 

osteoblasts. Most bones in the human skeleton develop by endochondral ossification in which a 

cartilage that precedes bone is gradually ossified (Mackie et al. 2008; Ross and Pawlina 2011; 

Schwartz 2007). Bone formation occurs from primary and secondary ossification centres that 

transform cartilage into bone after osteoid secretion and mineralization (Mackie et al. 2008; 

Stevens and Lowe 2005). A hyaline cartilage is formed in the shape of the desired bone through 

condensation of mesenchymal cells (Schwartz 2007). Once formed, the mesenchymal cells 

differentiate into chondrocytes and after proliferation, round proliferating chondrocytes become 

https://paperpile.com/c/EyiG9J/DLAZ
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flattened, undergo hypertrophy (a dramatic increase in their volume accompanied by extracellular 

matrix secretion) and eventually die (apoptosis or autophagy) (Figure 2.5; Gerber and Ferrara 

2000; Mackie et al. 2008).  

Cartilage is gradually invaded first at its centre and later at its ends by a mixture of cells that 

establish the primary and secondary ossification centres, respectively (Figure 2.5; Kini and 

Nandeesh 2012; Mackie et al. 2008). It is progressively eroded by osteoclasts and bone is laid 

down by osteoblasts to replace the lost cartilage in the embryonic and foetal life (Scheuer and 

Black 2000). Endochondral ossification, thus, requires a temporal and spatial balance between 

extracellular matrix deposition and degradation, chondrocyte proliferation and apoptosis plus 

vascularisation and mineralisation. Disruption of any part of this chain can lead to a spectrum of 

skeletal defects that ranges from mild to lethal and from rare to common pathologies (e.g. 

osteogenesis imperfecta).  

 

Figure 2.5. Endochondral ossification. Ossification initiates with a cartilage model (A) that ends with 

the fusion of the epiphyseal and metaphyseal bone in adult bone (E) (Mackie et al. 2008). 

Intramembranous ossification occurs by apposition of tissues within an embryonic connective 

tissue membrane in the formation of the cranial vault, vertebrae, mandible and clavicle (Kini and 

Nandeesh 2012; Ross and Pawlina 2011; Stevens and Lowe 2005). Unlike endochondral 

ossification, bone tissue is directly laid down into the primitive connective tissue without any 

intermediate step (no cartilage present). During this process, the mesenchymal cells commence 

bone formation when they replicate and cluster together (Scheuer and Black 2000). After this 

phase, mesenchymal cells differentiate into osteoprogenitor cells which then turn into osteoblasts 

(Kini and Nandeesh 2012; Scheuer and Black 2000). Then the osteoblasts create an extracellular 

matrix which is later mineralized. The only difference between the two types of osteogenesis is 
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the environment in which the development occurs and not the type of tissue as the outcome is the 

same (Scheuer and Black 2000).  

Bone is a dynamic tissue and it remodels in response to the mechanical demands placed upon it 

as well as hormonal factors (e.g. parathyroid hormone, leptin) (Ducy, Schinke and Karsenty 

2000). Bone remodelling is, thus, the dynamic physiologic process by which bone mass is 

maintained constant throughout adult life in vertebrates (Ducy, Schinke and Karsenty 2000). It 

consists of two phases that occur simultaneously at multiple locations in the skeleton (Figure 

2.6): a) resorption (i.e. osteoclast activity) and b) synthesis (i.e. osteoblast activity) of tissue that 

continue throughout life but at a much slower rate (Ducy, Schinke and Karsenty 2000; Ortner and 

Turner-Walker 2002). Thus, bone remodelling (or turnover) occurs on a continuous basis to 

replace dead cells or repair damaged cells associated with ageing, pathology, fracture, or to cope 

with increased physical activity (Ortner and Turner-Walker 2002). Nevertheless, while skeletal 

mass increases rapidly during the growth period, it decreases slowly throughout the rest of life. 

Therefore there is a reduction in the amount of cancellous bone and a decrease in the thickness of 

cortical bone which clearly affects bone’s density, structure and subsequently, post-mortem 

survival.  

 

Figure 2.6. Histological section of bony trabeculae of adult male goat showing bone remodelling. The 

osteoprogenitor cells turn into pre-osteoblasts and these into osteoblasts. Osteoblasts trapped in bone 

matrix are now osteocytes residing in lacunae. Notice the simultaneous osteoclast activity at the surface 

of bone (Moussa and Nasr 2012). 

 

https://paperpile.com/c/EyiG9J/w7dP
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2.2. HIERARCHICAL STRUCTURE 

2.2.1. NANOSTRUCTURE 

ORGANIC COMPONENT 

The collagen family (28 types) represents the most abundant proteins in bone extracellular matrix. 

The shape and mechanical properties of bone depend upon the collagen framework which is 

mainly (c. 90 %) constituted by type I collagen (Currey 2003; Gelse, Pöschl and Aigner 2003; 

Keene and Sakai 1991). Each collagen I molecule (tropocollagen) is characterized by a right-

handed triple helix of three polypeptide α chains held together by hydrogen bonds and staggered 

by one residue relative to each other (Hofmann, Fietzek and Kühn 1978; Petruska and Hodge 

1964). This triple helix consists of two identical α1(I) chains and one similar but genetically 

distinct α2(I) chain (polyproline II helices) that intertwine to form a trimeric coiled structure 

(Figure 2.7; Hofmann, Fietzek and Kühn 1978; van der Rest and Garrone 1991).  

The α-chains are comprised of left-handed helices and in the α1 chain, 1011 of the 1052 amino 

acids consist of triplets of residues (Petruska and Hodge 1964; Piez and Miller 1974). Glycine, 

which is the smallest amino acid, is found every third position of the polypeptide chains resulting 

in a Gly-Xaa-Yaa motif that is characteristic of all collagens (Petruska and Hodge 1964; 

Hofmann, Fietzek and Kühn 1978). About 30 % of the X and Y positions are occupied by proline 

and hydroxyproline (van der Rest and Garrone 1991). The glycine residues of the α-chains are 

always positioned in the centre of the triple helix, while the side chains of the X and Y amino 

acids occupy the outer (surface) positions of the protein that allows a close packing of the 

molecule along the central axis (Gelse, Pöschl and Aigner 2003; van der Rest and Garrone 1991). 

The other amino acids are not considered critical to the molecular structure and usually, they are 

available for the interactions that direct molecular packing (Piez and Miller 1974). The residue-

to-residue axial distance is c. 0.28 nm at an angular separation of 108° (Ottani et al. 2002; Piez 

and Miller 1974). 

The α-chains are initially bordered by carboxy- and amino-terminal propeptides (procollagen 

molecule) which are followed by C- and N-telopeptides that are crucial in the formation of the 

intermolecular cross-links, stabilize the fibrils and increase their tensile strength (Ricard-Blum 

and Ruggiero 2005; Ricard-Blum 2011; Veis 1997). The N-terminal has 16 residues and the C-

terminal has 25 residues with a different kind of sequence (Piez and Miller 1974). These 

procollagen molecules are secreted from the cells in the extracellular matrix and peptidases cleave 

off the terminal propeptides during maturation to leave tropocollagen, a single collagen molecule 

(Ricard-Blum and Ruggiero 2005; Ricard-Blum 2011).  

Tropocollagen molecules, which are 300 nm in length and about 1.5 nm in diameter, are staggered 

every 67 nm (D-band periodicity) with a gap region of c. 40 nm between two consecutive 
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molecules to form the highly ordered fibrils with their axes parallel to the fibril direction (Figure 

2.7; Gautieri et al. 2011; Petruska and Hodge 1964; Piez and Miller 1974). Fibrils can have a 

length of up to c. 1 mm and a diameter of 100-500 nm (Gautieri et al. 2011). At the next 

hierarchical level collagen fibrils form collagen fibres with the aid of cross-linking molecules 

(Figure 2.7).  

 

Figure 2.7. The supramolecular assembly of the collagen fibrils in the characteristic quarter -staggered 

form. The collagen molecules aggregate both in lateral and longitudinal directions to form fibrils (Canelón 

and Wallace 2016). 

The characteristics of collagen are in part controlled by post-translational modifications (PTMs) 

such as hydroxylation, oxidation, glycosylation, and cross-linking (Ottani et al. 2002; Saito and 

Marumo 2015). Collagen cross-links in bone (cross-links are tissue-specific) are covalent linkages 

formed at specific telopeptide and helical residues (e.g. lysine, hydroxylysine and histidine) 

between the non-helical domains and the helical domain of adjacent collagen molecules (Ricard-

Blum 2011; Saito and Marumo 2015). The specific chemistry of the cross-link formed is 

dependent on the location and hydroxylation of lysine residues. In newly synthesized collagens, 

cross-links (aldimines and keto-imines) are reducible and bifunctional, and they quickly mature 

into non-reducible trifunctional cross-links (pyridinoline, deoxypyridinoline, pyrrole in bone) 

(Ricard-Blum 2011). Bone and dentin have two major bifunctional Hyl aldehyde-derived cross-

links, dehydro-dihydroxylysinonorleucine (deH-DHLNL) and dehydro-hydroxylysinonorleucine 

(deH-HLNL) and their trifunctional mature forms, pyridinoline (Pyr) and pyrrole cross-links 

(Saito and Marumo 2015; Veis 1997), with other major cross-links found in type I collagen being 
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the (4) dehydrohistidinohydroxymerodesmosine (deH-HHMD), (5) deoxypyridinoline (lysyl 

analog of Pyr, d-Pyr), and (6) histidinohydroxylysinonorleucine (HHL) (Eyre 1987, 1995; Light 

and Bailey 1985). 

 

Figure 2.8. The enzymatic (immature and mature) and non-enzymatic cross link formation in collagen 

(Saito and Marumo 2015). 

Collagen cross-linking can be divided into a) enzymatic (lysyl hydroxylase- and lysyl oxidase-

mediated) cross-links and b) non-enzymatic (glycation- or oxidation-induced) cross-links (Figure 

2.8; (Saito and Marumo 2015). Enzymatic and non-enzymatic crosslinks are determinants of the 

tensile strength, toughness, and post-yield properties in bone (Saito and Marumo 2015). Divalent 

immature (enzymatic) cross-linking, which is the predominant type of cross-link in bone collagen, 

seems to maintain the mechanical properties of bone (Saito and Marumo 2010). Aging and 

pathological conditions (e.g. osteoporosis) have been found to have significant effects on the 

biomechanical properties (i.e. elastic modulus and tensile strength) of collagen (Burr 2002; Leng 

et al. 2013; Wang et al. 2002) primarily accompanied by a decrease in enzymatic (immature) 

divalent cross-links (Nyman et al. 2006; Oxlund, Mosekilde and Ortoft 1996). Advanced 

glycation end products (AGEs, non-enzymatic cross-links) are generally thought to deteriorate 

the biological and mechanical functions of bone, although the effects of AGEs on osteoclastic 

bone resorption remain controversial (Saito and Marumo 2010). While AGEs are formed 

spontaneously by non-enzymatic glycation or oxidation, there are numerous sources of AGEs and 

unknown pathways leading to AGEs formation in vivo (Saito and Marumo 2010). 
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INORGANIC COMPONENT 

Biologic apatite (BAp) is a non-stoichiometric, disordered, nanocrystalline analogue of geologic 

bioapatite (Cho, Wu and Ackerman 2003; Meneghini et al. 2003). It is a carbonated calcium-

deficient phosphate mineral and it is represented by the formula (Ca2⁺, Na⁺, Mg2⁺, [])10 (PO4
3ˉ, 

HPO4
3ˉ, CO3

2ˉ)6 (OHˉ, Fˉ, Clˉ, CO3
2ˉ, O, [])2 that accounts for the possible inclusion of various 

ions (Skinner 2013). Bone mineral is mainly consisted of Ca2⁺ (40 wt. %), PO4
3ˉ (18 wt. %), CO3

2ˉ 

(4–7 wt. %), minor elements such as Mg2⁺ or Na⁺, and various trace elements (e.g. Sr2⁺, Ba2⁺, F⎺, 

Cl⎺), although its composition may vary depending on species, age, pathology, etc. (Antonakos, 

Liarokapis and Leventouri 2007; Bala, Farlay and Boivin 2013; Boskey 2003; LeGeros et al. 

1967, 1969; Skinner 2013; Posner 1985).  

The first-formed mineral phase of the mature crystalline mineral is an amorphous (or spherical) 

calcium phosphate (ACP) phase (Mahamid et al. 2008, 2010). A recent discovery by Mahamid et 

al. (2011) of a non-crystalline calcium phosphate precursor phase with a low Ca/P ratio 

concentrated in intracellular vesicles within bone-lining cells revealed the existence of 

intracellular ‘reservoirs’ of a mineral precursor. This observation shows that during bone 

formation the continuous layers of osteoblasts possibly prevent direct access of ions from the 

body fluids to the mineralizing bone surface (Gay, Gilman and Sugiyama 2000). As a result, the 

amorphous calcium phosphate (ACP) phase utilizes the bone-lining cells as an intermediate 

(Mahamid et al. 2010, 2011). However, the translocation process of the intracellular ACP phase 

into the extracellular mineralizing matrix and its transformation through osteoblast activity is still 

unclear (Gay, Gilman and Sugiyama 2000; Mahamid et al. 2010, 2011). 

 

Figure 2.9. (a) Hydroxyapatite crystal hexagonal morphology, and (b) distribution of atoms in the unit 

cell (adapted from Skinner 2013(a) and Greeves 2018 (b)). 

BAp has a hexagonal (P63/m) crystal system (Figure 2.9) with a longer c-axis perpendicular to 

three equivalent α-axis (α1, α2, α3) at angles 120° to each other (LeGeros 1981; Weiner and Traub 

1992). The size of the plate-like crystals is assumed to be around 10-50 nm × 5-25 nm × 2–10 

nm; thus, they have a high surface area/mass ratio and high degree of lattice strain (Burger et al. 
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2008; Dalconi et al. 2003; Rubin et al. 2003; Weiner and Price 1986; Weiner and Traub 1992; 

Yerramshetty and Akkus 2008). Crystals are also comprised of two components: a) the apatite 

core, and b) the hydrated layer that surrounds the core (Figure 2.10a; Bala, Farlay and Boivin 

2013; Neuman and Neuman 1953). BAp crystals can increase in size by secondary nucleation 

(i.e. each crystal can serve as a branch point for nucleation of additional crystals in vivo), by 

merging of crystals, and/or by ionic exchange with the surrounding environment (Figure 2.10b; 

Boskey 2003; Rey et al. 2007).  

 

Figure 2.10. (a) The two components of the BAp crystals that interact in vivo (adapted from Duer and 

Veis, 2013), and (b) the apatite core-hydrated layer-surrounding environment ionic exchange (adapted 

from Rey et al. 2007). 

The high BAp crystal surface area (c. 100–200 m2/g) allows the interaction between the ions of 

the fragile hydrated layer and these of the apatite core, while the hydration layer seeks to reach 

equilibrium with its surrounding medium (Figure 2.10b) (Boivin and Meunier 2003; Rey et al. 

2007; Wang et al. 2013; Weiner and Price 1986). The ionic exchanges can be distinguished into 

two different groups: a) the iso-ionic, and b) the hetero-ionic (Boivin and Meunier 2003; Neuman 

and Neuman 1953). The former (iso-ionic) take place when ions from the hydrated layer substitute 

similar ones inside the core of the crystal (Boivin and Meunier 2003; Neuman and Neuman 1953). 

The hetero-ionic substitutions occur when ions on the crystal surface are replaced by different 

ions from the surrounding environment that are normally absent from bone mineral (Boivin and 

Meunier 2003; Neuman and Neuman 1953). Thus, interaction with water is an essential 

component of the minerals’ milieu (Boivin and Meunier 2003; Wang et al. 2013). 
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Because of the differences in size (ionic radius) between the different ions, these ionic exchanges 

may lead to changes in shape, size, unit cell levels, and structure of the crystal (Boivin and 

Meunier 2003). For instance, the carbonate ions may substitute either the hydroxyl site (A-type) 

or the phosphate tetrahedron (B-type), and vice versa (Antonakos, Liarokapis and Leventouri 

2007; LeGeros 1981; Rey et al. 1989). Type B substitutions predominate in bone as type A 

substitutions require high temperatures (i.e. 900-1000° C) and exclusion of water (Antonakos, 

Liarokapis and Leventouri 2007; LeGeros 1965; LeGeros et al. 1969; Rey et al. 1989). 

Additionally, the incorporation of CO3
2ˉ into the bone apatite crystal limits the OH⎺ 

concentrations (Pasteris et al. 2004; Rey et al. 1989). However, these modes of carbonate 

substitution and the degree of hydroxylation have been debated for several decades (e.g. 

Antonakos, Liarokapis and Leventouri 2007; LeGeros 1965; LeGeros et al. 1967; Pasteris et al. 

2004; Rey et al. 1989). The exact location of the carbonate ions in the crystal structure (e.g. vacant 

phosphate ion site, phosphate tetrahedron mirror plane) in fact is still unknown (Leventouri 2006), 

while the BAp crystals are also considered to be deficient in or devoid of OH⎺ (Pasteris et al. 

2004; Wopenka and Pasteris 2005). 

The ionic substitutions affect the shape and size of the crystals by changing the lattice’s α- and c-

axes, and subsequently, the physicochemical properties of the crystal (LeGeros 1965, 1981; 

LeGeros et al. 1967, 1969). CO3
2ˉ to PO4

3ˉ substitution leads to a contraction of the unit cell as 

carbonate is smaller than phosphate, whereas a carbonate-to-hydroxyl substitution results to an 

expansion of the unit cell as CO3
2ˉ is larger than OHˉ (LeGeros et al. 1969). The level of ionic 

substitutions is also strongly related to formation, growth, maturation and 

dissolution/recrystallization (Bala, Farlay and Boivin 2013; Meneghini et al. 2003). During 

normal mineralization of bone, crystallinity and maturity usually evolve concomitantly and are 

well-correlated (Bala, Farlay and Boivin 2013). Crystallinity reflects the size and perfection of 

the crystal lattice (i.e., atomic order/disorder) which are affected by both extrinsic and intrinsic 

factors (e.g. organic matrix, distribution of non-collagenous proteins acting in the formation and 

growth of the crystals, environment, diet, aging, bone remodelling, pathologies, and medication) 

(Bala, Farlay and Boivin 2013; Boskey 2003). Mineral maturity, on the other hand, reflects the 

conversion of non apatitic precursors into apatitic mineral (Bala, Farlay and Boivin 2013). 

Reduction of the hydrated layer and a more stoichiometric structure is related to maturation of the 

inorganic content in bone and maturity of the mineral phase is also related with the number of 

carbonate substitutions in bioapatite crystals (Figueiredo, Gamelas and Martins 2012).  

ORGANIC-INORGANIC COMPOSITE 

The production of a collagen-bioapatite composite structure is a complex phenomenon of high 

interest that has been extensively studied using various techniques which can provide insights 

into bone structure and organization at different length scales (for a review of techniques see 

Georgiadis, Müller and Schneider 2016). Bone mineralization includes the cell-mediated 

https://paperpile.com/c/EyiG9J/womv
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deposition of crystalline material between the collagen fibrils (inter-fibrillar spaces) or on the 

surfaces of collagen fibrils (intra-fibrillar spaces) (Figure 2.11), with the orientation (crystal c-

axis aligned with fibril long axis) and size of BAp crystals controlled by the fibril structure and 

organization (Boskey 2003; Reznikov, Shahar and Weiner 2014b; Su et al. 2003; Weiner and 

Price 1986; Weiner and Traub 1992). Although bioapatite crystals probably are initially deposited 

in the intra-fibrillar regions (i.e. gap zones) of collagen (Nair et al. 2013) and then in the inter-

fibrillar spaces (Figure 2.11) the exact mechanisms of biomineralization and BAp crystals’ 

arrangement are still unclear (Duer and Veis 2013; Landis 1995; Rubin et al. 2003; Stock 2015; 

Wang and Nilsen-Hamilton 2013). 

 

Figure 2.11. (a) Mineralization of closely packed collagen molecules by bioapatite crystals (b; blue) that 

nucleate mainly in the collagen gaps (c) and grow preferentially in their crystal axis direction (d) (Landis 

and Jacquet 2013). 

Mineralization of the newly deposited organic matrix by secondary nucleation (i.e., the crystals 

act as nucleation sites for the newer ones) initiates 5–10 days after deposition and results in a 

mineral content of 50–70 % of the maximum level (Bala, Farlay and Boivin 2013). After this 

stage that lasts for a few days or weeks until mineralization rate decreases considerably, secondary 

mineralization begins (Bala, Farlay and Boivin 2013; Boivin and Meunier 2003). During this 

phase there is a slow increase in crystal number, size, and/or perfection until mineralization is 
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complete (i.e. 90–95% of the expected maximum level) (Bala, Farlay and Boivin 2013; Boivin 

and Meunier 2003).  

In mammalian skeletal tissues the relative amounts of the mineral, organic and water fractions 

can vary between species (Currey 1999; Zioupos, Currey and Casinos 2000). When the organic 

matrix is reinforced with mineral particles, the resulting composite increases in strength and 

becomes capable of bearing weight (i.e. tension, compression and shear forces; Currey 1999). 

Bone mineral gives strength and stiffness, while collagen gives toughness (Burr 2002). The 

mechanical properties of bone are related to this bond between the mineral (degree of 

mineralization) and organic phases (Currey 1999; Posner 1985), although the collagen-mineral 

relationship is still unclear (e.g. Weiner and Price 1986).  

DNA 

 

Figure 2.12. The three elements of the DNA nucleotide subunits composed of a five -carbon sugar 

deoxyribose, a phosphate group, and a purine (bicycle adenine and guanine) or pyrimidine (monocyclic 

cytosine and thymine) nitrogenous base (adapted from Klug et al. 2012). 

DNA (deoxyribonucleic acid) is a linear polymer made up of a fixed backbone that is built of 

repeating sugar (deoxyribose)-phosphate units covalently bound between the 5ʹ-position of one 

sugar and the 3ʹ-position of the next, forming a 3ʹ,5ʹ-phosphodiester bond (Figure 2.12; Watson 

and Crick 1953). The four planar bases (i.e. adenine (A), cytosine (C), guanine (G), and thymine 

(T)) are heterocyclic (carbon- and nitrogen-containing) aromatic rings covalently bind (glycosidic 

or glycosylic bond) to the 1ʹ-position of a deoxyribose ring to form nucleosides (Figure 2.12; 

Turner et al. 2005). When a nucleoside is bound covalently with one or more phosphate groups 

to the 3ʹ-, 5ʹ-position it is called nucleotide, and if the sugar is deoxyribose, then the compound is 
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termed deoxynucleotide (Turner et al. 2005). 

Therefore, a nucleotide in DNA consists of a sugar 

(deoxyribose), one of four bases (cytosine (C), thymine 

(T), adenine (A), guanine (G)), and a phosphate 

(Figure 2.12).  

The base pairs (bp) attach to the 1ʹ-position of each 

sugar (Figure 2.12) in any order along a DNA strand 

with a 0.34 nm space between them (Raven et al. 2016; 

Turner et al. 2005). They are held together by hydrogen 

bonds (Watson and Crick 1953) which are much 

weaker than covalent bonds (e.g. carbon-carbon or 

carbon-nitrogen bonds) that define the structures of the 

bases themselves (Berg et al. 2015). Hydrogen bonds 

are weak enough to be reversibly broken in biochemical 

processes, yet they are strong enough when form 

simultaneously to help stabilize specific structures such 

as the double helix (Berg et al. 2015). This right-handed 

double helix of 2 nm diameter is formed when two 

intertwined single strands of DNA are combined with 

the sugar-phosphate backbone on the outside and the 

bases on the inside (Figure 2.13; Watson and Crick 

1953). One chain of the DNA molecule may have any 

conceivable base sequence, but this sequence 

completely determines the sequence of its partner in the 

duplex (adenine pairs with thymine (A-T) and guanine 

pairs with cytosine (G-C) (Watson and Crick 1953). 

The exact sequence of bases (i.e. gene) along a DNA 

strand constitutes the genetic information, hence the 

instructions for assembling proteins that compose the 

synthesis of other biomolecules that form cells and 

ultimately organisms (Berg et al. 2015; Cooper 2011). 

DNA was initially considered as an extremely stable molecule due to this valuable genetic 

information that must be retained in cells. However, DNA chemical stability and decay of primary 

structure are affected in vivo by hydrolysis, temperature, pH and active oxygen (Figure 2.14; 

Lindahl 1993). DNA molecules are prone to depurination even under physiological conditions 

(i.e. c. 37° C and c. 7.4 pH) as the labile glycosidic bonds break and release the purine residues 

adenine and guanine, followed by chain rupture at the weakened abasic sites, rather than by direct 

Figure 2.13. The 3D structure of DNA 

(Raven et al. 2016). 

https://paperpile.com/c/EyiG9J/ZX2C
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cleavage of phosphodiester bonds between two intact nucleotides (Lindahl and Nyberg 1972; 

Lindahl 1993). The rate of depurination is temperature sensitive and increases with increasing 

temperature, while there is no repair system (Lindahl 1996). Hydrolytic deamination of cytosine 

to uracil has also been shown to occur at a significant rate in DNA under similar conditions, while 

deamination of purines is a minor reaction (Lindahl 1993, 1996). In strong acid and elevated 

temperatures (e.g. 100 °C) nucleic acids are completely hydrolysed to their components (bases, 

sugar and phosphate) (Turner et al. 2005). Alkaline environments have less severe effects on DNA 

structure such as denaturing of DNA due to cleavage of hydrogen bonding between the base pairs 

that can result to the breaking of the double-stranded structure of DNA (Turner et al. 2005). 

Ultraviolet light and ionizing radiation can also damage intracellular DNA, while oxidatively 

generated base lesions (Figure 2.14) can occur by active oxygen during normal metabolism with 

DNA pyrimidines being particularly sensitive to ring saturation, fragmentation, and condensation 

(Cadet and Wagner 2013; 1996). 

 

Figure 2.14. Major sites of hydrolytic attack indicated by black arrows (adapted from Lindahl 1993). 



 
 

23 
 

2.2.2. MICROSTRUCTURE 

Bone exhibits two varieties of tissue with distinct microstructural characteristics: a) woven, 

primary, or immature; and b) lamellar, secondary, or mature (Figure 2.15; Smith 1960), while 

fibrolamellar tissue (i.e. plexiform) is a combination of lamellar and parallel fibred tissue 

(Reznikov, Shahar and Weiner 2014a; Weiner and Wagner 1998) typically found in long bones 

of large and medium-sized mammals (e.g. cow, pig and sheep; Martiniaková et al. 2006, 2007; 

Mulhern and Ubelaker 2001). During the formation of the skeletal tissues woven bone appears 

first. It is a temporary, premature form of bone tissue which is produced in utero during the initial 

growth of foetuses and infants and it is later replaced by lamellar tissue (Currey 2002; White, 

Black and Folkens 2012). Woven bone also appears in sites of fracture repair and in bone tumours 

as a response to trauma or pathologies in adult individuals, which explains why it is formed more 

rapidly than lamellar bone (Currey 2002; Ross and Pawlina 2011; White, Black and Folkens 

2012). It has a fibrous appearance without lamellae and more osteocytes per unit area which are 

randomly arranged compared to lamellar bone (Figure 2.15; Ross and Pawlina 2011; Weiner and 

Wagner 1998; White, Black and Folkens 2012). 

 

Figure 2.15. Transverse histological sections of human bone. (a) Woven tissue with amorphous 

appearance and several osteocytes; (b) lamellar tissue (×300 magnification) with parallel (outer 

circumferential and interstitial lamellae) or concentric layers (Haversian systems or o steons) containing 

osteocyte lacunae. Notice the cement line at the periphery of osteons (adapted from Memorang 2018 (a) and 

Clermont, Lalli and Bencsath-Makkai 2013 (b)). 

Mammalian adult bone is primarily lamellar with collagen fibres arranged in discrete layers 

(lamellae) either parallel to each other (interstitial and circumferential lamellae) or concentrically 

organized (osteons or Haversian systems) around vascular canals (Figure 2.15; Smith 1960). 

Circumferential lamellae are a series of lamellae which are found in periosteal and endosteal 

regions with a large radius of curvature parallel to the forming surfaces of bone (Figure 2.15b; 

Crescimanno and Stout 2012; Reznikov, Shahar and Weiner 2014a). Osteons have a series of 

concentric lamellae and cover roughly half the area of mesosteal (mid-cortical) bone with the 

https://paperpile.com/c/EyiG9J/eUDP+Lg8V+x5sk
https://paperpile.com/c/EyiG9J/eUDP+Lg8V+x5sk
https://paperpile.com/c/EyiG9J/7MQQ
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other half filled by interstitial lamellae (Figure 2.15b; Burr, Schaffler and Frederickson 1988; 

Crescimanno and Stout 2012; Ross and Pawlina 2011; Schaffler, Burr and Frederickson 1987; 

Schwartz 2007; Skedros et al. 2005). They are distinguished into primary and secondary, with 

primary osteons appearing as islands with lamellar bone surrounding them and a lack of distinct 

mineralized interface at the outermost lamella (i.e. cement line; Schwartz 2007). During the first 

stage of their formation, tubular cavities within the bone are created by the absorption of the tissue 

surrounding pre-existing vascular canals in primary osteons (Smith 1960). Next, an appositional 

growth of new bone occurs at the walls of the cavities until a canal (Haversian) of definitive size 

is reformed (Smith 1960).  

The secondary (mature) osteons 

have an average diameter of 

about 200-300 μm and an 

average length of 3-5 mm, 

although their size and number 

can vary between and within 

skeletal elements as well as 

species (Cattaneo et al. 1999; 

Martiniaková et al. 2006, 2007; 

Mulhern and Ubelaker 2001; 

Van Oers et al. 2008; Urbanová 

and Novotný 2004; White, 

Black and Folkens 2012; 

Lander, Brits and Hosie 2014). 

These units are demarcated by 

the cement line that 

distinguishes them from the 

surrounding tissues (Figure 

2.15b; Smith 1960). Any 

subsequent secondary osteons 

are developed in relation to the 

vascular canals of similar pre-

existing secondary osteons 

(Smith 1960). As more and 

more secondary osteons are formed the amount of woven-fibred bone, primary osteons and 

surface bone is progressively reduced (Smith 1960). Additional transverse/oblique canals (i.e. 

Volkmann’s canals) link the Haversian canals to create a network that transfers the nutrients to 

the cells (Schwartz 2007; White, Black and Folkens 2012). 

Figure 2.16. The four most common collagen fibril organization 

patterns. (a) parallel collagen fibrils commonly found in bovids 

(mineralized turkey tendon); (b) woven fibres with fibril bundles 

showing different orientations (human foetus femur); (c) plywood -

like structure of lamellar bone (baboon tibia); (d) radial fibril arrays 

with collagen fibrils in one plane (human dentin) (Weiner and 

Wagner 1998). 
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While the circumferential and osteonal lamellar structures are the products of different processes, 

modelling and remodelling, no differences have been observed in their structures (Reznikov, 

Shahar and Weiner 2014b). All lamellae in mature bone contain regularly arranged osteocyte 

lacunae (Figure 2.15b) interconnected with a well-organized canalicular network compared to 

randomly and denser organized lacunae interconnected with more sparse and irregular canaliculi 

in woven tissue (Figure 2.15a; Kollmannsberger et al. 2017; Ross and Pawlina 2011). Lamellae 

have an average width of 3-4 μm (although it can vary between species) and each lamella has 

collagen fibres parallel to each other but in successive lamellae the collagen fibres are oriented in 

different directions (plywood appearance) giving strength to the structure (Figure 2.16; Almany 

Magal et al. 2014; Giraud-Guille 1988; Reznikov, Shahar and Weiner 2014a; Weiner and Wagner 

1998). Fibrils parallel to the bone long axis are laid down first, whereas in trabecular bone the 

collagen fibril orientation is characterized by only two alternating components. In the first one, 

the collagen fibrils are aligned with the long axis of the trabecula, whereas in the second fibrils 

are oblique to the long axis of the trabecula either at 60–70° or 30–40° (Reznikov et al. 2015; 

Weiner, Traub and Wagner 1999). The collagen fibrils in woven tissue are arranged into bundles 

with up to 30 μm diameter that are loosely packed and poorly oriented (Figure 2.16b), particularly 

in the case of the small-diameter bundles (Ross and Pawlina 2011; Weiner and Wagner 1998; 

White,Black and Folkens 2012). The collagen microfibres are irregular in thickness and do not 

have the linear orientation observed in the later stages of formation (Ortner and Turner-Walker 

2002).   

2.2.3. MACROSTRUCTURE 

Cortical or compact bone (substantia compacta) is an anisotropic, dense, hard, solid, mass, and 

represents approximately the 80% of the skeletal mass. It forms a rigid outer wall on the shafts of 

long bones (thinner in articular regions than mid-diaphysis) and external surfaces that resists 

deformations (Figure 2.17; White, Black and Folkens 2012). Trabecular or cancellous bone is 

spongy bone (substantia spongiosa) that represents the remaining 20% of the skeletal mass. It 

consists of thin plates that form a loose mesh in the inner parts of bone (Figure 2.17; Martin et 

al. 2015). It is more lightweight, and it is found in flat bones sandwiched between compact bone, 

in the ends of long bones and in irregular bones (White, Black and Folkens 2012). In living bone, 

the pores are filled with red marrow which is gradually replaced by the yellow marrow in later 

stages of growth and adulthood (Ross and Pawlina 2011; White, Black and Folkens 2012). The 

trabeculae are about 200 μm thick and they have a variable arrangement (Martin et al. 2015). Both 

cortical and trabecular human bone are composed of lamellar tissue, with the unidirectional fibril 

bundles showing a variety of alternating orientations in lamellae and a generally aligned 

orientation with the long axis of the individual strut in trabecular lamellae (Reznikov, Shahar and 

Weiner 2014a).  
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Figure 2.17. Bone macrostructure (adapted from White, Black and Folkens 2012). 
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2.3. PETROUS BONE 

The human petrous bone is a pyramid-shaped, massive portion of the endocranial aspect of the 

temporal bone (Figure 2.18) and projects antero-medially to separate the temporal and occipital 

lobes of the brain (White, Black and Folkens 2012). It is comprised of the middle and inner ear, 

with the outer ear partly located out of the skull (pinna) and partly penetrating the skull for 2-3 

cm, i.e. external auditory meatus (Figure 2.19a; Green 1976; Luce 2013; Moller 2000; Yost 

1994). The middle ear is a bony cavity of around 2 cm3 volume that contains the tympanic 

membrane and the ear ossicles (malleus, incus, stapes) which transport vibrations from the cone-

shaped tympanic membrane to the oval window (Figure 2.19a; Green 1976; Moller 2000; Yost 

1994).  

 

Figure 2.18. Right temporal bone. (a) lateral view with the anterior towards the right and superior up; 

(b) medial view with the anterior towards the left and superior up . EAM: external auditory meatus; IAM: 

internal auditory meatus (adapted from Bohne and Militchin 2012). 

The inner ear cavity (Figure 2.19) is approximately 2 cm long and houses the three main 

components of the bony labyrinth: (a) the cochlea which is a coiled bony tube resembling a snail 

shell; (b) the vestibule; and (c) the three semi-circular canals (Green 1976; Yost 1994; Moller 

2000). The cochlea is situated at the antero-lateral extension of the internal auditory canal, and if 

uncoiled, it would be around 3.5 cm in length (Figure 2.19b; Green 1976). The vestibule is 

approximately 4 mm in diameter and connects the cochlea with the semi-circular canals (Figure 

2.19a) which are orthogonally-oriented and each of them (i.e. lateral, posterior, superior) is 

around 1 mm in diameter (Moller 2000). 

Blood and nervous supply to the inner ear is carried out through the internal auditory canal that 

carries the facial and cochlear nerves (Figure 2.19a) as well as the internal auditory artery (IAA) 

that branches to the antcrior vestibular, cochlear and vestibulocochlear (Mazzoni 1972). Blood 

supply to the inner ear comes only from the IAA artery with no collateral supply (Green 1976; 

Mazzoni 1972). The internal carotid artery, the middle meningeal artery (internally) and the 

middle temporal artery (externally) contribute to the blood supply of the petrous bone (Figure 

2.19b).  
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Figure 2.19. Anterior (a) and superior (b) view of the petrous bone (adapted from Bohne and Militchin 2012 

(a) and Sun et al. 2018 (b)). 

The bony capsule surrounding the membranous labyrinth develops predominantly by 

endochondral ossification similarly to long bones, but unlike long bones the petrous bone reaches 

adult size in utero (Eby and Nadol 1986; Nemzek et al. 1996; Richard et al. 2010). Development 

begins at 21 to 24 days of gestation and each part follows distinct growth rates (Jeffery and Spoor 

2004). Formation of the membranous semicircular canals begins at 7-8 gestational weeks with the 

superior developing first, followed by the posterior and the lateral (Nemzek et al. 1996). The 

semicircular canals have attained adult size at 24-25 weeks or earlier (Jeffery and Spoor 2004; 

Richard et al. 2010). A progressive torsion of each semicircular canal was also observed during 
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fetal development (Richard et al. 2010). The cochlea has achieved about half of its size at 8-11 

weeks, and the full adult configuration has been completed until 24-26 weeks (Jeffery and Spoor 

2004; Nemzek et al. 1996; Richard et al. 2010). The oval window and the vestibule develop until 

gestational weeks 35 and 39, respectively (Richard et al. 2010). Although the subcomponents of 

the inner ear have attained their adult size by 5-6 prenatal months (e.g. Jeffery and Spoor 2004), 

an increase in the overall size of petrous bone throughout fetal life and infancy (Figure 2.20) has 

been reported by other researcher (Fazekas and Kósa 1978; Nagaoka and Kawakubo 2015). 

 
Figure 2.20. Age related changes to the right petrous pyramid (adapted from Nagaoka and Kawakubo 2015 (a) and 

Schaefer, Black and Scheuer 2009 (b)). 
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Figure 2.21. Longitudinal section of the left pet rous bone of a 74-year-old man within the area of the 

cochlea microradiogram (top) and schematic distribution of the different tissue layers (bottom). The 

arrows mark the borders of the endosteal layer. EO=endosteal, POL=inner periosteal layer, POF=outer 

periosteal layer, COC=cochlea, MAI=internal acoustic meatus (adapted from Doden and Halves 1984). 

A lack of remodelling in petrous bone has been noted both in humans (Doden and Halves 1984; 

Frisch et al. 2000; Jeffery and Spoor 2004) and cetaceans (e.g. de Buffrenil, Dabin and Zylberberg 

2004). The high number of viable osteocytes in the inner ear possibly inhibits osteoclast 

maturation and activation through the secretion of the anti-resorptive osteoprotegerin (OPG) and 

seems to serve as a pool throughout life (Bloch and Sørensen 2010; Bloch, Kristensen and 
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Sørensen 2012). Petrous bone’s sui generis nature is also manifested by three tissue zones that 

differ compared to long bones (Doden and Halves 1984). These include: a) an outer periosteal; b) 

an endosteal that surrounds the canals and cochlear surfaces; and c) an inner periosteal that can 

replace both the outer periosteal and endosteal tissues (Figure 2.21).  

The outer periosteal tissue is considered less mineralized in vivo and has its collagen fibres 

arranged parallel to the bone’s surface (Doden and Halves 1984). Contrariwise, the inner 

periosteal tissue has randomly oriented collagen fibres and two different degrees of mineralization 

(Doden and Halves 1984) linked to different concentrations of Ca, P, Sr and Mg (Katić et al. 

1991). In dolphins, the collagen matrix is composed of very thin fibrils of 10-30 nm diameter, 

arranged in a dramatically reduced network compared to normal bone that gives plenty of room 

to bioapatite crystals, thus increases hardness (de Buffrenil, Dabin and Zylberberg 2004). Such a 

scenario has been also confirmed by Zioupos et al. (1997) who found increased hardness and 

Young’s modulus in whale’s tympanic bulla (c. 83 % mineral) accompanied by low bending 

strength. As seen in Figure 2.22, only the extreme case of the Mesoplodon rostrum (c. 96 % 

mineral) which is near the endpoint of mineralization process and tooth enamel present higher 

hardness (Waters 1980). Unfortunately, the mechanical properties of the human petrous bone are 

still unknown. 

 

Figure 2.22. Species and skeletal element variation in mineral, organic and water fractions (Kendall et al. 

2018). 
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CHAPTER 3: BONE DIAGENESIS -                  

A REVIEW OF CURRENT RESEARCH 

 

The preservation of biomolecules into archaeological and geological timescales within bone has 

been the focus of a great number of studies over the past few decades. However, post-mortem 

degradation of bone is a very complex process and while some bones can be well-preserved, 

others can rapidly degrade. This chapter reviews the main diagenetic pathways responsible for 

the post-depositional modifications in bone, a process known as diagenesis. Sections of this 

chapter have been published in Kendall, C., Eriksen, A. M., Kontopoulos, I., Collins, M. J., and 

Turner-Walker, G. (2018), Diagenesis of archaeological bone and tooth. Palaeogeography, 

palaeoclimatology, palaeoecology, 491, 21-37. 10.1016/j.palaeo.2017.11.041.  

3.1. PRESERVATION OF MICROSTRUCTURE 

The use of histology for the study of archaeological bone has changed the way archaeologists and 

anthropologists interpret osteological data. Histological analysis of thin or thick bone sections can 

provide valuable information on the age-at-death, pathology, past human lifestyles (e.g. socio-

economic groups), distinction between human and non-human and/or burned and unburned bone, 

and diagenesis (Assis, Santos and Keenleyside 2016; Bell, Skinner and Jones 1996; Blumenschine 

et al. 2007; Cattaneo et al. 1999; Cuijpers and Lauwerier 2008; De Boer and Maat 2012; 

Domínguez-Rodrigo and Barba 2006; Garland 1989; Grupe and Garland 1993; Hanson and Cain 

2007; Mulhern and Ubelaker 2001; Miszkiewicz and Mahoney 2016; Stout 1978; Stout and 

Teitelbaum 1976; Turner-Walker and Mays 2008).  

Histotaphonomy is the investigation of bone diagenesis at the microstructural level and it is 

widely applied for the study of the microstructural changes caused by various physical, chemical 

and biological processes post-mortem (Bell 1990, 2012; Bell and Elkerton 2008; Turner-Walker 

and Jans 2008). These histomorphological modifications are the product of the attack by bacteria, 

fungi, presence of algae, collagen degradation, and deterioration of bioapatite (Collins et al. 2002; 

Hedges 2002). For that reason, bone histology is currently a fundamental method used for the 

better understanding of the diagenetic histories of skeletal remains (Booth 2016; Booth, 

Chamberlain and Parker Pearson 2015; Hedges, Millard and Pike 1995; Hollund et al. 2012; Jans 

et al. 2004; Turner-Walker 2008).  

The usefulness of histology for the investigation of microstructural changes present in skeletal 

remains has been attested by the study of samples from many different environments across the 

world (Booth 2016; Hollund et al. 2012; Jans et al. 2004; Nielsen-Marsh and Hedges 2000a; 

Smith et al. 2007). The application of optical microscopy and scanning electron microscopy 

https://paperpile.com/c/EyiG9J/KLf8+AYYt+EzTs+P36v/?noauthor=0,1,0,0
https://paperpile.com/c/EyiG9J/KLf8+AYYt+EzTs+P36v/?noauthor=0,1,0,0
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(SEM)/backscattered electron (BSE) can provide a wealth of information for the better 

understanding of histotaphonomy, while transmission electron microscopy (TEM), confocal 

microscopy and synchrotron micro-computed tomography have been occasionally applied 

(Ascenzi and Silvestrini 1984; Booth 2016; Fernandez-Jalvo et al. 2010; Hollund et al. 2012; 

Koon, Nicholson and Collins 2003; 2010; Maggiano et al. 2006; Pesquero et al. 2015; Reiche et 

al. 2011).  

Depending on the nature of the study, preparation of thin sections is usually required (Garland 

1989; Grupe and Garland 1993; Turner-Walker and Mays 2008). Preparation of thin sections of 

embedded specimens in synthetic resin using a microtome or grinder to achieve the desired 

thickness is the most common methods used in palaeohistology (Booth 2016; Garland 1989; 

Turner-Walker and Jans 2008). However, some of the reasons palaeohistology remained 

underdeveloped for several decades is its destructive nature and the fragility of archaeological 

and fossil bone that make thin sectioning very challenging (Assis, Santos and Keenleyside 2016).  

Methodological approaches have significantly improved throughout the last decades and 

improvements in instrumentation now allows thin sectioning of undecalcified specimens of 

archaeological origins without embedding them in resins (De Boer and Maat 2012; Kontopoulos, 

Nystrom and White 2016). Recently, micro-computed tomography (micro-CT) has been proposed 

as a non-destructive alternative to histology for the examination of post-mortem microstructural 

changes in archaeological bone (Booth, Redfern and Gowland 2016; Dal Sasso et al. 2014). 

Nevertheless, micro-CT can be less suitable for the study of bone diagenesis as samples need to 

be around 1 cm in diameter (less-destructive but not non-destructive) to visualize diagenetic 

alterations, while there is also a lack of information regarding staining and inclusions (Booth, 

Redfern and Gowland 2016).   

3.1.1. MICROBIAL ACTIVITY, GENERALIZED DESTRUCTION, CRACKING, 

INCLUSIONS 

Microbial activity is commonly identified in archaeological bone (Jans et al. 2004) and it is 

manifested by microscopic focal destruction (MFD) sites consisted of foci either rounded, 

branched or interlinked that vary from few microns to hundreds of microns in diameter (Bell 

1990; Garland 1989; Hackett 1981). The different types of microbial attack have been 

successfully presented by Hackett (1981) who provided the first description of MFD and 

introduced a qualitative method for the evaluation and classification of the microstructural 

alterations observed in bone (Figure 3.1). These include one type of fungal tunnelling (i.e. Wedl), 

and three types of bacterial tunnelling (i.e. non-Wedl): a) linear longitudinal; b) budded; and c) 

lamellate) based on the shape, size, abundance, distribution, demineralization, and mineral 

redeposition/cuffing (Hackett 1981). Although distinction between the different types of bacterial 

tunnelling is often possible, occasionally categorizing tunnels can be challenging due to the 
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gradual progression of modifications (Hackett 1981; Pesquero et al. 2015) and similarities with 

pathological modifications in bone microstructure (Bell 1990; Piepenbrink 1986). 

 

Figure 3.1. Types of microbial tunnelling  – Schematic representation of MFD at the transverse 

(semicircle) and longitudinal (rectangle) levels (adapted from Hackett 1981). 

Wedl tunnels are considered to be produced by the lytic action of fungi (Bell 1990; Hackett 1981; 

Marchiafava, Bonucci and Ascenzi 1974; Wedl 1864). Although the way fungi produce tunnelling 

is not clear, the attack of the inorganic and organic content of bone by enzymes located inside and 

outside the fungus membrane is the most likely scenario (Marchiafava, Bonucci and Ascenzi 

1974). In transverse bone sections, these appear as branched, almost empty canals of 5-10 μm in 

diameter (Figure 3.1; Hackett 1981). Fungal action is not accompanied by remineralization 

around the edges of the foci (i.e. no cuffing) and it often has ill-defined outline under plane 

polarized light (Figure 3.2; Hackett 1981).  

The histological analysis of fragments of human vertebrae, autoclaved fragments (i.e. 100 or 200 

for 20 min.) of human vertebrae and rat bone fragments buried in flower pots with garden soil for 

45 days at 20° C, has shown that fungi of the mucor species can be responsible for microboring 

of bone to utilize the tissue for energy (Marchiafava, Bonucci and Ascenzi 1974). The process 

that Marchiafava et al. (1974) followed, however, may have altered the mineral-protein bond and 



 
 

36 
 

may have resulted in a bone more susceptible to microbial attack (Turner-Walker 2012). 

Furthermore, it is not clear which specimens displayed these modifications and there are no 

accompanying images to show their appearance and characteristics (Turner-Walker 2012). 

Further studies have also identified other species such as Ascomycota, Chytridiomycota, 

Stachybotrys, Crysosporium, and Cladosporium that can dissolve and degrade the bone tissue 

(Keenan, Engel and Elsey 2013; Piepenbrink 1989), although their amount can vary significantly 

in different skeletal elements (Keenan, Engel and Elsey 2013). 

 

Figure 3.2. Fungal tunnelling  – Left: Thin section of a human femur exhibiting Wedl tunnelling after 

inoculation with Stachybotrys  (Piepenbrink, 1989). Right: SEM microphotograph showing fungal attack 

(black arrow) with tunnels penetrating the bone from the periosteal surface (Fernandez-Jalvo et al. 2010). 

Regarding bacterial (non-Wedl) tunnelling in transverse sections, the majority of the MFD are 

usually in the form of linear longitudinal and budded tunnelling, and only a small number 

demonstrates lamellate (Jans et al. 2004). Linear longitudinal tunnels appear as small rounded 

opaque foci ranging from 5-10 μm to 50 μm in diameter, while budded tunnels appear as dark 

frond-like tunnels around 30 μm or wider (Figure 3.3; Hackett 1981). A hypermineralized tissue 

(or cuffing) characterized by increased Ca and P concentrations (Pesquero et al. 2015) usually 

surrounds these foci (Figure 3.3). This is formed through redeposition of mineral and waste 

products by the micro-organisms which create these foci (Hackett 1981; Garland 1989). It usually 

ranges from 3 to 6 μm, surrounding mostly the smaller non-Wedl MFD, and when present, it 

usually inhibits further expansion of the MFD (Hackett 1981).  

Linear-longitudinal and budded tunnels are usually found inside osteons and their expansion 

outside the osteon is also hindered by the presence of the cement line (Hackett 1981). Cement 

lines usually remain distinct, except in cases where degradation is very advanced (Hanson and 

Buikstra 1987). Although small areas of unaltered bone can be found next to bacterial degraded 

areas that are surrounded by hyper-mineralized rims (Figure 3.3), tunnels do not enter the area of 

another tunnel, regardless the density of MFD which can vary even within small regions of bone 
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tissue (Hackett 1981; Jackes et al. 2001; Piepenbrink 1986). Both types create branched tunnels 

parallel to each other that travel for few hundreds of microns along the longitudinal axis of bone 

(Figure 3.3; Jackes et al. 2001; Kontopoulos, Nystrom and White 2016), and this indicates that 

bacteria follow the orientation of the collagen fibres in different parts of the bone to exploit weak, 

less mineralized tissues (Turner-Walker 2008).  

 

Figure 3.3. Left image - Non-Wedl MFD and hypermineralized rims : Bacterial colonies in adult sheep’s 

tibia characterized by small pores of 0.1-2 μm in diameter surrounded by cuffing (double -headed black 

arrows) next to unaffected bone (uB). Black holes (white asterisks) represent non-Wedl MFD (Fernandez-

Jalvo et al. 2010). 

Right image - Linear Longitudinal and Budded foci  – Longitudinal section of sus scrofa bone with linear 

longitudinal (black arrow) and budded (dotted black arrows) tunnels travellin g along the longitudinal 

axis in the periosteal/sub-periosteal area. Some dark inclusions within the tunnels observed (Kontopoulos, 

Nystrom and White 2016). 

Lamellate foci are large tunnels that can even reach a size of 60 μm x 250 μm in transverse 

sections, and contrary to the other two non-Wedl tunnels they can cross the cement lines of the 

osteons (Hackett 1981). They are produced by denaturing alternate lamellae which often makes 

difficult the distinction of different foci (Hackett 1981). They are visible in plane polarized light 

mainly as bright features, whereas in cross-polarized images the birefringent rims surrounding 

the lamellate foci can be seen due to the survival of collagen fibres (Figure 3.4; Hackett 1981). 

The rims usually disappear when the foci increase in size from mono-lamellate to poly-lamellate, 

although cuffing may be displayed in some specimens (Hackett 1981). Lamellate tunnelling is 

usually observed in samples that come from large and densely occupied cemeteries (Jans et al. 

2004), and they frequently demonstrate a mosaic pattern (Figure 3.4) when packed (Hackett 

1981). In longitudinal sections, a similar to transverse rectangular appearance is observed outlined 

by the rims (Hackett 1981).  

The inoculation and incubation of bone specimens with different bacterial colonies (e.g. Bacillus 

subtilis, Pseudomonas fluorescens, Clostridium sporogens, pefringens and septicum) has proved 

that MFD are the product of the activity of certain bacterial species (Balzer et al. 1997; Jackes et 

https://paperpile.com/c/EyiG9J/HWn3
https://paperpile.com/c/EyiG9J/HWn3
https://paperpile.com/c/EyiG9J/NWJB
https://paperpile.com/c/EyiG9J/NWJB
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al. 2001). Specimens incubated with P. intermedia, C. perfringens and C. septicum demonstrated 

no histological changes, contrariwise to specimens with C. sporogens or C. histolyticum (Dixon, 

Dawson and Taylor 2008; Jackes et al. 2001), while Proteobacteria (20-35%), Actinobacteria (2-

11%), Bacteroidetes (2-11%) and Firmicutes (1-10%) have been recognized in the bacterial 

communities, although many intra-individual variations may exist (Keenan, Engel and Elsey 

2013). The different bacterial species cause different modifications, but they all excrete 

collagenases to digest the bone organic matter (Jackes et al. 2001).   

 

Figure 3.4. Lamellate foci – The characteristic mosaic pattern observed in plane polarized light (left) 

and survival of birefringence in some areas of the section (right) (adapted from Hackett 1981). 

 

Figure 3.5. Generalized destruction  – Bone micro-morphology displays an amorphous appearance and 

cracks with no features such as lamellae and osteocyte lacunae retained (Tjelldén et al. 2018). 
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Generalized destruction (Figure 3.5) is opposed to focal destruction and represents the 

degradation of extended areas of bone tissue that do not retain any histological features (Garland 

1989). Bone appears amorphous (e.g. no lamellae) and the sections as disintegrated, dark areas 

under plane polarized light, even though some morphological features might be still recognized 

(Garland 1989). In crossed polarized light, there is considerable reduction in birefringence in the 

amorphous areas (Garland 1989). This loss of the histological features and the reduced 

birefringence in generalized destruction areas is assumed to be caused due to the loss of the 

organic content (Collins et al. 2002; Jackes et al. 2001; Tjelldén et al. 2018).  

Other features can be classified into inclusions and infiltrations (Garland 1989). Archaeological 

bone may be filled with detrital or other exogenous material that penetrates the pores and 

trabecular spaces (Bodzioch and Kowal-Linka 2012). Inclusions are described as exogenous 

material incorporated into the bone spaces (Haversian canals, osteocyte lacunae, canaliculi or 

trabecular bone) and are distinguished into biological (e.g. fungi, hyphae, bacteria) and mineral 

inclusions (Garland 1989). Similarly, infiltrations may replace osseous material, and these can be 

identified as stained sites with granular appearance (Garland 1989). Generally, stained bone 

tissues from humic acids or other exogenous material are considered resistant to microbial attack, 

although they usually display reduced birefringence (Hedges 2002; Hollund et al. 2012).  

 

Figure 3.6. Inclusions – SEM images of framboidal pyrite in pore spaces (left; Turner-Walker 2008) and 

magnesium phosphate inclusions in Haversian canals (right; Zangarini, Trombino and Cattaneo 2016). 

Iron-rich inclusions (e.g. framboidal pyrite) have been documented in bone as 1-10 μm spherical 

aggregates that gradually develop to massive, crystalline pyrite (Figure 3.6; Hollund et al. 2012; 

Pesquero et al. 2015; Pfretzschner 2004; Turner-Walker 1999). They primarily fill up osteocyte 

lacunae and canaliculi without damaging the bone, while at the same time they can block the path 

to other exogenous substances (Pfretzschner 2004; Turner-Walker 1999). Early diagenetic pyrite 

can be also found in Haversian canals but usually, it does not fill the whole cross section due to 
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the larger volume of these cavities (Pfretzschner 2004). Iron oxides are also probably responsible 

for the orange/brown staining observed in the surrounding areas (Bodzioch and Kowal-Linka 

2012; Hollund et al. 2012). 

Magnesium phosphate crystallizations can be observed within bone Haversian canals or fissures 

(Figure 3.6) as early as few weeks post-mortem probably due to the permeation of the soft tissue 

decomposition fluids (Zangarini, Trombino and Cattaneo 2016). Metal oxides and sulphur 

trioxide may also be noticed in subsequent early diagenetic stages following soft tissue 

decomposition (Zangarini, Trombino and Cattaneo 2016). This inclusion may colour bone tissues 

violet-blue and are considered as evidence of early vivianite formation in bone buried in anoxic 

or organic rich environments (Zangarini, Trombino and Cattaneo 2016).  

 

Figure 3.7. Cracking – SEM microphotographs of bone sections mounted in resin and p olished. Sheep’s 

tibia showing micro-cracking (left) and radio-ulna displaying cracking and micro-cracking (right). The 

latter specimen was covered by moss and lichen that penetrated the bone (Fernandez-Jalvo et al. 2010). 

Manganese oxides can also occupy the open spaces (i.e. canaliculi, osteocyte lacunae and cracks) 

in bone since early diagenetic stages, while calcite usually precipitates in later diagenetic stages 

(Dal Sasso et al. 2014; Hollund et al. 2012; Pfretzschner 2004). This assumption was based on 

observations which shows manganese oxides adhering to the surfaces of the spaces and calcite 

filling the remaining areas, although pyrolusite (MnO2) has also been recognized in fossilized 

dinosaur bones from China (Dal Sasso et al. 2014; Pfretzschner and Tütken 2011). 

Cracks and micro-cracks play an important role in bone diagenesis by opening new pathways 

through the bone matrix (Figure 3.7) that increase the leaching of the already degraded collagen 

and enhance the exchange of ions between water and bioapatite crystals (Pfretzschner 2004). They 

can be observed in samples covered by moss, algae or lichens as they use microstructural features 

to penetrate the bone tissue (Fernandez-Jalvo et al. 2010). Cracking close or within osteons relate 

to changes in density, collagen degradation and mineral dissolution, and they may appear even in 
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early diagenetic stages (Bell 1990; Pfretzschner and Tütken 2011). Radial micro-cracks (Figure 

3.8B) that cross the osteon boundaries due to water uptake and swelling can be observed in 

secondary osteons of specimens buried in aquatic environments (Pfretzschner and Tütken 2011).  

 

Figure 3.8. Microcracking types – Schematic representation of the different microcracking types 

observed in archaeological and fossil bone: (A) normal bone, (B) radial, (C) central, and (D) peripheral 

microcracks (Pfretzschner and Tütken 2011). 

Desiccation can also lead to cracking as collagen loses water which results to a volume decrease 

that causes shrinkage and eventually cracking (Pfretzschner and Tütken 2011). Cracks may appear 

on the walls of Haversian canals and radiate outwards for short distances (i.e. central cracks) or 

they might be observed at the inner side of cement lines in secondary osteons (i.e. peripheral 

cracks) without spreading outside osteonal margins though (Figure 3.8C-D; Pfretzschner and 

Tütken 2011). Cracking can also be attributed to physical stresses during sample preparation, e.g. 

grinding, thin-sectioning, high vacuum of the SEM or even storage (Dal Sasso et al. 2014; Turner-

Walker 2012; Lander, Brits and Hosie 2014).  

3.1.2. HISTOLOGICAL INDICES 

The Oxford Histological Index (OHI) was coined by Hedges, Millard and Pike (1995) for the 

quantification of the histological changes in archaeological bone using optical microscopy (i.e. 

plane polarized light) and/or SEM/BSE. It categorizes specimens into six groups (Figure 3.9) 
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based on their percentage of intact histology and the presence of MFD (Hedges, Millard and Pike 

1995). Very well-preserved bone should display microstructural features such as lamellae, 

osteocytes, canaliculi and Haversian canals at least across 95% of a section to be assigned an OHI 

value of 5 (Figure 3.10; Hedges, Millard and Pike 1995). Conversely, all these features should 

be absent across the 95% of a section (Figure 3.10) to be characterized as poorly preserved and 

receive an OHI value of 0 (Hedges, Millard and Pike 1995).  

Millard (2001, p.640) 

Index Approx. % of intact bone Description 

0 <5 No original features identifiable, except that Haversian canals may 

be present 

1 <15 Haversian canals present, small areas of well-preserved bone, or 

lamellar structure is preserved by the pattern of destructive foci 

2 <50 Some lamellate structure is preserved between destructive foci 

3 >50 Some osteocyte lacunae preserved 

4 >85 Bone is fairly well preserved, with minor amounts of destructive 

foci 

5 >95 Very well preserved, virtually indistinguishable from fresh bone 

Figure 3.9. The OHI as modified by Millard (2001) to include the 33-67% range which was overlooked in Hedges, 

Millard and Pike (1995). 

The OHI is the primary tool used for the quantitative assessment of histological sections for the 

study of bone diagenesis (Booth, Redfern and Gowland 2016; Jans et al. 2004; Nielsen-Marsh 

and Hedges 2000a; Smith et al. 2007), while the general histological index (GHI) introduced by 

Hollund et al. (2012) can be used as analogous to the OHI as described by Millard (2001). The 

latter includes generalized destruction, cracking, and staining in the assessment (Hollund et al. 

2012). However, limitations of both indices include the difficulty to estimate the degree of 

alterations on a spatial scale larger than this of the field of view and the inter-observer error 

(Hedges, Millard and Pike 1995).  

 

Figure 3.10. OHI Classification  – Images of specimens showing an OHI value of 5 with very good 

preservation, virtually indistinguishable from fresh bone (left) and an OHI value of 0 with no original 

features identifiable (right) (Hedges, Millard and Pike 1995). 
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Additionally, although the unaltered regions of bone with an OHI value of 4 or 5 are assumed to 

contain well-preserved collagen, specimens displaying extensive microbial attack may retain 

variable quantities of collagen which makes OHI usually a poor predictor of collagen preservation 

(e.g. Hedges, Millard and Pike 1995; Smith et al. 2007). Bone can preserve its histological 

integrity without preserving its collagen content which is an indication of protein loss due to 

hydrolysis (Collins et al. 2002; Hedges, Millard and Pike 1995). The ‘Apigliano style 

degradation’ is such an atypical diagenetic pattern, for instance, is characterized by such a loss of 

collagen but no microbial attack accompanied by increased crystallinity, resembling fossilization 

(Jans et al. 2004; Smith et al. 2002). Preservation of small areas of bone within a poorly-preserved 

specimen could also potentially explain the often weak OHI-collagen relationship.  

The relationship between histological and endogenous DNA preservation in archaeological bone 

although claimed strong by Hollund et al. (2016) the low number of samples examined in this 

study hinders further assumptions. Additionally, the relationship between OHI-DNA in the outer 

and middle cortical areas within the same specimens was actually weak (R2=0.35), and samples 

that displayed an OHI of 5 had endogenous DNA percentages varying from 31.71 to 0.64. Thus, 

it is obvious that there was neither strong relationship nor pattern identified by Hollund et al. 

(2016).  

A different approach for the assessment of collagen preservation in bone can be the collagen 

birefringence (Figure 3.11; Garland 1989). For the quantification of birefringence, Jans et al. 

(2002) introduced the Birefringence Index (BI) which classifies samples based on the intensity of 

birefringence into three categories (i.e. in normal=1, reduced=0.5 and absent=0). While 

theoretically a combined use of the OHI and BI can make histological data comparable, practically 

BI has little to offer as all samples that display collagen degradation to some extent receive a BI 

value of 0.5. This issue does not allow an accurate evaluation of histological preservation and its 

relationship with the surviving biomolecules. Further, it cannot be used to estimate the % collagen 

retained and the degree of alterations of the bioapatite crystals as in Jans et al. (2002).   

Jans et al. (2002) also introduced the Cracking Index (CI) for the quantification of micro-fissures 

in bone sections under plane polarized images by counting the osteons with and without fissures 

(Jans et al. 2002). This approach has similar limitations with the OHI as it is difficult to assess the 

changes on a spatial scale larger than this of the field of view. However, OHI shows linear 

relationship with small porosity (0.01-0.1 μm) and cracking, and inverse relationship with 

medium porosity (0.11-8.5 μm) are considered typical effects of microbial activity (Hedges, 

Millard and Pike 1995; Smith et al. 2007), while it shows no correlation with macroscopic 

preservation (e.g. Kontopoulos, Nystrom and White 2016). 
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Figure 3.11. Collagen Birefringence  – Cross polarized image of a thin section from a human tibia 

displaying areas with normal (white) and reduced (dark) birefringence (taken by the author).  

3.1.3. ORIGINS AND PROGRESSION OF MICROBIAL ACTIVITY 

One of the main problems in histotaphonomy is to understand if the microstructural alterations 

are the result of one single, early diagenetic event or diachronic. Microbial attack is assumed to 

start with few discrete foci (Figure 3.12; i.e. enlarged osteocyte lacunae) that gradually merge to 

form larger foci, and in later stages MFD can cover even the entire cross section (Bell, Skinner 

and Jones 1996; Hanson and Buikstra 1987; Kontopoulos, Nystrom and White 2016; White and 

Booth 2014). Nevertheless, the origins of bacteria responsible for the histological alterations is 

still on debate (Bell 2012; Kendall et al. 2018). Gut bacteria, which are probably formed at or 

soon after birth, could certainly be the cause of those initial modifications as they can transmigrate 

via the vascular network to all major internal organs within few hours after death depending on 

the environment (Bell, Skinner and Jones 1996; Booth 2016; Booth and Madgwick 2016; Hollund 

et al. 2012; White and Booth 2014). In such case, bacterial attack in archaeological bone would 

be predominantly related with soft tissue decomposition (Bell 2012; Booth 2016; White and 

Booth 2014).  

The presence of linear longitudinal and budded tunnels in a 1-1.5 Ma hominin mandible from a 

palaeokarst cave in Swartkrans (South Africa) represents one of the earliest evidences of MFD 

(Grine et al. 2015). The fact that MFD were mainly concentrated around Haversian canals closer 

to the endosteal area led Grine et al. (2015) to the assumption that it was at least partially intact 

after death and microbial attack originated from the endogenous bacterial populations (Grine et 

al. 2015). Booth, Redfern and Gowland (2016) have also argued that the limited bioerosion in 

approximately half of the Romano-British neonatal femora examined should be considered as 

evidence of undeveloped gut microbial communities and this evidence could be used for the 

discrimination between stillborn from short-lived infants. Indeed, this observation would be 

important for the study of demography, funerary treatments and infanticide in the archaeological 
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record (Booth, Redfern and Gowland 2016); however, the number of individuals examined in this 

study is very small to allow any further assumptions. Furthermore, only two neonatal specimens 

displayed well-preserved histological structure with an OHI of 5 compared to three 

stillborn/preterm infants, while one stillborn/preterm infant and one neonatal specimen exhibited 

an OHI of 0 (Booth, Redfern and Gowland 2016). Additional evidence on possible differences in 

histological preservation between disarticulated and articulated skeletal remains that could 

support a gut origin of microbial attack is poor as preservation can be variable (Booth and 

Madgwick 2016). 

 

Figure 3.12. Initiation of microbial attack  – Plane polarized image of a human femoral thin section from 

Riseholme at one-year post-mortem displaying enlarged osteocyte lacunae (black arrow) and typical 

osteocyte lacunae (white arrow) that possibly shows early microbial activity (White and Booth 2014). 

Currently, only some differences between human and animal bones with respect to the presence 

of bacterial activity (Jans et al. 2004) could be considered as an attestation of the relationship 

between MFD and anaerobic gut bacteria. The rationale behind this relationship is that 

dismemberment and/or defleshing can limit exposure of animal bones to putrefaction and prevent 

them from the endogenous gut bacteria (Jans et al. 2004). However, the histological analysis of a 

small number of animal specimens (goat, pig, bovine) from the 13th-15th century site of Hôtel de 

Mongelas in Paris (France) which were probably food waste as suggested by the cut marks (i.e. 

no endogenous microbiota available for micro-boring) clearly showed that the defleshed animal 

bones can clearly contain MFD (Müller et al. 2011). 

Therefore, a diametrically opposite theory to gut microbiota-MFD relationship supports an 

initiation of microbial attack at the point of, or after skeletonization by soil microorganisms who 

can access bone through the empty Haversian canals and attack its endosteal and periosteal areas 

(Bell, Skinner and Jones 1996; Hackett 1981; Turner-Walker 2008). Hedges (2002) argues that 

there is little evidence to suggest a difference in histological preservation in fleshed vs de-fleshed 

bone or cooked vs uncooked bone. A comparative study performed by Nielsen-Marsh and Hedges 
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(2000a) on human and animal bones for the effects of differential treatment (e.g. fleshed human 

vs defleshed animal bones, cooking) indicated that there is no significant variation in histological 

preservation between those two groups oppositely to Jans et al. (2004) and Booth and Madgwick 

(2016) arguments. Regarding boiling, it causes no alterations in microstructure although protein 

loss and crystallinity increase have been noted (Roberts et al. 2002). The loss of organic content 

could thus make animal remains less attractive to soil microbes (Roberts et al. 2002).  

Histological examination of bones from approximately 100 animal carcasses exposed on the 

ground surface during a 30-year long experiment in Neuadd (Wales) demonstrated that MFD, 

when present, were mostly found across periosteal and endosteal areas (thus soil bacteria) but not 

associated with vascular canals (Fernandez-Jalvo et al. 2010). Recent experimental studies with 

pig carcasses showed that there is a relationship between osteocyte lacunae, canaliculi, and 

bacterial activity during early diagenetic stages which could possibly explain such an appearance 

of MFD in different areas of bone not close to Haversian canals (White and Booth 2014). Lastly, 

the association between skeletal elements and their proximity to internal organs was only 

observed for the ilium and the atlas (i.e. gut and brain, respectively; Kontopoulos, Nystrom and 

White 2016). 

With reference to chronological age, this seems not to be strongly related to histological 

preservation as prehistoric samples can be better preserved than historical specimens, while 

samples from the same chronological period and site may display highly variable diagenetic 

alterations (Booth 2016; Jans et al. 2002, 2004; Turner-Walker 2008). This assumption is also 

based on the analysis of 8-40 ka old specimens that showed no relationship between histological 

preservation and time post-mortem (Hedges, Millard and Pike 1995). Moreover, several forensic 

specimens from terrestrial burial environments which were examined by Bell et al. (1996) ranging 

from 1 to 83 years post-mortem have shown no relationship between microbial attack and post-

mortem intervals. Additional evidence from the microscopic examination of a set of human 

skeletal remains from twenty court cases found in different places (open air, buried, indoors) and 

burial environments (inside metal boxes or bags, scattered or buried) by Cappella et al. (2015) 

also supports the absence of such a relationship between histological integrity and post-mortem 

interval. The distinction between archaeological and forensic bones using microscopic analysis 

was very challenging, even though the different cases were radiocarbon dated with dates ranging 

from post-1950 to around AD 1000 (Cappella et al. 2015). 

Regarding the time span of microbial activity within bone, it is believed that probably most 

microstructural modifications occur during the first 500 years post-mortem (Hedges, Millard and 

Pike 1995; Hedges 2002; Pfretzschner 2004). It is likely that microstructure is not further affected 

in specimens of few thousand years old, while histological alteration is also likely to go towards 

completion when it starts (Hedges, Millard and Pike 1995; Hedges 2002). However, bacterial 
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attack may just stop before affecting the whole bone as seen in experimental (Fernandez-Jalvo et 

al. 2010) and fossil bone (Grine et al. 2015). The histological examination of a c. 1.5-1.0 Ma 

hominin mandible from a palaeokarst cave in Swartkrans, South Africa represents an important 

example of MFD in the palaeontological record with linear longitudinal and budded tunnels that 

did not expand throughout the bone (Grine et al. 2015). Trueman and Martill (2002) have also 

argued that any skeletal remains attacked by microbes have limited or no chances to survive in 

the fossil record. This argument, however, has been discarded by Iliopoulos (2004) who presented 

some SEM-BSE images of fossil bones from Greece (Upper Miocene) which were extensively 

bioeroded but survived in the fossil record.  

Overall, the initiation and expansion of microbial attack depends upon the access to bone collagen 

which requires increased porosity and demineralization of bone tissues (Hackett 1981; Hedges 

2002; Turner-Walker 2008). The role of vascular canals, osteocyte lacunae and canaliculi in the 

spread of bacteria and fungi during diagenesis is undeniable (Bell 1990; White and Booth 2014; 

Yoshino et al. 1991). Experiments on the effects of body decomposition on bone histology have 

revealed that a spread of bacteria (endogenous and/or exogenous) in early diagenetic stages occurs 

through vascular canals, canaliculi and osteocyte lacunae (Kontopoulos, Nystrom and White 

2016; White and Booth 2014; Yoshino et al. 1991). These bacterial species merge osteocyte 

lacunae to gradually create larger foci (i.e. linear longitudinal canals and budded). Identifying the 

species responsible for each MFD type and distinguishing between soil and gut bacteria is not 

possible at the moment (Bell 2012; Piepenbrink 1989). Consequently, as Garland (1989) 

highlights, there is a need for further investigations of the unknown effects of soft tissue 

decomposition, desiccation, and adipocere formation on bone degradation.  

3.1.4. BURIAL ENVIRONMENT AND BURIAL PRACTICES 

The effects of the burial environment (e.g. oxygen availability, temperature, groundwater, and 

pH) on the histological integrity of archaeological bone has been noted by several researchers 

(Bell, Skinner and Jones 1996; Fernandez-Jalvo et al. 2010; Jans et al. 2002; Nielsen-Marsh and 

Hedges 2000a; Turner-Walker 1999). Thus, the beginning and progression of tunnelling may vary 

significantly for each specimen, primarily because of the specific conditions of the burial 

environment and the changes throughout the centuries caused by human or natural processes 

(Hackett 1981; Turner-Walker 2008; Turner-Walker and Jans 2008).  

Skeletonised remains in the tropics degrade much more rapidly than those in temperate zones, 

which in turn degrade more rapidly than those close to the arctic circle (Fernandez-Jalvo et al. 

2010; Kendall et al. 2018). Similarly, deeply buried bones tend to survive for longer than those 

in shallow burial environments. Part of this is because of temperature but also because oxygen 

availability, as the soil bacteria responsible for tunnelling in buried bones are evidently aerobic 
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in their metabolic pathways (Turner-Walker 2008; Turner-Walker and Jans 2008). Water 

availability and movement within the soil has the most significant effect on the preservation of 

bone as it controls chemical reactions and microbial metabolism (Hedges, Millard and Pike 1995; 

Turner-Walker 2008). Specimens recovered from permanently waterlogged environments 

(anoxic), cave sites and dry sandy deposits above water table demonstrate good histological 

preservation with limited or no microbial activity (Booth 2016; Hedges 2002; Nielsen-Marsh and 

Hedges 2000a; Turner-Walker 2008). In contrast, specimens from sites with fluctuations in soil 

water (e.g. limestone soils, floodplains, coastal sites and sites on river banks) usually display 

histological modifications as wet and dry cycles in burial environments can damage bone 

microstructure (Nielsen-Marsh and Hedges 2000a; Turner-Walker 2008). 

Soil pH is another factor affecting histological preservation of archaeological bone, primarily 

because it can lead to the deterioration of the organic and inorganic contents, while it can also 

favour or inhibit microbial activity (Collins et al. 2002; Hanson and Buikstra 1987). The 

examination of many thin sections (i.e. 119) from adult human femora from different sites at the 

Lower Illinois Valley, USA (i.e. AD 180 to AD 1200) by Hanson and Buikstra (1987) supports 

that histological changes depend on local soil chemistry. Low pH values, for example, can lead 

to decreased bacterial activity (Jackes et al. 2001) and better preservation of the protein content 

as seen in archaeological bones from acidic soils (i.e. 5.1 pH) in Puerto Rico (Pestle and Colvard 

2012). Additionally, a highly variable state of histological preservation observed in samples from 

the same burial phases in Khartoum, Sudan indicated that bone diagenesis is also strongly 

influenced by the burial micro-environment (Dal Sasso et al. 2014). 

Except within site variations, intra-individual and within bone variations have been observed in 

archaeological bone (Garland 1989). Although Booth (2016) and Booth, Redfern and  Gowland 

(2016) report an insignificant intra-individual and within bone variation along the femoral mid-

shafts of adult and infant individuals, the presence of intra-individual and within bone (proximal 

vs distal diaphysis; Figure 3.13) variation has been confirmed this time in early diagenetic stages 

in experimental studies that involved the burial of sus scrofa carcasses (Kontopoulos, Nystrom 

and White 2016). However, no distinct overall pattern was observed (Kontopoulos, Nystrom and 

White 2016). The skeletal elements should also be expected to degrade at different rates 

depending on the different sizes and biomechanical characteristics such as porosity and 

remodelling (Hanson and Buikstra 1987). This should result in intra-individual variations and the 

microbial activity should be related to intrinsic to the tissue physical and chemical factors (Hanson 

and Buikstra 1987). Consequently, identifying, quantifying, and comparing patterns of bone 

degradation can be a very complex process, as each bone may follow a unique diagenetic 

trajectory. 
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Figure 3.13. Within bone variation  – Plane polarized image of the right ulna of a sus scrofa that shows 

the variable histological preservation in proximal (left) and distal (right) diaphysis (Kontopoulos 2014). 

The death history and the effects of various factors (e.g. season of death, clothing, burial depth, 

diet and microbiome health) on body decomposition and the preservation of bone are often 

disregarded in archaeology (Bell 2012; Turner-Walker 2008). As Bell (2012) argues, correlation 

between peri-mortem history of the body and its post-mortem alterations manifested on the 

skeletal remains is of major importance because diagenetic change is a matter of whole-body 

decomposition within its burial environment. Some researchers argue that microscopic evidence 

can be used for the distinction between different funerary treatments as the alterations caused by 

anthropogenic processes can be distinguished from those induced by the burial environment 

(Booth 2016; Booth and Madgwick 2016; Smith et al. 2016). The basis of this assumption is that 

the exposure of a corpse for longer or prolonged periods of time would result to reduced levels of 

bone degradation (Booth 2016; Smith et al. 2016). On the contrary, the immediate burial of the 

bodies would delay skeletonization and would maximize bone degradation (Booth 2016; Smith 

et al. 2016).  

Later prehistoric and historical samples from the British Isles show variability in histological 

preservation and this has been linked to the different forms of funerary treatments (Booth and 

Madgwick 2016). Primary burial soon after death assumed to be the cause of low OHI scores 

accompanying poor histological preservation, whereas good preservation and high OHI values 

considered indicative of different burial practices (Booth 2016). Yoshino et al. (1991) have 

reported very limited morphological changes in human bones exposed in open-air for up to 15 

years post-mortem with changes mainly observed in periosteal areas. The earliest evidence of 

MFD in samples buried in soil was 2.5 years post-mortem, although histological changes mainly 

appeared at approximately 5 years post-mortem and gradually spread to mesosteal areas of bone 

(Yoshino et al. 1991). The presence of microbial modifications after complete skeletonization led 

Yoshino et al. (1991) to the conclusion that bone probably degrades when soft tissues have 
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completely decomposed which supports Turner-Walker’s (1999) belief that a rapid burial would 

initially protect bones from microbial attack.  

 

Figure 3.14. ‘Mummification’ – Human femur from Cladh Hallan under plane-polarized (left) and cross-

polarized (right) light (Parker Pearson et al. 2005). 

Limited levels of bacterial activity in specimens from Chalcolithic and Bronze Age Britain have 

been interpreted as the result of the elimination of the gut microbiota during the removal of the 

internal organs of the bodies for mummification (Figure 3.14; Booth, Chamberlain and Pearson 

2015; Parker Pearson et al. 2005). This assumption was supported by the study of two mummified 

remains from Yemen and Ireland with excellent preservation of the histological features (Booth, 

Chamberlain and Parker Pearson 2015) with the only modification observed being the enlarged 

osteocyte lacunae which have been identified as a characteristic alteration during early diagenetic 

stages (Kontopoulos, Nystrom and White 2016; White and Booth 2014). 

 

Figure 3.15. Textile effects – Plane-polarized images of three individuals covered with a) 100 % cotton textiles (left), 

b) 79 % cotton textiles (middle), and c) 100 % nylon (right) displaying the variable preservation due to the presence of 

textiles with different compositions (Kontopoulos, Nystrom and White 2016). 

However, several researchers seem not to take into consideration the effects of the micro-

environment and other forms of funerary practices (e.g. wrapping) on the variation in bacterial 

activity. The very tightly flexed position of the individuals from Cladh Hallan (Scotland), for 
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example, could be also indicative of wrapping/bounding. Although Booth, Redfern and Gowland 

(2016) argue that wrapping the bodies has no effect on bone degradation, it has been 

experimentally proved that it affects histological integrity (Figure 3.15; Kontopoulos, Nystrom 

and White 2016). The qualitative data from the histological analysis of thin sections from the mid 

diaphysis of the left humeri of three sus scrofa individuals covered with different fabrics indicated 

that the composition of the textiles clearly affects bone preservation during the early diagenetic 

stages (i.e. 6 years post-mortem; Kontopoulos, Nystrom and White 2016). The individual covered 

with 100% cotton textiles and the individual clothed with 79% cotton, 20% nylon, 1% elastane 

showed good histological preservation, whereas the individual placed within a rolled-up carpet of 

100% nylon exhibited poor histological preservation (Figure 3.15; Kontopoulos, Nystrom and 

White 2016). It is likely that cellulose in some textiles could be used by the soil microorganisms 

as a source of energy (chemical assimilatory biodeterioration) which could delay or limit 

microbial invasion into bone (Kontopoulos, Nystrom and White 2016). 

  

https://paperpile.com/c/EyiG9J/Ojcv/?noauthor=1
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3.2. PRESERVATION OF BIOAPATITE 

The preservation of bioapatite is important in archaeological research as it can offer valuable 

information on the movement of past people and animals (phosphate), their dietary habits 

(carbonate), their environments (phosphate and carbonate) and possibly past funerary practices 

(Hedges 2003; King, Tayles and Gordon 2011; Lee-Thorp and van der Merwe 1991; Scorrano et 

al. 2016; Wright and Schwarcz 1996). BAp crystals can survive for long periods of time, however 

post-mortem changes of biogenic chemical signals have long been recognized as a key issue (Lee–

Thorp 2002; Lee-Thorp and van der Merwe 1991; Shin and Hedges 2012; Stiner et al. 2001; 

Wright and Schwarcz 1996).  

Reorganization or growth through dissolution (loss of less stable components) and 

recrystallization (formation of more stable structure) is necessary for its survival post-mortem 

(Nielsen-Marsh et al. 2000a; Trueman 2013). Dissolution occurs when conditions are greatly 

under-saturated, primarily due to active hydrology (recharging with fresh water) or due to a 

reduction in pH (Hedges 2002; Hedges and Millard 1995; High et al. 2015; Nielsen-Marsh et al. 

2000a; Piepenbrink 1989). When the skeletal remains are close to the ground surface (rainwater 

not yet equilibrated with soil hydroxyapatite), or in highly conductive soils (e.g. sands and 

gravels, floodplains, etc. with wet and dry cycles) that water never becomes saturated with Ca2⁺ 

and PO4
3ˉ, water leaches out the mineral phase (Hedges 2002; Nielsen-Marsh et al. 2000a; Turner-

Walker 2008).  

Soil pH controls the fate of bioapatite as it also dissolves in acidic soils (i.e. increase in H+ ions), 

whereas it becomes more stable in more basic soil environments (High et al. 2015; Nielsen-Marsh 

et al. 2000a). A dissolution of bioapatite in slightly acidic soils can lead to a rise of the soil pH 

(buffer), while in very acidic environments dissolution leads to a consumption of H+ ions which 

does not affect soil pH and results to a significant loss of mass (High et al. 2015; Nielsen-Marsh 

et al. 2000a). Microbial activity may also lead to mineral dissolution and redistribution of 

phosphate (Trueman et al. 2004). In such a case, phosphate will be used for the growth of adjacent 

bioapatite crystals (Trueman et al. 2004). 

Recrystallization (isomorphic or heteromorphic) is heavily pH-dependent as bioapatite is more 

stable in pH around 7.5-8, displays low solubility in slightly alkaline and near neutral 

environments but gives way to dissolution in pH environments below 6 or over 9 (Berna, 

Matthews and Weiner 2004; Hedges and Millard 1995; Keenan and Engel 2017; Nielsen-Marsh 

et al. 2000a; Turner-Walker 2008). Thus, in alkaline to neutral soil pH, bone apatite will undergo 

recrystallization with bioapatite being recrystallized into authigenic apatite (Berna, Matthews and 

Weiner 2004). This pH range is called the ‘recrystallization window’ (Berna, Matthews and 

Weiner 2004). The pH of the groundwater, which can vary from 2.8 to 10, also controls the ions 

available for exchange with bioapatite (Nielsen-Marsh et al. 2000a; Turner-Walker 2008).  
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Recrystallization of bone also depends on the hydrological conditions of the burial environment 

(Hedges and Millard 1995; Piepenbrink 1989; Trueman et al. 2008). The thin nature of the crystals 

makes them unstable as many atoms can be disordered because of their proximity to the surface 

(Berna, Matthews and Weiner 2004; Stathopoulou et al. 2008). Cations incorporated into the 

bone-water system during passage of pore waters may be either adsorbed onto exposed bone 

crystallites (i.e. labile) or incorporated into authigenic minerals (i.e. structural) (Trueman et al. 

2004). Thus, the interaction of the groundwater with the hydrated layer leads to the incorporation 

of diverse labile and reactive ions (e.g. HPO4
2ˉ, PO4

3ˉ, CO3
2ˉ, Ca2⁺, Mg2⁺), which may in turn 

substitute other ions into the core domain (Figure 3.16; Figueiredo, Gamelas and Martins 2012; 

Lee-Thorp and van der Merwe 1991; Stathopoulou et al. 2008; Trueman, Privat and Field 2008; 

Trueman 2013). The longer the bone is exposed on the conditions of the burial environment, the 

greater is its dependency on external sources of phosphate (i.e. authigenic minerals) to fill in the 

pore space initially occupied by the organic component (Trueman et al. 2004). This means that 

the newly formed crystals may incorporate any ions present in pore waters. For instance, Na+ and 

Mg2⁺ may substitute Ca2⁺ ions, HPO4
2ˉ ions may substitute PO4

3ˉ ions, while halides (e.g. Fˉ and 

Clˉ) may substitute OHˉ (Figueiredo, Gamelas and Martins 2012; Stathopoulou et al. 2008).  

 

Figure 3.16. Bioapatite crystal  – Ionic exchange between the crystal and its surrounding environment. 

(Figueiredo, Gamelas and Martins 2012). 

Identification of the changes in the bioapatite crystals can, therefore, provide evidence for the 

preservation state of bone and the reasons that lead to these modifications in the inorganic 

component of bone (King, Tayles and Gordon 2011). Until today, no reliable method has been 

recommended for screening archaeological bones to predict the likely preservation of in vivo 

biochemical signatures of bioapatite (Trueman et al. 2004, 2008). Consequently, understanding 

the nature of alterations can provide valuable information for the immediate depositional 

environment or important biological and archaeological information. 
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3.2.1. CRYSTALLINITY 

Bone recrystallization increases crystallinity (i.e. crystal size and lattice perfection) and promotes 

the formation of a more stable mineral phase usually characterized by lower carbonate content 

(Salesse et al. 2014). The increase in average and maximum crystal length may be due to an 

increase the size of the larger crystals at the expense of the smaller ones (i.e. Ostwald ripening), 

dissolution of the smaller crystals, or both (Nielsen-Marsh et al. 2000a; Reiche, Vignaud and 

Menu 2002; Stiner et al. 2001; Trueman 2013; Trueman et al. 2004, 2008; Weiner and Bar-Yosef 

1990; Wright and Schwarcz 1996). The high degree of disorder is responsible for the promotion 

of diagenetic modifications in bioapatite (Trueman 2013). Thus, BAp crystals become more 

ordered post-mortem as the disordered phases are less energetically stable (Asscher et al. 2011; 

Trueman 2013). Although there is a loss of the smaller, less ordered phases post-mortem, it is not 

clear if there is a loss of the more disordered phases that results to a more ordered crystal (Trueman 

2013). 

FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY 

The infrared splitting factor (IRSF) can be used as a semi-quantitative index to assess bone 

mineral preservation (Hollund et al. 2013; Nielsen-Marsh et al. 2000a; Surovell and Stiner 2001; 

Trueman et al. 2004; 2008; Weiner and Bar-Yosef 1990; Wright and Schwarcz 1996). It is a 

measure of the structural order (i.e. homogeneity) within the crystal lattice and the increase in 

their size (Termine and Posner 1966; Surovell and Stiner 2001; Trueman, Privat and Field 2008). 

The larger and/or more ordered the crystals, the higher the IRSF value (Surovell and Stiner 2001; 

Trueman et al. 2004; Weiner and Bar-Yosef 1990). Therefore, IRSF can be used as a proxy for 

diagenetic changes in bioapatite crystals and it can provide a sound estimate of the degree of 

diagenesis (Berna, Matthews and Weiner 2004; Trueman et al. 2004; 2008).  

To estimate the IRSF, the summing heights of the peaks at c. 605 and c. 565 cm-1 are divided by 

this at c. 590 cm-1 at the triply degenerate asymmetric v4 PO4
3ˉ bending (Figure 3.17; Weiner and 

Bar-Yosef 1990). Baseline correction is also necessary to measure the height of the peaks at 

around 605 cm-1 and 565 cm-1, and this of the trough between them at about 590 cm-1 (Weiner 

and Bar-Yosef 1990). The equation of the IRSF is expressed as: 

IRSF= (565ht+605ht)/590 (Weiner and Bar-Yosef 1990). 

Although IRSF has been used to measure indirectly the mean crystal length (Trueman et al. 2004) 

some studies argue that there is no clear relationship between IRSF and mean crystal size (Reiche, 

Vignaud and Menu 2002). Weiner and Bar-Yosef (1990) and Lebon et al. (2010) also argue that 

IRSF cannot be used as an indisputable means for the assessment of bone preservation. The 

distinction betweeen exogenous (i.e. authigenic) and mildly altered biogenic bioapatite cannot be 

achieved as they often exhibit similar IRSF values (Trueman, Privat and Field 2008). Thomspon 
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et al. (2009) have also reported that IRSF values greatly vary depending on the region of bone 

examined, while it is not a reliable method to screen bone mineral for isotopic studies (Trueman, 

Privat and Field 2008).  

 

Figure 3.17. FTIR Spectra – Graph with the mid-IR spectra of archaeological bone (black) and modern 

bone (light grey) showing the phosphate, carbonate and amide peaks (Dal Sasso et al. 2016). 

Besides the changes in crystal size, diagenesis also alters the atomic disorder of the bone mineral 

(Asscher et al. 2011) which is also affected by grinding during sample preparation that changes 

the distribution of different crystal particle sizes within the samples (Kontopoulos et al. 2018; 

Trueman 2013). Past studies have tried to investigate the effect of sample preparation methods on 

bone IRSF values, with a decrease in IRSF reported with more intensive pulverization (Surovell 

and Stiner 2001). Surrovel and Stiner (2001) argue that grinding may introduce variations in 

crystallinity that may mask the original signal due to structural changes caused to the BAp 

crystals. They propose two possibilities that could explain the phenomenon: a) changes are 

primarily caused by the particle separation of bone mineral of differing crystallinity (separation 

hypothesis), or b) grinding affects the bioapatite crystal structure (destruction hypothesis), and 

subsequently, the mid-IR spectra.  

Overall, it has been argued that there seems to be a destruction of BAp crystals during grinding, 

although when there is no control, or grinding is excessive, it is difficult to differentiate between 

the actual bone crystallinity from that introduced during sample preparation (Surovell and Stiner 

2001). Hollund et al. (2013) also observed significant preparation-based differences (i.e. drilling 

and grinding with and without sieving) between IRSF, C/P and Am/P values. The grinding effect 

was more evident in samples of higher crystallinity, so Hollund et al. (2013) proposed drilling 

bone without sieving as an alternative to the Surovell and Stiner (2001) preparation method. 
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Asscher et al. (2011) and Asscher, Weiner and Boaretto (2011) tried to explore the effects of 

grinding on bone and tooth, and decouple it from the atomic disorder effect, to better assess the 

preservation state of archaeological/fossil bone. They compared the IRSF values of samples 

repeatedly ground for variable amounts of time and plotted them against the full width at half 

maximum (FWHM) of the main v3 phosphate asymmetric stretching mode at c. 1035 cm-1. As the 

narrower the FWHM, the smaller the particle size, from the relationship observed, it was shown 

that grinding (i.e. particle size) affects both the short (IRSF) and long (FWHM at 1010 cm-1) range 

order of bone (Figure 3.18). Thus, the use of the grinding curve approach can increase the 

sensitivity of FTIR for monitoring diagenesis (slopes of the grinding curves are steeper and 

shorter with poorer preservation), as compared to the IRSF alone, and it can also allow the 

identification of differences in crystal size/atomic order of different animal species and hard 

tissues (i.e. bone, dentine and enamel mineral; Figure 3.18).  

 

Figure 3.18. Grinding curve  – Diferrent crystal disorder between modern and archaeological bovine 

enamel, dentine and bone samples (Asscher et al. 2011). 

While this trendline method partly shows the importance of particle size (still uncontrolled) on 

the mid-IR spectrum, it requires regrinding and measuring the same sample repeatedly for several 

times. Furthermore, the powders were analysed in KBr pellets, requiring significant amounts of 

material mixed with KBr. Excessive grinding can also lead to a contamination of bone powder or 

even damage surviving biomolecules in samples that could be also used for DNA (e.g. Adler et 

al. 2011) or protein analysis (e.g. Collins and Galley 1998), making FTIR KBr and grinding 
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curves a destructive method and wasting precious material, in lieu of additional information on 

crystalline order.  

Fluorine is also very important as its presence may affect the IRSF values (Lebon et al. 2010; 

Pleshko, Boskey and Mendelsohn 1991). Archaeological and fossil bones displaying increased 

crystallinity (i.e. larger crystal size), usually exhibit higher F content than modern bones due to 

diagenesis (Keenan et al. 2015; Trueman et al. 2008). Incorporation of F⎺ into the crystal is 

consistent with the formation of authigenic apatite, and it is assumed to increase its size and 

stability of the mineral phase, while it shifts dissolution towards more acidic conditions (Berna, 

Matthews and Weiner 2004; Pleshko, Boskey and Mendelsohn 1991; Wright and Schwarcz 

1996). F⎺ is assumed to substitute OH⎺ in bioapatite crystals. The OH⎺ ions in BAp are 

characterized by a stretching mode at 3600 cm-1 and a libration band at 630 cm-1 (Antonakos, 

Liarokapis and Leventouri 2007). When there is fluorine uptake, a discrete peak at around 1092 

cm-1 appears and this might also be related with the unit cell volume and α-axis length 

(Stathopoulou et al. 2008). The ratio of the peaks at c. 605 cm-1 to c. 565 cm-1 have been used for 

the assessment of the presence of F in bone bioapatite, as the F-containing apatites display 

modified intensities at c. 605 and c. 565 cm-1 (Lebon et al. 2010; Trueman, Privat and Field 2008).  

Apatites containing F⎺ (e.g. francolites) display more intense vibrations at c. 605 cm-1, whilst F-

deficient apatites exhibit more intense vibrations at 565 cm-1 (Trueman, Privat and Field 2008). 

Hence, the latter has relatively lower ratio values. Nonetheless, the relationship between IRSF 

and F⎺ is complex as samples with the same F⎺ content may exhibit very different IRSF values 

(Lebon et al. 2010).  

A few other indices have been proposed for measuring crystallinity of the mineral component of 

bone in an effort to acquire as accurate as possible IR data. Specifically, based on previous 

observations by Pleshko et al. (1991) that the peak at 1060 cm-1 decreases when there is an 

increase in the c-axis length of the apatite crystal and the c. 1020 cm-1 component increases with 

increasing crystal size, Lebon et al. (2010) proposed the use of the 1030/1020 cm-1 and the 

1060/1075 cm-1 ratios. Both indices have been found to correlate with the IRSF values, although 

the 1060/1075 cm-1 ratio is in better agreement with IRSF values (Lebon et al. 2011). Thus, it is 

possible to use these ratios to assess bone crystallinity (Lebon et al. 2010). Pleshko et al. (1991) 

and Lebon et al. (2010) also argue that the use of the v1 PO4
3ˉ area at c. 960 cm-1 can be used to 

assess the crystal size and perfection (i.e, maturation) as the v1 absorbance decreases with 

increasing crystallinity.  

Acetic acid treatment has been used prior to isotopic investigations to remove most of the 

exogenous contaminants from bioapatite crystals (Garvie-Lok, Varney and Katzenberg 2004). 

However, treatment-induced recrystallization and excessive sample loss has been observed by 

Garvie-Lok, Varney and Katzenberg (2004). Treatment with acetic acid has been reported to 

https://paperpile.com/c/EyiG9J/9Pup/?noauthor=1
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affect IRSF values as the PO4
3ˉ peak splitting at 605-565 cm-1 appears greater probably due to the 

dissolution of smaller crystals (Wright and Schwarcz 1996; Nielsen-Marsh and Hedges 2000b). 

In longer treatments and/or more concentrated solutions there is an incorporation of exogenous 

minerals into the crystal lattice (e.g. formation of brushite) and crystal characteristics (e.g. 

maturity) may also play a significant role in that phenomena (Garvie-Lok, Varney and Katzenberg 

2004). More dilute solutions (e.g. 0.1 M acetic acid) and lower solution acidity are considered 

more appropriate for the removal of the exogenous sources and avoid recrystallization (Shin and 

Hedges 2012). Acetic acid may also significantly raise the IRSF values of modern bone as well 

as those of archaeological bone with poor histological preservation, while longer treatments with 

acetic acid can lead to complete recrystallization to brushite (Lee-Thorp and van der Merwe 1991; 

Nielsen-Marsh and Hedges 2000b; Shin and Hedges 2012; Wright and Schwarcz 1996).  

X-RAY DIFFRACTION (XRD) AND TRANSMISSION ELECTRON MICROSCOPY 

(TEM) 

Many studies have also examined bone mineral crystallinity using other techniques (King, Tayles 

and Gordon 2011; Person et al. 1995; Reiche, Vignaud and Menu 2002; Stathopoulou et al. 2008). 

Person et al. (1995) applied XRD to search if crystallinity index (CI) can be used as a semi-

quantitative way to assess archaeological and fossil bone preservation. Their results indicated that 

the 211, 112, 300 and 202 reflections are related with high crystallinity and they defined 

crystallinity as CI= [h(202) + h(300) + h(112)/ h(211) (Figure 3.19). It was observed that the 

intensity of each of these peaks decreases in the same order, and when crystallinity increases there 

is usually a decrease in the organic matter and CO3
2ˉ (Person et al. 1995). Such a negative 

correlation between crystallinity and organic content, though not strong, was also observed by 

Götherström et al. (2002). As a result, XRD can be used to estimate crystallinity (i.e. size and 

homogeneity) and assess bone preservation (Person et al. 1995; Quattropani et al. 1999). 

Bartsiokas and Middleton (1992) who used a different crystallinity index [CI=10(a/b)] argue that 

the progressive increase of crystallinity in archaeological and fossil bone can be possibly used as 

a dating tool, although some of the youngest samples examined in this study displayed similar 

crystallinity with others 10 ky-120 ky older. No correlation between CI and chronological age has 

been observed by Person et al.  (1995). 

TEM can provide important information on crystallinity of archaeological bone as demonstrated 

in a study that successfully identified three distinct BAp crystal morphologies in archaeological 

bone that differ from modern bone (Figure 3.20; Reiche, Vignaud and Menu 2002). Type I BAp 

crystals are thin irregular platelets and they are the most common crystals observed in 

archaeological bone (Reiche, Vignaud and Menu 2002). Their shape is similar to the bioapatite 

crystals in modern bone; however, they are 2-5 times larger than the former (Reiche, Vignaud and 

Menu 2002). Type II crystals are needle-shaped (or acicular crystals) with a length of up to 200 

nm (Reiche, Vignaud and Menu 2002). Type III crystals are large hexagonal single platelets of 
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80-150 nm diameter (Reiche, Vignaud and Menu 2002). The first two crystal types often coexist 

within a sample, whereas the third crystal type is mainly observed in heated bone (Reiche, 

Vignaud and Menu 2002).   

 

Figure 3.19. XRD spectra – Crystallinity between 24 and 38 2θ of bioapatite (Person et al. 1995). 

 

Figure 3.20. Types of bioapatite crystals  – Type I (left), type II (centre), and type III (right) (adapted 

from Reiche, Vignaud and Menu 2002). 

3.2.2. CARBONATE CONTENT 

Post-mortem exchange of CO3
2ˉ changes BAp composition and preservation potential (Wright 

and Schwarcz 1996). Changes in the carbonate environment of bioapatite may occur via different 

processes that make it challenging to distinguish how the exogenous carbonate has been 

incorporated into the crystal lattice (Nielsen-Marsh and Hedges 2000b). Carbonate uptake may 

take place either via absorption in the mineral surface, substitution in the mineral lattice, and 
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exchange with the original carbonate content and/or crystallization of the calcite into the pore 

spaces (Nielsen-Marsh and Hedges 2000b). Ionic exchanges can alter the atomic-level bond 

spacings and orientations (Keenan et al. 2015). Shifts in Ca–O bonds following Ca2⁺ substitution, 

for example, and substitution and occupancy at one PO4
3ˉ position within the lattice can cause 

bond shortening in another PO4
3ˉ position (Keenan et al. 2015). 

 

Figure 3.21. Carbonate substitutions – Type A and type B types in BAp crystals (Mamede et al. 2018). 

Indices based on the carbonate stretching bands account for the structural CO3
2ˉ content in apatite 

and its distribution among the A- (carbonate ions replace hydroxide) and B-sites (carbonate ions 

replace phosphate ions) (Figure 3.21). The carbonate-to-phosphate (C/P) ratio expressed as 

1415/1035 cm-1 using FTIR that is commonly applied as a measure to assess the changes in the 

carbonate environment of the bioapatite crystals is such an example (Wright and Schwarcz 1996). 

Absorption band at c. 1415 cm-1 is typical of v3 CO3
2ˉ asymmetric stretching vibrations of type B 

apatite (Figueiredo, Gamelas and Martins 2012; Gourion-Arsiquaud, West and Boskey 2008), as 

diagenetically altered bone primarily exhibits carbonate type-B substitutions (Keenan et al. 2015; 

Stathopoulou et al. 2008; Wright and Schwarcz 1996). The A-type substitutions are not common 

in archaeological studies as conditions of high temperatures (i.e. 1000° C; LeGeros 1965) are not 

expected in common environmental conditions (Stathopoulou et al. 2008). 

Wright and Schwarcz (1996) have reported a negative correlation between C/P and IRSF values 

in samples from the ancient Mayan site of Dos Pilas, Guatemala. In view of that, they argue that 

the amount of CO3
2ˉ present in bioapatite affects its crystallinity as higher C/P (i.e. B-type 

https://paperpile.com/c/EyiG9J/JbLU


 
 

61 
 

substitutions) result in smaller crystals (Wright and Schwarcz 1996). However, even if a strong 

inverse relationship between C/P and IRSF has been reported in several other studies and many 

researchers employ this technique to assess bone preservation, it is still debated if these indices 

accurately reflect diagenetic modifications in bone (Beasley et al. 2014; Dal Sasso et al. 2016; 

Nielsen-Marsh and Hedges 2000a; Trueman et al. 2004; 2008; Weiner and Bar-Yosef 1990; 

Wright and Schwarcz 1996).  

Assessment of the carbonate content might be difficult sometimes due to overprinting of v3 

carbonate bands by unknown bands (e.g. C-H) (Trueman, Privat and Field 2008), while changes 

in the IR absorption bands may be related with the anatomical position, age, and/or disease 

(Gourion-Arsiquaud, West and Boskey 2008). Variations in C/P may also mirror the different 

taphonomic histories (e.g. microbially attacked vs microbially undamaged bones) of the 

specimens (Garvie-Lok, Varney and Katzenberg 2004; Nielsen-Marsh and Hedges 2000a). 

Carbonate content distribution has been found heterogeneous in archaeological bone with areas 

around the osteons exhibiting higher CO3
2ˉ content, while in interstitial lamellae the amounts of 

CO3
2ˉ were low (Lebon et al. 2011).  

Stiner et al. (1995) have used an alternative ratio (i.e. 870/565 cm-1) as the 1415 cm-1 absorbance 

peak is affected by the presence of organic content in relatively well-preserved bones. However, 

the major disadvantage of using the v2 CO3
2ˉ vibrations is that it reflects three different carbonate 

sites that appear at c. 878 cm-1 for type A1 (“stuffed”), c. 871 cm-1 for type B, and c. 866 cm-1 for 

type A2 (“labile”-surface) carbonate (Fleet 2009; Fleet and Liu 2004; Paschalis et al. 1996). 

Among these components, the c. 871 cm-1 type B carbonate is the more prominent, though the 

most important observation is the absence of the 866 cm-1 component from archaeological 

specimens (Kontopoulos et al. 2018). This observation justifies its characterization as “labile”-

surface carbonate and shows that a possible removal of ions (e.g. carbonate) from the crystal 

surface during grinding of bone and its effect on Stiner et al. (1995) C/P ratio cannot be 

overlooked. Additionally, the peak at c. 870 cm-1 band can reflect CO3
2ˉ which might be 

incorporated into the apatite crystal structures (Pleshko, Boskey and Mendelsohn 1991) as it may 

contain non-apatitic carbonate signal from soil contaminants (Figueiredo, Gamelas and Martins 

2012; Wright and Schwarcz 1996).  

Indices reflecting the amount of type B carbonate-to-phosphate (BPI, 1415/605 cm-1), the amount 

of type A carbonate-to-phosphate (API, 1540/605 cm-1), and the relative amount of B- to A-site 

carbonate (BAI, 1415/1540 cm-1) have been proposed by Sponheimer and Lee-Thorp (1999). 

Variations in type A carbonate contents have also been identified between modern and 

archaeological bone, with IRSF and API exhibiting a reciprocal relationship for specimens 

containing more than 10 wt. % organic content (Trueman, Privat and Field 2008). Samples from 

Cuddie Springs exhibited decreasing proportions of type A carbonate content with increasing 
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IRSF and decreasing organic content (Trueman, Privat and Field 2008). This redistribution of 

carbonate ions with a reduction in type A carbonate in the early diagenetic stages (i.e. 10 years 

post-mortem) has been considered as indicative of an exchange with Fˉ ions (Trueman, Privat and 

Field 2008). Thus, a decrease in type A carbonate might indicate an exchange with F¯ ions as 

fluorapatites exhibit lower solubility and greater stability in soils (Trueman, Privat and Field 

2008).  

On the other hand, assessing carbonate content of modern, historical and fossil bones from Cuddie 

Springs by BPI values indicated that this can be problematic due to an overlap or contribution to 

the 1415 cm-1 band (Trueman, Privat and Field 2008). Although a strong inverse relationship 

(R2=0.72) between BPI and IRSF was reported by Kontopoulos et al. (2018), this was 

significantly lower than this between C/P and IRSF (R2=0.90) which is probably an indication 

that using the triply degenerate v4 PO4
3ˉ band results to a less accurate picture.  

Variations in unit cell volumes can be attributed to the presence of carbonates and the substitution 

in OHˉ (A-type, large volume) and PO4
3ˉ (B-type, low volume) sites (Stathopoulou et al. 2008). 

Analysis of the carbonate absorbance band by curve-fitting may reveal if there is type A or type 

B substitution in the apatite crystals (Gourion-Arsiquaud, West and Boskey 2008; Trueman, 

Privat and Field 2008). Authigenic mineral apatites such as calcite, barite, dahllite, crandallite, 

sepiolite and trona are usually identified in diagenetically altered bone by FTIR analysis 

(Stathopoulou et al. 2008; Trueman et al. 2004). Calcite, for example, can be found in limestone, 

chalk, marble, travertine, even in wind-borne (loess) and cemented sediments (Regev et al. 2010). 

It has three characteristic absorption bands: a) v3 at c. 1420 cm-1; b) v4 at c. 712 cm-1; and c) a 

weaker v2 at 874 cm-1 (Regev et al. 2010).  

Anomalously high absorbance at c. 1415 cm-1 or the presence of a weak absorbance peak at c. 

710 cm-1 can be indicative of CaCO3 within the pore spaces (Nielsen-Marsh and Hedges 2000a; 

Trueman et al. 2004; 2008). A detection limit of 2.5-3 wt. % has been reported by Dal Sasso et 

al. (2016) and Nielsen-Marsh and Hedges (2000a), and this CaCO3 wt. % has been found to 

correlate with the Cal/PO4 (calcite to phosphate) ratio as calculated by dividing c. 710 cm−1 by 

the c. 1035 cm−1 (Dal Sasso et al. 2016). This carbonate absorption peak at c. 710 cm-1 is, thus, 

characteristic of CaCO3 and can be used to detect absorbed CaCO3 contaminants (Thompson, 

Gauthier and Islam 2009). The presence of calcite in sediments, however, stabilizes pH at around 

8.0, hence minimizes mineral dissolution (Stiner et al. 2001).  

Treatment of diagenetically altered samples with acetic acid to remove exogenous (i.e. labile) 

carbonates in bone has been used to obtain biogenic signals and spectra (Garvie-Lok, Varney and 

Katzenberg 2004; Lee-Thorp and van der Merwe 1991; Nielsen-Marsh and Hedges 2000b; Pate, 

Hutton and Norrish 1989; Wright and Schwarcz 1996). This acid treatment usually leads to a 

decrease of the height of the CO3
2ˉ peak at 1415 cm-1 resulting in a lower C/P ratio close to their 

https://paperpile.com/c/EyiG9J/7Rr4
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pristine values (Lee-Thorp and van der Merwe 1991; Nielsen-Marsh and Hedges 2000b). It also 

sharpens the shoulder at 1096 cm-1 on the 1035 cm-1 PO4
3ˉ peak (Lee-Thorp and van der Merwe 

1991; Wright and Schwarcz 1996). The former is probably indicative of a loss of secondary 

carbonates as there is no loss of phosphate, while the latter might be fluoride substitutions in 

hydroxyl sites (Lee-Thorp and van der Merwe 1991; Wright and Schwarcz 1996). Furthermore, 

calcite peak at around 710 cm-1, if present, often disappears after acetic acid treatments (Garvie-

Lok, Varney and Katzenberg 2004; Lee-Thorp and van der Merwe 1991). 
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3.3. PRESERVATION OF PROTEINS 

Preservation of ancient proteins is of great interest to the archaeologist and archaeological 

scientist as they can provide valuable information on the chronological age (14C dating, amino 

acid racemization, e.g. Deviese et al. 2018; Penkman et al. 2011), past lifeways/palaeodietary 

reconstruction (e.g. Van Klinken, Richards and Hedges 2002), and taxonomic identification (e.g. 

Asara et al. 2007; Buckley, Collins and Thomas-Oates 2008; 2009). Although collagen type I, 

which is the most abundant protein in bone, is considered the longest-lived protein in the 

archaeological record (Buckley et al. 2009; Demarchi et al. 2016; Tuross 2002; Wadsworth and 

Buckley 2014), an extensive loss of the organic content may even lead to the complete destruction 

of bone. Understanding how collagen degrades in bone through the different pathways, i.e. a) 

microbial attack of the composite, b) chemical hydrolysis of collagen; and/or c) 

dissolution/recrystallization of BAp crystals (Collins et al. 2002) is thus of major importance.  

 

Figure 3.22. Types of alteration to collagen fibrils  – (A) ‘Unaltered’ collagen fibril with fibrils of equal 

diameter throughout. (B) ‘Beaded’ collagen fibril with one or more localised areas of melting both along 

the fibril and at the end. (C) ‘Dumbbell collagen fibril (typically <3 µm) with bulbous areas of melting 

at both ends (i.e. more advanced state of degradation). (D) ‘Amorphous material’, fully denatured 

collagen fibrils (Koon, Nicholson and Collins 2003). 

Post-mortem modifications in BAp crystals are closely related to the decomposition of collagen 

(Susini, Baud and Lacotte 1988; Trueman et al. 2004), hence clearly affecting its post-mortem 

preservation potential (Figure 3.22). Collagen may suffer from microbial attack, which means it 

can be enzymatically degraded by collagenases (i.e. enzymolysis) produced primarily by bacteria 
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but also by other soil microorganisms (Balzer et al. 1997; Grupe, Balzer and Turban-Just 2002). 

Microorganisms use extracellular proteolytic enzymes to break the collagen molecule into smaller 

peptides that can be assimilated by bacteria and fungi (Turner-Walker 2008). BAp crystals can 

delay such fragmentation of the polypeptide chains from microbial collagenolytic enzymes 

(Brandt, Wiechmann and Grupe 2002; Grupe 1995; Nielsen-Marsh et al. 2000a, 2000b), however, 

post-mortem dissolution and/or recrystallisation of BAp crystals can expose collagen fibrils to 

collagenases (Figure 3.23; Collins et al. 1995). On the other hand, a slow loss of the organic 

matter through hydrolysis can lead to fossilization by leaving behind only the mineral component 

and secondary minerals to fill the pores (Collins et al. 2002). Collagen fills about the 1/3 of the 

volume of bone matrix in vivo and in a fully recrystallized bone this can be replaced by calcium 

phosphate that is entirely exogenous or secondary minerals until all inter-crystallite porosity has 

been filled (Trueman et al. 2008). 

 

Figure 3.23. Collagen degradation  – (a) Bioapatite crystals protect collagen from enzymolysis by 

physical exclusion of enzymes. (b) Collagenases attack any collagen exposed, followed by less specific 

proteases. No insoluble collagen remains in the exposed fraction. (c) Any insoluble collagen in the bone 

that survives microbial attack is assumed to remain int act and only degrades by slow and predictable 

chemical decomposition (Nielsen-Marsh et al. 2000b). 

Collagen hydrolysis is heavily dependent on temperature, pH, hydrology and time (Collins et al. 

2002; Koon, Nicholson and Collins 2003; 2010; Pestle and Colvard 2012; Grupe, Balzer and 

Turban-Just 2002). Peptide bond hydrolysis and gelatinization activation energies are very 

temperature-sensitive (Collins and Galley 1998) with collagen loss increasing with increasing 

temperature (Figure 3.24; Kendall et al. 2018). As a result, collagen degrades at higher rates in 

tropical/sub-tropical comparing to temperate environments (Pestle and Colvard 2012), and even 

more rapidly in arid environments (Van Klinken 1999; Weiner and Bar-Yosef 1990).  

Collins et al. (1995) developed a temperature-sensitive simulation for non-mineralized type I 

collagen degradation to provide a theoretical framework for the better understanding of collagen 

chemical hydrolysis due to the presence of excess water. It was observed that chemical hydrolysis 
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leads to a depolymerisation of the peptide bonds and dissolution of the fragments and at the same 

time reduces the tensile strength of archaeological bone (Collins et al. 1995). The inter-chain 

hydrogen bonds were found to play a key role in collagen degradation rates as once fragments 

melt free, they cannot form hydrogen bonds again (Collins et al. 1995). The differences between 

mineralized and non-mineralized collagen, however, suggest a more complex process for the 

former due to its much higher gelatinizing temperature (Collins et al. 1995).  

 

Figure 3.24. Thermal age - Radiocarbon dates of charcoal and bone apatite (left), and bone collagen 

(right) against temperature of burial environment. The blue line (thermal age) indicates the theoretical 

limit for collagen survival (Kendall et al. 2018). 

Protein hydrolysis in acidic or alkaline aqueous environments can also cause fragmentation to 

collagen and may allow the more soluble components to be leached out as activation energies are 

also pH-dependent (Ajie, Hauschka and Kaplan 1991; Collins and Galley 1998; Turner-Walker 

2008). Deamidation of asparagine (Asp) and glutamine (Gln) residues is known to occur in 

proteins by hydrolytic cleavage of the amide side chain, particularly at low pH and high 

temperatures, although deamidation of Gln occurs at much slower rates than that of asparagine 

(Van Doorn et al. 2012). Deamidation of Asp and Gln to aspartic and glutamic acid, respectively, 

cause structurally and biologically important alterations in peptide and protein structures 

(Robinson and Robinson 2001). 

Local hydrology can also play a significant role in the survival of collagen (i.e. soluble fraction) 

as samples with higher thermal age (see Figure 3.24) may have better preserved organic content 

than samples of similar chronological age and lower thermal age, coming from areas with more 

active hydrology (Van Doorn et al. 2012). Water movement from topsoil to subsurface layers and 

evaporation from the subsoil to the soil surface the chances of collagen to survive are minimal 

(Grupe 1995). Grupe (1995) confirmed this relationship when she studied the preservation of 

collagen in archaeological human bones from Egypt buried in sandy soil. Collagen was poorly 

preserved in these samples as the sandy soil was not capable of absorbing and retaining water 
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(Grupe 1995). Evaporation caused a water flux from the deeper soil layers to the surface which 

led to a recrystallization of the soil ions within bone (Grupe 1995). This process commonly results 

in fissures in bone that are responsible for accelerating the loss of collagen (brittleness) in such 

arid areas (Grupe 1995). In such samples, direct side-chain hydrolysis will be the dominant 

mechanism for deamidation (Van Doorn et al. 2012).  

3.3.1. QUALITATIVE ASSESSMENT 

COLLAGEN YIELD, COLLAGEN C/N RATIO, NITROGEN OF WHOLE BONE 

Efforts have been made to understand and characterize the preservation of the original collagen 

biological signal to avoid misinterpretations due to diagenetic signals (Collins et al. 1995, 2002; 

Dobberstein et al. 2009; Grupe 1995; Harbeck and Grupe 2009; Van Doorn et al. 2012; Van 

Klinken 1999). Collagen yield (wt.%) is the most widely used quality indicator to distinguish 

well-preserved from poorly-preserved collagen. Ambrose (1990) suggested a 3.5% threshold for 

problematic samples, DeNiro and Weiner (1988) proposed a 2% cut-off, while van Klinken 

(1999) suggested a 1%. Currently, 1 wt.% is considered a suitable threshold below which samples 

should not be used for isotopic and/or radiocarbon dating studies (Brock, Higham and Ramsey 

2010; 2012; Dobberstein et al. 2009; Van Klinken 1999) and the exact reason is that when 

collagen content drops below 1% it is difficult to remove contamination (Van Klinken 1999).  

A distinction between ‘good’ and ‘bad’ collagen based on the collagen wt. %, however, may result 

in an inclusion of ‘bad’ collagen samples in the ‘good’ ones, and vice versa (DeNiro and Weiner 

1988). For that reason, collagen C/N ratio is used to improve screening practices. C/N values 

similar to modern bone (i.e. 2.9 to 3.6) are considered representative of good quality collagen, 

whereas much higher C/N ratios are linked to diagenesis (Ambrose 1990; DeNiro 1985; DeNiro 

and Weiner 1988). This range has been selected as samples exhibiting values outside this range 

may have either lost a considerable amount of nitrogen or gained exogenous carbon (Tuross 

2002). The alterations of the carbon and nitrogen contents post-mortem involve more than one 

mechanism that proceed simultaneously, and they are responsible for the gradual loss of collagen 

and the differential loss of amino acids (Turner-Walker 2008; Tuross 2002). For instance, specific 

bacterial species may metabolize specific amino acids to utilize carbon as a source of energy 

(Turban-Just and Schramm 1998; Grupe, Balzer and Turban-Just 2002). This means that the larger 

amino acids such as histidine and phenylalanine are preferred as they contain more carbon atoms 

to satisfy bacterial demand (Balzer et al. 1997; Grupe 1995; Harbeck and Grupe 2009; Turban-

Just and Schramm 1998; Grupe, Balzer and Turban-Just 2002). The smaller amino acids such as 

glycine and alanine which have fewer carbon atoms are less attractive for heterotrophic 

decomposers as they would have to metabolize larger amounts of small amino acids (Balzer et al. 

1997; Grupe 1995; Turban-Just and Schramm 1998; Grupe, Balzer and Turban-Just 2002).  
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Microbial attack is usually followed by hydrolysis by other proteases which can give access to 

nitrogen (Balzer et al. 1997; Grupe, Balzer and Turban-Just 2002). Chemical hydrolysis of 

mineralized collagen requires the removal of the mineral and it usually leads to a further change 

to amino acid composition (Balzer et al. 1997; Masters 1987; Turner-Walker 2008; Tuross 2002; 

Grupe, Balzer and Turban-Just 2002). A loss of proline, for example, can be the result of collagen 

cleaving during autolysis, followed by non-specific protease activity which is capable of further 

destroying the collagen molecule after collagenase attack (Grupe 1995). Therefore, due to the 

different C/N ratios of the individual amino acids, a preferential loss of the hydrophobic amino 

acids (hydrolysis) and/or those with a higher number of carbons (microbial attack) would affect 

the C/N ratio (Harbeck and Grupe 2009; Masters 1987). 

There are researchers, however, who claim that C/N ratio is an inadequate collagen quality 

indicator as good quality collagen can display higher than 3.6 C/N ratio (Ambrose 1990; Harbeck 

and Grupe 2009). Further to this argument, many archaeological bone samples that display an 

acceptable C/N ratio can have shifted stable isotope ratios due to poor collagen preservation 

(Harbeck and Grupe 2009). Thus, it is apparent that the simultaneous or successive degradation 

of collagen by microbial attack (decreased C/N ratio) and chemical degradation or contamination 

(increased C/N ratio) may result to an acceptable C/N ratio (Harbeck and Grupe 2009), and in 

such occasions C/N ratio can be a less reliable indicator for assessing collagen preservation 

(Ambrose 1990). Possible solutions that have been proposed include the widening of the C/N 

ratio range from 2.8 to 4.0 (Harbeck and Grupe 2009), or the use of C/N ratio of whole bone 

powder as an alternative solution, but currently they have not gained ground (Brock et al. 2012; 

Lebon et al. 2016).  

The use of the % N of whole bone is assumed to significantly increase the successful screening 

of collagen (Brock, Higham and Ramsey 2010; 2012; Harbeck and Grupe 2009; Nielsen-Marsh 

et al. 2000b). It is c. 3.5-5.5 wt. % in modern bone (Baker, Butterworth and Langley 1946; Eastoe 

and Eastoe 1954) and gradually decreases in archaeological specimens. Bocherens et al. (2005) 

claim that % N can be effectively used to discriminate between well- and poorly-preserved 

samples, with a % N over 0.4 proposed as a threshold for samples to be further examined for 

stable isotopes and/or radiocarbon dating. Brock et al. (2012) similarly argue that a cut-off point 

of 0.7 % has a successful prediction rate about 73 % or over. Nonetheless, when samples contain 

>0.7 % Ν and give collagen yields <1 wt. %, the nitrogen may have been present as short-

chain/degraded collagen or polypeptides, NCPs, soil contaminants, or conservation treatments 

(Brock et al. 2012; Lebon et al. 2016). Unfortunately, the % N content of whole bone powder 

cannot differentiate between nitrogen from collagen, NCPs and soil (Brock, Higham and Ramsey 

2010; 2012), therefore collagen assessment of highly contaminated and/or degraded bones can be 

problematic (Brock et al. 2012). 
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AMINO ACID RACEMIZATION 

Racemization involves the formation of one enantiomer (non-superimposable mirror images) 

from the other (L- to D- form) due to the thermodynamically unstable configuration of amino 

acids post-mortem (Johnson and Miller 1997). It stops when the solution is racemic, thus when 

D- and L-enantiomers reach an equilibrium value near 1 and this D-to-L ratio in a sample enables 

one to estimate how long ago the specimen died (Figure 3.25; Johnson and Miller 1997).  

 

Figure 3.25. Collagen degradation and racemization  – Peptide bond hydrolysis leading to a release of 

amino acids which are lost to the environment. Exogenous components may enter the bone tissue and 

may affect the racemization rates of the various amino acids (Bada, Wang and Hamilton 1999). 

The application of amino acid racemization for the study of archaeological bone is controversial 

and its success is widely affected by the preservation state of the sample (Johnson and Miller 

1997). The racemization rates increase with increasing temperatures and time, while they vary 

depending on the position of the amino acids in the peptide chain (Johnson and Miller 1997). 

Collagen might not be hydrolyzed, thus it might not be displayed in the amino acid profiles 

(Harbeck and Grupe 2009) making amino acid racemization relatively unhelpful as a quality 

indicator because it is applicable only to the hydrolysable fraction of the collagen (Figure 3.25; 

Van Klinken 1999). Although it can be used for the assessment of contamination to verify the 

absence of other proteinaceous substances, erroneous assessment of collagen preservation due to 

condensation reactions, diagenesis and the insensitivity of the method to other molecular species 

(e.g. humic acids) may occur (Van Klinken 1999). The extent of racemization can be a measure 

of overall collagen preservation as the relative rates of racemization of the various amino acids 

should follow a predictable sequence but only if no contaminants have been introduced into the 

bone matrix (Bada, Wang and Hamilton 1999). Consequently, amino acid analysis seems not to 

accurately depict the preservation state of collagen, as no gradual alterations are usually observed 

in amino acid compositions (Van Klinken 1999). 
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A good example is the use of aspartic acid (Asx) racemization as an indicator of collagen integrity 

(Collins et al. 1999, 2009; Tuross 2002). Specimens with poor collagen preservation should have 

higher D/L Asx values and samples with good collagen preservation should have low D/L Asx 

values (Ambrose 1990; Harbeck and Grupe 2009). However, Collins et al. (1999) support that 

Asx racemization is not likely to occur in triple helical collagen below its denaturation 

temperature (i.e. Tm=150ᵒ C for mineralized collagen). Therefore, an increase in D-Asx in 

archaeological bones is probably caused by the racemization of the soluble non-collagenous 

proteins (NCPs) and the complete racemization of Asp in the telopeptides (Collins et al. 1999). 

Over archaeological timescales, the D:L ratio will increase due to the decreasing proportion of 

triple helical collagen and will reflect the rate of loss of helix (dependent on time and temperature) 

and leaching of soluble peptides (dependent on burial environment) (Collins et al. 1999). Thus, 

the atypical kinetics of Asx racemization in bone are complex and potentially unpredictable 

(Collins et al. 1999; Tuross 2002).  

AMIDE-TO-PHOSPHATE RATIO (AM/P) 

Fourier transform infrared (FTIR) spectroscopy can be potentially used for the assessment of 

collagen preservation for the distinction between well- and poorly-preserved collagen (DeNiro 

and Weiner 1988). Amide I at c. 1640 cm-1 and amide II bands at c. 1540 cm-1 are considered 

characteristic of proteins and peptides (Figure 3.26; Chalmers 2010; Figueiredo, Gamelas and 

Martins 2012; Gourion-Arsiquaud, West and Boskey 2008). The former is attributed mainly to 

C=O stretching, whilst the latter involves N-H bending and C-N stretching vibrations (Chalmers 

2010). ‘Good’ collagen displays a strong peak at c. 1640 cm-1 (amide I) and c. 1450 cm-1 (amide 

II/proline), whereas ‘bad’ collagen is characterized by a low absorbance in these spectral regions 

(DeNiro and Weiner 1988).  

The 1640 cm-1/1035 cm-1 ratio of the v1 amide and v1 PO4
3ˉ vibrational modes, respectively, has 

been used for the assessment of collagen in bone (e.g. Trueman et al. 2004; Lebon et al. 2016). 

Lebon et al. (2016) has also proposed an equation using the amide-to-phosphate ratio (Am/P) for 

the estimation of the remaining collagen wt. % in archaeological bone (i.e. collagen wt.% = 

113.13 x Am/P + 1.69) with a standard error of estimation ± 1.21 wt%. However, the presence of 

overtones (e.g. O-H stretch at 1640-1660 cm-1 related with structural water) and N contamination 

can lead to an overestimation of the collagen content (Lebon et al. 2016). Lebon et al. (2016) 

observed such N contamination in several samples from catacombs due to exogenous organics 

(humic and/or fulvic acids) and/or minerals (ammonium and/or nitrates) possibly due to the 

accumulation of bodies in the mass burials which can promote the activity of microorganisms and 

the release of fluids that can contaminate bones (Lebon et al. 2016). The presence of humic (or 

fulvic) acids can also be observed at 1700-1500 cm-1 and 1100-1000 cm-1 absorption bands with 

the peaks at c. 1715 cm-1 and c. 1602 cm-1 assigned to humic acids that contain nitrogen (Lebon 

et al. 2016). Nonetheless, there is a limitation in distinguishing between humic acids, amide I and 
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phosphate domains as they all overlap (Lebon et al. 2016). Treatment of bone with NaOH may 

also result in increased Am/P ratios due to the absorption of water by bioapatite crystals (Lebon 

et al. 2016).  

 

Figure 3.26. Collagen type I mid-IR spectra – Curve-fitted spectrum of the 1480-1780 cm-1 spectral 

region displaying the absorption bands and their sub-components (Bobroff et al. 2016). 

Chadefaux et al. (2009) have also applied FTIR microspectroscopy to examine the diagenetic 

effects on the secondary structure of collagen preserved in the archaeological bone. 

Decomposition and reconstruction of the amide I band, and the position of the amide II band 

component were combined with curve-fitting to quantitatively estimate the relative proportion of 

each component representing a type of secondary structure (Figure 3.26; Chadefaux et al. 2009). 

The general feature of amide I components profile (the relative area of the α-helix and that of the 

random coils) seems to reflect a disorganisation in the collagen secondary structure; thus, the 

shape of the amide I band is representative of the collagen secondary structure (Chadefaux et al. 

2009).  

In archaeological samples, when the α-helix remains the major component it is an indication that 

the collagen secondary structure is still quite well preserved (Chadefaux et al. 2009). However, 

its relative area often decreases, while there is an increase in the fraction of the random coils (i.e. 

unordered structures) (Chadefaux et al. 2009). The decrease of the α-helix and the increase of the 

unordered structures are probably indicative of post-mortem modification in bone’s structure 

(Chadefaux et al. 2009). The amide II absorption peak appears at around 1548 cm-1 in the 

archaeological bone, a shift that seems to be related with an alteration in the collagen structure 

https://paperpile.com/c/EyiG9J/A9Od
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(Chadefaux et al. 2009). Therefore, FTIR-ATR mapping can be potentially used for the selection 

of the best-preserved parts of archaeological bone. 

CHEMICAL PRE-TREATMENT EFFECTS 

Collagen yields, C/N ratios, N% and C% vary greatly depending on the extraction method used 

(e.g. sample preparation, acid or EDTA demineralization processes, NaOH treatment) (Ambrose 

1990; Jørkov, Heinemeier and Lynnerup 2007; Semal and Orban 1995; Van Klinken 1999). Some 

extraction protocols can lead to a more extensive degradation of large collagen peptide chains 

resulting to smaller fragments (Semal and Orban 1995). Thus, when assessing collagen 

preservation researchers should be aware that different extraction procedures affect collagen 

yields (Jørkov, Heinemeier and Lynnerup 2007).  

Treatment of bone with a strong acid, for instance, can cause catalysis of amino acid residues (e.g. 

asparagine, glutamine) (Collins and Galley 1998). Grinding may also dramatically affect collagen 

extraction, especially in well-preserved samples where collagen fibres are long (Collins and 

Galley 1998). Although it seems that pulverization affects less the archaeological bone, 

especially, the poorly-preserved samples because collagen is already damaged, and it is less prone 

to chain scission, grinding samples should be avoided in the acid treatment method (Collins and 

Galley 1998). On the contrary, in the EDTA treatment where the surface area exposed to EDTA 

needs to be increased, grinding could improve demineralization (Collins and Galley 1998).  

Collagen easily reacts with charged contaminant molecules but the interaction with the 

contaminants remains unclear (Van Klinken and Hedges 1995). Humic substances, for instance, 

may penetrate archaeological bone either from the soil and/or by in situ humification of collagen 

through Maillard reactions and irreversibly bound to the collagen molecules (Van Klinken and 

Hedges 1995). Uptake of humic acids by collagen has been found to be almost instantaneous as 

it initiates only few hours after first contact and the saturation levels have been found to reach 

even c. 25 wt. % (Van Klinken and Hedges 1995). Although NaOH treatment and gelatinization 

indicate that humic-collagen linkages are mainly in the form of hydrogen bonds, it is unknown 

what types of linkages might be involved (e.g. ionic, covalent, Van der Waals) and the effects of 

different reactions on those linkages (Van Klinken and Hedges 1995).  

As a considerable amount of collagen can be broken down into products of lower molecular 

weight and sample clean-up chemistries usually do not remove all the humic acids present, 

ultrafiltration of samples is used to separate high molecular weight (i.e. >30 kDa) fractions of the 

gelatinized collagen from low molecular weight components (i.e. <30 kDa) (Higham, Jacobi and 

Ramsey 2006; Sealy et al. 2014; Van Klinken and Hedges 1995). Ultrafiltration is considered 

advantageous for the removal of environmental contaminants and it improves the quality of the 

extracted collagen as large molecular weight proteins retained are more likely to originate from 

the original bone collagen (Ramsey et al. 2004). Ultrafiltering samples that have low collagen 
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yields allows purification by removing the degraded collagen fragments, contaminated carbon 

from bones, soil-derived amino acids, salts, etc. (Higham, Jacobi and Ramsey 2006). It has been 

evidenced that this process improves the C/N ratios and other parameters which is an indication 

that it provides more reliable data by recovering collagen of sufficient quality (Higham, Jacobi 

and Ramsey 2006; Sealy et al. 2014).  

One important limitation of ultrafiltration, however, is that it results in lower collagen yields to 

an unknown extent (Brock et al. 2012; Ramsey et al. 2004; Higham, Jacobi and Ramsey 2006; 

Sealy et al. 2014). Moreover, ultrafiltration cannot remove contaminants of higher molecular 

weights such as cross-linked humic substances (Higham, Jacobi and Ramsey 2006; Sealy et al. 

2014). This makes ultrafiltration not very useful for assessing bone collagen preservation and it 

might have implications for the study of recent material with low collagen yields, especially for 

radiocarbon dating (Ramsey et al. 2004; Higham, Jacobi and Ramsey 2006; Sealy et al. 2014). 

Accordingly, well-preserved archaeological bone is not necessary to follow more stringent 

protocols that include the ultrafiltration step (Sealy et al. 2014).  

3.3.2. PRESERVATION OF NON-COLLAGENOUS PROTEINS (NCPS) 

The major diagenetic alterations that often result to poorly-preserved collagen in archaeological 

bones has led researchers on the quest for other non-collagenous proteins preserved in 

archaeological and fossil specimens (Ajie, Hauschka and Kaplan 1991; Ajie et al. 1992; Buckley 

et al. 2008; Masters 1987; Nielsen-Marsh et al. 2002). Several studies have explored the chances 

of NCPs being better preserved than collagen, as a potential recovery of NCPs may provide 

valuable information on palaeopathology, species identification, distribution patterns of some 

NCPs (i.e. polymorphism) in past populations (Brandt, Wiechmann and Grupe 2002; Collins et 

al. 2000; Grupe 1995; Masters 1987; Smith et al. 2005). Some researchers have even supported 

that some NCPs (i.e. osteocalcin) are superior to collagen for palaeodietary studies and 

radiocarbon dating, especially for poorly-preserved or fossilized specimens (Ajie, Hauschka and 

Kaplan 1991; Ajie et al. 1990; 1992). 

Osteocalcin (i.e. gamma-glutamic acid or Gla protein) is the second most abundant protein in 

bone after collagen (Ajie et al. 1990). It controls calcium deposition and removal that regulate 

mineralization and crystal growth; therefore, the more mineralized the bone, the higher the 

osteocalcin content would be (Ajie et al. 1992). Its significant role for the stabilization of the 

mineral component of bone may protect osteocalcin from the biological and physicochemical 

processes that denature collagen (Ajie et al. 1990; Collins et al. 2002). Ajie et al. (1990) who first 

reported a set of data on osteocalcin from a series of modern and archaeological bones argue that 

when bound tightly to bioapatite, osteocalcin is well-protected from biochemical degradation as 

bioapatite acts as a buffer (Ajie et al. 1992).  
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However, quite often assumptions for the long-term survival of osteocalcin are contradictory as 

not much is known about its preservation (Collins et al. 2000; Buckley et al. 2008; Smith et al. 

2005). The amount of osteocalcin that remains intact in archaeological samples depends on 

diagenesis (Ajie, Hauschka and Kaplan 1991). Thus, osteocalcin is not likely to survive in bones 

that display microbial attack, collagen hydrolysis, and/or mineral recrystallization (Smith et al. 

2005). It is logically argued that the amount of osteocalcin decreases with increasing crystallinity 

of the bioapatite crystals, decreasing histological preservation and increasing collagen 

degradation (Smith et al. 2005).  

Regarding crystallinity, it is believed that it affects the survival of osteocalcin as it limits the sites 

available for adsorption, hence it leads to its desorption (Smith et al. 2005). Although osteocalcin 

seems to decrease with increasing bone crystallinity, the exact relationship between mineral 

recrystallization and osteocalcin survival requires further investigation to better understand the 

relationship between the natural “packaging” and the effects of diagenesis (Collins et al. 2000). 

Osteocalcin also seems not to be preserved in bones with OHI values < 3 (Smith et al. 2005). The 

in vivo association between osteocalcin and collagen is also assumed to be strong, and osteocalcin 

would be expected to follow similar diagenetic pathways with collagen as they are both proteins 

(Smith et al. 2005). Although samples containing low amounts of collagen usually contain low 

amounts of osteocalcin, the amounts of osteocalcin in samples with well-preserved collagen are 

variable (Smith et al. 2005). With respect to radiocarbon dating of bones of similar age, 

osteocalcin may provide dates that are much older than those of collagen as a result of diagenesis 

(Ajie et al. 1990).  

Using a kinetic approach for the study of the individual decomposition rates of the Gla-rich mid-

region, N-terminus and C-terminus of osteocalcin, Collins et al. (2000) demonstrated that the Gla-

rich mid-region is more stable, and the N-terminus is the least stable epitope. A loss of the mid-

region with increasing temperatures also showed how temperature-sensitive is this region of 

osteocalcin (Collins et al. 2000). As a result, although residual amounts of osteocalcin or certain 

epitopes may be preserved in diagenetically altered bone, they might be insufficient for isotopic 

or radiocarbon studies (Smith et al. 2005). While this observation could mean that trace amounts 

of osteocalcin survive in archaeological bone, the situation is far more complex and their 

application to archaeology remains dubious (Brandt, Wiechmann and Grupe 2002; Smith et al. 

2005). 

Wadsworth and Buckley (2014) used proteomics techniques (i.e. liquid chromatography/tandem 

mass spectrometry-LC/MS/MS) to explore the complex protein mixtures in archaeological and 

fossil bones to determine an approximate temporal limit for the survival of NCPs in comparison 

to collagen and also to understand if NCPs are more useful for constructing phylogenies and 

species identification of ancient organisms than collagen (Wadsworth and Buckley 2014). In the 
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aggregate, 44 NCPs were identified in total, whilst 6 type I collagen chains were present in every 

sample (Wadsworth and Buckley 2014). Most of the NCPs were blood/serum proteins, with 

extracellular matrix, intracellular and bone-specific proteins following in numbers (Wadsworth 

and Buckley 2014). Among these, the most common were serum albumin, A2HSG, biglycan, 

chondroadherin, pigment epithelium-derived factor, lumican and prothrombin, while it was also 

found that, under favourable conditions, specific NCPs (e.g. albumin) can be recovered even from 

Early Pleistocene bone (Wadsworth and Buckley 2014). 

Immunological methods have been used for the examination of polymorphic serum proteins in 

archaeological bones, but only the acidic groups of the NCPs were frequently preserved probably 

due to binding to calcium sites of the bioapatite crystals (Brandt, Wiechmann and Grupe 2002). 

A loss of specific side chains, thus, makes the identification of the epitopes during immunological 

assays problematic (Brandt, Wiechmann and Grupe 2002). ELISA may permit the identification 

and quantification of some NCPs; however, it is not clear if the information is false positive due 

to considerable charge alterations of the identified proteins due to diagenesis (Brandt, Wiechmann 

and Grupe 2002). Microbial attack can also introduce exogenous substances which may 

contribute to non-specific immunological reactions (Brandt, Wiechmann and Grupe 2002).  

Collagen can also mask the presence of NCPs, hence the selection of an appropriate extraction 

method (e.g. enzymatic digestion of collagen) seems to be vital for the identification of the low-

abundance NCPs (Brandt, Wiechmann and Grupe 2002; Wadsworth and Buckley 2014). 

Currently, it seems difficult to remove collagen via conventional means due to its diverse range 

in biochemical properties when hydrolysed (Wadsworth and Buckley 2014). Overall, it can be 

assumed that only well-preserved archaeological bone may retain osteocalcin and other NCPs in 

significant amounts that can be used for radiocarbon, isotopic investigations or other purposes 

(Brandt, Wiechmann and Grupe 2002; Smith et al. 2005; Wadsworth and Buckley 2014). 
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3.4. PRESERVATION OF DNA 

Obtaining DNA from skeletal remains has revolutionized the way we understand our past as DNA 

can provide unique information on human evolution, migration events, sex, kinship, pathology, 

phylogenetics, and domestication of plants and animals (Gupta et al. 2015; Pääbo et al. 2004). 

aDNA is a relatively new field of research, and as such, there are several problems mainly related 

to its contamination and preservation (Gilbert et al. 2005; Lindahl 1993; Linderholm 2016; 

Mitchell, Willerslev and Hansen 2005; Pruvost et al. 2008). Publication of non-authentic results 

(e.g. exogenous DNA of microbial or human contaminants) has been a major problem despite the 

successful recovery of endogenous aDNA in a remarkable number of studies (Gilbert et al. 2005; 

Lindahl 1993; Mitchell, Willerslev and Hansen 2005; Willerslev and Cooper 2005). Thus, 

understanding its degradation post-mortem is an imperative necessity in aDNA research. 

3.4.1. POST-MORTEM DECAY 

DNA is a relatively unstable biomolecule as it undergoes progressive fragmentation post-mortem 

due to a wide range of biological and environmental factors (Adler et al. 2011; Lindahl 1993; 

Parsons and Weedn 2006). DNA degradation commences with the autolysis which takes place 

only few hours after the death of an organism (Burger et al. 1999; Parsons and Weedn 2006; 

Pruvost et al. 2007). It is rapidly degraded by endonucleases such as lysosomes that cut DNA 

strands at internal sites, while bacteria and other external microorganisms also proliferate and 

digest DNA with exonucleases from the ends (Hofreiter et al. 2001; Pääbo et al. 2004; Parsons 

and Weedn 2006; Pruvost et al. 2007).  

Hydrolytic breakage of the polynucleotide strands (Figure 3.27a) is considered the main long-

term reaction in aDNA degradation followed by chain breakage into shorter fragments usually 

between 100-500 bp in length (Bada, Wang and Hamilton 1999; Brown and Brown 2011; 

Hofreiter et al. 2001; Lindahl 1993; Pääbo et al. 2004; Parsons and Weedn 2006). The DNA 

molecule is particularly prone to this, as water attacks the β-N-glycosidic bonds and/or the 

phosphodiester bonds (Brown and Brown 2011; Lindahl 1993; Parsons and Weedn 2006). The 

attack on the phosphodiester bond leads to single-stranded nicks, whilst the attack on the 

glycosidic bond releases the nucleotides (Pääbo et al. 2004).  

Hydrolysis predominantly releases the purines (i.e. depurination; Figure 3.28) as the purines are 

more susceptible to hydrolysis than pyrimidines (Brown and Brown 2011; Lindahl 1993). This 

release generates apurinic sites in the DNA strand (Bada, Wang and Hamilton 1999; Brown and 

Brown 2011). At these abasic sites, the free aldehyde form of the 2’ deoxyribose group is involved 

in a β-elimination reaction which rapidly breaks the DNA backbone at the 3’-phosphodiester bond 

of the apurinic sugar (Bada, Wang and Hamilton 1999). A release of a base, however, does not 

automatically leads to a cleavage of the strand, as this requires the removal of several bases at 
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adjacent positions (Brown and Brown 2011). When that happens, hydrolysis results in gradual 

fragmentation of polynucleotide strands (Brown and Brown 2011; Lindahl 1993).  

 

Figure 3.27. Post-mortem DNA degradation  – Damaged patterns in red. (a) Hydrolytic damage that leads 

in the formation of strand breaks (single-stranded nicks) with (i) the cleavage of the phosphodiester bond 

(A) followed by (ii) depurination (abasic site - B) and breakage of the sugar backbone (C). (b) Cross-

linking formation: (i) inter-strand crosslink by alkylation and (ii) intermolecular crosslinks by Maillard 

reaction. (c) Oxidation/hydrolysis of bases that results to (i) blocking lesions or (ii) miscoding lesions 

(Willerslev and Cooper 2005). 
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Hydrolysis can also cause the loss of the amino (-NH2) group (i.e. deamination; Figure 3.28) with 

pyrimidines being more susceptible to such damage (Brown and Brown 2011; Lindahl 1993; 

Pääbo 1989). The deamination of cytosine to thymine is very common in aDNA and it generates 

a C→T sequence error (i.e. miscoding lesions; Figure 3.27c), as uracil (deaminated cytosine) 

binds to adenine (Brown and Brown 2011; Pääbo et al. 2004). The methyl (-CH3) group attached 

to carbon 5’, giving 5’-methyl cytosine in many cytosine bases (10-30% in nuclear DNA and 

much less in mtDNA) makes them more susceptible to deamination (Brown and Brown 2011; 

Hansen et al. 2001). G→A sequence errors should be also anticipated; however, different rates 

should be expected for each distinct miscoding lesion (Hansen et al. 2001).  

 

Figure 3.28. DNA degradation  – Sites of chemical alteration in DNA (Schweitzer 2004). 

Apart from thymine that cannot be deaminated (no amino group), adenine and guanine also 

undergo deamination, although their effects are not very significant (Brown and Brown 2011). 

An example would be the deamination of adenine to hypoxanthine (Figure 3.27c) that binds to 

cytosine rather than thymine, leading to A→G miscoding lesions (Brown and Brown 2011). The 

rate of this deamination is probably 2-3% that of cytosine (Brown and Brown 2011). Deamination 

of guanine to xanthine, however, does not lead to any miscoding as this base still binds to cytosine 

(Brown and Brown 2011). Miscoding lesions in mtDNA are concentrated in ‘hot spots’ such as 

the hypervariable region 1 possibly due to both in vivo mutations and post-mortem damage 

(Gilbert et al. 2003; Willerslev and Cooper 2005). Thus, the presence of miscoding lesions in 

aDNA complicates its correct determination (Brown and Brown 2011; Pääbo et al. 2004). 

A different type of lesions called blocking lesions (Figure 3.27c) also prevent DNA polymerase 

to replicate the DNA (Brown and Brown 2011). The most important blocking lesions are those 

caused by oxidation of the bases and include hydrogen peroxide, super-oxide, and free hydroxyl 

radicals mainly from ionizing radiation (i.e. cosmic rays and geological radiation) (Brown and 
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Brown 2011; Parsons and Weedn 2006). Oxidative damage occurs through the strand scission 

and ring fragmentation of the 3–4ʹ carbon bond of the deoxyribose (Poinar 2003). The main site 

where oxidative attack is observed is the 5–6ʹ C=C double bonds of both pyrimidines, and the 

imidazole ring in purines, which lead to a ring fragmentation (Pääbo et al. 2004; Poinar 2003). 

The oxidation of the purines and/or pyrimidines, therefore, leads to a replacement of one or more 

double bonds with single bonds which can lead to the breakage of their rings (Brown and Brown 

2011).  

Another blocking lesion that can be caused by ultraviolet radiation via oxidation is the 

dimerization of purines on opposite strands (Brown and Brown 2011). Peptides attached to DNA 

strands can also be observed and may act as blocking lesions (Brown and Brown 2011). DNA 

fragmentation may also be the effect of denaturation when DNA molecules of several kilobases 

in length contain nicks in both strands (Brown and Brown 2011). Denaturation of DNA (i.e. 

separation of the double helix) is affected by low pH and high temperature (Parsons and Weedn 

2006), as low temperature inhibits these processes, and if DNA withstands degradation in the 

early post-mortem phases, it may survive for long time-periods (Parsons and Weedn 2006).  

Therefore, environmental conditions play a key role in the preservation of endogenous DNA 

(Poinar 2003). DNA decay is very temperature-dependent (Allentoft et al. 2012; Lindahl 1993; 

Lindahl and Nyberg 1972). Low temperatures have an advantageous effect on the survival of 

DNA, whereas high temperatures result in a significant loss of DNA (Burger et al. 1999; Poinar 

2003). DNA yields are much higher in permafrost areas than in moderate temperate environments, 

while the latter better preserve DNA comparing to warmer areas such as the Mediterranean 

(Pruvost et al. 2008). A north-south decline in endogenous DNA yields has been reported by 

Bollongino et al. (2008), with a 67% success rate for the former compared to only a 7% for the 

Near Eastern open-air sites. Caves also undisputedly better preserve DNA as they have stable low 

temperatures all year-round and the soil environment usually protects bioapatite (Bollongino, 

Tresset and Vigne 2008). 

BAp crystals are assumed to protect DNA from further degradation as it adsorbs onto the crystal 

surface (Götherström et al. 2002; Lindahl 1993; Parsons and Weedn 2006). Its preservation has 

been linked to the survival of DNA in bone, while its dissolution and recrystallization are related 

with considerable loss of DNA archaeological specimens (Allentoft et al. 2012; Götherström et 

al. 2002). The adsorption of DNA is controlled by environmental conditions (e.g. temperature, 

pH) according to data from an experimental study using biomimetic apatite (Grunenwald et al. 

2014). More specifically, in lower temperatures (i.e. 4 °C) the amount of DNA adsorbed onto 

BAp crystals is significantly lower than in higher temperatures (i.e. 22 or 37 °C), with adsorption 

increasing in acidic environments and decreasing in alkaline contrary to what was previously 

believed (Götherström et al. 2002; Grunenwald et al. 2014; Lindahl 1993; Parsons and Weedn 
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2006). It was revealed that there is a loss of DNA when phosphate is added in the solution 

probably due to a competition for the available sites between DNA phosphate and inorganic 

phosphate (Grunenwald et al. 2014). Except for the evidence of the relationship between 

bioapatite and DNA, these studies also support that DNA cannot be located in osteocyte lacunae 

as it would be exposed to microbiological attack and the relationship crystallinity would be 

weaker (Götherström et al. 2002).  

Regarding collagen, it is generally assumed to play an important role in DNA degradation as its 

survival is considered crucial for the survival of DNA. However, recent studies on thermally 

treated specimens have demonstrated that this is not true (Götherström et al. 2002; Ottoni et al. 

2009). In fact, there is no relationship between collagen and DNA preservation as the survival of 

the latter appears variable (Ottoni et al. 2009; Poinar and Stankiewicz 1999). 

 

Figure 3.29. Endogenous DNA in petrous vs other skeletal elements  – Percentage of non-clonal 

endogenous DNA recovered after shotgun sequencing. The sampled area is marked with red (Gamba et al. 

2014). 

A correlation between porosity and DNA preservation which has been linked to microbial activity 

has been observed by Gilbert et al. (2005). Archaeological bones with high diagenetic micro-

porosity because of microbial reworking of bone apatite, would be expected to preserve much 

lower biomolecular information than bones with no diagenetic porosity (Turner-Walker et al. 

2002). Staining of samples, especially dark colouration, has also been linked to loss of 

endogenous DNA (Hollund et al. 2016). This observation can have an impact on the selection of 

samples for aDNA studies as these often come from organic-rich, low oxygen environments that 

are considered good for DNA preservation (Hollund et al. 2016). Hollund et al. (2016) argue that 

the more diagenetically altered samples display IRSF, C/P and Am/P values indicative of these 

modifications. Hence, these diagenetic parameters can be used for the discrimination between 
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well- and poorly-preserved areas within the same specimens as they can be linked both to 

bioapatite and collagen degradation (Hollund et al. 2016).  

Intra-individual and within bone variations have also been reported (Gamba et al. 2014; Pinhasi 

et al. 2015; Pruvost et al. 2008). A higher endogenous content in skeletal elements surrounded by 

more muscle mass has been observed by Pruvost et al. (2008). Particularly, DNA in limb bones, 

pelvis, ribs and scapula was better preserved than in skull, vertebrae, metatarsals and phalanges 

(Pruvost et al. 2008). Endogenous DNA yields from the petrous pyramid of the temporal bone 

(Figure 3.29) also exceed those from teeth by 4- to 16-fold and up to 183-fold those from other 

bones (Gamba et al. 2014; Hansen et al. 2017). Although yields of endogenous DNA from the 

petrous bone are exceptionally and consistently high, variation in endogenous DNA yields have 

also been observed with higher yields mainly obtained from the inner part of this skeletal element 

(Figure 3.30; (Pinhasi et al. 2015). 

 

Figure 3.30. Petrous bone – Variations in endogenous DNA yields from parts a, b and c.  The inner -ear 

bone (part c) usually preserves DNA in higher amounts than the other two areas (Pinhasi et al. 2015). 

High-throughput sequencing data can also be potentially used to estimate DNA decay rates as the 

amount of amplifiable template should decline exponentially with increasing fragment size 

(Allentoft et al. 2012). Hence, all these data generated may provide an excellent source for the 

study of DNA decay (Allentoft et al. 2012). However, it is extremely difficult to predict the 

survival of DNA based on the time since deposition of a specimen (i.e. decay rate) as physical, 

chemical and biological factors affecting its preservation vary considerably (Allentoft et al. 2012). 

Allentoft et al., (2012) argue that endogenous bone DNA fragments may resist decay for more 

than 1 Myr after deposition in deep-frozen environments but it is highly unlikely to survive deeper 

in time. At present, no relationship between the chronological age of the specimens and DNA 

decay has been recognized (Poinar 2003). Therefore, careful consideration of the samples needs 

to be taken as the rate of fragmentation varies (Allentoft et al. 2012). 
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3.4.2. POST-EXCAVATION DECAY 

Post-excavation treatment of samples affects DNA preservation and may further damage it 

(Hofreiter et al. 2001; Pruvost et al. 2007, 2008). After the removal of the skeletal remains from 

the soil, specimens are mainly stored in conditions that allow DNA decay to continue (Burger et 

al. 1999). Maintaining similar micro-environmental conditions for the specimens destined for 

DNA analysis is considered vital (e.g. no washing or brushing, preserving the sediment, placing 

them into plastic bags in the freezer) to increase chances for a successful extraction of endogenous 

DNA (Pruvost et al. 2008; Yang and Watt 2005).  

Contamination of samples with modern DNA has been noted in several studies, with samples 

probably be more susceptible to contamination just after excavation, when they are still damp 

from the burial environment (Gilbert et al. 2006; Yang and Watt 2005; Yang, Eng and Saunders 

2003). Contaminant DNA, which is identical or similar to the target aDNA, can be introduced 

into bone from the individuals who excavate, study and handle the skeletal remains, and this 

cannot be discriminately amplified by PCR (Pruvost et al. 2008; Yang and Watt 2005; Yang, Eng 

and Saunders 2003). Strict precautions and measures including isolated aDNA working areas, 

negative PCR control extractions and amplifications, assessment of biochemical preservation, 

cloning of products, and reproducibility, are necessary to ensure the quality of ancient DNA data 

(Gilbert et al. 2005; Poinar 2003; Pääbo et al. 2004). Additionally, pulverization or drilling of 

bone at low speed (c. 100 rpm) can limit the further damage of preserved DNA molecules as 

drilling skeletal tissues at high speed (c. 1000 rpm) results in a decrease in the quality and quantity 

of DNA (Adler et al. 2011). 
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CHAPTER 4: MATERIALS AND METHODS 

Chapter 4 provides some general information on the samples and their origins, a detailed 

description of the techniques and methodological approaches used in this study, and a practical 

guide to petrous bone sampling. The analytical techniques employed include commonly used 

methods (histology, collagen analysis, elemental analysis, endogenous DNA content), new 

method developments (a newly developed protocol for FTIR-ATR analysis of bone powder, i.e. 

Kontopoulos et al. 2018), and novel approaches to bone diagenesis which can potentially provide 

useful additional data (2nd derivative analysis of mid-IR spectra, nano-indentation, and 

synchrotron micro-CT). 

4.1. MATERIALS 

Two hundred and seventy-two bones, including one-hundred and eight petrous bones, were used 

in this study (Table A1-Appendix A). Samples came from 18 archaeological sites (see Table 1) 

of which one in Germany (c. 10000 BC), one in Jordan (7500-5500 B.C.), six in Greece (8300-

800 B.C.), one in Kazakhstan (2100-1800 B.C.), seven in Britain (3200 B.C.-1100 A.D.), one in 

Belgium (900-1800 A.D.), and one in Denmark (1650-1850 A.D.), with an aim to study both 

human and animal skeletal remains of different chronological age that originate from different 

geographic locations and burial environments. Samples from all British sites were provided in 

powder form, while samples from the remaining sites were chunks of bone from known skeletal 

elements and species (Table A1-Appendix A). Petrous bones are representative of the b and/or 

c areas (see section 3.4.1) as presented in Pinhasi et al. (2015). When sampling for aDNA analysis 

preceded sampling for histological, FTIR-ATR, collagen and elemental analyses, the samples did 

not derive exactly from the same anatomical location.  

Statistical analysis was carried out using IBM SPSS v.25 and the significance level was set at 

p=0.05. An independent sample t-test is applied to assess whether the means of two unrelated 

groups show significant differences from each other on the same continuous, dependent variable. 

The values of the dependent variable of the two populations compared should be normally 

distributed (Shapiro-Wilk test for normality) and they should also display homogeneity of 

variances (Levene’s test). When one of these two assumptions, or both, are violated, or when the 

sample size is relatively small (type II error), then a Mann-Whitney U test is carried out to 

determine if there are any differences in the medians between those two groups. When the 

population of either group is not normally distributed then the mean ranks are compared rather 

than the medians to determine whether the distribution (mean ranks) of the dependent values 

between the two independent groups is significantly different. Similarly, for the comparison of 

three or more independent groups of samples, the use of the one-way ANOVA test is applied, and 



 
 

85 
 

when there is a violation of any assumptions, then the equivalent non-parametric Kruskal–Wallis 

H test is used. The Holms-Bonferroni method is applied when performing multiple tests to reduce 

the possibility of getting a statistically significant result (i.e. a Type I error). 

Coefficient of determination (R2) of 0-0.19 is regarded as very weak, 0.2-0.39 as weak, 0.40-0.59 

as moderate, 0.6-0.79 as strong and 0.8-1 as very strong correlation, but these are rather arbitrary 

limits and should be considered in the context of the results. In boxplots, the bold line across the 

box indicates the median. The bottom of the box indicates the Q1 quartile (25th percentile) and 

the top of the box indicates the Q3 quartile (75th percentile). The upper and lower whiskers extend 

to the highest and lowest values, respectively, which are no greater than 1.5 times the interquartile 

(IQ) range. Any values outside the ends of the whiskers represent the outliers (i.e. cases with 

values 1.5 to 3 times the IQ range) and any asterisks represent the extreme outliers (cases with 

values more than 3 times the IQ range). 

Table 1. List of archaeological sites, dates and the number of samples studied from each site.  

Site Country Date No. of samples 

Bedburg-Königshoven Germany 12000 BP 5 

Maroulas, Kythnos Greece 8300-7600 BC 16 

Ain Ghazal Jordan 7500-5500 BC 6 

Sarakenos Cave, Boeotia Greece 6400-4000 BC 24 

Promachon, Serres Greece 5400-5000 BC 4 

Tharrounia, Euboea Greece 5300-3300 BC 11 

Ness of Brodgar, Orkney Britain 3200-2200 BC 7 

Bornais, South Uist Britain 3200-2200 BC 1 

Silgenach, South Uist Britain 3200-2200 BC 1 

Manika, Euboea Greece 2900-2300 BC 31 

N/A Kazakhstan 2100-1800 BC 6 

Cladh Hallan, South Uit Britain 2200-800 BC 6 

Kastrouli, Delphi Greece 1200-900 BC 24 

Potterne, Wiltshire Britain 1000-700 BC 7 

Danebury, Hampshire Britain 500-100 BC 3 

York, Yorkshire Britain 200-1100 AD 6 

St. Rombout, Mechelen Belgium 1100-1800 AD 101 

Holmens Kirke, Copenhagen Denmark 1650-1850 AD 9 

Blackburn Britain 1850 AD 4 

 Total 272 
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4.2. METHODS 

4.2.1. HISTOLOGICAL ANALYSIS 

One hundred and twenty-two transverse and thirty-three longitudinal thin sections of c. 200 μm 

from 147 samples (Table A2-Appendix A) were prepared using an Exact 300 CL diamond band 

saw. Sampling of petrous bone (n=36) was carried out by sectioning the element either 

longitudinally, or both longitudinally and transversely. Initially, specimens were cut 

longitudinally on the imaginary line drawn from the subarcuate fossa to the eminence between 

the jugular fossa and the cochlear canaliculus (Figure 4.1). This anatomical site allows the 

examination of both b and c areas of the inner ear (Pinhasi et al. 2015) as it intersects the inner 

ear into a medial part (that contains the cochlea) and a lateral part (that contains the semi-circular 

canals and other orifices for nerve supply and vascularisation) (see Figure 4.2 for petrous bone 

morphology). With reference to the transverse sections, these were cut on a line drawn from the 

half of the internal auditory meatus to the middle of the vestibular aqueduct (Figure 4.3). These 

were used to complement histological assessment for the identification of micromorphological 

characteristics and post-mortem modifications. Material from the petrous bones used for the 

spectroscopic, elemental and molecular analyses was extracted from both medial and lateral parts 

as well as b and c areas of petrous bone, always following thin sectioning. When sampling for 

aDNA analysis preceded sampling for histological analysis, samples were still from the b and/or 

c areas of petrous bone but did not derive exactly from the same anatomical location.   

Undecalcified thin sections were mounted onto glass microscope slides using Entellan New 

(Merck chemicals) for microscopy mounting medium (Wiggins and Drummond 2007) and 

covered by a glass coverslip, both cleaned with xylene before use. Thin sections were assessed 

under a Leica DM750 optical microscope using plane-polarized (PPL) and cross-polarized (XPL) 

transmitted light with total magnification ranging from 40x to 400x. Digital images were captured 

by a Leica ICC50 HD camera for microscopy imaging with a capture resolution of 2048 x 1536 

pixel. The general histological index (GHI) introduced by Hollund et al. (2012) was used as it is 

analogous to the Oxford histological index (OHI) as described by Millard (2001), but includes 

generalized destruction, cracking, and staining. A GHI value of 5 represents excellent 

microstructural preservation similar to modern bone (>95% intact microstructure), whereas a GHI 

value of 0 indicates poor microstructural preservation (<5% intact microstructure) with almost no 

original histological features observed. 
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Figure 4.1. Longitudinal sectioning of right human petrous bone  – (a) Section cut from the subarcuate 

fossa to the eminence between the jugular fossa and the cochlear canaliculus, in a posterior -anterior 

direction as seen in b. (c) The medial piece contains the cochlea which can be seen in the medial aspect 

of the section in Figure 4.2. (d) The lateral piece contains canals and other orifices for the vascular and 

nervous supply of the inner and middle ear.   
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Figure 4.2. Human petrous bone morphology . Sections showing the differences in gross morphology of 

petrous bone every c. 2 mm at the longitudinal axis. The medial columns represent the medial aspects of 

the sections, while the lateral columns the lateral aspects of the same sections. Section 1 represents the 

most posterolateral part of the petrous bone mainly  characterized by the large opening of the internal 

auditory meatus in the anterior aspect and some air cells mainly located posterosuperiorly. Section 7 

represents the most anteromedial part of the petrous bone which includes the cochlea that is located a t 

the center of the section (medial aspect). The cochlea can be identified by its characteristic 2.5 turns that 

resemble a snail shell. Adjacent to the cochlea there are two orifices for the vascular and nervous supply 

of inner and middle ear. In sections 2-4, the three semi-circular canals can be seen. Note the different 

colouration of the the tissues surrounding the cochlea and some canals, possibly related to the differences 

in their histomorphological and biomechanical characteristics.  
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Figure 4.3. Transverse sectioning of left human petrous bone  – (a) Section cut from the middle of the 

internal acoustic meatus to the centre of the vestibular aqueduct (posterior aspect of petrous bone), in a 

medial-lateral direction as seen in b. (c) The inferior and (d) the superior parts with the cochlea positioned 

in the anterior aspect.  
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4.2.2. SYNCHROTRON MICRO-CT 

Synchrotron radiation micro-CT scanning was conducted at the Diamond Light Source labs 

(Didcot, Britain) on beamline I13. The five petrous bones analysed (Table A1-Appendix A) 

were prepared using an Exact 300 CL diamond band saw. The petrous bones were initially cut 

longitudinally in an antero-posterior direction as seen in Figure 4.1. Sections of 1 mm x 1 mm x 

Z (varying heights) were cut in a supero-inferior or antero-posterior direction. 

Each sample was scanned with a pink X-ray beam with energies between 15 keV and 35 keV and 

a weighted mean spectral energy of 27 keV. A platinum coated mirror was used as a high energy 

filter and a combination of 1.35 mm pyrolytic graphite and 3.2 mm aluminium filters were used 

as low energy filters. A CdWO4 single crystal scintillator (thickness = 500 μm) was used to 

convert the X-ray photons to visible light of 475 nm wavelength. An Olympus infinity corrected 

microscope system with M=4 and an additional M=2 tube lens was used to create the images on 

a pco.Edge 5.5 sCMOS detector. The effective pixel size of this setup is 0.82 μm. 

The samples were mounted on an air-bearing Aerotech ABRT-260 rotation stage for the 

tomographic acquisition. A total of 2400 projections was acquired over 180° angular range. 

Projections were corrected for camera dark current and normalized with flat-images. The field of 

view was 2.1 mm x 1.8 mm (h x v) and a number of tomography scans were performed to cover 

the full height of the sample. An overlap of 0.3 mm was chosen to allow stitching of the individual 

scans and have a single volume for each sample. 

For an initial 3D reconstruction, a single sub-volume of one of the petrous bone samples (SAR8) 

was selected. The collected data were processed in ImageJ using the BoneJ plugin. First the data 

converted to 8 bits and noise reduced by application of a 3D median filter with s=1. The data were 

thresholded to select the void spaces (blood vessels and lacunae) using the triangles algorithm as 

implemented in ImageJ. The void spaces were then analyzed using the particle analyzer plug in 

following the Birkedal methodology as in Bach-Gansmo et al. (2016a, 2016b) and Wittig et al. 

(2016), where only void spaces above 30 µm3 volume were considered putative lacunae. The 

selected subvolume had a volume of 0.047 mm3. 

4.2.3. FTIR-ATR ANALYSIS 

FTIR-ATR measurements were performed on two hundred sixty-eight archaeological bones, two 

modern human femora and one modern bovine femur (Table A2-Appendix A) using a Bruker 

Alpha Platinum spectrometer [range: 4000-400 cm-1; no. of scans: 144; zero filling factor: 4; 

resolution: 4 cm-1; mode: absorbance]. Sample preparation and analysis was carried out using 

Kontopoulos et al. (2018)’s protocol which was developed as part of this research study and 

improves data accuracy, precision, comparability and reproducibility. Specifically, Kontopoulos 
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et al. (2018) reported the effects of particle size and sample selection (i.e. periosteal, mesosteal, 

trabecular bone) on the mid-IR spectrum of bone powder measured by FTIR-ATR. It was 

demonstrated that IRSF increases with decreasing particle sizes from >500 μm to 20-63 μm both 

in unheated and heated archaeological bone and modern specimens (Figure 4.4). This is possibly 

an example of the Surovell and Stiner (2001) “separation hypothesis” down to the 20-63 μm 

particle size, giving way to the “destruction hypothesis” when bone powder is consisted of 

particles of c. 1 μm, as there was a large decrease in IRSF values at this point.  

 

Figure 4.4. Particle size effect on IRSF and FWHM at 1010 cm-1 - IRSF-C/P relationship with the 

samples’ particle size in modern and archaeological bone. Datapoint markers’ sizes gradually decrease 

with decreasing particle size (i.e. >500 μm: size 10, 100% transparent; 250-500 μm: size 8, 80% 

transparent; 125-250 μm: size 6, 60% transparent; 63-125 μm: size 4, 40% transparent; 20-63 μm: size 

2, 20% transparent). Error bars represent estimated standard deviations (Kontopoulos et al. 2018). 

The FWHM at c. 1010 cm-1 showed a very strong inverse relationship with IRSF and a very strong 

linear relationship with particle size, decreasing with decreasing particle size from >500 μm to 

20-63 μm (Figure 4.4). When bone powder consisted of particles of c. 1 μm, the FWHM at c. 

1010 cm-1 did not show any characteristic pattern and relationship with crystallinity, confirming 

that the boundaries between order and disorder in BAp crystals are still unclear. Overall, these 

patterns were strongly related to the changes that occur at the short- and long-range order of the 

BAp crystals during grinding. 

Absorbance of the IR radiation was also strongly affected by the particle size, with higher 

absorbances for smaller bone powder particles. This observation indicated that for smaller particle 

sizes, there was a better contact between the sample and the prism, as well as a higher exposure 

of the bone powder’s components to the IR light. Further, removal of the periosteal, endosteal 

and trabecular tissues prior to pulverization of mesosteal (mid-cortical) bone was proved 
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necessary to eliminate uncertainties introduced by variations between IR data of the different bone 

areas.  

Therefore, bone samples were ground using an agate pestle and mortar following the mechanical 

cleaning of the outer and inner bone surfaces. About 2-3 mg of bone powder of 20-50 μm particle 

size were used for each measurement, and after each measurement the crystal plate and the anvil 

of the pressure applicator were thoroughly cleaned using isopropyl alcohol. Samples were run in 

triplicate; spectra were analysed using OPUS 7.5 software, and the calculations of the FTIR 

indices were conducted after baseline correction as seen in Box 1. The average values of two 

modern human femora (IRSF=3.357±0.007, C/P=0.24±0.003, Am/P=0.182±0.001, 

BPI=0.482±0.000) and one modern bovine femur (IRSF=3.221±0.012, C/P=0.248±0.006, 

Am/P=0.216±0.007, BPI=0.469±0.018) were used as reference throughout. 

Box 1. The mid-IR spectra of 20-63 μm particle size archaeological human mesosteal bone powder 

(MEC77). The spectral bands used for IRSF (a), C/P (b, c), and Am/P (b, d) are highlighted. Blue lines 

represent the peak positions for IRSF, C/P and Am/P indices and the red lines are the baselines. 

Box 1. Indices and baseline correction 

1. Infrared splitting factor (IRSF) was assessed using the equation introduced by Weiner and 

Bar-Yosef (1990, p. 191) that measures the heights at c. 600 cm--1 + c. 560 cm-1, divided 

by the trough between them at c. 590 cm-1, using a baseline correction from the c. 400-420 

cm-1 to the c. 630-670 cm-1 troughs (a). The two peaks are characteristic of the v4 

antisymmetric bending mode of orthophosphate ion. 

IRSF =
600 cm−1  +  560 cm−1

590 cm−1
 

2. Carbonate-to-phosphate (C/P) ratio was estimated as in Wright and Schwarcz (Wright 

and Schwarcz, 1996, p. 936) by dividing the main v3 carbonate peak height at c. 1410 

cm-1 with the main v3 phosphate vibrational band at c. 1010 cm-1. The baseline correction 

was drawn from c. 1590 cm-1 to c. 1290 cm-1 and from c. 1150-1180 cm-1 to c. 880-900 

cm-1, respectively (b and c).  

C/P =
1410 cm−1 

1010 cm−1
 

3. Amide-to-phosphate (Am/P) was assessed by the v1 amide at c. 1640 cm-1 divided by the 

main v3 phosphate peak at c. 1010 cm-1 (Trueman et al., 2004, p. 726). Baseline 

correction was from c. 1720 cm-1 to c. 1590 cm-1 and c. 1150 cm-1 to c. 890 cm-1, 

respectively (b and d). 

Am/P =
1640 cm−1 

1010 cm−1
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For the identification of overlapping/hidden components that cannot be distinguished in the zeroth 

order (basic) spectra, derivatization of the spectral curves was carried out (Talsky 1994; Kus, 
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Marczenko and Obarski 1996; Mark and Workman 2003). The distinction of the overlapping 

components of the broader amide I band, the v2 and the v3 CO3
2ˉ bands through 2nd derivative 

analysis was conducted using the OriginPro 2017 software. The Savitzky-Golay filter was applied 

to decrease the noise, and a polynomial order of 4 with 13 smoothing points were used for the 

analysis of the amide I bands and the v2 CO3
2ˉ bands (Gander and von Matt 1993; Schafer 2011). 

As the method is sensitive to noise, a further increase in the number of the smoothing points to 

25 was applied to the v3 CO3
2ˉ band to reduce noise (Kus, Marczenko and Obarski 1996). Although 

smoothing reduces the noise, it requires careful consideration as it can also distort the spectral 

features (Kus, Marczenko and Obarski 1996). 

4.2.4. COLLAGEN ANALYSIS 

Collagen was extracted from 226 samples (Table A3-Appendix A) using a modified Longin 

(1971) method. The exterior surfaces of bone samples were mechanically cleaned using a scalpel. 

Bone chunks of 300-500 mg were demineralized in 8 mL 0.6 M HCl at 4∘ C. Samples were 

agitated twice daily, and acid solution was changed every two days. When demineralisation was 

completed, the supernatant was drained off and samples were rinsed three times with distilled 

water. Gelatinization was carried out by adding 8 ml pH 3 HCl and samples were placed in hot 

blocks at 80° C for 48 h. The supernatant liquor which contains the collagen was filtered off by 

using Eezee filters and was freeze dried for 2 days in pre-weighed plastic tubes.  

Extracted collagen was analyzed in duplicate. Tin capsules containing 0.9-1.1 mg of collagen 

were dropped into an oxygen rich combustion tube held at 1000° C. The tin capsules were ignited 

and burnt exothermally at 1800°C causing the sample to oxidise. The samples were carried 

through a layer of chromium oxide and copper oxide which ensure complete oxidation, followed 

by a layer of silver wool to remove unwanted sulphur and halides. The samples’ gases pass into 

a second furnace containing copper held at 600°C where excess oxygen was removed, and 

nitrogen oxides were reduced to elemental nitrogen. Any water was removed using a magnesium 

perchlorate trap. The samples then passed into a gas chromatography (GC) column held at 70° C 

which separates CO2 and N2 from each other. The resultant gases were then introduced into the 

Sercon 20-22 mass spectrometer where the samples were ionised, and the various masses 

separated in a magnetic field, focused into Faraday collector arrays and analyzed.  

4.2.5. ELEMENTAL ANALYSIS 

Whole bone elemental analysis (% C, % N) was performed on 2-3 mg of bone powder from 69 

specimens (Table A3-Appendix A). Samples were run in duplicate on an Exeter Analytical CE-

440 elemental analyser, used in conjunction with a Sartorius SE2 analytical balance automated 

carbon and nitrogen elemental analyser. Samples were weighed into smooth-walled tin capsules, 



 
 

95 
 

sealed and combusted in O2 at 975 ⁰C. Combustion products were then analysed by thermal 

conductivity detectors, against a blank of helium. 

4.2.6. DNA ANALYSIS 

The endogenous DNA content of 90 samples (Table A3-Appendix A) was provided by three 

different labs in Europe. Laboratory work was performed according to strict aDNA standards in 

dedicated clean laboratory facilities at Trinity College Dublin (Dan Bradley), the University of 

Mainz (Joachim Burger), and the University of Copenhagen (Morten Allentoft).  The exterior 

surfaces of bones were mechanically removed using a drill or by sandblasting, and UV-irradiated 

for 30 minutes per side before pulverization. DNA extraction, library preparation, sequencing, 

bioinformatics and DNA authenticity were conducted as described in Daly et al. (2018), 

Hofmanová et al. (2016), and Hansen et al. (2017) for Trinity College, Mainz and Copenhagen 

lab, respectively.  

4.2.7. NANOINDENTATION 

Nanoindentation was carried out on 3 mm transverse thick sections (longitudinal sections from 

the lateral part for petrous bones) from 19 samples (Table A4-Appendix A). The sections were 

first embedded in epoxy resin, ground with silicon carbide paper, polished using alumina 

suspension and dried naturally at room temperature. A CSM Nano-Hardness Tester was used with 

a loading rate=20 mN/min, unloading rate=20 mn/min, max depth=1000 nm, Poisson ratio=0.3, 

and delta slope contact=40%. Thirty indentations (600 in total) were performed on each sample 

(10 on each different tissue region, i.e.  periosteal, mesosteal, endosteal, as well as tissue 

surrounding cochlea in petrous specimens) and each indentation was lasting for 120 s (30 s 

loading, 60 s pause, 30 s unloading). 
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CHAPTER 5: RESULTS AND DISCUSSION 

This chapter presents the microstructural, bioapatite, collagen, biomechanical and DNA data in 

an attempt to answer the objectives set in Chapter 1. It builds on the work developed in this study 

and published in the following papers (Appendices D-F):  

• Kontopoulos I., Presslee S., Penkman K., and Collins M.J. (2018). Preparation of bone 

powder for FTIR-ATR analysis: The particle size effect. Vibrational spectroscopy, 99, 

pp.167–177. [Online]. Available at: doi:10.1016/j.vibspec.2018.09.004.  

• Kontopoulos, I., Penkman, K., McAllister, G. D., Lynnerup, N., Damgaard, P. B., 

Hansen, H. B., Allentoft, M. E., and Collins, M. J. (2019). Petrous bone diagenesis: A 

multi-analytical approach. Palaeogeography, palaeoclimatology, palaeoecology. Special 

issue: Advances in the study of diagenesis of fossil and subfossil bones and teeth. 

• Kontopoulos, I., Penkman, K., Liritzis, I., and Collins M. J. (under review). Bone 

diagenesis in a Mycenaean secondary burial (Kastrouli, Greece). Archaeological and 

Anthropological Sciences.  

It provides a synthesis of seven datasets gathered from the different analytical techniques to 

enable a deeper exploration of the diagenetic patterns of petrous bone. Chapter 5 is divided into 

four aspects (microstructural, bioapatite, collagen and DNA preservation) that are split into 

subsections which examine the preservation of the petrous versus other bones (sections 5.1.1, 

5.2.1, 5.3.1, and 5.4.1), inter-site (sections 5.1.2, 5.2.2, 5.3.2), intra-site (sections 5.1.2, 5.2.2, 

5.3.2), intra-individual (sections 5.1.3, 5.2.3, 5.3.3), and intra-bone (sections 5.1.3, 5.2.3, 5.3.3) 

variability and put the new information into context. The crystallinity-to-carbonate association 

(section 5.2.4) and the bioapatite-to-collagen relation (section 5.3.4) are further explored. New 

screening methods for collagen and DNA are also proposed at the end of the relevant sections 

(sections 5.3.5 and 5.4.2). 
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5.1. MICROSTRUCTURAL PRESERVATION 

5.1.1. PETROUS VERSUS OTHER BONES 

Histological examination of 36 petrous bones has allowed the identification of some unique 

features in petrous bone histomorphology compared to other skeletal elements. Interestingly, 

adult human petrous bones consist of highly osteocytic woven and lamellar-like tissues (Figure 

5.1a-b), a combination that is not found in any other normal adult human bone. Woven tissue can 

be seen throughout petrous bone (Figure 5.1a-d) and its presence may indicate a lack of bone 

remodelling in large areas of the inner ear. Sorensen et al. (1992) have reported a persistence of 

woven bone to remodeling in rabbit otic capsule. Specifically, formation of woven bone as a 

response to trauma was not followed by a replacement with lamellar tissue contrary to long bones 

(Sørensen, Bretlau and Josrgensen 1992), which is probably linked to the high-density of viable 

osteocytes (i.e. anti-resorptive action) in the inner ear (Bloch and Sørensen 2010; Bloch, 

Kristensen and Sørensen 2012).  

Here, lamellar-like tissue is observed primarily in the outer 100-200 μm of the outer periosteal 

tissue of the petrous bone, but also in limited areas of inner periosteal or endosteal tissues (Figure 

5.1a-b). Many osteons can be observed in the posterior part throughout the medial-lateral axis of 

the petrous pyramid, but sparse osteons can also be found in tissue surrounding the cochlea, semi-

circular or other canals (Figure 5.1a-b). This may indicate that bone remodelling can take place 

in some areas of the inner ear (Doden and Halves 1984; Frisch et al. 2000; Jeffery and Spoor 

2004; Jørkov, Heinemeier and Lynnerup 2009), as continual, age-dependent and variable changes 

in the size and organization of the pneumatized spaces have been observed within the petrous 

pyramid (Hill 2011). A centrifugal distribution of secondary osteons of decreasing size towards 

the inner areas of the otic capsule has also been observed by Sørensen et al. (1990, 1992) and 

Sørensen (1994), suggesting a progressive lack of bone remodelling towards the inner areas of 

the bony labyrinth. 

Here, osteons can be observed both in the longitudinal and transverse direction (Figure 5.1c-f) of 

petrous bone, which is another unique micromorphological characteristic of this skeletal element. 

The appearance of osteons in both directions can be explained by the fact that the vascular network 

of the otic capsule is a termination area for the internal auditory artery (IAA) and a communication 

area between the IAA and several other arteries (Mazzoni 1972). Thus, the osteons and other 

vascular canals need to accommodate the various arteries, nerves and their branches which travel 

in various directions.  
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Figure 5.1. The three bone tissue types coexisting in adult human petrous bone.  DEN6 Longitudinal (a) 

PPL and (b) XPL - 100x: Thin section showing an osteon (red arrow), woven tissue (yellow arrow), and 

lamellar-like tissue (green arrow) within a well-preserved area between semi-circular canals.   

DEN3 Transverse (c) PPL and (d) XPL - 100x: Image showing the presence of osteons (red arrows) in 

the outer and inner periosteal tissue.  DEN6 Longitudinal (e) PPL and (f) XPL - 100x: Another image 

showing the presence of osteons (red arrows) in the outer and inner periosteal tissue, this time in 

longitudinal section.  

The preliminary 3D reconstructions of the synchrotron micro-CT images (Figure 5.2) confirm 

the 2D histological observations (Figure 5.1), as the selected petrous bone sub-volume contains 

a wealth of void spaces with a clear separation between small volumes (possibly lacunae cut in 

half, partially captured pieces of the canalicular network and noise) and what is assigned to 

lacunar volumes at 100 µm3. The lacunar volume in the present case seems to be bimodal (Figure 

5.2C), with a population centered around 230 µm3 and another large volume distribution above 

500 µm3. This differs significantly from the behaviour seen by others (Bach-Gansmo et al. 2016b 
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and references therein), who found unimodal volume distributions in other bones. For instance, 

in the iliac crest biopsies, Bach-Gansmo et al. (2016b) found median lacunar volumes of c. 530 

µm3, while in the human femora Dong et al. (2014) reported an average lacunar volume of c. 410 

µm3. However, the two different lacunar volumes may be linked to the co-existence of woven and 

lamellar-like tissues, as it has been previously reported that woven bone osteocyte lacunae are 

larger than these in lamellar bone (Hernandez, Majeska and Schaffler 2004) and can vary in size 

(Buckwalter et al. 1995). 

 

Figure 5.2. Preliminary results of synchrotron µCT for a single selected sub-volume of SAR8. (A) 3D rendering of 

void spaces in a section of petrous bone. Spaces in red are canals while the yellow shapes are putative osteocyte lacunae. 

(B) same as in (A), but rotated to offer a different view of the void space. (C) Histograms of apparent lacunar volumes. 

The lacunar density is estimated to 4.96 x 104 lacunae/mm3 which is very high compared to the 

values of 1.5 x 104 lacunae/mm3 obtained for human iliac crest biopsies by Bach-Gansmo et al. 

(2016b), or the 2 x 104 lacunae/mm3 in human femoral mid-diaphysis (Dong et al. 2014). This 

observation indicates that there are regions of very high lacunar densities in petrous bones which 

are only comparable to rat (Rattus norvegicus) and Lesser Galago (Galago senegalensis) lamellar 

tissue (Bromage et al. 2009). An increased number of osteocyte lacunae in the labyrinthine bone 

of the petrous has been reported by Bloch and Sørensen (2010) and Bloch, Kristensen and 

Sørensen (2012) and can be related to the bone formation rate (a higher number of bone cells 
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would lay down the bone matrix quicker; Bromage et al. 2009; Skedros, Grunander and Hamrick 

2005), and the persistence of woven bone (Buckwalter et al. 1995). This would be a logical 

explanation for the petrous bone formation, as it is considered to form primarily in utero (Jeffery 

and Spoor 2004; Nemzek et al. 1996; Richard et al. 2010). However, how the functions (e.g. 

mineral homeostasis, bone remodelling) of osteocytes are influenced by the lacunar density 

remains unknown (Cullinane 2002; Goggin et al. 2016; Skedros, Grunander and Hamrick 2005; 

Teti and Zallone 2009).  

 

Figure 5.3. MFD in human petrous bone . (a) DEN2 Transverse PPL 400x : possible microbial activity 

that appears as merged osteocyte lacunae (opaque/black holes indicated by red arrows). (b) KAZ1 

Transverse PPL 100x : tunnels with branched appearance resembling Wedl-type modifications in bone 

microstructure which have been linked to the presence of fungi.  

In terms of histological preservation (Table A2-Appendix A), the petrous bones exhibit a 

generally moderate preservation state (average GHI=2) characterized by a resistance to the total 

loss of histological integrity (only two samples with GHI=0). This is likely to be due to its 

protected location, possible differences in its biomechanical properties and its sui generis 
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histomorphological characteristics (Figure 5.3). One should consider, however, the difficulties in 

estimating the degree of alterations on a spatial scale larger than the microscopic field of view 

(here at 40x total magnification the field of view is c. 5 mm) and the subjective nature of such 

evaluation.  

Non-Wedl microscopic focal destruction (MFD) was not observed in the petrous bones in this 

study. Possible microbial activity is observed only in small areas of two of the petrous bone thin 

sections (DEN1 and DEN2). These few alterations identified as possible microbial activity 

(Figure 5.3a) show similarities to the early diagenetic stage characteristics (i.e. merging of 

osteocyte lacunae White and Booth 2014; Kontopoulos, Nystrom and White 2016). Although 

unlikely, microbially attacked specimens may have been unidentifiable in some cases due to prior 

sampling for aDNA analysis. A rather unexpected observation in one Central Asian specimen is 

a motif resembling Wedl-type tunnelling (Figure 5.3b). These branched, almost empty canals 

have an ill-defined outline with no cuffing under plane polarized light (Bell 1990; Hackett 1981; 

Wedl 1864) and they have been connected to fungal activity (Marchiafava, Bonucci and Ascenzi 

1974). 

More than half of the petrous bones (n=21, i.e. 60 %) exhibit microcracks, which has often lead 

to generalized destruction seen as amorphous, disintegrated, dark areas of bone (Figure 5.4). A 

key factor for the histological preservation of archaeological bone is also the presence of water 

within and around the skeletal remains. The three main hydrological scenarios (i.e. diffusive, 

recharge, and flow regimes) that have been outlined by Hedges and Millard (1995) can 

dramatically change the fate of bone regarding long-term survival. In diffusive regimes there is 

limited movement of water (or change in the amount of water) in the burial environment, whereas 

in recharge regimes there is fluctuation of water due to wetting and drying cycles (Hedges and 

Millard 1995). With regard to flow regimes, usually rainwater flows through the soil and then 

into bone (Hedges and Millard 1995; Nielsen-Marsh et al. 2000a). Thus, the prevailing 

hydrological conditions in the burial environment have a considerable impact on bone 

preservation. 

Microcracks play an important role in bone diagenesis as they create new paths in the bone matrix 

that allow groundwater to accelerate collagen degradation, as well as promote the incorporation 

of exogenous ions into the bioapatite crystals (Pfretzschner 2004). This interaction with 

groundwater sometimes results in brown/orange staining (Figure B2-Appendix B) by the 

infiltration of iron oxides (Bodzioch and Kowal-Linka 2012; Hollund et al. 2012; Pesquero et al. 

2015) or other exogenous substances that replace the osseous material (Garland 1989). However, 
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it seems that the petrous bone can moderate the expansion of microcracks and survive through 

time. 

 

Figure 5.4. Microcracking in petrous bones  (see also Figure B1-Appendix B). DEN4 Transverse PPL 

400x: (a) well-preserved area versus (b) degraded areas due to microcracking that eventually leads to (c) 

generalized destruction characterized by loss of histological integrity (amorphous appearance) in 

adjacent areas within the same section. 

Regarding histological preservation of the other skeletal elements compared to petrous bones, 

GHI values indicate moderate to poor histological preservation of most specimens (Table A2-

Appendix A), which is poorer compared to the petrous bones from the same sites (Figure 5.5; 

U=1561, p=0.07). Except for the nine Kastrouli femora, MFD are not present in any of the other 

102 skeletal elements. Therefore, a lack of MFD in petrous bones cannot yet be definitively linked 

to the higher endogenous DNA yields reported in palaeogenetic studies (e.g. Gamba et al. 2014; 

Hansen et al. 2017), as modifications that have been commonly associated with microbial activity 

are only present in 8 % of the non-petrous bones studied here.  
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Figure 5.5. Differences in histological preservation (GHI: General histological index) between petrous 

and other bones.  

 

Figure 5.6. MFD in Kastrouli human femora (see Figure B3-Appendix B for additional examples). (a) 

KAS9 Transverse PPL 400x - Human femur: MFD in the form of linear-longitudinal (black arrow) and 

budded (dotted black arrow) tunnels surrounded by hypermineralized tissue (yellow arrow). (b) KAS13 

Transverse PPL 400x - Human femur: The characteristic ‘mosaic pattern’ attributed to extensive 

bacterial activity. MEC12 Transverse PPL (c) 100x and (d) 400x - Human femur : modifications 

corresponding to MFD in low magnification (c) which are artifac ts from microcracks and staining (d).  

MFD in the Kastrouli human femora appear as non-Wedl linear-longitudinal (oval-shaped) or 

budded features in the bone matrix separated by hypermineralized tissue, as seen in transverse 
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sections under plane polarized light (Figure 5.6a). The hypermineralized tissue displays a dark 

coloration (brown/black) and it is assumed to be denser than the unaffected areas (Hackett 1981; 

Piepenbrink 1989; Bell 1990). This hypermineralized tissue is only few μm thick and surrounds 

the smaller non-Wedl MFD, while it seems to inhibit further expansion of the MFD, as has been 

noted in previous studies (e.g. Hackett 1981; Piepenbrink 1986). It is believed that the 

hypermineralized tissue forms by mineral redeposition and incorporation of waste products when 

microbes remove the inorganic matrix to attack collagen (Hackett 1981; Jackes et al. 2001; 

Hedges 2002; Fernandez-Jalvo et al. 2010), which agrees with the higher concentrations of Ca 

and P observed by Pesquero et al. (2015) compared to the unaffected bone tissue. The ‘mosaic 

pattern’ observed in Figure 5.6b is also considered to be associated with bacterial attack, 

representing the final stage where almost all microstructural features have been removed (Hackett 

1981; Piepenbrink 1986; Turner-Walker and Jans 2008). Particular care, however, should be taken 

for the correct identification of MFD, as often in low magnification images features resembling 

MFD can be caused by microcracking (Figure 5.6c-d). 

 

Figure 5.7. Microcracking in long bones (see also Figure B4-Appendix B). SAR7 Transverse PPL 

400x - Human Tibia (Distal Diaphysis) : Different types of microcracking, i.e.  central (red arrow), 

peripheral (yellow arrow) and interstitial (green arrow) micro-cracks. 

Periodic contact of long bones with groundwater is manifested by microcracking in 93 samples, 

i.e. 84 % (Figure 5.7), with further degradation of microstructure by dissolving the BAp crystals 

and hydrolyzing collagen to varying degrees (Bell 1990; Hedges and Millard 1995; Pfretzschner 

and Tütken 2011). Kastrouli human femora microcracking, for instance, likely reflects 

interactions with water during cold and humid winters resulting in bone swelling, followed by 

drying and shrinking of bone during hot and dry summers (see Moustris and Petrou 2018 for 

weather data in the region). Desiccation is evidenced by micro-cracks observed centrally (Figure 

5.7; spread from the Haversian canal outwards), peripherally (Figure 5.7; spread from the cement 

line inwards), circumferentially and interstitially (Figure 5.7; run across circumferential and 

https://paperpile.com/c/EyiG9J/MPDX/?noauthor=1
https://paperpile.com/c/EyiG9J/HWn3+25SE+P36v
https://paperpile.com/c/EyiG9J/HWn3+25SE+P36v
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interstitial lamellae). However, it should be noted that sometimes microcracks may appear due to 

physical stresses during sample preparation (Turner-Walker 2012; Dal Sasso et al. 2014; Lander, 

Brits and Hosie 2014). 

The wet and dry (oxygen-rich conditions) cycles in Kastrouli may have also favoured the survival 

and activity of microorganisms responsible for the previously mentioned MFD in femora (Reiche 

et al. 2003; Turner-Walker and Jans 2008; Hackett 1981). Moderate soil moisture with periodical, 

seasonal variation of water and temperature, e.g. warm summers, are favourable for tunnelling by 

the soil bacteria which are evidently aerobic in their metabolic pathways (Kendall et al. 2018). 

Fluctuating environments are the most detrimental for bone preservation (Fernandez-Jalvo et al. 

2010; Hedges and Millard 1995; Nielsen-Marsh and Hedges 2000a; Reiche et al. 2003; Salesse 

et al. 2014; Smith et al. 2002; Trueman et al. 2004), as cyclical wetting and drying conditions 

result in cracking, flaking, and spalling of the bones (Fernandez-Jalvo et al. 2010; Pfretzschner 

and Tütken 2011; Pokines et al. 2016). The rate at which water travels through archaeological 

bone, combined with the speed of both the wetting and drying, control to a great extent the 

preservation or destruction of mineralized tissues in the archaeological record.  

5.1.2. INTER- AND INTRA-SITE VARIATIONS 

Despite similarities regarding the lack of microbial activity (MFD) and the widespread, but 

variable, interaction with water (microcracking), there are also considerable inter- and intra-site 

variations within the petrous bone samples. Except for local hydrology, differences in soil 

geochemistry, temperature and oxygen availability in the burial environment can have variable 

effects on the histological integrity of archaeological bone (Bell, Skinner and Jones 1996; 

Fernandez-Jalvo et al. 2010; Jans et al. 2002; Nielsen-Marsh and Hedges 2000a; Turner-Walker 

1999). Figure 5.8 illustrates the effect of the site-specific conditions on the preservation of 

petrous bones when there is limited or no microcracking, and when samples have similar 

chronological age (DEN6: 17th-19th cen. AD; MEC54: 14th-17th cen. AD). The Danish petrous 

bone exhibits excellent preservation of its micromorphological characteristics that can be 

observed both in plane-polarized and cross-polarized images (Figure 5.8a-b). Conversely, the 

petrous bone from Belgium is characterized by a complete loss of histological integrity 

accompanied by a loss of birefringence (Figure 5.8c-d).  

Likewise, exceptional preservation of microstructure that resembles fossilization (i.e. excellent 

preservation of microstructure accompanied by a complete loss of the organic matter) can be 

observed in long bones from Maroulas (Figure 5.9a; 8300-7600 BC, Greece) and Manika (2900-

2300 BC, Greece), while all Tharrounia bones demonstrate generalized destruction with no 

histological features surviving (Figure 5.9b; 5300-3300 BC, Greece). Moderate to excellent 

histological preservation can be observed in specimens from the Sarakenos cave (5700-4000 BC, 
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Greece) which is sometimes similar to modern bone (Figure 5.9c-d). In St. Rombout (12th-18th 

cen. AD, Belgium) a usual pattern can be seen in many bones, characterized by a moderate 

preservation with generalized destruction in periosteal and endosteal areas, and good preservation 

of mesosteal tissue (Figure 5.9e-f). Further, histological preservation shows no correlation with 

chronological age of samples.  

 

Figure 5.8. Inter-site variations in petrous bone histological preservation (see Figure B5-Appendix B 

for additional images). DEN6 Longitudinal (a) PPL and (b) XPL - 40x: very well-preserved 

microstructure with woven tissue surrounding canal areas, small lamellar -like areas and a large osteonic 

area seen both in PPL and XPL. MEC54 Longitudinal (c) PPL and (d) XPL - 40x: Generalized 

destruction across the entire section resulting in a dark, amorphous appearance and complete loss of 

collagen birefringence.  

Consequently, soil geochemistry and the stability mechanisms in the burial environment 

(Karkanas 2010) play a fundamental role on the preservation of archaeological bone. Proximity 

to the surface also contributes as oxygen availability, the interaction with pore water and rainwater 

in open-air sites (or even dripping water in caves), and the effects of temperature are more 

prominent when bones are in shallow depths (Hedges and Millard 1995; Karkanas et al. 2000; 

Trueman et al. 2004). 

https://paperpile.com/c/EyiG9J/jgb5
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Figure 5.9. Inter-site variations in long bone histological preservation . (a) MAR5 Transverse PPL 

100x – Human humerus: excellent preservation characteristic of all Maroulas specimens resembling 

fossilization with brown straining throughout. (b) THA6 Transverse PPL 100x – Human femur: very 

poor preservation with complete loss of histological features. SAR10 Transverse (c) PPL 100x and (d) 

XPL 100x – Human femur: (c) excellent preservation similar to modern bone, and (d) good preservation 

of collagen birefringence. MEC16 Transverse (e) PPL 100x and (f) XPL 100x – Human humerus: 

well-preserved mesosteal tissue sandwiched between degraded periosteal/sub-periosteal and 

endosteal/sub-endosteal tissue. Note the absence of birefringence in degraded areas in (f).  



 
 

109 
 

 

Figure 5.10. The three different diagenetic paths identified in Kastrouli.  

Intra-site differences (see also Figure B6Figure B9 - Appendix B for further examples) are 

anticipated, and a very interesting case that illustrates the complexity of histological alterations is 

Kastrouli, where bones have been recovered from a secondary commingled Mycenaean burial 

(1350-1150 BC, Greece). While histological preservation in Kastrouli is very poor, three distinct 

paths can be identified based on the presence/absence of MFD, micro-cracking and orange/brown 

staining (Figure 5.10). Although within-site differences may be related to different micro-

environment conditions (e.g. groundwater, contact with limestone), all bones were found within 

30 cm of sediment, which makes this scenario highly unlikely. A logical explanation for this high 

variation is therefore that these bones have experienced different early taphonomic histories. In 

secondary burials, the skeletal remains of a body (either exposed on the ground surface, interred 

in a coffin or buried directly into the soil) are retrieved and relocated once the soft tissue has 
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decayed to some degree or excarnated. Therefore, histotaphonomy may help understand the 

sequence of these alterations and shed light on past funerary practices, i.e. primary and secondary 

treatment.  

Table 2. Information on St. Rombout’s burials.  

Individual no. Date AD Burial type Coffin Wrapping 

1 (MEC1-4) 17th cen. Single Yes No 

2 (MEC5-9) 16th cen. Single No Possible 

3 (MEC10-14) 17th cen. Single Yes No 

4 (MEC15-19) 12th cen. Single Yes No 

5 (MEC20-24) 18th cen. Single Yes No 

6 (MEC25-29) 18th cen. Single Yes No 

7 (MEC30-34) 16th cen. Collective ? No 

8 (MEC35-39) 12-14th cen. Single No No 

9 (MEC40-43) 14-17th cen. Multiple No No 

10 (MEC44-48) 17th cen. Single No No 

11 (MEC49-53) 18th cen. Single Yes No 

12 (MEC54-58) 14-17th cen. Single No Possible 

13 (MEC59-63) 12-18th cen. Single Yes No 

14 (MEC64-68) 17-18th cen. Multiple No No 

15 (MEC69-73) 13-14th cen. Single Yes No 

16 (MEC74-78) 14-17th cen. Multiple No No 

17 (MEC79-83) 15-16th cen. Single No Possible 

18 (MEC84-87) 12th cen. Single Yes No 

19 (MEC88-92) 12th cen. Single Yes No 

20 (MEC93-97) 12th cen. Single Yes No 

21 (98-101) 12th-14th cen. Single Yes No 

 

The death history and the effects of various factors (e.g. season of death, clothing, type of burial) 

on bone degradation are often overlooked in archaeology due to lack of relevant information. 

Clothing, wrapping or burials in coffins have been found to prolong the soft tissue decay by 

changing the micro-environment conditions and delaying insect colonization (Forbes, Stuart and 

Dent 2005; Lee Goff 1992; Prats-Muñoz et al. 2013; Voss, Cook and Dadour 2011). An attempt 

to understand these phenomena has been made in a limited number of archaeological studies 

(Booth 2016; Booth and Madgwick 2016; Booth, Chamberlain and Parker Pearson 2015; Hollund, 

Blank and Sjögren 2018), as ritual processing can also have profound effects on bone histology. 

However, researchers either hyperbolize and misinterpret evidence (i.e. mummification in British 

prehistory due to lack of bioerosion, assuming an internal origin of bacterial attack; (Parker 

Pearson et al. 2005; Booth, Chamberlain and Parker Pearson 2015) or cannot connect the 
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histological modifications to specific funerary rituals (Booth 2016; Booth and Madgwick 2016; 

Hollund, Blank and Sjögren 2018), similar to the Kastrouli bones reported here.  

The characteristic patterns in bone histology of samples from St. Rombout cemetery (Mechelen, 

Belgium) exemplify what can be realistically achieved through histotaphonomic investigations in 

terms of unravelling the funerary practices-to-bone histology relationship. St. Rombout’s 

inhumations vary from single burials in coffins, single and multiple plain burials without coffins, 

and a few burials with indications of wrapping (Table 2; Van de Vijver, Kinnaer and Depuydt 

2018). Inhumations within a wooden coffin can change the conditions of the burial environment, 

as the wooden coffin initially creates a partially closed system, enclosing putrefying soft tissues 

that gradually become more and more exposed until the coffin has completely decayed. Bones of 

corpses wrapped or clothed with textiles can experience different modifications in their histology, 

as degradation of textiles (e.g. wool, cotton) by bacterial and/or fungal action should be expected 

to be accomplished a few months following burial, except in frozen, waterlogged, or very dry 

conditions (Janaway 2002, 2008). Concerning multiple burials, the exact position (center or edges 

of burial) of the corpses and their relation to each other (e.g. superimposed bodies, in contact with 

each other, laid in rows parallel to each other), the number of individuals, in combination with 

the burial environment, can significantly change the rates of soft tissue decay (Haglund 2002) 

with unknown effects on bone micro-architecture. 

Single burials in coffins display a characteristic preservation pattern, with generalized destruction 

across periosteal and endosteal tissue that expands towards the mesosteal (mid-cortical) area of 

long bones, and a sandwiched zone of well-preserved mid-cortical tissue between them (Figure 

5.11a-d). These modifications are similar to the histological changes in bones of pig cadavers 

wrapped in nylon carpets reported by Kontopoulos et al. (2016). This probably happens as nylon, 

polyester or acrylic fibers degrade at slower rates compared to biodegradable fabrics (Janaway 

2008), thus creating a micro-environment equivalent to the wooden coffins. The dark/black 

colouration seen in almost all specimens under plane polarized light might be related to 

manganese infiltrations entering bone through microcracks, as similar staining has been attributed 

to manganese compounds by Hollund et al. (2018).  

Regarding petrous bones, these demonstrate a slightly different picture with more variation, no 

distinct pattern and better preservation (Figure 5.12). Thus, the anatomical location of this 

skeletal element (located inside the skull) may often moderate the changes in the micro-

environment that other bones experience due to differences in burial practices. However, when 

the combination of the burial environment conditions and the funerary rituals is such that it leads 

to a complete loss of histological integrity in long bones, the petrous bone is likely to have the 

same fate, as seen in MEC30 from individual 8 in St. Rombout (Table A2-Appendix A).  

https://paperpile.com/c/EyiG9J/QZim
https://paperpile.com/c/EyiG9J/QZim
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Figure 5.11. Histological modifications in long bones from s ingle burials in coffins at St. Rombout . 

MEC13 Transverse (a) PPL 40x, (b) PPL 400x of a degraded area, and (c) XPL 40x – Human tibia: 

the characteristic pattern observed in bones from single burials in coffins. Here, a large area of mesosteal 

tissue survives in (a). In degraded areas, there is (b) extensive microcracking and (c) loss of collagen 

birefringence. MEC11 Transverse (d) PPL 40x and (e) XPL 40x – Human femur: same as MEC13 but 

with more degraded mesosteal tissue and almost complete loss of collag en birefringence. 

Single burials with indications of wrapping but not coffined display a slightly modified pattern 

compared to coffin burials (Figure 5.13). Bones exhibit generalized destruction in sub-periosteal 

tissue that expands towards the mesosteal area, possibly depending on the micro-environment 

conditions and other specific characteristics (e.g. textile composition, burial depth, season of 

death). However, the periosteal tissue appears well-preserved (Figure 5.13). This observation 

confirms experimental data that show the effects of textiles (and their composition) on bone 

degradation in early diagenetic stages (i.e. 6 years post-mortem) in cadavers placed on the ground 

surface (Kontopoulos, Nystrom and White 2016) and contradicts Booth, Redfern and Gowland 

(2016) claim that wrapping the bodies has no effect on bone degradation. Additionally, it 

challenges the argument by Parker Pearson et al. (2005) and Booth, Chamberlain and Parker 

Pearson (2015) for intentional mummification in early prehistoric Britain. The samples from 

Cladh Hallan and Bradley Fen (see Figure 3.14 for comparison) assumed to be intentionally 

mummified, show similar degradation patterns with MEC9 (Figure 5.13c), a wrapped individual 

from a 16th century AD single inhumation at the Christian cemetery of St. Rombout in Mechelen, 

Belgium (see also Figure B10-Appendix B for an additional example, this time of a single burial 

in coffin). 
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Figure 5.12. Histological modifications in petrous bones from single burials in coffins at St. Rombout . 

MEC10 Longitudinal (a) PPL 100x and (b) XPL 100x – Human petrous bone: degradation pattern 

similar to long bones with generalized destruction in the outer tissue areas and well -preserved mid-

cortical areas. MEC20 Longitudinal  (c) PPL 100x and (d) PPL 400x – Human petrous bone: excellent 

histological preservation across the entire section. 

The preservation of all bones from the multiple burials show a significant variation, with no 

specific pattern identified (Figure 5.14). Sometimes a degradation pattern identical to coffin 

burials can be observed (Figure 5.14a), while on other occasions samples display an antithetical 

pattern with the mesosteal tissue completely degraded and the periosteal/endosteal tissues well-

preserved (Figure 5.14b). Further, samples may display good histological preservation with 

orange/brown staining throughout (Figure 5.14c), or a total loss of histological integrity as seen 

in Figure 5.14d. This lack of a specific pattern in bones deriving from multiple burials possibly 

reflects the fact that multiple burials in St. Rombout were of varying types, with no uniform or 

common practice, and they were found in many different layers (Van de Vijver, Kinnaer and 

Depuydt 2018). 
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Figure 5.13. Histological modifications in long bones from wrapped single burials.  MEC55 Transverse 

(a) PPL 40x and (b) XPL 40x – Human femur: preservation of mainly mesosteal tissue is accompanied 

by a relatively good condition of the periosteal tissue with orange staining. Sub -periosteal area shows 

generalized destruction that spans to mesosteal area but to variable extent. Endosteal tissue is also 

completely degraded. All dark sites display a complete loss of collagen biref ringence contrary to well-

preserved areas. (c) MEC9 Transverse PPL 40x – Human radius (distal diaphysis) : same pattern but 

with better-preserved mesosteal zone compared to MEC55. (d) MEC8 Transverse PPL 400x – Human 

radius (proximal diaphysis): image from the same bone as in (c) revealing the extensive microcracking 

in degraded areas.     

The St. Rombout case study, therefore, clearly brings us a step forward (compared to the Kastrouli 

example or other previous investigations (Booth 2016; Booth and Madgwick 2016; Hollund, 

Blank and Sjögren 2018) in terms of understanding the effects of burial practices on the 

microstructure of bone. However, the combination of several unknown parameters with others 

that are not yet well understood hinder further interpretations. Variations in the preservation state 

of specimens deriving from skeletons that have experienced similar funerary treatments can easily 

lead to erroneous assumptions. Hitherto, there has been a lack of relevant information, as no 

experimental projects have explored in detail the effects of different funerary practices on bone 

histology and the characteristics of the burial environment. Consequently, until targeted 

taphonomic experiments unravel the ambiguous relationship between funerary treatment of the 

corpse and microstructural preservation of bone, it is not possible to make any safe assumptions. 
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Figure 5.14. Histological modifications in long bones from multiple burials . (a) MEC41 Transverse 

PPL 40x – Human humerus: histological alterations analogous to coffined single burials. (b) MEC65 

Transverse PPL 40x – Human humerus: histological modifications display a pattern opposite to 

coffined single burials with the mesosteal tissue suffering from generalized destruction and extensive 

microcracking, whereas the periosteal/sub-periosteal and endosteal/sub-endosteal areas showing good 

preservation of their microarchitecture. Note the staining at the outer 200 -300 μm of the periosteal zone. 

(c) MEC43 Transverse PPL 40x – Human radius: orange/brown staining can be observed due to 

infiltration of exogenous elements that have coloured bone tissue. Histology is well -preserved although 

cracks and microcracks are present and cover a significant part of the section. (d) MEC75 Transverse 

PPL 40x – Human femur: generalized destruction throughout the cross-section. The pattern is similar 

to MEC41 in (a) but degradation has now expanded to mesosteal tissue that will eventually lose its 

original histological features due to the interaction with water and the incorporation of exogenous sources 

through microcracks.  
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5.1.3. INTRA-INDIVIDUAL AND INTRA-BONE VARIATIONS 

Regarding intra-individual and intra-bone variations, although the skeletal elements are often 

expected to degrade at different rates due to the differences in biomechanical, chemical and 

physical characteristics of each bone (Hanson and Buikstra 1987), neither intra-individual 

patterns [St. Rombout x2(5)=2.409, p=0.790; Figure 5.15] related to the proximity of the skeletal 

element to the abdominal area (internal gut bacteria) or a better preservation of the petrous bone 

compared to other bones, nor significant intra-bone differences in GHI values of proximal and 

distal diaphyses of long bones can be observed (Figure 5.16; humerus U=66.500, p=0.755; radius 

U=17.500, p=0.383; femur U=29.000, p=0.798; tibia U=7.000, p=0.937). A lack of intra-

individual variability is thus not supportive of an internal origin of microbial communities in 

bone, strengthening the voices of researchers who contend that soil microbes are responsible for 

MFD (Fernandez-Jalvo et al. 2010; Hedges 2002; Nielsen-Marsh and Hedges 2000a; Turner-

Walker 2008). 

  

 

 

Figure 5.15. Intra-individual variations in histological preservation (GHI: general histological index)  

relative to petrous bone in St. Rombout, Belgium. Bars represent the average difference between the 

petrous bone and the other skeletal elements  intra-individually (i.e. a positive value indicates a lower 

average value of this skeletal element compared to petrous bone, and vice versa).  
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Figure 5.16. Histological preservation (GHI: general histological index) in proximal and distal diaphyses 

of long bones (see Figure B11-Appendix B for examples).   
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5.2. BIOAPATITE PRESERVATION 

5.2.1. PETROUS VERSUS OTHER BONES 

Archaeological bone displays increased crystallinity compared to modern bone (Figure 5.17), 

suggesting an increase in average BAp crystal length and short-range order due to Ostwald 

ripening (larger crystals absorb the smaller crystals), loss of the smaller crystals, or a combination 

of the two processes (Nielsen-Marsh et al. 2000b; Nielsen-Marsh and Hedges 2000a; Reiche, 

Vignaud and Menu 2002; Stiner et al. 1995; Trueman 2013; Weiner and Bar-Yosef 1990; Wright 

and Schwarcz 1996). Crystallinity shows statistically significant differences [t(266)=-5.011, 

p=0.000] in petrous bones (n=104) compared to the other skeletal elements (n=164), with the 

IRSF values ranging from 3.09 to 5.71 (average=3.64±0.5) in petrous bones, and from 3.13 to 

5.91 (average=3.99±0.61) in other bones (Table A2-Appendix A).  

Ιn five sites which have a sufficient number of petrous bones as well as other skeletal elements 

for direct comparison, only the petrous bones (n=9) in Manika show lower IRSF values 

(4.33±0.93) compared to other bones (n=22) that have IRSF=5.11±0.62 (U=46.500, p=0.02; not 

statistically significant following Holms-Bonferroni correction). In Sarakenos cave (U=31.000, 

p=0.137) the average petrous bone (n=6) IRSF=3.35±0.09 is close to the average IRSF=3.44±0.16 

in other bones (n=18), while in St. Rombout (U=808.000, p=0.789) the average petrous bone 

(n=21) IRSF=3.82±0.27 is similar to the average IRSF=3.85±0.23 in other bones (n=80). 

Tharrounia petrous bones (n=3) have an average IRSF=3.93±0.23, whereas the other bones (n=8) 

have an average IRSF=3.57±0.06 (U=0.000, p=0.012; not statistically significant following 

Holms-Bonferroni correction). Similarly, in Maroulas, petrous bone (n=4) display an average 

IRSF=4.25±0.78, whereas the other bones (n=12) have an average IRSF=3.73±0.08 (U=18.500, 

p=0.521).  

Carbonate content varies in these archaeological bones and appears statistically significantly 

different [t(266)=2.792, p=0.006] in petrous bone versus other skeletal elements. The C/P values 

range from 0.07 to 0.34 (average=0.20±0.06) in petrous bones and from 0.06 to 0.32 

(average=0.17±0.06) in other bones (Table A2-Appendix A). The former display an average loss 

of about 20 % of the initial carbonate, while the latter a loss of 30-40 % of their initial CO3
2ˉ. In 

terms of within-site variations, petrous bones (n=9) in Manika show higher C/P values 

(0.16±0.06) compared to the other bones (n=22) that have C/P=0.10±0.03 (U=47.500, p=0.023; 

not statistically significant following Holms-Bonferroni correction). In Sarakenos cave 

(U=36.000, p=0.251) the average petrous bone (n=6) C/P=0.29±0.03 is slightly higher than the 

average C/P=0.26±0.04 in other bones (n=18), both higher than modern bone C/P (Figure 5.17). 

In St. Rombout [t(99)=-1.250, p=0.214] the average petrous bone (n=21) C/P which is 0.15±0.05 

approximates the average C/P=0.16±0.03 in other bones (n=80). Tharrounia petrous bones (n=3) 

have an average C/P=0.18±0.02, whereas the other bones (n=8) have an average C/P=0.24±0.01 
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(U=0.000, p=0.012; not statistically significant following Holms-Bonferroni correction). 

Likewise, Maroulas petrous bone (n=4) display an average C/P=0.20±0.11, whereas the other 

bones (n=12) have an average C/P=0.25±0.03 (U=17.500, p=0.446). Therefore, the overall lower 

crystallinity and higher carbonate content seen in petrous bones compared to the other skeletal 

elements may be misleading, as the low crystallinity and high carbonate content in most animal 

petrous bones from Britain, Germany and Jordan have masked the within-site patterns.  

 

 

Figure 5.17. The strong relationship between crystallinity and carbonate content that illustrates the 

importance of CO3
2ˉ in BAp crystals short-range order. Circles represent petrous bones and diamonds 

represent other skeletal elements.  

A strong inverse relationship between IRSF and C/P can be observed both in petrous bones 

(R2=0.62) and the other bones (R2=0.60) (Figure 5.17), with the overall correlation increasing 

from R2=0.60 to R2=0.69 when samples with calcite uptake are excluded. The crystallinity-

carbonate relationship varies between sites (Table 3). In Manika, for instance, IRSF-C/P R2=0.92 

in petrous and R2=0.86 in other bones, while in Cladh Hallan petrous bones R2= 0.68 and in 

Tharrounia bones R2=0.14. Therefore, although crystallinity and carbonate concentrations (C/P) 

are interrelated (Wopenka and Pasteris 2005), interaction of BAp crystals with the burial 

environment can significantly change that relationship.  
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Modern bovine Linear (Petrous bones) Linear (Other bones)
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Table 3. IRSF-C/P inverse correlation (R2) in sites with samples n≥5 in each group. Overall values 

include samples from all sites.  

Site 
IRSF-C/P  

Petrous Other 

Bedburg-Königshoven, Germany 0.70 N/A 

Maroulas, Greece N/A 0.40 

Ain Ghazal, Jordan 0.69 N/A 

Sarakenos, Greece 0.84 0.60 

Tharrounia, Greece N/A 0.14 

Ness of Brodgar, Scotland 0.65 N/A 

Manika, Greece 0.92 0.86 

Cladh Hallan, Scotland 0.68 N/A 

Kastrouli, Greece N/A 0.70 

Potterne, England 0.03 N/A 

York, England 0.82 N/A 

Holmens Kirke, Denmark 0.74 N/A 

St. Rombout, Belgium 0.86 0.84 

5.2.2. INTER- AND INTRA-SITE VARIATIONS 

Inter-site variations in crystallinity and carbonate content are considerable and demonstrate the 

effects of the burial environment on the preservation of bioapatite crystals (Figure 5.18). The 

highest crystallinity values are observed in Manika (IRSF=4.88±0.8), whereas Sarakenos cave 

(IRSF=3.42±0.15), Manika (IRSF=3.44±0.37), and the petrous bones from Holmens Kirke 

(IRSF=3.46±0.24) display similar BAp preservation states. However the Mesolithic Maroulas 

bones that show characteristics of fossilization under the microscope (Figure 5.9a) show a 

moderate increase in crystallinity (IRSF=3.86±0.42; Figure 5.18a). The transformation of 

bioapatite in fossil bones occurs when the ionic substitutions change the structural and 

compositional characteristics of BAp crystals, increasing its size and order (Keenan et al. 2015; 

Piga et al. 2011, 2016).  

The changes in bone mineralogy, however, can considerably vary depending on the conditions of 

the burial environment (e.g. Keenan et al. 2015). Dissolution/recrystallization of BAp crystals 

due to interaction with water was indicated by the microcracks and loss of histological integrity 

in many samples (section 5.1.). Following soft tissue decomposition, soil water can damage bone 

matrix by accessing bone through the lacuno–canalicular network. Thus, a recharge environment 

that is generated by wet and dry cycles (Hedges and Millard 1995; Nielsen-Marsh et al. 2000a) 

and/or the seasonal/sporadic flow of unsaturated rainwater (flow regime) through the bones 

situated near the ground surface has led to changes in bioapatite crystals at increased rates (Grupe 

1995; Hedges and Millard 1995; Nielsen-Marsh et al. 2000a). As the porosity increases, the 

potential  of the specimens for survival is reduced, because when water (and associated ions and 

microorganisms) flows freely through the bone, it can completely dissolve bone (Kendall et al. 

2018). On the contrary, more stable environments (e.g. caves) that do not expose bone to such a 

variable interaction with soil water can allow BAp crystals to reach an equilibrium with their 
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surroundings and slow down dissolution/recrystallization (Pate, Hutton and Norrish 1989; Wilson 

and Pollard 2002). Sarakenos cave appears to be such an environment, where bones show limited 

recrystallization, indicated by the low IRSF values. 

 

Figure 5.18. Inter-site variations in crystallinity and carbonate content.  

Soil geochemistry is also a key factor that can lead to the inter-site variations in carbonate content 

(Figure 5.18b), as an acidic environment can lower CO3
2ˉ content (Chadefaux et al. 2009), 

whereas a slightly alkaline pH in areas close to the samples can favour the uptake of carbonates 

through interaction with soil water (Chadefaux et al. 2009; Hedges and Millard 1995; Lebon et 

https://paperpile.com/c/EyiG9J/r3oW+8G4i
https://paperpile.com/c/EyiG9J/r3oW+8G4i
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al. 2011). An absorption of exogenous carbonate in Maroulas, Sarakenos and Promachon bones, 

for example, may have occurred via different mechanisms such as the decay of C3 flora in the 

form of bicarbonate (HCO3ˉ) and/or from weathered bedrock CaCO3 (Wright and Schwarcz 

1996). Thus, the general pattern observed in archaeological bone (characterized by a loss of CO3
2ˉ 

content and an increase in crystallinity through phosphate uptake during 

dissolution/recrystallization) can alter when there is an ionic exchange between BAp and the 

burial environment (Figure 5.17).  

Variable intra-site modifications in bioapatite can also be observed, especially in carbonate 

content (Figure 5.18b), which highlights the importance of the micro-environment conditions to 

the long-term survival of bone. Crystallinity shows more homogeneity and only bones in Manika 

and Kastrouli exhibit high intra-site variations (Figure 5.18a; Table 3). The Sarakenos cave 

bones, although recovered from different areas of the cave and different depths (which might be 

linked to variable preservation of bone (e.g. Karkanas et al. 2000; Stiner et al. 2001), show a lack 

of correlation with both area (no significant differences between trench E vs trench F samples; 

U=30.500, p=0.479 and U=32.500, p=0.596 for IRSF and C/P, respectively) and depth (trench E 

samples’ IRSF-depth R2=0.00 and R2=0.15 for C/P-depth; trench F IRSF-depth R2=0.35 and C/P-

depth R2=0.26). Similarly no correlation can be observed between type of burial and crystallinity 

[x2(3)=0.532, p=0.912] or carbonate content [x2(3)=1.281, p=0.734] in St. Rombout. 

5.2.3. INTRA-INDIVIDUAL AND INTRA-BONE VARIATIONS 

No significant intra-individual variations are observed in twenty-one individuals from St. 

Rombout and one from Maroulas, either for IRSF [x2(6)=2.263, p=0.894; Figure 5.19a] or for 

C/P [x2(6)=10.442, p=0.107; Figure 5.19b]. Regarding the petrous bone, it displays a slightly 

higher average IRSF value compared to these of the femora and tibiae, and lower than the humeri, 

radii, and ulnae (Figure 5.19a). The C/P intra-individual differences show a smaller variability, 

as only the femora and the tibiae show a higher C/P content compared to the petrous bone, with 

all other skeletal elements having average values similar to the petrous bone (Figure 5.19b).  

Intra-bone variations (i.e. proximal-to-distal diaphyses) are not detected in long bones from 

Maroulas, Sarakenos cave, Tharrounia, Manika, and St. Rombout, both for IRSF (Figure 5.20; 

humerus U=100.500, p=0.624; radius U=37.500, p=0.796; ulna U=8.000, p=0.421; femur 

U=43.500, p=0.631; tibia U=16.500, p=0.818) and C/P (Figure 5.20; humerus U=103.000, 

p=0.713; radius U=34.000, p=0.605; ulna U=12.000, p=1.000; femur U=49.000, p=0.971; tibia 

U=16.500, p=0.818). Therefore, the burial environment can vary intra-site, leading to variations 
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in BAp composition and structure, but the conditions of the burial micro-environment appear 

more homogeneous.   

 

Figure 5.19. Intra-individual variations in crystallinity (a) and carbonate content (b) in twenty-one 

individuals from St. Rombout and one from Maroulas.  Bars represent the average difference between the 

petrous bone and the other skeletal elements (i.e. a positive value indicates a lower average value of this 

skeletal element compared to petrous bone, and  vice versa). 

Within-sample variations can be observed in crystallinity and carbonate content of the different 

bone tissue areas (Figure 5.21). Although there is no statistically significant difference between 

periosteal, mesosteal and trabecular bone tissue either for IRSF (x2=1.680, p= 0.432) or for C/P 

(x2=0.306, p= 0.858). IRSF values in the periosteal tissue appear lower compared to the mesosteal 
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and trabecular tissues (Figure 5.21a), whereas carbonate content displays no observable pattern 

(Figure 5.21b). In modern human bone, a gradient from the osteon outwards (tissue specific, age-

related variations) has been previously reported by Paschalis et al. (1996), with the areas farther 

from the Haversian canal displaying increased crystallinity, higher type B carbonate and lower 

type A carbonate content. Additionally, a small variation in carbonate content within trabecular 

bone tissue (i.e. center to edge gradient) has also been reported by Ou-Yang et al. (2001). 

 

Figure 5.20. Crystallinity and carbonate content in proximal and distal diaphyses of long bones.  
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Apropos of that behaviour, Stiner et al. (1995) observed that the outer surfaces of modern bone 

which had been exposed for 2 and 9 years post-mortem in Israel and New Mexico (USA), 

respectively, displayed higher crystallinity than the inner cortical areas. In a similar attempt to 

record mineralogical and compositional changes in bones of large mammals exposed on the 

ground surface in Amboseli National Park (Kenya) for up to 26 years, Trueman et al. (2004) also 

observed that the crystallinity in the periosteal surfaces was higher than in the other bone tissue 

areas (inner cortical) as early as 2 years post-mortem. The higher periosteal IRSF values were 

accompanied by higher concentrations of rare earth elements (e.g. Ba and La) which also showed 

a gradual decrease towards the inner cortex (Trueman et al. 2004). When the cortical bone was 

compared with trabecular bone in the Middle Palaeolithic Hayonim cave (Israel), the IRSF values 

for spongy tissues were found to be slightly higher (Stiner et al. 2001).  

 

Figure 5.21. Box plots showing the IRSF (a) and C/P (b) values in the periosteal, mid cortical (mesosteal) 

and trabecular tissues. Notice the lower IRSF (a) and C/P (b) values in the periosteal tissue.  
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Consequently, the tissue-specific differences (i.e. periosteal, mesosteal, endosteal) in crystallinity 

and carbonate content can vary within and between sites (Stiner et al. 2001; Trueman, Privat and 

Field 2008; 2008), while other factors such as the size of the bone itself can also affect its post-

mortem behaviour and interaction with its depositional environment (Surovell and Stiner 2001). 

Although there is no universal pattern for tissue-specific variations found in archaeological and 

fossil bone, the necessity of homogenization of samples prior to analysis through the mechanical 

removal of the periosteal, trabecular and endosteal bone tissues and use of the mesosteal (mid-

cortical) tissue is indisputable for the improvement of accuracy, precision, reproducibility and 

comparability of data. 

5.2.4. CRYSTALLINITY, CARBONATE CONTENT AND CRYSTAL ORDER 

With reference to the ionic exchanges in BAp which cause the inter-site, intra-site and intra-

sample variations, a deeper understanding of the carbonate environment is critical, as it is linked 

to the short-range order and dimensions of the crystals. Carbonate can either be exchanged with 

OHˉ in the A-sites or it can be swapped with PO4
3ˉ ions in the B-sites (LeGeros 1965; Wopenka 

and Pasteris 2005). A CO3
2ˉ to PO4

3ˉ exchange generates a contraction of the unit cell of the BAp 

crystal as carbonate is smaller than phosphate, whereas a CO3
2ˉ to OHˉ exchange results to an 

expansion of the unit cell, as CO3
2ˉ is larger than OHˉ (LeGeros et al. 1969). In type A 

substitutions high temperature (900-1000° C) is required, hence the exclusion of water, while type 

B substitutions occur at c. 25-100° C, with water playing an important role to the ionic exchanges 

(LeGeros 1965). However, the incorporation of exogenous carbonate into BAp crystals often has 

no noticeable effect on IRSF, possibly due to small variations between bone structural carbonate 

and environmental carbonates (Rey et al. 1989). 

Although quantification of these ionic exchanges is currently difficult, a qualitative assessment 

of the carbonate environment can be accomplished using the mid-IR spectra. Changes in the ν2 

carbon-oxygen out-of-plane bending vibrations identified through the 872 cm-1 absorbance 

height, and its correlation to the ν3 carbon-oxygen asymmetric stretching at 1410 cm-1, can provide 

useful qualitative information on the carbonate environment of BAp (Baxter, Biltz and Pellegrino 

1966; Elliott 1964; LeGeros et al. 1969; White 1974). The very strong linear relationship 

(R2=0.92; Figure 5.22) between the 1410 cm-1 and the 872 cm-1 peaks (both assigned to type B 

carbonate (Elliott 1964; LeGeros et al. 1969; Rey et al. 1989) proves the high proportion of type 

B carbonate environment in bioapatite and its role in crystallinity changes. Post-mortem 

substitution of CO3
2ˉ by exogenous PO4

3ˉ from biological sources (e.g. organic refuse), 

decomposition by-products of fresh wood ash, or limestone weathering (Stiner et al. 2001) during 
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recrystallization would increase the unit cell dimensions of BAp crystals due to the longer O-O 

distances in phosphate compared to carbonate (LeGeros et al. 1969). 

 

 

Figure 5.22. The very strong linear relationship between the main type -B carbonate peaks of bone apatite 

(outlier MEC7 excluded).  

The ν2 carbonate band at c. 850-900 cm-1 (which is considered free of organic constituents 

(Termine et al. 1973) and generally free of HPO4
2ˉ artifacts (Rey et al. 1989) can also offer useful 

information through 2nd derivative analysis. The two main carbonate bands in modern bone at 879 

cm-1 and 871 cm-1 are frequently assigned to type A1 (stuffed) and type B (sloping faces) 

carbonates, respectively (Figure 5.23; Fleet 2009; Fleet and Liu 2004; Fleet, Liu and King 2004; 

LeGeros 1965; LeGeros et al. 1967). A third component which is assigned to type A2 (labile) 

CO3
2ˉ can be observed at 866 cm-1 (Rey et al. 1989), but this is mainly detected in coarse powder 

of modern bone (Kontopoulos et al. 2018). Regarding the relative proportion of the A1 and B 

components, it differs in modern human bone compared to modern bovine bone (Figure 5.23). 

This explains the differences between human and bovine bioapatite characteristics observed in 

Figure 5.17 which are related to crystal order and size, as variations in the carbonate environment 

affect the α- and c-axis crystal dimensions (e.g. LeGeros et al. 1969).  

The 2nd derivative spectra of archaeological bone (Figure 5.24) confirm that only the A1 and B 

types are present (Kontopoulos et al. 2018). The analysis of specimens that display a gradual 

increase in crystallinity and a gradual loss of carbonate indicate that A-sites decrease in all 

samples, although not in a predictable manner (Figure 5.24). Even in SAR3 (which displays a 

low crystallinity and a high C/P, indicative of an uptake of exogenous carbonate from the 

https://paperpile.com/c/EyiG9J/HuZY
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surrounding environment), the 879 cm-1 component has almost vanished (Figure 5.24b), an 

indication of dissolution followed by incorporation of exogenous carbonate (C/P higher than in 

modern bone) during recrystallization. This loss of the type A1 component is often accompanied 

by an increase of the type B component at 872 cm-1, as seen from the absorbance height (Figure 

5.24a-b). In other bones such as MAR10 (Figure 5.24c), which is characterized by a high 

crystallinity and loss of half of its carbonate, the 2nd derivative spectra display a pattern similar to 

modern bovine bone (Figure 5.23b) with a small increase in B carbonate and a small decrease in 

A1 carbonate. Therefore, the carbonate environment of archaeological bone can be transformed 

post-mortem, but in a complex way that is not easily quantifiable. 

 

Figure 5.23. 2nd derivative spectra of the ν2 carbonate band of (a) modern human bone (55 years old 

male) and (b) modern bovine bone. 
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Figure 5.24. 2nd derivative spectra of the ν2 carbonate band. (a) SAR3 (IRSF=3.56, C/P=0.27), (b) KAS5 

(IRSF=4.15, C/P=0.18), (c) MAR10 (IRSF=4.95, C/P=0.12), and (d) MAN13 (IRSF=5.80, C/P=0.07).  

Calcite is identified in 54 samples by the absorbance height of the v4 carbon-oxygen in-plane 

bending at 712 cm-1 (Table A2-Appendix A). This peak is considered more sensitive to the 

changes in the Ca-O distance during vibration (Baxter, Biltz and Pellegrino 1966; Gueta et al. 

2007; Hunt, Wisherd and Bonham 1950) than the v3 at c. 1410 cm-1 and v2 at 872 cm-1 vibrations 

(Regev et al. 2010). The weak correlation between the 1410-712 cm-1 (R2=0.2) and the moderate 

relationship between the 872-712 cm-1 (R2=0.36) absorbance heights confirms the lower 

sensitivity of these bands to calcite uptake. This is explained by the small differences in the 

asymmetric stretching and out-of-plane bending vibration between bone carbonate and calcite, as 

the C-H vibrations of the organic content of bone that superimpose on the CO3
2ˉ absorbance peak 

at 1410 cm-1 can mask modifications in bone carbonate (Trueman et al. 2004; 2008).  

Calcite can be found in limestone, chalk, marble, travertine, even in wind-borne (loess) and 

cemented sediments, thus a distinction between a rather amorphous bone calcium carbonate 

(lower order with greater Ca-O and O1-O2 distances) and exogenous calcite (higher order with 

smaller distances) (Gueta et al. 2007) is of significance, especially for isotopic studies. A direct 

comparison of bones with and without calcite that exhibit similar IRSF and C/P values can 

potentially provide further information on the location of the exogenous ions incorporated into 

https://paperpile.com/c/EyiG9J/7Rr4
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BAp. A significant increase of the 872 cm-1 component is observed in bones that display calcite 

uptake (Figure 5.25). This increase in B-sites is often accompanied by a reduction of the 879 cm-

1 A1 component (Figure 5.25a-c). Except for MAN31 (Figure 5.25d), where the carbonate 

environment appears similar to modern human bone (Figure 5.25a), in all other samples that 

show calcite uptake the 872 cm-1 peak is about x2 the height in modern human bone (Figure 

5.25a-c). As a result, an uptake of calcite possibly occurs at the sloping faces of BAp crystals in 

B-sites, as demonstrated by the ν2 carbonate 2nd derivative analysis.  

 

Figure 5.25. 2nd derivative spectra of the ν2 carbonate band (calcite uptake) . (a) MAR12 (IRSF=3.70, 

C/P=0.29), (b) KAS12 (IRSF=4.09, C/P=0.20), (c) MAR9 (IRSF=4.88, C/P=0.12), and (d) MAN31 

(IRSF=5.83, C/P=0.08). Absorbance height at 712 cm -1: MAR12=0.00854, KAS12=0.00462, 

MAR9=0.00707, and MAN31=0.00600. IRSF and C/P are similar to these of samples in Figure 5.24. 

The 2nd derivative analysis of the complex ν3 mode (c. 1400-1500 cm-1) shows that the c. 1415 

cm-1, c. 1450 cm-1 site B CO3
2ˉ components, and the c. 1468 cm-1 and c. 1535 site A CO3

2ˉ 

components (Brangule and Gross 2015; Madupalli, Pavan and Tecklenburg 2017; Rey et al. 1989) 

are more prominent in modern bone (Figure 5.26) and decrease in archaeological bone (Figure 

5.27). A decrease in the 1468 cm-1 and 1535 cm-1 peaks can be possibly related to loss of type A 

CO3
2ˉ (Rey et al. 1989; Madupalli, Pavan and Tecklenburg 2017), while a decrease in the 1415 

cm-1 peak in the archaeological bone without calcite uptake can be linked to a loss of type B 

structural carbonate (Rey et al. 1989; Fleet and Liu 2004). On the other hand, this decrease in the 
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1415 cm-1 peak is not observed in samples with calcite uptake (Figure 5.28), as these demonstrate 

an increase in the 1415 cm-1 peak which possibly indicates the position that calcite predominantly 

occupies in BAp crystals (i.e. type B). 

 

Figure 5.26. 2nd derivative spectra of the ν3 carbonate band of (a) modern human bone (55 years old 

male) and (b) modern bovine bone. Black boxes highlight the possible type A carbonate components; blue boxes 

highlight the possible type B carbonate components; green box highlights a possible non-apatitic (labile) carbonate 

component; red boxes highlight the possible organic (amide II) components (Termine et al. 1973; Rey et al. 1989; 

Fleet and Liu 2004; Brangule and Gross 2015; Madupalli et al. 2017). 

https://paperpile.com/c/3w0LuS/cRKs+E1h4m+kcpM+4KCK+RwBT
https://paperpile.com/c/3w0LuS/cRKs+E1h4m+kcpM+4KCK+RwBT


 
 

133 
 

 

Figure 5.27. 2nd derivative spectra of the  ν3 carbonate band. (a) SAR3 (IRSF=3.56, C/P=0.27), (b) KAS5 

(IRSF=4.15, C/P=0.18), (c) MAR10 (IRSF=4.95, C/P=0.12), and (d) MAN13 (IRSF=5.80, C/P=0.07). 

Black boxes highlight the possible type A carbonate components; blue boxes highlight the possible type B carbonate 

components; green box highlights a possible non-apatitic (labile) carbonate component (Termine et al. 1973; Rey et al. 

1989; Fleet and Liu 2004; Brangule and Gross 2015; Madupalli et al. 2017). 

 

Figure 5.28. 2nd derivative spectra of the ν3 carbonate band (calcite uptake). (a) MAR12 (IRSF=3.70, 

C/P=0.29), (b) KAS12 (IRSF=4.09, C/P=0.20), (c) MAR9 (IRSF=4.88, C/P=0.12), and (d) MAN31 

(IRSF=5.83, C/P=0.08). Absorbance height at 712 cm -1: MAR12=0.00854, KAS12=0.00462, 

https://paperpile.com/c/3w0LuS/cRKs+E1h4m+kcpM+4KCK+RwBT
https://paperpile.com/c/3w0LuS/cRKs+E1h4m+kcpM+4KCK+RwBT
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MAR9=0.00707, and MAN31=0.00600. Black boxes highlight the possible type A carbonate components; blue 

boxes highlight the possible type B carbonate components; green box highlights a possible non-apatitic (labile) 

carbonate component (Termine et al. 1973; Rey et al. 1989; Fleet and Liu 2004; Brangule and Gross 2015; Madupalli 

et al. 2017). 

Differences in most cases, however, are not unequivocal, which reflects the complexity of the 

ionic exchanges between bioapatite and its surrounding environment. Overall, an A-site 

carbonation in the apatitic c-axis channel that would require much higher energy than B-site 

carbonation of phosphate sites (Madupalli, Pavan and Tecklenburg 2017) seems unlikely through 

the 2nd derivative component analysis. Thus, exogenous carbonate is probably positioned at the 

sloping faces of BAp crystals, replacing type B CO3
2ˉ (Maurer et al. 2014; Wright and Schwarcz 

1996) and any changes observed in the 2nd derivative components can also be caused by the 

changes in carbonate orientation (Madupalli, Pavan and Tecklenburg 2017). Calcite seems to 

follow the same pathway, i.e. adsorbing onto the BAp crystal surfaces. The alternative scenario 

in which calcite could partly be incorporated into the A sites during severe dissolution and 

recrystallization of BAp seems unlikely. 

 

Figure 5.29. 2nd derivative spectra of the ν3 (a and c) and the ν2 carbonate bands (b and d) of SAR38 

(bovine petrous bone) and DEN8 (human petrous bone). SAR38 (a and b) and DEN8 (c and d) display 

similar IRSF (3.23 and 3.27, respectively) but different C/P (0.33 and 0.18, respectively). Here, th e 

carbonate bands are characterized by different proportions of type A and B carbonate.  

Nevertheless, it is difficult to make any safe assumptions on the location of exogenous CO3
2ˉ in 

the BAp crystal lattice. The peaks and shoulders displayed in these regions are still not 

unambiguously assigned to a specific CO3
2ˉ site (Elliott 1964; Fleet and Liu 2004; LeGeros et al. 

1969; Rey et al. 1989), and some domains also include absorption from other bands (e.g. CH, CN, 

https://paperpile.com/c/3w0LuS/cRKs+E1h4m+kcpM+4KCK+RwBT
https://paperpile.com/c/3w0LuS/cRKs+E1h4m+kcpM+4KCK+RwBT
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COOˉ, NH) that overlap with CO3
2ˉ (Elliott 1964; Termine et al. 1973) and hinder further 

interpretation. It is also possible that the hypothesis of two carbonate environments, each of which 

has its own characteristic absorption spectrum, might be an oversimplification (Elliott 1964; 

Elliott, Holcomb and Young 1985). 

 

Figure 5.30. 2nd derivative spectra of the  ν3 (a and c) and the ν2 carbonate bands (b and d) of PRO8 

(bovine metacarpal) and MEC30 (human petrous bone). PRO8 (a and b) and MEC30 (c and d) display 

similar IRSF (4.00 and 4.07, respectively) but different C/P (0.19 and 0.09, respectively). Note the 

reduction in B-sites of MEC30 (c and d). 

A comparison of the 2nd derivative spectra of the v2 and v3 carbonate bands of human and animal 

bones of similar crystallinity but different carbonate content also tells an interesting story for 

IRSF (Figure 5.29 and Figure 5.30). One would expect that if the crystallinity is similar (hence 

the short-range order and average crystal size) the carbonate environment should exhibit similar 

characteristics, as this defines the shape and size of the crystal by changing the lattice’s α- and c-

axes (LeGeros 1965, 1981; LeGeros et al. 1967, 1969). However, Figure 5.29 and Figure 5.30 

show that even if there are significant differences in the carbonate environments of the BAp 

crystals, samples can still display similar crystallinity. Therefore, this observation could possibly 

indicate that a loss of structural carbonate and its replacement by other non-carbonate ions from 

the burial environment (e.g. Fe, Mn, or REE; Keenan et al. 2015) may not cause changes in 

crystallinity, or that the C/P cannot accurately reflect the changes in the carbonate environment. 
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Figure 5.31. The relationship of the long-range crystal order with (a) crystallinity and (b) carbonate 

content. 

Building further on the carbonate-crystal order/disorder relationship, the carbonate substitutions 

are also assumed to affect the long-range order of the crystals. The FWHM at 1010 cm-1 reflects 

the long-range order of BAp, hence the homogeneity between the different clusters of atoms 

arranged in a predictable pattern (Asscher et al. 2011; Asscher, Weiner and Boaretto 2011; 

Wopenka and Pasteris 2005). Higher FWHM values indicate higher long-range disorder, thus 

theoretically, when crystallinity increases and carbonate content decreases, the clusters’ 

homogeneity improves. The very strong inverse relationship (R2=0.82; Figure 5.31a) between 

IRSF and FWHM at 1010 cm-1 confirms that relationship; hence, increasing crystallinity leads to 

increased long-range order. However, when C/P is plotted against FWHM at 1010 cm-1 the 

moderate correlation (R2=0.44; Figure 5.31b) between the carbonate content and cluster 

homogeneity in bone apatite indicates that CO3
2ˉ does not have such a significant effect on the 
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long-range order. The weak correlations between 872 cm-1 (R2=0.37) and 1410 cm-1 (R2=0.24) 

peak absorbances with the FWHM at 1010 cm-1 further highlights this lack of correlation between 

carbonate content and long-range order. Thus, phosphate content is primarily responsible for any 

observable changes in the observed homogeneity at both the short- and long-range.  
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5.3. COLLAGEN PRESERVATION 

5.3.1. PETROUS VERSUS OTHER BONES 

Collagen preservation in petrous bones (n=62) does not display any statistically significant 

differences (U=4519.500, p=0.198) when compared to other skeletal elements (n=164). A high 

variability is observed, with collagen yields (wt. %) ranging from 0.00 to 17.84 

(average=9.5±5.13) in petrous bones and from 0.00 to 22.55 wt. % (average col. wt. %=8.9 ± 

6.56) in other bones (Figure 5.32; Table A3-Appendix A). Collagen yields are commonly used 

to distinguish well-preserved from poorly-preserved collagen and currently c. 1 wt. % is 

considered a suitable threshold below which samples should not be used for isotopic and/or 

radiocarbon dating studies (Brock, Higham and Ramsey 2010; Dobberstein et al. 2009; Van 

Klinken 1999). Here, 37 samples (of which 9 (15 %) were petrous bones), all from Greek 

prehistoric open-air sites display collagen yields below the 1 wt. % threshold. Consequently, from 

this sample set it does not seem that collagen has increased survival rates in petrous bones 

compared to other skeletal elements. 

 

Figure 5.32. Box plot showing the distribution of collagen yields in petrous and other bones.  

5.3.2. INTER- AND INTRA-SITE VARIATIONS 

Statistically significant inter-site variations with no correlation to chronological age can be 

observed (U=118.713, p=0.000), with the poorest collagen preservation seen in the Mesolithic 

coastal site of Maroulas (collagen yields=0.42±0.27) followed by the late Bronze Age coastal site 

of Manika, with average collagen wt. % = 2.03±2.92 (Figure 5.32). The extremely poor collagen 

preservation in those two coastal sites is accompanied by well-preserved histology that shows no 
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micro-cracking or generalized destruction as seen in Figure 5.9a, but increased crystallinity 

(Figure 5.33; Table A2-Appendix A). This combination indicates a gradual, slow loss of the 

organic content through chemical hydrolysis, the rates of which were primarily controlled by 

temperature and soil pH (no microcracking, hence limited involvement of groundwater), which 

has eventually led to the almost complete fossilization of bones (Collins et al. 2002).  

On the other hand, the best collagen preservation can be observed in the Bronze Age Central 

Asian petrous bones (n=6) and the Neolithic deposits of the Sarakenos cave (n=24), with collagen 

wt. % averaging 14.67±2.69 and 13.64±5.75, respectively. Preservation of the organic matter in 

Sarakenos cave confirms the assumption that better collagen preservation should be expected in 

caves compared to open-air sites due to the more stable conditions (only small fluctuations in 

temperature and groundwater). However, a few studies have demonstrated that collagen 

preservation can show considerable variation in caves (e.g. Bocherens et al. 1999; McClure et al. 

2011). This is caused by horizontal and vertical diagenetic changes in cave sediments (Karkanas 

et al. 1999), which means that bones may be well-preserved in some areas of a cave but 

completely dissolve in others (e.g. Bocherens et al. 2008; Karkanas et al. 1999; Stiner et al. 2001).  

 

Figure 5.33. Inter-site variation in collagen preservation. 

This also gives us information about intra-site variations, with Sarakenos cave displaying the 

highest variability among the 9 archaeological sites (Figure 5.33). Differences between two areas 

of Sarakenos cave, trenches E and F, can be clearly identified (Figure 5.34a). In particular, 

samples from trench E have higher collagen yields (17.15±4.63; n=11) than bones from trench F 

(9.50±4.04; n=7), a statistically significant difference (U=10.000, p=0.008). Nevertheless, no 

correlation with depth (trench E R2=0.00 and trench F R2=0.17) is apparent, contrary to previous 
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studies that have argued for increased diagenetic alterations in bones close to the surface 

(Karkanas et al. 2000).  

 

Figure 5.34. Intra-site variations in collagen preservation in Sarakenos cave (a) and St. Rombout (b).  

An additional example of large within-site variations is Kastrouli, as the three different diagenetic 

paths identified (section 5.1.2) also display statistically significant collagen yields [x2(2)=7.623, 

p=0.022]. Diagenetic path 1 samples display very poor collagen preservation (collagen wt. 

%=1.8±1.06); the diagenetic path 2 average collagen yield is 7.56±3.69, while diagenetic path 3 

samples display slightly higher collagen yields (8.32±3.08). These variations in Kastrouli 
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collagen can therefore be related to the funerary practices, a scenario confirmed in St. Rombout 

specimens. Specifically, collagen preservation shows a strong association with burial practices in 

St. Rombout, with single burials of wrapped corpses characterized by increased collagen survival 

rates, whereas single plain burials in soil have much lower collagen yields (Figure 5.34b; 

x2(3)=8.639, p=0.034). Multiple burials and burials in coffins show intermediate values with 

similar collagen yields, although single coffined burials show more variability (Figure 5.34b). 

5.3.3. INTRA-INDIVIDUAL AND INTRA-BONE VARIATIONS 

Intra-individual variations are not statistically significant (Figure 5.35; x2(5)=2.340, p=0.800). 

The differences between the petrous bone and the other skeletal elements is small, although the 

upper limb bones show slightly higher average values and the lower limb bones display slightly 

lower average collagen yields (Figure 5.35). Intra-bone variability (i.e. proximal-to-distal 

diaphyses) is also not observed in long bones from Maroulas, Sarakenos cave, Tharrounia, 

Manika, and St. Rombout (Figure 5.36; humerus U=110.500, p=0.935; radius U=28.000, 

p=0.297; ulna U=8.000, p=0.421; femur U=48.000, p=0.912; tibia U=17.000, p=0.937). A lack 

of intra-skeletal and intra-bone variability was expected as there was no indication of histological 

or bioapatite variability. Therefore, the micro-environmental conditions seem to have a similar 

impact on the preservation of bone collagen within the same individual and the same skeletal 

element.  

 

Figure 5.35. Intra-individual variations in collagen preservation in twenty-one individuals from St. 

Rombout and one from Maroulas.  Bars represent the average difference between the petrous bone and 

the other skeletal elements (i.e. a positive value indicates a lower average value of this skeletal element 

compared to petrous bone, and vice versa).  
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Figure 5.36. Collagen content in in proximal and distal diaphyses of long bones.  
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5.3.4. COLLAGEN-BIOAPATITE RELATIONSHIP 

The orientation and size of BAp crystals are controlled in vivo by the collagen fibril structure and 

organization as the former are situated between (inter-fibrillar spaces) or on the surfaces (intra-

fibrillar spaces) of collagen fibrils (Weiner and Traub 1986; Weiner and Price 1986; Boskey 

2003). Hence the interaction between the mineral and organic fractions of bone during diagenesis 

is assumed to be strong (e.g. Bocherens et al. 2008; Götherström et al. 2002; Person et al. 1995, 

1996), and only if this intimate association breaks can collagen decay. The volume that is left 

empty after collagen loss is assumed to be replaced by BAp crystals of increased size until inter-

crystallite porosity has been filled (Susini, Baud and Lacotte 1988; Trueman et al. 2008).  

 

Figure 5.37. The lack of correlation between collagen wt. % and crystallinity. Four groups, one with low 

crystallinity and high collagen yields (green box), a second with low crystallinity and low collagen yields 

(black box), a third with high crystallinity and high collagen yields (yellow box), and a fourth that shows 

high crystallinity and low collagen yields (red circle), indicative of the different combination of 

diagenetic pathways followed by these specimens. Note the variable crystallinity (c. 3.4 to c. 6 IRSF) of 

samples displaying a complete loss of collagen.  

However, a weak correlation between crystallinity (IRSF) and collagen content (R2=0.26) is 

observed (Figure 5.37; Table 4), something that has also been reported in past studies (Lebon et 

al. 2010; Weiner and Bar-Yosef 1990; Hedges, Millard and Pike 1995). Thus, it seems that 

bioapatite recrystallization is possible even in the presence of reasonable amounts of collagen in 

bone (Figure 5.37), also described by Reiche et al. (2003). At the same time, in other bones the 

volume of the matrix that is filled with collagen in vivo can be replaced by BAp crystals of 

increased size (Figure 5.37; Trueman et al. 2008; Susini, Baud and Lacotte 1988; Pfretzschner 

2004). There is no good explanation of this difference, which would benefit from a larger study 
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which might explore, for example, the selective leaching of proteins such as osteocalcin and 

osteonectin, which may play a role in limiting the extent of recrystallisation. 

Table 4. Collagen-IRSF relationship (R2) in sites with samples n≥5 in each group.  

Site 
Collagen-IRSF 

Petrous Other 

Maroulas, Greece N/A 0.13 

Sarakenos, Greece 0.26 0.53 

Tharrounia, Greece N/A 0.16 

Manika, Greece 0.92 0.15 

Central Asia 0.16 N/A 

Holmens Kirke, Denmark 0.19 N/A 

St. Rombout, Belgium 0.10 0.15 

Overall 0.62 0.60 

   

 

5.3.5. SCREENING METHODS 

With reference to screening of archaeological bone for collagen preservation, it has been 

previously shown that % N of whole bone, which is c. 3.5 - 5.5 wt. % in modern bone (Baker, 

Butterworth and Langley 1946; Eastoe and Eastoe 1954), is a reliable index (Bocherens et al. 

2005; Brock, Higham and Ramsey 2010). Two different but similar thresholds have been 

proposed for bones in order to be further examined for stable isotopes and/or radiocarbon dating. 

Bocherens et al. (2005) support that 0.4 % N threshold is adequate, while Brock et al. (2010) 

propose a cut-off point of 0.7 %. However, it is possible that samples containing > 0.7 % Ν and 

give collagen yields < 1 wt. %, may contain nitrogen as short-chain/degraded collagen or 

polypeptides, non-collagenous proteins, soil contaminants, or conservation treatments (Brock et 

al. 2012).  

In this study, % N of whole bone varies from 0.00 to 3.42 (Table A3-Appendix A) and all 

samples with % N >0.7 exhibit collagen C/N ratio between 3.2 to 3.51 (Table A3-Appendix A). 

Values similar to modern bone (i.e. 2.9 to 3.6) are considered representative of good quality 

collagen, whereas much higher C/N ratios are linked to diagenesis (Ambrose 1990; DeNiro 1985; 

DeNiro and Weiner 1988; Tuross 2002). Thus, all samples with total nitrogen over 0.7 % have 

collagen C/N within the acceptable limits. Unfortunately, the two samples that have lost all of 

their nitrogen (i.e. KAS26 and PRO8) did not yield enough collagen to allow the assessment of 

their collagen C/N.  
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The % N of whole bone also demonstrates a strong linear relationship with collagen wt. % 

(R2=0.63; Figure 5.38a) which underlines the potential use of the former as collagen content 

predictor. However, a safe assumption on the quantitative potential of % N of whole bone would 

require several hundreds of samples, and in this study it was applied only to a limited number of 

samples (n=30 for collagen-% N whole bone relationship). It is also noteworthy that the Holmens 

Kirke bones have a higher average % N=2.51±0.71 compared to % N=2.04±0.8 in the Central 

Asian samples, and at the same time have lower average collagen yields (12.49±3.12) than the 

Central Asian bones (14.67±2.69), which could be possibly due to the presence of non-

collagenous proteins in the former.  

 

Figure 5.38. Data showing the reliability of (a) nitrogen and (b)  carbon content of whole bone as 

indicators of collagen preservation. Threshold line in (a) according to Brock et al. (2010).  

Overall, % N of whole bone data are in agreement with past studies (e.g. Brock et al. 2012; Lebon 

et al. 2016) which support that it can be a relatively good indicator of collagen preservation. 

However, assessment of highly contaminated and/or degraded bones can be problematic, as seen 
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in the two bones from Kastrouli (KAS26) and Promachon (PRO8) with no nitrogen content that 

may still retain small amounts of collagen in their structure (Table A3-Appendix A). 

Archaeological bone usually displays a significant decrease in carbon content compared to 

modern animal bone that has c. 15 wt. % C (Ambrose 1990; Sillen and Parkington 1996; Van 

Klinken 1999). Here, the total amount of carbon ranges from 2.17 to 11.60% (Table A3-

Appendix A). and shows a strong correlation (R2=0.68) with collagen content (wt. %) (Figure 

5.38b). This relationship indicates that % C of whole bone can be an equally strong predictor of 

collagen content to % N of whole bone. Although the C/N ratios of whole bone powder could 

provide an additional approach, the relationship with collagen wt. % (R2=0.04) does not seem to 

be sensitive enough to discriminate well- from poorly-preserved samples. Such a poor correlation 

between C/N of whole bone and collagen yields has also been reported by Brock et al. (2012) and 

Lebon et al. (2016). Consequently, a combined use of % N and % C of whole bone, and collagen 

C/N ratio can significantly improve screening practices of archaeological bone for collagen 

preservation (Brock, Higham and Ramsey 2010; 2012; Harbeck and Grupe 2009).  

 

 

Figure 5.39. The reliability of Am/P for predicting collagen content in archaeological bone. A lower 

intercept of the more recent (Danish) bones suggests that the phosphate for carbonate exchange (relative 

phosphate content), and vice versa, can affect the reliability of Am/P as a collagen predictor.  

The Am/P ratio derived from FTIR can also potentially provide valuable information on the 

relative amount of organic content in bone (Lebon et al. 2016; Trueman, Privat and Field 2008; 

Trueman et al. 2004). A strong correlation (R2=0.66) between Am/P and collagen wt. % can be 
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seen in this dataset, highlighting the potential of Am/P as collagen predictor for rapid screening 

(Figure 5.39; Table 5). The application of the Am/P ratio as a quantitative approach to estimate 

collagen yields using the Lebon et al. (2016) equation (i.e. collagen wt. % = 113.13 Am/P + 1.69) 

also shows some potential, but an average offset of -1.70 ± 3.67 % is observed. Although the new 

equation provided in Figure 5.39 gives an offset of -0.20 ± 3.67 % which is better than Lebon’s 

et al. (2016) equation, in 98 samples (i.e. 36.5 %) the offset is higher than ±3 % (Table A5-

Appendix A). While in a previous study by Trueman et al. (2004) it was argued that the Am/P 

index does not accurately reflect collagen preservation in samples with less than 10% collagen 

surviving, this was not observed in this dataset, with samples containing > 10 % collagen often 

displaying the largest offsets (Table A5-Appendix A).  

The relative phosphate content (exogenous phosphate uptake) can lead to poor agreement of 

collagen estimates with collagen yields (Figure 5.39), thus to improve the accuracy decoupling 

the amide I peak from phosphate is necessary. Overtones related to O-H stretching vibrations at 

1640-1660 cm-1 (water) can also interfere with the collagen signal and lead to increased estimates 

(Trueman, Privat and Field 2008; Chadefaux et al. 2009; Lebon et al. 2016). Moreover, any 

differences in collagen (e.g. Sealy et al. 2014) and FTIR protocols (e.g. Kontopoulos et al. 2018) 

can also have significant effects on the collagen content estimates. As a result, further research is 

required until the amide I peak can be safely used to assess collagen preservation and provide 

accurate collagen content estimates. 

Table 5. Collagen-Am/P relationship (R2) in sites with samples n≥5 in each group.  

Site 
Collagen-Am/P 

Petrous Other 

Maroulas, Greece 0.48 0.01 

Sarakenos, Greece 0.16 0.70 

Tharrounia, Greece N/A 0.88 

Manika, Greece 0.92 0.55 

Central Asia 0.83 N/A 

Kastrouli, Greece N/A 0.83 

Holmens Kirke, Denmark 0.63 N/A 

St. Rombout, Belgium 0.20 0.67 

Overall 0.58 0.69 
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Figure 5.40.  2nd derivative spectra of the amide I band (c. 1600-1700 cm-1) showing the disappearance 

of amide I components (black boxes) that accompany loss of collagen in archaeological bone (KAS8: b; 

KAS7: c). 
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Additional qualitative evidence can be obtained through the 2nd derivative analysis of the amide I 

band, which shows a gradual decrease of the 1632, 1640, and 1650 cm-1 components assigned to 

the polyproline II helix (Lazarev, Grishkovsky and Khromova 1985) with decreasing collagen 

yields in archaeological bone (Figure 5.40). Cleavage of collagen cross-linking (as seen from a 

decrease of the 1660 cm-1 and 1695 cm-1 components (Figure 5.40; Paschalis et al. 2001) has led 

to a loss of the three-dimensional structure and breaking of the polypeptides into smaller peptides 

during hydrolysis (Collins et al. 1995, 2002; Shoulders and Raines 2009; Adzhubei, Sternberg 

and Makarov 2013).  
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5.4. DNA PRESERVATION 

5.4.1. PETROUS VERSUS OTHER BONES 

Preservation of endogenous DNA in petrous bones (n=82) ranges from 0.00 to 71.12 % with an 

average of 24.14±21.5, whereas in other skeletal elements (n=8) it varies from 0.06 to 4.10 % 

with an average of 0.70±1.39 (Figure 5.41; Table A3-Appendix A). An overall better 

performance of the petrous than other skeletal hard tissues was first reported by Gamba et al. 

(2014), while similar observations have been made by Hansen et al. (2017), this time compared 

to tooth cementum. The higher survival rates of endogenous DNA within the petrous bone have 

been attributed to its higher density protecting DNA from decay (Gamba et al. 2014; Pinhasi et 

al. 2015). However, only one study, which had explored intra-individual bone mineral density in 

equid, bovid and cervid species using computed tomography, has reported that the petrous bone 

is c. 10 % denser than the middle shaft portions of long bones (Lam, Chen and Pearson 1999). 

 

Figure 5.41. The high endogenous DNA yields in petrous compared to other skeletal elements.  

No study has ever investigated the biomechanical properties of the petrous pyramid (e.g. Frisch 

et al. 1998) using sophisticated technology such as micro- or nanoindentation (e.g. Dall’Ara et al. 

2015; Rho et al. 2001) and linked this to DNA preservation. Nanoindentation testing estimates 

the elastic (Young’s) modulus and hardness (Vicker’s) of bone with a resolution of c. 1 μm (Rho 

et al. 1999). The elastic modulus measures the stiffness of bone, hence how bone as a composite 

material withstands changes during stress and strain, i.e. how much it stretches and deforms 

(Zysset et al. 1999). Stiffer materials (e.g. steel, copper) have a high elastic modulus (low strain), 

whereas ductile materials (e.g. rubber, plastic) have a low elastic modulus (high strain). Hardness 
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(HV), on the other hand, shows the resistance of bone (i.e. depth of the indentation) to permanent 

compression deformation (Zysset et al. 1999). 

The biomechanical properties of bone vary considerably between species (Table 6) with the very 

brittle Mesoplodon rostrum representing the most extreme biological example of highly 

mineralized (i.e. c. 96 %) bone (Zioupos et al. 1997). In modern human femora the elastic modulus 

ranges between c. 21 and c. 26 GPa in interstitial lamellae, and between c. 17 and c. 23 GPa in 

osteonal lamellae, while the inner osteonic lamellae also demonstrate increased modulus 

compared to the outermost osteonal lamellae (Rho et al. 1999, 2002). Hardness ranges from c. 40 

to c. 80 HV in cortical bone and demonstrates a similar distribution to modulus (Rho et al. 1999; 

Zysset et al. 1999). Therefore, hardness and elastic modulus may vary in different anatomical 

sites of the same skeletal element (e.g. the neck of the femur displays average elastic moduli of 

c. 17 GPa in interstitial and c. 16 GPa in osteonal lamellae (Zysset et al. 1999)). 

Table 6. Average stiffness, hardness and mineral content in different dry bone tissues (adapted from  

Rogers and Zioupos 1999). 

 Elastic modulus (GPa) Hardness (HV) Mineral content (%) 

Human femur 16-18 40-60 c. 55 

Bovine femur 18-22 50-70 c. 65 

Whale tympanic bulla 32-26 150-170 c. 83 

Mesoplodon rostrum 40-42 200-220 c. 96 

Regarding archaeological petrous bone, a total of 88 indentations on 3 samples provided some 

interesting data on its biomechanical properties. Its elastic modulus ranges between 12.62 and 

27.31 GPa (20.12±3.14 GPa) and its hardness from 27.90 to 104.71 HV (61.59±15.15 HV) 

(Table A4-Appendix A). Within-petrous variability is also observed, with the outer periosteal 

tissue displaying statistically significant differences compared to the inner periosteal and 

endosteal tissues (Figure 5.42), both for the elastic modulus [F(2,85)=114.826, p=0.000] and 

hardness [F(2,85)=2556.434, p=0.000]. The inner periosteal and endosteal tissues, however, 

exhibit similar biomechanical properties (p=0.644). 

The elastic modulus in the outer periosteal tissue (i.e. areas close to exterior surface) averages 

17.41±2.52 GPa (12.62 to 21.47 GPa), whereas in the inner periosteal tissue (i.e. mesosteal tissue, 

including tissue between canals) the average elastic modulus is 20.97±3.16 GPa (13.55 to 25.25 

GPa), and in the endosteal areas (i.e. tissue surrounding the canals) is 21.15±2.52 (16.59 to 27.31 

GPa) (Table A4-Appendix A). Practically, a difference of 3-4 GPa in elastic modulus, when all 

other characteristics are the same, would result from a difference of about 10-20 % in 

mineralisation (Peter Zioupos, personal communication). Hardness in the outer periosteal tissue 

has an average of 48.95±10.28 HV (27.90 to 72.19 HV), the inner periosteal tissue hardness is 

64.20±13.38 HV (39.18 to 91.97 HV), and in the endosteal areas average hardness is 67.22±14.53 



 
 

152 
 

(44.44 to 104.71 HV) (Table A4-Appendix A). Similar values can be seen in the elastic modulus 

of archaeological long bones, which varies from 3.86 to 62.86 GPa (17.91±9.56 GPa), while the 

hardness is between 5.25 and 186.72 HV (46.46±34.14 HV) (Table A4-Appendix A). 

 

Figure 5.42. The differences in the biomechanical properties between the three petrous bone tissue areas.  

Pinhasi et al. (2015) had described those two areas of the petrous as 1) a dense whitish bone that 

mostly surrounds the inner ear and areas between the semi-circular canals, the outer ear, and the 

mastoid process (i.e. part b); and 2) a dense yellowish bone that is found in the cochlea, vestibule 

and semi-circular canals (i.e. part c). Therefore, part b constitutes the inner periosteal tissue and 

part c the endosteal tissue, characterized by similar biomechanical characteristics that differ from 

the more osteonal, as seen in histological sections, outer periosteal zone (section 5.1.1). 

Differences between those tissues, however, may be attributed to the osteocyte lacunar density 

that may vary in different regions of the petrous bone, affecting their biomechanical properties. 

Osteocytes are increasingly considered as key regulators (osteocytic osteolysis, mineral 

homeostasis) of bone remodelling of the perilacunar tissue, but their exact role is still in debate 

(Goldring 2015; Guo and Bonewald 2009; Komori 2013). Besides this, as the three petrous bones 

examined in this study date to c. 1850 AD, this does not allow any further interpretations, as the 

effects of diagenesis on hardness and elastic modulus are unknown. 

https://paperpile.com/c/EyiG9J/HMAH/?noauthor=1
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Interestingly, while it is apparent that in some specimens the biomechanical properties of 

archaeological bone have been significantly modified (e.g. PRO8 to the high end, Manika and 

Kastrouli to the low end), hardness and elastic modulus retain their strong in vivo relationship 

(R2=0.78; Figure 5.43). A similar claim has been made by Olesiak et al. (2010) in the only study 

on the nano-mechanical properties of fossil bone, which showed that fossilized tissue maintains 

the main anisotropic characteristics of modern bone despite the significant modifications in BAp 

crystals and the loss of collagen. 

 

Figure 5.43. The logarithmic relationship between Vicker’s hardness and Young’s modulus (labels 

indicate crystallinity values). Stiffer and harder bones exhibit lower crystallinity values (green circle), 

whereas brittle and softer bones generally display higher crystallinity (red circle).  

The nano-mechanical properties of bone tissue are partly determined by the changes in bioapatite 

crystals and the loss of collagen post-mortem as illustrated in Figure 5.43 and Figure 5.44. 

Although the relationship of IRSF and collagen with either hardness (R2=0.16 and R2=0.10, 

respectively) or elastic modulus (R2=0.23 and R2=0.10, respectively) is weak (only mesosteal 

tissues compared), the two groups identified show statistically significant differences (hardness: 

U=0.000, p=0.000; elastic modulus: U=0.000, p=0.000; IRSF: U=10.500, p=0.05; collagen wt. 

%: U=0.000, p=0.002; n.b. the Sarakenos mandible has been excluded from the red group’s 

statistics as an outlier). The green circle group is characterized by an average IRSF of 3.63±0.34, 

whereas the red group is 4.17±0.74. Similarly, collagen content (wt. %) has an average of 

10.73±7.33 in the former, and 0.61±0.64 in the latter. The average hardness (61.69±10.31 HV) 

and elastic modulus (19.94±1.56 GPa) of the green group, which includes the 3 petrous bones, 

are comparable to modern human and bovine femora (Table 6), whereas these of the red group 

(15.21±5.28 HV and 10.21±3.06 GPa, respectively) are very similar to previously reported 
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trabecular bone mechanical properties (e.g. Zysset et al. 1999) and close to the elastic modulus 

values of dentin and tooth cementum (Ho et al. 2009; Zhang et al. 2014). 

The example of the two bovine femora from Promachon (Figure 5.43 and Figure 5.44) 

effectively demonstrates the complexity of the organic-inorganic-bone biomechanics 

interaction/relationship, as the different crystallinity values (3.29 versus 4.00) which are 

accompanied by a loss of collagen (collagen wt. % =12.02 and 1.46, respectively) have an effect 

only on hardness, but not on the elastic modulus which remains comparable to modern bovine 

bone (Table 6). This indicates that it is not purely the bioapatite crystal size and order, or the 

amount of collagen that defines the biomechanical characteristics of the different skeletal hard 

tissues, but their packing, orientation, and other nano-structural characteristics. However, there 

seems to be a point whereby when a certain amount of collagen is lost, archaeological bone 

becomes soft and brittle. Therefore, there is a strong, but complex inter-dependence of hardness 

and stiffness of archaeological bone on bioapatite recrystallization/dissolution and collagen 

hydrolysis. 

 

Figure 5.44. The logarithmic relationship between hardness and Young’s modulus (labels indicate collagen yields). 

Stiffer and harder bones contain higher amounts of collagen (red circle), whereas brittle and softer bones generally 

display low collagen yields (green circle). 

To sum up, the biomechanical properties of archaeological bone are evidently dependent on the 

skeletal element and anatomical site of bone, the collagen fibre orientation and content, the 

bioapatite crystal characteristics, and the collagen-BAp packing characteristics. Bone is not a 

uniform material and any measurements in archaeological bone should evaluate the initial 

heterogeneity of the tissues (e.g. Rho et al. 2002; Rogers and Zioupos 1999; Zioupos, Currey and 

Casinos 2000; e.g. Zysset et al. 1999) that can be maintained post-mortem, plus the complex 
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effects of the diagenetic changes on its biomechanical properties which add up to this 

heterogeneity. 

 

Figure 5.45. Endogenous DNA preservation in poorly preserved petrous and long bones fro m prehistoric 

open-air sites in Greece.  

The variability observed in archaeological petrous bone is not generally different from that 

observed in long bones. If aDNA preservation in petrous bone is better predominantly due to its 

different biomechanical characteristics, how can the equal or even better sometimes preservation 

of aDNA in tooth cementum with > 10% endogenous content compared to petrous bones from 

the same individual be explained (Hansen et al. 2017)? An additional example that supports the 

complexity of bone diagenesis is the lack of intra-site variability in endogenous DNA content 

between petrous and long bones from two Prehistoric sites in Greece (Figure 5.45). Thus, this 

observation supports Hansen et al.’s (2017) claim that when the endogenous DNA preservation 

in the petrous bones is below 10 %, they do not outperform other skeletal elements (e.g. tooth 

cementum), which is the same story as in Tharrounia and Manika (Figure 5.45). 
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Therefore, it is concluded that since hardness and elastic modulus can vary from site to site even 

within the same tissue area (every indentation can yield different measurements depending also 

on degradation characteristics, e.g. micro-cracking, microbial activity, etc.), it is necessary to 

target specific areas of the petrous to identify the microniches that may possibly retain DNA in 

high quantities due to a combination of different factors (e.g. tissue type and characteristics, 

biomechanical properties, diagenetic alterations). Additionally, the unique histomorphological 

characteristics of this bone make the detailed exploration of the biomechanical properties (in both 

longitudinal and transverse directions to assess its anisotropy) mandatory. 

5.4.2. SCREENING METHODS 

Despite the falling costs in palaeogenetic studies, the technical difficulties associated with the 

recovery and analysis of aDNA from bone, the partial destruction of valuable or rare specimens, 

and the still high sequencing costs make any reliable screening method a valuable tool for aDNA 

labs. Previous studies have explored with varying degrees of success the association of 

endogenous DNA yields with several parameters including gross morphology and bone size (e.g. 

Haynes et al. 2002), histology (e.g. Guarino et al. 2000; Haynes et al. 2002; Hollund et al. 2016), 

or amino acid racemization (e.g. Collins et al. 2009; Poinar et al. 1996).  As the survival of DNA 

in archaeological bone has been linked to mineral preservation (Lindahl 1993; Götherström et al. 

2002; Allentoft et al. 2012; Parsons and Weedn 2006), BAp characteristics may be potentially 

connected to loss of DNA. 

This dataset demonstrates that IRSF and C/P FTIR indices can be considered reliable predictors 

of DNA preservation despite the weak correlation (R2=0.24) with crystallinity (IRSF; Figure 

5.46a) and the very weak relationship (R2=0.13) with carbonate content (C/P; Figure 5.47a) that 

demonstrate the complex interactions during diagenesis (e.g. local hydrology, pH, temperature). 

The categorization of samples into three groups based on their endogenous DNA yields (i.e. > 

10%, 1-10 %, and < 1 %) allows some very interesting observations to be made. In the case of 

well-preserved specimens with endogenous DNA > 10 %, 90 % of the samples display IRSF 

values < 3.7, while only 6 % (n=3) have 3.7 ≤ IRSF ≤ 4, and 4 % exhibit IRSF > 4 (Figure 5.46b). 

When endogenous DNA yields drop between 1-10 %, 71 % of bones have an IRSF < 3.7, whereas 

22 % have 3.7 ≤ IRSF ≤ 4, and only 7 % have IRSF > 4 (Figure 5.46b). Bones that yield 

endogenous DNA below 1 % predominantly display IRSF values over 3.7 (65 %), with a small 

number (i.e. 35 %) is characterized by crystallinity below the 3.7 threshold (Figure 5.46b). 

Overall, 70 % of all samples with IRSF < 3.7 contain endogenous DNA > 10 %, and a total of 86 

% contain endogenous DNA over 1 %. Thus, IRSF can successfully distinguish bones likely to 

be suitable for aDNA analysis from those with poor DNA preservation. 
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Figure 5.46. Endogenous DNA-crystallinity relationship . (a) Correlation of crystallinity with 

endogenous DNA yields. Line at 3.7 IRSF represents the proposed threshold. (b) Distribution of samples 

with well- (>10%), moderately- (1-10%), and poorly-preserved (<1%) endogenous DNA in categories 

based on crystallinity.  

In tandem, carbonate content can be used as endogenous DNA indicator, as 66 % of the samples 

with C/P ratios > 0.20 contain endogenous DNA > 10 %, while 16 % display DNA yields between 

1 and 10 %, and 18 % yield endogenous DNA below 1 % (Figure 5.47b). When C/P decreases 

to the 0.15-0.20 levels, still 67 % of bones yield more than 10 % endogenous DNA, with 6 % of 

bones yielding between 1-10 % endogenous DNA, and 27 % of samples have endogenous DNA 

yields below 1 % (Figure 5.47b). In levels below 0.15 C/P ratio, samples with endogenous DNA 

yields < 1 % prevail (i.e. 69 %), and only 6 % of samples show high amounts of aDNA (Figure 

5.47b). Thus, in bones with C/P > 0.15, 66 % of bones contains over 10 % endogenous DNA, 14 
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% of samples have endogenous DNA yields between 1 and 10 %, and 20 % of samples exhibit 

below 1 % endogenous DNA. 

 

Figure 5.47. Endogenous DNA-carbonate content relationship . (a) Correlation of the relative carbonate 

content with endogenous DNA yields. Line represents the proposed C/P=0.15 cut-off point. (b) 

Distribution of samples with well- (>10%), moderately- (1-10%), and poorly-preserved (<1%) 

endogenous DNA in categories based on carbonate content.  

Consequently, the combined use of IRSF and C/P as endogenous DNA predictors has a success 

rate of 92 % in bones containing endogenous DNA >10 %, 71 % successful identification of 

samples in which endogenous DNA ranges between 1 and 10 %, accompanied by an elimination 

of the 69 % of the poorly-preserved specimens with endogenous DNA yields below 1 %. 

Therefore, FTIR-ATR can be a very effective, minimally destructive, and rapid tool for DNA 

screening of archaeological bone with very high success rates. 
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Figure 5.48. Endogenous DNA-collagen content relationship. (a) Endogenous DNA preservation 

indicates that collagen wt. % is not a reliable indicator for successful aDNA recovery. The vertical line 

represents a possible cut-off point. (b) Distribution of samples with well- (>10%), moderately- (1-10%), 

and poorly-preserved (<1%) endogenous DNA in categories based on collagen yield.  

With reference to the collagen-DNA relationship and its potential use as DNA predictor, Figure 

5.48 demonstrates a weak correlation (R2=0.30) between collagen wt. % and endogenous DNA 

yields, as samples that exhibit good collagen preservation may not yield endogenous DNA, and 

vice versa. A lack of correlation has also been reported in previous studies (e.g. Gravlund et al. 

2012), however, there seems to be a cut-off point (here it seems to be the 5 % collagen wt.) and 

https://paperpile.com/c/EyiG9J/ENbX/?prefix=e.g.
https://paperpile.com/c/EyiG9J/ENbX/?prefix=e.g.
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when collagen drops below that point the chances for aDNA survival seems to diminish (Figure 

5.48).  

A handful of studies have previously reported a decisive role for collagen in DNA degradation 

(e.g. Campos et al. 2012; Götherström et al. 2002; Poinar and Stankiewicz 1999; Sosa et al. 2013). 

DNA molecules have the ability to bound to the collagen fibrils and create a DNA-collagen 

complex (Kitamura et al. 1997) that can have different structure and mechanical properties 

depending on the type of DNA adsorbed (Kaya et al. 2005). Thus, the variable correlation between 

collagen and DNA observed in archaeological bone (i.e. different decay rates) might be produced 

by a preferential loss or breaking of some collagen–DNA complexes and an intricate combination 

of other mechanisms (e.g. pH, temperature, groundwater). Indeed, even if DNA decay accelerates 

with increasing collagen hydrolysis, practically, screening archaeological bone using collagen 

analysis would require significant amounts of sample which would be an issue for rare or valuable 

specimens, while it would also be time-consuming and labour-intensive. Therefore, collagen 

analysis seems not to be the most effective method to predict endogenous DNA content. 

GHI may potentially be a reliable predictor of DNA preservation, as it shows a moderate overall 

correlation with endogenous DNA yields (Spearman’s rs (15) = 0.47, p = 0.076) in the petrous 

specimens. Bone histology can offer some important qualitative information on DNA 

preservation, although the risk of contamination and the destructive nature of the method make it 

a less attractive option. Specifically, the histological assessment of the Danish petrous bones 

suggests that three of the samples (DEN4, DEN5, DEN9) which exhibit <10 % endogenous DNA 

also display poor histological preservation, with large areas suffering from generalized 

destruction. The DNA molecule is particularly prone to the interaction with water, which is also 

related to generalized destruction and ionic exchange in BAp crystals. Hydrolysis leads to 

breakage of the polynucleotide strands followed by chain breakage into shorter fragments (Bada, 

Wang and Hamilton 1999; Hofreiter et al. 2001; Lindahl 1993; Pääbo 1989) and any variations 

in long-term DNA fragmentation are assumed to be caused by differences in temperature, pH and 

local hydrology (Allentoft et al. 2012; Burger et al. 1999; Lindahl 1993; Lindahl and Nyberg 

1972). 

Hydrolysis can cause deamination (i.e. loss of the amino -NH2 group) and/or depurination (i.e. 

release the purines) with purines being more susceptible to hydrolysis than pyrimidines (Lindahl 

1993; Lindahl and Nyberg 1972; Pääbo 1989). Deamination of cytosine to uracil (C→T 

miscoding lesion) is the most common pathway and generates a C→T sequence error as the 

deaminated cytosine (now uracil) binds to adenine (Lindahl 1993; Pääbo et al. 2004). Here, the 

increased C→T damage rates (Hansen et al. 2017) confirms such a scenario (0.27±0.04 average 

C→T mismatch for Denmark and 0.39±0.09 for Central Asia). However, correlation of C→T 

mismatch with the diagenetic parameters was weak (% DNA-C→T= 0.22; % Collagen-C→T= 
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0.14; IRSF-C→T= 0.18; C/P-C→T= 0.03; % N-C→T= 0.14; 0.02; % C-C→T= 0.00). While the 

methyl (-CH3) group attached to cytosine can make it more susceptible to deamination (Brown 

and Brown 2011; Hansen et al. 2001), increased methylation levels were not observed in our 

samples (see Hansen et al. 2017 for more information). 
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CHAPTER 6: CONCLUSION 

This final chapter summarizes the key findings of this research project with a focus on petrous 

bone (objectives 1 and 2), the diagenetic variability (objective 3), and the screening practices for 

collagen and DNA (objective 4). Any challenges faced as well as the limitations of this study are 

highlighted, and potential routes for future research are proposed (objective 5). 

6.1. SUMMARY, SYNTHESIS AND SIGNIFICANCE  

The idea for this research was triggered by the recent palaeogenetic study published in Nature 

Communications by Gamba et al. (2014), who named the petrous bone as the richest aDNA 

repository of the human skeleton. As a result, the aim of this study was two-fold: to a) understand 

the factors underpinning the survival of petrous bone and its possible resistance to diagenesis 

compared to other bones, and b) to provide new data for the successful screening of archaeological 

bone prior to collagen and DNA analyses. 

This research study therefore aimed to uncover the secrets of petrous bone structure which are 

responsible for the often unusually high aDNA survival rates in its tissues (objective 1). The 

histological analysis revealed some extraordinary characteristics of the adult human petrous bone. 

Its microstructure consists of highly osteocytic woven and lamellar-like tissues (section 5.1.1) 

which is a stunning micromorphological characteristic that has never been observed to my 

knowledge in any other normal adult human bone. The occurrence of osteons in at least two 

directions (i.e. transverse and longitudinal) is another astonishing discovery, while the presence 

of woven tissue in large areas of the petrous bone (that implies a lack of bone remodelling in a 

considerable part of its structure) is unparalleled. Regarding the latter, there is no other logical 

explanation for woven bone as it forms rapidly in utero and should have been gradually replaced 

in petrous bone by lamellar tissue as it has been continually shown in other normal bones (Currey 

2002; White, Black and Folkens 2012).  

The 3D reconstruction of the synchrotron micro-CT images allowed an accurate measurement of 

the osteocyte lacunae, as it does not artificially increase the number of lacunae like 2D methods 

(Bromage et al. 2016; Dong et al. 2014). Thus, the staggering number of c. 50.000 osteocyte 

lacunae/mm3 detected in the 3D images of petrous bones (section 5.1.1) is probably linked to its 

largely woven appearance (Buckwalter et al. 1995; Hernandez, Majeska and Schaffler 2004) and 

its rapid formation in utero, as a higher number of osteocytes would be required to complete the 

ossification so quickly (e.g. Bromage et al. 2016; Skedros, Grunander and Hamrick 2005). The 

very high osteocyte lacunar density (which is about 3x that of human femur, e.g. Dong et al. 2014) 

or pelvis (i.e. iliac crest, Bach-Gansmo et al. 2016b), in combination with the presence of woven 

tissue (hence lack of remodelling) also indicates that the osteocytes may not play a pivotal role in 
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bone remodelling, or that their involvement is limited to the perilacunar tissue and 

mechanosensing (Cullinane 2002; Goggin et al. 2016; Skedros, Grunander and Hamrick 2005; 

Teti and Zallone 2009). The bimodal lacunar volume (i.e. c. 230 µm3 and over 500 µm3) in petrous 

bones, although unique in normal bone, it seems to be related with the co-existence of woven and 

lamellar-like tissue (Buckwalter et al. 1995). 

The hardness and elastic modulus of well-preserved archaeological petrous bone did not differ 

radically from those reported for modern human and cattle femora, therefore not justifying a 

connection between DNA preservation and petrous bone density. Similar variations have been 

observed in long bones, while the increased elastic modulus and hardness of the inner periosteal 

and endosteal tissues compared to the outer periosteal tissue could be diagenesis-related. 

However, in the case that the measurements predominantly reflect the original biomechanical 

properties of those petrous tissues, this could be indeed linked to the differences in endogenous 

DNA yields from the different parts of the petrous pyramid reported by Pinhasi et al. (2015). The 

random collagen fibre orientation and irregular mineralization in woven bone compared to 

lamellar tissue could result to some variability, with some more flexible and soft areas than others 

(e.g. Buckwalter et al. 1995); hence specific areas may favour DNA preservation.  

When it comes to diagenesis (objectives 2 and 3), no microscopic focal destruction was observed 

in petrous bones. Only one specimen displayed some modifications similar to Wedl-type tunnels, 

and two others few merged osteocyte lacunae that could possibly represent some limited 

bacterially-induced modifications during early diagenetic stages (section 5.1.1). However, 

destruction foci were also not found in the vast majority of long bones. Therefore, this stresses 

that the lack of microbial tunneling in petrous bones does not necessarily indicate good DNA 

preservation. Further, when petrous bone histological preservation was compared to other skeletal 

elements intra-individually, no distinct variations could be observed (section 5.1.3), something 

that was also observed for bioapatite and collagen preservation (sections 5.2.3 and 5.3.3).  

Water flowing through petrous bones had clearly the most significant effect on petrous bone long-

term preservation potential, with the most vulnerable areas histologically being those surrounding 

the cochlea and the various canals, as well as the outer periosteal tissue because of the direct 

contact with groundwater (section 5.1.1). Manifestations of this interaction include the 

microcracks and loss of microstructural characteristics in areas of varying sizes in more than half 

of the petrous bones, while these alterations were identified in almost all other bones.  

Except for the effects on bone histology, groundwater also leached out and/or recrystallized 

bioapatite, whereas collagen preservation was also heavily dependent on temperature; for 

example, the bones from the Mediterranean had generally low collagen yields (e.g. Kendall et al. 

2018 Fig. 7; Van Doorn et al. 2012). The changes in bone mineralogy considerably varied inter-

site due to the critical role of pH and the preservation mechanisms (sediment diagenesis) in the 
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burial environment (e.g. Berna, Matthews and Weiner 2004; Karkanas 2010). Soil geochemistry 

also contributed to inter-site variations in collagen preservation, as protein hydrolysis activation 

energies are also pH-dependent (e.g. Ajie, Hauschka and Kaplan 1991; Collins and Galley 1998). 

Bioapatite dissolution/recrystallization was associated with a significant loss of DNA (section 

5.4.2), although there were cases where DNA molecules were trapped in bones with high 

crystallinity and survived over archaeological timescales, possibly by adsorbing onto the surfaces 

of the crystals. Temperature, pH, and local hydrology control the DNA-mineral bonding (e.g. 

Grunenwald et al. 2014) and the different conditions in the burial environments were responsible 

for the inter-site variations seen in the relationships between endogenous DNA content and 

crystallinity. However, as evidenced in cases of extreme crystallinity increase, DNA has no 

chance of survival when the structure and composition of BAp crystals were constantly altered 

for prolonged periods of time until an equilibrium with the burial environment was reached 

(section 5.4.2). Contrariwise, BAp-collagen relationship rarely followed the expected pattern that 

would be argued from the strong in vivo link between the organic and inorganic components of 

bone. Consequently, the weak relationship between crystallinity and collagen content indicated 

that bioapatite recrystallization is possible even in the presence of fair amounts of collagen in 

bone (e.g. Reiche et al. 2003). 

The distinction between single burials in coffins and single burials with wrapped bodies was well-

attested by the characteristic histological modifications identified in bones from the 

medieval/post-medieval cemetery at St. Rombout, Belgium (section 5.1.2). Similarly, collagen 

preservation, but not bioapatite, was strongly related to burial types (sections 5.3.2 and 5.2.2, 

respectively). This is the first study that has reported such a clear association between specific 

funerary practices and bone preservation. Not only did different types of burials leave their marks 

on bone, but also that they influence the microenvironment in such a way to even affect collagen 

degradation. This research thus demonstrated how the histological information can be realistically 

used in the efforts to puzzle out the relationship between funerary practices and bone diagenesis.  

Lastly, neither intra-individual patterns related to the proximity of the skeletal element to the 

abdominal area (internal gut bacteria) nor significant differences in the preservation state of 

proximal and distal diaphyses of long bones were observed in any of the diagenetic parameters 

applied in this study (sections 5.1.3, 5.2.3, 5.3.3). While generalizing from these examples alone 

would be unwise, it seems that the argument which favours the soil origin of microbial attack in 

bone is more defensible (e.g. Fernandez-Jalvo et al. 2010; Hedges 2002; Nielsen-Marsh and 

Hedges 2000a; Turner-Walker 2008). If the MFD were caused purely or predominantly by the 

internal gut bacteria, tunneling should be always apparent in almost all bones. Additionally, 

collagen content should show some pattern related to the proximity to the abdominal area due to 
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collagen enzymolysis by the omnipresent endogenous bacteria, and this clearly has never been 

reported. 

With regard to screening methods (objective 4), the most significant achievement of this study 

was the establishment of thresholds for IRSF (< 3.7) and C/P (> 0.15) indices when using FTIR-

ATR to discriminate bones containing fair amounts of endogenous DNA (>1 %) from those 

containing no or very small amounts (< 1 %) of aDNA (section 5.4.2). The success rate of the 

combined use of IRSF and C/P cut-off points is very high, i.e. c. 85 % for the identification of 

‘good’ samples, accompanied by a c. 70 % successful elimination of ‘bad’ samples. FTIR-ATR 

is cost-efficient, rapid and minimally destructive, while the bone powder can be extracted for 

biomolecules after analysis with no loss of material. Although the technological advancements in 

next-generation sequencing, in combination with the falling costs, have made large-scale studies 

of aDNA more realistic, the extraction of DNA is a very labour-intensive process, the analysis is 

still costly and destructive, and the targets are usually rare or valuable specimens. Therefore, the 

systematic screening of archaeological bone for endogenous DNA preservation using this rapid, 

non-destructive and very effective screening method can significantly minimize damage to rare 

or valuable target samples, as well as save labour-time and money.  

To achieve this, however, issues related to the technical limitations of FTIR-ATR had to be 

overcome. The particle size variability and the inconsistent application of baseline correction 

during analysis were leading to systematic but variable changes in FTIR-ATR data, while the 

mixture of periosteal, mesosteal and endosteal bone was blending biogenic and exogenous signals 

(section 4.2.3). The development of the Kontopoulos et al. (2018) preparation strategy for the 

FTIR-ATR analysis of bone powder managed to eliminate these effects introduced by erroneous 

sampling, sample preparation, and analysis of the mid-IR spectra. This attainment was 

fundamental in this endeavour to improve accuracy, consistency, reliability, reproducibility and 

comparability of the FTIR-ATR data for the systematic evaluation of bone.  

Rapid assessment of bone for collagen preservation can be achieved through nitrogen and carbon 

analysis of whole bone. The % N and % C content of whole bone were found reliable indicators 

of collagen content, as demonstrated by the strong linear relationships with collagen wt. % 

(section 5.3.5). The observation for nitrogen was in agreement with previous studies (e.g. Brock 

et al. 2012; Lebon et al. 2016) which claim that % N of whole bone can be a relatively good 

indicator of collagen preservation, whereas this research found that the % C of whole bone can 

be as equally strong as % N of whole bone predictor of collagen content.  

Finally, the 2nd derivative analysis of the ν2 (c. 850-900 cm-1) and ν3 (c. 1400-1500 cm-1) carbonate 

bands, and of the amide I band (c. 1600-1700 cm-1) of bone mid-IR spectra provided useful 

information on the carbonate environment and the organic components lost (e.g. polyproline II, 

cross-links) during collagen degradation (sections 5.2.4 and 5.3.5). This data treatment has 
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considerable potential for the assessment of the organic and inorganic components prior to 

isotopic investigations. 

6.2. CHALLENGES, LIMITATIONS AND FUTURE RESEARCH 

Multi-analytical approaches can provide deeper information on particular diagenetic mechanisms. 

However, the most important challenge for this study was its multi-analytical nature, as each 

petrous bone had to be analysed by several methods while trying to be as minimally destructive 

as possible. The preparation of thin sections from poorly-preserved, unembedded petrous bones 

for histological examination was often difficult, as samples frequently fell apart or were washed 

away by water during sectioning due to their morphological characteristics (i.e. many canals and 

fossae) and preservation state. Additionally, even when thin sections were complete and cut 

exactly at the same anatomical sites, due to slight variations in the inner ear morphology between 

individuals (e.g. Osipov et al. 2013; Ponce de León et al. 2018), the sections were not always 

identical, limiting the direct comparison of exactly the same layers of bone. Future research 

should, therefore, further explore the important histomorphological findings of this study by 

examining a series of transverse and longitudinal (and perhaps oblique) thin and thick sections to 

record changes across the entire petrous bone. 

With regard to petrous bone density, since the assessment of its biomechanical properties in this 

study did not include any modern specimens, the necessary information which would allow its 

direct comparison with long bones was unavailable. Sourcing modern human petrous bones for 

archaeological research was deemed impossible, as a destruction of the skull of the deceased 

would be required in order to conduct further destructive analysis on the petrous bone, with 

implications for ethical approval. Therefore, while this dataset approach had some limitations, 

gaining approvals to conduct research on modern petrous bone mechanical properties was not 

possible within the scope of this study. As a result, future nano-indentation investigations on 

petrous bone should either be carried out on recent archaeological specimens with bioapatite 

characteristics and collagen preservation similar to modern bone, or through collaborations with 

biomedical and forensic centres, which would share any relevant data that could be used to answer 

archaeological questions. Furthermore, scanning electron microscopy (SEM) with energy 

dispersive X-ray analysis (EDX) would allow the comparison of the biomechanical properties of 

each area in petrous bone with the P and Ca concentrations (e.g. Henmi et al. 2016 Fig.3).  

The development and operation of the FTIR-ATR protocol allowed the successful analysis of 

BAp crystallinity and carbonate environment, and the effective screening of archaeological bone 

for DNA preservation. Nonetheless, the potential of the amide components for the quantification 

of bone collagen content was limited by the relative phosphate concentrations, which led to poor 

agreement of collagen estimates with collagen yields. What is thus required is the decoupling of 
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the amide peak from the phosphate peak. Therefore, the conception of a new ratio that does not 

include the phosphate peak should be one of the main aims of future studies using FTIR for the 

examination of archaeological bone collagen. To further improve the reliability and accuracy of 

the amide I band for the quantitative assessment of bone collagen, the contribution of water-

related overtones (O-H stretching vibrations at 1640-1660 cm-1; Trueman, Privat and Field 2008; 

Chadefaux et al. 2009; Lebon et al. 2016) need to be quantified through experimental projects and 

removed during analysis. 

A significant limitation on the effort to confidently link the effects of burial practices (e.g. coffin, 

wrapping) to bone histology (and therefore better understand their role in bone diagenesis) was 

the lack of relevant detailed information from experimental taphonomic projects. Similarities in 

diagenetic alterations in specimens deriving from skeletons that have experienced different 

funerary treatments (or the variability in those that had experienced similar funerary treatments) 

can easily lead to misinterpretation of the data. No experimental project has heretofore thoroughly 

and systematically investigated the effects of burial practices on bone preservation and the burial 

micro-environment. Consequently, future experimental analyses may help understand the 

sequence of these alterations and shed light on past burial practices. 

6.3. CONCLUDING REMARKS 

Bone diagenesis is incredibly complex, and many of its processes are still uncertain. Although 

each bone has a story to tell, the narrative can be unclear, as it is often difficult to understand how 

the different parts of each episode relate to each other, in what order they occurred, and how they 

progressed. Consequently, it is difficult to arrive at any safe conclusions regarding the 

characteristics responsible for the often exceptional preservation of endogenous DNA in petrous 

bone. Consideration of the previously-mentioned data and hypotheses can lead to some 

conclusions, but also leaves some open questions about the specific role of its sui generis 

structural characteristics.  

First, the rapid development of petrous bone in utero, the presence of highly osteocytic woven 

tissue in large areas, and most importantly the possible lack of remodelling, unambiguously play 

a crucial role when high amounts of endogenous DNA are recovered from archaeological petrous 

bones. Their exact role is still unclear, but further studies may unravel these relationships.  

Another compelling question is whether it is the density that predominantly controls the fate of 

DNA. This is a very difficult question to address, as it appears possible for petrous bone to have 

small, sparse areas which can act as microniches that allow DNA survival due to increased 

hardness and elasticity. Although sceptical about the significance and extent of this characteristic, 

only the detailed mapping of modern petrous bone hardness and elastic modulus can provide 

irrefutable data on that matter. Combined with a recovery of aDNA from targeted areas through 
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microsampling of archaeological petrous bone, it will enable the connection between density and 

DNA survival. Ultimately, petrous bone is also one of the most protected bones of the mammalian 

skeletons. As such, it is protected from a strong interaction with groundwater when long bones 

are fully exposed, while its anatomical location may often moderate the changes in the micro-

environment that other bones experience. Therefore it is likely that it is the interplay between 

those three components that make this mystical part of the skeleton to look supernormal. The 

work described in this thesis is just the start: 

‘Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the 

beginning.’  

Sir Winston Churchill (10 November 1942) 
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APPENDIX A –  TABLES 

Table A1. List of samples. Skeletal elements, species, origin, archaeological periods and chronological age of each sample. When more than one samples  derive from one individual, 

the number next to the species denotes the individual they derive from in each site.  When the sex and/or the age of the individual is known, it is reported in parenthesis under the 

species column. The data on the sex of the human individuals from St. Rombout derives from the macroscopic analysis of their skeletal remains, whe reas the data on the sex of the 

animals derives from the aDNA analysis of their skeletal remains. The asterisk (*) indicates the petrous bones used for synch rotron micro-CT.  

L=left; R=right; P=proximal diaphysis; M=mid diaphysis; D=distal diaphysis; F=female; M=male; Y/O=years old. Grey shaded samples derive from the same skeletal element.  

Sample Skeletal element Species Country Site Period Date 

BED1 Petrous Aurochs 

Germany Bedburg-Königshoven Early Mesolithic 10000 BC 

BED2 Petrous Aurochs 

BED3 Petrous Aurochs 

BED4 Petrous Aurochs 

BED9 Petrous Aurochs 

MAR1 R. Petrous 

Human 1 

Greece Maroulas, Kythnos Mesolithic 8300-7600 BC 

MAR2 Rib 

MAR3 R. Clavicle 

MAR4 R. Humerus (D) 

MAR5 L. Humerus (D) 

MAR6 L. Ulna (D) 

MAR7 R. Fibula (P) 

MAR8 R. Fibula (D) 

MAR9 R. Petrous Human 

MAR10 L. Petrous Human 

MAR11 R. Tibia (M) Human 

MAR12 L. Tibia (M) Human  

MAR13 Tibia Human 

MAR14 Femur Human 

MAR15 Humerus Human 

MAR16 Petrous Human 

VEM139 Petrous Cattle 

Jordan Ain Ghazal Neolithic 7500-5500 BC 
VEM140 Petrous Goat 

VEM141 Petrous Sheep 

VEM143 Petrous Sheep 
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Sample Skeletal element Species Country Site Period Date 

VEM144 Petrous Sheep 
    

VEM145 Petrous Goat 

SAR1 Mandible (L. I2) Human 

Greece Sarakenos Cave, Boeotia 

Middle Neolithic 5750-5600 BC 

SAR2 Mandible (L. M2) Human 

Late Neolithic Ia 5000-4800 BC 

SAR3 Mandible (L. M1) Human 

SAR4 R. Femur (D) Human 

SAR5 R. Humerus (P) Human 

SAR6 R. Humerus (D) Human 

SAR7 R. Tibia (D) Human 

SAR8* R. Petrous Human 
Late Neolithic Ib 4800-4500 BC 

SAR9 Mandible (R. M3) Human 

SAR10 L. Femur (M) Human 

Late Neolithic II 4300-4000 BC 

SAR11 L. Ulna (M) Human 

SAR12 Metatarsal (fragment) Human 

SAR13 L. Femur (P) Human 

SAR14 L. Femur (D) Human 

SAR15 L. Tibia (D) Human 

SAR16 R. Femur (P) Human 

SAR17 R. Femur (D) Human 

SAR18 Mandible (mental spine) Human LN? N/A 

SAR19 R. Humerus (M) Human N/A N/A 

SAR24 R. Petrous Sheep (F) 
Early Neolithic 6400-6000 BC 

SAR28 L. Petrous Sheep (F) 

SAR35 R. Petrous Sheep (F) 
Middle Neolithic 5750-5600 BC 

SAR38* R. Petrous Cattle (M) 

SAR40 R. Petrous Sheep (M) Late Neolithic Ia 5300-5000 BC 

PRO1 L. Petrous Cattle (F) 

Greece Promachon, Serres Late Neolithic I 5400-5000 BC 
PRO2 R. Petrous Cattle 

PRO8 Metacarpal Cattle 

PRO9 Femur Sheep/goat 

THA1 L. Petrous Human 
Greece Tharrounia, Euboea Neolithic 5300-3300 BC 

THA2 L. Petrous Human 
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Sample Skeletal element Species Country Site Period Date 

THA3 R. Petrous Human     

THA4 L. Femur (P) Human     

THA5 L. Femur (D) Human 

    

THA6 L. Femur (P) Human 

THA7 L. Femur (D) Human 

THA8 Unknown element Human 

THA9 Tibia Human 

THA10 Femur Human 

THA11 Femur Human 

VEM202 Petrous Cattle (F) 

Britain Ness of Brodgar, Orkney Neolithic 3200-2200 BC 

VEM203 Petrous Cattle (F) 

VEM204 Petrous Cattle (F) 

VEM205 Petrous Cattle (F) 

VEM206 Petrous Cattle (F) 

VEM207 Petrous Sheep (M) 

VEM208 Petrous Sheep (M) 

VEM209 Petrous Sheep (F) Britain Bornais, South Uist Neolithic 3200-2200 BC 

VEM210 Petrous Sheep (F) Britain Silgenach, South Uist Neolithic 3200-2200 BC 

MAN1 R. Petrous Human 

Greece Manika, Euboea Early Bronze Age 2900-2300 BC 

MAN2 Rib (fragment) Human 

MAN3 Femur (M) Human 

MAN4 R. Petrous Human 

MAN5 L. Petrous Human 

MAN6 R. Petrous Human 

MAN7 L. Petrous Human 

MAN8 R. Humerus (P) Human 

MAN9 R. Humerus (D) Human 

MAN10 R. Ulna (P) Human 

MAN11 R. Ulna (M) Human 

MAN12 R. Clavicle (medial end) Human 

MAN13 L. Tibia (M) Human 

MAN14 R. Fibula (D) Human 
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Sample Skeletal element Species Country Site Period Date 

MAN15 L. Petrous Human 

    

MAN16 R. Humerus (D) Human 

MAN17 Tibia (M) Human 

MAN18 R. Humerus (D) Human 

MAN19 R. Femur (M) Human 

MAN20 R. Tibia (D) Human 

MAN21 L. Petrous Human 

MAN22 L. Petrous Human 

MAN23 R. Femur (P) Human 

MAN24 R. Femur (D) Human 

MAN25 R. Petrous Human 

MAN26 R. Radius (P) Human 

MAN27 L. Radius (P) Human 

MAN28 Long bone Human 

MAN29 Long bone Human 

MAN30 R. Radius Human 

MAN31 Long bone Human 

KAZ1 Petrous Human 

Central Asia N/A Bronze Age 2100-1800 BC 

KAZ2 Petrous Human 

KAZ3 Petrous Human 

KAZ4 Petrous Human 

KAZ5 Petrous Human 

KAZ6 Petrous Human 

VEM146 Petrous Cattle (F) 

Britain Cladh Hallan, South Uit Bronze Age 2200-800 BC 

VEM147 Petrous Sheep 

VEM148 Petrous Cattle (F) 

VEM149 Petrous Cattle (M) 

VEM178 Petrous Cattle (F) 

VEM179 Petrous Cattle (F) 

KAS1 R. Femur (P) Human 

Greece Kastrouli, Delphi Late Bronze Age 1200-800 BC KAS2 R. Femur (P) Human 

KAS3 R. Femur (P) Human 
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Sample Skeletal element Species Country Site Period Date 

KAS4 R. Femur (P) Human  

    

KAS5 R. Femur (P) Human  

KAS6 R. Femur (P) Human  

KAS7 R. Femur (P) Human  

KAS8 R. Femur (P) Human  

KAS9 R. Femur (P) Human  

KAS10 R. Femur (P) Human  

KAS11 R. Femur (P) Human  

KAS12 R. Femur (P) Human  

KAS13 R. Femur (P) Human  

KAS14 R. Femur (P) Human  

KAS15 R. Femur (P) Human  

KAS16 L. Petrous Human 

KAS17 R. Petrous Human 

KAS18 R. Carpometacarpus Chicken 

KAS19 R. Carpometacarpus (D) Chicken 

KAS22 Phalanx Cattle 

KAS23 L. Humerus (D) Pig 

KAS26 R. Calcaneus Cattle 

KAS28 Phalanx Sheep/goat 

KAS29 Long Bone Sheep/goat 

VEM193 Petrous Cattle (F) 

Britain Potterne, Wiltshire Late Bronze Age 1000-700 BC 

VEM194 Petrous Cattle (F) 

VEM195 Petrous Cattle (M) 

VEM196 Petrous Cattle (F) 

VEM197 Petrous Cattle (F) 

VEM198 Petrous Cattle (M) 

VEM201 Petrous Sheep (F) 

VEM180 Petrous Cattle (F) 

Britain Danebury, Hampshire Iron Age 500-100 BC VEM181 Petrous Cattle (F) 

VEM182 Petrous Cattle (F) 

VEM100 Petrous Cattle (F) Britain York Roman 100-200 AD 
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Sample Skeletal element Species Country Site Period Date 

VEM101 Petrous Cattle (M) 

Britain York 

Viking 700-1100 AD 

VEM102 Petrous Cattle (M) Viking 700-1100 AD 

VEM103 Petrous Cattle (M) Viking 700-1100 AD 

VEM108 Petrous Cattle (F) Viking 700-1100 AD 

VEM111 Petrous Cattle (F) Viking 700-1100 AD 

MEC1 L. Petrous 

Human 1 

(M, 26-50 y/o) 

Belgium St. Rombout, Mechelen Middle Ages 900-1800 AD 

MEC2 R. Femur (D) 

MEC3 R. Tibia (P) 

MEC4 R. Tibia (D) 

MEC5 R. Petrous 

Human 2 

(12-17 y/o) 

MEC6 L. Humerus (P) 

MEC7 L. Humerus (D) 

MEC8 L. Radius (P) 

MEC9 L. Radius (D) 

MEC10 R. Petrous 

Human 3 

(12-17 y/o) 

MEC11 L. Femur (D) 

MEC12 L. Femur (P) 

MEC13 L. Tibia (P) 

MEC14 L. Tibia (D) 

MEC15 L. Petrous 

Human 4 

(F, 26-50y/o) 

MEC16 L. Humerus (P) 

MEC17 L. Humerus (D) 

MEC18 L. Radius (P) 

MEC19 L. Radius (D) 

MEC20 L. Petrous 

Human 5 

(F, 26-50y/o) 

MEC21 L. Humerus (P) 

MEC22 L. Humerus (D) 

MEC23 L. Radius (P) 

MEC24 L. Radius (D) 

MEC25 R. Petrous 
Human 6 

(12-17 y/o) 
MEC26 L. Femur (P) 

MEC27 L. Femur (D) 
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Sample Skeletal element Species Country Site Period Date 

MEC28 L. Tibia (P) 
 

Belgium St. Rombout, Mechelen Middle Ages 900-1800 AD 

MEC29 L. Tibia (D) 

MEC30 L. Petrous 

Human 7 

(M, 18-25 y/o) 

MEC31 L. Humerus (P) 

MEC32 L. Humerus (D) 

MEC33 L. Radius (P) 

MEC34 L. Radius (D) 

MEC35 R. Petrous 

Human 8 

(F, 26-50 y/o) 

MEC36 R. Humerus (P) 

MEC37 R. Humerus (D) 

MEC38 R.  Radius (P) 

MEC39 R. Radius (D) 

MEC40 L. Petrous 

Human 9 

(M, 26-50 y/o) 

MEC41 L. Humerus (D) 

MEC42 L. Radius (P) 

MEC43 L. Radius (D) 

MEC44 R. Petrous 

Human 10 

(6-11 y/o) 

MEC45 R. Humerus (P) 

MEC46 R. Humerus (D) 

MEC47 R.  Radius (P) 

MEC48 R. Radius (D) 

MEC49 L. Tibia (P) 

Human 11 

(M, 26-50 y/o) 

MEC50 L. Tibia (D) 

MEC51 L. Femur (D) 

MEC52 L. Femur (P) 

MEC53 L. Petrous 

MEC54 R. Petrous 

Human 12 

(M, 18-25 y/o) 

MEC55 R. Femur (P) 

MEC56 R. Femur (D) 

MEC57 R. Tibia (P) 

MEC58 R. Tibia (D) 

MEC59 R. Petrous Human 13 
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Sample Skeletal element Species Country Site Period Date 

MEC60 R. Humerus (P) 

(M, >50 y/o) 

Belgium St. Rombout, Mechelen Middle Ages 900-1800 AD 

MEC61 R. Humerus (D) 

MEC62 R.  Radius (P) 

MEC63 R. Radius (D) 

MEC64 R. Petrous 

Human 14 

(12-17 y/o) 

MEC65 R. Humerus (P) 

MEC66 R. Humerus (D) 

MEC67 R.  Radius (P) 

MEC68 R. Radius (D) 

MEC69 R. Petrous 

Human 15 

(F, 26-50 y/o) 

MEC70 R. Humerus (P) 

MEC71 R. Humerus (D) 

MEC72 R.  UIna (P) 

MEC73 R. Ulna (D) 

MEC74 L. Petrous 

Human 16 

(M, 18-25 y/o) 

MEC75 L. Femur (P) 

MEC76 L. Femur (D) 

MEC77 L. Tibia (P) 

MEC78 L. Tibia (D) 

MEC79 R. Petrous 

Human 17 

(12-17 y/o) 

MEC80 L. Humerus (P) 

MEC81 L. Humerus (D) 

MEC82 L. Ulna (P) 

MEC83 L. Ulna (D) 

MEC84 R. Petrous 

Human 18 

(1-5 y/o) 

MEC85 R. Fibula (P) 

MEC86 R. Fibula (D) 

MEC87 R. Tibia (D) 

MEC88 R. Petrous 

Human 19 

(F, 18-25 y/o) 

MEC89 L. Humerus (P) 

MEC90 L. Humerus (D) 

MEC91 L. Ulna (D) 
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Sample Skeletal element Species Country Site Period Date 

MEC92 L. Ulna (P)      

MEC93 R. Petrous 

Human 20 

(F, 26-50 y/o) 

MEC94 R. Humerus (P) 

MEC95 R. Humerus (D) 

MEC96 R.  UIna (P) 

MEC97 R. Ulna (D) 

MEC98 L. Petrous 

Human 21 

(F, >50 y/o) 

MEC99 L. Humerus (P) 

MEC100 L. Ulna (P) 

MEC101 L. Ulna (D) 

DEN 1 Petrous Human 

Denmark Holmens Kirke Historical Period 1650-1850 AD 

DEN 2 Petrous Human 

DEN 3  Petrous Human 

DEN 4  Petrous Human 

DEN 5  Petrous Human 

DEN 6  Petrous Human 

DEN 7  Petrous Human 

DEN 8  Petrous Human 

DEN 9  Petrous Human 

BLA2* Petrous Human 

Britain Blackburn Victorian period 1850 AD 
BLA5* Petrous Human 

BLA6* Petrous Human 

BLA7 Petrous Human 
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Table A2. Histological and FTIR data . General Histological Index (GHI), Infrared Splitting Factor (IRSF), Carbonate -to-Phosphate (C/P), Amide-to-Phosphate (Am/P), type B 

Carbonate-to-Phosphate (BPI), Full width at half maximum (FWHM) at 1010 cm-1. Columns 1410 cm-1, 872 cm-1 and 712 cm-1absorbance heights. The symbols next to the GHI 

values indicate: * samples with transverse thin sections; ** samples with longitudinal thin sections; *** samples with both transverse and longitudinal thin sections. The + 

symbol next to samples’ names indicate samples that sampling for DNA analysis preceded.  

Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

BED1+ N/A 3.38 ± 0.07 0.21 ± 0.01 0.06 ± 0.00 0.37 ± 0.01 93.20 ± 3.09 0.04097 ± 0.007 0.02149 ± 0.00358 0.00000 

BED2+ N/A 3.35 ± 0.04 0.21 ± 0.01 0.05 ± 0.00 0.37 ± 0.01 94.53 ± 2.64 0.04114 ± 0.008 0.02122 ± 0.00405 0.00000 

BED3+ N/A 3.27 ± 0.07 0.25 ± 0.02 0.06 ± 0.01 0.40 ± 0.02 99.85 ± 2.58 0.03320 ± 0.006 0.01714 ± 0.00289 0.00000 

BED4+ N/A 3.31 ± 0.01 0.22 ± 0.00 0.05 ± 0.00 0.35 ± 0.01 100.05 ± 1.48 0.02473 ± 0.005 0.01266 ± 0.00227 0.00000 

BED9+ N/A 3.34 ± 0.03 0.23 ± 0.00 0.05 ± 0.00 0.38 ± 0.02 98.20 ± 2.81 0.03213 ± 0.010 0.01638 ± 0.00507 0.00000 

MAR1+ N/A 3.73 ± 0.14 0.24 ± 0.03 0.01 ± 0.00 0.56 ± 0.03 74.30 ± 4.67 0.08901 ± 0.012 0.05534 ± 0.00823 0.00279 ± 0.00052 

MAR2 N/A 3.77 ± 0.11 0.21 ± 0.02 0.02 ± 0.00 0.53 ± 0.01 72.28 ± 3.42 0.09484 ± 0.008 0.05908 ± 0.00512 0.00177 ± 0.00036 

MAR3 N/A 3.78 ± 0.09 0.22 ± 0.02 0.01 ± 0.00 0.53 ± 0.02 70.49 ± 3.43 0.08563 ± 0.012 0.05125 ± 0.00726 0.00230 ± 0.00008 

MAR4 4* 3.73 ± 0.08 0.24 ± 0.02 0.01 ± 0.00 0.57 ± 0.02 72.13 ± 2.99 0.09624 ± 0.010 0.05588 ± 0.00666 0.00196 ± 0.00022 

MAR5 4* 3.78 ± 0.07 0.22 ± 0.01 0.01 ± 0.00 0.51 ± 0.02 73.23 ± 2.69  0.08842 ± 0.006 0.05046 ± 0.00319 0.00120 ± 0.00013 

MAR6 N/A 3.84 ± 0.10 0.22 ± 0.02 0.01 ± 0.00 0.53 ± 0.04 68.91 ± 3.69 0.09556 ± 0.025 0.05717 ± 0.01574 0.00277 ± 0.00091 

MAR7 N/A 3.85 ± 0.16 0.27 ± 0.03 0.01 ± 0.00 0.63 ± 0.04 73.12 ± 4.90 0.09378 ± 0.012 0.06250 ± 0.00776 0.00671 ± 0.00071 

MAR8 N/A 3.80 ± 0.05 0.23 ± 0.01 0.00 ± 0.00 0.54 ± 0.02 74.66 ± 1.75 0.07459 ± 0.003 0.04586 ± 0.00238 0.00265 ± 0.00006 

MAR9+ N/A 4.88 ± 0.26 0.12 ± 0.09 0.02 ± 0.00  0.38 ± 0.03 63.61 ± 5.21 0.06603 ± 0.003 0.05057 ± 0.00175 0.00707 ± 0.00066 

MAR10+ N/A 4.95 ± 0.19 0.11 ± 0.01 0.01 ± 0.00 0.25 ± 0.01 67.76 ± 3.70 0.04304 ± 0.004 0.03085 ± 0.00288 0.00294 ± 0.00038 

MAR11 4* 3.65 ± 0.04 0.29 ± 0.01 0.00 ± 0.00 0.68 ± 0.01 75.39 ± 2.87  0.08274 ± 0.015 0.05422 ± 0.00995 0.00586 ± 0.00060 

MAR12 4* 3.70 ± 0.06 0.29 ± 0.01 0.07 ± 0.00 0.68 ± 0.03 73.56 ± 0.51 0.09141 ± 0.010 0.06442 ± 0.00762 0.00854 ± 0.00077 

MAR13 N/A 3.67 ± 0.06 0.26 ± 0.01 0.01 ± 0.00 0.62 ± 0.02 73.12 ± 3.11 0.09309 ± 0.022 0.05882 ± 0.01364 0.00461 ± 0.00057 

MAR14 N/A 3.67 ± 0.14 0.25 ± 0.03 0.05 ± 0.01 0.57 ± 0.04 75.66 ± 3.58 0.07040 ± 0.008 0.04464 ± 0.00511 0.00264 ± 0.00023 

MAR15 N/A 3.57 ± 0.10 0.28 ± 0.03 0.03 ± 0.00 0.63 ± 0.03 77.81 ± 4.26 0.07575 ± 0.015 0.04718 ± 0.00901 0.00341 ± 0.00075 

MAR16+ N/A 3.43 ± 0.10 0.34 ± 0.03 0.02 ± 0.00 0.66 ± 0.03 84.88 ± 4.92 0.06831 ± 0.012 0.04356 ± 0.00706 0.00363 ± 0.00085 

VEM139+ N/A 3.43 ± 0.05 0.24 ± 0.00 0.01 ± 0.00 0.46 ± 0.02 87.64 ± 2.37 0.05496 ± 0.010 0.03236 ± 0.00628 0.00000 

VEM140+ N/A 3.37 ± 0.05 0.21 ± 0.01 0.01 ± 0.00 0.39 ± 0.01 88.20 ± 2.23 0.04272 ± 0.004 0.02576 ± 0.00221 0.00000 

VEM141+ N/A 3.49 ± 0.08 0.22 ± 0.01 0.01 ± 0.00 0.45 ± 0.03 86.23 ± 5.83 0.05076 ± 0.022 0.03119 ± 0.01316 0.00000 

VEM143+ N/A 3.46 ± 0.12 0.21 ± 0.02 0.01 ± 0.00 0.43 ± 0.03 84.71 ± 6.41 0.05584 ± 0.016 0.03202 ± 0.00866 0.00000 

VEM144+ N/A 3.38 ± 0.04 0.21 ± 0.01 0.01 ± 0.00 0.41 ± 0.04 88.48 ± 1.92 0.05656 ± 0.016 0.03318 ± 0.00916 0.00000 

VEM145+ N/A 3.82 ± 0.10 0.18 ± 0.01 0.01 ± 0.00 0.37 ± 0.02 76.95 ± 4.44 0.05161 ± 0.014 0.02999 ± 0.00791 0.00000 

SAR1 4*** 3.32 ± 0.06 0.31 ± 0.01 0.13 ± 0.01 0.60 ± 0.02 93.28 ± 2.04 0.05683 ± 0.011 0.02887 ± 0.00554 0.00053 ± 0.00055 

SAR2 N/A 3.43 ± 0.08 0.23 ± 0.02 0.05 ± 0.00 0.45 ± 0.01 88.58 ± 3.97 0.05836 ± 0.015 0.03210 ± 0.00871 0.00000 

SAR3 N/A 3.56 ± 0.07 0.27 ± 0.02 0.06 ± 0.00 0.52 ± 0.02 87.50 ± 5.60 0.05810 ± 0.016 0.03455 ± 0.00941 0.00150 ± 0.00025 

SAR4 N/A 3.59 ± 0.07 0.21 ± 0.01 0.03 ± 0.00 0.47 ± 0.03 76.36 ± 3.39 0.07487 ± 0.020 0.04247 ± 0.01160 0.00000 

SAR5 2* 3.33 ± 0.05 0.32 ± 0.01 0.11 ± 0.00 0.63 ± 0.02 91.13 ± 0.43 0.05337 ± 0.006 0.02863 ± 0.00314 0.00157 ± 0.00006 

SAR6 3* 3.32 ± 0.06 0.31 ± 0.02 0.11 ± 0.01 0.62 ± 0.03 91.18 ± 1.24 0.05012 ± 0.003 0.02638 ± 0.00162 0.00105 ± 0.00014 

SAR7 4* 3.29 ± 0.08 0.30 ± 0.02 0.19 ± 0.02 0.57 ± 0.05 97.16 ± 2.42 0.04178 ± 0.004 0.02021 ± 0.00164 0.00000 

SAR8+ 2** 3.32 ± 0.01 0.28 ± 0.01 0.13 ± 0.01 0.54 ± 0.03 94.60 ± 0.54 0.05210 ± 0.005 0.02557 ± 0.00273 0.00000 
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Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

SAR9 N/A 3.89 ± 0.09 0.18 ± 0.01 0.02 ± 0.00 0.38 ± 0.02 79.66 ± 3.52 0.05697 ± 0.009 0.03369 ± 0.00555 0.00000 

SAR10 4* 3.13 ± 0.04 0.32 ± 0.02 0.21 ± 0.01 0.62 ± 0.04 101.65 ± 3.05 0.03953 ± 0.005 0.01888 ± 0.00229 0.00000 

SAR11 5* 3.34 ± 0.02 0.26 ± 0.01 0.14 ± 0.00 0.50 ± 0.01 94.38 ± 1.93 0.04521 ± 0.006 0.02282 ± 0.00299 0.00000 

SAR12 N/A 3.61 ± 0.08 0.29 ± 0.03 0.04 ± 0.01 0.64 ± 0.04 78.54 ± 3.67 0.08458 ± 0.011 0.05393 ± 0.00679 0.00743 ± 0.00081 

SAR13 3* 3.41 ± 0.03 0.25 ± 0.01 0.11 ± 0.00 0.51 ± 0.01 86.98 ± 0.85 0.05281 ± 0.003 0.02703 ± 0.00173 0.00000 

SAR14 5* 3.36 ± 0.02 0.28 ± 0.00 0.17 ± 0.00 0.54 ± 0.01 92.22 ± 1.38 0.05411 ± 0.008 0.02676 ± 0.00406 0.00000 

SAR15 4* 3.44 ± 0.02 0.25 ± 0.00 0.14 ± 0.00 0.50 ± 0.00 89.60 ± 0.93 0.05371 ± 0.006 0.02673 ± 0.00315 0.00000 

SAR16 3* 3.47 ± 0.12 0.24 ± 0.03 0.04 ± 0.01 0.55 ± 0.04 80.18 ± 4.14 0.08579 ± 0.007 0.04893 ± 0.00371 0.00000 

SAR17 2* 3.47 ± 0.05 0.25 ± 0.01 0.07 ± 0.01 0.55 ± 0.03 81.39 ± 1.54 0.07845 ± 0.003 0.04158 ± 0.00195 0.00000 

SAR18 N/A 3.39 ± 0.01 0.25 ± 0.00 0.15 ± 0.00 0.50 ± 0.02 93.83 ± 1.04 0.05042 ± 0.008 0.02523 ± 0.00380 0.00000 

SAR19 0* 3.55 ± 0.07 0.22 ± 0.02 0.03 ± 0.00 0.42 ± 0.02 87.97 ± 3.58 0.05676 ± 0.009 0.03329 ± 0.00519 0.00000 

SAR24+ N/A 3.29 ± 0.00 0.31 ± 0.01 0.07 ± 0.00 0.54 ± 0.02 104.12 ± 1.20 0.03442 ± 0.003 0.01838 ± 0.00152 0.00000 

SAR28+ N/A 3.33 ± 0.01 0.30 ± 0.00 0.06 ± 0.00 0.53 ± 0.01 101.39 ± 2.57 0.03137 ± 0.002 0.01777 ± 0.00138 0.00082 ± 0.00015 

SAR35+ N/A 3.40 ± 0.06 0.25 ± 0.01 0.08 ± 0.01 0.45 ± 0.01 94.42 ± 2.97 0.04738 ± 0.007 0.02582 ± 0.004 0.00000 

SAR38+ 2*** 3.23 ± 0.01 0.33 ± 0.01 0.05 ± 0.00 0.53 ± 0.02 110.67 ± 4.02 0.03040 ± 0.003 0.01760 ± 0.00152 0.00071 ± 0.00006 

SAR40+ 2** 3.50 ± 0.02 0.25 ± 0.01 0.09 ± 0.01 0.39 ± 0.02 117.16 ± 0.82 0.02160 ± 0.002 0.01108 ± 0.00120 0.00023 ± 0.00024 

PRO1+ N/A 3.20 ± 0.02 0.32 ± 0.01 0.06 ± 0.00 0.49 ± 0.00 124.07 ± 2.48 0.03061 ± 0.004 0.01597 ± 0.00163 0.00000 

PRO2+ N/A 3.28 ± 0.01 0.26 ± 0.00 0.05 ± 0.01 0.43 ± 0.01 115.97 ± 1.47 0.02441 ± 0.002 0.01370 ± 0.00102 0.00011 ± 0.00010 

PRO8+ N/A 4.00 ± 0.14 0.19 ± 0.01 0.01 ± 0.00 0.39 ± 0.00 77.99 ± 3.03 0.04765 ± 0.011 0.03028 ± 0.00662 0.00121 ± 0.00038 

PRO9 N/A 3.29 ± 0.05 0.29 ± 0.01 0.10 ± 0.01 0.51 ± 0.02 105.43 ± 6.28 0.04373 ± 0.006 0.02244 ± 0.003 0.00000 

THA1+ N/A 3.71 ± 0.03 0.20 ± 0.00 0.04 ± 0.00 0.40 ± 0.02 80.73 ± 1.72 0.05791 ± 0.009 0.03092 ± 0.00433 0.00000 

THA2+ N/A 4.16 ± 0.13 0.16 ± 0.02 0.00 ± 0.00 0.35 ± 0.02 71.57 ± 4.61 0.05335 ± 0.011 0.03147 ± 0.00654 0.00093 ± 0.00029 

THA3+ N/A 3.93 ± 0.15 0.18 ± 0.02 0.04 ± 0.01 0.37 ± 0.03 78.18 ± 4.38 0.04653 ± 0.002 0.02494 ± 0.00103 0.00000 

THA4 0* 3.51 ± 0.10 0.25 ± 0.02 0.03 ± 0.00 0.48 ± 0.01 85.68 ± 4.70 0.06056 ± 0.014 0.03370 ± 0.00834 0.00023 ± 0.00020 

THA5 1* 3.56 ± 0.17 0.24 ± 0.04 0.05 ± 0.01 0.44 ± 0.07 88.73 ± 6.60 0.04184 ± 0.006 0.02268 ± 0.00367 0.00000 

THA6 0* 3.51 ± 0.04 0.24 ± 0.02 0.03 ± 0.00 0.46 ± 0.03 86.23 ± 1.07 0.05716 ± 0.007 0.03133 ± 0.00401 0.00030 ± 0.00032 

THA7 N/A 3.53 ± 0.09 0.26 ± 0.02 0.04 ± 0.01 0.50 ± 0.03 88.14 ± 3.53 0.05214 ± 0.005 0.02814 ± 0.00254 0.00009 ± 0.00016 

THA8+ N/A 3.57 ± 0.06 0.24 ± 0.02 0.03 ± 0.00 0.46 ± 0.04 86.50 ± 1.93 0.05769 ± 0.005 0.03284 ± 0.00284 0.00000 

THA9+ N/A 3.66 ± 0.05 0.25 ± 0.01 0.07 ± 0.00 0.49 ± 0.02 86.76 ± 1.57 0.04859 ± 0.012 0.02786 ± 0.00679 0.00232 ± 0.00040 

THA10 N/A 3.62 ± 0.08 0.22 ± 0.02 0.03 ± 0.00 0.44 ± 0.03 83.13 ± 2.58 0.05982 ± 0.005 0.03252 ± 0.00283 0.00000 

THA11+ N/A 3.63 ± 0.06 0.23 ± 0.01 0.03 ± 0.00 0.45 ± 0.02 84.60 ± 1.83 0.04955 ± 0.005 0.02692 ± 0.00267 0.00020 ± 0.00017 

VEM202+ N/A 3.50 ± 0.07 0.16 ± 0.01 0.05 ± 0.00 0.30 ± 0.01 88.53 ± 3.26 0.04512 ± 0.005 0.02825 ± 0.00299 0.00000 

VEM203+ N/A 3.43 ± 0.07 0.19 ± 0.02 0.06 ± 0.01 0.31 ± 0.03 97.94 ± 1.83 0.02659 ± 0.004 0.01585 ± 0.00214 0.00000 

VEM204+ N/A 3.32 ± 0.03 0.23 ± 0.01 0.07 ± 0.00 0.37 ± 0.01 109.65 ± 6.67 0.02586 ± 0.003 0.01451 ± 0.00179 0.00000 

VEM205+ N/A 3.53 ± 0.04 0.17 ± 0.01 0.04 ± 0.00 0.30 ± 0.01 91.62 ± 0.85 0.03041 ± 0.003 0.01820 ± 0.00208 0.00000 

VEM206+ N/A 3.70 ± 0.06 0.17 ± 0.01 0.04 ± 0.00 0.32 ± 0.02 91.54 ± 0.92 0.02282 ± 0.003 0.01303 ± 0.00167 0.00000 

VEM207+ N/A 3.75 ± 0.09 0.15 ± 0.02 0.05 ± 0.01 0.30 ± 0.04 91.90 ± 2.17 0.02271 ± 0.003 0.01242 ± 0.00168 0.00000 

VEM208+ N/A 3.82 ± 0.09 0.14 ± 0.01 0.04 ± 0.00 0.25 ± 0.01 88.73 ± 0.83 0.02796 ± 0.003 0.01619 ± 0.00196 0.00000 

VEM209+ N/A 3.23 ± 0.04 0.29 ± 0.01 0.10 ± 0.00 0.48 ± 0.02 117.37 ± 0.98 0.02324 ± 0.004 0.01165 ± 0.00166 0.00000 

VEM210+ N/A 3.18 ± 0.06 0.27 ± 0.03 0.08 ± 0.01 0.44 ± 0.04 99.66 ± 3.59 0.03107 ± 0.001 0.01601 ± 0.00059 0.00000 

  



 
 

182 
 

Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

MAN1+ N/A 3.69 ± 0.09 0.16 ± 0.02 0.05 ± 0.01 0.30 ± 0.03 91.55 ± 3.49 0.03225 ± 0.002 0.01867 ± 0.00111 0.00000 

MAN2 N/A 4.01 ± 0.07 0.15 ± 0.01 0.02 ± 0.00 0.30 ± 0.01 82.65 ± 2.21 0.03441 ± 0.002 0.02185 ± 0.00099 0.00000 

MAN3 1* 4.32 ± 0.08 0.12 ± 0.01 0.02 ± 0.00 0.26 ± 0.01 74.22 ± 1.91 0.04307 ± 0.006 0.02637 ± 0.00420 0.00000 

MAN4+ N/A 3.43 ± 0.01 0.23 ± 0.00 0.07 ± 0.00 0.44 ± 0.01 89.03 ± 0.58 0.04704 ± 0.004 0.02534 ± 0.00219 0.00000 

MAN5+ N/A 3.53 ± 0.10 0.23 ± 0.02 0.04 ± 0.01 0.44 ± 0.03 85.87 ± 4.23 0.05556 ± 0.012 0.02978 ± 0.00619 0.00000 

MAN6+ N/A 3.57 ± 0.05 0.22 ± 0.01 0.06 ± 0.00 0.44 ± 0.03 84.52 ± 2.13 0.05848 ± 0.009 0.03069 ± 0.00474 0.00000 

MAN7+ N/A 3.64 ± 0.03 0.21 ± 0.01 0.04 ± 0.00 0.44 ± 0.03 82.17 ± 0.95 0.05807 ± 0.009 0.03067 ± 0.00458 0.00000 

MAN8 4* 4.75 ± 0.14 0.12 ± 0.01 0.01 ± 0.00 0.31 ± 0.01 60.90 ± 2.47 0.06299 ± 0.003 0.03756 ± 0.00220 0.00000 

MAN9 N/A 4.69 ± 0.13 0.12 ± 0.01 0.01 ± 0.00 0.31 ± 0.01 58.85 ± 3.06 0.06977 ± 0.005 0.04266 ± 0.00360 0.00000 

MAN10 N/A 4.47 ± 0.24 0.14 ± 0.02 0.01 ± 0.00 0.29 ± 0.09 65.51 ± 6.24 0.05186 ± 0.020 0.03680 ± 0.00561 0.00000 

MAN11 N/A 4.67 ± 0.07 0.12 ± 0.01 0.01 ± 0.00 0.35 ± 0.00 56.24 ± 1.86 0.08746 ± 0.004 0.05274 ± 0.00255 0.00097 ± 0.00005 

MAN12 N/A 4.15 ± 0.08 0.15 ± 0.01 0.01 ± 0.00 0.38 ± 0.01 64.04 ± 1.64 0.08352 ± 0.004 0.05023 ± 0.00216 0.00000 

MAN13 N/A 5.80 ± 0.11 0.07 ± 0.00 0.01 ± 0.00 0.18 ± 0.00 52.38 ± 2.82 0.03801 ± 0.006 0.02866 ± 0.00468 0.00232 ± 0.00069 

MAN14 N/A 5.12 ± 0.12 0.09 ± 0.01 0.01 ± 0.00 0.21 ± 0.01 58.94 ± 2.02 0.04743 ± 0.002 0.03343 ± 0.00247 0.00080 ± 0.00072 

MAN15+ N/A 4.98 ± 0.13 0.11 ± 0.01 0.01 ± 0.00 0.27 ± 0.01 57.99 ± 2.86 0.05842 ± 0.008 0.04196 ± 0.00653 0.00302 ± 0.00036 

MAN16 N/A 5.05 ± 0.16 0.09 ± 0.01 0.01 ± 0.00 0.22 ± 0.01 60.06 ± 3.04 0.04727 ± 0.007 0.03108 ± 0.00542 0.00093 ± 0.00027 

MAN17 0* 4.33 ± 0.16 0.15 ± 0.01 0.01 ± 0.00 0.35 ± 0.01 69.47 ± 3.45 0.06623 ± 0.006 0.04107 ± 0.00385 0.00000 

MAN18 N/A 5.79 ± 0.28 0.08 ± 0.01 0.01 ± 0.00 0.22 ± 0.01 54.88 ± 3.52 0.04803 ± 0.001 0.03357 ± 0.00084 0.00207 ± 0.00026 

MAN19 N/A 5.91 ± 0.14 0.06 ± 0.00 0.01 ± 0.00 0.17 ± 0.01 51.21 ± 1.01 0.04665 ± 0.006 0.03272 ± 0.00432 0.00000 

MAN20 N/A 5.90 ± 0.18 0.07 ± 0.01 0.01 ± 0.00 0.18 ± 0.00 52.43 ± 3.52 0.03925 ± 0.007 0.02996 ± 0.00604 0.00210 ± 0.00049 

MAN21+ N/A 4.95 ± 0.06 0.10 ± 0.00 0.01 ± 0.00 0.25 ± 0.01 57.85 ± 1.05 0.05986 ± 0.002 0.03937 ± 0.00167 0.00000 

MAN22+ N/A 5.71 ± 0.06 0.08 ± 0.00 0.01 ± 0.00 0.21 ± 0.01 55.31 ± 1.87 0.04336 ± 0.004 0.03429 ± 0.00288 0.00258 ± 0.00011 

MAN23 N/A 5.60 ± 0.34 0.08 ± 0.01 0.01 ± 0.00 0.18 ± 0.01 55.79 ± 5.87 0.03980 ± 0.006 0.02795 ± 0.00449 0.00000 

MAN24 N/A 5.61 ± 0.14 0.09 ± 0.01 0.01 ± 0.00 0.23 ± 0.00 55.42 ± 3.38 0.04742 ± 0.009 0.03475 ± 0.00794 0.00235 ± 0.00080 

MAN25+ N/A 5.45 ± 0.12 0.09 ± 0.00 0.01 ± 0.00 0.22 ± 0.01 59.37 ± 1.93 0.04857 ± 0.007 0.03383 ± 0.00557 0.00205 ± 0.00023 

MAN26 N/A 5.62 ± 0.14 0.07 ± 0.01 0.01 ± 0.00 0.19 ± 0.00 54.75 ± 3.10 0.04623 ± 0.003 0.03001 ± 0.00221 0.00000 

MAN27 N/A 4.95 ± 0.12 0.11 ± 0.01 0.01 ± 0.00 0.27 ± 0.00 63.29 ± 2.76 0.05535 ± 0.009 0.03665 ± 0.00618 0.00000 

MAN28+ N/A 5.10 ± 0.14 0.13 ± 0.01 0.01 ± 0.00 0.33 ± 0.02 57.97 ± 4.48 0.06159 ± 0.020 0.04861 ± 0.01704 0.00773 ± 0.00245 

MAN29+ N/A 5.75 ± 0.27 0.08 ± 0.01 0.01 ± 0.00 0.20 ± 0.00 59.81 ± 7.31 0.03969 ± 0.012 0.02819 ± 0.00903 0.00000 

MAN30+ N/A 5.00 ± 0.37 0.09 ± 0.02 0.01 ± 0.00 0.21 ± 0.02 64.66 ± 7.57 0.03474 ± 0.007 0.02299 ± 0.00433 0.00000 

MAN31+ N/A 5.83 ± 0.07 0.08 ± 0.00 0.00 ± 0.00 0.21 ± 0.00 48.31 ± 1.46 0.05872 ± 0.003 0.04658 ± 0.00223 0.00600 ± 0.00023 

KAZ1+ 2*** 4.28 ± 0.08 0.10 ± 0.00 0.08 ± 0.00 0.20 ± 0.00 88.28 ± 1.44 0.01486 ± 0.002 0.00776 ± 0.00107 0.00000 

KAZ2+ 4*** 3.86 ± 0.02 0.14 ± 0.01 0.10 ± 0.00 0.25 ± 0.01 93.10 ± 0.79 0.01845 ± 0.001 0.00996 ± 0.00049 0.00000 

KAZ3+ N/A 3.76 ± 0.02 0.19 ± 0.01 0.14 ± 0.01 0.32 ± 0.02 99.44 ± 1.28 0.01971 ± 0.003 0.00996 ± 0.00141 0.00000 

KAZ4+ N/A 4.07 ± 0.12 0.14 ± 0.02 0.02 ± 0.00 0.31 ± 0.02 72.55 ± 3.75 0.03984 ± 0.006 0.02254 ± 0.00345 0.00000 

KAZ5+ N/A 4.42 ± 0.15 0.07 ± 0.01 0.04 ± 0.00 0.13 ± 0.01 78.90 ± 4.69 0.01775 ± 0.002 0.01199 ± 0.00128 0.00000 

KAZ6+ N/A 3.82 ± 0.06 0.18 ± 0.01 0.07 ± 0.01 0.31 ± 0.02 91.58 ± 2.19 0.02711 ± 0.003 0.01508 ± 0.00146 0.00000 

VEM146+ N/A 3.27 ± 0.02 0.23 ± 0.00 0.06 ± 0.00 0.38 ± 0.01 98.07 ± 0.16 0.03047 ± 0.002 0.01681 ± 0.00129 0.00000 

VEM147+ N/A 3.23 ± 0.03 0.27 ± 0.02 0.07 ± 0.00 0.37 ± 0.11 97.95 ± 1.88 0.03526 ± 0.004 0.01838 ± 0.00235 0.00000 

VEM148+ N/A 3.27 ± 0.01 0.23 ± 0.00 0.05 ± 0.00 0.37 ± 0.00 99.88 ± 1.26 0.02833 ± 0.003 0.01642 ± 0.00150 0.00000 

  



 
 

183 
 

Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

VEM149+ N/A 3.22 ± 0.02 0.25 ± 0.00 0.06 ± 0.00 0.41 ± 0.00 99.60 ± 0.69 0.03195 ± 0.002 0.01706 ± 0.00094 0.00000 

VEM178+ N/A 3.22 ± 0.04 0.27 ± 0.01 0.07 ± 0.01 0.43 ± 0.03 104.15 ± 1.04 0.02669 ± 0.003 0.01421 ± 0.00147 0.00000 

VEM179+ N/A 3.31 ± 0.01 0.23 ± 0.00 0.06 ± 0.00 0.39 ± 0.00 95.80 ± 0.30 0.02845 ± 0.003 0.01500 ± 0.00166 0.00000 

KAS1 1* 5.42 ± 0.05 0.10 ± 0.00 0.01 ± 0.00 0.24 ± 0.00 57.03 ± 0.90 0.04964 ± 0.002 0.03741 ± 0.00173 0.00393 ± 0.00014 

KAS2 0* 3.49 ± 0.02 0.22 ± 0.01 0.04 ± 0.00 0.45 ± 0.01 85.32 ± 1.40 0.05661 ± 0.006 0.02972 ± 0.00293 0.00000 

KAS3 0* 4.79 ± 0.11 0.16 ± 0.01 0.01 ± 0.00 0.38 ± 0.01 62.19 ± 1.80 0.06674 ± 0.007 0.05356 ± 0.00629 0.00949 ± 0.00110 

KAS4 0* 3.69 ± 0.02 0.17 ± 0.00 0.04 ± 0.00 0.34 ± 0.00 84.42 ± 0.85 0.04966 ± 0.003 0.02843 ± 0.00170 0.00000 

KAS5 0* 4.15 ± 0.13 0.18 ± 0.01 0.02 ± 0.00 0.41 ± 0.01 70.28 ± 3.68 0.06880 ± 0.006 0.04684 ± 0.00409 0.00394 ± 0.00036 

KAS6 0* 4.74 ± 0.09 0.11 ± 0.01 0.03 ± 0.00 0.25 ± 0.01 64.55 ± 2.39 0.05220 ± 0.006 0.03308 ± 0.00466 0.00000 

KAS7 0* 5.47 ± 0.09 0.09 ± 0.00 0.01 ± 0.00 0.22 ± 0.01 56.62 ± 1.79 0.04516 ± 0.010 0.03455 ± 0.00873 0.00296 ± 0.00060 

KAS8 1* 4.14 ± 0.17 0.14 ± 0.02 0.05 ± 0.01 0.29 ± 0.02 77.76 ± 4.86 0.03744 ± 0.003 0.02125 ± 0.00206 0.00000 

KAS9 0* 4.12 ± 0.11 0.13 ± 0.01 0.05 ± 0.01 0.25 ± 0.03 76.79 ± 2.57 0.03868 ± 0.005 0.02309 ± 0.00303 0.00000 

KAS10 0* 4.25 ± 0.06 0.12 ± 0.01 0.05 ± 0.00 0.25 ± 0.01 73.22 ± 1.69 0.03836 ± 0.003 0.02203 ± 0.00193 0.00000 

KAS11 0* 5.33 ± 0.01 0.08 ± 0.00 0.02 ± 0.00 0.18 ± 0.00 60.24 ± 1.27 0.03864 ± 0.004 0.02635 ± 0.00367 0.00000 

KAS12 0* 4.09 ± 0.08 0.20 ± 0.01 0.04 ± 0.00 0.42 ± 0.01 74.24 ± 2.86 0.07427 ± 0.008 0.04938 ± 0.00550 0.00462 ± 0.00036 

KAS13 0* 3.80 ± 0.16 0.16 ± 0.03 0.04 ± 0.01 0.32 ± 0.03 83.42 ± 5.46 0.04269 ± 0.007 0.02420 ± 0.00481 0.00000 

KAS14 0* 3.37 ± 0.12 0.23 ± 0.03 0.05 ± 0.01 0.45 ± 0.04 89.51 ± 5.74 0.05694 ± 0.009 0.03007 ± 0.00556 0.00000 

KAS15 0* 5.37 ± 0.35 0.11 ± 0.02 0.01 ± 0.00 0.27 ± 0.01 57.06 ± 5.42 0.05489 ± 0.010 0.04564 ± 0.00909 0.00623 ± 0.00166 

KAS16+ 2** 4.12 ± 0.12 0.15 ± 0.01 0.04 ± 0.00 0.28 ± 0.02 82.34 ± 3.12 0.03308 ± 0.003 0.01955 ± 0.00192 0.00000 

KAS17+ 2** 4.07 ± 0.08 0.16 ± 0.01 0.03 ± 0.00 0.34 ± 0.01 75.74 ± 3.34 0.05021 ± 0.008 0.03085 ± 0.00489 0.00129 ± 0.00016 

KAS18 0* 3.57 ± 0.01 0.18 ± 0.00 0.06 ± 0.00 0.35 ± 0.01 91.84 ± 0.37 0.03058 ± 0.007 0.01695 ± 0.00398 0.00012 ± 0.00021 

KAS19 N/A 3.60 ± 0.04 0.18 ± 0.01 0.04 ± 0.00 0.38 ± 0.01 83.65 ± 2.86 0.04553 ± 0.009 0.02577 ± 0.00518 0.00000 

KAS22 0* 3.52 ± 0.06 0.25 ± 0.01 0.03 ± 0.00 0.54 ± 0.01 80.26 ± 2.51 0.07865 ± 0.008 0.04486 ± 0.00474 0.00192 ± 0.00020 

KAS23 0* 3.61 ± 0.04 0.25 ± 0.01 0.04 ± 0.00 0.48 ± 0.01 88.08 ± 1.96 0.04947 ± 0.009 0.02833 ± 0.00503 0.00200 ± 0.00057 

KAS26 0* 4.10 ± 0.24 0.16 ± 0.03 0.01 ± 0.00 0.33 ± 0.04 78.17 ± 8.00 0.04262 ± 0.007 0.02628 ± 0.00451 0.00000 

KAS28 0* 3.51 ± 0.06 0.25 ± 0.02 0.08 ± 0.01 0.48 ± 0.04 92.47 ± 2.21 0.03735 ± 0.003 0.01820 ± 0.00152 0.00000 

KAS29 0* 3.91 ± 0.05 0.15 ± 0.01 0.06 ± 0.01 0.28 ± 0.01 88.95 ± 1.88 0.02336 ± 0.002 0.01295 ± 0.00157 0.00000 

VEM193+ N/A 3.20 ± 0.01 0.23 ± 0.01 0.09 ± 0.00 0.38 ± 0.00 105.71 ± 1.29 0.02095 ± 0.002 0.01116 ± 0.00082 0.00000 

VEM194+ N/A 3.24 ± 0.06 0.20 ± 0.02 0.05 ± 0.01 0.34 ± 0.02 99.04 ± 3.96 0.03010 ± 0.008 0.01782 ± 0.00477 0.00000 

VEM195+ N/A 3.19 ± 0.08 0.23 ± 0.03 0.07 ± 0.01 0.39 ± 0.03 103.86 ± 4.43 0.03106 ± 0.004 0.01743 ± 0.00285 0.00000 

VEM196+ N/A 3.18 ± 0.04 0.21 ± 0.02 0.06 ± 0.01 0.37 ± 0.03 101.65 ± 2.72 0.03365 ± 0.002 0.01914 ± 0.00135 0.00000 

VEM197+ N/A 3.32 ± 0.03 0.21 ± 0.01 0.08 ± 0.01 0.38 ± 0.02 100.08 ± 2.49 0.03387 ± 0.003 0.01868 ± 0.00223 0.00000 

VEM198+ N/A 3.25 ± 0.00 0.21 ± 0.00 0.05 ± 0.00 0.35 ± 0.02 102.53 ± 1.27 0.02947 ± 0.005 0.01661 ± 0.00294 0.00000 

VEM201+ N/A 3.28 ± 0.01 0.24 ± 0.00 0.10 ± 0.00 0.41 ± 0.01  115.92 ± 0.68 0.02417 ± 0.003 0.01264 ± 0.00179 0.00000 

VEM180+ N/A 3.15 ± 0.04 0.25 ± 0.02 0.06 ± 0.01 0.40 ± 0.02 105.91 ± 2.77 0.02422 ± 0.002 0.01328 ± 0.00111 0.00000 

VEM181+ N/A 3.28 ± 0.03 0.22 ± 0.00 0.05 ± 0.00 0.38 ± 0.02 97.38 ± 2.33 0.03115 ± 0.009 0.01724 ± 0.00492 0.00000 

VEM182+ N/A 3.41 ± 0.02 0.22 ± 0.01 0.04 ± 0.00 0.37 ± 0.02 97.08 ± 0.87 0.03034 ± 0.002 0.01733 ± 0.00147 0.00000 

VEM100+ N/A 3.11 ± 0.02 0.25 ± 0.01 0.07 ± 0.00 0.41 ± 0.01 105.88 ± 1.78 0.02348 ± 0.001 0.01245 ± 0.00083 0.00000 

VEM101+ N/A 3.16 ± 0.03 0.26 ± 0.01 0.07 ± 0.00 0.43 ± 0.01 104.98 ± 2.84 0.03074 ± 0.006 0.01676 ± 0.00322 0.00000 

VEM102+ N/A 3.23 ± 0.04 0.21 ± 0.01 0.05 ± 0.00 0.35 ± 0.00 101.18 ± 2.75 0.02960 ± 0.003 0.01717 ± 0.00205 0.00000 

  



 
 

184 
 

Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

VEM103+ N/A 3.25 ± 0.05 0.22 ± 0.02 0.06 ± 0.01 0.34 ± 0.03 107.55 ± 2.64 0.02082 ± 0.001 0.01176 ± 0.00032 0.00000 

VEM108+ N/A 3.21 ± 0.07 0.24 ± 0.01 0.07 ± 0.00 0.38 ± 0.02 110.51 ± 3.83 0.02149 ± 0.003 0.01165 ± 0.00198 0.00000 

VEM111+ N/A 3.09 ± 0.04 0.29 ± 0.02 0.07 ± 0.01 0.43 ± 0.01 112.18 ± 4.51 0.02041 ± 0.004 0.01105 ± 0.00216 0.00000 

MEC1 3** 4.34 ± 0.07 0.08 ± 0.01 0.07 ± 0.00 0.16 ± 0.01 81.79 ± 0.85 0.02049 ± 0.002 0.01711 ± 0.00178 0.00000 

MEC2 2* 4.27 ± 0.10 0.11 ± 0.01 0.02 ± 0.00 0.26 ± 0.01 72.23 ± 2.84 0.03973 ± 0.004 0.02564 ± 0.00289 0.00000 

MEC3 2* 4.19 ± 0.10 0.12 ± 0.01 0.02 ± 0.00 0.27 ± 0.01 75.27 ± 4.30 0.04079 ± 0.007 0.02660 ± 0.00508 0.00000 

MEC4 1* 3.88 ± 0.08 0.15 ± 0.01 0.03 ± 0.00 0.29 ± 0.01 84.06 ± 2.43 0.02809 ± 0.003 0.01770 ± 0.00207 0.00000 

MEC5 0** 3.75 ± 0.02 0.16 ± 0.00 0.04 ± 0.00 0.33 ± 0.00 83.03 ± 0.58 0.04850 ± 0.002 0.02966 ± 0.00106 0.00000 

MEC6 3* 3.66 ± 0.06 0.18 ± 0.01 0.07 ± 0.01 0.36 ± 0.02 84.58 ± 1.13 0.04876 ± 0.007 0.02769 ± 0.00432 0.00000 

MEC7 3* 3.68 ± 0.08 0.18 ± 0.01 0.06 ± 0.00 0.36 ± 0.01 85.19 ± 2.64 0.04230 ± 0.007 0.07739 ± 0.08456 0.00000 

MEC8 3* 3.54 ± 0.13 0.20 ± 0.03 0.13 ± 0.02 0.39 ± 0.05 90.74 ± 4.24 0.04194 ± 0.008 0.02216 ± 0.00456 0.00000 

MEC9 3* 3.65 ± 0.05 0.19 ± 0.01 0.15 ± 0.01 0.36 ± 0.02 90.49 ± 1.74 0.03580 ± 0.001 0.01862 ± 0.00029 0.00000 

MEC10 1** 3.87 ± 0.04 0.12 ± 0.00 0.06 ± 0.00 0.23 ± 0.01 84.62 ± 2.37 0.03086 ± 0.006 0.01954 ± 0.00396 0.00000 

MEC11 2* 3.77 ± 0.14 0.16 ± 0.03 0.09 ± 0.02 0.32 ± 0.04 84.89 ± 5.49 0.03573 ± 0.005 0.02024 ± 0.00350 0.00000 

MEC12 2* 3.86 ± 0.06 0.15 ± 0.01 0.07 ± 0.00 0.29 ± 0.01 82.60 ± 1.48 0.03728 ± 0.001 0.02241 ± 0.00051 0.00000 

MEC13 3* 3.99 ± 0.06 0.13 ± 0.01 0.04 ± 0.00 0.29 ± 0.01 76.27 ± 2.23 0.04364 ± 0.005 0.02604 ± 0.00285 0.00000 

MEC14 2* 3.98 ± 0.14 0.13 ± 0.02 0.04 ± 0.00 0.29 ± 0.02 76.59 ± 4.84 0.04019 ± 0.006 0.02401 ± 0.00339 0.00000 

MEC15 2** 3.40 ± 0.06 0.21 ± 0.02 0.07 ± 0.01 0.40 ± 0.03 95.37 ± 2.99 0.03865 ± 0.003 0.02125 ± 0.00181 0.00000 

MEC16 3* 3.68 ± 0.17 0.18 ± 0.03 0.04 ± 0.01 0.38 ± 0.03 82.98 ± 6.75 0.05049 ± 0.011 0.02939 ± 0.00648 0.00000 

MEC17 3* 3.57 ± 0.07 0.20 ± 0.01 0.05 ± 0.01 0.41 ± 0.03 88.26 ± 1.57 0.04408 ± 0.004 0.02579 ± 0.00195 0.00000 

MEC18 3* 3.65 ± 0.12 0.19 ± 0.02 0.02 ± 0.00 0.39 ± 0.03 85.49 ± 4.42 0.04649 ± 0.007 0.02815 ± 0.00446 0.00000 

MEC19 N/A 3.44 ± 0.04 0.23 ± 0.01 0.07 ± 0.00 0.47 ± 0.01 91.06 ± 1.19 0.04511 ± 0.004 0.02467 ± 0.00230 0.00000 

MEC20 3** 3.86 ± 0.05 0.12 ± 0.01 0.09 ± 0.01 0.21 ± 0.01 88.93 ± 2.52 0.02486 ± 0.005 0.01527 ± 0.00323 0.00000 

MEC21 4* 3.63 ± 0.04 0.20 ± 0.01 0.17 ± 0.01 0.39 ± 0.01 86.54 ± 1.30 0.04782 ± 0.004 0.02403 ± 0.00232 0.00000 

MEC22 4* 3.58 ± 0.04 0.20 ± 0.01 0.15 ± 0.01 0.39 ± 0.02 87.21 ± 3.02 0.04586 ± 0.006 0.02335 ± 0.00316 0.00000 

MEC23 4* 3.60 ± 0.12 0.16 ± 0.02 0.11 ± 0.01 0.30 ± 0.03 86.89 ± 2.94 0.03616 ± 0.001 0.01904 ± 0.00042 0.00000 

MEC24 5* 3.56 ± 0.01 0.18 ± 0.01 0.16 ± 0.01 0.34 ± 0.02 89.91 ± 0.20 0.03833 ± 0.007 0.02012 ± 0.00350 0.00000 

MEC25 3** 3.98 ± 0.04 0.11 ± 0.01 0.08 ± 0.01 0.20 ± 0.01 86.00 ± 1.27 0.02727 ± 0.002 0.01732 ± 0.00118 0.00000 

MEC26 2* 3.73 ± 0.09 0.17 ± 0.01 0.04 ± 0.00 0.36 ± 0.01 82.95 ± 2.88 0.04336 ± 0.003 0.02605 ± 0.00208 0.00000 

MEC27 2* 3.81 ± 0.02 0.16 ± 0.00 0.04 ± 0.00 0.33 ± 0.01 83.38 ± 0.44 0.03742 ± 0.004 0.02259 ± 0.00248 0.00000 

MEC28 1* 3.83 ± 0.10 0.16 ± 0.02 0.04 ± 0.01 0.34 ± 0.03 82.21 ± 2.57 0.03746 ± 0.005 0.02223 ± 0.00298 0.00000 

MEC29 1* 3.97 ± 0.18 0.14 ± 0.02 0.03 ± 0.01 0.30 ± 0.03 77.90 ± 4.80 0.03768 ± 0.003 0.02341 ± 0.00233 0.00000 

MEC30 0** 4.07 ± 0.09 0.09 ± 0.01 0.05 ± 0.01 0.18 ± 0.02 82.34 ± 1.99 0.02141 ± 0.004 0.01462 ± 0.00268 0.00000 

MEC31 0* 3.88 ± 0.03 0.15 ± 0.00 0.02 ± 0.00 0.33 ± 0.01 79.66 ± 1.14 0.04717 ± 0.002 0.02965 ± 0.00116 0.00000 

MEC32 0* 3.83 ± 0.18 0.16 ± 0.02 0.02 ± 0.00 0.34 ± 0.02 80.69 ± 5.56 0.04670 ± 0.007 0.02891 ± 0.00446 0.00000 

MEC33 0* 3.75 ± 0.14 0.18 ± 0.02 0.03 ± 0.00 0.36 ± 0.03 83.96 ± 3.59 0.03994 ± 0.001 0.02456 ± 0.00061 0.00000 

MEC34 1* 3.90 ± 0.08 0.16 ± 0.01 0.02 ± 0.00 0.34 ± 0.03 78.68 ± 2.27 0.04523 ± 0.003 0.02867 ± 0.00180 0.00000 

MEC35 1** 3.43 ± 0.07 0.19 ± 0.01 0.06 ± 0.00 0.35 ± 0.02 93.73 ± 1.81 0.03984 ± 0.005 0.02257 ± 0.00295 0.00000 

MEC36 0* 3.83 ± 0.04 0.14 ± 0.00 0.03 ± 0.00 0.31 ± 0.01 80.47 ± 1.17 0.03743 ± 0.004 0.02232 ± 0.00252 0.00000 

MEC37 0* 3.81 ± 0.14 0.16 ± 0.02 0.03 ± 0.00 0.33 ± 0.03 84.45 ± 5.29 0.03905 ± 0.001 0.02399 ± 0.00043 0.00000 
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Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

MEC38 0* 3.80 ± 0.13 0.17 ± 0.02 0.03 ± 0.01 0.35 ± 0.04 84.40 ± 4.78 0.03607 ± 0.003 0.02300 ± 0.00150 0.00000 

MEC39 0* 3.83 ± 0.12 0.18 ± 0.02 0.03 ± 0.00 0.40 ± 0.02 80.89 ± 4.27 0.04587 ± 0.004 0.02933 ± 0.00316 0.00000 

MEC40 3** 3.37 ± 0.06 0.24 ± 0.02 0.11 ± 0.01 0.41 ± 0.03 99.84 ± 3.15 0.03040 ± 0.004 0.01609 ± 0.00247 0.00000 

MEC41 3* 3.56 ± 0.23 0.22 ± 0.06 0.07 ± 0.03 0.42 ± 0.08 90.26 ± 10.84 0.03468 ± 0.011 0.01937 ± 0.00684 0.00000 

MEC42 3* 3.79 ± 0.22 0.16 ± 0.03 0.05 ± 0.01 0.35 ± 0.05 81.19 ± 6.42 0.04197 ± 0.002 0.02397 ± 0.00109 0.00000 

MEC43 4* 3.58 ± 0.09 0.20 ± 0.02 0.14 ± 0.01 0.40 ± 0.02 88.91 ± 3.38 0.04021 ± 0.005 0.02041 ± 0.00258 0.00000 

MEC44 2** 3.90 ± 0.10 0.13 ± 0.01 0.06 ± 0.01 0.24 ± 0.02 87.74 ± 3.69 0.02425 ± 0.003 0.01596 ± 0.00240 0.00000 

MEC45 N/A 4.20 ± 0.12 0.11 ± 0.01 0.02 ± 0.00 0.25 ± 0.02 73.41 ± 3.89 0.03522 ± 0.006 0.02319 ± 0.00462 0.00000 

MEC46 2* 3.90 ± 0.17 0.14 ± 0.02 0.03 ± 0.00 0.32 ± 0.02 78.22 ± 6.32 0.04637 ± 0.009 0.02923 ± 0.00575 0.00000 

MEC47 N/A 3.86 ± 0.19 0.15 ± 0.03 0.04 ± 0.01 0.32 ± 0.03 79.68 ± 7.81 0.04141 ± 0.005 0.02552 ± 0.00389 0.00000 

MEC48 N/A 3.78 ± 0.14 0.16 ± 0.02 0.04 ± 0.01 0.33 ± 0.02 82.63 ± 5.33 0.03681 ± 0.008 0.02287 ± 0.00547 0.00000 

MEC49 3* 3.67 ± 0.08 0.17 ± 0.02 0.05 ± 0.01 0.34 ± 0.04 84.35 ± 1.89 0.03859 ± 0.010 0.02265 ± 0.00589 0.00000 

MEC50 3* 3.74 ± 0.10 0.16 ± 0.02 0.05 ± 0.01 0.34 ± 0.02 83.26 ± 4.08 0.04095 ± 0.006 0.02472 ± 0.00349 0.00000 

MEC51 3* 3.64 ± 0.01 0.18 ± 0.00 0.06 ± 0.00 0.37 ± 0.01 83.81 ± 1.70 0.04886 ± 0.010 0.02843 ± 0.00633 0.00000 

MEC52 3* 3.62 ± 0.09 0.19 ± 0.02 0.07 ± 0.01 0.38 ± 0.02 85.98 ± 4.00 0.04308 ± 0.009 0.02463 ± 0.00550 0.00000 

MEC53 1** 3.97 ± 0.07 0.11 ± 0.01 0.12 ± 0.01 0.20 ± 0.01 93.05 ± 1.62 0.02012 ± 0.001 0.01666 ± 0.00153 0.00000 

MEC54 2** 4.28 ± 0.11 0.10 ± 0.01 0.05 ± 0.00 0.21 ± 0.01 74.98 ± 3.86 0.02819 ± 0.005 0.01745 ± 0.00299 0.00000 

MEC55 2* 4.39 ± 0.22 0.09 ± 0.01 0.04 ± 0.01 0.21 ± 0.02 71.70 ± 4.82 0.03299 ± 0.004 0.02106 ± 0.00249 0.00000 

MEC56 0* 4.00 ± 0.10 0.13 ± 0.01 0.03 ± 0.00 0.27 ± 0.03 79.89 ± 1.28 0.03092 ± 0.008 0.02018 ± 0.00516 0.00000 

MEC57 0* 4.04 ± 0.20 0.14 ± 0.02 0.02 ± 0.01 0.29 ± 0.03 81.00 ± 6.95 0.03106 ± 0.005 0.01997 ± 0.00358 0.00000 

MEC58 1* 3.99 ± 0.09 0.14 ± 0.01 0.03 ± 0.00 0.30 ± 0.02 77.97 ± 3.29 0.04273 ± 0.009 0.02700 ± 0.00618 0.00000 

MEC59 2** 3.84 ± 0.13 0.15 ± 0.02 0.07 ± 0.01 0.28 ± 0.02 86.03 ± 4.48 0.03244 ± 0.005 0.01935 ± 0.00328 0.00000 

MEC60 0* 4.25 ± 0.15 0.11 ± 0.02 0.02 ± 0.00 0.25 ± 0.02 75.40 ± 4.38 0.03097 ± 0.003 0.01988 ± 0.00194 0.00000 

MEC61 1* 4.37 ± 0.10 0.09 ± 0.01 0.02 ± 0.00 0.20 ± 0.01 75.23 ± 2.69 0.02871 ± 0.003 0.01980 ± 0.00234 0.00000 

MEC62 1* 4.25 ± 0.07 0.11 ± 0.01 0.03 ± 0.00 0.23 ± 0.01 76.13 ± 1.89 0.03117 ± 0.000 0.02019 ± 0.00008 0.00000 

MEC63 1* 4.22 ± 0.23 0.11 ± 0.02 0.03 ± 0.01 0.23 ± 0.02 78.08 ± 7.04 0.02877 ± 0.006 0.01967 ± 0.00451 0.00000 

MEC64 2** 3.76 ± 0.12 0.13 ± 0.03 0.10 ± 0.02 0.22 ± 0.04 92.92 ± 4.71 0.01921 ± 0.002 0.01215 ± 0.00152 0.00000 

MEC65 2* 4.23 ± 0.05 0.10 ± 0.00 0.08 ± 0.00 0.21 ± 0.01 76.79 ± 2.46 0.02943 ± 0.007 0.01754 ± 0.00469 0.00000 

MEC66 2* 4.08 ± 0.18 0.11 ± 0.02 0.08 ± 0.01 0.23 ± 0.02 80.11 ± 5.13 0.02783 ± 0.002 0.01669 ± 0.00123 0.00000 

MEC67 0* 4.30 ± 0.12 0.11 ± 0.01 0.02 ± 0.00 0.24 ± 0.01 73.04 ± 2.82 0.03115 ± 0.001 0.01980 ± 0.00042 0.00000 

MEC68 2* 4.43 ± 0.23 0.10 ± 0.02 0.03 ± 0.01 0.22 ± 0.02 71.06 ± 6.90 0.03378 ± 0.006 0.02093 ± 0.00446 0.00000 

MEC69 2** 3.71 ± 0.05 0.16 ± 0.01 0.05 ± 0.00 0.32 ± 0.01 87.64 ± 3.39 0.03747 ± 0.008 0.02257 ± 0.00535 0.00000 

MEC70 2* 3.94 ± 0.18 0.14 ± 0.02 0.03 ± 0.00 0.31 ± 0.02 79.41 ± 5.63 0.04394 ± 0.006 0.02806 ± 0.00385 0.00000 

MEC71 2* 3.86 ± 0.09 0.15 ± 0.01 0.04 ± 0.00 0.32 ± 0.02 80.41 ± 2.01 0.04500 ± 0.005 0.02769 ± 0.00347 0.00000 

MEC72 2* 3.76 ± 0.09 0.16 ± 0.02 0.06 ± 0.01 0.32 ± 0.02 84.23 ± 2.83 0.04050 ± 0.002 0.02456 ± 0.00109 0.00000 

MEC73 N/A 3.98 ± 0.12 0.14 ± 0.01 0.02 ± 0.00 0.31 ± 0.01 77.44 ± 4.40 0.04435 ± 0.006 0.02812 ± 0.00359 0.00000 

MEC74 2** 4.12 ± 0.05 0.10 ± 0.01 0.06 ± 0.00 0.21 ± 0.01 78.06 ± 1.74 0.03085 ± 0.001 0.01971 ± 0.00097 0.00000 

MEC75 0* 3.58 ± 0.12 0.21 ± 0.03 0.05 ± 0.01 0.40 ± 0.03 88.99 ± 5.05 0.04295 ± 0.006 0.02546 ± 0.00403 0.00000 

MEC76 0* 3.88 ± 0.11 0.15 ± 0.01 0.03 ± 0.00 0.32 ± 0.02 80.87 ± 2.67 0.03530 ± 0.004 0.02103 ± 0.00226 0.00000 

MEC77 0* 3.69 ± 0.10 0.17 ± 0.02 0.06 ± 0.01 0.35 ± 0.03 84.49 ± 3.23 0.04328 ± 0.004 0.02526 ± 0.00243 0.00000 
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Sample GHI IRSF C/P Am/P BPI FWHM 1010 cm-1 1410 cm-1 872 cm-1 712 cm-1 

MEC78 0* 3.80 ± 0.13 0.16 ± 0.02 0.04 ± 0.00 0.34 ± 0.03 81.50 ± 3.60 0.04290 ± 0.002 0.02523 ± 0.00135 0.00000 

MEC79 2** 4.01 ± 0.05 0.11 ± 0.01 0.08 ± 0.01 0.21 ± 0.01 81.85 ± 1.39 0.02916 ± 0.003 0.01869 ± 0.00203 0.00000 

MEC80 3* 3.76 ± 0.07 0.15 ± 0.02 0.12 ± 0.01 0.32 ± 0.03 90.98 ± 3.83 0.03028 ± 0.004 0.01642 ± 0.00281 0.00000 

MEC81 3* 3.75 ± 0.01 0.14 ± 0.00 0.13 ± 0.01 0.28 ± 0.01 91.97 ± 2.84 0.02245 ± 0.002 0.01204 ± 0.00106 0.00000 

MEC82 3* 3.97 ± 0.10 0.12 ± 0.01 0.11 ± 0.01 0.25 ± 0.02 80.77 ± 2.30 0.02851 ± 0.005 0.01608 ± 0.00291 0.00000 

MEC83 3* 3.60 ± 0.07 0.17 ± 0.02 0.14 ± 0.01 0.34 ± 0.03 90.94 ± 3.12 0.02980 ± 0.001 0.01545 ± 0.00094 0.00000 

MEC84 1** 3.80 ± 0.09 0.17 ± 0.02 0.04 ± 0.01 0.34 ± 0.02 84.50 ± 4.08 0.04234 ± 0.002 0.02564 ± 0.00172 0.00000 

MEC85 N/A 3.75 ± 0.15 0.23 ± 0.03 0.03 ± 0.01 0.47 ± 0.03 82.57 ± 8.31 0.05142 ± 0.009 0.03400 ± 0.00610 0.00000 

MEC86 N/A 3.77 ± 0.15 0.18 ± 0.02 0.02 ± 0.00 0.37 ± 0.03 83.81 ± 5.00 0.03808 ± 0.007 0.02325 ± 0.00422 0.00000 

MEC87 2* 3.83 ± 0.13 0.18 ± 0.02 0.02 ± 0.00 0.39 ± 0.03 81.11 ± 4.59 0.04881 ± 0.006 0.03129 ± 0.00394 0.00000 

MEC88 2** 3.58 ± 0.09 0.22 ± 0.02 0.08 ± 0.01 0.41 ± 0.03 94.42 ± 3.42 0.03716 ± 0.003 0.02248 ± 0.00168 0.00000 

MEC89 1* 4.13 ± 0.16 0.12 ± 0.02 0.03 ± 0.00 0.26 ± 0.02 77.30 ± 5.41 0.03422 ± 0.004 0.02195 ± 0.00237 0.00000 

MEC90 1* 3.95 ± 0.04 0.14 ± 0.01 0.04 ± 0.00 0.29 ± 0.01 79.90 ± 1.58 0.04065 ± 0.005 0.02489 ± 0.00343 0.00000 

MEC91 N/A 3.75 ± 0.14 0.15 ± 0.02 0.05 ± 0.01 0.33 ± 0.03 80.48 ± 5.21 0.04387 ± 0.005 0.02529 ± 0.00308 0.00000 

MEC92 N/A 4.05 ± 0.09 0.12 ± 0.01 0.03 ± 0.00 0.26 ± 0.02 77.25 ± 2.57 0.03319 ± 0.001 0.02055 ± 0.00096 0.00000 

MEC93 2** 3.60 ± 0.04 0.17 ± 0.01 0.06 ± 0.00 0.33 ± 0.00 87.50 ± 2.11 0.04141 ± 0.008 0.02458 ± 0.00457 0.00000 

MEC94 0* 3.75 ± 0.10 0.17 ± 0.02 0.03 ± 0.00 0.34 ± 0.03 86.64 ± 4.49 0.03319 ± 0.001 0.02010 ± 0.00069 0.00000 

MEC95 0* 3.80 ± 0.08 0.15 ± 0.01 0.03 ± 0.00 0.32 ± 0.01 83.08 ± 3.36 0.04120 ± 0.003 0.02498 ± 0.00214 0.00000 

MEC96 N/A 3.89 ± 0.10 0.15 ± 0.01 0.02 ± 0.00 0.32 ± 0.02 80.77 ± 3.23 0.03983 ± 0.003 0.02404 ± 0.00168 0.00000 

MEC97 N/A 3.53 ± 0.12 0.22 ± 0.03 0.03 ± 0.01 0.43 ± 0.04 91.71 ± 5.67 0.03369 ± 0.006 0.02032 ± 0.00374 0.00000 

MEC98 2** 3.51 ± 0.05 0.20 ± 0.01 0.08 ± 0.00 0.37 ± 0.01 92.95 ± 1.19 0.03882 ± 0.006 0.02123 ± 0.00322 0.00000 

MEC99 N/A 3.69 ± 0.17 0.19 ± 0.03 0.05 ± 0.01 0.38 ± 0.04 86.83 ± 6.07 0.04061 ± 0.005 0.02317 ± 0.00301 0.00000 

MEC100 3* 3.51 ± 0.07 0.22 ± 0.02 0.15 ± 0.02 0.42 ± 0.04 89.81 ± 2.53 0.04732 ± 0.008 0.02419 ± 0.00432 0.00000 

MEC101 0* 3.98 ± 0.16 0.15 ± 0.02 0.02 ± 0.00 0.33 ± 0.03 78.27 ± 5.58 0.04845 ± 0.005 0.03027 ± 0.00353 0.00000 

DEN1+ 4*** 3.33 ± 0.04 0.25 ± 0.01 0.17 ± 0.00 0.44 ± 0.01 112.48 ± 1.61 0.02414 ± 0.001 0.01234 ± 0.00074 0.00000 

DEN2+ 3*** 3.24 ± 0.02 0.22 ± 0.00 0.10 ± 0.00 0.39 ± 0.01 102.45 ± 1.49 0.02668 ± 0.004 0.01405 ± 0.00223 0.00000 

DEN3+ 3* 3.33 ± 0.01 0.26 ± 0.00 0.16 ± 0.00 0.44 ± 0.01 111.29 ± 2.58 0.02690 ± 0.005 0.01398 ± 0.00229 0.00000 

DEN4+ 2* 3.97 ± 0.11 0.11 ± 0.01 0.05 ± 0.01 0.22 ± 0.02 80.74 ± 4.13 0.02530 ± 0.002 0.01170 ± 0.01016 0.00000 

DEN5+ 2* 3.68 ± 0.02  0.15 ± 0.00 0.10 ± 0.00 0.25 ± 0.01 94.66 ± 1.87 0.02215 ± 0.005 0.01280 ± 0.00265 0.00000 

DEN6+ 4*** 3.33 ± 0.02 0.22 ± 0.01 0.14 ± 0.01 0.41 ± 0.02 96.80 ± 1.14 0.03281 ± 0.006 0.01686 ± 0.00327 0.00000 

DEN7+ 3*** 3.38 ± 0.03 0.20 ± 0.01 0.11 ± 0.01 0.35 ± 0.02 99.30 ± 1.26 0.02781 ± 0.003 0.01498 ± 0.00151 0.00000 

DEN8+  N/A 3.27 ± 0.02 0.18 ± 0.00 0.08 ± 0.00 0.32 ± 0.00 96.65 ± 0.48 0.03130 ± 0.002 0.01790 ± 0.00103 0.00000 

DEN9+ 1* 3.62 ± 0.10 0.14 ± 0.02 0.07 ± 0.01 0.24 ± 0.02 94.53 ± 3.41 0.01943 ± 0.002 0.01225 ± 0.00102 0.00000 
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Table A3. Collagen, DNA and CN whole of bone data. 1Collagen content estimates calculated using the equation collagen wt. % = 113.13 Am/P + 1.69  presented in Lebon et al. 

(2016). The + symbol next to samples’ names indicate samples that sampling for DNA analysis preceded. The letter next to endogenous DNA yields denotes the ancient D NA lab 

the data originate, i.e. C=Copenhagen, D=Dublin and M=Mainz.  

Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

BED1+ N/A N/A N/A N/A 6.63 1.31 5.05 3.85M 

BED2+ N/A N/A N/A N/A 6.09 1.13 5.38 0.88M  

BED3+ N/A N/A N/A N/A 5.80 1.11 5.24 9.71M 

BED4+ N/A N/A N/A N/A 5.71 1.03 5.57 15.53M 

BED9+ N/A N/A N/A N/A 5.52 0.98 5.64 1.15M 

MAR1+ 0.63 N/A N/A N/A N/A N/A N/A 0.15M 

MAR2 0.31 N/A N/A N/A N/A N/A N/A N/A 

MAR3 0.38 N/A N/A N/A N/A N/A N/A N/A 

MAR4 1.03 10.21 0.11 109.18 N/A N/A N/A N/A 

MAR5 0.48 1.85 0.15 14.80 N/A N/A N/A N/A 

MAR6 0.23 N/A N/A N/A N/A N/A N/A N/A 

MAR7 0.58 N/A N/A N/A N/A N/A N/A N/A 

MAR8 0.17 N/A N/A N/A N/A N/A N/A N/A 

MAR9+ 0.63 3.03 0.16 21.54 N/A N/A N/A 0.12M 

MAR10+ 0.36 N/A N/A N/A N/A N/A N/A 0.18M 

MAR11 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAR12 0.48 N/A N/A N/A N/A N/A N/A N/A 

MAR13 0.29 N/A N/A N/A N/A N/A N/A N/A 

MAR14 0.32 N/A N/A N/A N/A N/A N/A N/A 

MAR15 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAR16+ 0.78 1.41 0.16 10.45 N/A N/A N/A 0.41M 

VEM139+ N/A N/A N/A N/A 2.10 0.00 0.00 0.07D 

VEM140+ N/A N/A N/A N/A 2.35 0.00 0.00 3.10D 

VEM141+ N/A N/A N/A N/A 2.72 0.00 0.00 0.06D 

VEM143+ N/A N/A N/A N/A 2.81 0.00 0.00 0.08D 

VEM144+ N/A N/A N/A N/A 2.16 0.00 0.00 0.07D 

VEM145+ N/A N/A N/A N/A 2.50 0.00 0.00 0.30D 

SAR1 14.40 36.74 13.46 3.18 N/A N/A N/A N/A 

SAR2 9.13 35.69 13.02 3.20 N/A N/A N/A N/A 

SAR3 11.07 34.35 12.51 3.20 N/A N/A N/A N/A 

SAR4 4.72 20.19 7.70 3.06 N/A N/A N/A N/A 

SAR5 19.45 37.00 13.63 3.17 N/A N/A N/A N/A 

SAR6 20.51 39.26 14.41 3.18 N/A N/A N/A N/A 

SAR7 20.29 39.10 14.39 3.17 N/A N/A N/A N/A 

SAR8+ 14.95 40.81 14.74 3.23 N/A N/A N/A 60.60M 
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Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

SAR9 6.18 35.98 13.01 3.23 N/A N/A N/A N/A 

SAR10 22.55 42.38 15.50 3.19 N/A N/A N/A N/A 

SAR11 13.06 41.59 15.23 3.19 N/A N/A N/A N/A 

SAR12 13.39 39.77 14.63 3.17 N/A N/A N/A N/A 

SAR13 16.71 40.82 15.01 3.17 N/A N/A N/A N/A 

SAR14 21.13 41.22 15.13 3.18 N/A N/A N/A N/A 

SAR15 21.41 41.87 15.42 3.17 N/A N/A N/A N/A 

SAR16 14.42 41.09 15.08 3.18 N/A N/A N/A N/A 

SAR17 7.16 42.84 15.60 3.20 N/A N/A N/A N/A 

SAR18 21.11 39.85 14.51 3.20 N/A N/A N/A N/A 

SAR19 8.26 29.51 10.74 3.21 N/A N/A N/A N/A 

SAR24+ 14.65 37.26 13.51 3.22 5.63 1.24 4.55 19.62D 

SAR28+ 7.38 30.30 10.61 3.33 5.36 1.16 4.63 15.55D 

SAR35+ 10.89 32.95 11.72 3.28 6.44 1.50 4.30 33.44D 

SAR38+ 9.21 30.34 10.42 3.40 4.53 0.81 5.63 15.35D 

SAR40+ 5.28 37.12 12.35 3.51 6.26 1.54 4.08 48.85D 

PRO1+ 7.88 36.66 12.51 3.42 4.15 0.78 5.35 18.53D 

PRO2+ 7.08 31.82 10.89 3.41 4.46 0.95 4.72 0.18D 

PRO8+ 1.46 N/A N/A N/A 2.17 0.00 0.00 0.06D 

PRO9 12.02 38.23 13.79 3.23 7.39 2.03 3.65 N/A 

THA1+ 5.97 38.99 13.90 3.27 N/A N/A N/A 3.42D 

THA2+ 0.84 38.28 13.28 3.36 N/A N/A N/A 0M 

THA3+ 8.18 41.71 15.07 3.23 N/A N/A N/A 0M 

THA4 5.36 40.60 14.55 3.25 N/A N/A N/A N/A 

THA5 9.87 41.55 15.05 3.22 N/A N/A N/A N/A 

THA6 4.34 36.47 13.07 3.26 N/A N/A N/A N/A 

THA7 7.13 41.31 14.67 3.29 N/A N/A N/A N/A 

THA8+ 1.77 41.68 14.67 3.32 N/A N/A N/A 0.06M 

THA9+ 12.40 42.83 15.65 3.19 N/A N/A N/A 4.1M 

THA10 5.62 39.76 14.21 3.27 N/A N/A N/A N/A 

THA11+ 4.57 40.46 14.39 3.28 N/A N/A N/A 0.09M 

VEM202+ N/A N/A N/A N/A 5.36 0.98 5.47 37.86D 

VEM203+ N/A N/A N/A N/A 4.53 0.93 4.86 45.13D 

VEM204+ N/A N/A N/A N/A 4.66 0.93 4.99 16.19D 

VEM205+ N/A N/A N/A N/A 4.81 0.77 6.23 24.46D 

VEM206+ N/A N/A N/A N/A N/A N/A N/A 40.84D 

VEM207+ N/A N/A N/A N/A 5.78 1.18 4.89 47.11D 

VEM208+ N/A N/A N/A N/A 5.40 1.05 5.13 43.54D 

VEM209+ N/A N/A N/A N/A N/A N/A N/A 55.04D 

VEM210+ N/A N/A N/A N/A N/A N/A N/A 50.46D 
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Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

MAN1+ 4.95 39.08 13.76 3.31 N/A N/A N/A 52.29D 

MAN2 4.83 32.37 11.46 3.30 N/A N/A N/A N/A 

MAN3 8.54 29.55 10.62 3.24 N/A N/A N/A N/A 

MAN4+ 7.57 40.28 14.47 3.25 N/A N/A N/A 25.10M 

MAN5+ 7.06 41.52 14.98 3.23 N/A N/A N/A 2.77M 

MAN6+ 7.28 40.08 14.39 3.25 N/A N/A N/A 1.83M 

MAN7+ 5.93 41.63 14.90 3.26 N/A N/A N/A 2.65M 

MAN8 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN9 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN10 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN11 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN12 0.72 N/A N/A N/A N/A N/A N/A N/A 

MAN13 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN14 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN15+ 0.00 N/A N/A N/A N/A N/A N/A 0.41M 

MAN16 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN17 6.98 13.84 4.92 3.28 N/A N/A N/A N/A 

MAN18 2.58 0.45 0.10 5.28 N/A N/A N/A N/A 

MAN19 1.84 0.70 0.25 4.02 N/A N/A N/A N/A 

MAN20 0.40 0.78 0.25 4.27 N/A N/A N/A N/A 

MAN21+ 0.00 N/A N/A N/A N/A N/A N/A 0.3M 

MAN22+ 0.00 N/A N/A N/A N/A N/A N/A 0.45M 

MAN23 1.63 N/A N/A N/A N/A N/A N/A N/A 

MAN24 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN25+ 0.00 N/A N/A N/A N/A N/A N/A 0.5M 

MAN26 0.00 N/A N/A N/A N/A N/A N/A N/A 

MAN27 0.39 N/A N/A N/A N/A N/A N/A N/A 

MAN28+ 0.00 N/A N/A N/A N/A N/A N/A 0.13M 

MAN29+ 0.00 N/A N/A N/A N/A N/A N/A 0.64M 

MAN30+ 0.00 N/A N/A N/A N/A N/A N/A 0.17M 

MAN31+ 2.10 0.61 0.21 4.09 N/A N/A N/A 0.36M 

KAZ1+ 15.26 43.40 12.89 3.25 9.62 1.46 6.59 0.12C 

KAZ2+ 17.74 44.36 11.08 3.25 9.80 2.85 3.45 5.77C 

KAZ3+ 17.29 43.83 10.98 3.26 10.72 3.23 3.32 32.01C 

KAZ4+ 10.53 43.73 11.50 3.31 7.92 1.49 5.32 9.58C 

KAZ5+ 13.60 42.57 12.89 3.26 6.04 1.39 4.35 N/A 

KAZ6+ 13.59 42.72 11.20 3.24 7.53 1.84 4.10 0.46D 

VEM146+ N/A N/A N/A N/A 6.49 1.60 4.06 59.13D 

VEM147+ N/A N/A N/A N/A 7.25 1.85 3.91 42.03D 

VEM148+ N/A N/A N/A N/A 5.34 1.35 3.96 71.12D 
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Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

VEM149+ N/A N/A N/A N/A 5.88 1.16 5.08 51.99D 

VEM178+ N/A N/A N/A N/A 6.07 1.13 5.38 58.16D 

VEM179+ N/A N/A N/A N/A 6.25 1.36 4.59 54.26D 

KAS1 2.57 4.95 1.56 3.70 N/A N/A N/A N/A 

KAS2 6.68 42.97 9.13 3.24 N/A N/A N/A N/A 

KAS3 2.26 41.44 8.16 3.27 N/A N/A N/A N/A 

KAS4 7.14 40.03 8.15 3.19 N/A N/A N/A N/A 

KAS5 5.48 33.72 9.39 3.23 N/A N/A N/A N/A 

KAS6 5.79 40.30 9.75 3.29 N/A N/A N/A N/A 

KAS7 0.92 34.15 9.99 3.99 N/A N/A N/A N/A 

KAS8 11.29 39.45 14.36 3.21 N/A N/A N/A N/A 

KAS9 12.07 46.13 16.78 3.21 N/A N/A N/A N/A 

KAS10 9.68 37.71 13.70 3.21 N/A N/A N/A N/A 

KAS11 2.86 30.06 10.44 3.36 N/A N/A N/A N/A 

KAS12 8.14 39.89 14.49 3.21 N/A N/A N/A N/A 

KAS13 11.00 42.57 15.46 3.21 N/A N/A N/A N/A 

KAS14 6.59 37.76 13.63 3.23 N/A N/A N/A N/A 

KAS15 0.86 40.30 12.95 3.63 N/A N/A N/A N/A 

KAS16+ 10.47 31.49 11.13 3.30 N/A N/A N/A 21.22M 

KAS17+ 10.62 42.67 15.07 3.30 N/A N/A N/A 28.93M 

KAS18 10.89 41.34 5.56 3.26 6.75 1.31 5.17 N/A 

KAS19 9.21 29.55 5.95 3.22 5.05 0.89 5.70 N/A 

KAS22 5.28 41.54 6.15 3.27 5.73 0.92 6.26 N/A 

KAS23 7.70 37.75 6.67 3.23 5.74 1.12 5.14 N/A 

KAS26 1.90 N/A N/A N/A 2.90 0.00 0.00 N/A 

KAS28 13.23 34.44 3.98 3.25 10.59 3.08 3.43 N/A 

KAS29 10.23 28.91 6.62 3.26 5.49 1.00 5.51 N/A 

VEM193+ N/A N/A N/A N/A 7.46 1.77 4.22 35.95D 

VEM194+ N/A N/A N/A N/A 5.36 0.96 5.61 30.67D 

VEM195+ N/A N/A N/A N/A 5.92 1.29 4.60 12.33D 

VEM196+ N/A N/A N/A N/A 5.95 1.25 4.77 48.01D 

VEM197+ N/A N/A N/A N/A N/A N/A N/A 14.37D 

VEM198+ N/A N/A N/A N/A 4.86 0.99 4.92 10.32D 

VEM201+ N/A N/A N/A N/A 7.44 1.84 4.06 35.83D 

VEM180+ N/A N/A N/A N/A 5.71 1.19 4.78 48.20D 

VEM181+ N/A N/A N/A N/A 6.25 1.32 4.74 21.40D 

VEM182+ N/A N/A N/A N/A 4.87 0.90 5.43 56.20D 

VEM100+ N/A N/A N/A N/A 5.68 1.20 4.72 55.00D 

VEM101+ N/A N/A N/A N/A 6.34 1.44 4.40 33.00D 

VEM102+ N/A N/A N/A N/A 5.28 1.06 5.00 41.00D 
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Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

VEM103+ N/A N/A N/A N/A 4.68 1.15 4.08 25.00D 

VEM108+ N/A N/A N/A N/A 5.45 1.15 4.75 43.00D 

VEM111+ N/A N/A N/A N/A 5.35 1.19 4.50 46.00D 

MEC1 14.76 37.43 13.67 3.19 N/A N/A N/A N/A 

MEC2 7.62 42.71 15.39 3.24 N/A N/A N/A N/A 

MEC3 7.01 35.53 12.72 3.26 N/A N/A N/A N/A 

MEC4 4.45 40.75 14.51 3.28 N/A N/A N/A N/A 

MEC5 7.18 43.12 14.65 3.43 N/A N/A N/A N/A 

MEC6 19.84 62.32 28.70 2.74 N/A N/A N/A N/A 

MEC7 19.52 38.51 14.10 3.19 N/A N/A N/A N/A 

MEC8 16.27 42.92 15.73 3.18 N/A N/A N/A N/A 

MEC9 20.69 44.53 16.35 3.18 N/A N/A N/A N/A 

MEC10 12.94 37.16 13.14 3.30 N/A N/A N/A N/A 

MEC11 16.52 42.10 15.43 3.18 N/A N/A N/A N/A 

MEC12 19.48 37.07 13.61 3.18 N/A N/A N/A N/A 

MEC13 14.13 43.16 15.76 3.20 N/A N/A N/A N/A 

MEC14 15.93 37.26 13.66 3.18 N/A N/A N/A N/A 

MEC15 8.32 43.54 15.22 3.34 N/A N/A N/A N/A 

MEC16 12.74 40.63 14.78 3.21 N/A N/A N/A N/A 

MEC17 9.83 39.16 14.15 3.23 N/A N/A N/A N/A 

MEC18 7.22 41.53 14.90 3.25 N/A N/A N/A N/A 

MEC19 15.59 44.35 16.24 3.19 N/A N/A N/A N/A 

MEC20 16.25 44.69 16.10 3.24 N/A N/A N/A N/A 

MEC21 21.71 21.24 7.78 1.61 N/A N/A N/A N/A 

MEC22 21.35 47.84 18.02 2.11 N/A N/A N/A N/A 

MEC23 18.44 43.58 15.93 3.19 N/A N/A N/A N/A 

MEC24 21.28 43.15 15.79 3.19 N/A N/A N/A N/A 

MEC25 11.85 65.20 23.57 3.25 N/A N/A N/A N/A 

MEC26 13.46 40.63 14.78 3.21 N/A N/A N/A N/A 

MEC27 14.40 42.00 15.30 3.20 N/A N/A N/A N/A 

MEC28 9.87 35.85 12.93 3.24 N/A N/A N/A N/A 

MEC29 9.64 37.30 13.47 3.23 N/A N/A N/A N/A 

MEC30 12.60 42.05 14.98 3.28 N/A N/A N/A N/A 

MEC31 8.54 15.01 5.39 3.25 N/A N/A N/A N/A 

MEC32 5.89 30.77 10.99 3.26 N/A N/A N/A N/A 

MEC33 6.65 30.60 10.98 3.25 N/A N/A N/A N/A 

MEC34 6.16 35.15 12.49 3.28 N/A N/A N/A N/A 

MEC35 9.38 38.18 13.40 3.32 N/A N/A N/A N/A 

MEC36 8.04 33.70 12.08 3.25 N/A N/A N/A N/A 

MEC37 9.06 21.09 7.68 3.20 N/A N/A N/A N/A 
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Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

MEC38 8.04 19.74 7.16 3.22 N/A N/A N/A N/A 

MEC39 10.21 21.25 7.75 3.20 N/A N/A N/A N/A 

MEC40 16.41 44.05 15.41 3.34 N/A N/A N/A N/A 

MEC41 16.78 43.61 15.95 3.19 N/A N/A N/A N/A 

MEC42 17.72 44.97 16.45 3.19 N/A N/A N/A N/A 

MEC43 17.53 44.50 16.23 3.20 N/A N/A N/A N/A 

MEC44 9.27 45.07 15.69 3.35 N/A N/A N/A N/A 

MEC45 10.85 21.76 7.82 3.25 N/A N/A N/A N/A 

MEC46 11.73 32.89 12.00 3.20 N/A N/A N/A N/A 

MEC47 7.21 36.98 13.26 3.25 N/A N/A N/A N/A 

MEC48 10.07 36.76 13.05 3.28 N/A N/A N/A N/A 

MEC49 11.53 46.77 16.99 3.21 N/A N/A N/A N/A 

MEC50 9.91 45.51 16.51 3.22 N/A N/A N/A N/A 

MEC51 13.44 45.83 16.79 3.18 N/A N/A N/A N/A 

MEC52 18.45 45.48 16.66 3.18 N/A N/A N/A N/A 

MEC53 14.93 42.94 15.25 3.28 N/A N/A N/A N/A 

MEC54 14.20 42.06 15.13 3.24 N/A N/A N/A N/A 

MEC55 15.81 42.20 15.47 3.18 N/A N/A N/A N/A 

MEC56 5.51 42.15 15.43 3.19 N/A N/A N/A N/A 

MEC57 8.99 43.22 15.71 3.21 N/A N/A N/A N/A 

MEC58 5.87 42.68 15.57 3.20 N/A N/A N/A N/A 

MEC59 8.87 43.06 15.07 3.33 N/A N/A N/A N/A 

MEC60 8.95 44.58 16.11 3.23 N/A N/A N/A N/A 

MEC61 4.42 41.89 14.97 3.26 N/A N/A N/A N/A 

MEC62 5.23 39.99 14.59 3.20 N/A N/A N/A N/A 

MEC63 5.52 44.62 16.10 3.23 N/A N/A N/A N/A 

MEC64 13.67 44.58 16.23 3.21 N/A N/A N/A N/A 

MEC65 18.79 42.67 15.73 3.17 N/A N/A N/A N/A 

MEC66 17.30 44.01 16.17 3.18 N/A N/A N/A N/A 

MEC67 4.41 41.74 15.14 3.22 N/A N/A N/A N/A 

MEC68 9.73 43.48 16.07 3.16 N/A N/A N/A N/A 

MEC69 7.24 42.29 14.90 3.31 N/A N/A N/A N/A 

MEC70 10.57 43.58 15.94 3.19 N/A N/A N/A N/A 

MEC71 12.72 44.24 16.16 3.19 N/A N/A N/A N/A 

MEC72 14.71 44.61 16.33 3.19 N/A N/A N/A N/A 

MEC73 8.77 44.22 16.03 3.22 N/A N/A N/A N/A 

MEC74 9.91 45.56 16.30 3.26 N/A N/A N/A N/A 

MEC75 9.05 45.71 16.73 3.19 N/A N/A N/A N/A 

MEC76 6.25 45.41 16.52 3.21 N/A N/A N/A N/A 

MEC77 7.50 45.81 16.74 3.19 N/A N/A N/A N/A 
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Sample Collagen wt. % Collagen C wt. % Collagen N wt. % Collagen C/N Whole bone C wt. % Whole bone N wt. % Whole bone C/N Endogenous DNA % 

MEC78 10.31 44.27 16.24 3.18 N/A N/A N/A N/A 

MEC79 15.09 43.37 15.62 3.24 N/A N/A N/A N/A 

MEC80 20.93 44.06 16.27 3.16 N/A N/A N/A N/A 

MEC81 20.51 42.85 15.72 3.18 N/A N/A N/A N/A 

MEC82 20.19 42.78 15.61 3.20 N/A N/A N/A N/A 

MEC83 22.24 41.50 15.34 3.16 N/A N/A N/A N/A 

MEC84 10.07 37.64 12.98 3.38 N/A N/A N/A N/A 

MEC85 4.88 39.82 14.50 3.20 N/A N/A N/A N/A 

MEC86 6.69 41.76 15.03 3.24 N/A N/A N/A N/A 

MEC87 8.14 41.09 14.93 3.21 N/A N/A N/A N/A 

MEC88 1.58 40.50 14.64 3.23 N/A N/A N/A N/A 

MEC89 7.10 40.83 14.87 3.20 N/A N/A N/A N/A 

MEC90 14.47 35.32 12.87 3.20 N/A N/A N/A N/A 

MEC91 16.01 40.92 14.99 3.18 N/A N/A N/A N/A 

MEC92 10.75 39.47 14.36 3.21 N/A N/A N/A N/A 

MEC93 11.76 40.47 14.37 3.29 N/A N/A N/A N/A 

MEC94 5.39 39.97 14.38 3.24 N/A N/A N/A N/A 

MEC95 6.06 41.01 14.88 3.22 N/A N/A N/A N/A 

MEC96 5.48 40.03 14.47 3.23 N/A N/A N/A N/A 

MEC97 4.57 40.96 14.86 3.22 N/A N/A N/A N/A 

MEC98 13.70 40.14 14.50 3.23 N/A N/A N/A N/A 

MEC99 8.93 39.27 14.35 3.19 N/A N/A N/A N/A 

MEC100 19.36 44.43 16.32 3.18 N/A N/A N/A N/A 

MEC101 6.38 40.51 14.74 3.20 N/A N/A N/A N/A 

DEN1+ 14.50 42.98 15.54 3.23 11.52 3.38 3.41 54.79C 

DEN2+ 11.19 44.43 16.02 3.24 8.03 1.94 4.14 41.62C 

DEN3+ 17.84 43.22 15.73 3.20 11.60 3.42 3.39 34.90C 

DEN4+ 10.71 44.08 15.95 3.22 7.83 2.22 3.54 6.97C 

DEN5+ 11.33 44.16 15.17 3.40 8.00 2.22 3.60 4.74C 

DEN6+ 12.91 44.65 15.91 3.27 11.11 3.29 3.37 56.34C 

DEN7+ 15.73 44.12 15.68 3.28 9.27 2.67 3.47 43.77C 

DEN8+  10.80 45.20 16.06 3.28 7.75 2.03 3.82 43.22C 

DEN9+ 7.42 44.07 15.96 3.22 5.76 1.46 3.95 3.54C 
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Table A4. The biomechanical properties of archaeological bone. Measurements conducted at the transverse axis except for the petrous b one which were analysed at the 

longitudinal axis. Abbreviations - HVIT: hardness, EIT: elastic modulus, Er: elastic modulus without Poisson's ratio taken into account, CIT: visco -elasticity, nIT: elasticity-

plasticity, P: proximal diaphysis, M: mid diaphysis, D: distal diaphysis.  

Sample Element Tissue HVIT EIT Er CIT nIT 

MAR4 Humerus (D)  

Periosteal 17.31 ± 2.06 12.44 ± 1.50 13.51 ± 1.61 3.23 ± 0.29 11.89 ± 1.60 

Mesosteal 19.61 ± 4.89 11.20 ± 1.41 12.18 ± 1.52 1.91 ± 1.14 14.68 ± 2.39 

Endosteal 18.46 ± 3.14 10.66 ± 1.50 11.59 ± 1.61 3.01 ± 1.08 13.61 ± 1.08 

Average 18.46 ± 3.36 11.43 ± 1.47 12.42 ± 1.58 2.72 ± 0.84 13.39 ± 1.69 

MAR5 Humerus (D) 

Periosteal 21.25 ± 4.75 12.45 ± 1.59 13.52 ± 1.71 1.97 ± 0.80 13.91 ± 1.97 

Mesosteal 22.21 ± 3.99 13.83 ± 2.14 15.00 ± 2.29 3.64 ± 1.24 12.99 ± 1.24 

Endosteal 21.51 ± 2.73 13.03 ± 1.82 14.14 ± 1.95 3.01 ± 0.88 13.32 ± 0.87 

Average 21.65 ± 3.82 13.10 ± 1.85 14.22 ± 1.98 2.87 ± 0.97 13.41 ± 1.36 

MAR11 Tibia (M) 

Periosteal 18.24 ± 2.63 14.76 ± 3.20 15.99 ± 3.42 6.59 ± 0.62 9.80 ± 0.57 

Mesosteal 15.51 ± 2.39 10.51 ± 1.39 11.43 ± 1.50 4.74 ± 0.72 11.20 ± 1.33 

Endosteal 16.45 ± 2.46 10.12 ± 1.10 11.01 ± 1.19 3.59 ± 0.84 12.69 ± 1.01 

Average 16.73 ± 2.49 11.80 ± 1.90 12.81 ± 2.03 4.97 ± 0.73 11.23 ± 0.97 

MAR12 Tibia (M) 

Periosteal 13.89 ± 1.77 11.61 ± 0.38 12.61 ± 0.41 8.25 ± 2.24 9.09 ± 0.87 

Mesosteal 13.95 ± 2.56 12.20 ± 1.79 13.25 ± 1.92 9.02 ± 1.48 8.29 ± 1.01 

Endosteal 12.53 ± 1.42 10.45 ± 1.73 11.37 ± 1.86 10.39 ± 0.95 8.69 ± 0.80 

Average 13.45 ± 1.91 11.42 ± 1.30 12.41 ± 1.40 9.22 ± 1.55 8.69 ± 0.89 

SAR1 Mandible 

Periosteal 56.39 ± 4.90 10.69 ± 0.34 11.62 ± 0.37 4.10 ± 1.07 38.37 ± 3.25 

Mesosteal 18.21 ± 1.59 7.78 ± 0.28 8.49 ± 0.30 4.01 ± 1.74 17.00 ± 1.66 

Average 37.30 ± 3.25 9.24 ± 0.31 10.06 ± 0.34 4.05 ± 1.40 27.69 ± 2.46 

SAR5 Humerus (P) 

Periosteal 58.39 ± 3.70 20.79 ± 1.52 22.40 ± 1.60 4.17 ± 0.72 23.79 ± 1.61 

Mesosteal 53.15 ± 12.45 19.97 ± 1.80 21.53 ± 1.91 4.94 ± 1.32 22.49 ± 2.72 

Endosteal 48.82 ± 6.88 19.53 ± 1.66 21.06 ± 1.76 5.33 ± 1.07 20.62 ± 2.15 
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Sample Element Tissue HVIT EIT Er CIT nIT 

  Average 53.45 ± 7.67 20.10 ± 1.66 21.66 ± 1.76 4.81 ± 1.04 22.30 ± 2.16 

SAR6 Humerus (D) 

Periosteal 44.84 ± 3.91 24.05 ± 2.69 25.83 ± 2.83 9.21 ± 1.00 17.35 ± 1.42 

Mesosteal 43.30 ± 4.74 18.13 ± 1.50 19.58 ± 1.59 4.99 ± 0.88 20.19 ± 1.76 

Endosteal 44.38 ± 3.51 16.93 ± 1.50 18.30 ± 1.60 5.42 ± 1.21 19.75 ± 1.65 

Average 44.17 ± 4.05 19.70 ± 1.89 21.24 ± 2.00 6.54 ± 1.03 19.09 ± 1.61 

THA4 Femur (P) 

Periosteal 51.48 ± 0.00 11.67 ± 0.00 12.69 ± 0.00 2.05 ± 0.00 32.36 ± 0.00 

Mesosteal 112.34 ± 0.00 18.68 ± 0.00 20.16 ± 0.00 2.65 ± 0.00 34.83 ± 0.00 

Endosteal 58.62 ± 20.73 12.63 ± 3.40 13.71 ± 3.64 2.21 ± 1.74 33.97 ± 0.18 

Average 74.14 ± 6.91 14.33 ± 1.13 15.52 ± 1.21 0.94 ± 0.58 33.72 ± 0.06 

THA6 Femur (P) 

Periosteal 86.11 ± 8.00 16.85 ± 2.09 18.22 ± 2.22 1.13 ± 0.54 37.37 ± 2.25 

Mesosteal 70.19 ± 19.02 21.59 ± 4.09 23.23 ± 4.32 4.55 ± 1.15 23.02 ± 1.25 

Endosteal 96.17 ± 40.07 18.16 ± 3.87 19.60 ± 4.11 1.75 ± 1.11 35.03 ± 5.72 

Average 84.15 ± 22.37 18.87 ± 3.35 20.35 ± 3.55 2.47 ± 0.94 31.81 ± 3.07 

MAN2 Rib 

Periosteal 44.16 ± 10.79 16.00 ± 3.98 17.31 ± 4.25 4.60 ± 2.92 23.61 ± 4.42 

Mesosteal 56.97 ± 10.28 21.05 ± 1.47 22.67 ± 1.56 5.18 ± 1.12 22.02 ± 3.57 

Endosteal 54.48 ± 6.19 16.99 ± 1.89 18.37 ± 2.01 4.76 ± 0.91 26.89 ± 4.74 

Average 51.87 ± 9.09 18.01 ± 2.45 19.45 ± 2.60 4.85 ± 1.65 24.17 ± 4.24 

MAN3 Femur (M) 

Periosteal 57.95 ± 16.69 17.78 ± 3.18 19.21 ± 3.38 1.85 ± 1.15 29.15 ± 7.07 

Mesosteal 56.23 ± 5.75 17.56 ± 1.71 18.98 ± 1.81 2.94 ± 0.80 26.89 ± 1.48 

Endosteal 40.23 ± 6.01 15.53 ± 1.62 16.82 ± 1.72 5.27 ± 1.39 21.79 ± 3.72 

Average 51.47 ± 9.48 16.96 ± 2.17 18.33 ± 2.30 3.35 ± 1.11 25.94 ± 4.09 

MAN8 Humerus (P) 

Periosteal 11.25 ± 1.57 7.82 ± 1.19 8.53 ± 1.29 4.16 ± 1.38 11.79 ± 0.69 

Mesosteal 12.73 ± 0.63 8.32 ± 0.93 9.07 ± 1.00 4.34 ± 0.68 11.46 ± 2.09 

Endosteal 13.49 ± 0.53 8.75 ± 0.83 9.53 ± 0.90 4.23 ± 1.49 11.55 ± 0.96 

Average 12.49 ± 0.91 8.30 ± 0.98 9.04 ± 1.06 4.24 ± 1.18 11.60 ± 1.25 
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Sample Element Tissue HVIT EIT Er CIT nIT 

KAS1 Femur 

Periosteal 8.77 ± 0.84 5.54 ± 1.32 6.05 ± 1.44 5.92 ± 1.61 12.40 ± 0.91 

Mesosteal 7.27 ± 2.46 5.21 ± 1.48 5.69 ± 1.61 9.37 ± 8.12 10.50 ± 1.45 

Endosteal 10.08 ± 4.23 6.38 ± 2.42 6.97 ± 2.63 6.27 ± 0.70 13.15 ± 0.67 

Average 8.71 ± 2.51 5.71 ± 1.74 6.24 ± 1.89 7.19 ± 3.48 12.02 ± 1.01 

KAS2 Femur 

Periosteal 65.93 ± 17.93 14.64 ± 1.95 15.86 ± 2.09 2.14 ± 1.13 32.64 ± 2.27 

Mesosteal 66.35 ± 13.23 18.74 ± 2.25 20.22 ± 2.38 3.28 ± 0.64 27.93 ± 4.02 

Endosteal 62.72 ± 0.00 16.39 ± 0.00 17.73 ± 0.00 1.44 ± 0.00 26.48 ± 0.00 

Average 65.00 ± 10.39 16.59 ± 1.40 17.94 ± 1.49 2.29 ± 0.59 29.01 ± 2.09 

BLA2 Petrous 

Periosteal 60.18 ± 10.26 18.77 ± 2.08 20.26 ± 2.20 3.57 ± 1.82 28.74 ± 6.07 

Canal 61.88 ± 11.64 22.70 ± 2.96 24.41 ± 3.11 5.53 ± 0.92 24.12 ± 2.62 

Perio to canal 57.37 ± 11.07 20.88 ± 2.61 22.48 ± 2.75 5.22 ± 0.90 25.08 ± 4.01 

Between canal 74.91 ± 16.63 16.83 ± 1.62 18.20 ± 1.72 3.57 ± 1.91 36.82 ± 4.15 

Canal 65.39 ± 10.34 19.73 ± 1.31 21.28 ± 1.39 3.74 ± 0.88 31.07 ± 3.30 

Between canals 67.91 ± 7.92 22.87 ± 1.83 24.59 ± 1.92 4.46 ± 0.56 25.49 ± 2.13 

Periosteal 52.24 ± 8.43 13.94 ± 1.29 15.12 ± 1.38 1.53 ± 0.36 32.44 ± 3.39 

Average 62.84 ± 10.90 19.39 ± 1.95 20.91 ± 2.07 3.95 ± 1.05 29.11 ± 3.67 

BLA6 Petrous 

Periosteal 52.07 ± 3.54 17.48 ± 1.32 18.89 ± 1.40 3.72 ± 1.21 25.63 ± 3.03 

Canal 61.04 ± 9.73 20.40 ± 1.78 21.98 ± 1.88 5.40 ± 0.90 25.06 ± 2.65 

Canal 94.81 ± 7.62 23.84 ± 0.99 25.61 ± 1.04 2.86 ± 0.78 31.39 ± 3.33 

Average 69.31 ± 6.96 20.57 ± 1.36 22.16 ± 1.44 3.99 ± 0.96 27.36 ± 3.00 

BLA7 Petrous 

Periosteal 38.95 ± 5.91 18.84 ± 1.99 20.34 ± 2.11 7.09 ± 1.62 19.65 ± 3.29 

Mesosteal 65.16 ± 24.50 19.75 ± 5.41 21.28 ± 5.74 4.62 ± 1.16 29.29 ± 3.54 

Canal 66.09 ± 10.61 19.72 ± 2.13 21.27 ± 2.26 3.65 ± 1.13 30.12 ± 2.74 

Average 56.73 ± 13.68 19.44 ± 3.18 20.96 ± 3.37 5.12 ± 1.30 26.35 ± 3.19 

PRO8 Metacarpal (Bos) Periosteal 155.04 ± 21.15 53.67 ± 5.58 56.06 ± 5.56 3.37 ± 0.34 25.39 ± 1.97 
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Sample Element Tissue HVIT EIT Er CIT nIT 

  

Mesosteal 47.50 ± 6.34 26.17 ± 2.27 28.05 ± 2.38 5.37 ± 0.66 14.70 ± 1.67 

Endosteal 36.78 ± 2.14 20.03 ± 2.11 21.60 ± 2.22 4.91 ± 0.61 14.95 ± 0.70 

Average 79.77 ± 9.88 33.29 ± 3.32 35.23 ± 3.39 4.55 ± 0.54 18.34 ± 1.45 

PRO9 Femur (Ovicaprid) 

Periosteal 97.67 ± 8.00 29.50 ± 1.63 31.53 ± 1.70 3.61 ± 0.90 27.44 ± 2.98 

Mesosteal 78.45 ± 7.46 26.85 ± 2.81 28.76 ± 2.94 4.46 ± 0.39 25.46 ± 3.06 

Endosteal 59.44 ± 9.47 22.01 ± 1.31 23.69 ± 1.38 3.28 ± 0.56 21.99 ± 1.72 

Average 78.52 ± 8.31 26.12 ± 1.92 27.99 ± 2.01 3.78 ± 0.62 24.96 ± 2.59 
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Table A5. Collagen content estimates using the Lebon et al. (2016) equation and a new equation produced by this dataset that utilize the Am/P FTIR index. Offsets from actual 

collagen yields, average offsets and standard deviations are provided.  

Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

MAR1 0.01 0.63 3.12 2.50 4.38 3.75 

MAR2 0.02 0.31 3.40 3.09 4.72 4.41 

MAR3 0.01 0.38 2.76 2.38 4.46 4.08 

MAR4 0.01 1.03 3.14 2.10 4.99 3.96 

MAR5 0.01 0.48 2.91 2.43 11.15 10.67 

MAR6 0.01 0.23 2.68 2.45 10.15 9.92 

MAR7 0.01 0.58 2.71 2.12 12.29 11.71 

MAR8 0.00 0.17 1.69 1.52 9.20 9.03 

MAR9 0.02 0.63 3.45 2.82 13.65 13.02 

MAR10 0.01 0.36 3.21 2.85 18.03 17.67 

MAR11 0.00 0.00 1.86 1.86 10.28 10.28 

MAR12 0.07 0.48 9.94 9.46 9.07 8.59 

MAR13 0.01 0.29 3.21 2.92 7.51 7.22 

MAR14 0.05 0.32 7.10 6.78 2.87 2.55 

MAR15 0.03 0.00 4.62 4.62 7.88 7.88 

MAR16 0.02 0.78 3.70 2.93 8.45 7.67 

SAR1 0.13 14.40 16.30 1.90 10.88 -3.52 

SAR2 0.05 9.13 7.21 -1.92 7.52 -1.61 

SAR3 0.06 11.07 8.07 -2.99 9.70 -1.37 

SAR4 0.03 4.72 5.20 0.47 8.17 3.45 

SAR5 0.11 19.45 14.03 -5.42 3.83 -15.62 

SAR6 0.11 20.51 14.05 -6.46 3.94 -16.57 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

SAR7 0.19 20.29 22.98 2.69 3.52 -16.77 

SAR8 0.13 14.95 16.12 1.17 3.72 -11.23 

SAR9 0.02 6.18 4.09 -2.09 12.68 6.5 

SAR10 0.21 22.55 25.25 2.70 14.95 -7.6 

SAR11 0.14 13.06 17.51 4.46 19.73 6.67 

SAR12 0.04 13.39 6.58 -6.81 4.74 -8.65 

SAR13 0.11 16.71 14.21 -2.50 7.55 -9.16 

SAR14 0.17 21.13 20.67 -0.46 11.65 -9.48 

SAR15 0.14 21.41 17.67 -3.74 7.33 -14.08 

SAR16 0.04 14.42 6.25 -8.17 6.32 -8.1 

SAR17 0.07 7.16 9.43 2.27 22.56 15.4 

SAR18 0.15 21.11 18.71 -2.40 14.37 -6.74 

SAR19 0.03 8.26 5.41 -2.85 22.11 13.85 

SAR24 0.07 14.65 9.57 -5.08 9.21 -5.44 

SAR28 0.06 7.38 8.62 1.25 14.29 6.91 

SAR35 0.08 10.89 10.66 -0.23 19.52 8.63 

SAR38 0.05 9.21 7.71 -1.50 16.32 7.11 

SAR40 0.09 5.28 11.95 6.68 12.43 7.15 

PRO1 0.06 7.88 8.74 0.86 11.52 3.64 

PRO2 0.05 7.08 7.59 0.51 11.48 4.4 

PRO8 0.01 1.46 2.91 1.45 7.35 5.89 

PRO9 0.10 12.02 13.09 1.07 10.19 -1.83 

THA1 0.04 5.97 6.11 0.14 11.36 5.39 

THA2 0.00 0.84 1.69 0.85 13.83 12.99 

THA3 0.04 8.18 6.46 -1.72 12.77 4.59 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

THA4 0.03 5.36 5.60 0.24 9.02 3.66 

THA5 0.05 9.87 7.62 -2.25 10.35 0.48 

THA6 0.03 4.34 4.99 0.66 16.40 12.06 

THA7 0.04 7.13 6.52 -0.61 10.48 3.35 

THA8 0.03 1.77 5.10 3.34 16.76 14.99 

THA9 0.07 12.40 9.99 -2.41 8.33 -4.07 

THA10 0.03 5.62 5.27 -0.35 11.14 5.52 

THA11 0.03 4.57 5.45 0.87 14.50 9.93 

MAN1 0.05 4.95 7.00 2.06 8.37 3.42 

MAN2 0.02 4.83 4.49 -0.34 10.58 5.75 

MAN3 0.02 8.54 4.33 -4.21 12.21 3.67 

MAN4 0.07 7.57 9.31 1.75 7.81 0.24 

MAN5 0.04 7.06 6.11 -0.94 12.50 5.44 

MAN6 0.06 7.28 8.19 0.91 9.77 2.49 

MAN7 0.04 5.93 6.74 0.81 12.71 6.78 

MAN8 0.01 0.00 2.48 2.48 4.67 4.67 

MAN9 0.01 0.00 2.57 2.57 3.99 3.99 

MAN10 0.01 0.00 2.77 2.77 4.39 4.39 

MAN11 0.01 0.00 2.53 2.53 4.15 4.15 

MAN12 0.01 0.72 3.10 2.38 3.91 3.19 

MAN13 0.01 0.00 2.42 2.42 3.94 3.94 

MAN14 0.01 0.00 2.54 2.54 2.87 2.87 

MAN15 0.01 0.00 2.61 2.61 3.05 3.05 

MAN16 0.01 0.00 2.54 2.54 11.54 11.54 

MAN17 0.01 6.98 3.03 -3.95 4.47 -2.51 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

MAN18 0.01 2.58 2.43 -0.15 8.56 5.98 

MAN19 0.01 1.84 2.38 0.54 5.95 4.11 

MAN20 0.01 0.40 2.30 1.90 18.22 17.82 

MAN21 0.01 0.00 2.71 2.71 8.67 8.67 

MAN22 0.01 0.00 2.31 2.31 9.58 9.58 

MAN23 0.01 1.63 2.38 0.75 6.55 4.92 

MAN24 0.01 0.00 2.56 2.56 15.83 15.83 

MAN25 0.01 0.00 2.50 2.50 15.86 15.86 

MAN26 0.01 0.00 2.28 2.28 25.23 25.23 

MAN27 0.01 0.39 2.47 2.08 5.39 5.00 

MAN28 0.01 0.00 2.40 2.40 27.62 27.62 

MAN29 0.01 0.00 2.45 2.45 19.49 19.49 

MAN30 0.01 0.00 2.44 2.44 8.01 8.01 

MAN31 0.00 2.101 2.16 0.06 16.02 13.92 

CA1 0.08 15.26 11.03 -4.23 22.81 7.55 

CA2 0.10 17.74 13.19 -4.55 19.66 1.92 

CA3 0.14 17.29 17.74 0.45 7.67 -9.62 

CA4 0.02 10.53 3.47 -7.06 11.00 0.47 

CA5 0.04 13.60 6.14 -7.46 20.75 7.15 

CA6 0.07 13.59 10.05 -3.54 6.78 -6.81 

KAS1 0.01 2.57 2.93 0.36 4.15 1.58 

KAS2 0.04 6.68 6.17 -0.50 14.85 8.17 

KAS3 0.01 2.26 3.32 1.06 6.98 4.72 

KAS4 0.04 7.14 6.11 -1.03 9.10 1.96 

KAS5 0.02 5.48 3.64 -1.84 6.34 0.86 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

KAS6 0.03 5.79 4.64 -1.15 7.94 2.15 

KAS7 0.01 0.92 3.05 2.13 6.45 5.53 

KAS8 0.05 11.29 7.59 -3.69 11.59 0.3 

KAS9 0.05 12.07 7.49 -4.59 6.63 -5.44 

KAS10 0.05 9.68 7.53 -2.15 6.82 -2.86 

KAS11 0.02 2.86 3.62 0.77 5.81 2.95 

KAS12 0.04 8.14 6.11 -2.03 5.64 -2.5 

KAS13 0.04 11.00 6.41 -4.59 3.70 -7.3 

KAS14 0.05 6.59 7.54 0.95 3.79 -2.8 

KAS15 0.01 0.86 3.09 2.23 4.00 3.14 

KAS16 0.04 10.47 5.94 -4.53 3.75 -6.72 

KAS17 0.03 10.62 4.98 -5.64 4.35 -6.27 

KAS18 0.06 10.89 8.36 -2.52 3.64 -7.25 

KAS19 0.04 9.21 5.77 -3.44 3.76 -5.45 

KAS22 0.03 5.28 5.30 0.02 3.77 -1.51 

KAS23 0.04 7.70 6.11 -1.59 4.28 -3.42 

KAS26 0.01 1.90 3.32 1.42 3.65 1.75 

KAS28 0.08 13.23 10.38 -2.84 3.59 -9.64 

KAS29 0.06 10.23 8.88 -1.35 3.51 -6.72 

DEN1 0.17 14.50 20.44 5.94 3.60 -10.9 

DEN2 0.10 11.19 12.64 1.46 3.79 -7.4 

DEN3 0.16 17.84 20.01 2.17 3.49 -14.35 

DEN4 0.05 10.71 7.73 -2.98 3.69 -7.02 

DEN5 0.10 11.33 12.56 1.24 3.61 -7.72 

DEN6 0.14 12.91 17.54 4.64 3.67 -9.24 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

DEN7 0.11 15.73 14.49 -1.24 3.65 -12.08 

DEN8 0.08 10.80 10.79 -0.01 3.37 -7.43 

DEN9 0.07 7.42 9.92 2.50 4.17 -3.25 

MEC1 0.07 14.76 9.89 -4.87 7.58 -7.18 

MEC2 0.02 7.62 4.22 -3.40 4.58 -3.04 

MEC3 0.02 7.01 3.96 -3.06 7.51 0.5 

MEC4 0.03 4.45 5.10 0.65 4.91 0.46 

MEC5 0.04 7.18 5.95 -1.23 5.97 -1.21 

MEC6 0.07 19.84 9.24 -10.60 4.30 -15.54 

MEC7 0.06 19.52 8.68 -10.83 9.07 -10.45 

MEC8 0.13 16.27 15.91 -0.36 8.96 -7.31 

MEC9 0.15 20.69 18.15 -2.53 9.00 -11.69 

MEC10 0.06 12.94 8.66 -4.28 4.90 -8.04 

MEC11 0.09 16.52 11.47 -5.05 7.51 -9.01 

MEC12 0.07 19.48 9.91 -9.57 7.83 -11.65 

MEC13 0.04 14.13 6.33 -7.80 9.02 -5.11 

MEC14 0.04 15.93 5.92 -10.02 4.34 -11.59 

MEC15 0.07 8.32 9.77 1.46 9.88 1.56 

MEC16 0.04 12.74 6.01 -6.73 7.16 -5.58 

MEC17 0.05 9.83 7.04 -2.79 6.66 -3.17 

MEC18 0.02 7.22 4.39 -2.83 7.51 0.29 

MEC19 0.07 15.59 9.11 -6.48 4.58 -11.01 

MEC20 0.09 16.25 12.13 -4.13 12.00 -4.25 

MEC21 0.17 21.71 21.01 -0.69 10.42 -11.29 

MEC22 0.15 21.35 18.22 -3.13 5.53 -15.82 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

MEC23 0.11 18.44 13.98 -4.46 5.25 -13.19 

MEC24 0.16 21.28 19.99 -1.29 6.45 -14.83 

MEC25 0.08 11.85 11.12 -0.73 10.80 -1.05 

MEC26 0.04 13.46 6.54 -6.92 10.22 -3.24 

MEC27 0.04 14.40 6.16 -8.23 17.81 3.41 

MEC28 0.04 9.87 6.27 -3.59 20.17 10.3 

MEC29 0.03 9.64 4.96 -4.68 13.15 3.51 

MEC30 0.05 12.60 7.54 -5.06 11.50 -1.1 

MEC31 0.02 8.54 4.32 -4.22 7.75 -0.79 

MEC32 0.02 5.89 4.44 -1.45 7.31 1.42 

MEC33 0.03 6.65 4.58 -2.08 7.40 0.75 

MEC34 0.02 6.16 3.90 -2.26 8.49 2.33 

MEC35 0.06 9.38 8.81 -0.57 5.70 -3.68 

MEC36 0.03 8.04 5.18 -2.86 10.66 2.62 

MEC37 0.03 9.06 5.33 -3.73 23.17 14.11 

MEC38 0.03 8.04 4.95 -3.09 20.23 12.19 

MEC39 0.03 10.21 5.00 -5.21 15.78 5.57 

MEC40 0.11 16.41 14.57 -1.83 22.09 5.68 

MEC41 0.07 16.78 9.40 -7.38 7.96 -8.82 

MEC42 0.05 17.72 7.52 -10.20 7.57 -10.15 

MEC43 0.14 17.53 18.05 0.53 7.68 -9.85 

MEC44 0.06 9.27 8.93 -0.34 6.31 -2.96 

MEC45 0.02 10.85 4.25 -6.59 5.63 -5.22 

MEC46 0.03 11.73 5.14 -6.59 5.76 -5.97 

MEC47 0.04 7.21 5.66 -1.55 5.90 -1.31 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

MEC48 0.04 10.07 5.86 -4.21 5.19 -4.88 

MEC49 0.05 11.53 7.65 -3.88 6.54 -4.99 

MEC50 0.05 9.91 6.79 -3.12 6.69 -3.22 

MEC51 0.06 13.44 8.11 -5.33 6.29 -7.15 

MEC52 0.07 18.45 9.51 -8.94 6.35 -12.1 

MEC53 0.12 14.93 14.91 -0.02 10.97 -3.96 

MEC54 0.05 14.20 6.89 -7.31 8.99 -5.21 

MEC55 0.04 15.81 6.42 -9.39 20.06 4.25 

MEC56 0.03 5.51 4.80 -0.71 5.56 0.05 

MEC57 0.02 8.99 4.50 -4.49 6.49 -2.5 

MEC58 0.03 5.87 5.06 -0.81 7.05 1.18 

MEC59 0.07 8.87 9.56 0.69 7.25 -1.62 

MEC60 0.02 8.95 4.27 -4.68 9.13 0.18 

MEC61 0.02 4.42 3.94 -0.48 8.23 3.81 

MEC62 0.03 5.23 4.69 -0.54 9.61 4.38 

MEC63 0.03 5.52 4.63 -0.89 11.09 5.57 

MEC64 0.10 13.67 12.77 -0.90 7.84 -5.83 

MEC65 0.08 18.79 10.60 -8.19 6.14 -12.65 

MEC66 0.08 17.30 10.73 -6.57 5.82 -11.48 

MEC67 0.02 4.41 4.25 -0.16 6.41 2 

MEC68 0.03 9.73 5.22 -4.51 5.58 -4.15 

MEC69 0.05 7.24 6.92 -0.32 5.23 -2.01 

MEC70 0.03 10.57 5.02 -5.55 6.02 -4.55 

MEC71 0.04 12.72 6.54 -6.18 5.95 -6.77 

MEC72 0.06 14.71 8.08 -6.63 12.23 -2.48 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

MEC73 0.02 8.77 4.42 -4.35 12.37 3.6 

MEC74 0.06 9.91 9.03 -0.88 5.56 -4.35 

MEC75 0.05 9.05 6.94 -2.11 6.57 -2.48 

MEC76 0.03 6.25 4.90 -1.35 6.36 0.11 

MEC77 0.06 7.50 7.96 0.46 7.97 0.47 

MEC78 0.04 10.31 6.41 -3.90 9.58 -0.73 

MEC79 0.08 15.09 10.58 -4.51 5.74 -9.35 

MEC80 0.12 20.93 15.37 -5.56 8.38 -12.55 

MEC81 0.13 20.51 16.78 -3.73 6.24 -14.27 

MEC82 0.11 20.19 14.54 -5.65 9.45 -10.74 

MEC83 0.14 22.24 17.40 -4.84 7.83 -14.41 

MEC84 0.04 10.07 6.39 -3.68 17.24 7.17 

MEC85 0.03 4.88 4.84 -0.04 18.73 13.85 

MEC86 0.02 6.69 4.30 -2.39 16.36 9.67 

MEC87 0.02 8.14 4.26 -3.88 19.38 11.24 

MEC88 0.08 1.58 10.86 9.28 6.18 4.6 

MEC89 0.03 7.10 4.55 -2.55 5.61 -1.49 

MEC90 0.04 14.47 6.12 -8.35 5.57 -8.9 

MEC91 0.05 16.01 7.15 -8.86 5.88 -10.13 

MEC92 0.03 10.75 5.47 -5.28 7.52 -3.23 

MEC93 0.06 11.76 8.26 -3.50 8.60 -3.16 

MEC94 0.03 5.39 5.14 -0.25 6.84 1.45 

MEC95 0.03 6.06 4.82 -1.24 6.50 0.44 

MEC96 0.02 5.48 4.46 -1.02 6.16 0.68 

MEC97 0.03 4.57 5.54 0.97 5.78 1.21 
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Sample Am/P Collagen wt. % Lebon et al. (2016) equation Offset New equation Offset 

MEC98 0.08 13.70 11.06 -2.64 6.91 -6.79 

MEC99 0.05 8.93 7.70 -1.23 9.19 0.26 

MEC100 0.15 19.36 18.49 -0.87 20.52 1.16 

MEC101 0.02 6.38 4.41 -1.97 5.73 -0.65 

Average: -1.70  -0.014 

St. Deviation: 3.67  8.15 
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APPENDIX B –  FIGURES 

 

Figure B1. Microcracking in petrous bone . (a) MEC44 Longitudinal PPL 400x – single burial, no 

coffin. (b) MEC79 Longitudinal PPL 400x - single burial, no coffin. (c) MEC59 Longitudinal PPL 

400x - single burial, coffin (d) MEC25 Longitudinal PPL 400x - single burial, coffin. (e) MEC64 

Longitudinal PPL 400x – multiple burial, no coffin (f) DEN1 Longitudinal PPL 100x . 
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Figure B2. Petrous bone staining and inclusions due to interaction with groundwater . (a) MAR1 PPL 

100x, (b) MEC15 Longitudinal PPL 400x, (c) DEN2 Longitudinal PPL and (d) XPL – 100x. 
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Figure B3. MFD in Kastrouli human femora. (a) KAS3 Transverse PPL 400x; (b) KAS4 Transverse 

PPL 400x  (black arrows: linear-longitudinal MFD; dashed black arrows: budded MFD).  
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Figure B4. Microcracking in human femora . (a) SAR13, (b) MAN3, (c) KAS12, and (d) MEC2  

Transverse PPL 400x . 
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Figure B5. Inter-site variations in petrous bone histological preservation . DEN4 Transverse (a) PPL 

40x and (b) XPL 40x : generalized destruction across a wide area of endosteal and inner periosteal tissue 

and well-preserved outer periosteal tissue that can in areas extend towards the mid -cortical area. Except 

for the well-preserved tissue, small islands of mid-cortical tissue retain their microarchitectural 

characteristics and collagen birefringence.  KAS16 Longitudinal (a) PPL 40x and (b) XPL 40x : 

degraded outer periosteal and endosteal bone matrix with well -preserved mid-cortical bone. Collagen 

birefringence can be seen only in mid-cortical region. MEC93 Longitudinal (a) PPL 40x and (b) XPL 

40x: generalized destruction observed only in the outer periosteal tissue, while the inner periosteal and 

endosteal regions exhibit good histological preservation.  
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Figure B6. Intra-site variations in petrous bone histological preservation. KAZ1 Transverse (a) PPL 

40x and (b) XPL 40x : poor preservation with only a small endosteal/inner periosteal area surviving. 

Note the absence of birefringence and the inclusions in XPL. KAZ2 Transverse (a) PPL 40x and (b) 

XPL 40x: well-preserved micro-architecture and collagen birefringence with no signs of generalized 

destruction.  
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Figure B7. Intra-site variations in petrous bone histological preservation.  MEC69 Transverse (a) PPL 

40x and (b) XPL 40x : generalized destruction across the entire section with a mid-cortical zone retaining 

its histological integrity and collagen birefringence. MEC74 Longitudinal (c) PPL 40x and (d) XPL 

40x: interchanging areas of well-preserved and degraded bone tissue. The degraded areas are 

characterized by loss of birefringence.  
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Figure B8. Intra-site variations in histological preservation of Mamika long bones . (a) MAN8 

Transverse PPL 100x – Humam humerus (proximal diaphysis) : excellet microscopic preservation 

with signs of fossilization. (b)  MAN3 Transverse PPL 100x – Humam femur (mid diaphysis): poor 

preservation characterized by an almost complete loss of its histological features.  
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Figure B9. Excellent histological preservation of individual no .5 from St. Rombout. MEC22 Transverse 

(a) PPL 100x and (b) XPL 100x – Human humerus and MEC24 Transverse (c) PPL 100x and (d) 

XPL 100x – Human radius: the only individual from a single coffined burial in this assemblage that 

displays excellent histological  preservation. 
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Figure B10. Degradation pattern similar to Cladh Hallan and Bradley Fen ‘mummified’ human 

femora. MEC52 Transverse (a) PPL 40x, (b) XPL 40x, (c) PPL 100x, (d) XPL 100x . 
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Figure B11. Intra-bone variations in histological preservation of long bones . (a) MEC6 Transverse 

PPL 40x – Human humerus (proximal diaphysis) and (b) MEC7 Transverse PPL 40x – Human 

humerus (distal diaphysis):  samples display similar histological preservation. (c) MEC55 Transverse 

PPL 40x – Human femur (proximal diaphysis) and (b) MEC56 Transverse PPL 40x – Human femur 

(distal diaphysis) samples show distinct differences in histological preservation.  
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APPENDIX C - PUBLICATIONS 

1. KENDALL, C.,  ERIKSEN, A. M.,  KONTOPOULOS, I. ,  COLLINS, M. J. ,  AND TURNER-
WALKER, G. (2018).  DIAGENESIS OF ARCHAEOLOGICAL BONE AND TOOTH.  
PALAEOGEOGRAPHY, PALAEOCLIMATOLOGY, PALAEOECOLOGY, 491, 21-37 

Abstract 

An understanding of the structural complexity of mineralised tissues is fundamental for 

exploration into the field of diagenesis. Here we review aspects of current and past research on 

bone and tooth diagenesis using the most comprehensive collection of literature on diagenesis to 

date. Environmental factors such as soil pH, soil hydrology and ambient temperature, which 

influence the preservation of skeletal tissues are assessed, while the different diagenetic pathways 

such as microbial degradation, loss of organics, mineral changes, and DNA degradation are 

surveyed. Fluctuating water levels in and around the bone are the most harmful for preservation 

and lead to rapid skeletal destruction. Diagenetic mechanisms are found to work in conjunction 

with each other, altering the biogenic composition of skeletal material. This illustrates that 

researchers must examine multiple diagenetic pathways to fully understand the post-mortem 

interactions of archaeological skeletal material and the burial environment.     

Keywords: Bone diagenesis, environment, bioerosion, collagen, hydroxyapatite, ancient DNA 

1. Introduction 

The survival of biomolecules in archaeological and fossil bone has attracted the attention of a 

great number of researchers over the past few decades. The post-mortem preservation of bone, 

however, depends upon a number of complex processes. Thus, some bones survive well, whilst 

others degrade rapidly. Here we attempt to survey the major ways in which skeletal tissues, 

specifically those made of mineralised collagen (bone and dentine), become transformed 

following deposition in the archaeological or geological record, a process known as diagenesis.  

2. Chemistry and structure of bone and tooth dentine 

2.1. Skeletal tissues 

Bone is a composite material made up of both organic and inorganic components, and water. The 

fibrous protein, collagen, makes up the vast majority of the organic fraction, and carbonated 

hydroxyapatite (or HAp) comprises the inorganic, or mineral, fraction (Currey, 2011; White et 

al., 2012). Bone is only one of several vertebrate collagenous tissues that are strengthened and 

hardened in vivo by the precipitation of poorly-soluble inorganic minerals - a process that in 

technical terms is called biomineralisation. In mammals the other mineralised tissues include 

antler, dentine and cementum which all share a common chemistry – collagen, HAp and water in 

various proportions – but they have different microarchitectures and modes of growth. 

Consequently they share similar diagenetic histories. Tooth enamel, which differs from the other 
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mineralised tissues in its mode of formation - protein scaffolding is removed and replaced with 

mineral - has an extremely low porosity and low organic content. It is typically, therefore, much 

more resistant to diagenesis and does not form part of this review.  

The percentage of organic and water by weight of the various mineralized tissues differs 

depending upon species and skeletal element (Fig. 1). Oven-dried human bone has approximately 

26 wt. % organic matter, with 9-10 wt. % water and 64 wt. % mineral, which can be compared to 

bovine bone, as an example, which has a makeup of 24 wt. %, 8 wt. % and 68 wt. %, respectively 

(Zioupos et al., 2000). In terms of volume percent, the relative proportions of collagen/water and 

mineral roughly proportional due to the higher density of hydroxyapatite (bulk density 2.8, He et 

al., 2010) than either dry collagen (bulk density 1.4, Podrazký and Sedmerová, 1966) or water 

(bulk density 1). Reptiles and marine mammals are typically less heavily mineralised than 

terrestrial mammal bone (Rogers and Zioupos, 1999; Zioupos et al., 2000). Although sperm 

whales and sea lions have a higher mineral content than humans, fin whales have less well 

mineralised bones and fish considerably less so, with as little as half the mineral content as land 

mammals (Tont et al., 1977). 

 

Figure 1. Relative proportions (as weight %) of collagen, mineral and water for a range of species and tissues. (Diagram 

adapted from Zioupos et al. 2000). 

Amongst land mammals, the collagen content ranges from approximately 35% for deer antler to 

only around 21% for wallaby femur. Some highly specialized bony elements such as the bulla 

tympanum and rostrum of whales are almost totally mineralized with only 11 %, and <1% 

collagen, respectively (Zioupos et al., 2000). Bird bones are stronger and have higher densities 
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(Dumont, 2010) but it is unclear whether this truly reflects a higher proportion of mineral or 

simply a lower porosity (Schuhmann et al., 2014). Amongst humans, the highly mineralised 

petrous portion of the temporal bone is attracting attention due to the often high levels of protein 

and endogenous DNA that can survive in archaeological specimens compared to non-petrous 

skeletal elements (Gamba et al., 2014; Jørkov et al., 2009). Different species and different skeletal 

elements not only have differing mineral contents but exhibit a variety of microarchitectures as 

revealed by histological examination. These reflect the speed and pattern of growth but also the 

mechanical loads placed upon the various tissues. These are discussed in greater detail below. 

2.1.1 Collagen 

The organic portion of bone is composed largely of Type I collagen, which accounts for 

approximately 90% of the organic fraction of bone, the remainder being composed of non-

collagenous proteins – including bone sialoproteins (Termine, 1988) and osteocalcin (Lian et al., 

1978; Price et al., 1976) – various lipoproteins, and mucopolysaccharides (Morgan et al., 2013; 

Ortner and Turner-Walker, 2003; Tuross, 2003). Collagen is a fibrous protein and the dominant 

structural protein in most eukaryotes, although (a similar Gly-Xaa-Yaa motif is found in 

prokaryotes, Yu et al., 2014). The glycine-triad polypeptide chain found in the procollagen 

molecule, typically depicted as Gly-Xaa-Yaa, is a repetitious sequence in which every third 

position is glycine (Gly), while the Xaa and Yaa positions are typically found to be the amino 

acids proline or lysine (Whitford, 2013), which reflect the structural constraints of the polyproline 

motif. The constituent amino acids confer a structural twist to the peptide bonds, and thus, to the 

final procollagen molecule. Because each side chain is offset 120° from the preceding residue, 

every third residue has to be Gly, since the side chain of larger amino acids cannot be 

accommodated when the side chain is facing in towards the centre of the helix.  

Two different polypeptides make up the Type I collagen triple helix, known as tropocollagen. 

Two of the chains are denoted as ⍺1 (I) the third is the ⍺2 (I) chain (Garnero, 2015; Orgel et al., 

2006). A high percentage of the Yaa position prolines are hydroxylated but only a handful of 

those in the Xaa position (Eyre et al., 2011). These hydroxylation reactions are catalyzed by two 

different enzymes: prolyl-4-hydroxylase and lysyl-hydroxylase. Although the structural 

advantage of this hydroxylation is still unclear (Shoulders and Raines, 2009), hydroxylation in 

the Xaa position does show evidence of stabilization and maintenance of the triple-helix structure 

(Jenkins et al., 2003; Vitagliano et al., 2001). Furthermore, if the amino acid sequence is changed, 

for example by a mutation in the relevant gene, or hydroxylation is incomplete as a result of 

absence of catalytic enzymes or cofactors, then the resulting disruption and destabilisation of the 

collagen fibrils gives rise to diseases such as osteogenesis imperfecta and scurvy (Bentley and 

Jackson, 1965).   

Collagen also forms cross-links with adjacent collagen molecules. Cross-links are the byproduct 

of collagenic lysine and hydroxylysine ε-amino group conversion into aldehydes, which through 
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a reaction with lysyl oxidase, form a connection with adjacent collagen molecules (i.e. a cross-

link) that are easily reducible (Tanzer, 1973). However, these reducible cross-links diminish and 

make way for pyridinoline cross-links in matured bone (Eyre et al., 1988; Uchiyama et al., 1981). 

Pyridinoline cross-links are characterized through a stabilization process brought about after the 

intermolecular bonds of younger collagen fibrils and cross-links become reduced (Robins et al., 

1973). There are two types of pyridinoline cross-links, hydroxylysyl-pyridinoline and lysyl-

pyridinoline, where the hydroxyl form is found predominantly in internal connective tissues, and 

the latter form is typically seen in bone and dentin (Hanson and Eyre, 1996). Most lysyl-

pyridinolines are concentrated at the N-telopeptide site of collagen, while only 33% are seen at 

the C-telopeptide sites (Hanson and Eyre, 1996).  

Cross-links not only stabilise the collagen matrix in vivo. Post mortem cross-linking of 

collagenous tissues, either intentionally during the tanning of leather or incidentally as in the 

formation of bog bodies in sphagnum bogs, increases the shrinkage temperature of the collagen 

but also renders it less susceptible to fungal and bacterial degradation (Painter, 1991, 1983). This 

has obvious implications for diagenesis and collagen-humic interactions will be discussed further 

below.  

Tropocollagen molecules, each around 300 nm in length and 1.5 nm in diameter, spontaneously 

self aggregate extra-cellularly into fibrils with mean diameters of around 50 nm (Tzaphlidou and 

Berillis, 2005). The intermolecular bonds are such that there is an offset in the alignment between 

adjacent molecules with the result that there are gaps between the head of one molecule and the 

tail of the previous one. This permits the creation of fibrils that are much longer than individual 

tropocollagen molecules. The molecules interdigitate in such a way that there are gap zones 

(where there is high density of gaps) and overlap zones where the molecules are well aligned and 

more closely packed. The 40 nm gap zone together and the 27 nm overlap zone give rise to the 

67 nm banded appearance of collagen fibrils seen in TEM images, experimentally mineralization 

of reassemble fibrils is initiated in this gap region (Nudelman et al., 2013/8) 

2.1.2 Apatite 

The inorganic portion of living bone is a non-stoichiometric, carbonate-substituted form of 

geologic hydroxyapatite containing traces of F, Na, Mg, Zn and Sr, hereafter referred to as 

bioapatite or simply HAp (Mathew and Takagi, 2001; Ortner and Turner-Walker, 2003). 

Bioapatite has different crystal size, composition and atomic disorder than geologic apatites that 

form hydrothermally (Boskey, 2007, 2003). If basic calcium phosphate is precipitated from a 

solution containing carbonate or hydrogen carbonate, at room temperature the product is an 

apatite that invariably contains carbonate up to a few percent and these apatites are of a similar 

small size to bone mineral. In fact, strictly carbonate-free solutions and a thorough purging of the 

laboratory apparatus with nitrogen are required if pure hydroxyapatite is to be precipitated 

(Posner, 1985). Even in mature bone, the crystallites of bone mineral are exceedingly small, with 
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estimated lengths of 16-50 nm, widths of 8-20 nm and thickness c. 2 nm (Eppell et al., 2001; 

Glimcher, 2006). However, there remains active debate regarding the shape and organization of 

crystallites in bone (e.g. Georgiadis et al., 2016; Reznikov et al., 2015; Schwarcz, 2015). Their 

vanishingly small size, combined with the various substitutions and surface adsorbed ions that 

occur in the non-apatitic hydrated layer, which covers the core of apatite, are responsible for the 

poor ordering and crystallinity of bioapatite (Figueiredo et al., 2012) and their consequent higher 

solubility than geologic apatites (Sillen and LeGeros, 1991).  

Size, shape and composition of the bioapatite crystals are affected by several intrinsic and 

extrinsic factors including collagen properties and the distribution of non-collagenous proteins, 

which are involved in the nucleation and growth of crystals, diet, disease, cell viability and bone 

turnover (Boskey, 2007, 2003). With reference to crystals’ size and orientation in normal living 

bone, these are controlled by the structure and organization of the collagen fibrils, while size and 

shape are also regulated by non-collagenous proteins such as phosphorylated proteins, 

glycoproteins, and proteoglycans (Boskey, 2007, 2003; Duer and Veis, 2013). Changes in crystal 

size and homogeneity also affect bone mechanical properties, with an increase being either related 

with an incorporation of ions into the smaller crystals, merging of existing crystals, or secondary 

nucleation/mineralization (Boskey, 2003).  

Early study of crystallite change in vivo show that in rat bone aged two weeks to one year, older 

bone had an increase in the crystal size and disorder of the crystal lattice (Matsushima and Hikichi, 

1989). In mammals, mature bone is both more heavily mineralised and the mineral is more 

crystalline compared to recently deposited tissues due to carbonate substitutions and a reduction 

of the hydrated layer that result in a more stoichiometric structure (Figueiredo et al., 2012). 

Carbonate ions (3-8 wt.%) may either replace OHˉ (type A apatite) or PO4
3ˉ (type B apatite) ions 

in the crystal lattice (Figueiredo et al., 2012; Lee-Thorp and van der Merwe, 1991; Stathopoulou 

et al., 2008). These ionic substitutions are responsible for the crystal disorder as the replacing ions 

and molecules may differ in size, configuration, and charge compared to the ions and molecules 

they are substituting (Yotam Asscher et al., 2011). 

Primary sites of mineral deposition are in the gap zones and that subsequent mineralisation takes 

place between tropocollagen molecules (in the overlap zone) and in intra-fibrillar spaces (Fratzl 

et al., 1991; Nudelman et al., 2013/8). Full mineralization is accomplished by the replacement of 

water within and between collagen fibrils by HAp, with small crystallites developing both within 

and on the surfaces of the collagen, with the bulk of the mineral load being deposited between 

fibrils and fibre bundles. Thus, as the volume of the mineral in bone tissue increases, the volume 

of water decreases correspondingly. Collectively, in dry, mature bone, collagen and bioapatite 

each account for 46% of the volume of bone, while water makes up the remaining 8% (Todoh et 

al., 2009). Water plays an important role in stabilising the collagen molecule and it has long been 

known that the mechanical properties of bone are strongly dependent on its hydration state (Duer 
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and Veis, 2013; Nyman et al., 2006). Furthermore, mineralised tissues swell and shrink with the 

adsorption and desorption of water into their structure, predominantly as a result of water entering 

the collagen fibrils. Although the bulk of the volumetric changes occur at right angles to the long 

axis of the collagen molecules there is evidence that the lengths of fibrils change slightly as the 

gap zone is filled or emptied (Habelitz et al., 2002). 

2.2 Bone tissue organization 

As stated previously, the mineralised collagen in vertebrates is found with a variety of tissue types 

and microstructural organisation. The three-dimensional architecture of these different tissue 

types reflects the growth, function, vascularity and especially speed of growth of the bone. These 

variations have been discussed at length by two giants of the study of comparative histopathology, 

Donald Endelow and Armand de Ricqlès (de Ricqlès, 2011, 2007). There are even instances of 

bone in certain fishes that is completely acellular, lacking the osteocytes found in the bone of all 

living tetrapods (Shahar and Dean, 2013). 

The two most commonly found types of bone tissue in adult mammals are cortical (compact) and 

cancellous (spongy) bone (Ortner and Turner-Walker, 2003; Weiner et al., 1999; White et al., 

2012). Cancellous bone is much more porous and it is typically found at the jointed ends of long 

bones, as flat plates in the cranium, sternum, and ilium, and underlying tendon attachments 

(Weiner et al., 1999; White et al., 2012). Cortical bone is primarily found along the diaphysis of 

long bones, the petrous pyramid and the mandible, and as a thin outer sheath at the ends of long 

and flat bones (Ortner and Turner-Walker, 2003; White et al., 2012).  

Bone undergoes several stages of development over an organism’s lifespan. Initial, rapidly-

growing bone, which is typically found in foetal development through early childhood, but also 

found in healing fractures and in certain bone tumours, takes the form of woven or fibrous bone 

and it is characterized by being less dense with greater histological disorder compared to more 

mature tissues (Manilay et al., 2013). It is gradually resorbed and replaced by appositional growth 

of lamellar bone, where layers of new bone stack over one another with a microarchitecture 

analogous to plywood, or by Haversian bone where specialised teams of cells replace old bone 

tissues with new bone (Ortner and Turner-Walker, 2003). This remodelling of bone throughout 

life is controlled by a number of factors, including hormonal triggers that are themselves 

influenced by diet, reproductive status, exercise and mechanical loading (Kini and Nandeesh, 

2012; Robling et al., 2006). Medical literature commonly states a bone remodelling rate of 

approximately 10% per year, often without reference (e.g. Lerner, 2016). Despite this medical 

truism, based upon markers of bone turnover measured in body fluids, is shown to be 4-10 times 

higher than the directly measured rate of turnover in cortical bone assessed measuring either the 

steady increase in levels of racemization (Ritz-Timme et al., 1999; Ritz-Timme and Collins, 2002) 

or the incorporation of bomb pulse 14C (Hedges et al., 2007). Similar slow levels of turnover 
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have also been reported for cartilage using direct bomb pulse 14C measurements (Heinemeier et 

al., 2016; Libby et al., 1964). 

2.3 Dental tissues 

Mammalian teeth contain four dental tissues. With the exception of pulp, three of these are 

mineralised (hard) tissues: enamel, dentine (dentin), and cementum (Hillson, 2005). Compared to 

enamel, tooth dentine is more similar to bone tissues in terms of organic to inorganic ratios 

(Hillson, 2005) and protein composition (Alves et al., 2011; Jágr et al., 2012; Park et al., 2009; 

Salmon et al., 2016). Whereas human enamel contains only 5.9 % organic matter and 2.0 % water, 

dentine contains 19.2 and 6.5 %, respectively (Teruel et al., 2015). Like bone, dentine contains 

trace amounts of non-collagenous organic matter (mucopolysaccharides, lipoproteins, etc.) 

collectively called ground substance (Hillson, 2005). Ivory is essentially the dentine of any large 

mammal including elephant, mammoth, sperm whale and walrus tusks from which objects can be 

carved, but also includes narwhal, hippo and wild pig teeth which are suitable only for smaller 

items. Cementum is the most variable portion of a tooth coating the entire tooth in some mammals, 

but in others, it may cover just the root (Hillson, 2005). Generally, the thickness of the cementum 

layer increases with age of the individual and, histologically, cementum has a structure very 

similar to bone (Elliott, 2002; Hillson, 2005) and has been shown, like the petrous portion, to be 

a good source of ancient DNA (Adler et al., 2011; Hansen et al., 2017). Enamel is the hardest, 

densest and least porous of the mineralised tissues, and consequently, it is the most durable of 

human tissues. In some environments, the enamel tooth crowns survive where all other traces of 

the skeleton have been destroyed by chemical or microbial attack (Kimbel and Delezene, 2009; 

Zanolli, 2013). Nevertheless, tooth enamel does undergo diagenesis over timescales relevant to 

the study of human origins and palaeontology, especially in the study of trace elements and stable 

isotope content (Gehler et al., 2011; Pellegrini et al., 2011; Tütken et al., 2008; Tütken and 

Vennemann, 2011). 

3. Porosity of mineralised tissues 

The porosity of mineralised tissues influences the speed and nature of post-mortem alterations to 

bones and teeth. The diameter and interconnectedness of the various pores determines the ease 

with which water, microorganisms, and dissolved ions enter and leave the tissue (Hedges and 

Millard, 1995). As the most common mineralised tissue in the archaeological record we should 

look at bone first. Bone is a living tissue containing blood vessels and nerves that enter the bone 

via one or more relatively large nutrient foramina where they branch into Haversian canals 

running the length of the bone and Volkmann’s canals that allow centrifugal flow of blood from 

arteries in the marrow cavity to the periosteal veins (Brookes, 1974; Bryan, 1996; White et al., 

2012).  
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Bone cells, which require connection to the blood system and a sensory apparatus to detect 

mechanical strain, are found in lacunae (i.e. depressions/cavities) that are connected by a fine 

network of canaliculi (i.e. channels) (Kollmannsberger et al., 2017; Ortner and Turner-Walker, 

2003). The lacunae are shaped like flattened ellipsoids approximately 10 μm x 5 μm and each is 

connected to its neighbours by 50-70 canaliculi, which pass through the hard bone tissue. The 

cells are approximately 20 μm apart and the average diameter of the canaliculi is approximately 

259 ± 129 nm or a quarter of a micron (You et al., 2004). This lacuno–canalicular system forms 

a syncytium of interconnected cells and the extracellular space within canaliculi is accessible to 

blood in peripheral vessels (Nango et al., 2016). Confocal laser scanning microscopy of modern 

human femur shows that compact bone contains approximately 10 million osteocytes per cubic 

centimetre, each with a volume of approximately 500 μm3 and implying a total length of the 

canaliculi in that volume of approximately five kilometres (Papageorgopoulou et al., 2010). In 

mammals, the larger the body, the lower the density of osteocyte lacunae, with osteocyte lacunar 

density being around 17,000/mm3 for hippopotamus, 20,000/mm3 for humans and 50,000–

66,000/mm3 in mouse femora (Nango et al., 2016). 

Porosity has been found to vary considerably between different species (Fig. 2). Dry, acellular 

human, bovine and porcine compact bone specimens have been measured with total porosities of 

9.2%, 5.2% and 14.3 % respectively (Figueiredo et al., 2010). These porosities are made up of 

three different pore size ranges at the micro- and nano-level: a) vascular porosity (VP), with 

average pore diameters around 50 μm; b) lacunae-canaliculi porosity (LCP) corresponding to an 

average pore size of 0.1 μm; and c) collagen-apatite porosity (CAP) related to the voids between 

and within collagen molecules (Figure 3), and HAp crystallites with diameters of only a few 

nanometers (Figueiredo et al., 2010; Mansilla et al., 2014). 
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Figure 2. Differences in porosity of human and bovine compact bone measured by mercury intrusion porosimetry. 

CAP = collagen-apatite porosity; LCP = lacunae-canaliculi porosity; VP = vascular porosity. (Data adapted from 

Figueiredo et al., 2010) 

A great deal of porosity in dead bone arises from the destruction of soft tissue in the blood vessels 

and bone cells which are housed in osteocyte lacunae. After loss of soft tissues, the lacuno–

canalicular network allows soil water (and associated ions and microorganisms) to infiltrate the 

bone cortex irrespective of the direction of net flow of water within the sediment. The type and 

scale of diagenetic alteration influence the porosity of bones post-mortem in such a way that if 

the porosity decreases the survival prospects of the bone increase with permineralisation gradually 

leading to the fossilization of the specimen. Alternatively, if the porosity increases then the 

survival prospects of the specimen are severely diminished as water flows increasingly freely 

through the bone such that it may disappear completely from the archaeological or fossil record. 

Bones in a free-draining, acid soil, for instance, are particularly prone to this since they suffer 

both bioerosion and dissolution. 

The volume of the pore network and its directionality in the other mineralised tissues differ from 

that of bone. As it might be expected, ivory and tooth dentine is known to survive well in the 

archaeological and fossil record. The directionality of porosity in different tissues has a very 

visible influence on patterns of microbial degradation as can be seen in Figure 4 below where, 

even after considerable bioerosion, the dentine in this tooth root is readily distinguishable from 

the surrounding cementum. The porosity in dentine has a smaller average diameter than found in 

bone and does not connect with the exterior of the skeletal element via large Haversian canals 

(Heckel et al., 2016). The dentinal tubules are not interconnected except via the pulp cavity, which 

itself is an enclosed volume accessible to soil water predominantly via the apical foramen. This 

local isolation from sediment pore water may well be reflected in the relatively better preservation 

of tooth dentine (and associated DNA) compared to bone (Hollund et al., 2014).  

The mineralised tissues in antler are more porous, more chaotic in the orientation of blood vessels 

and have a lower mineral content than the bone found in the axial and appendicular skeleton. One 

might, therefore, expect it to be more susceptible to diagenesis than human or animal bone. 

Certainly, antler is less well represented in the archaeological record but this may reflect 

taphonomic rather than diagenetic factors. Antler is physically weaker and less dense than cortical 

bone and is more accessible to the predations of scavengers as is often the case with the spongy 

bone at the jointed ends of long bones that are exposed on the soil surface. By comparison with 

both antler and bone, ivory is both compact and, being composed of acellular dentine, has a low 

porosity. Mercury intrusion porosimetry of un-demineralised dentine gives a total pore volume of 

only 4-5% and a mean pore diameter of ~750 nm (Vennat et al., 2009).  
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Figure 3. Changes in porosity of bovine compact bone before and after stripping out the collagen in a non-aqueous 

medium using hydrazine. Note the large increase in porosity with radii below ~25 nm arising from loss of collagen 

fibrils. Porosity below 10 nm must reflect pores spaces between HAp crystallites. Note the increase in pore radius and 

volume associated with the lacunae-canaliculi porosity and vascular porosity revealing a loss of un-mineralised osteoid 

from their internal surfaces. 

4. Density of mineralised tissues 

There is considerable confusion concerning the densities of different skeletal elements arising, in 

part, from the various different ways of expressing density. Here, a clear distinction should be 

made between the density values quoted in the osteoarchaeological literature, which is mainly 

concerned with the survivability and water transport characteristics of different skeletal elements 

(Boaz and Behrensmeyer, 1976; Lyman, 2014, 1984), and the densities quoted in a clinical 

context. In the former, density may be expressed as relative density in grams per cubic centimeter 

(g/cm-3) whereas in the latter, bone mineral densities are measured as grams of mineral per unit 

area in the projected X-ray shadow of a region of interest (Bonnick, 2000) – although they are 

more commonly presented in a clinical setting as a comparison with the peak bone mineral density 

of a healthy 30-year-old adult (T-score) or an age-matched cohort (Z-score).  

In bone diagenesis studies, there are two ways to measure density, namely, bulk density in which 

the measured volume includes the pore space, and the real density (also called material density 

and/or skeletal density) in which the pore volume is subtracted from the volume used in the 

calculation (Turner-Walker, 2009; Zioupos et al., 2008). The real density of a skeletal element 

depends upon the ratios of organic, mineral and water, and as stated above, this may vary 

considerably from species to species and from one bone element to another (Figueiredo et al., 

2010; Zioupos et al., 2000). Regarding faunal measurements of density, an extensive and 
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reasonably up-to-date list of various taxa with density data is available elsewhere (Lyman, 2014). 

Initially, it was discovered that between deer, sheep, and pronghorn antelope, little density 

variation was evident between subspecies and species, and larger but nonsignificant variation was 

seen between genera (Lyman, 1984). Additional studies found similar results and conclude that 

species of generally similar morphology will have similar bone density values (Lam et al., 1999). 

Terrestrial faunal bones with higher bulk density values are found to correlate more strongly with 

survivorship over time (Lyman, 1984), with similar findings in fish (Butler and Chatters, 1994) 

and aquatic birds (Broughton et al., 2007).  

5. Depositional Environment 

In vivo, the mineralized tissues experience an environment that is strictly controlled by the body’s 

cellular and metabolic processes that remodel and repair the skeleton, maintain calcium 

homeostasis, and limit the action of microorganisms. After death, this protective envelope ceases 

to function and once skeletonisation has begun the skeleton is exposed to one or more of a wide 

range of environments that frequently represent an “open system” in terms of physical, chemical, 

and biological insults to the mineralised tissues. Depending upon the nature of the environment, 

a skeletal element will undergo a somewhat predictable diagenetic trajectory that may, or may 

not, result in its preservation in the archaeological or geological record. Of course, if the 

environment evolves over time, that diagenetic trajectory may change in speed and/or direction 

such that any excavated bone may exhibit chemical and physical deterioration corresponding to 

different environments. Nevertheless, it is sometimes possible to untangle these changes in 

depositional environment with clever use of chemical and histological techniques (Hollund et al., 

2012; Pfretzschner and Tütken, 2011; Trueman and Benton, 1997; Turner-Walker and Jans, 

2008). In the case of human inhumations, the local environment can change dramatically over 

short time periods if the decomposing corpse is enclosed within a wooden coffin or stone kist. In 

the case of a wooden coffin, the skeleton will experience an initially closed system enclosing 

putrefying soft tissues which becomes progressively more open and free draining once the coffin 

has begun to decay. The complex chemistry of a decomposing corpse are covered 

comprehensively in the forensic literature, (e.g. Dent et al., 2004 and references therein). The 

various factors influencing the survivability of a bone over time and its susceptibility to 

destructive, rather than preserving diagenetic factors are discussed in more detail below.     

5.1 Soil pH and Eh 

Because of the difficulties in fully reconstructing past soil burial conditions for archaeological 

bones, field experiments in which the soil pH, hydrologic regime, and temperatures are monitored 

have been extremely useful in understanding preserving as opposed to destructive environments. 

Collins et al. (1995, Figure 1) note the greater susceptibility of collagen to alkali rather than acid 

pH. However, a study of various mammal, bird and fish bones experimentally buried in a range 

of pH and hydrologic environments found that the acidic (pH 3.5-4.5) soils are more aggressive 
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than alkaline (7.5-8.0) soils (Nicholson, 1996). Similar results have been reported with human 

bones (Nielsen-Marsh et al., 2007), implying that it is the mineral and not the protein that controls 

early diagenesis.  Increased availability of hydrogen ions leads bioapatite to readily dissolve 

(Nielsen-Marsh et al., 2000), because bioapatite is found to be most stable at pH 7.8 (Berna et al., 

2004), and begins to dissolve in environments below pH 6.0 (White and Hannus, 1983). 

Decomposing bodies have been shown to change the pH of the localized burial environment, first 

by dropping pH levels (Gill-King, 1997), followed by more alkaline conditions (Gill-King, 1997; 

Janaway, 2008). Acidic environments can also arise from the presence of decomposing biomass 

producing humic and tannic acids, the leaching of base ions such as calcium and potassium, and 

the formation of carbonic acid by the dissolution of carbon dioxide (CO2) arising as a 

decomposition by-product (Pokines and Baker, 2014). 

The colour of excavated bones provides clues to the evolution of the burial environment. The soil 

profile generally exhibits a succession of chemical regimes with oxygen reduction in the 

uppermost levels; underlain by successive levels of nitrate reduction; Mn4+ reduction, Fe3+ 

reduction; sulphate reduction and methane fermentation at the lowest levels. Bones from anoxic 

layers tend to be stained brown or black from manganese and iron oxides adsorbed onto the pore 

structure or fixed within the tissues since their solubilities, and hence availability to enter the pore 

structure of buried remains and interact with either the collagen or mineral, are dependent upon 

both pH and Eh (Mielki et al., 2016; Rengel, 2015). Redox and pH values also influence the 

availability of fulvic and humic acids which stain bone tissues anything from pale brown to dark 

brown or almost black such as the almost black bones of two women recovered from the Oseberg 

Ship burial in Norway (Holck, 2007, pers comm).  

5.2 Soil hydrology 

One of the most important factors for archaeological preservation and/or modification of 

mineralized tissues is water in and around the archaeological elements. Originally, three important 

hydrological scenarios had been outlined: a) diffusive; b) recharge; and c) flow regimes (Hedges 

and Millard, 1995). Diffusive regimes are found where there is little net movement of or change 

in the amount of water in an environment, recharge regimes are seen where fluctuations and 

subsequent wetting and drying cycles occur, and lastly, flow regimes occur when water flows 

through both the mineralized tissue and the soil, such as rainfall in unsaturated or free-draining 

sandy soils (Hedges and Millard, 1995; Nielsen-Marsh et al., 2000).    

Fluctuating environments are the most damaging to mineralized tissues while diffusive 

environments tended to produce the smallest amount of diagenetic alteration (Fernández-Jalvo et 

al., 2010; Field et al., 2003; Hedges and Millard, 1995; Nielsen-Marsh et al., 2000; Nielsen-Marsh 

and Hedges, 2000b; Reiche et al., 2003; Salesse et al., 2014; Smith et al., 2002; Trueman et al., 

2004). Cyclical wetting and drying as well as freezing and thawing regimes cause bones to swell 

and shrink setting up physical strains which result in radial cracking, flaking, and spalling of the 
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bones (Fernández-Jalvo et al., 2010; Pfretzschner and Tütken, 2011; Pokines et al., 2016). This is 

commonly observed both in bone weathering (i.e. destruction of bone by various physical and 

chemical processes) at the surface (Behrensmeyer, 1978; Fernández-Jalvo et al., 2010) and those 

buried in the soil (Fernández-Jalvo et al., 2010; Pfretzschner and Tütken, 2011). 

Archaeological bone (i.e. more porous bone) has been shown to adsorb more water, and more 

quickly, than does fresh bone, and will in turn have a greater desorption rate (Turner-Walker, 

1993). The rate at which water moves into and through archaeological material, combined with 

the speed of both the wetting and drying of the material factors into the preservation or destruction 

of mineralized tissues in the archaeological record. Water flowing through a bone will leach out 

mineral, the rate of removal being a function of pH and the volumes of water moving through the 

bone. Collagenases are too large to penetrate the intimate association of bone and mineral (the 

collagen-apatite porosity in Figure 2) but the removal of mineral is a prerequisite for collagen 

decay (Klont et al., 1991). A leaching regimen will expose demineralised collagen to potential 

microbial enzymolysis, leading to the eventual destruction of the tissue given enough time 

(Nielsen-Marsh and Hedges, 2000b; Reiche et al., 2003; Trueman et al., 2004; Von Endt and 

Ortner, 1984). Since well-drained soils also tend to be acidic and well-aerated, both chemical and 

microbial action can rapidly degrade a skeleton to a few fragments of compact bone (Johns, 2006) 

or reduce it to no more than a stain in the soil (Bethell and Carver, 1987). Water also substantially 

alters the element distribution in the bone, which combined with dissolution and recrystallisation, 

continues to shift the bone mineral composition closer to equilibrium with the burial environment 

(Lambert et al., 1985; Müller et al., 2011; Müller and Reiche, 2011; Ina Reiche et al., 2002; Reiche 

et al., 1999; Trueman et al., 2004; Tuross et al., 1989; Tütken et al., 2008).  

 

5.3 Bone-humic interactions 

The breakdown of vegetable matter in the soil is a complex process which lies outside the focus 

of this review paper. However, because the end results of these processes are often reactive 

organic molecules that can not only form permanent or semi-permanent cross-links in collagen 

but also sequester calcium from bone mineral, a short discussion is pertinent.  

Humic substances are formed by the modification of plant matter, especially lignin, and the 

resulting molecules are very resistant to further biodegradation. Although they may derive from 

various sources, their general properties are very similar and the humic matter in soils may be 

very diverse. Humic substances may be divided into humic acids, fulvic acids and humins, 

distinguishable by their different solubilities in water at different pHs. Typically, humic 

substances are large polyphenolic molecules containing phenolic and carboxylic groups. The 

presence of these carboxylate and phenolate groups gives them the ability to form complexes with 

ions such as Mg2+, Ca2+, Fe2+ and Fe3+. Many humic acids have two or more of these groups 
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arranged in such a way to enable the formation of chelate complexes with divalent and trivalent 

ions (Evangelou and Marsi, 2001). There is considerable evidence that these humic substances in 

the soil can form random, non-specific cross-links with bone collagen (van Klinken and Hedges, 

1995).  

In bones from wet soils (rather than waterlogged), the outer 1-2 mm where the bones tissues have 

been in direct contact with the soil are partly demineralised and stained a much darker brown than 

the underlying cortical bone (Turner-Walker, 2008, 1993). This phenomenon is also seen on the 

fracture edges of broken bones, and thus, does not reflect microstructural differences in the 

periosteal surface. An extreme example of this demineralisation is seen in the so-called mound 

people such as the Egtved Girl (Breuning-Madsen and Holst, 1998). These Bronze Age finds are 

inhumations in oaken log coffins in which the skin, hair, fingernails, and textiles are exceptionally 

well-preserved, but the skeleton has vanished completely, leaving only the enamel tooth crowns 

(Thomsen, 1929). It may be speculated that tannins derived from the oak coffin, combined with 

waterlogged, anoxic conditions are responsible for both the loss of bone mineral and the 

spectacular preservation of proteinaceous materials. 

Another breakdown product of vegetation that has a bearing on bone diagenesis is found in 

sphagnum peat bogs and in peat derived from sphagnum. Research has identified a chemical 

breakdown product of sphagnum mosses, namely sphagnan, a polysaccharide which has powerful 

tanning and calcium chelating properties (Painter, 1991, 1983). This polysaccharide has been 

postulated as responsible for the spectacular preservation of the bog bodies found during peat 

cutting in northern Europe and Scandinavia. Typically, in these finds, the skin, intestines, 

clothing, and cordage are preserved in a semi-tanned state, whereas, once again, the skeleton has 

either been completely demineralised or has disappeared entirely. Bog bodies have been found in 

peat derived mainly or almost exclusively from sphagnum mosses. Field experiments over several 

years have demonstrated that bones buried in a sphagnum peat bog suffer much more rapid surface 

demineralisation than those buried in a fenland bog (Turner-Walker and Peacock, 2008). 

6. Microbial degradation (bioerosion) 

6.1 Patterns of microbial bioerosion 

In the bone diagenesis literature, microbiological alterations of bone are generally divided into 

damage caused either by fungi (Marchiafava et al., 1974), bacteria (Hackett, 1981; Jackes et al., 

2001), or in marine and freshwater environments by aquatic microorganisms (Bell et al., 1991; 

Davis, 1997; Pesquero et al., 2017, 2010; Turner-Walker, 2012). Studies on microbial post-

mortem alterations of mineralised tissues have some antiquity. In the 19th century, Wedl was the 

first to describe microbial activity on human dentine (and later a piece of horse rib) that he had 

soaked in well water (Wedl, 1864). Wedl assumed the causal organism he saw to be a fungus 

(Bell, 1995). As such, Wedl was not only the first to report microbial degradation of mineralised 
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collagen but was one of very few researchers to replicate this in the laboratory. Wedl subsequently 

went on to look at ancient and fossil specimens in which he identified similar tunnelling. Towards 

the end of the 19th century Roux (1887) and Schaffer (1895) went on to examine fossil bones and 

teeth with similar results, and similarly concluded that the causal agent was a fungus which Roux 

named Mycelites ossifragus. Rather interestingly, this term has also been used to describe 

microborings in fossil fish teeth, dinosaur eggs and seashells (Taylor et al., 2014). 

Investigations into the tunnelling of ancient skeletal remains resumed in the 1950s (e.g. Sognnaes, 

1959, 1956) and have continued up to the present day (e.g. Turner-Walker and Jans, 2008). 

Hackett (1981) first characterised tunnelling presumably caused by fungi as Wedl microscopical 

focal destruction (MFD) and tunnels attributed to bacteria as non-Wedl MFD. He described three 

distinct types of non-Wedl MFD: linear longitudinal, budded, and lamellate (Hackett, 1981). 

Today, the characterisation of the microorganisms responsible for bone degradation is typically 

identified by the type of tunnelling present in the bone (Jans, 2008), because success in culturing 

and identifying the microorganisms has proved elusive.  

Marchiafava et al. (1974) are frequently cited as having successfully created tunnels in bones 

using inoculation with Mucor sp. isolated from fresh cadaver vertebrae buried in garden soil. 

What is less frequently reported is that they autoclaved their bone specimens at 100-200 ºC before 

inoculating them with fungi. This is hardly a good model for bone degradation in human 

interments but may well be a good model for domestic bone waste. Furthermore, it is telling that 

although the fungi grew luxuriantly in the unsterilized soil/bone samples, it only grew sparsely 

on the sterilised bones – suggesting that the bones may not have been the major source of nutrition 

for the microorganism. It is also interesting to note that when Piepenbrink inoculated X-ray 

sterilised bone with a range of fungi he found no tunnelling but did describe rapid and uniform 

growth of fungi which penetrated the vascular channels (Piepenbrink, 1986). This suggests that 

heating the bone above the gelatinisation temperature of mineralised collagen can disrupt the 

protein-mineral bond and leave the bone tissues more susceptible to fungal degradation. 

Bones exposed above the sediment (i.e. exposed to light) in a marine or freshwater environment 

are rapidly tunnelled by aquatic microorganisms which are able to penetrate to a depth of around 

500-700 μm below the surface, leaving meandering tunnels 5-10 μm across (Turner-Walker, 

2012). These tunnels are tightly-spaced, with typically less than one micron between tunnel walls, 

and appear not to respect the bone microarchitecture. They branch only occasionally, and some 

tunnels contain clusters of spherical grains of redeposited HAp. These grains vary in diameter 

from 1-2 μm (Pesquero et al., 2010) and are slightly enriched in manganese (Turner-Walker, 

2012) suggesting that the organisms responsible may belong to the cyanobacteria family. It is 

interesting to note that in Wedl’s original research on tunnelling found in teeth, his samples were 

immersed in “untreated well water” and that the tunnels that had formed after 10 days did not 

penetrate deeper into the tissues than 0.2-0.25 mm. After immersion for more than a month the 
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organisms responsible were unable to tunnel further. He also described some “few shining grains 

appearing in the interior” of the tunnels (Wedl, 1864). This raises the intriguing possibility that 

Wedl’s original tunnelling, so often now attributed to fungi (Hollund, 2013; Jans, 2008; Jans et 

al., 2004; Müller et al., 2011) may actually have been due to cyanobacteria after all. 

Bones excavated from the majority of terrestrial archaeological contexts are unlikely to exhibit 

tunnelling by cyanobacteria. When Wedl-type bioerosion in exhumed bones is attributed to fungi 

it is most commonly, if not exclusively, along the periosteal margins of bones, whereas non-Wedl 

MFD commonly occurs around vascular (Haversian) canals (Lam et al., 2009). The dimensions 

of the tunnels described by Wedl were around 8 μm in diameter. Other researchers have described 

varying dimensions for different morphologies of MFDs ranging from 5 μm for Type I Wedl 

tunnels, 5-10 μm for linear longitudinal and anything up to 60 μm for budded and lamellate 

tunnelling (Jans, 2008).  

Figure 4. Differences in the pattern of bacterial degradation between tissue types in the root of a human incisor from 

the Medieval site of Wharram Percy, UK. Arrows indicate the border between dentine and cementum. 

It is hazardous, and not supported by available evidence, to assign different causative organisms 

to these different sizes and morphologies of MFDs. Sognnaes (1955) found a similar range of 

sizes (2-10 microns; 15-25 microns and 50-100 microns) of focal destruction in ancient teeth from 

Europe and America. He thought that tunnels of different diameters did not mean that they were 

caused by different organisms but rather were caused by differences in the tissue type tunnelled. 

This explanation is supported by data coming from mercury intrusion porosimetry (Jans et al., 

2004) which shows that all of the MFD types – linear longitudinal, budded, lamellate and even 

Wedl tunnels – have very similar porosities, exhibiting the double-peaked trace normally 
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attributed to bacterial tunnelling, which supports the interpretation of Sognnaes (1955). The 

influence of tissue microarchitecture is dramatically demonstrated by the change in the pattern of 

diagenetic alteration at the transition from cementum to dentine in Figure 4. 

Bacterial tunnelling is associated with a dissolution and redistribution of HAp within the affected 

zones (Turner-Walker et al., 2002), as was noted by both (Hackett, 1981) and (Bell, 1995) in 

earlier studies. In fact, Hackett specifically noted the importance of seasonal variations in soil 

water content and their importance not only for the proliferation of the tunnelling bacteria but also 

the pattern of distribution (or loss) of the mineral (Hackett, 1981). The most parsimonious 

explanation for the different morphologies and sizes of MFDs is that one or more closely related 

species of bacteria are responsible for tunnelling into mineralised collagen and that perceived 

differences are due to a combination of tissue microarchitecture and local hydrologic flow within 

and surrounding the bone. Tunnelling that occurs close to the periosteum or in any surface in 

close contact with the surrounding soil is more likely to be empty because solubilised mineral has 

a greater likelihood of being swept out of the bone. This may account for some of the Wedl-type 

porosity attributed to soil fungi penetrating the periosteal surface in some specimens (see Fig. 

5A). Bacterial degradation that occurs deeper inside the tissues is more likely to result in any 

dissolved mineral re-precipitating within the tunnelled space, leading to the observed pattern of 

often ragged demineralised spaces interspersed with hypermineralised cuffs or infillings which 

represent HAp re-precipitated within the tissues (Turner-Walker and Syversen, 2002).  

Figure 5. A: BSEM image of human bone from the Medieval monastery at Cleeve Abbey, UK. This specimen is from 

the free-draining part of the site and is extensively tunnelled by bacteria. Note that the periosteal bone is characterised 

by empty pores ~10 μm in diameter, whereas the outer 50 μm where it has been in contact with the soil is un-tunnelled. 

B: BSEM image of bone from the waterlogged part of the cemetery. Bacterial tunnelling is absent but there is 

considerable demineralisation and cracking of the periosteal bone. Demineralisation appears to respect the cement lines 

delineating secondary osteons.  

 

As recognition of the far-seeing contribution of Hackett, it is worth quoting him with regard to 

how he saw future developments in the subject of post-mortem alteration of bone microstructure. 

“The application of more sophisticated techniques would contribute to the fuller understanding 
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of these changes and their causes” (Hackett, 1981). It is somewhat surprising, therefore, that so 

many researchers persist in applying low-power optical microscopy to the question of diagenetic 

alterations to bone tissues. 

 

Figure 6. Differences in porosity for human femora from Mediaeval individuals excavated from two different 

inhumation environments – aerated soils (Wharram Percy, UK) and waterlogged, anoxic (Trondheim, Norway). Note 

the increased vascular porosity in the older, female specimen compared to the young male. (unpublished data MJC) as 

well as the increase in the collagen-apatite porosity in the bone from the warmer, aerated soil. 

6.2 Environment and microbial bioerosion 

The soil environment is without doubt the dominating factor in whether a buried bone will survive 

within the archaeological record or whether it degrades rapidly and is lost. Skeletonised remains 

in the tropics degrade much more rapidly than those in temperate zones, which in turn degrade 

more rapidly than those close to the arctic circle. Similarly, deeply buried remains tend to survive 

for longer than those in shallow burial environments. Part of this is because temperature is an 

obvious factor but so too is access to oxygen. Once again, (Hackett, 1981) was prescient in his 

understanding of the relationships between post-mortem changes to skeletons and burial 

environment - “tunnelling in bone does not appear to develop readily in wet, or waterlogged 

conditions. Moderate soil moisture with periodical, seasonal variation of water table and 

temperature, e.g. warm summers, are favourable for tunnelling.” This conclusion is supported by 

evidence from the Medieval cemetery at Cleeve Abbey, UK. This cemetery has burials from both 

free-draining and waterlogged soils and the skeletons show a dramatic difference in microscopic 

preservation state (Fig. 5 A & B).   

The soil bacteria responsible for tunnelling in buried bones are evidently aerobic in their 

metabolic pathways. Bones that are buried in wet soils with restricted access to oxygen tend to 

exhibit none of the characteristic diagenetic signatures seen in bones buried in oxygenated soils. 

Occasionally, bones exhibit limited bacterial tunnelling but show evidence for diagenetic pyrite 
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within the tunnelled tissues that is testament to a transition from an oxygenated to anoxic 

environment (Turner-Walker and Jans, 2008). Bones from deeply-buried, water-saturated 

sediments tend to have a higher collagen content and lower porosity (Fig. 6) than similar 

specimens from free-draining, aerated soils, although because of the deposition of iron sulphides 

within their pore structure they are prone to rapid deterioration if the environment changes to one 

with freely available oxygen (Turner-Walker, 2009).   

6.3 The origin of the bacteria responsible for tunnelling in bone 

It is argued that due to the low frequency of microbially altered bones in the fossil record, 

microbially degraded bones seldom survive into the geological record (Trueman and Martill, 

2002). It is certainly true that archaeological bones and teeth tend to fall into a bimodal 

distribution on the Oxford histological index (OHI) scale - being either well preserved or poorly 

preserved (Hedges et al., 1995; Hollund et al., 2014). It has also been demonstrated that bacterial 

alteration in human bones is more than twice as common as in animal bone (Jans et al., 2004).  

These findings have initiated a debate as to whether the way bones have entered the archaeological 

record (e.g. articulated- vs. disarticulated bodies) could have an influence on whether the bacteria 

responsible for non-Wedl tunnelling originate from the gut microbiome or from the burial soil 

post-skeletonisation (Bell, 1995; Damann and Jans, 2017; Jans et al., 2004; White and Booth, 

2014). If a link between the bacterial alteration of bone and the presence of gut microbes exists, 

it can have great implications for the interpretation of the early post mortem period. In whole 

body decomposition, the bloat event, where the body cavity ruptures, is suggested to be a key 

point where a shift in the diversity of microbes from anaerobic to aerobic is observed (Bucheli 

and Lynne, 2016; Metcalf et al., 2013). A link between bone bioerosion and soft tissue 

decomposition would provide strong evidence that non-Wedl tunnels are produced by an 

organism’s enteric gut microbiota and that these bacteria migrated from the intestines in the first 

few days after death, and go on to penetrate the bone microstructure (Booth and Madgwick, 2016; 

Jans, 2008; Kellerman et al., 1976).  

Contrary evidence comes from an experimental burial of whole pig carcass which showed no 

specific histological attack patterns and no clear relationship between histological preservation 

and proximity to the abdominal area after 7 years (Kontopoulos et al., 2016). More pertinently, 

Bell et al. (1996) found no evidence of bacterial degradation of any kind in the skeletons (ribs) of 

three executed prisoners exhumed after 70-83 years from wooden coffin burials in Canada. These 

had been isolated from the soil and the coffins were dry when exhumed. We can infer a short 

interval between death and interment because execution and burial of condemned prisoners under 

the British Commonwealth followed strict protocols and bodies were buried promptly, without 

autopsy, soon after the individual was declared dead. Supporting evidence for tunnelling bacteria 

originating in the burial environment is provided by the identification of this characteristic 

tunnelling in archaeological ivory artefacts (Large et al., 2011). 
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Taphonomic setting undoubtedly influences the microstructural decay of bones. In forensic 

science, the use of genetic analysis to study the microbial diversity in the soil around a body has 

recently been investigated to estimate time since death (Metcalf et al., 2013; Pechal et al., 2014, 

2013). A study by (Metcalf et al., 2015) found that 40% of the microbes responsible for the 

decomposition of the cadavers are already present in the soil before placement of the body and 

that other sources, such as insects, may provide a large proportion of the microbial decomposer 

community. The findings of Metcalf and colleagues are interesting as White and Booth (2014) 

found in their study of whole pig burials, that there was no bioerosion on the bones of stillborn 

pigs, which were considered not to have developed microbiota, and therefore concluded that 

exogenous soil bacteria do not contribute to microbial attack of bones over the first year of 

decomposition. However, they note that heavy rainfall during the first few months of the 

experiment could have created anoxic waterlogged conditions that slowed down degradation.  

7. Protein degradation 

7.1 Collagen 

Collagen is linked with the strength of bone (Saito and Marumo, 2010; Schultz, 1997), and loss 

of collagen is responsible for the weakening of bone structure, potentially causing loss of the 

skeletal element entirely. Collagen loss happens due to both biological and chemical degradation. 

Biological loss of collagen, such as from microbial tunneling, assists in the destruction of 

mineralized collagen due to collagenase properties found on many microbes (Child, 1995a, 

1995b; Marchiafava et al., 1974). Due to the size of the microbes and collagenases, which are 

both too large to fit into the collagen-apatite porosity, bone mineral would first have to be removed 

to expose the collagen triple helix (Child, 1995a, 1995b; Hedges, 2002; Marchiafava et al., 1974; 

Nielsen-Marsh et al., 2000; Turner-Walker, 1993) as it is during bone resorption. Microbial 

tunneling has been described earlier and is clearly a principal mechanism of collagen loss in 

environments and sites where bone degrading bacteria can flourish (Balzer et al., 1997; Child, 

1995a, 1995b; Marchiafava et al., 1974; Nielsen-Marsh and Hedges, 2000b; Smith et al., 2002; 

Turban-Just and Schramm, 1998).  

Chemical destruction of collagen, however, is influenced by many factors. Collagen is a protein 

held together by peptide bonds, and peptide bonds can be broken down by hydrolysis (Collins et 

al., 1995; Smith, 2002). Initial studies demonstrated that collagen degradation was a by product 

of both temperature and time, but increased collagen loss over shorter amounts of time 

corresponded with an increase in mean temperature (Ortner et al., 1972; Von Endt and Ortner, 

1984). Similar results were also seen with cooked bone, where higher temperatures yielded more 

efficient collagen loss (Roberts et al., 2002; Solari et al., 2013). Figure 7 depicts collagen loss 

across a temperature gradient. Soil conditions, such as either extreme acidity or alkalinity can 

exacerbate the effects of hydrolysis, causing collagen to be lost much more effectively (Collins 

et al., 1995; Smith et al., 2002). Higher numbers of cross-links (i.e. stronger bone structure) retain 
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collagen better over time than does bone with little, or no cross-linkage (Collins et al., 1995). 

However, close examination of this model reveals that it is flawed as it demands too large a 

number of cross-links to explain the stability of chrome-tanned collagen.  Subsequently, an 

alternative hypothesis, the link-lock model, shows it was physical constraint, rather than cross-

links, which prevent collagen from melting (Covington et al., 2008).  

 

Figure 7. Plots of radiocarbon dates of charcoal and bone apatite (left), and bone collagen (right) against temperature 

of burial environment. The blue line indicates the theoretical limit for collagen survival. Drawing adapted from 

(Buckley et al., 2008b; Smith, 2002). 

Therefore, an intricate collection of processes are necessary for the complete removal of the 

collagen content of an archaeological specimen in less than several thousand years.  It has been 

shown that areas around cracked bone surfaces lose collagen much more rapidly than do non-

cracked regions (Boaks et al., 2014; Trueman et al., 2004).  These cracks may be due to either 

taphonomic conditions such as gnawing or weathering, or from density mediated attrition, where 

less dense bones are more likely to crack over time (Lyman, 2014).  If they occur, cracks can then 

allow exogenous material into the bone, drastically altering the mineral structure (Smith et al., 

2007), indicating that protein loss of bone in general is not an independent process, and proceeds 

in concert with other diagenetic changes such as microbial attack and deterioration of the 

inorganic content (Collins et al., 2002; Nielsen-Marsh and Hedges, 2000b; Trueman et al., 2004).  

Bone interaction with water can also increase the speed at which these processes work (Smith, 

2002).  Essentially, the process of collagen loss can be described as a rapid initial loss of collagen 

as a byproduct of increasing temperature, followed by a secondary, slower rate of decay of 

endogenous bone collagen due to chemical damage over extended periods of time (Turner-

Walker, 2011).   

Chemical degradation and loss of collagen can be identified as an increase in the smallest porosity 

in many archaeological bones (Turner-Walker et al., 2002). Comparing Figures 3 and 6 above it 

is clear that bone deposited in an aerated, free draining soil (Wharram Percy) exhibits an increase 
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in porosity at the collagen-apatite level compared to the bone from the waterlogged site 

(Trondheim). Figure 8A shows a high resolution BSEM image of bone that has not been 

bacterially tunnelled. Superficially, it appears that the smallest pore spaces (~30-50 nm) may 

represent lost collagen fibre bundles. However, a secondary electron image of an EDTA- treated 

sample of the same bone (Figure 8B) shows that these pores actually represent the inter fibrillar 

spaces that have suffered mineral loss. This supports the hypothesis that collagen and bone 

mineral are mutually protective, leading to the long-term survival of mineralised tissues in the 

burial environment, and that disruption of this intimate association will make bone tissue more 

susceptible to diagenesis (Koon, 2006; Turner-Walker, 2008).  

 

7.2 Other Proteins 

Skeletal material is made up of a series of proteins that are less abundant than collagen.  

Osteocalcin is one of many non-collagenous proteins found in skeletal material and comprises 

between 10-20% of the non-collagenous protein of bone (Ajie et al., 1992). Osteocalcin (Bone 

Gla Protein) is responsible for calcium binding and mineralization regulation (Lian et al., 1978; 

Price et al., 1976). Matrix Gla protein is similar in construction to osteocalcin, while 

proteoglycans and sialoprotein are phosphoproteins (Al-Qtaitat and Aldalaen, 2014). 

Phosphoproteins are likely responsible for calcium binding (Mundy, 1999).  Lipids and 

proteolipids, along with alkaline phosphatase, are attributed to mineralization processes in bone 

and tooth (George and Veis, 2008). Other proteins in bone include a host of cell-attachment 

proteins and proteins responsible for regulating growth and cell activity (Al-Qtaitat and Aldalaen, 

2014). For the purposes of this review, only osteocalcin diagenesis will be discussed, as a 

thorough literature search of diagenetic studies on these other proteins yielded no results.     

 

Figure 8. A: High resolution BSEM image of un-tunnelled cortical bone from Cleeve Abbey. The section was treated 

with NaOCl for 60 seconds. Larger pores (100-200 nm) are canaliculi. On initial inspection the smaller pores appear to 

be where collagen has been removed. However, if we look at a secondary electron image of a sample from the same 

bone treated with 0.1 Mol EDTA for 60 seconds (shown in Figure B) we see that bone mineral from between the fibre 

bundles has been removed, exposing partly demineralised collagen fibres. (Compare Figure 5D with (Habelitz et al., 

2002): Fig. 1) 
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Osteocalcin is typically bound to bone bioapatite (Tuross, 1993) and due to this, similarly to 

collagen, osteocalcin loss is linked with increased bioapatite crystallinity (Collins et al., 2000; 

Smith et al., 2005), microbial destruction of bone (Smith et al., 2005), and temperature (Buckley 

et al., 2008). There is evidence from FTIR studies that 1-2 wt.% of the protein in fresh bone is 

resistant to hydrazinolysis. Either this may represent osteocalcin or collagen that is tightly bound 

to, or surrounded by, mineral. Collagen has been found to survive longer than both DNA and 

osteocalcin in ancient material (Buckley et al., 2008). Therefore, this indicates that at present 

collagen may be relatively easier to detect and analyze in older mineralised tissues.   

8. Mineral changes 

 Crystallinity changes in archaeological bone were discovered when larger bioapatite crystals 

were noted in both museum specimens of eight ancient humans compared to modern, wild-killed 

Wildebeest (Tuross et al., 1989). In the modern samples, crystallite size was seen to increase over 

a period of 10 years, while the ancient samples showed significantly larger crystallite size in 

comparison to the modern samples (Tuross et al., 1989). As biogenic apatite is a relatively 

unstable and disordered form of geological mineral, its survival post-mortem depends on 

reorganization and growth through dissolution (loss of less stable components) and 

recrystallization (formation of more stable structure) (Nielsen-Marsh et al., 2000; Trueman, 

2013). Although early bioapatite diagenetic changes are still unclear (Keenan and Engel, 2017; 

Tuross et al., 1989), post-mortem alterations of its biogenic chemical signals and composition 

have long been recognized (Lee–Thorp, 2002; Lee-Thorp and van der Merwe, 1991; Shin and 

Hedges, 2012; Stiner et al., 2001; Wright and Schwarcz, 1996). 

Bone recrystallization increases crystallinity (i.e. crystal size and lattice perfection) and promotes 

the formation of a more stable, more authigenic mineral phase characterized by lower carbonate 

content as the initial more disordered crystals are less energetically stable (Asscher et al., 2011; 

Bartsiokas and Middleton, 1992; Götherström et al., 2002; Gourion-Arsiquaud et al., 2008; King 

et al., 2011; Nielsen-Marsh and Hedges, 2000b; Person et al., 1995; Reiche et al., 2002; Salesse 

et al., 2014; Stathopoulou et al., 2008; Surovell and Stiner, 2001; Termine and Posner, 1966; 

Trueman, 2013; Wright and Schwarcz, 1996). An increase in average and maximum crystal length  

post-mortem may be due to: i) particle coarsening, a process whereby the larger crystals increase 

at the expense of the smaller ones (i.e. Ostwald ripening); ii) dissolution of the smaller crystals; 

iii) or both (Nielsen-Marsh et al., 2000; I. Reiche et al., 2002; Stiner et al., 1995; Trueman, 2013; 

Trueman et al., 2008, 2004; Tuross et al., 1989; Weiner and Bar-Yosef, 1990; Wright and 

Schwarcz, 1996).  

Increases in crystallinity have been used as one of the parameters to characterise the degree of 

diagenetic alteration of ancient degraded bones (Asscher et al., 2011; Dal Sasso et al., 2016; 

Salesse et al., 2014; Trueman et al., 2004; Tuross et al., 1989; Weiner and Bar-Yosef, 1990) and 
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as a possible screening method for DNA analyses (Grunenwald et al., 2014a). Nevertheless, 

despite its widespread use as a measure of diagenesis the splitting factor or crystallinity index 

measured from FTIR spectra is not always a predictor of other measured parameters (Trueman et 

al., 2008). The degree of recrystallization and change is usually higher in fossil bone comparing 

to archaeological bone (Berna et al., 2004; Keenan, 2016; Smith et al., 2002). Mineral changes 

require active hydrology (recharging with fresh water) or a reduction in pH (Hedges, 2002; 

Hedges and Millard, 1995; High et al., 2015; Nielsen-Marsh et al., 2000; Trueman, 2013). Berna 

et al. (2004) and Keenan and Engel, (2017) demonstrated that hydroxyapatite is more stable in 

pH around 7.5-8, displays low solubility (recrystallization) in slightly alkaline to near neutral 

environments and gives way to dissolution and recrystallization in pH environments below 6 or 

over 9. This indicates that bone apatite is more soluble than authigenic apatites that form naturally 

from solution in the soil, meaning that bones lying within this “recrystallisation window” begin 

to more closely reflect the composition of soluble ions in the burial environment (heteromorphic 

recrystallization) (Fernández-Jalvo et al., 2016). 

Protein loss can also influence crystallinity (Nielsen-Marsh and Hedges, 2000b; Smith et al., 

2007; Trueman et al., 2004) as the loss of organic matrix in mineralised tissues may expose some 

poorly crystalline mineral fractions to water flowing through the bone, allowing leaching and 

reprecipitation onto existing crystals and into the empty pore spaces. This interaction of the 

groundwater with the hydrated layer of the apatite crystals allows the incorporation of diverse 

labile and reactive ions (e.g. HPO4
2ˉ, PO4

3ˉ, CO3
2ˉ, Ca2⁺, Mg2⁺), which may in turn substitute other 

ions into the core domain (Figueiredo et al., 2012; Lee-Thorp and van der Merwe, 1991; 

Stathopoulou et al., 2008). This ionic exchange is controlled by the pH of the groundwater which 

can vary from 2.8 to 10 (Nielsen-Marsh et al., 2000; Turner-Walker, 2008). These episodes of 

dissolution and recrystallization result in a loss of tensile strength (i.e. bone becomes more 

susceptible to fracture) and mass (High et al., 2015; Turner-Walker, 2011). Changes in the 

composition of bone apatites also take place, even in neutral to alkaline soils.   

Recrystallization can also lead to a distinct drop in microporosity accompanied by increasing 

macroporosity as seen at a variety of post-Ice Age, European, archaeological sites (Nielsen-Marsh 

and Hedges, 2000a, 2000b), in human, deer, goat, and sheep bones of between 1 and 55,000 years 

of age (Berna et al., 2004), fossilized remains of African animals (Trueman et al., 2004), and in 

assorted, experimentally altered bone (Hiller and Wess, 2006; Turner-Walker, 2011). Crystallite 

change and porosity alteration, however, is not always due to Ostwald ripening. Microbial 

tunnelling, in addition to mineral dissolution and recrystallization, also alters crystallinity 

(Turner-Walker et al., 2002). Recrystallization into authigenic apatite may be assisted by 

bacterially mediated mineral precipitation (Carpenter, 2005, 1999; Daniel and Chin, 2010). For 

microbes, this is in good agreement with research showing that microbes would first have to alter 

the mineral component of bone in order to get to the collagen (Nielsen-Marsh et al., 2000; Turner-
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Walker, 1993). Microbial activity can, therefore, lead to mineral dissolution, followed by a 

redistribution of phosphate for the growth of adjacent hydroxyapatite crystals (Trueman et al., 

2004).  

9. Ancient DNA degradation 

Deoxyribonucleic acid (DNA) is a macromolecule responsible for the construction of cellular 

proteins, which is passed to daughter cells during cell division. DNA is a polymer made up of 

four nucleotide bases - adenine and guanine, which are double-ringed purines, and cytosine and 

thymine that are single-ringed pyrimidines - all of which are attached to a deoxyribose sugar and 

a phosphate group, which make up the structural “sugar-phosphate backbone” of DNA (Jobling 

et al., 2013). Adenine and thymine pair in double-stranded DNA, as do guanine and cytosine 

(Jobling et al., 2013). Carbon atoms make up the deoxyribose molecule, where phosphate groups 

attach at the 3′ and 5′ (3 prime and 5 prime) carbon atoms, where the 3′ and 5′ each have an 

unattached hydroxyl (-OH) group on these respective carbon atoms (Jobling et al., 2013). A 

phosphodiester bond is then formed when a 3′ and 5′ carbon from differing sugar molecules 

conjoin through a covalent bond resulting in the formation of the double-stranded sister bond 

characteristic of DNA (Watson and Crick, 1953).    

Ancient DNA (aDNA) analysis concerns itself with getting DNA out of “old” tissues (Sarkissian 

et al., 2015), that is, specimens that are typically older than 100 years of age. However, post-

mortem, DNA is very susceptible to attack and degradation (Dabney et al., 2013) with quite 

limited calculated survivorship potential (Allentoft et al., 2012). DNA degradation commences 

with autolysis, taking place only a few hours after the death of an organism (Burger et al., 1999; 

Parsons and Walter Weedn, 2006; Pruvost et al., 2007). DNA is rapidly degraded by 

endonucleases such as lysosomes that cut DNA strands at internal sites (Hofreiter et al., 2001; 

Pääbo et al., 2004; Parsons and Walter Weedn, 2006). Bacteria and other external microorganisms 

also proliferate and digest DNA strands with exonucleases from the ends (Pääbo et al., 2004; 

Parsons and Walter Weedn, 2006; Pruvost et al., 2007).  

Initial research believed that bacterial attack was a likely cause for the total loss of endogenous 

DNA in a sample (Rollo et al., 2002). However, this is unlikely, as many samples commonly 

produce exogenous bacterial fingerprints while still producing authentic, endogenous DNA 

(Zaremba-Niedźwiedzka and Andersson, 2013). Also endogenous bacterial attack affecting the 

cortical bone tissue may preserve endogenous DNA, while environmental conditions may also 

build reservoirs or niches where DNA is preserved (Geigl, 2002).  Hydrolytic breakage of the 

polynucleotide strands is considered the main long-term reaction in aDNA degradation followed 

by chain breakage into shorter fragments usually between 100-500 bp in length (Bada et al., 1999; 

Brown and Brown, 2011; Hofreiter et al., 2001; Lindahl, 1993; Pääbo, 1989). The DNA molecule 

is particularly prone to this, as water attacks the β-N-glycosidic bonds and/or the phosphodiester 
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bonds (Brown and Brown, 2011; Lindahl, 1993; Parsons and Walter Weedn, 2006). The attack to 

the phosphodiester bond leads to single-stranded nicks, whilst the attack to the glycosidic bond 

releases the nucleotides (Pääbo et al., 2004).  

Environmental conditions play a key role in the preservation of endogenous DNA (Poinar, 2003). 

DNA decay is highly temperature-dependent (Allentoft et al., 2012; Lindahl, 1993; Lindahl and 

Nyberg, 1972). Low temperatures have an advantageous effect on the survival of DNA, whereas 

high temperatures result in significant loss of DNA (Burger et al., 1999; Poinar, 2003). DNA 

yields are much higher in tissues from permafrost areas than from moderate temperate 

environments, while the latter better preserve DNA compared to warmer areas such as the 

Mediterranean (Pruvost et al., 2008). A north-south decline in endogenous DNA yields has been 

reported in the Northern Hemisphere (Bollongino et al., 2008), with a 67% success rate for central 

European open-air sites compared to only 7% for Near Eastern open-air sites (Bollongino et al., 

2008). Caves also undisputedly preserve DNA more effectively as they have stable low 

temperatures all year-round and the alkaline sediment environment usually protects bone apatite 

from dissolution (Bollongino et al., 2008). Any variations in long-term DNA fragmentation is 

assumed to be caused by differences in pH and local hydrology (Allentoft et al., 2012; Burger et 

al., 1999; Lindahl, 1993; Lindahl and Nyberg, 1972).  

Hydroxyapatite crystals are assumed to protect DNA from further degradation as it adsorbs onto 

the crystal surface (Götherström et al., 2002; Lindahl, 1993; Parsons and Walter Weedn, 2006). 

Mineral preservation has been linked to the survival of DNA in bone, while its dissolution and 

recrystallization are related with considerable loss of DNA in archaeological specimens (Allentoft 

et al., 2012; Götherström et al., 2002). Collagen loss is also assumed to play a crucial role in DNA 

degradation (Sosa et al., 2013). Experiments modelling the loss of DNA over time have shown 

that there is a drastic loss of DNA within the first year of burial, which causes a concomitant loss 

of DNA from the organic fraction of bone as collagen is removed (Campos et al., 2012). As a 

result, higher proportions of DNA are found more regularly in the bioapatite portion (Campos et 

al., 2012). This is also in agreement with later studies that found DNA was intimately linked with 

the maturation, and thus increase in size of bioapatite crystallinity, and the preservation of DNA 

in bones between 0 and 3,800 years of age (Grunenwald et al., 2014b). A possible explanation of 

this is that chemical processes, such as hydrolysis and collagenases, are removing proteins, and 

mineral is then filling in the gap spaces, while other processes are denaturing cells and releasing 

DNA from the collagen, so it then freely binds to the newly formed bioapatite surfaces. This 

explanation is lent additional support by the observation that in bone artificially aged in water at 

60 ºC there are changes in both microporosity and tensile strength associated with dissolution and 

reprecipitation of mineral as collagen undergoes early degradation (Turner-Walker, 2011). 

However, the exact mechanisms of DNA preservation in ancient bones remains under debate 

(Götherström et al., 2002; Ottoni et al., 2009).  
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Some skeletal elements have been shown to yield larger amounts of DNA than others, meaning 

that it is easier to obtain authentic DNA from these samples (Gamba et al., 2014; Hansen et al., 

2017; Pinhasi et al., 2015; Pruvost et al., 2008). For instance, the petrous bone, one of the inner 

ear portions of the temporal bone of the skull, has had remarkable success in providing large 

amounts of endogenous aDNA, which has been attributed to its density, believed to be protecting 

it from potential destructive attack (Gamba et al., 2014; Pinhasi et al., 2015). However, in other 

skeletal elements, the unique porosity of human compared to animal bone means contaminating 

DNA (exogenous DNA) may enter human bone much more easily in an archaeological setting 

(Gilbert et al., 2005). In teeth, it has been demonstrated that cementum is a much more rich source 

of aDNA than the typically used dentine, which may be explained by higher mineral content of 

cementum (Adler et al., 2011; Damgaard et al., 2015; Hansen et al., 2017). It should be noted that 

in mineralising collagen, the mineral grows at the expense of interstitial water, and if that water 

contains DNA fragments then increasing mineralisation will result in more DNA becoming bound 

up in the mineral phase. 

10. Conclusions and suggestions for future research 

We have outlined a thorough synthesis of all the ways in which mineralized tissues can be altered 

through the processes of diagenesis. This palimpsest of diagenesis has highlighted the key and 

influential research from the initial forays into this research field and connected it with more 

recent research and innovative techniques attempting to explain diagenetic phenomena. We have 

illustrated the ways in which diagenesis can work to preserve bone, and agree with other 

researchers that central to this preservation is the interplay between the organic and inorganic 

constituents and how the environment interacts with the skeletal tissues. We conclude with others 

that diagenesis works as a collective process, since bone and tooth are made up of intrinsically 

linked components. Finally, we have argued that while histological preservation is important for 

samples, this comes at a cost of lowered recoverability of the proteins and endogenous DNA. 

Diagenetic processes are all interlinked. A loss of collagen causes the DNA to be lost from the 

organic fraction. Thus, this causes recoverable DNA to be extracted more readily from bioapatite 

as time goes on until total loss of DNA is observed (Campos et al., 2012). Some microbes are 

believed to be assistive in bone survivorship over time (Daniel and Chin, 2010; Smith et al., 2007; 

Trueman and Martill, 2002), whereas others (those responsible for tunnelling) actually hamper 

collagen preservation (Child, 1995a, 1995b; Marchiafava et al., 1974), assist in at least some loss 

of DNA (Rollo et al., 2002), and influence biogenic isotope values through selective feeding 

(Balzer et al., 1997; Grupe et al., 2002; Turban-Just and Schramm, 1998). Research into exactly 

how microbes work in the diagenetic framework is key, since they appear to be influential in all 

aspects of diagenesis of mineralised tissue.  They have been shown to remove collagen, alter the 

inorganic portion of bone, and erode the structure of bone through tunnelling. Further, diverse 

microorganisms are found in all types of environments and have a hand in both the preservation 
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and destruction of mineralised tissue. Therefore, they are an influential aspect of diagenesis, yet 

their role remains the least understood.     

Limited interaction with water is key for the preservation of the organic and inorganic contents, 

as well as DNA (Dabney et al., 2013; Smith, 2002). Environments where bone and water 

interaction remain static preserve bone better than do environments where cyclic wetting and 

drying occurs (Field et al., 2003; Hedges and Millard, 1995; Nielsen-Marsh et al., 2000; Nielsen-

Marsh and Hedges, 2000b). Increased temperatures also affect collagen survival (Ortner et al., 

1972; Turner-Walker, 2011; Von Endt and Ortner, 1984) and tend to accelerate loss of DNA 

(Shapiro, 2015) compared to cooler temperatures, while soil pH has been shown to influence the 

preservation of skeletal remains (Nielsen-Marsh et al., 2007; Turner-Walker and Peacock, 2008). 

Future research could usefully investigate any possible influence of in vivo disease on post-

mortem diagenetic degradation of bone tissues. One obvious area is the detection of ante- and 

peri-mortem infections in archaeological skeletons. Staphylococcus DNA has successfully been 

identified in bones exhibiting osteomyelitic infection in an historic osteological collection (Flux 

et al., 2017). It remains to be seen if this can be repeated on archaeological specimens. And 

whether the infectious lesions influence diagenesis. Non-infectious diseases have also been shown 

to result in microdamage to bone tissues. For example, non-enzymatic cross-linking, called 

advanced glycation end-products (AGEs), causes micro-damage to living bone tissue, leading to 

microcracks while simultaneously halting the repair process by stimulating osteoblast apoptosis 

(Alikhani et al., 2007; Tang and Vashishth, 2010). Microcracks are seen in the early stages of 

diagenesis (Hollund et al., 2012; Pfretzschner and Tütken, 2011) and may be expected that AGE 

compromised tissues may experience accelerate chemical degradation of bone tissue (compared 

to bone comprised of normal collagen) by increasing both porosity and surface area available to 

percolating pore waters. However, at the present time we are unaware of any way to explore this 

hypothesis apart from perhaps using artificially AGE-damaged bone and comparing its diagenetic 

change to unaltered samples. 

Because of recent developments in which the presence, or absence, of bacterial tunneling in 

human remains has been attributed to specific cultural practices, it is of considerable importance 

that the question of the origin of the organisms responsible is resolved. Identification based on 

recovered bacterial DNA is a tantalising prospect but is likely to be definitive. Field and 

laboratory investigations, combined with histological analyses and DNA studies seem to offer a 

fruitful area of future research. The soil bacteria versus endogenous gut bacteria hypotheses may 

prove more difficult to disentangle than it seems, however, since many gut bacteria are commonly 

found in the soil. Nevertheless, the fact that archaeological ivory is also tunnelled in the same way 

as bones (Large et al., 2011) suggests that the diagenetic trajectory can be followed in isolation 

from a decaying corpse. Finally, much of the published research on bone diagenesis to date has 

focussed on European archaeological sites. Although that material covers terrestrial, freshwater 
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and marine environments from the sub-arctic to the Mediterranean, the range of environments 

and climates explored should be expanded. That being said, results of field experiments in tropical 

southeast asia and archaeological bones examined from the Chinese mainland would indicate that 

differences in diagenesis are one of degree rather than substance.  
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2. KONTOPOULOS, I . ,  PRESSLEE, S. , PENKMAN, K. , AND COLLINS M.J.  (2018), 
PREPARATION OF BONE POWDER FOR FTIR-ATR ANALYSIS: THE PARTICLE SIZE 
EFFECT. VIBRATIONAL SPECTROSCOPY ,  99, 167-177 

Abstract 

Fourier transform infrared (FTIR) spectroscopy using attenuated total reflection (ATR) is 

commonly used for the examination of bone. During sample preparation bone is commonly 

ground, changing the particle size distribution. Although previous studies have examined changes 

in crystallinity caused by the intensity of grinding using FTIR, the effect of sample preparation 

(i.e. particle size and bone tissue type) on the FTIR data is still unknown.  

This study reports on the bone powder particle size effects on mid-IR spectra and within sample 

variation (i.e. periosteal, mesosteal, trabecular) using FTIR-ATR. Twenty-four archaeological 

human and faunal bone samples (5 heated and 19 unheated) of different chronological age 

(Neolithic to post-Medieval) and origin (Belgium, Britain, Denmark, Greece) were ground using 

either (1) a ball-mill grinder, or (2) an agate pestle and mortar, and split into grain fractions (>500 

μm, 250-500 μm, 125-250 μm, 63-125 μm, and 20-63 μm). 

Bone powder particle size has a strong but predictable effect on the infrared splitting factor 

(IRSF), carbonate/phosphate (C/P) ratio, and amide/phosphate (Am/P) values. The absorbance 

and positions of the main peaks, the 2nd derivative components of the phosphate and carbonate 

bands, as well as the full width at half maximum (FWHM) of the 1010 cm-1 phosphate peak are 

particle size dependent. This is likely to be because of the impact of the particle size on the short- 

and long-range crystal order, as well as the contact between the sample and the prism, and hence 

the penetration depth of the IR light. Variations can be also observed between periosteal, cortical 

and trabecular areas of bone. We therefore propose a standard preparation method for bone 

powder for FTIR-ATR analysis that significantly improves accuracy, consistency, reliability, 

replicability and comparability of the data, enabling systematic evaluation of bone in 

archaeological, anthropological, paleontological, forensic and biomedical studies. 

Keywords: Bone; FTIR-ATR; sample preparation; particle size; bioapatite; crystal order/disorder   
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1. Introduction 

Bone is a complex inorganic/organic composite material with a hierarchical structural order that 

is reflected in its biomechanical properties [1–7]. Biological apatite (BAp) nanocrystals are 

carbonated calcium phosphate mineral compounds with species, age, or pathology related 

compositional/structural variation generally represented by the formula (Ca2⁺, Na⁺, Mg2⁺, [])10 

(PO4
3⎺, HPO4

3⎺, CO3
2⎺)6 (OH⎺, F⎺, Cl⎺, CO3

2⎺, O, [])2 [4,8–14]. BAp dominates bone (i.e. 65-70 

wt. %), with the organic content (primarily collagen type I) accounting for 20-25 wt. % and the 

remaining 5-10 wt. % being water [2].  

The information that can be preserved within skeletal tissues has shaped the way we interpret the 

past [15,16]. However, in archaeological and fossil bone, diagenesis leads to its partial or 

complete destruction, with accompanying loss of vital biochemical information [17–21]. Over the 

past decades, Fourier transform infrared (FTIR) spectroscopy has been increasingly used to better 

understand bone diagenesis, as well as for screening of archaeological and fossil bone [22–34]. 

The correspondence between measurements taken with transmission FTIR, ATR (attenuated total 

reflection) and DRIFT (diffuse reflectance infrared Fourier transform) can be problematic [34–

36]. Nevertheless, because FTIR is so minimally invasive/destructive and provides information 

on both the inorganic and organic structures present, it has been commonly used to assess the 

postmortem changes in BAp crystals (e.g. crystallinity, carbonate to phosphate content, fluorine 

and calcite content), and the organic preservation in heated, unheated and pathological bones 

[25,31,35,37–44].  

The infrared splitting factor (IRSF, also termed crystallinity) is assumed to be related to the crystal 

order and size of bone mineral [2,25,45–47] which can change in vivo (ontogenetic bone 

growth/maturity) and post-mortem (diagenesis, heating) [e.g. 8,22,48,49]. Higher crystallinity is 

considered to be an indication of an increase in BAp crystals’ size and atomic order due to either: 

a) a growth of the larger crystals at the expense of the smaller ones (i.e. Ostwald ripening); b) a 

loss of the smaller crystals; or c) both. Lower IRSF values reflect the smaller size and higher 

atomic disorder of the BAp crystals [2,22,25,26,29,46,47,50]. 

These changes in bioapatite characteristics are caused by several ionic substitutions that take place 

both in the hydrated layer and the apatite core, and strongly affect its dissolution/recrystallization 

behaviour [4,51]. Carbonate (CO3
2-) content (c. 4-6 wt. %), which is considered to be related to 

crystallinity (and thus IRSF), is such an example of ionic substitution of carbonate for phosphate 

(type B), and vice versa, in the bioapatite structure [4,25,52–58]. Although type A substitution 

(CO3
2- for OH-) might be relatively limited in BAp, its role should not be neglected 

[4,25,31,56,57,59]. FTIR has also been used to assess organic preservation in archaeological and 

fossil bone using the Am/P (amide to phosphate) ratio [e.g. 29,60], while other minor ionic 

https://paperpile.com/c/bZhAIZ/oNSE+BuUf+XJ71+Ry2E+qzpZ+ulUS+LVeg
https://paperpile.com/c/bZhAIZ/eMSP+Lo1P+Ry2E+QOmT+02T6+NBVC+WdUQ+nWjw
https://paperpile.com/c/bZhAIZ/BuUf
https://paperpile.com/c/bZhAIZ/Ll0M+a15R
https://paperpile.com/c/bZhAIZ/RspA+v0gP+fuJM+HysB+oEho
https://paperpile.com/c/bZhAIZ/hK8Q+ktJY+py6B+BiPN+7a1H+4pYY+iRY8+l8cT+51vU+CgtB+9Bja+Ytvd+rjTu
https://paperpile.com/c/bZhAIZ/1QDh+rjTu+vSUU
https://paperpile.com/c/bZhAIZ/1QDh+rjTu+vSUU
https://paperpile.com/c/bZhAIZ/Vxef+BiPN+uwiw+UqiP+CgtB+IhlJ+1QDh+sK4V+zEmW+wwaN+MNLU
https://paperpile.com/c/bZhAIZ/jMPH+BiPN+BuUf+bGxf+0UZw/?noauthor=0,0,0,0,1
https://paperpile.com/c/bZhAIZ/qn94+wQqO+eMSP+hK8Q/?prefix=,,e.g.,
https://paperpile.com/c/bZhAIZ/hK8Q+BiPN+BuUf+7a1H+l8cT+0UZw+bGxf+PSYz/?noauthor=0,0,0,0,0,0,1,0
https://paperpile.com/c/bZhAIZ/5opm+Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ+od1g+UceX+p4Ru+XaAv+qPbV+BiPN+KOo1+Ry2E
https://paperpile.com/c/bZhAIZ/XaAv+qPbV+BiPN+GXTi+Ry2E+CgtB
https://paperpile.com/c/bZhAIZ/l8cT+IqyY/?prefix=e.g.,
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concentrations of elements (such as Mg, Na, Sr, K, Zn and F) also play a special role in its 

structure and function [4,11,53–55,61,62].  

Although the contribution of FTIR to the study of archaeological and fossil bone is indisputable, 

the usefulness of the indices (such as IRSF) as a measure of BAp preservation and change has 

been questioned [26,31,48,58,63,64]. The introduction of the relatively new FTIR-ATR technique 

offers rapid, cost efficient and minimally destructive analysis [30,34,49], but the issues of 

accuracy, precision, reproducibility and comparability of the data have not yet been resolved 

[36,48].  

Past studies have tried to tackle these issues by investigating the effect of sample preparation 

methods on bone IRSF values, with a decrease in IRSF reported with more intensive pulverization 

[26]. Surovell & Stiner [26] argue that grinding may actually introduce variations in crystallinity 

that may mask the original signal due to structural changes caused to the BAp crystals. They 

propose two possibilities that could explain the phenomenon: a) changes are primarily caused by 

the particle separation of bone mineral of differing crystallinity (i.e. separation hypothesis), or b) 

grinding affects the bioapatite crystal structure (i.e. destruction hypothesis), and subsequently, the 

mid-IR spectra. Overall, it has been argued that there seems to be a destruction of BAp crystals 

during grinding, although when there is no control, or grinding is excessive, it is difficult to 

differentiate between the actual bone crystallinity from that introduced during sample preparation 

[26]. Hollund et al. [34] also observed significant preparation-based differences (i.e. drilling and 

grinding with and without sieving) between IRSF, C/P and Am/P values. The grinding effect was 

more evident in samples of higher crystallinity, so Hollund et al. [34] proposed drilling bone 

without sieving as an alternative to the Surovell and Stiner [26] preparation method. 

Repeated grinding of calcite during preparation for FTIR measurements has been shown to affect 

the material’s atomic order as revealed by changes in the mid-IR spectrum [65,66]. Asscher et al. 

[46,47] tried to explore the effects of grinding on bone and tooth, and decouple it from the atomic 

disorder effect to better assess the preservation state of archaeological/fossil bone. They compared 

the IRSF values of samples repeatedly ground for variable amounts of time and plotted them 

against the full width at half maximum (FWHM) of the main v3 phosphate peak in mid-IR spectra 

(i.e. 1010 cm-1). From the relationship observed, it was shown that grinding (i.e. particle size) 

affects both the short (IRSF) and long (FWHM at 1010 cm-1) range order of bone. Thus, the use 

of the grinding curve approach can significantly increase the sensitivity of FTIR for monitoring 

diagenesis (slopes of the grinding curves increase with poorer preservation), as compared to the 

IRSF alone, and it can also allow the identification of differences in crystal size/atomic order of 

different animal species and hard tissues (bone, dentine and enamel mineral) [46].  

While this trendline method partly shows the importance of particle size (still uncontrolled) on 

the mid-IR spectrum, it requires regrinding and measuring the same sample repeatedly for several 

https://paperpile.com/c/bZhAIZ/od1g+UceX+p4Ru+Ry2E+rLej+02T6+Ciob
https://paperpile.com/c/bZhAIZ/7a1H+KOo1+CgtB+pmHE+qn94+NxFo
https://paperpile.com/c/bZhAIZ/rjTu+wQqO+51vU
https://paperpile.com/c/bZhAIZ/vSUU+qn94
https://paperpile.com/c/bZhAIZ/7a1H
https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
https://paperpile.com/c/bZhAIZ/7a1H
https://paperpile.com/c/bZhAIZ/rjTu/?noauthor=1
https://paperpile.com/c/bZhAIZ/rjTu/?noauthor=1
https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
https://paperpile.com/c/bZhAIZ/FoYA+wrOW
https://paperpile.com/c/bZhAIZ/0UZw+bGxf/?noauthor=1,1
https://paperpile.com/c/bZhAIZ/bGxf
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times. Furthermore, the powders were analysed in KBr pellets, requiring significant amounts of 

material mixed with KBr. Excessive grinding can also lead to a contamination of bone powder or 

even damage surviving biomolecules in samples that could be also used for DNA or protein 

analysis [e.g. 67,68], making FTIR KBr and grinding curves a destructive method and wasting 

precious material, in lieu of additional information on crystalline order.  

Therefore, although previous studies have recommended optimal methods, the precise effects of 

particle size on FTIR data has never been thoroughly explored, and only in a limited number of 

studies particles have been homogeneous [25–27,36]. Excluding the variations due to sample 

preparation methods that are related with the atomic order/disorder, small but insignificant tissue 

specific variations have also been reported for both unheated [27] and heated bone [48].  

The increased adoption of FTIR-ATR further changes the equation. The method is being 

increasingly commonly used because it is a cost efficient, rapid and minimally destructive 

method, and has the potential to act as screening method to determine which bones show optimal 

preservation. The powder can be extracted for biomolecules after analysis with no loss of material. 

This study presents the effects of sample selection (i.e. periosteal, mesosteal, trabecular bone) as 

well as particle size on the mid-IR spectrum of bone measured by FTIR-ATR. We propose a 

standard preparation procedure for the analysis of bone powder using FTIR-ATR to improve data 

accuracy, precision, comparability and reproducibility. The process focuses on the particle size 

effect and requires bone powder of even sized particles. This approach improves the contact 

between the sample and the prism, allows a deeper penetration depth of the IR radiation into 

individual BAp crystals, and avoids damage in the short- and long-range order of bioapatite 

crystals by using optimal bone powder particle sizes. 

2. Materials and Methods 

Twenty-four archaeological human and animal bone samples (5 heated and 19 unheated) of 

different chronological age (Neolithic to post-Medieval) and origin (Belgium, Britain, Denmark, 

Greece) were used in this study (Table S1 - supplementary material). Prior to analysis, the 

trabecular, periosteal/sub-periosteal and endosteal/sub-endosteal tissues were mechanically 

removed using a scalpel. For the examination of the particle size effect on mid-IR spectra, the 

mesosteal (mid-cortical) tissue of nineteen specimens was ground using either (1) a Retsch 

oscillating steel ball mill grinder at 20 Hz for 20-25 seconds x 3-5 times, or (2) an agate pestle 

and mortar.  

Samples were sieved using Endecotts woven stainless steel mesh sieves with an aperture size of 

500 μm, 250 μm, 125 μm, 63 μm, and 20 μm to produce 5 particle size classes (i.e. > 500 μm, 

250-500 μm, 125-250 μm, 63-125 μm, 20-63 μm). Six of the archaeological samples (3 fauna, 2 

heated and 1 unheated human) were also ground down to c. 1 μm using a Retsch PM100 ball mill 

https://paperpile.com/c/bZhAIZ/PBor+AxJx/?prefix=e.g.,
https://paperpile.com/c/bZhAIZ/BiPN+4pYY+7a1H+vSUU
https://paperpile.com/c/bZhAIZ/4pYY
https://paperpile.com/c/bZhAIZ/qn94
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grinder. The container, lid and ball grinders were cooled using liquid nitrogen to reduce potential 

destruction of crystals due to heat produced during the grinding process. One subsample from 

each of the six samples was ground for 3 minutes at 400 rpm twice, the container being cooled in 

liquid nitrogen in between each run, while a second subsample was ground at 600 rpm for 5 

minutes. Particle size of the subsamples was compared to other previously measured microground 

samples under the microscope and were shown to be of similar size, i.e. c. 1 μm. Samples were 

split into three different groups (i.e. fauna, unheated human and heated human specimens) to 

allow the observation of any differences that might be related to the pre-burial histories of bones 

(e.g. cooking, boiling), preservation state and animal species related BAp crystal order/disorder.  

Bone powder of 20-63 μm particle size from the periosteal, mesosteal and trabecular tissues of 5 

human samples was also analyzed by FTIR-ATR (Table S2 - supplementary material). 

Additionally, bone powder from two modern human mesosteal samples (particle size 20-63 μm), 

one modern bovine (particle size from >500 μm to 20-63 μm) and synthetic hydroxyapatite (HAp) 

(particle size from >500 μm to 20-63 μm) were used as references (see Table S3 - supplementary 

material). 

FTIR measurements were performed in triplicate for each sample on each different particle size 

powder fraction using an Alpha Platinum FTIR-ATR spectrometer (range: 4000-400 cm-1; no. of 

scans: 144; zero-filling factor: 4; resolution: 4 cm-1; mode: absorbance). About 2-3 mg of bone 

powder were put on the optic window with a diamond crystal. For good contact with uniform 

pressure between the crystal and the sample, the pressure of the applicator was controlled using 

the pressure control spot. After each measurement, the crystal plate and the anvil of the pressure 

applicator were thoroughly cleaned using isopropyl alcohol. Spectra were analysed using OPUS 

7.5 software. 

Infrared splitting factor (IRSF) was assessed after Weiner and Bar-Yosef [22], carbonate-to-

phosphate (C/P) ratio was calculated as in Wright and Schwarcz [25], type B carbonate 

substitutions relative to phosphate (BPI) was estimated as in Sponheimer and Lee-Thorp [38], 

and amide-to-phosphate (Am/P) was assessed according to Trueman et al. [29]. All indices were 

estimated after baseline correction (Figure 1; Box 1). 

The full width at half maximum (FWHM) of the c. 1010 cm-1 peak was measured after baseline 

subtraction to assess the atomic order/disorder of the samples [9,46,47]. The 2nd derivatives were 

produced to explore the overlapping bands at the v4, v3, v1 PO4
3- and v2 CO3

2- bands using the 

OriginPro 2017 and the Savitzky-Golay filter with 9 smoothing points and a polynomial order of 

4. Statistical analysis carried out using IBM SPSS v.24 and the significance level was set at 𝑝 =

 0.05. 

 

https://paperpile.com/c/bZhAIZ/hK8Q/?noauthor=1
https://paperpile.com/c/bZhAIZ/BiPN/?noauthor=1
https://paperpile.com/c/bZhAIZ/uwiw/?noauthor=1
https://paperpile.com/c/bZhAIZ/l8cT/?noauthor=1
https://paperpile.com/c/bZhAIZ/0UZw+bGxf+Lo1P/?noauthor=0,1,0
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Box 7. Indices - Baseline correction 

4. Infrared splitting factor (IRSF) was assessed using the equation introduced by Weiner 

and Bar-Yosef [26] that measures the heights at c. 600 cm--1 + c. 560 cm-1, divided by 

the trough between them at c. 590 cm-1, using a baseline correction from the c. 400-420 

cm-1 to the c. 630-670 cm-1 troughs (Figure 1a). The two peaks are characteristic of the 

v4 antisymmetric bending mode of orthophosphate ion [49]. 

IRSF =
600 cm−1  +  560 cm−1

590 cm−1
 

5. Carbonate-to-phosphate (C/P) ratio was estimated as in Wright and Schwarcz [29] by 

dividing the main v3 carbonate peak height at c. 1410 cm-1 with the main v3 phosphate 

vibrational band at c. 1010 cm-1 [29]. The baseline correction was drawn from c. 1590 

cm-1 to c. 1290 cm-1 and from c. 1150-1180 cm-1 to c. 880-900 cm-1, respectively 

(Figure 1b and Figure 1c).  

C/P =
1410 cm−1 

1010 cm−1
 

6. The type B carbonate substitutions relative to phosphate (BPI) were calculated from 

the ratio of the peak heights at c. 1410 cm−1 and c. 600 cm−1 as in Sponheimer and Lee-

Thorp [42] using the same baselines for both peaks as above (Figure 1a and Figure 1c). 

BPI =
1410 cm−1 

600 cm−1
 

7. Amide-to-phosphate (Am/P) was assessed by the v1 amide at c. 1640 cm-1 divided by 

the main v3 phosphate peak at c. 1010 cm-1 [33]. Baseline correction was from c. 1720 

cm-1 to c. 1590 cm-1 and c. 1150 cm-1 to c. 890 cm-1, respectively (Figure 1b and Figure 

1d). 

Am/P =
1640 cm−1 

1010 cm−1
 

 

https://paperpile.com/c/bZhAIZ/hK8Q/?noauthor=1
https://paperpile.com/c/bZhAIZ/jMPH
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Figure 1. The mid-IR spectra of 20-63 μm particle size archaeological human mesosteal bone powder (MEC77). 

The spectral bands used for IRSF (a), C/P (b, c), and Am/P (b, d) are highlighted. Figures 1a-d display the peak 

positions (blue lines) for IRSF, C/P and Am/P indices as well as the baselines (red lines). 
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3. Results and Discussion 

3.1. Tissue-specific variations 

Within-sample variations can be observed in crystallinity, carbonate and organic content of the 

different bone tissue areas (Figure 2 and Table S4 - supplementary material), although there is no 

statistically significant difference between periosteal, mesosteal and trabecular bone tissue for 

either IRSF (x2=1.680, p= 0.432), C/P (x2=0.306, p= 0.858) or Am/P (x2=3.847, p= 0.146). IRSF 

values in the periosteal tissue appear lower compared to the mesosteal and trabecular tissues 

(Figure 2a), carbonate content displays no observable pattern (Figure 2b), whereas Am/P values 

appear higher in the periosteal tissue (Figure 2c). 

 

Figure 2. Box plots showing the IRSF (a), C/P (b) and Am/P (c) indices in the periosteal, mid cortical (mesosteal) and 

trabecular tissues. Notice the lower IRSF (a) and C/P (b) values in the periosteal tissue. 

The organization of bone and the conditions of the depositional micro-environment (e.g. local 

hydrology, pH, depth) may strongly affect BAp structural characteristics, composition and their 

dissolution/recrystallization rate [5,6,8,60,69–71]. In modern human bone, a gradient from the 

osteon outwards (tissue specific, age-related variations) has been previously observed by 

Paschalis et al. [8], with the areas farther from the haversian canal displaying increased 

crystallinity, higher type B carbonate and lower type A carbonate content. A small variation in 

carbonate content within trabecular bone tissue (i.e. center to edges gradient) has also been 

reported by Ou-Yang et al. [72].  

In archaeological and fossil bone, when an equilibrium between bone and its burial environment 

is reached and dissolution/recrystallization slows down, any change in the conditions would result 

in re-equilibration between the bone chemistry and its surroundings [51,71]. With respect to that 

behaviour, Stiner et al. [23] have observed that the outer surfaces of modern bone which had been 

exposed for 2 and 9 years post-mortem in Israel and New Mexico (USA), respectively, displayed 

higher crystallinity than the inner cortical areas. In a similar attempt to record mineralogical and 

compositional changes in bones of large mammals exposed on the ground surface in Amboseli 

National Park (Kenya) for up to 26 years, Trueman et al. [29] also observed that the crystallinity 

in the periosteal surfaces was higher than in the other bone tissue areas (inner cortical) as early as 

2 years post-mortem. The higher periosteal IRSF values were accompanied by higher 

concentrations of rare earth elements (e.g. Ba and La) which also showed a gradual decrease 

https://paperpile.com/c/bZhAIZ/nF3M+eMSP+qWbl+qzpZ+MsGz+ulUS+IqyY
https://paperpile.com/c/bZhAIZ/eMSP/?noauthor=1
https://paperpile.com/c/bZhAIZ/ETt2/?noauthor=1
https://paperpile.com/c/bZhAIZ/5opm+MsGz
https://paperpile.com/c/bZhAIZ/ktJY/?noauthor=1
https://paperpile.com/c/bZhAIZ/l8cT/?noauthor=1
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towards the inner cortex [29]. When the cortical bone was compared with trabecular bone in the 

Middle Palaeolithic Hayonim cave (Israel) the IRSF values for spongy tissues were found slightly 

higher [27].  

Therefore, the tissue-specific differences in crystallinity, carbonate and organic content can vary 

within and between sites [27,31,60], while other factors such as the post-mortem interval or the 

size of the bone itself can also affect its post-mortem behaviour and interaction with its 

depositional environment [26]. Consequently, although there is no universal pattern for tissue-

specific variations found in archaeological and fossil bone, the necessity for homogenization of 

samples prior to analysis using FTIR-ATR through the mechanical removal of the periosteal, 

trabecular and endosteal bone tissues and use of the mesosteal (mid-cortical) tissue is indisputable 

for the improvement of accuracy, precision, reproducibility and comparability of data. 

 

3.2. Particle size effect 

3.2.1. Effects on IR indices 

Bone powder particle size predictably affects the IRSF, C/P and Am/P values in all samples 

(Tables S3 and S5 - supplementary material). Very strong inverse relationships are observed when 

IRSF is plotted against C/P (Figure 3). Carbonate content strongly affects crystallinity changes as 

it is inversely related to crystal growth (i.e. it acts as an inhibitor) [4,11], and the very strong 

inverse relationship of C/P with IRSF seen in our data supports an interaction between carbonate 

and phosphate in BAp crystals (e.g. [25]). A very strong correlation is also observed between 

these two indices and the samples’ particle size (Figure 3). 

Faunal bones (n=9) display a very strong relationship between particle size and mid-IR indices 

that reflect crystal composition (Figure 3; Fig.S1 - supplementary material). IRSF, C/P and Am/P 

demonstrate statistically significant differences for particle sizes ranging from >500 μm to 20-63 

μm (IRSF: x2= 20.809, p= 0.000; C/P: x2= 13.910, p= 0.008; Am/P: x2= 10.783, p= 0.029). IRSF 

gradually increases with decreasing particle size and drops at the 1 μm powder (Figure 3; Fig.S1a 

- supplementary material). On the contrary, C/P gradually decreases with decreasing particle size, 

except for the 1 μm at 600 rpm that increases to the 20-63 μm levels (Figure 3; Fig.S1b - 

supplementary material). Am/P gradually decreases with decreasing particle size and stabilises at 

the 1 μm particle size (Fig.S1c - supplementary material). Additionally, at the 1 μm size the 

samples’ powder colour becomes dark grey/blackish. 

https://paperpile.com/c/bZhAIZ/l8cT
https://paperpile.com/c/bZhAIZ/4pYY
https://paperpile.com/c/bZhAIZ/4pYY+CgtB+IqyY
https://paperpile.com/c/bZhAIZ/7a1H
https://paperpile.com/c/bZhAIZ/Ry2E+02T6
https://paperpile.com/c/bZhAIZ/BiPN
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Figure 3. IRSF-C/P relationship with the samples’ particle size in modern and archaeological bone. Datapoint markers’ 

sizes gradually decrease with decreasing particle size (i.e. >500 μm: size 10, 100% transparent; 250-500 μm: size 8, 

80% transparent; 125-250 μm: size 6, 60% transparent; 63-125 μm: size 4, 40% transparent; 20-63 μm: size 2, 20% 

transparent). Error bars represent estimated standard deviations. 

The unheated human samples’ (n=5) IRSF and C/P values also display statistically significant 

differences between the different particle sizes (x2= 16.903, p= 0.002) and (x2= 17.853, p= 0.001), 

respectively. Specifically, there is a gradual increase in IRSF and a gradual decrease in C/P with 

decreasing particle size (Figure 3; Fig.S2a and S2b - supplementary material). On the other hand, 

while Am/P shows almost no statistically significant differences (x2= 9.343, p= 0.053), a similar 

general pattern can be observed, with a gradual decrease in Am/P values with decreasing particle 

size; the exception is the 250-500 μm that displays an increase in both C/P and Am/P (Fig.S2b 

and S2c - supplementary material). In particle sizes of c. 1 μm, IRSF significantly drops for both 

the 400 rpm and 600 rpm preparation methods (Fig.S2a - supplementary material). However, C/P 

and Am/P are increased at 400 rpm (similar values to the >500 μm powder) but decreased when 

prepared at 600 rpm (similar values to the 125-250 μm powder) (Fig.S2b and S2c - supplementary 

material). A similar discoloration (dark grey/blackish) of the samples’ powder is also observed at 

the 1 μm level.  

In contrast, in the heated human samples, there is no statistically significant difference between 

different particle sizes (>500 μm to 20-63 μm) and any of the indices [IRSF: (x2=2.267, p=0.687); 

C/P: (x2=3.244, p=0.518)]; Am/P: (x2=2.722, p=0.605)]. Not surprisingly, however, a pattern can 

be observed for crystallinity, with an overall increase in IRSF that is accompanied by a decrease 

in C/P with decreasing particle size (Fig.S3a and S3b - supplementary material). For particle sizes 

of about 1 μm, there seems to be a rapid decrease in IRSF and a more gentle drop in C/P values 

(Fig.S3a and S3b - supplementary material). With regard to the reference samples, modern bovine 

bone shows similar relationships to the archaeological fauna and human unheated specimens, 
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while synthetic HAp displays a decrease in IRSF values with decreasing particle size (Figure 3; 

Fig.S4 and Table S5 - supplementary material). 

The effect of particle size distribution and shape on IR spectra has been previously reported by 

Kristova et al. [73], and it is assumed to be primarily because of the better packing and higher 

surface area of the samples consisting of smaller particles [74]. In our samples, the smaller the 

particle size, the higher the crystallinity and the lower the carbonate content; this could be simply 

assumed to be because of the better contact between the sample and the prism, and the deeper 

penetration depth of the IR radiation into individual BAp crystals [74]. The exposure of a larger 

amount of BAp crystals to the IR radiation in samples consisting of smaller particle size powders 

also results in more accurate, precise and reproducible data. On the other hand, the coarser the 

sample, the poorer the contact between the sample and the prism due to increased void spaces 

(i.e. porosity) in the sample [74]. 

Breaking the crystal-crystal interaction (i.e. crystal fusion) may also contribute to the 

phenomenon observed in our data [11]. While it is still poorly understood as a process, the 

interaction between the crystals’ hydrated layers (i.e. amorphous hydrophilic surface layers) in 

bone has been proposed as a possible explanation for the binding between the BAp crystals, pulled 

together by van der Waals forces [75,76]. As BAp crystals are often seen as aggregate clusters in 

transmission electron microscopy (TEM) (e.g. [29]), this supports a “separation hypothesis” up 

to the 20-63 μm level, as grinding could simply divide and expose some of the merged BAp 

crystals which have amalgamated to form larger crystals (i.e. Ostwald ripening).  

It is, therefore, likely that the initial small size of the BAp crystals (i.e. about 30 nm long x 20 nm 

wide x 2-4 nm thick) [1,2] makes their destruction difficult during grinding when bone powder 

particle size remains over 20 μm [11], even when the BAp crystals further increase in size due to 

diagenesis (e.g. [31] estimated that for IRSF between 3.0-3.9, the average maximum BAp crystal 

length would be about 65 nm). Hence the Surovell and Stiner [26] “destruction hypothesis” (i.e. 

grinding damages the BAp crystal structure) seems rather unlikely for unheated modern and 

archaeological bone with over 20 μm bone powder particle size. However, the large drop in IRSF 

values observed at the 1 μm level is probably an indication that the BAp crystals are distorted by 

some breaking during grinding at a critical point between 1 μm and 20 μm, leading again to a 

more disordered (short-range) crystal state and a more variable particle size distribution that 

affects the penetration depth and accuracy of data [77].  

3.2.2. Effects on IR absorbance 

A very strong relationship between IR absorbance at 560 cm-1, 600 cm-1, 1010 cm-1 and 1410 cm-

1 and particle size can be observed from the peak heights after baseline correction in all samples 

(Figure 4 and Figure 5). Absorbance is higher when the particle size decreases, except for C/P in 

heated samples (due to the loss of carbonate content during heating; Figure 5). Samples also 

https://paperpile.com/c/bZhAIZ/SvCa/?noauthor=1
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/AOt2
https://paperpile.com/c/bZhAIZ/02T6
https://paperpile.com/c/bZhAIZ/pOpu+iAbU
https://paperpile.com/c/bZhAIZ/l8cT
https://paperpile.com/c/bZhAIZ/oNSE+BuUf
https://paperpile.com/c/bZhAIZ/02T6
https://paperpile.com/c/bZhAIZ/CgtB
https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
https://paperpile.com/c/bZhAIZ/uzEc
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display a small average shift towards higher wavenumbers with decreasing particle size (Table 

S6 - supplementary material). 

 

Figure 4. The particle size effect on the absorbance of IR of the main v4 phosphate peaks at 560 cm-1 and 600 cm-1. 

Markers and error bars as in Figure 3. 

 

The absorbance of the IR radiation in our samples exhibited a very strong linear relationship with 

particle size, with the smaller the particle size, the higher the absorbance. This further supports 

the effectiveness of the 20-63 μm particle size powders compared to coarser samples. The only 

exception was the absorbance at the c. 1410 cm-1 peak for the heated human samples, due to the 

prior loss of most of their carbonate content during heating. Such an effect of particle size on the 

intensity and region of IR bands of minerals has been reported in past studies [e.g. 65,66,74], with 

the smaller the particle size, the higher the absorbance of IR and the narrower the bandwidth. 

Although the penetration depth of the IR light for diamond ATR crystals has been found to 

correlate with grinding [78], the IR penetration depths (i.e. full effective path length) and 

absorbance may sometimes vary due to scattering, interference and refractive index of the crystal 

(i.e. diamond vs Ge) [74].  

https://paperpile.com/c/bZhAIZ/FoYA+wrOW+AOt2/?prefix=e.g.,,
https://paperpile.com/c/bZhAIZ/rHm5
https://paperpile.com/c/bZhAIZ/AOt2
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Figure 5. The particle size effect on the absorbance of IR of the main v3 phosphate peak at 1010 cm-1 and the main v3 

carbonate peak at 1410 cm-1. Markers and error bars as in Figure 3. 

 

3.2.3. Effects on BAp order/disorder 

The FWHM at 1010 cm-1 is considered to reflect the long-range order of a crystal (higher FWHM 

values indicate higher long-range disorder), hence the homogeneity between the different clusters 

of atoms arranged in a predictable pattern [4,50]. IRSF reflects the short-range order (higher IRSF 

values indicate higher short-range order) which is affected by the ionic substitutions in 

neighbouring atoms [38]. In this study, the FWHM of the 1010 cm-1 main phosphate peak is 

strongly related with crystallinity and particle size (>500 to 20-63 μm) with three main patterns 

being identified (Figure 6). The first is observed in modern bovine bone, exhibiting a rapid 

decrease in FWHM with decreasing particle size but a small increase in IRSF values, similar to 

the pattern seen in the well-preserved archaeological bovine specimen SAR38. The second pattern 

is that observed in the poorly preserved PRO8 (archaeological bovine) and MEC77 

(archaeological human) samples, which demonstrate slightly different trendlines with the increase 

in crystallinity accompanying the decrease in FWHM being higher. Finally, the third pattern (i.e. 

heated archaeological human bone and synthetic HAp) is characterised by a much flatter 

trendline, resulting from a smaller decrease in FWHM and a stronger IRSF increase. When the 

particle size drops to c. 1 μm, IRSF and FWHM show no clear relationships (Figure 6).  

https://paperpile.com/c/bZhAIZ/PSYz+Ry2E
https://paperpile.com/c/bZhAIZ/uwiw
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Figure 6. Graph displaying the particle size effect on the IRSF and the FWHM at 1010 cm-1. Markers and error bars 

as in Figure 3. 

Grinding and particle size can thus affect both IRSF and FWHM, with the different gradients of 

the curves reflecting the differences in BAp crystal size, and short- and long-range order of the 

samples associated with the particle size effect. On a similar note, synthetic HAp displays a 

decrease in IRSF with decreasing particle size and an almost unaltered FWHM, indicative of a 

fairly constant long-range order and a damage to the crystals’ size and short-range order (Figure 

6). Therefore, crystal distortion depends on the powder particle size and the size of the BAp 

crystals related to the preservation state or characteristics of each species.  

The effect of particle size on the C/P to FWHM relationship is also marked in all samples for 

particle sizes varying from >500 μm to 20 μm (Figure 7). As with IRSF, the same three groups 

can be recognised: a) the modern bovine and SAR38 having similar trend lines characterized by 

a decrease in carbonate content as well as in FWHM with decreasing particle size; b) PRO8 and 

MEC77 showing a slightly smaller drop in C/P and FWHM values; and c) the HOL15937 heated 

archaeological human sample that displays a lesser degree of carbonate and FWHM change due 

to the loss of most carbonate during heating. In samples of c. 1 μm particle size, C/P also displays 

no specific patterns (Figure 7).  

The atomic order/disorder, the morphology and the size of the BAp crystals are highly interrelated 

and dependent on carbonate concentrations [4]. The very strong linear relationship of CO3
2- with 

FWHM (Figure 7) confirms the assumptions made by other researchers (e.g. [4,11,52,53]) that, 

except for the effects on the crystal dimensions, the higher the carbonate content in the crystal 

lattice the more disordered the crystal will be. An exchange of carbonate for phosphate has been 

found to correlate with a change in the α- and c-axis crystal dimensions that results in more 

disordered crystals [52,53]. This assumption is supported by the differences in the O-O distances 

https://paperpile.com/c/bZhAIZ/Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ+od1g+02T6+Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ+od1g
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in PO4
3- and CO3

2-; thus a substitution of the smaller CO3
2- by the larger PO4

3- or a replacement 

of the larger CO3
2- for the smaller OH- would increase the unit cell dimensions [54]. 

 

Figure 7. Graph displaying the particle size effect on the C/P and the FWHM at 1010 cm-1. Markers and error bars as 

in Figure 3. 

The peak height at c. 1410 cm-1 displays a very strong linear relationship (R2=0.96) with this at c. 

872 cm-1. As both peaks reflect the type B carbonate environment in bioapatite crystals [57] it 

corroborates LeGeros [52] account of the bone carbonate exchange that primarily occurs at the 

phosphate sites of the crystal lattice (i.e. type B) [4]. Type A carbonate substitutions are 

considered to occur at high temperatures (e.g. 900-1000o C) with the exclusion of water, while 

type B CO3
2- substitutions can take place at much lower temperatures (e.g. 25-100o C) [52]. Thus, 

as precipitation of carbonate for phosphate (and vice versa in archaeological and fossil bone) in 

bone occurs at the lower temperature range, type B CO3
2-, which seems to be the predominant 

form of carbonate in skeletal tissues, is possibly adsorbed on the surfaces of the BAp crystals (i.e. 

the sloping faces of the substituted phosphate ions) and not incorporated into the crystal structure 

[52,53,59,79,80].  

The characteristic v2 carbonate vibrations that appear at c. 871 cm-1 for type B, c. 878 cm-1 for type 

A1  (“stuffed”) and c. 866 cm-1 for type A2 (“labile”-surface) CO3
2- [8,56,59,80] are also observed 

in the 2nd derivative components of our modern bovine data from >500 μm to 63-125 μm (Figure 

8). Among these components, the c. 871 cm-1 type B carbonate appears to be more prominent than 

the other two (Figure 8). The most important observation, however, is the disappearance of the c. 

866 cm-1 peak in the 2nd derivative spectra of the modern bovine bone at the 20-63 μm particle 

size and its absence from all the 2nd derivative spectra of all the archaeological specimens in all 

particle sizes (Fig. S5-S8 - supplementary material). This observation justifies its characterization 

https://paperpile.com/c/bZhAIZ/UceX
https://paperpile.com/c/bZhAIZ/qPbV
https://paperpile.com/c/bZhAIZ/hFyQ
https://paperpile.com/c/bZhAIZ/Ry2E
https://paperpile.com/c/bZhAIZ/hFyQ
https://paperpile.com/c/bZhAIZ/hFyQ+od1g+GXTi+hlE4+3ioV
https://paperpile.com/c/bZhAIZ/XaAv+eMSP+GXTi+3ioV
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as “labile”-surface carbonate [8,56,80] and shows that a possible removal of ions (e.g. carbonate) 

from the crystal surface during grinding of modern bone cannot be overlooked [11]. The very 

strong correlation between C/P and type B CO3
2- for the more degraded samples in this experiment 

could also be an indication of such a loss of the “labile” type A carbonate from the BAp crystal. 

Regarding the number of the 2nd derivative components of the phosphate bands, they display a 

very small decrease with decreasing particle size, except at c. 1 μm particle size where a small 

increase is observed (Figure 8). Although the peak positions of the overlapping bands shift 

towards higher wavenumbers with decreasing particle size, this does not happen in a progressive 

manner or with a characteristic pattern. Additionally, the c. 630 cm-1 component, which is 

considered the vibration mode of OH, is observed in modern bone but shifts towards higher 

wavenumbers when crystallinity increases, due to diagenesis. 

 

Figure 8. Example of 2nd derivative spectra of the v4 PO4
3ˉ asymmetric bending vibrations in the region of 400-700 cm-

1 (right column) and v3 PO4
3ˉ asymmetric stretching modes at around 1010 cm-1 (left column) at different particle sizes 

for modern bovine mesosteal bone. 

4. Conclusion 

To summarize, we have shown in this study that particle size distribution leads to systematic 

changes in FTIR-ATR data as expressed by IRSF, C/P and Am/P indices. Specifically: 

https://paperpile.com/c/bZhAIZ/XaAv+3ioV+eMSP
https://paperpile.com/c/bZhAIZ/02T6
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1. Removing the periosteal, endosteal and trabecular tissues prior to pulverization of 

mesosteal (mid-cortical) bone is necessary and eliminates uncertainties when using these 

semi-quantitative mid-IR indices for bone. 

2. IRSF increases with decreasing particle sizes from >500 μm to 20-63 μm both in unheated 

and heated archaeological and modern bone samples. This is possibly an example of the 

Surovell and Stiner [26] “separation hypothesis” down to the 20-63 μm particle size, 

giving way to the “destruction hypothesis” when bone powder is consisted of particles of 

c. 1 μm, as there is a large decrease in IRSF values at this point. 

3. The FWHM at c. 1010 cm-1 demonstrates a very strong inverse relationship with IRSF 

and a very strong linear relationship with particle size, decreasing with decreasing particle 

size from >500 μm to 20-63 μm. When bone powder consists of particles of c. 1 μm, the 

FWHM at c. 1010 cm-1 does not show any characteristic pattern and relationship with 

crystallinity, confirming that the boundaries between order and disorder in BAp crystals 

are still unclear. Overall, these patterns are strongly related to the changes that occur at 

the short- and long-range order of the BAp crystals during grinding. 

4. C/P and Am/P follow an opposite relationship to IRSF, both decreasing from >500 μm to 

20-63 μm particle size. When bone powder consists of particles of c. 1 μm, C/P and Am/P 

values vary with no characteristic patterns observed. The inverse relationship between 

IRSF and C/P also supports the effect of carbonate in the atomic order/disorder of BAp 

crystals. 

5. The wavenumber of the main peaks and the 2nd derivative components of the bands in 

bone alter with decreasing particle size. The absence of the “labile” A1 carbonate at 866 

cm-1 in archaeological bone and its loss at lower particle sizes during grinding in modern 

bovine is noteworthy.  

6. Absorbance of the IR radiation is strongly affected by the particle size, with higher 

absorbances for smaller bone powder particles. This observation indicates that for smaller 

particle sizes, there is a better contact between the sample and the prism, as well as a 

higher exposure of the bone powder’s components to the IR light. 

Therefore, we propose a standard preparation procedure for bone powder analysed using FTIR-

ATR (Figure 9). This standard process should be followed to improve accuracy, consistency, 

reliability, reproducibility and comparability of the data for the systematic evaluation of bone in 

archaeological, anthropological, paleontological, forensic and biomedical studies: 

https://paperpile.com/c/bZhAIZ/7a1H/?noauthor=1
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Figure 9. Sample preparation and analysis strategy for bone powder analysed using FTIR-ATR. 
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Abstract 

The discovery of petrous bone as an excellent repository for ancient biomolecules has been a 

turning point in biomolecular archaeology, especially in aDNA research, but excessive and 

uncontrolled sampling could result in loss of this valuable resource for future research. This study 

reports on the histological (optical microscopy), physical (FTIR-ATR), elemental (CHN) and 

biochemical (collagen and DNA analysis) preservation of 15 human petrous bones spanning from 

the c. 2100 BC to 1850 AD. Through the combined application of a number of diagenetic 

parameters (general histological index; infrared splitting factor; carbonate/phosphate ratio; 

amide/phosphate ratio; collagen wt. %; % C, % N and C/N of whole bone and collagen; % 

endogenous DNA), we provide new insights into petrous bone micromorphological 

characteristics and diagenesis, and new evidence to enhance screening practices for aDNA and 

collagen analysis.  

Keywords: petrous bone; diagenesis; microstructure; bioapatite; collagen; aDNA 

1. Introduction 

The extraction and analysis of ancient biomolecules preserved within archaeological bone tissue 

can provide valuable information for studying past populations (Bentley, 2006; Brown and 

Barnes, 2015; Buckley et al., 2009; Cappellini et al., 2018; Colonese et al., 2015; Hendy et al., 

2018; Katzenberg, 2008; Lee-Thorp, 2008; Orlando and Cooper, 2014). However, bone 

diagenesis leads to the partial or complete loss of the biochemical information (Collins et al., 

2002; Kendall et al., 2018; Nielsen-Marsh et al., 2000). The recent discovery that the petrous 

bone, a massive portion of the endocranial aspect of the temporal bone, is an excellent repository 

for long term DNA survival presumably due to its high density (Gamba et al., 2014; Hansen et 

al., 2017; Pinhasi et al., 2015) represents a major breakthrough in ancient DNA (aDNA) research 

as the expense of genome sequencing can often be prohibitive due to the the low abundance of 

the endogenous DNA from the target (e.g. Green et al., 2010). Collagen extracted from petrous 

bone has also been identified as a potential indicator of fetal and early years diet (Jørkov et al., 

2009) as ossification of the petrous pyramid is mainly completed in utero and during early fetal 

years (Jeffery and Spoor, 2004; Sørensen, 1994; Sørensen et al., 1992). Similarly, petrous bone 

can potentially provide information on the geographic area in which individuals had spent their 

childhood through strontium isotope analysis (Harvig et al., 2014), providing an additional layer 

of information to the strontium analyses of teeth.   

Petrous bone’s sui generis nature is manifested by the three different tissue zones recognised by 

Doden and Halves (1984): a) an outer periosteal; b) an endosteal that surrounds the canals and 
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cochlear surfaces; and c) an inner periosteal that can replace both the outer periosteal and 

endosteal tissues. A lack of bone remodelling has also been noted in earlier studies (Doden and 

Halves, 1984; Frisch et al., 2000; Jeffery and Spoor, 2004) and the increased mineralization (i.e. 

hardness) in some areas of the petrous bone (Doden and Halves, 1984) compared to other skeletal 

elements (Currey, 1999; Zioupos et al., 2000) is another unique feature. The outer periosteal tissue 

is considered less mineralized in vivo and has its collagen fibres arranged parallel to the bone’s 

surface (Doden and Halves, 1984). Contrariwise, the inner periosteal tissue has randomly oriented 

collagen fibres (Doden and Halves, 1984) and two different degrees of mineralization (Doden and 

Halves, 1984) linked to different concentrations of Ca, P, Sr and Mg (Katić et al., 1991).  

Here some commonly and successfully applied diagenetic parameters, namely the general 

histological index (Hollund et al., 2012), infrared splitting factor (Weiner and Bar-Yosef, 1990), 

carbonate/phosphate ratio (Wright and Schwarcz, 1996), amide/phosphate ratio (Trueman et al., 

2004), collagen weight % (van Klinken, 1999), % C, % N and C/N of whole bone and collagen 

(Brock et al., 2010), and % endogenous DNA (e.g. Hansen et al., 2017), are combined to provide 

new insights into petrous bone characteristics and diagenesis. This study therefore seeks to 

understand the factors underpinning the survival and possible resistance of petrous bone to 

diagenesis, but more importantly explore potential methods to enhance screening practices for 

aDNA and collagen preservation in petrous bone specimens irrespective of the conditions of the 

burial environment.  

2. Materials and Methods 

Fifteen archaeological human petrous bones were used in this study (Table 8) from two 

contrasting sites, 9 samples from the later historical period in Denmark (c. 1650–1850 AD) and 6 

samples from the Bronze Age period in Central Asia (c. 2100–1800 BC). Samples are 

representative of the b and/or c areas of petrous bone as presented in Pinhasi et al. (2015). 

Sampling for aDNA analysis preceded sampling for histological, FTIR-ATR, collagen and 

elemental analyses, thus samples do not derive exactly from the same anatomical location. The 

genetic results presented here (endogenous DNA content) have been sourced in Hansen et al. 

(2017). Statistical analysis was carried out using IBM SPSS v.25 and the significance level was 

set at 𝑝 = 0.05. Regression correlation (R2) of 0-0.19 is regarded as very weak, 0.2-0.39 as weak, 

0.40-0.59 as moderate, 0.6-0.79 as strong and 0.8-1 as very strong correlation, but these are rather 

arbitrary limits and should be considered in the context of the results. 

2.1. Histology 

Sixteen transverse and longitudinal thin sections of c. 200 μm from 10 samples were prepared 

using an Exact 300 CL diamond band saw. Undecalcified thin sections were mounted onto glass 

microscope slides using Entellan New (Merck chemicals) for microscopy mounting medium and 

covered by a glass coverslip, both cleaned with xylene before use. Thin sections were assessed 
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under a Leica DM750 optical microscope using plane-polarized (PPL) and cross-polarized (XPL) 

transmitted light with total magnification ranging from 40x to 400x. Digital images were captured 

by a Leica ICC50 HD camera for microscopy imaging with a capture resolution of 2048 x 1536 

pixels. The general histological index (GHI) introduced by Hollund et al. (2012) was used as it is 

analogous to the Oxford histological index (OHI) as described by Millard (2001) but includes 

generalized destruction, cracking, and staining. A GHI value of 5 represents excellent 

microstructural preservation similar to modern bone (>95% intact microstructure), whereas a GHI 

value of 0 indicates poor microstructural preservation (<5% intact microstructure) with almost no 

original histological features observed. 

2.2. FTIR 

FTIR-ATR measurements were performed in triplicate on 15 human petrous bones and two 

modern human femora using a Bruker Alpha Platinum [range: 4000-400 cm-1; no. of scans: 144; 

zero filling factor: 4; resolution: 4 cm-1; mode: absorbance]. Sample preparation and analysis was 

carried out using Kontopoulos et al. (2018)’s protocol. Bone samples were ground using an agate 

pestle and mortar following the mechanical cleaning of the outer and inner bone surfaces. About 

2-3 mg of bone powder of 20-50 μm particle size were used for each measurement, and after each 

measurement the crystal plate and the anvil of the pressure applicator were thoroughly cleaned 

using isopropyl alcohol. Spectra were analysed using OPUS 7.5 software.  

The calculations of FTIR indices were conducted as follows: a) infrared splitting factor (IRSF) 

was assessed after Weiner and Bar-Yosef (1990, p. 191); b) carbonate-to-phosphate (C/P) ratio 

(Wright and Schwarcz, 1996, p. 936); c) type B carbonate substitutions relative to phosphate (BPI) 

(Sponheimer and Lee-Thorp, 1999, p. 145); and d) amide-to-phosphate (Am/P) (Trueman et al., 

2004, p. 726). The average values of two modern human femora were used as reference 

throughout (IRSF=3.357±0.007, C/P=0.24±0.003, Am/P=0.182±0.001, BPI=0.482±0.000). 

2.3. Collagen 

Collagen was extracted using a modified Longin (1971) method. The exterior surfaces of bone 

samples were mechanically cleaned using a scalpel. Bone chunks of 300-500 mg were 

demineralized in 8 ml 0.6 M HCl at 4∘ C. Samples were agitated twice daily and acid solution was 

changed every two days. When demineralisation was completed, the supernatant was drained off 

and samples were rinsed three times with distilled water. Gelatinization was carried out by adding 

8 ml pH3 HCl and samples were placed in hot blocks at 80∘ C for 48h. The supernatant liquor 

which contains the collagen was filtered off by using EzeeTM filters (Evergreen) and was freeze 

dried for 2 days in pre-weighed plastic tubes.  

Extracted collagen was analyzed in duplicate. Tin capsules containing 0.9-1.1 mg of collagen 

were dropped into an oxygen rich combustion tube held at 1000° C. The tin capsules were ignited 
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and burnt exothermally at 1800°C causing the sample to oxidise. The samples were carried 

through a layer of chromium oxide and copper oxide which ensure complete oxidation, followed 

by a layer of silver wool to remove unwanted sulphur and halides. The samples’ gases pass into 

a second furnace containing copper held at 600°C where excess oxygen was removed and nitrogen 

oxides were reduced to elemental nitrogen. Any water was removed using a magnesium 

perchlorate trap. The samples then passed into a gas chromatography (GC) column held at 70°C 

which separates CO2 and N2 from each other. The resultant gases were then introduced into the 

Sercon 20-22 mass spectrometer where the samples were ionised, and the various masses 

separated in a magnetic field, focused into Faraday collector arrays and analyzed.  

2.4. Elemental analysis 

Whole bone elemental analysis (% C, % N) was performed on 2-3 mg of bone powder. Samples 

were run in duplicate on an Exeter Analytical CE-440 elemental analyser, used in conjunction 

with a Sartorius SE2 analytical balance automated carbon and nitrogen elemental analyser. 

Samples were weighed into smooth-walled tin capsules, sealed and combusted in O2 at 975 ⁰C. 

Combustion products were then analysed by thermal conductivity detectors, against a blank of 

helium. 

3. Results and Discussion 

3.1. Histological preservation 

Histological analysis provides useful information on the microstructural characteristics of the 

human petrous bones. The thin sections of the Danish and Central Asian archaeological human 

petrous bones consist of woven and lamellar-like tissue (Figure 10a-b). Highly osteocytic woven 

tissue can be seen throughout petrous bone (Figure 10a-d) and its presence may indicate a lack of 

bone remodelling in specific areas. Osteonic tissue that appears both in the longitudinal and 

transverse direction (Figure 10c-f) of our specimens is a unique characteristic of the petrous bone, 

and to our knowledge this is the first report of the presence of osteons in both transverse and 

longitudinal directions of any skeletal element.  

The presence of osteons suggests that bone remodelling can take place in some areas of the inner 

ear (Doden and Halves, 1984; Frisch et al., 2000; Jeffery and Spoor, 2004; Jørkov et al., 2009). 

This might be linked to the continual, age dependent and variable changes in the size and 

organization of the pneumatized spaces observed within the petrous pyramid by Hill (2011). 

Furthermore, the appearance of osteons in both directions can be explained by the fact that the 

vascular network of the otic capsule is a termination area for the internal auditory artery (IAA) 

and a communication area between the IAA and several other arteries (Mazzoni, 1972). Thus the 

osteons and other vascular canals need to accommodate the various arteries and their branches 

which travel in various directions.  

https://paperpile.com/c/UAiwSM/iZ7j+loJX+Sshg+Bdk9
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Figure 10. DEN6 Longitudinal PPL (a) and XPL (b) 100x - Petrous bone: Thin section showing an osteon (red 

arrow), woven tissue (yellow arrow), and lamellar-like tissue (green arrow) in inner periosteal tissue between semi-

circular canals.   

DEN3 Transverse PPL (c) and XPL (d) 100x - Petrous bone: Image showing the presence of osteons (red arrows) in 

the outer and inner periosteal tissue.  

DEN6 Longitudinal PPL (e) and XPL (f) 100x - Petrous bone: Another image showing the presence of osteons (red 

arrows) in the outer and inner periosteal tissue, this time in longitudinal section. 

In terms of histological preservation, GHI values indicate moderate to good preservation of most 

specimens (Table 8). Our data also indicate a very strong correlation (Denmark R2=0.81) between 

GHI and collagen yields (Figure 11a), with less altered bone having more collagen. However, it 

is difficult to estimate the degree of alterations on a spatial scale larger than the microscopic field 

of view (here at 40x total magnification the field of view is c. 5 mm). Inter-observer variations 

cannot be avoided, while section thickness and decalcification can also affect GHI (or OHI) 
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reliability for screening collagen preservation (Caruso et al., 2018). Inter-site variations 

(thermally older sites will have less collagen, e.g. Kendall et al., 2018 Fig.7) and preservation of 

microstructure without preservation of collagen content due to hydrolysis can further limit GHI’s 

use as collagen indicator (Collins et al., 2002; Hedges et al., 1995).  

Table 8. Summary of data (GHI: general histological index; IRSF: Infrared splitting factor; C/P: carbonate-to-

phosphate; BPI: carbonate type B-to-phosphate index; Am/P: amide-to-phosphate). C/N collagen= % C/% N x atomic 

weight C/atomic weight N. The samples’ names as presented in Hansen et al. (2017) are provided in parentheses as the 

genetic data (endogenous DNA content) derives directly from this study. 

The symbols next to the GHI values indicate: * samples with transverse thin sections; ** samples with longitudinal 

thin sections; *** samples with both transverse and longitudinal thin sections. 

1Collagen content estimates calculated using the equation collagen wt. % = 113.13 Am/P + 1.69 presented in Lebon et 

al. (2016). 

 

 

GHI may also be a reliable predictor of DNA preservation as it shows strong correlation in Danish 

samples with endogenous DNA yields (R2=0.67) (Figure 11b). Changes in crystallinity (IRSF), 

however, show a weak relationship (R2=0.27) with GHI, which indicates that the localized 

mineral redeposition during microbial attack (e.g. Hackett, 1981; Pesquero et al., 2015) and the 

loss of integrity during generalized destruction may not be reflected in average bioapatite (BAp) 

characteristics of comparatively large sampling areas (Figure 11c).  

https://paperpile.com/c/UAiwSM/hYpe
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Figure 11. Correlation of GHI with collagen yield (a), endogenous DNA content (b), and BAp crystallinity (c). 

Possible microbial activity is only observed in small areas of samples DEN1 and DEN2, although 

microbially attacked areas may have been missed due to prior sampling for aDNA analysis. The 

few alterations identified (Figure 12b) show similarities to the early diagenetic stages 

characteristics (Kontopoulos et al., 2016; i.e. merging of osteocyte lacunae White and Booth, 

2014). Such a lack of microbial activity due to high density and protected location of the petrous 

pyramid has also been assumed to be partly related with decreased endogenous DNA decay 

(Gamba et al., 2014). However, the microstructure of four of the eight historical samples from 

Denmark that were histologically examined have amorphous, disintegrated, dark areas of bone 

(i.e. generalized destruction) with microcracking (Figure 12c-d) that has resulted in a considerable 

loss of collagen birefringence. Generalized destruction is assumed to be connected with loss of 

https://paperpile.com/c/UAiwSM/N8dq+2qEp/?prefix=i.e.%20merging%20of%20osteocyte%20lacunae,
https://paperpile.com/c/UAiwSM/N8dq+2qEp/?prefix=i.e.%20merging%20of%20osteocyte%20lacunae,
https://paperpile.com/c/UAiwSM/vEKT
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the organic content (Collins et al., 2002; Garland, 1989; Jackes et al., 2001) and the presence of 

inclusions (Tjelldén et al., 2018). 

 

Figure 12. DEN4 Transverse PPL (a) and DEN2 Transverse PPL (b) 400x - Petrous bone: Well-preserved area (a) 

versus possible microbial activity in (b) that appears as merged osteocyte lacunae (opaque/black holes indicated by red 

arrows). 

DEN4 Transverse PPL (c) and (d) 400x - Petrous bone: Areas displaying degradation due to microcracking (c) that 

eventually leads to generalized destruction (d) characterized by loss of histological integrity (amorphous) as seen in 

PPL and a complete loss of collagen birefringence in XPL (dark appearance, hence no image).  

 

Opaque features (inclusions) can be seen within pores of one specimen (Figure 13). 

Archaeological bone may be filled with detrital or other exogenous material that penetrates the 

pores (Bodzioch, 2015; Bodzioch and Kowal-Linka, 2012; Garland, 1989). Inclusions can fill up 

osteocyte lacunae, canaliculi and Haversian canals (Bodzioch, 2015; Hollund et al., 2012; 

Pfretzschner, 2004; Tjelldén et al., 2018; Turner-Walker, 1999) and can cause micro-cracks 

(Figure 13) that can accelerate the decay of the already degraded collagen, allowing the ionic 

exchange between water and bioapatite (Fernandez-Jalvo et al., 2010; Pfretzschner, 2004; 

Tjelldén et al., 2018).  
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Figure 13. DEN2 Longitudinal PPL (left) and XPL (right) 100x - Petrous bone: Inclusions (yellow arrow) in 

endosteal tissue close to a fissure (red arrow) that runs from the outer periosteal (red arrow) to the endosteal tissue that 

surrounds the semicircular canal. 

Signs of microcracking (as seen on the walls of Haversian canals or others crossing the osteon 

boundaries in sample DEN1 (Figure 14)) are related to water uptake (Pfretzschner and Tütken, 

2011), as microfissures near or within osteons relate to changes in density, collagen degradation 

and mineral dissolution (Bell, 1990; Pfretzschner and Tütken, 2011). However, cracking may also 

be attributed to physical stresses during sample preparation (Dal Sasso et al., 2014; Lander et al., 

2014; Turner-Walker, 2012). Brown/orange staining seen in the outer periosteal surfaces of five 

Danish and two Central Asian specimens (Figure 14) could have been caused by the infiltration 

of iron oxides (Hollund et al., 2012; Pesquero et al., 2015) or other exogenouss substances that 

replace the osseous material and can be identified as stained sites with granular appearance 

(Garland, 1989). 

 

Figure 14. DEN1 Longitudinal PPL 100x - Petrous bone (left): Areas of inner periosteal bone exhibiting 

microcracking within and around osteons (red arrows).  

DEN2 Transverse PPL 100x - Petrous bone (right): Brown staining of the outer periosteal tissue. 
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3.2. Bioapatite preservation 

Changes in bioapatite composition occur as bone mineral is a relatively unstable and disordered 

form of hydroxyapatite, and this degree of disorder is responsible for the promotion of diagenetic 

modifications in BAp crystals (Asscher et al., 2011a; Trueman, 2013). Various ions (e.g. HPO4
2ˉ, 

PO4
3ˉ, CO3

2ˉ, Ca2+, Mg2+) can be incorporated into the bone-water system, enter the BAp hydrated 

layer, and subsequently, substitute other ions into the BAp core (Berna et al., 2004; Rey et al., 

2009). The conditions of the burial environment (e.g. pH, local hydrology) are responsible for 

triggering a reorganization/growth of BAp crystals through dissolution (loss of less stable 

components) and recrystallization (formation of more stable structures) that is necessary for their 

survival post-mortem (e.g. Berna et al., 2004; Hedges and Millard, 1995; High et al., 2015).  

In this study IRSF and C/P display the strong inverse relationship (R2=0.78) reported in other 

works, with recrystallization driving the loss of carbonate from the apatite (Figure 15). The 

Danish and Central Asian samples display statistically significant differences both in IRSF values 

(U=3.000, p=0.003) and carbonate content (U=10.500, p=0.05). The petrous bones from Denmark 

have a lower average IRSF (IRSF=3.46±0.08) that is only slightly increased compared to modern 

human bone (IRSF=3.357±0.007), while the petrous bones from Central Asia (IRSF=4.04±0.1) 

show much stronger modifications. The infrared splitting factor (IRSF) reflects BAp crystal size 

and structural order/disorder, with the larger and/or more ordered crystals displaying higher IRSF 

values (e.g. Asscher et al., 2011a, 2011b). Thus, increased IRSF values here indicate an increase 

in average and/or maximum crystal length. This increase may be due to an increase of the size of 

the larger crystals at the expense of the smaller ones (i.e. Ostwald ripening), dissolution of the 

smaller crystals, or both (Kendall et al., 2018; Trueman, 2013; Weiner and Bar-Yosef, 1990).  

 

Figure 15. IRSF-to-C/P correlation that denotes site-specific variations. Increased IRSF values indicate an increase in 

average and/or maximum crystal length. 

A loss of CO3
2ˉ content in our samples can be seen both in the Danish (C/P=0.19±0.02) and the 

Central Asian petrous bones (C/P=0.14±0.02) compared to modern human samples 

(C/P=0.240±0.003). Similarly to IRSF, the two assemblages exhibit site-specific differences in 

carbonate content (Figure 15), with the petrous bones from Denmark displaying a loss of about 
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20% of the initial carbonate, while the Central Asia bones have lost about the 40% of their initial 

CO3
2ˉ. The main driving factor in diagenetic alteration is the extent to which local conditions alter 

the mineral phase; the more stable the conditions the less altered is the bone. The longer time of 

exposure to the conditions of the burial environment for the Central Asian (i.e. Bronze Age) 

samples could also partly explain their differences in crystallinity and carbonate content. It is, 

generally, assumed that the longer the bone is exposed to the conditions of the burial environment, 

the greater is its dependency on external sources of phosphate (i.e. authigenic minerals) and other 

ions to fill in the pore space initially occupied by the organic component (Figueiredo et al., 2012; 

Trueman et al., 2004), although this also depends on other environmental factors. 

Overall, the decreased CO3
2ˉ content observed in our samples promoted the formation of a more 

stable mineral phase (i.e. crystal size and lattice perfection) (Salesse et al., 2014). Carbonate ions 

(4-6 wt. %) can replace OHˉ (type A) or PO4
3ˉ (type B) ions in the bioapatite crystal lattice 

(LeGeros, 1965; Wopenka and Pasteris, 2005). Type A substitutions take place at high 

temperatures (900-1000o C) with the exclusion of water, whereas type B substitutions can take 

place at much lower temperatures (25-100o C) (LeGeros, 1965). 

 

Figure 16. The very strong 1410-to-872 cm-1 peak height correlation indicative of the dominant role of type B carbonate 

in BAp crystal structure. 

Here the peak height at c. 1410 cm-1 displays a very strong linear relationship (R2=0.90) with this 

at c. 872 cm-1(Figure 16). As both peaks reflect the type B carbonate environment in bioapatite 

crystals (Rey et al., 1989) it indicates that bone carbonate exchange during crystallinity increase 

(Figure 15) primarily occurs at the phosphate sites of the crystal lattice (i.e. type B) (LeGeros, 

1965; Wopenka and Pasteris, 2005). An exchange of PO4
3ˉ for CO3

2ˉ alters the atomic-level bond 

spacings and orientations due to the differences in the O-O distances (LeGeros et al., 1969). A 

substitution of the smaller CO3
2ˉ by the larger PO4

3ˉ increases the unit cell dimensions of BAp 

crystals and forms more ordered crystal lattices (e.g. LeGeros, 1965; Wopenka and Pasteris, 

2005). Consequently, our data prove that type B CO3
2ˉ is indeed the predominant form of 

carbonate that is replaced by exogenous phosphate or other ions on the sloping faces of BAp 

crystals (Fleet et al., 2004; LeGeros, 1965; Rey et al., 1989).  
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3.3. Collagen preservation 

All samples exhibit very good collagen preservation, with collagen wt. % ranging from 7.42 to 

17.84 (Table 8). Although there are no statistically significant differences (U=18.000, p=0.328) 

between the two sites, the Danish petrous bones show lower average collagen yields (12.49±1.04) 

than the Central Asia samples (14.67±1.1), despite being much younger. Collagen yields (wt. %) 

are commonly used to distinguish well-preserved from poorly-preserved collagen and currently 

c. 1 wt. % is considered a suitable threshold below which samples should not be used for isotopic 

and/or radiocarbon dating studies (Brock et al., 2010; Dobberstein et al., 2009; van Klinken, 

1999). 

 

Figure 17. Data showing the reliability of N and C content in whole bone as indicators of collagen preservation. 

A combined use of % C, % N and C/N ratio is assumed to significantly increase the successful 

screening of bones for collagen (Brock et al., 2012, 2010; Harbeck and Grupe, 2009). Starting 

with the % N in whole bone, which is c. 3.5 - 5.5 wt. % in modern bone (Baker et al., 1946; Eastoe 

and Eastoe, 1954), our values range from 1.39 to 3.42 (Table 8). It has been previously shown 

that % N is a reliable index to screen collagen preservation (Bocherens et al., 2005; Brock et al., 

2010). Bocherens et al. (2005) support that a 0.4 % N threshold is adequate for samples in order 

to be further examined for stable isotopes and/or radiocarbon dating. Similarly, Brock et al. (2010) 

propose a cut-off point of 0.7 %, although when samples contain > 0.7 % Ν and give collagen 

yields < 1 wt. %, the nitrogen may be present as short-chain/degraded collagen or polypeptides, 

non-collagenous proteins, soil contaminants, or conservation treatments (Brock et al., 2012). The 
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Danish and the Central Asian samples show no statistically significant differences (U=14.500, 

p=0.145), while they both demonstrate strong, site-specific relationships between collagen wt. % 

and N wt. % (Figure 17a). The higher average % N in the Danish bones (2.51 versus 2.04 for 

Central Asian), which at the same time display lower collagen yields than the Central Asian bones, 

is noteworthy and could be possibly due to the presence of non-collagenous proteins in the former. 

Overall, it seems that our data are in agreement with past studies (e.g. Brock et al., 2012; Lebon 

et al., 2016) which claim that % N of whole bone can be a relatively good indicator of collagen 

preservation, although assessment of highly contaminated and/or degraded bones can be 

problematic. 

Values range from 5.76 to 11.60% for the total amount of carbon (Table 8). Archaeological bone 

usually displays a significant decrease in carbon content compared to modern animal bone that 

have c. 15 wt. % C (Ambrose, 1990; Sillen and Parkington, 1996; van Klinken, 1999). While the 

two groups show no statistically significant differences (U=23.000, p=0.689), the samples from 

Central Asia display a moderate collagen wt. % - C wt. % correlation (R2=0.50) while the petrous 

bones from Denmark exhibit a much stronger linear relationship (R2=0.74) (Figure 17b). Thus, 

our data indicate that % C of whole bone can be an equally strong to % N of whole bone predictor 

of collagen content. 

Collagen C/N ratio was also used as a quality indicator for collagen, with values ranging from 3.2 

to 3.4 (Table 8) and samples from Denmark displaying no statistically significant differences from 

these of  Central Asia (U=21.500, p=0.529). Values similar to modern bone (i.e. 2.9 to 3.6) are 

considered representative of good quality collagen, whereas much higher C/N ratios are linked to 

diagenesis (Ambrose, 1990; DeNiro, 1985; DeNiro and Weiner, 1988; Tuross, 2002). Post-

mortem alterations in the carbon and nitrogen contents involve more than one mechanism 

(microbial attack and hydrolysis) (Ambrose, 1990; Balzer et al., 1997; Harbeck and Grupe, 2009; 

Turner-Walker, 2008; Tuross, 2002). A preferential loss of the hydrophobic amino acids during 

collagen hydrolysis and the amino acids with a higher number of carbons in microbial attack can 

affect the C/N ratio (Balzer et al., 1997; Grupe, 1995; Harbeck and Grupe, 2009; Masters, 1987; 

Turban-Just and Schramm, 1998; Tuross, 2002). Although the C/N ratios of whole bone powder 

could provide an alternative solution, the relationship with col. wt. % (Central Asia R2=0.22 and 

Denmark R2=0.48) does not seem to be sensitive enough to discriminate well- from poorly-

preserved samples. Poor correlation between C/N of whole bone and collagen yields has also been 

reported by Brock et al. (2012) and Lebon et al. (2016). 

The Am/P ratio can potentially provide valuable information on the relative amount of organic 

content in bone (Lebon et al., 2016; Trueman et al., 2008a, 2004). A strong to very strong 

correlation (Central Asia R2=0.83, Denmark R2=0.63) between Am/P and collagen wt. % can be 

seen in our data for both assemblages (Figure 18). The overall relationship between Am/P and 

collagen yields (R2=0.33) however is weak, even if there are no statistically significant differences 

https://paperpile.com/c/UAiwSM/Q57W+Vqwj/?prefix=e.g.,
https://paperpile.com/c/UAiwSM/Q57W+Vqwj/?prefix=e.g.,
https://paperpile.com/c/UAiwSM/ILeR+1o3e+Blat
https://paperpile.com/c/UAiwSM/ILeR+8QQh+DRRx+A9tl
https://paperpile.com/c/UAiwSM/ILeR+Dmm5+A9tl+askJ+2STV
https://paperpile.com/c/UAiwSM/ILeR+Dmm5+A9tl+askJ+2STV
https://paperpile.com/c/UAiwSM/ekBy+96vd+Dmm5+ao9L+A9tl+askJ
https://paperpile.com/c/UAiwSM/ekBy+96vd+Dmm5+ao9L+A9tl+askJ
https://paperpile.com/c/UAiwSM/Q57W/?noauthor=1
https://paperpile.com/c/UAiwSM/Vqwj/?noauthor=1
https://paperpile.com/c/UAiwSM/IBnY+eNM9+Vqwj


 
 

300 
 

in Am/P values between the two sites (U=14.500, p=0.145), due to changes in BAp crystals’ 

relative phosphate amounts during dissolution/recrystallization (Figure 18). 

 

 

Figure 18. The effect of site-specific variations on the Am/P index. The lower intercept of the more recent (Danish) 

bones suggests that the phosphate for carbonate exchange (relative phosphate content), and vice versa, can affect the 

reliability of Am/P as a collagen predictor. 

The application of the Am/P ratio as a quantitative approach to estimate collagen yields using the 

Lebon et al. (2016) equation (i.e. collagen wt. % = 113.13 Am/P + 1.69) can potentially provide 

reliable collagen content estimates (e.g. DEN2, DEN5, DEN8, CA3) with the average offset being 

-0.84±2.33% (Table 8). However, the collagen content estimates are affected by the relative 

phosphate content in the samples (Figure 18) that results to poor agreement with collagen yields 

in other specimens (e.g. DEN1, DEN6, CA4, CA5). The presence of overtones related to 

structural water (e.g. O-H stretch at 1640-1660 cm-1) can also lead to increased values for 

specimens that contain less than c. 10 wt. collagen (Lebon et al., 2016; Trueman et al., 2008a). 

Further limitations include the significant effects of FTIR and collagen sample preparation 

strategies on Am/P (e.g. Kontopoulos et al., 2018) and collagen yields (e.g. Sealy et al., 2014), 

respectively. 

Finally, our data are in agreement with other studies (e.g. Lebon et al., 2010; Weiner and Bar-

Yosef, 1990) that support a lack of correlation between crystallinity (i.e. IRSF) and collagen 

content (Denmark R2=0.19; Central Asia R2=0.15). This observation might be unexpected as the 

mineral-organic relationship is considered very strong. The BAp crystals are located between the 

collagen fibrils (inter-fibrillar spaces) or on the surfaces of collagen fibrils (intra-fibrillar spaces), 

while their orientation and size are controlled by the fibril structure and organization (Boskey, 

2003; Weiner and Price, 1986; Weiner and Traub, 1986). Hence the volume of bone matrix that 

is filled with collagen in vivo can be replaced post-mortem by exogenous ions until inter-

crystallite porosity has been filled (Susini et al., 1988; Trueman et al., 2008b). Similar to IRSF, 

there is a very weak correlation between C/P and collagen wt. % for samples from Central Asia 

(R2=0.05), while there is a moderate linear relationship (R2=0.54) for samples from Denmark. We 
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have no good explanation of this difference, which would benefit from a larger study which might 

explore (for example) the selective leaching of proteins such as osteocalcin and osteonectin which 

may play a role in limiting the extent of recrystallisation.  

3.4. DNA preservation 

The survival of DNA in archaeological bone has been linked to mineral preservation as 

dissolution and recrystallization of BAp crystals leads to considerable loss of DNA (Allentoft et 

al., 2012; Götherström et al., 2002; Lindahl, 1993; Parsons and Weedn, 2006). Our data 

demonstrate that IRSF and C/P can be considered reliable predictors of DNA preservation as there 

is an overall strong inverse relationship (R2=0.69) of crystallinity (IRSF) and an overall strong 

linear relationship (R2=0.70) of C/P with endogenous DNA yields (Figure 19a-b). When samples 

are split into three groups based on their endogenous DNA yields (i.e. >10%, 1-10 %, and <1 %) 

to potentially enhance screening practices, samples with IRSF values similar to modern human 

bone (i.e. IRSF=3.357±0.007) display >10 % endogenous DNA (Figure 19c). When endogenous 

DNA yields drop below 10 %, samples display a very strong inverse relationship (R2=0.93) with 

IRSF that increases to levels over 3.6 (Figure 19c). In tandem, samples with similar to modern 

bone C/P ratios (C/P=0.24±0.003) contain >10 % endogenous DNA (Figure 19d). When C/P 

decreases to the c. 0.15-0.18 level, this carbonate loss is accompanied by a significant loss of 

endogenous DNA to below 10 %, although contrariwise to IRSF, there is no strong correlation 

with DNA yields (Figure 19d). However, the small number of samples examined in this study 

does not allow any conclusion to be drawn on the possible thresholds. 

Overall, the ionic exchanges in bioapatite crystals (phosphate for carbonate substitutions, and vice 

versa) of archaeological human petrous bone during dissolution/recrystallization can lead to a 

significant loss of DNA, although DNA molecules can be trapped and survive in archaeological 

timescales by adsorbing onto the surfaces of the crystals. The adsorption of DNA is controlled by 

environmental conditions (e.g. temperature, pH, local hydrology) (Grunenwald et al., 2014). At 

lower temperatures (i.e. 4 °C) the amount of DNA adsorbed onto crystals is significantly less than 

at higher temperatures (i.e. 22 or 37 °C), while in acidic environments adsorption increases 

compared to alkaline (Götherström et al., 2002; Grunenwald et al., 2014; Lindahl, 1993; Parsons 

and Weedn, 2006). Consequently, possible differences in their burial environments are 

responsible for the variations seen in the relationships between endogenous DNA content, 

crystallinity and carbonate content in our samples. 
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Figure 19. Correlation of crystallinity (a) and carbonate content (b) with endogenous DNA yields, and possible 

thresholds (c and d). Percentage endogenous DNA between the two sites were almost statistically significant different 

(U=8.000, p=0.06), and varied between 3.5 % and 56.3 % (average=32.2 %) in the Danish samples, and from 0.1 % to 

32 % (average=9.6 %) in the Central Asian specimens. 

Additionally, three of the Danish petrous bones (DEN4, DEN5, DEN9) that exhibit <10 % 

endogenous DNA also display poor histological preservation, with large areas suffering from 

generalized destruction. The DNA molecule is particularly prone to the interaction with water, 

which is also related to generalized destruction and ionic exchange in BAp crystals. Hydrolysis 

leads to breakage of the polynucleotide strands followed by chain breakage into shorter fragments 

(Bada et al., 1999; Hofreiter et al., 2001; Lindahl, 1993; Pääbo, 1989) and any variations in long-

term DNA fragmentation are assumed to be caused by differences in temperature, pH and local 

hydrology (Allentoft et al., 2012; Burger et al., 1999; Lindahl, 1993; Lindahl and Nyberg, 1972). 

Hydrolysis can cause deamination (i.e. loss of the amino -NH2 group) and/or depurination (i.e. 

release the purines) with purines being more susceptible to hydrolysis than pyrimidines (Lindahl, 

1993; Lindahl and Nyberg, 1972; Pääbo, 1989). Deamination of cytosine to uracil (C→T 

miscoding lesion) is the most common pathway and generates a C→T sequence error as the 

deaminated cytosine (now uracil) binds to adenine (Lindahl, 1993; Pääbo et al., 2004). Here, the 

increased C→T damage rates (Hansen et al., 2017) confirms such a scenario (0.27±0.04 average 

C→T mismatch for Denmark and 0.39±0.09 for Central Asia). However, correlation of C→T 

mismatch with the diagenetic parameters was weak (% DNA-C→T= 0.22; % Collagen-C→T= 

0.14; IRSF-C→T= 0.18; C/P-C→T= 0.03; % N-C→T= 0.14; 0.02; % C-C→T= 0.00). While the 

methyl (-CH3) group attached to cytosine can make them more susceptible to deamination (Brown 

and Brown, 2011; Hansen et al., 2001), increased methylation levels were not observed in our 

samples (see Hansen et al., 2017 for more information).  
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With regard to the collagen-DNA relationship, the crucial role of collagen loss in DNA 

degradation has been discussed in past studies (Campos et al., 2012; Götherström et al., 2002; 

Sosa et al., 2013), but our results demonstrate a lack of relationship between collagen and DNA 

preservation (Figure 20). As a result, collagen preservation is not always a good measure of 

endogenous DNA content as samples with good collagen preservation may not yield endogenous 

DNA, and vice versa. 

 

Figure 20. The relationship between collagen content and DNA preservation, indicating that at these levels of bone 

preservation, % collagen is not always a good indicator for successful aDNA recovery. 

4. Conclusion 

This study focused on human petrous bone diagenesis with the aim of providing new information 

which can potentially increase the success rates of some commonly used methods (e.g. histology, 

FTIR, elemental analysis, collagen wt. %) applied to screen petrous bone for DNA and collagen 

preservation. The analysis revealed: 

● Histomorphology: the present findings confirm that the human petrous bone has unique 

microstructural characteristics with different types and arrangement of tissues compared to 

other adult skeletal elements. Woven and lamellar-like tissue distribution in outer periosteal, 

inner periosteal, and endosteal zones of the petrous pyramid is possibly controlled by the 

function and mechanical demands of each inner ear region. To our knowledge, this is the 

first report of the presence of osteons in both transverse and longitudinal sections in any 

skeletal element. However, it is difficult to arrive at any conclusions with regard to the effects 

of microstructure on the role of petrous bone as a repository of ancient biomolecules, 

although it is possible that its combined characteristics (woven tissue, lack of remodelling, 

protected location) may create microniches that allow DNA survival. 

● Diagenesis: a) microscopic focal destructions were not observed in petrous bones. Only few 

merged osteocyte lacunae can possibly represent some limited microbial activity during early 

diagenetic stages; b) generalized destruction was linked with decreased levels of endogenous 

DNA content; c) dissolution and recrystallization of BAp crystals was associated with a 

significant loss of DNA but not collagen. 
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● Screening methods: a) GHI can be potentially used for collagen and DNA screening; b) 

Am/P, % N and % C content in whole bone are reliable indicators of collagen content; c) 

IRSF and C/P may potentially be used to identify bones with high (>10 %) endogenous DNA 

content.  

Future research should further explore these initial histomorphological findings by examining a 

series of transverse and longitudinal thin sections to record changes across the entire petrous. That 

way any issues regarding the role of bioerosion in petrous bone degradation can be answered and 

susceptible areas can be identified. The potential effects of the burial environment on petrous 

bone diagenesis may also constitute the object of future studies as these may help pinpoint the 

critical degradation parameters. Another interesting research approach would also be the 

comparison of petrous bone with other skeletal elements to understand to what extent their 

histomorphological or even possible compositional differences increase DNA and collagen 

chances for postmortem survival in petrous bone. Multi-analytical approaches could provide 

deeper analyses of particular diagenetic mechanisms, while new proposals of different methods 

may further enhance screening practices. 
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4. KONTOPOULOS, I. ,  PENKMAN, K.,  LIRITZIS,  I. ,  AND COLLINS M. J .  (UNDER REVIEW). 
BONE DIAGENESIS IN A MYCENAEAN SECONDARY BURIAL (KASTROULI, GREECE). 
ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES  

Abstract 

This paper presents the characteristics of bone diagenesis in a secondary commingled Mycenaean 

burial in Kastrouli (Phocis, Greece) and explores how the different diagenetic pathways can act 

jointly or independently through histological (light microscopy), physical (FTIR-ATR) and 

biochemical (collagen) examination of human and animal bones. Post-mortem modifications in 

microstructure, bioapatite and collagen are characteristic of burial environments with 

groundwater fluctuation and high average temperatures. Within-site variations were defined by 

three main diagenetic pathways that exhibit differences in histological modifications, 

crystallinity, and collagen preservation. These differences were either related to different 

microenvironment conditions, and/or influenced by differences in the early taphonomic histories 

experienced by bones. Petrous bones display a lack of microbial activity and a generally better 

preserved microstructure but do not show any better bioapatite and collagen preservation 

compared to femora. The broader implications of bone diagenesis for isotopic studies that exploit 

collagen and carbon from bone carbonate are also underlined. Further, this study highlights the 

importance of IRSF, C/P and GHI for the qualitative assessment of archaeological bone, and the 

potential use of Am/P as collagen predictor.  

Keywords: bone diagenesis; petrous bone; Mycenaean; secondary burial; commingled; 
histology; bioapatite; collagen 

1. Introduction 

Bone histology, bioapatite (BAp) and collagen can provide valuable information to the 

archaeologist and anthropologist. Bone histology can be used for the study of the age-at-death, 

pathology and to distinguish between human and non-human or burned and unburned bone (Assis 

et al., 2016; Cattaneo et al., 1999; Cuijpers, 2006; De Boer et al., 2013; Dominguez & Crowder, 

2012; Hanson & Cain, 2007; Mulhern & Ubelaker, 2001; Stout & Teitelbaum, 1976). Bioapatite 

is important in archaeological research for the study of past human and animal movement 

(phosphate), dietary habits (carbonate) and environments (phosphate and carbonate) (Hedges, 

2003; King et al., 2011; Lee-Thorp & van der Merwe, 1991; Wright & Schwarcz, 1996). Bone 

collagen is used to determine chronological age (i.e. 14C dating), past lifeways (e.g. palaeodietary 

reconstruction, weaning practices), taxonomic identification, and occasionally for screening (e.g. 

amino acid racemization) (Ambrose, 1991; Asara et al., 2007; Buckley et al., 2009; Collins et al., 

1999, 2009; DeNiro & Weiner, 1988; Douka et al., 2017; van Klinken, 1999; Poinar et al., 1996).  

However, (a) microbial attack of the composite, (b) chemical deterioration of the inorganic matter 

(dissolution/recrystallization), and (c) chemical deterioration of the organic matter (hydrolysis), 

alter the microstructure and the biogenic chemical signals of bone post-mortem (Collins et al., 

https://paperpile.com/c/3w0LuS/95gX+t0i8+GWjd+qNxt+yFsU+spyJ+vkxN+0pbb
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https://paperpile.com/c/3w0LuS/95gX+t0i8+GWjd+qNxt+yFsU+spyJ+vkxN+0pbb
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https://paperpile.com/c/3w0LuS/7TIS+MSO4+2YeSO+RbK40+qfiI+oQWA+Mo23+3V6A+1vjA
https://paperpile.com/c/3w0LuS/inSvg+KHf3


 
 

313 
 

2002; Kendall et al., 2018). Microbial activity can modify bone microstructure  (Bell, 2012, 1990; 

Hackett, 1981; Hedges et al., 1995; Hollund et al., 2012; Kontopoulos et al., 2016; Turner-Walker 

& Jans, 2008; White & Booth, 2014), and in addition to the apparent modifications in bone 

histology, microbial attack can also enzymatically degrade collagen using collagenases, with 

temperature also having a profound effect on collagen degradation (Collins et al., 2002; Kendall 

et al., 2018; Nielsen-Marsh et al., 2000; Nielsen-Marsh & Hedges, 2000b). Any collagen 

preserved in archaeological bone can be protected by the bioapatite crystals (BAp) (Grupe, 1995), 

but post-mortem changes of the mineral phase can expose collagen to chemical hydrolysis 

(Collins et al., 2002). Such a reorganization or growth of BAp crystals occurs through dissolution 

and recrystallization when conditions are greatly under-saturated, primarily due to active 

hydrology (recharging with fresh water) or pH (Berna et al., 2004; Hedges, 2002; Hedges & 

Millard, 1995; High et al., 2015; Piepenbrink, 1989). Therefore, identifying the diagenetic 

pathway each bone has followed post-mortem can offer a unique insight into the preservation 

potential of bone in different burial environments and timescales which is of great importance to 

osteoarchaeological and forensic research.  

1.1. The Mycenaean secondary burial in Kastrouli 

The Mycenaean site of Kastrouli (38.40N 22.57E) is situated in the Mesokampos plateau of the 

Desfina peninsula (Phocis, Greece) at c. 550 m above sea level, and its position between the Itea 

and Antikyra gulfs was strategic for the control of the entire Desfina peninsula (Figure 21). The 

top of the Kastrouli hill is fortified with an ellipsoidal, relatively well-preserved wall, which is 

approximately 170 m in diameter north to south, c. 140 m in diameter east to west, with a 

maximum preserved height of c. 3 m (Sideris et al., 2017).  

This Late Helladic IIIA2 to IIIC (c. 1350-1150 BC) site was systematically excavated in 2016 

and among the several interesting finds was an undisturbed commingled burial within a hybrid 

rock-cut and built chamber tomb (Sideris et al., 2017). The tomb, which was partly made of 

limestone and partly carved into the bedrock, was oriented with its long axis in the W-E direction 

and consisted of a dromos in the W, an entrance with monumental lintel, a small chamber, and a 

niche or extension on the south side covered with a monumental limestone slab (Sideris et al., 

2017).  

The chamber from the floor bottom to the lower part of the roof slabs is c. 1.65 m, and although 

the upper c. 40 cm of sediment of the tomb was disturbed in antiquity and looted in the past 

decades, the lower c. 30 cm of the chamber deposits had not been disturbed since the Late Bronze 

Age. This layer was filled with macroscopically poorly-preserved commingled human bones 

(minimum number of fifteen adult individuals, two subadults, an infant and a fetus) (Figure 21), 

alongside numerous pottery sherds, few small finds, and few bones of domesticated animals (e.g. 

https://paperpile.com/c/3w0LuS/inSvg+KHf3
https://paperpile.com/c/3w0LuS/bOFat+0Sdg+ECHu+2IA7W+OPtfz+nqzOy+IVxMM+moKP
https://paperpile.com/c/3w0LuS/bOFat+0Sdg+ECHu+2IA7W+OPtfz+nqzOy+IVxMM+moKP
https://paperpile.com/c/3w0LuS/bOFat+0Sdg+ECHu+2IA7W+OPtfz+nqzOy+IVxMM+moKP
https://paperpile.com/c/3w0LuS/FKrY+52TX+inSvg+KHf3
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https://paperpile.com/c/3w0LuS/DpFq+sanv+s6X0+4Nwm+HGfq
https://paperpile.com/c/3w0LuS/DpFq+sanv+s6X0+4Nwm+HGfq
https://paperpile.com/c/3w0LuS/Ywt2
https://paperpile.com/c/3w0LuS/Ywt2
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Gallus gallus, Bos taurus, Sus scrofa, Ovis aries/Capra hircus) (Chovalopoulou et al., 2017; 

Sideris et al., 2017). 

 

Figure 21. Top: The strategic position of Kastrouli between the Itea and Antikyra Gulfs at the heart of Desfina 

peninsula. 

Bottom: The commingled skeletal remains from tomb A (locus 121) found at c. 1 m depth.  

The information that can be retrieved through macroscopic analysis of commingled remains is 

mainly limited to the minimum number of individuals (MNI), sex, approximate age-at-death, 

stature or pathology (Adams & Byrd, 2014; Osterholtz et al., 2013). Although the application of 

other techniques (e.g. optical and scanning electron microscopy, ZooMS, DNA) can potentially 

answer several important archaeological questions (e.g. human vs non-human bone, species 

identification, kinship), such analyses can be obstructed through the partial or degraded condition 

of the skeletal remains (Adams & Byrd, 2014; Osterholtz et al., 2013).  

https://paperpile.com/c/3w0LuS/Ywt2+5tPg
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As there is little evidence on bone diagenesis in commingled, disarticulated secondary burials 

(e.g. Booth & Madgwick, 2016) the aim of this study is to explore the characteristics of bone 

diagenesis in a secondary burial environment. Histological (light microscopy), physical (FTIR-

ATR) and biochemical (collagen) analysis of human and animal bone structure were undertaken 

in order to explore how the different diagenetic pathways can act jointly or independently. The 

multiple layers of evidence can help elucidate why and how bone degrades in such conditions and 

shed light on within-site variations possibly related to different primary and secondary funerary 

treatments. These data have implications for future isotopic and biomolecular investigations. 

2. Materials and Methods 

Fifteen archaeological human femora, two human petrous bones and 7 animal bones were used 

in this study. Statistical analysis was carried out using IBM SPSS v.25 and the significance level 

was set at 𝑝 = 0.05.Regression correlation (R2) of 0-0.19 is regarded as very weak, 0.2-0.39 as 

weak, 0.40-0.59 as moderate, 0.6-0.79 as strong and 0.8-1 as very strong correlation, but these 

are rather arbitrary limits and should be considered in the context of the results.  

2.1. Histology 

Twenty-one transverse and two longitudinal thin sections of c. 200 μm from 15 human femora, 2 

human petrous bones and 6 animal bones (Table 9) were prepared using an Exact 300 CL diamond 

band saw. Undecalcified thin sections of c. 200 μm were mounted onto glass microscope slides 

using Entellan New (Merck chemicals) for microscopy mounting medium and covered by a glass 

coverslip both cleaned with xylene before use. Thin sections were assessed under a Leica DM750 

optical microscope using plane-polarized (PPL) and cross-polarized (XPL) transmitted light at a 

total magnification ranging from 40x to 400x. Digital images were captured by a Leica ICC50 

HD camera for microscopy imaging with a capture resolution of 2048 x 1536 pixels. The general 

histological index (GHI) introduced by Hollund et al. (2012) was used as it is analogous to the 

Oxford histological index (OHI) as described by Millard (2001) but includes generalized 

destruction, cracking, and staining. A GHI value of 5 represents excellent microstructural 

preservation similar to modern bone (>95% intact microstructure), whereas a GHI value of 0 

indicates poor microstructural preservation (<5% intact microstructure) with almost no original 

histological features observed. 

2.2. FTIR 

FTIR-ATR measurements were performed in triplicate on 15 human femora, 2 human petrous 

bones and 7 animal specimens (Table 9) using a Bruker Alpha Platinum [range: 4000-400 cm-1; 

no. of scans: 144; zero filling factor: 4; resolution: 4 cm-1; mode: absorbance]. Sample preparation 

and analysis was carried out using Kontopoulos et al. (2018)’s protocol. Bone samples were 

ground using an agate pestle and mortar following the mechanical cleaning of the outer and inner 

bone surfaces. About 2-3 mg of bone powder of 20-50 μm particle size were used for each 

https://paperpile.com/c/3w0LuS/22HC/?prefix=e.g.
https://paperpile.com/c/3w0LuS/nqzOy/?noauthor=1
https://paperpile.com/c/3w0LuS/7Uic4/?noauthor=1
https://paperpile.com/c/3w0LuS/Wqc1/?noauthor=1
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measurement, and after each measurement the crystal plate and the anvil of the pressure applicator 

were thoroughly cleaned using isopropyl alcohol. 

The calculations of FTIR indices were conducted using OPUS 7.5 software as follows: a) infrared 

splitting factor (IRSF) was assessed after Weiner and Bar-Yosef (1990, p.191); b) carbonate-to-

phosphate (C/P) ratio (Wright & Schwarcz, 1996, p.936); c) type B carbonate substitutions 

relative to phosphate (BPI) (Sponheimer & Lee-Thorp, 1999, p.145); and d) amide-to-phosphate 

(Am/P) (Trueman et al., 2004, p.726). The average values of two modern human femora and one 

modern bovine femur were used as reference throughout (Table 9). The 2nd derivatives were 

produced to explore the components of the amide I band, the v2 and v3 CO3
2ˉ bands using the 

OriginPro 2017 and the Savitzky-Golay filter with 13 smoothing points and a polynomial order 

of 4. 

2.3. Collagen 

Collagen was extracted from 15 human femora, 2 human petrous bones and 7 animal specimens 

(Table 9) using a modified Longin (1971) method. The exterior surfaces of bone samples were 

mechanically cleaned using a scalpel. Bone chunks of 300-500 mg were demineralized in 8 ml 

0.6 M HCl at 4∘ C. Samples were agitated twice daily and acid solution was changed every two 

days. When demineralisation was completed, the supernatant was drained off and samples were 

rinsed three times with distilled water. Gelatinization was carried out by adding 8 ml pH3 HCl 

and samples were placed in hot blocks at 80∘ C for 48h. The supernatant liquor which contains 

the collagen was filtered off by using EzeeTM filters and was freeze dried for 2 days in pre-weighed 

plastic tubes.  

Extracted collagen was analyzed in duplicate. Tin capsules containing 0.9-1.1 mg of collagen 

were dropped into an oxygen rich combustion tube held at 1000° C. The tin capsules were ignited 

and burnt exothermally at 1800°C causing the sample to oxidise. The samples were carried 

through a layer of chromium oxide and copper oxide which ensure complete oxidation, followed 

by a layer of silver wool to remove unwanted sulphur and halides. The samples’ gases pass into 

a second furnace containing copper held at 600°C where excess oxygen was removed and nitrogen 

oxides were reduced to elemental nitrogen. Any water was removed using a magnesium 

perchlorate trap. The samples then passed into a gas chromatography (GC) column held at 70°C 

which separates CO2 and N2 from each other. The resultant gases were then introduced into the 

Sercon 20-22 mass spectrometer where the samples were ionised, and the various masses 

separated in a magnetic field, focused into Faraday collector arrays and analysed.  
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3. Results and Discussion 

3.1. Histological preservation 

 

 

Figure 22. The three different diagenetic paths identified in Kastrouli (see also Table 9). 

Histological preservation is very poor in Kastrouli (Table 9) with three distinct paths identified 

based on the presence/absence of microbial activity, micro-cracking and orange/brown staining 

(Figure 22). All human femora and animal bones appear microstructurally amorphous with 

sections often displaying disintegration, although some limited morphological features may still 

be recognizable (Figure 23a). Generalized destruction is accompanied by a loss of birefringence 
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in the amorphous areas under cross polarized light, linked to a loss of collagen (Caruso et al., 

2018; Collins et al., 2002; Garland, 1989; Piepenbrink, 1986). The two human petrous bones also 

have many amorphous, disintegrated areas of bone (Figure 23b) accompanied by a loss of 

collagen birefringence, although the latter is still retained in many areas across the petrous thin 

sections. Their endosteal tissue that surrounds the cochlea and semicircular canal areas is 

considered more mineralized (Doden & Halves, 1984; Frisch et al., 2000; Jeffery & Spoor, 2004; 

Katić et al., 1991), however, it is unexpectedly more degraded than the periosteal tissue.  

 

Figure 23. (a) KAS2 Transverse PPL 400x - Human femur: no histological features can be recognized, accompanied 

by a complete loss of birefringence (hence no image). 

(b) KAS16 Longitudinal PPL 400x - Human petrous bone: osteocyte lacunae still preserved. Note the few merged 

lacunae which can be an indication of limited microbial activity.  

Table 9. Summary of data (IRSF: Infrared splitting factor; C/P: carbonate-to-phosphate; BPI: carbonate type B-to-

phosphate index; Am/P: amide-to-phosphate; GHI: general histological index). C/N collagen= % C/% N x atomic 

weight C/atomic weight N.  

The symbols next to the GHI values indicate: * samples with transverse thin sections; ** samples with longitudinal 

thin sections. 

https://paperpile.com/c/3w0LuS/bG9HN+GH3e+pPvm+inSvg
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1Collagen content estimates calculated using the equation collagen wt. % = 113.13 Am/P + 1.69 presented in Lebon et 

al. (2016). 

Microbial activity (microscopic focal destruction; MFD) is present in 9 human femora, while the 

two human petrous bones and all animal bones show no signs of bacterial attack (Table 9). 

Possible microbial activity in the two human petrous bones appears as merged osteocyte lacunae, 

however, these are very sparse (Figure 23b). MFD in human femora appear as holes in the matrix 

of bone in transverse sections under plane polarized light and they are separated by 

hypermineralized tissue (or cuffing) (Figure 24a). Cuffing displays a dark coloration 

(brown/black) in plane polarized light (Figure 24a) and it appears denser than the unaffected areas 

(Bell, 1990; Hackett, 1981; Piepenbrink, 1989). It forms by mineral redeposition and waste 

products when microbes remove the inorganic matrix to attack collagen (Fernandez-Jalvo et al., 

2010; Garland, 1989; Hackett, 1981; Hedges, 2002; Jackes et al., 2001). This explains why 

cuffing has higher concentrations of Ca and P compared to the unaltered and demineralized bone 

tissue (Pesquero et al., 2015). This hypermineralized tissue usually ranges from 3 to 6 μm in size, 

mostly surrounding the smaller non-Wedl MFD (Figure 24a) and it inhibits further expansion of 

the MFD (Hackett, 1981; Piepenbrink, 1986). The ‘mosaic pattern’ observed in several samples 

(Figure 24b) is also considered to be the final stage of bacterial attack, removing almost all 

microstructural features (Hackett, 1981; Piepenbrink, 1986; Turner-Walker & Jans, 2008). 

Groundwater fluctuation in Kastrouli (see Moustris & Petrou, 2018 for weather data in region) 

due to hot and dry summers (desiccation, which causes the bone to shrink) followed by cold and 

humid winters (water uptake that swells bone collagen) is also likely to have contributed to the 

poor histological preservation (Hackett, 1981; Hedges & Millard, 1995; Nielsen-Marsh & 

Hedges, 2000b; Pfretzschner & Tütken, 2011; Turner-Walker, 2008; Turner-Walker & Jans, 
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2008). Desiccation is evidenced by micro-cracks observed centrally (Figure 24a; spread from the 

haversian canal outwards), peripherally (Figure 24a; spread from the cement line inwards), 

circumferentially and interstitially (Figure 24c; run across circumferential and interstitial 

lamellae) in several bones (Pfretzschner & Tütken, 2011). Additionally, the wet and dry (oxygen-

rich environment) cycles in Kastrouli also favour the survival and activity of microorganisms in 

bone (Hackett, 1981; Reiche et al., 2003; Turner-Walker & Jans, 2008), while micro-cracking 

would further accelerate protein degradation and mineral transformation by increasing the flow 

of groundwater through the bone.  

 

Figure 24. (a) KAS9 Transverse PPL 400x - Human femur: MFD in the form of linear-longitudinal (black arrow) 

and budded (dashed black arrow) tunnels surrounded by hypermineralized tissue (yellow arrow). Note the  central (red 

arrow) and peripheral (dashed red arrows) micro-cracks. 

(b) KAS13 Transverse PPL 400x - Human femur: The characteristic ‘mosaic pattern’ attributed to extensive bacterial 

activity. 

(c)  KAS1 Transverse PPL 400x - Human femur: Microcracking in degraded interstitial lamellae (dotted red arrows). 
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3.2. Bioapatite preservation 

Bone mineral is a relatively unstable and disordered form of geologic hydroxyapatite (Asscher et 

al., 2011; LeGeros, 1965; LeGeros et al., 1967; Trueman, 2013). In the burial environment, local 

hydrology and soil pH are responsible for dissolution (loss of less stable components) and 

recrystallization (formation of more stable structure) of BAp crystals (Berna et al., 2004; Hedges, 

2002; Hedges & Millard, 1995; High et al., 2015; Nielsen-Marsh et al., 2000; Nielsen-Marsh & 

Hedges, 2000a; Piepenbrink, 1989; Trueman, 2013). Ions present in the groundwater (e.g. HPO4
2ˉ, 

PO4
3ˉ, CO3

2ˉ, Ca2+, Mg2+) can be incorporated into the BAp hydrated layer, and subsequently, 

substitute other ions into the BAp core (Berna et al., 2004; Figueiredo et al., 2012; Lee-Thorp & 

van der Merwe, 1991; Rey & Combes, 2014; Stathopoulou et al., 2008; Trueman, 2013; Trueman 

et al., 2004). These alterations can be measured using the Infrared splitting factor (IRSF, also 

known as crystallinity) and the carbonate-to-phosphate (C/P) ratio (Brock et al., 2010; Hollund et 

al., 2013; Sponheimer & Lee-Thorp, 1999; Stathopoulou et al., 2008; Weiner & Bar-Yosef, 1990). 

The IRSF reflects BAp crystal size and structural order/disorder, with the larger and/or more 

ordered crystals displaying higher IRSF values (Surovell & Stiner, 2001; Termine & Posner, 

1966; Weiner & Bar-Yosef, 1990; Weiner & Wagner, 1998; Wright & Schwarcz, 1996), while 

the C/P ratio reflects the carbonate content relative to phosphate content (Sponheimer & Lee-

Thorp, 1999).  

Dissolution/recrystallization of BAp crystals in Kastrouli is indicated by the histological 

appearance of many samples (e.g. microcracking, loss of birefringence). A recharge environment 

that is generated by wet and dry cycles (Hedges & Millard, 1995; Nielsen-Marsh et al., 2000) has 

clearly affected bioapatite preservation at this site. The seasonal or sporadic flow of unsaturated 

rainwater (Moustris & Petrou, 2018) through the bones situated near the ground surface (depth c. 

1 m) has led to recrystallization of bioapatite crystals at increased rates (Grupe, 1995; Hedges & 

Millard, 1995; Nielsen-Marsh et al., 2000). 

The IRSF values range from 3.37 to 5.47 (average=4.38±0.69) in human bones, and from 3.51 to 

4.10 (average=3.69±0.23) in animal bones (Table 9). These crystallinity values are higher than 

modern bone IRSF (Figure 25a) and indicate an increase in average and/or maximum crystal 

length. This increase may be due to an increase of the size of the larger crystals at the expense of 

the smaller ones (i.e. Ostwald ripening), dissolution of the smaller crystals, or both (Nielsen-

Marsh et al., 2000; Nielsen-Marsh & Hedges, 2000a; Reiche et al., 2002; Stiner et al., 1995; 

Trueman, 2013; Weiner & Bar-Yosef, 1990; Wright & Schwarcz, 1996).  

Regarding carbonate content, C/P ranges from 0.23 to 0.08 (average=0.15±0.05) in humans, and 

from 0.25 to 0.15 (average=0.20±0.05) in animal bones (Table 9). A loss of CO3
2ˉ content during 

dissolution/recrystallization is thus observed in our samples compared to modern samples (Figure 

25a). The human bones display an average loss of about 40 % of the initial carbonate and the 
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animal bones about the 20 % of their initial CO3
2ˉ, although there are differences in crystal size 

and atomic order between different animal species and hard tissues (Asscher et al., 2011). 

 

Figure 25. (a) The relationship between crystallinity (IRSF) and carbonate content (C/P) in BAp crystals (b) Same as 

(a), this time excluding samples containing calcite. (c) Correlation between 1410 cm-1 and 872 cm-1 showing that type 

B carbonate is the main CO3
2ˉ type reflected in C/P values.  (d) Same as (c), this excluding samples containing calcite. 

(e) The relationship between crystallinity (IRSF) and type B CO3
2ˉ. (f) Same as (e), this time excluding samples 

containing calcite. 

IRSF and C/P display very strong inverse relationship in humans (R2=0.87) and strong in animals 

(R2=0.61) which indicate that while recrystallization in bones results in loss of carbonate from 

the bioapatite crystals, this loss of CO3
2ˉ can vary intra-site and between species (Figure 25a-b). 

There are also statistically significant differences in crystallinity [x2(2)=9.371, p=0.009] and C/P 

[x2(2)=9.646, p=0.008] between the three different within-site diagenetic pathways. The 

diagenetic path 1 (n=4) displays the poorest inorganic preservation with very high crystallinity 

values (IRSF=5.4±0.06) and very low carbonate content (C/P=0.09±0.01); the diagenetic path 3 

(n=9) shows intermediate values with lower crystallinity (IRSF=3.97±0.44) and slightly higher 

https://paperpile.com/c/3w0LuS/uuAW


 
 

323 
 

CO3
2ˉ values (C/P=0.117±0.04), while the diagenetic path 2 (n=8) demonstrates the best BAp 

preservation with IRSF=3.89±0.43 and C/P=0.19±0.05. 

Carbonate ions (4-6 wt. %) can be exchanged with OHˉ (type A) or PO4
3ˉ (type B) ions in the 

bioapatite crystal lattice (LeGeros, 1965; Wopenka & Pasteris, 2005). Type A substitutions 

require high temperatures (900-1000o C) and the exclusion of water, while type B substitutions 

occur at much lower temperatures (25-100o C) and are the dominant substitutions in bone 

(LeGeros, 1965). The very strong linear relationship (R2=0.85; Figure 25c-d) between the c. 1410 

cm-1  peak and the c. 872 cm-1 peak that is also assigned to type B carbonate (Elliott, 1964; LeGeros 

et al., 1969; Rey et al., 1989) shows that C/P (1410 cm-1/1035 cm-1) predominantly reflects the 

type B CO3
2ˉ environment (Sponheimer & Lee-Thorp, 1999). A substitution of CO3

2ˉ by PO4
3ˉ 

during recrystallization increases the unit cell dimensions of BAp crystals, as PO4
3ˉ O-O distances 

are longer than these in CO3
2ˉ (LeGeros et al., 1969), while it also results to more ordered crystal 

lattices (LeGeros, 1965; LeGeros et al., 1967; Rey et al., 2007; Wopenka & Pasteris, 2005). When 

crystallinity (IRSF) is plotted against type B CO3
2ˉ (BPI), however, it appears that the exchange 

of ions at the type B CO3
2ˉ site has less impact on BAp crystals of animal bones than in humans 

(Figure 25e-f), which implies differences in the diagenetic pathways followed by human and 

animal bones in Kastrouli.  

Calcite (CaCO3) is identified in 10 samples (see Table 9) primarily by the presence of a peak at 

712 cm-1 (v4 carbon-oxygen in-plane bending) (Baxter et al., 1966; Hunt et al., 1950), while 

changes in the absorbance heights of the 872 cm-1 ν2 carbon-oxygen out-of-plane bending and the 

1410 cm-1 ν3 carbon-oxygen asymmetric stretching (Baxter et al., 1966; Elliott, 1964; LeGeros et 

al., 1969; White, 1974) have also provided useful information. The strong linear relationship 

(R2=0.71) between the v4 (712 cm-1) and the ν2 (872 cm-1) vibration modes in our samples 

compared to the weak correlation (R2=0.2) between the ν3 (1410 cm-1) and the v4 (712 cm-1) 

suggests that the former modes are more sensitive indicators of calcite in archaeological bone. 

The 712 cm-1 is considered characteristic of the changes in the Ca-O distance during vibration 

which is three times larger for the v4 mode compared to the ν2 mode (Gueta et al., 2007).  

The carbonate moieties are coplanar, the O1-O2 distance affects the in-plane bending vibration (v4 

mode) more than the out-of-plane bending vibration (ν2 mode) (Gueta et al., 2007). This is 

important for the distinction between a rather amorphous bone calcium carbonate (lower order 

with greater Ca-O and O1-O2 distances) and exogenous calcite (higher order with smaller 

distances) (Gueta et al., 2007). The average IRSF=4.41±0.79 and C/P=0.17±0.06 for samples 

displaying calcite uptake compared to IRSF=4.01±0.53 and C/P=.016±0.05 in samples without 

calcite, and this difference in IRSF clearly demonstrates how the calcite uptake increases BAp 

crystal order.  
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Figure 26. 2nd derivative spectra of the ν2 carbonate band at c. 850-900 cm-1 of modern human bone (a), and 

archaeological bone with different calcite amounts (b and c). Note the effect on the 879 cm-1 component when there is 

an uptake of calcite (b vs c). 

The ν2 carbonate band at c. 850-900 cm-1 (which is considered free of organic constituents 

(Termine et al., 1973) and generally free of HPO4
2- artifacts (Rey et al., 1989)) also offers useful 

information through 2nd derivative analysis (Figure 26). The two main carbonate bands in modern 

bone at c. 878 cm-1 and c. 871 cm-1, which appear slightly shifted in archaeological bone, are 

frequently assigned to type A (stuffed) and type B (sloping faces) carbonates, respectively (Fleet, 

2009; Fleet et al., 2004; Fleet & Liu, 2004; LeGeros, 1965; LeGeros et al., 1967; Rey et al., 1989). 

A gradual increase in the 872 cm-1 component is observed that is accompanied by a loss of the 

879 cm-1 component with increasing calcite content (712 cm-1 absorbance height) in bones from 
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Kastrouli (Figure 26), likely due to small variations of the lattice dimensions of the substituents 

(Rey et al., 1989).  

Therefore, the 2nd derivative analysis of the ν2 CO3
2ˉ mode potentially indicates that an uptake of 

calcite may occur at the sloping faces of BAp crystals, replacing type B CO3
2ˉ during the 

interaction of bone with groundwater in the burial environment (Maurer et al., 2014; Wright & 

Schwarcz, 1996). This uptake may be either accompanied by a gradual loss of the type A 

carbonate (disappearance of the 878 cm-1 component) during severe dissolution of the crystal, 

and/or the exogenous carbonate vibration masks the c. 878 cm-1 component. As the CO3
2ˉ for OHˉ 

substitution is achieved only with the exclusion of water, it is difficult for type A substitution to 

occur in bioapatite (LeGeros et al. 1969). Finally, a weak absorbance at c. 866 cm-1 that has been 

reported in modern bone and has been assigned to non-apatitic (labile) carbonate environment in 

amorphous calcium carbonate (Elliott, 1964; Rey et al., 1989) is not observed in Kastrouli bones 

and its absence from archaeological bone has been reported in other studies (Kontopoulos et al., 

2018). 

The spectra in the ν3 carbon-oxygen asymmetric stretching mode (c. 1400-1500 cm-1) are very 

complex (Figure 27a). The 2nd derivative analysis of this domain shows that the 1416 cm-1, 1455 

cm-1 and 1470 cm-1 site B CO3
2ˉ components (Brangule & Gross, 2015; Madupalli et al., 2017; 

Rey et al., 1989) decrease in archaeological bone compared to modern bone, a decrease which is 

higher in samples with calcite uptake (Figure 27). A decrease in the 1538 cm-1 component which 

is possibly related to type A carbonate (Madupalli et al., 2017; Rey et al., 1989) is also observed. 

On the other hand, the 1463 cm-1 that is often attributed to CO3
2ˉ site A (Madupalli et al., 2017; 

Rey et al., 1989) looks unchanged (Figure 27b-c). Nonetheless, a decrease of the 1538 cm-1, the 

1574 cm-1 and the 1556 cm-1 components (Figure 27b-c) may also be due to a loss of organic 

content (amide II) (Chadefaux et al., 2009; Paschalis et al., 2001). Furthermore, an increase in the 

1505 cm-1 component (Figure 27c) in KAS12 (calcite uptake) which is indicative of 13C enriched 

carbonate (Elliott, 1964) appears to be related to an uptake of environmental carbon from 

groundwater (Wright & Schwarcz, 1996). This observation has implications for isotopic studies 

that exploit the carbon content of bone structural carbonate (Lee-Thorp et al., 1989; Lee-Thorp & 

van der Merwe, 1991).  

Therefore, it seems that there is a loss of some A site components both in the ν3 and the ν2 modes 

and a co-precipitation of exogenous carbonate and phosphate in B sites.  An A-site carbonation in 

the apatitic c-axis channel would require much higher energy than B-site carbonation of phosphate 

sites (Madupalli et al., 2017); thus a loss of type A carbonate during BAp crystal dissolution is 

more probable. Additionally, exogenous carbonate may be positioned differently and these 

changes observed in the 2nd derivative components could be caused by the changes in carbonate 

orientation (Madupalli et al., 2017). It is also likely that the hypothesis of two carbonate 
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environments, each of which has its own characteristic absorption spectrum, might be an 

oversimplification (Elliott, 1964; Elliott et al., 1985).  

 

Figure 27. The complex 2nd derivative spectra of the ν3 carbonate mode (c. 1400-1500 cm-1) of modern human bone 

(a), and archaeological human bone with different calcite amounts (b and c). Black boxes highlight the components 

that decrease in archaeological bone; green boxes highlight the components that appear unchanged; red boxes highlight 

the component that appears slightly increased in c. Note that while c (calcite uptake) and b (no calcite) display similar 

crystallinity (IRSF), the former has much higher C/P ratio. 

 

Consequently, it is difficult to make any safe assumptions on the location of exogenous CO3
2ˉ in 

the BAp crystal lattice due to the extensive overlapping and a variation in peak positions for the 

carbonate ion (Fleet & Liu, 2004). The many bands and shoulders displayed in these regions are 
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still not safely assigned to a specific CO3
2ˉ site (Elliott, 1964; LeGeros et al., 1969; Rey et al., 

1989), and apart from carbonate, this domain also includes absorption from other bands (e.g. CH, 

CN, COO-, NH) that overlap with CO3
2ˉ  (Elliott, 1964; Termine et al., 1973) and hinder further 

interpretation. 

3.3. Collagen preservation 

Collagen preservation displays within-site variations, ranging from 0.86 to 12.07 wt. % 

(average=6.73) in human specimens, and between 1.90 and 13.23 wt. % (average=8.35) in animal 

bones (Table 9). Collagen yields (wt. %) are commonly used to distinguish well-preserved from 

poorly-preserved collagen; here only KAS7 and KAS15  have collagen yields below the 1 wt. % 

that is currently considered the threshold for isotopic and/or radiocarbon dating studies (Brock et 

al., 2010, 2012; Dobberstein et al., 2009; van Klinken, 1999). The three different diagenetic paths 

also display statistically significant collagen yields [x2(2)=7.623, p=0.022]. The diagenetic path 

1 displays very poor collagen preservation (collagen wt. %=1.8±1.06), the diagenetic path 2 

average collagen yields is 7.56±3.69, while diagenetic path 3 displays slightly higher collagen 

yields (8.32±3.08). 

Collagen C/N ratios used for quality assessment range from 3.19 to 3.99 (Table 9). Values similar 

to modern bone (i.e. 2.9 to 3.6) are considered representative of good quality collagen, while 

higher C/N ratios are related to diagenesis (Ambrose, 1990; DeNiro, 1985; DeNiro & Weiner, 

1988; Tuross, 2002). Only three human specimens with diagenetic path 1 characteristics (KAS1, 

KAS7, KAS15) exhibit C/N > 3.6 (Table 9), and these samples also show calcite uptake; thus 

collagen retained within these bones may not purely reflect original biochemical signals. Apart 

from the uptake of exogenous carbon, post-mortem alterations in the collagen carbon and nitrogen 

contents are affected by microbial attack and hydrolysis, both present in Kastrouli samples 

(Ambrose, 1990; Balzer et al., 1997; Harbeck & Grupe, 2009; Hedges et al., 1995; Turner-Walker, 

2008; Tuross, 2002). Hydrophobic amino acids may have been hydrolyzed during wet periods in 

Kastrouli, whereas a microbial attack to the amino acids with a higher number of carbons may 

have also occurred in samples displaying MFD, altering the C/N ratio (Balzer et al., 1997; Grupe, 

1995; Harbeck & Grupe, 2009; Masters, 1987; Turban-Just & Schramm, 1998; Tuross, 2002).  

While bone may preserve its microstructure without preserving its collagen content due to 

hydrolysis (Collins et al., 2002; Hedges et al., 1995), in this secondary Mycenaean burial poor 

histological preservation is often accompanied by good collagen preservation (Table 9). This 

observation shows that many bones can still retain appreciable quantities of protein even after 

extensive histological alterations (Hedges et al., 1995) and highlights the limitations of GHI’s use 

as collagen indicator. 
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Figure 28. (a) The moderate relationship between IRSF-collagen wt. %. Note the group characterized by high IRSF 

and low collagen yields (yellow circle), a second group that displays low IRSF and low collagen yields (green circle) 

and a third group showing increased crystallinity and high collagen yields (black circle), indicative of the different 

combination of diagenetic pathways followed by these specimens. (b) The reliability of Am/P for predicting collagen 

content in archaeological bone. 

The interaction between the mineral and organic fractions of bone is generally considered strong 

during diagenesis (Nielsen-Marsh et al., 2000; Person et al., 1995, 1996). This view is based on 

the fact that the orientation and size of BAp crystals in vivo are controlled by the fibril structure 

and organization as they are situated between (inter-fibrillar spaces) or on the surfaces (intra-

fibrillar spaces) of collagen fibrils (Boskey, 2003; Weiner & Price, 1986; Weiner & Traub, 1986). 

However, in Kastrouli only a moderate correlation between crystallinity (IRSF) and collagen 

content (R2= 0.44) is observed (Figure 28a), something that has also been reported in past studies 

(Hedges et al., 1995; Lebon et al., 2010; Weiner & Bar-Yosef, 1990). Thus, our data suggest that 

bioapatite recrystallization is possible even in the presence of reasonable amounts of collagen in 
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bone (Reiche et al., 2003), while within the same burial environment the volume of bone matrix 

that is filled with collagen in vivo can be replaced by BAp crystals of increased size (Pfretzschner, 

2004; Susini et al., 1988; Trueman et al., 2008b). 

 

Figure 29. 2nd derivative spectra of the amide I band (c. 1600-1700 cm-1) showing the disappearance of amide I 

components (black boxes) that accompany loss of collagen in archaeological bone (KAS8: c,d; KAS7: e,f). 

The Am/P ratio shows a strong correlation (R2=0.74) with collagen wt. % (Figure 28b) which 

highlights the potential of Am/P as collagen predictor for rapid screening. The application of the 

Am/P ratio as a quantitative approach to estimate collagen yields using the Lebon et al. (2016) 
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equation (i.e. collagen wt. % = 113.13 Am/P + 1.69), however, displays an average offset of -

0.94±1.37% in Kastrouli. The relative phosphate content can lead to poor agreement of collagen 

estimates with collagen yields in some specimens (e.g. KAS8, KAS9), while overtones related to 

O-H stretching vibrations at 1640-1660 cm-1 (structural water) can also lead to increased values 

(Lebon et al., 2016; Trueman et al., 2008a). Further, any differences in collagen and FTIR 

protocols can also have significant effect on the collagen content estimates (e.g. Kontopoulos et 

al., 2018; Sealy et al., 2014).  

Additional qualitative evidence can be obtained through the 2nd derivative analysis of the amide I 

band that shows a gradual decrease of the 1632, 1640, and 1650 cm-1 components assigned to the 

polyproline II helix (Lazarev et al., 1985) with decreasing collagen yields in archaeological bone 

(Figure 29). Cleavage of collagen cross-linking as seen from a decrease of the 1660 cm-1 and 1695 

cm-1 components (Figure 29) (Paschalis et al., 2001) has led to a loss of the three-dimensional 

structure and breaking of the polypeptides into smaller peptides during hydrolysis (Adzhubei et 

al., 2013; Collins et al., 1995, 2002; Shoulders & Raines, 2009). High average temperatures (see 

Moustris & Petrou, 2018 for weather data in region) has also significantly affected the rate of 

collagen degradation in Kastrouli bones as the higher temperatures accelerate collagen loss with 

the thermal age in Kastrouli estimated to be approximately 3x the real age (Collins et al., 2002; 

Kendall et al., 2018). 

4. Summary 

Skeletal remains in this Mycenaean secondary burial have been seriously affected by diagenesis. 

Post-mortem modifications observed in microstructure, bioapatite and collagen are characteristic 

of burial environments with groundwater fluctuation and high average temperatures. Within-site 

differences may be related to different microenvironment conditions (e.g. groundwater, contact 

with limestone). However, as all bones were found within 30 cm of sediment, these bones have 

possibly experienced different early taphonomic histories. The death history and the effects of 

various factors (e.g. season of death, clothing, burial location) on bone degradation are 

often.overlooked in archaeology due to lack of relevant information. In secondary burials, the 

skeletal remains of a body (either exposed on the ground surface, interred in a coffin or buried 

directly into the soil) are retrieved and relocated once the soft tissue has decayed to some degree 

or excarnated. Therefore, future analyses may help understand the sequence of these alterations 

and shed light on past funerary practices such as disarticulation, primary and secondary treatment. 

Key points 

Histology  

1. Three distinct pathways were identified based on the presence/absence of microbial 

activity, micro-cracking and orange/brown staining of bone tissue. 
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2. Generalized destruction was observed in all human femora and animal bones.  

3. The two human petrous bones show better histological preservation than the femora, 

although the endosteal tissue that surrounds the cochlea and semicircular canal areas is 

unexpectedly more degraded than the other tissue zones. 

Bioapatite  

1. The seasonal and sporadic flow of unsaturated rainwater through the bones which were 

situated near the ground surface (depth c. 1 m) has led to the dissolution and 

recrystallization of bioapatite crystals (increased crystallinity, loss of carbonate, calcite 

uptake).  

2. The two human petrous bones show poor bioapatite preservation with high crystallinity 

and loss of carbonate content. 

3. 2nd derivative analysis of bone mid-IR spectra provides useful information on bioapatite 

carbonate environments (ν2 carbonate band at c. 850-900 cm-1 and ν3 carbonate mode at 

c. 1400-1500 cm-1) and how they interact with calcite during recrystallization. 

Collagen  

1. Collagen yields do not show any strong correlation with crystallinity suggesting that 

bioapatite recrystallization is possible even in the presence of reasonable amounts of 

collagen in bone. 

2. The two human petrous bones display good collagen preservation, with about half of the 

initial collagen content surviving. 

3. The Am/P ratio can provide valuable information on the relative amount of collagen in 

bone, while GHI’s use as collagen indicator is limited. 

4. 2nd derivative analysis of the amide I band (c. 1600-1700 cm-1) of bone mid-IR spectra 

can provide useful information on the components lost (e.g. polyproline II, cross-links) 

during collagen degradation. 
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