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 Abstract 

Chikungunya virus (CHIKV) causes an acute fever with debilitating joint pain. 

Spread by the Aedes species of mosquito, recent increases in global 

temperature, and mutations in the viral glycoproteins have facilitated 

outbreaks worldwide with huge economic burden. Despite the recent 

resurgence of CHIKV, there are currently no vaccines or antiviral agents 

available.  

CHIKV, an alphavirus, possesses a positive sense, single stranded RNA 

genome that encodes four non-structural proteins (nsPs). The CHIKV nsP3 

possesses an N-terminal  macro domain, a domain found in the proteins of all 

species, and are defined by their ability to bind ADP-ribose. It is unclear what 

role the nsP3 macro domain contributes to CHIKV replication.  

Initially, a panel of cell lines was validated in terms of their physiological 

relevance and ability to support the replication of the CHIKV replicon and 

infectious virus. The phenotypes of a panel of mutants in the ADP-ribose 

binding pocket of the nsP3 macro domain were assessed in the context of a 

sub-genomic replicon and infectious virus in a range of relevant cell lines. 

Comparison of this data to the known biochemical properties of the nsP3 

macro domain from the literature, indicated that ADP-ribose binding was 

crucial to CHIKV replication. In addition, this data suggested a role for the 

nsP3 macro domain in antagonising cellular innate immune pathways. ADP-

ribose signalling has been implicated in the activation of the NFкB pathway 

therefore potential for the nsP3 macro domain to interfere with this cell 

signalling pathway was investigated.  It was demonstrated that CHIKV did not 

activate the pathway and that expression of nsP3 actively was inhibitory. 

Furthermore, macro domain mutants with reduced ADP-ribose binding were 

unable to inhibit the pathway. It is therefore proposed that the CHIKV nsP3 

macro domain is a virulence factor, able to suppress the host NFкB pathway 

to facilitate viral replication.  
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RNA  Ribose nucleic acid 

RNAi  RNA interference 

RRV  Ross river virus 

RSV  Respiratory syncytial virus 

rt  Room temperature 

SDS  Sodium dodecyl sulfate 

SDS-PAGE SDS polyacrylamide gel electrophoresis 

SG  Subgenomic 

SGR  Subgenomic replicon 

SH3  SRC Homology 3 Domain 

SINV  Sindbis virus 

STAT  Signal transducer and activator of transcription proteins 

SUMO  Small ubiquitin-like modifier 

SV40  Simian virus 40 

TBS  Tris buffered saline 

TDP1  Tyrosyl DNA phosphodiesterase 1 

TEMED  Tetramethylethylenediamine 

TIM-1 T cell immunoglobulin mucin domain 1 

TLR  Toll-like receptor 

TNFα  Tumour necrosis factor α 

tRNA  Transfer RNA 

UTR  Untranslated region 

VEEV  Venezuelen equine encephalitis virus 

VLP  Virus like particle 

VR  Variable region 

VZV  Varicella zoster virus 

WEEV  Western equine encephalitis virus 

wt Wildtype 

YBX1  Y-box binding protein 

ZAP  Zinc anti-viral protein 
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1.1 Chikungunya virus 

1.1.1 Identification and classification 

Chikungunya virus (CHIKV) was first isolated and identified in Tanzania in 1952 

(Lumsden, 1955) where a large outbreak occurred that resembled Dengue fever. 

The name ‘Chikungunya’ comes from the local Kimakonde language which 

roughly translates to ‘bent upwards,’ describing the appearance from those 

suffering with the painful joint symptoms of the disease.  

CHIKV is in the Alphavirus genus of the Togaviridae family (Chen et al., 2018). 

The majority of alphaviruses, including CHIKV, are mosquito-borne, and are 

alternately transmitted between the mosquito vector and vertebrate hosts. In 

addition to CHIKV, there are eight alphaviruses that are human pathogens and 

these are further separate into “new world” and “old world” alphaviruses defined 

by their genomic sequence, disease pathology and their geographical 

distribution (Zumla, 2010). Old world alphaviruses are mostly found in Africa, 

Asia, and Australia and cause disease of high fever, arthralgia and rashes. This 

group includes CHIKV, O’nyong-nyong virus (ONNV), Semliki forest virus (SFV) 

Mayaro virus (MAYV), Ross river virus (RRV), and Sindbis virus (SINV). New 

world alphaviruses are generally found in the western hemisphere, cause 

encephalitis, and includes Venezuelan equine encephalitis virus (VEEV), eastern 

equine encephalitis virus (EEEV), and western equine encephalitis virus 

(WEEV). Not all alphaviruses are human pathogens. Although equine 

encephalitis viruses infect humans, the primary host of these viruses are equine 

species including horses and donkeys. Other alphaviruses specifically infect fish 

and seals such as rainbow trout sleeping disease virus and  southern elephant 

seal virus (Weston et al., 1999; Villoing et al., 2000; La Linn et al., 2001). Eilat 

virus is a unique alphavirus as it exclusively infects mosquitos (Nasar et al., 

2012). 

Analysis of the E1 coding regions of all the alphaviruses revealed that 

alphaviruses evolved from a common, “New World” ancestor virus (Powers et 

al., 2001). The same study also demonstrated that CHIKV falls into the “Semliki 

Forest Complex” alongside viruses including ONNV, MAYV and SFV. Due to the 

close evolutionary relationship between CHIKV and SFV, and the fact that SFV 
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is a  biosafety level 2 (BSL2) pathogen, whereas CHIKV is BSL3, SFV is often 

used as a model virus for the study of CHIKV. Though evolutionarily less related, 

SINV is also used as a model for CHIKV as it is also a BSL2 pathogen 

(Sourisseau et al., 2007). 

1.1.2 Epidemiology and transmission 

CHIKV is spread by the Aedes (Ae.) species of mosquito, primarily by Ae. 

aegypti, although the virus has been detected in many other species of the Aedes 

mosquitos as well as some Anopheles and Culex species (Diagne et al., 2014). 

Humans become infected with CHIKV via mosquitos which bite when taking a 

blood meal. CHIKV can also be transmitted vertically from infected pregnant 

mothers to the unborn child (Gérardin et al., 2008).  

It is thought that CHIKV originated in African forests since the only non-human 

hosts to have been identified are wild primates in these areas (Brault et al., 

2000). These areas have been suggested to maintain a sylvatic cycle between 

primates and mosquito vectors which eventually spilled over into nearby human 

populations (Peyrefitte et al., 2007). It is thought that, from this initial zoonotic 

event, the virus spread further in Africa and to Asia. Since the discovery of CHIKV 

in Tanzania in 1952, the virus has been isolated in many African and Asian 

countries and has repeatedly re-emerged, causing many outbreaks in these 

countries, a phenomenon that is difficult to predict (Brault et al., 2000). There are 

now three distinct, both genetically and geographically, strains of CHIKV; the 

West African, the east/central/south African (ECSA) and the Asian genotypes 

(see Figure 1.1). 

In recent years, CHIKV has re-emerged on a global scale, emerging in many 

countries where the virus had not previously been isolated. This global re-

emergence is thought to have initiated through the large Kenyan and Indian 

Ocean outbreaks of 2004-6. Part of this re-emergence was the large outbreak 

on La Reunion island in 2005/6, where 33% of the population were infected and 

213 deaths were recorded that were attributed to CHIKV infection (Josseran et 

al., 2006). It is thought that CHIKV was introduced to the island from Kenya, 

transported by shipping of goods and the migration of people through the Indian 

Ocean (Staples et al., 2009, Chretien and Linthicum, 2007). There are many 
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factors thought to contribute to this explosive outbreak including the fact that 

CHIKV had never before been detected in La Reunion, with the local population 

naïve to the virus (Borgherini et al., 2007). It is well documented that CHIKV is 

capable of rapid transmission in populations with little or no pre-existing immunity 

(Johansson, 2015). Also, Ae. albopictus, the primary mosquito species attributed 

to this outbreak, was already fully established on the island. Finally, a mutation 

in the E1 glycoprotein E1-A226V, first identified in this particular epidemic, 

allowed adaptation to the Ae. albopictus mosquito. The E1 mutation that 

developed from the East Central South African strain (see Figure 1.1), was 

termed the Indian Ocean lineage (IOL) and was found to facilitate higher midgut 

infectivity and greater dissemination to the salivary glands of the mosquito, 

allowing for more efficient transmission to vertebrate hosts (Tsetsarkin et al., 

2007).  
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Figure 1.1 CHIKV phylogeny based on the complete coding region of 
clinical isolates. The east/central/southern African (ECSA) strain 
containing the E1-A226V mutation is represented as the Indian Ocean 
lineage (IOL) in light green. (Adapted from Wahid et al., 2017). 

 

The E1-A226V mutation has allowed CHIKV to thrive in areas where the 

previous, predominant vector; Ae. aegypti is absent, but where Ae. albopictus is 

established. There are many factors that contribute to the successful colonisation 

of Aedes mosquitos that differs greatly between the two sub-species. Generally, 
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the Ae. aegypti prefers much warmer and wetter climates, whereas the Ae. 

albopictus can tolerate much milder climates (Ducheyne et al., 2018). There are 

many regions of the world where the Ae. albopictus has colonised but the Ae. 

aegypti has not, meaning that the E1-A226V mutation enables CHIKV to spread 

further than previously possible with the Ae. aegypti vector.  

The Ae. aegypti mosquito is not common in Europe, however, over 30 European 

countries have established populations of the Ae. albopictus and are therefore 

susceptible to CHIKV outbreaks, as shown in Figure 1.2 (Wahid et al., 2017).  

The first autochthonous CHIKV infection (transmission within the same country) 

in Europe was reported in Italy, 2007 and has been directly attributed to the E1-

A226V mutation and the Ae. albopictus vector (Severini et al., 2018). In France, 

multiple autochthonous infections have occurred in 2010, 2013 and 2014 which 

a small outbreak occurring in 2014. This outbreak originated by a traveller, 

returning from Cameroon, who introduced the virus to the local Ae. albopictus 

population resulting in the infection of 12 individuals. It is thought that the 

outbreak was limited due to the quick response of the French public health 

authorities, including the use of insecticide and the dissemination of information 

but also partly due to the onset of Autumn at the time, with cooler temperatures 

limiting the vector and therefore the spread of disease (Delisle et al., 2015). 
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Figure 1.2 Distribution of the Ae. aegypti and Ae. albopictus  in Europe. 
Correct as of Jan 2018. Red indicates countries with established 
populations of the mosquito (although not necessarily universally 
distributed within that country), yellow is where the mosquito has 
been detected but not established and green is where none have been 
detected. Adapted from the European Centre for Disease Prevention 
and Control (ECDC), map created using mapchart.net.  

 

In contrast to Europe, the cases of CHIKV in the Americas are mostly due to the 

Asian strains of the virus. The first case of CHIKV in the Americas was on the 

island of Saint Martin in December 2013, with 50 cases confirmed in the same 

month (Leparc-Goffart et al., 2014). By January 2014, many surrounding islands 

also reported autochthonous cases of CHIKV. In the Americas, there were 

existing, overlapping populations of both the Ae. aegypti and Ae. albopictus 

mosquito before CHIKV arrived into the region (Díaz et al., 2015; Chin et al., 

2018; Honório et al., 2018). Since 2013, autochthonous cases of CHIKV have 

been reported in 45 countries within the Americas. Genotypic analysis of CHIKV 

isolated from this outbreak have shown that the outbreak in the Americas was 

due to viruses that form a single clade within the Asian genotype of CHIKV, rather 

than the more recently-developed IOL clade (Lambert and Lanciotti, 2016). Early 

isolates from the initial St Martin outbreak were closely related to isolates from 

the Philippines taken at a similar time. Although the precise event that introduced 

CHIKV to the island is unknown, it is likely due to international travel that 

introduced the virus to the immunologically naïve populations of America 
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(Johansson, 2015). A summary of the global spread of CHIKV is show in Figure 

1.3. 

 

Figure 1.3 The global spread of CHIKV, with significant outbreaks denoted 
by the year. CHIKV is thought to have originated in central/eastern 
Africa (Brault et al., 2000, with the ECSA strain depicted in dark green) 
and spread to west Africa and Asia which independently evolved to 
form distinct genotypes (shown in orange and purple respectively). 
The first major outbreak of recent years was in La Reunion and 
surrounding islands in 2005, which was the first detected instance of 
the E1-A226V mutation which has since been termed the Indian Ocean 
lineage (Tsetsarkin et al., 2007, depicted in light green). The outbreaks 
in the Americas began in 2013 on the Caribbean island of Saint Martin, 
and were found to be from the Asian genotype (Johansson, 2015). This 
has since spread to all the American continents. Adapted from the 
Centre for Disease Control (CDC), correct as of May 2018. Map created 
using mapchart.net. 

 

1.1.3 Pathology of Chikungunya fever 

As shown in Figure 1.4, CHIKV is introduced into the body via a mosquito bite. 

The virus enters the skin and replicates to high levels in the local dermal 

fibroblasts. From the bite site, the virus is transported via the lymphatic and 

circulatory systems to disseminate throughout the body. It has been shown that 

the saliva from the mosquito, delivered alongside the virus, can enhance 

infection by inducing neutrophil-mediated inflammation which recruits myeloid 

cells (Pingen et al., 2016). These myeloid cells become infected with CHIKV and 

transport the virus to the lymph nodes, where it is then disseminated systemically 

(Kam et al., 2009). The virus favourably replicates in fibroblast, epithelial, 

neuronal, and endothelial cells in the tissues of the liver, muscles, joints and 
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brain (Thon-Hon et al., 2012). After an incubation period of 2-4 days post-bite, 

symptoms occur such as high fever, myalgia, skin rash and arthralgia that can 

be debilitating (Tang, 2012). In this symptomatic period, viremia occurs with titres 

as high as 108 PFU/mL of blood (Simmons et al., 2016), allowing mosquitos to 

acquire the virus from infected humans. It has been reported that titres of 107 

PFU/mL of blood is sufficient for a mosquito to become infected through a blood 

meal (Hugo et al., 2016).  

 

 

Figure 1.4 Infection and spread of CHIKV throughout the human body. The 
virus is introduced via mosquito bite where it infects and replicates in 
dermal fibroblasts and spreads through the circulatory and lymphatic 
systems to the lymphoid tissue, muscles, joints, liver and brain to 
replicate. Figure from Schwartz and Albert, 2010. 

 

Although Chikungunya fever is rarely fatal, the joint pain resulting from infection 

can be incapacitating, thought to be mainly due to the direct infection of cells in 

musculoskeletal tissues (Haist et al., 2017; Zaid et al., 2018). After the acute 

phase of Chikungunya fever, the majority of patients recover within 2 weeks, 
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however, a sub-set of patients develop long term symptoms such as joint pain 

and swelling that can persist for months to years (Chang et al., 2018; McHugh, 

2018). Patients with long-term symptoms often report them occurring in a 

fluctuating manner. There were suggestions of these long-term symptoms being 

the result of CHIKV-induced autoimmunity, although there was no strong 

evidence to support this (Suhrbier et al., 2012). More recently, chronic CHIKV-

related symptoms have been attributed to viral persistence in joint tissues 

(Hawman et al., 2013) and that a high viral load at the time of the acute infection 

is an indicator of persistence developing (Chow et al., 2011).  

 

1.1.3.1 Complications from CHIKV infection 

In some cases of CHIKV infection, severe complications can develop. CHIKV 

can replicate in neuronal cells and, in rare cases, this can cause a range of 

neurological complications, the most common of which are encephalopathy and 

encephalitis. Encephalopathy is defined as “a clinical state of altered mental 

status, manifesting as confusion, disorientation, behavioural changes or other 

cognitive impairment” whereas encephalitis describes the pathological 

presentation of inflammation within the brain (Venkatesan et al., 2013). In 

CHIKV-associated encephalitis, symptoms present between 0-13 days following 

onset of classical Chikungunya-fever symptoms. The pathology of CHIKV 

associated encephalitis varies between patients, with no district patterns on 

imaging by MRI, unlike other CNS pathogens such as cytomegalovirus (Boppana 

et al., 1997). Encephalopathy is a particular problem with neonates and young 

children infected with CHIKV (Charlier et al., 2017). Encephalitis is one of the 

most common presentation of atypical CHIKV infection and is a major cause of 

intensive care hospitalisation for CHIKV patients (Economopoulou et al., 2009). 

Another neurological complication caused by CHIKV is myelopathy (damage to 

the spinal cord) and myelitis (inflammation to the spinal cord).  Patients with 

myelopathy present 0-3 weeks after classical CHIKV symptoms occur (Chandak 

et al., 2009). The incident rate of spinal cord inflammation with CHIKV infection 

is unknown but is thought to be less common than encephalopathy, and no 
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deaths have been reported for CHIKV patients with myelopathy alone  (Mehta et 

al., 2018).  

There have been reports that link Guillain-Barre syndrome (GBS) to CHIKV, with 

incidents of GBS increasing following outbreaks of CHIKV (Willison et al., 2016). 

Individual case studies of CHIKV patients with GBS symptoms show that most 

made a full recovery within 3 months of infection (Mehta et al., 2018). 

Neurological complications of CHIKV are a particular issue for perinatal acquired 

infection with up to 50% of infected neonates developing encephalopathy, 

although this does vary by outbreak and causative genotype (Gérardin et al., 

2008). A significant number of children who acquire CHIKV perinatally develop 

issues later in life including reduced neurocognitive function, coordination and 

language issues with some cases of cerebral palsy and microcephaly (Gérardin 

et al., 2014).  

Another common complication of CHIKV infection is related to the cardiovascular 

system. In some outbreaks, up to 50% of patients infected with CHIKV report 

cardiovascular symptoms associated with the infection including myocarditis, 

heart failure and arrhythmia (Rajapakse, Rodrigo and Rajapakse, 2010). It has 

been shown that CHIKV is capable of infecting myocytes and this can result in 

damage of cardiac muscle fibres (Alvarez et al., 2017). It has been noted 

however that these complications occur more regularly, although not exclusively, 

in patients with existing cardiac conditions (Economopoulou et al., 2009). 

Much rarer complications include hepatitis, which can be fatal (Torres et al., 

2015), as well as ocular inflammation, respiratory complications, pneumonia, 

renal failure and pancreatitis (Economopoulou et al., 2009; Alvarez et al., 2017). 

 

1.1.4 Treatments and prevention strategies for CHIKV 

Despite the pressing need for effective treatment and prevention of CHIKV there 

are currently no anti-viral agents or vaccines available (Abdelnabi et al., Delang, 

2016).  Current treatment of CHIKV infection involves treating the symptoms 

rather than the virus with the predominant treatment of rest and hydration, 

alongside analgesics to treat the painful symptoms of the fever, with additional 
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medication to treat any specific complications that may occur (Cunha and Trinta, 

2017). 

1.1.4.1 Anti-viral agents for CHIKV 

Although there are currently no licenced anti-viral agents available for the 

treatment of CHIKV infection, many agents have shown anti-viral effects in vitro 

and in vivo.  

Some already licenced therapeutics such as ribavirin, which has been previously 

approved for use against Hepatitis C virus (HCV) and severe cases of respiratory 

syncytial virus (RSV), has also shown to have anti-CHIKV effects in vitro, which 

were enhanced when used in combination with IFN-α (Briolant et al., 2004). 

Favipiravir (also referred to as T-705), was recently approved for use against 

Influenza in Japan, has broad-spectrum anti-viral activity. It has been shown to 

inhibit replication of both laboratory and clinical strains of CHIKV in cell culture 

and also reduced the mortality rate and limited neurological disease in 

experimentally infected mice (Delang et al., 2014). It has shown to be effective 

against many RNA viruses in vitro and analysis of resistant mutants has implied 

its mechanism of action is against a highly conserved lysine residue (residue 291 

in the case of CHIKV) in the RNA-dependent RNA-polymerase (RdRp).  

Other treatments in development include monoclonal antibodies which has been 

demonstrated to protect mice lacking the IFN α/β receptor (IFNAR-/-) mice from 

CHIKV induced mortality, both when given prophylactically or post-infection (Pal 

et al., 2013). Another treatment strategy is to modulate cellular processes to 

combat CHIKV infection. This includes modulating the host immune response for 

example, treatment with IFN-α (Bordi et al., 2011),  polyinosinic acid:polycytidylic 

acid (poly(I:C)), (Li et al., 2012) and RIG-I antagonists (Olagnier et al., 2014) 

have all shown to reduce CHIKV replication in vitro.  

Despite the recent advances in development of anti-viral agents for CHIKV in the 

pre-clinical stage, none have been approved for use in the clinic as of yet. Some 

therapeutics that demonstrated anti-viral activity in vitro were shown to not confer 

this activity in vivo. For example, chloroquine, originally used as an anti-malarial, 

was shown to have anti-viral activity against several viruses, including 

alphaviruses, where it has been shown to restrict CHIKV replication in cell 
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culture, possibly by disrupting the CHIKV entry process (Khan et al., 2010). 

However, when used clinically on patients with acute CHIKV infection, 

chloroquine showed no significant efficacy (Chopra, Saluja and Venugopalan, 

2014). This demonstrates that despite progress at the pre-clinical stage, there is 

still a lot more research and development required to produce an effective CHIKV 

anti-viral agent.   

1.1.4.2 Vaccine development 

Although there are currently no approved or licenced vaccines for use against 

CHIKV, there are many promising vaccine candidates in development that utilise 

a number of different strategies. Reverse genetics and biochemical studies of 

CHIKV have been utilised to better attenuate vaccines in order to increase safety, 

particularly to limit the possibility for reversion or to induce adverse reactions 

(Powers, 2018). It is therefore important to better understand the cellular and 

biochemical properties of the CHIKV proteins to rationally develop effective 

vaccines.   

One of the first CHIKV vaccines to reach clinical trials was a virus-like particle 

(VLP) vaccine. These are non-infectious virus particles that lack genetic material 

so cannot replicate. These may be comprised of the structural proteins of a virus, 

or use a different, often more stable, virus ‘scaffold’ to which antigenic proteins 

can be presented to the immune system (Tagliamonte et al., 2017). A particularly 

promising vaccine utilised a CMV expression vector, expressing the structural 

polyprotein of CHIKV in HEK293T cells, generating empty capsids of CHIKV. 

When tested in vivo, the vaccine conferred a strong neutralising antibody 

response in monkeys that protected them from infection, (Akahata et al., 2010). 

When taken to human phase 1 trials, no adverse side effects were observed and 

all participants produced cross-genotype neutralizing antibodies, although the 

antibody titres were significantly reduced by the final point of the study (Chang 

et al., 2014; Goo et al., 2016).  

Despite live attenuated vaccines requiring large scale production of virus in cell 

culture, recent developments of reverse genetics systems have allowed for 

genetic attenuation, increasing the safety profiles of vaccines and high 

expression of antigenic proteins (Stobart and Moore, 2014). One particular live 
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attenuated vaccine for CHIKV used reverse engineering to replace the 

subgenomic promotor with an IRES which restricted the host range so that, if the 

vaccine ever produced disease in individuals, it would not be able to replicate in 

mosquitos. This particular vaccine was able to produce a neutralizing antibody 

response and protect vaccinated mice when challenged.  

Many of the CHIKV vaccines in development have adopted chimeric 

approaches. One of the most promising CHIKV chimeric vaccines is using 

alternate alphavirus systems. It has been shown previously that using alternate 

non-structural and structural open reading frames (ORFs) from different 

alphavirus can produce viruses that can replicate but are highly attenuated (Kim 

et al., 2011). However, the resulting replicative phenotype can vary wildly with 

different combinations, not all of which being attenuated (Frolov, Frolova and 

Schlesinger, 1997). One particular alphavirus chimera, to protect from VEEV 

infection was formed using an attenuated strain of VEEV and SINV. This 

contained the SINV non-structural ORF and the VEEV structural ORF. This virus 

was further attenuated by mutating the sub-genomic promotor from the VEEV 

sequence to resemble the SINV sequence whilst still preserving the VEEV 5' 

RNA secondary structure in the subgenomic RNA. This vaccine produced strong 

immunogenic responses and inoculated mice survived and showed no 

symptoms when challenged with VEEV (Paessler et al., 2003).  

Subunit vaccines, such as those that contain the CHIKV structural proteins (Metz 

et al., 2011) and DNA vaccines, which contain an attenuated CHIKV genome 

(Hallengard et al., 2014) have both shown some effectivity against CHIKV, but 

as of yet, no vaccine is licenced for use against CHIKV.  

1.1.4.3 Vector control 

A different approach to reducing CHIKV and other arbovirus infections is to target 

the vector rather than the host. CHIKV cannot be transmitted horizontally 

between humans, mosquito vectors are essential for the spread of CHIKV, 

therefore effective control of the vector could reduce disease spread. A particular 

challenge for the control of alphavirus vectors; the Aedes mosquito, is that they 

have adapted to thrive in urban environments and bite during the day whereas 

other mosquito vectors, e.g. Anopheles species that transmit malaria, only bite 
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at night (Ferguson, 2018). Meaning that the simple measure of using mosquito 

nets to effectively reduce malaria infections is not an option for many arboviral 

infections (Fullman et al., 2013). Many different measures have been attempted 

to control the Aedes alphavirus vector with varying levels of success. 

Tackling environmental factors such as educating the local population about 

mosquitos and reducing potential breeding grounds has been shown to be 

effective although it requires willing community involvement that is sustained. 

This technique often reduces the risk of arboviral infections, but not significantly 

or for long periods of time (Andersson et al., 2015). 

Use of insecticides is the most prevalent approach to vector control, either by 

targeted deployment to destroy mosquito larvae, or by mass spraying. However 

this approach can be very costly and the success of application is highly 

dependent on the timing of the response which is often hampered by poor co-

ordination (Esu et al., 2010; Horstick et al., 2010). Another recent issue with this 

approach is that many mosquitos have developed resistance to many insecticidal 

agents. There are multiple mechanisms of resistance including mutations to 

mosquito enzymes that process the insecticide. These include mutations to 

either the target protein of the insecticide, or to proteins that are able to process 

and excrete insecticides. Modification of behaviour allowing the mosquitos to 

actively avoid insecticide altogether has also been observed (as reviewed in 

Moyes et al., 2017; Auteri et al., 2018).    

Some novel, biological approaches have been used to control Aedes mosquito 

populations and limit arboviral infections. Wolbachia bacteria have been 

previously characterised to inhibit multiple pathogens from replicating in infected 

mosquitos, including CHIKV and Dengue virus (Moreira et al., 2009). Wolbachia 

are endosymbiotic intracellular bacteria, able to infect a wide range of insect 

species and is transmitted vertically. Although Wolbachia is not normally present 

in Aedes aegypti mosquitos (Zug and Hammerstein, 2012). The World Mosquito 

Program (formally ‘Eliminate Dengue’) aims to reduce arboviruses by releasing 

Wolbachia-infected mosquitoes into the wild, spreading Wolbachia to mosquito 

populations which produces a population that is less-able to transmit viruses to 

humans. It has been demonstrated that releasing infected mosquitos does 
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establish Wolbachia in wild, naïve mosquito populations which can be sustained 

(Jiggins, 2017).  Data modelling has predicted that this technique will reduce 

arboviral infections however, in practice, this has yet to be determined (O’Neill et 

al., 2018).  

Another novel method of vector control is the use of genetically modified 

mosquitos to modify the wild population. One approach is to distort the sex-

distribution of mosquitos, since only female mosquitoes bite humans, distorting 

the population to become predominantly male will reduce population number and 

restrict spread of disease. This can be achieved by introducing female-specific 

lethal genes, such as expression of X-chromosome endonucleases in sperm 

cells, so that male mosquitoes only produce sperm cells carrying 

Y-chromosomes so that all resulting offspring are male (Galizi et al., 2014). Other 

methods such as use of transposons, engineering hyper-immune mosquitos, 

knock-out/knock-in systems, or introducing inducible lethal genes have all been 

demonstrated in laboratory mosquitos although it is unclear whether these 

systems could be established and maintained in wild populations (Gabrieli, 

Smidler and Catteruccia, 2014).  
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1.2 Molecular Biology of CHIKV 

1.2.1 Genome organisation 

CHIKV is a positive sense, single stranded RNA virus (+ssRNA). The 11.8 Kb 

genome comprises of two ORFs, the non-structural ORF at the 5' end and the 

structural ORF at the 3', separated by a junction region. The genome, as shown 

in Figure 1.5, has a 5' m7G cap and a poly(A) tail, resembling a cellular mRNA, 

as well as 5' and 3' untranslated regions (UTR) that are highly structured 

(Vasiljeva et al., 2000; Solignat et al., 2009).  

 

 

Figure 1.5 The genome organisation of CHIKV. The coding regions for the 
non-structural and structural proteins are shown in green and blue 
respectively. Black areas indicate untranslated regions of the 
genome. (Original figure).  

 

The first ORF encodes for the four non-structural proteins (nsPs). The nsPs 

function to replicate viral RNA. RNA capping is performed by nsP1, nsP2 is a 

protease/helicase and nsP4 is the RdRp. The role of nsP3 is unclear but is 

required for RNA replication. Of the structural ORF, five proteins are expressed, 

three of which are components of the mature CHIKV virion: C, which forms the 

virus core, and E1 and E2 which form the viral glycoproteins. E3 acts as a 

chaperone protein to ensure correct glycoprotein folding and 6k is a proposed 

viroporin required for virus assembly.  

Alphavirus genomes contain many RNA structures, both in coding and non-

coding regions. In SINV, many of these structural elements have been shown to 

be important for virus production and/or replication. Some of these structures 

have been shown to be specific to either mammalian or mosquito cells whereas 

others have been shown critical for both species (Kutchko et al., 2018). In 

CHIKV, there are many predicted secondary RNA structures across the genome, 

thought to be important for RNA replication and other functions (Parquet et al., 
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2002). There is a high level of secondary structure in the 5' UTR and nsP1 coding 

regions. Multiple stem loops in this area have been shown to be crucial to viral 

replication in mammalian and mosquito cells – with some stem loops being 

mammalian or mosquito specific (Dr Andrew Tuplin, University of Leeds, 

personal communication). Interestingly, some of the secondary structures found 

in the 3' UTR of the CHIKV genome are genotype-specific, with unique structures 

found in the 3' UTR of the Asian genotype. These unique regions are thought to 

be due to adaptation to the mosquito vector (Chen et al., 2013).  

1.2.2 CHIKV virion organisation 

All alphaviruses are spherical, enveloped viruses with a diameter of 70 nm 

(700 Å), as shown by Figure 1.6. At the centre of the virion is an icosahedral 

nucleocapsid core, comprising of 240 copies of C protein containing genomic 

RNA, closely surrounded by the membrane-derived envelope (Strauss and 

Strauss, 1994). Inserted in the envelope are the glycoprotein spikes formed of 

the E1, E2 and E3 proteins. The E1 and E2 proteins form a heterodimer where 

E1 is responsible for membrane fusion of the viral envelope with endosomal 

membranes whereas E2 binds cellular receptors as well as protecting the E1 

fusion loop at a neutral pH (Yap et al., 2017). E3 is responsible for the correct 

folding of the E2 precursor and the formation of the E1/E2 heterodimer. Unlike 

other alphaviruses, (R. Zhang et al., 2011), E3 is not thought to be present on 

mature CHIKV particles (Sun et al., 2013).  
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Figure 1.6 A cross section of CHIKV virion produced by cryo-electron 
microscopy reconstruction with envelope proteins shown in 
yellow/red, membrane in green, capsid in light blue and RNA in dark 
blue. Adapted from Yap et al., 2017. 

 

1.2.3 CHIKV life cycle 

An overview of the CHIKV lifecycle is summarised in Figure 1.7. Few studies on 

alphavirus replication and lifecycle have been performed with CHIKV, instead 

much of the current literature have studied viruses such as SINV and SFV, 

presumably due to the lower containment requirement of these viruses. Due to 

the high level of sequence homology and protein structures, it is assumed that 

many of the processes in the alphavirus lifecycle are broadly similar across the 

alphaviruses. Hence, throughout this section, the virus used in each study has 

been explicitly stated to avoid confusion. 
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Figure 1.7 Overview of the CHIKV lifecycle. CHIKV enters cells through 
endocytosis and fuses with mature endosomes to release the 
genomic RNA into cells. (1) The non-structural proteins are directly 
translated from the genomic RNA which form replication complexes. 
(2) Replication complexes generate minus sense genomic RNA as a 
template to form genomic RNA for packaging (3) and for synthesis of 
the subgenomic RNA for translation of the structural proteins (4). The 
structural proteins are translated into a polyprotein which is 
subsequently cleaved in various areas of the infected cell. The 
structural proteins and the genomic RNA then co-ordinate at sites of 
assembly, thought to be at the plasma membrane, where they 
assemble to form virus particles and release from the cell.  Original 
figure interpreted from references in section 1.2.3. 

 

1.2.3.1 Cell entry 

The first stage in CHIKV entry is the binding of a cellular receptor. It has been 

known for some time that the E2 glycoprotein is responsible for receptor binding, 

however, the cellular receptor for CHIKV is currently unclear (Smith et al., 1995). 

CHIKV has a relatively wide cell tropism as it infects many cell types of the human 

body (Couderc et al., 2008), as well as mosquito cells. This suggests that the 

cellular receptor for CHIKV must either be an ubiquitously expressed cellular 
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protein or, CHIKV utilises multiple receptors for cell entry. No single protein has 

been defined as the cell-entry receptor for CHIKV to date. Many cell surface 

proteins have been proposed to be the receptor or receptor binding factors for 

CHIKV entry in mammalian cells including (but not limited to): prohibitin 

(Wintachai et al., 2012), T cell immunoglobulin mucin domain 1 (TIM-1), (Moller-

Tank et al., 2013), glycosaminoglycans (GAGs) (Silva et al., 2014), and Mxra8 

(Zhang et al., 2018). In mosquito cells, ATP synthase beta subunit (ATPSβ) has 

been identified as a potential binding receptor. It was demonstrated via 

immunoprecipitation that ATPSβ binds CHIKV particles and co-localisation 

between CHIKV and the receptor was observed via immunofluorescence 

(Fongsaran et al., 2014). It is likely that CHIKV uses multiple receptors for entry 

as few of these proposed receptor proteins are ubiquitously expressed and it has 

been shown for most of these proposed proteins, that CHIKV can still establish 

infection, albeit reduced, in the absence of these individual receptors.  

Although there has been much conflicting data, the general consensus is that 

Alphaviruses enter host cells predominantly through clathrin-mediated 

endocytosis (CME), however there is also evidence for entry via clathrin-

independent endocytosis (Bernard et al., 2010; Hoornweg et al., 2016). It has 

also been demonstrated that, under certain conditions, SINV particles can fuse 

directly with the plasma membrane (Vancini et al., 2013). CME is a complex 

process involving many proteins. Many of the CME associated proteins have 

been shown to be essential for CHIKV cell entry including Esp15, Rab5, and 

dynamin (Sourisseau et al., 2007; Bernard et al., 2010), interestingly, all of these 

proteins play roles in both clathrin-mediated and clathrin-independent 

endocytosis. It is likely that CHIKV primarily utilises CME for entry into cells but 

is also able to exploit multiple entry mechanisms where required in order to 

achieve successful entry (Yat-Sing Leung et al., 2011). In mosquito cells, CHIKV 

has only been shown to enter via CME although few studies have investigated 

this phenomenon in insect cells (Ching Hua Lee et al., 2013).  

In mammalian cells, it has been demonstrated that CHIKV predominantly fuses 

with early endosomes. Through both live-cell microscopy and the use of various 

inhibitors of endocytosis, it has been shown that CHIKV infection requires Eps15 

and Rab5, both of which are involved in the early stages of endocytosis and are 
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present in early endosomes, but does not require Rab7, which is responsible for 

the maturation of endosomes to lysosomes (Bernard et al., 2010; Hoornweg et 

al., 2016). In contrast, despite CHIKV entering mosquito cells in a similar manner 

and is again reliant on Eps15 and Rab5, successful entry also requires Rab7, 

indicating that CHIKV fuses with late endosomes in mosquito cells, possibly due 

to variations in endosomal pH compared to mammalian cells (Ching Hua Lee et 

al., 2013; Nuckols et al., 2014). The E1 glycoprotein alone is responsible for 

fusion with the endosomal membrane. Work with SFV and SINV show that this 

process requires a conformational change of the E1/E2 heterodimer, induced by 

exposure a low pH, in order to expose the fusion loop of E1 (Bron et al., 1993; 

Justman et al., 1993; van Duijl-Richter et al., 2015; Zeng et al., 2015). Fusion of 

alphaviruses to endosomal membranes also requires cholesterol which is 

thought to facilitate hydrophobic interactions between E1 and the target 

membrane (White and Helenius, 1980; Smit et al., 1999; Ahn et al., 2002).  

Once the virus envelope has fused with the endosomal membrane, the 

nucelocapsid is delivered into the cytoplasm. The nucleocapsids of SINV and 

SFV have shown to be destabilised due to an interaction of the 60S ribosomal 

RNA with the C protein (Ulmanen et al., 1976; Wengler et al., 1992). Once the 

nucleocapsid uncoats, the viral genomic RNA is released and becomes available 

for translation and the initiation of replication.   

1.2.3.2 Genome replication 

Once the genomic RNA is in the cytoplasm of the infected cell, the non-structural 

protein ORF is directly translated from the genome. The CHIKV non-structural 

proteins form replicases that are membrane associated. It is thought that nsP1 

is responsible for the anchoring and the stability of the viral replicase as it has 

been shown to interact with membranes and is the only non-structural protein 

capable of binding all other non-structural proteins (Spuul et al., 2007; Sreejith 

et al., 2012). For SINV and SFV, replication sites have been reported to be in 

membrane invaginations, often referred to as spherules or  cytopathic vacuoles 

(CPVs). Initially, it was thought that the CPVs were formed by modification of 

endosomal and lysosomal membranes at early stages of infection, as they are 

positive for endo/lysosomal markers (Froshauer et al., 1988). Further study 
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demonstrated that the spherules are formed on the cytoplasmic side of the 

plasma membrane (shown in Figure 1.8), a process that does not require the 

presence of the non-structural proteins. The spherules are then internalised 

through endocytosis and develop into CPVs as previously described (Spuul et 

al., 2010). Spuul et al. also demonstrate the dynamic nature of the CPVs which 

are eventually transported by microtubules to the perinuclear region of the 

infected cell. 

 

 

Figure 1.8 Electron microscopy of BHK cells transfected with SFV genomic 
RNA at 3 hpt. Spherules can be seen at the plasma membrane of the 
transfected cells. Scale bar for main image 0.3 µm, in the inset 60 nm. 
Figure from Peränen and Kääriäinen, 1991.  

 

Due a conserved, leaky opal stop codon 6 residues from the end of nsP3, 

translation of the non-structural ORF results in either p123 or p1234 polyprotein 

(Chen et al., 2013). This regulates the amount of nsP4 (the RNA-dependent-

RNA-polymerase) that is produced in infection and the post-translation cleavage 

of nsP3/4 (Jones et al., 2017). Some strains (e.g. Caribbean strains) have an 

arginine in place of the stop codon so only produce the p1234 polyprotein. The 

non-structural polyprotein is proteolytically cleaved by the nsP2 protein initially 

into p123 and nsP4 (Rausalu et al., 2016). In SINV replication, it has been shown 

through the disruption of cleavage sites, that the p123 polyprotein alongside the 

nsP4 polymerase are predominantly required for minus-strand RNA production 

whereas the individual nsPs are required for positive-strand synthesis (Lemm et 

al., 1994). This is proposed to increase replication efficiency as RNA replication 
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can be temporally segregated in two stages. As summarised in Figure 1.9, the 

first stage is the production of full length, minus-strand RNA. Then, upon 

polyprotein cleavage by nsP2, this switches to positive-strand production of the 

full length genomic RNA for further translation and  packaging, and the 26S sub-

genomic RNA, a small, positive-sense capped RNA that encodes for the 

structural proteins (Albulescu et al., 2014).  

 

 

Figure 1.9 CHIKV RNA replication. Upon entry to the cell, the non-structural 
ORF is translated and produces polyprotein p123 and p1234, 
subsequently cleaved into p123 and nsP4. These proteins induce 
negative sense RNA production. Upon further polyprotein processing 
by the nsP2 protease to form the individual nsP1, nsP2, nsP3 and 
nsP4 proteins, positive sense RNA production is initiated, producing 
full genomic RNA for packaging or further transition, and the 26S 
subgenomic RNA for translation of the structural proteins. Original 
figure interpreted from Lemm et al., 1994. 

 

All four nsPs are required for RNA replication and have distinct roles. The nsP1 

protein, as well as being the membrane-anchor of the replicase complex, also 

possesses methyltransferase (MTase) and guanylytransferase (GTase) activity, 
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that allow nsP1 to cap newly synthesised positive sense RNA (Ahola and 

Kääriäinen, 1995). The nsP2 protein has multiple functions. As discussed 

previously, it has protease activity and is responsible for polyprotein processing 

into individual proteins (Russo et al., 2006). Another function of nsP2 is a 

helicase/NTPase, to unwind RNA secondary structure in order to facilitate 

replication (Rikkonen, 1996). Although known to be essential for RNA replication, 

it is unclear what specific role the nsP3 protein plays in this process. The 

alphavirus nsP3 contain a macro domain at the N terminus, an alphavirus unique 

domain (AUD) and a hyper-variable domain (HVD) at the C terminus. The 

functions of these domains in terms of viral replication are poorly understood 

although mutations in the AUD and HVD of nsP3 have been shown to be 

defective in synthesis of minus strand and subgenomic RNA (Rupp et al., 2015). 

The nsP4 is the RdRp and its sole function is RNA synthesis. At the N-terminus 

of nsP4 is a disordered region which has been shown to interact with nsP1. 

Various mutations to this disordered region produced defects in either positive, 

or negative strand synthesis. This suggests that  this region, and possibly its 

interaction with nsP1 is required for the switch from negative to positive strand 

synthesis (Shirako and Strauss, 1998; Rupp et al., 2011).   

1.2.3.3 Translation of structural proteins 

Once RNA replication has occurred, the structural proteins can be translated 

from the newly synthesised 26s subgenomic RNA into the structural polyprotein. 

The polyprotein is then subsequently cleaved. The core protein (C) contains a 

serine protease allowing cleavage in cis to remove C from the N terminus of the 

polyprotein (Choi et al., 1991). The cleavage of pE2 (the precursor to E3 and 

E2), 6k, and E1 occurs in the ER (Singh et al., 2018). E1 then forms a 

heterodimer with the E2 portion of pE2 and is further cleaved by host cell furin to 

form E3 and the E1/E2 heterodimer (Firth et al., 2008). The processing of the 

non-structural polyprotein is summarised in Figure 1.10. 
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Figure 1.10 The processing of the structural polyprotein. The subgenomic 
26s RNA is translated to form a single polyprotein. Core protein then 
auto-catalytically cleaves itself from the polyprotein. Processing in 
the ER allows correct cleavage and folding of the pE2, 6k and E1 
proteins. E1 then forms a heterodimer with pE2 for stability, prior to 
E3 being cleaved by host cell proteases. Original figure interpreted 
from Choi et al., 1991; Firth et al., 2008; Singh et al., 2018. 

 

1.2.3.4 Assembly and release 

Assembly of alphaviruses begins in the cytoplasm with the formation of the 

nucleocapsids with viral genomic RNA being encapsidated by C protein. In SINV, 

it has been shown that this process is facilitated and stabilised by a amphipathic 

coiled coil α-helix at the N-terminus of C that is highly conserved across the 

different alphaviruses, including CHIKV (Perera et al., 2001). Once formed, it is 

thought that the nucleocapsid freely diffuses in the cytoplasm and binds to the 

E2 of the glycoprotein heterodimer in order to target the nucleocapsid to the cell 

membrane for assembly (Suomalainen et al., 1992; Solignat et al., 2009).  The 

nucelocapsid is then thought to bud from the plasma membrane which contains 

E1/E2 heterodimers. Assembly requires the putative viroporin 6k, which although 

not believed to a virion component, is known to interact with E1 and has been 
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suggested to be involved in manipulation of the plasma membrane for efficient 

budding and release of the virus (Yao et al., 1996; Sanz and Carrasco, 2001). 

 

1.2.4 Immune response to CHIKV infection 

Cells infected with CHIKV mount a profound inflammatory immune response, a 

time scale of which is shown in Figure 1.11. Much of this response is protective 

against CHIKV infection but some responses also contribute to the spread of the 

virus and the disease pathology. 

 

Figure 1.11 Time scale of cellular response to CHIKV infection. As viral load 
increases after initial infection, a substantial IFN response is formed 
that correlates with the acute disease symptoms. A protective 
antibody and protective T cell response is formed between 3-5 days 
post infection. Some infected individuals, after recovery of the acute 
infection, have long term, recurring symptoms. Image adapted from 
Schwartz and Albert, 2010. 

 

1.2.4.1 IFN response 

It has been well documented that CHIKV infected cells mount a profound type I 

interferon (IFN) response within 2-5 days of infection (reviewed by Schwartz and 

Albert, 2010). As shown in Figure 1.12, the type I IFN response is induced by 

virus-infected cells which release IFN-α and/or -β to alert surrounding naïve cells 

through the interferon-α/β receptor (IFNAR) to initiate an anti-viral state. The IFN 

pathway has been shown to be critical for survival in CHIKV infected mice, as 
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infected IFNAR-/- mice develop a more severe disease with increased viral titres 

and neurological complications (Thérèse Couderc et al., 2008).   

 

Figure 1.12 Type I IFN response. IFNα/β is produced by virus infected cells. 
This is released to the surrounding cells which is detected through 
the cell surface interferon-α/β receptor (IFNAR) to induce an IFN 
response in naïve cells, forming an anti-viral state prior to infection. 
IFNs also enhance the adaptive immune response through 
upregulation of antigen presentation and chemokine production to 
form a robust effector T cell response. The T cells further interact with 
B cells to form antibodies to the virus. Figure from Ivashkiv and 
Donlin, 2014. 

 

CHIKV has been demonstrated to trigger the IFN pathway through sensing of 

the viral RNA. CHIKV RNA can be recognised in infected cells by both retinoic 

acid-inducible gene I (RIG-I) and toll like receptor 3 (TLR3). It has been shown 

that sensing through TLR3 is essential for the formation of a neutralising immune 

response to CHIKV infection (Her et al., 2015).  Upon the detection of CHIKV 

RNA, RIG-I is able to signal through mitochondrial anti-viral signalling protein 

(MAVS, also commonly referred to IFN promoter stimulator 1/IPS-1) to trigger 

the IFN pathway (Olagnier et al., 2014). Cells with functional MAVS were more 

resilient to CHIKV infection than MAVS-/- cells (Schilte et al., 2010). Further work 
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has shown that interferon regulatory factor 3 (IRF3) is critical for the IFN 

response in CHIKV infected cells. IRF3 is activated via MAVS signalling and 

induces the transcription of many IFN stimulated genes (ISGs) (White et al., 

2011), as is summarised in Figure 1.13. 

 

Figure 1.13 The IFN response to CHIKV infection. CHIKV RNA is detected 
in the cytoplasm by RIG-I (retinoic acid-inducible gene I ) which 
signals through MAVS (mitochondrial anti-viral signalling protein) and 
many adaptor proteins to activate IRF3 (interferon regulatory factor 3) 
through phosphorylation. IRF3 then translocates to the nucleus to 
induce the transcription of IFN-β and many IFN stimulated genes 
(ISGs). Original figure, interpreted from White et al., 2011; Olagnier et 
al., 2014. 

 

Many ISGs exhibit anti-viral effects against CHIKV. ISG15 has been shown to be 

critical for survival of CHIKV infection, as neonatal mice lacking ISG15 all died 

within 8 days of infection (Werneke et al., 2011). Many other ISGs such as IFN 

regulatory factor 1 (IRF-1) and zinc anti-viral protein (ZAP) have been shown to 

be potently anti-viral against CHIKV (Bick et al., 2003; Schoggins et al., 2011).  

Interestingly, the ISG adenosine deaminase (ADAR) was found to be an 

enhancer of CHIKV infection (Schoggins et al., 2011).  

Although the IFN response is protective of cells infected with CHIKV, it does also 

contribute to disease pathology. IFNs have been well characterised as causing 
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generic disease symptoms such as fatigue and myalgia (Sleijfer et al., 2005). In 

addition, CHIKV has been shown to induce the expression of cytokines CXCL9 

and CXCL10,  via the IFN response, which have been shown to contribute to 

joint inflammation in CHIKV infection. Both these cytokines are  also implicated 

in the progression of rheumatoid arthritis (Kelvin et al., 2011).  

1.2.4.2 NFкB response 

Despite CHIKV infection inducing a robust IFN response, it has been 

demonstrated that it does not trigger the NFкB pathway (Selvamani, et al., 2014). 

An overview of the NFкB pathway is shown in Figure 1.14. The lack of activation 

of the pathway by CHIKV is particularly interesting as there are multiple points of 

cross-talk between the IFN and NFкB pathways with both pathways capable of 

activating the other (Wang et al., 2010; Iwanaszko and Kimmel, 2011; Rubio et 

al., 2013).   
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Figure 1.14 Overview of the NFкB pathway. The pathway can be triggered 
by multiple stimuli, both external such as TNF-α, or internal, for 
example dsRNA from infecting viruses. These stimuli activate the 
pathway through different mechanisms though, regardless of method 
of activation, the pathway converges on an active IKK complex that 
removes IкB (inhibitor of NFкB) from NFкB/p105. This activates the 
NFкB complex and allows translocation to the nucleus where it acts 
as a transcription factor for a range of inflammatory and antiviral 
genes.  This results in an antiviral state of the cell and the secretion 
of molecules (e.g. IFN) to signal to surrounding cells.  

 

1.2.4.3 Autophagy 

In human cells, it has been shown that CHIKV induces autophagy which 

enhances the replication of the virus. In CHIKV infected cells, light chain 3 (LC3, 

a marker of autophagy) is redistributed to form punctate structures in the 

cytoplasm of CHIKV-infected HeLa and HEK293 cells, indicating the formation 

of autophagosomes. Activating autophagy in HeLa cells with rapamycin 

significantly increased CHIKV replication (Judith et al., 2013). When autophagy 
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is inhibited in HEK293 cells, CHIKV replication is reduced, with fewer E1 positive 

cells and less viral RNA production (Krejbich-Trotot et al., 2011). In mouse cells, 

CHIKV has also been shown to induce the formation of autophagosomes. 

However, in contrast to the human cells, these appear to have a protective effect 

from infection, as CHIKV caused higher rates of cell death in the absence of 

autophagy machinery (Joubert et al., 2012). It was proposed that autophagy 

delays the onset of CHIKV-induced apoptosis, and therefore in the absence of 

autophagy , apoptosis occurs earlier in the virus lifecycle, therefore limiting 

production of infectious virus.  

1.2.4.4 Apoptosis  

Many viruses induce apoptosis in infected cells and this was widely considered 

to be a defence mechanism to reduce virus replication and further spread within 

the infected organism (Vaux and Häcker, 1995). Apoptosis rapidly occurs in 

CHIKV infected cells (Dhanwani et al., 2012; Nayak et al., 2017). Through recent 

studies, it is now considered that CHIKV and other alphaviruses induce 

apoptosis as a means to increase viral spread to neighbouring cells (Long and 

Heise, 2015). It has been shown that the apoptotic blebs left by dead 

CHIKV-infected cells can be engulfed by neighbouring cells and macrophages, 

the latter of which are normally refractory to CHIKV infection (Krejbich-Trotot et 

al., 2011). The cellular regulation of apoptosis in response to infection can 

determine whether an alphaviral infection is acute (which normally occurs when 

apoptosis is rapid) or becomes persistent, the latter being commonly observed 

in older patients (Griffin and Hardwick, 1997). 
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1.2.5 Non-structural protein 3 

The alphavirus nsP3 is known to be essential for viral RNA replication, yet, it is 

still unclear what specific functions nsP3 contributes to the virus lifecycle.  

1.2.5.1 Structural features of nsP3 

The alphavirus nsP3 has three distinct domains; the macro domain at the N-

terminus, the alphavirus unique domain (AUD) in the centre, and the hyper 

variable domain (HVD) at the C-terminus, as shown in Figure 1.15. 

 

Figure 1.15 Schematic of the CHIKV nsP3, highlighting the three domains 
of the protein: the macro domain, the alphavirus unique domain (AUD) 
and the hypervariable domain (HVD). (Original figure).  

 

1.2.5.2 Macro domain  

At the N-terminus of nsP3 there is a macro domain. Macro domain are found in 

the proteins of all species and are defined by their ability to bind ADP-ribose. The 

macro domain of CHIKV has been demonstrated to bind mono- and poly-ADP-

ribose and RNA and possesses ADPR-hydrolase activity (Rupp et al., 2015). As 

this is the focus of this project, the macro domain is discussed in more detail in 

section 1.3.2.3. 

1.2.5.3 Alphavirus unique domain 

The alphavirus unique domain (AUD) is, as the name implies, a domain only 

found in alphaviruses where it is highly conserved. The full protein structure of 

the AUD is currently unknown but structural analysis of the nsP2/3 interface 

revealed a zinc coordination site at the start of the AUD (Shin et al., 2012). The 

function of the AUD is yet to be determined and there are currently very few 

publications that focus on this domain. Various mutagenic studies of the SINV 

and SFV AUDs have demonstrated it is required for minus strand-RNA synthesis, 

subgenomic RNA synthesis, and neurovirulence (Dé et al., 2003; Tuittila and 

Hinkkanen, 2003). One study that focuses on the CHIKV AUD shows it has roles 



 
 

34 

 

in both RNA replication and virus assembly (Yanni Gao, University of Leeds, 

personal communication). Still the precise function of the AUD remains unclear.  

1.2.5.4 Hypervariable domain 

The hyper variable domain (HVD) also often referred to as the hyper variable 

region (HVR) or just variable region (VR), is an intrinsically disordered, 

unstructured domain that is highly phosphorylated. It is highly variable in both 

sequence and length between the alphavirus nsP3s. The HVD of various 

alphaviruses have been shown to have many interactions with various cellular 

proteins and processes, including the well characterised nsP3 interaction with 

G3BP (Foy et al., 2013). Near the C-terminus of the HVD, there are two 

polyproline motifs (PxxP) that are known to bind SH3 domains. Many cellular 

proteins contain SH3 domains that are involved in a wide range of signalling 

pathways (Kaneko, Li and Li, 2008). The polyproline motifs of SFV, CHIKV and 

SINV have all been shown to bind amphiphysins 1 and 2 (Neuvonen et al., 2011). 

Abrogation of this interaction by mutation or deletion of the PxxP motifs resulted 

in impaired RNA replication in both SFV and SINV. It is thought that since 

amphiphysins are able to induce curvature of membranes this interaction with 

nsP3 may contribute to spherule formation (Götte et al., 2018). It is also proposed 

that the HVD is a hub of interactions with cellular proteins and these interactions 

are crucial to replication and the cellular distribution of nsP3 (Foy et al., 2013). 

Deletion of the hypervariable domain results in a significant shift in cellular 

distribution. Unlike with deletions of the macro domain which resembles the 

cytoplasmic puncta of full length nsP3, deletion of the HVD resulted in distinctive 

filamentous-like structures as shown in Figure 1.16, postulated to be due to the 

loss of many interactions with cellular proteins (Fros et al., 2012).  
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Figure 1.16 Deletions of nsP3 domains affect cellular distribution. EGFP-
tagged forms of full nsP3 (top) and AUD-HVD (middle) show similar 
distribution however, the AUD alone (bottom) exhibits a drastic 
change in cellular distribution. Figure adapted from Fros et al., 2012.  

 

Seven codons N-terminal to the end of nsP3 is a ‘leaky’ stop codon.  As 

discussed previously in section 1.2.3.2, this affects regulation of minus or 

positive strand synthesis, however it also has effects on nsP3 production and 

stability. The nsP3 stop codon, found in all CHIKV strains except the Caribbean 

strain (which instead encodes for an arginine at this site), results in two forms of 

nsP3; a 443 aa if terminated at the stop codon or 449 aa if read through to 

produce the full p1234 polyprotein (as shown in Figure 1.17). The additional 

amino acids in full length SFV nsP3 has been shown to act as a ‘destability 

sequence’ as their presence greatly reduces the stability of nsP3 in cells (Varjak, 

et al,. 2010). Although the precise functions of the short and full versions are still 

unclear, Varjak et al. demonstrated that both versions are required for efficient 

replication and suggested that the extra amino acids may alter nsP3 localisation, 

the result of  which affects RNA synthesis.  
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Figure 1.17 RNA sequence (top) and protein translation (bottom) of the 
CHIKV nsP3 C-terminus. The leaky opal stop codon is shown in red. 
(Original figure). 

 

1.2.5.5 Known interactions of nsP3 

Although the structure and localisation of the non-structural proteins in replicase 

sites is currently unclear, it is known that nsP3 directly interacts with nsP1 which 

is required for functional replicases. The nsP1 then forms additional interactions 

with nsP2 and nsP4 (Sreejith et al., 2012).  

It has been demonstrated that nsP3 is able to bind RNA, a well-characterised 

property of the macro domain, but the AUD has also been shown to capable of 

RNA binding (Malet et al., 2009, Yanni Gao, University of Leeds, personal 

communication) although it is yet unclear whether RNA binding is specific e.g. to 

viral RNA. It has been shown that the macro domain of nsP3 is capable of 

suppressing the RNA interference (RNAi) anti-viral pathway, although it is 

unclear what specific interaction is causing this effect (Mathur et al., 2016). 

One of the best characterised interactions of nsP3 is that with G3BP. G3BP is a 

marker of stress granules, which are pools of untranslated mRNAs and 

associated proteins that form in response to many cellular stresses such as viral 

infection (Protter and Parker, 2016).  The interaction between G3BP and nsP3 

is dependent on the SH3 domain binding motif in the HVD and is thought to 

actively inhibit stress granule assembly in CHIKV-infected cells (Fros et al., 

2012). It has been shown that G3BP is crucial for the RNA replication of the “old 

world” alphaviruses, of which CHIKV is a member of (Kim et al., 2016). In 

mosquito cells, a similar interaction with rasputin (an insect homologue of G3BP), 

has been shown to play a very similar role in alphavirus replication to that of 

G3BP in mammalian cells (Gorchakov et al., 2008).   
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Another interaction of nsP3 mediated by its SH3 domain binding motif is with 

amphiphysins. The nsP3 of SFV, SINV and CHIKV have all been shown to 

interact with amphiphysin 1 and amphiphysin 2. When these interactions were 

abolished by mutation of the SH3-binding motifs of nsP3, RNA replication was 

reduced (Neuvonen et al., 2011). Amphiphysins are involved in many cellular 

pathways. Amphiphysin 1 is known to play a key role in clathrin mediated 

endocytosis, particularly in neuronal synapses and phagocytosis, and binds 

dynamin 1, an interaction facilitated by the SH3-binding domain of amphiphysin 

1  (Yamada et al., 2007). Amphiphysin 2 (also referred to as Bin1 in the literature) 

is an ubiquitously expressed protein, found in both the nucleus and cytoplasm of 

mammalian cells. It has a wide range of cellular functions including membrane 

trafficking and remodelling, regulation of the actin cytoskeleton, DNA repair, cell 

cycle regulation and apoptosis (Prokic et al., 2014). It has been proposed that 

the alphavirus nsP3 utilises the membrane-regulation abilities of amphiphysins 

to rearrange host cell membranes to support viral replication (Neuvonen et al., 

2011).  

The SINV nsP3 has been demonstrated to interact with Y-box-binding protein 

(YBX1), (Gorchakov et al., 2008). YBX1 has many cellular roles including cell 

cycle progression, DNA repair, transcription, translation and is upregulated upon 

cellular stress (Prabhu et al., 2015). YBX1 is also able to bind RNA and DNA,  

chaperone mRNAs and is a component of mRNPs (Eliseeva et al., 2011). The 

function of the nsP3-YBX1 interaction and its effects on viral replication is 

unclear. YBX1 interacts with other viral proteins with contradictory outcomes. 

YBX1 is known to inhibit Dengue virus virion production and can suppress the 

translation of viral RNA (Paranjape and Harris, 2007). Conversely, in HCV, YBX1 

association with viral proteins NS3 and NS4A is required for efficient RNA 

replication (Chatel-Chaix et al., 2011). More research is required to determine 

the  role of YBX1 in the alphavirus lifecycle.  

The hyper-phosphorylated HVD of nsP3 of interacts with Akt, which activates the 

PI3K-Akt-mTOR pathway. This activation has been shown to be necessary for 

the internalisation of replicases at the plasma membrane for SFV but not for 

CHIKV, which activates the pathway to a much lesser degree (Spuul et al., 2010; 

Thaa et al., 2015).  
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Other interactions of nsP3 with cellular proteins includes the heat shock protein 

70 (Hsp70) although the purpose of this interaction is currently unknown 

(Gorchakov et al., 2008).  The nsP3 of VEEV has been shown to interact with 

DEAD box domain proteins DDX1 and 3, which are thought to act as additional 

helicases to assist viral RNA replication (Amaya et al., 2016). The VEEV nsP3 

has also been shown to interact with IκB kinase-β (IKKβ) to activate the NFкB 

pathway. Inhibition of this interaction reduced production of infectious virus and 

genomic RNA copies (Amaya et al., 2014).  
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1.3 Macro domains 

At the N-terminus of the CHIKV nsP3 is a macro domain. A macro domain is a 

conserved protein fold that are found either singularly or, more commonly, as a 

component of larger proteins (Leung et al., 2018). They are defined by their 

ability to bind ADP-ribose (ADPR), which exists either as a monomer: mono-

ADP-ribose (MAR), or as a polymer: poly-ADP-ribose (PAR), as shown in Figure 

1.18. Macro domains are capable of binding either free ADPR or that which is 

attached to proteins, as ADP-ribosylation is a common post-translational 

modification (Karras et al., 2005; Dani et al., 2009).  

 

Figure 1.18 Chemical structures of the monomeric (A) and polymeric (B) 
forms of ADP-ribose. Original figure drawn using ChemDraw software. 

 

Some macro domains have also been shown to have enzymatic activity such as 

ADP-ribose 1″-phosphate phosphatase activity, which catalyses the reaction 

shown in Figure 1.19, an activity required for tRNA splicing (Kumaran et al., 

2005; Shull et al., 2005). More recently, it has been shown that some macro 
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domains possess hydrolase activity where they can remove ADPR from modified 

proteins (Gupte et al., 2017).  

 

 

Figure 1.19 Reaction scheme showing the hydrolysis of ADP-ribose 1″-
phosphate to form ADP-ribose, and inorganic phosphate, catalysed 
by enzymes that possess ADP-ribose 1″-phosphate phosphatase 
activity, such as the CHIKV macro domain. Original figure drawn using 
ChemDraw software. 

 

The first macro domains discovered were in coronaviruses (Lee et al., 1991). At 

the time, these highly conserved domains were termed “x-domains” to denote 

their unknown function. Since this initial discovery, similar domains were found 

in the proteins of mammals, birds, bacteria and viruses (Pehrson and Fuji, 1998). 

They were renamed ‘macro domains’ when high levels of homology were found 

with a histone protein called macroH2A, which is one of the most widely studied 

macro domains (Malet et al., 2009; Pasque et al., 2012). MacroH2A, is a histone 

protein in humans which has been shown to have roles in transcriptional 

repression, chromatin reorganisation, DNA replication and repair (Chakravarthy 

et al., 2005; Buschbeck and Di Croce, 2010). Macro H2A functions to organise 

the nucleus and stabilise chromatin (Douet et al., 2017). Further sequence 

alignments of the mammalian macroH2A with other proteins revealed similar 

domains in bacteria Alicaligenes eutrophus and E. coli as well as the RNA 

viruses Rubella and Sindbis (Pehrson and Fuji, 1998). In the same study, it was 

demonstrated that there was a high level of conservation of the amino acid 

sequence of the protein domain across species.  

1.3.1 ADP-ribosylation in cell signalling 

ADP-ribosylation is a common post-translational modification of many cellular 

proteins, discovered over 50 years ago (Chambon et al., 1963). Relatively little 

study was done in this area until more recently, when it was shown that proteins 
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could be modified with either mono- or poly- ADPR. This modification is 

performed by a family of enzymes named poly-ADPR-ribose polymerases 

(PARPs) that are able to catalyse the transfer of ADPR onto proteins from 

nicotinamide adenine dinucleotide (NAD+), (Leung, 2017). There are 17 known 

human PARPs which are implicated in a range of cellular functions as described 

in Table 1.1. Ironically most PARPs only exhibit mono-ADP-ribosylation activity, 

therefore a new nomenclature was proposed, terming ‘PARPs’ as ‘ARTDs’ 

(ADP-ribosyltransferase diphtheria toxin-like proteins) alongside the 

renumbering the PARPs due to function (Hottiger et al., 2010). Despite this 

remaining addresses the accuracy of naming these proteins, it does cause 

confusion in the literature where many previous studies have referred to proteins 

as “PARPs” and others as “ARTDs” and, as shown in Table 1.1, the numbering 

of PARPs and ARTDs are not consistent (Gupte et al., 2017).  
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PARP 
ARTD / other 

names 

ADP-

ribosylation 

activity 

Reported biological functions 

PARP1 ARTD1 PAR DNA maintenance and repair, cell cycle, 

transcription 

PARP2 ARTD2 PAR DNA maintenance and repair, cell cycle and 

transcription 

PARP3 ARTD3 MAR DNA repair and cell cycle regulation 

PARP4 vPARP, ARTD4 MAR Cancer biology  

PARP5a TNK1, ARTD5 PAR Anti-viral, inflammation, RNA processing 

PARP5b TNK2, ARTD6 PAR Inflammation 

PARP6 ARTD17 MAR Cell proliferation 

PARP7 TiPARP, 

ARTD14 

MAR Anti-viral, RNA processing 

PARP8 ARTD16 MAR Unknown 

PARP9 ARTD9, BAL1 None 

(inactive) 

Cell migration 

PARP10 ARTD10 MAR Cell proliferation, RNA processing and 

inflammation 

PARP11 ARTD11 MAR Unknown  

PARP12 ARTD12,  MAR Anti-viral, RNA processing 

PARP13 ARTD13, 

ZC3HAV1, ZAP 

None 

(inactive) 

RNA processing 

PARP14 ARTD8, BAL2 MAR Inflammation, transcription, RNA processing 

PARP15 ARTD7, BAL3 MAR RNA processing 

PARP16 ARTD15 MAR Unfolded protein response 

Table 1.1 Human PARPs, their alternative names, enzymatic activity and 
known cellular functions. Adapted from Vyas et al. 2013, Vyas et al. 
2014 and Bai 2015. PAR = poly-ADP-ribosylation, MAR = mono-ADP-
ribosylation.  
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In much of the literature of ADP-ribosylation and signalling, ARTDs are termed 

the “writers,” ADP-ribose binding domains being the “readers” and ADPR-

hydrolases being “erasers” demonstrated by Figure 1.20 (Gupte et al., 2017). All 

macro domains are considered “readers” but mainly also fall into the “eraser” 

category as some merely bind ADPR whilst others can both bind and hydrolase 

the moiety. This includes the human protein macroD2 which is able to both bind 

and hydrolyse ARPR (Chen et al., 2011).  

 

 

Figure 1.20 Overview of proteins involved in ADP-ribosylation. Writers, 
such as ARTDs, add ADPR to proteins. Readers such as macro 
domains and PBZ domains are able to bind ADPR. Erasers, such as 
PAR glycohydrolase (PARG), are able to remove ADPR from proteins 
by hydrolysis. Original figure adapted from Gupte, Liu and Kraus, 
2017. 

 

ADP-ribosylation of proteins has been shown to be a tool for cell signalling in 

many pathways including DNA repair, transcription, RNA processing and 

trafficking and innate immunity.  

One of the best-studies ARTDs and ADP-ribose signalling pathways is PARP1, 

which is a true poly-ADP-ribose polymerase (Vyas et al., 2014). PARP1 has been 

well characterised as a DNA repair protein. When DNA damage occurs by either 

single or double stranded breaks, PARP1 is activated and becomes heavily auto-

ribosylated, forming extensive branches of PAR upon itself and nearby chromatin 

(Chaudhuri and Nussenzweig, 2017). This assists in the recruitment assembly 

of protein complexes in order to repair the damaged DNA. Proteins such as DNA 

repair scaffold proteins, and DNA damage checkpoint proteins are recruited (Ko 
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and Ren, 2012). Some of these proteins are ADP-ribosylated for recruitment 

whilst others contain ADPR-binding domains e.g. macroH2A which bind 

PARylated PARP1 through their macro domains (Timinszky et al., 2009). When 

the DNA damage is minimal, PARP1 is able to quickly recruit the necessary 

proteins for successful repair. However, when there is excessive DNA damage, 

PARP1 performs extensive PARylation which drastically reduces NAD+ levels of 

the cell (Yu et al., 2002). This induces the translocation of apoptosis inducing 

factor (AIF) from the mitochondria to the nucleus, where it contributes to the 

degradation of chromatin (Candé et al., 2002). Alongside AIF, mitochondria also 

release cytochrome C, which activates caspases and results in apoptosis 

(Chiarugi and Moskowitz, 2002). Caspases then cleave PARP1, presumably to 

cease pointless production of PAR by this stage in the process (Cohausz and 

Althaus, 2009). Cleaved PARP1 is considered a hallmark of apoptosis.  

Many processes regulated by ribosylation involve interplay with other forms of 

signalling. It has been shown that poly-ADP-ribosylation can act as a signal for 

ubiquitination of proteins for eventual degradation by the proteasome. E3 ligase 

can bind PAR through its WWE domain, then ubiquitinate the ribosylated protein 

to target it for degradation (Zhang et al., 2011). ADPR signalling has also been 

shown to interact with SUMOylation. In the DNA damage response, proteins are 

recruited to sites of DNA breakages by extensive PARylation of the damaged 

site by PARPs. Certain proteins such as tyrosyl-DNA phosphodiesterase 1 

(TDP1), a crucial enzyme for DNA repair, have been shown to be both 

PARylated, for recruitment to the damage site, and SUMOylated for stability (Das 

et al., 2014).  

1.3.1.1 ADP-ribosylation in anti-viral immunity 

Many ARTD proteins are IFN stimulated genes (ISGs). This includes ARTD10, 

ARTD12L (the long isoform of ARTD12), ARTD13 (aka ZAP) and ARTD14 (Guo 

et al., 2004; Atasheva et al., 2014). 

ARTD12 has been shown to locate to stress granules to inhibit mRNA translation, 

which has been shown to be reliant on the catalytic activity and autoribosylation 

of the protein (Atasheva et al., 2014; Welsby et al., 2014).  For alphaviruses, the 

anti-viral effect is thought to be due to this translational shutoff. However, in Zika 
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virus infection, ARTD12 has also been shown to exhibit strong anti-viral activity 

by targeting the viral proteins NS1 and NS3 for degradation (Atasheva et al., 

2014; Li et al., 2018).  

ARTD13, also referred to as Zinc-finger anti-viral protein (ZAP) is an anti-viral 

protein that has been widely studied. Curiously, this ARTD is catalytically inactive 

but has potent anti-viral effects. It is has an inhibitory effect on a range of viruses 

including retroviruses such as murine leukaemia virus, and alphaviruses such as 

SINV, the inhibition of which relied on the zinc finger motifs of ZAP (Guo et al., 

2004). Guo et al. demonstrated that ZAP inhibition varied dependent on the virus 

targeted. For retroviruses such as murine leukaemia virus (MLV), ZAP can bind 

viral mRNA and target it for degradation. It has also been shown that ZAP can 

prevent retrotransposition (Goodier et al., 2015). Whereas for SINV, ZAP 

inhibited the translation of viral RNA. More recently, it has been shown that ZAP 

is able to selectively bind to RNA that has a higher GC content than host genomic 

RNA (Takata et al., 2017). In vertebrate genomes, there is evidence for 

suppression of GC content as it is much lower than would be expected from a 

random distribution of nucleotides. In this publication, it was shown that ZAP 

selectively binds to GC-rich RNA. When the genome of HIV-1 was mutated to 

contain a higher GC content this resulted in a defective virus. However, when 

this GC-rich HIV-1 was used to infect ZAP-/- cells, replication of the virus was 

restored to wt levels. Together, this data indicates that ZAP is able to selectively 

bind GC-rich RNA and acts to remove this non-self RNA from cells.  

ARTD10 has been shown to be a regulator of the inflammatory NFкB pathway. 

Upregulation of ARTD10 decreased NFкB activity, this was later shown to be 

due to an interaction with a key NFкB protein; NEMO (Verheugd et al., 2013). 

ADP-ribosylation of NEMO by ARTD10 prevents the formation of the IKK 

complex, a kinase complex central to the pathway. The lack of an active IKK 

renders NFкB inactive in the cytoplasm, as it remains bound by IκBα, preventing 

it from translocating to the nucleus, so that it cannot enact its effects as a 

transcription factor for anti-viral and inflammatory genes.  

ARTD12 has also been linked to activation of the NFкB pathway. Although the 

exact mechanism of this is unclear, it has been shown that it requires an active 
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catalytic domain, but not the zinc finger domain of the protein and possibly 

requires and interaction with the autophagy protein p62/SQSTM1 (Welsby et al., 

2014).  

1.3.2 Viral macro domains  

Macro domains are found in the proteins of several positive sense, single 

stranded RNA viruses. The first viral macro domains, termed x domains at the 

time of discovery, were identified in 1991 in coronaviruses (CoVs), specifically; 

mouse hepatitis virus (MHV) and infectious bronchitis virus (IBV) (Lee et al., 

1991). Since this discovery, macro domains have also been found in other 

coronaviruses such as severe acute respiratory syndrome (SARS) (Malet et al., 

2006), as well as hepatitis E virus (HEV) (Anang et al., 2016), and alphaviruses 

(Götte, Liu and McInerney, 2018). Rubella virus, which is closely related to the 

alphaviruses, also possesses a macro domain (Neuvonen and Ahola, 2009) 

although to date, no studies have focussed on the Rubella macro domain.  

The fact that macro domains are found in multiple positive sense, single-

stranded RNA viruses with some degree of conservation at the amino acid level 

indicates there may be an evolutionarily conserved function of the domain across 

these viruses (Gorbalenya, Koonin and Lai, 1991).  

1.3.2.1 Coronavirus macro domains 

Macro domains were first discovered in the coronaviruses IBV and MHV. It has 

been since determined that all coronaviruses possess macro domains and they 

are important virulence factors (Eriksson et al., 2008; Fehr et al., 2016). The 

structure of the SARS-CoV macro domain was determined in 2006 and was 

demonstrated to readily bind ADP-ribose but have very poor ADPR 1”–

phosphatase activity, providing evidence that this enzymatic activity is possibly 

not the primary function of viral macro domains (Egloff et al., 2006). In terms of 

cellular function, there is mounting evidence that the CoV macro domain is 

involved in counteracting host defences. Fehr et al (2016) demonstrated that the 

SARS macro domain can suppress innate immunity but was not sufficient to 

block these pathways when triggered by various stimuli. Other have shown that 

various mutations in the SARS-CoV macro domain render the virus more 

sensitive to IFN treatment (Kuri et al., 2011).  
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Most of studies of CoV macro domains focus on that of SARS however, studies 

have shown differences in the structure and binding capabilities between the 

SARS-CoV and the MERS-CoV macro domain (Cho et al., 2016). This highlights 

the importance of studying individual viral macro domains as high conservation 

between macro domains of viruses within the same family does not ensure the 

same biochemical properties or cellular functions. 

1.3.2.2 Hepatitis E virus macro domain  

HEV is a small positive sense RNA virus in the Hepeviridae family (Doceul et al., 

2016). The HEV macro domain has shown to be essential for viral replication as 

certain deletions within macro domain completely abrogate virus replication (van 

Tong et al., 2016). The HEV macro domain has been shown to interact with the 

viral methyltransferase and ORF3, a small viral phosphoprotein (Anang et al., 

2016). More recently, it has been shown that the HEV macro domain can interact 

with, and hydrolyse, MAR and PAR from ribosylated substrates in vitro. Further 

mutagenic studies showed that residues key to ADPR-binding and enzymatic 

activity are essential for HEV replication (Li et al., 2016). Another study 

demonstrated that the HEV macro domain is able to inhibit the poly(I:C) mediated 

phosphorylation of IFN regulatory factor 3 (IRF3) (Nan et al., 2014). The macro 

domain has also been associated with HEV persistence, attributed to its ability 

to modulate the host immune response (Lhomme et al., 2014).  

1.3.2.3 Alphavirus macro domains 

In alphaviruses, the macro domain is found at the N-terminus of nsP3 (Leung et 

al., 2018). Studies focussing on the SINV macro domain have shown that 

mutations that do not disrupt PAR-binding (N10A and N24A) can affect viral 

replication, although many of these mutations were shown to rapidly revert 

and/or produce compensatory mutations when in both cell culture and mice. 

These mutations were shown to disrupt interactions with nsP3 and other viral 

replicase proteins and reduced RNA replication, overall reducing virulence in 

mice (Park and Griffin, 2009).  Other studies have shown that some insertion 

mutations in the macro domain affected plaque size and were defective in RNA 

synthesis (LaStarza et al., 1994).  
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There have been multiple studies investigating the macro domain of CHIKV. The 

three-dimensional structure of the domain was determined by X-ray 

crystallography in 2009 (Malet et al., 2009),.  As shown in Figure 1.21, this study 

revealed the structure of both the native (apo) CHIKV macro domain but also the 

domain in complex with ADP-ribose and RNA.  In the same publication, it was 

demonstrated that the CHIKV macro domain is capable of binding ADPR with a 

lower affinity than the VEEV macro domain, with both alphaviruses exhibiting far 

weaker affinity than the SARS-CoV macro domain. Conversely, the CHIKV 

macro domain, alongside VEEV, SFV and SINV, all  bound PAR with far greater 

affinity than the SARS-CoV macro domain. The ADPR 1”-phosphatase activity 

was also detected in all alphavirus macro domains to varying levels except that 

of SFV, which was below the detection limit.  

 

Figure 1.21 The 3-dimensional structure of the CHIKV nsP3 macro domain. 
(A) The native domain, (B) the domain in complex with mono-ADP-
ribose, (C) the domain in complex with RNA. PDB numbers 3GPG, 
3GPO and 3GPQ respectively (Malet et al., 2009). 

 

Surprisingly, the macro domain with the highest sequence and structural 

similarity to the CHIKV macro domain was that of E. coli, not coronaviruses. This 

may allude to the alphavirus macro domain having a different cellular function 

than the coronavirus equivalent and, interestingly, may also imply that there were 

two separate evolutionary events where +ssRNA viruses acquired macro 

domains (Malet et al., 2009; Neuvonen and Ahola, 2009).  

In common with the HEV macro domain, it was demonstrated that the CHIKV 

macro domain was able to function as a hydrolase (Li et al., 2016). The CHIKV 
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macro domain was demonstrated to be able to efficiently remove MAR from 

ribosylated proteins in vitro, with evidence that this process also occurs in vivo 

(Eckei et al., 2017). The same study demonstrated that hydrolysis of PAR from 

modified proteins was inefficient, which is curious as Malet et al. (2009) 

demonstrated that the CHIKV macro domain had a high affinity for PAR binding.  

A separate study published very similar findings. It was demonstrated that the 

CHIKV macro domain could hydrolyse MAR from aspartate and glutamate 

residues, but not lysine (McPherson et al., 2017). In the same publication, it was 

demonstrated through mutagenic studies, that binding and hydrolysis of MAR 

was essential for replication of the virus in cell culture and mutations to the 

domain reduced virulence in infected mice.  

A more recent publication by the same group showed that upon CHIKV infection, 

there is an increase in general ADP-ribosylation within infected neurones and 

that MARylation activity of cellular ARTDs is required for optimal CHIKV infection 

(Abraham et al., 2018). In agreement with previous results it was shown that 

when both hydrolase and ADPR-binding of the CHIKV macro domain were lost 

through mutation, the replication of the virus was significantly reduced from early 

stages of infection. However when binding capabilities are maintained but 

hydrolase activity reduced, early stages of infection proceeded as normal such 

as the translation of non-structural proteins and the formation of replicase 

complexes, however, translational shut-off occurs earlier than is observed for wt 

CHIKV, resulting in a delay in virus replication for these mutants.  

All this information together forms a rather confusing picture. The CHIKV nsP3 

macro domain is more similar to E. coli than coronaviruses, indicating that there 

may be little crossover between its function in alphaviruses and coronaviruses. 

It has also been shown to bind MAR and PAR with high affinity, yet possesses 

the ability to efficiently hydrolase MAR, but not PAR from ribosylated proteins. It 

has been shown that the CHIKV nsP3 macro domain requires binding and 

hydrolysis of MAR in order to establish replication, but when lacking hydrolase 

activity alone, early stages of replication resemble wt, only reducing due to the 

early onset of host translational shutoff. From this collective data, it is still unclear 
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as to what specific functions the CHIKV nsP3 macro domain provides in virus 

replication which forms the main aim of this project.    



 
 

51 

 

1.4 Aims

Previous studies have mostly focused on in vitro biochemical properties of the 

macro domain with few assessing its cellular function in detail. Therefore, the 

overall aim of this project was to determine the function of the CHIKV nsP3 macro 

domain in the context of the replication cycle of the virus. To achieve this, initially, 

replicon and infectious virus clones had to be optimised in a range of suitable 

and appropriate cell lines in order to study the molecular biology of CHIKV under 

optimal conditions. Following this, mutagenic studies were performed on the 

nsP3 macro domain to form a range of replicative phenotypes and investigate 

the cause(s) of these phenotypes. From this data, further study into the precise 

cellular function of the domain were conducted, leading to the investigation of 

whether the CHIKV nsP3 was able to interfere with cellular innate immunity 

pathways.  
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Chapter 2 Materials and Methods 
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2.1 Molecular Biology 

2.1.1 Polymerase Chain Reaction (PCR) 

PCRs were assembled at room temperature using as shown in Table 2.1 and 

were cycled as defined in Table 2.2. Details of plasmid maps and primers used 

for PCR and cloning are detailed in chapter 8.  

Component Per tube  

Template DNA 100 ng 

100 µM forward primer 0.5 µL 

100 µM reverse primer 0.5 µL 

Vent polymerase (NEB) 1 µL 

ThermoPol buffer (NEB) 5 µL 

100 mM dNTPs (BioLine) 0.4 µL 

DMSO (ThermoFisher) 1 µL 

ddH2O Up to 50 µL 

Table 2.1 Assembly of PCRs 

Temperature  Time (min) Number of cycles 

95 °C  2:00 X 1 

95 °C  00:30 

X 30 Annealing (see appendix?) 00:30 

72 °C  1:00 per 1 kb 

72 °C  2:00 X 1 

4 °C  Infinite hold X 1 

Table 2.2 PCR cycle program generic template 

2.1.2 Mutagenesis 

Site-directed mutagenesis was performed using the NEB Q5 site directed 

mutagenesis kit, using primers in Table 7.2. Reactions were prepared as shown 

in Table 2.3 at room temperature, and cycled as specified in Table 2.4. The PCR 
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product was Kinase/ligase/DpnI (KLD) treated, assembling the reaction using: 1 

µL PCR product, 5 µL KLD buffer, 1 µL KLD enzyme mix and 3 µL nuclease free 

ddH2O. The reaction was incubated for 10 min at rt and 5 µL of the reaction was 

transforming into 50 µL competent cells (see 2.1.7).  

Component Per tube (µL) 

Q5 master mix 12.5  

10 µM forward primer 1.25 

10 µM reverse primer 1.25 

Template DNA (25 ng/µL) 1.0 

Nuclease-free ddH2O 9.0 

Table 2.3 Assembly of Q5 mutagenesis reactions 

Temperature Time Number of cycles  

98 °C 0:30 X 1 

98 °C 0:10 

X 25 

Annealing temperature 

(see appendix for specific 

temperatures) 

0:30 

72 °C 0:30 per 1 kb 

72 °C 2:00 X 1 

4 °C Hold X 1 

Table 2.4 PCR cycle program for Q5 mutagenesis reactions 

2.1.3 Restriction endonuclease digestions 

All restriction digests were performed using NEB enzymes. Reactions were 

performed with the appropriate buffer and recommended temperature. For 

linearisation of the CHIKV replicon and virus DNA constructs for in vitro RNA 

transcription, 5 µg of DNA was digested for 5-16 h using NotI-HF. For general 

cloning, a minimum of 1 µg DNA was digested with 10 units of enzyme at a total 

reaction volume of 20 µL. After digestion, vector DNA for cloning was calf 
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intestinal phophatase (CIP, NEB) treated: 10 units of CIP was added directly to 

the digestion mix and incubated at 37 °C for a further hour. Resulting DNA was 

then extracted by phenol-chloroform extraction and ethanol precipitation (see 

sections 2.1.4 and 2.1.5).  

2.1.4 Phenol-chloroform extraction DNA extraction  

The total volume of DNA to be extracted was adjusted to 200 µL with ddH2O. 

One volume phenol:chloroform:isoamyl (25:24:1) alcohol added, vortexed for 1 

min and centrifuged at 16,000 xg for 5 min. The resulting upper phase was 

removed, transferred to a fresh tube and 1 volume of chloroform added, vortexed 

1 min and centrifuged at 16,000 xg for 5 min. The upper phase was again 

removed and transferred to a new tube for ethanol precipitation (see 2.1.5) 

2.1.5 Ethanol precipitation of DNA 

Where possible, the total volume of the DNA sample for precipitation was 

adjusted to 200 µL, if the sample was in excess of 200 µL, the following volumes 

were adjusted accordingly. Three volumes of absolute ethanol and 0.1 volume 

of 3M sodium acetate added, briefly vortexed and incubated at -20 °C for a 

minimum of 3 h, preferably overnight. Samples were centrifuged at 20,000 xg at 

4 °C for 30 min. Supernatant was discarded and replaced with 200 µL 70 % 

ethanol. Samples were centrifuged at 20,000 xg at 4 °C for 10 min. Ethanol was 

removed and samples left to air dry for 30 min before resuspending the DNA 

pellet in ddH2O for most constructs (e.g. for cloning) or with RNase-free water 

for in vitro RNA synthesis.  

2.1.6 Transformation of DNA into competent cells and culture 

DNA was transformed into 5-alpha competent E. coli (NEB) that were prepared 

using the Mix and Go kit (Zymo), following manufacturer’s protocol, to produce 

Z-competent cells. For intact DNA constructs, 20 µL of cells were mixed with 

5 µL plasmid DNA and incubated on ice for 5 min. The total volume was made 

up to 200 µL with LB and plated out onto LB agar containing ampicillin (100 

µg/mL), incubating at 37 °C overnight. For ligated or mutagenesis DNA products, 

a similar process was performed with an additional recovery step after LB was 
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added, with samples being incubated at 37 °C in a shaking incubator for 1-2 h 

prior to plating onto agar containing ampicillin. 
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2.1.7 DNA preparation  

2.1.7.1 DNA constructs 

2.1.7.1.1 Replicon constructs 

All replicons used in this project were generated, and kindly provided by Andres 

Merits. All replicons were derived from the ECSA genotype RL2006OPY1 isolate 

virus and modified with various tags. The dual luciferase (dLuc) replicon contains 

a Renilla luciferase (RLuc) inserted into the VR of the nsP3 coding region via an 

engineered SpeI site, and contains a firefly luciferase (Fluc) in the subgenomic 

region of the genome, replacing the structural ORF (see appendix Figure 7.1).  

An mCherry-tagged nsP3 replicon was generated using the same SpeI site as 

detailed for the dLuc replicon. The nsP3-mCherry replicon contains a 

subgenomic Gaussia luciferase and is referred to as nsP3-mCherry/SG-GLuc 

throughout.An untagged nsP3 replicon is also used in this project, referred to as 

wt-nsP3/SG-Fluc, which contains a Fluc in the subgenomic region of the 

replicon.   

2.1.7.1.2 Virus constructs  

Similarly to the replicon constructs, the virus construct used throughout this 

project, termed “ICRES,” was derived from a patient isolate from the ECSA 

genotype RL2006OPY1 virus (see appendix Figure 7.3). 

2.1.7.1.3 Expression constructs 

For protein expression, constructs were formed using pcDNA3.1+ (see 

appendix Figure 7.1). 

2.1.7.2 Small scale DNA preparation 

To purify DNA on a small scale, a single colony containing the desired construct 

was used to inoculate a 5 mL LB culture containing 100 µg/mL ampicillin and 

grown overnight at 37 °C, shaking at 180 rpm. Plasmid DNA was then prepared 

by alkaline lysis using the Monarch Plasmid Miniprep kit (NEB) using the 

manufacturer’s recommended protocol.  
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2.1.7.3 Large scale DNA preparation 

For large DNA preparation, 1 mL from a 5 mL overnight culture (as described in 

2.1.7.2) was used to inoculate a 50 mL LB culture containing 100 µg/mL 

ampicillin and incubated over night at 37 °C with shaking. DNA was prepared by 

alkaline lysis using the GeneJET Plasmid Midiprep kit (ThermoFisher Scientific) 

using the manufacturer’s recommended protocol.  

2.1.8 DNA agarose gel electrophoresis 

Agarose gels at 1% were used for DNA gel electrophoresis (1% agarose in TAE 

buffer with SYBR safe 1:10000). DNA was prepared using purple gel loading dye 

(6x, NEB). Hyperladder 1kb (Bioline) was used for size markers. Gels were 

electrophoresed at 100 volts for 40 min.   

2.1.9 Gel extraction of DNA 

DNA bands were visualised via blue light (470 nm) with an orange filter, and 

relevant bands were excised from the gel. The DNA was extracted from the gel 

slices using the Monarch gel extraction kit (NEB) using the manufacturer’s 

recommended protocol.  

2.1.10 Ligation of DNA 

Ligations were performed at a 5:1 molar ratio of insert to vector,  with 50 ng of 

vector. DNA was mixed, incubated on ice for 5 min, then 50 °C for 5 min before 

adding 400 units of T4 ligase, ligation buffer and ddH2O to 20 µL total volume. 

Ligation reactions were incubated at room temperature for 1 h then transformed 

into competent cells (see 2.1.6). 
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2.1.11 Verification and sequencing of DNA constructs 

Generated DNA constructs were assessed for size and quality by an appropriate 

restriction digest and gel electrophoresis prior to DNA sequencing. All DNA 

sequencing was performed by Genewiz (formally Beckman Coulter Genomics) 

using primers shown in Table 7.5.  

2.1.12 In vitro transcription of capped RNA 

The mMessage mMachine kit (Ambion) was used to synthesise capped RNA 

transcripts using 1 µg of linearised template DNA, using the manufacturer’s 

recommended protocol. Resulting RNA was assessed for size and quality by 

MOPS gel electrophoresis. For long term storage, RNA was aliquoted and stored 

at -80 °C.  

2.1.13 RNA gel electrophoresis  

RNA size and quality was determined by MOPS (3-(N-

morpholino)propanesulfonic acid) gel electrophoresis. Samples were prepared 

using RNA loading dye (2x, NEB) and loaded on a 1% MOPS gel (1% agarose, 

1X MOPS (40 mM 3-(N-morpholino)-propanesulfonic acid pH 7.0, 10 mM sodium 

acetate, 1 mM EDTA, 4.7% formaldehyde and 1:10,000 SYBR safe dye) at 80 V 

for 40 min, alongside ssRNA ladder (NEB).  
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2.2 Cell Culture 

2.2.1 Mammalian cell lines and maintenance 

Mammalian cell lines were maintained in media shown in Table 2.5 

Cell line Origin Media 

Huh7 Human, hepatocellular carcinoma (HCC) 

Dulbecco’s modified eagle 

medium (DMEM) + 10% foetal 

calf serum (FCS) + non-

essential amino acids (NEAA) 

HepG2 Human, HCC DMEM + 10% FCS + NEAA 

C2C12 Mouse, myoblast DMEM + 20% FCS 

RD Human, rhabdomyosarcoma DMEM + 10% FCS 

SVG-A Human, astroglia DMEM + 10% FCS + NEAA 

Dermal fibroblasts Human, dermal fibroblasts DMEM + 10% FCS + NEAA 

BHK-21  Hamster, kidney fibroblast DMEM + 10% FCS 

HeLa Human, cervical adenocarcinoma DMEM + 10% FCS 

Vero African green monkey, kidney epithelia DMEM + 10% FCS 

A549 Human, lung carcinoma  DMEM + 10% FCS 

Table 2.5 Mammalian cell lines used, their origin and culture media 

All mammalian cell lines were maintained in their full media in T175 flasks at 

37 °C with 5% CO2. Cells were passaged by washing in PBS, 2 mL trypsin added 

and incubated at 37 °C until cells detached from the flask, resuspended in 

complete media and the required amount transferred to a new T175 flask and 

the total volume made up to 20 mL with media.  

2.2.2 Mosquito cell lines and maintenance 

All mosquito cells were maintained in media shown in Table 2.6. 



 
 

61 

 

 

Cell line Origin Media 

Aag2 Aedes aegypti  Leibovitz's L-15 media,  10% FCS and 10% Tryptose 

phosphate broth 

A20 Aedes aegypti Leibovitz's L-15 media,  10% FCS and 10% Tryptose 

phosphate broth 

U4.4 Aedes 

albopictus 

Leibovitz's L-15 media,  10% FCS and 10% Tryptose 

phosphate broth 

C6/36 Aedes 

albopictus 

Leibovitz's L-15 media,  10% FCS and 10% Tryptose 

phosphate broth 

Table 2.6 Mosquito cell lines used, their origin and culture media 

All mosquito cell lines were maintained in full media in T175 flasks at 28 °C (no 

additional CO2). Cells were passaged by washing in PBS, scraping the cells into 

10 mL media, the required amount was then transferred to a new T175 flask and 

the total volume made up to 20 mL with media. 

2.2.3 Transfection of cells 

Transfection mixes were generated by mixing the desired amount of 

lipofectamine (Invitrogen) in Optimem (50 µL/well, Gibco) and, separately, the 

required amount of RNA/DNA in Optimem (50 µL/well), incubating each for 5 min 

at rt then mixing together and incubating for a further 20 min. Cells were washed 

and media changed to Optimem prior to adding 100 µL of the transfection mix to 

each well and mixed by gentle swirling. Cells were incubated for 4 h in the 

transfection mixture prior to washing with PBS and media replaced with complete 

media.  

For RNA transfection, number of cells, amount of lipofectamine and RNA was 

dictated by plate size (see table 2.2.3). 

For DNA transfections, cell number and amount of lipofectamine used was the 

same as RNA shown in Table 2.7, though the amount of DNA used varied by 

specific construct.  



 
 

62 

 

DNA constructs transfected into cells were pcDNA3.1+ expression constructs 

(see appendix figure 7.1), expressing various tagged forms of nsP3. For 

assessing activation of the NFkB pathway, two plasmids were used in 

combination; the NFkB-Fluc plamsid, that encodes a firefly luciferase under the 

control of a NFKB-sensitive promotor, and the pRL-TK plasmid, which encodes 

a Renilla luciferase under the control of a thymidine kinase promoter, therefore 

acting as a transfection control.  

Plate size Number of cells plated Lipofectamine (per well) RNA (per well) 

24-well 1x105 1 µL 250 ng 

12-well 2x105 2 µL 500 ng 

6-well 4x105 3 µL 1 µg 

Table 2.7 Numbers for lipofectamine transfection of cells 

2.2.4 Luciferase assay 

Transfected cells were lysed in 1x passive lysis buffer (PLB, Promega, 100 

µL/well in 24 well plates) and frozen at -20 °C until dual luciferase assays were 

performed using the Promega dual luciferase reporter assay system. Cell lysates 

were defrosted and aliquoted at 30 µL per well in a white, flat-bottomed 96 well 

plate. Manually, 40 µL of LarII (FLuc detection reagent) was pipetted per well 

then luciferase signal read. Then, 40 µL of Stop and Glo (RLuc detection reagent, 

which also quenches the firefly reaction) was added to the wells and luciferase 

signal read again for Renilla. Luciferase activity was detected using the 

FLUOStar optima microplate reader (BMG Labtech). 

2.2.5 Electroporation for virus propagation 

Electroporations for virus propagation were performed in BHK cells. Cells were 

trypsinised, resuspended in complete media, centrifuged at 1000 xg for 3 min, 

resuspended in pre-cooled DePC (Diethyl pyrocarbonate) PBS, centrifuged 

again and resuspended in 5 mL DePC PBS. Cells were counted and 

resuspended to achieve a concentration of 3x106 cells/mL. In a pre-cooled 

electroporation cuvette, 1 µg of virus RNA was added to the bottom, 400 µL 

(approx. 1.2x106 cells) were added, gently mixed then electroporated with a 
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single pulse at 250 volts for 25 ms. Two electroporations were pooled in 10 mL 

of complete media in a T75 flask and transferred to the BSL3 facility. Media was 

removed at 24 h post electroporation, aliquoted and frozen at -80 °C and titred 

by plaque assay.  

2.2.6 Plaque assay 

Plaque assays were performed on BHK cells. Number of cells/media used was 

dependent on plate size as shown by Table 2.8. 

Plate size Number of cells Volume of virus Volume of MC 

6-well 4x105 200 µL 2 mL 

12-well 1.5x105 150 µL 1 mL 

Table 2.8 Numbers for plaque assays 

Cells were plated 16 h prior to plaque assay. Virus to be titred was serially diluted 

in serum-free media (number of dilutions was dependent on expected titres). 

Dilutions of virus was then placed on pre-plated cells (150 µL for 12 well plates 

and 180 µL for 6 well plates), rocked for 5 min at rt then incubated at 37 °C for 

1 h. Virus was then removed and cells overlaid with 1.6 % methyl cellulose (MC) 

mixed 1:1 with complete media. Cells were incubated at 37 °C for 48-72 h, then 

fixed in 10 % formaldehyde for 30 min and stained using 0.5% crystal violet for 

1 h. Stain was then removed and plates washed in water until plaques become 

visible. Virus titres were calculated using the equation shown in equation 2.1. 

 

𝑃𝐹𝑈𝑚𝐿 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (10−𝑥)× 𝑣𝑜𝑙𝑢𝑚𝑒𝑜𝑓 𝑣𝑖𝑟𝑢𝑠 𝑎𝑑𝑑𝑒𝑑 (𝑚𝐿)
 

Equation 2.1 Calculation of virus titres (plaque forming units/mL) from 
plaque assay 

 

2.2.7 Infection of cells with CHIKV 

Virus stocks were diluted in serum-free media to the desired MOI. Cells were 

washed in PBS, virus added, plates were rocked for 5 min then incubated at 

28 °C (mosquito cells) or 37 °C (mammalian cells) for 1 h. Virus was removed 
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and cells were washed thoroughly in PBS twice before replacing complete 

media. Cells were then incubated at 28/37 °C for the required amount of time.  

2.2.8 Infectious centre assay (ICA)  

BHK cells were plated in 6 well plates, 4x105 cells/well, 16 h prior to the assay, 

and a minimum of two T175 flasks prepared to achieve confluency overnight. 

Confluent BHK cells were then electroporated with virus RNA (see section 2.2.5), 

two separate electroporations per RNA were pooled and total volume made to 

1.2 mL with serum-free media. Suspensions of electroporated cells were serially 

diluted from 10-1 to 10-6 in complete media. Pre-plated BHK cells were washed 

in PBS and 1 mL of cell dilution added to each well. Plates were gently rocked 

by hand briefly, transferred to BSL3 and  incubated at 37 °C for 1 h, cell 

suspension removed from wells and replaced with 2 mL of 1.6% MC mixed in 

complete media (1:1). Plates were incubated for 72 h prior to fixation and stain 

as described in 2.2.6. Resulting plaques were used to calculate PFU/µg of input 

RNA via the equation shown in Equation 2.2. 

𝑃𝐹𝑈
µg 𝑅𝑁𝐴⁄ =  

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠
𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (10−𝑥))⁄

𝐼𝑛𝑝𝑢𝑡 𝑅𝑁𝐴 (µg)
 

Equation 2.2 Calculation of virus production per µg of input RNA (PFU/µg 
RNA) from an infectious centre assay 

 

2.2.9 Trizol Extractions  

RNA was extracted from infected cells using TRIzol (Life Technologies). Media 

was removed, cells were washed in PBS then 500 µL/well of TRIzol added (for 

12 well plates, or used at 1 mL/10 cm2 for other dishes), plates were rocked to 

ensure coverage and mixed by pipetting in the well before transferring to 

microcentrifuge tubes. The TRIzol samples were incubated for 5 min at rt and 

then stored at -80  C before continuing. Once thawed, 100 µL chloroform was 

added, samples were vortexed briefly and incubated at rt for 3 min. Tubes were 

then centrifuged at 12,000 xg for 15 min at 4 °C. The resulting upper layer was 

transferred to a new tube, 250 µL isopropanol added, mixed by inversion and 

incubated for 10 min at rt. Tubes were centrifuged at 12,000 xg for 10 min at 4 °C 
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resulting in a visible RNA pellet. Supernatant was removed (without disturbing 

the pellet) and 500 µL of ice cold 75% ethanol added. Samples were centrifuged 

at 7500 xg for 5 min at 4 °C, ethanol removed and sample briefly air dried at rt 

before resuspending in 20-50 µL nuclease-free water. Resulting RNA was 

electrophoresed on a MOPs gel to ensure successful extraction where ribosomal 

RNA can be visualised. 
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2.2.10 qRT-PCR 

All qRT-PCR was performed using the ‘one step MESA GREEN qRT-PCR 

MasterMix for SYBR assay’ (EuroGenTec). Following manufacturer’s protocol 

with reaction mix being assembled as described in Table 2.9, with primers used 

described in Table 7.3. 

Component  Per Tube (µL) 

2x buffer 12.5 

Foward Primer (10 µm) 2.0 

Reverse primer (10 µm) 2.0 

Enzyme mix and RNase inhibitor 0.125 

RNA (50 ng/µL) or standards 2.0 

RNase-free ddH2O 6.375 

Table 2.9 Reaction assembly for qRT-PCR using MESA green qRT-PCR 

mastermix kit 

For each qRT-PCR, a set of DNA standards of known concentrations as well as 

a no template control were assembled alongside extracted RNA samples. 

Reactions were cycled using the Stratagene Mx3005P (Agilent technologies) as 

shown in Table 2.10. 

Temperature  

 

Time (min) Cycles  

48 °C 30:00 X1 

95 °C 5:00 X1 

95 °C 0:15 X40 

56 °C 1:00 

95 °C 1:00 X1 

55 °C 0:30 

95 °C 0:30 

Table 2.10 qRT-PCR cycle template 
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2.2.11 Reverse transcription and sequencing of extracted virus RNA 

In order to sequence TRIzol extracted RNA, reverse transcription was performed 

using the SuperScript II Reverse Transcriptase kit (Life technologies) using 

manufacturer’s recommended protocol and random hexamer primers (Themo 

Scientific). Resulting cDNA was then used as input for PCR to amplify the nsP3 

region (see section 2.1.1) using primers described in Table 7.4, and the resulting 

PCR product was sequenced as detailed in section 2.1.11. 



 
 

68 

 

2.3 SDS-PAGE and Western blotting 

2.3.1 Bradford assay 

Protein samples were quantified by Bradford assay. Protein samples and bovine 

serum albumin (BSA) standards were plated on flat bottom, clear 96 well plate 

(5 µL/well), 250 µL of Bradford reagent (8.5% H3PO4, 5% methanol, 0.005% 

Coomassie Brilliant Blue G-250) added, incubated at rt in the dark for 10 min, 

absorbance read on a plate reader at 570 nm and protein concentrations 

calculated from the standard curve formed by the BSA protein standards.  

2.3.2 SDS-PAGE 

Protein samples were quantified by Bradford assay and prepared with Laemmli 

loading dye (250 mM Tris-HCl, 40% (v/v) glycerol, 8% SDS, 0.2% bromophenol 

blue, 20% ? β-mercaptoethanol). SDS-polyacrylamide gels were prepared with 

either 7.5%, 10% or 15% acrylamide with 375 mM Tris-HCl/Cl, pH 8.8; 0.1% 

SDS, 0.1% APS, 0.01% TEMED; with stacking gel: 5% Acrylamide, 125 mM Tris-

HCl, pH 6.8; 0.1% SDS, 0.1% APS, 0.01% TEMED. Gels were assembled in a 

gel tank, filled with Tris-glycine buffer (0.25 M glycine, 25 mM Tris-HCl and 0.1% 

SDS), and electrophoresed at 180 v until required protein resolution was 

achieved. 

2.3.3 Western blot 

SDS-PAGE gels were transferred onto Immobilon PVDF membranes (Sigma) 

using a semi dry trans-blotter at 15 A for 1 h in transfer buffer (25 nM Tris base, 

192 mM glycine, 20% methanol, 0.1% SDS). Membranes were blocked in 

LICOR-TBS blocking buffer for a minimum of 20 min, rocking at rt. Primary 

antibodies (see Table 2.11) were diluted in TBS and added to membranes 

overnight, rocking at 4 °C. Membranes were washed in TBS 5 times, then 

appropriate LICOR secondary antibody was applied (diluted 1:10,000 in TBS) for 

1 h rocking at rt in the dark. Blots were washed a further 5 times in TBS, then 

rinsed in water and left to dry in the dark. Membranes were imaged using the 

LICOR Odyssey.  
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Antibody Species Origin Working dilution 

Anti-nsP3 (full) Rabbit Andres Merits 1:1000 

Anti-β actin Mouse Sigma A1978 1:10,000 

Anti-p65 Mouse Santa Cruz SC-8008 1:200 

Anti-phospho-p105 Rabbit  NEB 4806 1:1000 

Anti-flag Mouse Sigma F3165 1:500 

Table 2.11 Primary antibodies used for western blotting 
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2.4 Immunofluorescence 

Cells for immunofluorescence (IF) were plated out into 12-well plates onto glass 

coverslips. Cells were fixed using 4% para-formaldehyde (PFA) for 10 min and 

washed with PBS three times. Cells expressing fluorescent proteins that did not 

require antibody staining were washed and mounted in Prolong Diamond with 

DAPI (Life Technologies). For cells requiring antibody staining, after fixation, 

cells were permeabilised with 0.5% Triton-x for 10 min, washed with PBS and 

blocked in 2% BSA for 1 h. Three more PBS washes were performed and cells 

were subjected to primary antibody (see Table 2.12) , diluted in PBS, for 1 h at 

rt. Coverslips were again washed and then incubated with appropriate secondary 

antibody, (diluted 1:1000) in PBS for another h. Coverslips were washed in PBS 

three times, dipped in ddH2O then mounted onto slides using Prolong Gold with 

DAPI (Life Technologies) and left to dry overnight.  

 

Antibody Species Origin Working dilution 

Anti-nsP3 (full) Rabbit Andres Merits 1:1000 

ARTD10/PARP10 Rat Santa Cruz 5H11 1:50 

p65 Mouse Santa Cruz SC-8008 1:50 

Table 2.12 Primary antibodies used for immunofluorescence
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Chapter 3 Establishing a panel of suitable and relevant cell 

lines for CHIKV research 
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3.1 Introduction 

CHIKV was discovered in 1952, but little research has been conducted on the 

virus until recently, within the last 10 years. In publications on the molecular 

biology of CHIKV, the cell lines most commonly used are BHK (baby hamster 

kidney cells), Vero (African green monkey cells), HeLa (human cervical 

carcinoma) and HEK293T (human embryonic kidney, expressing SV40 T 

antigen) cells. These cells are often used in virological research and are 

regarded as the ‘workhorse’ cell lines for the production of many viruses, 

however, none of these are particularly physiologically relevant to CHIKV 

infection in vivo.  

CHIKV is introduced to the human host via mosquito bite. From the bite site, 

CHIKV infects and replicates in the dermal fibroblasts. The virus then spreads 

throughout the lymphatic and circulatory systems throughout the body to the 

‘target organs;’ the liver, muscles, joints and the brain (Thérèse Couderc et al., 

2008).  

There have been multiple studies on CHIKV infection of the myeloid and 

lymphoid cells as little is known on how CHIKV disseminates through the 

lymphatic and cardiovascular systems (Sourisseau et al., 2007). There have also 

been some studies on cell tropism, particularly in neuronal cell types due to the 

severe symptoms CHIKV can induce if the brain becomes infected (Dhanwani et 

al., 2012). However, there is currently no consensus on ‘model’ cell lines for 

molecular CHIKV research. 

Choice of cell line can be critical for experiments. Many cell lines, because of  

transformation or their origins, may have different expression profiles than their 

tissue of origin which may have a profound effect on experiments. Many 

malignant cell lines have mutations typical of cancers. For instance, cells from 

the malignant mammary cell line, MCF-7 do not express caspase-3 (Kagawa et 

al., 2001) and A549 cells have a mutated Ras gene that affects cell motility 

(Okudela et al., 2004). HeLa cells are the most widely used cell line in many 

areas of research but are severely mutated, contain various numbers of 

chromosomes per cell (aneuploidy) and possess a range of chromosome 

abnormalities that vary between lineages. Some studies have shown that as 
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many as 2000 proteins are over-expressed in HeLa cells when compared to 

human tissue (Landry et al., 2013). HeLa cells also contain integrated human 

papilloma virus DNA and express the viral oncogenic proteins E6 and E7 

(DeFilippis et al., 2003) which make them a poor model for most areas of cellular 

and molecular study. Despite this, HeLa cells have proved useful for many 

purposes including the production of the first polio vaccine (Turner, 2012) and 

for early-stage drug testing for cancer (Shi et al., 2015; Y. Zhang et al., 2018).  

Some cell lines, despite not being malignant, can possess expression profiles 

which can make them irrelevant for certain areas of study. For instance Vero 

cells, a non-malignant cell line commonly used for virus studies, cannot produce 

endogenous IFN in response to infection (Desmyter et al., 1968). These cell lines 

are therefore not suitable for the study of pathways that involve these proteins 

that are absent or mutated. However, defective cell lines such as these can also 

prove useful in experiments looking at these particular pathways.  

Primary cell lines are often regarded as more representative of cellular 

processes in vivo, however, the use of primary cells has many issues. Firstly, 

they are slow growing with a limited life-span, meaning that it may take weeks to 

months to grow sufficient cells for a single experiment that then must be done in 

a timely manner. This often makes experimental replicates difficult as the cells 

may not survive long enough for all required repeats and different primary cells 

must be used. Secondly, most individual primary cells come directly from the 

donor and are therefore not well characterised in terms of their expression profile, 

and cells from different donors introduce the issue of heterogeneity. Thirdly, 

many cell types quickly de-differentiate in cell culture so become less 

representative of their progenitor cell type after a few days in culture, this is a 

particular issue with primary hepatocytes (Hengstler et al., 2005). However, it is 

possible to immortalise primary cells in vitro in order to produce physiologically 

relevant cells that are easier to work with, as shown here with the dermal 

fibroblast cells.  

Established cell lines are more commonly used in laboratory work as they are 

immortal, quick-growing and many are well characterised from previous studies. 

They are also more widely available so that different research groups can 
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successfully replicate data produced by others. This makes them relatively 

simple to work with and convenient for experimental work.  
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3.1.1 Aims 

The aim of this part of the project was to screen a wide range of cells and cell 

lines. With particular attention to those that are physiologically relevant to CHIKV 

infection in vivo, but also cells commonly used in the literature as a comparison, 

in order to determine a set of appropriate cell lines that are useful for CHIKV 

research.  Mosquito cell lines were also evaluated as CHIKV is an arbovirus and 

it is important to study the virus lifecycle in the mosquito vector as well as the 

human host.  

An ideal cell line for CHIKV research would be one that is physiologically relevant 

(i.e. derived from a tissue that CHIKV would infect in an in vivo infection) and can 

be easily propagated in culture (exhibit a reasonable growth rate, no requirement 

for complex or unusual growth media, maintain viability during passage and 

trypsinisation). In practical terms, in order to study CHIKV, cells would also need 

to be capable of being transfected with replicon RNA, support replication of the 

replicon, be able to be successfully infected with CHIKV and support viral 

replication. Since this project is focussed on nsP3, cells were also evaluated for 

nsP3 expression and detection of the protein by western blot and 

immunofluorescence.  
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3.2 Results  

3.2.1 Mammalian cell lines 

Humans are the main host for CHIKV. The virus is introduced to the body via a 

mosquito bite, where the virus replicates in the dermal fibroblast cells before 

spreading through the lymphatic and cardiovascular systems to the “target” 

organs; the liver, muscles, joints/connective tissues and the brain.  

There is some evidence that CHIKV is able to infect and replicate in non-human 

primates but this is not essential for the infectious cycle between mosquitos and 

humans (Haese et al., 2016).  

In contrast to its cell tropism in vivo, in cell culture, CHIKV has been shown to be 

capable of replication in a vast range of cell types with a few exceptions. For 

example, A549 cells, a lung epithelial cell line have been shown not to support 

virus replication despite CHIKV being able to bind to the cell surface (Sourisseau 

et al., 2007). 

As of yet, there is little consensus in the literature as to which cell lines are 

appropriate for their use in CHIKV research. Here, multiple cell lines were 

evaluated for their use in CHIKV research, from this four ‘model’ mammalian cell 

lines were selected for their use with CHIKV, particularly for investigating nsP3.  

3.2.1.1 Replicon 

Initially, ten cell lines were selected for transfection with CHIKV replicon RNA to 

determine whether each cell line could support CHIKV RNA replication. The ten 

cell lines (shown in Table 2.5) represent lines that are representative of that 

‘target organs’ that  CHIKV favourably replicates in vivo (e.g. Huh7, dermal 

fibroblasts) but also cell lines commonly used in virus work including CHIKV (e.g. 

BHK, Vero). For initial experiments, the dual luciferase (dLuc) CHIKV replicon 

was used, a schematic of which is shown in Figure 3.1 A. This replicon expresses 

all four non-structural proteins, with nsP3 containing a Renilla luciferase in the 

variable region as an indirect indicator of translation of the non-structural ORF. 

In the subgenomic region, a firefly luciferase (Fluc) gene replaces the structural 

ORF previously described by McFarlane et al., 2014. When Fluc signal is 

detected, it indicates that RNA replication has occurred as CHIKV generates a 
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sub-genomic RNA (26S RNA) from this region in order for the structural proteins 

to be expressed. All ten cell lines were transfected with the dLuc replicon, using 

lipofectamine2000, cell lysates taken over a 48 h time period and luciferase 

assayed and resulting signals shown in Figure 3.1. 
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Figure 3.1 Transfection of mammalian cell lines with the dual luciferase 
CHIKV replicon.   (A) Schematic of the dual luciferase CHIKV replicon. 
Mammalian cell lines transfected with the CHIKV replicon. Liver 
(Huh7, HepG2), muscle (C2C12, RD), brain (SVG-A), fibroblasts 
(Dermal fibs, BHKs), as well as Vero, HeLa and A549 cells were 
transfected with dLuc CHIKV replicon RNA. Cell lysates were taken at 
indicated time points over a 48 h period and luciferase assayed (n=3). 
The Renilla luciferase is present in the VR of nsP3, indicating levels of 
nsP3 present in the cell (B). The Firefly luciferase is in the sub-
genomic region of the replicon, indicating that RNA replication has 
occurred (C).  
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The increase in Renilla luciferase values between 0 and 6 hpt indicates that the 

replicon RNA was translationally-competent in all 10 cell lines. The replication of 

the replicon RNA, however, was quite diverse between the cell lines in both 

signal levels and pattern of RNA replication. Half of the lines exhibited peak 

replication at 24 hpt. The exceptions to this were RD, Vero, Huh7, A549 and 

HepG2 cells. Both A549 and HepG2 cells produced quite low signal throughout 

the time course with the highest at 6 hpt. RD cells produced higher levels of 

replication at 48 hpt. Vero cells were the only line to produce the highest Fluc 

signal at 12 hpt. Of the physiologically relevant cell lines, C2C12, RD, dermal 

fibroblasts and SVG-A cells performed well. Both liver-derived cell lines 

supported low levels of CHIKV RNA replication with HepG2 cells performing far 

worse than the Huh7 cells.  

To ensure these results were due to the ability of the cells to replicate the 

replicon, rather than their transfection efficiency, all 10 cell lines were transfected 

with pRL-TK plasmid DNA, which constitutively expresses Renilla luciferase 

under control of a thymidine kinase promoter, with lipofectamine2000 for 24 h 

and luciferase signal assayed (Figure 3.2). 
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Figure 3.2 Transfection efficiencies of screened cell lines.   Cells were 
transfected with 100 ng pRL-TK using lipofectamine2000, harvested 
at 24 hpt and luciferase signal assayed.  

 

Although there were some marked differences in transfection efficiencies, this 

did not directly relate to replicon translation/replication. For instance, the dermal 

fibroblasts had the lowest transfection efficiency, which was expected due to 

their primary-like origins, but with the dLuc replicon, exhibited high replication 

levels. RD and BHK cells had some of the highest transfection efficiencies as 

well as very high replication levels, this may suggest that the luciferase produced 

in the dLuc CHIKV replicon experiment (Figure 3.1) may be partly due to high 

transfection efficiency.  

As this project is based around understanding the role of nsP3, the ten cell lines 

were assessed for their use in western blotting for the detection of this particular 

protein (Figure 3.3).  
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Figure 3.3 Western blot for nsP3 in mammalian cell lines transfected with 
CHIKV replicon.   Cells were transfected with wt (untagged) nsP3/SG-
Fluc replicon, lysed at 24 hpt and blotted for nsP3. 

 

On the western blot, nsP3 was clearly detectable in lysates from Huh7, C2C12, 

SVG-A, RD and BHK cells. Faint bands were observed in the lysates of HepG2, 

A549, HeLa and Vero cells. In contrast to the luciferase data, nsP3 was 

practically undetectable in dermal fibroblasts.  

Next, all cell lines were transfected with a CHIKV replicon that contained a 

mCherry-tagged nsP3 in order to visualise the intracellular distribution of nsP3 

via confocal microscopy (Figure 3.4 A and B). Three different organisations of 

nsP3 were observed: puncta, rings and rods. Although not all cells contained all 

these organisations. All lines contained puncta of nsP3. Only C2C12 and Huh7 

cells produced ring organisations – though these were a small sub set of the 

nsP3-expressing cell populations. All cell lines contained rods except RD and 

HeLa cells. There was no apparent link between replication levels and type of 

nsP3 organisation in cells. At present, it is unclear what determines these 

different structures of nsP3 and what significance they represent in terms of 

CHIKV replication.  

From the collective data, four physiologically relevant cell lines were selected as 

‘model’ cell lines for their use in CHIKV research. C2C12 (myoblast) cells were 

overall, the physiologically relevant cell line that produced the highest levels of 

RNA replication, and high levels of nsP3, both on a western blot and via IF. 

Dermal fibroblasts also performed well, producing high levels of RNA replication 

and good expression of nsP3-mCherry but unfortunately, produced very low 

nsP3 signal on western blot, this could potentially be due to their significantly 

slower growth compared to the other cell lines used here. SVG-A (astroglia) cells 
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produced moderate levels of replication, and detectable nsP3 via western blot 

and IF. The liver cell lines Huh7 and HepG2 cells both were among the worst 

replicators of CHIKV RNA but overall, Huh7 cells had higher replication levels, 

higher nsP3 expression as shown by western blot and IF. Huh7 cells are also 

more practical to culture than HepG2 cells, which grow in large aggregates 

instead of monolayers. Huh7 cells were therefore chosen as the liver model cell 

line.   
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Figure 3.4 IF of nsP3-mCherry in mammalian cell lines. (A) All 10 
mammalian cell lines were transfected with CHIKV replicon RNA 
containing an mCherry tagged-nsP3. Cells were fixed, DAPI stained 
and imaged using the LSM700 confocal microscope. Three 
cytoplasmic organisations of nsP3 were observed; puncta, rods and 
rings. An “X” indicates that the type of organisation was not observed 
for that particular cell line. (B) Large representative examples of the 
three types on organisation observed for nsP3. 
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3.2.1.2 Infectious virus 

Before work could be initiated using infectious virus with the selected cell lines, 

optimisation of the production and titration of infectious CHIKV was required.  

3.2.1.2.1 Production of virus stocks and titration by plaque assay 

CHIKV has been routinely propagated and titrated using BHK cells (Gardner et 

al., 2012; Lani et al., 2015).  It was therefore decided to use these cells for 

production of virus stocks. Using these cells, high titres of virus could be 

produced allowing for a wide range of MOIs to be utilised in experiments. Using 

this method, virus could be detected as early as 6 hpe, though at very low titres 

(data not shown). It was established through observations in the laboratory and 

personal communications from others (Prof Andres Merits) that, for production 

of virus stocks, virus should be collected at 24 hpe rather than 48 h. By 48 h, 

high levels of cell death has occurred due to CHIKV replication so for an 

additional day of incubation, there is little gain in virus titres but more cell debris 

is produced. Therefore all virus stocks were produced by electroporation of 

CHIKV RNA into BHK cells, and supernatant collected and titred at 24 hpe. 

Supernatant was briefly centrifuged to pellet cell debris, resulting virus-

containing supernatant was removed, mixed, aliquoted and stored at -80 °C.  

Throughout this project, virus titration was performed using plaque assay with 

BHK cells. Other have shown that CHIKV can be titred on Vero cells (Her et al., 

2015), however, since no issues were experienced using BHK cells for plaque 

assays in this project, there was no need for further optimisation using Vero cells. 

Initially, titration of CHIKV was performed in 6 well plates as shown in the 

example plaque assay in Figure 3.5. 

 



 
 

95 

 

 

Figure 3.5 Example plaque assay of wt CHIKV. Plaque assay was performed 
by standard protocol, using dilutions of 10-3 to 10-8 to calculate wt 
CHIKV titres.  

In an effort to increase productivity and reduce waste and reagents, plaque 

assays using 12 well plates were optimised (as described in methods section –

2.2.6). To ensure that results obtained using 12-well plaque assays did not differ 

from those using 6-well, a direct comparison of the two methods was performed 

using wt CHIKV. As shown by Figure 3.6, there was no significant difference 

between the resulting virus titres obtained using the two different methods. 
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Figure 3.6 Direct comparison of CHIKV titres obtained using either 12 well 
or 6 well plate plaque assays. CHIKV was serially diluted in serum free 
media, of which 200 µL (for 6-well) or 150 µL (12 well) from the same 
dilution series were placed onto pre-plated, sub-confluent BHK cells. 
Normal plaque assay protocol was adhered to as described previously 
(n=2 for each condition, data analysed by paired T test). 

 

As there were no significant differences between the results obtained using 

either 12 well or 6 well plaque assays, hereafter all plaque assays were 

performed in 12 well plates. 

3.2.1.2.2 Mammalian cell lines for use with infectious CHIKV  

To confirm the findings of the replicon-based assays using the selected cell lines, 

similar experiments were conducted using infectious virus. The virus construct 

used was derived from the East Central and South African (ECSA) strain that all 

the replicons used in this project were derived from (all kindly provided by Andres 

Merits). A virus stock was produced by electroporation of BHK cells with CHIKV 

genomic RNA and subsequently titrated on BHK-21 cells by plaque assay.  

The four selected mammalian cell lines were infected at an MOI of 1 and 5 for 

24 h. Virus production was quantified by plaque assay of the cell supernatant, 

and intracellular genomic RNA was quantified by qRT-PCR (Figure 3.7 A and B). 

Western blots for nsP3 was performed on these samples to confirm expression 

(Figure 3.7 C).  
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Figure 3.7 CHIKV infection of mammalian model cell lines.  (A) Huh7, 
C2C12, SVG-A, and dermal fibroblasts (D Fibs) cells were infected, in 
triplicate, at MOIs of both 1 and 5. Cell supernatant was collected at 
24 hpi and virus titred by plaque assay (n=3). (B) Corresponding qRT-
PCR quantification of genomic CHIKV RNA in infected cells. 
Intracellular RNA was extracted using TRIzol reagent and RNA 
quantified using CHIKV nsP3-specific primers (n=3). (C) Western blots 
for nsP3 in infected cells lysed at 24 hpi.  
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Resulting virus titres of infected mammalian cells broadly reflect the replicon 

replication levels, with C2C12 producing the highest titres and Huh7 cells the 

lowest. However, all cell lines produced workable levels of virus over a 24 h 

period, with little difference between the different two MOIs. The RNA 

quantification broadly reflects the virus titres for each cell line.  SVG-A cells 

appear to contain more intracellular genomic RNA copies relative to the virus 

titre, and C2C12 cells appear to have slightly less genomic copies compared to 

their high virus production. With virus infection, the nsP3 expression levels in 

C2C12, and for dermal fibroblasts in particular, were much higher than with the 

replicon (Figure 3.3), indicating the suitability of these cells for virus replication. 

This also highlighting the difference between using replicon and infectious virus, 

and indicates that caution is needed when interpreting data from replicon 

experiments when using them as a model for infection virus.  

Similarly to the replicon experiments, cells were infected with CHIKV for 24 h 

then fixed, stained for nsP3 and DAPI and imaged by confocal microscopy 

(Figure 3.8). Unlike in the replicon cells, only two cytoplasmic forms of nsP3 were 

observed; puncta and rods. No ring like structures were found. Similarly to 

replicon, the vast majority of cells contained exclusively either rods or puncta, 

very few cells contained both forms of nsP3. The two cell lines that produced the 

highest titres; C2C12 and dermal fibroblasts, appeared to contain more rods per 

cell and more cells in the population that contained rods.   
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Figure 3.8 Confocal images of nsP3 in wt CHIKV infected mammalian cells.  
Mammalian cell lines (Huh7, C2C12, SVG-A and Dermal fibroblasts) 
were infected with an CHIKV , fixed at 24 hpi, stained for nsP3 and 
DAPI, then imaged using the LSM700 confocal microscope. Two 
different cytoplasmic structures of nsP3 were observed; puncta and 
rods.  

 

3.2.1.3 Differentiated cells 

Both Huh7 (liver) and C2C12 (myoblast) cells can be differentiated to cells that 

more resemble in vivo liver and muscle tissue respectively. To assess whether 

these differentiated states would support higher levels of replication, both cell 

lines were differentiated then transfected with the dLuc CHIKV replicon.  
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3.2.1.3.1 Differentiation of Huh7 Cells  

Adding 2% DMSO to the culture medium of Huh7 cells arrests their growth, 

keeping cells in G0 phase of the cell cycle. It also upregulates liver-specific genes 

such as albumin and cytochrome p450 (Choi et al. 2009). This model is 

considered more representative of liver tissue in vivo and is often used in early 

stage pharmaceutical testing. Huh7 cells have also been demonstrated to 

differentiate using human serum, which led to increased titres of hepatitis C virus 

(Steenbergen et al., 2013). 

To assess whether the differentiation status of Huh7 cells affected CHIKV 

replication, cells were differentiated by the addition of 2% DMSO to complete 

media for 7 days (replacing the media when necessary), then transfecting the 

differentiated cells with the dLuc CHIKV replicon over a 48 h time period, 

alongside non-differentiated Huh7 cells. For the Huh7 cells, there is a clear 

morphological difference between undifferentiated and differentiated cells.  

Differentiated hepatocytes form large rafts of confluent epithelial-like cells that 

have higher levels of albumin and CYP3A4 (a cytochrome p450 enzyme), as 

shown by Figure 3.9 A and B respectively indicating that these differentiated cells 

more closely represent liver tissue in vivo than Huh7 cells.  
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Figure 3.9 Differentiation of Huh7 cells and transfection with the CHIKV 
replicon. Huh7 cells were differentiated via addition of DMSO to 
complete media. (A) Bright field image demonstrating the morphology 
of differentiated cells compared to Huh7 cells maintained in complete 
culture medium. (B) Western blot for albumin and Cytochrome P450 
3A4 (CYP3A4), is more highly expressed in differentiated cells 
compared to undifferentiated cells. (C) Both Huh7 cells and 
differentiated hepatocytes were transfected with CHIKV dLuc replicon 
RNA, cells were lysed at indicated time points and luciferase assayed. 
Data analysed by parametric T-test. (D) Western blot of nsP3 in 
transfected differentiated and undifferentiated cells, 24 hpt. (E) 
Confocal images of Huh7 and differentiated cells transfected with 
CHIKV replicon expressing an mCherry-tagged nsP3. 
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When transfected with the dLuc-CHIKV-SGR, the differentiated cells have 

greatly reduced translation and replication throughout the time course, when 

compared to undifferentiated Huh7 cells (Figure 3.9 C and D). The cytoplasmic 

distribution of nsP3 differs between the undifferentiated and differentiated cells 

(Figure 3.9 E). In the majority of undifferentiated Huh7 cells, nsP3 is arranged in 

small puncta found throughout the cytoplasm, whereas in the differentiated cells, 

nsP3 tends to form fewer, larger puncta that are mostly perinuclear. Though, 

again, it unclear what these differences in nsP3 distribution represent in terms of 

CHIKV replication.  

3.2.1.3.2 Differentiation of C2C12 Cells  

For C2C12 cells, reducing the serum in the media to 2% FBS (rather than 20%) 

induces the myoblasts to form myotubes, forming a similar organisation to 

muscle tissue in vivo (Lawson and Purslow, 2000; Burattini et al., 2004). This 

serum depletion has been shown to induce the expression of insulin-like growth 

factors, suppresses proliferation and promotes differentiation (Yoshiko et al., 

2002).  
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Figure 3.10 Differentiation of C2C12 cells and transfection with the CHIKV 
replicon. C2C12 cells were differentiated via serum starvation. (A) 
Bright field image showing the different morphology of differentiated 
cells compared to C2C12 cells maintained in complete culture medium 
(undifferentiated cells). (B) Western blot for skeletal myosin, a marker 
of skeletal muscle tissue, is highly expressed in differentiated cells 
(D) compared to undifferentiated (U). (C) Both differentiated and 
undifferentiated C2C12 cells were transfected with dLuc replicon 
RNA. Cells were lysed at indicated time points and luciferase assayed. 
Data analysed by parametric T-test. (D) Western blot of nsP3 in 
undifferentiated (U) and differentiated (D) transfected cells at 24 hpt. 
(E) Confocal images of C2C12 and differentiated cells transfected with 
CHIKV replicon RNA containing an mCherry-tagged nsP3. 
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Differentiated C2C12 cells form very distinct, multinucleated myotubes, 

demonstrated in the bright field images in Figure 3.10 A, with upregulated 

skeletal myosin, a marker of muscle tissue (Figure 3.10 B) both indicate that 

these differentiated cells are more representative of muscle tissue in vivo 

compared to C2C12 cells. In the differentiated myotubes, the CHIKV replicon 

exhibits significantly higher levels of RNA replication (Fluc), approximately 7 fold 

higher than undifferentiated cells by the 48 h time point, despite little detectable 

difference in nsP3 by western blot (Figure 3.10 C and D respectively). The 

cellular localisation of nsP3 also varies between transfected differentiated and 

undifferentiated cells (Figure 3.10 E). In undifferentiated C2C12 cells, nsP3 

forms distinct puncta or rod-like organisations throughout the cytoplasm. In 

contrast, nsP3 in differentiated cells appears less organised with less distinction 

between the clusters of nsP3 which have no clear shape or organisation. 

However, the IF data is inherently unclear as differentiated C2C12 form large 

multi-nucleated cells which lack their own structure which can make it difficult to 

determine cellular components such as the nucleus or the cytoplasmic 

membrane. 

3.2.2 Mosquito cell lines  

As CHIKV is an arbovirus, it is important not only to study the virus in the human 

host but also in the mosquito vector. CHIKV is transmitted by the Aedes species 

of mosquito – primarily the Aedes aegypti but more recently, the Aedes 

albopictus. The virus is acquired by mosquitoes through a blood meal from a 

viremic host. CHIKV initially replicates in the cells of mid-gut before 

disseminating to all organs of the insect, including the salivary glands where it 

then goes on to infect upon future blood meals upon naïve human hosts (Vega-

Rua et al., 2014).  

A popular strategy of controlling the spread of arboviruses is to target the vectors 

(Alphey, 2014). If achieved, this would mitigate the need for vaccines or antivirals 

as, since CHIKV cannot be transmitted from human to human, successful control 

of the vector would prevent human disease. Therefore it is crucial to understand 

the pathology of CHIKV in mosquito cells.  
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Here we were able to evaluate four mosquito cell lines for their use with CHIKV, 

and specifically nsP3. A20 and Aag2 cells are derived from Aedes aegypti and 

U4.4 and C6/36 cells are derived from Aedes albopictus. All four lines are derived 

from embryonic cells of the stated species. C6/36 cells have been commonly 

used in viral research for many years as they are permissible to a wide range of 

arboviruses. However, these cells have recently been shown to have an 

ineffective RNAi system, a key anti-viral pathway of insects, resulting from a 

single nucleotide deletion in the coding region of Dicer2 producing a frame shift 

and a premature stop codon, rendering the resulting protein non-functional 

(Brackney et al., 2010; Miller et al., 2018). Dicer2 is active in U4.4 cells however, 

and its activity has been shown to restrict viral replication of Bunyamwera virus 

(Szemiel et al., 2012). Aag2 cells been shown to be persistently infected with cell 

fusing agent virus (CFAV), an insect specific flavivirus (Zhang et al., 2017), this 

infection was detected in the original cell line and is known to be able to transmit 

vertically, so it is assumed that CFAV was present in the larval cells used to form 

the cell line and therefore is present in all resulting Aag2 lineages (Stollar and 

Thomas, 1975).  

3.2.2.1 Replicon 

Much like with the mammalian cell lines, initially the four mosquito cell lines were 

transfected with the dual luciferase CHIKV replicon to assess their ability to 

translate and replicate the replicon (Figure 3.11).  
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Figure 3.11 Transfection of mosquito cell lines with CHIKV dLuc replicon 
RNA.  Aag2, A20 (both Aedes aegypti), U4.4 and C6/36 (both Aedes 
albopictus) cells were transfected with CHIKV dLuc replicon RNA. 
Cells were lysed over a 48 h period and luciferase assayed. Rluc is 
present in the VR of nsP3 and indicates translation of the non-
structural proteins. Fluc is present in the subgenomic region of the 
replicon, indicating that RNA replication has occurred.  

 

Renilla luciferase was detected in three of the four cell lines, indicating that the 

replicon was translationally- competent in all cells except in Aag2 cells, which 

exhibited luciferase signal below the detectable level (<5x102 RLU) throughout 

the time course. Despite their different origins, A20 and U4.4 cells exhibited 

similar levels of translation and RNA replication of the replicon over the time 

course, though U4.4 cells had peak firefly luciferase signal at 24 h whereas A20 

cells peaked at 48 hpt. C6/36 cells had much higher translation and replication, 

which was as expected due to their dysfunctional RNAi system.  
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Western blots for nsP3 with mosquito cell lysates proved to be problematic due 

to high levels of cross reactivity with the antibodies to many mosquito proteins 

(Figure 3.12). Initially, all four mosquito cell lines were transfected with an 

untagged-nsP3 replicon, but the nsP3 antibody was cross reactive with proteins 

of many sizes, but particularly with one ~58 kDa, the same size as nsP3, – which 

is present in roughly equal intensities in both the transfected and mock samples. 

Many alterations to the method were tried e.g. different blocking buffers, 

different/longer wash steps, but the contaminating 58 kDa band was always 

present. The blot shown in Figure 3.12 A is representative of the various attempts 

of blotting using nsP3 for mosquito cell lysates. The nsP3 antibody used here is 

a polyclonal antibody, produced in-house so it was not surprising that it was 

highly cross reactive. In order to rectify this, a flag-tagged nsP3 replicon was 

utilised so that a commercial, monoclonal flag-tag antibody could be used to 

detect nsP3. Though this did produce blots with far fewer non-specific bands, it 

still cross reacted with a protein around 58 kDa, so nsP3 was undetectable using 

this method.  

 

Figure 3.12 Western blots for various proteins in mosquito cells.  A. 
Mosquito cell lines were transfected using the CHIKV Fluc SGR (with 
untagged nsP3), cells were lysed at 24 hpt and western blot performed 
for nsP3 (58 kDa) and actin (42 kDa). B. U4.4 and C6/36 cells were 
transfected with nsP3-Flag replicon and cells were lysed at 24 hpt. 
Western blots were performed using both anti -nsP3 and -Flag 
antibodies to detect nsP3 as well as anti-actin as a loading control.  
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The mosquito cell lines were then transfected with the nsP3-mCherry replicon 

for 24 h then fixed, DAPI stained and imaged by confocal microscopy (Figure 

3.13). 

 

Figure 3.13 Confocal images of mosquito cell lines transfected with nsP3-
mCherry replicon.  A20, Aag2, U4.4 and C6/36 cells were transfected 
with nsP3-mCherry/SG-Gluc-SGR RNA.  

 

In the transfected U4.4 and C6.36 cells, nsP3 formed distinct puncta in the 

cytoplasm. However, both A20 and Aag2 cells exhibited very different 

organisations of nsP3. In Aag2 cells, nsP3 was very diffuse in the cytoplasm with 

no apparent organisation. All nsP3-positive A20 cells observed had diffuse and 



 
 

109 

 

blebbing nuclei with diffuse nsP3, indicating that the replicon, or perhaps the 

transfection reagent, was toxic to the cells.  

From the collective replicon data, the use of A20 and Aag2 cells was abandoned 

due to the inability of the Aag2 cells to support replication of the replicon and the 

difficulty experienced imaging nsP3 in both Aag2 and A20 cells. 

3.2.2.2 Infectious Virus 

To confirm the results from the replicon work and assess the ability of the 

mosquito cells to produce virus, the U4.4 and C6/36 cells were infected with the 

ECSA virus at MOIs of both 1 and 5 for 24 h, the supernatant was collected and 

titred by plaque assay (performed on BHK cells, Figure 3.14).  

The titres produced by both cell lines was reflective of the replicon experiments 

with C6/36 cells producing more virus than U4.4 for both MOIs. However both 

cell lines exhibited similar levels of intracellular genomic CHIKV RNA as 

indicated by the qRT-PCR.  
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Figure 3.14 CHIKV infections of model mosquito cell lines.  U4.4 and C6/36 
cells were infected at an MOI of 1 or 5 for 24 h. (A) Supernatant was 
collected and titred by plaque assay (n=3). (B) Intracellular RNA was 
extracted from the infected cells using TRIzol and CHIKV genomic 
RNA was quantified by qRT-PCR using primers specific for nsP3 
(n=3). 

 

Since the nsP3 antibody proved to be unreliable on western blots with mosquito 

cells, to image nsP3 in infected cells we opted to use virus expressing ZsGreen 

tagged nsP3. Cells were infected for 24 h, fixed, DAPI stained and imaged via 

confocal microscopy (Figure 3.15).  
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Figure 3.15 Confocal images of mosquito cell lines infected with nsP3-
ZsGreen virus.  Cells were infected for 24 h, fixed, DAPI stained and 
imaged using the LSM700 confocal microscope. 

 

Infected mosquito cells had similar nsP3 expression to the cells transfected with 

the replicon. Both mosquito cell lines exhibited cytoplasmic puncta of nsP3 with 

a slightly less distinct appearance than the puncta observed in mammalian cells. 

For both cell lines, nsP3 positive cells contained many puncta with a range of 

puncta sizes observed throughout the cytoplasm.  
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3.3 Discussion 

3.3.1 Mammalian cells  

At the start of this project, it was unclear which cell lines should be utilised in 

order to study the molecular virology of CHIKV. In the literature, a range of cells 

have been used,, such as Vero, BHK and HeLa cells, though none of these are 

physiologically relevant to CHIKV infection in vivo. Therefore, a range of cell 

lines, both physiologically relevant ones and ones previously used in the 

literature were evaluated for their ability to replicate the CHIKV replicon and 

assayed for their expression of nsP3 via IF and western blot.  

From the replicon data, multiple cell lines fulfilled the role of being physiologically 

relevant whilst also supporting replication of the CHIKV replicon. Both muscle 

cell lines (C2C12 and RD) exhibited high levels of replicon replication and nsP3 

expression. C2C12 cells were selected over RD as they exhibited higher replicon 

replication, can be differentiated to a state closely resembling muscle tissue and 

are widely used in the field of muscle biology as a model for muscle development 

and differentiation (Burattini et al., 2004). RD cells, derived from a 

rhabdomyosarcoma  are considered the model cell line for the study of the 

disease (Hinson et al., 2013) as well as for the study of enteroviruses (Perez-

Ruiz, 2003).  For the liver cell lines, Huh7 and HepG2 cells were assessed. 

Though neither of these cell lines produced particular high luciferase signal when 

compared to the full panel, Huh7 cells were selected as the model liver cell line 

as they had the higher replicon replication of the two liver cell lines and had 

detectable nsP3 via western blot and IF. Huh7 cells can also be differentiated to 

better mimic liver tissue in vivo. Both dermal fibroblasts and SVG-A (astroglia) 

cells were selected as model cell lines as they were the only cells of their 

respective tissue type tested. Both cell lines did support replicon replication and 

expressed nsP3 well. These four cell lines were then further assessed using 

infectious virus, and all four produced high titre virus with good expression of 

nsP3 as shown by western blot and IF. C2C12 and dermal fibroblasts both 

produced the highest titres and nsP3 expression levels. Huh7 and SVG-A cells 

performing similarly, both producing moderate virus titres. This reflects the 

signals seen in the replicon luciferase assays.  
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The ability to differentiate both C2C12 and Huh7 cells may be useful in future 

CHIKV experiments. Differentiation of these cells are commonly used; 

differentiated hepatocytes are commonly used in early-stage pharmaceutical 

testing (Guo et al., 2011), and differentiated C2C12 cells are used to study 

muscle development (Erbay and Chen, 2001). Other studies have shown that 

differentiated Huh7 cells were more permissive to infection and produced higher 

titres of hepatitis C virus, which is thought to be due to the more cells mimicking 

liver tissue more closely than undifferentiated Huh7 cells (Sainz and Chisari, 

2006). To see whether this was the same of CHIKV, both cell lines were 

differentiated for seven days prior to transfection with the dual luciferase CHIKV 

replicon. Both cell lines demonstrated they were more representative of their 

corresponding in vivo tissue both by cell morphology and the upregulation of 

certain markers that are highly abundant in the in vivo tissue (albumin and 

CYP3A4 for liver, and skeletal myosin for muscle tissue). Differentiated C2C12 

cells supported higher levels of replicon replication than undifferentiated cells 

which was as expected. Surprisingly, however, differentiated Huh7 cells 

produced a lower luciferase signal than the undifferentiated cells. Though there 

was little detectable difference in nsP3 expression by western blot, the IF shows 

that there were far fewer puncta of nsP3 per cell though these tended to be 

larger. This was surprising as we hypothesised that a more physiological-like 

model of the liver, an organ that CHIKV preferentially replicates in, would support 

higher levels of CHIKV replication. However, it may be that since the cells are in 

growth arrest, this may slow down the replication cycle of CHIKV. Though there 

has been little research into CHIKV replication and the cell cycle, studies have 

shown that CHIKV is able to replicate in serum-starved non-dividing cells 

(Sourisseau et al., 2007) and, in early infection, CHIKV downregulates cell cycle 

proteins such as CDK1 (Thio et al., 2013). It may also be that despite 

differentiated cells being more representative of liver tissue, it may still be lacking 

certain factors that CHIKV requires to efficiently replicate. It is possible since 

differentiated Huh7 cells produce ‘rafts’ of cells with tight cell-cell junctions, it may 

be limiting the transfection process, reducing the amount of RNA that enters the 

cells. Alternatively, it may just be that the slower replication of the replicon in 

these differentiated cells is more representative of the in vivo infection. Ideally, 
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infectious virus could be used to infect the differentiated cells which would be 

more representative of in vivo infection and would remove the issue of 

transfection efficiency.  

Other cell lines that have been previously used for CHIKV research in the 

literature had surprising results. In the replicon luciferase assay, both Vero and 

HeLa cells supported replication to only moderate levels, with dramatically 

reduced signal at 48 hpt. The IF data for both these cell lines showed blebbing 

nuclei in nsP3-positive cells indicating that the replicon is very toxic to these cells, 

which would explain why both cell lines had low luciferase signal at later time 

points. There would appear to be no apparent advantage to using these cell lines 

in CHIKV research, particularly in comparison to the others tested here. In 

contrast, BHK cells, which have been used extensively in virological research, 

including for CHIKV, produced the highest luciferase signals throughout the 

luciferase assay and expressed nsP3 to high levels as shown by IF and western 

blot. It was therefore sensible to use these cells for virus production and plaque 

assay as others have previously (Gardner et al., 2012; Lani et al., 2015). Though 

many other groups have used Vero E6 cells for virus propagation and titre 

(Gokhale et al., 2015; Her et al., 2015), BHK cells were used initially in this 

project and had no issue with these cells for these purposes so felt no need to 

try alternative methods.  

The data obtained for A549 cells is in agreement with the literature where studies 

have shown that CHIKV is able to bind and enter A549 cells but is unable to 

effectively replicate in these cells (Solignat et al., 2009).  The mechanism of 

inhibition and the stage in the virus lifecycle at which inhibition occurs is currently 

unknown, but the replicon and IF data shows that the replicon can be 

successfully translated in A549 cells to produce non-structural proteins, and a 

limited amount of RNA replication can occur, as indicated by signal at the 6 and 

12 hpt time points, but this signal reduces at 24 and 48 h. The reduction in signal 

at later time points could suggest that the inhibition is due to an innate immune 

response, as A549 cells are known to elicit a comprehensive innate immune 

response upon viral infect (Hartman et al., 2007; Devhare et al., 2013), though 

this was not further investigated in this project.   
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It is worth noting that in this project although it would have been ideal to trial a 

much wider range of physiologically relevant cell lines, there were limitations to 

the cell lines that were available. The limitations of the cell lines used are also 

noteworthy. For instance, C2C12 cells are mouse derived and mice are not 

natural hosts of CHIKV. Though mice can be successfully infected in the lab 

environment and are frequently used as models for the disease (Teo et al., 

2013). SVG-A cells are astroglia-derived cells. Experimentally, infected mice 

have demonstrated glial infection which results in an illness similar to that shown 

in CHIKV infected humans with neurological-complications (Das et al., 2015). 

However, there is evidence that the neuronal cells are also infected and 

unfortunately we were unable to obtain a neurone-derived cell line for this project. 

Immortalised liver cell lines are widely known to be problematic as most do not 

express similar proteomic profiles when compared to hepatocytes in vivo. 

However, immortalised liver cell lines are much easier to culture and more widely 

available than primary liver cells (Choi et al., 2009). Primary liver cells are 

particularly problematic as they rapidly de-differentiate in culture, therefore Huh7 

cells are commonly used in hepatitis research despite their drawbacks. The 

dermal fibroblasts used here were a primary cell line from a healthy donor that 

were transformed in-house. They are physiologically ideal due to their origin 

however, since they are not a well-used established cell line, it is unclear what 

their expression profile is like and whether the process of transformation had any 

unintended consequences such as disrupting a gene or promotor region.  

3.3.2 Mosquito cells 

As CHIKV is an arbovirus, transmitted by the Aedes species of mosquito, it is 

important to study the virus in mosquito cells as well as mammalian cells. Four 

mosquito cell lines were available to us; A20, Aag2 (both are derived from the 

Aedes aegypti), and U4.4 and C6/36 cells (both Aedes albopictus). Again, all 

cells were transfected with the CHIKV replicon to assess their ability to replicate 

CHIKV RNA. All cell lines were able to translate and replicate the replicon except 

Aag2 cells where signal was below detectable levels throughout the time course. 

This may be due to their persistent infection with CFAV – potentially activating 

the cells’ anti-viral response which could restrict CHIKV replication from the initial 
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transfection (Zhang et al., 2017). From this data, Aag2 cells were dismissed as 

a usable cell line for CHIKV research.  

U4.4 and A20 cells exhibited very similar levels of replication from the luciferase 

assay but behaved very differently when looking at nsP3 via IF. U4.4 cells 

exhibited defined puncta of nsP3 whereas the only nsP3 positive A20 cells had 

very diffuse nsP3 with no intact nuclei. This implies that either the replicon or 

transfection process is toxic to these cells. Due to this, A20 cells were also 

discarded for the study of CHIKV.  

C6/36 cells have been extensively used in virological research, probably due to 

their inactive RNAi system allowing them to produce high titres of virus (Brackney 

et al., 2010; Miller et al., 2018). In the replicon experiment, the C6/36 cells 

produced the highest signal, which reflects the literature. These cells also 

produced defined puncta of nsP3, as shown by IF, making them a useful cell line 

for CHIKV research.  

U4.4 and C6/36 cells were further evaluated with infectious virus. Both produced 

high titres of virus, again with C6/36 cells producing approximately 2-log higher 

titres than U4.4 cells. However, both cell lines appear to have similar levels of 

genomic RNA as shown by the qRT-PCR. This implies that RNA replication may 

not be the limiting factor in the production of virus in these cell lines.  
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3.3.3 Chapter summary 

Here, a range of physiologically relevant cell lines have been demonstrated for 

their usefulness in the study of CHIKV, and particularly for nsP3. These provide 

a range of appropriate cell lines to choose from when undertaking experiments, 

using both replicon and infectious virus, to investigate the function of the CHIKV 

nsP3 macro domain. These experiments are described in the following chapters 

where initially mutations were generated in the RNA/ADPR binding pocket of the 

nsP3 macro domain, in both replicon and infectious virus. The phenotypes of 

these mutants were assessed in several cell types to have a more 

comprehensive understanding of the function of the macro domain in different 

mammalian tissue types as well as mosquito cells. This data has been published 

in an open-access journal, available for other researches to access and use for 

their own work (Roberts et al., 2017). 
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Chapter 4 Macro domain mutants 
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4.1 Introduction 

Now that appropriate cell lines had been optimised for use with the CHIKV 

replicon and infectious system, attention could be turned to the specific focus of 

this project: determining the function of the CHIKV nsP3 macro domain.  

The three-dimensional structure of the CHIKV macro domain in complex with 

either ADP-ribose or RNA had been previously solved (Malet et al., 2009, see 

Figure 4.1). This study highlighted the binding pocket, similar to that of other 

macro domains, which is only partially shared by ADP-ribose and RNA 

nucleotides.  

 

Figure 4.1 The CHIKV nsP3 macro domain in complex with ADP-ribose (A) 
and RNA (two adenosine bases) (B) adapted from PBD 3GPO and 
3GPQ respectively (Malet et al. 2009).  

 

The biochemical function and capabilities of the CHIKV macro domain have been 

assessed previously. The CHIKV macro domain has been shown to be capable 

of binding poly-ADP-ribose (PAR) and mono-ADP-ribose (MAR). Mutagenic 

analysis of the CHIKV macro domain has revealed that the aspartic acid residue 

at position 10 is crucial for ADPR binding, as substitution  for alanine obliterates 

ADPR binding (Malet et al., 2009).  
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It has also been demonstrated that the CHIKV nsP3 macro domain possesses 

ADP-ribose 1”-phosphate phosphatase activity, to similar levels as the VEEV 

nsP3 macro domain, although the macro domain of SFV does not possess this 

activity as it was below the limit of detection (Egloff et al., 2006; Malet et al., 

2009). Egloff et al. suggest that ADP-ribose 1” phosphatase activity may have 

little relevance in vivo as macro domains (both cellular and viral) are not closely 

related to any other known phosphatases. Furthermore, viruses such as SFV 

replicate with a macro domain that does not exhibit this activity, suggesting that 

ADP-ribose 1”-phosphate phosphatase activity is a dispensable function that 

contributes little to virus replication.  

More recently, the CHIKV macro domain has been shown to possess hydrolase 

activity where MAR is removed from aspartate and glutamate residues in vitro 

(McPherson et al., 2017). In the same publication, McPherson et al. generated a 

panel of macro domain mutants and assessed their ability to bind and hydrolyse 

MAR in vitro and their ability to produce virus in cell culture and mice. From these 

experiments, it was concluded that binding and hydrolysis of MAR is essential 

for CHIKV replication in cell culture and for virulence in mice.  

Further investigation from the same research group revealed that CHIKV 

infection increases the general level of ADP-ribosylation in cells and that the 

ability of cells to MARylate proteins was required for optimal CHIKV replication 

(Abraham et al., 2018). In addition, this publication demonstrated that defects in 

both the hydrolase and ADPR-binding capabilities of the CHIKV macro domain 

resulted in diminished virus replication but when only the hydrolase function was 

reduced, initial stages of replication occur much like wt, such as expression of 

the nsPs and the formation of replicases. However, with the hydrolase-defective 

macro domain, protein synthesis was more rapidly shut off, replication 

complexes become inefficient and virus production was delayed.  

Despite these recent advances in the biochemical properties of the domain, the 

precise function of the macro domain in CHIKV replication and lifecycle are still 

unclear. 
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4.1.1 Aims 

In this chapter, the aim was to define the function of the CHIKV nsP3 macro 

domain in the virus lifecycle. To achieve this, a range of mutations were 

generated in the binding pocket of the CHIKV macro domain, based on the data 

available in the literature, and these mutants were assessed for their ability to 

replicate in a range of biologically-relevant cell lines.  
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4.2 Results 

4.2.1 Generation of macro domain mutants 

To determine the function of the macro domain, firstly a panel of substitutions 

were made individually in the ADPR binding pocket. To determine which 

residues to mutate, sequence alignments were performed on the nsP3 macro 

domain of CHIKV compared to other alphaviruses, and of the CHIKV macro 

domain compared to other viral macro domains such Rubella virus, SARS and 

HEV (Figure 4.2).  
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Figure 4.2 Macro domain sequence alignments. (A) Amino acid sequence 
alignment of alphavirus macro domains. (B) Amino acid sequence 
alignment of CHIKV macro domain compared to other non-alphavirus 
viral macro domains. (C) Amino acid sequence alignment of CHIKV 
macro domain from the three major strains, with differences 
highlighted in blue. Produced using Clustal Omega (McWilliam et al., 
2013). (* = absolute alignment, : = residues with strongly similar 
properties, . = residues with weakly similar properties).  
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As shown by Figure 4.2, in the alphavirus sequence alignment, there were 57 

absolutely conserved residues. When comparing CHIKV to other viruses, there 

were 17 absolutely conserved residues.  Figure 4.2 C demonstrates the high 

level of conservation at the amino acid level of the macro domain between the 

three major CHIKV strains. These conserved residues were then compared to 

the three-dimensional structure of the CHIKV macro domain. Conserved 

residues that were also exposed in the ADPR/RNA binding pocket were selected 

for mutagenesis as indicated by Figure 4.3. 

 

 

 

Figure 4.3 Selection of residues for mutagenesis. The three-dimensional 
structures of the CHIKV macro domain bound to ADP-ribose (left) and 
RNA (right) with indicated residues for mutagenesis shown in pink. 
Adapted from Malet et al., 2009, PBD 3GPO and 3GPQ respectively. 

 

Residues G32 and G112 were completely conserved across all viral macro 

domains and were highly conserved in mammalian, yeast and bacterial macro 

domains (Li et al., 2013). Although not completely conserved throughout viruses, 

the D10 and T111 residues are highly conserved in the macro domains across 

several species including yeast and mammals. Residues V113 and Y114, 



 
 

125 

 

although not particularly highly conserved, were selected for mutagenesis due to 

their proximity to the ADP-ribose molecule within the CHIKV macro domain 

binding pocket as shown by the three-dimensional structure in Figure 4.3.  

Alanine scanning was performed on the residues selected for mutagenesis. 

These mutations were engineered into the infectious CHIKV clone. Mutagenesis 

was performed using Q5 site directed mutagenesis on the CHIKV virus construct. 

Specific nucleotide changes are noted in appendix Figure 7.4.  

 

4.2.2 Phenotypic analysis of CHIKV macro domain mutants in 

mammalian cell lines 

4.2.2.1 BHK cells 

As BHK cells were frequently used to generate wt CHIKV at high titres, they were 

initially used here to assess the replicative phenotypes of the macro domain 

mutants in the infectious CHIKV clone. Capped CHIKV RNA was produced for 

wt, each macro domain mutant. Alongside these, an nsP4 active site GDD>GAA 

polymerase mutant was generated to act as a negative control, as this mutation 

has been shown to completely inactivate polymerase activity. An infectious 

centre assay (ICA) and corresponding time course and titres were performed 

together. ICAs have been used in virological research in multiple contexts, such 

as assessing the number of infected cells in a patient sample (Dutta and Myrup, 

1983). Here, it is used to assess the ability of an RNA genome to form an 

infectious virus whilst preventing any reversion to wt from overwhelming the 

population due to the presence of the overlay, using the method previously 

described by Gorchakov et al., 2004. 

BHK cells were electroporated with wt or mutant CHIKV RNA, and either serially 

diluted and plated onto a monolayer of prepared BHK cells for the ICA. These 

were then overlaid with MC and incubated for 72 h prior to staining and 

quantification. From the same electroporated BHK cells, 1 mL of each 

suspension was plated into 12 well plates, harvested at 24 and 48h and titred by 

standard plaque assay.  

As shown by Figure 4.4 A, three mutants, G32A, T111A and Y114A were able 

to produce infectious virus with titres similar to, or higher than wt. V113A 
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produced very few plaques and D10A and G112A produced no plaques at all. 

When comparing this to the 24 and 48 hpe titres as shown in Figure 4.4 B, the 

three mutants that produced ~wt levels for the ICA also produced similar to wt 

levels over the time course. For both D10A and V113A titres increased between 

at 48 hpe, indicating possible reversion to wt.  In contrast, much like the GAA 

polymerase negative control, G112A did not produce any infectious virus as 

measured by either ICA or plaques assay at 24 or 48 hpe. 

To detect nsP3 in cells electroporated with mutant virus RNA, lysates were 

probed by western blot. As indicated by Figure 4.4 C, nsP3 was easily detectable 

for wt, G32A, T111A and Y114A at 24 hpe, attributable to their high titres. Despite 

some virus production by V113A, nsP3 was not detectable in these cells by this 

method. No nsP3 was detected for D10A nor G112A due to extremely low virus 

production, by these mutants. Despite the high titres at 48 hpe, levels of  nsP3 

as detected by western blot were much lower at this time point. In addition, it was 

not possible to extract RNA from these cells for further experiments such as qRT-

PCR and RT for sequencing. This was most likely due to high levels of 

cytotoxicity and cell death in CHIKV infected BHK cells. Therefore, other cell lines 

were utilised for further study of the mutants.  
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Figure 4.4 Phenotype of CHIKV nsP3 macro domain mutants in BHK cells. 
(A) ICA of the macro domain mutants. RNA was produced for wt, each 
macro domain mutant and nsP4-GAA. An ICA was performed for each 
RNA.  (Data analysed by One-way ANOVA with Bonferroni correction 
compared to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, 
**** = P ≤ 0.0001). (B) Electroporated cells from A were plated 
separately and supernatant collected at 24 and 48 hpe. Virus was titred 
via plaque assay. Data analysed as described in part A. (C) Western 
blot for nsP3 and actin loading control in electroporated BHK cells at 
24 and 48 hpe.  
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4.2.2.2 Huh7 cells 

Due to the issues experienced with BHK cells, Huh7 cells were selected to 

analyse the replicative phenotypes of the macro domain mutants, as it had been 

shown in Chapter 3 that they are suitable and relevant to CHIKV research. We 

have observed in the laboratory that Huh7 cells were less sensitive to the 

cytotoxic effects of CHIKV infection when compared to other cell lines such as 

BHK cells. They were therefore proposed as a more suitable cell line for 

experiments such as RNA and protein extraction or immunofluorescence.  

Prior to experiments using the infectious virus, the dLuc CHIKV replicon (as 

described previous in 3.2.1.1) was utilised to assess the levels of RNA replication 

of the macro domain mutants in Huh7 cells. As shown in Figure 4.5, all macro 

domain mutants were able to replicate CHIKV RNA, as all produced signal above 

that of the nsP4-GAA mutant. Both V113A and Y114A exhibited a significant 

increase in RNA replication compared to wt. Though none of the other mutants 

exhibited a statically significant difference to wt replication, D10A, G32A, G112A, 

and, to a lesser extent, T111A were all reduced from wt.  
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Figure 4.5 All macro domain mutants are capable of RNA replication in 
Huh7 cells. Huh7 cells were transfected with the dual luciferase 
replicon and lysed over at 2 and 24 hpt. Data shown is the 24 h Fluc 
signal, normalised to the 2 h Rluc signal for each individual mutant. 
The dotted line indicates signal from the GAA polymerase mutant. 
(Data analysed by One-way ANOVA with Bonferroni correction 
compared to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, 
**** = P ≤ 0.0001 ).   

 

Despite attempts to optimise the process, it was not possible to perform 

quantitative ICAs using electroporated Huh7 cells, nor did these cells respond 

well to electroporation with CHIKV RNA. Therefore, cells were transfected with 

CHIKV wt or mutant RNA, plated into 12 well plates and resulting virus was 

harvested and titred by plaque assay at 24 and 48 hpt. As shown by Figure 4.6, 

Huh7 cells did not support virus replication of most mutants. Only one mutant, 

Y114A, was capable of producing detectable virus at both 24 and 48 h time 

points. At 48 h, infectious virus was also detected for T111A. However, as shown 

by Figure 4.6 B, western blot analysis revealed that nsP3 was only robustly 

expressed in cells containing wt RNA at 24 and 48 hpe.  

To complement the western blot analysis, IF for nsP3 was performed for Huh7 

cells transfected with wt or mutant CHIKV RNA. Cells were transfected with wt 

or mutant CHIKV RNA, fixed at 12 and 24 hpt, and stained for nsP3, and DAPI 

stained to highlight nuclei. These time points were selected as previous work 

(data not shown) indicated that 12 hpt was the earliest time point at which nsP3 
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was detectable by IF. No 48 h time point was taken as, for most cell lines, by 

48 h there is a high level of cell death making imaging of cells problematic. As 

shown by Figure 4.7, at 12 hpt, wt-electroporated cells contain many defined 

puncta of nsP3, with many localised to the perinuclear region of the cells. In 

contrast, all of the mutants either contained no puncta or few puncta per cell. 

These few puncta may be indicative of input translation or the attempt to form 

replication complexes that are defective. Interestingly, with cells that contained 

few, small puncta, few were localised to the perinuclear region indicating a 

possible transport/trafficking issue for nsP3 macro domain mutants. At 24 hpt, wt 

appears very similar to that shown for 12 h with cells containing more nsP3 

puncta. Again, most cells electroporated with mutant RNA contained one or two 

puncta of nsP3. Cells transfected with T111A RNA exhibited multiple puncta, 

although fewer and far less intense than wt. Many of these puncta were 

perinuclear and may indicate low levels of replication which is in agreement with 

the virus titre data shown in Figure 4.6. Similarly in agreement to the previous 

data, Y1114A at 48 hpt exhibited many bright puncta, with some in the 

perinuclear region, much resembling the wt cells at earlier time points.  
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Figure 4.6 Phenotype of CHIKV nsP3 macro domain mutants in Huh7 cells. 
(A) Huh7 cells were transfected with wt or mutant CHIKV RNA. Cells 
were plated out into 12 well plates and supernatant harvested and 
titred by plaque assay on BHK cells at 24 and 48 hpt. Mock cells were 
electroporated without RNA present. (Data analysed by One-way 
ANOVA with Bonferroni correction compared to wt, **** = P ≤ 0.0001 ).   
(B) Western blot for nsP3 and actin loading control in corresponding 
cell lysates at 24 and 48 hpt.   
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Figure 4.7 Cytoplasmic distribution of mutant nsP3 Huh7 cells. IF was 
performed for nsP3 in Huh7 cells electroporated with macro domain 
mutant RNA, fixed at 12 and 24 hpt. Images taken using an LSM700 
confocal microscope. 

 

Corresponding transfected cells were used to extract whole cell RNA by TRIzol 

extraction at 24 hpt. Unfortunately, it was not possible to extract RNA from cells 

at 48 h due to cytotoxicity, this was particularly true for cells transfected with wt 

CHIKV.  Extracted RNA was then used to quantify viral RNA in transfected cells 

via qRT-PCR. Unlike in chapter 3, qRT-PCR shown here was performed using 

primers specific for the E1 coding region of the genome. These were found to be 

more consistent than the primers for the AUD which were previously used. 

However, unlike the previous primers used, as these primers are specific for the 

E1 region of the genome, they will be detecting both genomic and subgenomic 

26s RNA.  

As shown by the dotted line in Figure 4.8, the levels of RNA detected for GAA is 

considered to be the level of input RNA remaining from transfection. All mutants 



 
 

133 

 

were above this level to some degree except G112A which reiterates the inability 

of this mutant to replicate. It is surprising however to observe that T111A and 

Y114A, which were both able to produce infectious virus as shown in Figure 4.6, 

exhibited genomic RNA levels not substantially above the GAA negative control. 

The mutant with the highest genomic RNA levels; V113A, was unable to produce 

detectable virus when electroporated into Huh7 cells. This may indicate an ability 

to replicate RNA but not form infectious virus.  

 

Figure 4.8 qRT-PCR of viral RNA from electroporated Huh7 cells. 
Corresponding cells from Figure 4.6 were TRIzol extracted at 24 hpt. 
Resulting RNA was adjusted to 50 ng/µL and 100 ng per RNA was used 
per qRT-PCR reaction using the MESA green qRT-PCR MasterMix 
(EuroGenTec) with primers specific for the E1 region of the CHIKV 
genome. Data normalised to cell only control (1.36x103 copy No/mL). 
Dotted line indicates input RNA levels as indicated from the GAA 
negative control.  

 

It was attempted to reverse transcribe the RNA from wt, T111A and Y114A 

samples in order to amplify the macro domain coding region for consensus 

sequencing. However, despite multiple attempts with various methods, it was 

only possible to successfully amplify a fragment by PCR from the wt cDNA, when 

using 30 cycles of the PCR program (Figure 4.9). Ideally, when screening PCR 

products for the presence of mutations, the cycle number should be kept to a 

minimum to reduce the possibility of introducing mutations, or selecting for 

mutations within the PCR. For other amplifications from cDNA shown in this 
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work, a maximum of 25 cycles was used. Therefore, since it was not possible to 

amplify fragments for either the T111A or Y114A cDNA within 30 PCR cycles, 

this line of inquiry was abandoned.   

 

Figure 4.9 PCR amplification of a macro domain containing fragment from 
cDNA formed from total RNA of Huh7 cells transfected with macro 
domain mutant CHIKV RNA. Huh7 cells were transfected with wt and 
macro domain mutant CHIKV RNA. Total cell RNA was extracted at 
24 hpe using TRIzol. Resulting RNA was used to generate cDNA which 
was used as input for PCR to amplify a macro domain containing 
fragment for sequencing. Resulting PCR products from 25 cycles (A), 
and 30 cycles (B) were ran on agarose gels. The positive control (‘+’) 
contained CHIKV plasmid DNA as template. 
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4.2.2.3 C2C12 cells 

Due to the issues that occurred with the macro domain mutants in Huh7 cells 

another physiologically relevant cell line, C2C12 cells, were used to assess the 

replicative phenotypes of the CHIKV macro domain mutants .  

As for Huh7 cells, initially C2C12 cells were transfected with wt and mutant virus 

RNA, supernatant was collected at 24 and 48 hpt and titred via plaque assay. As 

shown by Figure 4.10, in contrast to the Huh7 cells, every mutant was able to 

produce some level of detectable, infectious virus by 48 hpt. Although none of 

the mutants, including the GAA negative control, were significantly different at 

the 48 h time point, presumably due to higher variation in the wt data caused by 

cytotoxicity at this later time point. Mutants G32A, T111A, and Y114A all 

resembled wt levels at 24 h however, unlike the wt, this was reduced at 48 h, 

possibly due to higher cytotoxicity for these particular mutants. Both D10A and 

V113A were reduced compared to wt. G112A which, although in both BHK and 

Huh7 cells was unable to produce any infectious virus, produced a low level of 

infectious virus in C2C12 cells by 48 hpe (4.7x102 PFU/mL). 

As the western blot indicates in Figure 4.10 B, nsP3 was detectable for wt, G32A, 

T111A, V113A and Y114A at both 24 and 48 hpt. By 48 h nsP3 was also 

detectable for D10A. Due to technical issues the 48 h samples for western blot 

were not equally loaded . Therefore the actin loading control must be taken into 

consideration when comparing the quantities of nsP3 for each mutant at 48 hpt.  
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Figure 4.10 Macro domain mutants within the infectious CHIKV system in 
C2C12 cells. (A) C2C12 cells were transfected with wt or mutant CHIKV 
RNA. Cells were plated out into 12 well plates and supernatant 
harvested and titred by plaque assay on BHK cells at 24 and 48 hpt. 
(Data analysed by One-way ANOVA with Bonferroni correction 
compared to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01,).  (B) Western 
blot for nsP3 and actin loading control in corresponding transfected 
C2C12 cells at 24 and 48 hpt.  

 

IF was again performed on C2C12 cells that were transfected with wt or mutant 

CHIKV RNA to visualise nsP3. Transfected cells were fixed at 12 and 24 hpt and 

stained for nsP3, and nuclei using DAPI. As shown by Figure 4.11, at 12 hpt, the 

IF data is much in agreement to the viral titres produced (see Figure 4.10) with 

wt, G32A, T111A and Y114A all exhibiting similar, high levels of expression of 

nsP3 localised throughout the cytoplasm, with several perinuclear puncta. At 

24 h the nsP3 expressed in G32A-, and Y114A- electroporated cells still much 
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resembled the wt. However, cells infected with T111A CHIKV had a very different 

appearance with many nsP3-positive cells containing abnormal nuclei that were 

smaller in size, and appeared to be hollow.  As shown by the inset image for 

T111A at 24 h, some nsP3 expressing cells did resemble those of wt, with intact 

nuclei, but these were a minority in the sample. For mutants D10A and V113A, 

no cells were found at 12 hpt that expressed nsP3, however, by 24 h both 

mutants exhibited nsP3 expression. Cells expressing D10A or V113A nsP3 at 

24 hpt contained fewer puncta of nsP3 that were less intense when compared to 

wt. In cells with G112A RNA, a small number of cells appeared to contain single 

puncta of nsP3 which did not increase by 24 hpt. In this experiment, no cells 

were detected for G112A that contained more than one puncta.  

 

Figure 4.11 Distribution of nsP3 in C2C12 cells transfected with mutant 
CHIKV RNA. IF was performed for nsP3 in C2C12 cells electroporated 
with macro domain mutant RNA, fixed at 12 and 24 hpt. Images taken 
using an LSM700 confocal microscope. 
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Total cell RNA was extracted from transfected cells at 24 hpe by TRIzol 

extraction. Resulting RNA was then used for qRT-PCR. As shown in Figure 4.12, 

all mutants except G112A had copy numbers above the nsP4-GAA negative 

control. Mutants G32A, T111A and Y114A were all approximately wt levels, 

which reflects the virus titre data shown in Figure 4.10. Both D10A and V113A 

were drastically reduced from wt, indicating their poor ability to replicate RNA. At 

24 hpt, G112A is exhibiting no RNA replication as it is below GAA levels, again 

reflecting the data shown in Figure 4.10 however, this mutant was capable of 

producing virus at 48 hpt which would suggest it should be capable of some level 

of RNA replication.  

 

Figure 4.12 qRT-PCR of viral RNA from transfected C2C12 cells. 
Corresponding cells from Figure 4.6 were TRIzol extracted at 24 hpt. 
Resulting RNA was adjusted to 50 ng/µL and 100 ng per RNA was used 
per qRT-PCR reaction using the MESA green qRT-PCR MasterMix 
(EuroGenTec) using primers specific for the E1 region of the CHIKV 
genome. Data normalised to cell only control (1.31x103 copy No/mL). 
The dotted line indicates the level of input RNA which is that of the 
GAA polymerase negative control.  

 

To assess whether any replicative phenotype observed was due to reversion, 

corresponding RNA was reverse transcribed and a macro domain containing 

fragment was amplified via PCR for sequencing. As shown in Figure 4.13, it was 

only possible to amplify the macro domain PCR fragment from wt, G32A, T111A 
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and Y114A transfected cells. Therefore it was only possible to obtain the coding 

sequences for these mutants.  

As shown by the highlighted nucleotides in Figure 4.13 B, for all of the mutants 

that were successfully amplified by PCR, all original mutations were maintained.  

No additional mutations were detected, at least not within the macro domain 

coding region. Although it may have been interesting to determine whether 

mutants with lower titres were a result of reversion or compensatory mutations, 

it was not possible to amplify the macro domain PCR product from D10A or 

V113A infected cells.  
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Figure 4.13 Consensus sequencing of cDNA generated from C2C12 cells 
24 h post transfection with macro domain mutant CHIKV RNA. TRIzol 
extracted RNA from Figure 4.12 was used to form cDNA and used as 
input for PCR to amplify the macro domain coding region. (A) PCR 
products were electrophoresed on a 1% agarose gel. (B) Successful 
PCR fragments (G32A, T111A and Y114A) were then sequenced via 
sanger consensus sequencing by GeneWiz. Resulting sequences 
were aligned with wt using Clustal omega with mutant nucleotides 
highlighted in blue.  
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4.2.3 Phenotypic analysis of CHIKV macro domain mutants in 

mosquito cell lines 

As CHIKV is an arbovirus, it would be prudent to assess the role of the macro 

domain, not only in the human host but also in the mosquito vector. Therefore 

the phenotypes of the macro domain mutant viruses were assessed in the two 

Ae albopictus cell lines previously demonstrated to replicate CHIKV: C6/36 and 

U4.4 (chapter 3). However, as the optimisation in chapter 3 was performed by 

infection of cells with virus produced in BHK cells, further optimisation was 

required to determine both the transfection method and the appropriate time 

points to harvest virus.  

Transfection with lipofectamine was trialled as this had been used successfully 

with these cell lines with CHIKV replicon RNA (see section 3.2.2) and it had been 

reported that electroporation of mosquito cells was both inconsistent and 

requires specific reagents (Boylan et al., 2017, M Müller and A Merits personal 

communication). U4.4 and C6/36 cells were therefore transfected using 

lipofectamine with wt CHIKV RNA and supernatant collected over a three day 

period. Virus was then titred by plaque assay. As shown by Figure 4.14, C6/36 

cells produced low titres of infectious virus by 24 h, increasing to 107 PFU/mL at 

48 and 72 hpt . Conversely, U4.4 cells only produced detectable infectious virus 

at 72 hpt with the lower titres in the range of 105 PFU/mL, demonstrating the 

effect of an intact RNAi system on virus replication. It was therefore decided that 

the transfection protocol was successful and suitable for use in transfecting 

mutant RNA into mosquito cells and that virus would be harvested at 72 hpt.  
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Figure 4.14 CHIKV titres from transfected mosquito cells over time. U4.4 
and C6/36 cells were transfected with wt CHIKV RNA, supernatant 
collected at 24, 48 and 72 hpt and resulting virus titred by plaque 
assay.  

 

U4.4 and C6/36 cells were then transfected with wt and mutant CHIKV RNA, 

incubated for 72 h prior to collection of supernatant and titration by plaque assay. 

As shown in Figure 4.15, there were some stark differences of the ability of the 

mutants to replicate in the two cell lines. For both cell lines, T111A resembled 

wt, with no significant different between T111A from wt titres. G32A resembled 

wt in C6/36 cells but demonstrated a significant increase in titre, compared to wt, 

in U4.4 cells. In both cell lines, G112A did not produce any detectable virus. In 

U4.4 cells, Y114A also resembled wt but in C6/36 cells, replication of this mutant 

was significantly reduced. For V1113A, there was no detectable virus in U4.4 

cells, yet this mutant produced titres of 2.1x106 PFU/mL in C6/36 cells, although 

this was still significantly reduced from wt. Similarly, D10A did not replicate at all 

in U4.4 cells but did replicate to a reduced level in C6/36 cells. 
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Figure 4.15 Mutant virus titres from transfected mosquito cell lines. U4.4 
(A) and C6/36 cells (B) were transfected with wt or mutant CHIKV RNA 
as previously described (or mock transfected with no RNA present). 
Supernatant was collected at 72 hpt and titred by plaque assay on 
BHK cells. (Data analysed by One-way ANOVA with Bonferroni 
correction compared to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** 
= P ≤ 0.001).  
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In parallel, transfected mosquito  cells were TRIzol extracted and resulting RNA 

used for qRT-PCR. As shown in Figure 4.16, for the U4.4 cells, the qRT-PCR 

data is reflective of the virus titres shown in Figure 4.14. It is interesting that the 

three mutants that produced no detectable virus, D10A, G112A and V113A, were 

also below the level of the GAA polymerase negative control. This implies that 

these three mutants were completely unable to replicate RNA in U4.4 cells. In 

contrast, all mutants had copy number higher than the GAA control in C6/36 

cells. Again, the qRT-PCR data broadly reflected the virus titres produced in 

these cells. However, it is curious that both D10A, that produced low levels of 

virus, had a very similar copy number to that of G112A which was unable to 

produce virus in these cells. This could imply that the macro domain has an 

alternative function (other than RNA replication), in the virus lifecycle. 
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Figure 4.16 qRT-PCR in mosquito cells transfected with wt or mutant RNA 
(72 hpt). U4.4 and C6/36 cells were transfected with wt or mutant 
CHIKV RNA (or mock transfected with no RNA present). RNA was 
extracted via TRIzol at 72 hpt. Resulting RNA was adjusted to 50 ng/µL, 
and 100 ng per RNA was used per qRT-PCR reaction using the MESA 
green qRT-PCR MasterMix (EuroGenTec) using primers specific for 
the E1 region of the CHIKV genome. Data normalised to mock 
transfected control (4.78x103 and 8.27x103 copy No/mL respectively). 
The dotted line indicates the level of input RNA which is that of the 
GAA polymerase negative control.  
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To assess whether any of the replicative phenotypes observed in mosquito cells 

was due to reversion, corresponding RNA from the qRT-PCR experiments was 

reverse transcribed into cDNA and a macro domain containing fragment was 

amplified via PCR and sequenced via consensus Sanger sequencing (Figure 

4.17).  
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Figure 4.17 Sequencing of the macro domain mutant genomes from 
infected U4.4 cells. Corresponding RNA to Figure 4.16 was reverse 
transcribed to form cDNA which was used the template to amplify a 
macro domain containing fragment via PCR. (A) Resulting PCR 
fragments were electrophoresed on a 1% agarose gel. (B) Samples 
containing the correct PCR fragment were sequenced via consensus 
Sanger sequencing by GeneWiz. Resulting sequences were aligned 
with wt using Clustal Omega. Mutant nucleotides highlighted in blue.  
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As seen previously in the C2C12 cells, all mutations present at time of 

transfection into the U4.4 cells, were retained by 72 h. Although the sequencing 

data received for the Y114A sample was of poor quality with several undefined 

bases present (termed ‘N’ in the sequence alignment), the original Y114A 

mutation (TAC>GCC) was clearly retained.  

This process was also performed for the C6/36 cells,. As shown by Figure 4.18 

A, it was only possible to amplify the macro domain DNA fragment from G32A, 

T111A, V113A and Y114A samples. Again, as seen in all other cells lines, for all 

the mutants that it was possible to obtain sequencing data, the original mutation 

present in the transfected RNA was retained for the 72 h, when the total cell RNA 

was extracted (Figure 4.18 B).  
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Figure 4.18 Sequencing of the macro domain mutant genomes from 
infected C6/36 cells. Corresponding RNA to Figure 4.16 was reverse 
transcribed to form cDNA and used as the template to amplify a macro 
domain containing DNA fragment via PCR. (A) Resulting PCR 
fragments were electrophoresed on a 1% agarose gel to ensure 
correct size and quality. (B) Samples containing the correct PCR 
fragment were sequenced via consensus Sanger sequencing by 
GeneWiz. Resulting sequences were aligned with wt using Clustal 
Omega. Mutant nucleotides highlighted in blue.  
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4.3 Discussion 

4.3.1 The macro domain is essential for CHIKV replication 

In this research, it has been demonstrated that the CHIKV nsP3 macro domain 

is essential for viral replication. In all cell lines, including both mammalian and 

mosquito, a single point mutation of G112A abrogated CHIKV replication, except 

in C2C12 cells at 48 h where it was capable of replicating to extremely low levels. 

Other mutants such as D10A and V113A exhibited low or no replication in all cell 

lines. This highlights that a functional macro domain is essential for efficient 

replication of CHIKV in both mammalian and mosquito cells.  

4.3.2 The different macro domain mutants produced a range of 

replicative phenotypes 

Here, the replicative phenotypes of a panel of mutations within the CHIKV nsP3 

macro domain were assessed in a range of cell lines. In the literature, several 

publications have made a similar panel of mutants and assessed the biochemical 

properties of these mutants. A summary of this data is shown in Table 4.1. 

Results from the infectious virus in Huh7 cells have been omitted from this table 

as, despite some replication from T111A and Y114A, all mutants were reduced 

at all time points to the same significance.   

It is of note that, regardless of cell line the mutant CHIKV RNA was transfected 

into, all virus samples were ultimately titred by plaque assay on BHK cells. 

Therefore these results may be affected by the ability of the mutant to replicate 

in BHK cells. However, in most cases, the qRT-PCR and western blot data 

largely corresponded with the virus titres indicating that the limitation of cell line 

for virus quantification was not significantly altering the results.  
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wt D10A G32A T111A G112A V113A Y114A 

Replicon replication 

(Huh7) 
wt <wt <wt <wt <wt >wt >wt 

Replication in 

mammalian 

cells 

BHK wt <wt ~wt ~wt ND <wt ~wt 

C2C12 
wt <wt ~wt ~wt >wt <wt ~wt 

Replication in 

insect cells 

U4.4 wt ND ~wt ~wt ND ND ~wt 

C6/36 wt <wt ~wt ~wt ND <wt <wt 

 

Mutation maintained?* - NT Yes Yes NT Yes Yes 

 

ADPR binding (kD) 22.9 ND 21.0 71.4 ND+ 6.46^ 4.84 

Hydrolase activity (% wt)  100 16.1 75.3 64.1 3.7+ 15.0^ 40.6 

Phosphatase activity  wt <wt NT NT NT NT ND 

RNA binding wt ~wt NT NT NT NT <wt 

Table 4.1 Summary of the replicative phenotypes and known biochemical 
properties of the macro domain mutants. ND= none detected. NT = not 
tested / unable to test. ADPR binding and hydrolase activity data taken 
from McPherson et al., 2017. Phosphatase activity and RNA binding 
data taken from Malet et al., 2009, where, instead of G112A and V113A, 
mutations of +G112E and ^V113R were assessed.  

 

The D10A mutation in the CHIKV nsP3 macro domain was first assessed by 

Malet et al., 2009, where it was demonstrated that this mutation had a 

significantly reduced ability to bind ADP-ribose, though only a small reduction in 

phosphatase activity, and RNA binding capabilities similar to the wt macro 

domain. It has also been shown that the D10A mutation decreases the hydrolase 

capability of the CHIKV macro domain (McPherson et al., 2017). In this study, 

this mutant consistently replicated at a lower level than wt in replicon and virus 

in most cell lines and was did not produce any infectious virus in either Huh7 or 



 
 

152 

 

U4.4 cells. This implies that RNA binding and phosphatase activity are less 

important for the role of the macro domain in virus replication than ADPR binding 

and hydrolase activity. It was not possible to sequence the RNA resulting from 

D10A-transfected cells to assess whether the production of infectious virus by 

D10A mutant was due to reversion, most likely due to low levels of virus RNA. 

However, the differences in replication in BHK cells between the ICA and the 24 

and 48 h titres indicates that it is probable that reversion or a compensatory 

mutation did occur. In addition, other studies have shown that virus produced 

with D10A mutant RNA had reverted to wt (McPherson et al., 2017).   

The G32 residue is highly conserved across the macro domains of many species. 

It was therefore unsurprising that, the replicon system, G32A exhibited poor RNA 

replication. However, in infectious virus, the G32A mutant was able to replicate 

at approximately wt levels in all cells except Huh7 cells. In C2C12, U4.4. and 

C6/36 cells, it was shown that this mutation was maintained in infection. This 

discord between the results from the replicon and infectious virus experiments 

indicates that the nsP3 macro domain may have roles required for virus 

production other than in RNA replication. Other studies have shown that the 

biochemical properties of the G32A mutant are not dissimilar to wt, with similar 

affinity for ADPR and only a slightly decreased level of hydrolase activity as 

shown in Table 4.1. As alanine and glycine are both hydrophobic residues with 

very little difference in structure, it is likely that this substitution mutation had very 

little effect on the structure or function of the macro domain. Other studies have 

shown that G32A and G32S were both able to replicate and maintain the 

mutation however, mutation of G32E reverted to wt, possibly due to the domain 

not tolerating the larger side chain of glutamate compared to the smaller residues 

of glycine, alanine or serine as indicated by Figure 4.19 (McPherson et al., 2017).  
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Figure 4.19 Amino acid substitutions at position 32 of the CHIKV nsP3 
macro domain. Substitutions with small residues such as with alanine 
or serine are tolerated, able to produce virus and, in the case of G32A, 
are maintained, but larger residues such as glutamine are not 
tolerated.  

 

Both the T111A and Y114A mutations behaved similarly to wt across all cell lines. 

These were the only mutants capable of producing infectious virus in Huh7 cells, 

although both were significantly reduced from wt titres. Despite their similarities 

in virus production, other studies have shown the two mutants to possess very 

different biochemical properties. Y114A had reduced RNA binding to wt when 

assessed via slot blot, although this study did not assess the properties of the 

T111A mutant (Malet et al., 2009). It has been shown that T111A possesses 

weaker ADPR binding than wt, and hydrolase function of 64.1% of wt (see Table 

4.1). Conversely, Y114A was shown in this study to have a much higher affinity 

for ADPR compared to wt and a hydrolase activity of 40.6% of wt. It is surprisingly 

therefore that these two mutants have a similar replicative phenotype across a 

variety of cell lines given the differences in their biochemical properties. 

Particularly when it has been shown that these mutations are maintained in 

infected cells with no detected reversion or compensatory mutations within the 

macro domain. The T111A mutant became of particular interest from the IF data 

as, for all other cell lines and mutants, nsP3 was consistently observed as distinct 
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cytoplasmic puncta. In contrast, T111A nsP3 puncta were larger, less defined 

with some diffuse cytoplasmic nsP3. The nuclei of T111A-infected cells became 

highly distorted, appearing condensed and hollow. It has been shown that nuclei 

condense and become hollow due to apoptosis (Toné et al., 2007). This may 

indicate that, in this particular cell line, the T111A nsP3 is enhancing apoptosis, 

possibly due to an inability to inhibit a cellular process, as no other mutant or wt 

infected cells exhibited any indicators of apoptosis via IF at the 24 h time point.  

The glycine residue at position 112 was selected for mutagenesis as, similar to 

G32, it was highly conserved across the macro domains of many species. Both 

G32A and G112A behaved similarly in the replicon system, both replicating RNA 

to significantly reduced levels. However, in contrast to G32A, the G112A 

substitution had a detrimental effect on viral replication in the infectious system. 

The G112A mutant was unable to produce virus in any cell line with the exception 

of C2C12 cells where, at the 48 h time point, titres of approximately 

4.7x102 PFU/mL were detected. Unfortunately, it was not possible to determine 

through sequencing whether this was due to reversion. Other groups have 

shown that a mutation to glutamine at this position completely obliterated ADPR 

binding and had extremely low hydrolase activity (3.7% of wt, as shown in Table 

4.1) indicating that this residue is important for both ADPR binding and 

hydrolysis, and therefore unsurprising that this mutant consistently produced no, 

or very little virus in all cell lines assayed. The G112E mutant also readily 

reverted to wt (McPherson et al., 2017). It is interesting that a glutamine at this 

position allowed for enough initial replication to facilitate a reversion event, 

whereas in this study, a substitution for alanine prevented replication entirely in 

the majority of cell lines.  

Mutant V113A varied the most between cell lines implying that there are some 

cell-line specific roles of the nsP3 macro domain. In the replicon system in Huh7 

cells, V113A exhibited RNA replication that was significantly higher than wt. In 

the infectious system, V113A produced virus at both 24 and 48 h in BHK and 

C2C12 cells, although the titres produced by this mutant were much reduced 

from wt. In Huh7 cells, no virus was produced by the V113A mutant, despite 

having the highest level of genomic RNA detected via qRT-PCR of all the 

mutants. This data combined again indicates an additional role for the macro 
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domain, separate to RNA replication, which is required to produce infectious 

virus. In mosquito cell lines, the V113A mutant is interesting as it did not produce 

any detectable virus in U4.4 cells but was only slightly reduced from wt in C6/36 

cells, again implying cell-line specific functions. This could again indicate that the 

macro domain may be involved in RNAi suppression as U4.4 cells, where this 

mutant was unable to replicate, have an intact RNAi pathway yet C6/36 cells do 

not.  

4.3.3 Elucidating the function of the macro domain in CHIKV 

replication 

4.3.3.1 ADP-ribose binding of the macro domain is required for efficient 

virus replication 

Comparing the replicative phenotypes of the macro domain mutants determined 

in this project to the biochemical data from the literature (summarised in Table 

4.1), implies that ADPR binding is the most important aspect of the CHIKV macro 

domain to facilitate virus replication. The two mutants with no detectable ADPR 

binding, D10A and G112A, were the two mutants that consistently produced 

either significantly reduced virus titres or no virus at all. It is unfortunate that it 

was not possible to determine whether the virus produced by these two mutants 

was a result of a reversion. Data from other groups implies that this may have 

been the case as McPherson et al., 2017 demonstrated that virus produced by 

D10A and G112E RNA was a result of reversion to the wt sequence.  

Hydrolase activity also appears important for the function of the macro domain 

as those with the lowest activity were again, poor at producing virus, including 

D10A, G112A and V113A. However, there appears to be less correlation 

between replication and hydrolase activity than there was for replication and 

ADPR affinity. V113A was able to replicate to wt levels in BHK cells, was reduced 

in C2C12 and C6/36 cells and was unable to produce any virus in U4.4 cells. 

This implies that either the hydrolase activity is less important for virus replication 

or it is required but in a cell-specific manner. However it is important to highlight 

that hydrolase activity was only assayed for a V113R mutant (McPherson et al., 

2017) , although it is likely that the V113A mutant also abrogates this enzymatic 

activity. The Y114A mutant has been shown to possess a hydrolase activity of 
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just over 40% of wt yet, in most cell lines used here, was shown to have 

replication comparable to wt, indicating that CHIKV can tolerate reduced 

hydrolase activity to produce infectious virus.  

It has been suggested in the literature that the ADPR 1”–phosphatase activity is 

unlikely to be the primary function of viral macro domains. Other viral macro 

domains such as the wt SARS-CoV and SFV macro domains possess no 

phosphatase activity indicating that this enzymatic activity is not required for viral 

replication (Egloff et al., 2006; Malet et al., 2009). The data shown here is in 

agreement with the literature as the Y114A mutant, which was shown to have 

poor ADPR 1”–phosphatase activity by Malet et al., 2009, replicated to wt levels 

in almost every cell line tested. Conversely, the D10A mutant, with only slightly 

decreased phosphatase activity from wt, consistently replicated to either 

significantly reduced levels or was unable to produce any virus.  

4.3.3.2 The macro domain does not affect cellular distribution of nsP3 

From the IF data, staining for nsP3 for all the macro domain mutants in both 

Huh7 and C2C12 cells, it would appear that none of the macro domain mutants 

induce any significant relocalisation of nsP3 as nsP3 remained cytoplasmic and 

punctate. This indicates that, for the replicative phenotypes observed, it is not 

the result of re-localisation of nsP3. This is in agreement with the literature where 

it has been shown that the HVD is responsible for nsP3 cellular localisation, not 

the macro domain or the AUD (Fros et al., 2012). However, for the majority of 

mutants that were unable to replicate, unlike wt nsP3, very few mutant puncta 

were observed in the perinuclear region of the cell. This may indicate that 

perinuclear nsP3 puncta only occur in established, or late-stage replication. 

4.3.3.3 Possible roles for the macro domain in countering cellular innate 

immunity  

Although the majority of the macro domain mutants exhibited consistent 

replication between the two different mosquito cells lines, both D10A and V113A 

differed, implying cell-specific functions of the CHIKV macro domain. Both the 

D10A and V113A mutants were able to produce virus, to a reduced level, in 

C6/36 cells but not in U4.4 cells. C6/36 cells have been shown to have an 

inactive RNAi pathway, due to a frame shift mutation in Dicer2 (Brackney et al., 
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2010). Therefore, since D10A and V113A virus cannot replicate in U4.4 cells but 

can produce virus in C6/36 cells, this indicates that the nsP3 macro domain may 

play a role in RNAi inhibition to allow viral replication. It has been shown that the 

RNAi pathway is activated in mosquitos upon CHIKV infection (Morazzani et al., 

2012) and that an inhibition of the RNAi pathway in infected mosquito cells 

enhanced CHIKV replication and virus production (McFarlane et al., 2014). The 

expression of the nsP3 macro domain  was found to inhibit the RNAi pathway in 

Sf21 cells, a cell line derived from Spodoptera frugiperda (the fall armyworm), 

and that certain mutations (though none that correspond with the mutants shown 

here) can disrupt the ability of the nsP3 macro domain to exert this inhibition 

(Mathur et al., 2016). The specific mechanism of this function was not elucidated, 

however this study suggested that it is the RNA binding capability of the macro 

domain that facilitated this inhibition. However, no studies to date have confirmed 

this macro domain mediated inhibition in an infectious virus system or in a 

mosquito cell line. 

It has been shown previously that nsP3 macro domain mutants possessing wt 

ADPR affinity but reduced hydrolase activity were able to form replication 

complexes and support early stage virus replication in CHIKV-infected neuronal 

cells. However, host translational shut off occurred earlier than for wt CHIKV 

(Abraham et al., 2018). In this publication Y114A is used as an example mutant, 

and here our data is somewhat in agreement with this as in C2C12 cells, Y114A 

produces high titres, comparable to wt but is reduced at 48 h, possibly due to the 

early onset of apoptosis. However, Y114A exhibited very different levels of 

replication across time points in other cell lines, again highlighting that cell 

specific functions may be occurring. The early onset of host translational shutoff 

in cells transfected with Y114A CHIKV RNA may suggest a role for the macro 

domain in inhibition or subversion of the innate immune response in mammalian 

cells.  
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4.3.4 Chapter summary 

In this study, six residues were selected for mutagenesis in the ADPR-binding 

pocket of the CHIKV nsP3 macro domain. These mutants were individually 

engineered into the infectious CHIKV system and their replicative phenotypes 

assessed in a range of mammalian and mosquito cell lines.  

From the six mutations assessed, a range of phenotypes were observed, some 

mutants were unable to produce virus, or able virus to levels significantly lower 

than wt, indicating the importance of the CHIKV nsP3 macro domain for efficient 

viral replication.  

Some mutations highlighted there may be cell-specific roles for the macro 

domain, such as V113A which replicated to a reduced level in BHK and C2C12 

cells but did not replicate in Huh7 cells. In addition, this mutant replicated to 

levels slightly reduced from wt in C6/36 cells, which have an inactive RNAi 

pathway, but was unable to produce virus in U4.4 cells. This, in agreement with 

the literature, highlights a possible role for the nsP3 macro domain in inhibition 

of the insect innate immunity RNAi pathway.  

When comparing the replicative phenotypes of the macro domain mutants to the 

biochemical analysis published by others, it appears that the ADPR-binding 

ability of the nsP3 macro domain is most important for replication. Mutants that 

had no detectable ADPR binding corresponded to low or undetectable levels of 

replication.  

In agreement with the literature, it appears that the ADPR 1”–phosphatase 

activity is not important for CHIKV replication as mutant Y114A, shown in the 

literature to have no detectable phosphatase activity consistently replicated to 

approximate wt levels in most cell lines assessed here.  
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Chapter 5 Inhibition of the NFкB pathway by CHIKV nsP3 
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5.1 Introduction 

In response to viral infections, the first line of defence of cells are the innate 

immunity pathways. Many of these pathways have been shown to be crucial to 

limiting damage caused by viral infections and prevent spread of viruses to 

surrounding cells (Haller et al. 2006).  However, many viruses have developed 

strategies to combat and subvert these pathways in order to continue replicating 

in cells.  

In the case of CHIKV, it is known that infection of cells induces a robust interferon 

(IFN) response in humans, which has also been shown to be crucial to survival 

of mice infected with CHIKV (Schilte et al., 2010). However, little has been 

reported on other antiviral pathways in the context of CHIKV infection.  

Like most viruses, Alphaviruses have developed multiple strategies to counteract 

the innate immune response. CHIKV nsP2 has been shown to inhibit JAK-STAT 

signalling, an early stage in the exogenous IFN signalling pathway (Fros et al., 

2010). In addition, nsP2 has also been shown to induce host-translational shutoff 

in infected cells, shown to be a result of the degradation of Rpb1 – a catalytic 

subunit of the cellular RNA polymerase II (Akhrymuk et al., 2012; Fros et al., 

2013). In the case of VEEV, the 5’ UTR has been shown to be capable of altering 

the binding and function of IFIT-1 (interferon induced protein with 

tetratricopeptide repeats 1), a protein normally capable of binding viral capped 

RNAs and preventing their translation (Hyde et al., 2014). There is much 

evidence that the 5’ UTRs of other alphaviruses, including CHIKV, have similarly 

important antiviral activity (Hyde et al., 2015; Reynaud et al., 2015).   

The only anti-immune function reported to date for nsP3 is the interaction with 

G3BP. This interaction, as previous discussed in section 1.2.5.5 is thought to 

sequester G3BP and prevent it from forming functional cytoplasmic stress 

granules (Fros and Pijlman, 2016). When this interaction was lost through 

deletion of 30 aa of the HVD of nsP3 in SINV, virus replication was greatly 

reduced (Varjak et al., 2010). Though it is debateable whether this interaction is 

purely to prevent the formation of stress granules as it has been shown that the 

interaction with G3BP is critical for the formation of  replication complexes and 

for RNA replication (Kim et al., 2016). Therefore this interaction may be more to 
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exploit G3BP for replication, rather than the prevention of stress granule 

formation.  

From the results of the mutagenesis studies in chapter 4, many of the defective 

macro domain mutants seemed to exhibit their defective phenotype at or after 6 

hpt. This indicated that there may be some part played by the innate immune 

system, which can take up to 4 h for pathways to become fully activated in order 

to exhibit their effects (Janeway, 2001). Looking specifically at what role the 

macro domain may play in antagonising the innate immune response, attention 

was drawn to the NFкB pathway as it has recently been demonstrated that 

ADP-ribosylation plays a regulatory role in this pathway. It was therefore 

hypothesised that nsP3 may be able to interact with these ribosylated proteins 

and therefore interfere with the NFкB pathway.  

A mono-ribosyltransferase; ARTD10 (ADP-ribosyltransferase diphtheria toxin-

like 10, also known as PARP10) has been shown to be capable of regulating the 

NFкB pathway as over expression of ARTD10 prevented the nuclear 

translocation of NFкB, which is required in order for the expression of NFкB 

dependent genes (Verheugd et al., 2013). Further investigation demonstrated 

that this inhibition was a result of ARTD10 mono-ADP-ribosylating NEMO (NFкB 

essential modulator) also referred to as IKK-γ, a component of the IKK complex 

central to the NFкB pathway. 

The IKK complex is comprised of three proteins; IKKα, IKKβ, and IKKγ/NEMO. 

An active IKK complex is required for two key phosphorylation steps in the NFкB 

pathway. As indicated by Figure 5.1, the IKK complex phosphorylates IκB. IκB is 

normally bound to NFкB/p105 to keep it inactive in the cytoplasm. When 

phosphorylated by the IKK complex, it is removed and targeted for degradation, 

freeing NFкB in the cytoplasm (Solt and May, 2008).  The second, essential 

phosphorylation step is that of NFкB. The IKK complex phosphorylates the NFкB 

protein complex in the cytoplasm which is required for protein interactions to 

facilitate the nuclear translocation of NFкB (Dong et al., 2010).  

As summarised in Figure 5.2, ARTD10, prevents the formation of an active IKK 

complex by ADP-ribosylating NEMO, which prevents NEMO from being poly- 

ubiquitinated, keeping NEMO in an inactive state. When inflammation is 
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required, the cellular protein MacroD2 (macro domain containing protein 2) 

antagonises ARTD10 by the removal of the ADPR from NEMO, allowing poly-

ubiquitination and the formation of an active IKK complex. This results in the 

downstream signalling of the NFкB pathway and activation of an antiviral state 

(Chen, 2012; Feijs et al., 2013). Mutations in both ARTD10 and MacroD2 results 

in dysregulation of inflammation and chronic diseases such as cancer and 

autoimmune related conditions (Khong et al., 2016; Sakthianandeswaren et al., 

2018).  

 

Figure 5.1 Overview of the NFкB pathway. There are multiple stimuli that 
trigger the NFкB pathway through various sensors and receptors. 
Regardless of activation, the pathway converges on the central IKK 
complex that is required to phosphorylate, and therefore remove, IкB 
from NFкB (p105), revealing the nuclear localisation signal of p105. 
The IKK complex also phosphorylates NFкB to allow translocation to 
the nucleus where it acts as a transcription factor for various 
inflammatory and antiviral genes. Original figure interpreted from 
Perkins, 2006; Hayden and Ghosh, 2008; Napetschnig and Wu, 2013.  
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Figure 5.2 Regulation of NEMO by ADP-ribosylation. (A) ARTD10 mono-
ribosylates NEMO, which prevents it being poly-k63 ubiquitinated. 
This prevents an active IKK complex from forming therefore the NFкB 
pathway does not continue. (B) When the pathway is triggered, the 
cellular protein MacroD2 is able to hydrolyse the ADP-ribose from 
NEMO, allowing poly-K63 ubiquinitination, allowing formation of an 
active IKK complex, allowing downstream effects of the NFкB pathway 
Original figure interpreted from Verheugd et al., 2013. 

 

More recently it has been shown that, in vitro, the CHIKV nsP3 macro domain 

can remove mono-ADP-ribose from ARTD10 and NEMO  as well as multiple 

other MARlysated substrates tested (Eckei et al., 2017). Though it is yet unclear 

whether nsP3 hydrolyses these proteins in vivo.  

To date, the only paper that investigates the NFкB pathway in CHIKV infection 

showed that CHIKV decreased NFкB activation through increased expression of 

miR-146a, though the precise mechanism of the upregulation of this particular 

miRNA by CHIKV is unknown (Selvamani et al.,  2014). MicroRNA-146a is 

known to inhibit the NFкB pathway though a negative feedback loop. This miRNA 

is associated with many autoimmune diseases, including rheumatoid arthritis 

where it has also been detected in the synovial fluid patients (Xu et al., 2012). 

Though it is unclear how miRNA-146a contributes to inflammation in these 

diseases.  

Studies have shown that CHIKV infection can be detected by toll-like receptor 3 

(TLR3) in endosomes and that this sensing was crucial to forming an effective 
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neutralising antibody response (Her et al., 2015). TLR3 is capable inducing both 

the NFкB and IFN pathways upon detection of dsRNA (Jiang et al., 2004; 

Uematsu and Akira, 2007). 

VEEV has been shown to activate the NFкB pathway, and that IKKβ, a 

component of the IKK complex, enhances the replication of the virus, though the 

precise mechanism of this is unknown (Amaya et al., 2014). In RVFV, the IKK 

complex has also been shown to enhance viral replication and it is thought that 

the complex is modified in order to phosphorylate the non-structural proteins of 

the virus (Narayanan et al., 2012). 
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5.1.1 Aims  

This chapter address two main aims. Firstly, due to the limited information in the 

literature, to further investigate the role of the NFкB pathway in CHIKV infection. 

Following this, we aimed to investigate whether the CHIKV nsP3 was able to 

disrupt or affect the NFкB pathway. Additionally, to determine whether 

interactions between the nsP3 macro domain and ADP-ribosylated components 

of the pathway were the cause of any observed disruption to the NFкB pathway.  
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5.2 Results 

5.2.1 Part 1 – CHIKV infection and the NFкB pathway 

5.2.1.1 Optimisation of the NFкB dual-luciferase reporter system 

Initially, it was sought to confirm previous findings by Selvamani et al., 2014 that 

CHIKV did not activate the NFкB pathway using our infectious system. Therefore 

a two-plasmid reporter system was utilised, similar to that used by Selvamani et 

al., As shown in Figure 5.1 A: firstly, a Firefly luciferase under control of a NFкB-

sensitive promoter (referred herein by NFкB-Fluc) and a Renilla luciferase 

(RLuc) under control of a herpesvirus TK promoter as a transfection control 

(referred herein as pRL-TK), as described by Abdul-Sada et al., 2017.  

Initially, optimisation was required of the dual reporter system. A range of cell 

lines were selected for their suitability with this system but also, ideally, these 

cells would be relevant to the study of CHIKV. From chapter 3, BHK, C2C12 and 

Huh7 cells have all been shown to be suitable for their use with CHIKV infectious 

and replicon systems. In addition, A549 cells were selected as they have been 

used in previous studies on virus interactions with the innate immune system and 

are known to have an intact and robust immune response (Hartman, Black and 

Amalfitano, 2007; Devhare et al., 2013). These four cell lines were transfected 

with the two reporter plasmids for 16 h prior to activation with TNFα treatment, a 

well-defined activator of the NFкB pathway (Schütze et al., 1995), or mock 

treated, for 6 h then lysed and luciferase quantified using a dual-luciferase 

system. The Firefly signal, induced by activation of the NFкB pathway, was 

normalised to the Renilla signal from pRL-TK, which is constitutively expressed 

upon successful transfection.  

As shown by Figure 5.3, only the human cell lines; A549 and Huh7, responded 

to TNFα treatment. The remaining two cell lines, BHK and C2C12 (hamster and 

mouse cells respectively), failed to respond to treatment, producing very little 

Fluc signal, at the detection limit of the assay. These cell lines were therefore not 

considered for further experiments investigating the NFкB pathway.  

Others have shown that A549 cells were refractory to CHIKV infection and these 

cells were also poor replicators of the CHIKV replicon as demonstrated in chapter 
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3 (Sourisseau et al., 2007; Roberts et al., 2017). Therefore these cells were not 

used for experiments involving infectious CHIKV. Huh7 cells which have 

previous been determined to facilitate productive infection (chapter 3, Roberts et 

al., 2017) and supported the NFкB dual-reporter system, as shown in Figure 5.3,  

were selected for use in experiments to determine the relationship between 

CHIKV and the NFкB pathway.  

 

 

Figure 5.3 Optimisation of the NFкB-Fluc and pRL-TK reporter system. (A) 
Schematic of the NFкB-Fluc and pRL-TK plasmids. NFкB-Fluc 
contains a Firefly luciferase under the control of a NFкB sensitive 
promoter. The pRL-TK plasmid contains a Renilla luciferase under the 
control of the constitutive human thymidine kinase promoter. (B) A 
range of cell lines were transfected with the NFкB-Fluc and pRL-TK 
plasmids at a ratio of 9:1, incubated for 16 h then treated with TNFα 
(50 ng/mL) or mock treated for 6 h. Cells were lysed and luciferase 
signal quantified by dual luciferase assay. Data is presented as the 
Fluc signal (indicating NFкB activation) normalised to the Rluc signal 
(transfection control).  
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5.2.1.2 CHIKV infection does not activate the NFкB pathway 

To assess whether CHIKV infection activates the NFкB pathway, Huh7 cells 

were transfected with the NFкB dual reporter plasmids 16 h prior to infection with 

CHIKV at an MOI of 5 or mock infection. As positive and negative controls, 

separate populations of cells were TNFα or mock treated. Cells were then lysed 

over at different times over a 24 h period and luciferase levels assayed using the 

dual-luciferase system.  

As shown in Figure 5.4 B, CHIKV infected cells did not show any increase in the 

levels of Fluc when compared to mock infected or mock treated cells. TNFα 

infected cells however, induced high levels of Fluc expression that was 

detectable by 6 hpt and continued to increase over the 24 h period. To confirm 

that the CHIKV infected cells were indeed infected, the corresponding cell 

lysates were used to perform a western blot for nsP3. As shown by Figure 5.4 

part C, CHIKV infected cells express nsP3 detectable from 8 hpi, and strongest 

at 24 hpi with no nsP3 detected in mock infected, TNFα treated, or mock treated 

cells.  
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Figure 5.4 CHIKV infection does not activate the NFкB pathway in Huh7 
cells. (A) Huh7 cells were transfected with the reporter plasmids 16 h 
prior to infection (MOI=5), mock infection, TNFα treatment (50 ng/mL) 
or mock treatment. Cells were lysed at indicated time points and 
luciferase signal assayed. Fluc signal is normalised to Rluc signal 
(n=3).  (B) Western blot for nsP3 in indicated cells, showing that nsP3 
(~58 kDa) was only present in CHIKV infected cells.  

 

To further confirm these results in a more physiological system, the subcellular 

localisation of NFкB was assessed in infected cells. When the pathway is active, 

NFкB translocates to the nucleus, a phenomenon that is easily detectable by 

immunofluorescence. Huh7 cells were therefore infected with CHIKV at an MOI 

of 5, or mock infected or TNFα treated as a positive control. Cells were fixed at 

24 hpi and stained for nsP3 and the NFкB subunit; p65. As shown in Figure 5.5, 

in agreement with the previous data, CHIKV infected cells (confirmed by positive 

nsP3 staining), did not show nuclear translocation of p65 to the nucleus, with a 
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similar appearance to that of mock infected cells. In contrast, TNFα treated cells 

showed a marked difference with a clear increase in nuclear p65, more so than 

either the infected or mock infected cells.  

 

 

Figure 5.5  NFкB does not translocate to the nucleus in CHIKV infected 
cells. Huh7 cells were infected with CHIKV (MOI=5), mock infected or 
TNFα treated (50 ng/mL), fixed at 24 hpi and stained for the NFкB 
subunit; p65 (green), and nsP3 (red). Nuclear p65 indicates activation 
of the NFкB pathway.  

 

It is clear from Figure 5.4 and Figure 5.5 that nuclear translocation of NFкB, one 

of the final stages of the NFкB pathway, does not occur in CHIKV infected cells. 

It was therefore investigated whether the IKK complex was active in CHIKV 

infected cells, as the complex has been implicated in VEEV and RVFV 

replication. Huh7 cells were infected, mock infected or TNFα treated, and cells 

were lysed over a 6 h time course. IKK complex activation was assessed by 

western blotting for phosphorylated NFкB (p105), one of the targets of the kinase 

complex when activated. As shown by Figure 5.6, upon TNFα treatment, 

phosphorylated p105 appears between 0-15 min post treatment and persists for 

approximately 60 min. In contrast, CHIKV infected cells exhibited virtually no 
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phosphorylated p105 throughout the entire 6 h time course, much resembling 

the mock infected cells. It could be argued that there are extremely faint bands 

in the CHIKV-infected cells around 30 min post infection. This shows that the IKK 

complex is either not active (or extremely weakly active) in CHIKV infected cells.  

 

 

Figure 5.6 The IKK Complex is not active in CHIKV infected cells. Cells were 
either infected, mock infected or TNFα treated, then lysed over a 6 h 
time course. Western blotting was then performed for  phospho-p105 
(~105 kDa, 30 µg lysate/well). The presence of phospho-p105 indicates 
an active IKK complex. 

 

5.2.1.3 CHIKV infection cannot suppress an activated NFкB pathway 

It has been clearly demonstrated that CHIKV does not activate the NFкB pathway 

but it was unclear to what extent the virus could inhibit the pathway. Therefore, 

similar experiments to those shown in section 5.2.1.2 were performed but using 

TNFα treatment and CHIKV infection in combination to assess the ability of 

CHIKV to inhibit or reduce activation of the NFкB pathway.  

Huh7 cells were transfected with the same reporter plasmids as described in 

Figure 5.4 A, then at 16 hpt were infected or mock infected with CHIKV for 1 h 

prior to replacing the media with either complete media or media containing 

TNFα. Cells were lysed over a time course and luciferase assayed using the dual 

luciferase system. As shown in Figure 5.7 A, there was no significant difference 

in NFкB activation between cells that were TNFα treated regardless of whether 

they were infected or mock infected. Similarly, cells that were mock treated 
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exhibited similar levels of NFкB activation regardless of infection. To confirm 

CHIKV infection, western blots for nsP3 were performed to demonstrate 

expression in infected cells and not in any other conditions, as shown in Figure 

5.7 B.  

 

 

Figure 5.7 CHIKV cannot inhibit TNFα-induced NFкB activation. (A) Cells 
were transfected with the NFкB-Fluc and pRL-TK plasmids, incubated 
for 16 h then either infected with CHIKV (MOI=5) or mock infected for 
1 h then either TNFα treated (50 ng/mL) or mock treated. Cells were 
lysed over a 24 h period and luciferase assayed. Data shown as Fluc 
signal normalised to Rluc (n=3). (B) Western blot for nsP3 on 
corresponding cell lysates.  

 

 

These findings were then further confirmed by immunofluorescence. Cells were 

infected or mock infected with CHIKV at an MOI of 5 for 1 h then media was 

replaced with either media containing TNFα or normal media, cells were 

incubated for a further 12 h before fixation and staining for both nsP3 and p65. 
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As shown by Figure 5.8, for mock treated cells, both infected and mock infected 

show exclusion of p65 from the nucleus. In the TNFα treated cells, regardless of 

infection, p65 was shown to have translocated to the nucleus, indicating that 

CHIKV infection was not able to inhibit the NFкB pathway when activated 

exogenously.  

 

 

Figure 5.8 CHIKV cannot inhibit TNFα-induced NFкB activation (IF). Cells 
were infected or mock infected with CHIKV MOI=5 for 1 h, then media 
replaced with TNFα (50 ng/µL) or normal media. Cells were fixed at 12 
hpi and stained for nsP3 (green) and p65 (red). Nuclear localisation of 
the NFкB subunit p65 indicates an active NFкB pathway.  
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5.2.1.4 NFкB activation reduces production of CHIKV in infected cells 

As it has been shown that CHIKV does not induce the NFкB pathway upon 

infection and that infection is not able to suppress the pathway if exogenously 

activated, we sought to determine the effects of an activated NFкB pathway upon 

production of CHIKV in infected cells. It was hypothesised that, if CHIKV is 

actively inhibiting the NFкB pathway it must be advantageous to do so, therefore 

activating the pathway in CHIKV infected cells may reduce virus production.  

To determine whether activation of NFкB would affect production of infectious 

CHIKV, cells were treated with TNFα at either 6 h prior to infection, at the time 

of infection, or 1 h post infection (as shown in the schematic Figure 5.9 A). 

Infections were performed at an MOI of 5. Supernatant was harvested at 24 hpi 

and titred by plaque assay.  

As shown in Figure 5.9, TNFα treatment of cells, regardless of time of application, 

reduced CHIKV titres at 24 hpi. However, this reduction was only significant 

when TNFα was applied at time of infection, or 1 h post infection. This indicates 

that CHIKV suppression of the NFкB pathway is required for efficient viral 

replication. It was confirmed that the pathway was activated at indicated times 

via IF of p65 on cells treated with TNFα parallel to the infection experiment. 

Activation of the NFкB pathway was identified via nuclear translocation of p65 as 

shown in Figure 5.9 C. 
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Figure 5.9 Activating the NFкB pathway reduces CHIKV titres. (A) A 
schematic representing the time scale of the experiment: Huh7 Cells 
were treated with TNFα either 6 h prior to infection, at the time of 
infection, or at 1 h post-infection. (B) Cells were infected with CHIKV 
at MOI=5. Supernatant was harvested at 1 h and 24 h for each sample 
and titred by plaque assay. Titres for 24 h were normalised to that of 
the 1 h samples. Data is presented as % of untreated cells (two 
separate experiments combined, each at n=2 data analysed by One-
way ANOVA with Bonferroni correction compared to wt, ns = P > 0.05, 
* = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001). (C) Cells were TNFα treated 
in parallel, fixed at 6 hpt and stained for p65 to confirm activation of 
the NFкB pathway by TNFα treatment. 
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5.2.2 Part 2 – CHIKV nsP3 inhibits the NFкB pathway  

5.2.2.1 Optimisation of nsP3 expression 

Now it has been confirmed that CHIKV infection does not activate the NFкB 

pathway, it was investigated whether nsP3 was specifically involved in inhibition 

of the pathway. To determine this, an expression construct of nsP3 was 

generated. As shown in Figure 5.10 part A, wt, untagged nsP3 was cloned into 

pcDNA3.1+. This was achieved by generating the coding sequence for nsP3 

flanked by a start and stop codons, and BamHI and NotI restriction sites via 

amplification by PCR. Resulting PCR fragments were then purified via ethanol 

precipitation and, along with the empty pcDNA3.1+ vector, subjected to 

restriction digest. Resulting DNA was then separated by agarose gel 

electrophoresis, the relevant bands extracted and ligated together.  

 

Figure 5.10 Optimisation of nsP3 expression in mammalian cells. (A) A 
schematic of the nsP3 expression vector with wt, untagged nsP3 in 
pcDNA3.1+, under the control of a CMV promoter. Herein referred to 
as pcDNA3.1+ nsP3 (B) A549 and Huh7 Cells were transfected with 
1 µg of pcDNA3.1+ nsP3 and cells were lysed at 16, 24 and 48 hpt and 
western blot performed for detection of nsP3.  

 

To assess the optimal cell line and transfection protocol to use for experiments 

involving nsP3 expression, in addition to the NFкB dual luciferase reporter 
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plasmids as shown in Figure 5.3 in section 5.2.1.1, A549 and Huh7 cells were 

assessed for their expression levels of nsP3 when transfected with pcDNA3.1+ 

nsP3. Whilst both cell lines exhibited similar levels of nsP3 expression, as shown 

by the western blot in 

Figure 5.10 B, Huh7 cells appeared to have significant degradation of nsP3 

whereas A549 cells had very little degradation. Therefore, for the following 

experiments assessing the effects of nsP3 expression on the NFкB pathway, 

A549 cells were used.  For A549 cells, the optimal time for nsP3 expression was 

at 16 hpt, therefore for following experiments, cells were transfected and 

incubated for 16 h prior to downstream applications.  

5.2.2.2 nsP3 expression inhibits NFкB activation  

To assess whether nsP3 could inhibit the NFкB pathway, A549 cells were 

transfected with the NFкB reporter plasmids and co-transfected with an 

expression vector with either wt or D10A mutant nsP3 (a construct generated 

using the same protocol as wt as described in 5.2.2.1) or empty vector as a 

negative control. At 16 hpt, cells were treated with TNFα or mock treated. Cells 

were lysed at 6 h post-TNFα treatment and luciferase assayed via the dual 

luciferase system. As shown by Figure 5.11 A, expression of wt nsP3 significantly 

reduced NFкB activation in activated cells. Reduction was also seen at a basal 

level (in mock treated cells) though this was not statistically significant. In 

contrast, mutant D10A nsP3 behaved similarly to the empty vector control with 

no significant difference in NFкB activation between the two. 

Despite this assay providing highly reproducible results (Figure 5.11 A is a result 

of three separate experiments), detection of protein expression in these 

experiments was difficult and inconsistent. As shown by Figure 5.11 B, when 

attempting to confirm nsP3 expression in these cell lysates by western blotting, 

often none, or very little could be detected when compared to a positive nsP3 

control (in this case, an infected cell lysate). It has been previously shown that 

nsP3 is an unstable protein with high turnover, possibly the extended time of the 

experiment or the presence of additional plasmids was limiting expression or 

increasing degradation of nsP3. It was therefore decided to tag nsP3 to increase 

stability of the protein.   
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Figure 5.11 wt nsP3 reduces NFкB activation but expression is unstable. 
(A) A549 cells were transfected with the NFкB-Fluc and pRL-TK 
plasmids and co-transfected with either pcDNA3.1+ nsP3 wt or D10A 
or empty pcDNA3.1+ vector. Cells were then TNFα treated (50 ng/mL, 
activated) or mock treated, prior to lysis at 6 hpt and luciferase levels 
assayed (two separate repeats combined, each repeat n=3, data 
analysed by One-way ANOVA with Kruskal-Wallis test and Dunns’ 
correction compared to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01). (B) 
Western blot for nsP3 in transfected cells (30 µg/well). In these 
experiments, it was challenging to demonstrate consistent nsP3 
expression for each replicate. 
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The first tag used in an attempt to stabilise and better detect nsP3 was ZsGreen. 

This tag has been used previously in both the CHIKV replicon, and infectious 

virus with ZsGreen cloned into the engineered SpeI site within the HVD of nsP3 

(Pohjala et al., 2011) and is well tolerated in both replicon and virus as shown by 

Remenyi et al., 2018. An expression construct was generated using the same 

method as described in 5.2.2.1 but with the nsP3-ZsGreen virus template in order 

to generate a coding sequence of nsP3-ZsGreen that was digested and ligated 

into the pcDNA3.1+ vector, a schematic of which is shown in Figure 5.12 A. 

Previous work demonstrated that the presence of the ZsGreen tag within nsP3 

had little effect on virus replication (Remenyi et al., 2018). To ensure that the 

ZsGreen tag did not exhibit any significant differences in the behaviour of nsP3 

when expressed in isolation, the newly formed nsP3-ZsGreen construct was 

transfected into cells, alongside expression constructs of ZsGreen alone and the 

empty vector as controls and  the subcellular localisation assessed by confocal 

microscopy. As shown by Figure 5.12 B, the cellular localisation of the nsP3-

ZsGreen resembled the defined, cytoplasmic punctate appearance of the nsP3 

shown previously in both replicon and virus (chapter 3). It was therefore 

concluded that the addition of the ZsGreen tag in nsP3 did not significantly alter 

the behaviour of the protein.  



 
 

180 

 

 

Figure 5.12 An addition of the ZsGreen tag does not affect the cellular 
localisation of nsP3. (A) A schematic of the ZsGreen tagged nsP3, 
where ZsGreen is present within the C-terminal HVD of nsP3. (B) 
Confocal images of A549 cells transfected with an expression vector 
of either nsP3-ZsGreen, ZsGreen alone or empty vector, cells were 
fixed and DAPI-stained 16 hpt and imaged via the LSM700 confocal 
microscope.  

 

This construct was therefore used in further experiments. As shown in Figure 

5.13 A and C, successful expression of the nsP3-ZsGreen constructs was easily 

detectable by wide field fluorescence microscopy and western blot. However, 

when used in the NFкB reporter plasmid system, the levels of activation had 

changed from the previous experiment using the untagged nsP3 expression 

constructs in Figure 5.11. As shown by Figure 5.13 B, the mutant D10A nsP3 

exhibited some reduction in NFкB activation in activated cells, and significant 

reduction of activation at the basal level in mock treated cells.  

When performing IF to assess the sub-cellular localisation of p65 it became 

apparent why the results for the ZsGreen tagged nsP3 constructs (shown in 

Figure 5.13) differed from those seen previously. As shown in Figure 5.14, when 

activating cells with TNFα, in the ZsGreen-transfected cells (which should be 

acting as the negative control), p65 remains cytoplasmic when it should 

resemble the nuclear appearance of the empty vector-transfected control. 
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Indicating that ZsGreen alone is capable of inhibiting p65 nuclear translocation 

and is therefore not a suitable tag for use in these experiments.   
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Figure 5.13 Tagging of nsP3 with ZsGreen improved stability, and the 
detection of the protein. (A) Wide-field fluorescence microscopy of 
A549 cells transfected with pcDNA3.1+ nsP3 wt, D10A or empty 
vector, alongside the NFкB reporter plasmids, imaged 16 hpt, prior to 
activation. (B) Cells were then TNFα treated (50 ng/mL, activated) or 
mock treated, prior to lysis at 6 hpt and luciferase levels assayed 
(2 separate repeats combined, each repeat n=3, data analysed by One-
way ANOVA with Kruskal-Wallis test and Dunns’ correction compared 
to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01). (C) Western blot for 
nsP3-ZsGreen (~ 85 kDa) for corresponding cell lysates.  
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Figure 5.14 Immunofluorescence of p65 with ZsGreen-tagged constructs. 
Cells were transfected with pcDNA3.1+ either empty vector, nsP3-
ZsGreen or ZsGreen alone. At 16 hpt, cells were TNFα treated (A) or 
mock treated (B) for 6 h prior to fixation and immunofluorescence for 
p65 performed.  
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Due to the unsuitability of the ZsGreen tag, it was then considered to use a Flag 

tag at the C terminal end of nsP3. A Flag tag was suggested due to its short size 

(8 aa and  ~1 kDa) so would be unlikely to affect the function of nsP3 or interfere 

with cellular pathways.  

Prior to using the nsP3-Flag (referred to herein as nsP3-F) construct in 

experiments, firstly it was important to check that the properties of nsP3-F did 

not differ to untagged, wt nsP3. Therefore, the nsP3-F and untagged nsP3 

expression constructs were transfected into cells alongside the NFкB reporter 

plasmids, and cells were activated or mock activated as before. As shown in 

Figure 5.15 A, the behaviour of the Flag-tagged nsP3 protein was similar to that 

of the untagged nsP3 (when compared to cells transfected with empty vector) 

and there was no significant difference between nsP3 and nsP3-F. It was also 

confirmed that the nsP3-F was detectable via western blotting. Figure 5.15 B 

demonstrates that cells transfected with nsP3-F expressed the protein which was 

detectable on a western blot using both anti-Flag and anti-nsP3 primary 

antibodies.  



 
 

185 

 

 

Figure 5.15 Optimisation of the nsP3-F construct for use in NFкB 
experiments. (A) Cells were transfected with the NFкB-Fluc and 
pRL-TK plasmids and co-transfected with either empty pcDNA3.1+ 
vector or the vector expressing nsP3 (untagged) or nsP3-F. Cells were 
then TNFα or mock treated for 6 h prior to lysis and luciferase 
quantified. (n=3, data analysed by One-way ANOVA with Kruskal-
Wallis test and Dunns’ correction compared to wt, ns = P > 0.05, * = P 
≤ 0.05, ** = P ≤ 0.01). (B) Western blot for nsP3-F (59 kDa) using both 
anti-Flag and anti-nsP3 antibodies.  
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Now that a suitable tagged expression construct had been generated and 

validated, it was then put into the experimental system. Additionally, two controls, 

alongside the empty vector control, were used as indicated in Figure 5.16 A. 

Firstly, a pcDNA3.1+ GFP construct as a negative control to ensure that excess 

protein expression was not inducing the observed results. GFP expression has 

been successfully used as a negative control in experiments assessing inhibition 

of the NFкB in the literature (Ember et al., 2012). Secondly, a pcDNA4 construct 

expressing B14, a vaccina virus protein that is a well characterised inhibitor of 

the NFкB pathway where it has been shown to bind to IKKβ and inhibit the 

formation of a functional IKK complex (Chen et al., 2008). In this expression 

construct, B14 was tagged at the N-terminus with a Flag tag (herein referred to 

as F-B14) and was used as a positive control.  

As in the previous experiments, empty vector, nsP3-F, GFP and F-B14 

expression constructs were transfected into cells, alongside the NFкB dual 

reporter plasmids. Cells were incubated for 16h then treated or mock treated with 

TNFα and lysed at 6 h post treatment. As shown in Figure 5.16 B, when cells are 

activated by TNFα, nsP3-F inhibits the NFкB pathway to the same extent as the 

known inhibitor F-B14. For the inhibition of basal levels, (as indicated by the 

mock treated cells), nsP3-F  does significantly reduce activation when compared 

to empty vector but not quite to the same level of inhibition that F-B14 is capable 

of. The expression of GFP did not induce any significant differences in NFкB 

activation, when compared to empty vector, for the treated or mock treated cells. 

Protein expression for nsP3-F and F-B14 were confirmed by western blotting as 

shown in Figure 5.16. Unfortunately, it was not possible to detect GFP on a 

western blot so wide-field fluorescent images were taken to confirm GFP 

expression (Figure 5.16 D). 

IF was then utilised to determine the sub-cellular localisation of p65 in nsP3-F 

expressing cells. Cells were again transfected with the relevant constructs, 

incubated for 16 h prior to treatment with TNFα or mock treated. Cells were fixed 

at 6 hpt and stained for p65. Additionally, all cells, except GFP-expressing cells, 

were additionally stained for nsP3. As is expected, Figure 5.17 B shows that, for 

all cells, when mock treated, p65 is predominantly cytoplasmic. When treated 

with TNFα however (Figure 5.17 A), in the case of cells transfected with empty 
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vector or GFP-expressing cells, p65 becomes nuclear indicating an active NFкB 

pathway. In cells that are clearly expressing nsP3-F, p65 is restricted from the 

nucleus, remaining mostly cytoplasmic. This indicates that the expression of 

nsP3-F in cells prevents nuclear translocation of NFкB therefore inhibiting the 

NFкB pathway.  
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Figure 5.16 nsP3-F inhibits the NFкB pathway. (A) A schematic of the 
expression constructs used in this experiment. (B) Cells were 
transfected with the NFкB-Fluc and pRL-TK plasmids and 
co-transfected with expression constructs for GFP, nsP3-F, F-B14 or 
empty vector. At 16 hpt cells were TNFα or mock treated for 6 h prior 
to lysis and luciferase quantified. (Two experiments combined, each 
n=3, data analysed by One-way ANOVA with Bonferroni correction 
compared to wt, ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, 
**** = P ≤ 0.0001). (C) Western blot for nsP3-F (59 kDa) and F-B14 (15 
kDa). (D) Wide field fluorescent microscopy images of GFP-
expressing cells compared to cells transfected with the empty vector.  
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Figure 5.17 The expression of nsP3-F inhibits nuclear translocation of p65. 
A549 cells were transfected with either nsP3-F, GFP or empty vector 
expression constructs. At 16 hpt, cells were TNFα (A) or mock treated 
(B) for 6 h prior to fixation and staining for p65 (red). Cells were co-
stained for nsP3 (shown in green/488), except GFP expressing cells.  

 

Quantification was performed on the TNFα samples shown in Figure 5.17 by 

imaging via tile scans (see Figure 5.18 A) and manually counting nsP3 or GFP 

positive and negative cells with nuclear p65. As shown by Figure 5.18 B, of the 

cells expressing GFP, approximately 75% had nuclear p65, only a slight 

reduction from nuclear p65 observed in the GFP negative cells. In contrast, 
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approximately 20% of the nsP3 expressing cells contained nuclear p65, a 

reduction of approximately 50% from the nsP3-negative cells.  

 

Figure 5.18 Quantification of nuclear p65 in TNFα treated, nsP3-F and GFP 
expressing cells. (A) An example tile scan of cells stained for nsP3 
and p65. (B) The number of cells with nuclear p65 was quantified 
manually for both cells that were positively expressing nsP3/GFP, or 
that were negative for protein expression from the same sample. Data 
shown is percentage of cells with nuclear p65 from total cells counted 
for each condition. Cells counted for each conditions were 51, 55, 26 
and 46 respectively. 
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5.2.2.3 The macro domain is partly responsible for the anti-NFкB 

activity of nsP3 

To determine whether inhibition of the NFкB pathway by nsP3 involved the macro 

domain, initially it was attempted to generate an expression construct for the 

macro domain and a Flag-tagged macro domain. As shown in Figure 5.19, 

neither the macro domain or Flag tagged macro domain expression constructs 

produced detectable expression of the macro domain.  

 

Figure 5.19 Western blot to test macro domain expression. A549 cells were 
transfected with either empty vector, or expression constructs of 
F-B14, nsP3-F, macro domain or macro domain-Flag (both approx. 
15 kDa) for 16 h prior to lysis and western blot performed in order to 
detect macro domain expression. Both anti-Flag and anti-nsP3 
primary antibodies were used.  

 

As it was not feasible to express the macro domain to determine whether it was 

capable of inhibiting the NFкB pathway, the macro domain mutants (as defined 

in chapter 4), were employed instead. Flag-tagged nsP3 constructs with each 

individual mutation were generated as described previously in 5.2.2.1, and used, 

alongside the wt nsP3-F construct, with  the NFкB reporter plasmid system as 

before. As shown in Figure 5.20, all the mutants were successfully expressed in 

transfected cells and produced a range of NFкB inhibition phenotypes. Upon 

activation with TNFα (Figure 5.20 A), both the V113A and Y114A mutants 
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significantly reduced NFкB activation when compared to the empty vector 

negative control. In the mock transfected cells, representing basal levels of NFкB 

activation (Figure 5.20 B), all mutants were capable of significantly reducing the 

activation levels except D10A, G112A and Y114A. These results indicate that 

the macro domain does have a role in the inhibition of the NFкB pathway.  
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Figure 5.20 nsP3 macro domain mutants exhibit a wide range of inhibitory 
effects on the NFкB pathway. A549 cells were transfected with the 
nsP3-F wt and mutant expression constructs alongside F-B14, GFP 
and empty vector controls. At 16 hpt, cells were TNFα activated (A) or 
mock treated (B) then lysed at 6 h post treatment and luciferase 
assayed. (n=3, data analysed by One-way ANOVA with Bonferroni 
correction compared to empty vector, ns = P > 0.05, * = P ≤ 0.05, ** = P 
≤ 0.01, *** = P ≤ 0.001, **** = P ≤ 0.0001 ) (C) Confirmation of protein 
expression by western blotting for nsP3 and Flag tag (for F-B14) on 
the corresponding cell lysates.  
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When comparing this data to the known biochemical properties of the CHIKV 

nsP3 macro domain (McPherson et al., 2017), as shown in Table 5.1, there is a 

correlation between the ability of the mutant nsP3s to inhibit the NFкB pathway 

and the ability to bind ADPR. Specifically, D10A, T111A and G112A exhibited 

the least inhibition of the pathway and are the three mutants with the lowest 

affinity for ADPR, with D10A and G112A having no detectable binding and T111A 

demonstrating far less affinity to ADPR than the wt or any other mutant. There is 

little correlation between NFкB inhibition and the hydrolase activity of the 

mutants. For example, V113A, the only mutant able to significantly inhibit the 

NFкB pathway when activated, has stronger ADPR binding than wt but only 15% 

hydrolase activity of wt. This data indicates that ADPR affinity, and not hydrolase 

activity, may be crucial for the role of the nsP3 macro domain in its ability to 

inhibit the NFкB pathway.  

Table 5.1 Comparison of the macro domain mutants inhibition of the NFкB 
pathway to their biochemical properties. *Data from McPherson et al. 
2017, **V113R was used in this study instead of V113A. Colours 
denote comparison to wt. (Light green = approximately wt, dark green 
= above wt, yellow = below wt, and red = less than 30% wt).  

 

Again, IF was performed to corroborate the luciferase data. The wt and mutant 

nsP3-F expression constructs and the empty vector control were transfected into 

cells, incubated 16 h then treated with TNFα. After 6 h, cells were fixed and 

stained for p65 and nsP3. The IF data (Figure 5.21) generally agrees with the 

luciferase data. Both wt and V113A nsP3 are shown to exclude p65 from the 

nucleus of cells. For T111A and Y114A nsP3 the distribution of p65 resembles 

the highly nuclear distribution shown by the empty vector control. For all other 

mutants; D10A, G32A and G112A, there is some reduction in p65 in the nucleus 

 nsP3 mutants Controls 

 wt D10A G32A T111A G112A V113A Y114A B14 
Empty 
vector 

GFP 

Inhibition of NFкB 
pathway (%) 

49.2 6.3 24.7 -24.7 0.4 34.1 26.8 40.6 0 3 

ADPR k
D 

(µM)* 22.9 NDB 21.0 71.4 NDB 6.46** 4.84 N/A N/A N/A 

Hydrolase activity 
(% wt)* 

100 16.1 75.3 64.1 3.7 15.0** 40.6 N/A N/A N/A 



 
 

195 

 

when comparing to the empty vector control, though it is not as distinct as the 

nuclear exclusion exhibited in the wt nsP3-expressing cells. Interestingly for 

many of these three mutants, there appears to be a concentration of p65 in the 

perinuclear region which may indicate translocation is being inhibited at, or near 

the nuclear membrane.  
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Figure 5.21 IF of p65 in nsP3 wt and mutant expressing cells. A549 cells 
were transfected with nsP3-F expression vector for wt or mutant nsP3 
or empty vector as a negative control. At 16 hpt, cells were TNFα 
treated for 6 h prior to fixation and staining for p65 (shown in green) 
and nsP3 (shown in red).  
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5.2.2.4 Elucidating the stage of nsP3-mediated inhibition of the NFкB 

pathway 

Here, it has been shown that the macro domain of nsP3 is capable of inhibiting 

the NFкB pathway and that nsP3 expression prevents the nuclear translocation 

of NFкB to the nucleus. However, it is still unclear at which stage of the NFкB 

pathway CHIKV nsP3 functions. Therefore it was investigated whether the IKK 

complex, central to the NFкB pathway, was active in nsP3 expressing cells. This 

would determine whether the inhibition was occurring before/at or after the IKK 

complex in the pathway. Again, cells were transfected with the nsP3-F, F-B14 

and GFP expressing constructs as well as empty vector. Cells were then 

activated with TNFα and lysed over a short time course. Western blots were then 

performed to detect phosphorylated p105, the presence of which indicates that 

the IKK complex is active. Once the IKK complex is active, the phosphorylation 

of p105 occurs rapidly but is short lived as p105 then translocates to the nucleus 

to act as a transcription factor. As shown in Figure 5.22, cells transfected with 

empty vector, once activated, exhibit phospho-p105 at 5 min-post activation 

which persists for 25-30 min. This is mirrored by the GFP negative control. In the 

presence of B14 however, there is a delay in the phosphorylation of p105, with 

first detection being at 15 min post-treatment, and with weaker signal than either 

the empty vector or GFP negative controls. This is as expected as B14 directly 

inhibits the IKK complex through an interaction with IKKβ (Chen et al., 2008). 

Cells expressing nsP3 appeared to exhibit similar levels of expression with 

phospho-p105 appearing at similar time points and both the GFP and empty 

vector controls. This implies that nsP3 inhibition of the NFкB pathway occurs 

after the formation of an active IKK complex but before nuclear translocation of 

NFкB.  
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Figure 5.22 The IKK complex is active in nsP3-F expressing cells. A549 
cells were transfected with an expression construct for nsP3-F, F-B14, 
GFP or empty vector. Cells were incubated for 16 h then activated with 
TNFα. Cells were lysed at 5 minute intervals over a 30 min period and 
western blotting was performed for the detection of phosphor-p105. 
The presence of phospho-p105 indicates an active IKK complex.  

 

It was also investigated whether CHIKV nsP3 co-localised with either NEMO or 

ARTD10. Unfortunately, through various different methods and attempts at 

optimisation, it was not possible to visualise NEMO through 

immunofluorescence. However it was possible to detect ARTD10 though this 

method. Cells were therefore infected with CHIKV and fixed over a 24 h time 

course and stained for both nsP3 and ARTD10. As shown by Figure 5.23, nsP3 

was only detected after 8 hpi. At this point, and at the later time of 24 hpi, co-

localisation of nsP3 with ARTD10 was observed. Though many cells within the 

sample exhibited co-localisation, it must be noted that it was not observed in all 

infected cells. Also, in cells that did exhibit co-localisation of ARTD10 with nsP3, 

not all nsP3 puncta were associated with ARTD10.  
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Figure 5.23 Immunofluorescence for ARTD10 and nsP3. Huh7 cells were 
infected with CHIKV at MOI=10. Cells were fixed over a 24 h period and 
stained for ARTD10 (green) and nsP3 (red). Detectable levels of nsP3 
were not seen until 8 hpi where co-localisation with ARTD10 was 
observed. 
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5.3 Discussion 

5.3.1 The NFкB pathway in CHIKV infection  

CHIKV is known to induce a highly inflammatory environment in infected cells. In 

particular, it has been well defined that CHIKV infected cells produce a robust 

IFN response and that this response is critical for survival from infection (Her et 

al., 2010; Priya et al., 2014; Nair et al., 2017). Inhibition of the IFN pathway can 

enhance CHIKV replication. CHIKV is capable of inhibition of the IFN pathway, 

to some extent, via nsP2 which is able to promoting the nuclear export of STAT1, 

therefore reducing JAK-STAT signalling (Wichit et al., 2017; Göertz et al., 2018).  

Only one publication to date has examined the role of NFкB in CHIKV infection. 

Selvamani et al. demonstrated that CHIKV did not activate the NFкB pathway 

and linked this lack of activation with overexpression of microRNA-146a. 

However, the mechanism of how CHIKV induced upregulation of this miRNA was 

not elucidated. This chapter therefore aimed to reiterate these findings and 

investigate whether the nsP3 macro domain played a role in the disruption of the 

NFкB pathway.  

5.3.1.1 CHIKV infection does not activate the NFкB pathway 

Prior to investigating any potential roles nsP3 may have in subverting the NFкB 

pathway, firstly the relationship between the NFкB pathway and CHIKV was 

investigated. In agreement with Selvamani et al, here it was demonstrated that 

CHIKV does not induce an NFкB response in infected cells. This was confirmed 

by both luciferase assay, using NFкB reporter plasmids, and by IF of the NFкB 

subunit p65 in infected cells. In both these data, it was shown that CHIKV 

infection does not induce the activation of the NFкB pathway.  

It was further sought to determine whether the IKK complex, the central 

component of the NFкB pathway, was active in CHIKV infected cells. This was 

assessed by western blot of phosphorylated-p105. The IKK complex 

phosphorylates NFкB (p105) rapidly after activation. Here, the CHIKV infected 

cells resembled the mock-infected cells with little phospho-p105 being detected. 

This indicates that the NFкB pathway is either not being activated, or, potentially, 

the pathway is activated but is inhibited prior to the formation of the IKK complex.    
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5.3.1.2 CHIKV cannot inhibit an exogenously activated NFкB pathway 

As it had been established that CHIKV does not activate the NFкB pathway, it 

was sought to determine whether CHIKV could inhibit an activated NFкB 

pathway. Through luciferase assay with the NFкB reporter plasmids, it was 

shown that CHIKV infection could not inhibit the NFкB pathway once activated 

exogenously via TNFα. This was further confirmed by IF of p65 where CHIKV 

infected, TNFα treated cells contained nuclear p65, much like the TNFα-treated, 

mock-infected cells. This indicates that whilst CHIKV does not induce an NFкB 

response in infected cells, its potentially inhibitory activity is not sufficient enough 

to overcome the NFкB pathway once activated by external stimuli.  

5.3.1.2.1 CHIKV production is reduced when cells are TNFα treated 

Since CHIKV infection does not induce the NFкB pathway, nor is the virus 

capable of inhibiting an activated pathway, what effect an active pathway would 

have on CHIKV replication was investigated. A time of addition study using TNFα 

showed that, regardless of time of stimulation, CHIKV titres were reduced when 

titred at 24 hpi. However, this reduction was only significant with cells treated 

either at the time of infection, or 1 h post infection. It is not immediately obvious 

why treatment with TNFα significantly reduced CHIKV production when cells 

were treated at or 1 h post infection, but not at 6 h prior to infection. This could 

suggest that CHIKV is better able to disrupt the pathway once later stages of the 

pathway have been reached, but is not able to establish infection during the early 

stages of the pathway being stimulated. Alternatively, presence of CHIKV 

proteins or RNA at the time of TNFα treatment could be inducing an innate 

response better tailed to counter CHIKV infection. As shown in the schematic of 

the NFкB pathway (Figure 5.1), TNFα is detected via a cell surface receptor, 

whereas RNA viruses, such as CHIKV are mostly detected through dsRNA 

sensing in endosomes and the cytoplasm (Jensen and Thomsen, 2012). These 

different mechanisms of detection result in the triggering of different pathways to 

ultimately activate the IKK complex and trigger the NFкB pathway. Due to a 

complex variety of interactions with other pathways, the different routes of the 

pathway induced by different stimuli produce altered inflammatory responses 

depending on the method of activation (Akira and Takeda, 2004; Sen and Smale, 
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2010). It therefore may be that, the TNFα stimulus in combination with the 

presence of the virus in early stages of replication may alter the pathway and 

therefore tailor the response to be more effective against CHIKV. In contrast, 

when cells are pre-treated, by the time of CHIKV infection they have only been 

exposed to TNFα for a substantial amount of time. Therefore these cells have a 

fully activated NFкB pathway, though, since this inflammatory state was formed 

in the absence of any virus, may be less specifically anti-viral and therefore allow 

more replication once infected than the cells treated with TNFα in combination 

with early stages of replication.  

5.3.2 nsP3 inhibits the NFкB pathway  

Once it had been established that CHIKV does not activate the NFкB pathway 

and that an activated pathway reduces viral replication, the potential role of nsP3 

as an inhibitor of the NFкB pathway was investigated. It was therefore necessary 

to engineer an appropriate expression construct for nsP3. Initially, wt, untagged 

nsP3 was engineered into a mammalian expression vector. Despite producing 

encouraging results where it was shown that cells transfected with the wt nsP3 

expression construct had consistently reduced NFкB activation in the luciferase 

assay system, it was challenging to consistently detect expression of nsP3, both 

wt and mutant, in these cells via western blot. In the literature, it has been shown 

that nsP3, and in particular, full length nsP3 is particularly unstable and is quickly 

degraded in cells (Varjak et al., 2010). It was therefore decided that using a 

tagged nsP3 may increase stability and detection of the protein.  

There is a variety of different protein tags in the literature each with their 

advantages and disadvantages. There are a wide range of fluorescent tags 

which are advantageous as they allow easy detection of the tagged protein via 

fluorescence microscopy. However these tags do tend to be quite large and 

therefore may affect protein folding or function, so care must be taken over 

selecting an appropriate tag and ensuring the resulting expressed protein is not 

affected by the tag (Thorn, 2017).  

Initially, a ZsGreen tag was adopted and placed in the HVD of the nsP3 

expression construct. The use of ZsGreen, a 26 kDa protein isolated from 

Zoanthus species, as a fluorescent tag was reported in 1999 and was found to 
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be more stable and less toxic to cells than the conventional EGFP (Matz et al., 

1999). This tag was chosen as it has been used in replicon and infectious CHIKV 

systems with no apparent adverse effects on CHIKV replication (Remenyi et al., 

2018). It also allowed for checking successful transfection before proceeding 

with the experiments, as cells could be quickly checked under a fluorescent 

microscope to observe nsP3-ZsGreen expression. Additionally, it improved 

detection of nsP3 via western blot. It may be that the addition of a large, stable 

tag was able to limit degradation of the protein.  However, when repeating the 

luciferase assay with the tagged versions of nsP3, both wt and mutant, different 

results were produced. Unlike in experiments using untagged nsP3, 

ZsGreen-tagged D10A nsP3 exhibited some inhibition of the NFкB pathway, 

though this was not as strong an inhibition as wt nsP3. When using the ZsGreen 

constructs to analyse the sub-cellular localisation of p65, it became apparent that 

the expression of ZsGreen alone was able to block nuclear translocation of p65. 

Therefore the expression of ZsGreen in cells results in inhibition the NFкB 

pathway, and explains the difference seen in the luciferase data between the 

untagged and ZsGreen-tagged nsP3 expression. ZsGreen was therefore 

considered an unsuitable control for these experiments and a different tagging 

strategy was required. 

The next attempt at tagging nsP3 was using a Flag tag. A Flag tag is an artificial 

protein tag, specifically designed to be as small as possible whilst being large 

enough to be a specific epitope for a monoclonal antibody (Hopp et al., 1988). A 

Flag tag is the protein sequence DYKDDDDK, which is recognised by a highly 

specific monoclonal antibody termed M1. It is a hydrophilic tag that has shown 

to be less likely to denature the protein it is fused to. Use of a Flag tag to tag 

nsP3 would also be consistent with the B14 positive control which is Flag tagged 

at the N terminus. The Flag tag was therefore engineered at the C terminal end 

of nsP3. Prior to conducting any further experiments, it was firstly assessed 

whether the Flag tag helped stabilise and detect nsP3 by western blot and, more 

importantly, whether the tagged nsP3 behaved in a similar way to untagged 

nsP3. Therefore, the nsP3-F expression construct was compared to the nsP3-

untagged construct in the context of the NFкB reporter plasmid system. 

Fortunately, there was no significant difference between the untagged and the 
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flag-tagged nsP3 in terms of their effects of the NFкB pathway. The addition of 

the Flag tag to the C-terminus of nsP3 enhanced stability and detection of the 

protein as nsP3 could be clearly be detected via western blot, using the anti-

nsP3 antibody. The tagged protein could also be detected using the anti-Flag 

antibody but to a lesser extent. This reduction could potentially be due to the anti-

Flag antibody being monoclonal and, since nsP3-F only contains a single flag 

tag at the C terminus, it would have fewer epitopes to detect per nsP3-F 

molecule. The stronger signal produced by the nsP3 antibody is likely to be due 

to it being polyclonal and therefore able to bind multiple epitopes per protein 

molecule. Therefore the anti-nsP3 antibody was used to detect nsP3-F for further 

experiments.  

5.3.2.1 Expression of nsP3-F inhibits the NFкB pathway 

The nsP3-F construct was then used in experiments to determine nsP3 inhibition 

of the NFкB pathway. By this point in the project, a positive control had been 

acquired – a Flag-tagged B14 expression construct (F-B14, kindly provided by 

Geoffrey Smith, as described in Chen et al., 2008). B14 is a vaccinia protein that 

is a well characterised inhibitor of the NFкB pathway. B14 is able to bind to, and 

inhibit, IKKβ; a key component of the IKK complex. In addition, another negative 

control was also engineered; pcDNA3.1+ GFP to ensure that excessive protein 

expression was not the cause of the inhibitory effect on the NFкB pathway 

observed for nsP3 expression. The nsP3-F alongside the empty vector, GFP and 

F-B14 controls were used in the NFкB reporter system as before. The GFP 

negative control behaved in a similar manner as the empty vector, showing its 

suitability as a negative control, unlike with ZsGreen. The F-B14 positive control 

exhibited an inhibitory effect for both conditions as expected. The expression of 

nsP3-F also inhibited the NFкB pathway under both stimulated and basal 

conditions. The nsP3-F construct was able to inhibit the NFкB pathway to similar 

levels as F-B14. Protein expression of F-B14 and nsP3-F were confirmed by 

western blot. Unfortunately it was not possible to detect GFP via western blot 

with the reagents available, therefore GFP expression was confirmed by 

fluorescence microscopy instead. This data shows, for the first time, that nsP3 is 

significantly inhibiting the NFкB pathway, and the expression of nsP3 was 

confirmed successfully by western blotting.   
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Similarly to previously experiments, immunofluorescence of p65 in 

protein-expressing cells was performed to confirm the findings of the luciferase 

assay. In agreement with the luciferase data and previous experiments, in cells 

expressing nsP3, when stimulated, p65 remained cytoplasmic. This indicates 

that the presence of  nsP3 in cells is able to prevent the translocation of NFкB to 

the nucleus and therefore inhibit activation of the NFкB pathway. This was further 

confirmed by imaging the samples via tile scan and performing quantification. In 

nsP3 expressing cells, approximately 20% exhibited nuclear p65 whereas for 

GFP expressing cells, nuclear p65 was observed in over 70% of cells. This 

further clarifies that the restriction of nuclear translocation of p65 by nsP3 is not 

an uncommon occurrence.   

5.3.2.2 The macro domain of nsP3 contributes to NFкB inhibition 

It was then sought to determine whether the macro domain of nsP3 had a role in 

the inhibition of the NFкB pathway. The initial untagged-nsP3 expression 

experiment indicated that wt nsP3 could prevent activation of the NFкB pathway 

whereas the mutant D10A could not. This indicated that the macro domain may 

be important in this inhibition. Though many attempts were made, it was not 

possible to express either the macro domain by itself or a Flag-tagged macro 

domain. This may be due to degradation as macro domains are often parts of 

much larger, multi-domain proteins (Li et al., 2013). In the case of CHIKV nsP3, 

the macro domain is the N-terminal domain, with two further domains 

downstream which are likely to improve stability. Therefore, expression of the 

macro domain was abandoned and a different approach used. The six macro 

domain mutants as described in chapter 4 were engineered in the nsP3-Flag 

expression construct and similarly to previous experiment, the NFкB luciferase 

reporter assay was performed. Reassuringly, in this experiment, the flag tagged 

D10A mutant behaved in a similar manner to the previous experiments that used 

untagged nsP3 expression constructs. Again confirming the that the Flag tag was 

not disrupting nsP3 functions. When activated by TNFα, two mutants significantly 

reduced activation: V113A and Y114A. In contrast, in the mock treated cells 

(indicating basal levels of NFкB activation) all mutants except D10A, G112A and 

Y114A demonstrated a significant reduction in activation of the pathway. This 

shows that most mutations of the macro domain cannot inhibit the NFкB pathway 
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when activated, though when not activated, most mutants were able to induce 

some reduction of the pathway. This indicates that a TNFα-activated pathway is 

effective in overcoming the actions of mutated nsP3 in terms of its inhibition of 

the innate immune system. Though when the pathway is inactive, even mutated 

nsP3 can exert some effects. This may indicate that the interaction required for 

inhibition is weaker for the nsP3 mutants compared to wt and is therefore easier 

for the innate immune system of the cells to overcome when the pathway is 

activated by external stimuli. It is surprising that Y114A significantly reduced the 

pathway when externally activated, but not at basal levels. However, given the 

large error bars for the Y114A samples at basal levels, this implies there may 

have been an outlier in the data. Due to time constraints, this experiment was 

only performed once at n=3. Ideally more repeats of this experiment would have 

been performed to confirm the outcomes.  

When comparing the biochemical properties of the macro domain mutants, 

(previously published by McPherson et al., 2017) to their ability to inhibit the 

NFкB pathway, there is some indication of what may be responsible for the 

inhibitory effect. The hydrolase activity of the mutants, has little correlation with 

NFкB inhibition. There is, however, some correlation with the macro domain 

mutants ability to bind ADPR. Mutants D10A, T111A and G112A were the least 

inhibitory of the NFкB pathway when activated and were the three mutants with 

no, or extremely low affinity for ADPR. This implies that, in agreement with the 

original hypothesis, ADPR binding is responsible for the macro domain mediated 

inhibition of the NFKB pathway, possibly via binding an ADP-ribosylated 

component of the pathway. However, not all the mutants correlated so well. Both 

G32A, which had similar ADPR affinity to wt, and Y114A, which had a much 

higher affinity than wt, only mildly inhibited the NFкB pathway, with the inhibition 

by Y114A not being significant. This may indicate that ADPR binding is only one 

aspect of the method of inhibition.  

5.3.2.3 Investigating the stage of the NFкB pathway where nsP3 is 

enacting its inhibitory function 

Now it has been well established that nsP3 is able to inhibit the NFкB pathway 

and restricts nuclear translocation of NFкB, of which the macro domain is partly 



 
 

207 

 

responsible for, it was sought to determine at what stage in the pathway nsP3 

exerted its inhibitory affects. It was originally hypothesised that nsP3 could 

interact with the NFкB pathway through either ARTD10 or NEMO – both of which 

are ADP-ribosylated, and are involved in the central IKK step of the pathway. It 

therefore seemed logical to investigate whether the active complex could form in 

nsP3–expressing cells. This was assessed by western blotting for phosphor-

p105 where the IKK complex appears as active in nsP3-expressing cells as it is 

in the GFP-expressing and empty vector-transfected cells. In contrast, F-B14 

expressing cells have a delayed, muted response which was expected due to its 

direct inhibitory effect on the complex. This demonstrated that nsP3 is inhibiting 

the pathway at some point after IKK activation but before nuclear translocation 

of p65. Though this narrows down the part of the pathway of which nsP3 is 

causing inhibition, it does not necessarily confirm a lack of interaction with either 

ARTD10 or NEMO. Unfortunately, it was not possible using available reagents 

to visualise NEMO through IF.  However, it was possible to perform IF for nsP3 

and ARTD10 which demonstrated co-localisation between the two proteins. 

Though co-localisation between two proteins via IF does not confirm a definite 

interaction, it does indicate that, at the very least, ARTD10 is interacting with the 

virus machinery, in areas where nsP3 is present.  

Originally, it was postulated that if nsP3 was capable of hydrolysing the ADPR 

moiety from ARTD10 or NEMO in vivo, it would lead to activation of the NFкB 

pathway. However, since it has been shown repeatedly, that CHIKV does not 

activate the NFкB pathway, this now seems an unlikely hypothesis. It could be 

that nsP3 is capable of interacting with either of these proteins through the ADPR 

but without hydrolysis. Also, the interaction between nsP3 and ARTD10 could be 

unrelated to the NFкB pathway. ARTD10 is a highly multifunctional protein that 

is involved in many cellular pathways. In addition to innate immunity, ARTD10 

has been implicated in apoptosis, DNA repair, and cell cycle regulation 

(Kaufmann et al., 2014). It is a highly dynamic protein within cells and has been 

shown to form discrete bodies within the cytoplasm. The function of these 

ARTD10 bodies is unknown but they are not associated with either p-bodies or 

stress granules (Kleine et al., 2012). As a result, Kleine et al. hypothesised that 

ARTD10 may have a role in RNA transport, but not RNA processing. ARTD10 
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has also been shown to interact with p62 which has a role in autophagy 

(Johansen and Lamark, 2011; Kleine et al., 2012). Both of these roles of ARTD10 

may be advantageous for an RNA virus to exploit, as CHIKV is known to induce 

autophagy to delay apoptosis (Joubert et al., 2012). It may be that the CHIKV 

nsP3 macro domain interacts with ARTD10, independent of the role of nsP3 in 

NFкB inhibition, in order to disrupt other pathways or hijack the RNA shuttling 

function of ARTD10 in order to promote virus replication. More research is 

required to confirm an interaction between nsP3 and ARTD10 and to determine 

the function of this interaction.  

In this work, it was necessary to produce many expression constructs of nsP3 

and the macro domain as none were available at the time. These constructs were 

generated with a variety of tags and mutants which may prove useful for further 

work in this field.  
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5.3.3 Chapter summary 

Looking specifically of what cellular functions the nsP3 macro domain may 

possess, it was hypothesised that this N-terminal domain may be capable of 

interacting with the ribosylated proteins involved in the NFкB pathway in order to 

interfere with inflammation. More specifically, the nsP3 macro domain could 

potentially interact with NEMO, a component of the IKK complex and ARTD10, 

which is auto-ribosylated and regulates NEMO through ADP-ribosylation.  

Here, an agreement with the literature, it has been demonstrated that CHIKV 

infection does not activate the NFкB pathway. Looking more specifically at nsP3, 

it has been shown that expression of the protein inhibits the NFкB pathway to 

similar levels of B14, a vaccinia virus protein, well characterised as an NFкB 

inhibitor. Immunofluorescence revealed that p65, a subunit of NFкB, was unable 

to translocate to the nucleus of activated cells expressing nsP3. When using a 

panel of macro domain mutants to assess their ability to inhibit the pathway, it 

revealed that the nsP3 macro domain is at least partly responsible for NFкB 

inhibition. The mutants produced a range of inhibitory phenotypes with some 

mutants exhibiting inhibition similar to wt levels, and others having no inhibitory 

effects at all. When comparing these inhibitory phenotypes to the known 

biochemical properties of the macro domain mutants, it suggested that the 

ADPR-binding capability may be responsible for the macro domain’s inhibitory 

effects.  

When attempting to determine the stage at which nsP3 exerts its inhibition of the 

NFкB pathway, it was shown that this effect occurs after IKK complex activation 

but prior to NFкB nuclear translocation. Due to time constraints it was not 

possible to further determine the step of inhibition.  

Due to the original hypothesis, it was investigated whether nsP3 interacted with 

ARTD10. IF showed co-localisation between the two proteins across different 

stages of infection, indicating that an interaction does indeed occur between 

ARTD10 and the virus machinery. Unfortunately, due to time constraints, it was 

not possible to determine the nature or purpose of this interaction. Although this 

would be an interesting line of inquiry for future research. 
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Chapter 6 Discussion and future perspectives 
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Macro domains are found in the proteins of all species including many positive 

sense single stranded viruses. In CHIKV, as with all alphaviruses, there is a 

macro domain at the N-terminus of nsP3. At the start of this project, it was known 

that nsP3 is required for CHIKV replication, but the function of nsP3, and 

specifically of the macro domain was unclear.  

Recent studies by others have assessed the biochemical properties of the 

CHIKV macro domain which has been shown to possess both ADP-ribose 

hydrolase and ADP-ribose 1”–phosphatase activities as well as affinity for ADR-

ribose and RNA. However, it was unclear which processes these properties 

relate to in the context of infected cells. The macro domain had also been shown 

to be a virulence factor as certain mutations within the domain exhibited a less 

severe morbidity in mice.  

In order to facilitate study of the nsP3 macro domain in this project, optimisation 

was required to determine suitable cell lines for use for CHIKV research and 

optimal methods for us of the replicon and the infectious virus systems available 

to us. Prior to this study, very little work had been conducted on establishing 

suitable cell lines for CHIKV research. In humans, is has been established that 

CHIKV replicates to high titres within the lymphoid tissues, muscles, liver, joints 

and brain in infected individuals. Other studies have aimed to define specific cell 

types in the body that become infected with CHIKV, in order to determine spread 

of the virus through the lymphatic and cardiovascular systems. However, in 

practise, many studies examining the molecular biology of CHIKV have utilised 

cells that are not physiologically relevant to the in vivo  infection such as Vero 

cells, BHK cells and HeLa cells. Being an arbovirus, it is also important to study 

CHIKV in the mosquito vectors; Aedes aegypti and Aedes albopictus. In both 

vector species, it has been shown that CHIKV replicates in most tissues, 

producing high titres in the midgut and salivary glands in particular. In this study, 

we aimed to determine a set of physiologically-relevant cell lines that supported 

the replication of CHIKV in order to study the molecular and cellular biology of 

the virus.  

From a large panel of cell lines, including those that were physiologically relevant 

and other cells previously utilised in the literature, four mammalian and two 
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mosquito cell lines were shown here to support both replicon and virus 

replication, and allowed expression of nsP3 to detectable levels via western 

blotting and IF.  

Now that a range of appropriate and useful cell lines had been established, and 

replicon and virus system had been optimised, the project could then focus on 

the aim of determining the function of the macro domain in CHIKV replication.  

At the start of this project, little work had been conducted specifically on the 

CHIKV nsP3 macro domain, however the three-dimensional structure of the 

domain had been previously solved by x-ray crystallography (Malet et al., 2009). 

This structure revealed the binding pocket of the domain, and, in the same study, 

revealed some of the properties of the domain. It was shown that the CHIKV 

nsP3 macro domain binds ADP-ribose (both monomeric and polymeric forms) 

and RNA. In addition, it possessed ADP-ribose 1″-phosphate phosphatase 

enzymatic activity.  

Informed by the available structures, sequence homology between various 

macro domains, and limited mutagenesis work from the literature (Malet et al., 

2009), here, a panel of mutants were generated in the binding pocket of the nsP3 

macro domain and their replicative phenotypes assessed in both replicon and 

infectious virus. These mutants exhibited a range of replicative phenotypes, 

some of which varied greatly between cell lines. This indicated that the macro 

domain may have some cell-specific functions. In addition, for certain mutants, 

the difference in phenotypes between the two mosquito cell lines used here 

indicated a potential role for the macro domain in inhibiting the RNAi pathway, in 

agreement with the literature (Mathur et al., 2016). 

Over the course of this study, several publications that studied the CHIKV nsP3 

macro domain became available (McPherson et al., 2017; Abraham et al., 2018). 

Of note, it was shown that the macro domain possessed hydrolase activity, 

similar to that previously demonstrated for the hepatitis E macro domain. In 

addition, other groups had generated a similar set of mutations within the macro 

domain binding pocket and assessed each mutant for ADP-ribose affinity and 

hydrolase activity.  
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Combining the phenotypic data from this study with those in the literature 

revealed a strong correlation between ADP-ribose affinity and virus replication. 

Mutants with undetectable ADP-ribose affinity were those less able to produce 

infectious virus in most cell lines.  

McPherson et al. suggested that hydrolase activity is also important for CHIKV 

replication, although the data presented here suggests it is not as essential as 

several macro domain mutants with low hydrolase activity were tolerated, 

producing virus whilst maintaining the mutation. These data are summarised in 

Figure 6.1. 

.  

Figure 6.1 Summary of macro domain mutants biochemical and resulting 
replicative phenotypes. Mutants that possess poor or no ADP-ribose 
affinity either did not produce virus or were capable to low levels. The 
literature indicates this is probably through reversion. Mutants with 
poor hydrolase activity were able to produce virus in most cell types 
and, where possible to assess the sequence of resulting virus RNA, 
the mutation was maintained.  



 
 

214 

 

However, as several mutants possessed poor ADP-ribose binding and poor 

hydrolase activity in combination, it is difficult to draw conclusive conclusions 

from this work alone. Further mutagenesis experiments, using specific mutations 

that affect either hydrolase activity or ADP-ribose binding would be useful in 

determining the importance of these properties. Though this may prove difficult 

as it is likely that hydrolase activity is reliant on ADP-ribose binding.  

Much like with other studies examining the roles of viral macro domains, the data 

produced here indicated that the ADP-ribose 1″-phosphate phosphatase activity 

is not required for replication. Other groups have demonstrated viral macro 

domains such as that of SARS-coronavirus and SFV possess no detectable 

phosphatase activity (Egloff et al., 2006; Malet et al., 2009). The CHIKV macro 

domain mutant Y114A was shown here to replicate broadly to wt levels, yet in 

the literature it was shown to have no detectable phosphatase activity. This 

provides further evidence to the theory that ADP-ribose 1″-phosphate 

phosphatase activity is not the primary function of viral macro domains.  

The data produced by the mutagenesis experiments, and by others in the 

literature, suggested a role for the CHIKV nsP3 macro domain in antagonising 

the innate immunity of infected cells. Recently, it had been shown that ADP-

ribosylation is important in many signalling pathways, including the NFкB 

pathway. Mono-ribosylation of NEMO, a key IKK component, by ARTD10 (which 

is auto-ribosylated), results in suppression of the NFкB pathway as ribosylation 

prevents NEMO from forming an active IKK complex (Verheugd et al., 2013). It 

was therefore investigated whether the CHIKV nsP3 macro domain was able to 

interfere with this pathway potentially through binding and/or hydrolysis of ADP-

ribosylated proteins in this pathway.  

Prior to focussing on nsP3, it was investigated whether the NFкB pathway is 

activated upon CHIKV infection. In agreement with the literature, it was 

demonstrated in the studies described here that the NFкB pathway is not 

activated at any point during CHIKV infection. It was further shown that CHIKV 

cannot suppress an exogenously activated pathway and that, when the pathway 

was activated, CHIKV titres were reduced.  
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A major finding of this project is that nsP3 is capable of inhibiting the NFкB 

pathway. Using expression constructs, tagged nsP3 was expressed in cells that 

were co-transfected with NFкB reporter plasmids. When these cells were 

exogenously activated, those expressing nsP3 demonstrated significantly lower 

levels of  NFкB activation. This was reiterated via IF where, in the presence of 

nsP3, the NFкB subunit p65 remained in the cytoplasm, unable to translocate to 

the nucleus.  

In this project, it was not possible to confirm expression of the macro domain 

(both untagged or flag-tagged) in cells. Therefore, to confirm involvement of the 

macro domain in NFкB inhibition, the macro domain mutants described in 

chapter 4 were engineered into the flag-tagged nsP3 expression construct and 

used alongside the NFкB reporter plasmid system. This luciferase assay 

revealed that the different mutants produced a range of inhibitory phenotypes – 

when the pathway was activated, some nsP3 mutants were completely unable 

to inhibit the pathway, with only one mutant capable of significant inhibition. 

However, the majority of mutants were able to suppress the basal levels of NFкB 

activation.  

When comparing the biochemical data available in the literature as described 

previously to the levels of inhibition exerted by the macro domain mutants, there 

is a strong correlation between ADP-ribose binding and inhibition of the NFкB 

pathway. The three mutants with the lowest affinity for ADP-ribose were also the 

three mutants least capable of NFкB inhibition. The V113A mutant which was 

the only macro domain mutant able to significantly inhibit the NFкB pathway has 

poor hydrolase activity (15% wt) indicating that ADP-ribose hydrolysis is not 

required for this inhibitory affect.  

Further investigation into at what stage in the pathway this inhibition was being 

enacted by the nsP3 macro domain revealed that, contrary to the initial 

hypothesis, the IKK complex was active in nsP3-expressing cells. This indicates 

that inhibition of the NFкB pathway by nsP3 occurs after the formation of an 

active IKK complex but prior to the nuclear translocation of NFкB as summarised 

Figure 6.2. Further work would be required to determine at which stage in the 

pathway the nsP3 macro domain is exerting its inhibitory effects.  
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Figure 6.2 Summary of the effect of nsP3 on the NFкB pathway. It has been 
shown that in nsP3 expressing cells, the IKK complex is active and 
the phosphorylated form of p105 can be detected. It is also known that 
NFкB is not able to translocate to the nucleus in the presence of nsP3. 
This indicates that the stage of inhibition enacted by nsP3 is after p105 
phosphorylation but prior to, or at the stage of nuclear translocation.  

 

It was demonstrated in this work that at no point in CHIKV infection is the NFкB 

pathway activated, nor was an active IKK complex detected in infected cells. This 

implies that CHIKV may have other mechanisms to inhibit or evade detection by 

the NFкB pathway other than via the nsP3 macro domain. Most viruses activate 

the pathway through TLR detection in endosomes, an early stage in CHIKV 

infection prior to translation of the non-structural proteins. Therefore, further work 
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examining other CHIKV proteins, such as the structural proteins, may reveal 

other inhibitors of innate immune pathway, other +ssRNA viruses express 

structural proteins that have been shown to inhibit the NFкB pathway (see Table 

6.1). 

Though it has been clearly demonstrated here that the CHIKV nsP3 macro 

domain is capable of NFкB inhibition, the precise mechanism of action is yet to 

be determined. Many viruses express proteins that are capable of inhibiting the 

NFкB pathway. Multiple DNA viruses express specific proteins that inhibit the 

NFкB pathway. For example, the vaccinia protein B14, used in this study, is 

capable of binding IKKβ and inhibits the IKK complex, is one of seven proteins 

expressed by Vaccinia virus that inhibit the NFкB pathway by various methods. 

Of the +ssRNA viruses, hepatitis C virus, West Nile Virus, Poliovirus, and SARS 

coronavirus all express proteins that inhibit the NFкB pathway, as detailed in 

Table 6.1. For all these proteins, they block the pathway at, or prior to the 

formation of an active IKK complex.  

Virus Protein Mechanism of inhibition 

Hepatitis C virus 

NS5A Inhibits TRAF2 signalling (Park et al., 2003) 

NS5B Inhibits IKKα (Choi et al., 2006) 

Core Inhibits IKKβ (Joo et al., 2005) 

West Nile virus NS1 
Blocks TLR3 activation of NFкB pathway (Wilson 

et al., 2008) 

Poliovirus 3C protease Cleaves p65 (Neznanov et al., 2005) 

SARS-coronavirus M Binds IKKβ (Fang et al., 2007) 

Table 6.1 Proteins expressed by +ssRNA viruses that inhibit the NFкB 
pathway. Reviewed in Rahman and McFadden, 2011. 

 

There are very few examples in the literature of virus proteins that inhibit the 

NFκB pathway past the IKK complex/IκB degradation stage. One example is the 

N protein of Hantaan virus (HTNV), a segmented, negative sense RNA virus. 

This protein has been shown to block nuclear translocation of the NFкB p65 

subunit through an interaction with nuclear pore protein importin α (Taylor et al., 
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2009). Though this protein has little in common with nsP3, and with a distinctly 

different cellular localisation to that of nsP3, this mechanism of inhibition 

highlights that not all inhibitory effects of viral proteins are due to direct 

interactions of components of specific pathways.  

With viruses such as varicella-zoster virus (VZV), it has been observed that NFкB 

transiently translocates to the nucleus and is then sequestered back into the 

cytoplasm through an unknown mechanism (Jones and Arvin, 2006). A more 

detailed time course observing the localisation of p65 could reveal whether this 

occurs with CHIKV. However, it is unlikely that the NFкB inhibition exerted by 

nsP3 is by this mechanism as nsP3 has never exhibited nuclear localisation.  

Many bacterial toxins are ADP-ribosyltransferases, which MARylate various 

cellular proteins to enhance infection and interact with cellular innate immune 

pathways (Cohen and Chang, 2018). This highlights the likelihood of ADP-

ribosylation being a common occurrence in cellular innate immunity pathways. It 

is therefore possible that there are other, currently undiscovered, ribosylation 

events that regulate NFкB pathway. As shown in Figure 6.2, depending on the 

mechanism of activation the p50 subunit of NFкB can be K63-ubiquitinated, 

which signals for proteasome processing of p50 to produce p52 for nuclear 

translocation. There are many instances where ADP-ribose and ubiquitination 

counteract each other, much like with the regulation of NEMO, described in 

chapter 5. It may be possible that the CHIKV nsP3 macro domain interacts with, 

and inhibits the pathway another ADPR-dependent stage.   

Though other viral macro domains have been implicated in antagonising cellular 

innate immunity, none have been implicated in the NFкB pathway. The hepatitis 

E virus macro domain has been shown to inhibit the IFN pathway by blocking 

IRF-3 phosphorylation (Nan et al., 2014). The SARS-coronavirus macro domain 

has also been implicated in the inhibition of the IFN response though the precise 

mechanism is unknown (Kuri et al., 2011). Though CHIKV is known to induce a 

robust IFN response in infected cells, it was not investigated in this project 

whether the nsP3 macro domain interfered with the IFN response, though this 

may be an interesting line of inquiry. No other viral macro domains to date have 

been implicated with the NFкB response. Further work would be required, using 
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similar experiments performed here, to determine whether other viral macro 

domains have similar inhibitory functions to those demonstrated by the nsP3. 

This work highlights the potential for therapeutics to be developed that target the 

nsP3 macro domain. If a therapeutic were capable of inhibiting the macro domain 

from exerting its effects on the NFкB pathway, infected cells may be able to 

successfully eliminate the virus. Alternatively, as it was shown that an activated 

NFкB pathway reduces CHIKV titres, modulation of the immune response could 

potentially be used to treat CHIKV infection. 

Currently, ongoing work within the Harris group and with collaborators is being 

conducted to design small molecular inhibitors for the CHIKV nsP3 macro 

domain. As it is an essential domain required for CHIKV replication that 

possesses a small binding pocket, it was identified as a potential drug target. 

There are, however, some concerns over the potential toxicity, or off-target 

effects of any macro domain inhibitor, as many cellular proteins also possess 

macro domains required for essential functions. However, the macro domains of 

alphaviruses are highly conserved and, although there is some sequence 

homology between the alphavirus macro domains and those found in human 

proteins, it is probable that, via high throughput screening for small molecule 

inhibitors, some will be identified that are specific to the CHIKV macro domain. 

In addition, any compounds found to have potential inhibitory effects can be 

further chemical modification can be performed to enhance effectivity and 

specificity. 

It is important to acknowledge that nsP3 is likely to be a highly multifunctional 

protein. Having investigated the role of the macro domain of nsP3 in isolation, 

future work would be useful to assess the function of the macro domain in 

combination with the other domains; the AUD and HVD as all alphavirus nsP3s 

have evolved to contain these three domains, suggesting shared functions. 

However, several +ssRNA viruses, other than alphaviruses, contain macro 

domains within multi-domained proteins with very little resemblance to nsP3. 

This suggests some shared function of the macro domain across species of 

viruses. Further work would be required to determine whether the findings shown 
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here for the CHIKV macro domain, are shared by the macro domains of other 

viral species.  

In conclusion, work here has not only increased the general knowledge of the 

cellular and molecular biology of CHIKV, but also that of viral macro domains 

across different virus families. The macro domain of nsP3 has been shown to be 

a virulence factor, capable of inhibiting the NFкB pathway. This highlights the 

potential of the nsP3 macro domain as a drug target. Alternatively, immune 

modulation via therapeutics that activate the NFкB pathway may be another 

potential treatment for CHIKV infected patients.  
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Chapter 7 Appendix 

7.1.1 Primers 

 

Primer name Template DNA Destination 
vector 

Primer sequence Ann temp 

(°C) 

Elong. time 

(min:sec) 

P11 
BamHI nsP3 
FWD 
 

CHIKV nsP3-
ZsGreen/SG-Gluc 
replicon 

Or 

CHIKV ICRES wt 

pcDNA3.1+ CCG TAC GGA TCC ACC 
ATG GCA CCG TCG TAC 
CGG GTA AAA CGC ATG 
 

66 1:40 (nsP3) 

2:10 (nsP3-ZsG) 

P21 

XhoI REVnsP3 
 

CHIKV nsP3-
ZsGreen/SG-Gluc 
replicon 

Or 

CHIKV ICRES wt 

pcDNA3.1+ CAC TAG CTC GAG TTA 
CCC ACC TGC CCT GTC 
TAG TCT TAA C 
 

66 1:40 (nsP3) 

2:10 (nsP3-ZsG) 

P58 nsP3 FWD 
BamHI 
 

CHIKV  ICRES 
(wt/mutant) 

pcDNA3.1+ CCG TAC GGA TCC ACC 
ATG GCA CCG TCG TAC 
CGG GTA 
 

60 1:40 

P59 nsP3 stop 
Flag NotI 
 

CHIKV  ICRES 
(wt/mutant) 

pcDNA3.1+ AGC TCA CTG CGG CCG 
CTT ACT TGT CGT CAT 
CGT CTT TGT AGT CCC 
CAC CTG CCC TGT CTA G 
 

60 

 

1:40 

Table 7.1 Primers used for the cloning of various nsP3 expression 
constructs 
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Mutant Primer name Template DNA Primer sequence Ann temp 

(°C) 

Elong. time 

(min:sec) 

Macro 
domain 
D10A 

P26  
nsP3 macro D10A 
FWD 

WT CHIKV ICRES  AAA ACG CAT GGC CAT 
CGC GAA GAA CG 
 

68 14:30 

P27  

nsP3 macro D10A 
FWD 

WT CHIKV ICRES  ACC CGG TAC GAC GGT 
GCC 
 

68 14:30 

Macro 
domain 
G32A 

P30 G32A Q5 FWD WT CHIKV ICRES  AAC CCG CGA GGG TTA 
GCG 
 

70 14:30 

P31 G32A Q5 REV WT CHIKV ICRES  ACC GGG TGG CGC AGT 
TTG CAA GG 
 

70 14:30 

Macro 
domain 
T111A 

P32 nsP3 macro 
T111A FWD 
 

WT CHIKV ICRES  TCT CCT CTC CGC AGG 
TGT ATA CT 
 

58 14:30 

P33 nsP3 macro 
T111A FWD 
 

WT CHIKV ICRES  GGT ATA GCT ACA CTA 
TTT ACT CC 
 

58 14:30 

Macro 
domain 
G112A 

P34 nsP3 macro 
G112A FWD 
 

WT CHIKV ICRES  CCT CTC CAC AGC TGT 
ATA CTC AG 
 

57 14:30 

P35 nsP3 macro 
G112A FWD 
 

WT CHIKV ICRES  AGA GGT ATA GCT ACA 
CTA TTT AC 
 

57 14:30 

Macro 
domain 
V113A 

P36 nsP3 macro 
V113A FWD 
 

WT CHIKV ICRES  CTC CAC AGG TGC ATA 
CTC AGG AG 
 

62 14:30 

P37 nsP3 macro 
V113A FWD 
 

WT CHIKV ICRES  AGG AGA GGT ATA GCT 
ACA C 
 

62 14:30 

Macro 
domain 
Y114A 

P38 nsP3 macro 
Y114A FWD 
 

WT CHIKV ICRES  CAC AGG TGT AGC CTC 
AGG AGG GAA AG 
 

62 14:30 

P39 nsP3 macro 
Y114A FWD 
 

WT CHIKV ICRES  GAG AGG AGA GGT ATA 
GCT AC 
 

62 14:30 

nsP4 GAA P43 nsP4 GAA Q5 
FWD 
 

WT CHIKV ICRES  CGC CAA CAT AAT ACA 
TGG AGT CGT CTC CGA 
TG 
 

68 14:30 

P44 nsP4 GAA Q5 
REV 
 

WT CHIKV ICRES GCG CCG ATG AAG GCC 
GCG CAC GC  
 

68 14:30 

Table 7.2 Primers used for Q5 mutagenesis. 
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Primer 
name 

Forward primer Reverse primer Ann temp (°C) Reference 

E1 qRT-
PCR 
primers 

GCATCAGCTAAGCTCCGCGTC GGTGTCCAGGCTGAAGACATTG 56 °C 
(Pongsiri et 
al., 2012) 

AUD 
qRT-PCR 
primers 

GCGCGTAAGTCCAAGGGAAT 
 

AGCATCCAGGTCTGACGGG 
 

56 °C 
(Chiam et al., 
2013) 

Table 7.3 Primers used for qRT-PCR.  

 

Primer name Template DNA Primer sequence Ann temp 

(°C) 

Elong. time 

(min:sec) 

P62  
Macro PCR Prod for 
seq FWD 
 

cDNA from RNA 
TRIzol extracted 
from infected cells 

GGG ACG CAA GTT TAG ATC 
G  
 

57 1:00 

P63  
Macro PCR Prod for 
seq REV 
 

cDNA from RNA 
TRIzol extracted 
from infected cells 

CGC AGT CTA TGG AGA TGT 
G  
 

57 1:00 

Table 7.4 Primers used for amplification of macro-domain coding 
sequence containing fragment from cDNA for sequencing. 

 

Primer name Used to sequence Primer sequence 

P1 nsP3 macro SeqP Macro domain of replicon and 
virus constructs 

CATGTGTCACCAGCAACACTGAGATG 
 

T7 FWD seq  pcDNA3.1+ constructs TAATACGACTCACTATAGGG 

P62  
Macro PCR Prod for seq FWD 
 

PCR product formed from cDNA 
for sequencing 

GGGACGCAAGTTTAGATCG  
 

Table 7.5 Primers used for DNA sequencing 
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7.1.2 Plasmid maps 

 

Figure 7.1 Plasmid map of pcDNA3.1+. Enzyme set shown are unique 
cutters. Plasmid map created using SnapGene software. 



 
 

225 

 

 

Figure 7.2 Dual luciferase (dLuc) CHIKV replicon plasmid map. Enzyme 
set shown are unique and double cutters. Plasmid map created 
using SnapGene software. 
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Figure 7.3 CHIKV wt ICRES virus construct plasmid map. Enzyme set 
shown are unique and double cutters. Plasmid map created using 
SnapGene software. 
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7.1.3 Supplementary figures 

 

Figure 7.4 Nucleotide and amino acid sequences of wt macro domain and 
mutations generated. (A) wt macro domain sequence with codons 
and corresponding residues selected for mutagenesis highlighted in 
green. (B) Mutations (generated into the infectious CHIKV construct 
individually) in the nucleotide sequence are highlighted in blue, 
alongside resulting residue changes; D10A, G32A, T111A, G112A, 
V113A and Y114A.  
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