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Abstract

Spatio-temporal processes are phenomena evolving in space, either by be-

ing a point, a field or a map and also they vary in time. A stochastic

process may be proposed as a vehicle to infer and hence offer predictions

of the future. In this era high dimensional datasets can be available where

measurements are observed daily or even hourly at more than one loca-

tions along with many predictors. Therefore, what we would like to infer

is high dimensional and the analysis is difficult to come through due to

high complexity of calculations or efficiency from a computational aspect.

The first Reduced-dimension Dynamic Spatio Temporal Models (DSTMs)

were developed to jointly describe the spatial and temporal evolution

of a function observed subject to noise. A basic state space model is

adopted for the discrete temporal variation, while a continuous autore-

gressive structure describes the continuous spatial evolution. Application

of DTSMs rely upon the pre-selection of a suitable reduced set of basis

functions and this can present a challenge in practice.

In this thesis we propose a Hierarchical Bayesian framework for high di-

mensional spatio-temporal data based upon DTSMs which attempts to

resolve this issue allowing the basis to adapt to the observed data. Specif-

ically, we present a wavelet decomposition for the spatial evolution but

where one would typically expect parsimony. This believed parsimony can

be achieved by placing a Spike and Slab prior distribution on the wavelet

coefficients. The aim of using the Spike and Slab prior, is to filter wavelet

coefficients with low contribution, and thus achieve the dimension reduc-

tion with significant computational savings.

We then propose an Hierarchical Bayesian State-space model, for the es-

timation of which we offer an appropriate Forward Filtering Backward

Sampling algorithm under an MCMC procedure. Then, we extend this

model for estimating Poisson counts and Multinomial cell probabilities

through proposing a Conditional Particle Filtering framework.
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Chapter 1

Introduction

There is a plethora of phenomena that can be expressed and evolve through time and

space. Historical processes such as the growth or decline of populations; migrations;

epidemics; or even physical, biological, environmental processes are showing changes of

spatial patterns through time. An important and revolutionary consideration in sta-

tistical science for these kind of processes was the marriage of time series and spatial

processes. This marriage is of paramount importance as it is not deemed sufficient to

consider these processes as solely one spatial process at a given time point or as a time

series process at a given location; the behaviour and correlation of those patterns are

important to be captured in a spatio-temporal manner.

Several models have been developed in order to predict the spatial features of those

processes, to forecast the temporal patterns, but also to account for dependence in

the parameter inference. Cressie’s comment on Handcock and Wallis (1994) and the

development in Goodall and Mardia (1994) provided us with the introduction of spatio-

temporal models. These models were then extended in terms of a combination of spatial

and dynamical prediction, known as the kriged Kalman Filter modelling (Mardia et al.,

1998). Maximum likelihood estimation algorithms were introduced in Brown et al.

(2001) to estimate the rainfall levels in Lancashire, England. Furthermore, a Bayesian

paradigm of these models was applied to rainfall precipitation data in Venezuela (Sansó

and Guenni, 1999) while the Hierarchical Bayesian spatio-temporal framework where

this thesis is based on was proposed in Wikle et al. (1998). Finally, extensions for

non-stationary spatio-temporal datasets were developed by Stroud et al. (2001).

1
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However, nowadays, we have access to large datasets for which we want to extract

information of their spatio-temporal patterns. Additionally, we want to conduct in-

ference on the parameters without having to deal with the curse of dimensionality as

there is limited computational power. Given that, spatio-temporal models of such na-

ture have been developed by considering the use of smart and efficient approximations

of orthogonal functions. Wikle and Cressie (1999) introduce the Reduced-dimension

Dynamic Spatio-temporal Models (DSTMs). Their estimation procedure is based on

the kriged Kalman Filter of Mardia et al. (1998) with the novel step of conducting di-

mension reduction through orthonormal basis decompositions. Since then, extensions

have been proposed from an inferential perspective, such as in Xu and Wikle (2007)

from an E-M algorithm estimation. Bayesian approaches to this model were introduced

in Wikle et al. (2001), Wikle (2003) and Xu et al. (2005). Finally, a further extension

have been proposed via a kernel representation in Wikle (2002) and more specifically

for Poisson count data for the cloud coverage intensity.

Having said that, the scope of this thesis is to extend the model of Wikle and Cressie

(1999) under a Bayesian Hierarchical setting (Wikle et al., 1998) where we can still

introduce sparsity but also preserve the important features and dependencies of those

patterns. Another significant feature of our proposed methodology is the use of wavelet

basis functions for the orthogonal decomposition in order to approximate the processes

of interest. Wavelets are strong detectors of discontinuities but their key characteristic

is that only a few bases can approximate very well an underlying function. Daubechies

(1992) provides a thorough review on wavelets which are proved to be efficient in numer-

ous applications of different fields where functions subject to noise need to be estimated

(such us in Antonini et al. (1992), Leung et al. (1998), Demiralp et al. (1999) or Xue

et al. (2003)).

Consequently, the expected sparsity of wavelets can be then taken advantage by a

prior belief which introduces sparsity. Such priors have been developed by Park and

Casella (2008) and Ishwaran and Rao (2005) in order to shrink the regression coeffi-

cients and extract the important predictors. Thus, through this thesis we will take

advantage of the shrinkage properties of the Spike and Slab prior (Ishwaran and Rao,

2005) and output important spatio-temporal patterns with the help of wavelets. This

already brings our modelling framework to a Bayesian setting. It is known that Markov

Chain Monte Carlo (MCMC) approaches are used by far in the literature in order to

extract posterior estimates of the parameters of interest. However, due to the tempo-
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ral aspect of our modelling framework, the sampling of specific dynamic components

through MCMC leads to non-convergence. Thus, for these parameters, the Forward

Filtering Backward Sampling (FFBS) algorithm will be used for the posterior sampling.

Additionally, we extend our modelling framework for Poisson and Multinomial spatio-

temporal processes. However, as the observations are not Gaussian, the same inferential

framework on the dynamic components cannot be used. For that reason, we introduce

a Particle Filtering framework with the inclusion of Gibbs sampling and Metropolis-

Hastings steps while we also use static parameter estimation (Storvik, 2002). These

algorithms have been developed by Lindsten et al. (2014) and Andrieu et al. (2010)

and have not been used yet in the context of spatio-temporal models.

Therefore, our proposed methology is then split in two parts, the first one is estimat-

ing Gaussian spatio-temporal process and conducting inference via MCMC procedures;

the second part is predicting non-Gaussian spatio-temporal process through Particle

Filtering (PF) methods. One challenge of our approach is that we wish to introduce

adaptivity in the proposed model through the dataset but also keep its computational

efficiency and approximation to the spatio-temporal patterns at a high level. Indeed,

it is commonly admitted that there is no panacea for these types of datasets, yet, espe-

cially when there are complex underlying characteristics on top of the high dimensions.

That is the reason why we firstly introduce sparsity with our model but also through

Bayesian techniques we let the data adaptively inform us of the spatio-temporal de-

pendencies that lie in the background.

Furthermore, in order to test the predictive ability of the proposed models, we provide

in each case simulation studies and applications on pollution and traffic flow datasets.

Our findings include advantages and drawbacks of the proposed framework. One draw-

back is the computational intensity of our modelling approach. However, there are only

a few big data applications that can run efficiently in commercial laptops or desktops.

Thus, in the following thesis we provide a literature of the different tools that we com-

bine together into a flexible modelling approach. We then proceed on our proposed

methodologies with simulation and application results.

Chapter 2 offers a literature review of the different topics combined in the thesis. In

a first section, we give an introduction to spatio-temporal processes. Specifically, we

firstly explain what a time and a spatial process is and then we proceed on the spatio-
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temporal one. We then provide a presentation of the Reduced-dimension Dynamic

Spatio-temporal Model in which our thesis is based on. Finally, in the last section we

will provide a thorough detail of the wavelet basis decomposition and wavelet shrinkage

as wavelets will be an important feature in the proposed methodology.

Chapter 3 describes our whole Bayesian Modeling approach (framework, assumptions,

parameters) of Reduced-dimension DSTMs under a wavelet basis decomposition for

the approximation of the processes of interest in a Gaussian setting. Furthermore, we

provide simulation studies to evaluate our model’s performance and then we proceed

to an application to pollution data in Athens.

Chapter 4 extends the Reduced-dimension DSTMs for Poisson distributed spatio-

temporal temporal processes. We then propose two modeling procedures based on

the application of interest. Additionally, due to observations being non-Gaussian, we

provide new algorithmic procedures for the inferential part, that being the Particle

Filter (PF). Furthermore, we provide simulation studies to evaluate our model’s per-

formance and then we proceed to an application to traffic flow data in one of the biggest

motorways in the UK, the M6.

In Chapter 5 we provide an extension to the Reduced-dimension DSTMs for Multi-

nomial distributed spatio-temporal temporal processes under Particle Filtering tech-

niques for the parameter estimation. We then show a simulation study for the model’s

efficiency and we provide an application by revisiting the traffic flow data of Chapter

4.

In Chapter 6 we summarise the findings, advantages and drawbacks of the proposed

methodology but also comment on further considerations and future work.



Chapter 2

Literature Review

2.1 Spatio-temporal Modelling

In this section we introduce what is a spatial process and a time series process with

their combined version that results in a spatio-temporal process. Then we will move

on to the dynamic modelling formulation of a spatio-temporal process, the known

Dynamic Spatio-temporal Models (DSTMs) in section 2.2 and more specifically on the

Dimension Reduced one that introduces an effective suggestion for dimension reduction.

Our main focus of research evolves around the Dimension Reduced DSTMs where is

the most volume of our literature review that is explained.

2.1.1 Spatial processes

Spatial processes represent how a phenomenon can be evolved in a spatial region.

Suppose we consider the observed measurements Ys = {Ys1 , . . . , Ysn} at locations

s1, . . . , sn ∈ Ds, where Ds specifies a continuous spatial region. Then, there are three

fundamental types of spatial data:

• Point-referenced or geostatical processes, where the data Ys are randomly measured

at selected locations which can vary through an area such as air pollution in the rural

and suburban areas. In the rest of the thesis, our main focus will be on processes of

that nature.

• Lattice Processes, which are summaries of variables in partitioned grids of an area

with boundaries that are defined either from the user or because the nature of the

5
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data have already pre-defined regions, such as the number of accidents per post code

in Leeds.

• Point processes, in which Ys are happening randomly and in random locations of a

specified area, such as looking at breast cancer cases in the county of Yorkshire.

In spatial processes, the way measurements are sampled spatially plays a crucial role as

there are different approaches and correlation structures that we can consider for the

spatial dependences and the expansion of these processes in space. These examples and

numerous modelling approaches are discussed in textbooks such as in Cressie (1992),

Banerjee et al. (2014) and Cressie and Wikle (2015).

2.1.2 Time series processes

A time series process sampled at discrete time is defined as a series of observations

Yt = {Y1, Y2, . . . , YT } observed at the discrete time points t = 1, 2, . . . , T ∈ DT , where

t denotes the time index.

These processes for example can explain phenomena such as the daily prices of fi-

nancial assets, daily temperatures in a particular city, annual precipitation levels of a

lake, number of earthquakes in a city and so forth. What makes time series different

for spatial processes is the way the time points are collected, as it introduces particular

correlation or dependence structure between measurements or observations. Therefore,

in order to understand and model these processes, it is necessary to use statistical mod-

els that consider dependence structure in time. The study of such models is known as

time series analysis and has been discussed in many textbooks, see e.g. Brockwell and

Davis (1991), Shumway and Stoffer (2000) and Lindsey (2004).

2.1.3 Spatio-temporal Processes

Spatio-temporal processes are a combination of a spatial process and a time series pro-

cess, i.e., they evolve through both time and space. Let {Y (s, t) : s ∈ Ds, t ∈ Dt}
denote the spatio-temporal process that expresses a random phenomenon evolving in

the spatio-temporal set Ds × Dt. This for instance can be the daily wind speed at

a specific coordinate system s = (latitude, longitude, altitude)> and Dt denoting the

days, or it can express the monthly air pollution of n = 100 weather stations in the UK

with s = (s1, . . . , s100)> and Dt denoting the months.
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The process can be formulated accordingly in terms of either a spatial varying time

series model or a temporally varying spatial model by writing Y (s, t) = Ys(t) and

Y (s, t) = Yt(s) respectively. The study of such models has been discussed in many

textbooks, see e.g. Banerjee et al. (2014) and Cressie and Wikle (2015) while for the

rest of the thesis we will focus on the Dynamic Spatio-temporal Models and more

specifically the Dimension Reduced ones.

2.2 The Dynamic Spatio-temporal Model

In this section we start by reviewing the work that was conducted by Wikle and Cressie

(1999). Specifically, we will discuss the general framework of modelling point referenced

spatio-temporal processes. Then, we will present how they adapted this approach to

allow application to high dimensional datasets through truncated basis decomposition

in section 1.1.2 before describing in section 1.1.3 the implications of this truncation on

their model and inference. Finally, in section 1.1.4 we will talk about the limitations

of their problem and how we attempt to address these in latter chapters.

Consider the measurements of a spatio-temporal process Y (s, t), with s ∈ Ds ⊂ R
denoting the locations and t = 1, 2, 3, . . . denoting the discrete time points. Wikle and

Cressie (1999) assumed that these Y (s, t) correspond to noisy observation of an unob-

served, underlying process X(s, t) which is denoised and smoother than the observed

process Y (s, t) and can be written in terms of a linear model

Y (s, t) = X(s, t) + ε(s, t) (2.1)

where ε(s, t) is the measurement error that we will consider as a spatio-temporal white

noise process with zero mean and Var(ε(s, t)) = σ2
ε In, ∀s, t.

Wikle and Cressie (1999) then consider the smooth process X(s, t) to be further com-

posed of XK , which is modelled to evolve over time through a stochastic integro-

difference equation and a spatially correlated error process, i.e.,

X(s, t) = XK(s, t) + ν(s, t) (2.2)
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where ν(s, t) represents the small scale spatial random variation which is considered as

a spatially variant zero mean process which is static in time.

The component XK(s, t) is assumed to unfold in terms of a state integro–difference

equation with an autoregressive structure

XK(s, t) =

∫
D
ws(u)XK(u, t− 1)du+ η(s, t) (2.3)

where η(s, t) signifies the spatially coloured error process and ws(u) is a weighting func-

tion or redistribution kernel that represents the contribution of location u at t−1 to the

value at location s at time t with |
∫
D ws(u)du| < 1 which indicates spatial stationarity.

For more information on spatial, temporal and spatio-temporal stationarity the reader

should refer to Cressie and Wikle (2015).

Several comments are in order. There are assumptions to be met in order to consider

this model plausible and meet spatial, temporal and spatio-temporal criteria. Firstly,

the innovation process ε is uncorrelated with the underlying process X and both the

spatial and temporal errors ν and η. Furthermore, we require several independence cri-

teria between the separate components. Specifically, for all s, r ∈ D ⊂ R and discrete

time points t 6= τ :

E(ε(s, t)ε(r, τ)) = 0

E(ν(s, t)ν(r, τ)) = 0

E(η(s, t)η(r, τ)) = 0

Additionally, for all r, s, t and τ , between the spatial and temporal variation components

ν and η we should have independence, i.e., E(ν(s, t)η(r, τ)) = 0. Finally, for all r, s and t

there should be independence between the stochastic integro- difference equation (2.3)

and the spatial variation component ν and between the stochastic integro-difference

equation in previous time and another location with the temporal component η as well,

i.e.,

E(ν(s, t)XK(r, t)) = 0

E(η(s, t)XK(r, t− 1)) = 0
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2.2.1 Dimension Reduction through Orthonormal Basis

Enviromental datasets are often high dimensional due to measurements that can be

available anytime from weather stations around the globe, for instance air pollution

measurements which are observed daily or even hourly at more than one hundred

weather stations or locations along with many predictors, especially in large countries.

Therefore, it is high dimensional and the analysis is difficult due to high complexity of

calculations or efficiency from a computational aspect.

To tackle the difficulties caused by dimensionality Wikle and Cressie (1999) proposed

a dimension reduction technique for spatio-temporal processes which allowed them to

make inference about their model. Specifically, they approximate the functions of in-

terest XK(s, t−1) and ws(u) in (2.3) by a truncated set of orthonormal basis functions,

in which case a basis decomposition of a process XK(s, t) is derived as

XK(s, t) =
K∑
j=1

αt(j)φj(s) (2.4)

for locations s ∈ D ⊂ R and discrete time points t = 1, 2, . . . whereαt = (αt(1), . . . , αt(K))>,

are assumed as zero-mean time series which represent the basis coefficients that change

through each time point and the sequence φj(s), with i = 1, 2, . . . ,K are the basis

functions chosen for each location which are complete and orthonormal.

Thus, by defining the vector φ(s) = (φ1(s), . . . , φK(s))> we can also define the n×K
basis matrix Φ where K indicates the amount of truncation that is induced,i.e.,

Φ =


φ(s1)>

...

φ(sn)>


which finally gives us the decomposition

XK(t) = Φαt (2.5)

with XK(t) = (Xk(s1, t), . . . , Xk(sn, t))
>. Due to the completeness of the orthonormal

basis the weighting function can also be decomposed in terms of the chosen basis
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functions, each one for a different location.

ws(u) =
K∑
i=1

bi(s)φi(u), (2.6)

for u, s ∈ D and where s = {s1, . . . , sn} and b(s) = (b1(s), . . . , bK(s))> are unknown

but unstochastic parameters which define the K × n matrix

B =


b(s1)>

...

b(sn)>


which again gives us the decomposition

w = B>Φ (2.7)

with w = (ws1(u), . . . , wsn(u))>.

It is believed is that, for many real datasets, the important dynamics of the process

can be accurately modelled with just a few basis functions. However, this requires us

to choose the most appropriate basis functions. This is what we are trying to tackle in

the next chapters.

2.2.2 State-space representation

The key factor into resorting into a basis decomposition is to reduce an initially com-

plex model with extra diffusive dynamics into a much simpler one. In that simpler

model a linear combination of those complicated processes can be incorporated. The

introduction of this linearity allows us to use known statistical inference approaches.

Hence, by making use of the orthonormality properties of the orthonormal basis Φ

and substituting into the measurement equation (2.1) and state process (2.3) we can

derive the observation equation of Y (s, t) in terms of the decomposed terms of the
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desired smooth process X(s, t)

Y (s, t) = Φαt + ν(s, t) + ε(s, t) (2.8)

ν(s, t) ∼ N(0, σ2
νS)

ε ∼ N(0, σ2
ε I)

with S specifying an appropriate spatial correlation function and by the model assump-

tions we can derive that the zero-mean time series components in (2.3) are independent

with the spatial components ν and ε , i.e., E(αitv(s)) and E(αitε(s, t)) = 0 respectively,

for all s, t and i = 1, . . . ,K, while for the state equation (2.2) we can derive

Φαt = Bαt−1 + ηt (2.9)

By writing everything in a matrix form for each si with i = 1, . . . , n and solving for αt

we can write the state equation (2.9) as,

αt = Hαt−1 + Jηt (2.10)

where we assume that n ≥ K, with ηt = (η(s1, t), . . . , η(sn, t))
> and we define J =

(Φ>Φ)−1Φ> and (Φ>Φ)−1 non singular and HK×K = JB. If the truncation parame-

ter K changes with time, then H becomes a time varying evolution matrix and can be

estimated appropriately under the state space framework. More details on state space

models can be found on Shumway and Stoffer (2000).

Considering the orthogonality property of the basis, equation (2.10) can be simpli-

fied with H = Φ>B and Jηt = Φ>ηt and thus we write the final state equation

as

αt = Φ>Bαt−1 + Φ>ηt, ηt ∼ N(0,Ση) (2.11)

Throughout this thesis we are using the same basis functions for ws(u) and XK(t),

however, one can choose different ones which will result in a slightly different form

state equation in (2.11). More details and approaches can be found in Cressie and

Wikle (2015).
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2.2.3 Prediction and Inference

Wikle and Cressie (1999) fitted their model partly by using the Kalman Filter (Kalman,

1960) framework for the state vector αt and simple spatial kriging for the derivation of

the underlying process Xk(s, t).

Specifically, given the measurement equation (2.8) and the state process equation (2.11),

the optimal predictor for αt up to t is expressed recursively according to a Kalman Fil-

ter:

α̂t|t ≡ E[αt|Yt, . . . ,Y1] = α̂t|t−1 +GtYt −Φα̂t|t−1 (2.12)

with mean square error for t ≥ 1

Pt|t ≡ E[(αt|t − α̂t|t)(αt|t − α̂t|t)>] = Pt|t−1 −GtΦPt|t−1 (2.13)

with Gt specifying the Kalman gain at time t given by

Gt = Pt|t−1Φ
>[Var(εt) + Var(νt) + ΦPt|t−1Φ

>]−1 (2.14)

with α̂t|t−1 indicating the mean E(αt|Y1:t−1), i.e., the forecast of αt at time t given up

to time t − 1. Similarly Pt|t−1 indicates the the forecast of the covariance matrix Pt

at time t given up to time t − 1. This means that when Yt is observed, the dataset is

updated to Y1:t and then α̂t|t is the mean E(αt|Y1:t).

After deriving the optimal estimation α̂t, then, the optimal predictor for the unob-

served process can be obtained through linearity in the Gaussian case:

X̂(s, t|t) = φ(s)>α̂t|t + Cν(s)>(CY0 )−1Yt, (2.15)

with Cv(s) = E[ν(s, t),νt] ≡ (Cv(s, s1), . . . , Cv(s, sn))>, CY0 = Cov(Yt,Yt) and the

conditional prediction error variance for the optimal predictor is

E[X(s, t)− X̂(s, t|t)|Yt, . . . ,Y1] = φ(s)>Pt|tφ(s)− Cv(s)>(CY0 )−1Cv(s)

− 2φ(s)>Cov(α̂t|t,Yt)(C
Y
0 )−1Cv(s) + Cv(s, s) (2.16)

A few comments are in order. The second term of (2.15) is a type of simple kriging

applied to the spatial error term ν(s, t). The higher truncation level we have, i.e., the

lower K, the more X(s, t) looks like the simple-kriging predictor in the presence of
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measurement error. The first term in (2.16) represents the prediction error variance

from XK while the second and third represent the simple-kriging prediction variance

of the ν process while the last term is a correction term that was derived from the

covariance between the Kalman filter prediction of XK through both the use of the

Kalman Filter prediction of α and the simple kriging predictor. Analogously to the

optimal predictor, as the truncation integer K decreases, the prediction error variance

looks more and more like the simple kriging variance.

For the parameter estimation under the DSTM, Wikle and Cressie (1999) mention that

in order to derive the optimal predictor, the covariance parameters and basis functions

should be known. However, in practice, the covariance parameters and the coefficient

matrixB will be subject to estimation. That means that the exact conditional expecta-

tions cannot be derived. This approach is similar to simply conducting a Kalman Filter

in time or simple kriging in space where the covariance parameters need to be estimated.

Additionally, it is assumed that the underlying process XK includes any non sta-

tionary structure through the evolution matrix Φ>B and the temporal error process

ηt. The non-dynamic spatial components are assumed to be composed of ν and ε by

considering a nugget effect, i.e., estimating the variance σε while considering ν to be

an isotropic process. This nugget effect σε is estimated empirically through an ap-

propriate choice of a variogram. Moreover, the covariance of the process ν is again

estimated empirically through σν = CX0 − CXK0 where CX0 = Cov(X(t), X(t)) and

CXK0 = Cov(XK(t), XK(t)) = ΦJCX0 J
>Φ> for chosen basis functions Φ and thus by

examining different choices of covariance functions for the measurement error variance,

the truncation parameter K is chosen arbitrarily. Finally, when these estimates are

derived, the Kalman Filter is then used in order to estimate the model parameters.

Finally, Wikle and Cressie (1999) suggest a plethora of complete and orthonormal

basis functions such as wavelets and orthogonal polynomials. In their study, where

they modeled winder surface data, they used an empirical orthogonal function basis

set, which are widely used for spatial prediction (Cohen and Jones, 1969) and are help-

ful when there is an anisotropic and heterogeneous covariance structure (Creutin and

Obled, 1982).
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2.2.4 Criticism and Motivation for our work

In this section we discuss the issues and weaknesses of Wikle and Cressie (1999) original

approach that we attempt to address in this thesis. We provide a summary of the work

of others in addressing the same issues and outline our proposed solutions. These are

described in more detail in our later chapters.

Truncation The choice of the type and number of basis functions play a crucial

role in the quality of inference. The number of truncated locations and time points

is solely according to an empirical decomposition and thus the predetermination of

the truncation parameter K is considered an arbitrary choice. In the case where the

data are on an irregular grid then in order to implement their approach, Wikle and

Cressie (1999) mention that an interpolation is needed onto the observations to trans-

form them into a regular gridded setting. This is because in real life datasets the space

is continuous and the data are not evenly distributed spatially. Wikle and Cressie

(1999) suggest the use of empirical orthogonal functions. Specifically, since the state

and observation processes vary continuously in space, a ’pre-gridding’ procedure (Karl

et al., 1982) should be applied. They use a simple space-time prediction framework in

order to obtain smooth predictions of the underlying process on the prediction grid of

interest given the irregularly spaced data. They then perform a principal component

decomposition on the field of interest in order to derive the empirical orthogonal basis

functions on a regular grid. Algorithmically, they firstly predict the underlying process

X at each spatial location for each time point by using biharmonic splines (Sandwell,

1987). They then, separately, for each spatial location on the prediction grid, smooth

over time using a local Gaussian kernel with a time-smoothing parameter chosen by

generalised crossvalidation (Hastie and Tibshirani, 1990, pg. 49-52). This procedure

gives the gridded underlying process Xo, from which the covariance estimate Co0 is

estimated through the method of moments. Finally, another suggested method is the

use of Karhunen-Loève expansion in the continues space in order to derive the basis

functions under a space-time Kalman Filtering framework (Wikle, 1996).

Another argument is that the data which are gathered often have very different di-

mensions in space and in time. Specifically, they may have many locations but only a

few time points or vice versa. If there exist only a few time points then firstly, K is

required to be small and makes the choice of the basis a challenge in practice. Secondly,

the inference is uncertain, since we have way more parameters to infer on than data
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points. Therefore, the arbitrary choice of the number of basis and thus the truncation

level for such datasets has many drawbacks in both inference and in model uncertainty

in terms of fitting which thus makes the choice of the type of basis a challenge in prac-

tice.

Ideally one would desire an adaptive procedure where the truncation parameter is

chosen during the estimation of the parameters. Furthermore, since we would wish to

retain a dimension reduction and thus a parsimonious modeling framework, a basis de-

composition which reduces the inference complexity and induces this sparsity should be

considered. Therefore, we propose a Wavelet Basis decomposition in Chapter 3 and we

continue using it in the rest of the thesis. The reason we choose Wavelets especially for

the spatial evolution is because we would only expect parsimony since only a few basis

can already provide us with a very good approximation of the functions or processes of

interest.

Inference Wikle and Cressie (1999) in order to estimate the model parameters under

the DSTM are using the method of moments which is an extremely inefficient in the case

of many parameters to be estimated. Novel inferential stages are given in Xu and Wikle

(2007) from an E-M algorithm estimation perspective while the Bayesian approach to

the model was worked out long before that, starting with Wikle et al. (2001), Wikle

(2003) and Xu et al. (2005). The hierarchical Bayesian approach is by far the most

flexible way to model Dynamic Spatio Temporal Models for real-world problems. Our

innovative approach is that under a Bayesian Hierarchical representation we are taking

advantage of the wavelets sparsity via using a Spike and Slab prior while the choice

of the covariance structure of the spatial wavelet coefficients can be chosen by the

researcher anytime. This framework is introduced in Chapter 3, while it will be similar

to the rest of the thesis.

Non-Gaussian extensions In real life applications, most of the problems are non-

Gaussian. For instance, some pollutants are Gamma distributed, or if we would like to

work on the number of accidents varying spatially and through the years we would use

a Poisson or a Multinomial distribution. For instance, if we consider that we observe

accident counts in specific areas then the signal is Poisson distributed, i.e., Yt ∼ Po(λt)

which consequently signifies that the underlying process subject to estimate is the mean

vector λt. Only a few extensions have been developed for multivariate non-Gaussian

processes of that nature while there is a plethora of datasets where there is a clear
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non-normality. Some attempts have been done via a kernel representation in Wikle

(2002) for Poisson count data for the cloud coverage intensity. Wikle and Cressie

(1999) though do not provide a non-Gaussian version of their methodology.

In order to expand our proposed DSTM for non-Gaussian data, in Chapter 4 we will

investigate the Poisson case along with a novel step of spatial autoregressive mean effect

and finally we will investigate the Multinomial case in Chapter 5.

2.3 Wavelets

The main goal of using wavelets throughout our work is to approximate and denoise

functions subject to noise. This approximation can be achieved via orthonormal basis

decompositions which under wavelets’ framework we can introduce sparsity that can

then be taken advantage of. More specifically, consider the vector of observations

y = (y1, . . . , yn)> that is derived from the following model of non-parametric regression

and we wish to estimate the unknown function f through the noisy process y, for

x ∈ [0, 1]:

yi = f(xi) + ei (2.17)

with i = 1, . . . , n and where xi = i/n and the i.i.d. ei ∼ N(0, σ2).

In order to achieve this kind of estimation in general but more specifically for our

work, we are going to use wavelet basis for the denoising and approximation of spatio-

temporal functions. Therefore, in this section we will start by reviewing what an

Orthonormal Basis in section 2.3.1 and consequently we will define a Wavelets basis in

section 2.3.2. In section 2.3.3 we will describe the Discrete Wavelet Transform (DWT).

Furthermore, in section 2.3.4 we will describe known Wavelets that can be used for

decomposition. Finally, in section 2.3.5 and 2.3.6 we will talk about the applications

of wavelets in denoising and the Bayesian approaches that have been developed on

wavelets.

2.3.1 Definition of Orthonormal Basis

Orthonomal Bases for Vectors A basis of a vector space S is defined as a sub-

set of u1, . . . , un vectors that are linearly independent and span S, i.e., Span{x : x =
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α1u1 + α2u2, . . . , αnun, α1, α2, . . . αn ∈ R} = S which α1, . . . , αn are called the coeffi-

cients of the base field.

Then, by considering < . > being the inner product, a basis is called orthogonal if

< ui, uj >= 0 for i 6= j and < ui, ui >= ‖u‖, for all i. When < ui, uj >= 1, for

i = j then the basis vector {uj} is called orthonormal. Thus, if Φ = {φj}j∈I is an

orthonormal basis, then every element of x can be written as x =
∑
φ∈Φ < x,φ > φ.

Orthonomal Bases for Functions For a real valued function f in L2(R), i.e.∫∞
−∞ |f(x)|2dx < ∞, Φ = {φi(x)}i∈N is an orthonormal basis in L2(R) for an interval

I if, by defining the inner product between f and φ being < f, φ >=
∫
f(x)φ(x)dx we

have

• < φi(x), φj(x) >=
∫
I φi(x)φj(x)dx = 0 for i 6= j

• < φi(x), φi(x) >=
∫
I φi(x)φi(x)dx = ‖φi(x)‖2 = 1

and then, f(x) can be decomposed as f(x) =
∑n

i=1 αiφi(x) where the coefficients can

be derived through orthogonality as αi =
∫
I f(x)φi(x)dx =< f, φi >.

The most common orthonormal basis is the Fourier series where by taking I = [−π, π]

it can be shown that{
1√
2π
,
sin(x)√

π
,
sin(x)√

2π
, . . . ,

sin(nx)√
π

,
cos(x)√

π
, . . .

cos(nx)√
π

}
, n ∈ N

forms an orthonormal basis on I.

2.3.2 Definition of Wavelets

Definition 2.3.1. Wavelets are a family of functions {ψjk, φjk} on the Hilbert space

L2(R) of one or several variables L2(Rd) that can represent (or interpolate) other

functions and are satisfying three properties (Jorgensen, 2006):

• They form a basis for L2(R) or L2(Rd) and own orthogonality properties

• The individual ψjk and φjk arise from two generating functions called the mother and

father wavelet respectively which relate the two operations of scaling and translating

described bellow.
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Daubechies (1992) defined the ψ wavelet function in the Hilbert space L2(R) of

squared integrable functions on real line such that

ψjk = 2j/2ψ(2jx− k) j, k ∈ Z (2.18)

while φjk(x) is derived from the father or scaling wavelet function φ(x) and it can

be calculated from the dyadic dilations of φ defined as

φjk(x) = 2j/2φ(2jx− k) (2.19)

and the whole family is an orthonormal basis in L2(R).

• They are indexed by integer translations for and any powers of scaling.

For a function f ∈ L2(R) we can decompose a function ψ(x) on L2(R) such that, for a

chosen J with {φJk(x), {ψjk(x)}j<J}k∈Z that gives us

f(x) =
∑
k∈Z

αkφJk(x) +
∑

j<J,k∈Z
βjkψjk(z),

with

αjk =

∫
R
f(x)φjk(x)dx and βjk =

∫
R
f(x)ψjk(x)dx

with J defined as the maximum resolution.

Parsimony in Wavelet Decompositions For many smooth functions, or smooth

ones with some jump discontinuities or inhomogeneities, the decomposition is sparse.

Sparsity is the most desirable attribute of the wavelet coefficients which is interpreted

as lots of the wavelet coefficients being zero or close to zero. Moreover, by consider-

ing the energy,
∑

i f(xi)
2 =

∑
i,j α

2
j,k, and by taking sparsity into consideration, this

means that the energy of f is now focused into fewer coefficients without losing any

information. This means that only a few basis functions can provide us with a good

approximation of a function which for high dimensional problems is a key factor.

Finally, wavelets are designed to have compact support which means increased sparsity

and it allows localisation in both time and frequency.
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Vanishing Moments The main idea is that if and only if the wavelet scaling func-

tion can generate polynomials up to degree L − 1, then we say that a wavelet has L

vanishing moments. More vanishing moments means that the scaling function can rep-

resent more complex functions.

So, we would like to construct a wavelet function ψ(x) which corresponds to differ-

encing up to degree xL−1, so that
∫
xlψ(x)dx = 0, for l = 0, . . . , L which L stands for

the moments. Since a function can be written in McLaurin series, we would have that∫
f(x)ψ(x)dx = 0 + 0 + 0 + · · ·+

∫
xL

L! + . . . .

That means that the more vanishing moments a wavelet function can have, the more

complex functions can be represented with sparse wavelet coefficients since they can

ignore certain trends and can be sensitive to higher degree oscillations.

2.3.3 Discrete Wavelet Transform

By assuming that f was observed or sampled discretely, as f(xi), with i = 1, . . . , N ,

N = 2j , ti = i/N) and ψjk = (ψjk(1/N), ψjk(2/N), . . . )T then the discrete wavelet

transform is defined as

f =

∞∑
k=−∞

αjkψjk

with ψjk = 2j/2ψ(2jx− k) and so the coefficients can be estimated via

α = Wf

where W is an orthonormal matrix, i.e., WW T = I and the i-th row ofW is ψjk(x1), ψjk(x2), . . . .

SinceW is an orthogonal matrix, then ‖α‖2 = αTα = (Wf)T (Wf) = fT (W TW )f =

‖f‖.

2.3.4 Examples of Wavelets

Haar Wavelets The Haar Wavelet is the simplest wavelet which is also discrete. The

scaling function is defined as φ(x) = 1[0≤x≤1] while the mother wavelet can be defined
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as:

ψ(x) =


1, 0 ≤ x < 1

2

−1, 1
2 ≤ x < 1

0, otherwise

Any continuous real function with compact support which can be approximated by

the linear combinations of the dyadic dilations of φ(2nx) and their shifted functions.

Furthermore, any continuous real function defined on [0, 1] can be approximated by

the linear combinations of the constant function 1, ψ(2nx) and their shifted functions.

Haar Transform The Haar transform can be derived through as we call the Haar

matrix but via its normalised form. Thus, the Haar transform of a value xn is derived

as yn = Hnxn. Due to orthogonality properties H−1 = H> and thus the inverse Haar

transform is given as xn = H>n yn.

For example, the normalised Haar matrix for a vector x of n = 4 is given as:

H4 =
1

2


1 1 1 1

1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2


and consider the vector x = (0.82, 0.48,−1.26,−1.18)>. The discrete Haar transform

is derived as

y4 = H4x4 =
1

2


1 1 1 1

1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2




1

1

−1

−1

 =


0

0

2

0


Daubechies Wavelet Daubechies (1992) defined the Daubechies wavelets that gen-

erate orthonormal basis in L2(R) where the scaling and translation functions are related
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to each other with the following way

ψ(x) =
√

2
L−1∑
k=0

gkψ(2x− k)

φ(x) =
√

2

L−1∑
k=0

hkφ(2x− k)

where L stands for the vanishing moments. Generally the wavelets of a class L van-

ishing moments have to be composed such that they satisfy the properties defined in

section 2.2.3. For more details on the mathematical formulation of these wavelets, the

reader can direct to Daubechies (1992).

For instance, the decomposition under the normalised Daubechies matrix of vanish-

ing moments L = 10 for a vector x of n = 4 is given as:

y4 = D4x4 =


0.500 0.500 0.500 0.500

0.837 −0.483 −0.129 −0.224

−0.129 −0.224 0.837 −0.483

0.183 0.683 −0.183 −0.683




1

−1

1

−1

 =


0

1.414

1.414

0


In practice one does not need to decompose by matrix multiplications as it creates

computational inefficiency for high dimensions. Therefore, the Fast Wavelet Transform

(FWT) algorithm was developed for filtering and decimating. The combination of com-

putational efficiency and approximating discontinuous functions makes FTW in some

applications better than the Fast Fourier Transform (FFT) (Daubechies and Sweldens,

1998) and this is what we are going to focus on for the rest of the thesis.

2.3.5 Applications of Wavelets to denoising

Due to wavelets’ sparsity properties and ability to create fast decompositions, they have

been used in numerous applications. More specifically, in image compression (Antonini

et al., 1992), in spectroscopy for characterisation of substances (Leung et al., 1998), for

modeling event potentials for cognitive information processing (Demiralp et al., 1999),

in electroencephalogram analysis (Xue et al., 2003) or for the computation of connec-

tion weights in networks (Jemai et al., 2011).

We are mainly particularly interested in their application based on denoising and esti-
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Figure 2.1: Coefficients of the wavelet transforms under a linear function f(x) = 4x
for vector f(x). On the bottom left the Haar wavelet was used. On the bottom right
Daubechies with m = 10 vanishing moments was used.

mation of a function. Returning to the problem specified in (2.17), the process can be

easily multiplied with a wavelet matrix W due to linearity as follows:

z = Wy = W (f + e)

z = Wf +We

z = w∗ + η (2.20)

with i.i.d. η ∼ N(0, σ2).

Our main focus is that through the specification of the wavelet matrix W to estimate

the new process z which is an approximate version of the underlying process y. As

wavelets provide us with parsimonious representations but nonetheless, good approxi-

mation, the key factor into estimating the new process z is via thresholding procedures

on the wavelet coefficients w∗. In order to conduct thresholding, some techniques have

been developed in the literature, either Frequentist or Bayesian, where the threshold

levels for the choice of the important coefficients is specified or estimated. For the

non-important ones that would indicate that they are bellow the threshold level and

thus should be set as zero. Additionally, the noise of the transformed model will also

be white noise and hence is spread evenly over all wavelet coefficients. The estimation

and thresholding procedures under wavelet decomposition are called shrinkage methods
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and are explained in the following section.

2.3.6 Shrinkage Methods

Considering the parsimonious representation that wavelets introduce, frequentist and

Bayesian methods have been developed for the estimation of w∗ in (2.20). These meth-

ods are called shrinkage as in order to estimate w∗ in (2.20) eventually a thresholding

(shrinking) estimation can be build. That means that given a wavelet coefficient z and

a threshold we can remove the ones that are smaller than a specified threshold λ > 0

and keep the ones that are larger as they will be interpreted as the important ones to

be kept.

Following (2.20), for the successful application of wavelet shrinkage some criteria are

needed to be satisfied. Consider the observed subject-to-noise function f in (2.17).

Then, through the discrete wavelet transform that is adopted and due to linearity, a

modification or shrinkage is accomplished to the noisy function’s wavelet coefficients,

and afterwards through the inverse wavelet transform the function is estimated.

Under a frequentist framework, the discrete estimator f̂ = (f̂1, . . . , f̂n) will be judged by

the mean squared error MSE(f̂ , f) = n−1E‖f̂ − f‖2`2 = n−1
∑

i = n−1E[f̂(xi)− f(xi)].

Furthermore, the estimator f̂ requires to be with high probability as smooth as f and

should achieve almost minimax risk over one of a wide range classes, including the class

in which linear estimators do not achieve the minimax case (Vidakovic, 2009, pg. 168).

Several thresholding choosers have been proposed in the literature, such as the hard

and soft thresholding functions (Donoho and Johnstone, 1994). Moreover, the SURE

thresholding method which however, this does not work well when the true signal

coefficients are highly sparse and thus a hybrid of universal and SURE thresholding

maneuver can be performed again only on certain levels above a given primary resolu-

tion. Additionally, a cross-validation techinque which was introduced by Nason (1996)

and a two fold cross validation as well (Nason, 2002) and finally the False discovery rate

(FDR) method by Abramovich and Benjamini (1996) which uses hypothesis testing for

the sparsity of the wavelet coefficients. Abramovich et al. (2006) demonstrated that

there is a connection between FDR and Minimax estimators. That is that FDR is at

the same time asymptotically minimax for a wide range of loss functions and parameter

spaces. The algorithm and a wider explanation on FDR is on (Nason, 2010, pg. 100)
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and (Abramovich and Benjamini, 1996, pg. 5).

Adaptive Bayesian Shrinkage The main idea is to establish a Bayesian shrinkage

rule by imposing a prior onto the wavelet coefficients. This will result into posterior

summaries where the appropriate shrinkage will be decided adaptively.

Consider again the model in (2.17). Under a Bayesian approach what we like is to

capture the expected sparsity of the wavelet coefficients through a suitable model, typ-

ically a prior on the coefficients w∗. There are a number of different approaches to

this problem but we will focus on two which are described in Nason (2010), as they are

similar to our Bayesian approach that will be presented and discussed in the following

chapters.

A model of hierarchical structure and was proposed by Chipman et al. (1997). Their

approach is based on the Stochastic Search Variable Selection model introduced by

George and McCulloch (1994) with the assumption that σ2 is known. Specifically, they

consider the model:

z|w∗, σ2 ∼ N(w∗, σ2)

with a prior distribution of mixed Gaussians defined as:

w∗|γj ∼ γjN(0, (cjτj)
2) + (1− γj)N(0, τ2

j ) with

γj ∼ Ber(pj)

where the hyperparameters pj , cj and τj depend on the level j to which corresponding

w∗ belongs.

The prior parameteter τj is set to be small and Chipman et al. (1997) proposed that

values that are contained in the interval (−3τj , 3τj) should be thought as zero. Addi-

tionally, c2
j is set to be much larger than one and thus it can be noted that a wavelet

coefficient a-priori has the possibility to be very large with probability pj or small with

probability (1− pj).

The posterior distribution w∗|z can be derived through the Bayes Theorem, consid-
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ering that we have a mixture of priors as follows:

p(w∗|z, γ) = p(w∗|z, γj = 1)P (γj = 1|z) + p(w∗|z, γj = 0)P (γj = 0|z)

while obviously the marginals can be derived as

P (γj = 1|z) =
pjp(z|γj = 1)

pjp(z|γj = 1) + (1− pj)p(z|γj = 0)
and

P (γj = 0) = 1− P (γj = 1|d) = (
(1− pj)p(z|γj = 0)

pjp(z|γj = 1) + (1− pj)p(z|γj = 0)

and the conditionals as:

w∗|z, γ = 1 ∼ N(
(cτ)2

σ2 + (cτ)2
,
σ2(cτ)2

σ2 + (cτ)2
) and

w∗|z, γ = 0 ∼ N(
τ2

σ2 + τ2
,
σ2τ2

σ2 + τ2
)

and thus the Bayes rule under squared error loss for w∗ at level j, which is also the

shrinkage rule is calculated as:

ŵ∗π(z) = E(w∗|z) = P (γj = 1) · (cjτj)
2

σ2 + (cjτj)2
+ P (γj = 0) ·

τ2
j

σ2 + τ2
j

This quantity can be considered as a smooth interpolation between two lines through

the origin with slopes
σ2(cτ)2

σ2 + (cτ)2
and

σ2τ2

σ2 + τ2
(Vidakovic, 2009, pg. 251).

Another approach takes into consideration the high level of sparsity of the wavelet

coefficients, i.e. many of them are exactly zero and thus excluded from the wavelet

regression and only a few non-zero. Hence, the previous method is quite inappropriate

to capture this level of sparsity. However, if we would like a mixture of something

that is exactly zero and something else, then this problem would be solved. With this

justification Clyde et al. (1998) suggested a mixture of an indicator function based on

a weight parameter γj on the variance of a Gaussian distribution which brings us into
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the form of a Spike and Slab prior. By setting the priors:

w∗|γj , σ2 ∼ N(0, (1− γj) + γjcjσ
2)

λν/σ
2 ∼ χ2

ν

where λ and ν are fixed hyperparameters and the i.i.d. γj ∼ Ber(pj) which also are

indicating the selected basis element, i.e., column of W. Specifically, if γj is close to 1,

then w∗ for each element j will have a higher variance deviating from zero, while if it

is closer to zero then it will vary from zero with a variance of one.

The posterior mean of w∗|γ can be calculated as

E(w∗|γ) = Γ(In + C−1)−1z

where Γ and C are diagonal matrices with γij and cij respectively.

The posterior mean is attained by averaging over all models. Model averaging leads to

the multiple shrinkage estimator of w∗

E(w∗|z) =
∑
γ

p(γ|z)Γ(In + C−1)−1z

where π(γ|z) is the posterior probability of a particular subset γ. Because of the com-

plexity of 2n calculations for the posterior probabilities, Clyde et al. (1996) approxi-

mated it by either conditioning on σ2 or by assuming independence on the elements in γ.

The approximate model probabilities, for the conditional case, are functions of the

data through the regression sum of squares and are given by:

π(γ, z) ≈ πapprox(γ|y) =
∏
j,k

ρ
γj,k
jk (1− ρjk)1−γjk

ρjk(z, σ) =
αjk(z, σ)

1 + αjk(z, σ)

αjk(z, σ) =
pjk

1− pjk
(1 + cjk)

−1/2 · exp

(
S2
jk

2σ2

)
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S2
jk = z2

jk/(1 + c−1
jk )

The pjk can be used to obtain a direct approximation to the multiple shrinkage Bayes

rule. The posterior mean for w∗jk is ≈ ρjk(1 + c−1
jk )−1djk and it can be seen as a level

dependent wavelet shrinkage rule, generating a variety of non linear rules.

Donoho and Johnstone (1994) and Donoho et al. (1996) proposed for the selection of

the universal threshold rejection regions of suitable hypotheses tests. Testing a precise

hypothesis in the Bayesian analysis, requires a prior that has a point mass component

which then under the null hypothesis the Bayes factor is calculated. Another approach

is that from Abramovich et al. (1998), where they use weighted absolute error loss and

use empirical Bayes for the thresholding hyperparameters.

In Chapter 3 we discuss the advantages of using a non-conventional spike and slab

prior setting in terms of adaptivity but also flexibility in the wavelet coefficients’ infer-

ence. Furthermore, we propose a matrix variate normal extension for high dimensional

systems.

Application of wavelets on DSTMs Throughout this thesis we will get engaged

with high dimensional Spatio-temporal processes and more specifically, the Dimension

Reduced DSTMs under a wavelet basis decomposition. Considering that the existence

of discontinuities in a spatial weight function, wavelets would capture those discontinu-

ities and reduce the parameter space. Furthermore, a Bayesian approach for shrinkage

similar to the approach of Clyde et al. (1998) will be used in order to estimate the

spatial wavelet coefficients. Finally, for the temporal ones, Kalman Filtering methods

(Kalman, 1960) will be used under a Gaussian DSTMs in Chapter 3 while for the

non-Gaussian ones, a combination of particle methods will be used.

2.3.7 Comparison of Wavelets to other bases

Wavelets combine an elegant mathematical approach and computational efficiency.

Specifically, in comparison to the Fourier bases, both wavelets and splines are either

equally efficient or even computationally cheaper. Furthermore, wavelets provide lo-

calisation in contrast to Fourier series. They are strong detectors of discontinuities

while they preserve a cheap computational decomposition under shrinkage properties

as the large coefficients are shrunk while the low ones are treated as noise and thus
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discarded. Specifically, a DWT is conducted under a level of O(n) iterations while FFT

is conducted in terms of O(n log(n)) (Ramsay and Silverman, 2007).

Additionally, wavelets combine the frequency-specific approximating power of the Fourier

series in time but also the spatial localised properties of splines. Thus, in the context

of a spatio-temporal system, wavelets can provide us with the advantages of both the

Fourier series and splines. Moreover, their theoretical properties adapt well to differ-

ent degrees of smoothness and regularity. For instance, splines are mostly used when

there is a lot of smoothness where more derivatives are used and the knots can be

even chosen for each sample point which makes the user to have a system of a high

number of basis functions and thus parameters. Furthermore, in B-splines, the knots

are mostly regarded as fixed in order for the loss function to produce low bias and for

computational convenience. On the other hand, the use of free-knot splines, which is a

much more realistic scenario for complex and discontinuous data, consists of choosing

an appropriate loss function which is problematic and the computational challenges

are severe. Added to that, a low dimensional B-spline system is preferable to a higher

one due to the trade-off between bias and variance in terms of the loss function. That

means that a tolerance value should be set on the bias in order to achieve a stable

estimation of the smoothness interpolation of the data. On the contrary, with wavelets

we need less basis functions to estimate even a smooth function.



Chapter 3

Gaussian Reduced-dimension

Dynamic Spatio-Temporal

Models

3.1 Introduction

In this chapter we are going to focus on the reduced-dimension DSTM introduced by

Wikle and Cressie (1999). Specifically, we are choosing a decomposition of wavelet basis

functions. The advantage of using wavelets is that they introduce parsimony and only

a few basis can be used in order to achieve a good approximation of a function and also

localise possible discontinuities. This means that if the function of interest shows these

discontinuities, then this will influence only the wavelets ψjk near it and consequently

only those coefficients will be affected. Therefore, their compact support makes it easier

for approximation of non-smooth functions. Thus, through a wavelet decomposition for

the approximation of a process under a Reduced-dimension DSTM, one would typically

expect sparsity. This believed parsimony can be then imposed through an appropriate

prior belief in a Bayesian framework. This chosen prior belief is a complex form of a

Spike and Slab prior (Ishwaran and Rao, 2005) where it introduces adaptivity to our

data. The motivation of our work lies in the combination of Wavelets and DSTM as

they are not widely used together.

29
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Recall the model framework explained in Chapter 2,

Y (s, t) = X(s, t) + εt

X(s, t) = XK(s, t) + νt

XK(s, t) =

∫
D
ws(u)XK(u, t− 1)du+ η(s, t) (3.1)

with XK(s, t) being the underlying process to be approximated through the basis de-

composition XK(s, t) = ΦTαt. Additionally, let ws(u) being the spatial contribution

of location u at time t− 1 to the location s at time t which again is approximated via

w = B>Φ. Finally, we model the measurement component εt ∼ N(0, σε), the spatial

error component νt ∼ N(0, σνS) and the temporal error component ηt ∼ N(0,Ση).

The proposed methodology that will be discussed in details in the following sections

considers a Bayesian framework for the model parameters in (3.1). Specifically, we use

a Spike and Slab prior for the weight function onto the elements of B. Through that,

we can focus on weights where we would expect to have a high contribution of one

location to another, while the negligible ones would be considered close to being zero.

Therefore, an adaptive framework for dimension reduction can be achieved. Addition-

ally, we combine the Forward Filtering Backward Sampling (FFBS) algorithm for the

stochastic parameters—or states— αt into our Bayesian framework, which under these

models have not been used considering a Spike and Slab hierarchy and wavelet basis

decomposition.

Furthermore, we offer a flexible modelling procedure for the covariance estimation un-

der a preferable Bayesian setting. Specifically, an appropriate spatial correlation matrix

can be used and through our Bayesian framework, the smoothing and/or scaling pa-

rameters can be estimated. For the temporal covariance of the evolution process, Ση,

numerous structures can be specified and therefore different Bayesian techniques can

be used according to how we expect the underlying process to vary in time. For the

measurement process’ error variances σε and σν , due to the signal-to-noise ratio the

inference on those variances have been proved to be challenging and we offer a few

suggestions for a stable system.

In this chapter, we test our methodology’s performance on simulated data where our

results show that our methodology is advantageous. Specifically, our model can ap-

proximate the underlying process XK well and reconstruct it in scenarios where we
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had both a discontinuous process and a smoother one. Additionally, the majority of

the Spike and Slab elements B are estimated fairly well and we can successfully recon-

struct the weight function which is a challenge in real life applications. However, we

noticed that due to the high signal-to-noise ratio, Spike and Slab has a difficulty to es-

timate perfectly all of the elements B. Finally, the covariance estimation is successfully

conducted, however, there is a trade off in the computational complexity as we need

more computational power for the system to converge. Finally, the higher amount of

locations n we have, again the computational complexity increases exponentially. Last

but not least, at the end of this chapter we offer a real life application to pollution data

under our proposed methodology. Our findings include that the proposed methodology

is adapted for trended observations but we also derive causal relationships between

locations from the estimation of the weight function.

3.2 Details of the Problem

In most real applications, the spatial part of the process Y (s, t) is usually high di-

mensional which consequently brings a high dimension in the parameter space. This

results to the problem of both the choice of basis and the truncation level as well.

As discussed in Chapter 2, Wikle and Cressie (1999) predefine the truncation level K

by the empirical covariance matrix. In any case, this method works under fixing the

truncation level K and then conducting the appropriate inference. If we consider a non

parsimonious basis function, for instance, such as Fourier basis, but introduce sparsity

via a small number of K, the model will miss in sense of adaptivity and then important

information of the data might be lost. That will consequently affect the inference of

the parameters and thus the reconstruction of the process XK and the weight function

ws(u).

Considering the choice of basis under a Reduced Dimension DSTM, researchers used or-

thogonal polynomials, empirical orthogonal functions (EOF), wavelets, process normal

modes, or splines (e.g., Wikle (1996); Mardia et al. (1998); Wikle and Cressie (1999);

Berliner et al. (2000); Stroud et al. (2001); Wikle et al. (2001); Hsu et al. (2004); Xu

et al. (2005); Johannesson et al. (2007); Cressie et al. (2009)). Finally in Wikle et al.

(2001), a combination of equatorial normal mode (ENM) orthogonal basis functions

and Wavelet for small scales under autoregressive priors was used.
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Furthermore, apart from the truncation level, Wikle and Cressie (1999) are using a

combination of the method of moments, a simple spatial kriging and Kalman Filter

(Kalman, 1960) inferential procedure. The drawback of fixing K is that the lower the

truncation level is, the higher the prediction error variance will be. Additionally, for the

derivation of the optimal spatial predictor, essentially, the covariance parameters are

considered known which instead due to the Kalman Filter recursions they should always

be subject to estimation. Researchers in the past have used several inferential strate-

gies under DSTMs, such as generalised expectation maximisation (GEM) algorithms

instead of the method of moments or the simple EM algorithm but in order to increase

the efficiency, Xu and Wikle (2007) had to ensure that the likelihood moves monoton-

ically. Furthermore, a Group Lasso technique has been used by Bigot et al. (2011) but

only on the covariance parameters while Berliner et al. (2000) used a Bayesian setting

with the use of empirical orthogonal functions (EOFs) as basis functions. More tra-

ditional techniques, such as REML was used for the covariance parameter estimation

as Furrer et al. (2006). Finally, a hierarchical Bayesian framework was used in Wikle

et al. (2001) for modelling tropical surface winds, however, the authors have considered

extra parameters that dealt with the wind direction.

In this thesis we will engage with three main issues. Firstly, we will tackle the curse

of dimensionality in the parameter space by using an adaptive framework of Bayesian

inference while preserving a parsimonious representation in basis functions. This makes

our metholodogy efficient in the sense that we will not decompose the covariance param-

eters into basis representation which could add up more dimensions to the parameter

space as previous authors did. Secondly, the truncation level instead of being manually

chosen for the spatial coefficient matrix B, will become adaptive while preserving most

of the spatial information. Finally, the filtering and smoothing techniques deployed

for the inference of αt provide a fast and accurate estimation for approximating the

underlying process XK(s, t).

3.3 Proposed Methodology

In order to address the problems in Wikle and Cressie (1999), three concepts will be

discussed. The first deals with the choice of the basis of the orthonormal decomposition

of the underlying process and weight function; in this thesis a wavelet basis is proposed

for this purpose. The second which was mentioned in the previous section, deals with
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Bayesian inference which considers a multivariate form of a Spike and Slab prior for

the spatial coefficient matrix B. The combination of these two concepts brings us into

an adaptive and efficient scheme in our methodology for the truncation level. Further-

more, the Forward Filtering Backward Sampling (FFBS) algorithm will be introduced

along with the Kalman Filtering recursions for the Bayesian estimation of the temporal

parameters αt. Finally, for the covariance estimation numerous Bayesian approaches

will be introduced according to the desired structure one wishes to considered based

on the type of the application.

3.3.1 Bayesian Framework

The main goal is to be able to estimate the redistribution’s kernel coefficient matrix B,

where the spatial contribution dynamics can be explained by using a sparse represen-

tation. Thus, by considering a prior kernel which induces parsimony, we will produce

an adaptive framework where dimension reduction can be achieved. An intuitive ex-

planation of Spike and Slab hierarchy is given in section 3.3.2 while the final model

hierarchy is introduced in section 3.3.3.

Additionally, we are interested in the estimation of the dynamic coefficients αt, where

each future value depends on the previous past value. One may consider this prob-

lem through state space models and work accordingly via the Kalman Filter recursions

(Kalman, 1960). More details will be provided bellow in the separate inference sections

for each parameter.

For the variance and covariance parameters some comments are in order. Firstly,

σv and σε cannot be inferred together. This is due to their ratio σε/σv which is the

signal to noise ratio, i.e., how much the initial disturbance disperses when the variance

of the kernel in the weighting function is larger. Therefore, either the ratio should be

considered known and conduct inference into one of the two, or consider one of the two

variances to be known.

Moreover, for the covariance structure of the temporal components αt, Ση, can be

inferred through standard Bayesian procedures if it is time invariant, either with an

Inverse Wishart prior, or if it considered to be diagonal, i.e., Σ = σηIn×n , with a

common inverse gamma prior on ση or it can be considered diagonal with a different

variance for each location s, then n separate inverse gamma priors should be considered.
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3.3.2 Spike and Slab prior on the Coefficient matrix B

Spike and Slab priors (Ishwaran and Rao, 2005) is a hierarchy of mixtures of a point

mass distribution close to zero and a right tailed one. The main idea is that the coeffi-

cients in B that are expected to be zero will be filtered out through the hierarchy while

the rest will be estimated appropriately. The logic behind this prior is similar to the

Bayesian Lasso (Park and Casella, 2008), however, it is more powerful in case that the

number of parameters is greater than the data points where in DSTMs that is mostly

the case. This will yield posterior estimates that tend to involve only a small propor-

tion of the parameters, hopefully avoiding over-fitting of the data. Prior to introducing

the spike and slab hierarchy, lets us introduce the notions of vec and Kronecker product.

For a K × n matrix B the vec operator rearranges the elements of B into a vector,

by stacking the columns of B one after the other. For instance, if B = [b1, b2, . . . , bn]

where each bi = [b1i, b2i, . . . , bKi]
> represents the i-th column of B, for i = 1, . . . , n

then

vec(B) =


b1

b2

...

bn


is a Kn× 1 vector.

The Kronecker product of an m × n matrix Γ and a p × q matrix Ψ is the mp × nq
matrix defined by

Γ⊗Ψ = (γijΨ)

For example, if m = n = p = q = 2 then we have

Γ⊗Ψ =

[
γ11Ψ γ12Ψ

γ21Ψ γ22Ψ

]
=


γ11ψ11 γ11ψ12 γ12ψ11 γ12ψ12

γ11ψ21 γ11ψ22 γ12ψ21 γ12ψ22

γ21ψ11 γ21ψ12 γ22ψ11 γ22ψ12

γ21ψ21 γ21ψ22 γ22ψ21 γ22ψ22


Therefore, under a Spike and Slab hierarchy we have the following formulation accord-

ing to our case by considering that our data satisfy (2.8) and (2.11) and by defining

vec(B) = (β1(s), . . . ,βK(s))> and a K × K diagonal matrix Γ = diag(γ1, . . . , γK)

where each γk = ρkτ
2
k represents the variance of each level K = 1, . . . of the spatial
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wavelet coefficients the hierarchy is written as

Yt|αt, σ2
v , σ

2
ε ∼ N(Φαt, σ

2
vS + σ2

ε I)

αt|B,Ση ∼ N(Φ>Bαt−1,Φ
>ΣηΦ)

vec(B)|Γ ∼ N(0,Γ⊗ I)

ρk|v0, q ∼ (1− q)δv0(.) + qδ1(.)

τ−2
k |ω1, ω2 ∼ G(ω1, ω2)

(3.2)

where q ∼ U(0, 1) or can be Beta distributed and σ2
ε ,σ

2
v and Ση can be considered

either known or inferred. Additionally, v0 specifies a number very close to zero and the

function δ(.) is the dirac delta or point mass function.

A few comments are in order. Firstly, the formulation of vec(B)|Γ ∼ N(0,Γ ⊗ I)

is the vectorised multivariate normal version of the matrix normal distribution of the

random variable matrix B, i.e., B ∼ N(B0, I,Γ) where in this case B0 is a n × K
location matrix of zeros and the identity n×n matrix I and the K×K matrix Γ being

the scale matrices. In this case, as Γ signifies the variance for each level of the wavelet

coefficients, the main idea is to filter out the zero wavelet coefficients in each level by

deriving a very small posterior mean, through the hypervariances γk. This means that

each level of coefficient has the same variance— or else it has the same magnitude

of shrinkage or non shrinkage— for all the locations. Small hypervariances will give

a high concentration over zero, while high hypervariances will escalate the non zero

ones. Furthermore, as v0 is considered to be a value very close to zero and is chosen

along with the gamma density so, the hypervariances have a spike at v0 and a right

continuous tail which actually gives us a bimodal distribution for γk. The complexity

parameter q controls the size of the model since it adjusts how likely the latent variable

ρk is equal to one or v0. The usage of a continuous prior over q offers an adaptive kind

of estimation for the actual size of vec(B).

In order to derive the conditional posteriors, we will consider the prior belief that

is in the vectorised form of the coefficient matrix B which is a multivariate Gaussian

with a zero vector of means and the Kronecker product of the two covariance matrices

and ΓK×K and IK×K . However, in order to sample B the rest of the hierarchy param-

eters need to be updated as well. This will be achieved via Gibb’s sampling steps for

each parameter. In the following sections we will describe how each update is performed.
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Finally, the use of this flavour of spike and slab prior instead of a conventional one

by placing straightforwardly a mixture of a point mass at zero and a Gaussian provides

us with more flexibility and adaptivity. Specifically, by considering the mixture in the

variance components of the coefficient matrix we can choose the desirable variability

among levels and locations. For instance, in our setting we suggest that the levels will

vary differently as we would expect specific levels to capture more detail than oth-

ers. One could generalise for both varying levels and locations. Consequently, this

variability can be adaptively estimated and interpreted through this modelling process.

3.3.3 Summary of the Modeling Framework

In this part, we provide a summary of the proposed approach. Specifically, in table

3.1 we give a summary of the framework of the proposed methodology, the model,

the parameters to be estimated and their relative priors, followed by the parameters’

update via Gibbs sampling, along with the deterministic steps that are used for the

estimation of the underlying process and the weighting function. In order to fit the

model in table 3.1 via Gibbs sampling, it is required to update the parameters in an

iterative procedure based upon their conditional distributions. In each section we will

explain each of the following updates in more detail.

• Update B|αt,αt−1,Γ,Ση through the Spike and Slab hierarchy via Gibbs sampling

• Update the hyperparameters of Spike and Slab via Gibbs sampling, i.e.,

1 Update for each level βk|α,Γ, ρ, τ2
k , q

2 Update ρk|βk, τ2
k , q, v0

3 Update τ2
k |βk, ρk, q, ω1, ω2

4 Update q|ρk, v0

• Update αt|B,Ση,Yt via Kalman Filter and Forward Filtering Backward Sampling

algorithm

• Update Ση|αt,αt−1,B of the temporal components αt based on three structures

1 If Ση = σ2
ηI under an inverse gamma prior then update via Gibbs sampling

σ2
η|αt,αt−1,B

2 Ση = σηI with σ2
η = (σ1η,

2 . . . , σ2
nη)
> with n independent inverse gamma priors,

i.e., update σ2
η|αt,αt−1,B via Gibbs sampling
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3 Full structure on Ση with an Inverse Wishart prior, i.e., updating via Gibbs sam-

pling Ση|αt,αt−1,B

• Update σ2
ν , σ

2
ε |αt which signify the spatial covariance and measurement variance

respectively through:

1 Update σ2
ν |σ2

ε ,αt by fixing σ2
ε to be known under an inverse gamma prior

2 Update σ2
ν |σ2

ε ,αt by fixing σ2
ε /σ

2
ν to be known under an inverse gamma prior

• Update spatial correlation function’s S parameters under gamma prior for selected

correlation functions.

Data:

Noisy spatio-temporal process: Y, T × n matrix

Smooth spatio-temporal process: X, T × n matrix

Integro-difference component: XK , T × n matrix

Redistribution kernel: w, n× n matrix

Approximations:

XK = αΦ, αT×n, coefficients of Wavelet matrix Φn×K

ws = BΦ, BK×n, coefficients of Wavelet matrix Φn×K

Model:

Yt = Φαt + vs + εt vs ∼ N(0, σ2
vSλ), εt ∼ N(0, σ2

ε I)

αt = Φ>Bαt−1 + ηt ηt ∼ N(0,Ση)

Parameters and Prior distributions:

α0|0 ∼ N(m0,P0|0) m0, P0|0 prior mean and covariance respectively.

vec(B)|Γ ∼ N(0,Γ⊗ I) Γ = diag{γ1, . . . , γk}, γk = ρkτ
2
k

ρk|v0, q ∼ (1− q)δv0(.) + qδ1(.) q ∼ U(0, 1)

τ−2
k |ω1, ω2 ∼ G(ω1, ω2) βk ∼ N(0, γkI)

σ2
v ∼ IG(δ0, ξ0), λ ∼ G(u1, u2) Ση ∼ IW(ν,Q) or σ2

η ∼ IG(ψ1, ψ2)

Table 3.1: Framework of the model

3.4 Updating the parameters

In the following parts we provide thorough proofs of updating the parameters of the

model formulation in Table 3.1. In section 3.4.1 the Spike and Slab hierarchy parame-

ters’ full conditional posterior results are derived. Then, in section 3.4.2 the explanation
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of the Kalman Filter recursions and Forward Filtering Backward Sampling algorithm

for the sampling of αt is provided. Furthermore, in section 3.4.3 the updating of tem-

poral covariance structure Ση is provided for the three different scenarios. Finally, in

sections 3.4.5 and 3.4.6 the updating of the measurement variances σ2
ε and σ2

ν along

with the spatial correlation parameters is provided.

3.4.1 Updating B|αt,αt−1,Γ,Ση

In order to reduce the complexity of calculations we will rewrite the likelihood of αt in

a vectorised form. Thus, by setting J = Φ>Σ−1
η Φ we can derive

p(vec(α)|Y1:T ,B,Ση) ∝
T∏
t=2

exp[vec(αt)
> − vec(B)>(α>t−1 ⊗Φ>)>J−1

×(vec(αt)−α>t−1 ⊗Φ>)]

= exp(
T∑
t=2

(vec(αt)
> − vec(B)>(α>t−1 ⊗Φ>)>J−1(vec(αt)−α>t−1 ⊗Φ>))) (3.3)

which will help us in the update of the coefficient matrix B.

Updating B|αt,Ση,Γ Under the multivariate normal prior set on vec(B) with a

mean zero vector, i.e., vec(B) ∼ N(0,Γ⊗I), with Γ = diag(γ1, . . . , γK) and γk = ρkτ
2
k ,

the posterior distribution is derived as the product of the likelihood function (3.3) and

the prior p(vec(B)|Γ), i.e.,
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p(B|Ση,α1:T , Y1:T ) ∝p(vec(α)|Y1:T ,B,Ση)p(vec(B)|Γ)

∝ exp[
T∑
t=2

(vec(αt)
> − vec(B)>(α>t−1 ⊗Φ>)>J−1

×(vec(αt)−α>t−1 ⊗Φ>)) + vec(B)>(Γ−1 ⊗ I)vec(B)]

= exp[
T∑
t=2

(vec(B)>(α>t ⊗Φ>)>J−1(α>t−1 ⊗Φ>)vec(B)

−2vec(αt)
>J−1(α>t−1 ⊗Φ>)vec(B)) + vec(B)>(Γ−1 ⊗ I)vec(B)]

∝ exp

(
vec(B)>(

T∑
t−1

((α>t ⊗Φ>)>J−1(α>t−1 ⊗Φ>))

+Γ−1 ⊗ I)vec(B)− 2C1

)
(3.4)

where C1 = −2
∑T

t=2(vec(αt)
>J−1) with J = Φ>Σ−1

η Φ . Thus, (3.4) is the expo-

nential part of a multivariate Normal distribution with a mean vector and covariance

matrix dependent on αt, i.e., B|Σ,Γ,Ση,α1:T ,Y1:T ∼ N(µ̃,D) where µ̃ = µ1 ∗D with

µ1 =
∑T

t=2((α>t−1 ⊗Φ>)Φ>Σ−1
η Φα>t ) and D = (µ1 + (Γ⊗ I)−1)−1.

The mean vector µ̃ indicates that the contribution of one location to another will

be affected and expanded by both the measurements at time t and t − 1, while they

will as affect the magnitude of scaling in that contribution which is how we interpret

the integro-difference equation (3.1).

3.4.2 Updating Spike and Slab hyperparameters

Updating βk|α,Γ, ρ, τ2
k , q for each level k For the rest of the spike and slab hier-

archy, we will need to calculate the separate conditional posteriors of each individual

coefficient n × 1 vector βk in order to improve the mathematical calculations. Thus,

each vector βk is marginally normally distributed with zero mean vector and covariance

matrix γkIK×K . Thus, for each level of β we are expecting to have the same scale for

all locations. Therefore, the likelihood of each level can be written as βk ∼ N(0, γkI),
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i.e,

p(βk|ρk, τ2
k ) =

n∏
i=1

1√
2πγ2

k

exp

(
−
β>k βk
2γ2

k

)

∝ (γk)
−n/2 exp

(
−
β>k βk
2γ2

k

)
= (ρkτ

2
k )−n/2 exp

(
−
β>k βk
2ρkτ

2
k

)
(3.5)

Updating ρk|βk, τ2
k , q, v0 The individual full conditional posteriors for the latent pa-

rameter ρk can be derived as a mixture distribution for k = 1, . . . ,K. The likelihood

of the latent parameter ρk is given as:

p(ρk|v0, q) = (1− q)δv0(.) + qδ1(.) (3.6)

where q ∼ U(0, 1). Under the point mass δv0(.) and under δ1(.) the respective distri-

bution of βk can be then rewritten as:

p(βk|v0, τ
2
k ) ∝ (v0)−n/2 exp

(
−
β>k βk
v0τ2

k

)
for ρk = v0

p(βk|τk) ∝ exp

(
−
β>k βk
τ2
k

)
for ρk = 1 (3.7)

Thus, by using (3.6) and (3.7), the full conditional of the latent parameter p(ρk|βk, τk, q)
can be written as:

ρk|vec(B), τ, q ∼
q1,k

q1,k + q2,k
δv0(.) +

q2,k

q1,k + q2,k
δ1(.) with

q1,k = (1− q)v−n/20 exp

(
−
β>k βk
2v0τ2

k

)
q2,k = q exp

(
−
β>k βk
τ2
k

)
(3.8)

Updating τ2
k |βk, ρk, q, ω1, ω2 The latent parameter’s weights q will be conditionally

dependent on the magnitude of the scaling parameter τ2
k . As each individual scaling

parameter has an inverse gamma prior distribution, i.e., τ2
k ∼ IG(ω1, ω2), then τ2

k will
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be updated via the conditional distribution for each k = 1, . . . ,K

p(τ−2
k |βk, ρk, q, ω1, ω2) =p(τ2

k |ω1, ω2)p(βk|ρk, τk)

∝(τ2
k )ω1−1e

−ω2
τk (τ2

k )−n/2 exp

(
−
β>k βk
2ρkτ

2
k

)
=(τ2

k )−(n/2+ω+1) exp

(
− 1

τ2
k

(β>k βk
ρk

)
+ ω2

)
(3.9)

which is an inverse-Gamma distribution,i.e., τ−2
k ∼ IG(ω1 + n/2, ω2 +

β>k βk
2ρk

) which is

as well conditionally updated according to the latent parameter ρk.

Updating q|ρk, v0 Finally, the complexity parameter q will be updated according to

the latent parameter ρk

q|ρk ∼ Beta(1 + #{k : ρk = 1}, 1 + #{k : ρk = v0}) (3.10)

where #{k : ρk = 1} indicates the number of times the latent parameter sampled 1 for

the k− th level and #{k : ρk = v0} specifies the number of times the latent parameter

sampled v0. This explains the reduce of the dimension or else the choice of the non-zero

coefficients of B which are updated adaptively.

3.4.3 Updating αt|B,Ση,Yt

As mentioned in Chapter 2, αt are unknown stochastic parameters under a state space

model but they also meet the Markov property. That means that given the present

value αt the past αt−i and the future αt+j are conditionally independent for any i

and j. Our aim for conducting inference for these temporal parameters is to estimate

the state vector αt firstly forward in time which is known as filtering and then esti-

mate backward in time which is known as smoothing given the available dataset Yt. In

the next paragraphs we briefly discuss the filtering and the sampling steps which are

respectively known as Kalman filter (Kalman, 1960) and Forward Filtering Backward

Sampling (Carter and Kohn (1994) and Frühwirth-Schnatter (2001) ) under the model

(2.8) and (2.11).

The Kalman filter relies upon the specification of the distribution of an initial state

vector α0; which is referred to as prior distribution because it is set prior to ob-
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serving any data. Thus, by considering a prior at the initial time point for α0, i.e.,

α0 ∼ N(α̂0|0,P0|0) with α̂0|0 being a K × 1 prior vector and K ×K prior covariance

matrix P0|0, the Kalman Filter recursions (Kalman, 1960) based on the observations

observed up time t, i.e., Y1:t, for t = 1, . . . , T are given as:

• For the forecast distribution of αt at t− 1:

αt|Y1:t−1,Σ,Ση,B ∼ N(α̂t|t−1,Pt|t−1) , where

α̂t|t−1 = Φ>Bα̂t−1|t−1 and

Pt|t−1 = Φ>BPt−1|t−1(Φ>B>) + ΦΣηΦ
> (3.11)

• The posterior of αt at time t is

αt|Y1:t,Σ,Ση,B,∼ N(α̂t|t,Pt|t) where

α̂t|t = α̂t|t−1 +Ktet and

Pt|t = Pt|t−1 −KtFt|t−1K
>
t with

Yt|t−1 = Φ>α̂t|t−1, et = Yt − Ŷt|t−1,

Ft = ΦPt|t−1Φ
> + Σ and Kt = Pt|t−1ΦF

−1
t|t−1 (3.12)

with Σ = σεIn×n + σ2
vS.

A few comments are in order. α̂t|t−1 represents the mean E(αt|Y1:t−1), i.e. the forecast

of αt at time t, given the observations up to t − 1. Then, when Yt is observed, the

data set is updated to Y1:t and we derive the filtered estimate α̂t|t which is the mean

E(αt|Y1:t). Analogously, Ŷt|t−1 is the one-step ahead forecast of Yt given the informa-

tion up to time t − 1 while et is the one-step prediction error while Kt is known as

Kalman gain. Additionally, as we have a recursive update over time, p(αt|Y1:t−1) is

the prior distribution at time t of αt, given the past Y1:t−1 and prior of observing Yt at

time t. The posterior distribution of αt at time t is considered after both Yt and Yt−1

are observed.

Smoothing is an important development of the theory and application of state space

models and has been discussed, in Carlin et al. (1992), Catlin (2012), De Jong (1989),

Angus (1992) and in Durbin and Koopman (2012). As we work under a Bayesian

setting, the posterior distribution p(αt|α−t,Y1:T ), can be obtained as a multivariate

Gaussian, with α−t signifying the rest of time points in states α except the one at
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time t. Since we can sample from p(αt|α−t), this provides a single step of the Gibbs

sampler where it is noted that at time t = T we sample from the posterior αT |Y1:T ,

which by the Kalman Filter recursions is again Gaussian. This approach was proposed

by Carlin et al. (1992) together with extensions to non-linear and non-Gaussian state

space models. Unfortunately, this approach can be very inefficient, because the prior

correlation imposed in the system of state vectors α = [α>1 , . . . ,α
>
T ] is largely trans-

ferred to the posterior state vectors α|Y1:T . The aforesaid chain correlation along with

the high dimensional state space imposed by the time series introduces convergence

problems in the Gibbs sampler and it slows it down considerably.

As a result alternative Gibbs sampling schemes are proposed in the literature, Carter

and Kohn (1994) and Frühwirth-Schnatter (1994) where independently proposed a

block application of Gibbs sampling, which is considerably more stable and orders of

magnitude faster than the above scheme, as reported in Shephard (1994). According

to this instead of sampling from αt|α−t,Y1:T we can successively sample from just

αt|αt+1, Y1:T .

In Gibbs sampling for the states our target full conditional distribution for the state

vector αt is p(α1:T |Y1:T ,Σ,Ση,B). Carter and Kohn (1994) developed the method

mentioned above which is known as Forward Filter Backward Sampling algorithm. In

this context we describe the general approach where we have a multivariate model with

unknown covariance matrices subject to be estimated. By rewriting

p(α1:T |Y1:T , σv, σε,Ση,B) =
T−1∏
t=1

p(αt|αt+1,Y1:T , σv, σε,Ση,B)

×p(αT |Y1:T , σv, σε,Ση,B)

=

T−1∏
t=1

p(αt|αt+1,Y1:T , σv, σε,Ση,B)

×p(αT |Y1:T , σv, σε,Ση,B) (3.13)

=
T−1∏
t=1

p(αt|αt+1,Y1:t, σv, σε,Ση,B)p(αT |Y1:T , σv, σε,Ση,B) (3.14)

where α1:T = (α1, . . . ,αT ). We note that (3.13) is obtained due to conditional inde-

pendence of αt,αt+1|αt+2, . . . ,αT (i.e., given the present, the future and the past are
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conditionally independent). Analogously, jointly, Yt,αt|Yt+1, . . . ,YT are conditionally

independent and we end up on (3.14).

At the end of the filtering step we obtain αT from N(αT |T ,PT |T ) and then we use

the following smoothing recursions in order to draw αt for t = T, . . . , 1:

αt|αt+1, Y1:T ,Σ,Ση,B ∼ N(α̂t|t+1,Pt|t+1) where

α̂t|t+1 = α̂t|t +Lt(αt+1 − α̂t+1|t) and

Pt|t+1 = Pt|t −LtPt+1|tL
>
t with

Lt = Pt|t(Φ
>B)>P−1

t+1|t (3.15)

It is noticeable that the FFBS algorithm does not require a prior state vector α0. In

other words, the Kalman Filter provides a learned procedure in order for the smoothing

recursions to take place. Secondly, the covariance matrix Pt|t = Pt|t+1 does not depend

on the future value at t+ 1 and can be provided by the Kalman Filter in the first step.

This can result in significant computational savings, as only the computation of the

mean vector αt|t+1 is needed to simulate the vector αt+1 at each Gibbs iteration.

3.4.4 Updating Ση|αt,αt−1,B

The FFBS algorithm stated above that was proposed in Carter and Kohn (1994) con-

sidered the covariance inference by placing improper priors on the observation and

transition variances, resulting in proper inverse gamma priors for these variances in

Fearnhead (2002) and Carter and Kohn (1994).

On the other hand, Carter and Kohn (1994) introduced the d -inverse gamma state

space model, whereby the variance of the transition innovation vector ηt is diagonal,

each element of its main diagonal independently following a priori an inverse gamma

distribution.

We introduce the simplest diagonal case for the covariance matrix Ση, the d -inverse

gamma approach and finally the inferential stage by considering a correlation structure

under the DSTM model.

Ση = σ2
ηI with common elements. If we consider a diagonal structure with com-

mon variances on the transition covariance matrix, i.e., Ση = σ2
ηI, then the locations
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s = {s1, . . . , sn} are considered to be temporally independent to each other but all

locations to themselves will vary under the same magnitude σ2
η autoregressively. Un-

der this approach, it s plausible that a gamma prior will be placed onto the precision

element.

Therefore, we set Ση = σ2
ηIn×n, where σ2

η ∼ IG(ψ1, ψ2). The posterior distribution

p(σ2
η|αt,αt−1, ψ1, ψ2) can be derived as a product of the prior p(σ2

η|ψ1, ψ2) and the

likelihood p(αt|αt−1, B, σ
2
η), i.e.,

p(σ2
η|αt,αt−1, ψ1, ψ2) ∝p(σ2

η|ψ1, ψ2)p(αt|αt−1,B, σ
2
η)

∝ 1√
2π

(σ2
η)
−(n+T )/2(σ2

η)
−ψ1−1 exp(−ψ2

σ2
η

)

× exp(− 1

2σ2
η

n∑
i=1

T+1∑
t=2

(αt −Φ>Bαt−1)>(αt −Φ>Bαt−1))

=(σ2
η)
−ψ1− (n+T )

2
−1 exp(−C/2 + ψ2

σ2
η

) (3.16)

where C =
∑n

i=1

∑T+1
t=2 (αt −Φ>Bαt−1)>(αt −Φ>Bαt−1). The equation (3.16) pro-

vides us with the form of an inverse gamma distribution with shape and scale param-

eters ψ1 + (n + T )/2 and C/2 + ψ2 respectively. Therefore, from (3.16) we conclude

that the full conditional posterior for the common transition variance is distributed as

σ2
η|αt,αt−1, ψ1, ψ2 ∼ IG(ψ1 + (n+ T )/2, C/2 + ψ2).

Diagonal Ση with different elements— inverse d-gamma approach Anal-

ogously to the simple diagonal case, the transition covariance matrix is considered

to have a temporal independent structure for the locations s = {s1, . . . , sn} to each

other but with the difference that the locations themselves will vary with a different

magnitude autoregressively, i.e, Ση = diag{σ2
η1 , . . . , σ

2
ηn}. Consequently, n indepen-

dent inverse-gamma priors should be considered for each variance element σηi, with

i = 1, . . . , n.

Hence, if we set Ση = diag{σ2
η1 , . . . , σ

2
ηn} where each σ2

ηi ∼ IG(ψ1, ψ2) with i = 1, . . . , n

and each posterior distribution p(σ2
ηi |αt,i, αt−1,i, ψ1, ψ2) can be derived as a product

of the prior p(σ2
ηi |ψ1, ψ2) and the univariate likelihood of αti, i = 1, . . . , n for each
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location, i.e., p(αt,i|αt−1,i,B, σ
2
ηi):

p(σ2
ηi |αt,i, αt−1,i, ψ1, ψ2) ∝p(σ2

ηi |ψ1, ψ2)p(αt,i|αt−1,i,B, σ
2
η)

∝ 1√
2π

(σ2
ηi)
−T/2(σ2

ηi)
−ψ1−1 exp(− ψ2

σ2
ηi

)

× exp(− 1

2σ2
ηi

T+1∑
t=2

(αt,i − φ>i βjαt−1,i)
2)

=(σ2
ηi)
−ψ1−T2 −1 exp(−Ci/2 + ψ2

2σ2
ηi

) (3.17)

where Ci =
∑T+1

t=2 (αt,i − φ>i βjαt−1,i)
2 with φi indicating the i-th row of the Wavelet

matrix Φ and βj indicating the j = i-th column of the coefficient matrix B. The

full conditional posterior (3.17) is the form of an inverse gamma distribution with

shape and scale parameters ψ1 + T/2 and Ci/2 + ψ2 respectively and thus we con-

clude that the updating for each variance element σ2
ηi will be performed through

σ2
ηi |αt,i, αt−1,i, ψ1, ψ2 ∼ IG(ψ1 + T/2, Ci/2 + ψ2).

Covariance structure on Ση The more general approach is placing an inverse

Wishart prior into the transition covariance matrix Ση and thus allow us to estimate

the correlation between the elements ηt and thus the temporal correlation between the

locations’ evolution.

By using the likelihood formulation through the FFBS scheme in (3.14) and by consid-

ering that a priori Ση follows an inverse Wishart distribution, i.e.,

p(Ση) = c|Ση|−(ν+n+1)/2 exp(−1

2
trace(QΣ−1

η )) (3.18)

where Ση is the prior scale matrix, ν the prior degrees of freedom and c is the propor-

tionality constant, then the conditional distribution p(Ση|α1:T ,Y1:T ,B) is
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p(Ση|α1:T , Y1:T , B) ∝p(α1:T |Ση,B)p(Ση) =
T∏
t=1

p(αt|αt−1,Ση)p(Ση)

∝
T∏
t=1

|Ση|−1/2 exp[−1

2
trace{(αt −Φ>Bαt−1)>

×(αt −Φ>Bαt−1)Σ−1
η }]|Ση|−(ν+d+1)/2 exp(−1

2
trace(QΣ−1

η ))

∝|Ση|−(ν+T+n+1)/2 exp[−1

2
trace{(C +Q)Σ−1

η }] (3.19)

with C =
∑T

t=1(αt−Φ>Bαt−1)>(αt−Φ>Bαt−1) which is proportional to an inverse

Wishart distribution with parameters ν+T andC+Q respectively, i.e., Ση|α1:T ,Y1:T ,B ∼
IW(ν+T,C+Q). From the above full conditional distributions and given the posteri-

ors for α and B and according to the desired structure of the covariance matrix Ση we

can easily sample the variance estimates. The choice of the structure of the covariance

matrix is dependent solely on the application.

3.4.5 Updating σ2
ε , σ

2
ν |αt,Yt

Estimating both σ2
ν and σ2

ε is challenging. Specifically, a mutual sampling for σ2
ε and σ2

v

provides difficulties for multi-layer models such as DSTMs. Therefore, the most flexible

choice is to either consider σ2
ε or their ratio —which is known as the signal-to-noise

ratio— to be known and sample σ2
v accordingly. The approaches aforementioned are

being explained along with our investigations into their relative success in the next

paragraphs.

Jointly sampling of σ2
ε , σ

2
ν |αt,Yt Many approaches were conducted to estimate

jointly σ2
ε and σ2

v via the Metropolis-Hastings algorithm (Chib and Greenberg, 1995)

by working on the joint full conditional σ2
ε , σ

2
v |Yt,αt,B,Ση. Specifically, two separate

inverse gamma priors on both variance parameters were considered, i.e., σ2
ν ∼ IG(δ0, ξ0)

and σ2
ε ∼ IG(δ0, ξ0). The joint full conditional can be written as
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p(σ2
ε , σ

2
v |Yt,αt,B,Ση) ∝ |σ2

vS + σ2
ε I|−n/2(σ2

v)
−δ0−1 exp(−ξ0/σ

2
v)(σ

2
ε )
−δ0−1

× exp

(
− 1

2
trace

[ T∑
t=1

(Yt −Φ>αt)(Yt −Φ>αt)
>

× (σ2
vS + σ2

ε I)−1
])

exp(−ξ0/σ
2
ε ) (3.20)

where a known form of distribution cannot be derived. Unfortunately, a Metropolis-

Hastings iterative step cannot be considered for the joint vector in this case neither a

Metropolis-adjusted Langevin algorithm (Roberts and Rosenthal, 1998). A Metropolis-

Hastings step as stated above results into non-convergence when the covariance param-

eters are jointly estimated. This is due to the presence of an unidentifiable parameter

vector by the likelihood. For that reason, in the next paragraphs we investigate two

approaches that provided us convergence and fair estimations.

Fixing σ2
ε to update σ2

ν |αt,Yt Based on the application we might have information

on the measurement error variance σε either due to previous modelling procedures or

for instance we have prior knowledge of the instrument that we got the measurement

from. Thus, by fixing σε to be known, then (3.20) takes the form of the product of the

observed process’s likelihood and the prior of σv

p(σ2
v |Yt,αt,B,Ση) ∝|σ2

vS + σ2
ε I|−n/2 × (σ2

v)
−δ0−1 exp(−ξ0/σ

2
v)

× exp

(
− 1

2
tr
[ T∑
t=1

(Yt −Φ>αt)(Yt −Φ>αt)
>(σ2

vS + σ2
ε I)−1

])
(3.21)

and can be sampled under the univariate Metropolis-Hastings contexts that are de-

scribed above.

Fixing σ2
ε /σ

2
ν to update σ2

ν |αt,Yt Finally, the most convenient approach is if the

signal to noise ratio is considered known instead, i.e., σ2
ε /σ

2
v = c. This knowledge can

be as well obtained based on the application and the instrument that we extracted

the observations Yt from. Thus, inference on σv is conducted, then we have a more



CHAPTER 3. GAUSSIAN REDUCED-DIMENSION DSTMS 49

simplified version than (3.21) and thus the posterior distribution is of known form, i.e.,

(3.21) takes the form:

p(σ2
v |Yt,αt,B,Ση, σ

2
ε ) ∝|σ2

vS + σ2
εI|−(n+T )/2(σ2

v)−δ0−1 exp(−ξ0/σ2
v)

× exp

(
− 1

2
[

T∑
t=1

(Yt −Φ>αt)
>(σ2

vS + σ2
εI)−1(Yt −Φ>αt)

])
=|σ2

vS + cσ2
vI|−(n+T )/2 × (σ2

v)−δ0−1 exp(−ξ0/σ2
v)

× exp

(
− 1

2

[ T∑
t=1

(Yt −Φ>αt)
>(σ2

vS + cσ2
vI)−1(Yt −Φ>αt)

])
=(σ2

v)−(n+T )/2−δ0−1|S + cI|−(n+T )/2 exp

(
− 1

σ2
v

(
C

2
+ ξ0)

)
(3.22)

with C =
[∑T

t=1(Yt−Φ>αt)
>(S+cI)−1(Yt−Φ>αt)

]
, which is the form of an inverse

gamma distribution with shape n/2 + δ0 and scale C/2 + ξ0, i.e., σv|Yt,αt,B,Ση, σ
2
ε ∼

IG((n + T )/2 + δ0,C/2 + ξ0) and can be sampled with Gibbs steps in the hierarchy

(3.2).

3.4.6 Updating the spatial correlation function’s S parameters

As discussed in Chapter 2, the spatially varying error νs is affected by an appropriately

selected correlation function and the scaling variance σν . The choice of that correlation

function depends on the application, however, all of them have scaling (and smoothing)

parameters to be inferred unless we choose to fix them. There are numerous isotropic

parametric spatial correlation functions in the bibliography (Yaglom (1987); Abraham-

sen (1997); MacKay (1998)) which are based on the spatial distance h and a spatial

scale parameter λ such as the Exponential or the Gaussian correlation functions. In

such cases, a priori information can be placed into the scaling parameter and work

under a Metropolis-Hastings framework.

We provide an example under an exponential and a Matèrn correlation function (Matérn,

1960) but in most correlation functions the proofs are analogous. The spatial correla-

tion exponential function is given as

S(h; θ) =

(1− exp(−|h/λ|)) h > 0, λ > 0

0 otherwise
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with h indicating the distance between the locations and λ being the scaling parameter.

Generally, λ controls how fast the correlation decays with distance, which determines

the coarse-scale behaviour of the sample path that is generated by the stochastic pro-

cess of interest with the given correlation function (i.e., Xt).

In order to conduct inference on the scaling parameter λ, due to the nature of λ, a

gamma prior G(u1, u2) is appropriate and thus the posterior p(λ|Yt,αt, σε, σv) is the

product of the process’s likelihood and the prior:

p(λ|Yt, αt, σε, σv) ∝|σ2
vS + σ2

ε I|−n/2 × λ−u1−1 exp(−u2λ)

× exp

(
− 1

2

[ T∑
t=1

(Yt −Φ>α>t )(σ2
vSλ + σ2

ε I)−1(Yt −Φ>αt)
])
(3.23)

which is not of known form and can be sampled through Metropolis-Hastings steps.

Another example of correlation function is provided by the Matèrn family (Matérn,

1960) which is defined as a function of the spatial distance h and two other parameters:

S(h; θ) =

 1
Γ(λ)( ζh2 )λ2Kλ(ζh) h > 0, ζ, λ > 0

0 otherwise

where Kλ is a modified Bessel function (see Matérn (1960)), ζ is the parameter that

defines the extend of the spatial dependence and λ is a smoothing parameter, which ap-

plies smoothness over the dependence range and controls how many times differentiable

is the correlation function at h = 0. Diggle et al. (2003) suggests that appropriate value

for λ can be chosen to reflect scientific knowledge about the smoothness of the process

under study. Therefore, it can be either consider fixed, or a suitable prior knowledge

can be considered and then resort to a bivariate Metropolis-Hastings estimation.

3.4.7 Summary and pseudo-code of the algorithm

To sum up, the inferential stage is consisted of an adaptive MCMC procedure for the

covariance inference updated from (3.16) to (3.19) for Ση and (3.20) to (3.22) for σ2
v

and σ2
ε . Furthermore, the Spike and Slab hierarchy parameters are updated in Gibbs
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Sampling steps through the posterior densities (3.8) to (3.10) for the parameters ρk, τk

and u with the final update on the matrix B through the posterior (3.4). Then, the

weight function ws(u) is calculated deterministically from the Inverse Discrete Wavelet

Transform (IDWT). Finally, The underlying process’ coefficients αt are inferred firstly

through the Kalman Filter recursions (3.11) and (3.12) and then the smoothed esti-

mates are derived through Forward Filter Backward Sampling algorithm steps through

(3.15). Finally, the underlying process Xk(s, t) is again deterministically calculated

under the IDWT framework.

Initial step:

Draw σ0
ε , σ

0
v , w

0, τ0, ρ0,Σ0
η,α

0 and B0 from the priors

For i ≥ 1 assign σε = σ
(i−1)
ε ,σv = σ

(i−1)
v , Ση = Σ

(i−1)
η

Update B: Spike and Slab hierarchy

Sample:

ρ
(i+1)
k from the conditional mixture distribution (3.8)

τ−2(i+1)

k from the conditional Gamma distribution (3.9)

B(i+1) from the Normal distribution (3.4)

the complexity parameter q(i+1) from Beta distribution (3.10)

Deterministically calculate ws = BΦ

Update α: FFBS algorithm

For each t = 1, . . . , T

Run Kalman Filter to obtain α̂t+1|t,αt|t,Pt|t, Pt+1|t from (3.12)

For each t = T, T − 1, . . . , 1

Use the smooth recursions to derive α
(i)
t from (3.15)

Deterministically calculate XK = αΦ

Update Covariance and correlation parameters

If σε known then update σv through Metropolis-Hastings from (3.21)

If σε/σv known then update σv through the inverse Gamma distribution (3.22)

Sample Ση with equations (3.16) -(3.19) based on the structure

Update the correlation parameters λ through Metropolis-Hastings

Table 3.2: Pseudo-code of the MCMC approach
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3.5 Posterior Predictive Distribution

In spatio-temporal framework the aim is to achieve spatial interpolation of the process of

unmonitored locations and temporal forecasting. In this section we consider temporal `-

step ahead forecasting at the monitoring locations, then by defining Dt = {Y1, . . . ,Yt},
it is given by the following posterior predictive distribution:

p(Yt+`|Dt) =

∫
· · ·
∫ ∏̀

h=1

p(Yt+h|αt+h, σ2
ε , σ

2
ν ,θ,Ση)p(αt+h|αt+h−1,B,Ση)

×p(α|Dt)p(B)p(Ση)p(σ
2
ν)p(θ)dαdα̃dBdΣηdσ

2
νdθ (3.24)

where α = (α1, . . . ,αT ) and α̃ = (αt+1, . . . ,αt+`). The integral at (3.24) is approxi-

mated by

p(Yt+`|Dt) ≈
1

M

M∑
m=1

p(Yt+`|α
(m)
t+` , σ

(m)
ν ,B(m),Σ(m)

η ,θ(m)) (3.25)

where m denotes the m-th MCMC and FFBS iteration of the samples from the pos-

teriors of (σ2
ν ,B,Ση,θ) and of (αt+1, . . . ,αt+`) respectively. Samples can be obtained

by propagating αt+` following the transition equation and through the samples from

the posterior distribution of the parameter vector.

Assume we want to predict the process of a vector of dimension `, with ungauged loca-

tions at an observed time point t ∈ T , i.e., Ỹt = (Ỹt(s1), . . . , Ỹt(s`))
>. Considering the

spatio-temporal vector Y = (Y (s1, 1), . . . , Y (sn, 1), . . . , Y (s1, T ), . . . , Y (sn, T ))> which

represents the vector of time series observed at n monitoring locations, the predictive

posterior distribution is given by

p(Ỹt|Y ) =

∫
θ
p(Ỹt|θ,Y )p(θ|Y )dθ (3.26)

where θ is the parameter vector that encompasses all the unknowns in the model.

Thus, by considering that the parameters σ2
ε , σ

2
ν and the correlation function’s pa-

rameters are included in the variance matrix Σ = σ2
ε In×n + σ2

νSθ, then, (3.26) can be

explicitly written as

p(Ỹt|Y ) =

∫
· · ·
∫
p(Ỹt|Y , σ2

ε , σ
2
ν ,α,θ)p(σ2

ε , σ
2
ν ,α,θ|Ỹt)dσ2

εdσ
2
νdθdα (3.27)
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Spatial interpolation can be obtained by considering the jointly (Yt, Ỹt) conditional on

the unknown parameters and the prior beliefs θ0, i.e.,(
Yt |α,Σ
Ỹt

)
∼ N

((
Φαt

Φ̃αt

)
,

(
ΣY ΣY Ỹ

ΣY Ỹ ΣỸ

))
(3.28)

which then gives us the marginal conditional posterior distribution for spatial interpo-

lation

Ỹt|Yt, σ2
ε , σ

2
ν ,αt,θ ∼ N

(
Φ̃αt + ΣY Ỹ (ΣY )−1(Yt −Φαt),ΣỸ −ΣY Ỹ (ΣY )−1ΣY Ỹ

)
.

(3.29)

However, due to the nature of DWT, interpolation under a new location vector is non

feasible. This is because DWT does not provide us with a smooth interpolation and

immediately a change of basis should be considered which then changes the estimation

itself. Our methodology is able to perform temporal forecasting, however, if someone

would like to conduct spatial interpolation, then a choice of a different basis, such

as B-Splines should be considered and then sample from the conditional predictive

distribution (3.29) based on this basis. Otherwise, if someone would prefer to work

under wavelet basis decomposition, a lifting scheme could be considered by treating

these locations as missing. This issue and a methodology is discussed in Heaton and

Silverman (2008). Creating a scheme for spatial interpolation under this framework

would be a valuable area for further research.

3.6 Other Considerations

In this section we address alternative approaches for the covariance inference of σ2
ε

and σ2
ν which due to the limitation of time we were not able to investigate further.

Furthermore, we discuss the choice of wavelet functions one would consider under the

proposed methodology.

3.6.1 Inference on σ2
ε and σ2

ν

In a more complex context the spatial covariance can be modeled in terms of the

next few eigenfunctions of the empirical orthogonal function (EOF) decomposition to

account for the spatial structure that is lost while conducting dimension reduction

(Berliner et al., 2000). Furthermore, one could typically expand vt in terms of an
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additional basis set, e.g. vt = Ψct, and model the ct coefficients hierarchically to

absorb the residual spatial dependence as in Wikle et al. (2001), however, depending

on the basis functions, one might have to put constraints on ct. Finally, another

approach could be the use of a slice sampler to improve the convergence problems that

are arising if we jointly sample σε and σv through Metropolis-Hastings.

3.6.2 Wavelet choice of basis

There are several types of wavelets that can be chosen. Firstly, if we were to employ a

Discrete Wavelet Transform (DWT) for a point referenced spatio-temporal process then

equally spaced time points and locations should be considered. Otherwise, one would

have to explore the DWT under the lifting scheme (Sweldens (1996a) and Sweldens

(1998)) where the theory is analogous to the initial one but biorthogonal Wavelets are

used instead. Secondly, the choice of which type of basis should be used has received

a lot of criticism, however, the same applies for other known basis such as Fourier or

Bessel. Thus, in choosing the appropriate wavelet function there are numerous factors

that should be taken into consideration (Farge, 1992).

Mostly for time series analysis, an aperiodic fluctuation in the process produces a

different wavelet spectrum. Therefore, the wavelet basis should express the type of os-

cillations that exist in the time series. For instance, if the series produces sharp jumps

or discontinuities, one would choose a step function such as the Harr wavelet, while for

a less noisy or discontinuous one, a much smoother basis is more appropriate, i.e., the

Daubechies family.

In the past, under a Reduced Dimension DSTM context, wavelets were only used

in Wikle et al. (2001) where a Hierarchical Model approach with Gaussian Vector

Autoregressive priors for the wavelets coefficients under a Gibbs sampler inferential

framework was adopted. However, the challenge with using wavelet bases for Dynamic

Spatio-temporal Models is adequately capturing the necessary interaction across scales

while still preserving the dimension reduction. However, if a wavelet decomposition is

used for the approximation of a process under a Reduced-dimension DSTM, one would

typically expect parsimony. This believed parsimony can be then imposed through an

appropriate prior belief in a Bayesian framework. Therefore, by considering a prior

kernel which induces sparsity for the wavelet parameters, an adaptive framework for

dimension reduction can be achieved. This novel Bayesian framework is presented in
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the next section.

Choice of prior parameters in Spike and Slab In Nason (2010) it is noted that

for the Adaptive Bayesian Thresholding with mixture priors, in order for the Bayesian

inference to work well, the hyperparameters should be carefully chosen. Empirical

Bayes methods can be used, however, in our concept there exists a high dimensional

parameter space so it is inefficient. Through our simulations and applications we have

observed that the tuning of v0, ω1 and ω2 plays a big role into introducing sparsity

to our model. Higher values of v0 provides with non-parsimonious representations

while the choice of ω1 and ω2 that results to high precision similarly provides us with

high values of coefficients. Thus, in all simulations and applications we considered the

hyperparameters to extract low values of coefficients.

3.7 Simulation study

Before applying our methodology to real data, in order to investigate its efficiency and

especially whether the estimation approach is able to capture discontinuities well, sim-

ulation studies should be conducted. The importance of capturing the discontinuities

and spatial propagation is of paramount importance since in real stochastic systems,

the redistribution kernel ws(u) is very difficult to be guessed or approximated. Thus,

we wish to test our method in three different settings; we achieve this through the

design of these respective simulation studies:

• No discontinuity in weight function ws(u)— we still get good approximations

• Discontinuity in weight function ws(u) and covariance inference— we wish to show

that our method can adapt to discontinuities and we can estimate fairly well the

covariance parameters

• No discontinuity in weight function ws(u) but more locations— we want to see how

our methodology can estimate as the parameter space increases

In section 3.7.1 we introduce a simulation scheme of a Reduced-Dimension DSTM under

wavelet basis decomposition. Furthermore, instead of simulating the matrix B through

the Spike and Slab prior, a kernel is chosen for ws(u) and through that B is calculated

through DWT. Additionally, as mentioned above, in sections 3.7.2 to 3.7.4 we conduct

inference on the processes’ parameters simulated under the simulation scheme in section
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3.7.1. Finally, it has to be noted that due to limited computational resources we were

not able to provide a more high dimensional example.

3.7.1 Creating a Gaussian DSTM under Wavelet decomposition

In this section we introduce a simulation scheme based on model (2.8) and (2.11) via

Wavelet decomposition.

Essentially, since wavelets are strong detectors of discontinuities, a good approximation

is expected for simulated data which for instance, one location point has a very high

intensity while the rest of the location points have very low or no spatial intensity.

This example provides us already with the idea of a discontinuous kernel ws(u). In this

study, we will consider a grid of points with a barrier (or discontinuity) in between the

grid which separates it with different intensities. Let us define the discontinuous kernel

ws(u) for locations s and u in the 1-D interval [a, c] as

ws(u) =


f(‖s− u‖2) if s, u ∈ [a, b]

g(‖s− u‖2) if s, u ∈ (b, c]

0 otherwise

(3.30)

with f and g being two different chosen kernel functions. In the case where we do not

want a discontinuous kernel (3.30) is simplified as

ws(u) =

{
f(‖s− u‖2) if s, u ∈ [a, c]

0 otherwise
(3.31)

with f being the chosen kernel function for all locations.

Such examples of simulating such processes that have a spatially discontinuous kernel

are described and compared with non-discontinuous simulated ones while pseudo code

is given below. For the simulation scheme we define the Euclidean distance between

two locations being d = ‖s− u‖2 and the parameter vectors of the kernel densities

being θ.

1 Start by considering a number of equally spaced locations n [a, c] ∈ D ⊂ R and T

time points, a Wavelet matrix Φn×n a covariance matrix Ση, a spatial correlation
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matrix S and variances σ2
ε , σ

2
v

• Define a barrier between the locations

• For the two parts according to the barrier, consider initial constants at t = 1

being c1, c2

2 Building the weight matrix

• For each of the locations calculate d between the locations s and u.

If a barrier is desired then use (3.30):

If both locations are in [a, b], set ws(u) = f(d,θ1)

If both locations are in (b, c] then set ws(u) = g(d,θ2)

else ws(u) = 0.

If a barrier is not desired then use (3.31):

ws(u) = f(d,θ)

• Normalise the weights:

w∗s(u) =
ws(u)∑n
j=1ws(u)

3 For t = 1

• Calculate the coefficient matrix B = w∗Φ−1

• Calculate α1 = XK1Φ
−1

4 For t ≥ 2

• Calculate αt = Φ>Bαt−1 + Φ>ηt, ηt ∼ N(0,Ση)

• Calculate XKt = αtΦ

• Calculate Xt = XKt + vt, vt ∼ N(0, σ2
vS)

• Calculate Zt = Yt + εt, εt ∼ N(0, σ2
ε I)

A few comments are in order. The choice of the type of the w matrix, which is the

redistribution kernel of a location to another at time point t − 1 to the time point t,

will affect the spreading of the intensity. For instance, if all the locations have Gaus-

sian kernels with location parameter θ1 and scale parameter θ2, then the process will

propagate and diffuse in the same way in both barrier sides. On the other hand, if

for instance there are two different Gaussian kernels in which the scale parameter θ2 is
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greater for one barrier, then the dilation of that kernel is bigger and thus the process

becomes more diffusive on that side. In the case where the kernels are not of the same

distribution, then according to the location and scale parameters, both sides will have

a different spatial propagation and diffusion over time.

As an example of how the process’s propagation can differ according to different expan-

sion and noise, under the same seed we simulated processes with n = 32 locations in the

1-D space [0, 5] with a total of T = 256 time points. Additionally, we considered the

same number of locations and starting values for t = 0 being 1 and 12 for the locations

that lie inside [0, 2.5] and (2.5, 5] respectively and the same diagonal covariance matrix

Ση = 10 ∗ I. The measurement error variance was chosen to be σ2
ε = 8, the spatial

variation error variance σ2
ν = 1 and an exponential spatial correlation function with

scale parameter λ = 3 was considered. All the examples have been produced under

a Daubechies level 10 wavelet decomposition. In the upper plots in Figure 3.3 the

weighting function that we created depends on one barrier in between the spatial 1-D

space [0,5], i.e.,

ws(u) =


N(‖s− u‖2 |0, 0.5) if s, u ∈ [0, 2.5]

exp(‖s− u‖2 |1) if s, u ∈ (2.5, 5]

0 otherwise

(3.32)

This means that in each time point the intensity of the process on location points

which reside in [0, 2.5] will have a zero contribution for the locations that lie in (2.5, 5].

Additionally, [0, 2.5] diffuses with a Gaussian contribution with a scale of 0.5 while the

points that lie in (2.5, 5] diffuse exponentially with rate parameter 1. This example of

discontinuity can be perfectly incorporated by the wavelets approximation.

Furthermore, in the bottom plots in Figure 3.3 , the weight function is considered again

to be discontinuous but now under the same kernel but only with different parameters,

i.e.,

ws(u) =


N(‖s− u‖2 |0, 0.5) if s, u ∈ [0, 2.5]

N(‖s− u‖2 |0.1, 1) if s, u ∈ (2.5, 5]

0 otherwise

(3.33)

It is notable that the diffusion in both sides of the barrier expands differently which

provides us with a discontinuous example to be approximated by wavelet basis decom-
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Figure 3.1: Image plots of the noisy process Y (on the right) and the underlying
process XK (on the left) for T = 256, n = 32 where s ∈ [0, 5] under a signal to
noise ratio σε/σv = 8. On the upper panel a discontinuous ws(u) is considered with
f being a Gaussian kernel with mean and variance 0 and 0.5 respectively and g being
an exponential kernel with rate parameter 1. On the bottom panel a discontinuous
ws(u) is considered with f being a Gaussian kernel with mean and variance 0 and
0.5 respectively and g being a Gaussian kernel with mean and variance 0.1 and 1
respectively.
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Figure 3.2: Image plots of the noisy process Y (on the right) and the underlying process
XK (on the left) for T = 256, n = 32 where s ∈ [0, 5] under a signal to noise ratio
σε/σv = 8. On the upper panel a Gaussian kernel with mean and variance 0 and
0.5 respectively is considered. On the bottom panel an exponential kernel with rate
parameter 0.5 is considered.
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position. Finally, in Figure 3.4 we provide an example of continuous kernel functions

for the spatial diffusion. In these cases, we want to approximate the weight function

but also the underlying process XK .

3.7.2 No discontinuity in weight function ws(u)

In this analysis, we ran our model under known covariance structure under wavelet

basis decomposition with a wavelet Daubechies bases of level 10. The simulation was

conducted under a signal to noise ratio σε/σv = 3, with σ2
ε = 3 and σ2

v = 1 and a

diagonal temporal variation covariance matrix Ση = 5∗In×n. Furthermore, a Gaussian

redistribution kernel with mean and variance 0 and 0.5 respectively was used, i.e.,

ws(u) =

{
N((‖s− u‖2)|0, 0.5) if s, u ∈ [0, 5]

0 otherwise
(3.34)

while an exponential covariance function with a scaling parameter θ = 3 was considered,

i.e.,

S(h; 3) =

(1− exp(−|h/3|)) h > 0

0 otherwise
(3.35)

For the inferential part, we considered the Spike and Slab hyperparameters v0 = 0.05

and ω1 = 2, ω2 = 20 for the point mass and variance components respectively which

gives as an informative priors for B close to zero as we expect parsimony. Finally, the

Kalman Filter recursions for αt for t = 0 a non informative prior was considered with

mean and covariance matrix m0|0 = 0 and P0|0 = 103In×n respectively.

Comparing the posterior mode of the underlying process and the simulated (real) one

in Figure 3.5 it can observed that even if it is a point estimate, our methodological

model performs very well. The high intensities in the latter time points are captured

nicely, while the low ones seem underestimated, however, trendwise we have a successful

prediction of the underlying process Xk (Figure 3.6). Furthermore, the spatial wavelet

coefficients B under our Spike and Slab hierarchy were fairly estimated whereas a ten-

dency for overestimation has been observed (Figure 3.7). Notably, even if the elements

of the matrix B are not greatly estimated, the reconstruction of the weight function

(Figure 3.8) for most of the elements is precise, with an average associate error L − 2

norm equal to 0.4.
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Figure 3.3: Image plots of the estimated process (on the left) and the simulated un-
derlying process XK (on the right) for T = 256, n = 8, s ∈ [0, 5] under a Daubechies
wavelet of smoothness level 10 and a Gaussian weight function ws(u). The processes
are approximated through IDWT under the smoothed estimates of αt for N = 105

Gibbs iterations with a burn in period of i = 50000.
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Figure 3.4: Time series plots of the underlying process for the locations (black) and
the estimated one (red) for T = 256, n = 8, s ∈ [0, 5] and N = 105 Gibbs iterations
with a burn in period of i = 50000.
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Figure 3.5: Histograms of the posteriors for selected elements of B. The red line indi-
cates the kernel density estimation of the posterior estimates, the orange line indicates
the prior belief while the vertical green line specifies the actual value of βk,s. The hy-
perparameter values were set to v0 = 0.05, ω1 = 2 and ω2 = 20. The inference was
conducted under N = 105 Gibbs iterations with a burn in period of i = 50000.

Furthermore, we have observed that there is a tendency of overestimating the negative

elements of B, while for the almost zero or zero ones, the posterior estimates are pre-

cise. Thus, there is an indication that the spike and slab hierarchy is a very sensible

tool for a weight function that tends to show large contributions between many spatial
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locations. However, it seems to be the appropriate approach when there exists a sparse

weight function.

The argument stated above can be justified from the posterior estimates for the hyper-

variances γk (Figure 3.9). In all levels the bimodal nature of the distribution creates

a tendency of deriving elements of βk very close to zero, in which case under a high

dimensional dataset we would expect a sparse representation of both the matrix B and

the weight function w. Moreover, for the non-zero elements the hypervariance is very

small to sample higher values of |βk|. A panacea for this would be to be able to ’tune’

the hyperparameter v0, however, if treat that parameter as very small or significantly

larger, then an underestimation or overestimation phenomenon will be again observed

in these respective cases.

In conclusion, all the prameters under the MCMC scheme have converged after N =

100000 iterations and a burn-in period of i = 50000 decided under convergence diagnos-

tics, such as autocorrelation plots and trace plots. The efficiency of the algorithm for

this amount of locations and time points did seem fast, however, the more the locations

are increased, the more the computational complexity and thus the iterations for the

parameters to converge.
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Figure 3.6: Histograms of the reconstructed elements of the redistributional kernel
ws(u) produced from IDWT by the posterior estimates of B. The red line indicates
the empirical distribution of each element. The green vertical line indicates the actual
value of the weight function. The associate distributions are produced under N = 105

Gibbs iterations with a burn in period of i = 50000.
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Figure 3.7: Posterior density estimates for the hypervariances γk for each level of the
wavelet coefficient βk. The bimodal distribution is due to the point mass prior and the
hyperparameter values that were set, i.e., v0 = 0.05, ω1 = 2 and ω2 = 20. The inference
was conducted under N = 105 Gibbs iterations with a burn in period of i = 50000.

3.7.3 Discontinuity in weight function ws(u) and covariance inference

This simulation was conducted under the same covariance parameters and spatial corre-

lation function in (3.35). However, we have produced a process based on a discontinuous

kernel. Specifically, a Gaussian redistribution kernel with mean and variance θ11 = 0
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and θ12 = 0.5 respectively was used for the locations that lie in the area [0, 2.5) while

a Laplace redistribution kernel was used with θ12 = 0 and θ12 = 1 in the area [2.5, 5],

i.e.,

ws(u) =


N(‖s− u‖2 |0, 0.5) if s, u ∈ [a, b]

Laplace(‖s− u‖2 |0, 1) if s, u ∈ (b, c]

0 otherwise

(3.36)

For the inferential part, the same hyperparameters were considered, while for the co-

variance inference we consider σν to be the parameter to estimated under an inverse

gamma prior with δ0 = 2500 and ξ0 = 0.01 being the shape and scale parameters re-

spectively which provides us with informative prior of small variance. Analogously, for

the covariance parameter ση an inverse gamma prior with ψ1 = 13000 and ψ2 = 100

being the shape and scale parameters respectively was considered which again provides

us with an informative prior of a small variance.

Essentially, we expected that since wavelets are strong detectors of discontinuites we

would be able to track the very high and very low intensity areas. As seen in Figure

3.10, we managed to reconstruct the underlying process Xk and successfully captured

the discontinuity level of these intensities pretty well. Between the 20th and 100th

time point however the very low intensity locations are overestimated while gradually

the estimation gets better. This has to do with the FFBS as well since the more we

approach the final point, the better the process will be approximated.

Similarly to the previous scenario, the posterior modes for the different elements of

B tend to be very good when the coefficient is zero while for the non-zero ones for a

small amount of cases we derive over or under estimations. This has to do with Spike

and Slab being sensitive when there is a high signal-to-noise ratio. The posterior mode

of the covariance parameters are 4.7 and 5.29 for σ2
ε and σ2

η respectively. There is

an indication that the variances are hyperparameter sensitive since we have always a

large summation in the scale parameter in the conditional posterior which could give

us very high values for the variances and thus the system would stop running due to

singularity. It can be observed through the posterior distributions (Figure 3.13) that

we placed highly informative priors, which for instance for ση was not a good choice and

we still have posterior modes which are not far from the truth. Notably though, the

estimation of σν is difficult to come through since the measurement error variance σε is

indirectly included in the estimation. We ran the algorithm for a number of iterations



CHAPTER 3. GAUSSIAN REDUCED-DIMENSION DSTMS 69

N = 200000 and under a burn-in period of i = 100000. It seems that we needed more

iterations for the variances to converge, however due to computational power, the user

has to resort to more efficient computer resources.

Figure 3.8: Image plots of the estimated process (on the left) and the simulated underly-
ing process XK (on the right) for T = 256, n = 8, s ∈ [0, 5] under a Daubechies wavelet
of smoothness level 10 and a discontinuous weight function ws(u). The processes are
approximated through IDWT under the smoothed estimates of αt for N = 2 ∗ 105

Gibbs iterations with a burn in period of i = 106.
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Figure 3.9: Histograms of the posteriors for selected elements of B. The red line indi-
cates the empirical distributions of the estimates, the orange line indicates the prior
belief while the vertical green line specifies the actual value of βk,s. The hyperparam-
eter values were set to v0 = 0.05, ω1 = 2 and ω2 = 20. The inference was conducted
under N = 2 ∗ 105 Gibbs iterations with a burn in period of i = 105.
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Figure 3.10: Posterior density estimates for the hypervariances γk for each level of the
wavelet coefficient βk. The bimodal distribution is due to the point mass prior and the
hyperparameter values that were set, i.e., v0 = 0.05, ω1 = 2 and ω2 = 20. The inference
was conducted under N = 2 ∗ 105 Gibbs iterations with a burn in period of i = 105.
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Figure 3.11: Posterior density estimates for the covariance parameters σν and ση. Red
lines indicate the empirical distribution of the estimates. The prior that was set for the
spatial covariance σν is an inverse gamma with δ0 = 2500 and ξ0 = 0.01 being the shape
and scale parameters respectively while for the covariance parameter ση an inverse
gamma prior with ψ1 = 13000 and ψ2 = 100 being the shape and scale parameters
respectively was considered. The inference was conducted under N = 2 ∗ 105 Gibbs
iterations with a burn in period of i = 105.

3.7.4 No discontinuity in weight function ws(u) but more locations

After assessing our model’s capability with known and unknown covariances for var-

ious weight functions under a small amount of locations, we conducted a simulation

study for an amount of n = 32 locations as well. Notably, due to high computational

complexity we noticed that compared to eight locations, it was far more expensive to

run and we needed more iterations for the parameters to converge.

Noticeably, the trend of the underlying process was captured pretty well with only

a few locations and time points showing over and under estimations (Figure 3.14). The

high intensity pattern between the 150th time point and the 200th is estimated pretty

well for the majority of the locations, while for the latter time points, most of the

locations are estimated pretty well. A slight capture of the pattern for the first time
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points can be noticed while for the very low ones we have a slight overestimation.
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Figure 3.12: Image plots of the estimated process (on the left) and the simulated
underlying process XK (on the right) for T = 256, n = 32, s ∈ [0, 5] under a Daubechies
wavelet of smoothness level 10 and a Gaussian kernel weight function ws(u). The
processes are approximated through IDWT under the smoothed estimates of αt for
N = 4 ∗ 105 Gibbs iterations with a burn in period of i = 3 ∗ 105.

Thus, we can still get a very satisfying estimation of the underlying process by consider-

ing that we did not have the computational power for it to converge. Furthermore, since

the parameters for the spatial wavelet coefficients B are 1024 parameters in total, we

have observed again that the close to zero and zero ones are perfectly estimated while

for the positive ones we derive slightly overestimated posterior modes, however, for the

negative ones we get an underestimation. This was observed for the eight locations as

well.
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Figure 3.13: Histograms of the posteriors for selected elements of B. The red line
indicates the empirical distributions of the estimates, the orange line indicates the prior
belief while the vertical green line specifies the actual value of βk,s. The hyperparameter
values were set to v0 = 0.05, ω1 = 2 and ω2 = 20. The inference was conducted under
N = 4 ∗ 105 Gibbs iterations with a burn in period of i = 3 ∗ 105.

3.8 Application to Pollution Data

In this section we will consider air pollution data, consisting of a response spatio-

temporal point referenced process variable Y (s, t) with values of the pollutant Nitro-
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gen Oxide (NO) in milligrams per square meter. This data set is collected on a daily

frequency over a period of 256 days, from 20th April 2008 until 31th December 2008,

picked in order to avoid seasonality effects. The data, are obtained by eight monitoring

stations in the city of Athens, which are shown in Figure 3.16. Previous analysis on

this dataset has been conducted in order to track when higher levels can cause risk in

public health (Bersimis et al., 2018). Furthermore, analysis of air pollution datasets

under spatio-temporal models have been thoroughly conducted in the literature such

in Wikle et al. (1998), Riccio et al. (2006) or Schmidt and Gelfand (2003) and further

analysis has been conducted for modelling Ozone levels (Huerta et al. (2004) Sahu et al.

(2007), Sahu et al. (2009), Sahu and Bakar (2012)).

As these data are measurements by older instruments, a large amount of signal to

noise ratio is expected. Therefore, what we would like to infer is NO across time and

the eight spatial locations around the city of Athens. Furthermore, they were given

with an amount of missing values, which were imputed via a Moving Average (MA)

prior to the analysis. Therefore, there are several interesting questions we may ask but

the most interesting one is whether we can find any causal relationships between the

locations themselves through the estimation of the weight function.

3.8.1 Lifting scheme for multidimensional spatially irregural data

The weather station’s locations are defined in a two-dimensional grid and are irregu-

larly spaced. Thus, a standard use of orthogonal wavelet transform as in 1-D is not

plausible for this application. In cases like this, second generation wavelet techniques

called ’lifting’ for two dimensions have been developed which can handle multidimen-

sional irregularly spaced data that commonly arise in statistics (Jansen et al., 2009).

These techniques specifically for these kind of data have been created in Jansen et al.

(2009) and are developed and built on Jansen et al. (2001). For a quick introduction

to the lifting scheme the reader can see Sweldens (1996b).

In the 2-D dimension many concepts of a neighbourhood structure can be considered.

Jansen et al. (2009) suggested the usage of Voronoi polygons to define the neighbour-

hood structure, which are employed by a lifting scheme. The basic idea is to construct,

at each stage, a triangulation of the data locations. The neighbours of any location are

then the locations that are entered by edges within the triangulation. As soon as a de-

tail coefficient corresponding to a particular location has been found, the triangulation
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is appropriately modified to exclude that location.

However, it is important for the variance structure of the new lifted wavelet coefficients

to be carefully analysed. Jansen et al. (2009) use a novel Bayesian wavelet shrinkage

technique by considering the artificial levels. Thus, under this scope, by extracting the

new lifted coefficients with the use of aforementioned lifting scheme under Voronoi poly-

gons for the neighbourhood structure and by extracting as well their scaling variances,

new artificial groups or levels can be decided. One way to decide the artificial levels

of grouping is an adaptation of the dyadic structure of the standard discrete wavelet

transform. Specifically, the coefficients can be split into levels in some arbitrary way,

and one possibility is simply to impose an artificial dyadic split, with the highest level

containing the half of the coefficients with finest scale, and subsequently lower levels

successively a quarter, an eighth, and so on, of the total number of coefficients in the

order that is defined by the lifting scheme.

In this application, we employed lifting scheme under Voronoi polygons for the neigh-

bourhood structure and extracted the scales of the coefficients. Then, a spike and slab

prior for each level was imposed. As eight locations is not a big number to be consid-

ered for grouping artificial levels, in this case we model them without any grouping.

However, a generalisation for a dataset with more locations in terms of the posterior

distributions that consider the grouping for artificial levels of coefficient matrix B can

be analogously derived.

3.8.2 Analysis and Results

In this analysis we are considering our Bayesian framework of the Dimension Reduced

DSTM under the lifting scheme with a Voronoi neighbourhood structure for the de-

composition of NO with a known signal-to-noise ratio (σε/σν = 1.5) with the hierarchy

in Table 3.1. under the pseudo-code in Table 3.2 under the Spike and Slab prior with

v0 = 0.02. Moreover, we noticed that some locations are more volatile than others,

therefore a diagonal structure with difference elements on Ση, i.e, Ση = σ2
ηI with

σ2
η = (ση1, . . . , ση8) each one with an inverse gamma prior with shape and scale param-

eters 103 and 0.01 respectively. Finally, an exponential spatial correlation function was

considered with scaling parameter θ = 3.

Several findings are in order. Wikle and Cressie (1999) consider a detrended pro-
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cess Y (s, t) under the Dimension Reduced DSTM. However, in order to check the

performance of the proposed methodology, no detrending methods were applied. In-

terestingly, even if the noisy process Y (s, t) follows specific trends through time, the

estimated underlying process XK(s, t) of nitrogen oxide (NO) captures these trends

pretty well, as seen in Figure 3.17 and 3.18. This provides evidence of the adaptivity

of the proposed methodology.

Figure 3.14: Map of Athens. The eight weather stations are represented with red
circles. The weather stations are located at central and suburban locations in Athens.

Additionally, the model itself produces trended underlying process values where the

moving average imputed values are fairly estimated under a trend. We can observe a

pattern for most of the locations. For the final time points, which represent the winter

months, there is increased volatility in terms of NO emissions. This can be justified

as during summer months most of the citizens in Athens take their vacation time off
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and thus there is way less traffic on the streets. Furthermore, during winter months,

as traffic is high we would expect higher emissions of NO. Finally, only for the last

location, Peristeri, we can observe exactly the opposite effect. Peristeri is a more rural

area which is near the west coast of Athens. Therefore, during summer months most

people travel around that area as it is a national network in order to reach the coast

in Athens peninsula and but as well most of the rest mainland of Greece (southern

towards Peloponnese and northern and east towards Thiva and Chalkis respectively).

Secondly, considering the reconstructed estimates of ws(u) (Figure 3.18) the most im-

portant finding is the causal relationships of the weight function ws(u) between loca-

tions. Specifically, for the central area of Athens we observe that the weight function

leans towards the negative contribution to the suburban Likovrisi area. This is reason-

able as Likovrisi is a residential only area with a low traffic activity while the central

area of Athens hs a high activity of drivers that come through all suburban areas to

work and/or study.

Furthermore, it is known that Athens is an area where most of the air pollution, both

by cars and industry is gathered around the city centre while the suburban areas are

greener, sparse inhabitant and have only a few residential cars. Intuitively we would

expect negative relationships in the pollutants between central weather stations and

suburban ones. Moreover, as the measurements are daily, the interpretation of the

reconstructed weight function ws(u) describes the contribution in the amount of NO

levels at one location at time t− 1 to another location at time t which means we would

expect a negative causal relationship at the NO levels between a central weather station

and a suburban one. Additionally, Likovrisi is a neighbouring area of Marousi which

is a combination of industrial and residential neighbourhoods. The weight function of

Marousi to Likovrisi suggests that if there is a high level of the pollutant NO on the

first day, we would expect a high level of NO in Likovrisi as well. It is reasonable as

we would expect the pollution and the traffic activity in neighbouring areas to be simi-

lar. Finally, Likovrisi and Pireus are very distant neighbours with a complete different

structure. Pireus is both an industrial, residential and trading area. In Pireus lies the

Athens port for trading and commuting to the islands but there are plenty of offices and

factories as well. It is reasonable to have a non-causal relationship for these two areas

due to their large distance and the different social and geological structure they own.

On the other side, we would expect Pireus and Geoponiki to interact with each other

as they are both big areas, reasonably close to each other with two central highways
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Figure 3.15: Noisy Nitrogen Oxide (NO) measurements (black) vs approximated un-
derlying process (red) for eight weather stations consisted of central and suburban
locations in Athens. The processes are approximated through IDWT under a Haar
wavelet through the smoothed estimates of αt for N = 2 ∗ 106 Gibbs iterations with a
burn in period of i = 106.
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connecting them. Noticeably, our model estimates that there is no causality between

them. Furthermore, Geoponiki is very close to the centre of Athens, being connected

with highways and dense populated areas in between. It is suggested by our model that

there exists a positive causal spatial contribution from Geoponiki to the central area

of Athens.

In addition, Peristeri shows temporally a different pattern of levels of emission com-

pared to the rest of the locations. That sensibly contributes into understanding the

negative causal relationship created in terms to Athens. The weight function indicates

that if one day we have high emissions in Peristeri, we would expect in Athens to have

way lower the day after. This is intuitively a prediction of their contrast in emission

levels between the summer and winter months. Moreover, Peristeri receives no causal

contribution from Pattision, which is a highly dense populated area with universities

and offices as well. Pattision, throughout all time points shows the highest emission

levels, only with a small decrease during September. Even if Peristeri has a contrasting

pattern with the rest of the locations, it seems that it does not affect the emissions

across that area. One reason for that is that their distance is far with a bad road

connection between them. Finally, despite N. Smirni and Marousi appearing to be

similar residential areas (they are far from each other but they share a similar distance

to the centre), there seems to be a negative causality between them. If we observe the

emissions of NO throughout all the time points for both locations, they have a similar

pattern, except of the autumn months where the data set includes numerous missing

values, which where imputed via moving average for N. Smirni with very low levels,

and very high ones for Marousi. We suspect that this affected the estimation of the

weighting function and gave us a contrast between these two locations.

The posterior variance densities for all locations are shown in Figure 3.19. Specifi-

cally, while we gave highly informative priors, adaptively the data gave us different

posterior estimates. Moreover, the posterior modes are very close to the empirical

variances for all locations which is reasonable. Finally, the spatial variance σ2
v gave

us a posterior mode of 6.3. The level of spatial variance is low indicating us that all

locations, i.e., both rural and urban areas share similar levels of NO. This is very

plausible considering the aforementioned comments that in suburban areas factories

and companies exist while in the centre there are high levels of traffic. Furthermore,

as we considered a signal to noise ratio of 1.5, that gives us an estimated measurement

error variance of σ2
ε = 1.5 ∗ 6.3 = 9.45 providing us with an estimation higher than the
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Figure 3.16: Histograms of selected reconstructed elements of the redistributional kernel
ws(u) produced from IDWT under Haar wavelet basis and the posterior estimates of
B. The red line indicates the empirical distribution of each element. The selected
pairs are representing causality of one location to another. A weight function with a
posterior mode being around zero indicates zero causality, otherwise, either a positive
or negative causal relationship is assumed. The associate distributions are produced
under N = 2 ∗ 106 Gibbs iterations with a burn in period of i = 106.
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Figure 3.17: Posterior density estimates for the temporal variance elements of states αt,
ση. Red lines indicate the empirical distribution of the estimates. Green lines indicate
the prior distribution for the covariance elements, an inverse gamma with 103 and 0.01
being the shape and scale parameters which indicates a high informative prior.The
inference was conducted under N = 2 ∗ 106 Gibbs iterations with a burn in period of
i = 106.
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spatial variance σ2
ν . This is plausible as the variability of NO is high and the model

considers the extra variability through the error variance parameter σ2
ε .
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Figure 3.18: Posterior density estimates for the spatial variance of the observed mea-
surements Yt, σν . The orange line indicates the empirical distribution of the estimates.
An inverse gamma with 103 and 0.01 being the shape and scale parameters which indi-
cates a highly informative prior.The inference was conducted under N = 2 ∗ 106 Gibbs
iterations with a burn in period of i = 106.

Missing Value Treatment In this application a simple moving average imputation

was used for the calculation of the missing values. The disadvantages of moving av-

erage analysis center around its simplicity and subjective flexibility. A simple moving

average places the exact same weight on for instance, ten time points into the past, i.e.,

t− 10 in the observations that took place at t− 1. Thus, while it is simple to impute a

missing value, it cannot possibly capture volatile trends as a whole. Furthermore, even

with the use of shorter moving averages that can be used to model volatility, it’s very

challenging to decide on the correct window to use.

As we are working under a Bayesian setting, we can treat the missing values as pa-

rameters subject to estimation or else, derive posterior inference for their prediction.

Let Yt = (Y mis
t ,Y obs

t ) and consider the missing data indicator m which indicates as 1

being a missing value and as 0 an observed value. Then, the model can be factorised
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as:

p(Yt,m) = p(m|Y mis
t ,Y obs

t ,αt, σ
2
ε , σ

2
ν)p(Y mis

t ,Y obs
t |αt, σ2

ε , σ
2
ν)

when the missing data mechanism m is ignorable, then we can ignore p(m|Y mis
t ,Y obs

t

and just fit the analysis model from p(Y mis
t ,Y obs

t |αt, σ2
ε , σ

2
ν) which is the usual likeli-

hood that we would specify under a fully observed response Yt. Thus, estimating the

missing responses Y mis
t is equivalent to posterior prediction from the model fitted to

the observed data. Obviously, one would need to conduct forecast on the equivalent

state vector αt through the FFBS recursions while also using the sampling parameters

under the i− th Gibbs iteration.

3.9 Conclusion

We have introduced an adaptive Bayesian procedure for Gaussian Dimension Reduced

DSTMs. This truncation makes use of an efficient sparse wavelet decomposition where

its spatial coefficients are inferred through a Spike and Slab prior. Furthermore, an

efficient filtering and smoothing procedure under a Bayesian framework is used for the

estimation of the temporal wavelet coefficients. Lastly, a flexible Bayesian estimation is

provided with preferable covariance structures. Last but not least, a simulation scheme

was introduced for Gaussian Dimension Reduced DSTM processes under wavelet basis

decomposition.

Firstly, case studies for both a small and relatively higher number of locations have

proved the effectiveness of our methodology on approximating an underlying spatio-

temporal process with complex dynamics. Moreover, the proposed methodology suc-

cessfully approximates processes with spatial discontinuities (section 3.7.3). Addition-

ally, the reconstruction of the weight function, which is a challenge in practice to be

estimated, was predicted fairly well. It has to be noted that known kernels where used

to be simulated instead of the Spike and Slab hierarchy itself which makes our model a

successful detector of spatial kernels. As for the inferential procedure of the covariance

structure, it was found to be successfully adaptive and flexible as we predicted all our

covariance parameters pretty well. Furthermore, we tested our methodology on real

data without using any detrending procedures in contrast to Wikle and Cressie (1999).

Still, our model managed to capture both the trend and seasonal effects of the processes

and we managed to approximate the processes very well. Furthermore, we achieved to

produce spatial causality between locations. These spatial causalities seemed reason-
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able based on the geology, social and economical aspects but mostly the distance of

those areas. Finally, the most stable process to be sampled is α, since Kalman Filter

and smoothing recursions are very adaptive since they take into consideration the past

and future values and therefore the prior information given at zero time is washed out

by the model itself.

However, no methodology is perfect for such complex models and we encountered hin-

drances during our estimation. Firstly, the hyperparameters of the Spike and Slab

hierarchy under this framework should be considered with care. For instance, if we

are expecting to have a large amount of sparsity, then v0 parameter should be set very

small close to 0. However, since it affects the variance elements of βk it may provide a

structure to B which produces elements generally very close to zero and thus it results

into a very complicated thresholding approach. On the other hand, if v0 is large and

closer to 0.5, it tends to produce elements that are non-zero but there are only a few

zero ones. However, the value of v0 should be considered together with the hyperpa-

rameter values for the precision τ2
k . For instance, if very high or very low mean values

are set, then it will result either into very large elements on the matrix B or very low

ones combined with the respective value that will be put to v0. Moreover, the more

parameters we have under the Spike and Slab, combined with the signal-to-noise ratio,

the more we will tend to fail to estimate the large values of B. Finally, the application

on real data showed as that the model is sensitive in predicting the causality when a

large amount of missing data exists.

In terms of the hyperparameters of the variance elements in Ση and σv, non-informative

priors do tend to affect the sampling in our simulations and the estimation in terms

of calculations. Additionally, it was observed that the more we increase the number

of locations, the more computational power we need for the model to run. The rate

of iterations for the parameters to converge by n is exponentially increasing, while the

more complicated covariance structure we have, the rate of iterations is affected in an

additive way.

Finally, one could resort to another type of efficient inferential approach through

Stan which is a probabilistic programming language (http://mc-stan.org). This soft-

ware makes the required computation automatically using the most elegant and up to

date techniques including automatic differentiation through Hamiltonian Monte Carlo.

Feeding the data into Stan makes the inference faster as it is compiled to C++, while
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there is a package developed in R which extends to Bayesian Inference as well. Al-

though Stan already provides efficient inference for a wide range of models, it has its

limitations. Hierarchical models often suffer from inefficiencies due to distributions

with difficult posterior geometries, and in many cases reparameterization can help.

Other sources of problems can be highly non-linear dependency structures (leading

to banana-shaped, curved posteriors), multi-modal posterior distributions, and long-

tailed distributions. Thus, an implementation of our methodology through Stan would

definitely increase the computational efficiency, though its implementation should be

examined with caution.



Chapter 4

Poisson Reduced-dimension

Dynamic Spatio-Temporal

Models

4.1 Introduction

In the previous chapter we proposed an adaptive Bayesian modeling procedure with

the help of wavelet basis decomposition for the model of Wikle and Cressie (1999).

That model as well as our methodology considers that the observed measurements are

normally distributed which means that both the observation and state equations are

linear. However, many spatio-temporal data are generated from non-Gaussian distri-

butions. For instance, if we would like to model traffic accidents in specific areas, then

we have Poisson counts, or if we would like to model the cancer rates per location, then

we have Multinomial proportions. Therefore, the implementation of Gaussian DSTMs

in those datasets is false as the observation equation is non-linear anymore. Addition-

ally, combining the non-linearity of observations and that spatially the problem is high

dimensional, then the inference and a realistic implementation makes it a challenge in

practice.

Based on the aforementioned arguments, in this chapter we are going to focus on

the reduced-dimension DSTM under Poisson counts proposed by Wikle (2002). Specif-

ically, we will address the limitations of that modeling procedure which is based solely

on a specific application in cloud intensity data by considering an overall spatial mean

87
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effect for all locations of interest. Thus, we will expand this modeling procedure to a

general case in terms of the spatial mean effect but also we will introduce an autore-

gressive framework. Additionally, we will consider in this chapter the wavelet basis

decompositions due to their efficiency and good localisation properties. However, the

inferential procedure unlike in the previous chapter will not be based solely on Gibbs

sampling for the temporal components αt of the model. Thus, we propose an efficient

inferential procedure through particle filtering (PF) methods where we will provide

thorough explanation in the latter sections.

Simulation implementations were conducted in both proposed modelling frameworks.

Our findings are promising for processes of counts. Specifically, the mean of Poisson

processes was captured fairly well even in abrupt peaks, which is in general a challenge

in practice. Furthermore, the weight function was successfully reconstructed, however,

updating the elements of B is much slower than the Gaussian case where we solely

conducted MCMC inference. Additionally, the covariance estimation, in which in this

case less parameters are considered, was conducted fairly well.

Finally, at the end of this chapter we offer a real life application to traffic flow data

under our proposed methodology. Our findings include that the proposed methodology

is approximating fairly well mean intensities under a low number of time points and

imputed missing values. Last but not least, we derive causal relationships in the traf-

fic flow between counties in the M6 motorway from the reconstruction of the weight

function.

4.2 Discussion of Poisson DSTM

In this section we discuss the spatio-temporal approach of Wikle (2002) which is based

on the non-Gaussian spatial modeling approach of Diggle et al. (1998) and the hier-

archical representation of Wikle et al. (1998). It is assumed that conditional on a

Poisson intensity process at all spatial and temporal locations of interest, the data are

distributed as independent Poisson random variables.
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4.2.1 Model Formulation

Consider the count spatio-temporal process Y (s, t) under a spatio-temporal Poisson

intensity λ(s, t), with s ∈ D ⊂ R denoting the locations and t = 1, 2, . . . , T denoting

the discrete time points, i.e.,

Y (s, t)|λ(s, t) ∼ Poi(λ(s, t)) (4.1)

where λ(s, t) is the Poisson intensity process at spatial location s and time point t.

In order to bring the process into a linear framework, λ(s, t) can be modeled via a

generalised dynamic linear model, i.e.,

log(λ(s, t))|µ,αt, σε ∼ N(µ+ νφsαt, σεI) (4.2)

where µ is the overall mean effect, same for all locations and σε represents the extra

Poisson variability and let αt evolve as in (2.11) and ν is a scaling parameter while φs

represents the s− th row of the wavelet matrix Φ.

A few comments are in order. Firstly, Wikle (2002) considers an overall mean effect for

all locations which means that the spatial contribution on the intensities λ(s, t) for each

location should be similar. This approach was applied to cloud intensity data where

someone would expect a similar spatial aspect as there is no geological attributes to

consider. For instance, if the random variable of interest was the number of events of a

river flooding within a month, one would expect a different mean contributing to the in-

tensity as the inner and outer ground attributes may vary from one location to another.

Secondly, the spatial kernel ws(u) in Wikle (2002)) is considered to be Gaussian while a

spectral decomposition is conducted on the translation and dilation parameters where

this brings a hierarchical framework for the estimation of those parameters. This means

that the weight function is not approximated anymore but is already predefined and the

focus of introducing parsimony is on each spatially varying kernel parameters. Specifi-

cally, he considers a Fourier basis decomposition on the kernel parameters where they

will vary for each location and then conducts MCMC inference on them.

Finally, Wikle (2002) used Gibbs sampling as an inferential procedure for αt. In Chap-

ter 3 we explained the hindrances of conducting Gibbs sampling for the inference of

parameters αt. Furthermore, if we like to use the Forward Filtering Backward Sam-
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pling algorithm, under this model, it makes it unreliable. For this reason we suggest

that particle filtering approaches for the particles αt with Gibbs sampling steps for the

rest of parameters instead.

4.2.2 Details of the problem and suggestions

Under the non-Gaussian framework several approaches have been implemented in terms

of a transformation of the process into the hierarchy structure in order to bring it into

a generalised dynamic framework. These models were developed by Diggle et al. (1998)

while they have been broadly used in the case of spatio-temporal processes, such as in

Brix and Diggle (2001), Wikle (2003), Wikle and Hooten (2006), Hooten et al. (2007)

and Hooten and Wikle (2008) where each author uses an exponential family approach

of generalised linear models. Moreover, there is a plethora of approaches for datasets

of non-linear nature. Specifically, Wendt et al. (2004) proposed a Bayesian waypoint

analysis on nonlinear equations of motion, Wikle and Holan (2011) consider a hier-

archical framework under Integro-difference equations (IDEs) with stochastic variable

selection. For more details on nonlinear approaches there is a full literature in Cressie

and Wikle (2015).

Given that the methodology in Wikle (2002) is developed and applied under a spe-

cific application, it is sensible for us to propose a generalisation of it and consider some

approaches for µ. Specifically, if we want to induce this notion for other applications,

it would be sensible for the mean effect to consider µ = (µ1, . . . , µn), i.e, to differ for

each location and incorporate that into the intensity process. Furthermore, an alterna-

tive and even more flexible approach is to consider an autoregressive structure for the

mean vector µ. This relies on the fact that in many applications we would expect the

mean effect to be conditionally dependent on the previous time point, for instance, the

number of trees at time t in one area would be affected from the number of trees in the

same and the rest of locations at t− 1.

Additionally, under our suggestion on using wavelet decomposition on the weight func-

tion, we are able to successfully approximate discontinuities of very low and high con-

tributions that affect in an autoregressive manner the intensity process without pre-

defining the weighting function kernel as in Wikle (2002). This means that the data

adaptively will guide us to understand the nature of that kernel while also introducing

parsimony.
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Finally, it is notable that due to the nature of the observations we can either ob-

serve intensities or counts. In the case where we are receiving count measurements σ2
ε

will not be needed in the model anymore, however, in the case of different application

where our observed measurements are intensities, one can consider it in the model. In

the rest of the thesis we will focus on count observations.

On the computational aspect, in nonlinear approaches that were developed for spatio-

temporal processes, authors had to tackle with the unrealistic formulation under a

generalised framework. Even so, generalised dynamic state-space models have always

been a flexible and efficient way to model non-Gaussian processes by considering tem-

poral dependencies. Thus, considering these formulations under Bayesian settings has

been a debatable issue. Extended Kalman Filter (EKF) methods have been a solution

to this problem, where the first two moments provide a good approximation to the dis-

tribution of the measurement and state processes. Alternatively, Gibbs sampling steps

within Metropolis-Hastings in order to sample the full conditionals, only by considering

linearised model distributions (Cressie and Wikle, 2015). However, MCMC methods

for high dimensional non-linear state space models are difficult to implement and need

a lot of information in terms of tuning. A new evolving efficient procedure that is fairly

used for spatial processes’ modelling is the Integrated nested Laplace Approximation.

This method approximates posterior marginals efficiency in models with latent Gaus-

sian processes, however, if there is a high dimensional parameter space of non-Gaussian

hyperparameters and spatial structures that cannot be coerced, it is questionable if

INLA could perform well under non-Gaussian DSTMs (Cressie and Wikle, 2015).

In Chapter 3 we conducted inference via the FFBS algorithm that was implemented

for the inference of the temporal wavelet coefficients αt. However, in this modeling

framework it cannot be used as the Gaussianity in the observation equation is violated.

This already brings an inferential problem in terms of smoothing. Secondly, as it will

be shown, Poisson counts are very difficult to be modeled temporally in the case of

abrupt peaks in the series, even if wavelets help us to track the discontinuities. Finally,

one question is how one can take into consideration the spatial correlation that exists

between the locations as the structure of the error terms is not similar to the Gaussian

DSTMs. Having said that, we will consider the implementation of Particle Filtering

(PF) techniques for the temporal components. Therefore, an appropriate particle fil-

tering algorithm will be used in order to derive the filtered posterior estimates αt. In
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order to achieve that we will consider many scenarios, but we will keep the Spike and

Slab prior belief of B the same as in the Gaussian case in Chapter 3.

4.3 Proposed Approach

In order to address the limitations in Wikle (2002), two concepts will be discussed. The

first one deals with the choice in the formulation of the overall mean effect µ for all

spatial locations s. The second one deals with the Bayesian inference which consists

of a multivariate form of a Spike and Slab prior for the spatial coefficient matrix B

and particle filter methods which the combination of the two brings us into an efficient

inferential scheme. Finally, the resulting Conditional Particle Filtering (CPF) and Par-

ticle Metropolis-Hastings (PMH) algorithms both under Static parameter estimation

(Storvik, 2002) will be presented for the inference of the temporal parameters αt (and

µt).

4.3.1 Spatially varying mean effect

As stated in the previous sections, Wikle (2002) considers the spatial overall mean ef-

fect µ to be static and same for all locations. However, by considering most real life

applications this is an unrealistic assumption as we would not expect spatial locations

to behave in a similar way unless we have concrete evidence and knowledge from ex-

perts on the application.

Suppose we observe the Poisson distributed spatio-temporal measurements Y (s, t) with

mean intensity λ(s, t). Let us consider the spatially mean vector µ = (µ1, . . . , µn)> that

contributes in the spatial aspect of the intensity process λ(t, s) and the state equation

in (2.11), i.e.,

log(λ(s, t)) = µs + Φ>αt (4.3)

at = Φ>Bαt−1 + Φ>ηt

where µs is now the mean effect for the spatial location s and ηt ∼ N(0,Ση). The

equations in (4.3) suggest that the intensity λ(s, t) will be affected from λ(u, t − 1) in

an autoregressive manner through the state equation of αt. Moreover, an extra spatial

contribution is incorporated into the autoregressive structure under a temporal error

ηt. The framework on this modelling approach is summarised in Table 4.1.
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Data:

Observed spatio-temporal process: Y, T × n matrix
Intensity spatio-temporal process: λ, T × n matrix

Spatially varying mean effect: µ, 1× n vector
Redistribution kernel: w, n× n matrix

Approximations:

λ = αΦ, αT×n, coefficients of matrix Φn×K
ws = BΦ, BK×n, coefficients of matrix Φn×K

Model:

log(λt) = µ+ Φαt λt = exp(µ+ Φαt)
αt = Φ>Bαt−1 + ηt ηt ∼ N(0,Ση)

Parameters and Prior distributions:

α0|0 ∼ N(m0,P0|0) m0, P0|0 prior mean & covariance

vec(B)|Γ ∼ N(0,Γ⊗ I) Γ = diag{γ1, . . . , γk}, γk = ρkτ
2
k

ρk|v0, q ∼ (1− q)δv0(.) + qδ1(.) q ∼ U(0, 1)

τ−2
k |ω1, ω2 ∼ G(ω1, ω2) βk ∼ N(0, γkI)
µ0|0 ∼ N(µ0,M0|0) Ση ∼ IW(ν,Q) or ση ∼ IG(ψ1, ψ2)

Table 4.1: Framework of the model under spatially varying µ

A few comments are in order. The spatial effect µ in this case is considered static.

This means that each location s spatially will behave in the same magnitude in its own

intensity λ(s, t) while the rest of the locations will affect it in an autoregressive manner

via αt. In the case where the overall mean effect is the same for all locations, we would

expect to be estimated appropriately. In the Gaussian case of Chapter 3 we considered

a spatial variation σν under a spatial correlation function. In this case we can comple-

ment the loss of not using a spatial covariance function through introducing a separate

mean effect which can affect the locations separately while the approximation of the

weight function under the matrix B will provide us with the spatial diffusion dynamics.

As noticed, we have removed the scaling parameter v. As we are now considering more

separate spatial parameters we consider the spatial scale aspect to be affected by the

combination of each µs and the matrix B.

Additionally, this approach considers a strict spatial progression as we expect the lo-

cations across time to always meet the same mean effect. If a process of interest has

sudden jumps across time, we would expect that this model would be unsuitable for that

process as we would like a more flexible one that could track the spatial discontinuities

across time combines with the wavelet basis decomposition.
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4.3.2 Autoregressive structure on µ

Suppose again we observe the Poisson distributed spatio-temporal measurements Y (s, t)

with mean intensity λ(s, t) but with dynamic structure on overall mean vector µ due

to the dynamic coefficients αt which may contribute into the posterior mean of µ.

Therefore, presume to give µ an autoregressive structure, i.e.,

µ(s, t) = ψsµ(s, t− 1) + ζt (4.4)

with the temporal error ζt ∼ N(0, σζ) and ψs specifying the autocorrelation of the

mean effect µs between time t − 1 and t. Thus, by defining µt = (µ1t, . . . , µnt)
> and

the diagonal n× n matrix Ψ = diag(ψ1, . . . , ψn), the hierarchy (4.3) changes to:

log(λt)) = µt + Φ>αt

αt = Φ>Bαt−1 + Φ>ηt with ηt ∼ N(0,Ση)

µt = Ψµt−1 + ζt with ζt ∼ N(0, σζI) (4.5)

where a simple diagonal structure for the variance of the error component ζt is consid-

ered. In the case that ψs = 1 then (4.4) takes the form of a random walk model. The

autocorrelation matrix Ψ is considered diagonal as all of the spatially and temporally

spatial information are included in matrix B and the individual temporal vector µt.

Furthermore, for the complexity of our model and parameter space, we consider the

variance σζ to own a simple structure as we would not expect µt in each spatial location

to vary greatly since we are incorporating that variation in Ση as well.

For the models in (4.3) and (4.5) we have combined the Spike and Slab prior belief

as in Chapter 3, and the model is summarised in Table 4.2. However, we are intro-

ducing a new inferential framework. For each case we have alternative approaches

according to the choice of the overall mean vector µ, however, both lie in the particle

filtering (PF) algorithms. These particle filtering methods, along with the extensions

that we are using in our inferential procedure are provided in the following section.
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Data:

Observed spatio-temporal process: Y, T × n matrix

Intensity spatio-temporal process: λ, T × n matrix

Autoregressive spatially varying mean effect: µ, T × n vector

Autocorrelation parameters: Ψ, n× n matrix

Redistribution kernel: w, n× n matrix

Approximations:

λ = αΦ, αT×n, coefficients of matrix Φn×K

ws = BΦ, BK×n, coefficients of matrix Φn×K

Model:

log(λt) = µ+ Φαt λt = exp(µ+ Φαt)

αt = Φ>Bαt−1 + ηt ηt ∼ N(0,Ση)

µt = Ψ + ζt ζt ∼ N(0, σζI)

Parameters and Prior distributions:

α0|0 ∼ N(m0,P0|0) m0, P0|0 prior mean & covariance

vec(B)|Γ ∼ N(0,Γ⊗ I) Γ = diag{γ1, . . . , γk}, γk = ρkτ
2
k

ρk|v0, q ∼ (1− q)δv0(.) + qδ1(.) q ∼ U(0, 1)

τ−2
k |ω1, ω2 ∼ G(ω1, ω2) βk ∼ N(0, γkI)

µ0|0 ∼ N(µ0|0,M0|0) µ0|0, M0|0 prior mean & covariance

diag(Ψ) ∼ N(ψ0,v0I) Ση ∼ IW(ν,Q) or ση ∼ IG(ψ1, ψ2)

Table 4.2: Framework of the model under autoregressive µ

4.3.3 Inference through Particle Filtering

Particle Filtering (PF) methods have been widely used in state-space models in or-

der to update recursively the conditional posterior distributions when Kalman Filter

techniques are not efficient or when the model is of nonlinear nature (for details, see

Cappé et al. (2007)). Particle filtering is an extension of importance sampling in the

evaluation of the expected value of f(x) with respect to the distribution π(x), i.e.,

Eπ[f(x)] =
∫
f(x)π(x)dx. If an importance density is considered then one can approx-

imate that expected value Eπ[f(x)] =
∫
f(x)π(x)

g(x) g(x)dx = Eg[f(x)w∗(x)] instead, with

w∗(x) = π(x)
g(x) being called the importance function.
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Through sequential Monte Carlo an approximate estimate is provided such as

Eπ[f(x)] ≈ 1

N
f(x(i))w∗(x) =

1/N
∑N

i=1 f(x(i))w̃(i)

C

≈
∑N

i=1 f(x(i))w̃(i)∑N
i=1 w̃

(i)
=

N∑
i=1

f(x(i))w(i)

with w̃(i)(x) = Cw∗(x(i)), with C being the normalising constant and is evaluated dur-

ing the unnormalised particle weights w̃(i)(x). The normalised weights w(1), . . . , w(N),

i.e., w(i) = w̃(i)(x)/
∑N

j=1 w̃
(j)(x) sum to one and give us along with the sample particles

x(1), . . . , x(N) a discrete approximation of the target function π, i.e., π̂ =
∑N

i=1w
∗(i)δx(i) ,

with w∗ and δx being the normalising weights and the point mass function for x respec-

tively. For more details, particle filtering in terms of state-space models are explained

in Petris et al. (2009).

Thus, given the observed data Yt we can conduct inference of the states αt by assum-

ing the variance matrices known based on the approximation of the posterior through

particle filtering with N random sampled particles—or trajectories— and via the log

transform in calculating λt as well. The algorithm is a combination of importance

sampling and resampling techniques.

By having a prior and an importance density p(α0), q(α0|Y0) respectively for t = 0

and p(αt|αt−1), q(αt|αt−1,Yt) respectively for t ≥ 1 then we can define the importance

weights as:

w̃
(i)
0 =

p(α
(i)
0 )p(Y0|α(i)

0 )

q(α
(i)
0 |Y0)

, (4.6)

w̃
(i)
t =

p(α
(i)
t |α

(i)
t−1)p(Yt|α(i)

t )

q(α
(i)
t |α

(i)
t−1Yt)

w̃
(i)
t−1 (4.7)

where p(α0) specifies the prior for time t = 0 and p(α
(i)
t |α

(i)
t−1) for t ≥ 1 and p(Y |α(i))

being the density of the observations.

The choice of the importance function can be either the prior or of a different form. The

most flexible approach, which we will consider in this chapter, is the known Bootstrap

particle filtering that considers the importance function being the same as the prior

and then the algorithm is simplified. More specifically, if we set p(α
(i)
0 )= q(α0|Y (i)

0 )
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and p(α
(i)
t |α

(i)
t−1) = q(α

(i)
t |α

(i)
t−1) then the weights are simplified as

w̃
(i)
0 = p(Y0|α(i)

0 ), (4.8)

w̃(i)
n = p(Yt|α(i)

t )w̃
(i)
t−1 (4.9)

The final step in the updating process is consisted of scaling the unnormalised weights

w
∗(i)
t =

w
(i)
t∑N

i=1w
(i)
t

However, especially at the early stage of particle filtering, some particles may have

large weights while others may have really small ones and this phenomenon leads to a

dislocation in the Monte Carlo approximation, the so called path degeneracy. In order

to avoid this and consequently poor estimates, a function-free diagnostic tool should

be considered. One such diagnostic which is widely used is the idea of effective sample

size (Neff ). The effective sample size is defined as Neff = (
∑N

i=1(w
∗(i)
t ))−1 and ranges

between N if all particles are equal and one if one particle has a weight of one. There-

fore, if Neff falls under a threshold N0 then we should conduct a resampling step with

new particles and reset the respective weights to 1/N . The resampling does not change

the expected value of the targets but it increases its Monte Carlo variance and can be

conducted in many different ways, however, in this thesis we will use a multinomial re-

sampling which is the simplest one. Specifically, it is consisted of sampling N particles

from p̂ and by using the sampled points, with equal weights as the new approximations

of the target function.

In the next sections we will explain each of the following updates in more detail and

we will provide separate algorithms for each case.

• Update αt|αt−1,λt,Yt and λt|αt,αt−1,Yt via Particle Filtering

• Update B|αt,αt−1,Γ,Ση through the Spike and Slab hierarchy via Conditional Par-

ticle Filtering with Ancestor Resampling (CPF-AS) (Lindsten et al., 2014)

• Update Ση|αt,αt−1,B of the temporal components αt and σε|λt,αt|µ via Condi-

tional Particle Filtering with Ancestor Resampling (CPF-AS)

• Update spatially varying µ|αt,λt,Yt through:

Sampling through Particle Metropolis-Hastings (PMH) (Andrieu et al., 2010) or

Sampling through static parameter estimation (Storvik, 2002)
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• Update the autoregressive mean effect µt|αt,Ψ,λt,Yt through particle filtering

• Update σζ |µt,Ψ, the error variance of µt, via Conditional Particle Filtering with

Ancestor Resampling

• Update the autocorrelation components Ψ|µ,αt,Ψ,λt,Yt through Conditional Par-

ticle Filtering with Ancestor Resampling

Sampling through Conditional Particle Filtering with Ancestor Resampling or

Sampling through static parameter estimation

The next section will provide us with thorough details on the algorithmic and math-

ematical procedure for the estimation of the parameters of interest. Based on the

preferred modelling framework different algorithms are considered. However, due to

the high computational intensity we pick the most efficient based on the proposed

models.

4.4 Updating the parameters

A summary of the proposed algorithms is shown in Table 4.3 based on the model

formulation that is chosen. Furthermore, we indicate which algorithms are efficient.

These algorithms will be explained in the next sections thoroughly. It can be noted

that if we consider a static spatial mean vector µ then the most efficient algorithm to

be considered if all parameters are unknown is Algorithm 4.9 while the slowest, even

with known variances is Algorithm 4.7. If we consider the autoregressive modelling

framework (4.4), then the most efficient algorithm is Algorithm 4.13 and the slowest is

Algorithm 4.11.
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Table Algorithm Model of µ Parameters Efficiency

4.4 Bootstrap Particle Filtering Static αt, λt Fast

4.5
Conditional Particle Filtering

Static αt, λt, B Moderate
with Ancestor Resampling

4.6
Conditional Particle Filtering

Static αt, λt, B, Σ, σε Moderate
with Ancestor Resampling

4.7 Particle Metropolis-Hastings Static αt, λt, µ Slow

4.8
Bootstrap Particle Filtering

Static αt, λt, µ Fast
Static parameter estimation

4.9

Conditional Particle Filtering

Static

αt, λt Moderately

with Ancestor Resampling B, µ
Slow

Static parameter estimation σε, Ση

4.10 Bootstrap Particle Filtering Autoregressive αt, λt, µt Fast

4.11
Conditional Particle Filtering

Autoregressive
αt, λt, B, µ Moderately

with Ancestor Resampling Ψ, Ση, σζ , σε Slow

4.12
Bootstrap Particle Filtering

Autoregressive αt, λt, µt, Ψ Fast
Static parameter estimation

4.13

Conditional Particle Filtering

Autoregressive

αt, λt, µt

ModerateAncestor Resampling B, Ψ

Static parameter estimation Ση, σε, σζ

Table 4.3: Summary of proposed algorithms

4.4.1 Updating αt|αt−1,λt,Yt and λt|αt,αt−1,Yt

Under our model assumptions and by assuming that for now µ is known, the density

distribution of the measurements Yt for each time point t can be written as

p(Yt|λt,αt,µ) =
n∏
s=1

p(Y (t, s)|λ(t, s)) =
n∏
s=1

e−λ(t,s)λ(t, s)Y (t,s)

Y (t, s)!

= e−
∑n
s=1 λ(t,s)

n∏
s=1

λ(t, s)Y (t,s)

Y (t, s)!
(4.10)

with λ(t, s) = exp(µs + Φαt), while the particles follow a Gaussian distribution den-

sity, i.e., αt|αt−1,B,Ση ∼ N(Φ>Bαt−1,Φ
>ΣηΦ) with B and Ση being the unknown

parameters to be estimated. Since λ(t, s) and αt are related, during the sampling of
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the N particles of αt, the intensities λ(t, s) will be calculated so that we can derive

the approximate filtered estimates, i.e., λ̂(t, s)|αt =
∑N

i=1w
(i)λ(i)(t, s). The bootstrap

particle filter algorithm for αt and λ(t, s) is summarised bellow by considering that the

parameters B and Ση are known:

Initial step:

Simulate N particles α
(1)
0 , . . . ,α

(N)
0 from p(α0)

Calculate λ
(1)
0 , . . . ,λ

(N)
0

Set w
(i)
0 1/N , i = 1, . . . , N

Particle Sampling:

For t = 1, . . . , T :

Sample α
(1)
t , . . . ,α

(N)
t from the importance function g(αt|α(i)

t−1, Yt)

Calculate λ(i)(t, s) = exp(µs + Φα
(i)
t )

Calculate the weights w̃
(i)
t from (4.9)

Normalise the weights w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

Resampling step: Multinomial Resampling

Calculate the effective sample size Neff = (
∑N

i=1(w
(i)
t )2)−1

Draw N indices i1, . . . , iN from the discrete distribution P (αt = α
(i)
t ) = w

(i)
t

Relabel the sample α
(i)
t = α

(ij)
t , for i = 1, 2, . . . , N

Update to equal weights by w
(i)
t = 1/N

Posterior Estimation Approximate the posteriors

p̂(αt|Y1:t) =
∑N

i=1w
(i)
t δ(αt − α̂t), where α̂t =

∑N
i=1w

(i)
t α

(i)
t

p̂(λt|Y1:t,αt) =
∑N

i=1w
(i)
t δ(λt − λ̂t), where λ̂t =

∑N
i=1w

(i)
t λ

(i)
t

Table 4.4: Bootstrap Particle Filtering Pseudo Code for αt and λt for the Poisson
DSTM (4.3) for known µ, B and Ση.



CHAPTER 4. POISSON REDUCED-DIMENSION DSTMS 101

4.4.2 Updating B|αt,αt−1,Γ,Ση

The prior and posterior hierarchy under the Spike and Slab for B remain the same as

in Chapter 3 since B is a part of the linear states αt which remains the same. The

posterior updating will involve separate Gibbs steps for the estimation of B combined

with particle filtering. Specifically, in each Gibbs iteration a new particle filtering al-

gorithm will be run in order to sample randomly a particle vector αt and use it in

the posterior of B. This procedure is called conditional particle filtering with ancestor

sampling (CPF-AS). The method was firstly introduced from the PMCMC methods by

Andrieu et al. (2010), and was evolved by Lindsten et al. (2014).

Specifically, the CPF-AS is similar to the regular particle filter as shown in Table

4.4. The extra step is that in each Gibbs sampling iteration the N-th particle trajec-

tory is a particle vector α1:t[m] which is specified a priori where m signifies the m− th
iteration of the Gibbs sampling. This means that CPF-AS generates N weighted par-

ticle trajectories {αi1:T , w
i
T }Ni=1 but under the formulation of the conditional particle

filter in Andrieu et al. (2010), one of these trajectories is marked as α1:T [m]. By us-

ing the ancestor sampling, then the CPF-AS is obtained and the resulting trajectories

{αi1:T , w
i
T }Ni=1 are still influenced by that selected α1:T [m] (Svensson et al., 2015).

Therefore, an extra iterative step can be included in the algorithm of Table 4.4 where a

particle vector α0:T is drawn and through that the associate vector λ0:T is calculated.

Then, these vectors are used in the conditional posterior distribution of B in order to

sample the m− th estimate. The CPF-AS algorithm (Table 4.5) for the model in (4.3)

is provided bellow.
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Initial step:

Initialise at m = 1:

Set vec(B)[1] arbitrarily or through the prior p(vec(B))

Particle Sampling:

For m = 1, . . . ,M :

Implement Algorithm 4.4 with B = B[m− 1]

Draw ω ∼ C({wT }Ni=1) and output the trajectory αω0:T [m]

Calculate λω0:T [m]|αω0:T [m]

Gibbs sampling step:

Draw B[m] from vec(B) ∼ p(vec(B)|αω0:T [m],λω0:T [m])

Table 4.5: Conditional Particle Filtering Pseudo Code for αt and λt and B for the
Poisson DSTM (4.3) for known µ and Ση.

4.4.3 Updating Ση|αt,αt−1,B and σε|λt,αt, µ

According to the preferred structure of Ση, the posterior distribution will be of the

same as in Chapter 3. Therefore, similarly, the posterior estimates for the covariance

structure of Ση can be derived under the conditional particle filtering algorithm intro-

duced in Table 4.5. Additionally, in the case where we want to incorporate the extra

Poisson variability σε for modeling observed intensities, under an inverse gamma prior

with shape and scale parameters ψ1 and ψ2 respectively we can derive:

p(σε|λt,αt, µ) ∝p(log(λt)|αt, σε)× p(σε)

=(2πσ2
ε )
−(n+T )/2(σ2

ε )
−ψ1−1 exp

(
− ψ2

σ2
ε

)
× exp

(
− 1

2σε

T∑
t=1

(log(λt)− (µ+ Φαt))
>(log(λt)− (µ+ Φαt))

)
∝(σ2

ε )
−ψ1−n+T2 −1 exp

(
− C/2 + ψ2

σ2
ε

)
(4.11)

with C =
∑T

t=1(log(λt)−(µ+Φαt))
>(log(λt)−(µ+Φαt)). Thus, two extra steps are

incorporated in the conditional particle filter algorithm of Table 4.5 for the covariance

inference and the new algorithm is provided in Table 4.6.
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Initial step:

Initialise at m = 1:

Set vec(B)[1] arbitrarily or through the prior p(vec(B))

Set Ση[1] arbitrarily or through the prior p(Ση))

Particle Sampling:

For m = 1, . . . ,M :

Implement Algorithm 4.4 with B = B[m− 1]

Draw ω ∼ C({wT }Ni=1) and output the trajectory αω0:T [m]

Calculate λω0:T [m]|αω0:T [m]

Gibbs sampling step:

Draw B[m] from vec(B) ∼ p(vec(B)|αω0:T [m],λω0:T [m])

Draw Ση ∼ p(Ση|αω0:T [m],λ1:T [m])

If σε is assumed, then draw σε ∼ p(σε|λt,αt|µ)

Table 4.6: Conditional Particle Filtering Pseudo Code for αt and λt, B, Ση for the
Poisson DSTM (4.3) for known µ.

4.4.4 Update spatially varying µ|αt,λt,Yt

Wikle (2002) considers a uniform prior U[−10, 10] for the application on cloud inten-

sity data and infers via Gibbs sampling. However, for a general application someone

needs explicit information on the hyperparameter values of µ, otherwise, the estimation

should be adaptive. In this thesis three approaches of inference are considered for the

estimation of the spatial mean effect µ.

Particle Metropolis-Hastings for Static µ If we consider the case where µ =

(µ1, . . . , µn)> is static, as we are interested into modeling Poisson counts under a

Gaussian or Uniform prior, the posterior distribution of µ is not of a known form.

This covers the special case where the overall mean effect is the same in every location

as in (4.2). Thus, the use of Metropolis-Hastings steps will have to be included in

the particle filtering algorithm. This procedure is called Particle Metropolis-Hastings

(PMH) and was developed by Andrieu et al. (2010). Specifically, Particle Metropolis-

Hastings is an iterative procedure where in each iteration a particle filter is employed

in order to derive an unbiased estimation of the likelihood followed by a Metropolis-

Hastings procedure as described in Chapter 3 in order to approximate the posterior

distribution of the parameter, which in this case is p(µ|λ1:T ,α1:T ). Under a Random
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Walk Metropolis-Hastings and by considering a symmetric proposal in each iterative

step the likelihood can be estimated as

log p̂Nθ (y1:t) = log p̂Nθ (Y1:t−1) + {wmax +
N∑
i=1

wit − logN} (4.12)

and therefore can be used in order to calculate the acceptance ratio. Thus, under an ap-

propriate proposal distribution we summarise the algorithm for the Particle Metropolis-

Hastings (PMH) in Table 4.7.

Initial step:

Initialise at m = 1:

Set µ arbitrarily or via p(µ)

Run Algorithm 1 and estimate the likelihood (4.12)

Particle Sampling:

For m = 1, . . . ,M :

Implement Algorithm 4.4 with proposed value µprop|µ[m− 1]

Extract the likelihood (4.12) and the estimates α1:T , λ1:T

Metropolis-Hastings Acceptance step:

Calculate the log-likelihood difference between µprop and µ[m− 1]

Sample u ∼ U(0, 1):

if u < acceptance probability then update µ[m] = µprop

else µ[m] = µ[m− 1]

Table 4.7: Particle Metropolis-Hastings under static parameter estimation Pseudo Code
for αt, λt, and µ for the Poisson DSTM (4.3).
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Initial step:

Simulate N particles α
(1)
0 , . . . ,α

(N)
0 from p(α0)

Sample µ(0) from p(µ)

Calculate λ
(1)
0 , . . . ,λ

(N)
0

Set w
(i)
0 1/N , i = 1, . . . , N

Particle Sampling:

For t = 1, . . . , T :

Sample µ ∼ ft(µ|α(i)
0:t−1,Y1:t)

Sample α
(1)
t , . . . ,α

(N)
t from importance function g(αt|α(i)

t−1,Yt,µ)

Calculate λ
(i)
t = exp(µ+ Φα

(i)
t )

Calculate the weights w̃
(i)
t from (4.9)

Normalise the weights w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

Resampling step: Multinomial Resampling

Calculate the effective sample size Neff = (
∑N

i=1(w
(i)
t )2)−1

Draw N indices i1, . . . , iN from discrete distribution P (αt = α
(i)
t ) = w

(i)
t

Relabel the sample α
(i)
t = α

(ij)
t , for i = 1, 2, . . . , N

Relabel the sample T
(i)
t = T (T

ij
t−1,α

(i)
t ), for i = 1, 2, . . . , N

Update to equal weights by w
(i)
t = 1/N

Posterior Estimation Approximate the posteriors

p̂(αt|Y1:t) =
∑N

i=1w
(i)
t δ(αt − α̂t), where α̂t =

∑N
i=1w

(i)
t α

(i)
t

p̂(λt|Y1:t,αt) =
∑N

i=1w
(i)
t δ(λt − λ̂t), where λ̂t =

∑N
i=1w

(i)
t λ

(i)
t

Table 4.8: Bootstrap Particle Filtering under static parameter estimation Pseudo Code
for αt and λt and µ for the Poisson DSTM (4.3) for known B and Ση.

Static Parameter Alternatively, a static parameter estimation under particle filter-

ing (Storvik, 2002)) can be considered where sufficient statistics based on the obser-

vations Y and the states α, such as, Tt(Y1:t,α1:t) are used to recursively update the

posterior distribution of µ. Specifically, at each previous iterative point t − 1, a new

trajectory vector αt−1 is available from the posterior distribution p(α1:t−1|Y1:t−1), how-

ever, we then use the additional step of simulating µ based on the sufficient statistics

Tt−1, i.e., µ ∼ p(µ|Tt−1). As the sampling of µ at each time point is not dependent on

the values simulated in previous time points, this approach can improve the efficiency

and flexibility for the current framework and produces better proposal distributions,

state and parameter estimates. Thus, by considering a prior for µ, the particle filtering
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algorithm under static parameter estimation is summarised on Table 4.8. Thus, if we

treat the rest of parameters unknown and combine the algorithm in Table 4.4 and Table

4.9 we bring the inferential procedure into a Conditional Particle Filtering under static

parameter estimation framework.

Initial step:

Initialise at m = 1:

Set vec(B)[1] arbitrarily or through the prior p(vec(B))

Set Ση[1] arbitrarily or through the prior p(Ση)

Particle Sampling:

For m = 1, . . . ,M :

Implement Algorithm 4.8 with B = B[m− 1]

Draw ω ∼ C({wT }Ni=1) and output the trajectory αω0:T [m]

Calculate λω0:T [m]|αω0:T [m]

Gibbs sampling step:

Draw B[m] from vec(B) ∼ p(vec(B)|αω0:T [m], λω0:T [m])

Draw Ση ∼ p(Ση|αω0:T [m],λ1:T [m])

If σε is assumed, then draw σε ∼ p(σε|λt,αt|µ)

Table 4.9: Conditional Particle Filtering under static parameter estimation Pseudo
Code for αt and λt, B and µ for the Poisson DSTM (4.3).

4.4.5 Updating the autoregressive mean effect µt

Finally, if we treat the mean effect as a temporal varying vector µt = (µ1t, . . . , µnt)
>

as in (4.4), then we will consider an analogous estimation to αt and λt. Specifically,

each time varying vector µt will be included into the particle filtering algorithm and

sampled with the same weights wt as αt. In this thesis we will consider again the

importance function q(µ
(i)
t |µ

(i)
t−1) = p(µ

(i)
t |µ

(i)
t−1) which gives us the bootstrap particle

filter algorithm for model (4.5) in Table 4.10.
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Initial step:

Simulate N particles α
(1)
0 , . . . ,α

(N)
0 from p(α0)

Simulate N particles µ
(1)
0 , . . . ,µ

(N)
0 from p(µ0)

Calculate λ
(1)
0 , . . . ,λ

(N)
0

Set w
(i)
0 1/N , i = 1, . . . , N

Particle Sampling:

For t = 1, . . . , T :

Sample α
(1)
t , . . . ,α

(N)
t from the importance function g1(αt|α(i)

t−1, Yt)

Sample µ
(1)
t , . . . ,µ

(N)
t from the importance function g2(µt|µ(i)

t−1, Yt)

Calculate λ
(i)
t = exp(µt + Φα

(i)
t )

Calculate the weights w̃
(i)
t from (4.9)

Normalise the weights w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

Resampling step: Multinomial Resampling

Calculate the effective sample size Neff = (
∑N

i=1(w
(i)
t )2)−1

Draw N indices i1, . . . , iN from the discrete distribution

P ((αt,µt)
> = (α

(i)
t ,µ

(i)
t )>) = w

(i)
t

Relabel the sample α
(i)
t = α

(ij)
t , for i = 1, 2, . . . , N

Relabel the sample µ
(i)
t = µ

(ij)
t , for i = 1, 2, . . . , N

Update to equal weights by w
(i)
t = 1/N

Posterior Estimation Approximate the posteriors

p̂(αt|Y1:t) =
∑N

i=1w
(i)
t δ(αt − α̂t), where α̂t =

∑N
i=1w

(i)
t α

(i)
t

p̂(µt|Y1:t) =
∑N

i=1w
(i)
t δ(µt − µ̂t), where µ̂t =

∑N
i=1w

(i)
t µ

(i)
t

p̂(λt|Y1:t,αt) =
∑N

i=1w
(i)
t δ(λt − λ̂t), where λ̂t =

∑N
i=1w

(i)
t λ

(i)
t

Table 4.10: Bootstrap Particle Filtering Pseudo Code for αt , λt and µt for the Poisson
DSTM (4.5) for known B, Ση, Ψ and σζ .

4.4.6 Updating σζ |µt,Ψ

Considering the inference of the variance component σζ , by considering an inverse

gamma prior, i.e., σζ ∼ IG(ω1, ω2) the full conditional posterior can be calculated as a
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product of the likelihoood in (4.15) and the prior p(σζ |ω1, ω2) such as

p(σζ |µ1:T , ψs) = L(µ1:T |Ψ, σζ)ṗ(σζ |ω1, ω2)

= (2πσ2
ζ )
−T+n−1

2 exp

(
− 1

2σζ

T∑
t=2

n∑
s=1

(µs,t − ψsµs,t)2

)
× (σ2

ζ )
−ω1−1 exp

(
− ω2/σ

2
ζ

)
∝ (σ2

ζ )
−(T+n−1

2
+ω1+1) exp

(
− 1

σ2
ζ

(
C

2
+ ω2)

)
(4.13)

with C =
∑T

t=2

∑n
s=1(µs,t − ψsµs,t)2 and is the form of an inverse gamma distribution

with shape and scale parameters ω1 + T/2 and C/2 + ω2 respectively. Therefore, from

(4.13) we conclude that the conditional posterior of the variance component on the

autoregressive structure (4.4) is distributed as σ2
ζ |µ1:T ,Ψ ∼ IG(ω1 + T/2, C/2 + ω2).

4.4.7 Updating Ψ|µ,αt, σζ ,λt,Yt

Sampling through CPF-AS The autocorrelation matrix Ψ will be estimated by

Gibbs sampling steps in the CPF-AS framework. Specifically, since each ψs indicates

the autocorrelation between the mean effect at location s between time point t and

t − 1, that means that is bound to own values that lie in the interval [−1, 1]. Thus,

a reasonable prior to be considered is either a uniform prior, i.e., ψs ∼ U[−1, 1] or

a truncated normal distribution with a = −1 and b = 1 being the lower and upper

truncation points respectively.

We assume a truncated normal prior p(ψs) for each location, i.e., ψs ∼ N[−1,1](ψ0, c0).

The likelihood for each location L(µs,1:T |ψs, σζ) is written as

L(µs,1:T |ψs, σζ) =
T∏
t=2

1√
2πσ2

ζ

exp

(
− 1

2σζ
(µs,t − ψsµs,t)2

)

= (2πσ2
ζ )

T−1
2 exp

(
− 1

2σζ

T∑
t=2

(µs,t − ψsµs,t)2

)
(4.14)
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while the likelihood for all n locations can be written as a product of n independent

normals for each location s, i.e.,

L(µ1:T |Ψ, σζ) =
n∏
s=1

T∏
t=2

1√
2πσ2

ζ

exp

(
− 1

2σζ
(µs,t − ψsµs,t)2

)

= (2πσ2
ζ )

T+n−1
2 exp

(
− 1

2σζ

T∑
t=2

n∑
s=1

(µs,t − ψsµs,t)2

)
(4.15)

The conditional posterior of each ψs is the product of the likelihood in (4.14) and the

truncated normal prior p(ψs|ψ0, c0), i.e,

p(ψs|µs,1:T , σζ) = L(µs,1:T |ψs, σζ)ṗ(ψs|ψ0, c0)

= (2πσ2
ζ )

T−1
2 exp

(
− 1

2σζ

T∑
t=2

(µs,t − ψsµs,t)2

)
× 1ψs∈[−1,1](2πc

2
0)−1/2 exp

(
− 1

2c2
0

(ψs − ψ0)2

)
∝ 1ψs∈[−1,1] exp

(
− 1

2

[∑T
t=2(µs,t − ψsµs,t)2

σ2
ζ

+
(ψs − ψ0)2

c2
0

])

= exp

(
− 1

2

[∑T
t=2 µ

2
s,t

σζ
−

2ψs
∑T

t=2 µs,tµs,t−1

σζ
+
ψ2
s

∑T
t=2 µ

2
t−1

σ2
ζ

])
× 1ψs∈[−1,1] exp

(
− 1

2

[
ψ2
s

c2
0

− 2ψsψ0

c2
0

+
ψ2

0

c2
0

])
which then is expanded as:

p(ψs|µs,1:T , σζ) ∝ 1ψs∈[−1,1] exp

(
− 1

2

[
ψ2
s

(∑T
t=2 µ

2
t−1

σζ
+

1

c2
0

)
− 2ψs

(∑T
t=2 µs,tµs,t−1

σ2
ζ

+
ψ0

c2
0

)])
= 1ψs∈[−1,1] exp

(
− 1

2

[
ψ2
s

(∑T
t=2 µ

2
t−1

σζ
+

1

c2
0

)
− 2ψs

(∑T
t=2 µs,tµs,t−1

σ2
ζ

+
ψ0

c2
0

)])
(4.16)
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and gives us a truncated normal conditional posterior for ψs at [−1, 1] with mψ =

(
∑T

t=2 µs,tµs,t−1/σ
2
ζ + ψ0/c

2
0)c2

ψ and c2
ψ = (

∑T
t=2 µ

2
s,t−1/σ

2
ζ + 1/c2

0)−1 being the pos-

terior mean and variance respectively. In the case where ψs ∼ U[−1, 1], the con-

ditional posterior (4.16) is simplified as a truncated normal at [−1, 1] with mψ =

(
∑T

t=2 µs,tµs,t−1/σ
2
ζ )c

2
ψ and c2

ψ = (
∑T

t=2 µ
2
s,t−1/σ

2
ζ )
−1 being the posterior mean and

variance respectively. Considering the derivation of (4.16) and (4.13), the CPF-AS

algorithm for all parameters for the model in (4.5) is summarised in Table 4.11.

Static parameter estimation As the number of parameters in Ψ increases with

the number of locations, considering CPF-AS inference might be inefficient. Therefore

in high dimensional cases, it can be treated as static parameter for the autoregressive

equation (4.4) we can replace it to µ in the algorithm of Table 4.5. This means that a

static parameter vector ψ = diag(Ψ) can be considered with prior distributions being a

truncated normal distribution at [−1, 1] for each diagonal element ψs. This would give

us a sampling in each iterative step for all parameters based on the sufficient statistics

of µ0:t−1 and Y1:t, i.e., ψs ∼ f1(ψs|µ(i)
0:t−1,Y1:t). Thus, in Table 4.12 the Bootstrap

Particle Filter under static parameter estimation for ψ is provided. By combining the

updating of the rest of the parameters, consequently we resort to the CPF-AS under

static parameter estimation algorithm in Table 4.13 for the model (4.5).
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Initial step:

Initialise at m = 1:

Set vec(B)[1] arbitrarily or through the prior p(vec(B))

Set Ση[1] arbitrarily or through the prior p(Ση)

Set ψ[1] arbitrarily or through the prior p(ψ)

Set σζ [1] arbitrarily or through the prior p(σ)ζ)

Particle Sampling:

For m = 1, . . . ,M :

Implement Algorithm 4.10 with:

B = B[m− 1], Ση = Ση[m− 1]

ψ = ψ[m− 1], σζ [m] = σζ [m− 1]

(If σε is assumed σε[m] = σε[m− 1]

Draw ω ∼ C({wT }Ni=1) and output the trajectories:

αω0:T [m], µω0:T [m]

Calculate λω0:T [m]|αω0:T [m],µω0:T [m]

Gibbs sampling step:

Draw B[m] from vec(B) ∼ p(vec(B)|αω0:T [m],λω0:T [m],µω0:T [m])

Draw Ση[m] ∼ p(Ση|αω0:T [m],λ1:T [m],µω0:T [m])

Draw ψη[m] ∼ p(Ψ|αω0:T [m],λ1:T [m],µω0:T [m])

Draw σζ [m] ∼ p(σζ |,Ψ,αω0:T [m],λ1:T [m],µω0:T [m])

(If σε is assumed, then draw σε[m] ∼ p(σε|αω0:T [m],λ1:T [m],µω0:T [m]))

Table 4.11: Conditional Particle Filtering Pseudo Code for all parameters in the Poisson
DSTM (4.5).
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Initial step:

Simulate N particles α
(1)
0 , . . . ,α

(N)
0 from p(α0)

Simulate N particles µ
(1)
0 , . . . ,µ

(N)
0 from p(µ0)

Sample ψ(0) from p(ψ)

Calculate λ
(1)
0 , . . . ,λ

(N)
0

Set w
(i)
0 1/N , i = 1, . . . , N

Particle Sampling:

For t = 1, . . . , T :

Sample ψ ∼ ft(ψ|α(i)
0:t−1,µ

(i)
0:t−1,Y1:t)

Sample µ
(1)
t , . . . ,µ

(N)
t from the importance function g1(µt|µ(i)

t−1,Yt,ψ, σζ)

Sample α
(1)
t , . . . ,α

(N)
t from the importance function g2(αt|α(i)

t−1,Yt,µ
(i)
t )

Calculate λ
(i)
t = exp(µ

(i)
t + Φα

(i)
t )

Calculate the weights w̃
(i)
t from (4.9)

Normalise the weights w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

Resampling step: Multinomial Resampling

Calculate the effective sample size Neff = (
∑N

i=1(w
(i)
t )2)−1

Draw N indices i1, . . . , iN from the discrete distribution

P ((αt,µt)
> = (α

(i)
t ,µ

(i)
t )>) = w

(i)
t

Relabel the sample α
(i)
t = α

(ij)
t , for i = 1, 2, . . . , N

Relabel the sample µ
(i)
t = µ

(ij)
t , for i = 1, 2, . . . , N

Relabel the sample T
(i)
t = T (T

ij
t−1,α

(i)
t ,µ

(i)
t ), for i = 1, 2, . . . , N

Update to equal weights by w
(i)
t = 1/N

Posterior Estimation Approximate the posteriors

p̂(αt|Y1:t) =
∑N

i=1w
(i)
t δ(αt − α̂t), where α̂t =

∑N
i=1w

(i)
t α

(i)
t

p̂(µt|Y1:t) =
∑N

i=1w
(i)
t δ(µt − µ̂t), where µ̂t =

∑N
i=1w

(i)
t µ

(i)
t

p̂(λt|Y1:t,αt) =
∑N

i=1w
(i)
t δ(λt − λ̂t), where λ̂t =

∑N
i=1w

(i)
t λ

(i)
t

Table 4.12: Bootstrap Particle Filtering under static parameter estimation Pseudo
Code for αt, λt and µt for the Poisson DSTM (4.5) for known B, Ση and σζ .
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Initial step:

Initialise at m = 1:

Set vec(B)[1], Σ arbitrarily or through the prior p(vec(B))

Set Ση[1] arbitrarily or through the prior p(Ση)

Set σζ [1] arbitrarily or through the prior p(σζ)

Particle Sampling:

For m = 1, . . . ,M :

Implement Algorithm 4.12 with:

B = B[m− 1], Ση = Ση[m− 1], σζ = σζ [m− 1]

(If σε is assumed σε[m] = σε[m− 1]

Draw ω ∼ C({wT }Ni=1) and output the trajectories:

αω0:T [m], µω0:T [m]

Calculate λω0:T [m]|αω0:T [m],µω0:T [m]

Gibbs sampling step:

Draw B[m] from vec(B) ∼ p(vec(B)|αω0:T [m],λω0:T [m],µω0:T [m])

Draw Ση[m] ∼ p(Ση|αω0:T [m],λ1:T [m],µω0:T [m])

Draw σζ [m] ∼ p(σζ |,Ψ,αω0:T [m],λ1:T [m],µω0:T [m])

(If σε is assumed, then draw σε[m] ∼ p(σε|αω0:T [m],λ1:T [m],µω0:T [m]))

Table 4.13: Conditional Particle Filtering Pseudo Code for all parameters in the Poisson
DSTM (4.5) under static parameter estimation for ψ.

4.4.8 Theoretical Convergence of CPF-AS and PMH

Andrieu et al. (2010) discuss the theoretical convergence of Particle Markov Chain

Monte Carlo (PMCMC) methods and more specifically on PMH. Specifically, general

PMCMC methods target the conditional posteriors for any N ≥ 1 fixed number of

particles and they leave the target density invariant. They can as well be consid-

ered as standard MCMC updates and will lead to theoretical convergence under mild

assumptions. Furthermore, the PMH algorithm that is introduced in Andrieu et al.

(2010) leaves the conditional posteriors and the target distributions invariant while the

acceptance probability for N →∞ converges and justifies the Metropolis-Hastings ter-

minology. Additionally, they argue that as in CPF the proposal density is bypassed, the

use of conditional Sequential Monte Carlo update is used as a special type of PMCMC

and it converges under mild assumptions for M →∞. Therefore, under this logic, the

CPF-AS introduced by Lindsten et al. (2014) as a special case of PMCMC and more
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specifically of CPF, show that it retains the theoretical convergence and invariance

properties.

4.4.9 Summary of proposed pseudocodes

Modelling static µ If a static spatially mean effect µ = (µ1, . . . , µn) , i.e., the model

in (4.3) is considered, we propose the Conditional Particle Filtering with Ancestor Re-

sampling scheme under static parameter estimation to be considered (Table 4.9). Due

to the high parameter space, resulting to an extra Metropolis-Hastings step will in-

crease the computational inefficiency plus the more locations are considered, the higher

the parameter space only for PMH will be. Therefore, a static parameter estimation

provides us with a much more flexible approach as we will not have to deal with the

curse of disconvergence.

Modelling autoregressive µt Analogously, by considering the two approaches for

Ψ and the updating procedure of σ2
ζ , the algorithm in Table 4.13 is the most efficient

for (4.5) , i.e., a CPF-AS under static parameter estimation for the diagonal elements

of Ψ.

4.5 Posterior Predictive Distribution

Similarly to the Gaussian DSTM in Chapter 3, consider the temporal `-steps ahead

forecasting at the monitoring locations. Then, by defining Dt = {Y1, . . . ,Yt} and

have obtained the samples from the Particle Filtering algorithms stated in the previous

section, for any positive integer `, the `-step ahead forecast distribution for the model

in (4.3) is

p(Yt+`|Dt) =

∫
p(Yt+`|αt+`, σ2

ε ,µ)p(αt+`|Dt)dαt+` (4.17)

and is approximated by

p̂(Yt+`|Dt) =
N∑
i=1

p(Yt+`|α
(i)
t+`)w

(i)
t , (4.18)

where by writing recurrently the evolution of αt+` as αt+` = (Φ>B)`αt +
∑`

h=1 ηt+h,

we use α
(i)
t+` = (Φ>B)`α

(i)
t , for i = 1, . . . , N .



CHAPTER 4. POISSON REDUCED-DIMENSION DSTMS 115

Analogously, for the model in (4.5) , the `-step ahead predictive distribution is

p(Yt+`|Dt) =

∫ ∫
p(Yt+`|αt+`, σ2

ε ,µt)p(αt+`|Dt)p(µt+`|Dt)dαt+`dµt+` (4.19)

and is approximated by

p̂(Yt+`|Dt) =
N∑
i=1

p(Yt+`|α
(i)
t+`,µ

(i)
t+`)w

(i)
t . (4.20)

with the same propagation for αt+` but the extra recurrent evolution for µt+`. That

is, µt+` = Ψ`µt +
∑`

h=1 ζt+hand we use µ
(i)
t+` = Ψ`µ

(i)
t , for i = 1, . . . , N .

Therefore, in each MCMC m-th iteration we acquire the samples of the particle es-

timates for αt+` and for the model in (4.5) the estimates for µt+` through the sampling

of non-dynamic unknown parameters conducted in the previous iteration. During the

Particle Filtering steps, we calculate λ
(i)
t+` and thus sample Yt+` where its distribution

is approximated by the summation stated above.

Analogously to the Gaussian case, we would like to conduct spatial interpolation un-

der the new ungauged spatial vector of length `, at an observed time point t ∈ T , i.e.,

Ỹt = (Ỹt(s1), . . . , Ỹt(s`))
>. In this case we shall use the posterior predictive distribution

of the link of the intensity process, i.e., log(λ̃t) which is written as

p(log(λ̃t|Y )) =

∫
θ
p(log(λ̃t)|Y ,θ)p(θ|Y )dθ (4.21)

where again θ is the parameter vector associated to the link equation in (4.3) or (4.5).

Thus, the distribution in (4.21) can be written as

p(log(λ̃t|Y )) =

∫
· · ·
∫
p(log(λ̃t)|Y ,α,µ, σ2

ε )p(α,µ, σ
2
ε |Y )dαdµdσ2

ε . (4.22)

Spatial interpolation of the intensity process log(λ̃t) can be derived by considering

jointly log(λ̃t), log(λt) conditional on the unknown parameters and the model structure

of (4.3), i.e.,(
log(λt) |α,µ, σ2

ε
log(λ̃t)

)
∼ N

((
µ+ Φαt

µ̃+ Φ̃αt

)
,

(
σ2
ε In×n Σλλ̃

Σλλ̃ σ2
ε I`×`

))
(4.23)
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where Φ̃ is the basis matrix for the new locations and µ̃ the predicted mean spatial

effect of the new ungauged locations and Σλλ̃ the covariance between log(λ̃t) and

log(λt). We then have the marginal conditional posterior for log(λ̃t), i.e.,

log(λ̃t)| log(λt),αt,µ, σ
2
ε ∼ N

(
µ̃+ Φ̃αt + Σλλ̃(σ2

ε In×n)−1(log(λt)− µ−Φαt,V
)

(4.24)

where V = σ2
ε I`×` − Σλλ̃(σ2

ε I
2
n×n)−1Σλλ̃. Equivalently, if we consider the modelling

approach in (4.5), then we have an autoregressive mean effect and thus(
log(λt) |α,µt, σ2

ε
log(λ̃t)

)
∼ N

((
µt + Φαt

µ̃t + Φ̃αt

)
,

(
σ2
ε In×n Σλλ̃

Σλλ̃ σ2
ε I`×`

))
(4.25)

with the marginal conditional posterior for log(λt) being

log(λ̃t)| log(λt),αt,µt, σ
2
ε ∼ N

(
µ̃t + Φ̃αt + Σλλ̃(σ2

ε In×n)−1(log(λt)− µt −Φαt,V
)

(4.26)

where V = σ2
ε I`×` −Σλλ̃(σ2

ε I
2
n×n)−1Σλλ̃.

As it was aforementioned in Chapter 3, a spatial interpolation under new locations

cannot be directly implemented. The user should resort to different schemes or choose

smooth basis functions.

4.6 Simulation Study

Similarly to the Gaussian Reduced-dimension DSTM in Chapter 3, we developed an ap-

propriate simulation by considering a Dimension-reduced Poisson DSTM under wavelet

decomposition based on the complete model in (4.5) which is described in 4.5.1. Then

we are examining numerous cases where in each case the most important matrix of

interest, B, is always considered unknown. Due to our limited computational power,

a few comments will be in order as in some cases we needed more iterations and thus

computational power to reach convergence. Thus, we wish to test our method in three

different settings; we achieve this through the design of these respective simulation

studies:

• Discontinuity in weight function ws(u) and static known µ— we wish to show that

our method can adapt to discontinuities and we can estimate fairly well the param-

eters
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• No discontinuity in weight function ws(u) and autoregressive µ with autocorrelation

inference— we wish to show that our method performs well under the proposed

autoregressive structure while the static parameters Ψ can be identified

• No discontinuity in weight function ws(u), autoregressive µ, autocorrelation and co-

variance inference— we want to see how our methodology can estimate the covariance

parameters under the autoregressive structure while the static parameters Ψ can be

identified

In section 4.6.1 we introduce the simulation scheme of a Poisson Reduced-Dimension

DSTM under wavelet basis decomposition. Furthermore, as in Chapter 3, instead of

simulating the matrix B through the Spike and Slab prior, a kernel is chosen for ws(u)

and through that B is calculated through DWT. Additionally, as mentioned above,

in sections 4.6.2 to 4.6.4 we conduct inference on the processes’ parameters simulated

under the simulation scheme in section 4.6.1.
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4.6.1 Simulation of a Poisson DSTM under Wavelet decomposition

1 Start by considering a number of equally spaced n locations in an interval

[c1, c2] ∈ D ⊂ R and T time points, a Wavelet matrix Φn×n and a covariance

matrix Ση.

• If we want model (4.3), then consider a vector µ.

• If we want model (4.5), then consider an autocorrelation matrix Ψ and a

variance σ2
ζ .

2 Building the weight matrix

• For each of the locations calculate d, where d is the Euclidean distance between

the locations s

• Choose weight function w (discontinuous or continuous) to calculate the spa-

tial contribution

• Spatial stationary weights:

w∗i,j = 0.9 ∗ wi,j∑n
j=1wi,j

3 For t = 1

• Calculate the coefficient matrix B = w∗Φ−1

• Initialise λ1 (and µ1 if in model (4.5))

• Calculate α1

α1 = Φ>(log(λ1)− µ) if in model (4.3)

α1 = Φ>(log(λ1)− µ1) if in model (4.5)

4 For t ≥ 2

• αt = Φ>Bαt−1 + Φ>ηt, ηt ∼ N(0,Ση)

• If in (4.5) then calculate µt = Asµt−1 + ζt, ζt ∼ N(0, σζ)

• Perform IDWT on λt:

If in model (4.3) λt = eµ+Φαt

In if model (4.5) λt = eµt+Φαt

• Simulate i.i.d Yt ∼ Poi(λt)
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A few comments are in order. The higher autocorrelation we have in (4.4), the more

difficult the estimation will be. Moreover, if we have high values for µt, as αt have a

zero mean (no trend), we will encounter a numerical problem in the calculations of the

exponential component for the calculation of λt. Furthermore, the spatial stationarity

especially in the Poisson DSTM seemed necessary as the simulation would blow up.

Nonetheless, the behaviour of the redistribution kernel is similar to the Gaussian DSTM

as under the Poisson case, the choice of it does not affect the observation equation.

4.6.2 Discontinuity in weight function ws(u) and static known µ

In this simulation we considered the model in (4.3) for n = 8 locations and T = 256

in the 1-D space [0, 5]. Two different kernels were considered for the weight function

ws(u). Specifically, for the locations lying in [0, 2.5] we considered a Gaussian kernel

with mean and variance being 1 and 4 respectively, while those lying in [2.5, 5] a Laplace

kernel was considered with mean and rate parameters being 0 and 1 respectively, i.e,

ws(u) =


N(‖s− u‖2 |1, 4) if s, u ∈ [0, 0.25]

Laplace(‖s− u‖2 |0, 1) if s, u ∈ (2.5, 5]

0 otherwise

(4.27)

The spatial mean effect is considered to be static and known with varying values of

µ = (0.1, 0.2,−0.15, 0.3,−0.4, 0.25,−0.6,−0.05)>. The temporal covariance matrix was

set to be of a simple diagonal structure, i.e., Ση = 0.5 · I. Finally, the wavelet basis

that was used for the decomposition of the weight function ws(u) was a Haar basis.

We conducted the Conditional Particle Filtering with Ancestor Resampling Algorithm

4.2 of Table 4.5 with N = 500 particles and M = 104 Gibbs iterations with a burn-in

period of i = 5000 which was decided through traceplots and autocorrelation plots as

diagnostic criteria.

For the inferential part, we considered again the Spike and Slab hyperparameters

v0 = 0.05 and ω1 = 2, ω2 = 20 for the point mass and variance components re-

spectively. Comparing the posterior mode of the state processes αt and the simulated

(real) ones in Figure 4.1 it can observed that they are being estimated fairly well. This

can be consecutively seen in the estimation of the intensity processes λt as most of

the peaks, or else, the very high intensities are captured nicely, even not exactly at

a high level, with only a few exceptions, such as for location 7 (Figure 4.2). Poisson

distributed time series are very difficult to be estimated perfectly as there can be jumps
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and discontinuities which are very difficult to be detected. The combination of the ef-

ficiency of particle filtering algorithms, the wavelet basis and the Spike and Slab prior

gave us a successful estimation of those discontinuities.

Furthermore, the spatial wavelet coefficients under our Spike and Slab hierarchy were

estimated very well (Figure 4.3), with both the close to zero and non zero real values

being very close to the posterior modes. This provided us with a good approximation

of the weight function as well, which in the next simulation scenarios we will show that

for more unknown parameters our model performs satisfyingly as well.
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Figure 4.1: Time series plots of simulated states αt for the locations (black) and the
estimated filtered ones (red) for N = 500, M = 104, T = 256, n = 8 under a burn-in
period of i = 5000.
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Finally, during our inference we were tracking the effective sample size (Neff ) under the

particle filtering framework. We have observed that we had many particles with very

low weights which resulted in resampling. However, the trend shows that throughout

the inference it can still give us high values. Figure 4.4 shows us the values of the

effective sample size for the last Gibbs iteration of the CPF-AS algorithm.
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Figure 4.2: Time series plots of the simulated mean intensity process λt for the locations
(black) and the estimated filtered one (red) for N = 500, M = 104, T = 256, n = 8
under a burn-in period of i = 5000.
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Figure 4.3: Posterior distribution for selected elements of B, density posterior estima-
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green vertical line, for N = 500, M = 104, T = 256, n = 8 under a burn-in period of
i = 5000. The hyperparameter values were set to v0 = 0.05, ω1 = 2 and ω2 = 20.
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Figure 4.4: Effective sample size of the final Gibbs iteration M under particle filtering
for N = 500, M = 104, T = 256, n = 8 under a burn-in period of i = 5000.

4.6.3 No discontinuity in weight function ws(u) and autoregressive µ

with autocorrelation inference

In this simulation scenario we considered the model in (4.5) with the autoregressive

equation (4.4) for n = 8 locations and T = 256 in the 1-D space [0, 1]. Moreover,

a Gaussian kernel with mean and variance being 0.5 and 0.2 respectively was consid-

ered,i.e.,

ws(u) =

{
N((‖s− u‖2)|0.5, 0.5) if s, u ∈ [0, 5]

0 otherwise
(4.28)

which means we would expect all locations to contribute almost equally to the spa-

tial dilation of the rest. The spatial mean effect is considered to be an autoregres-

sive spatially varying process and thus we consider the autocorrelation components

Ψ = (0.1, 0.2,−0.6, 0.35, 0.6,−0.4, 0.8,−0.2)> · I as static parameters subject to esti-

mation while σζ is considered to be known and equal to 1. Additionally, the temporal

covariance matrix is considered known and with a diagonal structure, i.e., Ση = 2 · I.

Finally, the wavelet basis that was used for the decomposition of the weight function

ws(u) was a Daubechies level 4 basis. We conducted the Conditional Particle Filtering

with Ancestor Resampling under static parameter estimation (Table 4.13) by consider-

ing the static parameter vector ψ = (ψ1, . . . , ψ8)> each with a truncated normal prior
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on [−1, 1] centered at zero with variance equal to 1. The number of particles was again

N = 500 with the Gibbs iterations being M = 104 with a burn-in period of i = 5000

under the same convergence diagnostics.

A few findings are in order. Firstly, our model provided good estimations for the

states αt (Figure 4.5). However, as the intensities λt are including the autoregressive

component µt, the estimation of high discontinuities is more challenging. Surprisingly,

we still managed to capture most of the discontinuities, especially for the second, fifth

and seventh location (Figure 4.6). However, we failed to capture the magnitude of

some discontinuities, for instance, in the sixth location we observed a very high peak

compared to the rest time points where our model succeeded into estimating that dis-

continuity. Additionally, the estimation of µt (Figure 4.9) shows us that probably we

needed more particles for a better estimation, however, due to limited time and com-

putational hindrances we were unable to run the model for more particles and Gibbs

iterations. Furthermore, it is notable that the autocorrelation parameters ψ (Figure

4.10 and Figure 4.11) are estimated on average under their true value, however, we

would expect under a static parameter estimation to have a much better estimation as

we reach the final points. This can be again justified to the fact that we need more

Gibbs iterations for these parameters to reach their true value.

Considering the coefficients B from the posterior densities (Figure 4.7), we encoun-

tered the same problem as in Chapter 3, however, the estimations are improved due to

not having a signal-to-noise ratio affecting the Spike and Slab inference. This conse-

quently provided us with fair estimates for the weight function w as seen in Figure 4.8

with high concentration around the true values of the weights.
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Figure 4.5: Time series plots of simulated states αt for the locations (black) and the
estimated filtered ones (red) for N = 800, M = 104, T = 256, n = 8 under a burn-in
period of i = 5000.
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Figure 4.6: Time series plots of the simulated mean count process λt for the locations
(black) and the estimated filtered one (red) for N = 500, M = 104, T = 256, n = 8
under a burn-in period of i = 5000.
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Figure 4.7: Posterior distribution for selected elements of B, density posterior estima-
tion is marked with red, the prior distribution with orange and the real value with a
green vertical line, for N = 500, M = 104, T = 256, n = 8 under a burn-in period of
i = 5000. The hyperparameter values were set to v0 = 0.05, ω1 = 2 and ω2 = 20.
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Figure 4.9: Time series plots of the simulated autoregressive mean effect µt for the
first four locations (black) and the estimated filtered one (red) for N = 500, M = 104,
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Figure 4.10: Time series plots for the autoregressive parameters ψ for the first four
locations for N = 500, M = 2 ∗ 104, T = 256, n = 8 under a burn-in period of i = 5000.
The horizontal green line indicates the real value of the parameter.
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Figure 4.11: Time series plot for the autoregressive parameters ψ for the last four
locations for N = 500, M = 2 ∗ 104, T = 256, n = 8 under a burn-in period of i = 5000.
The horizontal green line indicates the real value of the parameter.

4.6.4 No discontinuity in weight function ws(u), autoregressive µ, au-

tocorrelation and covariance inference

In this simulation scenario we considered the model in (4.5) with the autoregressive

equation (4.4) for n = 8 locations and T = 128 in the 1-D space [0, 1]. Moreover, an

exponential kernel with rate parameter being equal to 0.2 was considered,i.e.,

ws(u) =

{
exp((‖s− u‖2)|0.2) if s, u ∈ [0, 1]

0 otherwise
(4.29)

which means we would expect all locations to contribute almost equally to the spa-

tial dilation of the rest. The spatial mean effect is considered to be spatially vary-
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ing evolving autoregressively and thus we consider the autocorrelation components

Ψ = (−0.1, 0,−0.05, 0.1, 0, 0.4,−0.3, 0.12)> · I as static parameters subject to estima-

tion while σζ is considered to be known and equal to 0.5. Finally, the temporal covari-

ance matrix is inferred under an inverse gamma prior with shape and scale parameters

being 10 and 2 respectively while the true matrix was set under a diagonal structure,

i.e., Ση = 1 ·I. Additionally, the reason that we considered T = 128 time points was to

test our model’s performance. Particle Filters tend to provide worse estimations when

the time points are low. Finally, the wavelet basis that was used for the decomposition

of the weight function ws(u) was a Daubechies level 6 basis. We conducted the Condi-

tional Particle Filtering with Ancestor Resampling under static parameter estimation

(Table 4.12) by considering the static parameter vector ψ = (ψ1, . . . , ψ8)> each with

a truncated normal prior on [−1, 1] centered at zero with variance equal to 1. The

number of particles was again N = 500 with the Gibbs iterations being M = 104 with

a burn-in period of i = 5000 under the same convergence diagnostics.

A few comments are in order. Considering that we have lower time points and more

parameters in the model, under the same number of particles, the approximation of

λt is very good for all locations (Figure 4.12). Specifically, all the high peaks are esti-

mated pretty well with the only exception being an early peak at the eighth location.

Furthermore, the reconstruction of the weight function provides us with estimations

mostly gathered around in the real simulated values of the process (Figure 4.13). Addi-

tionally, while we provided a highly informative prior for low values of ση, the posterior

distribution (Figure 4.14) actually provided us with posterior mean and median equal

to 1.004 and 0.983 respectively which are actually very good point estimates close to

the actual value.

Finally, considering the effective sample size (Neff ) in Figure 4.14, in this case we

have a similar effect of many resampling steps across the inferential procedure. How-

ever, it has again a tendency to have high values and avoid resampling in each iterative

step.
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Figure 4.12: Time series plots of the simulated mean count process λt for the first four
locations (black) and the estimated filtered one (red) for N = 500, M = 104, T = 128,
n = 8 under a burn-in period of i = 5000.
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Figure 4.13: Selected reconstructed elements of w. The red line indicates the empirical
density estimate and the green vertical line indicates the real value for N = 500, M =
104, T = 256, n = 8 under a burn-in period of i = 5000.
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analysis was conducted for N = 800, M = 104, T = 128, n = 8 under a burn-in period
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4.7 Application on Traffic Flow Data

The Department of Transport (DfT) collects data on the amount of traffic by using

manual traffic counts and a network of 180 automatic traffic counters (ATCs). Specifi-

cally, around 10, 000 manual counts are being held every year on both major and minor

roads. In this application we will focus on the manual counts that where conducted in

the major road M6. This motorway is the first to be built by the British government.

The starting point is in Rugby, Warwickshire and it terminates in Carlisle, Cumbria.

As of 2016, M6, as well as combining with the length of A14 from Brampton (Cam-

bridgeshire) from junction with A1(M), A74(M) and M74 to the junction with M8 in

Glasgow, forms the longest non-stop motorway and one of the busiest in the United

Kingdom. It incorporates the Preston by-pass, which as well is known to be one of the

most dangerous segment with many accidents per year. Using this traffic flow dataset

would provide us with insights on the traffic flows happening throughout the motorway,

which could eventually be related on the accidents.
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Two datasets are provided by DfT, one is the Annual Average Daily Traffic Flows

(AADF) in which the number of vehicles that drive on each stretch of road on an aver-

age day of the year is provided. The second dataset that we analyse, provides the total

volume of traffic on the stretch of road for the whole year, and that is calculated by

multiplying the AADF by the corresponding length of road and by the number of days

in the years. A quarterly time period was chosen from 2000 up to 2015 which provides

us with T = 64 total time points. A Bayesian hierarchical spatio-temporal analysis

for both datasets extracted for the area of Leeds has been conducted in Chalk (2014).

Specifically, the model of Miaou and Lord (2003) is used to estimate the accident rate

per million vehicles per mile.

In this thesis, we extracted the measurements for M6 motorway which were segmented

based on municipalities. Due to some road segments being small in length or due

to segments being under the same jurisdiction, it was decided to combine these seg-

ments and in Table 4.13 we provide the final segmentation along with their respective

length in miles. Furthermore, the segmentation is visualised in Figure 4.15 where the

map of United Kingdom is provided with the M6 motorway and the respective stretches

Segment Municipalities Incorporated Length of M6 in Miles

1 Warwickshire & Solihull 25

2 Sandwell & Birmingham & Wallsall 32

3 Staffordshire 23

4 Cheshire & East Cheshire 29

5 Warrington 30

6 Wigan & St. Helen’s 20

7 Lancashire 34

8 Cumbria 39

Table 4.14: Segmentation of M6 with respective length in miles.
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Figure 4.15: Map of the United Kingdom. The thick blue line represents the M6 mo-
torway. The thick black lines indicate the segments along with their associate number
of municipality.

Additionally, the data consisted of a fair amount of missing values, which were im-

puted via Kalman Filtering on their logarithm prior to the analysis. An example of

the imputed missing values can be seen in Figure 4.16 for the Warwickshire municipality.

In this analysis we are considering our CPF-AS framework of the Poisson Dimension

Reduced DSTM under a Haar wavelet basis decomposition with the model in (4.5)

under Algorithm 4.11 in Table 4.12 under the Spike and Slab prior with v0 = 0.05. The

hyperparameters for τ−2
k under a gamma prior were set to be both equal to 1000.
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Figure 4.16: Time series plots of the observed mean count process λt for Warwickshire
(1st Segment) and the missing imputed ones.

Moreover, some segments are more volatile than others but also since they are all con-

nected to lead into Glasgow we suspect that there is a covariance structure as well.

Therefore a full covariance structure is considered for Ση, with an inverse Wishart

prior with ν = 8 and Q = 10 · I respectively. Finally, as we are modelling average

counts, we considered σε to be estimated and on both σ2
ε and σ2

ζ inverse gamma priors

with both shape and scale parameters being equal to 0.01 were considered.

A few comments are in order. The proposed methodology captures fairly well the

peaks in each location (Figure 4.16). Particle filters tend to be more sensitive when a

lower amount of time points exists. However, the mean intensity process for most of the

locations seems to be estimated well for the processes that did not have a lot of missing

values. Cumbria had a total of 20 missing points. That means that these points where

imputed and we had to conduct inference based on them. Furthermore, we need to

emphasize that due to not having intense computational resources, more particles and

Gibbs iterations were needed, which consequently would provide us better estimation.

Additionally, regarding the estimates of the spatio-temporal mean effect µt (Figure

4.17), it seems that after the first quarter of 2010 the mean effect for Warwickshire,

Birmingham and Lancashire has more downward oscillations. Furthermore, the model

suggests that Cumbria, Staffordshire and Warrington between years 2000 and 2003
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there was a lower mean effect affecting the intensity process λt with Warrington having

a much lower impact among all the segments. Furthermore, for all locations excluding

Birmingham, during the third quarter of 2012, the mean effect µt drops dramatically

while for Birmingham increases. However, the model indicates strong positive autocor-

relations within the segments (Figure 4.18) and all being between 0.6 and 0.8. This

indicates that the mean effect for each location throughout time is affected quarterly in

the same way for each segment which indicates as a possible a autocorrelation possible

structure Ψ = ψ · I. Although the autocorrelations under static parameter estimation

do not seem stabilised at the final time points of the inference. The inference of static

parameters can be sensitive when there is a low number time points.

Regarding the reconstructed elements of w a few comments are in order. Firstly,

there is a negative causal effect from Warwickshire segment to Wigan and Warring-

ton segments. This can be observed from Figure 4.16 as Warwickshire in specific time

points, such as t = 20 (Q1 of 2005), has an increasing traffic flow while Wigan has

a decreasing one. Similarly, at time point t = 18 (Q1 of 2004) Warwickshire has an

increase in traffic flow while Warrington a decrease. This indicates that during winter

months, M6 has more traffic activity on the southern part which indicates as well that

in cold months drivers avoid travelling in the northern parts.

Furthermore, there is a slight positive causal relationship from Warwickshire to Birm-

ingham. These segments are neighbouring ones but also Warwickshire is the starting

point. This indicates that the amount of drivers that are using M6 would tend to be

similar in these two segments in order to reach the rest of the segments. Furthermore,

it is known that between Warwickshire and Birmingham there are toll roads for connec-

tions to other areas and that is consequently affecting these two segments. Additionally,

the model suggests a slight causal relationship from Cheshire to Wigan, which is ex-

plained from the fact that as Cheshire is a rural county and holiday a destination for

the British, while Wigan and St. Helen’s are both cities, the first located in Manchester

and the latter a Metropolitan one. The spatio-temporal mean effect for these two loca-

tions is modeled as contrasting for these two segments in the final half of the time points.

Considering one segment to itself we did not find any relationship which indicates

that the traffic flow to a segment is not affected by the flow observed on the previous

quarter (Figure 4.20).
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Figure 4.17: Time series plots of the observed mean count process λt for all segments
and the estimated filtered one (red) for N = 500, M = 104, T = 64, n = 8 under a
burn-in period of i = 5000.

For the rest of weight function elements, we observed that there is a negative causal

relationship from the end point, Cumbria, to Warrington and Wigan. This is due to

Cumbria being a non-metropolitan county and a holiday destination incorporating the

Lake District. On the other hand, Warrington and Wigan are urban cities close to

Liverpool and Manchester consisted of lot of traffic between them. Finally, the model

suggests that Lancashire, which is a rural county and far metropolitan areas such as

Birmingham do not have any causal effect to each other.

For the covariance inference a few comments are in order. During the inferential part we

considered a full covariance structure for the covariance matrix Ση. The model suggests

that the posterior temporal variances for all segments are similar (Figure 4.21).
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Figure 4.18: Time series plots of the estimated filtered spatio-temporal mean effect
µt for all segments for N = 500, M = 104, T = 64, n = 8 under a burn-in period of
i = 5000.

Specifically, the posterior means for most segments is between 2.5 and 2.8 only with

Warwickshire and Chestershire differing with posterior median variances of 3.85 and

3.45 respectively. Considering the covariance structure, there was no indication of

temporal correlation between segments with the only exception of Cheshire and Wigan

negatively covaring (Figure 4.22). Finally, the posterior mode error variances σ2
ε and

σ2
µ were estimated as being 129.77 and 34.43 respectively (Figure 4.23). The higher

error to spatial variance is due to the high variability of the number of traffic flows for

all locations which is mostly incorporated and estimated through σ2
ε . Furthermore, the

spatial effect vector µt through time does not show high variability compared to the

highly variable count process λt. The diagnostic tools that were used for convergence

indicate that more Gibbs iterations were needed in order for the samples to converge.
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Figure 4.20: Selected reconstructed elements of w. The red line indicates the empirical
density estimate and the green vertical line indicates the real value for N = 500, M =
104, T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 4.21: Selected reconstructed elements of w. The red line indicates the empirical
density estimate and the green vertical line indicates the real value for N = 500, M =
104, T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 4.22: Posterior density estimates for the diagonal elements (variances) of Ση.
Red line indicates the empirical distribution of the estimates. The prior that was an
inverse Wishart with ν0 = 8 and Q0 = 100 · I being the shape and scale parameters for
N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 4.24: On the left: Posterior density estimate for the variance parameter σ2
ε . On

the right: Posterior density estimate for the variance parameter σ2
µ. Red line indicates

the empirical distribution of the estimates. The prior distribution was an inverse gamma
with δ0 = 10−2 and ξ0 = 102 being the shape and scale parameters. The analysis was
conducted for N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000.

Missing Value Treatment Analogously to Chapter 3, the missing imputation was

conducted under a non-Bayesian setting. One approach that we could consider under

the particle filtering framework is the idea of multiple imputations. Multiple imputa-

tions (Rubin, 2004) consist of creating multiple complete data sets imputing m values

for each missing datum so that sampling variability around the actual values is incorpo-

rated for performing valid inferences. Under this idea, the Multiple Imputation Particle

Filter is an extension of the Particle Filter (Housfater et al., 2006) that incorporates

multiple imputation steps for the cases where measurement data is not available, so

that the algorithm can assimilate for the corresponding uncertainty in the inferential

process.

Thus, let us partition the vector of observations, i.e., Yt = (Y mis
t ,Y obs

t ) and let us

consider the missing value index j = 1, . . . ,m. Then, an imputation model can be
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expressed as a probability distribution in order to sample the m samples subject to

imputation, i.e.,

Y mis
jt ∼ p(Y mis

t |Y obs
1:t ) (4.30)

Similarly to to importance sampling, we can assign a weight vjt to each imputation with∑m
j=1 v

j
t = 1. Based on Kong et al. (1994), by considering ujt = (Y mis

jt ,Y obs
t ) to be the

complete data sets formed from imputed values, then the filtering posterior distribution

is given as:

p(αt|Y obs
1:t ) =

∫
p(αt|u1:t−1,Y

obs
t )p(Y mis

t |Y obs
1:t )dY mis

t , (4.31)

and through Monte Carlo approximation we get

p(αt|Y obs
1:t ) u

m∑
j=1

vjt p(αt|u1:t−1Y
obs
t , ujt ). (4.32)

Additionally, for each of the complete data sets yields

p(αt|u1:t−1, u
j
t ) =

N∑
i=1

w
(i,j)
t δ(αt −α(i,j)

t ), (4.33)

where the indexes i and j indicate the particle and the imputation, respectively. Thus,

an approximation of the desired posterior distribution is

p(αt|Y obs
1:t ) ≈

m∑
j=1

N∑
i=1

vjtw
(i,j)δ(αt −α(i,j)

t ). (4.34)

Thus, estimating the missing responses Y mis
t is equivalent to a posterior prediction

from the model fitted to the observed data, however with a filtering estimate for the

missing observations as well. Obviously, if we consider the PF-AS for static parameter

estimation and PMH, the steps above can be easily be incorporated in the algorithms

with no change in the theoretical convergence.

4.8 Conclusion

We have introduced two modeling approaches for Poisson Dimension Reduced DSTMs

under an adaptive Conditional Particle Filter procedure with static parameter estima-

tion. The two approaches consider a spatially varying and a spatio-temporal mean

effect for the intensity processes respectively. These two models provides us with flex-



CHAPTER 4. POISSON REDUCED-DIMENSION DSTMS 149

ibility of modeling spatio-temporal count processes with different spatial and spatio-

temporal features. Additionally, we make use of the truncation proposed in Chapter

3 under the efficient sparse wavelet decomposition and the inference of spatial coef-

ficients through the Spike and Slab prior. Furthermore, an efficient combination of

filtering non-Gaussian processes under a Bayesian framework is used for the estimation

of the temporal wavelet coefficients. Lastly, a flexible static estimation is provided for

the static autocorrelation parameters in order to increase the efficiency of the model.

Last but not least, a simulation scheme was introduced for the two Poisson Dimension

Reduced DSTM models under wavelet basis decomposition.

Firstly, simulations for both a small number of locations have proved the effective-

ness of our methodology on approximating an underlying spatio-temporal intensity

with complex dynamics. Moreover, the proposed methodology successfully approxi-

mates a Poisson observed spatio-temporal process with spatial discontinuities (Section

4.6.2). Additionally, the reconstruction of the weight function, which is a challenge in

practice to be estimated, was predicted fairly well. As for the inferential procedure

of the covariance structure the estimation deemed successful. Furthermore, we tested

our methodology on real traffic flow data under segmentation of the known motor-

way M6 after imputing missing values. Our model managed to capture fairly well the

intensity processes. Furthermore, we achieved to produce spatial causality between

locations. These spatial causalities seemed reasonable based on the distance and the

type of counties. Finally, we observed that all all segments vary similarly and own

strong quarterly autocorrelations.

However, we encountered hindrances during our estimation. Firstly, the low amount of

time points and missing values on the traffic flow application provided us with worse

estimations for a few locations of the intensity process but also a lack of convergence for

the autocorrelation parameters. Furthermore, the lack of computational infrastructure

did not provide us with more Gibbs and particle iterations which are strongly suggested

for this application. Finally, the application on real data showed as that the model is

sensitive in approximating the intensity process when a large amount of missing data

exists.

Finally, it was observed that the more we increase the number of locations, the more

computational power we need for the model to run and is more inefficient than the

MCMC procedure proposed in Chapter 3. Added to that, an implementation through
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Stan probabilistic programming cannot be considered in this aspect as Stan does con-

duct any sampling from Auxiliary Particle Filtering methods, but only through Hamil-

tonian Monte Carlo, No-U-turn Sampler and automatic variational inference. A sam-

pling through these methods would be an equivalent to sample from a non-linear state

space model.



Chapter 5

Multinomial Reduced-dimension

Dynamic Spatio-Temporal

Models

5.1 Introduction

In the previous chapter we focused on a proposed extension of Wikle et al. (2001) and

Wikle and Cressie (1999) for Poisson distributed observations with the consideration of

Wikle (2002) while we provided an adaptive Conditional Particle Filtering under static

parameter estimation framework with the help of wavelet basis decomposition. That

model proved to be efficient for processes of this nature which consequently brings us

into investigating a similar approach for Multinomial distributed data. In real life ap-

plications there is a plethora of datasets where certain phenomena can be expressed in

proportions. For instance, as discussed briefly in the previous chapter, if we would like

to model the cancer rates per location, then we have Multinomial proportions, or else,

if we categorise the severity of accidents occurring in a road segment, then we again

conclude on Multinomial distributed observations. Therefore, the implementation of

Gaussian DSTMs or Poisson DSTMs in these datasets is not appropriate.

Based on the aforementioned arguments, in this chapter we are going to focus on the

reduced-dimension DSTM under Multinomial distributed observations. Specifically, we

introduce a modelling procedure where the proportions evolve through time and space

while the state vector αt will now be a matrix, i.e., At based on the number of cate-
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gories. Furthermore, we consider a complex covariance structure for the state matrix

At which is a combination of spatial and categorical variation. Additionally, we will

consider again in this chapter the wavelet basis decompositions due to their efficiency

and good localisation properties. The inferential procedure will be based on Particle

Filtering (PF) methods that were used for the Poisson DSTM model and we will pro-

vide thorough explanation in the latter sections.

Additionally, simulation implementations were conducted for the proposed modelling

framework. Our findings are promising for processes of proportions and/or counts.

Specifically, the spatio-temporal varying cell probability processes were captured fairly

well even during high oscillations, which is in general a challenge in practice for these

kind of processes. Furthermore, the weight function was successfully reconstructed,

however, updating the elements of B is computationally demanding.

Finally, at the end of this chapter we offer a real life application by revisiting the

traffic flow data in Chapter 4 with each category consisting of a different type of vehi-

cle. Under the proposed methodology, our findings include...

5.2 Approaches on modeling Multinomial spatio-temporal

processes

There have been recent developments on modelling spatio-temporal multinomial dis-

tributed processes. Spatial multinomial modelling has been widely used in the litera-

ture in numerous applications; such as spatial multinomial logit models on understaning

urban features (Zhou and Kockelman, 2008), classifying vegetation spreads (Augustin

et al., 2008)) or identifying determinants of land use changes (Chakir and Parent, 2009).

Only in the last decades spatio-temporal approaches have been developed and applied.

Such models were developed for mapping disease rates (Waller et al. (1997) and Yang

et al. (2005)), for clustering avalanche counts in the Alps (Lavigne et al., 2012), for

modelling unemployment rates (Pereira et al., 2017) and modeling of land-use change

(Tepe and Guldmann, 2018). However, for the dimension reduced DSTMs approaches

for multinomial distributed data have not been developed. Cressie and Wikle (2015)

provide a thorough review on non-linear dynamic spatio-temporal models, however, the

complexity of those models surpass the non-Gaussianity of observations which we can
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still link them linearly in this thesis.

5.3 Proposed Methodology

In the following sections we propose a modelling framework for modelling multinomial

distributed spatio-temporal processes under Particle Filtering approaches. Specifically,

we used a logit link function to bring the model into a reduced-dimension DSTM. Then,

we combine the Conditional Particle Filter (CPF) (Lindsten et al., 2014) and Particle

Metropolis-Hastings (PMH) (Andrieu et al., 2010) algorithms for the parameters to

be estimated. The formulation of the model is provided on section 5.3.1 while the

inferential procedure to be followed is described in section 5.3.2.

5.3.1 Model Formulation

Consider k ≥ 2 categories and let Yj(s, t) denoting a spatio-temporal process of the

count or the total measurement of a quality characteristic observed at location s and

category j = 1, . . . , J at time t = 1, . . . , T . Moreover, denote with πj(s, t) the cell

probability that the random variable Yj(s, t) is equal to the observed count. If we

fix λ(s, t) = Y1(s, t) + · · · + Yj(s, t) to be the total count at location s and time t,

πj(s, t) + · · ·+πJ(s, t) = 1 for some known positive integer λ(s, t) and define the vector

π(s, t) = [π1(s, t), . . . , πJs, t)]
>, then the joint pmf of Y (s, t) = [Y1(s, t), . . . , YJ(s, t)]>

is

p(Y (s, t)|π(s, t)) =
λ(t, s)!∏J
j=1 Yj(s, t)!

J∏
j=1

πj(s, t)
Yj(s,t) (5.1)

which defines the multinomial distribution for location s at time point t.

What we would like to model is the measurements of a quality characteristic for all

locations s = 1, . . . , n at time point t. We then define the vector of total counts λt =

(λ(1, t), . . . , λ(n, t))>, the vector of cell probabilities at time t to be πt = [π(1, t), . . . ,π(n, t)]>

and the observed measurement vector of quality characteristics at time t and location

s to be Y (s, t) = [Y (1, t), . . . ,Y (n, t)]>. Furthermore, let us consider the state equa-

tion (2.11). If we like to bring (5.1) into a linear framework in order to predict the

cell probabilities for the quality characteristic for each location s at time point t, then

analogously to the Poisson case in Chapter 4, a linear link for the predictor should be
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considered. The pmf in (5.1) can be written for each location as

p(Y (s, t)|π(s, t)) = exp
( J∑
j=1

Yj(s, t) log(πj(s, t)) + λ(s, t)−
J∑
j=1

Yj(s, t))

× log(1−
J∑
j=1

πj(s, t))
) λ(s, t)!∏J

j=1 Yj(s, t)!

= exp
(
λ(s, t)[

J∑
j=1

Yj(s, t) log
πj(s, t)

1−
∑J

j=1 πj(s, t)

+ log(1−
J∑
j=1

πj(s, t))]
) λ(s, t)!∏J

j=1 Yj(s, t)!
(5.2)

which is the form of a multivariate exponential family. For more details on the multi-

nomial distribution and its relationship to the exponential family refer to Chapter 3,

Fahrmeir and Tutz (2013). If we define the n×(J−1) matrix Yt = (Y (1, t), . . . ,Y (n, t))>

with the J being reference category then we can proceed on a generalised linear for-

mulation for the modeling framework. Thus, we consider an n × (J − 1) state matrix

At the n × n and (J − 1) × (J − 1) covariance matrices Ση and R. These provide us

with the n× (J −1) dimensional linear predictor matrix Zt which maps the n× (J −1)

mean matrix E(Yt) via the canonical link and a matrix formulation of the transition

equation (2.11) :

Zt =


log π1t

1−
∑J−1
j=1 πjt

...

log πJt
1−

∑J−1
j=1 πjt

 = ΦAt

At = Φ>BAt−1 + ηt with ηt ∼ N(0, (Φ>ΣηΦ)⊗R) (5.3)

A few comments are in order. Firstly, the processes of approximation are the log odds

of one category in each location having more counts than the rest. Furthermore, the

log of odds for the last category J is complimentary to the rest as we defined that all

probabilities π(s, t) sum to one. Therefore, we can reconstruct the actual proportions

π(s, t) for each location s at time t via the inverse link function but only for the final

J-th one, we subtract the rest of quantities from one.

The state equation in this case is a matrix where we expect each category to tran-
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sition differently but also for each location to vary all categories will vary differently

and a covariance structure is considered. In the Gaussian and Poisson cases the state

vector αt which was approximating the processes of interest was multivariate normally

distributed with Φ>ΣηΦ being the covariance matrix under the wavelet decomposi-

tion. As now the parameters of interest are the cell probabilities πt, we expect that the

dynamical coefficients of the wavelet matrix Φ will oscillate differently in each category.

Therefore, this kind of variation should be incorporated by choosing this matrix struc-

ture of At with an extra inclusion of a covariance matrix R which signifies the within

cell variation. Specifically, we consider that the spatial and categorical variation can

all be incorporated through the covariance matrices Φ>ΣηΦ and R respectively. This

means that the structure of Ση will be chosen similarly as in the Gaussian and Poisson

cases but the structure of R will provide us with different variation in each category

but also possible correlation between them. Additionally the Kronecker product of

these two matrices, i.e., H = (Φ>ΣηΦ)⊗R, provides us with cross correlation for the

categories between locations but also possible association between different categories

between the locations if a full structure for both matrices will be considered. Thus,

the structure of the state matrix At is still autoregressive but with a more complicated

covariance structure which provides us with a matrix normal distribution which was

reviewed in Chapter 3. Consequently, this gives us a matrix normal distribution for ηt

with the scale matrices being Φ>ΣηΦ (due to the wavelet decomposition for each Aj

where j is the j − th column of the state matrix At) and R respectively.

Furthermore, as the arguments λt and πt are directly affecting each other, we would

expect the underlying spatial characteristics to be explained by this modelling frame-

work, while again the approximation of the weight function under the matrix B will

provide us with the spatial diffusion dynamics. Finally, we note that for two categories

s = 2 the multinomial model (5.3) reduces to a binomial model.

Calculation of πt based on Odds Ratio Consider the model in (5.3). In order to

estimate the model parameters, we will consider a reference category, specifically the

J − th one. This will automatically provide us with an n× (J − 1) state matrix At, a

canonical link n×(J−1) matrix Zt and scale matrices being n×n and (J−1)×(J−1)

for Ση and R respectively.

We then define the (J − 1) × 1 vector of odds ratios for J − 1 categories being Ot =

(O1,t, . . . , OJ−1,t)
> which through matrix At becomes available via Inverse Discrete
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Wavelet Transform (IDWT). If we consider the reference category to be the J− th one,

then the probability vector for k at time point t is calculated as πJ,t = 1/(
∑J−1

j=1 Oj,t).

Then, the probabilities πt can be calculated for each category j = 1, . . . , J − 1 as

the product of the J − th probability at time t and the odds ratio of the respective j

category, i.e., πj,t = πJ,t ·Oj,t.

5.3.2 Multinomial spatio-temporal processes’ connection to a Poisson

Reduced-dimension DSTM

It is plausible that likelihoods for the multinomial case can be related to those for the

Poisson, however, in terms of inference a prior matching should be done. Thus, consider

the spatio-temporal process for the j category Yj(s, t) ∼ Poi(λj(s, t)). Then, the distri-

bution of all categories conditional on
∑J

j=1 Yj(s, t) = mt is multinomial distributed,

i.e., (Y1(s, t), . . . , YJ(s, t)) ∼ Multinomial(mt, ξt) where ξt = λt/
∑J

j=1 λjt.

By writing the joint distribution as a product of i.i.d. Poisson distributed variables

conditioned on mt we can derive that if
∑J

j=1 Yj(s, t) = mt then:

p(Yj(s, t),= yj(s, t), j = 1, . . . , J |
J∑
j=1

Yj(s, t) = mt) =

∏J
j=1 e

−λj(s,t)λj(s, t)
Yj(s,t)/Yj(s, t)!

e−
∑J
j=1 λj(s,t)(

∑J
j=1 λj(s, t))

m
t /mt!

=
mt!∏J

j=1 Yj(s, t)

J∏
j=1

ξj(s, t)
Yj(s,t) (5.4)

and zero otherwise which is the required multinomial. By assuming that nt for each

location is the same and a positive integer and assume the probabilities πj(s, t) with

π1(s, t) + · · ·+ πJ(s, t) = 1 then the likelihood at time t can be written as

L(πt : Yt) =
nt∏

j,s Yj(s, t)

∏
j,s

πj(s, t)
Yj(s,t) (5.5)

where
∑

j,s Yj(s, t) = nt. Whereas, for a spatial varying nt, i.e., nt = (n(s1, t), . . . , n(sn, ),

then if each n(s, t) is a positive integer and probabilities π1(s, t) + · · · + πJ(s, t) = 1

and the vectors are independent over the rows or else the locations then the likelihood

at time t can be written as

L(πt : Yt) =
∏
s

n(s, t)∏
j Yj(s, t)

∏
j

πj(s, t)
Yj(s,t) (5.6)
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were
∑

j Yjs, t = n(s, t) for each s and gives us the likelihood of a product multinomial.

5.3.3 Inference

As discussed, due to the non-linearity of the observations, MCMC methods are ineffi-

cient for the sampling of the states At. Therefore, analogously to the Poisson DSTM,

inference through Particle Filtering (PF) is deemed appropriate.

Thus, given the observed data Yt and λt we can conduct inference of the states At via

Particle Filtering (PF) by assuming the variance matrices known based on the approxi-

mation of the posterior through particle filtering with N random sampled particles—or

trajectories— and via the logit transform in calculating πt as well. The procedure

follows a similar notion to Chapter 4, however, now the density of the observed data

changes to a multinomial distribution instead of a Poisson and consequently the link

function changes.

For the estimation of the spatial matrix B the full conditional posterior distributions

of the Spike and Slab are the same as in Chapter 3 (equations (3.4) and (3.8)-(3.10)

are considered); whereas, for the full conditional distribution of vec(B)|At,At−1,Ση,R

we have an analogous form to the Gaussian and Poisson cases with the exception of

proving the full conditional distribution in terms of the state matrix At instead of

a vector. Based on preferable covariance structures of the scale matrices Ση and R

Particle Metropolis Hastings steps will be incorporated.

5.3.4 Summary of the Modelling Framework

In this part, we provide a summary of the proposed approach. Specifically, in Table

5.1 we give a summary of the framework of the proposed methodology, the model, the

parameters to be estimated and their relative priors, followed where the parameters will

be updated via Particle Metropolis Hastings (PMH) and Conditional Particle Filtering

with Ancestor Resampling (CPF-AS), along with the deterministic steps that are used

for the estimation of the underlying process and the weighting function. In order to fit

the model in table 5.1, it is required to update the parameters in an iterative procedure

based upon their conditional distributions while conducting within Gibbs sampling a

particle filtering step. In each section we will explain each of the following updates in

more detail.
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• Update (At,πt)|B,Ση,R,Yt through Particle Filtering

• Update vec(B)|At,At−1,Ση,R through Conditional Particle Filtering with Ancestor

Resampling (CPF-AS)

• Update (Ση,R)|At,At−1,B of the temporal componentsAt through Particle Metropo-

lis Hastings (PMH).

• Pseudo code based on a combination of CPF-AS and PMH for all parameters.

Data:

Spatio-temporal process counts: Y, T × n× J array

Cell Probability: π, T × n× J array

Total count: λ, T × n vector

Linear predictor: Z, T × n× J array

Redistribution kernel: w, n× n matrix

Approximations:

Zt = ΦAt, AT×n×J , coefficients of Wavelet matrix Φn×J

ws = BΦ, BJ×n, coefficients of Wavelet matrix Φn×J

Model:

πt = AtΦ
> ηt ∼ N(0, (Φ>ΣηΦ)⊗R)

At = Φ>BAt−1 + ηt Zt =


log π(1,t)

1−
∑n−1
s=1 π(s,t)
...

log π(n−1,t)

1−
∑n−1
s=1 π(s,t)


Parameters and Prior distributions:

vec(A0) ∼ N(m0,P10 ⊗ P20) m0, P10,P20 prior mean and covariances respectively.

vec(B)|Γ ∼ N(0,Γ⊗ I) Γ = diag{γ1, . . . , γk}, γk = ρkτ
2
k

ρk|v0, q ∼ (1− q)δv0(.) + qδ1(.) q ∼ U(0, 1)

τ−2
k |ω1, ω2 ∼ G(ω1, ω2) βk ∼ N(0, γkI)

Ση ∼ IW(ν1,Q1) R ∼ IW(ν2,Q2)

Table 5.1: Framework of the model
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5.4 Updating the parameters

5.4.1 Updating At,πt|B,Ση,R,Yt

Given the observed data Yt and the total counts λt we can conduct inference of the state

matrix At by assuming the same procedure as in Chapter 4. The importance density

q(A0|Y0) will be considered the same as the prior distribution p(A0) which brings us

into the bootstrap particle filtering approach. The weights of the particles will be

updated analogously as in via (4.8) and then normalised, while multinomial resampling

will be conducted in the case of low efficient sample size Neff . Furthermore, for the

calculation of the particle weights, the multinomial density in (5.1) will be used.

Initial step:

Simulate N particles A
(1)
0 , . . . ,A

(N)
0 from p(A0)

Calculate π
(1)
0 , . . . ,π

(N)
0

Set w
(i)
0 1/N , i = 1, . . . , N

Particle Sampling:

For t = 1, . . . , T :

Sample A
(1)
t , . . . ,A

(N)
t from the importance function g(At|A(i)

t−1, Yt)

Calculate π
(i)
t =

exp(ΦA
(i)
t )

(1+exp(ΦA
(i)
t ))

Calculate the weights w̃
(i)
t from (4.9)

Normalise the weights w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

Resampling step: Multinomial Resampling

Calculate the effective sample size Neff = (
∑N

i=1(w
(i)
t )2)−1

Draw N indices i1, . . . , iN from the discrete distribution P (At = A
(i)
t ) = w

(i)
t

Relabel the sample A
(i)
t = A

(ij)
t , for i = 1, 2, . . . , N

Update to equal weights by w
(i)
t = 1/N

Posterior Estimation Approximate the posteriors

p̂(At|Y1:t) =
∑N

i=1w
(i)
t δ(At − Ât), where Ât =

∑N
i=1w

(i)
t A

(i)
t

p̂(λt|Y1:t,At) =
∑N

i=1w
(i)
t δ(πt − π̂t), where π̂t =

∑N
i=1w

(i)
t π

(i)
t

Table 5.2: Bootstrap Particle Filtering Pseudo Code for At and λt for the Multinomial
DSTM (5.3) for known B, Ση and R.

Finally, since πt and At are related, during the sampling of the N particles of At, the

cell probabilities πt will be calculated so that we can derive the approximate filtered
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estimates, i.e., π̂t|At =
∑N

i=1w
(i)π

(i)
t . The general particle filter algorithm for At and

πt is summarised in Table 5.2 by considering that the parameters B, Ση and R are

known.

5.4.2 Updating vec(B)|At,At−1,Ση,R

In order to reduce the complexity of calculations we will rewrite the conditional like-

lihood of At (Shumway and Stoffer, 2000) in a vectorised form. Thus, by setting

H = (Φ>ΣηΦ) ⊗R and by taking into advantage of the conditional independence of

At we can write

p(vec(A1:T )|Y1:T ,B,J) ∝ p(vec(AT )|YT ,B,J)p(vec(A1:T−1)|Y1:T−1,B,H)

∝
T∏
t=2

exp

[ (
vec(At)− (A>t−1 ⊗Φ)vec(B)

)>
H−1

×
(
vec(At)− (A>t−1 ⊗Φ)vec(B)

) ]
= exp

[ T∑
t=2

(
vec(At)

>H−1vec(At)− 2vec(At)
>H−1(At−1 ⊗Φ)vec(B)

+vec(B)>(At−1 ⊗Φ>)H−1(At−1 ⊗Φ)vec(B) + vec(At)
>Hvec(At)

)]
∝ exp

[ T∑
t=2

(
vec(At)

>H−1vec(At)− 2vec(At)
>H−1(At−1 ⊗Φ)vec(B)

+vec(B)>(At−1 ⊗Φ>)H−1(At−1 ⊗Φ)vec(B)

)]
(5.7)

which will help us in the update of the coefficient matrix B.

Updating B|At,Ση,R,Γ Under the multivariate normal prior set on vec(B) with a

mean zero vector, i.e., vec(B) ∼ N(0,Γ⊗I), with Γ = diag(γ1, . . . , γK) and γk = ρkτ
2
k ,

the posterior distribution is derived as the product of the likelihood function (5.7) and

the prior p(vec(B)|Γ), i.e.,
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p(B|Ση,A1:T ,Y1:T ) ∝ p(vec(A1:T )|Y1:T ,B,Ση,R)p(vec(B)|Γ)

= exp

[ T∑
t=2

(
− 2vec(At)

>H−1(At−1 ⊗Φ)vec(B)

+vec(B)>(At−1 ⊗Φ>)H−1(At−1 ⊗Φ)vec(B)

)
+vec(B)>(Γ−1 ⊗ I)vec(B)

]
= exp

[
vec(B)>

( T∑
t=2

(
(At−1 ⊗Φ>)H−1(At−1 ⊗Φ + (Γ⊗ I)−1 − 2C

)
vec(B)

]
(5.8)

where C = vec(At)
>H−1(At−1 ⊗ Φ) and H = (Φ>ΣηΦ) ⊗ R . Thus, (5.8) is the

exponential part of a multivariate Normal distribution with a mean vector and covari-

ance matrix dependent on At, i.e., B|A1:T ,Γ,Ση,R ∼ N(µ̃,D) where µ̃ = µ1 ∗D
with µ1 =

∑T
t=2

(
(At−1 ⊗Φ>)−1(At−1 ⊗Φ)) and D = (µ1 + (Γ⊗ I)−1)−1.

The mean vector µ̃ indicates that the contribution of one location to another will

be affected and expanded by the state matrix at time t and t − 1. That means that

the categories of multinomial distribution have a spatial effect on the propagation of

the processes. Finally, the magnitude of scaling will be affected by the variation of the

categories as well.

5.4.3 Updating Ση,R|At,At−1,B

As we are unaware of the scale matrices structure under this model, full structure

on both scale matrices will be assumed. Specifically, we consider independent Inverse

Wishart priors, i.e., Ση ∼ IW(ν1,Q1) and R ∼ IW(ν2,Q2). The state matrix At is a

matrix normal distributed variable, or else, vec(At) ∼ N(Φ>Bvec(At−1), (Φ>ΣηΦ)⊗
R)). Thus, the full conditional posterior of the joint vector (Ση,R)|A,B can be written

as the product of the priors and the likelihood ofA. By defining again = (Φ>ΣηΦ)⊗R
we can then write:
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p(Ση,R|A,B) ∝
T∏
t=2

p(At|At−1,B,Ση,R)× p(Ση,R)

∝
T∏
t=2

p(At|At−1,B,Ση,R)× p(Ση)× p(R)

= |H|−(T−1)/2|Ση|(ν1+n+1)/2|R|(ν2+n+1)/2

× exp
(
− 1

2
tr(Q1Σ

−1
η +Q2R

−1)
)

× exp

(
− 1

2

T∑
t=2

tr
[
(At −Φ>BAt−1)>H−1(At −Φ>BAt−1)

])
(5.9)

The quantity in (5.9) cannot derive a known distribution and therefore the use of

Metropolis-Hastings steps will have to be included in the particle filtering algorithm.

Furthermore, the unbiased estimation of the likelihood is needed in order to approxi-

mate the posterior distribution of the parameter. Under a Random Walk Metropolis-

Hastings and by considering a symmetric proposal in each iterative step the likelihood

can be estimated as

log p̂Nθ (A∗1:t) = log p̂Nθ (A1:t−1[m]) + {wmax +
N∑
i=1

wit − logN} (5.10)

where A1:t[m] indicates the sampled matrix from the particle filtering at iteration m

and therefore can be used in order to calculate the acceptance ratio.

5.4.4 Summary of the model and pseudo code

In this part, we provide a summary of the proposed approach. Firstly, in Table 5.1

a summary of the framework of the proposed methodology along with the model, the

parameters to be estimated and their relative priors are provided. Then, in Table 5.2

the CPF-AS combined with PMH procedure of the proposed methodology is described

along with the deterministic steps that are used for the estimation of the underlying

process and the weighting function.

To sum up, the inferential stage is consisted of an adaptive CPF-AS for the Spike

and Slab hierarchy parameters through the posterior densities (3.8) to (3.10) for the
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parameters ρk, τk and Q with the final update on the matrix B through the posterior

(3.4). In the meantime, Metropolis Hastings steps are conducted for the estimation of

the scale matrices Ση and R with the posterior being (5.9). Then, the weight func-

tion ws(u) is calculated deterministically from the Inverse Discrete Wavelet Transform

(IDWT). Furthermore, the underlying process’ coefficient matrix At is inferred in each

Gibbs iteration through PF. Finally, the underlying cell probabilities πt are again de-

terministically calculated under the IDWT framework.

Initial step:

Initialise at m = 1:

Set vec(B)[1] arbitrarily or through the prior p(vec(B))

Set (Ση,R) arbitrarily or through the prior p(Ση,R)

Run Algorithm 1 and estimate the likelihood (5.10)

Particle Sampling:

For m = 2, . . . ,M :

Implement Algorithm 5.1 with B = B[m− 1]

and (Ση,R)prop|(Ση,R)[m− 1] Ση

Draw ω ∼ C({wT }Ni=1) and output the trajectory Aω
0:T [m]

Extract the likelihood (5.10)

Gibbs sampling step:

Draw B[m] from vec(B) ∼ p(vec(B)|αω0:T [m],πω0:T [m])

Calculate w through B[m] via IDWT

Calculate πω0:T [m]|αω0:T [m] via IDWT

Metropolis-Hastings Acceptance step:

Calculate the log-likelihood difference between (Ση,R)prop and (Ση,R)[m− 1]

Sample u ∼ U(0, 1):

if u < acceptance probability then update (Ση,R)[m] = (Ση,R)prop

else (Ση,R)[m] = (Ση,R)[m− 1]

Table 5.3: Conditional Particle Filtering Pseudo Code for αt and πt and B for the
Multinomial DSTM (5.3).
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5.5 Posterior Predictive Distribution

Fore the predictive distribution under the Multinomial DSTM, consider the temporal

`-step ahead forecast at the monitoring locations. Then, by defining the n× J matrix

Dt = {Y1, . . . ,Yt} and have obtained the samples from the Particle Filtering scheme,

then, for any positive integer `, the `-step ahead predictive distribution for the model

in (5.3) is

p(Yt+`|Dt) =

∫
p(Yt+`|At+`)p(At+`|Dt)dAt+` (5.11)

and is approximated by

p̂(Yt+`|Dt) =
N∑
i=1

p(Yt+`|A
(i)
t+`)w

(i)
t , (5.12)

where by writing recurrently the evolution of At+` as At+` = (Φ>B)`At +
∑`

h=1 ηt+h,

we use A
(i)
t+` = (Φ>B)`A

(i)
t , for i = 1, . . . , N .

Therefore, in each MCMC m-th iteration we acquire the samples of the particle es-

timates for At+` sampling of non-dynamic unknown parameters conducted in the pre-

vious iteration. During the Particle Filtering steps, we calculate π
(i)
t+` and thus sample

Yt+` where its distribution is approximated by the summation stated above.

By considering now the new ungauged spatial vector of length `, at an observed time

point t ∈ T , i.e., Ỹt = (Ỹt(s1), . . . , Ỹt(s`))
>. In this case we shall use the posterior

predictive distribution of the vector of link logit of probability vectors πt, i.e., Z̃t which

is written as

p(Z̃t|Y )) =

∫
θ
p(log(Z̃t)|Y ,θ)p(θ|Y )dθ (5.13)

where again θ is the parameter vector associated to the link equation in (5.3). Thus,

the distribution in (5.13) can be written as

p(Z̃t|Y ) =

∫
· · ·
∫
p(Z̃t|Y ,A)p(A, |Y )dA. (5.14)

where again, a spatial interpolation can be achieved under a different basis setting.
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5.6 Prior matching between a Poisson and a Multinomial

Reduced-dimension DSTM

In order for the posterior distributions between the Multinomial Reduced-dimension

DSTM and the modelling framework of i.i.d. Poisson distributed spatio-temporal pro-

cesses to be equivalent, some prior matching should be done.

Consider the prior distribution of the n × J state matrix at time t = 0, i.e., A0 ∼
Nn×J(M0,Σ0,R0) with M0 being the prior mean matrix and Σ0 and R0 being the

prior scale matrices for the covariance between the locations and categories respectively.

This can be written in vectorised form which leads to a multivariate normal prior, i.e.

p(vec(A0)) ∝ exp
[
(vec(A0)− vec(M0))> (Σ0 ⊗R0)−1 (vec(A0)− vec(M0))

]
(5.15)

where vec(A0) is the nJ × 1 vector.

If we now consider the i.i.d. Poisson case, then the prior of each vector state at time

t = 0 for a category j is multivariate normally distributed. That is, for each category

αj0 ∼ N(µ0,Σ0) where αj0 is a n × 1 vector. Conversely, if we want to define the

prior matrix normal distribution at time t = 0 for the n× J matrix A0 we obtain that

A0 ∼ Nn×J(M0,Σ0,V0) where each row of M0 is equal to µ0, i.e., M0 = 1n×n × µ0,

Σ0 is the prior covariance matrix between the locations of the transition equation and

V0 is the identity matrix which means the rows are independent to each other.

Thus, (5.15) is matching or else identical to the matrix normal prior distribution of

the i.i.d. Poisson distributed observations only when the J categories are independent,

i.e., R0 = V0 = In×n and thus can be incorporated to the particle filtering algorithms

without the estimation of R.

5.7 Simulation Study

Similarly to the Gaussian and Poisson Dimension-reduced DSTM in the previous chap-

ters, we developed an appropriate simulation by considering a Multinomial Dimension-

reduced DSTM under wavelet decomposition based on the complete model in (5.3)

which is described in 5.3.1. Then we are examining two cases where in both the most
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important matrix of interest, B, is always considered unknown. Due to our limited

computational power, a few comments will be in order as in some cases we needed

more iterations and thus computational power to reach convergence. Thus, we test our

method by considering a discontinuity in weight function ws(u) and keeping a known

covariance structure— we wish to show that our method can adapt to discontinuities

and we can estimate fairly well the underlying processes.

In section 5.7.1 we introduce the simulation scheme of a Multinomial Reduced-Dimension

DSTM under wavelet basis decomposition. Furthermore, as in previous chapters in-

stead of simulating the matrix B through the Spike and Slab prior, a kernel is chosen

for ws(u) and through that B is calculated through DWT. Additionally, as mentioned

above, in sections 5.7.2 we conduct inference on the processes’ parameters simulated

under the simulation scheme in section 5.7.1.

5.7.1 Simulation of a Multinomial DSTM under Wavelet decomposi-

tion

1 Start by considering a number of equally spaced n locations in an interval

[c1, c2] ∈ D ⊂ R and T time points, a Wavelet matrix Φn×n and covariance

matrices Ση and R.

2 Consider an autocorrelation diagonal matrix Ψ and a variance σψ

3 Building the weight matrix

• For each of the locations calculate d, where d is the Euclidean distance between

the locations s

• Choose weight function w (discontinuous or continuous) to calculate the spa-

tial contribution

• Spatial stationary weights:

w∗i,j = 0.9 ∗ wi,j∑n
j=1wi,j

4 For t = 1

• Calculate the coefficient matrix B = w∗Φ−1
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• Initialise Y1 and through that λ1

• Initialise π1 and normalise them

• Calculate A1 = Φ> log(O1)

5 For t ≥ 2

• At = Φ>BAt−1 + Φ>ηt, ηt ∼ N(0,Ση ⊗R)

• Perform IDWT on Ot: Ot = eΦAt

• Calculate πt through Ot and normalise

• Sample λt ∼ NR+(Ψλt−1, σψI)

• Simulate i.i.d Yt ∼ Multinomial(λt,πt)

A few comments are in order. High values of At will affect the exponential part which

produces the Odds RatiosOt and that can resort to failure on calculating and simulating

the rest of the values. Thus, the parameter values should be selected with care.

5.7.2 Discontinuity in weight function ws(u)

In this simulation we considered the model in (5.3) for n = 8 locations, T = 64 and

k = 3 categories in the 1-D space [0, 5]. Two different kernels were considered for the

weight function ws(u). Specifically, for the locations lying in [0, 2.5] we considered a

Gaussian kernel with mean and variance being 1 and 4 respectively, while those lying

in [2.5, 5] a Laplace kernel was considered with mean and rate parameters being 0 and

1 respectively, i.e.,

ws(u) =


N(‖s− u‖2 |1, 4) if s, u ∈ [0, 0.25]

Laplace(‖s− u‖2 |0, 1) if s, u ∈ (2.5, 5]

0 otherwise

(5.16)

The temporal covariance matrix was set to be of a simple diagonal structure, i.e.,

Ση = 2 · I and the categorical variation matrix was set to be

R =

[
0.5 −0.05

−0.05 0.5

]
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suggesting equal spread for the first two categories and a strong correlation between

them. Finally, the wavelet basis that was used for the decomposition of the weight func-

tion ws(u) was a Haar basis. We conducted the combination of the Conditional Particle

Filtering with Ancestor Resampling and Particle Metropolis-Hastings of Table 5.3 with

N = 500 particles and M = 104 Gibbs iterations with a burn-in period of i = 5000

which was decided through traceplots and autocorrelation plots as diagnostic criteria.

However, we are inclined that the parameters need more iterations to converge. We

encountered computational difficulties as the model itself is high dimensional to run in

a commercial machine. Thus, it is suggested that this simulation should be conducted

for more iterations in a cluster server.

For the inferential part, we considered the Spike and Slab hyperparameters v0 = 0.01

and ω1 = 2, ω2 = 200 for the point mass and variance components respectively.

By comparing the posterior mode of the state processes At for the first two categories

and the first four locations to the simulated (real) ones in Figure 5.1 it can observed

that they are being estimated fairly well. Obviously, for such a high dimensional prob-

lem, considering N = 500 particles does not provide us with the perfect estimations

that we could get with more particles instead. Thus, we have again to note down that

we need more particles and Gibbs iterations combined. This can be consecutively seen

in the estimation of the cell probability processes πt (Figure 5.3 and Figure 5.4) as

some of the peaks and the oscillations are captured fairly well. However, there are sev-

eral peaks going upwards (See Location 1, Categories 1 and 2 in Figure 5.3) that the

filtered estimates own downward peaks. It is notable though that for all locations the

estimated mode of all cell probabilities is around the simulated ones, with one difficulty

being observed on the third category of the first location. For that reason, we inves-

tigated the behaviour of the filtered estimated for N = 500 and N = 104 (Figure 5.2)

and we observe that the specific cell probability, even for a known matrix B is difficult

to be captured. The reason behind it is that while the third category oscillates around

a smaller mean cell probability than the rest of the categories (around 0.25), its peaks

go up to 0.8. These high oscillations have been affected from the high variances that

we chose for R. The two logit cell probabilities share a slight negative correlation of

−0.1 while each of the logarithm of odds evolves with a variance of Var(logOt) = 0.5 ·I
which that through the inverse logit transform provides us with a value of around

Var(πt) = 0.6 · I indicating a high variance for the cell probabilities.
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Figure 5.1: Time series plots of simulated states At for the first four locations (black)
and the estimated filtered ones (red) for N = 500, M = 104, T = 64, n = 8 under a
burn-in period of i = 5000.

Furthermore, Particle Filters tend to have a difficulty estimating dynamic processes

with high variances. However, due to the limitation of time and computational power

we were not able to investigate this matter with further simulations.
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Finally, the spatial wavelet coefficients under our Spike and Slab hierarchy were es-

timated fairly well, with both the close to zero and non zero real values being very

close to the posterior modes (Figure 5.5). Although divergence diagnostics indicated

us that for most elements of B we did not reach convergence. That can be seen from

the histograms of the elements of selected weight function reconstructed elements. For

instance, for the weight function of location 3 affecting location 4, there is s left skew-

ness with the mode being centered around the real value. It is believed that with

more iterations the posterior estimates would have converged around the real values

of the weight function and thus we would have gotten fair estimates for the spatial

contribution between the locations.
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Figure 5.2: Time series plots of the simulated states At for the first location (black)
and the estimated filtered ones under known B for N = 500 (green) and N = 10000
(orange).
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Figure 5.3: Time series plots of the simulated cell probability processes πt for the first
three locations (black) and the estimated filtered one (red) for N = 500, M = 104,
T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 5.4: Time series plots of the simulated cell probability processes πt for locations
4 to 6 (black) and the estimated filtered one (red) for N = 500, M = 104, T = 64, n = 8
under a burn-in period of i = 5000.
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Figure 5.5: Posterior estimates for selected elements for selected reconstructed elements
of w. The red line indicates the empirical density and the green vertical line indicates
the real value.

5.8 Application on Traffic Flows Revisited

By revisiting the traffic flow dataset, we acquired the traffic flows for the same period

in M6 for all segments consisting of cars, buses and large goods vehicles (LGV). What

we are interested to investigate is in each segment, dynamically, how the proportion of
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cars, buses and LGVs changes over time in one segment but also how is that spatially

associated to the traffic flow with the rest of segments. That would give us insight

if we like to make a further analysis that will incorporate accidents based on civilian,

transport and trading vehicles. Additionally, the bus and LGV data consisted as well

a fair amount of missing values, which were imputed via Kalman Filtering on their

logarithm prior to the analysis similarly to Chapter 4 for cars.
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Figure 5.6: Time series plots of posterior filtered cell probabilities πt for four segments.
Black line signifies the cell probability for cars, orange line for LGVs and green line for
buses. The estimation was conducetd for N = 500, M = 104, T = 64, n = 8 under a
burn-in period of i = 5000.

In this analysis we are considering the inferential procedure of Table 5.2 framework of

the Multinomial Dimension Reduced DSTM under a Haar wavelet basis decomposition

with the model in (5.3) under the Spike and Slab prior with v0 = 0.1. The hyperparam-

eters for τ−2
k under a gamma prior were set to be both equal to 2 and 100 for the shape

and scale parameters respectively. Furthermore, we considered a full structure on both

the scale matrices Ση and R with priors being Ση ∼ IW(8, 2 · I) and R ∼ IW(3, I)

respectively. The proposal distributions consisted of a tuning parameter r = 100 and
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each parameter was updated through Ση[prop]|Ση[m− 1] ∼ IW(r+ 8, rΣη[m− 1]) and

R[prop]|R[m− 1] ∼ IW(r + 3, rR[m− 1]) which provided us with an acceptance ratio

of ≈ 30%. In Figure 5.8 we illustrate that the spatial coefficients B have converged,

however, that does not apply for the covariance parameters (Figure 5.15). Unfortu-

nately, due to low computational power in a commercial laptop and low memory we

were not able to run the model for more iterations. However, our findings, even with

caution, are interesting.

Parameter Posterior Mode

Ση11 0.128

Ση22 0.088

Ση33 0.086

Ση44 0.072

Ση55 0.096

Ση66 0.114

Ση77 0.106

Ση88 0.104

R11 0.108

R22 0.132

R12 0.058

Table 5.4: Posterior Mode estimates for the covariance elements of R and the diagonal
elements of Ση.

Considering the posterior filtered estimates of πt, consistently for all locations, the cell

probability for buses lies lower than the cell probabilities of cars and LGVs through time

(Figure 5.6 and 5.7) whereas cars share the highest cell probability. It was suspected

that we would acquire a lower estimate for buses as there is a much lower number of

buses in the motorway across M6. This is due to the buses being used only for mass

transportation from one city or county to another. On the contrary, cars which own

the highest cell probability across locations are used by civilians for transportation

between home and workplace, holiday trips, excursions and so on. LGVs on the other

hand, which show lesser probability than cars but more than buses, are based mostly

on trading, post deliveries or removal services.
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Figure 5.7: Time series plots of posterior filtered cell probabilities πt for four segments.
Black line signifies the cell probability for cars, orange line for LGVs and green line for
buses. The estimation was conducted for N = 500, M = 104, T = 64, n = 8 under a
burn-in period of i = 5000.

Furthermore, for all segments, the cell probabilities for cars through time lie roughly

around 0.35, for LGVs around 0.3 and buses around 0.25. For specific segments, such

us Birmingham, Cheshire and Lancashire, the cell probabilities for cars show a higher

variability while for Lancashire and Birmingham the cell probabilities for LGVs show

rapid fluctuations. The posterior modes of the categorical variances show that there is

more variability for buses than cars while also they are correlated (Table 5.4).
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Figure 5.8: Posterior estimates for selected elements for B on the left hand side with
their respective Autocorrelation Function (AFC) on the right side. The red line in-
dicates the empirical density and the orange line indicates the prior distribution. We
show that the posterior elements fo B have converged. The estimation was conducted
for N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000.

The posterior elements B which have also converged (Figure 5.8) provide us with inter-

esting findings for the weight function in terms of spatial contribution between the seg-

ments (Figure 5.9 and Figure 5.10). Specifically, there is a slight positive contribution

to the traffic flows of Segment 2 and Segment 4 (Cheshire) to Segment 7 (Lancashire).
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Interestingly, the application of Chapter 4 provided us too with Birmingham positively

contributing to the traffic flows of motorway segment in Lancashire. That means that

even if we categorise the traffic flow based on three different types on vehicles, still the

flows from Birmingham will affect positively the ones in Lancashire. Cheshire and Lan-

cashire are relatively neighbouring rural counties with Lancashire compromising more

residents. That means that if civilian, public transport or trading vehicles are passing

by Cheshire, they are probably leading towards Lancashire.
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Figure 5.9: Selected reconstructed elements of w. The red line indicates the empirical
density estimate. The estimation was conducted for N = 500, M = 104, T = 64, n = 8
under a burn-in period of i = 5000.

Additionally, in Chapter 4, we observed that Segment 8 (Cumbria) was affecting nega-

tively the flows in Segment 5 (Warrington). However, now that we consider the public

transport and trading vehicles, it seems that there is no association between these two

segments. Furthermore, there is a negative contribution in the traffic flows from Seg-

ment 6 (Wigan) to Segment 7 (Lancashire). Therefore, if there was a high traffic flow

activity in Wigan, we would expect a lower in Lancashire. On the contrary, there is
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a slight positive contribution from Segment 7 (Lancashire) to Segment 6 (Wigan) and

this shows us a contrast between these two segments based on a quarterly basis.
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Figure 5.10: Selected reconstructed elements of w. The red line indicates the empirical
density estimate. The estimation was conducted for N = 500, M = 104, T = 64, n = 8
under a burn-in period of i = 5000.

Finally, there is a slight positive contribution from Segment 5 (Warrington) to Segment

8 (Cumbria) while in Chapter 4 we have shown that there is a strong negative con-

tribution instead. With the addition of traffic flows for public transport and trading
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vehicles we suspect that this contribution shows us the travelers and traders that wish

to reach the north of England and even reach Scotland.

Regarding the posterior covariance elements of the categorical scale matrix (R) in

Figure 5.11, there is a higher variance for buses than cars regarding traffic flows from

one quarter to another. Furthermore, there is a slight correlation between these two cat-

egories. Convergence diagnostics through the autocorrelation functions for the covari-

ance elements suggest us that we needed more iterations for the covariance parameters

to converge (Figure 5.15).
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Figure 5.11: Posterior density estimates for the elements (variances and covariance) of
R. Red line indicates the empirical distribution of the estimates. The prior that was
an inverse Wishart with ν0 = 8 and Q0 = 100 · I being the shape and scale parameters
for N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000. The model
suggests that the two categories are correlated. Buses show a larger spread than cars.

We will proceed with caution to provide interpretation of the covariance findings. From

Figure 5.12 and Table 5.4 it is suggested that Warwickshire, Wigan, Lancaster and

Cumbria own a higher variability in traffic flows than the rest of segments. Indeed,

from the estimates of cell probabilities in Figure 5.6 and Figure 5.7 we can observe that

all three categories fluctuate way more than the rest of segments. In Chapter 4 it was

suggested that the segments vary similarly, however, with the extra consideration of

buses and LGVs this does not hold anymore. Furthermore, from Figures 5.14 and 5.15,

it is suggested that there exist slight negative correlations between segments based on
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the flows at one quarter to the next one. Specifically, there is a negative correlation

between Warrington and Birmingham, Warrington and Cheshire and Warrington and

Lancaster. This indicates that the traffic flows are affected by neighbouring counties,

given that Warrington, Cheshire and Lancaster are next to each other. Finally, there is

a slight negative correlation between Wigan and Cumbria and Lancaster and Stafford.
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Figure 5.12: Posterior density estimates for the diagonal elements (variances) of Ση.
Red line indicates the empirical distribution of the estimates. The prior that was an
inverse Wishart with ν0 = 8 and Q0 = 100 · I being the shape and scale parameters for
N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 5.13: Posterior density estimates for selected off-diagonal elements (covariances)
of Ση. Red line indicates the empirical distribution of the estimates. The prior that was
an inverse Wishart with ν0 = 8 and Q0 = 100 · I being the shape and scale parameters
for N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 5.14: Posterior density estimates for selected off-diagonal elements (covariances)
of Ση. Red line indicates the empirical distribution of the estimates. The prior that was
an inverse Wishart with ν0 = 8 and Q0 = 100 · I being the shape and scale parameters
for N = 500, M = 104, T = 64, n = 8 under a burn-in period of i = 5000.
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Figure 5.15: Autocorrelation functions for the covariance elements of R and selected
covariance elements of Ση. They suggest that the covariance parameters have not
reached convergence. The estimation was conducted for N = 500, M = 104, T = 64,
n = 8 under a burn-in period of i = 5000.

Missing Value Treatment The missing imputation was conducted under a non-

Bayesian setting for all categories and segments. Thus, similarly as we mentioned in

Chapter 4 on the missing value treatment under a Particle Filtering framework, the

Multiple Imputation Particle Filter (Housfater et al., 2006) can be considered for the

prediction of the missing values.

Thus, let us partition the vector of observations, i.e., Yt = (Y mis
t ,Y obs

t ) and let us

consider the missing value index h = 1, . . . ,m. Then, an imputation model can be

expressed as a probability distribution in order to sample the m samples subject to

imputation, i.e.,

Y mis
ht ∼ p(Y mis

t |Y obs
1:t ) (5.17)

We again assign a weight vht to each imputation with
∑m

h=1 v
h
t = 1. Thus, by consider-

ing ujt = (Y mis
jt ,Y obs

t ) to be the complete data sets formed from imputed values, then
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the filtering posterior distribution is given as

p(At|Y obs
1:t ) =

∫
p(At|u1:t−1,Y

obs
t )p(Y mis

t |Y obs
1:t )dY mis

t , (5.18)

and through Monte Carlo approximation we get

p(At|Y obs
1:t ) u

m∑
j=1

vjt p(At|u1:t−1Y
obs
t , uht ). (5.19)

Additionally, for each of the complete data sets yields

p(At|u1:t−1, u
h
t ) =

N∑
i=1

w
(i,h)
t δ(At −A(i,h)

t ), (5.20)

where the indexes i and h indicate the particle and imputation, respectively. Thus, an

approximation of the desired posterior distribution is

p(At|Y obs
1:t ) ≈

m∑
j=1

N∑
i=1

vht w
(i,h)δ(At −A(i,h)

t ). (5.21)

Thus, estimating the missing responses Y mis
t is equivalent to a posterior prediction

from the model fitted to the observed data with the inclusion of a filtering estimate for

the missing observations.

5.9 Conclusion

We have introduced a modeling approach for Multinomial Dimension-Reduced DSTMs

under an adaptive Conditional Particle Filter procedure with Metropolis-Hastings steps.

This approach is built around a dynamic generalised linear modeling framework where

the cell probabilities πt are predicted through a logit link function. Additionally, we

introduce a spatio-temporal cross correlation between categories based on two scale ma-

trices which brings the dynamic components of the wavelet coefficients into a matrix

normal distribution framework. Additionally, we use an efficient sparse wavelet decom-

position with the inference of spatial coefficients being conducted through the Spike and

Slab prior under the help of the now state matrix At. Furthermore, the Conditional

Particle Filtering framework provides us with posterior sampled filtered estimates for

the state matrix At, the cell probabilities πt and posterior samples for B. Lastly,
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Metropolis-Hastings steps provide us with a joint estimation for the scale matrices Ση

andR in order to estimate the spatio-temporal variation between and within categories.

Firstly, the simulation study on a small number of locations has proved that our

methodology can approximate fairly well an underlying spatio-temporal cell probability

vector under spatial discontinuities (Section 5.7.2). Additionally, the reconstruction of

the weight function, was predicted fairly well. Furthermore, we tested our methodol-

ogy on real traffic flow data of cars, buses and LGVs under segmentation of the known

motorway M6 after imputing missing values. Specifically, we have predicted that for

all segments cars own the highest cell probability across time and buses the lowest.

Furthermore, for specific segments there is a higher variation between categories which

is produced through the combination of the categorical and temporal covariance ele-

ments of R and Ση. Additionally, we achieved to produce spatial causality between

locations. These causalities were mostly based on the distance and type of counties and

provided us with further findings than Chapter 4 after the inclusion of buses and LGVs.

However, we encountered difficulties during our estimation. The lack of computa-

tional infrastructure did not provide us with more Gibbs and particle iterations which

are necessarily suggested for both the simulation study and the application as for the

latter convergence criteria showed that even if the wavelet coefficients parameters con-

verge, the covariance elements did not and thus further iterations were needed. One

suggestion in this case would have been to consider Ση and R to be proportional to

the identity matrix, i.e, Ση ∝ I and R ∝ I, however this is not a good option. We

would suggest to resort to more computing power instead, but failing to do that for

this thesis we recommend a consideration of Ση ∝ I and R ∝ I instead.



Chapter 6

Conclusions

6.1 Concluding Remarks

In this thesis, we have proposed an adaptive Bayesian procedure for the Dimension-

reduced DSTMs. Specifically, we took advantage of an efficient sparse wavelet decom-

position where its spatial coefficients were inferred through a Spike and Slab prior.

For the Gaussian case we proposed an efficient filtering and smoothing framework for

the sampling of the temporal wavelet coefficients which resulted into good estimates

of the underlying process. Furthermore, we suggested a flexible covariance estimation

approach under a Bayesian setting. The simulation studies provided us with proof that

the proposed model can produce good estimates for the underlying spatio-temporal

process but also for the spatial weight function. Furthermore, the covariance inference

proved to be effective under the proposed methodology. However, due to the signal-

to-noise ratio we encountered some overestimations and underestimations for a few

elements of the spatial wavelet coefficients.

Overall, the performance of the proposed methodology is promising under the simula-

tion studies even though it is computationally intensive. Finally, considering the appli-

cation to pollution data, our proposed methodology performs well for non-detrended

processes as it provides us with good approximations and captures the trends. Addi-

tionally, we have derived causal effects for the spatial weight function between locations

which provided us with rational findings based on the distance between the locations

but also their geographical and socioeconomic structure. Specifically we noticed that
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neghbouring areas or areas of the same structure (urban, industrial or solely residen-

tial) in terms of pollution had either positive or negative effect for the Nitrogen Oxide

pollutant.

After proving the proposed methodology’s effectiveness for Gaussian spatio-temporal

processes, we proceeded on creating an extension for Poisson distributed spatio-temporal

processes. This again required the use of a wavelet basis decomposition along with the

use of a Spike and Slab prior to incorporate a parsimonious spatial propagation. Fur-

thermore, we suggested two different modelling settings according to the application;

the first incorporated a spatially varying mean effect where it would affect the mean

intensity process; the second incorporated a spatially varying but autoregressive mean

effect which assumes that the mean effect affects the intensity process at time t given on

how it affected the process at time t− 1. However, due to the observed measurements

being Poisson distributed, the sampling of the temporal wavelet coefficients could not

be conducted under a fully MCMC setting. Therefore, we resorted to Particle Filtering

techniques where we suggested several algorithms which ranged in terms of efficiency.

The simulation studies showed that the proposed methodology provides us with good

estimates similarly to the Gaussian case. However, we noticed that the computational

complexity is even more difficult in this case and one has to resort to better computa-

tional power or maybe use parallel programming.

Additionally, the application on traffic flow data on the segmentation of M6 motor-

way based on the counties offered us several insights. Firstly, the traffic flow varies

in all segments in a similar way as the posterior inference showed us that the vari-

ances for all segments are similar. Furthermore, we noticed that only a few segments

are correlated to each other and those ones are neighboring segments. Similarly, the

reconstruction of the spatial weight function provided us with causal effects between

segments which were based on neighbouring segments. However convergence diagnos-

tics showed that the implementation needed more iterations for the error variance to

converge.

Finally, we have proposed a Multinomial Dimension-reduced DSTM under the Par-

ticle Filtering framework. Specifically, we used a logit link to model the cell count

probabilities of a spatio-temporal count process. This resulted into the consideration

of a state matrix for the temporal wavelet coefficients and thus, a much complex model.

We considered two scale matrices for the temporal matrix. That provided us with cross
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correlation between the locations and categories which again is a flexible modelling

procedure to find possible spatio-temporal patterns. A simulation study has shown

that the cell probabilities and the weight function can be successfully captured which

is a challenge in practice. However, due to the computational complexity we did not

manage to run more iterations. Finally, we revisited the traffic flow data to recognise

patterns between the segments for cars, buses and large goods vehicles (LGV). The

implementation of our methodology showed us that there is a variation between cate-

gories for each segment but also we extracted causal spatial effects. With the inclusion

of two extra categories of vehicles we observed a contrast of between the findings of

Chapter 4. However, both the simulation and application needed more iterations to

converge.

Overall, the proposed modeling approaches are general and can easily be applied to

other types of spatio-temporal processes (house prices, accidents, epidemics, public

health). The Spike and Slab prior belief combined with the wavelet decomposition

allows us through sparsity to integrate and combine different sources of spatial infor-

mation. The approximations of the underlying processes and the weight functions are

not perfect but spatio-temporal processes include underlying patterns which are diffi-

cult to be estimated, especially with the presence of a large parameter space. However,

we have to emphasize the limitation of those proposed approaches. The algorithms are

computationally demanding and the user should resort to either cloud computing, or

parallel programming for the implementation in higher dimensions or more iterations.

Although, nowadays, most of the big data applications are indeed computationally de-

manding and we live in th era of cloud computing. These low dimensional examples are

based on the limited resources that were provided and are provided for implementation

purposes.

6.2 Extensions and future work

Extensions of the proposed approaches are possible. In our study, we investigated the

Gaussian, Poisson and Multinomial distributed spatio-temporal processes. However,

we could possibly extend it to more complex distributed processes. One consideration

is the Multivariate Gamma which was introduced by Ramabhadran (1951) but we are

interested in the one discussed by Mathai and Moschopoulos (1991). The interesting

part of this approach is the positive correlation between the variables. Interestingly,
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there are spatio-temporal processes, such as pollutants or actuarial datasets which are

Multivariate Gamma distributed. One limitation of this issue is that the likelihood is

not of closed form, thus sampling from that distribution or conducting MCMC is a

challenge in practice. However, under Particle Filtering techniques the likelihood can

be approximated through the particle weights.

Similarly, we could extend the Poisson Reduced-dimension DSTM for the multivariate

case with correlation structure of Kawamura (1979). The fully structured multivariate

Poisson is a complex probability function and the dependencies are tracked through

recurrence relationships. Bayesian techniques have been implemented in Karlis and

Meligkotsidou (2005) and Bermúdez and Karlis (2011). An application on multivari-

ate earthquake counts with a covariance structure under integer valued autoregressive

models have been seen in Pedeli and Karlis (2013) . A full correlation structure could

provide us with more insight in a spatio-temporal setting, however, due to its complex-

ity the inference will be limited and computationally intensive.

Additionally, we may be interested in capturing trending or seasonal effects. These

can be easily expressed by state space models and be incorporated into the Kalman

Filter. For instance, we can consider Fourier seasonal componets (Harrison (1965) and

more recently discussed in Harvey (1990) and West and Harrison (1997)) or a combi-

nation of trend and seasonal components subject to estimation.

Furthermore, these current models can incorporate regression explanatory variables

with and time-varying regression components. For instance, regarding the prediction

of the Nitrogen Oxide (NO) in Athens, we can use another pollutant, such as Carbon

Dioxide (CO2) or Ozone (O3). We could then apply basis decomposition to the regres-

sors as well and infer on the coefficients.

Moreover, the Multinomial Dimension-reduced DSTM could be used for clustering

locations or areas based on count characteristics. Under a spatial statistics frame-

work, Lavigne et al. (2012) used a multinomial probit model to cluster regions in the

Alps based on avalanche counts, however, no further applications for clustering spatio-

temporal characteristics based on the Multinomial distribution have been conducted.



Appendix A

Kronocker product and vec

operator properties

A.1 Kronecker operator properties

• Associativity: A⊗ (B ⊗C) = (A⊗B)⊗C

• Distributivity: A⊗ (B+C) = (A⊗B) + (A⊗C) and (A+B)⊗C) = (A⊗C) +

(B ⊗C)

• For some scalars a and b: aA⊗ bB = abA⊗B

• For some matrices with right dimensions: (A⊗B)(C ⊗D) = AC ⊗BD

• Transposition: (A⊗B)> = A> ⊗B>

• Trace: tr(A⊗B) = tr(A)tr(B)

• Rank: rank(A⊗B) = rank(A⊗B) = rank(A)rank(B)

• Deeterminant: det(A ⊗ B) = det(A)ndet(B)m, where A and B are respectively

m×m and n× n matrices

• Inverse: (A⊗B)−1 = A−1 ⊗B−1

A.2 vec operator

Theorem 1. Let A, B, X be 3 matrices of conforming sizes. Then

vec(AXB) = (B> ⊗A)vec(X)
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Proof. Let B = [b1, . . . , bn], X = [x1, . . . ,xn]. The k − th column of ABX is

(ABX).k = AXbk = A
∑m

i=1 xibik

= [b1kA · · ·mkA]


x1

...

xm


= ([b1k, . . . , bmk]⊗A)vec(X) = (b>k ⊗A)vec(X)

Then by stacking columns below one another we get

vec(AXB) =


AXB..1

...

AXB..n

 =


b>1 ⊗A

...

b>n ⊗A

 vec(X) = (B> ⊗A)vec(X)

Corollary 1.1.

vec(AB) = (B> ⊗A)vec(I) (A.1)

= (B> ⊗ I)vec(A) (A.2)

= (I ⊗A)vec(B) (A.3)

Property:

tr(AB) = vec(A>)>vec(B)

The proof is straightforward by writing the formula of the trace, using the epxression

of the matrices coefficients.



Appendix B

Distribution Theory

B.1 Normal Distribution

A random variableX follows a normal distribution with mean µ and standard deviation

σ, written as X ∼ N(µ, σ2), if and only if its density is:

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
The normal distribution with mean µ = 0 and standard deviationσ = 1 is called the

standard normal distribution.

B.2 Truncated normal distribution

The truncated normal distribution is the probability distribution of a normally dis-

tributed random variable, whose values are restricted to lie between an interval [a, b] in

the case of a two-tailed truncation, or higher than a or lower than b in the case of an

one-tailed truncation. If X follows a truncated normal distribution N(µ, σ2) between

a and b, its density function is:

1
σφ(x−µσ )

Φ( b−µσ )− Φ(a−µσ )

for x ∈ [a, b], where φ and Φ respectively denote the probability density function and

cumulative distribution function of the standard normal distribution. In the case on
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one-tailed truncation x ≥ a we write b =∞ and Φ( b−µσ = 1, then the density becomes:

1
σφ(x−µσ )

1− Φ(a−µσ )
(B.1)

Properties

• Expected value: E(X|x ≥ a) = µ+ σλ(a), with λ(a) = φ(a)/[1− Φ(a)]

• V(X|x ≥ a) = σ2[1− δ(a)], with δ(a) = λ(a)[λ(a)− a].

B.3 Multivariate normal distribution

A random vector X of size p is said to have a multivariate normal distribution with

mean vector µ and covariance matrix Σ, written as X ∼ N(µ,Σ) or X ∼ Np(µ,Σ),

when its density function is:

(2π)−
p
2 |Σ|−1/2 exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)
where |Σ| denotes the determinant of Σ.

B.4 Matrix-variate normal distribution

A n× p random matrix is said to have a matrix variate normal distribution with mean

matrix M , n × n among-row covariance matrix U , p × p among-column covariance

matrix V , written as X ∼ N(M ,U ,V ), or X ∼ Nn,p(M ,U ,V ) if its density is:

exp
(
−1

2tr
[
V −1(X −M)>U−1(X −M)

])
(2π)

np
2 |V |n/2|U |p/2

The matrix variate normal distribution is related to the multivariate normal distribution

by the following equivalence:

X ∼ Nn,p(M ,U ,V ) ≡ vec(X) ∼ Nnp(vecM ,V ⊗U).

This equivalence can be proved by using properties of the trace, vec operator and

kronecker product. More details can be found in Gupta and Nagar (2018).
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Property: If X ∼ Nn,p(M ,U ,V ), then, assuming matrices D and C of appropriate

dimensions and of full rank:

DXC ∼ Nn,p(BMC,DUD>,C>V C)/

A proof of that property can be found in Gupta and Nagar (2018).

B.5 Exponential distribution

A random variable x > 0 follows an exponential distribution with rate pa rameter

λ > 0, denoted by X ∼ Exp(λ), if and only if its density is:

f(x) = λ exp(−λx)

B.6 Gamma distribution

A random variable x > 0 has a gamma distribution with shape parameter α > 0 and

scale parameter β > 0, denoted by x ∼ G(α, β) if and only if its density is:

f(x) =
1

Γ(α)βα
xα−1 exp(−x/β)

where Γ is the gamma function.

Properties:

• Expected value: E(x) = αβ

• Variance: Var(x) = αβ2

• If α = 1, then x has an exponential distribution with parameter 1/β
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B.7 Inverse-gamma distribution

A random variable x > 0 has a gamma distribution with shape parameter α > 0 and

rate parameter β > 0, denoted by x ∼ IG(α, β) if and only if its density is:

f(x) =
βα

Γ(α)
(1/x)α+ exp(−β/x)

where Γ is the gamma function.

Properties

• Expected value: E = β
α−1

• Variance: V(x) = β2

(a−1)(a−2)

• If x ∼ IG(α, β), then x−1 ∼ G(α, 1/β).

B.8 Wishart distribution

A p × p random symmetric positive definite matrix V is said to have a Wishart

distribution with parameters ν degrees of freedom, and scale matrix S, written as

V ∼Wp(ν,S), if its density is:

1

2
νp
2 |S|ν/2Γp(

ν
2 )
|V |

ν−p−1
2 exp

(
−tr(S−1V )

2

)
where the scale matrix S is p × p positive definite matrix and Γp is the multivariate

gamma function/

Properties

• Expected value: E(V ) = νS

• Mode: Mode(V ) = (ν − p− 1)S

• Variance: Var(Vij) = ν(s2
ij + siisjj)
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B.9 Inverse-Wishart distribution

A p×p random symmetric positive definite matrix V is said to have an Inverse Wishart

distribution with parameters ν degrees of freedom, and scale matrix Ψ, written as

V ∼Wp(ν,Ψ), if its density is:

|Ψ|ν/2

2
νp
2 Γp(

ν
2 )
|X|

ν+p+1
2 exp

(
−tr(ΨX−1)

2

)

Properties

• Expected value: E(X) = Ψ
ν−p−1

• Mode: Mode(X) = Ψ
ν+p+1

• Variance: Var(Xij) =
(ν−p+1)ψij+(ν−p−1)ψiiψjj

(ν−p)(ν−p−1)2(ν−p−3)

• If X ∼ IW(ν,Ψ), then X−1 ∼ IW(ν,Ψ−1)
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Stroud, J. R., Müller, P. and Sansó, B. (2001). Dynamic models for spatiotemporal

data, Journal of the Royal Statistical Society: Series B (Statistical Methodology),

63 (4): 673–689.

Svensson, A., Schön, T. B. and Kok, M. (2015). Nonlinear state space smoothing using

the conditional particle filter, arXiv preprint arXiv:1502.03697 .

Sweldens, W. (1996a). The lifting scheme: A custom-design construction of biorthogo-

nal wavelets, Applied and Computational Harmonic Analysis, 3 (2): 186–200.

Sweldens, W. (1996b). Wavelets and the lifting scheme: A 5 minute tour, ZAMM-

Zeitschrift fur Angewandte Mathematik und Mechanik , 76 (2): 41–44.

Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets,

SIAM Journal on Mathematical Analysis, 29 (2): 511–546.

Tepe, E. and Guldmann, J.-M. (2018). Spatio-temporal multinomial autologistic mod-

eling of land-use change: A parcel-level approach, Environment and Planning B:

Urban Analytics and City Science, p. 2399808318786511.

Vidakovic, B. (2009). Statistical modeling by wavelets, vol. 503, John Wiley & Sons.

Waller, L. A., Carlin, B. P., Xia, H. and Gelfand, A. E. (1997). Hierarchical spatio-

temporal mapping of disease rates, Journal of the American Statistical association,

92 (438): 607–617.

Wendt, D. A., Irwin, M. E. and Cressie, N. (2004). Waypoint analysis for command

and control, Naval Research Logistics (NRL), 51 (8): 1045–1067.

West, M. and Harrison, J. (1997). Bayesian forecasting and dynamic models, Springer

Series in Statistics.



208

Wikle, C. K. (1996). Spatio-temporal statistical models with application to atmospheric

processes, Digital Repository@ Iowa State University, http://lib. dr. iastate. edu/.

Wikle, C. K. (2002). A kernel-based spectral model for non-gaussian spatio-temporal

processes, Statistical Modelling , 2 (4): 299–314.

Wikle, C. K. (2003). Hierarchical models in environmental science, International Sta-

tistical Review , 71 (2): 181–199.

Wikle, C. K., Berliner, L. M. and Cressie, N. (1998). Hierarchical bayesian space-time

models, Environmental and Ecological Statistics, 5 (2): 117–154.

Wikle, C. K. and Cressie, N. (1999). A dimension-reduced approach to space-time

kalman filtering, Biometrika, 86 (4): 815–829.

Wikle, C. K. and Holan, S. H. (2011). Polynomial nonlinear spatio-temporal integro-

difference equation models, Journal of Time Series Analysis, 32 (4): 339–350.

Wikle, C. K. and Hooten, M. B. (2006). Hierarchical bayesian spatio-temporal models

for population spread, Applications of computational statistics in the environmental

sciences: hierarchical Bayes and MCMC methods, 145169.

Wikle, C. K., Milliff, R. F., Nychka, D. and Berliner, L. M. (2001). Spatiotemporal

hierarchical bayesian modeling tropical ocean surface winds, Journal of the American

Statistical Association, 96 (454): 382–397.

Xu, K. and Wikle, C. K. (2007). Estimation of parameterized spatio-temporal dynamic

models, Journal of Statistical Planning and Inference, 137 (2): 567–588.

Xu, K., Wikle, C. K. and Fox, N. I. (2005). A kernel-based spatio-temporal dynamical

model for nowcasting weather radar reflectivities, Journal of the American statistical

Association, 100 (472): 1133–1144.

Xue, J.-Z., Zhang, H., Zheng, C.-X. and Yan, X.-G. (2003). Wavelet packet transform

for feature extraction of eeg during mental tasks, in Machine learning and cybernet-

ics, 2003 international conference on, vol. 1, pp. 360–363, IEEE.

Yaglom, A. (1987). Introduction, in Correlation theory of stationary and related random

functions, pp. 1–13, Springer.

Yang, G.-J., Vounatsou, P., Zhou, X.-N., Tanner, M. and Utzinger, J. (2005). A

bayesian-based approach for spatio-temporal modeling of county level prevalence



BIBLIOGRAPHY 209

of schistosoma japonicum infection in jiangsu province, china, International Journal

for Parasitology , 35 (2): 155–162.

Zhou, B. and Kockelman, K. M. (2008). Neighborhood impacts on land use change:

a multinomial logit model of spatial relationships, The Annals of Regional Science,

42 (2): 321–340.


