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ABSTRACT

Stimulated by the analysis of a data set about house price
variance in the USA, we propose a sparse single-index vector
autoregressive model (SSIVARM). In order to solve the model,
we develop an iterative algorithm based on least squares es-
timation procedure (PLSEP) to simultaneously identify the
zero components and estimate the non-zero unknown parame-
ters and unknown functions in the model. Not only providing
concrete methodology for the implementation of the proposed
algorithm, we also conduct intensive simulation studies to
investigate the performance of the proposed PLSEP and the
iterative algorithm when the sample size is finite. Finally,
we apply the proposed SSIVARM together with the proposed
PLSEP and iterative algorithm to the data set mentioned
above. Our results reveal some interesting connections be-
tween some variables and the house price. Although the pro-
posed SSIVARM is stimulated by a data set about house price,
our findings suggest it can be applied to any multivariate
time series.
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1
INTRODUCTION

1.1 Preamble

With the advancement of data collection, we are facing an
increasing number of complex and considerable datasets in-
cluding numerous potential variables. In the analysis of such
kinds of datasets, it is often a challenge to specify an efficient
model which precisely contains all the significant components.
Specifically, the difficulty is twofold: firstly, we are not clear
which model is appropriate and which variables are relevant;
secondly, we cannot go for a very flexible model which may
involve too many variables. Therefore, in modern data anal-
ysis, how to deal with those issues in the high dimensional
data analysis has become a notably important research area.
Among the studies, the penalised likelihood/least squares
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CHAPTER 1. INTRODUCTION

approach emerged as a promising approach in the last two
decades and much literature is devoted to this method and its
application. See Fan and Lv (2008), Fan et al.(2009), Bickel et
al.(2009), Wang and Xia (2009), Stefanski et al.(2014), Wang,
Peng and Li (2015), Fan et al.(2015), Li, Ke and Zhang (2015),
Fan and Lv (2016), Zhang et al.(2016), and the references
therein.

The penalised likelihood/least squares makes the follow-
ing modelling approach for high dimensional data possible:
instead of specifying a particular model, it starts with a model
which can be as flexible as possible and includes all the can-
didate variables. Then the penalised likelihood/least squares
approach is applied to select the significant variables and
shrink the parameters of irrelevant variables to 0, and thus
get the right model. In addition, with a proper penalty func-
tion and computational algorithm, the penalised approach
would simultaneously select significant variables and esti-
mate coefficients.

In the penalised likelihood/least squares approach, it is of
importance to choose an appropriate penalty function. Frank
and Friedman (1993) and Fu (1998) proposed the ridge re-
gression, which is associated with the L2 penalty function.
However, the L2 penalty fails to yield a sparse solution and
hence, to overcome this problem, the least absolute shrink-
age and selection operator (LASSO), proposed by Tibshirani

2



CHAPTER 1. INTRODUCTION

(1996, 1997), is the penalised least squares estimate along
with the L1 penalty function. Boyd and Vandenberghe (2004)
proposed the proximal gradient descent (PGD) algorithm to
solve LASSO and other L1 based penalised methods. Efron et
al.(2004) also proposed an effective algorithm, termed as least
angle regression (LARS), which can be applied to produce
the full set of LASSO solutions. Yuan and Lin (2006) studied
and proposed efficient algorithms for the extensions of the
LASSO for selecting the grouped variables. However, although
LASSO enjoys many attractive properties, it is inconsistent
with the variable selection because its resulting estimate is
biased. To ameliorate this issue, Zou (2006) proposed the adap-
tive LASSO and Fan and Li (2001) developed the smoothly
clipped absolute deviation (SCAD) penalty. At the same time,
Fan and Li (2001) also built a framework for the selection of
the penalty function. They suggested a good penalty function
should result in an estimator with three properties: unbi-
asedness, sparsity and continuity, and the proposed SCAD
penalty, as an example of a good penalty, enjoys all the three
properties. Additionally, Fan and Li (2001) extended the pe-
nalised least squares to a general likelihood setting and built
a unified algorithm for optimising both the penalised least
squares and penalised likelihood via local quadratic approx-
imations. Based on local linear approximation, Zou and Li
(2008) developed a one-step sparse estimation procedure for

3



CHAPTER 1. INTRODUCTION

optimising the penalised likelihood which outperforms the
preceding local quadratic approximation.

The penalised approaches has been applied to select a
wide range of models. For example, the vector auto-regressive
(VAR) model, which serves as a classic technique to deal with
the joint evolution of multivariate time series, can deliver a
great deal of structural information. However, VAR model
has a potential issue in that the parameter space of VAR
model increases rapidly with the size of the model, hence
the model selection of this class of model is essential. Fan,
Lv and Qi (2011) introduced penalised least squares to the
VAR model with the addition of neighbourhood variables to
examine house-price estimation and prediction. Calomiros et
al.(2008) performed the panel VAR regression to demonstrate
a strong effect of foreclosure on house prices. Rapach and
Strauss (2007) considered combinations of individual VAR
forecasts, with each equation consisting of only one macroeco-
nomic variable, in forecasting house-price growth in several
states. As an illustration, our thesis shall focus on the selec-
tion and estimation of a sparse single-index varying coefficient
VAR model.

4



CHAPTER 1. INTRODUCTION

1.2 A motivating example

In recent years, the analysis of house price has attracted much
research in statistics, an important topic in which the pre-
diction of house price and the investigation of the connection
between house price and some factors associated with house
price are of importance. We study a house price index dataset
from The USA. The data were collected from d = 10 different
places in the USA every month for n = 381 months from 1987
to 2017. Therefore, the dataset is a 10-dimensional multivari-
ate time series, denoted by yt, t = 1, · · · , n, with q covariates,
denoted by Xt, t = 1, · · · , n. Xt is a matrix of size d× q, dif-
ferent rows of Xt are the observations of the q covariates at
different places. Traditionally, for such dataset, a multivariate
time series model, such as the vector autoregression (VAR)
models would be used for prediction.

yt =
p∑

j=1
A jyt− j +Xtα+εt, (1.1)

However, the problem is we would have d2× p+ q unknown
parameters to estimate if a VAR(p) model is used, which is too
many for this dataset, and would result in a large variance of
the prediction. To reduce the unknown parameters, one would
be tempted to go for a smaller order p as 1 order less would
reduce d2 unknown parameters. Unfortunately, this would
also have a problem of misspecification. Furthermore, even

5



CHAPTER 1. INTRODUCTION

if p = 1, we would still have d2 + q unknown parameters to
estimate, which is still too many for this dataset.

As far as this dataset is concerned, for a given place, it
is not the case that the house prices in previous months at
every place would affect the house price at this given place,
which means some elements in A j in the model (1.1) may be
0. Therefore, a sensible modelling approach would be staying
with model (1.1) but assuming some elements in A j are 0,
which give us a sparse VAR model. Of course, which elements
in A j are 0 should be identified by a data-driven approach.

There is another problem arising: if we apply the model
(1.1) to the dataset, we would assume the impact of previous
house prices on the current house price is constant, which
is not plausible. One way to deal with this problem is to
assume A j depends on the previous house prices yt−`. Due
to "curse of dimensionality", as we cannot simply assume A j

is a function of yt−`, a natural approach would be to assume
A j is a function of yT

t−`β, this gives us the sparse single-index
vector autoregressive models, which we formally define in
Section 1.3.

6



CHAPTER 1. INTRODUCTION

1.3 The sparse single-index vector
autoregressive models

To make our definition more generic, let yt, t = 1, · · · , n, be a
d-dimensional stationary time series, and Xt, t = 1, · · · , n, be
independent and identically distributed. Xt is a d× q matrix.
The sparse single-index vector autoregressive model (SSI-
VARM) is defined as

yt =
p∑

j=1
A j(y>

t−`β)yt− j +Xtα+εt, (1.2)

where 1 ≤ ` ≤ p, the coefficients A j(·), j = 1, . . . , p are d × d
matrices, the first column of A`(·) is 0d, β= (β1, · · · , βd)T and
satisfies

‖β‖ = 1, β1 > 0, (1.3)

α is a q− dimensional constant vector, εt, t = 1, · · · , n, are
i.i.d. with

E(εt|Ft)= 0d, cov(εt|Ft)=σ2Id

almost surely, where Ft = {(Yl−1, Xl) : l ≤ t}. The unknown
parameters that shall be estimated are β, A j(·), α and σ2.
Furthermore, β and A j(·), j = 1, · · · , p, are sparse.

The conditions (1.3) in the definition are identification
conditions, which directly come from the single index vary co-
efficient linear models. However, unlike the standard models,

7
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the conditions, (1.3), do not guarantee (1.2) is identifiable, see
Fan et al.(2003), that is why we impose another identification
condition, the first column of A`(·) is 0d, in the definition to
make (1.2) identifiable.

The SSIVARM is the model we are going to address in
this paper, it has the characteristics of the varying-coefficient
models, which have proved to be remarkably useful in the
interpretation of dynamic pattern of the relationship between
the response and the covariates, see Fan and Zhang (1999),
Sun et al.(2014), Li et al.(2015), Huang et al.(2016) and the
reference therein, and single index models, which are effi-
cient approaches to ameliorate the "curse of dimensionality"
in nonparametric modelling, see Yu and Ruppert (2002), Xia
(2008), Guo et al.(2016), and the references therein. Moreover,
compared with the typical VAR model, model (1.2) substan-
tially enlarges the model capacity. Therefore, as model (1.2)
allows the sparsity, the main work in our thesis is to design an
efficient algorithm to consistently identify the true sub-model
of (1.2) and automatically estimate it.

The thesis is organised as follows. In Chapter 2 we review
the existing literature related to the proposed methodology
such as penalised least squares and penalised likelihood, Gen-
eralised Information Criterion (GIC) for tuning parameter
selection, local polynomial modelling and varying coefficient
models. Chapter 3 introduces the single index vector autore-

8
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gressive (SIVAR) model and explores an iterative approach
for the estimation of the model. In Chapter 4, we propose a
model selection and shrinkage method for the SSIVAR model.
Chapter 5 discusses the choice of the bandwidth (smooth-
ing parameter) and tuning parameters (complex parameters).
Apart from the simulations conducted in previous chapters, in
Chapter 6, we use another simulation study to demonstrate
the goodness of the proposed approaches in model selection
and estimation when the hyper-parameters have been prop-
erly selected. In Chapter 7, we apply the SSIVARM along
with the proposed penalised iterative procedures to analyse
an American housing data set. This real data analysis shall
specify how the federal-level data impact the housing market
in each city included in the dataset and capture the dynamic
pattern of the impacts. Finally, we will concisely conclude
the main results of our studies and give the potential future
extensions in Chapter 8.

9
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2
LITERATURE REVIEW

In this chapter, the literature we are going to review is in
four diverse areas. The first part presented in Section 2.1 is
the penalised least squares with smoothly clipped absolute
deviation (SCAD) penalty, which is the key technique we will
use in the thesis to select the true sub-model in SSIVAM.
Secondly, as appropriately determining how to select the tun-
ing parameters (regularization parameters) involved in the
SCAD penalty is of significance to consistently search the true
model, in Section 2.2, we refer to Zhang, Li and Tsai (2010)
and Fan and Tang (2013) for their research on generalised
information criterion (GIC). Thirdly, in Section 2.3, we will
provide a brief review of local polynomial modelling, which is
the fundamental technique for smoothing the SSIVAM in our
thesis. At last, we will review some previous work on varying

10



CHAPTER 2. LITERATURE REVIEW

coefficient models in Section 2.4.

2.1 Penalised approaches

In this thesis, the penalised least squares are the main tech-
nique we employ to select the model. We add the SCAD
penalty functions on our square loss functions to do the group
selection to the varying coefficients and component-wise se-
lection to the constant parameters, and then, based on the
idea of local quadratic approximation (see Fan and Li (2001)),
we solve the penalised least squares to obtain the resulting
sparse estimates. Hence, in this section, we are going to review
penalised least squares, penalised likelihood, the smoothly
clipped absolute deviation (SCAD) penalty and the algorithm
of local quadratic approximation. We begin with the linear
regression model

y=Xβ+ε
where y= (y1, . . . , yn)> is an n×1 response vector, X= (x1, · · · ,xd)>

is an n×d design matrix of random variable, β= (β1, . . . ,βd)>

is a d ×1 vector of parameters to be estimated and ε is an
n×1 vector of random noise.

We assume the penalised least squares (PLS) as follows,

min
β∈Rd

{ 1
2n

||y−Xβ||22+
d∑

k=1
pλ(|βk|)

}
, (2.1)

11
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where pλ(·) is the penalty function allowed to depend on the
regularisation parameter λ ≥ 0, which controls the model
complexity.

To have clearer insights on the variable selection proce-
dures, we consider a specific case of a canonical linear model
with a rescaled orthonormal design matrix, i.e., X>X = nId.
With this assumption, the penalised least squares (2.1) can
be written in the following minimisation problem:

min
β

{ 1
2n

||y−Xβ̂||22+
1
2
||β̂−β||22+

d∑
k=1

pλ(|βk|)
}
. (2.2)

where β̂= (X>X)−1X>y=n−1X>y is the ordinary least squares
estimator. As (2.2) can be minimised in a component-wise
manner, for the brevity purposes, we consider the minimisa-
tion problem of a univariate penalise least squares as follows,

1
2

(z−θ)2+ pλ(|θ|), (2.3)

with respect to the parameter θ, where z is the univariate
ordinary least squares estimate. Then, we can obtain the
resulting estimator θ̂ by solving

θ̂ = argmin
θ

{1
2

(z−θ)2+ pλ(|θ|)
}
. (2.4)

conforming to the rule given by Antoniadis and Fan (2001),
the penalty pλ(·) in (2.4) can be regarded as a ideal penalty

12
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function if the corresponding resulting estimate θ̂ can meet
the following three requirement:

• Sparsity. If the true parameter |θ| is small, the corre-
sponding resulting estimate will be θ̂ = 0.

• Unbiasedness. When the unknown parameter |θ| is suf-
ficiently large, the resulting estimate gives θ = z with
high probability.

• Continuity. The resulting estimate θ̂ is continuous.

Fan and Li (2001) also conclude that a penalty function
holds the sparsity conditions must be singular at the origin.

Based on these lines, we can evaluate some of the most
commonly used penalty functions. As a member in the class
of Lq penalties, L0 penalty

pλ(z)= λ2

2
I(z 6= 0)

yields the hard thresholding estimator θ̂ = zI(|z| >λ). Figure
2.1(a) and Figure 2.2(a) visually depicts L0 penalty. It can
be noticed that the penalised estimator does not satisfy the
continuity. Another notable penalty is the L1 penalty (LASSO)
(Tibshirani, 1996) pλ(z)=λ|z|, which leads to the soft thresh-
olding estimator

θ̂ = sgn(z)(|z|−λ)+.

13
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We present the thresholding estimate in Figure 2.1(b), from
which we can visually find that the resulting estimates consis-
tently produce biased solutions. Additionally, the convex Lp

penalties with p > 1 are not singular around the origin, and
hence they fail to fulfil the condition of sparsity. Thus, None
of the Lq penalties can satisfy all three conditions of an ideal
penalty at the same time.

Figure 2.1: The penalty functions
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NOTE: Plot of penalty functions of L0 penalty, L1 penalty and SCAD

penalty.
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One successful attempt on constructing an ideal penalty
is the smoothly clipped absolute deviation (SCAD) penalty,
proposed by Fan and Li (2001), whose derivative is given by

p′
λ(θ)=λ{I(θ ≤λ)+ (aλ−θ)+

(a−1)λ
I(θ >λ)},

for some a > 2 and θ > 0,

where pλ(0) = 0 and a is suggested to be 3.7. It fulfils the
aforementioned three conditions. We gives more insights into
this statement by Figure 2.1(c) and 2.2(c).
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Figure 2.2: The thresholding functions

NOTE: Plot of thresholding function for (a) the hard, (b) the soft and

(c) the SCAD. The plots are quoted from the Figure 2 in Fan and

Li (2001)

Fan and Li (2001) extended the penalised least squares to
likelihood-based models. For generalised linear models, statis-
tical inferences are based on underlying likelihood functions.
The penalised maximum likelihood estimator can be used to
identify significant variables. Assume that the data (xi,Yi)
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are collected independently. Given that xi,Yi has a density
f i(g(x>

i β), yi), where g is a link function has been known. De-
note the conditional log-likelihood of yi by łi = log f i. A form of
the penalised likelihood is

n∑
i=1

łi(g(x>
i β), yi)−n

d∑
j=1

pλ(|β j|), (2.5)

with respect to β. Maximising the penalised likelihood func-
tion is equivalent to minimising.

−
n∑

i=1
łi(g(x>

i β), yi)+n
d∑

j=1
pλ(|β j|). (2.6)

with respect to β. To get the penalised maximum likelihood
estimator of β, we minimise (2.6) with respect to β for some
regularisation parameter λ.

Furthermore, Fan and Li (2001) established the asymp-
totic properties to show that the resulting estimator of SCAD
penalty performs as well as the oracle estimator with proba-
bility tending to 1. Here, the oracle estimator represents the
estimator obtained from the correct sub-model.

Although the SCAD penalty has many appealing proper-
ties, solving either the SCAD-type penalised least squares
or SCAD-type maximum likelihood is challenging, because
the target function is a high-dimensional non-concave func-
tion with singularities at the origin. Accordingly, to solve the
minimisation problem, Fan and Li (2001) developed a unified
algorithm via local quadratic approximations (LQA).

17
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Giving an initial value β0 = (β0
1, . . . ,β0

d)> is close to the
minimiser of (2.1) and we set β j = 0 if β0

j close enough to 0,
then the penalty function pλ(·) can be locally approximated
by a quadratic function as follows

pλ(|β j|)≈ pλ(|β0
j |)+

1
2

p′
λ(|β0

j |)
|β0

j |
[β2

j − (β0
j )

2], for β j ≈β0
j . (2.7)

The derivative form of this approximation is given as

[pλ(|β j|)]′ = p′
λ(|β j|)sgn(β)≈ {p′

λ(|β0
j |)/|β0

j |}β j.

With this quadratic approximation (2.7), the penalised
least squares problem (2.1) is reduced to a quadratic optimi-
sation problem and admits a closed-form solution. Note that
one drawback of LQA is that once a coefficient is shrunken to
zero in any iteration, it will remain zero. To overcome this po-
tential issue, Zou and Li (2008) developed a unified algorithm
based on the local linear approximation (LLA):

pλ(|β j|)≈ pλ(|β0
j |)+ p′

λ(|β0
j |)[|β j|− |β0

j |], for β j ≈β0
j .

Zou and Li (2008) show that in the algorithm of LLA, it is not
necessary to delete any small parameters or select the size of
perturbation. Moreover, the LLA can naturally yield sparse
estimates through continuous penalisation. Similar to LQA,
the LLA algorithm can also largely reduce the computation
burden.
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2.2 Tuning parameter selection by
Generalised information
criterion

In employing the nonconcave penalised likelihood in regres-
sion analysis, we face two challenges. The first one is to calcu-
late the nonconcave penalised likelihood estimate. This hurdle
has been carefully studied in much recent literature, which
leads to some efficient algorithms like LQA and LLA. The
selection of the regularisation parameter becomes the second
challenge, as the performance of penalised likelihood/least
squares relies significantly on the choice of a regularisation
parameter, which controls the model complexity. In this sec-
tion, we are going to review some commonly used metrics,
particularly the generalised information criterion proposed
by Fan and Tang (2013).

In the literature, the criteria of variable selection are usu-
ally classified into two categories: the efficient one and the
consistent one. Specifically, the efficient criterion, for exam-
ple, the Akaike information criterion (AIC) and the gener-
alised cross-validation (GCV), identifies the model so that
its average squared error is asymptotically equivalent to the
minimum offered by the candidate models when the true
sub-model is approximated by the candidate models; a con-

19



CHAPTER 2. LITERATURE REVIEW

sistent criterion select the true sub-model with probability
approaching one in large samples when a set of candidate
models contains the true sub-model. One typical example
of consistent criterion is the Bayesian information criterion
(BIC).

Wang, et al.. (2007) found that for penalised least squares
with the smoothly clipped absolute deviation (SCAD) penalty,
two efficient criteria, GCV and AIC, perform similarly in de-
termining the tuning parameters, but the resulting model
selected by either of them tends to having a higher variance,
namely, it leads to overfitting results. However, Wang, et al..
(2007) also indicated that BIC is able to identify the finite-
dimensional true linear and partial linear models consistently.
Zhang et al.(2010) extended the study of regularisation pa-
rameter selection to penalised likelihood-based models with
a nonconcave penalised function. They found that the BIC
selector is still able to select the true model consistently, and
the resulting estimator keeps the oracle property in the ter-
minology of Fan and Li (2001).

Although Zhang et al.(2010) showed that a modified BIC
can work successfully in the diverging dimensionality, when
the dimension of the variable space is larger than the sample
size, it may fail to identify the true sub-model consistently. To
deal with this issue, the study of Fan and Tang (2013) allows
the dimensionality d increase exponentially with the sample

20



CHAPTER 2. LITERATURE REVIEW

size n and developed their generalised information criterion
(GIC) to select the tuning parameter in high dimensional
penalised approach.

To gain more insights on GIC, we adopt Nishii’s (1984)
generalised information criterion (GIC) to choose regularisa-
tion parameters in nonconcave penalised likelihood functions.
This criterion not only contains AIC and BIC as its special
cases but also connects the classical variable selection criteria
and the nonconcave penalised likelihood methods. In Nishii
(1984), a generalised information criterion can be constructed
as follows:

measure of model fitting+an×measure of model complexity,
(2.8)

where an is some sequence that controls the regularisation
on model complexity, and thus the choice of an is of impor-
tance for searching the optimal tuning parameter. Measure
of model fitting assess how predictive our model is. Common
choices of it are the mean squared error and logistic loss.
The measure of model complexity controls the complexity of
the model, which helps us to shrink the trivial variables and
avoid overfitting. In AIC and BIC, an in criterion (2.8) is 2 and
log(n), respectively. Fan and Tang (2013) proposed a range of
an for consistent and effective model selection and provided a
uniform choice for practical implementation, which is given
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as
an = log{log(n)}log(d)

in GIC (2.8) .

2.3 Framework of local polynomial
modelling

In this section, we will review the framework of local polyno-
mial modelling. This non-parametric approach is useful for
getting a clear description of an unknown function, which
could indict whether a parametric choice is appropriate or
not. In this section, we briefly summarise the methodology
for local polynomial regression by reviewing Fan and Gijbels
(1996).

Firstly, we would like to introduce an example to show the
limitations of global polynomial regression, which motivates
us to explore a better approach to fit the data. We use the
data from Schmidt et al.(1981). Two variables are included in
the data set: the explanatory variable X represents the time
(in milliseconds) after a simulated impact and the response Y
stands for head acceleration. Figure 2.3 gives the scatter plot
diagram of this dataset.

Then, we apply the linear, quadratic, cubic and quartic
global polynomial regressions respectively to fit this data, the

22



CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Scatter plot for motor data
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illustrative estimated results are visually reported in Figure
2.4.

It can be seen visually that, compared with linear regres-
sion, the quadratic, cubic or quartic fit may reduce the mod-
elling bias to some extent, but leads to an estimator with
larger variance. In addition, the polynomial models also suf-
fer from the drawback that the remote individual observations
can impact largely on the curve.

There are various related methods for fixing the prob-
lems arising from polynomial modellings such as splines ap-
proaches and orthogonal series modelling. However, in this
chapter and the entire thesis, we shall focus our attention on
local polynomial modelling.
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Figure 2.4: Example of global polynomial models
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Various local modeling regression estimators were studied
in diverse statistical context. For example, one may consider
using a weighted average of the response variables,

m̂h(x)=
∑n

i=1 Kh(X i − x)Yi∑n
i=1 Kh(X i − x)

, (2.9)

proposed by Nadaraya (1964) and Watson (1964). Kh(·) =
K(·/h)/h is a probability density function with a kernel func-
tion K(·) and the bandwidth h, which is the smooth parameter.
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There is another example, the Gasser-Muller estimator which
originally proposed by Gasser and Muller (1984). This estima-
tor is defined as follows

m̂h(x)=∑n
i=1

∫ si
si−1 Kh(u− x)Yidu,

with s i = (X i − X i+1)/2, (2.10)

where X0 =−∞ and Xn+1 =+∞.
Both (2.9) and (2.10) can be regarded as a local constant

approximations for m(·). Indeed, by considering an arbitrary
local least squares regression

θ̂ = argminθ

n∑
i=1

(Yi −θ)2wi =
n∑

i=1
wiYi/

n∑
i=1

wi. (2.11)

It is easy to see that (2.9) and (2.10) are special cases with wi =
Kh(X i − x) and wi =

∫ si
si−1 Kh(u− x)du respectively. However,

local linear regression outperforms local constant regression
in most cases. As explained by Fan (1992), this is because
when going from a local constant estimation to a local linear
estimation, the variance does not increase while the bias
decreases. Therefore, the generalisation performance of local
linear smoothing is better than the local constant smoothing.
Additionally, Fan and Gijbels (1996) state that local linear
regression adapts well to random and fixed designs, as well
as highly clustered and nearly uniform designs.

To provide more insights into local linear regression, we
introduce an independently and identically distributed bivari-
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ate samples {(X1,Y1), · · · , (Xn,Yn)} form a population (X ,Y ).
Assume that the data is generated from the model

Y = m(X )+σ(X )ε, (2.12)

where E(ε)= 0,Var(ε)= 1, and ε is independent of X . We would
like to estimate the unknown regression function m(x0) =
E(Y |X = x0) and its derivatives ṁ(x0), m̈(x0), · · · , m(p)(x0). As-
sume that the (p+1)-th derivative of m(·) exists at the point
x0.

Consider a Taylor expansion for the unknown function
m(x) for x in a neighbourhood of x0

m(x)≈m(x0)+ ṁ(x0)(x− x0)+ m̈(x0)
2!

(x− x0)2

+·· ·+ m(p)(x0)
p!

(x− x0)p. (2.13)

We can consider m(x0), ṁ(x0), · · · ,m(p)(x0) as unknown para-
meters to be estimated. From this point of view, we use the
notation:

m( j)(x0)
j!

=β j, for j = 0,1, · · · , p,

which leads us to rewrite (2.13) as

m(x)≈β0+β1(x− x0)+β2(x− x0)2+·· ·+βp(x− x0)p. (2.14)

To obtain the estimators of unknown parameters, which are
denoted by β̂0, β̂1, · · · , β̂p, we solve a minimisation problem of
a locally weighted least squares regression
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n∑
i=1

{
Yi −

p∑
j=0
β j(X i − x0) j

}2

Kh(X i − x0), (2.15)

with respect to β j, j = 0, . . . , p, where h is the bandwidth, and
Kh(·) = K(·/h)/h is a kernel function (a symmetric probabil-
ity density function) allocating weights to every observation.
Based on the estimates β̂ j, we can obtain the estimator of
function m(x) and its derivatives m(v)(x0) by m̂v(x0)= v!β̂v for
each v = 0, · · · , p. Following the notations used in Fan and Gij-
bels (1996), the locally weighted least squares problem (2.15)
can be rewritten in the matrix notation as

min
β

(y−Xβ)>W(y−Xβ),

where

X=


1 (X1− x0) · · · (X1− x0)p

... ... . . . ...
1 (Xn− x0) · · · (Xn− x0)p

 ,

y= (Y1, · · · ,Yn)>,

β= (β0, · · · ,βp)>,

and
W= diag{Kh(X1− x0), . . . ,Kh(Xn− x0)}.

It follows from least squares theory that
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β̂= (X>WX)−1X>Wy. (2.16)

By solving the local polynomial estimators via (2.16), we
are going to discuss how to evaluate the performance of the
estimators. As the mean squared error (MSE) represents
the sum of conditional bias and conditional variance, it can
be a qualified metric to measure the goodness of estimates.
Additionally determined by both the conditional bias and
conditional variance of an estimator, mean integrated squared
error (MISE) are always introduced as a metric to examine
the fitting of estimators for unknown curves. Therefore, it is
necessary to gain more insights on bias and variance. The
conditional expectation and variance of β̂ is given by

E(β̂|X)= (X>WX)−1X>Wm

=β+ (X>WX)−1X>Wr

And
Var(β̂|X)= (X>WX)−1(X>ΣX)(X>WX)−1

where m = {m(X1), · · · ,m(Xn)}>,β= {m(x0), · · · ,m(p)(x0)/p!}>,r=
m−Xβ, the vector of residuals of the local polynomial approxi-
mation, and Σ= diag{K2

h(X1−x0)σ2(X1), . . . ,K2
h(Xn−x0)σ2(Xn)}.

Nevertheless, we note that these equations cannot be directly
used because of the unknown quantities r and σ. Therefore
a first order asymptotic expansion of the bias and variance
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of m̂v(x0) = v!β̂v serves as an approximation and is given in
the theorem below. The theorem is directly quoted from Fan
and Gijbels (1996) but was originally proven by Ruppert and
Wand (1994). We use the following notation:

u j =
∫

u jK(u)du, v j =
∫

u jK2(u)du,

S = (u j+l)0≤ j,l≤p, S̃ = (u j+l+1)0 ≤ j, l ≤ p,

S∗ = (u j+l+1)0 ≤ j, l ≤ p, cp = (µp+1, · · · ,µ2p+1)>,

c̃p = (µp+2, · · · ,µ2p+2)>, ev+1 = (0, · · · ,0,1,0, · · · ,0)>,

where ev+1 has a 1 on the (v+1) -th position. We also use
Op(1) to represent a random quantity that is tending to zero
in probability.

Theorem 1. Assume that f (x0)> 0 and that f (·),m(p+1)(·) and
σ2(·) are continuous in a neighborhood of x0. Further assume
that h → 0 and nh → ∞. Then the asymptotic conditional
variance of m̂v(x0) is given by

Var(m̂v(x0)|X)= e>v+1S−1S∗S−1ev+1
v!2σ2(x0)

f (x0)nh1+2v

+ op

(
1

nh1+2v

)
. (2.17)

The asymptotic conditional bias for p−v odd is given by

Bias(m̂v(x0)|X)= e>v+1S−1cp
v!

(p+1)!
m(p+1)(x0)hp+1−v

+ op(hp+1−v). (2.18)
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Further, for p−v even the asymptotic conditional bias is

Bias(m̂v(x0)|X)= e>v+1S−1 c̃p
v!

(p+1)!
{m(p+2)(x0)

+ (p+2)m(p+1)(x0)
f ′(x0)
f (x0)

}hp+2−v

+ op(hp+2−v) (2.19)

provided that f ′(·) and m(p+2)(·) are continuous in a neighbor-
hood of x0 and nh3 →∞.

From the above theorem, we notice that there is a theoret-
ical difference between odd order fits and even order fits with
respect to the asymptotic bias. In fact, Ruppert and Wand
(1994) proved that odd order fits are always more desirable
over even order fits.

2.4 Varying coefficient models

The varying coefficient model is proven to be a very impor-
tant generalisation of the linear model whose coefficients are
allowed to be functions with respect to some random vari-
able. Equipped with good interpretability, this model is quite
useful in exploring the dynamic pattern in many scientific
areas, such as economics, finance, politics, epidemiology, med-
ical science, ecology and so on. In past decades, the varying
coefficient models have experienced deep and exciting devel-
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opments on methodological, theoretical and applied sides. In
this section, we give a concise review of the major methodology
of the varying coefficient model.

The varying coefficient models were originally introduced
by Cleveland, Grosse and Shyu (1991) to extend the applica-
tions of local regression techniques from a one dimensional
to multi-dimensional setting. The varying coefficient models
assume the form of multi-variate regression function as

m(Z,X)=X>g(Z), (2.20)

for unknown functional coefficient g(Z) = (g1(Z), . . . , gp(Z))>

and a given scalar Z, where m(Z,X)= E(y|Z,X) is the regres-
sion function.

There are some different approaches to estimate the vec-
tor of functional coefficients g(·) in model (2.20). For example,
smoothing spline, see Hastie and Tibshirani (1993) and poly-
nomial spline, proposed by Huang et al.(2002, 2004). Because
the varying coefficient models are locally linear models, the
kernel smoothing has been shown as one of the best methods,
see Wu et al.(1998) and Fan and Zhang (1999). In the follow-
ing, we are going to outline the kernel smoothing on varying
coefficient model.

Assume that we have the function

Y =
d∑

k=1
gk(Z)Xk +ε, (2.21)
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for the univariate index variables Z, covariates X1, · · · , Xd

and response variable Y with

E(ε|Z, X1, · · · , Xd)= 0, Var(ε|Z, X1, · · · , Xd)=σ2(Z).

And we note that it is possible for us to consider an intercept
by setting X1 ≡ 1. Now, we can directly fit them by the kernel
regression locally around the index Z.

Suppose that we have a sample (zi, xi1, . . . , xid, yi), i = 1, . . . ,n
from (Z, X1, . . . , Xd,Y ) in model (2.21), then following the local
linear smoothing in Fan and Zhang (1999), for each given z,
we locally approximate the function by Taylor expansion that
gives

gk(Zi)≈ ak +bk(Zi − z),

for Zi in a neighbourhood of z. This leads to the local estima-
tion procedure with the smoothing parameter (bandwidth) h
as follows

n∑
i=1

{
yi −

d∑
k=1

[ak +bk(Zi − z)]xik

}2

Kh(Zi − z), (2.22)

The locally weighted least squares (2.22) can be rewritten as

min
θ

(y−Xθ)>W(y−Xθ)

where y= (y1, . . . , yn)> and

θ = (a1,b1, · · · ,ad,bd)>,

W = diag{Kh(Z1− z), · · · ,Kh(Zn− z)},
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X=


x11 x11(Z1− z) · · · x1d x1p(Z1− z)
... ... . . . ... ...

xn1 xn1(Zn− z) · · · xnd xnp(Zn− z)

 .

The solution is given by the least squares theory that

θ̂ = (X>WX)−1X>Wy.

The estimator θ̂(·) is a local linear estimator of θ(·). The esti-
mate of coefficient function gk(z) is

ĝk(z)= e>
2k−1,2d(X>WX)−1X>Wy (2.23)

where e2k−1,2d is the unit vector of with length 2d and the
2k−1 component being 1.

In classic varying coefficient models, the index variable Z
is known. In order to alleviate the "curse of dimensionality",
we introduce the single index model (Hardle and Stoker, 1990)
to incorporate with the varying coefficient models. The single
index models can be expressed by the following basic form

Y = g(X>β,ε), (2.24)

where X is a d dimensional covariate, Y is the response
variable, q is an integer smaller than the dimension d and
ε is the random error. We remark that in the model (2.24),
the known index Z is replaced by the linear combination of
variables and index parameters β. By assuming the index
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is unknown, Fan et al.(2003) explored the adaptive varying
coefficient model.

Specifically, suppose that Y is a random variable and X is
a d×1 random vector. The adaptive varying coefficient linear
model in Fan et al.(2003) is defined to be the model structure
as follows

m(x)=
d∑

k=0
fk(β>x)xk, (2.25)

where x= (x1 · · ·xd)>, x0 = 1, β ∈Rd is the vector of unknown in-
dex parameters and the varying coefficients f0(·), · · · , fd(·) are
unknown functions. We get the estimators of coefficient func-
tions fk(·) and index parameters β by minimising E{G(X)−
g(X)}2. We note that once β has been properly fitted, the model
(2.25) actually becomes a typical varying coefficient model
(2.21) which can be smoothed via the foregoing kernel smooth-
ing. In the case that β is unknown, Fan et al.(2003) proposed
a hybrid backfitting algorithm to estimate the model, which
is implemented by an alternating iteration between fitting
the index through a one-step scheme and fitting functional
coefficients through local linear regression.
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3
ESTIMATION OF SINGLE-INDEX

VECTOR AUTOREGRESSIVE MODEL

In this chapter, we first specify the single-index vector au-
toregressive models (SIVARM) and then explore an iterative
method to simultaneously work out the estimators of the
index parameters and the local linear estimators of the func-
tional coefficients. By considering the computational cost, we
thereby develop an upgraded algorithm to estimate the model
more efficiently.

Developing these algorithms has two purposes. Firstly, it
establishes efficient penalty-free approaches to fit the SIVARM,
which serves as a useful stepping stone for the following model
selection and estimation of SIVARM in Chapter 4. Secondly,
we will employ these penalty-free iterative procedures to es-
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timate the true sub-model directly to obtain the oracle esti-
mates, which will be used as a benchmark to evaluate the
estimation accuracy of our proposed penalised approach.

Additionally, a simulation study is used in this chapter to
demonstrate the performance of these estimators.

3.1 Model description

Let yt, t = 1, · · · , n, be a d-dimensional stationary time series,
and Xt, t = 1, · · · , n, be identically independent distributed
Xt is a d× q matrix. The single-index vector autoregressive
model is defined as

yt =
p∑

j=1
A j(y>

t−`β)yt− j +Xtα+εt, (3.1)

where A j(·), j = 1, . . . , p, is the d × d matrix of varying coef-
ficients, and the first column of A`(·), 1 ≤ ` ≤ p, is 0d, β =
(β1, · · · , βd)> ∈Rd and satisfies

‖β‖ = 1, β1 > 0, (3.2)

α ∈Rq is the constant coefficients of Xt and the random noise
εt, t = 1, · · · , n, are identically independent distributed with

E(εt|Ft)= 0d, cov(εt|Ft)=σ2Id,

where Ft = {(Yl−1, Xl) : l ≤ t}. We will estimate the unknown
parameters β, A j(·), α and σ2.
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We remark that, for the identifiability purposes, in exactly
the same way in the Section 1.3, the first column of A`(·) is
set to be 0d.

3.2 Methodology

In this section, we present an estimation procedure based on
the kernel smoothing for the SIVARM. In order to illustrate
the estimation procedure, we firstly simplify the model by
ignoring the item Xtα. Thus, the model is written as

yt =
p∑

j=1
A j(y>

t−`β)yt− j +εt. (3.3)

It is worth noting that once an estimate β̂ of β is given, model
(3.3) becomes a varying coefficient vector auto-regressive
model with known index y>

t−`β̂. In this situation, estimation
of the matrix of coefficient function, A j(·), can be achieved by
using local linear regression, which is a classical methodology
associated with fitting typical varying coefficient models . Ap-
proximate A j(y>

t−`β̂), j = 0, · · · , q, locally by a Taylor expansion

A j(y>
t−`β̂)≈A j(z)+ Ȧ j(z)(y>

t−`β̂− z),

for y>
t−`β̂ in a neighbourhood of a given grid point z. By min-

imising

n∑
t=p+1

∥∥∥∥∥yt−
p∑

j=1
[A j(z)+ Ȧ j(z)(y>

t−`β̂− z)]yt− j

∥∥∥∥∥
2

Kh(y>
t−`β̂− z)
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with respect to A j(z) and Ȧ j(z) for j = 0, · · · , p, it follows from
the least squares theory that

θ̂ = (X>WX)−1X>WY (3.4)

where θ̂ = (Â1(z), ˆ̇A1(z), · · · ,Âp(z), ˆ̇Ap(z)) ∈ Rd×2pd, W = diag{

Kh(y>
p+1−`β̂−z), · · · ,Kh(y>

n−`β̂−z)} is a (n−p)×(n−p) diagonal
matrix with Kh(·) = K(·/h)/h where K(·) is a kernel function
and h is a smoothing paramter,

X=


y>

p (y>
p+1−`β̂− z)y>

p · · · y>
1 (y>

p+1−`β̂− z)y>
1

... ... . . . ... ...
y>

n−1 (y>
n−`β̂− z)y>

n−1 · · · yn−p (y>
n−`β̂− z)y>

n−p

 ,

is a (n−p)×2pd matrix with yi = (y1, · · · , yd)> ∈Rd, i = 1, · · · ,n
and Y= (yp+1, · · · ,yn)> ∈R(n−p)×d.

With this in mind, the primary target now is to estimate
the index parameter β. Because of the complex relationship
between the response and covariates in the autoregressive
model, it is hard to work out an estimator of β directly. Hence
we need to develop an iterative computational algorithm.
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3.2.1 Iterative procedure for estimating the
single-index vector autoregressive
models

Let us go back to our SIVARM. For any given j, j = 1, · · · , p,
and k, k = 1, · · · , n−`, by the Taylor’s expansion,

A j(y>
i β)≈A j(y>

kβ)+ Ȧ j(y>
kβ)

[
(yi −yk)>β

]
,

when y>
i β is in a small neighbourhood of y>

kβ, where Ȧ j(·) is
the derivative of A j(·). Therefore we can approximate model
(3.1) by

yt ≈
p∑

j=1
{A j(y>

kβ)+ Ȧ j(y>
kβ)(y>

t−`β−y>
kβ)}yt− j +Xtα+εt. (3.5)

For concision purposes, we use the notation

B j,k = Ȧ j,k ∈Rd×d,

θk = (A1,k,B1,k, · · · ,Ap,k,Bp,k) ∈Rd×2pd,

Θ= (θ1, · · · ,θn−l) ∈Rd×2pd(n−l),

where A j(y>
kβ) and Ȧ j(y>

kβ) are denoted by A j,k and Ȧ j,k, res-
pectively.

By using approximation (3.5) together with the idea of
least squares, we can form the following local discrepancy loss
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function:

L(β,α,Θ)=
n−l∑
k=1

n∑
t=p+1

∥∥∥∥yt−
p∑

j=1

{
A j,k +B j,k

[
(yt−`−yk)>β

]}
yt− j

−Xtα

∥∥∥∥2

Kh((yt−`−yk)>β), (3.6)

where Kh(·)= K(·/h)/h is a probability density function with a
kernel function K(·) and the bandwidth h. Then, the estimator
β̂,Θ̂, and α̂ can be obtained by solving

(β̂,α̂,Θ̂)= argmin
β,α,Θ

L(β,α,Θ), (3.7)

subject to the constraints ‖β‖ = 1 and β1 > 0. A global mini-
mum of the local discrepancy function cannot be found ana-
lytically and thereby an iterative procedure is proposed for
implementation. We note that at each step, there exists a
closed form solution. The proposed iterative algorithm can be
broken down as follows:

Step 1. Choose initial value β0. Before the iterative pro-
cedure, a consistent initial value of β should be specified,
which is denoted by β0. The initial value β0 also satisfies the
constraints that β0

1 > 0 and ‖β0‖ = 1, where β0
1 is the first

component of β0.

Step 2. EstimateΘ,αwith β taking the initial estimated
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value. Set β̂=β0, we now estimate Θ,α by solving

(Θ̂,α̂)= argmin
Θ,α

L(Θ,α|β).

For each k, the estimators of θk,α can be obtained by min-
imising the following locally weighted function

L(Θ,α|β)=
n∑

t=p+1

∥∥∥yt−
p∑

j=1

{
A j,k +B j,k

[
(yt−`−yk)>β̂

]}
yt− j

−Xtα
∥∥∥2

Kh((yt−`−yk)>β̂). (3.8)

Then, we write (3.8) in a matrix notation

L(Θ,α|β)=
n∑

t=p+1

∥∥∥yt−Q>
t,kθk −Xtα

∥∥∥2
Kh((yt−`−yk)>β̂), (3.9)

with respect toΘ= (θ1, · · · ,θn−l) andα, where Qt,k = (y>
t−1,(y>

t−`β̂−
zk)y>

t−1, · · · ,y>
t−p, (y>

t−`β̂− zk)y>
t−p) with zk = y>

k β̂.

To fulfil the condition of identifiability that the first column
of A`(·) is 0d, instead of estimating the first column of A`(·)
in the estimation procedure, we let the elements of the first
column of A`(·) equal 0 directly, which leads to a reduction of
dimension of θk from d×2pd to d×(2pd−2). Correspondingly,
both of the first element of yt−` and (y>

t−`β̂−zk)yt−` of Qt,k need
to be eliminated in the estimation procedure, therefore, the
dimension of Qt,k reduces from 1×2pd to 1× (2pd−2).

To build a classical weighted least squares, we would like to
transform (3.6) into the function as follows:

L(γk|β)= ∥∥yt−Xt,kγk

∥∥2 Kh((yt−`−yk)>β̂), (3.10)
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with respect to γk = [θk,α], where Xt,k = [Qt,k,Xt], Γ= (γ1, · · · ,
γn−l).

However, the augmented matrix γk = [θk,α] cannot be in-
tegrated by θk ∈ Rd×(2pd−2),α ∈ Rq×1 directly. Analogically, a
befitting Xt,k cannot be directly merged by Qt,k ∈ R1×(2pd−2)

and Xt ∈ Rd×q. Therefore, we need to do some matrix trans-
formations to obtain the proper augmented matrices γk and
Xt,k.

Let a jı k and b jı k be the (ı, ) -th element of A j,k and B j,k

respectively. We transfer matrix θk = (A1,k,B1,k, · · · ,Ap,k,Bp,k)
to a vector

θ
†
k = (a111k, · · · ,a1ddk,b111k, · · · ,b1ddk, · · · ,al12k,

· · · ,alddk,bl12k, · · · ,blddk, · · · ,ap11k, · · · ,apddk,

bp11k, · · · ,bpddk)> ∈R(2pdd−2d)×1.

Hence γk = [θ†
k,α]> is constructed to be a (2pd2−2d+ q)×1

vector.

The same method is used in Xt,k = [Qt,k,Xt]. Because the Xt is
a d× q matrix, we design a matrix based on Qt,k which has
the same number of rows as Xt:

Q†
t,k =


Qt,k 0 · · · 0

0 Qt,k · · · 0
... ... . . . ...
0 0 0 Qt,k

 ,
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where Q†
t,k ∈ Rd×(2pdd−2d). With this new Q†

t,k, we have an
augmented matrix Xt,k ∈ Rd×(2pdd−2d+q). Through the least
squares theory, the solution is given by

γ̂k = (
n∑

t=p+1
X>

t,kKh(·)Xt,k)−1(
n∑

t=p+1
X>

t,kKh(·)yt), (3.11)

and hence we obtain Γ̂= (γ̂1, · · · , γ̂n−l) ∈R(2pdd−2d+q)×(n−l).

Step 3. Estimate β given Γ. Using the estimators Γ̂ from
Step 2, we would like to find the estimator of β:

β̂= argmin
β

L(β|Γ̂)

which is equivalent to

β̂= argmin
β

n−l∑
k=1

n∑
t=p+1

∥∥∥yt−
p∑

j=1

{
Â j,k + B̂ j,k

[
(yt−`−yk)>β

]}
yt− j

−Xtα̂
∥∥∥2

Kh((yt−`−yk)>β̂), (3.12)

We note that only β in the least squares part of the loss
function is the parameter to be estimated, the β̂ appearing
in the kernel function is the estimator of β we used in Step
2. For the sake of distinguishing the two βs, we use βnew and
βold to rewrite the approximation:

β̂new = argmin
βnew

n−l∑
k=1

n∑
t=p+1

∥∥∥yt−
p∑

j=1

{
Â j,k + B̂ j,k

[
(yt−`−yk)>βnew

]}
×yt− j −Xtα̂

∥∥∥2
Kh((yt−`−yk)>β̂old), (3.13)
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To obtain the estimator βnew, we shall minimise the following
function:

L(β|Γ̂) =
n−l∑
k=1

n∑
t=p+1

{
yt−

p∑
j=1

Â j,kyt− j +
p∑

j=1
B̂ j,kyt− j(yt−`−yk)>

×βnew−Xtα̂
}2

Kh((yt−`−yk)>β̂old). (3.14)

To obtain the closed form solution, we rewrite the minimisa-
tion problem (3.14) in matrix notation:

L(β|Γ̂)= argmin
βnew

∥∥ct,k −Mt,kβnew

∥∥2 Kh((yt−`−yk)>β̂old),

(3.15)
where:

ct,k = yt−
p∑

j=1
Â j,kyt− j −Xtα̂ ∈Rd×1,

Mt,k =
p∑

j=1
B̂ j,kyt− j(yt−`−yk)> ∈Rd×d.

Following the least squares theory, the solution can be ob-
tained by :

β̂new =
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)Mt,k

)−1

×
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)ct,k

)
. (3.16)

Then, to satisfy the identifiability conditions that ‖β‖ = 1 and
β1 > 0, we define β̂new = β̂new/‖β̂new‖ if the first component of
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β̂new is positive, otherwise, β̂new =−β̂new/‖β̂new‖. We update
the initial value β0 in Step 2 to βnew, and iterate between
Step 2 and Step 3 until convergence.

3.2.2 Computationally efficient estimation
method

In Section 3.2.1, we proposed an iterative estimation method
to effectively fit the SIVARM. However, we notice that with
the increase of the dimension d, the computational cost of the
previous algorithm increases rapidly, and hence care must be
taken from a computational point of view to reduce this cost.

By recalling the previous estimation approach, we note
that for the sake of applying local weighted least square to
simultaneously estimate varying coefficients θk and the pa-
rameter α given initial value of β, the vector Qt,k ∈R1×(2pd−2)

is transformed to a matrix with largely increased dimensions:

Q†
t,k =


Qt,k 0 · · · 0

0 Qt,k · · · 0
... ... . . . ...
0 0 0 Qt,k

 ∈Rd×(2pdd−2d).

Obviously, it leads to a huge computational cost.
Therefore, in this section, we will take the challenge to

explore a more efficient estimation approach. Additionally, To
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verify the efficiency of this method, a comparison between the
two estimation methods will be provided in Section 4.2.2.

Let cm, j(·),m = 1, · · · ,d be the m -th row of the matrix A j(·),
yt = (yt,1, · · · , yt,d)>, Xt = (xt,1, · · · ,xt,d)>, with xt,m ∈ R1×q,m =
1, · · · ,d and εt = (εt,1, · · · ,εt,d), t = 1, · · · , n, be i.i.d. with

E(εt|Ft)= 0d cov(εt|Ft)=σ2Id,

where Ft = {(Yl−1, Xl) : l ≤ t}. We rewrite the model (3.1) by
yt,1

yt,2
...

yt,d

=


∑p

j=1 c1, j(y>
t−`β)yt− j∑p

j=1 c2, j(y>
t−`β)yt− j

...∑p
j=1 cd, j(y>

t−`β)yt− j

+


xt,1α

xt,2α
...

xt,dα

+


εt,1

εt,2
...
εt,d

 . (3.17)

To avoid applying the complicated matrix transformation de-
scribed in Section 3.2.1, we approximate the parameter α by
α≈ 1/d

∑d
m=1αm, m = 1, . . . ,d, and thereby the d×1 vector Xtα

can been substituted by the approximation (xt,1α1, . . . ,xt,dαd)> ∈
Rd×1. Accordingly, the model (3.17) can be approximated as

yt,1

yt,2
...

yt,d

=


∑p

j=1 c1, j(y>
t−`β)yt− j∑p

j=1 c2, j(y>
t−`β)yt− j

...∑p
j=1 cd, j(y>

t−`β)yt− j

+


xt,1α1

xt,2α2
...

xt,dαd

+


εt,1

εt,2
...
εt,d

 . (3.18)

Hence, we can obtain the expression of yt,m, the m -th compo-
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nent of yt, as

yt,m =
p∑

j=1
cm, j(y>

t−`β)yt− j +xt,mαm+εt,m. (3.19)

For any given j, j = 1, · · · , p, and k, k = 1, · · · , n− `, by
applying Taylor’s expansion,

cm, j(y>
i β)≈ cm, j(y>

kβ)+ ċm, j(y>
kβ)

[
(yi −yk)>β

]
,

when y>
i β is in a small neighbourhood of y>

kβ, where ċm, j(·) is
the derivative of cm, j(·). Therefore we can approximate model
(3.19) by

yt,m ≈
p∑

j=1

{
cm, j(y>

kβ)+ ċm, j(y>
kβ)(y>

t−`β−y>
kβ)

}
yt− j+

xt,mαm+εt,m, (3.20)

For brevity purposes, we use the notation

dm, j,k = ċm, j,k,

θm,k = (cm,1,k,dm,1,k, · · · , cm,p,k, cm,p,k),

Θ= (
d∑

m=1
θm,1, · · · ,

d∑
m=1

θm,n−l),

where we denote cm, j(y>
kβ) and ċm, j(y>

kβ) by cm, j,k and ḋm, j,k

respectively.
Using approximation (3.20) together with the idea of least

squares, we can form the following local discrepancy loss
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function:

L(β,α,Θ)=
d∑

m=1

n−l∑
k=1

n∑
t=p+1

{
yt,m−

p∑
j=1

[
cm, j,k +dm, j,k(y>

t−`β−y>
kβ)

]
yt− j

−xt,mαm

}2
Kh((yt−`−yk)>β), (3.21)

where Kh(·)= K(·/h)/h, K(·) is a kernel function, h is a band-
width.

The estimator β̂,Θ̂, and α̂ can be obtained by solving

(β̂,α̂,Θ̂)= argmin
β,α,Θ

L(β,α,Θ) (3.22)

subject to the constraints ‖β‖ = 1 and β1 > 0. As with the
previous estimation method, the global minimum of the local
discrepancy function cannot be found analytically and there-
fore an iterative procedure is proposed for implementation
purposes, which is broken down as follows:

Step 1. Choose initial value β0. Before the iterative proce-
dure, an initial value of β should be specified, which is denoted
by β0. The initial value β0 needs to satisfy the constraints
β0

1 > 0 and ‖β0‖ = 1, where β0
1 is the first component of β0.

Step 2. EstimateΘ,αwith β taking the initial estimated
value. Set β̂=β0, we now estimate Θ,α by solving

(Θ̂,α̂)= argmin
Θ,α

L(β̂,Θ,α)
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For each k and m, we choose the estimator of θm,k,αm by
minimising

n∑
t=p+1

{
yt,m−

p∑
j=1

[
cm, j,k +dm, j,k(y>

t−`β̂−y>
k β̂)

]
yt− j

−xt,mαm

}2×Kh((yt−`−yk)>β̂). (3.23)

Rewriting the minimisation problem yields
n∑

t=p+1

∥∥∥yt,m−Qt,kθ
>
m,k −xt,mαm

∥∥∥2
Kh((yt−`−yk)>β̂), (3.24)

where Qt,k = (y>
t−1, (y>

t−`β̂−zk)y>
t−1, · · · ,y>

t−p, (y>
t−`β̂−zk)y>

t−p), in
which zk = y>

k β̂.

Analogically, the parameters in the model should satisfy the
constraints that ‖β‖ = 1,β1 > 0 and the first column of A`(·) is
0d. In exactly the same way, we set the elements of the first
column of A`(·) equal to 0, which leads to a reduction of dimen-
sion of θm,k from (2pd×1) to (2pd−2)×1. Correspondingly,
both of the first element of yt−` and (y>

t−`β̂− zk)yt−` of Qt,k

need to be eliminated in the estimation procedure, therefore,
the dimension of Qt,k reduces from 1×2pd to 1× (2pd−2).

To reduce more computational cost, we notice that we can
rewrite the single summation in the equation (3.24) in the
form of stacked vectors and matrices. This can be achieved by
defining the (n− p)×1 vector ym, the (n− p)×(2pd−2) matrix
Qk, the (n− p)×q matrix Xm and the (n− p)× (n− p) diagonal
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matrix Wk as follows:

ym = (y1,m, · · · , yn−p,m)>, Qk = (Q>
1,k, · · · ,Q>

n−p,k)>,

Xm = (x>
1,m, · · · ,x>

n−p,m)>,

Wk = diag
{
Kh((y1−`−yk)>β̂), · · · ,Kh((yn−p−`−yk)>β̂)

}
,

With these, equation (3.24) can be written in matrix notation
as:

(ym−Qkθ
>
m,k −Xmαm)>Wk(ym−Qkθ

>
m,k −Xmαm), (3.25)

To obtain the closed form solution, we rewrite the equation
(3.25) by:

γ̂m,k = argmin
γm,k

∥∥ym−Xm,kγm,k

∥∥2 Wk, (3.26)

where γm,k = [θ>
m,k,αm]> is a (2pd −2+ q)×1 vector, Xm,k =

[Qk,Xm] ∈R(n−p)×(2pd−2+q), Γ= (
∑d

m=1γm,1, · · · ,
∑d

m=1γm,n−l).

It follows the least square theory that

γ̂m,k = (X>
m,kWkXm,k)−1(X>

m,kWkym), (3.27)

and hence we obtain Γ̂= (
∑d

m=1 γ̂m,1, · · · ,
∑d

m=1 γ̂m,n−l).

Step 3. Estimate β given Γ. Using the estimators Γ̂ from
Step 1, we would like to find the estimator of β:

β̂= argmin
β

L(β, Γ̂)
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which is equivalent to minimising

n−l∑
k=1

n∑
t=p+1

∥∥∥∥∥yt−
p∑

j=1

{
Â j,k + B̂ j,k

[
(yt−`−yk)>β

]}
yt− j −Xtα̂

∥∥∥∥∥
2

×Kh((yt−`−yk)>β̂), (3.28)

This step is similar to step 3 of the previous algorithm, there-
fore, we can rewrite the equation (3.28) in matrix notation
as ∥∥ct,k −Mt,kβnew

∥∥2 Kh((yt−`−yk)>β̂old), (3.29)

where ct,k = yt −
∑p

j=1 Â j,kyt− j −Xtα̂ is a d ×1 vector, Mt,k =∑p
j=1 B̂ j,kyt− j(yt−`−yk)> ∈ Rd×d, βold is the estimator of β we

used in Step 1 and βnew is the parameter we need to estimate
here. Then we have the solution by :

β̂new =
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)Mt,k

)−1

×
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)ct,k

)
. (3.30)

At this point, in order to satisfy the identifiability condi-
tions ‖β‖ = 1 and β1 > 0, we define β̂new = −β̂new/‖β̂new‖ if
the first component of β̂new is negative, otherwise, let β̂new =
−β̂new/‖β̂new‖.

We then update the initial value β0 in Step 2 to βnew, and
continue Step 2 and Step 3 until L(β,α,Θ) differs insignifi-
cantly.
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3.3 Simulation study

In this section, we use a simulated example to illustrate the
performance of our methodology, evaluate the accuracy of
the proposed estimation approaches and compare the perfor-
mance of two estimators.

We now consider a data-generating model with q = 3, p = 2
and sample size n = 800, which is defined by

yt =A1(zt−l)yt−1+A2(zt−l)yt−2+Xtα+εt, (3.31)

where zt−l = y>
t−lβ, yt, t = 1, · · · ,800, is a d− dimensional sta-

tionary time series with 2 lags, Xt is a d×3 matrix generated
from d-dimensional Gaussian distribution, the εt are indepen-
dently generated from the normal distribution with E(εt|Ft)=
0d and cov(εt|Ft)=σ2Id, where Ft = {(Yl−1, Xl) : l ≤ t}. In our
example, we set:

l = 1, σ= 1
3

, d = 3, α= (1,2,2), β= (0.6,0.8,0)>,

A1(zt−l)=


0 0 0
0 0.9exp(−z2

t−l) 0
0 0 0.25(sin(πzt−l)−0.75)

 ,

A2(zt−l)=


0.33(cos(πzt−l)+0.5) 0 0

0.8exp(−z2
t−l) 0.75exp(−z2

t−l) 0
0 0 0

 ,
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where β is a d ×1 vector and both A1(zt−l) and A2(zt−l) are
d×d matrices. The first two predictors should be generated
independently from a normal distribution, and then we gen-
erate 100+n observations followed by the process (3.31). In
order to improve the accuracy of estimation, we will discard
the first 100 predictors and let yt, t = 1, · · · ,n be the remaining
predictors we have. For each case, we conduct the simulation
over a total of 1000 replications. Meanwhile, in our simulation,
we also employ the estimators from the model with known β

as the benchmark.
Throughout this section, the kernel function we applied

is Epanechnikov kernel K(t) = 0.75(1− t2)+ and the band-
width we set is 0.25 of the whole range, which is 0.25×
(max

{
y>

1 β̂, · · · ,y>
t β̂

}−min
{
y>

1 β̂, · · · ,y>
t β̂

}
).

With the purpose of evaluating the performance of β̂ and
Â j, j = 1, · · · , p, the squared error metrics are used as follows:

∆(Â)=
∑n−l

k=1
∑p

j=1
∑d

ı=1
∑d

=1(â jı k −a jı k)2∑n−l
k=1

∑p
j=1

∑d
ı=1

∑d
=1 a2

jı k

, ∆(β̂)= ‖β̂−β‖2,

(3.32)
The expectation and standard deviation of ∆(Â j) and ∆(β̂)
can be approximated by averaging over the 1000 replications
using

E(∆(Â))≈ 1
1000

1000∑
L=1

∆L(Â), E(∆(β̂))≈ 1
1000

1000∑
L=1

∆L(β̂),
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SD(∆(Â))≈ (
1

1000

1000∑
L=1

{
∆L(Â)−E(∆(Â))

}2)1/2,

SD(∆(β̂))≈ (
1

1000

1000∑
L=1

{
∆L(β̂)−E(∆(β̂))

}2)1/2,

where ∆L(·) denotes the square error metric of the Lth simu-
lated dataset. One crucial thing to note is that E(∆(β̂)) is the
well known metric mean square error (MSE) in terms of the
index parameters, and we can also call the metric E(∆(Â)) rela-
tive mean integrated squared error (RMISE) of the estimators
of the unknown varying auto-regression coefficients.

The simulated results of the estimation accuracy are re-
ported in Table 3.1.

Table 3.1: Comparison of estimates

E(∆(β̂)) SD(∆(β̂)) E(∆(Â)) SD(∆(Â))
Method I 0.002 0.028 0.663 0.231
Method II 0.002 0.010 0.631 0.201
Method I (true β) 0.000 0.000 0.689 0.242
Method II (true β) 0.000 0.000 0.661 0.270

“Method I (True β) " presents the one step estimation of A with the given
true β via method I, “ Method II (True β)" presents the one step estimation
of A with the given true β via method II.

As it can be seen from Table 3.1, Both of these two meth-
ods can yield reasonably good estimators with small corre-
sponding estimated errors. We would also remark that the
performance of the corresponding estimators in the model
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with unknown β is similar to the estimates from the model
with known β, which greatly corroborates the effectiveness
and accuracy of the proposed approach.
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ALGORITHM

In the sparse single-index vector autoregressive models (SSI-
VARM), when the dimension of the covariates is fixed, the
resulting nonparametric estimators can be obtained by local
linear smoothing as we discussed in Chapter 3. However, if
the model is of a higher dimension and allows sparsity, di-
rect use of nonparametric regression may overestimate the
model’s complexity and lead to an over-fitted result. To sort
out this issue, we will introduce a locally weighted group se-
lection method by adding the SCAD penalty to the iterative
approaches in Chapter 3. The penalised least squares can help
select the importance of the model and shrink the insignifi-
cance to 0. Then, in our implementation, a unified solver for
SCAD -type penalised least squares will be employed to con-
sistently select the model, and hence to work out the resulting
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estimators.
In this chapter, we shall focus on the model selection in

SSIVARM, which is also the main subject of our thesis. Con-
cretely, our model selection includes: (i) variable selection,
which is equivalent to searching the null coefficients; (ii) spec-
ification of the constant coefficients, namely, detection of the
coefficients with zero derivatives; (iii) identification of the
index, which is realised by identifying zero-elements of the
vector of index parameters β.

In Section 4.1, we will concisely recall the SSIVARM. In
Section 4.2, we will elaborate the methodology of the compu-
tational algorithm for selecting and estimating the SSIVARM
simultaneously.

4.1 Model specification

Let yt, t = 1, · · · , n, be a d-dimensional stationary time series,
and Xt, t = 1, · · · , n, be i.i.d.. Xt is a d× q matrix. The sparse
single-index vector autoregressive model is defined as

yt =
p∑

j=1
A j(y>

t−`β)yt− j +Xtα+εt, (4.1)

where 1≤ `≤ p, the first column of A`(·) is 0d, β= (β1, · · · , βd)>

and satisfies
‖β‖ = 1, β1 > 0, (4.2)
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εt, t = 1, · · · , n, are i.i.d. with

E(εt|Ft)= 0d cov(εt|Ft)=σ2Id,

where Ft = {(Yl−1, Xl) : l ≤ t}. We also assume that β and A j(·),
j = 1, · · · , p, are sparse. The unknown parameters β, A j(·), α
and σ2 shall be estimated.

In this thesis, we focus on selecting the sparse model in
finite dimension, but some of proposed approaches can also
be introduced to divergent or high dimensionality, which will
be left to discuss in the future works.

4.2 Methodology

In a similar way to Section 3.2, an iterative algorithm will
be applied: firstly we need to obtain the estimators of the
traditional varying coefficient model with known index y>

t β

by choosing an initial value β̂, the second step is to estimate
β with the gotten estimators of Θ and α, finally we continue
these two steps until L(β,α,Θ) differs insignificantly. How-
ever, apart from the estimation, the model selection work will
be added after every estimation because the model is sparse
and overparameterized. After the model estimation and selec-
tion, the most ideal estimators for us are that the significant
variables are kept at the same value and the insignificant
ones will be shrunk to 0. Hence, the objective of this section
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is to introduce the model selection procedure of each method
after the estimation.

Another important topic in this section is to determine a
penalty function to consistently select the model and to find
a proper algorithm to solve penalised least squares. We have
introduced three penalty functions in Chapter 2, hard thresh-
olding penalty, LASSO penalty and SCAD penalty. Hard
thresholding penalty cannot meet the property Continuity
and LASSO is biased, therefore, the penalty function SCAD
which result in an estimator with three properties : unbi-
asedness, sparsity and continuity is the final choice for us in
this section. This continuous differentiable penalty function
is defined by

p′
λ(β)=λ

{
I(β≤λ)+(aλ−β)+

(a−1)λ
I(β>λ)

}
for some a > 2 and β> 0, (4.3)

Hence we can have the penalised least square problem
like

L(β|α,Θ)+n
d∑

j=1
pλ(|β j|). (4.4)

We meet two challenges here, one is the SCAD function is
singular at the origin and they do not have continuous second
derivatives, the other challenge is the computational cost is
too heavy in the traditional optimising methods. However, this
problem can be solved by the local quadratic approximation
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(LQA) algorithm introduced by Fan and Li (2001). In this
algorithm, we set the initial β0 which is close to the minimise
of (4.4). If β0, j is very close to 0, then let β̂ j = 0. Otherwise
they can be locally approximated by a quadratic function as

[pλ(|β j|)]′ = p′
λ(|β j|)sgn(β j)≈

{
p′
λ(|β0, j|)/|β0, j|

}
β j,

when β j 6= 0. It means,

pλ(|β j|)≈ pλ(|β0, j|)+ 1
2
{
p′
λ(|β0, j|)/|β0, j|

}
(β2

j −β2
0, j).

forβ j ≈β0, j (4.5)

With this method, the penalised least squares problem be-
comes a convex quadratic optimisation problem which can be
solved by obtaining the closed form solution. However, the
shortage of this approximation is that the value 0 is an ab-
sorbing state, in the other words, once a coefficient is set to 0,
it remains 0 in subsequent iterations.

It is worth noting that, in Section 4.2.1 and Section 4.2.2,
we shall follow the idea of local quadratic approximation, pro-
posed by Fan and Li (2001) to solve the weighted penalised
least squares. As preliminary estimates are required to initi-
ate this iterative algorithm, we will employ similar methods in
Section 3.2.1 and Section 3.2.2 respectively to obtain the pre-
liminary estimates from ordinary least squares, and thereby,
according to the algorithm of local quadratic approximation,
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the preliminary estimates will be used to get the penalised
estimators.

4.2.1 Matrix transformation method

In this section, we will introduce the estimation procedure
for our model (4.1) including model selection, based on the
estimator given in Section 3.2.1 and penalised least squares.
This estimation approach is named as the Matrix transforma-
tion method because we use some matrix transformations in
obtaining the closed form solution of the least square problem
in the estimation procedure.

From section 3.2.1, we get the local discrepancy loss func-
tion:

L(β,α,Θ)=
n−l∑
k=1

n∑
t=p+1

∥∥∥yt−
p∑

j=1

{
A j,k +B j,k

[
(yt−`−yk)>β

]}
yt− j

−Xtα
∥∥∥2

Kh((yt−`−yk)>β), (4.6)

Because A j(·), j = 1, · · · , p, are functional, to deal with the
sparsity in A j(·), the penalty has to be imposed on the function
values of A j(·) at all y>

k ,k = 1, · · · ,n− l. So the form of the
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penalised least squares is constructed as

L (β,α,Θ)=L(β,α,Θ)+
d∑

l=1
Pl(|βl|)

+
p∑

j=1

d∑
ı=1

d∑
=1

{
P jı (‖a jı ‖)+P jı (‖b jı ‖)

}
(4.7)

where
Pl(·)=Pλl(·), P jı (·)=Pλ jı  (·),

a jı  = (a jı 1, · · · , a jı (n−`))>, b jı  = (b jı 1, · · · , b jı (n−`))>

λl and λ jı  are tuning parameters. Pλ(·) is a penalty function
with tuning parameter λ. In this section, the penalty function
is taken to be the SCAD function proposed by Fan and Li
(2001). a jı k and b jı k are the (ı, )th element of A j,k and B j,k,
respectively.

The estimator β̂,Θ̂, and α̂ can be obtained by solving

(β̂,α̂,Θ̂)= argmin
β,α,Θ

L (β,α,Θ) (4.8)

subject to the constraints ‖β‖ = 1 and β1 > 0. Following the
idea of quadratic approximation, see Fan and Li (2001), by
properly defining the threshold δ, we let ‖â jı ‖ be 0 when
‖â jı ‖ < δ. Once ‖â jı ‖ = 0, we use 0 to estimate the (ı, )th
element of A j(·). When ‖â jı ‖ 6= 0, we use â jı  to estimate
(a jı (y>

1β), · · · , a jı (y>
n−`β))>. As in the last chapter, the global

minimum of the local discrepancy function cannot be found
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analytically and therefore an iterative procedure is proposed
for implementation purposes as follows:

Step 1. Choose initial value β0. Before the iterative proce-
dure, an initial value of β should be specified, which is denoted
by β0. The initial value β0 needs to satisfy the constraints
β0

1 > 0 and ‖β0‖ = 1, where β0
1 is the first component of β0.

Step 2. Estimate Θ,α and select Θ with β taking the
initial estimated value. Set β̂= β0, we now estimate Θ,α
by solving

Θ̂,α̂= argmin
Θ,α

L (,Θ,α|β̂)

in the other words, we need to minimise the form of penalised
least squares

L(α,Θ|β̂)+
p∑

j=1

d∑
ı=1

d∑
=1

{
P jı (‖a jı ‖)+P jı (‖b jı ‖)

}
(4.9)

In order to deal with the minimisation problem (4.9), a unified
algorithm of local quadratic approximation proposed by Fan
and Li (2001) is applied here. For the penalised least square
problem, it is straightforward to find that we can locally ap-
proximate the first term in (4.9) by a quadratic function. As
for the second term, SCAD penalty functions, they can also
be locally approximated by a quadratic function, which will
be discussed as follows. Therefore, the expression (4.9) will
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be formed into a quadratic function where we can obtain the
minimiser as an explicit solution.

For this approximation of the SCAD penalty function, as men-
tioned previously, we have to set the initial value, which is
close to the minimiser of (4.9). In this section, we will use the
minimiser of L(β̂,Θ,α) as the initial value of a jı  and b jı  . Let
Θ̂

† = (â111, · · · , â1dd, b̂111, · · · , b̂1dd, · · · , âp11, · · · , âpdd,b̂p11 · · · , b̂pdd)
be the current "minimiser" of L(β̂,Θ,α), the penalty functions
P jı (‖a jı ‖) and P jı (‖b jı ‖) will be applied to the approxima-
tion:

P jı (‖a jı ‖)≈ P jı (‖â jı ‖)+
P ′

jı (‖â jı ‖)

2‖â jı ‖
(a>

jı a jı  − â>
jı â jı ),

P jı (‖b jı ‖)≈ P jı (‖b̂ jı ‖)+
P ′

jı (‖b̂ jı ‖)

2‖b̂ jı ‖
(b>

jı b jı  − b̂>
jı b̂ jı ),

Then the penalised least square problem (4.9) can be locally
approximated (except for a constant term) by:

L(α,Θ|β̂)+
p∑

j=1

d∑
ı=1

d∑
=1

{P ′
jı (‖â jı ‖)

2‖â jı ‖
a>

jı a jı +
P ′

jı (‖b̂ jı ‖)

2‖b̂ jı ‖
b>

jı b jı 

}
(4.10)

which is equivalent to

L(α,Θ|β̂)+
p∑

j=1

d∑
ı=1

d∑
=1

{ n−l∑
k=1

P ′
jı (‖â jı ‖)

2‖â jı ‖
a2

jı k+
n−l∑
k=1

P ′
jı (‖b̂ jı ‖)

2‖b̂ jı ‖
b2

jı k

}
(4.11)
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Therefore, for the sake of solving this minimisation problem
(4.11), we need to obtain Θ̂

†
, the minimiser of L(β̂,Θ,α) firstly.

For brevity purposes, we use the notations

B j,k = Ȧ j,k

θk = (A1,k,B1,k, · · · ,Ap,k,Bp,k),

Θ= (θ1, · · · ,θn−l),

where we denote A j(y>
kβ) and Ȧ j(y>

kβ) by A j,k and Ȧ j,k respec-
tively.

For each k, we choose the estimator of θk,α by minimising

n∑
t=p+1

∥∥∥∥∥yt−
p∑

j=1

{
A j,k +B j,k

[
(yt−`−yk)>β̂

]}
yt− j −Xtα

∥∥∥∥∥
2

×Kh((yt−`−yk)>β̂), (4.12)

We can write it (4.12) in matrix notation as

(θ̂k,α̂)= argmin
θk,α

n∑
t=p+1

∥∥∥yt−Q>
t,kθk −Xtα

∥∥∥2
Kh((yt−`−yk)>β̂),

(4.13)
where Qt,k = (y>

t−1, (y>
t−`β̂−zk)y>

t−1, · · · ,y>
t−p, (y>

t−`β̂−zk)y>
t−p), in

which zk = y>
k β̂; yi = (y1, · · · , yd)>, i = 1, · · · ,n.

One thing needs to be emphasized is that we have to compose
the identifiability conditions so that the model must satisfy
the conditions ‖β‖ = 1,β1 > 0 and the first column of A`(·) is 0d,
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which can be practically realised that instead of estimating
the first column of A`(·) in the estimation procedure, we let
the elements of the first column of A`(·) equal 0 directly, which
will lead to a reduction of dimension of θk from d ×2pd to
d × (2pd −2). Correspondingly, both of the first element of
yt−` and (y>

t−`β̂− zk)yt−` of Qt,k need to be eliminated in the
estimation procedure, therefore, the dimension of Qt,k reduces
from 1×2pd to 1× (2pd−2).

In order to solve the weighted least squares problem to cal-
culate the explicit solution , we need to rewrite the equation
(4.13) as:

γ̂k = argmin
γk

n∑
t=p+1

∥∥yt−Xt,kγk

∥∥2 Kh((yt−`−yk)>β̂), (4.14)

where γk = [θk,α], Xt,k = [Qt,k,Xt], Γ= (γ1, · · · ,γn−l). However,
the augmented matrix γk = [θk,α] cannot be constructed by
θk ∈Rd×(2pd−2),α ∈Rq×1 directly, similarly, Xt,k meets the same
problem that Qt,k ∈R1×(2pd−2) and Xt ∈Rd×q cannot construct
Xt,k directly. Therefore, we need to do some matrix transfor-
mations to obtain the proper augmented matrices γk and
Xt,k.

In our observation, the matrix θk = (A1,k,B1,k, · · · ,Ap,k,Bp,k) is
transferred to a vector θ†

k = (a111k, · · · ,a1ddk,b111k, · · · ,b1ddk, · · · ,
al12k, · · · ,apddk,bl12k, · · · ,bpddk, · · · ,ap11k, · · · ,apddk,bp11k, · · · ,

66



CHAPTER 4. ALGORITHM

bpddk)>, where θ
†
k ∈ R(2pdd−2d)×1. Hence γk = [θ†

k,α]> is con-
structed to a (2pdd−2d+ q)×1 matrix.

The same method is used in Xt,k = [Qt,k,Xt]. Because the Xt is
an d× q matrix, we design a matrix based on Qt,k which has
the same number of rows as Xt:

Q†
t,k =


Qt,k 0 · · · 0

0 Qt,k · · · 0
... ... . . . ...
0 0 0 Qt,k

 ,

where Q†
t,k ∈ Rd×(2pdd−2d). With this new Q†

t,k, we have an
augmented matrix Xt,k ∈ Rd×(2pdd−2d+q). Through the least
squares theory, the solution is given by

γ̂k = (
n∑

t=p+1
X>

t,kKh(yt−`−yk)Xt,k)−1(
n∑

t=p+1
X>

t,kKh(yt−`−yk)yt)

(4.15)
and hence we obtain Γ̂= (γ̂1, · · · , γ̂n−l).

After working out Θ̂
†

and α̂, let us go back to the penalised
least square problem, the expression (4.11) can be written in
matrix notation as

n−l∑
k=1

n∑
t=p+1

∥∥∥yt−Xtα−Q†
t,kθ

†
k

∥∥∥2
Kh(yt−`−yk)+ 1

2

n−l∑
k=1

θ
†
kΣΘ(θ†

k)>,

(4.16)
where Σθk = diag

{
P ′

111(‖â111‖)/‖â111‖, · · · ,P ′
1dd(‖â1dd‖)/‖â1dd‖,P ′

111

(‖b̂111‖)/‖b̂111‖, · · · ,P ′
1dd(‖b̂1dd‖)/‖b̂1dd‖, · · · ,P ′

p11(‖âp11‖)/‖âp11‖,
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· · · ,P ′
pdd(‖âpdd‖)/‖âpdd‖,P ′

p11(‖b̂p11‖)/‖b̂p11‖, · · · ,P ′
pdd(‖b̂pdd‖)/

‖b̂pdd‖
}
.

The continuous differentiable penalty function is defined pre-
viously in (4.3), and we can obtain the solution by penalised
least square approach:

θ̌
†
k =

( n∑
t=p+1

(Q†
t,k)>Kh(yt−`−yk)Q†

t,k +
n− p

2
Σθk

)−1

×
( n∑

t=p+1
(Q†

t,k)>Kh(yt−`−yk)(yt−Xtα)
)
. (4.17)

Hence, we have Θ̌
† = (θ̌

†
1, · · · , θ̌

†
n−l).

Step 3. Estimate and select β given Θ,α. Using the esti-
mators Θ̌

†
and α̂ from Step two, we would like to find the

estimator of β:

β̂= argmin
β

L (β|Θ̌†
,α̂),

in other words, we need to minimise the form of penalised
least squares

L(β|Θ̌†
,α̂)+

d∑
l=1

Pl(|βl|). (4.18)

In order to deal with the penalised least square problem
(4.18), the same algorithm as the last step will be applied here.
We will use the local quadratic approximation to reduce the
minimisation problem to a quadratic minimisation problem.
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Similarly, the minimise of L(β,Θ̌
†
,α̂) will be set as the initial

value of β.

Let β̂= (β̂1, · · · , β̂d)> be the current ’minimiser’ of L(β,Θ̌
†
,α̂),

apply the approximation

Pl(|βl|)≈ Pl(|β̂l|)+
P ′

l(|β̂l|)
2|β̂l|

(β2
l − β̂2

l ),

to the Pl(|βl|) in (4.18), then the penalised least squares prob-
lem (4.18) can be locally approximated (except for a constant
term) by:

L(β|Θ̌†
,α̂)+

d∑
l=1

P ′
l(|β̂l|)
2|β̂l|

β2
l (4.19)

Therefore, for the sake of solving this minimisation problem
(4.19), we need to obtain β̂, the minimise of L(β,Θ̌

†
,α̂) firstly,

β̂= argmin
β

L(β,Θ̌
†
,α̂)

which is equivalent to minimising

n−l∑
k=1

n∑
t=p+1

∥∥∥∥∥yt−
p∑

j=1

{
Â j,k + B̂ j,k

[
(yt−`−yk)>β

]}
yt− j −Xtα̂

∥∥∥∥∥
2

×Kh((yt−`−yk)>β̂), (4.20)

Two things need to be emphasised. The first one is Â j,k,B̂ j,k

and α̂ come from Γ̂ because of the matrix transformation in
the last step. Secondly, only β in the least squares part of
the loss function is the parameter we need to estimate, the β̂
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appears in the kernel function is the estimator of β we used
in Step 1. For the sake of distinguishing the two βs, we use
βnew and βold to rewrite the approximation:

n−l∑
k=1

n∑
t=p+1

∥∥∥∥∥yt−
p∑

j=1

{
Â j,k + B̂ j,k

[
(yt−`−yk)>βnew

]}
yt− j −Xtα̂

∥∥∥∥∥
2

×Kh((yt−`−yk)>β̂old), (4.21)

Let us expand the expression (4.21) as below:

n−l∑
k=1

n∑
t=p+1

∥∥∥yt−
p∑

j=1
Â j,kyt− j +

p∑
j=1

B̂ j,kyt− j(yt−`−yk)>βnew

−Xtα̂
∥∥∥2×Kh((yt−`−yk)>β̂old), (4.22)

In order to obtain the closed form solution, it is straightfor-
ward to rewrite the problem in matrix notation:

β̂new = argmin
βnew

n−l∑
k=1

n∑
t=p+1

∥∥ct,k −Mt,kβnew

∥∥2 Kh((yt−`−yk)>β̂old),

(4.23)
where:

ct,k = yt−
p∑

j=1
Â j,kyt− j −Xtα̂, Mt,k =

p∑
j=1

B̂ j,kyt− j(yt−`−yk)>.

in which ct,k is a d ×1 matrix and the dimension of Mt,k is
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d×d. Then we have the solution by :

β̂new =
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)Mt,k

)−1

×
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)ct,k

)
(4.24)

After working out β̂new, let us go back to the penalised least
square problem, the expression (4.19) can be written in matrix
notation as

n−l∑
k=1

n∑
t=p+1

∥∥ct,k −Mt,kβnew

∥∥2 Kh((yt−`−yk)>β̂old)+ 1
2
βnewΣββnew

(4.25)
where Σβ = diag

{
P ′

1(|β̂new,1|)/|β̂new,1|, · · · ,P ′
d(|β̂new,d|)/|β̂new,d|

}
.

The continuous differentiable penalty function is defined pre-
viously (4.3), we can obtain the solution by penalised least
square approach:

β̌new =
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)Mt,k + n− p

2
Σβ

)−1

×
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)ct,k

)
(4.26)

At this point, in order to satisfy the identifiability condi-
tions ‖β‖ = 1 and β1 > 0, we define β̌new = −β̌new/‖β̌new‖ if
the first component of β̌new is negative, otherwise, let β̌new =
β̌new/‖β̌new‖.
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4.2.2 Computationally Efficient Estimation
Method

As discussed in chapter 3, when we work on the model in rel-
ative high dimension with the matrix transformation method,
we will meet a challenge that the estimation procedure cannot
be completed in an acceptable time. Therefore, we will propose
a practically feasible approach named the computationally
efficient estimation method to alleviate the computational
burden with the model in a higher dimensional situation.

Let cm, j(·),m = 1, · · · ,d be the mth row of the matrix A j(·),
yt = (yt,1, · · · , yt,d)>, Xt = (xt,1, · · · ,xt,d)>, where xt,m ∈R1×q,m =
1, · · · ,d. εt = (εt,1, · · · ,εt,d), where εt, t = 1, · · · , n, are i.i.d. with

E(εt|Ft)= 0d, cov(εt|Ft)=σ2Id,

where Ft = {(Yl−1, Xl) : l ≤ t}.
In a similar way to Section 3.2.2, we approximate the

following model
yt,1

yt,2
...

yt,d

=


∑p

j=1 c1, j(y>
t−`β)yt− j∑p

j=1 c2, j(y>
t−`β)yt− j

...∑p
j=1 cd, j(y>

t−`β)yt− j

+


xt,1α

xt,2α
...

xt,dα

+


εt,1

εt,2
...
εt,d

 , (4.27)
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by 
yt,1

yt,2
...

yt,d

=


∑p

j=1 c1, j(y>
t−`β)yt− j∑p

j=1 c2, j(y>
t−`β)yt− j

...∑p
j=1 cd, j(y>

t−`β)yt− j

+


xt,1α1

xt,2α2
...

xt,dαd

+


εt,1

εt,2
...
εt,d

 . (4.28)

Hence, we obtain the expression of yt,m,m = 1, · · · ,d as

yt,m =
p∑

j=1
cm, j(y>

t−`β)yt− j +xt,mαm+εt,m (4.29)

For any given j, j = 1, · · · , p, and k, k = 1, · · · , n− `, by
applying Taylor’s expansion,

cm, j(y>
i β)≈ cm, j(y>

kβ)+ ċm, j(y>
kβ)

[
(yi −yk)>β

]
,

when y>
i β is in a small neighbourhood of y>

kβ, where ċm, j(·) is
the derivative of cm, j(·). Therefore we can approximate model
(4.29) by

yt,m ≈
p∑

j=1

{
cm, j(y>

kβ)+ċm, j(y>
kβ)(y>

t−`β−y>
kβ)

}
yt− j+xt,mαm+εt,m.

For brevity purposes, we let a jı k be the (ı, )th element of A j,k

and use the notation

a jı  = (a jı 1, · · · , a jı (n−`))>,

dm, j,k = ċm, j,k,

θm,k = (cm,1,k,dm,1,k, · · · , cm,p,k, cm,p,k),
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Θ= (
d∑

m=1
θm,1, · · · ,

d∑
m=1

θm,n−l),

where we denote cm, j(y>
kβ) and ċm, j(y>

kβ) by cm, j,k and ḋm, j,k

respectively.
Using approximation (4.2.2) together with the idea of least

squares, we can form the following local discrepancy loss
function:

L(β,α,Θ)=
d∑

m=1

n−l∑
k=1

n∑
t=p+1

{
yt,m−

p∑
j=1

[
cm, j,k +dm, j,k(y>

t−`β−y>
kβ)

]
yt− j −xt,mαm

}2
Kh((yt−`−yk)>β), (4.30)

where Kh(·)= K(·/h)/h, K(·) is a kernel function, h is a band-
width.

Because cm, j(·), j = 1, · · · , p,m = 1, · · · ,d are functional, to
deal with the sparsity in cm, j(·), the penalty has to be imposed
on the function values of cm, j(·), at all y>

k ,k = 1, · · · ,n−l. There-
fore, the form of the penalised least squares is constructed
as

L (β,α,Θ)=L(β,α,Θ)+
d∑

l=1
Pl(|βl|)

+
p∑

j=1

d∑
m=1

{
P jm(‖Cm, j‖)+P jm(‖Dm, j‖)

}
(4.31)

where
Pl(·)=Pλl(·), P jm(·)=Pλ jm(·),
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Cm, j = (cm, j,1, · · · , cm, j,n−l)>, Dm, j = (dm, j,1, · · · , cm, j,n−l)>.

The estimators β̂,Θ̂, and α̂ can be obtained by solving

(β̂,α̂,Θ̂)= argmin
β,α,Θ

L (β,α,Θ) (4.32)

subject to the constraints ‖β‖ = 1 and β1 > 0. Following the
idea of quadratic approximation, see Fan and Li (2001), by
properly defining the threshold δ, we let ‖â jı ‖ be 0 when
‖â jı ‖ < δ. Once ‖â jı ‖ = 0, we use 0 to estimate the (ı, )th
element of A j(·). When ‖â jı ‖ 6= 0, we use â jı  to estimate
(a jı (y>

1β), · · · , a jı (y>
n−`β))>. As with the previous estimation

method, the global minimum of the local discrepancy func-
tion cannot be found analytically and therefore an iterative
procedure is proposed for implementation purposes, which is
written as follows:

Step 1. Choose initial value β0. Before the iterative proce-
dure, an initial value of β should be specified, which is denoted
by β0. The initial value β0 needs to satisfy the constraints
β0

1 > 0 and ‖β0‖ = 1, where β0
1 is the first component of β0.

Step 2. Select and EstimateΘ,and fitα giving the known
β. Set β̂=β0, we now estimate Θ,α by solving

(Θ̂,α̂)= argmin
Θ,α

L (Θ,α|β̂)
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in other words, we need to minimise the form of penalised
least squares

L (Θ,α|β̂)=L(Θ,α|β̂)+
d∑

l=1
Pl(|βl|)

+
p∑

j=1

d∑
m=1

{
P jm(‖Cm, j‖)+P jm(‖Dm, j‖)

}
(4.33)

In order to deal with the minimisation problem (4.33), a uni-
fied algorithm of local quadratic approximation proposed by
Fan and Li (2001) is applied here. For the penalised least
squares problem, it is straightforward to find that we can
locally approximate the first term in (4.33) by a quadratic
function. As for the second term, SCAD penalty functions,
they can also be locally approximated by a quadratic function,
which will be discussed as follows. Therefore, the expression
(4.33) will be formed into a quadratic function where we can
obtain the minimiser as an explicit solution.

For this approximation of the SCAD penalty function, as men-
tioned previously, we have to set the initial value, which is
close to the minimiser of (4.31). In this section, we will use the
minimiser of L(β̂,Θ,α) as the initial value of Cm, j and Dm, j.
Let Θ̂= (Ĉ1,1, · · · , Ĉ1,d, D̂1,1, · · · , D̂1,d, · · · , Ĉp,1, · · · , Ĉp,d, D̂p,1, · · · ,
D̂p,d) be the current "minimiser" of L(β̂,Θ,α), the penalty
functions P jm(‖Cm, j‖) and P jm(‖Dm, j‖) will be applied to the
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approximation:

P jm(‖Cm, j‖)≈ P jm(‖Ĉm, j‖)+
P ′

jm(‖Ĉm, j‖)

2‖Ĉm, j‖
(C>

m, jCm, j−Ĉ>
m, jĈm, j),

P jm(‖Dm, j‖)≈ P jm(‖D̂m, j‖)+
P ′

jm(‖D̂m, j‖)

2‖D̂m, j‖
(D>

m, jDm, j−D̂>
m, jD̂m, j),

Then the penalised least square problem (4.33) can be locally
approximated (except for a constant term) by:

L(Θ,α|β̂)=
p∑

j=1

d∑
m=1

{P ′
jm(‖Ĉm, j‖)

2‖Ĉm, j‖
C>

m, jCm, j+
P ′

jm(‖D̂m, j‖)

2‖D̂m, j‖
D>

m, jDm, j

}
(4.34)

which is equivalent to

L(Θ,α|β̂) =
n−l∑
k=1

p∑
j=1

d∑
m=1

{P ′
jm(‖Ĉm, j‖)

2‖Ĉm, j‖
‖cm, j,k‖2+

P ′
jm(‖D̂m, j‖)

2‖D̂m, j‖
×‖dm, j,k‖2

}
(4.35)

Therefore, for the sake of solving this minimisation problem
(4.35), we need to obtain Θ̂, the minimise of L(β̂,Θ,α) firstly.

For each k and m, we choose the estimator of θm,k,αm by
minimising

n∑
t=p+1

{
yt,m−

p∑
j=1

[
cm, j,k +dm, j,k(y>

t−`β̂−y>
k β̂)

]
yt− j

−xt,mαm

}2
Kh((yt−`−yk)>β̂), (4.36)
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Rewriting the minimisation problem yields
n∑

t=p+1

∥∥∥yt,m−Qt,kθ
>
m,k −xt,mαm

∥∥∥2
Kh((yt−`−yk)>β̂), (4.37)

where Qt,k = (y>
t−1, (y>

t−`β̂−zk)y>
t−1, · · · ,y>

t−p, (y>
t−`β̂−zk)y>

t−p) with
zk = y>

k β̂.

For the identifiability purpose, in exactly the same way as
in Section 3.1, the model is set to satisfy the conditions
‖β‖ = 1,β1 > 0 and the first column of A`(·) is 0d, which can be
practically realised instead of estimating the first column of
A`(·) in the estimation procedure, we let the elements of the
first column of A`(·) equal 0 directly. It leads to a reduction of
dimension of θm,k from (2pd×1) to (2pd−2)×1. Correspond-
ingly, both of the first element of yt−` and (y>

t−`β̂− zk)yt−` of
Qt,k need to be eliminated in the estimation procedure, there-
fore, the dimension of Qt,k reduces from 1×2pd to 1×(2pd−2).

In order to reduce more computation cost, we find we can
rewrite the single summation in the equation (4.37) in the
form of stacked vectors and matrices. This can be achieved by
defining the (n− p)×1 vector ym, the (n− p)×(2pd−2) matrix
Qk, the (n− p)×q matrix Xm and the (n− p)× (n− p) diagonal
matrix Wk as follows:

ym = (y1,m, · · · , yn−p,m)>, Qk = (Q>
1,k, · · · ,Q>

n−p,k)>,

Xm = (x>
1,m, · · · ,x>

n−p,m)>,
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Wk = diag
{
Kh((y1−`−yk)>β̂), · · · ,Kh((yn−p−`−yk)>β̂)

}
,

With these, equation (4.37) can be written in matrix notation:

(θ̂m,k, α̂m)= argmin
θm,k,αm

∥∥∥ym−Qkθ
>
m,k −Xmαm

∥∥∥2
Wk, (4.38)

In order to obtain the closed form solution, we have to rewrite
the equation (4.38) as:

γ̂m,k = argmin
γm,k

∥∥ym−Xm,kγm,k

∥∥2 Wk, (4.39)

where γm,k = [θ>
m,k,αm]> is a (2pd −2+ q)×1 vector, Xm,k =

[Qk,Xm] ∈R(n−p)×(2pd−2+q), Γ= (
∑d

m=1γm,1, · · · ,
∑d

m=1γm,n−l). and
the solution is given by

γ̂m,k = (X>
m,kWkXm,k)−1(X>

m,kWkym), (4.40)

and hence we obtain Γ̂= (
∑d

m=1 γ̂m,1, · · · ,
∑d

m=1 γ̂m,n−l).

After working out Θ̂ and α̂, let us go back to the penalised
least square problem, the expression (4.41) can be written in
the matrix notation as

d∑
m=1

n−l∑
k=1

∥∥∥ym−Qkθ
>
m,k −Xmαm

∥∥∥2
Wk + 1

2

d∑
m=1

n−l∑
k=1

θkΣΘθ
>
k , (4.41)

where ΣΘ = diag
{
P ′

m,1(‖Ĉm,1‖)/‖Ĉm,1‖,P ′
m,1(‖D̂m,1‖)/‖D̂m,1‖, · · · ,

P ′
m,p(‖Ĉm,p‖)/‖Ĉm,p‖,P ′

m,p(‖D̂m,p‖)/‖D̂m,p‖
}
.
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The continuous differentiable penalty function is defined pre-
viously in (4.3), we can obtain the solution by the penalised
least square approach:

θ̌m,k =
(
Q>

k WkQk + n− p
2

Σθk

)−1(
Q>

k Wk(ym−Xmαm)
)

(4.42)

Hence, we have Θ̌= (
∑d

m=1 θ̌m,1, · · · ,
∑d

m=1 θ̌m,n−l).

Step 3. Estimate and select β given Θ,α. Using the es-
timators Θ̌ and α̂ from Step two, we would like to find the
estimator of β:

β̂= argmin
β

L (β|Θ̌,α̂)

in the other words, we need to minimise the form of penalised
least squares

L(β|Θ̌,α̂)+
d∑

l=1
Pl(|βl|) (4.43)

In order to deal with the penalised least square problem
(4.43), the same algorithm as the last step will be applied here.
We will use the local quadratic approximation to reduce the
minimisation problem to a quadratic minimisation problem.
Similarly, the minimise of L(β, |Θ̌,α̂) will be set as the initial
value of β.

Let β̂ = (β̂1, · · · , β̂d)> be the current minimiser of L(β, |Θ̌,α̂),
apply the approximation

Pl(|βl|)≈ Pl(|β̂l|)+
P ′

l(|β̂l|)
2|β̂l|

(β2
l − β̂2

l ),
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to the Pl(|βl|) in (4.43), then the penalised least square prob-
lem (4.43) can be locally approximated (except for a constant
term) by:

L(β, |Θ̌,α̂)+
d∑

l=1

P ′
l(|β̂l|)
2|β̂l|

β2
l (4.44)

Therefore, for the sake of solving this minimisation problem
(4.44), we need to obtain β̂, the minimise of L(β,Θ̌,α̂) firstly,

β̂= argmin
β

(β,Θ̌,α̂)

which is equivalent to minimise

n−l∑
k=1

n∑
t=p+1

∥∥∥∥∥yt−
p∑

j=1

{
Â j,k + B̂ j,k

[
(yt−`−yk)>β

]}
yt− j −Xtα̂

∥∥∥∥∥
2

×Kh((yt−`−yk)>β̂), (4.45)

This step is nearly the same as the step 3 of the purposed
algorithm previous presented, therefore, we can rewrite the
equation (4.45) in matrix notation as

β̂new = argmin
βnew

n−l∑
k=1

n∑
t=p+1

∥∥ct,k −Mt,kβnew

∥∥2 Kh((yt−`−yk)>β̂old),

(4.46)
where ct,k = yt −

∑p
j=1 Â j,kyt− j −Xtα̂ is a d ×1 vector, Mt,k =∑p

j=1 B̂ j,kyt− j(yt−`−yk)> ∈ Rd×d, βold is the estimator of β we
used in Step 1 and βnew is the parameter we need to estimate
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here. Then we have the solution by :

β̂new =
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)Mt,k

)−1

×
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)ct,k

)
(4.47)

After working out β̂new, let us go back to the penalised least
square problem, the expression (4.44) can be written in matrix
notation as

n−l∑
k=1

n∑
t=p+1

∥∥ct,k −Mt,kβnew

∥∥2 Kh((yt−`−yk)>β̂old))+1
2
βnewΣββnew

(4.48)
where Σβ = diag

{
P ′

1(|β̂new,1|)/|β̂new,1|, · · · ,P ′
d(|β̂new,d|)/|β̂new,d|

}
.

The continuous differentiable penalty function is defined pre-
viously (4.3), we can obtain the solution by the penalised least
square approach:

β̌new =
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)Mt,k + n− p

2
Σβ

)−1

×
( n−l∑

k=1

n∑
t=p+1

M>
t,kKh((yt−`−yk)>β̂old)ct,k

)
(4.49)

At this point, in order to satisfy the identifiability condi-
tions ‖β‖ = 1 and β1 > 0, we define β̌new = −β̌new/‖β̌new‖ if
the first component of β̌new is negative, otherwise, let β̌new =
β̌new/‖β̌new‖.
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Furthermore, it can be seen that in the foregoing computa-
tional algorithms, we shrink the irrelevant components of the
underlying model to zero only after the iterative procedure
is completed. This implementation leads to a “double check”
mechanism which works as follows: if after an iteration a
coefficient or an index parameter is shrunken to be insignifi-
cant, it still has an opportunity to be reselected into the model
in the following iteration. Thanks to this mechanism, our
algorithm can overcome the main drawback in typical local
quadratic approximation, which is that once a coefficient is
lessened to zero, it will remain at zero. Meanwhile, since we
do not eliminate the insignificant components in each itera-
tion, the algorithm is not very sensitive to the choice of initial
values, namely, the choice of the initial estimate β0 of β.

4.3 Simulation study

In this section, we are going to build on the same simulation
example in Section 4.3 by exploring how the model selection
work affects the performance of the estimation in the two
methods. Apart from this, we will simulate the example in
a higher dimension to compare the running time and perfor-
mance of two estimators.

We now consider a data - generating model with q = 3, p =
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2 and sample size n = 800, which is defined by

yt =A1(zt−l)yt−1+A2(zt−l)yt−2+Xtα+εt, (4.50)

where zt−l = y>
t−lβ, yt, t = 1, · · · ,n is a d− dimensional sta-

tionary time series with 2 lags, Xt, t = 1, · · · ,n is a d×3 ma-
trix generated from d− dimensional Gaussian distribution,
the εt are independently generated from the normal dis-
tribution with E(εt|Ft) = 0d and cov(εt|Ft) = σ2Id, where
Ft = {(Yl−1, Xl) : l ≤ t}. In this example, we set:

l = 1, σ= 1
3

, d = 3, α= (1,2,2)>, β= (0.6,0.8,0)>,

A1(zt−l)=


0 0 0
0 0.9exp(−z2

t−l) 0
0 0 0.25(sin(πzt−l)−0.75)

 ,

A2(zt−l)=


0.33(cos(πzt−l)+0.5) 0 0

0.8exp(−z2
t−l) 0.75exp(−z2

t−l) 0
0 0 0

 ,

where β is a d ×1 vector and both A1(zt−l) and A2(zt−l) are
d×d matrices. The first two predictors should be generated
independently from a normal distribution, and then we gen-
erate 100+n observations followed by the process (4.50). In
order to improve the accuracy of estimation, we will discard
the first 100 predictors and let yt, t = 1, · · · ,n be the remaining
predictors we have. For each case, we conduct the simulation
over a total of 1000 replications.
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Throughout this section, the kernel function we applied
is Epanechnikov kernel K(t) = 0.75(1− t2)+ and the band-
width we set is 0.25 of the whole range, which is 0.25×
(max

{
y>

1 β̂, · · · ,y>
t β̂

}−min
{
y>

1 β̂, · · · ,y>
t β̂

}
). As for the tuning

parameters, from ΣΘ and Σβ in Section 5.2.1 and Section
5.2.2 and the given continuous differentiable SCAD penalty
function:

p′
λ(β)=λ

{
I(β≤λ)+ (aλ−β)+

(a−1)λ
I(β>λ)

}
.

We find that every continuous differentiable penalty function
in ΣΘ and Σβ will have a unique tuning parameter λ. However,
in this situation, the closed form solution of the penalised
least square problem will be difficult to implement. Therefore,
for practical purpose, we simplify the tuning parameters as
λA for ΣΘ and λβ for Σβ. Thus, the original high dimensional
problem of tuning parameter selection has now become a
bivariate problem about {λA,λβ} ∈R2. According to the idea of
choosing the tuning parameter in Fan and Li (2002), here we
use λ=√

2log(d) to get λA = 2.33 and λβ = 1.48.
With the purpose of evaluating the accuracy of β̂ and

Â j, j = 1, · · · , p, the squared error metrics are used as follows:

∆(Â)=
∑n−l

k=1
∑p

j=1
∑d

ı=1
∑d

=1(â jı k −a jı k)2∑n−l
k=1

∑p
j=1

∑d
ı=1

∑d
=1 a2

jı k

, ∆(β̂)= ‖β̂−β‖2,

(4.51)

85



CHAPTER 4. ALGORITHM

The expectation and standard deviation of ∆(Â j) and ∆(β̂)
can be approximated by averaging over the 1000 replications
using

E(∆(Â))≈ 1
1000

1000∑
L=1

∆L(Â), E(∆(β̂))≈ 1
1000

1000∑
L=1

∆L(β̂),

SD(∆(Â))≈ (
1

1000

1000∑
L=1

{
∆L(Â)−E(∆(Â))

}2)1/2,

SD(∆(β̂))≈ (
1

1000

1000∑
L=1

{
∆L(β̂)−E(∆(β̂))

}2)1/2,

where ∆L(·) denotes the square error metric of the Lth simu-
lated dataset. One crucial thing to note is that E(∆(β̂)) is the
well known metric mean square error (MSE) in terms of the
index parameters, and we can also call the metric E(∆(Â)) rela-
tive mean integrated squared error (RMISE) of the estimators
of the unknown varying auto-regression coefficients.

In order to measure the performance of model selection,
we report the ratio of the correct model, under-fitted model,
over-fitted model and other models. Whenever the estimated
model identifies the true submodel precisely, we classify it
as a “correct model”. Whenever the resulting model discards
at least one significant covariates but does not include any
irrelevant covariates, we classify it as a “under-fitted model”.
Whenever the estimated model includes at least one insignifi-
cant covariates but does not eliminate any relevant covariates,
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it is classified as an “over-fitted model”. The “other models”
means that the estimated submodel not only includes the
irrelevant candidate covariates but also ignores relevant co-
variates. In particular, these three ratios are calculated from
1000 replications:

rate of "correct model"= number of "correct model"
1000

rate of "under-fitted model"= number of "under-fitted" model
1000

rate of "over-fitted model"= number of "over-fitted" model
1000

rate of "other models"= number of "other models"
1000

The simulated results of the estimation accuracy are re-
ported in Table 4.1. Compared with the estimation perfor-
mance of the penalised-free approach, whose simulated re-
sults are reported in Table 3.1, the proposed penalised es-
timators perform better. Furthermore, we also report the
simulated results of model selection in Table 4.2. From the
results in Table 4.2, we can see that both methods perform
reasonably well on model selection in modest dimensionality.
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Table 4.1: Comparison of estimates

E(∆(β̂)) SD(∆(β̂)) E(∆(Â)) SD(∆(Â))
Method I 0.002 0.032 0.570 0.033
Method II 0.003 0.009 0.587 0.175
Method I (true β) 0.000 0.000 0.579 0.092
Method II (true β) 0.000 0.000 0.579 0.076

NOTE: “Method I (True β)” presents the one step estimation of A with the given

true β via method I, “Method II (True β)” presents the one step estimation of

A with the given true β via method II.

Table 4.2: Comparison of Model selection

Correct Overfitting Underfitting Others
I 0.847 0.138 0.004 0.001
I (true β) 0.894 0.103 0.003 0.000
II 0.842 0.155 0.003 0.000
II (true β) 0.864 0.134 0.002 0.000

NOTE: ‘ I ’ stands for the estimation of A via method I, while ‘ I (True β) ’ presents

the one step estimation of A with the given true β via method I; ‘II ’ presents

the estimation of A via method II, and ‘II (True β) ’ presents the one step

estimation of A with the given true β via method II.
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4.4 Comparison of the
computational cost of the
proposed two approaches

In this section, we will use a simulation study to explore the
computational cost of each proposed shrinkage approach. By
the numerical results, we shall demonstrate the efficiency of
the second iterative procedure.

We first consider to make d flexible in the example (4.50)
to illustrate how the increase of dimension of the model affects
the running time and thereby to prove the second proposed
method is more computational efficient. We have the same
data-generating model with q = 3, p = 2 and sample size n =
600, which is defined by

yt =A1(zt−l)yt−1+A2(zt−l)yt−2+Xtα+εt, (4.52)

Keep the other parameters unchanged, we set:

l = 1, σ= 1
3

, α= (1,2,2)>, β= (0.6,0.8,0, · · · ,0)>,

A1(zt−l)=



0 0 0 0 · · · 0
0 0.9exp(−z2

t−l) 0 0 · · · 0
0 0 0.25(sin(πzt−l)−0.75) 0 · · · 0
0 0 0 0 · · · 0
... ... ... ... . . . 0
0 0 0 0 · · · 0


,
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A2(zt−l)=



0.33(cos(πzt−l)+0.5) 0 0 0 · · · 0
0.8exp(−z2

t−l) 0.75exp(−z2
t−l) 0 0 · · · 0

0 0 0 0 · · · 0
... ... ... ... . . . 0
0 0 0 0 · · · 0

 ,

where β is a d ×1 vector and both A1(zt−l) and A2(zt−l) are
d×d matrices.

The implementation of this simulation is broken down as
follows. We employ the regression example (4.52) in exactly
the same way but change the dimensions from d = 3 to d =
20. Thus, there are as many as 18 models with different
dimensionality that will be taken into consideration. Then, we
record the time cost of both two iterative shrinkage methods
on these 18 models. The simulations are conducted in 200
replications each with 600 samples. We will report the median
of the time cost from all the replications.

The simulated results are virtually reported in the Figure
4.1 and Figure 4.2. The first figure is the simulated results
on the models in modest dimensions and the second one sum-
marises the simulation performance changing to a higher
performance.

As illustrated in Figure 4.1, the second iterative approach
may cost more time in low dimensionality, but the marginal
computational cost is much less than the first iterative pro-
cedure. From the dimension d = 7, the cost of the second
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estimation method is cheaper than the other one.

Figure 4.1: The computational cost of the two proposed ap-
proaches on the modest dimensional models
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NOTE: The solid line stands for the time cost of the first iterative

procedure; the dashed line refers to the time cost of the second

iterative approach.

To extend our idea to a higher dimensionality, we sum-
marise our simulated results on models with the dimension
from d = 3 to d = 20 in Figure 4.2. The Figure 4.2 corrob-
orates the findings in Figure 4.1 very well. Meanwhile, we
intuitively notice that the time required of the first iterative
approach approximately grows at rate O(ed) with the increas-
ing of dimensionality and the growth is about rate O(

p
d ) for

the second iterative approach. Precisely, we also provide the
accurate simulated time cost in Table 4.3.
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Table 4.3: Median time cost of two iterative approaches

d The 1st approach The 2nd approach
3 31 241
4 104 500
5 269 741
6 687 1087
7 1349 1391
8 2752 1787
9 4800 2466

10 7754 2852
11 13026 3612
12 20558 4126
13 28514 4634
14 48784 6639
15 69255 6700
16 100720 7408
17 130569 8951
18 181440 10083
19 262400 11296
20 362880 12299

NOTE: The column labelled with "The 1st approach" refers to the

median time cost of the first iterative approach; the column

labelled with "The 1st approach" represents the median time

cost of the 2nd approach.
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Figure 4.2: The time cost of the two proposed approaches on
models with the dimension from d = 3 to d = 20

5 10 15 20

0
e

+
0

0
1

e
+

0
5

2
e

+
0

5
3

e
+

0
5

(b)

Dimensionality

T
im

e
 o

f 
e
xe

c
u

ti
o

n
 (

s
)

NOTE: The solid line stands for the time cost of the first iterative

procedure; the dashed line refers to the time cost of the second

iterative approach.

From all the aforementioned numerical evidence, we con-
clude that the computational burden of the second iterative
approach is less than the first one, and hence, we shall use the
second iterative approach to select and estimate the SSIVAR
model in real implementation.
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5
SELECTION OF HYPER-PARAMETERS

As selecting the optimal bandwidth is an essential topic in
local polynomial regression and the selection of tuning para-
meters largely determine whether the SCAD -type penalised
approach can consistently select the true model, we shall dis-
cuss the choice of these hyper-parameters in this chapter, and
thus develop some efficient criteria to select them. We will
explore the selection of bandwidth in Section 5.1 and address
how to choose tuning parameter in Section 5.2. Meanwhile,
we give simulation studies to demonstrate the performance of
the corresponding metrics.
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5.1 Bandwidth selection

We have set a bandwidth in the simulation study of previ-
ous chapters, the bandwidth h we use is 0.25 of the range
of estimated indices, which is 25%× (max

{
y>

1 β̂, · · · ,y>
t β̂

}−
min

{
y>

1 β̂, · · · ,y>
t β̂

}
). In this chapter, we will test different

bandwidths and we find it is quite hard to visualise whether
a particular value of h is "large" or "small". Here we prefer
to use the percentage H which is the percentage of the whole
range, to notate the size of bandwidth.

It states in Fan and Gijbels (1996) that a theoretical op-
timal bandwidth is obtained by minimising the conditional
Mean Square Error (MSE) given X= (X1, . . . ,Xn) or the condi-
tional weighted Mean Integrated Square Error (MISE) given
X = (X1, . . . ,Xn). Accordingly, the criteria used for assessing
the performance of the resulting estimates are their MSE and
Relative MISE.

Although MSE-criterion or RMISE-criterion can be ap-
plied in the simulation study, in the real dataset, the true
parameters are unknown and either of them is unable to be
used. Thus, the cross-validation was considered as a possible
alternative to select the bandwidth. Wu et al.(1998) proposed
to use this statistic to choose the bandwidth.

However, it has been well studied in the literature that
the cross-validation cannot consistently identify the optimal
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bandwidth, whose choice always leads to overtting results,
see Yang (2005) and Shao (1997). The other shortage of CV
is that the computational burden of a grid-search approach
based on cross-validation is very heavy. From our experience,
in the high dimensional situation, the parallel computing
should be applied to speed up the computation of left-one-out
cross-validation.

Consequently, we are going to explore a data-driven method
to evaluate the performance of the estimation with a sequence
of bandwidth parameters from 0 to 100%. If the resulting esti-
mates of our proposed approach are not very sensitive to the
choice of the bandwidth as long as H is chosen to be within
a reasonable range, and thus we can practically choose a
befitting bandwidth in that range.

Let (Xi,Yi), i = 1, . . . ,n denote the observations, it states in
Fan and Gijbels(1996) that a theoretical optimal bandwidth
is obtained by minimising the conditional Mean Square Er-
ror (MSE) given X= (X1, . . . ,Xn) or the conditional weighted
Mean Integrated Square Error (MISE) given X= (X1, . . . ,Xn).
Accordingly, the criteria used for assessing the performance
of the resulting estimates are their MSE and Relative MISE.

Specifically, we employ median MSE in all the replications
to measure the goodness of the estimated index parameter β̂,
which is defined as follows:
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MSEβ =
d∑

m=1
(β̂l

m−βm)2, (5.1)

where β̂l
m, m = 1, . . . ,d is either the unpenalised estimator or

the penalised estimator from the l-th, which gives a median
MSE from all the MSEs from L replications, βm is the true
index parameter; and we evaluate the goodness of estimators
of coefficients in terms of the median relative MISE (RMISE),
which can be approximated by

RMISEA(·) ≈
∑n−l

k=1
∑p

j=1
∑d

ı=1
∑d

=1(âl
jı (zk)−a jı (zk))2∑n−l

k=1
∑p

j=1
∑d

ı=1
∑d

=1 a jı (zk)2
, (5.2)

where âl
jı (zk), is either the unpenalised estimator or the

penalised estimator of the function at the (ı, ) entry of the
matrix A j, in the l-th replication, which leads to a median
RMISE from all the RMISEs from L replications, and zk =
y>

k β̂, k = 1, . . . ,n− l. Analogically, we will report the median
RMISE from the simulation replications.

As the choice of bandwidth will impact both the model fit-
ting and model selection, we also introduce the rate of "correct
model" described in Section 4.3 to measure the performance
of model selection.

Now, we execute a simulation on the regression example
(4.52) with dimension d = 3 to explore the relationship be-
tween different bandwidth and the accuracy of estimation
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and selection. The results are intuitively reported in Figure
5.1 and concretely summarised in Table 5.1 and Table 5.2.
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Figure 5.1: Sensitivity of the choice of bandwidth H on the
model with dimensions d = 3
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NOTE: Simulation results: (a) sensitivity of model selection to estimates to H; (b)

sensitivity of MSE of index parameters to H; (c) sensitivity of RMISE of

functional coefficients to H. In all cases: solid line, estimate on underlying

model with noise εi; dashed line, estimate on underlying model without

noise.
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Table 5.1: The sensitivity of model selection to the bandwidth

Bandwidth Correct Rate
(H) With ε Without ε
0.05 0.000 0.000
0.10 0.080 0.138
0.15 0.500 0.573
0.20 0.818 0.895
0.25 0.944 0.964
0.30 0.929 0.960
0.35 0.875 0.900
0.40 0.690 0.725
0.45 0.480 0.525
0.50 0.245 0.350
0.55 0.150 0.145
0.60 0.100 0.085
0.65 0.055 0.040
0.70 0.045 0.020
0.75 0.035 0.015
0.80 0.030 0.010
0.85 0.030 0.005
0.90 0.025 0.005
0.95 0.025 0.005
1.00 0.025 0.005
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Table 5.2: The sensitivity of model estimation to the band-
width

Bandwidth MSE RMISE
( H ) With ε Without ε With ε Without ε
0.05 0.127 0.127 1.997 2.170
0.10 0.040 0.034 0.644 0.471
0.15 0.008 0.006 0.572 0.536
0.20 0.001 0.001 0.568 0.541
0.25 0.003 0.002 0.587 0.588
0.30 0.016 0.015 0.608 0.609
0.35 0.059 0.049 0.632 0.627
0.40 0.116 0.078 0.648 0.646
0.45 0.188 0.145 0.663 0.658
0.50 0.298 0.252 0.674 0.671
0.55 0.370 0.375 0.681 0.681
0.60 0.413 0.432 0.686 0.685
0.65 0.440 0.457 0.690 0.689
0.70 0.501 0.515 0.692 0.692
0.75 0.543 0.526 0.694 0.693
0.80 0.562 0.554 0.695 0.695
0.85 0.569 0.559 0.696 0.695
0.90 0.563 0.563 0.697 0.696
0.95 0.568 0.558 0.697 0.696
1.00 0.563 0.561 0.697 0.697

The finding from the simulated results is twofold. Firstly,
there indeed exists the optimal bandwidth for the penalised
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estimates of both index parameters and varying coefficients,
which is inside the range (0.1,0.3). Secondly, as illustrated,
both the performance of model selection and estimation are
not very sensitive to the choice of the bandwidth once H is
chosen to be within the range (0.1,0.3), hence an empirical
reasonable bandwidth can be selected with this range. Con-
cretely, we would like to choose the optimal bandwidth within
that range. Hence, we conduct another simulation to show
the sensitivity of each metric to the bandwidth in a lessened
range which is from 0.16 to 0.35. The simulated results are
summarised in Table 5.3 and visually reported in Figure 5.2.
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Table 5.3: The sensitivity of model selection and estimation to
the bandwidth

Bandwidth Correct Rate MSE RMISE
0.16 0.567 0.005 0.568
0.17 0.688 0.002 0.556
0.18 0.721 0.001 0.542
0.19 0.767 0.002 0.583
0.20 0.818 0.001 0.568
0.21 0.832 0.001 0.584
0.22 0.874 0.001 0.564
0.23 0.923 0.002 0.588
0.24 0.931 0.002 0.587
0.25 0.944 0.003 0.587
0.26 0.951 0.004 0.591
0.27 0.964 0.017 0.599
0.28 0.944 0.018 0.605
0.29 0.935 0.019 0.604
0.30 0.929 0.016 0.608
0.31 0.923 0.017 0.613
0.32 0.920 0.035 0.620
0.33 0.910 0.046 0.624
0.34 0.905 0.056 0.627
0.35 0.875 0.059 0.632
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Figure 5.2: The sensitivity of model selection and estimation
to the bandwidth within the range (0.16,0.35)

(a)

H

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34

NOTE: Solid line: sensitivity of model selection to H; dashed line: sensitivity

of MSE of index parameters to H; dotted line: sensitivity of RMISE of

functional coefficients to H.

From Table 5.3 and Figure 5.2, we can find the optimal
bandwidth from each metric. As the primary target of the
proposed approach is to identify the true sub-model, we shall
firstly follow the metric of “Correct Rate" to find the optimal
bandwidth, which is 0.27. Then, if the model has been appro-
priately selected, we will get the optimal bandwidth regarding
MSE or RMISE.

Furthermore, we also execute a simulation on the under-

104



CHAPTER 5. SELECTION OF HYPER-PARAMETERS

lying model with dimension d = 10 by using the penalised
approach to demonstrate the sensitivity of estimation accu-
racy to the bandwidth in higher dimensional situation. The
tuning parameters used here are well selected based on the
GIC, which we will concretely explain in Section 5.2.

Similarly, we conduct a simulation with sample size n =
1000 in a total of 300 replications. The results are reported in
Figure 5.3. From these three figures, we remark that in the
relatively high-dimensional model, both the optimal choice
of bandwidth and the sensitivity to the choice of this hyper-
parameter are fairly similar to the situation in the modest-
dimensional model. The optimal bandwidth for penalised es-
timates of index parameters and the optimal bandwidth for
penalised estimates of functional coefficients exists in range
(0.15,0.35). Additionally, we provide the details of the simu-
lated results in Table 5.4 and Table 5.5.
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Figure 5.3: Sensitivity of the choice of bandwidth H on the
model with dimensions d = 10
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NOTE: Simulation results: (a) sensitivity of model selection to estimates to H; (b)

sensitivity of MSE of index parameters to H; (c) sensitivity of RMISE of

functional coefficients to H. In all cases: solid line, estimate on underlying

model with noise εi; dashed line, estimate on underlying model without

noise.
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Table 5.4: The sensitivity of model estimation to the band-
width on the model with dimensions d = 10

Bandwidth Correct Rate
( H ) With ε Without ε
0.05 0.000 0.000
0.10 0.021 0.036
0.15 0.473 0.519
0.20 0.724 0.714
0.25 0.895 0.917
0.30 0.879 0.890
0.35 0.757 0.790
0.40 0.700 0.700
0.45 0.423 0.423
0.50 0.227 0.203
0.55 0.123 0.107
0.60 0.080 0.060
0.65 0.050 0.040
0.70 0.037 0.023
0.75 0.023 0.013
0.80 0.017 0.010
0.85 0.007 0.007
0.90 0.007 0.003
0.95 0.007 0.003
1.00 0.007 0.003
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Table 5.5: The sensitivity of model estimation to the band-
width on the model with dimensions d = 10

Bandwidth MSE RMISE
( H ) With ε Without ε With ε Without ε
0.05 0.372 0.371 2.447 2.586
0.10 0.365 0.372 1.368 1.613
0.15 0.272 0.196 0.825 0.863
0.20 0.065 0.069 0.710 0.754
0.25 0.057 0.038 0.708 0.687
0.30 0.077 0.035 0.691 0.700
0.35 0.136 0.102 0.708 0.694
0.40 0.264 0.233 0.707 0.703
0.45 0.415 0.389 0.713 0.710
0.50 0.483 0.480 0.715 0.711
0.55 0.575 0.569 0.715 0.712
0.60 0.633 0.590 0.715 0.713
0.65 0.634 0.595 0.715 0.712
0.70 0.653 0.607 0.715 0.712
0.75 0.640 0.616 0.715 0.712
0.80 0.637 0.627 0.714 0.712
0.85 0.638 0.624 0.714 0.712
0.90 0.633 0.624 0.713 0.711
0.95 0.630 0.624 0.713 0.711
1.00 0.630 0.625 0.713 0.711

The aforementioned simulation studies provide the empir-
ical evidence that the optimal bandwidth H can always be
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found within a reasonable range. Hence, we conduct another
simulation to describe the sensitivity of model selection and
estimation to the bandwidth in the reasonable range which is
chosen from 0.16 to 0.35. The simulated results are reported
in Table 5.6 and Figure 5.4, respectively.
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Table 5.6: The sensitivity of model selection and estimation to
the bandwidth in the 10 dimensional model

Bandwidth Correct Rate MSE RMISE
0.16 0.523 0.196 0.772
0.17 0.602 0.124 0.837
0.18 0.768 0.102 0.708
0.19 0.705 0.140 0.700
0.20 0.724 0.065 0.710
0.21 0.797 0.106 0.665
0.22 0.842 0.060 0.704
0.23 0.807 0.076 0.708
0.24 0.836 0.066 0.710
0.25 0.895 0.057 0.708
0.26 0.903 0.057 0.713
0.27 0.914 0.081 0.694
0.28 0.889 0.068 0.688
0.29 0.883 0.056 0.693
0.30 0.879 0.077 0.691
0.31 0.853 0.082 0.691
0.32 0.842 0.093 0.693
0.33 0.829 0.086 0.702
0.34 0.797 0.123 0.697
0.35 0.757 0.136 0.708
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Figure 5.4: The sensitivity of model selection and estima-
tion to the bandwidth within the range (0.16,0.35) in the 10
dimensional model
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NOTE: Solid line: sensitivity of model selection to H; dashed line: sensitivity

of MSE of index parameters to H; dotted line: sensitivity of RMISE of

functional coefficients to H.

Furthermore, we remark that our simulated results are in
line with the idea of Li, Ke and Zhang (2015) to empirically
choose the bandwidth as H = 0.6(d/n)0.2. Therefore, we also
recommend to follow their idea to select the bandwidth in real
implementation.
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5.2 Selection of tuning parameters

In the thesis, we use the generalised information criterion
(GIC) to determine the tuning parameters, which is proposed
in Fang and Tang (2013). The tuning parameter vector λ=
(λ1,λ2, · · · ,λpd2+d, λ̃1, · · · , λ̃d) is of dimension pd2 + d, but to
simultaneously choose a total of pd2+d tuning parameters is
very challenging. Therefore, for brevity purposes, we consider
a 2-dimensional problem about λ= (λA,λβ) ∈R2.

As in the true model, the non-zero coefficients may consist
of functional coefficients and the constant coefficients, it is
necessary to firstly calculate that each unknown functional
parameter amounts to how many unknown constant parame-
ters. We follow the idea of Cheng, Zhang and Chen (2009),
which suggests that when sample size n is sufficiently large,
an unknown functional parameter equals to approximate
1.028571h−1 constant parameters when Epanechnikov ker-
nel is used. Hence, we select the optimal tuning parameters
λ= (λA,λβ) ∈R2 by minimising

GICλ=log(σλ)+ an

n
× (DFλ+1.028571h−1DFλ̃), (5.3)

where an = log{log(n)} log(1.028571h−1d2+d), DFλ is the num-
ber of significant constant parameters, DFλ̃ is the number of
the significant functional parameters and σλ is the residual
sum of squares which is defined as follows,
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σλ = 1
(n− p)

n∑
t=p+1

{
yt−

p∑
j=1

Â j(λA)(yt−lβ̂λβ)yt− j −Xtα̂
}2

.

Then, we denote the optimal tuning parameterλ= (λA,λβ) ∈
R2 by λ̂, which is determined by

λ̂= argmin
λ

GICλ.

Since in real application, it is challenging to simultaneously
work out these two tuning parameters λA and λβ by 5.3, we
construct an iterative algorithm to get the optimal tuning
parameters.

1. Choose an initial value of λ0
β
, the tuning parameter λA

is selected according to

GICλA = log(σλ0)+ ān

n
× (DFÂ +1.028571h−1DFÃ),

where ān = log{log(n)} log(1.028571h−1d2), DFÂ is the
number of significant covariates with constant coeffi-
cients, DFÃ is the number of significant covariates with
varying coefficients and σλ0 is

σλ0 = 1
(n− p)

n∑
t=p+1

{
yt−

p∑
j=1

Â j(λ̂A)(yt−lβ̂λ0
β
)yt− j −Xtα̂

}2
.

The selected tuning parameter λ̂A is obtained as

λ̂A = argmin
λA

GICλA .

113



CHAPTER 5. SELECTION OF HYPER-PARAMETERS

2. By updating λ̂A, the selected tuning parameter λ̂β can
be selected by minimising

GICλβ = log(σλ1)+n−1 log{log(n)} logd×DFβ̂,

where DFβ̂ is the number of relevant index parameters
identified by β̂ and σλ1is

σλ1 = 1
(n− p)

n∑
t=p+1

{
yt−

p∑
j=1

Â j(λ̂A)(yt−lβ̂λ̂β)yt− j −Xtα̂
}2

.

Replace λ0
β

in Step 1 by λ̂β and keep repeating the two
steps above until convergence. Then, we take the con-
verged λ̂A and λ̂β as the selected optimal tuning para-
meters.

Now, we employ a simulation study to illustrate the good-
ness of GIC and show that the sensitivity to the choice of λA

and λβ are different. The performance of GIC is assessed in
terms of "Correct Rate". We first fix λβ = 70 and bandwidth
H = 0.27 in a model with dimension d = 3 to examine the
performance of GICλA , and then we conduct another simula-
tion by fixing λA = 2.5 to test the performance of GICλβ. We
intuitively present the simulated results in Figure 5.5 and
concretely reported the results in Table 5.7 - Table 5.10.
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Figure 5.5: GIC with respect to different tuning parameters
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NOTE: The solid curve depicts the Correct Rate and the dashed curve

indicates the GIC with respect to different tuning parameters

λA in (a) and the GIC with respect to a sequence of λβ in (b),

respectively.
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Table 5.7: The performance of GICλA from the simulation on
the model with d = 3

λA Correct Overfitting Underfitting Others
0.5 0.897 0.103 0.000 0.000
1.0 0.937 0.063 0.000 0.000
1.5 0.951 0.049 0.000 0.000
2.0 0.957 0.043 0.000 0.000
2.5 0.958 0.039 0.003 0.000
3.0 0.954 0.020 0.026 0.000
3.5 0.953 0.019 0.028 0.000
4.0 0.956 0.012 0.032 0.000
4.5 0.943 0.012 0.045 0.000
5.0 0.932 0.016 0.052 0.000
5.5 0.933 0.014 0.053 0.000
6.0 0.924 0.012 0.064 0.000
6.5 0.921 0.012 0.067 0.000
7.0 0.903 0.011 0.086 0.000
7.5 0.896 0.010 0.094 0.000
8.0 0.892 0.010 0.098 0.000
8.5 0.884 0.008 0.107 0.001
9.0 0.869 0.007 0.124 0.000
NOTE: The column labeled by “Correct”, “Under-fitted”, “Over-fitted"

and “Others" refers to the ratio of correct models, ratio of under-

fitted models, ratio of over-fitted models and ratio of other models,

respectively.
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Table 5.8: The performance of GICλA and BICλA on the model
with d = 3

λA Correct Rate GICλA BICλA

0.5 0.897 0.160 0.156
1.0 0.937 0.157 0.152
1.5 0.951 0.155 0.151
2.0 0.957 0.148 0.142
2.5 0.958 0.141 0.136
3.0 0.954 0.138 0.134
3.5 0.953 0.136 0.131
4.0 0.956 0.137 0.133
4.5 0.943 0.139 0.134
5.0 0.932 0.146 0.141
5.5 0.933 0.143 0.138
6.0 0.924 0.145 0.140
6.5 0.921 0.146 0.141
7.0 0.903 0.152 0.147
7.5 0.896 0.159 0.154
8.0 0.892 0.152 0.148
8.5 0.884 0.153 0.148
9.0 0.869 0.160 0.155
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Table 5.9: The performance of GICλβ from the simulation on
the model with d = 3

λβ Correct Overfitting Underfitting Others
15 0.942 0.058 0.000 0.000
30 0.945 0.055 0.000 0.000
40 0.953 0.047 0.000 0.000
45 0.955 0.045 0.000 0.000
50 0.956 0.044 0.000 0.000
55 0.961 0.038 0.001 0.000
60 0.964 0.034 0.002 0.000
65 0.944 0.054 0.002 0.000
70 0.958 0.039 0.003 0.000
75 0.948 0.051 0.001 0.000
80 0.945 0.052 0.003 0.000
90 0.953 0.045 0.002 0.000

105 0.950 0.047 0.003 0.000
120 0.947 0.048 0.005 0.000
NOTE: The column labeled by “Correct”, “Under-fitted”, “Over-fitted"

and “Others" refers to the ratio of correct models, ratio of under-

fitted models, ratio of over-fitted models and ratio of other models,

respectively.
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Table 5.10: The performance of GICλβ and BICλβ on the model
with d = 3

Correct Rate GICλβ BICλβ

15 0.942 0.148 0.144
30 0.945 0.145 0.140
40 0.953 0.140 0.135
45 0.955 0.138 0.134
50 0.956 0.139 0.134
55 0.961 0.136 0.132
60 0.964 0.137 0.133
65 0.944 0.140 0.135
70 0.958 0.141 0.136
75 0.948 0.147 0.141
80 0.945 0.146 0.141
90 0.953 0.139 0.137

105 0.950 0.144 0.139
120 0.947 0.145 0.140

Furthermore, we would like to examine the performance
of this metric in higher dimensionality and thereby extend
the dimension of the model to d = 10. By fixing λA = 30 and
bandwidth H = 0.27, we conduct a simulation to describe the
performance of GICλβ. Analogically, the detailed simulation is
executed with sample size n = 1000 in a total of 300 replica-
tions. The simulated results are reported in Table 5.11 and
Table 5.12.
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Then, to illustrate the accuracy of GICλA, we fix λβ = 35
and bandwidth H = 0.27, and then conduct a simulation,
whose results are reported in Table 5.13 and Table 5.14. The
simulated results are visually depicted in Plot (a) and Plot (b)
respectively in Figure 5.6.
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Figure 5.6: GIC with respect to different tuning parameters
on the model with dimension d = 10

(a)

λβ

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

(b)

λ.A

26 28 30 32 34 36 38 40 50

NOTE: The solid curve depicts the Correct Rate and the dashed curve

indicates the GIC concerning different tuning parameters λβ in

(a) and GIC with respect to a sequence of λA in (b), respectively.
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Table 5.11: The performance of GICλβ on the model with d =
10

λβ Correct Overfitting Underfitting Others
10.0 0.691 0.309 0.000 0.000
12.5 0.732 0.268 0.000 0.000
15.0 0.714 0.286 0.000 0.000
17.5 0.843 0.157 0.000 0.000
20.0 0.747 0.221 0.032 0.000
22.5 0.763 0.196 0.041 0.000
25.0 0.837 0.163 0.000 0.000
27.5 0.771 0.247 0.043 0.000
30.0 0.825 0.128 0.047 0.000
32.5 0.761 0.195 0.044 0.000
35.0 0.846 0.099 0.055 0.000
37.5 0.768 0.160 0.072 0.000
40.0 0.724 0.223 0.053 0.000
42.5 0.644 0.253 0.103 0.000
45.0 0.641 0.252 0.097 0.000
NOTE: The column labeled by “Correct”, “Under-fitted”, “Over-fitted"

and “Others" refers to the ratio of correct models, ratio of under-

fitted models, ratio of over-fitted models and ratio of other models,

respectively.

122



CHAPTER 5. SELECTION OF HYPER-PARAMETERS

Table 5.12: The performance of GICλβ and BICλβ on the model
with d = 10

Correct Rate GICλβ BICλβ

10.0 0.691 0.912 0.698
12.5 0.732 0.824 0.667
15.0 0.714 0.848 0.723
17.5 0.843 0.814 0.657
20.0 0.747 0.861 0.679
22.5 0.763 0.736 0.579
25.0 0.837 0.781 0.626
27.5 0.771 0.821 0.683
30.0 0.825 0.713 0.542
32.5 0.761 0.736 0.625
35.0 0.846 0.842 0.654
37.5 0.768 0.745 0.571
40.0 0.724 0.874 0.665
42.5 0.644 0.951 0.756
45.0 0.641 0.974 0.793
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Table 5.13: The performance of GICλA on the model with d =
10

λA Correct Overfitting Underfitting Others
26 0.683 0.317 0.000 0.000
27 0.723 0.263 0.014 0.000
28 0.771 0.214 0.015 0.000
29 0.761 0.168 0.071 0.000
30 0.846 0.099 0.055 0.000
31 0.842 0.142 0.016 0.000
32 0.825 0.121 0.054 0.000
33 0.903 0.081 0.016 0.000
34 0.862 0.043 0.095 0.000
35 0.823 0.063 0.114 0.000
36 0.821 0.057 0.122 0.000
37 0.787 0.067 0.146 0.000
38 0.793 0.063 0.144 0.000
39 0.741 0.082 0.177 0.000
40 0.766 0.031 0.203 0.000
50 0.689 0.042 0.269 0.000
NOTE: The column labeled by “Correct”, “Under-fitted”, “Over-fitted"

and “Others" refers to the ratio of correct models, ratio of under-

fitted models, ratio of over-fitted models and ratio of other models,

respectively.
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Table 5.14: The performance of GICλA and BICλA on the model
with d = 10

λA Correct Rate GICλA GICλA

26 0.683 0.901 0.689
27 0.723 0.825 0.654
28 0.771 0.928 0.743
29 0.761 0.754 0.588
30 0.846 0.841 0.654
31 0.842 0.733 0.607
32 0.825 0.783 0.621
33 0.903 0.706 0.518
34 0.862 0.612 0.474
35 0.823 0.842 0.656
36 0.821 0.635 0.489
37 0.787 0.856 0.663
38 0.793 0.872 0.715
39 0.741 0.843 0.729
40 0.766 0.736 0.572
50 0.689 0.951 0.732

From the numeric results given above, it can be seen that
GIC is able to precisely and consistently identify the optimal
tuning parameters. Moreover, from Figure 5.5 and Figure
5.6, we notice that this criterion can even describe the accu-
rate pattern of the change of corresponding correct rates to a
sequence of tuning parameters. All the simulated results cor-
roborate that the GIC works quite well in choosing the tuning
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parameters of the index and varying coefficients from both
modest dimensional and relative high dimensional models.
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6
SIMULATION STUDY

In previous chapters, we use the model (4.52) for all the nu-
merical analysis, to avoid over specified, thus, it is reasonable
to conduct simulations on another example. Therefore, in
this section, we use a new simulation example to verify the
effective and accuracy of the proposed iterative algorithm.
For the choice of hyper-parameters, we shall follow the idea
in Chapter 5.1 that the bandwidth is selected in terms of
H = 0.6(d/n)0.2 and the tuning parameters are determined by
the iterative GIC criterion we described in Section 5.2.

We now consider the following example of SSIVARM,

yt =A1(zt−l)yt−1+A2(zt−l)yt−2+Xtα+εt, (6.1)

where zt−l = y>
t−lβ, yt, t = 1, · · · ,n is a d− dimensional station-

ary time series with 2 lags, Xt, t = 1, · · · ,n is a d×3 matrix gen-
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erated from d− dimensional Gaussian distribution, the εt are
independently generated from the normal distribution with
E(εt|Ft)= 0d and cov(εt|Ft)=σ2Id, with Ft = {(Yl−1, Xl) : l ≤
t}. We set l=1, σ= 1

3, α= (1,2,2)>, β= (0.6,0.8,0, · · · ,0)>,

A1(zt−l)=



0 0 0 0 · · · 0
0 0.25(cos(πzt−l)+0.5) exp(−z2

t−l) 0 · · · 0
0 0 0.8exp(−z2

t−l) 0 · · · 0
0 0 0 0 · · · 0
... ... ... ... . . . 0
0 0 0 0 · · · 0


,

A1(zt−l)=



0.75 0 0 0 · · · 0
0 0.5sin(πzt−l)+0.3 0 0 · · · 0
0 0 0 0 · · · 0
... ... ... ... . . . 0
0 0 0 0 · · · 0

 .

In a similar way to the simulation studies in Chapter 5,
we consider the models in the dimension of d = 3 and d = 10,
respectively. The first two predictors should be generated inde-
pendently from a normal distribution, and then we generate
100+n observations followed by the process (6.1). Hence, we
will discard the first 100 predictors and let yt, t = 1, · · · ,n be
the remaining predictors we have. For the lower dimensional
model, we conduct the simulation with sample size n = 800,
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over a total of 1000 replications. Since the SSIVARM (6.1)
has a very fancy structure, in order to have a reasonably good
simulated results in higher dimensionality d = 10, we will
increase the sample size to n = 1000 to give more information
to fit the model.

Analogically, we will measure the accuracy of the proposed
approach on model selection and estimation. To evaluate the
performance of model selection, we report the rate of cor-
rect model, Under-fitting model, Over-fitting model and other
models. In one simulation, once the resulting model simulta-
neously detects the true model and identifies the modelling
structure correctly, we classify it as a "correct model"; when
the estimated model deletes at least one important variables
but does not include any irrelevant variables, we classify it as
an "under-fitting model"; when the estimated model includes
at least one insignificant variables but does not miss any rele-
vant variables, it is regarded as an "over-fitting model". The
"other models" represent that the estimated model not only in-
cludes the insignificant variables but also ignores significant
variables.

To evaluate the estimation accuracy of the proposed esti-
mate, in this section, we use median MSEβm with respect to
each non-zero index parameter and RMISEa jı 

with respect to
each non-zero coefficient parameter. Concretely, the MSEβm is
calculated in component-wise manner, which can be defined
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as

MSEβm = (β̂l
m−βm)2, (6.2)

where β̂(l)
m , m = 1,2, . . . ,d, l = 1,2, . . . ,L, is the estimator of the

m− th index parameter from the l− th iteration, which leads
to a median MSEβm from all the MSEsβm from L replications;
the median RMISEa jı  for the estimates of each relevant coef-
ficient, which is approximated as follows

RMISEa jı  ≈ [

∑n−l
k=1(âl

jı (zk)−a jı (zk))2∑n−l
k=1(zk)2

], (6.3)

where âl
jı (zk), is the estimator of the function at the ı entry

of the matrix A j, in the l-th replication, which leads to a me-
dian RMISEa jı  from all the RMISEa jı  from L replications,
and zk = y>

k β̂, k = 1, . . . ,n− l. The MSE of the unknown pa-
rameter α will also be taken into consideration. Additionally,
introducing a benchmark is necessary for evaluating the ac-
curacy of the estimation. We also use the "oracle estimators"
as the benchmark and hence, we calculate the RMISEa jı  and
MSEβm of oracle estimators as well. We report the simulated
results of model selection and estimation in Table 6.1.

We can see from Table 6.1 that, in all cases, the percentage
of the correctly selected models is no less than 86%, which can
verify the accuracy of the proposed method on selecting the
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Table 6.1: The simulation results of model selection and esti-
mation

Oracle d=3 d=10
Correct Rate 1.000 0.936 0.862
Over-fitting Rate 0.000 0.010 0.037
Under-fitting Rate 0.000 0.019 0.049
Rate of Other Models 0.000 0.035 0.052
MSEβ1 0.0027 0.0087 0.0288
MSEβ2 0.0018 0.0218 0.0511
MSEα 0.0021 0.0027 0.0025
RMISEa122 0.6986 0.7149 0.7569
RMISEa123 0.5847 0.6489 0.7341
RMISEa133 0.5416 0.6700 0.7615
RMSEc211 0.0002 0.0053 0.0336
RMISEa222 0.6075 0.6160 0.6318

NOTE: The columns labeled by d = 3 and d = 10 represent the estima-

tors from the proposed method in the 3-dimensional models and

10-dimensional models, respectively. the rows labeled by “oracle”

depict the oracle estimators. The coefficient c211 is assume to be

a constant and hence it is measured by MSEc211is.

true model. Additionally, the fact that the ratio of correctly
fitted models increases with the decrease of dimension also
makes sense. Moreover, all the values of MSE and RMISE
are reasonably small, and gradually become smaller with the
decrease of the dimension of models. Additionally, the oracle
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estimates are always more accurate. Therefore, we conclude
that our proposed method can simultaneously select the true
model correctly and estimate the model precisely.
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7
REAL DATA ANALYSIS

We next apply the proposed sparse single-index vector autore-
gressive model to analyse and forecast the change of house
price in ten major metropolitan areas in the United States.
The data is chosen from the SP CoreLogic Case-Shiller Home
Price NSA Index, which measures the average change in the
value of the residential real estate in a specific city given a con-
stant level of quality. For instance, the change of house price
of Los Angles are in terms of the corresponding SP CoreLogic
Case-Shiller Los Angeles Home Price NSA Index. Meanwhile,
the choice of the ten metropolitan areas are determined by
the cities listed in a Composite Home Price Index called “
S&P CoreLogic Case-Shiller 10-City Composite Home Price
NSA Index”. This data set was collected monthly across thirty
years from January 1987 to January 2017, which leads to the

133



CHAPTER 7. REAL DATA ANALYSIS

sample size n = 361 and all the variables in this dataset are
seasonally adjusted. These ten metropolitan areas are:

1. Los Angeles-Long Beach-Santa Ana, CA Metropolitan
Statistical Area (coded by yt1),

2. Las Vegas-Paradise, NV Metropolitan Statistical Area
(coded by yt2),

3. San Diego-Carlsbad-San Marcos, CA Metropolitan Sta-
tistical Area (coded by yt3),

4. San Francisco-Oakland-Fremont, CA Metropolitan Sta-
tistical Area (coded by yt4),

5. Denver-Aurora, CO Metropolitan Statistical Area (coded
by yt5),

6. New York City Area (coded by yt6),

7. Miami-Fort Lauderdale-Pompano Beach, FL Metropoli-
tan Statistical Area (coded by yt7),

8. Washington-Arlington-Alexandria, DC-VA-MD-WV Metropoli-
tan Statistical Area (coded by yt8),

9. Boston-Cambridge-Quincy, MA-NH Metropolitan Statis-
tical Area (coded by yt9),
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10. Chicago-Naperville-Joliet, IL Metropolitan Division (coded
by yt10).

Before the modelling, we make a transformation of these vari-
ables that is taking the second difference of logarithms in
order to construct models on stationary time series, which
reduces the sample size to n = 359. Furthermore, we stan-
dardise the data such that they have the sample mean 0 and
sample covariance matrix I10.

In this section, the focus is to forecast the home price
growth of these ten areas at the state level, that is, in the
prediction of the home price change in a target area, the
effect from all the other areas will be taken into consid-
eration. Moreover, we are also interested in explicitly re-
vealing which area contribute significant effects on the fore-
casting of a target area, and whether their impacts vary
over the change of a national home price index (coded by
zt−l = y>

t−lβ, yt−l = (yt−l,1, yt−l,2, . . . , yt−l,10)>), which is a linear
combination of the index parameter (coded by β) and all
the collected predictors. Our study leads to a relative high-
dimensional problem and standard regression techniques of-
ten fail to estimate it. Typically, before building a time-series
model on sequential observations, we shall first specify the
number of lags in the model, which are commonly determined
by AIC or BIC. In our real data analysis, considering the trade-
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off between computational cost and accuracy of prediction, we
plan to simplify this problem by assuming the number of lags
to be 1. Hence, to realise the object, we employ our proposed
forecast model

yt =
p∑

j=1
A j(Zt−l)yt− j +εt,

where we set l = 1. As our aim is to identify the significant pre-
dictors to a target area and only a handful of lags will be nec-
essary for prediction, the regression result should be sparse.
We apply our proposed method to obtain the penalised estima-
tors of varying coefficients A j(·) and the index parameters β,
respectively. The resulting penalised estimators suggest that
the important index parameters are β = (β1,β3,β4,β5,β8)>,
which includes the metropolitan area of Los Angeles, San
Diego, San Francisco, Denver and Washington. Meanwhile,
by our proposed method, we have selected the true model as
follows,



yt,2

yt,3

yt,5

yt,6

yt,7

yt,8


=



A(1)22 yt−1,2

A(1)33 yt−1,3+ A(1)39 yt−1,9

A(1)54 yt−1,4

0
A(1)77 yt−1,7

A(1)84 yt−1,4


+



0
0
0

A(2)61 yt−2,1

A(2)7,10 yt−2,10

A(2)8,10 yt−2,10


+



εt,2

εt,3

εt,5

εt,6

εt,7

εt,8


.
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It can be seen that the autoregressions of metropolitan ar-
eas of Las Vegas, San Diego, Denver, New York City, Miami
and Washington are captured by the sparse single-index VAR
model and concretely, our submodel also detects the cross-
dependence of these mojor areas across the country. Con-
cretely, it indicates that the home price in metropolitan area
of San Diego has statistical correlation with Boston; home
price in metropolitan area of Denver has statistical correla-
tion with San Francisco; home price in metropolitan area of
New York City has statistical correlation with Los Angeles;
home price in metropolitan area of Miami has correlation with
Chicago and home price in metropolitan area of Washington
has correlation with Chicago and San Francisco.

Then, we introduce a similar estimation procedure without
penalised approaches to estimate the specified model. By
applying the proposed estimation procedure, we obtain the
estimators of index parameters, which are

β = (β1,β3,β4,β5,β8)>

= (0.3820, 0.3869, 0.1764, 0.8077, 0.1371)>.

From an intuitive evaluation, we find that the estimated
curves are not smooth enough, thus, we employ a second-
step local linear regression as a modifiction to generate better
estimated cures. We provide in Figure 7.1 and Figure 7.2 these
estimated curves from our purposed method and a second-step
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local linear regression.

Figure 7.1: Estimated curves of varying coefficients in A1(·)
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Figure 7.2: Estimated curves of varying coefficients in A2(·)
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As we can see from Figure 7.1 and Figure 7.2 , the esti-
mated coefficients are unlikely to be null or other constants,
and they all vary over the range of national home price index.

Moreover, we would like to further analyse our estimates
by examining whether each of the resulting residuals {εt,2,εt,3,
εt,5,εt,6,εt,7,εt,8}, t = 1, . . . ,n, is white noise. Then, we plot the
estimated residuals ε2 in figure 7.3.

As we can see in Figure 7.3, there is no obvious tendency,
which also corroborates the purposed selection and estimation
methods very well.
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In addition, we would like to evaluate the forecasting per-
formance of the selected model and have a further comparison
with the ARIMA model. For either model, we use the first 349
observations as the training data to estimate the conditional
expectation of the 350th observation. Then we repeat this
one-step forward prediction by adding one more observation
into the training set at a time. Finally, we end with using the
first 358th observations to forecast the 359th observation. We
use the mean squared prediction error (MSPE) as a measure
of overall performance which is defined as follows:

MSPE= 1
τd̂

τ∑
s=1

‖ŷT+s−yT+s‖2 ,

where τ = 10, d̂ = 6 and T = 349. The MSPE of the selected
model is 0.1925 while the MSPE of the ARIMA model is
0.2645. Hence, the selected model from our proposed method
performs better in terms of prediction error than the ARIMA
model.
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Figure 7.3: Residuals

0 50 100 150 200 250 300

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

d

R
e
s
_
 2

0 50 100 150 200 250 300 350
−

1
0

1
2

d

R
e
s
_
 3

0 50 100 150 200 250 300 350

−
2

−
1

0
1

2

d

R
e
s
_
 5

0 50 100 150 200 250 300 350

−
2

−
1

0
1

2

d

R
e
s
_
 6

0 50 100 150 200 250 300 350

−
2

−
1

0
1

2

d

R
e
s
_
 7

0 50 100 150 200 250 300 350

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

d

R
e
s
_
 8



C
H

A
P

T
E

R

8
CONCLUSION AND FUTURE WORK

We proposed in this thesis a novel method for model selec-
tion and nonparametric estimation in sparse single-index
varying coefficient VAR model via local linear smoothing and
penalised least squares. Based on the idea of generalised infor-
mation criterion, a specified metric to determine the involved
tuning parameters (regularisation parameters) has been es-
tablished. With the properly selected regularisation parame-
ters, we have shown that the proposed estimates perform
as good as the oracle estimates by solid numerical evidence.
Moreover, as a side-product from the exploration of the pro-
posed algorithm, we also developed an efficient method to fit
the single-index varying coefficient VAR model without spar-
sity, which can be applied to calculate the oracle estimators.
Additionally, the accuracy of the estimation from the proposed
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algorithm is backed up by intensive simulation studies.
After concluding the thesis, we would like to discuss some

interesting extensions for future study. First, the algorithm
used for minimising penalised least squares is the local quadratic
approximation, a more recent minimisation approach like the
local linear approximation, which has proven to be a better
solver, can be employed in the future work. Secondly, the pro-
posed model selection and estimation of a semiparametric
model inevitably includes two hyper-parameters: the smooth-
ing parameter and the regularisation parameter. In our cur-
rent work, for the purpose of simplicity, we select those two
class of parameters separately. Such a simplification makes
our method easier to implement and more computational effi-
ciency, though possibly not optimal. How to jointly tune both
hyper-parameters is another interesting topic open for the
future work.

143



BIBLIOGRAPHY

Akaike, H. (1973). Information theory and an extension of
the maximum likelihood principle. Proc. 2nd Int. Symp.
Information Theory. Budapest: Akademiai Kiado.

Antoniadis, A. and Fan, J. (2001) Regularization of Wavelet
Approximations. Journal of the American Statistical As-
sociation, 96, 939-967

Bickel, P. J., Ritov, Y. and Tsybakov, A. (2009). Simultaneous
analysis of Lasso and Dantzig selector. The Annals of
Statistics, 37, 1705-1732.

Boyd, S. and Vandenberghe, L (2004). Convex optimization.
Cambridge University Press.

Breiman, L. (1995). Better subset regression using the non-
negative garrote. Technometrics, 37, 373-384.

Breiman, L. (1996). Heuristics of instability and stabilization
in model selection. The Annals of Statistics, 24, 2350-
2383.

144



BIBLIOGRAPHY

Cai, Z., Fan, J. and Yao, Q. (2000). Functional-coefficient
regression models for nonlinear time series. Journal of
the American Statistical Association, 95, 941-956.

Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and
inferences for varying-coefficient models. Journal of the
American Statistical Association, 95, 888-902.

Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998). Local es-
timating equations. Journal of the American Statistical
Association, 93, 214-227.

Cheng, M.-Y., Zhang, W. and Chen, L.-H. (2009). Statisti-
cal estimation in generalized multiparameter likelihood
models. Journal of the American Statistical Association,
104, 1179–1191.

Cheng, M.-Y., Honda, T., Li, J., and Peng, H. (2014). Non-
parametric independence screening and structure iden-
tification for ultra high dimensional longitudinal data.
The Annals of Statistics, 42, 1819–1849.

Chen, R. and Tsay, R. S. (1993). Nonlinear Additive ARX
Models. Journal of the American Statistical Association,
88, 955-967.

145



BIBLIOGRAPHY

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004).
Least angle regression. The Annals of Statistics, 32, 407-
499.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and
Its Applications, London: Chapman & Hall.

Fan, J. and Zhang, W. (1999). Statistical estimation in vary-
ing coefficient models. The Annals of Statistics, 27, 1491-
1518.

Fan, J. and Zhang, W. (2000). Simultaneous confidence bands
and hypothesis testing in varying-coefficient models.
Scandinavian Journal of Statistics , 27, 715-731.

Fan, J. and Li, R. (2001). Variable selection via nonconcave
penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96, 1348-1360.

Fan, J., Zhang, C. and Zhang, J. (2001). Generalized Likeli-
hood Ratio Statistics and Wilks Phenomenon. The An-
nals of Statistics, 29, 153-193.

Fan, J., Yao, Q. and Cai, Z. (2003). Adaptive varying-coefficient
linear models. Journal of Royal Statistical Society, Series
B, 65, 57-80.

146



BIBLIOGRAPHY

Fan, J. and Huang, t. (2003). Profile likelihood inferences
on semiparametric varying-coefficient partially linear
models. Bernoulli, 11, 1031-1057.

Fan, J. and Li, R. (2004). New estimation and model selection
procedures for semiparametric modeling in longitudinal
data analysis. Journal of the American Statistical Asso-
ciation, 99, 710-723.

Fan, J. and Lv, J. (2008). Sure independence screening for
ultrahigh dimensional feature space (with discussion).
Journal of the Royal Statistical Society, Series B, 70,
849-911

Fan, J. and Zhang, W. (2008). Statistical methods with vary-
ing coefficient models. Statistics and Its Interface, 1,
179–195.

Fan, J., Feng, Y. and Wu, Y. (2009). Network exploration via
the adaptive LASSO and SCAD penalties. The Annals
of Applied Statistics, 3, 521-541.

Fan, J., Lv, J. and Qi, L., (2011). Sparse high dimensional
models in economics. Annual Review of Economics, 3,
291-317.

147



BIBLIOGRAPHY

Fan, Y. and Tang, C. Y. (2013). Tuning parameter selection in
high dimensional penalized likelihood. Journal of Royal
Statistical Society, Series B, 75, 531-552.

Fan, Y., Kong, Y., Li, D. and Zheng, Z. (2015). Innovated
interaction screening for high-dimensional nonlinear
classification. The Annals of Statistics, 43, 1243-1272.

Fan, Y. and Lv, J. (2016). Innovated scalable efficient esti-
mation in ultra-large Gaussian graphical models. The
Annals of Statistics, 44, 2098-2126.

Fang, X., Li, J., Wong, W. K., and Fu, B. (2014). Detecting the
violation of variance homogeneity in mixed models. Sta-
tistical Methods in Medical Research, DOI: 10.1177/0962280214526194.

Frank, E. and Friedman, J. H. (1993). A Statistical View of
Some Chemometrics Regression Tools. Technometrics,
35, 109-135.

Hardle, W. and Stoker, T. M. (1989). Investigating smooth
multiple regression by the method of average deriva-
tives. Journal of the American Statistical Association,
84, 986–995.

Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coefficient
models. Journal of Royal Statistical Society, Series B, 55,
757-796.

148



BIBLIOGRAPHY

Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998).
Nonparametric smoothing estimates of time-varying co-
efficient models with longitudinal data. Biometrika, 85,
809–822.

Huang, J., and Xie, H. (2007). Asymptotic oracle properties
of SCAD-penalized least squares estimators. Lecture
Notes-Monograph Series, 149–166.

Hunter, D. R. and Li, R. (2005). Variable selection using MM
algorithms. The Annals of Statistics, 33, 1617-1642.

Kauermann, G. and Tutz, G. (1999). On model diagnostics us-
ing varying coefficient models. Biometrika, 86, 119–128.

Kong, E. and Xia, Y. (2006). Variable selection for the single-
index model. Biometrika, 94, 217-229.

Lavergne, P. (1998). A Cauchy-Schwarz inequality for expec-
tation of matrices.

Li, R. and Liang, H. (2008). Variable Selection in Semipara-
metric Regression Modeling. The Annals of Statistics,
36, 261–286.

Liu, J., Li, R. and Wu, R. (2014). Feature selection for varying
coefficient models with ultrahigh dimensional covariates.

149



BIBLIOGRAPHY

Journal of the American Statistical Association, 109,
266–274.

Li, D., Ke, Y. and Zhang, W. (2015). Model selection and struc-
ture specification in ultra-high dimensional generalised
semi-varying coefficient models. The Annals of Statistics,
43, 2676-2705.

Lin, Y. and Zhang, H. H. (2003). Component selection and
smoothing spline analysis of variance models. The An-
nals of Statistics, 34, 2272-2297.

Nishii, R. (1984). Asymptotic properties of criteria for selec-
tion of variables in multiple regression. The Annals of
Statistics, 12, 758–765.

Nolan, D. and Pollard, D. (1987). U-processes: Rates of con-
vergence. The Annals of Statistics, 15, 780-799.

Pakes, A. and Pollard, D. (1989). Simulation and the Asymp-
totics of Optimization Estimators. Econometrica 57, 1027-
1057.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer.

Rapach, D. E. and Strauss, J. (2007). Forecasting real hous-
ing price growth in the Eighth District states. Regional
Economic Development, , 11, 33-42.

150



BIBLIOGRAPHY

Ruppert, D. and Wand, M. P. (1994). Multivariate Locally
Weighted Least Squares Regression. The Annals of Statis-
tics, , 22, 1346-1370.

Shao, J. (1997). An asymptotic theory for linear model selec-
tion. Statistica Sinica, 7, 221–264.

Song, R., Yi, F. and Zuo, H. (2012). On varying-coefficient
independence screening for high-dimensional varying-
coefficient models. Statistica Sinica, 24, 1735–1752.

Stefanski, L. A., Wu, Y., and White, K. (2014). Variable se-
lection in nonparametric classification via measurement
error model selection likelihoods. Journal of the Ameri-
can Statistical Association, 109, 574-589.

Tsay, R. S. (2014). Multivariate Time Series Analysis: With
R and Financial Applications, John Wiley Sons, Inc.,
Hoboken, New Jersey.

Wang, L., Peng, B., and Li, R. (2015). A high-dimensional non-
parametric multivariate test for mean vector. Journal of
the American Statistical Association, 110, 1658-1669.

Wu, C. O., Chiang, C. -T. and Hoover, D. R. (1998). Asymptotic
Confidence Regions for Kernel Smoothing of a Varying-
Coefficient Model with Longitudinal Data. Journal of
the American Statistical Association, 93, 1388-1402.

151



BIBLIOGRAPHY

Xia, Y. and Li, W. K. (1999). On single-index coefficient re-
gression models. Journal of the American Statistical
Association, 94, 1275-1285.

Xia, Y. (2006). Asymptotic distributions for two estimators
of the single-index model. Econometric Theory, 22, 1112-
1137.

Yang, Y. (2005). Can the strengths of aic and bic be shared?
A conflict between model identification and regression
estimation. Biometrika, 92, 937–950.

Yuan, M and Lin, Y. (2006). Model selection and estimation
in regression with grouped variables. Journal of Royal
Statistical Society, Series B, 68, 49–67.

Zhang, C-H. (2007). Penalized linear unbiased selection.
Technical Report, 2007-003

Zhang, X., Wu, Y., Wang, L., and Li, R. (2016). Variable Se-
lection for Support Vector Machines in Moderately High
Dimensions. Journal of the Royal Statistical Society, Se-
ries B, 78, 53-76.

Zhang, W. and Lee, s.-Y. (2000). Variable Bandwidth Selec-
tion in Varying-Coefficient Models. Journal of Multivari-
ate Analysis, 74, 116-134.

152



BIBLIOGRAPHY

Zhang, Y., Li, R. and Tsai, C-L. (2010). Regularization Param-
eter Selections via Generalized Information Criterion.
Journal of the American Statistical Association, 105,
312–323.

Zou, H. (2006). The adaptive Lasso and its oracle properties.
Journal of the American Statistical Association, 101,
1418-1429.

Zou, H. and Li, R. (2008). One-step sparse estimates in
nonconcave penalized likelihood models. The Annals of
Statistics, 36, 1509-1533.

153


	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgement
	Declaration
	Introduction
	Preamble
	A motivating example
	The sparse single-index vector autoregressive models

	Literature review
	Penalised approaches
	Tuning parameter selection by Generalised information criterion
	Framework of local polynomial modelling
	Varying coefficient models

	Estimation of single-index vector autoregressive model
	Model description
	Methodology
	Iterative procedure for estimating the single-index vector autoregressive models
	Computationally efficient estimation method

	Simulation study

	Algorithm
	Model specification
	Methodology
	Matrix transformation method
	Computationally Efficient Estimation Method

	Simulation study
	Comparison of the computational cost of the proposed two approaches

	Selection of hyper-parameters
	Bandwidth selection
	Selection of tuning parameters

	Simulation Study
	Real data analysis
	Conclusion and future work
	Bibliography

