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Abstract

In this thesis we investigate the fundamental limitations that the laws of the quantum

nature impose on the performance of quantum communications, quantum metrology and

quantum channel discrimination. In a quantum communication scenario, the typical tasks

are represented by the simple transmission of quantum bits, the distribution of entangle-

ment and the sharing of quantum secret keys. The ultimate rates for each of these protocols

are given by the two-way quantum capacities of the quantum channel which are in turn

defined by considering the most general adaptive strategies that can be implemented over

the channel. To assess these quantum capacities, we combine the simulation of quantum

channels, suitably generalized to systems of arbitrary dimension, with quantum telepor-

tation and the relative entropy of entanglement. This procedure is called teleportation

stretching. Relying on this, we are able to reduce any adaptive protocols into simpler block

ones and to determine the tightest upper bound on the two-way quantum capacities. Re-

markably, we also prove the existence of a particular class of quantum channel for which

the lower and the upper bounds coincide. By employing a slight modification of the tele-

portation scheme, allowing the two parties to share a multi-copy resource state, we apply

our technique to simplify adaptive protocols for quantum metrology and quantum channel

discrimination. In the first case we show that the modified teleportation stretching implies

a quantum Cramér-Rao bound that follows asymptotically the Heisenberg scaling. In the

second scenario we are able to derive the only known so far fundamental lower bound

on the probability of error affecting the discrimination of two arbitrary finite-dimensional

quantum channels.
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Introduction

In the last few decades, quantum information [10–13] has provided a huge speed-up to the

practical implementation of quantum technologies. The huge interest devoted to this broad

area of research mainly comes from the fact that the employment of quantum systems,

such as atoms and photons, allows to outperform several different task that are already

implemented on current technology. Moreover the size of computer’s components has been

pushed down to a regime where quantum features must be taken into account. Several

quantum algorithms have been demonstrated that, by exploiting quantum information

processing, the speed of computing is greatly enhanced [14, 15]. Quantum communica-

tion protocols such as quantum teleportation [16–20] and quantum cryptography [21, 22]

provide new and innovative techniques for the manipulation and the transmission of the

information that allow to improve the efficiency and the security of communications.

In the first part of this thesis, we consider quantum communication over quantum channels

which is one of the central topics of the theory. In this scenario, the most typical tasks in-

clude the reliable transmission of quantum information, quantum key distribution (QKD)

and the sharing of entanglement, whose importance is at the core of the implementation of

quantum teleportation, which is also a crucial tool for the setting up of a realistic quantum

Internet [23, 24]. Unfortunately, in practical implementations, one has to cope with the

fundamental problem of the interactions between the quantum carriers of the information

and the sorrounding environment. Such interactions lead to typical phenomena of noise

and decoherence that may rapidly weaken the purely quantum features of the systems

involved [25]. For this reason, the performance of any point-to-point quantum and pri-

vate communication scheme suffers from fundamental limitations that increase with the

distance between parties and a potential way to overcome this hindrance is to resort to

quantum repeaters [26, 27]. In this context, it is of prominent importance then to have

a complete understanding of the optimal rates that are achievable by two remote parties

connected by a quantum channel. To assess this problem, we need to consider the most
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general strategies allowed by quantum mechanics. This means that on the one hand we

must not put any constrain on the local operations (LOs), which need to be arbitrary

and completely general, whereas on the other, we assume that the parties are assisted

by unlimited two-way classical communication (CC), i.e. feed-forward and feedback, by

means of which the users can update their local quantum systems before and after each

transmission along the channel. The optimal rates are also known as the two-way quantum

capacities of the quantum channel, with different definitions depending on the operational

task we are considering. Namely we investigate the two-way capacities at which two re-

mote parties can distribute entanglement (D2), transmit quantum information (Q2) and

generate secret keys (K) over many uses of a quantum channel. Despite the theoretical

advances in this field [28–31], very little is known in the theory about these quantum

capacities. In fact, their determination is extremely hard since they are defined through

the optimization over all the possible adaptive strategies and then by taking the limit in

the number of channel uses going to infinite. The best route to follow is then represented

by finding suitable lower [32,33] and upper bounds [34] that usually are built on quantum

information measures as well as entanglement monotones [35].

In our work we first build a novel upper bound on the two-way capacities which is given

in terms of the relative entropy of entanglement (REE) [36]. Such an upper bound is

then simplified through a completely innovative and powerful methodology. This allows

to reduce any adaptive protocol of a given task into a simpler protocol with the same task

but with a block structure, meaning that the output can be written in terms of the tensor

product of many copies of suitable quantum states. This has been called by us stretching

of the protocol, where the meaning will be clearer later. To develop such a technique we

first refine and expand the tool of quantum channel LOCC-simulation [37–39] in order

to include into the description any quantum channel in both the discrete (DV) and the

continuous variable (CV) setting. Following this approach the action of a quantum channel

on an input state is directly translated into the action of a generic LOCC over the tensor

product between the input and a suitable resource state. When the quantum channel

commutes with the group of teleportation unitaries (i.e. they are teleportation covariant),

we are able to identify the LOCC in the simulation with quantum teleportation and the

resource state with the (asymptotic) Choi state of the same channel. Through this, we

then show that the two-way capacities of an arbitrary channel are actually upper-bounded

by a single letter quantity, i.e. the relative entropy of entanglement computed over the
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(asymptotic) Choi state. The results of our methdology are quite remarkable. In fact,

on the one hand, we find the tightest upper bounds on the two-way capacities known so

far, on the other, we show that for a particular class of channel acting on either finite

and infinite dimensional Hilbert spaces, by showing coincidence between the lower and

the upper bounds, we exactly determine their two-way capacities. An important example

is given by the bosonic lossy channel with transmissivity η, for which all the two-way

quantum capacities are equal to − log2(1 − η) corresponding to ' 1.44η bits per channel

use at long distances (i.e high losses). This result completely characterizes the fundamental

rate-loss scaling of any point-to-point QKD protocol through a lossy communication line,

such as an optical fibre or a free-space link.

In the second part of this thesis we extend our approach to other fundamental areas of

quantum information theory. In particular we consider quantum metrology and quantum

channel discrimination. Quantum metrology [40,41] deals with the estimation of unknown

physical parameters that are encoded in quantum states or in quantum channels. We are

here interested in the latter case-scenario, where we are given a black-box implementing

some parameter-dependent transformation. We probe the box n times thus building a

parameter estimator whose error variance decreases as a function of n. For some quantum

channels this error variance scales as ∼ n−1/2, known as the standard quantum limit. This

is not a fundamental quantum bound since it can be obtained also in a classical setting. By

exploiting truly quantum features like entanglement among the probing devices employed

for the measurements, it can be shown that the performance is greatly improved with a

scaling that follows the behaviour ∼ n−1, known as the Heisenberg scaling [41]. In order

to understand which scaling limits a given quantum channel it is essential to adopt the

most general quantum protocols of parameter estimation that are allowed by quantum

mechanics. These involve the use of unlimited entanglement and are inevitably adaptive,

i.e., they may involve the use of joint quantum operations (instead of LOCC) where the

inputs to the box are optimised as a result of all the previous rounds. This is the main

difficulty of the analysis and once again channel simulation is the most powerful tool

that we invoke to reduce the complexity. By applying our channel simulation technique,

in fact, the authors of Ref. [42] provide a no-go theorem for Heisenberg scaling when

considering teleportation covariant channels. Here in this thesis we slightly modify the

simulation described above by substituting standard quantum teleportation with port-

based teleportation (PBT) [43–45], where a multi-copy state is employed as the resource
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of entanglement. By applying this PBT-simulation to adaptive quantum metrology over a

finite-dimensional channel, we prove an ultimate bound which asymptotically follows the

Heisenberg scaling.

Port-based teleportation simulation turns out to be fundamental also in the setting of

quantum channel discrimination (QCD). In this context, the goal is to distinguish be-

tween two or more quantum transformations acting on the state of a quantum system.

There are practical problems related to QCD where the quantum features have been shown

to provide better results with respect to classical strategies. Typical examples are repre-

sented by the readout of digital memories, a protocol that undergoes the name of quantum

reading [46, 47], the resolution of single-photon diffraction diffraction-limited optical sys-

tems [48–50] and quantum illumination [51–54], a protocol for sensing the presence of an

low-reflectivity target in a thermal noisy environment. Usually the strategies for QCD

involve optimizations over the input states and the output detection measurements. The

ultimate performance in terms of the probability of error must be addressed by consider-

ing adaptiveness in the protocols, where feedback from the output is exploited to update

the input. Here the LOCC that we have in quantum communication are substituted with

quantum operations that may also include the use of entanglement among the registers of

the users’ local quantum systems. While on the one hand we know how to bound the error

probability for the discrimination of quantum states [55], a similar bound is missing for

the probability of error affecting the discrimination of quantum channels. Here we build

such a bound by relying on the reduction of an adaptive protocol for QCD to a block one

over multiple copies of the channel’s Choi state. This is obtained by employing port-based

teleportation at the core of channel simulation and as a direct application of this result

we derive such a bound for the ultimate performance of adaptive quantum illumination.
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Chapter 1

Preliminaries

In this Chapter we review some basic and fundamental concepts in quantum informa-

tion theory with a major focus on continuous variable systems. Quantum channels and

quantum teleportation are exhaustively discussed.

1.1 Gaussian quantum information

1.1.1 Bosonic systems and Gaussian states

In a wide part of this thesis we willl be dealing with continuous variable (CV) systems,

i.e. quantum mechanical systems that can be described by an infinite dimensional Hilbert

space. Quantum harmonic oscillators (bosonic modes), which do correspond to the quan-

tized radiation modes of the electromagnetic field, are a good example of CV quantum

systems. The infinite dimensionality of the underlying Hilbert space calls for a description

of these systems through quantum operators with continuous eigenspectra.

Let us consider a system of N bosons labeled by k associated with N -tensor product

Hilbert space H⊗N =
⊗N

k=1Hk and described by N pairs of bosonic fields operators (also

called ladder operators) {âi, â†i}Ni=1 which satisfy the bosonic commutation relations

[âk, â
†
l ] = δkl . (1.1)

The Hilbert space of this system is separable and infinite-dimensional. This is due to

the fact that the single-mode Hilbert space Hk is spanned by the countable Fock’s basis

B = {|nk〉}nk=1,...,∞, where the elements |nk〉 are the eigenstates of the number operator

n̂k|nk〉 = nk|nk〉, with n̂k := â†kâk and nk describing the number of photons in mode

k. The action of the bosonic operators is well defined on these vectors, in fact we can
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Chapter 1: Preliminaries

start from the vacuum state |0k〉, which describes the mode k with zero photons, and by

applying nk times the creation operator â†k we get

|nk〉 =
1√
nk!

(â†k)
nk |0k〉 (1.2)

and in particular

â†k|nk〉 =
√
nk + 1|nk + 1〉 . (1.3)

In the same manner the annihilation operator âk applied nk times to the number state

|nk〉 gives the vacuum state

|0k〉 =
1√
nk!

ânkk |nk〉 , (1.4)

and in particular

âk|nk〉 =
√
nk|nk − 1〉 . (1.5)

At this point, one can introduce the vector of operators r̂ = (â1, â
†
1, . . . , âN , â

†
N ) so that

the bosonic commutation relations of Eq. (1.1) can be recast in the following form

[r̂l, r̂m] = Ωlm (l,m = 1 . . . , 2N) , (1.6)

where the 2N × 2N matrix Ω is defined by

Ω :=
N⊕
k=1

ω ω :=

 0 1

−1 0

 , (1.7)

and is referred to as the symplectic form. We can introduce another type of field operator

by relying on the bosonic field operators introduced above. These are obtained from the

cartesian decomposition of âk and â†k which read as follows

âk :=
1

2
(q̂k + ip̂k) â†k :=

1

2
(q̂k − ip̂k) , (1.8)

from which we can derive

q̂k = âk + â†k, p̂k = i(â†k − âk) . (1.9)

These are the quadrature field operators, usually arranged in the vector of operators

x̂ = (q̂1, p̂1, . . . , q̂n, p̂n) and represent dimensionless observables of the system behaving

like the momentum and the position operators of the quantum harmonic oscillator since

they satisfy the canonical commutation relations

[x̂i, x̂j ] = 2iΩij . (1.10)
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The quadrature operators just introduced have continuous eigenspectra, with non square

integrable eigenstates, i.e. unphysical states, which read as follows

q̂|q〉 = q|q〉 , p̂|p〉 = p|p〉 , (1.11)

with q, p ∈ R . They form two bases since they satisfy orthogonality and completeness

relations respectively given by

〈q|q′〉 = δ(q − q′) , 〈p|p′〉 = δ(p− p′) (1.12)

and ∫ ∞
−∞
|q〉〈q| dq = I ,

∫ ∞
−∞
|p〉〈p| dp = I . (1.13)

These two orthonormal sets {|q〉}q∈R and {|p〉}p∈R are mutually connected to each other

by Fourier transform, namely

|q〉 = (2
√
π)−1

∫ ∞
−∞

e−ipq|p〉 dp , |p〉 = (2
√
π)−1

∫ ∞
−∞

eipq|q〉 dq . (1.14)

1.1.2 Phase space representation

We can give an equivalent description of quantum states in terms of phase-space variables

such as the quadratures introduced above. The phase space description can be understood

by the introduction of the so-called Wigner function which allows to describe the dynamics

of quantum systems in terms of a quasi-probability distibution. Quantum dynamics is

therefore translated into the evolution of the phase-space distribution in a classical-like

fashion. The Wigner distribution is bounded and normalized and enables the computation

of mean values and variances of the quadratures but, as opposed to a classical probability

distribution, it can take on negative values.

We begin by considering the set of displacement operators for N -bosons

D(γ) =
N⊗
k=1

Dk(γk) , (1.15)

whose action on the mode operators defined in the previous section is described via the

following transformation

D(γ)†âkD(γ) = âk + γk . (1.16)

In Eq. (1.15) the column vector γ is given by γ = (γ1, . . . , γN )T , γk ∈ C and D(γk) :=

exp(γkâ
†
k − γ

∗
k âk) are the single-mode displacement operators. We also define the vector
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γ† = (γ∗1 , . . . , γ
∗
N ). An N -mode bosonic system is uniquely described by its quantum

state, i.e. a positive operator ρ̂ with unit trace acting on the corresponding Hilbert space,

ρ̂ : H⊗N → H⊗N . We denote with the symbol D(H⊗N ) the space of density operators on

H⊗N . The operators D(γ) belong to a complete set since any ρ̂ ∈ D(H⊗N ) can be written

as follows

ρ̂ =

∫
CN

d2Nγ

π2N
Tr[ρ̂D(γ)]D(γ)† , (1.17)

and in it we identify the characteristic function of the operator ρ̂ as

χ(γ) = Tr[ρ̂D(γ)] . (1.18)

This is introduced also as the moment-generating function of ρ̂ since its derivatives in

the origin of the complex plane provide the simmetrically ordered moments of the mode

operators, namely

(−)m
∂n+m

∂γnj ∂γ
∗m
k

χ(γ)
∣∣
γ=0

= Tr
{
ρ̂S
[
(â†j)

nâmk

]}
, (1.19)

where we have introduced the symmetrization S so that for example S[â†â2] = (â2â† +

â†â2 + â†â)/3 . Any operator density operator ρ̂ has an equivalent representation in terms

of the Wigner function, which is introduced via the Fourier transform of the characteristic

function, i.e.

W (α) =

∫
CN

d2Nγ

(2π)2N
exp

{
γ†α+α†γ

}
χ(γ) , (1.20)

where α = (a1, . . . , aN ) with ak := qk + ipk . Since the characteristic function defined

in (1.18) is square integrable, the Wigner distribution is a well behaved probability dis-

tribution, normalized since 1 = Tr ρ̂ =
∫
CN d

2NαW (α) , and it can be exploited to give

expectation values of the simmetrically ordered moments following the receipt

Tr
{
ρ̂S
[
(â†)nâm

]}
=

∫
CN

d2NαW (α)ama∗n , (1.21)

which can be straightforwardly derived from Eq. (1.19). We can equivalently represent

the Wigner function of Eq. (1.20) in Cartesian coordinates. Let us introduce the vector

of quadrature operators

x̂ = (q̂1, p̂1, . . . , q̂N , p̂N ) , (1.22)

and the vector of the corresponding eigenvalues

x = (q1, p1, . . . , qN , pN ) , (1.23)
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which are continuous variable that span a real symplectic space K := (R2N ,Ω). The

Wigner representation can then be expressed as follows

W (x) =

∫
R2N

d2Nξ

(2π)2N
exp

{
−ixT ξ

}
χ(ξ) , (1.24)

with the generic vector ξ ∈ R2N and where χ(ξ) = Tr[ρ̂D(ξ)] with the Weyl operator

defined by D(ξ) := exp
{
ix̂T ξ

}
. From now on we will work with Cartesian coordinates

having in mind that the two representation of Eq. (1.20) and (1.24) are equivalent. By

means of the Wigner representation we can characterize a wide class of quantum states

within the continuous variable setting. Among these there are those belonging to the set

of Gaussian states which are completely characterized by the first two statistical moments

of Eq. (1.21) and whose Wigner funtion is non-negative.

1.1.3 Gaussian states and Gaussian unitaries

Gaussian states for N -mode bosonic systems are at the core of quantum communication

and computation with continuous variables system. These states have been deeply studied

and commonly employed since they can be reproduced in the laboratory with the present

technologies relying on which we can implement evolution of quantum systems that are

described by Hamiltonians at most second-order polynomial in the quantum field oper-

ators. Such Hamiltonians generate unitaries transformation that preserve the Gaussian

features of the quantum state in input.

An N -mode quantum state ρ̂ is Gaussian if its Wigner representation is Gaussian, i.e.

W (x) =
exp

[
−1

2(x− x̄)TV−1(x− x̄)
]

(2π)N
√

det V
, (1.25)

χ(ξ) = exp

[
−1

2
ξTVξ − i(Ωx̄)T ξ

]
, (1.26)

where the first statistical moment, or mean value is given by x̄ := 〈x̂〉 = Tr ρ̂x̂ and it can

be set to zero without losing generality. The second statistical moment is represented by

the so-called 2N × 2N covariance matrix (CM) V whose generic element Vij is defined by
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means of the second statistical moment, symmetrized according to Eq. (1.21)

〈(x̂ix̂j + x̂j x̂i)/2〉 = Tr[ρ̂(∆x̂i∆x̂j + ∆x̂j∆x̂i)/2]

=

∫
R2N

W (x)xixjd
2Nx

=: Vij . (1.27)

In particular the diagonal elements of the covariance matrix represent the variances of

the quadrature operators, i.e. Vii = 〈(∆x̂i)2〉 = 〈x̂2
i 〉 − 〈x̂i〉2. Like any matrix describing

physical correlations, the matrix V must be real, symmetric and positive and must satisfy

the uncertainty principle [56,57]

V + iΩ ≥ 0 , (1.28)

which directly follows from the non-negativity of the density operator ρ̂ and the commuta-

tion relation in Eq. (1.10). The inequality in Eq. (1.28) implies that V is positive definite.

Gaussian states turn out to be completely characterized by the first two moments x̄ and

V, i.e. we have ρ̂ = ρ̂(x̄,V). Now we are in the position to characterize the discrete

transformations on Gaussian states and to specify the corresponding transformations on

the quadrature operators in the phase-space description.

Reversible transformations are represented by unitary operations U , with U † = U−1 acting

on a generic state according to ρ̂→ Uρ̂U †. Furthermore such a transformation is defined

to be Gaussian if it preserves the Gaussian features of a quantum state. These Gaussian

unitaries are generated through exponentiation U = exp
(
−iĤ/2

)
with Hamiltonian op-

erators Ĥ that are linear and bilinear in the field mode, i.e., upon introducing the vectors

of creation and annihilation operators, â := (â1, . . . , âN )T and â† := (â†1, . . . , â
†
N ), these

Hamiltonians can be written as

Ĥ = i(â†g + â†Gâ + â†G′â†T ) + h.c. , (1.29)

where g ∈ CN , whereas both G and G′ are N ×N complex matrices. In the Heisenberg

picture, the field operators transfroms according to the following unitary transformation,

usually referred to as Bogoliubov transformation

â→ U †âU = Aâ+ Bâ† + g (1.30)

with N ×N complex matices A and B such that ABT = BAT . The Gaussian transfor-

mations on the quadrature operators imposed by the Hamiltonians as in Eq. (1.29) can
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be expressed through the following affine map

(S,d) : x̂→ Sx̂ + d , (1.31)

where d ∈ R2N and the 2N × 2N real matrix S is a symplectic transformation. This

means that the commutation relations of Eq. (1.10) are preserved by the transformation

S, a property that follows from the fact that the symplectic form Ω is left invariant by

the action of S, i.e.

SΩST = Ω . (1.32)

Clearly the vector x ∈ K(R2N ,Ω) of eigenvalues of the quadrature operators x̂ must

transform according the same rule, i.e. (S,d) : x → Sx + d . In this way we can

conclude that an arbitrary Gaussian unitary US,d acting on the Hilbert space H of the

system is equivalent to a symplectic affine map (S,d) which acts on the corresponding

phase space K. Such a map is composed by two different element, namely the phase space

displacement vector d ∈ R2N corresponding to the displacement operator D(d), and the

symplectic transformation S corresponding to a canonical unitary map US in the Hilbert

space. Thus we can always write US,d = D(d)US. The statistical moments of a Gaussian

state transform accordingly as

x̄→ Sx̄ + d , (1.33)

V→ SVST , (1.34)

which completely characterize the action of a Gaussian unitary US,d over a Gaussian state

ρ̂(x̄,V) .

We give some examples of some Gaussian states and Gaussian unitaries for single and two

bosonic modes which are the most commonly employed in continuous variable quantum

information and which will be playing a central role in this thesis.

• Vacuum and thermal state - The vaccum state |0〉 is a Gaussian state with zero mean

photon number, i.e. n̄ = 0, and it is defined as the eigenstate of the annihilation

operator with null eigenvalue â|0〉 = 0. It is characterized by a covariance matrix

(CM) equal to the identity operator I, so that the position and momentum operator

have noise variance equal to one, i.e. V (q̂) = V (p̂) = 1 , known also as the quantum

shot-noise. Another fundamental Gaussian state is represented by the thermal state.

This is a state ρ̂th that maximizes the von Neumann entropy defined as

S := −Tr ρ̂ ln ρ̂ (1.35)
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This can be written in the number-state representation as

ρ̂th(n̄) =

∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉〈n| . (1.36)

The Gaussian Wigner function of ρ̂th is characterized by zero mean value and co-

variance matrix given by V = (2n̄+ 1)I .

• Coherent states - Coherent states |α〉 are the eigenstates of the annihilation oper-

ator, i.e. â|α〉 = α|α〉 , where α = (q + ip)/2 is the complex amplitude. Their

decomposition on the number state basis reads

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (1.37)

Coherent states can be generated by acting with a displacement operator D(α) on

the vacuum, i.e. D(α)|0〉. The operator D(α) is the single-mode version of the

one introduced in Sec. (1.1.2) but now we can introduce it as a Gaussian unitary

generated by the linear term in the Hamiltonian of Eq. (1.29), namely we have

D(α) = exp
(
αâ† − α∗â

)
(1.38)

In the Heisenberg picture, based on the prescription of Eq. (1.30), the annihilation

operator undergoes the transformation â→ â+α, whereas the quadrature operator

vector undergo the transformation x̂→ x̂ + dα with dα = (q, p)T . The mean values

of a coherent state is x̄ = dα, and as for the vacuum state, the CM of a coherent

state is given by the identity V = I .

• Squeezed states - The single-mode squeezing operator S(r) is a Gaussian unitary

which is generated by the quadratic term in the Hamiltonian of Eq. (1.29) propor-

tional to â†2 and to â2

S(r) = exp
{r

2
[â2 − â†2]

}
(1.39)

with r ∈ R the squeezing parameter. In the Heisenberg picture the annihilation

operator evolves according to â→ (cosh r)â−(sinh r)â† and the quadrature operators

are transformed by the symplectic map x̂→ S(r)x̂ with S(r) =

 e−r 0

0 er

 .

If we apply the operator S(r) to the vacuum |0〉 we get

|0, r〉 = (cosh r)−1
∞∑
n=0

(2n)!

2nn!
tanh rn|2n〉 , (1.40)
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which is the squeezed vacuum state with covariance matrix V = S(r)S(r)T =

S(2r) with one variance squeezed below the quantum shot-noise and the other anti-

squeezed above the quantum shot-noise.

• Two-mode squeezing and EPR states - The squeezing operator of two modes a and

b is the Gaussian unitary defined as

S2(r) = exp
[r

2

(
âb̂− â†b̂†

)]
, (1.41)

with r quantifying two-mode squeezing. In the Heisenberg picture the transformation

of the quadrature operators x̂ = (q̂a, p̂a, q̂b, p̂b)
T is given by the following symplectic

map

x̂→ S2(r)x̂ and S2(r) =

 cosh rI sinh rZ

sinh rZ cosh rI

 , (1.42)

with Z := diag(1,−1) . At this stage the Einstein-Podolsky-Rosen (EPR) state

also called two-mode squeezed vacuum (TMSV) is obtained by applying S2(r) to a

two-mode vacuum state. A TMSV Φµ is a Gaussian state with zero mean value and

covariance matrix given by

Vµ =

 µI
√
µ2 − 1Z√

µ2 − 1Z µI

 (1.43)

where µ = cosh 2r is the noise variance in the quadrature and once defined q̂− :=

(q̂a − q̂b)/
√

2 and p̂+ := (p̂a + p̂b)/
√

2, from Eq. (1.43) we can easily verify that

V (q̂−) = V (p̂+) = e−2r .

The Gaussian Wigner function of a TMSV reads as follows

W [Φµ](x) = 4π−2 exp
[
−xT (Vµ)−1x

]
, (1.44)

where x = (qa, pa, qb, pb)
T . We notice that in the limit of infinite squeezing, i.e.

µ→ +∞, this Wigner function approaches a delta-like expression [19]

W [Φµ](x)→ ℵδ(qa − qb)δ(pa + pb) (1.45)

with ℵ a normalization factor. Thus, the infinite-energy limit of TMSV states

limµ Φµ defines the asymptotic CV EPR state Φ, i.e. Φ = limµ Φµ, with perfect

correlations q̂a = q̂b and p̂a = −p̂b.
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• Beam splitter - The beam splitter transformation is one of the most important ex-

ample of Gaussian untary for two bosonic modes a and b with respective annihilation

operators â and b̂. This Gaussian unitary is defined via

BS(ϕ) = exp
[
ϕ(â†b̂− âb̂†)

]
, (1.46)

where the quantity ϕ determines the transmissivity τ of the beam splitter through

the relation τ = cos2 ϕ ∈ [0, 1] . Again, in the Heisenberg picture, the annihilation

operators are transformed by the linear Bogoliubov transformation â

b̂

→
 √

τ
√

1− τ

−
√

1− τ
√
τ

 â

b̂

 , (1.47)

which corresponds to the following symplectic transformation on the quadrature

operators x̂ = (q̂a, p̂a, q̂b, p̂b)
T

x̂→ B(τ)x̂ , B(τ) :=

 √
τI

√
1− τI

−
√

1− τI
√
τI

 . (1.48)

According to a fundamental theorem by Williamson [58–60], for any N -mode Gaussian

state there always exists a symplectic transformation S by means of which the CM V of

the state can be diagonalized, i.e.

V = SνST , (1.49)

where ν = diag(ν1, ν1, . . . , νN , νN ) and the quantities νk’s represent the symplectic spec-

trum of V. These symplectic eigenvalues are clearly invariant under symplectic transfor-

mation and satisfy
√

det V =
∏N
k=1 νk , since we have that det S = 1 being S symplectic.

In terms of density operators, the decomposition of Eq. (1.49) corresponds to a decom-

position in terms of thermal states and canonical Gaussian unitaries US,d = and reads as

follows

ρ̂(x̄,V) = US,d

(
N⊗
k=1

ρ̂th(n̄k)

)
U †S,d (1.50)

where ρth(n̄k) has been introduced in Eq. (1.36) and the mean thermal number n̄k is re-

lated to the symplectic spectrum according to νk = 2n̄k + 1.

The symplectic spectrum contains the most essential informations about the relative Gaus-

sian state and it provides a powerful and straightforward way to express its fundamental
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properties. For instance, the von Neumann entropy of a Gaussian state can be writ-

ten [61,62]

S(ρ̂) =

N∑
k=1

g(νk) , (1.51)

where

g(x) :=

(
x+ 1

2

)
log

(
x+ 1

2

)
−
(
x− 1

2

)
log

(
x− 1

2

)
. (1.52)

In particular, by applying the diagonalization in Eq. (1.49) to Eq. (1.28) we can recast the

uncertainty principle into the following simpler form

V > 0 and νk ≥ 1 , (1.53)

i.e. the covariance matrix must be positive definite with all the symplectic eigenvalues

greater or equal than 1.

Consider now a Gaussian state ρ̂(x̄,V) describing two bosonic modes (N = 2). For this

kind of states there exist a simple analytical characterization. To see this, let us write the

covariance matrix into the following block form

V =

 A C

CT B

 , (1.54)

where A = AT , B = BT and C are 2× 2 real matrices. The Williamson diagonalization

leads to the diagonal CM V = ν+I ⊕ ν−I, where the two symplectic eigenvalues ν+ and

ν− assume the following expression [60]

ν± =

√
∆±

√
∆2 − 4 det V

2
, (1.55)

with ∆ := det A + det B + 2 det C. Is is easy to check that, in this case, the uncertainty

principle of Eq. (1.28) corresponds to the following bona-fide conditions

V > 0 , det V ≥ 1 and ∆ ≤ 1 + det V . (1.56)

There is a class of two-mode Gaussian states whose covariance matrix can be put in

standard form, i.e.

V =

 aI C

CT bI

 , C = diag(c, c′) , (1.57)

with a, b, c, c′ ∈ R satisfying the bona-fide conditions stated above.
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1.2 Quantum channels

In this section we introduce the formalism of quantum channels which are at the core of

the description of any physical process involving a mapping from an initial to a final state

of a quantum system [10]. In a quantum communication scenario, quantum channels are

employed to model the noise to which the transmission of information between parties is

subjected. Such a noise is generated by the coupling of the quantum information carriers

with external and often uncontrolled degrees of freedom and leads to losses and decoherence

which are typically described by non-unitary quantum channels. Throughout this Thesis

we will deal only with memoryless quantum channel, i.e. channels that act indipendently

and identically over a sequence of information carriers. The memoryless condition is the

simplest modelization of the input-output mapping induced by noise and it is sufficient to

describe the most common scenarios where consecutive information transmissions do not

retain memories of the previous ones. For an exaustive review over memory channel see

Ref. [63].

We start by reviewing the general definition of quantum channels by considering only

finite dimensional Hilbert spaces and then we proceed by describing single-mode Gaussian

channels for CV systems.

Let us consider the mapping E acting on quantum state ρA ∈ D(HA) as

ρA 7→ ρB = E(ρA) ∈ D(HB) (1.58)

where we recall that D(H) is the space of non-negative, unit trace operators (density

operators) defined on the Hilbert space H. Since the output state ρB must be a genuine

quantum state, we need to require the map E to be completely positive and trace preserving

(CPTP), i.e. it satisfies the following properties [64,65]

• The map E acts linearily over mixtures of density operators, i.e. mixtures of input

states are sent into mixtures of corresponding outputs

E

(∑
i

piρ
i
A

)
=
∑
i

piE(ρiA) , (1.59)

with pi the probability associated to ρiA.

• E must preserve the normalization of the input state, or otherwise stated it must be

trace preserving, i.e. Tr ρB = 1 .
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• The map E must be positive, i.e. positivity of the density operator ρA is preserved

under the action of E .

• When ρA is a part of a joint state ρAA′ of system A and an ancillary system A′,

positivity by itself is not enough to assure the positivity of the extended map E⊗IA′ .

We need then to require the condition of complete positivity

E ⊗ IA′(ρAA′) ≥ 0 (1.60)

A linear map satisfying the previous properties can also be written through operational

representations. One of these is given by the Stinespring dilation [66], i.e. it can be

proved that a map is CPTP if and only if it can be described by a unitary interaction

between the input ρA and an external environment which is represented by the state ϕE .

This environment is not necessarily the physical environment determining the system’s

evolution, but it may rather correspond to a mathematical artifact. Then the output of

the channel can be recovered by tracing out the environmental degrees of freedom after

the unitary evolution, i.e., by taking B = A for simplicity, we have

E(ρA) = TrE

[
UAE(ρA ⊗ ϕE)U †AE

]
, (1.61)

The channel representation through the Stinespring dilation is not unique but if we purify

the environment state, i.e. ϕE = |ϕ〉E〈ϕ|, it can be shown that the choice of UAE is unique

up to partial isometries on system E .

Figure 1.1: Stinespring dilation of a quantum channel E . The input state ρA interacts with the

environmental state ϕE by means of a unitary evolution UAE .

Another useful representation is given by the Kraus decomposition, stated as a theorem

in [67] which allows to represent the CPTP map E as an operator sum

E(ρA) =
∑
j

KjρAK
†
j (1.62)
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where the set {Kj} is given by operators on HA satisfying the condition
∑

jK
†
jKj = IA .

The choice of operators Kj is not unique, in fact if we introduce the new set of operators K̃l

satisfying Kj =
∑

l UjlK̃l with unitary transformation Ujl then we can give the equivalent

decomposition

E(ρA) =
∑
j

K̃jρAK̃
†
j . (1.63)

In association with the Stinespring dilation we have the notion of complementary channel

of E . This is a CPTP map Ẽ : D(HA) 7→ D(HE) which is defined through the following

transformation

Ẽ(ρA) = TrA

[
UAE(ρA ⊗ |ϕ〉E〈ϕ|)U †AE

]
. (1.64)

The purity of |ϕ〉E〈ϕ| guarantees the uniqueness of the complementary channel Ẽ up to

an isometric transformation on the environment E [68,69]. We are now able to introduce

another fundamental property of quantum channels. In fact, it can happen that the two

outputs E(ρA) and Ẽ(ρA) are connected by CPTP maps (see Fig. 1.1) and in this case we

say that the quantum channel is degradable or antidegradable. A quantum channel is called

degradable [70] if there exist a CPTP map D such that the environmental output Ẽ(ρA)

can be retrieved from the system output E , namely we can write Ẽ = D ◦ E . Viceversa

a quantum channel is antidegradable [68] if we can identify a CPTP map A such that

E = A ◦ Ẽ .

1.3 Gaussian channels and canonical forms

A bosonic Gaussian channel is a channel that can be expressed as in Eq. (1.61), where

UAE is now a Gaussian unitary and φE a Gaussian state. Such a channel is described

by a CPTP map G which preserves the Gaussian character of the states in input. Let us

consider an arbitrary multi-mode Gaussian state ρ̂(x̄,V). Under the action of a Gaussian

channel, the characteristic funtion transforms according to [71]

Gχ(ξ) 7→ χ(Tξ) exp

(
−1

2
ξTNξ + idT ξ

)
(1.65)

where d ∈ R2N is a displacement, while T and N = NT are 2N × 2N real matrices which

must satisfy the following inequality

N + iΩ− iTΩTT ≥ 0 , (1.66)
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directly coming from the requirement of complete positivity of the map G . In terms of the

first two statistical moments the transformation given in Eq. (1.65) can be equivalently

written as [62]

x̄→ Tx̄ + d , V→ TVTT + N . (1.67)

Note that if we identify N = 0 and T = S with the symplectic transformation S, the

Gaussian channel corresponds to a Gaussian unitary US,d .

An arbitrary one-mode Gaussian channel takes in input a single bosonic mode and its

action is fully characterized by the transformation in Eq. (1.67) with d ∈ R2 and the 2×2

real matrices T and N satisfying the following conditions

N = NT ≥ 0 , det N ≥ (det T− 1)2 , (1.68)

where the latter is straightforwardly derived from the relation (1.66) specified to a single

mode, i.e. N = 1 . Of fundamental importance is the classification of one-mode Gaussian

channel which relies on the decomposition of the mathematical structure of G in terms

of the so-called canonical form. According to Ref. [71] , corresponding to any physical

Gaussian channel G = G[T,N,d], there exist non-unique Gaussian unitaries W and U

such that

G(ρ) = W
[
C(UρU †)

]
W † . (1.69)

Here the CPTP map C is called canonical form and it is a simplified Gaussian channel

C = C[dc,Tc,Nc] with dc = 0 and diagonal matrices Tc and Nc. The action of the map

C on the characteristic function can be written as

C : χ(ξ) 7→ χ(Tcξ) exp

(
−1

2
ξTc Ncξ

)
. (1.70)

There are three quantities which are left invariant under the acion of the Gaussian uni-

taries, namely det T, rank(T), rank(N). Depending on the values of these quantities we

can have six different expression for diagonal matrices Tc and Nc and therefore sic dif-

ferent classes of canonical forms C[Tc,Nc] denoted by A1, A2, B1, B2, C and D. Following

Ref. [69] we give in Table 1.1 the classification of the various canonical forms. In the Table

we have set Z = diag(1,−1), I the identity matrix and 0 the null matrix. τ := det T is the

generalized transmissivity, n̄ the thermal number of the envirnment and ξ is the additive

noise.
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τ := det T rank(T) rank(N) class Tc Nc

0 0 2 A1 0 (2n̄+ 1)I

0 1 2 A2
I+Z

2 (2n̄+ 1)I

1 2 1 B1 I I−Z
2

1 2 6= 1 B2 I ξI

0 < τ 6= 1 2 2 C
√
τI |1−τ |(2n̄+1)I

τ < 0 2 2 D
√
−τI (1−τ)(2n̄+1)I

Table 1.1: Classification of canonical forms

We can also introduce the following symplectic invariant

r :=
rank(T) rank(N)

2
(1.71)

which is referred to as the rank of the Gaussian channel [11,72]. Then the three invariants

{τ, r, n̄} identify a unique canonical form C = C[τ, r, n̄] and in particular the pair {τ, r}

completely determine the class of the form. Following this new prescription we can build

a refined classification which is given in Table 1.2.

τ r class Tc Nc C[τ, r, n̄]

0 0 A1 0 (2n̄+ 1)I C[0, 0, n̄]

0 1 A2
I+Z

2 (2n̄+ 1)I C[0, 1, n̄]

1 1 B1 I I−Z
2 C[1, 1, 0]

1 2 B2(6= Id) I ξI C[1, 2, ξ]

1 0 B2(= Id) I 0 C[1, 0, 0]

(0, 1) 2 C(Att)
√
τI (1−τ)(2n̄+1)I C[τ, 2, n̄]

> 1 2 C(Amp)
√
τI (τ−1)(2n̄+1)I C[τ, 2, n̄]

< 0 2 D
√
−τZ (1−τ)(2n̄+1)I C[τ, 2, n̄]

Table 1.2: Refined classification of canonical forms

The class A1, B2 and C, following the common terminology, are known as phase-insensitive

since they act symmetrically on the two input quadratures. The canonical forms A2,

B1 and D (conjugate of the amplifier)are all phase-sensitive. Class A1 represents forms

that are completely depolarizing channels replacing the input states with thermal states.

The class B2 is known as the additive-noise channel which transforms the quadrature as
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x̂→ x̂+ξ , where ξ is Gaussian noise with covariance matrix given by n̄I. B2 includes also

the identity channel (Id) for r = 0 and it is the quantum straightforward generalization

of the classical Gaussian channel. The class C involves canonical forms characterized by

transmissivities 0 < τ 6= 1 and it can be divided into two subclasses. In fact it can describe

an amplifier for τ > 1. The phase-insensitive amplifier desribes an optical process where

the input signals are amplified and thermal noise is added, i.e. the quadratures transform

as x̂ →
√
τ x̂ +

√
τ − 1x̂th. On the other hand for 0 < τ < 1 the canonical form in the C

class is the one describing attenuators, i.e. lossy channels. In this case the input signals

are attenuated and combined with thermal noise, i.e. we have x̂ →
√
τ x̂ +

√
1− τ x̂th.

These kind of channels are the most important ones since they are the basic model to

describe the losses along communication lines such as optical fibers.

1.3.1 Stinespring dilation of a canonical form

Any canonical form C[τ, r, n̄], except for the form B2, can be equivalently expressed by a

physical representation involving a unitary interaction between the input single bosonic

mode a described by the state ρa and a single environmental bosonic mode e described by

the mixed state ρe. This means that C[τ, r, n̄] can be dilated to a canonical unitary Ûae

mixing the input ρa with a thermal state ρe(n̄) with thermal number n̄ and covariance

matrix Ve = (2n̄+ 1)I, i.e. we can write

C : ρa 7→ C(ρa) = Tre

[
Ûae(ρa ⊗ ρe(n̄))Û †ae

]
, (1.72)

where

Ûae

 x̂a

x̂e

 Û †ae = M

 x̂a

x̂e

 (1.73)

with M symplectic matrix (see Fig. 1.2). By writing M into blockform

M =

 m1 m2

m3 m4

 , (1.74)

we have that

x̂a → x̂b := m1x̂a + m2x̂e , (1.75)

x̂e → x̂e′ := m3x̂a + m4x̂e . (1.76)
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Figure 1.2: Single-mode dilation of a canonical form C = C[τ, r, n̄]. The forms of all the classes,

apart from B2, can be represented by a single-mode thermal state interacting with the input via a

two-mode symplectic transformationM. This is also the physical representation of a non-additive

Gaussian channel up to the input and output unitaries U and W . This is Fig 2 from Ref. [3].

Then, one can easily verify that Eq. (1.72) corresponds to the following input-output

transformation of the characteristic function

χa(ξ)→ χa(m
T
1 ξ) exp

[
−1

2
(2n̄+ 1)

∣∣mT
2 ξ
∣∣2] . (1.77)

Then, by setting mT
2 =

√
Nc/(2n̄+ 1)O , with OT = O−1 orthogonal matrix, Eq. (1.77)

assume the form of Eq. (1.70). The bona fide condition given by Eq. (1.68) is guaranteed

by the fact that the matrix M is symplectic. In fact the symplectic nature of M implies

that det m1 + det m2 = 1, so that we have

det Nc = (2n̄+ 1)2(det m2)2 (1.78)

= (2n̄+ 1)2(det m1 − 1)2 (1.79)

= (2n̄+ 1)2(det Tc − 1)2 ≥ (det Tc − 1)2 . (1.80)

The orthogonal matrix O introduced above is chosen in way such that the symplectic

character of M is preserved. Such a condition restricts also the choice for m3 and m4

which are fixed up to local unitaries.

We can now conclude that any canonical form with the exception of the B2 class (see

next section) can be represented by a single-mode physical representation {M(τ, r), ρe(n̄)}

where the symplectic matrix is completely determined by the class {τ, r} and the envi-

ronmental state is determined by the thermal number n̄ . In terms of the second order
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statistical moment, the input state described by the CM Va transforms according to

Va → Tre
[
M(τ, r) (Va ⊕ (2n̄+ 1)Ie) M(τ, r)T

]
(1.81)

where ⊕ is the matrix direct sum and the partial trace Tre is interpreted as deletionof

rows and columns relating to mode e.

The explicit expression of the symplectic matrices M(τ, r) for the different forms are

given [69]

M(0 < τ < 1, 2) = M(C) =

 √
τI

√
1− τI

−
√

1− τI
√
τI

 , (1.82)

which describes a beam-splitter,

M(τ > 1, 2) = M(C) =

 √
τI

√
τ − 1Z

√
τ − 1Z

√
τI

 , (1.83)

which describes an amplifier,

M(τ < 0, 2) = M(D) =

 √
−τZ

√
1− τI

−
√

1− τI −
√
−τZ

 , (1.84)

describing the complementary of an amplifier. Furthermore for the remaining classes we

have [69]

M(0, 0) = M(A1) =

 0 I

I 0

 , (1.85)

M(0, 1) = M(A2) =

 I+Z
2 I

I Z−I
2

 , (1.86)

M(1, 1) = M(B1) =

 I I+Z
2

I−Z
2 I

 . (1.87)

1.3.1.1 Asymptotic dilation of the B2 form

The B2 canonical form C[1, 2, ξ] corresponding to the additive-noise Gaussian channel can

be dilated into a two-mode environment [69] or alternatively it can be described through an

asymptotic single-mode dilation. In fact, consider the dilation of the attenuator channel,

which is a beam-splitter ÛBSae (τ) with transmissivity τ coupling the input mode a with

the environment e initialized in the state ρe(n̄) with mean photon number n̄. In order to

achieve this dilation, we can consider a thermal state with n̄τ,ξ :=
[
ξ(1− τ)−1 − 1

]
/2 so
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that we get ξ = (1− τ)(2n̄τ,ξ + 1). Then, by taking the limit for τ → 1 , i.e. n̄τ,ξ →∞ we

can represent the B2 form as

C[1, 2, ξ](ρa) = lim
τ→1

Tre

{
ÛBSae (τ) [ρa ⊗ ρe(n̄τ,ξ)]UBSae (τ)†

}
. (1.88)

In this manner we are able to realize the asymptotic transformations x̄ → x̄ and V →

V + ξI .

1.4 Quantum Teleportation

We now introduce and characterize quantum teleportation, which is one of the fundamen-

tal primitive of quantum information science and a neat example of how entanglement is

an essential resource for the perfect accomplishement of the task which would be other-

wise impossible. Besides being a powerful theoretical tool, teleportation plays a crucial

role also in the development of many potential practical implementation of quantum com-

munication technologies. Continuous variable teleportation in particular is a central tool

in optical quantum communications, ranging from realistic implementation of quantum

key distribution, e.g. via swapping in untrusted relays [26, 73–75], to quantum network-

ing and quantum Internet [17, 23]. In this research work, teleportation represents one

of the essential building block since it is at the core of the development of a particular

quantum channel simulation, where, as we will see, it is exploited as a theoretical tool

in combination with functionals, monotonic under trace-preserving quantum operations

or local operations and classical communication, to provide simplification of fundamental

characterizing various quantum informational tasks.

Quantum teleportation exploits entanglement and classical communication in order to

transfer an unknown quantum state ρC from a sender Alice to a remote receiver without

the presence of a physical connection. To do so, Alice and Bob must share, prior to tele-

portation, a bipartite quantum state ρAB that is exploited as the resource of quantum cor-

relations. The first version of quantum teleportation was introduced in the seminal paper

of Bennet C. H. et al. [16] for qubits. More generally [76], in an ideal scenario, for quan-

tum systems with finite dimension d (qudits), in order to perfectly teleport an unknown

quantum state ρC the two users need to exploit as the resource for quantum correlations

a maximally entangled state, also usually referred to as the EPR state, ΦAB = |Φ〉〈Φ|AB ,
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Figure 1.3: Teleportation protocol. Alice wants to teleport to Bob an unknown input state |ψ〉C
with the aid of an EPR pair ΦAB shared with Bob. To achieve this task Alice implement a Bell

measurement on input system C and the arm A of the EPR state. After that, she communicates

through a classical channel (dashed arrow) her outcome to Bob who performs a suitable conditional

unitary transformation on his EPR system B in order to reconstruct the input state |ψ〉.

where

|Φ〉AB :=
1√
d

d−1∑
k=0

|k〉A|k〉B . (1.89)

For qubits, this state clearly reduces to the usual Bell state pair (|00〉AB + |11〉AB)/
√

2.

At the initial stage the total uncorrelated state is expressed by the product |φ〉tot ≡

|ψ〉C ⊗|Φ〉AB. The information transfer from Alice to Bob is possible since at Alice’s side,

the input state of system C is coupled with the EPR’s subsystem A through a collec-

tive measurement described by a Bell detection, here indicated with the symbol B. This

measurement corresponds to a projection onto the orthonormal Bell basis {|Φk〉CA}d
2−1
k=0

with d2 possible outcomes k with equal probabilities pk = d−2. The Bell detection can

be described as a positive-operator valued measure (POVM) with measurement operators

given by

Mk = (Uk ⊗ I)†ΦCA(Uk ⊗ I) (1.90)

where ΦCA = |Φ〉〈Φ|CA has the same form of the Bell state in Eq. (1.89) and the operator

Uk is one of the d2 teleportation unitaries. Before proceeding with the description of the
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teleportation strategy we better characterize the set of unitary operators.

This is a group of d2 generalized Pauli operators Ud = {Uk} where we assume k is a

multi-index k = (a, b) with a, b ∈ Zd := {0, . . . , d − 1}. Namely we define Uab := XaZb

through the non-Hermitian unitary operators X and Z acting on the computational basis

{|j〉} in the following manner

X|j〉 = |j ⊕ 1〉 , Z|j〉 = ωj |j〉 with ω := exp(2iπ/d) , (1.91)

and satisfying the generalized commutation relation

ZbXa = ωabXaZb . (1.92)

The set of finite-dimensional operators D(j, a, b) := ωjXaZb with j, a, b,∈ Zd is identified

with the Weyl-Heisenberg group of displacements operators, which for d = 2 (qubits)

reduces to the group S2 = {I, X,XZ,Z} and the group ±1× {I, X,XZ,Z}, where

X :=

 0 1

1 0

 , Z :=

 1 0

0 −1

 . (1.93)

are the Pauli qubits operators.

It is important to note that, at any dimension (finite or infinite), the teleportation unitaries

satisfy

UkU` = eiφ(k,l)Uf , (1.94)

where Uf is another teleportation unitary and φ(k, `) is a phase. In fact, for finite d, let

us write k and ` as multi-indices, i.e., k = (a, b) and ` = (s, t). From Uab = XaZb =∑
n ω

nb|n⊕ a〉〈n|, we see that UabUst = ωsbUa⊕s,b⊕t. Then, for infinite d, we know that

the displacement operators satisfy D(u)D(v) = euv
∗−u∗vD(u + v), for any two complex

amplitudes u and v.

Now, let us represent a teleportation unitary as

Ug(ρ) := UgρU
†
g . (1.95)

It is clear that we have Ua,b ◦ Us,t = Ua⊕s,b⊕t for DV systems, and Uu ◦ Uv = Uu+v for CV

systems. Therefore Ug satisfies the group structure

Ug ◦ Uh = Ug·h (g, h ∈ G), (1.96)

where G is a product of two groups of addition modulo d for DVs, while G is the translation

group for CVs. Thus, the (multi-)index of the teleportation unitaries can be taken from
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the abelian group G.

After Alice’s Bell detection, for any classical outcome k, Bob’s EPR subsystem B is

projected onto the state |ψ〉B which is related to ρC through |ψ〉B = Uk|ψ〉C . At this

stage, in order to complete the teleportation, Alice has to communicate to Bob, through

a classical channel, the two bits of classical information resulting from her measurement

process. By doing so Bob can apply the inverse unitary U−1
k to retreive the teleported

state |ψ〉out = |ψ〉C . In an ideal scenario, by employing an EPR entanglement recource the

output state perfectly coincides with the input state on Alice’s side, or otherwise stated

the teleportation protocol simulates the identity channel. This is no more valid in a more

realistic scenario where the entanglement available to the two users is limited and in this

case Bob’s output state ρout is ”close” to Alice’s input ρin by an amount quantified by the

quantum fidelity F [10] which is defined as

F (ρin, ρout) := Tr [
√
ρinρout

√
ρin] ∈ [0, 1] , (1.97)

where the bar stands for averaging over all the possible outcomes of the Bell measurement.

Thus if Alice and Bob share an arbitrary bipartite not maximally-entangled state, tele-

portation simulates a noisy channel from the input C to the output B. Furthermore, it is

important to notice that if Alice and Bob make no use of an entanglement resource, they

can achieve only imperfect teleportation. This is indeed a classical teleportation strategy

which can be achieved by Alice measuring directly the input state and sending her results

to Bob who aim at reconstructing the input state simply by means of the classical infor-

mation received by Alice. This strategy can give a maximum fidelity Fcl = 2/3, and as a

consequence the benchmark F > Fcl tells us that we are in the regime of genuine quantum

teleportation [77,78].

1.4.1 Continuous variable teleportation

So far we have considered a discrete variable (DV) scenario for qudits which are described

by finite-dimensional Hilbert spaces. We now aim at describing the protocol of quantum

teleportation in the framework of continuous variable (d = +∞). The advantages of a

CV quantum teleportation stem from an experimental point of view. In fact, the DV

teleportation described in the previous section is very hard to be implemented in a labo-

ratory due to the Bell-state discrimination which is difficult to achieve with linear-passive

devices such as beam splitters and photodetectors. CV teleportation seems to overcome
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this difficulty since the CV version of the Bell projection is obtained through passive lin-

ear optics and homodyne detections, whose outcomes can be asymptotically discriminated

in a perfect manner. Continuous variable teleportation is conceptually analogous to the

Figure 1.4: Ideal CV quantum teleportation using an ideal asymptotic EPR state shared between

Alice and Bob as the resource for entanglement [18]. See the main text for explanation.

DV protocol since it is based on the same constitutive elements. The first proposal of

quantum teleportation of continuous variable was given by Vaidman in Ref. [18] and then

refined in a more realistic scenario by Braunstein and Kimble in Ref. [19]. The protocol

á la Vaidman (see Fig. 1.4) depicts the ideal situation in which the entanglement shared

between Alice and Bob is an ideal EPR state of mode A and B with perfect correlations,

i.e. with quadratures satisfying

q̂A − q̂B = p̂A + p̂B = 0 . (1.98)

Alice wants to teleport the unknown input state ρc with quadratures q̂c, p̂c. The Bell

measurement on Alice’s side in the CV setting is composed by two consecutive operations

on her local modes. Namely, these are represented by a beam splitter mixing and a

homodyne detection. These two steps realize the ideal CV Bell-detection B which can

be seen as a projection on displaced EPR state. In the former, Alice combines the input

mode with her half A of the EPR pair through a balanced beam splitter whose action on
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the quadratures of the two modes is given by the following transformation

Q̂± =
q̂A ± q̂c√

2
, P̂± =

p̂A ± p̂c√
2

, (1.99)

where Q̂± and P̂± are the quadratures of modes + and − at the output of the beam splitter.

After that Alice measures via homodyne detection the two commuting quadratures Q̂−

and P̂+ with respective outcomes Q− and P+, so that now her state reads

q̂A = q̂c +
√

2Q− , p̂A = −p̂C +
√

2P+ . (1.100)

EPR correlations of Eq. (1.98) are such that Bob’s quadrature are instantaneously pro-

jected into

q̂B = q̂c +
√

2Q− , p̂B = p̂c −
√

2P+ . (1.101)

Alice now classically communicates the classical outcome of her measurement (Q−, P+) to

Bob by sending the complex variable α = Q− + iP+. In this way he can apply a suitable

conditional displacement D(−α) on his mode B thus retreiving the input state of mode C

q̂B → q̂out = q̂B −
√

2Q− = q̂c (1.102)

p̂B → p̂out = p̂B +
√

2P+ = p̂c . (1.103)

As one can easily notice the fidelity of the overall teleportation process is F = 1. The

protocol just described is clearly an ideal protocol since it relies on an energy unbounded

EPR state. This idealization is removed by the Braunstein-Kimble (BK) version of CV

teleportation, therefore allowing for a realistic and practical implementation of teleporta-

tion.

The BK protocol exploits as resource for teleportation a TMSV state Φµ, defined in

Eq. (1.43). As we have already discussed, the ideal EPR state can be defined as the asyp-

totic state ΦEPR := limµ Φµ in terms of a diverging sequence of TMSV states. Similarly

the CV Bell-detection is energy unbounded. To handle this we may consider a finite-energy

version of Alice’s measurement which is a quasi -projection onto displaced TMSV states.

This defines a Gaussian POVM Bµ with measurement operators given by

Mµ
k = π−1[D(−k)⊗ I]Φµ

C,A[D(k)⊗ I] . (1.104)

At this stage the ideal CV Bell-detection B is defined through B := limµ Bµ and it is clear

that we cannot achieve unit fidelity teleportation for any finite values of the squeezing
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µ which characterizes both the entanglement resource and the Bell detection. One has

perfect teleportation in the limit of infinite µ. In other words, if for finite µ the output

state on Bob’s side ρB is the teleported µ-dependent version ρµc of the input ρc, then we

can write the following limit in the trace norm [19,20]

lim
µ→+∞

||ρµc − ρc|| = 0 (1.105)

which is equivalent to

lim
µ→+∞

F (ρµc , ρc) = 1 . (1.106)

In this Thesis, CV teleportation must be always interpreted a la Braunstein-Kimble. We

always have to consider first a finite energy resources (Φµ,Bµ) leading to the computation

of a µ-dependent output and then we perform the limit µ → +∞ . Furthermore, any

funtional of the output of the protocol must be computed on the finite squeezing sequence

Φµ and then we take the limit for infinite µ.

1.5 Convergence of continuous variable teleportation

Here we complete the discussion about the Braunstein-Kimble CV teleportation by de-

scribing the different forms of convergence in different topologies that can be associated

with this protocol. These properties will turn out to be fundamental in Chapter 2 for the

development of the channel simulation of bosonic channels and to prove that the simulation

of Gaussian channels converge uniformly under specific conditions.

1.5.1 Strong convergence

We have seen in the previous section that teleportation has an LOCC structure where

the two local operations are represented by the CV Bell detection Bµ and the conditional

displacement D(−α) respectively on Alice’s and Bob’s side. Let us denote by T the overall

LOCC associated with the BK protocol. Let us also include an ancillary system in the

description so that Alice’s state ρc that has to be teleported is a part of a bipartite state

ρRc, with ρc = TrR[ρRc], where R is an arbitrary multimode system. The action of T on a

TMSV state Φµ
AB result in a global channel Iµ which is point-wise (local) approximation

of the identity channel I. This means that, for any energy-bounded input state ρRc ∈ DN ,

where

DN := {ρRc|Tr(N̂ρRc) ≤ N} , (1.107)
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with N̂ the total number operator for the mode c and the reference modes R, we have the

output

ρµRc := IR ⊗ Iµc (ρRc) = IR ⊗ TcAB(ρRc ⊗ Φµ
AB) . (1.108)

Then, as above, we can write the following trace-norm point-wise limit

lim
µ
||IR ⊗ Iµc (ρRc)− ρRc|| = 0 , (1.109)

which directly implies the convergence in the strong topology, i.e.

sup
ρRc

lim
µ
||IR ⊗ Iµc (ρRc)− ρRc|| = 0 . (1.110)

Let us notice that in Ref. [19], Eq. (4) and (8), there is a convolution between the Wigner

function Win of an arbitrary normalized input state and the Gaussian kernel Gσ, where σ

goes to zero for increasing squeezing r (and ideal homodyne detectors). Taking the limit

for large r, the teleportation fidelity goes to 1 as we can also see from Eq. (11) of [19].

This is just a standard delta-like limit that does not really need explicit steps to be shown

and fully provides the strong convergence of the BK protocol.

1.5.2 Bounded-uniform convergence

Consider now an energy-constrained state ρRc ∈ DN . Then we can introduce the energy-

constrained diamond distance between two generic bosonic channels E and E ′, defined

as [1, Eq. (98)]

||E − E ′||�N := sup
ρRc∈DN

||IR ⊗ Ec(ρRc)− IR ⊗ E ′c(ρRc)|| (1.111)

In Ref. [79,80] the authors give alternate definition of energy-constrained diamond norm.

Now due to the point-wise limit in Eq. (1.109) and the fact that the set DN is compact

we can easily conclude that for any finite value of the energy N

lim
µ→+∞

||Iµ − I||�N = 0 . (1.112)

Thus, from Eq. (1.112), we see that the BK teleportation converges to the identity channel

in the bounded-uniform topology.

1.5.3 Non-uniform convergence

The BK protocol does not uniformly converge to the identity channel. In fact, if we remove

the energy constraint in Eq. (1.112) we get

lim
µ→+∞

||Iµ − I||� = 2 , (1.113)

49



Chapter 1: Preliminaries

where

||E − E ′||� = lim
N→∞

||E − E ′||�N (1.114)

= sup
ρRc

||IR ⊗ Ec(ρRc)− IR ⊗ E ′c(ρRc)|| (1.115)

is the standard diamond distance between two arbitrary bosonic channels [3]. In order

to prove Eq. (1.113) we first notice that when applied to an energy-constrained quantum

state, the µ-approximated identity channel Iµ is locally equivalent to an additive-noise

Gaussian channel, i.e. in the notation of Table 1.2 the form B2, with added noise equal

to ξ = 2(µ−
√
µ2 − 1) (see for example Ref. [81]). Now let us consider as the input of the

teleportation process a TMSV state Φµ̃
Rc with CM V µ̃ of the form as in Eq. (1.43). Then

it is straightforward to compute the CM of the state ρµ,µ̃Rc := IR ⊗ ICµ(Φµ̃
Rc), and we get

V µ,µ̃ =

 µ̃I
√
µ̃2 − 1Z√

µ̃2 − 1Z (µ̃+ ξ)I

 . (1.116)

By employing the formula for the quantum fidelity between arbitrary Gaussian states

given in Ref. [82] we obtain the following expression

F
(
ρµ,µ̃Rc ,Φ

µ̃
Rc

)
=
{

1− 4µ̃
[√

4µ2 − 1 + µ̃− 2µ(1 + 4µµ̃− 2µ̃
√

4µ2 − 1)
]}−1/4

. (1.117)

Note that for any finite µ, the above fidelity has the expansion F
(
ρµ,µ̃Rc ,Φ

µ̃
Rc

)
' O(µ̃−1/2)

which combined with the Fuchs-van de Graaf inequalities [83]

2[1− F (ρ, σ)] ≤ ||ρ− σ|| ≤ 2
√

1− F (ρ, σ)2 (1.118)

we obtain for any finite value of the energy µ the expansion ||ρµ,µ̃Rc −Φµ̃
Rc|| ≥ 2−O(µ̃−1/2)

which directly leads to

lim
µ̃→∞

∥∥∥IR ⊗ I µ̃c (Φµ̃
Rc)− Φµ̃

Rc

∥∥∥ = 2 , (1.119)

and this is equivalent for any µ to Eq. (1.113) so that this complete the proof. In conclusion

we observe that the limit in the energy µ of the resource state Φµ
AB and the limit in the

energy µ̃ of the input Φµ̃
Rc of the teleportation do not commute. In fact, by performing first

the limit in µ in Eq. (1.117) we get F (ρµ,µ̃Rc ,Φ
µ̃
Rc) ' O(µ−1). Due to this non-commutation

between the two different limits we, i.e.

lim
µ→∞

[
lim
µ̃→∞

F
(
ρµ,µ̃Rc ,Φ

µ̃
Rc

)]
6= lim

µ̃→∞

[
lim
µ→∞

F
(
ρµ,µ̃RC ,Φ

µ̃
Rc

)]
, (1.120)
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1.5 Convergence of continuous variable teleportation

the strong convergence of Eq. (1.110) and the uniform non-convergence of Eq. (1.113) do

not coincide. This also implies that the following joint limits

lim
µ,µ̃

F
(
ρµ,µ̃Rc ,Φ

µ̃
Rc

)
, lim sup

µ,µ̃
F
(
ρµ,µ̃Rc ,Φ

µ̃
Rc

)
(1.121)

are not defined.
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Chapter 2

Channel simulation and bounds

for quantum and private

communications

One of the crucial contribution of this Thesis is undoubtely represented by the development

of the simulation of quantum channel through local operation and classical communication

(LOCC) with a particular focus on quantum teleportation. Precursory ideas of quantum

channel simulation by means of teleportation can be found in [37, 84] where it has been

developed for Pauli channels and then later in [39,85] for other classes of channels in finite

dimension. Another type of simulation [86] is the deterministic version of a programmable

quantum gate array [38], and it was introduced for discrete variable channels and based

on joint quantum operations. For this reason it cannot be employed in a quantum com-

munication scenario which is characterized by a LOCC structure.

Here we extend the teleportation simulation of quantum channels to continuous variable

systems and we design the most general channel simulation in a quantum communication

setting e.g. able to simulate the amplitude damping channel, impossible to simulate with

previous approaches. This simulation will be based on completely arbitrary LOCCs and

may involve systems in either finite or infinite dimension. We then show the fundamental

role of our simulation method in the derivation of tight upper bounds on the maximum

achievable rates for quantum communication protocols implemented over quantum chan-

nels.
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The ideal performances of quantum protocols in a point-to-point scenario are inevitably

affected by the interactions between the quantum information carriers and the external

environment. These interactions are at the core of decoherence phenomena that may

rapidly degrade the quantum features of the system involved. To surpass this limitation

one may resort to the implementation of quantum repeaters. An open problem is then to

determine the ultimate point-to-point limits that we can reach without the use of these

devices in order to have also a better understanding of the actual benchmarks that quan-

tum repeaters need to surpass in order to be considered beneficial.

This chapter investigates this basic problem and establishes the optimal rates of repeater-

less quantum communications in the most relevant settings. Here we consider two remote

parties connected by a quantum channel, who may exploit unlimited two-way classical

communication (CC) and adaptive local operations (LOs), briefly called adaptive LOCCs.

In this general scenario, we determine the maximum achievable rates for transmitting

quantum information (two-way quantum capacity Q2), distributing entanglement (two-

way entanglement distribution capacity D2) and generating secret keys (secret key capac-

ity K), through the most fundamental quantum channels. The two-way assisted capacities

are benchmarks for quantum repeaters because they are derived by removing any restric-

tion from the point-to-point protocols between the remote parties, who may perform the

most general strategies allowed by quantum mechanics in the absence of pre-shared entan-

glement. Clearly these ultimate limits cannot be achieved by imposing restrictions on the

number of channel uses or enforcing energy constraints. To achieve our results we suitably

combine the relative entropy of entanglement (REE) [36, 87, 88] with teleportation in a

novel reduction method which completely simplifies quantum protocols based on adaptive

LOCCs. The first step is to show that two-way capacities cannot exceed a bound based

on the REE. The second step is the application of a technique, dubbed “teleportation

stretching”, which is valid at any dimension. This allows us to reduce any adaptive proto-

col to a block form, so that the REE bound becomes a single-letter quantity. In this way,

we upperbound the two-way capacities of bosonic Gaussian channels [11], Pauli channels,

erasure channels and amplitude damping channels [10]. Before our results, only the Q2

of the erasure channel was known [89]. It took about 20 years to find the other two-way

capacities, which should give an idea of the novelty of our reduction method. All these

results and methods have been established in [1].
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2.1 Adaptive quantum protocols and two-way quantum capacities

2.1 Adaptive quantum protocols and two-way quantum ca-

pacities

We start by describing the most general adaptive protocol for quantum or private com-

munication over an arbitrary quantum channel E . Such adaptive protocols are the most

general strategies we need to consider in order to explore the ultimate performances of

quantum channels for quantum and private communications. These strategies are charac-

terized by subsequent transmissions of quantum systems through E , intervealed by local

operations with the assistance of classical communication which is two-way, i.e. forward

and feedback, and by means of which the involved parties may interactively update their

quantum systems in real time.

a

b
1

a
1

b

b
2

a
2

Λ� Λ� Λ�

Alice

Bob

a

b
n

a
n

b

Λ��� Λ�

Alice

Bob

Figure 2.1: General adaptive quantum protocol assisted by local operations and feedback classical

communication (LOCC). Each transmission ai → bi takes part between two rounds of LOCC Λi−1

and Λi. After n transmissions, we end up with a sequence of adaptive LOCCs P = {Λ0, . . . ,Λn}

characterizing the protocol. The corresponding output is represented by the state ρnab for Alice

and Bob. This is adapted from Fig. 1 in Ref. [1].

Let us consider two parties Alice and Bob, which are connected by an arbitrary quan-

tum memoryless channel (see Sec. 1.2) that is described by a completely positive trace-

preserving (CPTP) map E . Alice and Bob want to implement the most general adaptive

protocol for private and quantum communication tasks over the channel E . At the very ini-

tial stage the two users own two local register a = {a1, a2, · · · , an} and b = {b1, b2, · · · , bn}

consisting in two countable sets of quantum systems ai and bi.

The main steps of an adaptive protocol can be summed up as follows and the reader may

refer to Fig. 2.1 for a schematic representation

• Alice and Bob start with the preparation of the initial state ρ0
ab, by means of an

adaptive LOCC Λ0 which is applied to their register a and b.
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• Alice selects a quantum system a1 ∈ a and sends it through the channel E . This

procedure generates on Bob’s side, the output system b1 which is then included in

the local register, i.e. b1b→ b. At this stage, the second LOCC Λ1 is performed on

the two local register producing the output

ρ1
ab = Λ1(ρ0

ab) (2.1)

• The second transmission a 3 a2
E→ b2 then takes place, followed by another adaptive

LOCC Λ2. This procedure is now iterated for a number n of uses of the channel

giving rise to a sequence P := {Λ0 . . .Λn} of adaptive local operations and classical

communications which provides the output ρnab and characterizes the protocol.

Suppose now that the aim of the adaptive protocol implemented by Alice and Bob is to

distribute entanglement, i.e. the parties aim at distributing ebits (units of entanglement).

Let us introduce the family of maximally entangled states {φn}n∈N parametrized by the

number of channel uses n

φn :=
1√
dn

dn−1∑
i=0

|i〉A|i〉B . (2.2)

Then we say that the adaptive protocol outlined above distributes entanglement at a rate

equal to Rn, if the output ρnab is ε-close to a target state φn having a number of ebits equal

to nRn = log2 dn. In other words if we can write ‖ρnab−φn‖ ≤ ε in trace norm with ε→ 0.

The two-way entanglement distribution capacity D2(E) of the quantum channel E is then

defined by taking the limit of Rn for large number of transmissions n and optimizing over

all the possible adaptive protocols P (see Ref. [34] for a similar approach), namely we have

D2(E) := sup
P

lim
n→∞

Rn . (2.3)

This capacity is equal to the two-way quantum capacity Q2(E), i.e. the maximum achiev-

able rate for transmitting quantum information, i.e. qubits, and this is true since an ebit

can teleport a qubit and viceversa with a qubit is possible distribute an ebit. If the aim

of the protocol is to implement Quantum Key Distribution (QKD), then φn is a private

state [90, 91] (see next section) and the generic two-way quantum capacity is the secret

key capacity K(E) which is equal to the private capacity P2(E) (capacity for the private

transmission of classical bits). Since a maximally entangled state is a specific type of

private state, entanglement distillation is a specific version of key distillation, thus we can
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write the following relations between all the different capacities

Q2 = D2 ≤ P2 = K . (2.4)

In the following discussions we collectively use the symbol C(E) to refer to these different

two-way assisted quantum capacities.

2.1.1 Private state and size of the shield system

We now want to better characterize the structure of a private state and to do so we

introduce the notion of the shield system which plays a central role in its definition. Let

us consider two local registers a and b for Alice and Bob, decomposed as a = AA′ and

b = BB′ respectively. Here A and B are the local key systems each with dimension equal

to dK , whereas A′ and B′ together provide the so-called shield system, whose dimension

is indicated with dS and can in principle be arbitrary (it could be infinite for bosonic

systems). The total dimension d of of the registers is therefore d = d2
KdS . A generic

private state is a state with the following structure

φABA′B′ = U(ΦAB ⊗ χA′B′)U † , (2.5)

where the maximally entangled state ΦAB is given by

ΦAB = |Φ〉AB〈Φ| with |Φ〉AB = 1/
√
dK

dK−1∑
i=0

|i〉A|i〉B , (2.6)

while χA′B′ is the shielding state protecting the key from an eavesdropper Eve. In Eq. (2.5)

the control unitary U referred to as twisting unitary takes the form [91]

U =

dK−1∑
i,j=0

|i〉A〈i| ⊗ |j〉B〈j| ⊗ U ijA′B′ (2.7)

with arbitrary unitary operators U ijA′B′ . It is possible to prove [91] that a dilation of a

private state into an environment E (owned by Eve) has the form

φABA′B′E = d−1
K

dK−1∑
i,j=0

|ii〉AB 〈jj| ⊗ U
ii
A′B′χA′B′E(U jjA′B′)

† , (2.8)

where χA′B′ = TrE(χA′B′E) . By performing local measurements on the key system AB

and tracing out the shield A′B′, Alice and Bob share an ideal private state which shares

no correlation with the eavesdropper, i.e. it is completely factorized from system E [90]

τABE = d−1
K

dK−1∑
i=0

|i〉A 〈i| ⊗ |i〉B 〈i| ⊗ τE , (2.9)
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with τE an arbitrary state for Eve’s system. The shared randomness in the final classical

systems A and B provides log2 dK secret bits so that the n-use target state φn of the

adaptive protocol described above is such that

log2 dK = nRn , (2.10)

with the local dimension dK giving the number of secret bits and it is exponential in the

number of transmission n in both DV and CV scenarios. The dimension dS of the shield

system A′B′ can in principle be arbitrary. The total dimension of the private state is

dP = d2
KdS . In a key distillation protocol, where Alice and Bob start from n shared

copies ρ⊗nAB and apply LOCCs to approximate a private state φn, the size of the shield dS

grows with the number of classical bits exchanged in their CCs. In fact, Eve may store

all these bits in her local register and a private state can be approximated by the parties

only if the dimension of Eves register is smaller than the dimension of the shield system.

This is implied by Eq. (2.9) as explained in ref. [91, Section III]. The dimension dS of the

shield system A′B′, for DV system, is at most exponential in n. In fact there exist the

following result originally proven in Ref. [34] and also discussed in Ref. [92]

Lemma 2.1.1 (Shield system’s dimension [34,92]) The increase in the shield size

dS is at most exponential in the number n of channel uses, i.e. log2 dS ≤ cn for some

constant c. In particular, this means that for any protocol we can design an approzimate

protocol with the same asymptotic rate but keeping the increase of dS at most exponential.

We give an idea of the proof stressing the meaningful steps. For a detailed proof of this

Lemma see Ref [34] and its re-adapted version of our work in Ref. [1].

Suppose Alice and Bob are running a key generation prtotocol Pn with a large num-

ber of channel uses n and a rate equal to Rn. For any ε > 0, there exists a number n0 such

that the truncated protocol has a rate Rn0 satisfying Rn0 ≥ Rn − ε. Now Alice and Bob

repeat the truncated protocol a number of times m = n/n0, so that they collect m copies

of the state ρn0
ab . By performing one-way key distillation with these copies they achieve an

average key rate (per channel use) [34,92]

R̃n ≥ (1− 8ε)(Rn − ε)− 4
H2(ε)

n0
, (2.11)

where we have introduced the binary Shannon entropy

H2(x) := −x log2 x− (1− x) log2(1− x) , (2.12)
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At this stage it is important to note that Alice and Bob can achieve the average rate R̃n by

using an amount of one-way classical communication which is linear in the block number

m < n. In fact, the communication cost (bits per block) associated with the one-way

key distillation of Alice and Bob’s copies (ρ̃n0
AB)⊗m is equal to the conditional (Shannon)

entropy S(A|B) between the two classical finite-dimensional systems A and B [93]. This

overhead is bounded by log2 dimHA,B = ln0 classical bits per block, so that it scales at

most linearly as mln0 . Therefore, by decreasing ε, we get a sequence of protocols whose

classical communication scales linearly in m while their rates approach R according to

Eq. (2.11). Correspondingly, the size of the shield grows at most exponentially in m.

Thus, for DV systems, this lemma allows to restrict the definition of C(E) in Eq. (2.3)

to adaptive protocols P for which the dimension of the shield system grows at most

exponentially. For CV system this lemma still applies after a suitable truncation of the

underlying Hilbert space [1, Supp. Note 3].

2.2 Lower bound at any dimension

In order to assess the various capacities C(E) defined in Eq. (2.3) and specified in Eq. (2.4)

we need to resort to suitable lower and upper bounds that are usually built upon infor-

mation and entanglement measures. The lower bound is a well established result. In fact,

from below, we may use the coherent [94,95] or reverse coherent [32,33] information which

are defined through the following specific strategy. Consider a quantum channel E applied

to some input state ρA of system A. Let us introduce the purification |ψ〉RA of ρA by means

of an auxiliary system R. We can therefore consider the output ρRB = I ⊗ E(|ψ〉RA〈ψ|).

By definition, the coherent information is

IC(E , ρA) = I(A〉B)ρRB = S(ρB)− S(ρRB) , (2.13)

where ρB := TrR(ρRB) and S(ρ) := −Tr(ρ log2 ρ) is the von Neumann entropy. Similarly,

the reverse coherent information is given by

IRC(E , ρA) = I(A〈B)ρRB = S(ρR)− S(ρRB) , (2.14)

where ρR := TrB(ρRB).

When the input state ρA is a maximally-mixed state, its purification is a maximally-

entangled state ΦRA, so that ρRB is the Choi matrix of the channel, i.e. ρE := I⊗E(ΦRA).
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We then define the coherent information of the channel as

IC(E) := IC

(
E , I
d

)
= I(A〉B)ρE . (2.15)

Similarly, its reverse coherent information is

IRC(E) := IRC

(
E , I
d

)
= I(A〈B)ρE . (2.16)

Note that for unital channels, i.e., channels preserving the identity E(I) = I, we have

IC(E) = IRC(E). This is just a consequence of the fact that, the reduced states ρA and ρR of

a maximally entangled state ΦRA is a maximally-mixed state I/d, where d is the dimension

of the Hilbert space (including the limit for d → +∞). If the channel is unital, also the

reduced state ρB = E(ρA) is maximally-mixed. As a result, S(ρB) = S(ρA) = S(ρR) and

we may write IC(E) = IRC(E) := I(R)C(E).

In the specific case of discrete-variable systems (d < +∞), we have S(ρR) = log2 d and

therefore

I(R)C(E) = log2 d− S(ρE) . (2.17)

In particular, for unital qubit channels (d = 2), one has

I(R)C(E) = 1− S(ρE) . (2.18)

The latter two formulas will be exploited to compute the coherent information of discrete-

variable channels.

The coherent information is an achievable rate for forward one-way entanglement distil-

lation [93]. Similarly, the reverse coherent information is an achievable rate for backward

one-way entanglement distillation [32] (i.e., assisted by a single and final CC from Bob to

Alice). In fact, thanks to the hashing inequality [93], we may write

max{IC(E), IRC(E)} = max{I(A〉B)ρE , I(A〈B)ρE} ≤ D1(ρE). (2.19)

where D1(ρE) is the entanglement which is distillable from the Choi matrix ρE of the

channel, by means of one-way forward or backward classical communication [93]. In the

next section we are going to extend the inequality in Eq. (2.19) to energy-constrained

bosonic state. To do so we will exploit the continuity of the (reverse) coherent information

in the limit of infinite dimension, moreover we need the following truncation argument in

order to connect continuous-variable and discrete-variable states.

Suppose we are given m bosonic modes with Hilbert space H⊗m and D(H⊗m) the set of
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density operators. If N̂i is the number operator of the i-th mode, the total energy operator

reads Ĥ =
∑m

i=1 N̂i. We can then define the following compact set of energy-constrained

states

DE(H⊗m) :=
{
ρ ∈ D(H⊗m)|Tr(ρĤ) ≤ E

}
. (2.20)

We can always find a finite-dimensional projector Pd (the detailed proof of this statement

is in [1, Supp. Note 1]) that projects the state ρ ∈ D(H⊗m) onto the d-dimensional support

of the m-mode Hilbert space with probability

Tr(ρPd) ≥ 1− γ̃ , γ̃ :=
E

m
√
d− 1

, (2.21)

in this way generating a d-dimensional truncated state δ = PdρPd/Tr(ρPd) such that

D(ρ, δ) ≤
√
γ̃ . (2.22)

The projector Pd can be constructed in the following way. Consider the degenerate eigen-

values of the operator Ĥ and sort them in increasing order h0 ≤ h1 ≤ · · · ≤ hn ≤ · · · .

Each of these eigenvalues is given by
∑m

i=1Ni where Ni counts the number of photons in

the i-th mode. The corresponding eigenstates can be written as |h̃n〉 = |N1〉 ⊗ · · · ⊗ |Nm〉,

i.e.

|h̃0〉 = |0〉 ⊗ |0〉 · · · ⊗ |0〉 , (h0 = 0),

|h̃1〉 = |1〉 ⊗ |0〉 · · · ⊗ |0〉 , (h1 = 1),

|h̃2〉 = |0〉 ⊗ |1〉 · · · ⊗ |0〉 , (h2 = 1),

...
... (2.23)

If we define the projector associated with the eigenvector |h̃n〉 as Pn := |h̃n〉〈h̃n|, then the

d-dimensional truncation projector Pd is given by

Pd :=
d−1∑
n=0

Pn . (2.24)

2.2.1 Hashing inequality in infinite dimension

Let us consider the state ρAB of two-bosonic modes A and B having ≤ n̄ mean photons

each, we can apply a projector Pd to obtain the d-dimensional truncated state δAB =

PdρABPd/Tr(ρABPd) such that

D(ρAB, δAB) ≤ √γ, γ :=
2n̄√
d− 1

, (2.25)
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According to ref. [96, Lemma 17], the trace-distance condition D(ρ, δ) ≤ √γ < 1/6 implies

that the coherent information I(A〉B) = −S(A|B) satisfies

|I(A〉B)ρ − I(A〉B)δ| ≤ 16
√
γ log2

[
2e(n̄+ 1)

1−√γ

]
+ 32H2(3

√
γ) , (2.26)

where H2 has been introduced in Eq. (2.12). For any n̄, the limit d → +∞ implies that

γ → 0 and therefore

|I(A〉B)ρ − I(A〉B)δ| → 0 . (2.27)

The reverse coherent information I(A〈B) = −S(B|A) satisfies an equivalent limit. Thus

for any n̄, the coherent and reverse coherent information are continuous in the limit of

infinite dimension and the hashing inequality [93] is extended to bosonic systems with

constrained energy. This means that I(A〉B)ρ (I(A〈B)ρ) represents an achievable rate for

the distillable entanglement of the energy-bounded bosonic state ρ via forward (backward)

CCs.

We can extend all these definitions in order to give a formulation for asymptotic states

thus including into the description CV systems for which the maximally entangled state

is itself asymptotic (energy-unbounded). In fact, as we already noticed at the end of

Sec. 1.4.1, this is realized as Φ := limµ→∞Φµ, i.e. as the infinite energy limit of a se-

quence of two-mode squeezed vacuum states Φµ. The parameter µ = n̄ + 1/2 quantifies

both the squeezing and the local energy, i.e. the mean total thermal photon number n̄ in

each mode.

The Choi matrix of a bosonic channel E is then defined as the following asymptotic state

ρE := lim
µ→∞

ρµE , ρµE = I ⊗ E(Φµ). (2.28)

Correspondingly, the computation of the (reverse) coherent information of the channel is

performed as a limit, i.e., we have

IC(E) = I(A〉B)ρE := lim
µ→∞

I(A〉B)ρµE
, (2.29)

IRC(E) = I(A〈B)ρE := lim
µ→∞

I(A〈B)ρµE
. (2.30)

As we will see afterwards in the technical derivations of Appendix B, for bosonic Gaussian

channels the functionals I(A〉B)ρµE
and I(A〈B)ρµE

are continuous, monotonic and bounded

in µ. Therefore, the previous limits are finite and we can continuously extend the hashing
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inequality of Eq. (2.19) to the asymptotic Choi matrix ρE of a Gaussian channel, for which

we may set D1(ρE) := limµ→∞D1(ρµE).

Due to the hashing inequality, the quantities IC(E) and IRC(E) are achievable rates for

one-way entanglement distillation. Therefore, they also represent achievable rates for key

generation, just because an ebit is a particular type of secret bit. In particular, ref. [33]

proved that IRC(E) is an achievable lower bound for quantum key distribution (QKD)

through a Gaussian channel without the need of preliminary entanglement distillation. In

fact, IRC(E) can be computed as the asymptotic key rate of a coherent protocol where:

(i) Alice prepares TMSV states Φµ
AA′ sending A′ to Bob;

(ii) Bob heterodynes each output mode B and sends final CCs back to Alice;

(iii) Alice measures all her modes A by means of an optimal coherent detection that

reaches the Holevo bound.

The achievable rate of this coherent protocol is given by a generalized Devetak-Winter

rate [93] where Alice and Bobs mutual information is replaced by their Holevo bound [33].

Because Eve holds the entire purification of Alice and Bob’s Gaussian output state ρµE

and Bob’s detections are rank-1 measurements, this rate is equal to the reverse coherent

information RDW = I(A〈B)ρµE
computed on Alice and Bob’s output. Then, by taking the

limit of µ→ +∞, one obtains K(E) ≥ IRC(E).

2.3 General weak converse upper bound for private com-

munication

We are now ready to establish the fundamental upper bound on the various two-way

capacities of Eq. (2.4). In order to build such an upper bound we resort to the definition

of the relative entropy of entanglement (REE) suitably extended from quantum states to

quantum channel. Let us recall that the REE of a quantum state ρ is defined as [36,87,88]

ER(ρ) := inf
σs
S(ρ‖σs) (2.31)

where the infimum is take over the set of all separable states σs and

S(ρ||σs) := Tr [ρ(log2 ρ− log2 σs)] is the relative entropy [87]. Its regularized version in
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terms of the REE computed over n copies of ρ is given by

E∞R (ρ) := lim
n→∞

1

n
ER(ρ⊗n) ≤ ER(ρ) . (2.32)

Now, if we consider a DV quantum channel with Choi matrix ρE := I ⊗ E(Φ) , where I

is the identity channel and Φ is maximally entangled as in Eq. (1.89), we can define the

REE of the channel E as [1]

ER(E) := sup
ρ
ER[I ⊗ E(ρ)] ≥ Φ(E) , (2.33)

where we have introduced the entanglement flux of the channel E which is in turn given

by the REE of the Choi state ρE

Φ(E) := ER(ρE) . (2.34)

The inequality in Eq. (2.33) is clear. By extending all the previous definition to CV

systems, we note that, given two sequences of states σµ1 and σµ2 such that ‖σµk−σk‖
µ→∞−→ 0,

for k = 1, 2, the relative entropy between the two limit states σ1 and σ2 satisfies, at any

dimension, the lower semi-continuity property [97]

S(σ1‖σ2) ≤ lim inf
µ→∞

S(σµ1 ‖σ
µ
2 ) . (2.35)

Relying on this we can define the REE of an asymptotic state σ := limµ→∞ σ
µ as follows [1]

ER(σ) := inf
σµs

lim inf
µ→+∞

S(σµ||σµs ), (2.36)

where σµs is an arbitrary sequence of separable states such that ||σµs −σs||
µ→∞−→ 0 for some

separable σs. A straightforward implication of Eq. (3.26) is that the entanglement flux of

Eq. (2.34) can be introduced also for bosonic channels in the following way

Φ(E) := inf
σµs

lim inf
µ→+∞

S(ρµE‖σ
µ
s ) . (2.37)

where ρµE is the quasi -Choi matrix defined in Eq. (2.28).

Now that we have clarified how REE is defined for quantum states and asymptotic states,

including Choi matrices, we can provide the following fundamental upper bound on the

two-way capacities of an arbitrary quantum channel.

Theorem 2.3.1 (general weak converse [1]) At any dimension, finite or infinite, the

generic two-way capacity of a quantum channel E is upper bounded by the REE bound

C(E) ≤ EFR (E) := sup
P

lim
n→∞

ER(ρnab)

n
. (2.38)

where ρabn is the output of an n-use protocol P.
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There are three different but equivalent proofs for this theorem. The first one assumes an

exponential growth of the shield system in the target private as explained in the previous

section. The second proof simultaneously applies to both DV and CV systems, and relies

on the physical assumption that the energy of the output state grows at most exponen-

tially in the number n of channel uses. Another proof is completely independent from the

shield system. Here we decided to show only the first proof which was the first given in [2]

back in 2015 and it is a re-adaptation of the arguments of Refs. [34,92]. For the other two

proofs the reader may refer to [1], where they were given for the sake of completeness.

Proof : Let us start by assuming that the output state ρnab in Alice and Bob’s regis-

ters has total finite dimension dab. Given ρnab and φn such that ‖ρnab − φn‖ ≤ ε ≤ 1/3, we

may write the Fannes-type inequality [98]

ER(φn) ≤ ER(ρnab) + 2ε log2 dab + f(ε) , (2.39)

where f(ε) := 4ε − 2ε log2 ε. This result is also known as asymptotic continuity of the

REE. An alternate version states that ‖ρnab − φn‖ ≤ ε ≤ 1/2 implies [99]

ER(φn) ≤ ER(ρnab) + 4ε log2 dab + 2H2(ε) , (2.40)

where H2 is the binary Shannon entropy. Note that the total dimension dab of the output

state may always be considered to be greater than or equal to the dimension dP of the

private state. The latter involves two key systems (with total dimension d2
K) and a shield

system (with total dimension dS), so that dP = d2
KdS. The logarithm of the dimension

dK determines the key rate, while the extra dimension dS is needed to shield the key and

can be assumed to grow exponentially in n (see Sec. 2.1.1 for full details). According to

ref. [90], we may write

ER(φn) ≥ K(φn) = log2 dK := nRεn, (2.41)

where K(φn) is the distillable key of φn. Therefore, from Eq. (2.40), we find

Rεn ≤
ER(ρnab) + 4ε log2 dab + 2H2(ε)

n
. (2.42)

For some sufficiently high α ≥ 2, let us set

log2 dab ≤ αnRεn . (2.43)
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Then the previous inequality becomes

Rεn ≤
ER(ρnab) + 2H2(ε)

n(1− 4εα)
. (2.44)

Taking the asymptotic limit first in n and then in ε→ 0 , we derive

lim
n→∞

Rn ≤ lim
n→∞

n−1ER(ρnab) , (2.45)

whose optimization over adaptive protocols P leads to the following weak converse bound

for the key generation capacity

K(E) := sup
P

lim
n→∞

Rn ≤ EFR (E) := sup
P

lim
n→∞

n−1ER(ρnab) . (2.46)

When ρnab is a CV bosonic state, we may consider an LOCC truncation channel T⊗ which

maps the state into a DV state ρ̃nab = T⊗(ρnab) supported in a subspace with cut-off α, so

that the effective dimension is 2αnR
ε
n as in Eq. (2.43). The LOCC truncation channel T⊗

can be defined as follows.

Let us consider the local POVM Πij := Πa
i ⊗Πb

j where the two local projections are given

by

Π
a(b)
0 = P

a(b)
d , Π

a(b)
1 = Ia(b) − P a(b)

d , (2.47)

where Pd has been defined in Eq. (2.24). Therefore, the channel T⊗ is defined in the

following manner

T⊗(ρab) :=
∑

i,j∈{0,1}

Eij(ΠijρabΠ†ij) , (2.48)

with

Eij =

 Ia ⊗ Ib for i = j = 0

E∗a ⊗ E∗b otherwise ,
(2.49)

and the channels E∗a(b) are two damping channels giving ma- (mb-)mode vacuum state for

any given input. In other words, Alice and Bob apply the projections of Eq. (2.47) and

then communicate their outcomes to each other by using a single bit of classical informa-

tion for each one-way CC. At this stage, if both parties project onto the local d-dimensional

support, then they apply an identity channel Ia(b). On the other hand, if one between

Alice and Bob projects outside the local support, they both apply a damping channel E∗

which maps any input state into a fixed output within the support. This output state can
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always be chosen as the vacuum state.

The CV-to-DV mapping just described is large enough to leave the private state φn in-

variant, i.e., φn = T⊗(φn). Because ‖ρ̃nab − φn‖ ≤ ‖ρnab − φn‖ ≤ ε, we can then repeat

the previous derivation and write Eq. (2.46) for ρ̃nab. Then, we introduce the upper-

bound ER(ρ̃nab) ≤ ER(ρnab), which derives from the monotonicity of the REE under trace-

preserving LOCCs (such as T⊗). For clarity, this derivation can be broken down into the

following steps

ER(ρ̃nab)
(1)
= S(ρ̃nab||σ̃opt

s )
(2)

≤ S(ρ̃nab||σ′s)
(3)

≤ S(ρnab||σopt
s ) = ER(ρnab) , (2.50)

where (1) we use the optimal separable state σ̃opt
s which is the closest to ρ̃nab in terms of

relative entropy; (2) we introduce the non-optimal separable state σ′s = T⊗(σopt
s ), where

σopt
s is the separable state closest to ρnab (because T⊗ is a LOCC, it preserves the separa-

bility of input states); and (3) we exploit the fact that the relative entropy cannot increase

under trace-preserving LOCCs, which holds in arbitrary dimension [88,97]. Thus, we may

write Eq. (2.46) where ER(ρnab) is directly computed on the bosonic state ρnab.�

Having established the upper bound EFR (E), we need a strategic methodology to sim-

plify it in order to make it a function of a single letter quantity and thus in principle

computable. Such a strategy is given by teleportation stretching which is in turn based

on suitable simulation of quantum channels.

2.4 Simulation of quantum channels

In Sec. 1.4 we described the quantum teleportation protocol and we have seen that its

structure consists in local operations, Bell detection on Alice’s side and Bob’s unitary

correction, plus classical communication from Alice to Bob. We also noticed that for

maximally entangled resource state, the teleported output perfectly correspond to the

input. If we perform teleportation over an arbitrary mixed resource state σ of systems A

and B, the teleported state on Bob’s side will result in the output of a certain quantum

channel E from Alice to Bob, as explained in Fig. 2.2, panel (a). More generally any

implementation through an arbitrary LOCC T and a resource state σ simulates the output

of a quantum channel, see Fig 2.2, panel (b).

Thus at any finite dimension d , we define the channel E to be ”σ-stretchable” if its action
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on an input state ρ can be written in terms of a trace-preserving LOCC T as follows [1]

E(ρ) = T (ρ⊗ σ) . (2.51)

Note that for any given quantum channel, we can always find a suitable LOCC T and a

resource state σ that acheive the simulation in Eq. (2.51). For example we can trivially

decompose the channel as E = I ⊗ E and include the map E into Alice’s LO, so that the

we can simulate the identity map I by means of teleportation over the ideal EPR pair

σ := Φ. Therefore the problem is to characterize the best resource state for the specific

purpose under study. In infinite dimension, the LOCC simulation should involve the limits

T := limµ→∞ T µ and σ := limµ→∞ σ
µ of sequences of LOCCs T µ and resource states σµ.

Then, for any finite µ, the simulation (T µ, σµ) provides the approximated channel Eµ

through Eµ(ρ) := T µ(ρ ⊗ σµ) [1] which defines the quantum channel E as the point-wise

limit (more details on the bosonic channel simulation in the next subsection)

E(ρ) = lim
µ→∞

Eµ(ρ) . (2.52)

Among all the possible simulations, we need to identify the best resource state that op-

timizes the functional under study. In our case the best results are achieved when the

resource state σ is identified with the Choi matrix of the channel, i.e. σ = ρE (see Fig 2.2,

panel (c)). In fact, a simple criterion to characterize a good LOCC simulation for a

quantum channel is given by teleportation covariance.

Definition 2.4.1 (Tele-covariance [1]) A quantum channel E is defined to be telepor-

tation covariant if, for any teleportation unitary U , i.e. Pauli unitary in DVs and phase-

space displacement in CVs (refer to Sec. 1.4), we may write

E(UρU †) = V E(ρ)V † (2.53)

for some other unitary V .

The key property of a teleportation covariant channel is that the input teleportation

unitaries can be pushed out of the channel, where they become other correctable unitaries.

Because of this property, the transmission of a quantum system through the channel can

be simulated by a generalized teleportation protocol over the Choi matrix of the channel.

More precisely we can state the following
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Figure 2.2: Generalization of teleportation-simulation of quantum channels to LOCC-simulation.

(a) Scheme of generalized teleportation of an input state ρ of a d-dimensional system c by using a

resource state σ shared by systems A and B, with respective dimensions d and d′ (finite or infinite).

Input c and A are subject to a Bell detection (triangle) with random outcome k. This outcome is

associated with a projection onto a maximally entangled state up to an associated teleportation

unitary Uk which is a Pauli operator for d < +∞ and a phase-displacement for d = +∞ (see Sec 1.4

for the basics of quantum teleportation and the characterization of the teleportation unitaries).

The classical outcome k is communicated to Bob, who conditionally applies a correction unitary

V −1
k to his system B with output b. In general, Vk does not necessarily belong to the set {Uk}.

On average, this teleportation LOCC defines a teleportation channel E from a to b. It is clear that

this construction also teleports part a of an input state involving ancillary systems. (b) We can

replace the teleportation LOCC (Bell detection and unitary corrections) with an arbitrary LOCC

T consisting of a quantum operation Ak on Alice’s side applied to systems c and A, the classical

communication of the outcome k and then another quantum operation Bk that Bob applies to his

system B. By averaging over the variable k, so that T is certainly trace-preserving, we achieve

the simulation E(ρ) = T (ρ⊗ σ) for any input state ρ. In this case we say that E is σ-stretchable.

The LOs Ak and Bk are arbitrary quantum operations that may involve other local ancillas and

also have extra labels (due to additional local measurements), in which case T is assumed to be

averaged over all these labels. (c) The most important case is when channel E can be simulated

by a trace-preserving LOCC T applied to its Choi matrix ρE := I ⊗ E(Φ), with Φ being an EPR

state. In this case, we say that the channel is “Choi-stretchable”. These definitions are suitably

extended to bosonic channels. This Figure is adapted from [1, Fig. 2.2].
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Proposition 2.4.1 (Choi stretchability [1]) A teleportation covariant channel is Choi-

stretchable, i.e. it can be simulated by using its Choi matrix ρE . For a DV channel this

means

E(ρ) = T (ρ⊗ ρE) (2.54)

where T is now the teleportation LOCC. For a CV channel this means

E(ρ) = lim
µ→∞

Eµ(ρ) , Eµ(ρ) = T µ(ρ⊗ ρµE) (2.55)

where T µ is the LOCC of the BK teleportation protocol and the sequence ρµE defines the

asymptotic Choi matrix for large µ.

In Fig. 2.3 we give a graphical depiction of how teleportation covariance implies Choi

stretchability. Teleportation covariant channels belong to a wide class including all Pauli

channels and erasure channels in DVs, and bosonic channels in CVs (see Sec. 2.7 for the

definitions of these quantum channels).

2.4.1 Simulation of bosonic Gaussian channel

In this section we better describe the technical details of the simulation for bosonic channels

and how to handle carefully its different topologies of convergence which are straightfor-

wardly derived from the considerations made in Sec. 1.5 regarding the convergence of the

Braunstein-Kimble teleportation protocol. In particular we discuss how the teleportation

simulation of bosonic channels uniformly converges only for the specific class of Gaussian

channels. The proof of this statement is left to Appendix A to not overload the discussion

here.

Strong convergence in the teleportation simulation of bosonic channels

To begin let us consider a teleportation covariant bosonic channel E . This means that

for any random phase-space displacement D(−α), we can write the corresponding of

Eq. (2.51), i.e.

E [D(−α)ρD(α)] = VαE(ρ)V †α , (2.56)

with Vα an output unitary. To correctly formulate the simulation for this type of channel

we start from a µ-energy BK protocol (T µ,Φµ). From Sec. 1.5 we know that this results
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Figure 2.3: Teleportation-covariant channels are Choi-stretchable. (a) Consider the teleportation

of an input state ρc with the EPR state ΦAA′ of systems A and A′ as resource for entanglement.

The Bell detection B on systems a and A teleports the input state onto A′, up to a random

teleportation unitary, i.e., ρA′ = UkρcU
†
k . By invoking the teleportation covariance of E , we can

map Uk into an output unitary Vk so that we may write ρB = E(ρA′) = E(UkρcU
†
k) = VkE(ρc)V

†
k .

Once Bob receives the CC from Alice with the information about the outcome k, he applies V −1
k ,

so that ρb = V −1
k ρB(V −1

k )† = E(ρc). Globally, the process describes the simulation of channel

E by means of a generalized teleportation protocol over the Choi matrix ρE . (b) The procedure

is also valid for CV systems. For a bosonic mode c in input , we consider a TMSV state Φµ

and a corresponding quasi-projection Bµ onto displaced TMSV states. At finite energy µ, the

teleportation process from c to A′ is imperfect with some output ρµA′ 6= ρA′ = UαρcU
†
α. However,

as we noticed in Eq. (1.105), for any ε > 0 and input state ρc, there is a sufficiently large value

of µ such that ||ρµA′ − ρA′ || ≤ ε. Consider the transmitted state ρµB = E(ρµA′). Because the trace

distance decreases under channels, we have ||ρµB −ρB || ≤ ||ρ
µ
A′ −ρA′ || ≤ ε. After the application of

the correction unitary V −1
α , we get the output state ρµb which satisfies ||ρµb − E(ρc)|| ≤ ε. Taking

the asymptotic limit of large µ, we achieve ||ρµb −E(ρc)|| → 0 for any input ρc, therefore achieving

the perfect asymptotic simulation of the channel. The asymptotic teleportation-LOCC is therefore

(B, ρE) := limµ→∞(Bµ, ρµE) where ρµE := I ⊗E(Φµ). The result is trivially extended to the presence

of ancillas. This is Fig. 3 from [1].
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in a µ-approximated identity channel Iµ. Suppose now that after this channel Bob applies

the bosonic channel E . Then we consider the following channel composition

Eµ = E ◦ Iµ . (2.57)

Then for any input state ρRc, we may write the the output state as

IR ⊗ Eµc (ρRc) = IR ⊗ EB ◦ TcAB(ρRc ⊗ Φµ
AB) . (2.58)

By employing the teleportation covariance of E we can commute it with the displacement

D(−α), up to redefining the teleportation corrections as Vα. By including the unitaries

Vα into the LOCC T , the latter changes into a new LOCC T̃ and therefore the resource

state now reads

ρµE := IA ◦ EB(Φµ
AB) , (2.59)

We can re-write the teleportation simulation of the output as follows

IR ⊗ Eµc (ρRc) = IR ⊗ T̃cAB
[
ρRc ⊗

(
ρµE
)
AB

]
. (2.60)

Now, by exploiting the composition in Eq. (2.57) and the monotonicity of the trace distance

under the action of CPTP maps [10], we get

‖IR ⊗ Eµc (ρRc)− IR ⊗ Ec(ρRc)‖ = ‖IR ⊗ Ec ◦ Iµc (ρRc)− IR ⊗ Ec ◦ Ic(ρRc)‖

≤ ‖IR ⊗ Iµc (ρRc)− ρRc‖
µ→∞→ 0 , (2.61)

where in the last limit we exploited Eq. (1.109). As a consequence, for any bipartite

energy-costrained input state ρRc we can write the following point-wise limit

lim
µ→∞

‖IR ⊗ Eµc (ρRc)− IR ⊗ Ec(ρRc)‖ = 0 . (2.62)

The strong convergence in the simulation of teleportation covariant bosonic channels (not

necessarily Gaussian) directly follows from the above limit. In fact, since Eq. (2.62) is

valid for any bipartite energy-costrained input state ρRc, we may write

sup
ρRc

lim
µ→∞

‖IR ⊗ Eµc (ρRc)− IR ⊗ Ec(ρRc)‖ = 0 (2.63)

which states that the teleportation simulation Eµ strongly converges to the corresponding

bosonic channel E .
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Bounded-uniform convergence in the teleportation simulation of bosonic chan-

nels

Consider now an energy constrained input alphabet DN as in Eq. (1.107) and the energy-

constrained diamond distance defined in Eq. (1.111). Given the teleportation-covariant

bosonic channel E and its teleportation simulation Eµ introduced in Eq. (2.60), we define

the error of the simulation as

δ(µ,N) := ‖Eµ − E‖�N , (2.64)

which satisfies

δ(µ,N) = sup
ρRc∈DN

‖IR ⊗ Eµc (ρRc)− IR ⊗ Ec(ρRc)‖

≤ sup
ρRc∈DN

‖IR ⊗ Iµc (ρRc)− ρRc‖

=: ‖Iµ − I‖�N (2.65)

where in the inequality we have once again exploited the monotonicity of the trace norm

under CPTP maps. Thus, relying on Eq. (1.112), we can conclude that for any finite N

we have

lim
µ→∞

δ(µ,N) = 0 , (2.66)

so that any teleportation simulation Eµ of a teleportation covariant bosonic channel E

converges to it in the energy-bounded diamond norm [1,4].

At this stage we ask whether is possible to remove the energy constrain, i.e. whether we

can have uniform convergence (N → ∞). Indeed, as we show in the next, if a bosonic

Gaussian channel satisfies a particular condition, it can be simulated by teleportation

according to the uniform topology.

Uniform convergence in the teleportation simulation of bosonic Gaussian chan-

nels

We have already seen from Eqs. (1.110) and (1.113) that for the identity channel I the

teleportation simulation with the BK protocol strongly but not uniformly converges. This

non convergence affects also the teleportation simulation of many Gaussian channels, es-

pecially those that can be represented as Gaussian unitaries and those that can be reduced
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to the B1 (see Table 1.2) via unitary transformations. Nevertheless, the following theo-

rem [4] establishes the exact condition that a single-mode Gaussian channel must satisfy

in order to be simulated by teleportation according to the uniform topology

Theorem 2.4.2 Consider a single-mode bosonic Gaussian channel G[T,N,d] and its tele-

portation simulation

Gµ(ρ) = T̃cAB
[
ρc ⊗ (ρµG)AB

]
, (2.67)

where T̃cAB is the LOCC of a modified BK protocol implemented over the resource state ρµG :=

I⊗G(Φµ), with Φµ being a TMSV state with energy µ. Then, we have uniform convergence

lim
µ→∞

‖Gµ − G‖� = 0, (2.68)

if and only if the noise matrix N of the Gaussian channel G has full rank, i.e., rank(N) = 2.

The proof of this theorem will be given in Appendix A.

2.5 Teleportation stretching

Having analyzed in full details the teleportation simulation of quantum channels in both

DV and CV scenarios, we can now plug it into the structure of the arbitrary adaptive

protocol, described in Sec. 2.1, in this way we achieve the protocol-reduction into a sim-

pler block one. This procedure has been dubbed teleportation stretching in its original

formulation [1]. Although the teleportation stretching technique is similar for DV and CV

channels, we leave the two descriptions separated (see next section for bosonic channels)

in order to better focus the attention on the subtleties coming from the asymptotic simu-

lation for CV channels.

The main steps of the teleportation stretching are depicted in Fig. 2.4 and they develope

as follows

• Panel (a) - Consider the ith transmission through a DV channel E , where the input

(i− 1)th register state is given by ρi−1
ab := ρaaib. After transmission through E and

the adaptive LOCC Λi, the register state is updated to ρiab = Λi◦(Ia⊗E⊗Ib)(ρaaib).

• Panel (b) - We employ the simulation of the channel E by means of a LOCC T and

a resource state σ according to Eq. (2.51).

• Panel (c) - The simulation LOCC T can be combined with the adaptive LOCC Λi

into a single “extended” LOCC ∆i while the distribution of the resource state σ can
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Figure 2.4: Teleportation stretching of an adaptive quantum protocol. See the main text

for the explanation. This is Fig. 4 in [1].

be anticipated in time (i.e. it is “stretched”out of the adaptive LOCC), so that we

can write ρiab = ∆i(ρ
i−1
ab ⊗ σ).

• Panel (d) - We iterate the previous steps for all transmissions, so as to stretch n

copies σ⊗n and collapse all the extended LOCCs ∆n◦ . . . ◦∆1 into a single LOCC

Λ. In other words, we may write ρnab = Λ(ρ0
ab ⊗ σ⊗n).

• Panel (e) - Finally, the preparation of the separable state ρ0
ab can be included into

Λ. We average over all local measurements present in Λ, so that we may write the

output state as ρnab = Λ̄(σ⊗n) for a trace-preserving LOCC Λ̄. More precisely, for any

sequence of outcomes u with probability p(u), there is conditional LOCC Λu with

output ρnab(u) = p(u)−1Λu (σ⊗n). Thus, the mean output state ρnab is generated by

Λ̄ =
∑

u Λu.

For discrete variable channels we have thus shown the following fundamental result on the

reduction of an arbitrary adaptive protocol for quantum communication.

Lemma 2.5.1 (Stretching [1]) Consider arbitrary n transmissions through a channel

E which is stretchable into a resource state σ. The output of an adaptive protocol can be

decomposed into the block form

ρnab = Λ̄(σ⊗n) , (2.69)
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for some trace-preserving LOCC Λ̄. If the channel E is Choi-stretchable, then we may

write

ρnab = Λ̄(ρ⊗nE ) . (2.70)

In the next section we show that this Lemma is valid also in infinite dimension, i.e. it

holds also for bosonic channels.

2.5.1 Teleportation stretching with bosonic channels

Here we discuss how an asymptotic bosonic channel simulation (T , σ) = limµ(T µ, σµ)

leads to an asymptotic version of Lemma 2.5.1. Let us consider the output state ρnab after

n adaptive uses of a bosonic channel E and the simulated output ρn,µab , which is obtained

by replacing E with its imperfect version Eµ. Explicitly, we may write

ρnab = Λn ◦ E ◦ Λn−1 · · · ◦ Λ1 ◦ E(ρ0
ab), (2.71)

with its approximate version

ρn,µab = Λn ◦ Eµ ◦ Λn−1 · · · ◦ Λ1 ◦ Eµ(ρ0
ab), (2.72)

where it is understood that E and Eµ are applied to system ai in the i-th transmission,

i.e., E = Ia ⊗ Eai ⊗ Ib.

Assume that the mean photon number of the total register states ρnab and ρn,µab is bounded

by some large but yet finite value N(n). For instance, we may consider a sequence N(n) =

N(0)+nt, where N(0) is the initial photon contribution and t is the channel contribution,

which may be negative for energy-decreasing channels (like the thermal-loss channel) or

positive for energy-increasing channels (like the quantum amplifier). We then prove the

following inequality [1]

∥∥ρnab − ρ
n,µ
ab

∥∥ ≤ n−1∑
i=0

‖E − Eµ‖�N(i) . (2.73)
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by means of a “peeling”argument through which all the LOCCs are peeled out. In fact,

for n = 2, we may write

‖ρ2
ab − ρ

2,µ
ab ‖ = ‖Λ2 ◦ E ◦ Λ1 ◦ E(ρ0

ab)− Λ2 ◦ Eµ ◦ Λ1 ◦ Eµ(ρ0
ab)‖

(1)

≤ ‖E ◦ Λ1 ◦ E(ρ0
ab)− Eµ ◦ Λ1 ◦ Eµ(ρ0

ab)‖
(2)

≤ ‖E ◦ Λ1 ◦ E(ρ0
ab)− E ◦ Λ1 ◦ Eµ(ρ0

ab)‖+ ‖E ◦ Λ1 ◦ Eµ(ρ0
ab)− Eµ ◦ Λ1 ◦ Eµ(ρ0

ab)‖
(3)

≤ ‖E(ρ0
ab)− Eµ(ρ0

ab)‖+ ‖E [Λ1 ◦ Eµ(ρ0
ab)]− Eµ[Λ1 ◦ Eµ(ρ0

ab)]‖
(4)

≤ ‖E − Eµ‖3N(0) + ‖E − Eµ‖3N(1) , (2.74)

where: (1) we use monotonicity under Λ2; (2) we use the triangle inequality; (3) we use

monotonicity with respect to E ◦Λ1; and (4) we use the definition of Eq. (1.111) assuming

a′ = ai and the energy bound N(n). Generalization to arbitrary n is just a matter of

technicality. By using Eq. (2.66) we may write that, for any bound N(n) and ε ≥ 0, there

is a sufficiently large µ such that ‖E − Eµ‖�N(n) ≤ ε, so that Eq. (2.73) becomes

∥∥ρnab − ρ
n,µ
ab

∥∥ ≤ nε . (2.75)

By applying teleportation stretching we derive ρn,µab = Λ̄µ(σµ⊗n), where Λ̄µ includes the

original LOCCs Λi and the teleportation LOCCs T µ. Thus, Eq. (2.75) implies

∥∥ρnab − Λ̄µ(σµ⊗n)
∥∥ ≤ nε, (2.76)

or, equivalently,
∥∥ρnab − Λ̄µ(σµ⊗n)

∥∥ µ→ 0. Therefore, given an adaptive protocol with arbi-

trary register energy, and performed n times through a bosonic channel E with asymptotic

simulation, we may write its output state as the (trace-norm) limit [1]

ρnab = lim
µ→∞

Λ̄µ(σµ⊗n). (2.77)

This means that we may formally write the asymptotic stretching Λ̄(σ⊗n) := limµ→∞ Λ̄µ(σµ⊗n)

for an asymptotic channel simulation (T , σ) := limµ→∞(T µ, σµ) so that Lemma 2.5.1 holds

at any dimension, finite or infinite. To conclude this Section we note that teleportation

stretching reduces an adaptive protocol performing an arbitrary task (quantum commu-

nication, entanglement distribution or key generation) into an equivalent block protocol,

whose output state ρnab is the same but suitably decomposed as in Eq. (2.69) for any

number n of channel uses. In particular, for Choi-stretchable channels, the output is de-

composed into a tensor-product of Choi matrices. An essential feature which makes the
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technique applicable to many contexts is the fact that the adaptive-to-block reduction

maintains task and output of the original protocol so that, e.g., adaptive key generation

is reduced to block key generation and not entanglement distillation.

2.6 Single letter upper bound

The combination of the general weak upper bound (Theorem 2.3.1 in Sec. 2.3) with the

teleportation stretching (Lemma 2.5.1) is the key ingredient that gives the insight of

our entire reduction method. In fact, let us compute the REE of the output state ρnab,

decomposed as in Eq. (2.69). Using the monotonicity of the REE under trace-preserving

LOCCs, we derive

ER(ρnab) ≤ ER(σ⊗n), (2.78)

where the complicated Λ̄ is fully discarded. Then, by replacing Eq. (2.78) into Eq. (2.38)

and by invoking the subadditivity of the REE under tensor product, we can ignore the

supremum and the limit in the definition of EFR (E) and get the simple single-letter bound

EFR (E) ≤ E∞R (σ) ≤ ER(σ). (2.79)

Thus, we can state the following main result.

Theorem 2.6.1 (one-shot REE bound [1]) Let us stretch an arbitrary quantum chan-

nel E into some resource state σ, according to Eq. (2.51). Then, we may write

C(E) ≤ E∞R (σ) ≤ ER(σ). (2.80)

Moreover, if E is Choi-stretchable, we have

C(E) ≤ E∞R (ρE) ≤ ER(ρE) = ER(E). (2.81)

In particular, for DV channels, we may also write the following simplified version for this

Theorem

Proposition 2.6.1 ( [1] ) For a Choi-stretchable channel E in finite dimension, we may

write the chain

K(E) = K(ρE) ≤ E∞R (ρE) ≤ ER(ρE) = ER(E), (2.82)

where K(ρE) is the distillable key of ρE .

78



2.6 Single letter upper bound

Note that, for bosonic channels, since the Choi matrix ρE is energy-unbounded, its distill-

able keyK(ρE) is not well-defined and we cannot directly write the equalityK(E) = K(ρE).

By contrast, we know how to extend E∞R (ρE) to bosonic channels and to show K(E) ≤

E∞R (ρE) at any dimension. This is the more general procedure of Theorem 2.6.1 which first

exploits the general REE bound K(E) ≤ EFR (E) and then simplifies EFR (E) ≤ E∞R (ρE) by

means of teleportation stretching at any dimension.

In order to prove the equality K(E) = K(ρE) we first show that K(E) ≤ K(ρE) and then

the opposite inequality. Consider a key-generation protocol described by a sequence L of

adaptive LOCCs (implicitly assumed to be averaged). If the protocol is implemented over

a Choi-stretchable channel E in finite dimension d, its stretching allows us to write the

output as ρnab = Λ̄
(
ρ⊗nE

)
for a trace-preserving LOCC Λ̄. Since any LOCC-sequence L

is transformed into Λ̄, any key-generation protocol through E becomes a key distillation

protocol over copies of the Choi matrix ρE . For large n, this means K(E) ≤ K(ρE). To

derive the opposite inequality, consider Alice sending EPR states through the channel, so

that the shared output will be ρ⊗nE . There exists an optimal LOCC on these states which

reaches the distillable key K(ρE) for large n. This is a specific key-generation protocol

over E , so that we may write K(ρE) ≤ K(E). Thus, for a d-dimensional Choi-stretchable

channel, we find

K(E) = K(ρE) ≤ E∞R (ρE), (2.83)

where we also exploit the fact that the distillable key of a DV state is bounded by its

regularized REE [90]. It is also clear that E∞R (ρE) ≤ ER(ρE) = ER(E), where the latter

equality is demonstrated in the proof of Theorem 2.6.1, which is the following.

Proof : Given the asymptotic stretching of the output state ρnab as in Eq. (2.77), the

simplification of the REE bound ER(ρnab) explicitly goes as follows

ER(ρnab) = inf
σs
S(ρnab||σs)

(1)

≤ inf
σµs
S

[
lim
µ→∞

Λ̄µ(σµ⊗n) || lim
µ
σµs

]
(2)

≤ inf
σµs

lim inf
µ→+∞

S
[
Λ̄µ(σµ⊗n) || σµs

]
(3)

≤ inf
σµs

lim inf
µ→+∞

S
[
Λ̄µ(σµ⊗n) || Λ̄µ(σµs )

]
(4)

≤ inf
σµs

lim inf
µ→+∞

S
(
σµ⊗n || σµs

)
(5)
= ER(σ⊗n), (2.84)
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where: (1) σµs is a generic sequence of separable states that converges in trace norm, i.e.,

such that there is a separable state σs := limµ→∞ σ
µ
s so that ‖σs − σµs ‖

µ→ 0; (2) we use

the lower semi-continuity of the relative entropy [97]; (3) we use that Λ̄µ(σµs ) are specific

types of converging separable sequences within the set of all such sequences; (4) we use

the monotonicity of the relative entropy under trace-preserving LOCCs; and (5) we use

the definition of REE for asymptotic states given in Eq. (3.26).

Thus, from Theorem 2.3.1, we may write the following upper bound for the two-way

capacity of a bosonic channel

C(E) ≤ EFR (E) ≤ lim
n→∞

n−1ER(σ⊗n) = E∞R (σ). (2.85)

The supremum over all adaptive protocols which defines EFR (E) disappears in the right

hand side of Eq. (2.85). The resulting bound applies to both energy-constrained proto-

cols and the limit of energy-unconstrained protocols. The proof of the further condition

E∞R (σ) ≤ ER(σ) in Eq. (2.80) comes from the subadditivity of the REE over tensor prod-

uct states. This subadditivity also holds for a tensor product of asymptotic states; it

is proven by restricting the minimization on tensor-product sequences σµ⊗ns in the cor-

responding definition of the REE. Let us now prove Eq. (2.81). The two inequalities in

Eq. (2.81) are simply obtained by using σ = ρE for a Choi-stretchable channel (where

the Choi matrix is intended to be asymptotic for a bosonic channel). Then we show the

equality ER(ρE) = ER(E). By restricting the optimization in ER(E) to an input EPR state

Φ, we get the direct part ER(E) ≥ ER(ρE). For CVs, this means to choose an asymptotic

EPR state Φ := limµ→∞Φµ, so that

I ⊗ E(Φ) := lim
µ→∞

I ⊗ E(Φµ) = lim
µ→∞

ρµE := ρE , (2.86)

and therefore

ER(E) ≥ ER(ρE) := inf
σµs

lim inf
µ→+∞

S
(
ρµE || σ

µ
s

)
. (2.87)

For the converse part, consider first DVs. By applying teleportation stretching to a single

use of the channel E , we may write I ⊗ E(ρ) = Λ̄(ρE) for a trace-preserving LOCC Λ̄.

Then, the monotonicity of the REE leads to

ER(E) = sup
ρ
ER[I ⊗ E(ρ)] = sup

ρ
ER[Λ̄(ρE)] ≤ ER(ρE). (2.88)
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For CVs, we have an asymptotic stretching I ⊗ E(ρ) = limµ→∞ σ
µ where σµ := Λ̄µ(ρµE).

Therefore, we may write

ER[I ⊗ E(ρ)] = inf
σµs

lim inf
µ→+∞

S(σµ||σµs )

≤ inf
σµs

lim inf
µ→+∞

S[Λ̄µ(ρµE)||Λ̄µ(σµs )]

≤ inf
σµs

lim inf
µ→+∞

S(ρµE ||σ
µ
s ) = ER(ρE). (2.89)

Since this is true for any ρ, it also applies to the supremum and, therefore, to the channel’s

REE ER(E). �

We have therefore reached our goal and found single-letter bounds. In particular, note

that ER (ρE) measures the entanglement distributed by a single EPR state, so that we

may call it the “entanglement flux” of the channel Φ(E) := ER (ρE). Remarkably, there is

a sub-class of Choi-stretchable channels for which ER (ρE) coincides with the lower bound

D1(ρE) in Eq. (2.19). We call these “distillable channels”. We establish all their two-way

capacities as C(E) = ER (ρE). They include lossy channels, quantum-limited amplifiers,

dephasing and erasure channels. See Fig. 2.5.

Figure 2.5: Classification of σ-stretchable, Choi-stretchable and distillable channels in DVs

and CVs. This is adapted from [1, Fig. 5].
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2.7 Ultimate limits in quantum channel communications

2.7.1 Discrete variable channels

We now study the ultimate rates for quantum communication, entanglement distribution

and secret key generation through qubit channels, with generalizations to any finite di-

mension. For any DV channel E from dimension dA to dimension dB, we may write the

dimensionality bound C(E) ≤ min{log2 dA, log2 dB}. This is because we may always de-

compose the channel into I ◦ E (or E ◦ I), include E in Alice’s (or Bob’s) LOs and stretch

the identity map into a Bell state with dimension dB (or dA).

In the following we provide our results for DV channels, with technical details available in

Appendix B.

2.7.1.1 Pauli channels

A general error model for the transmission of qubits is represented by the class of Pauli

channels

P(ρ) = p0ρ+ p1XρX + p2Y ρY + p3ZρZ, (2.90)

where X, Y , and Z are Pauli operators and p := {pk} is a probability distribution. It is

easy to check that this channel is Choi-stretchable and its Choi matrix is Bell-diagonal.

We compute its entanglement flux as (see Appendix B.1 for the discussion on how to deal

with the optimization over the set of separable states in Eq. (2.31)) [1, Eq. (33)]

Φ(P) = 1−H2(pmax), (2.91)

if pmax := max{pk} ≥ 1/2, while zero otherwise. Since the channel is unital, we have

that IC(P) = IRC(P) = 1 −H(p), where H is the Shannon entropy. Thus, the two-way

capacity of a Pauli channel satisfies

1−H(p) ≤ C(P) ≤ Φ(P). (2.92)

This can be easily generalized to arbitrary finite dimension (see Sec. B.1.2 in Appendix B).

Consider the depolarising channel, which is a Pauli channel shrinking the Bloch sphere.

With probability p, an input state becomes the maximally-mixed state

Pdepol(ρ) = (1− p)ρ+ pI/2. (2.93)

Setting κ(p) := 1−H2 (3p/4), we may then write [1, Eq. (36)]

κ(p)− 3p

4
log2 3 ≤ C(Pdepol) ≤ κ(p), (2.94)
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for p ≤ 2/3, while 0 otherwise (see Fig. 2.6a). The result can be extended to any dimension

d ≥ 2. A qudit depolarising channel is defined as in Eq. (2.93) up to using the mixed

state I/d. Setting f := p(d2 − 1)/d2 and κ(d, p) := log2 d − H2(f) − f log2(d − 1), we

find [1, Eq. (37)]

κ(d, p)− f log2(d+ 1) ≤ C(Pdepol) ≤ κ(d, p), (2.95)

for p ≤ d/(d+ 1), while zero otherwise.

Consider now the dephasing channel. This is a Pauli channel which deteriorates quan-

tum information without energy decay, as it occurs in spin-spin relaxation or photonic

scattering through waveguides. It is defined as

Pdeph(ρ) = (1− p)ρ+ pZρZ, (2.96)

where p is the probability of a phase flip. We can easily check that the two bounds of

Eq. (2.92) coincide, so that this channel is distillable and its two-way capacities are [1,

Eq. (39)]

C(Pdeph) = D2(Pdeph) = Q2(Pdeph)

= K(Pdeph) = 1−H2(p). (2.97)

Note that this also proves Q2(Pdeph) = Q(Pdeph), where the latter was derived in ref. [70].

For an arbitrary qudit with computational basis {|j〉}, the generalized dephasing channel

is defined as

Pdeph(ρ) =
d−1∑
i=0

PiZ
iρ(Z†)i, (2.98)

where Pi is the probability of i phase flips, with a single flip being Z |j〉 = eij2π/d |j〉. This

channel is distillable and its two-way capacities are functionals of P = {Pi} and are given

by [1, Eq. (41)]

C(Pdeph) = log2 d−H(P). (2.99)

2.7.1.2 Quantum erasure channel

A simple decoherence model is the erasure channel. This is described by

Eerase(ρ) = (1− p)ρ+ p |e〉 〈e| , (2.100)
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Figure 2.6: Two-way capacities of basic qubit channels. (a) Two-way capacity of the depolaris-

ing channel Pdepol with arbitrary probability p. It is contained in the shadowed region specified

by the bounds in Eq. (2.94). We also depict the best known bound based on the squashed en-

tanglement [100] (dashed). (b) Two-way capacity of the amplitude damping channel Edamp for

arbitrary damping probability p. It is contained in the shadowed area identified by the lower

bound (LB) of Eq. (2.106) and the upper bound (UB) of Eq. (2.107). We also depict the bound of

Eq. (2.105) (upper solid line), which is good only at high dampings; and the bound CA(Edamp)/2

of ref. [100] (dotted line), which is computed from the entanglement-assisted classical capacity

CA. Finally, note the separation of the two-way capacity C(Edamp) from the unassisted quantum

capacity Q(Edamp) (dashed line). This is Fig 8 from [1].
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where p is the probability of getting an orthogonal erasure state |e〉. We already know

that Q2(Eerase) = 1− p [89]. Therefore we compute the secret key capacity.

Following ref. [89], one shows that D1(ρEerase) ≥ 1 − p. In fact, suppose that Alice sends

halves of EPR states to Bob. A fraction 1 − p will be perfectly distributed. These good

cases can be identified by Bob applying the measurement {|e〉 〈e| , I − |e〉 〈e|} on each

output system, and communicating the results back to Alice in a single and final CC.

Therefore, they distill at least 1 − p ebits per copy. It is then easy to check that this

channel is Choi-stretchable and we compute Φ(ρEerase) ≤ 1− p. Thus, the erasure channel

is distillable and we may write [1, Eq. (43)]

C(Eerase) = K(Eerase) = 1− p. (2.101)

In arbitrary dimension d, the generalized erasure channel is defined as in Eq. (2.100),

where ρ is now the state of a qudit and the erasure state |e〉 lives in the extra d + 1

dimension. We can easily generalize the previous derivations to find that this channel is

distillable and [1, Eq. (44)]

K(Eerase) = (1− p) log2 d. (2.102)

Note that the latter result can also be obtained by computing the squashed entanglement

of the erasure channel, as shown by the independent derivation of ref. [100].

2.7.1.3 Amplitude damping channel

An important model of decoherence in spins or optical cavities is energy dissipation or

amplitude damping [101,102]. The action of this channel on a qubit is

Edamp(ρ) =
∑

i=0,1AiρA
†
i , (2.103)

where A0 := |0〉 〈0| +
√

1− p |1〉 〈1|, A1 :=
√
p |0〉 〈1|, and p is the damping probability.

Note that Edamp is not teleportation-covariant. However, it is decomposable as

Edamp = ECV→DV ◦ Eη(p) ◦ EDV→CV, (2.104)

where EDV→CV teleports the original qubit into a single-rail bosonic qubit [78]; then, Eη(p)

is a lossy channel with transmissivity η(p) := 1 − p; and ECV→DV teleports the single-

rail qubit back to the original qubit. Thus, Edamp is stretchable into the asymptotic Choi

matrix of the lossy channel Eη(p). This shows that we need a dimension-independent theory
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even for stretching DV channels.

From Theorem 2.6.1 we get C(Edamp) ≤ Φ(Eη(p)), implying [1, Eq. (47)]

C(Edamp) ≤ min{1,− log2 p}, (2.105)

while the reverse coherent information implies [32]

max
u
{H2 (u)−H2 (up)} ≤ C(Edamp). (2.106)

The bound in Eq. (2.105) is simple but only good for strong damping (p > 0.9). A shown

in Fig. 2.6b, we find a tighter bound using the squashed entanglement [1, Eq. (49)], i.e.,

C(Edamp) ≤ H2

(
1

2
− p

4

)
−H2

(
1− p

4

)
. (2.107)

2.7.2 Bosonic Gaussian channels

Here we give the analytical expression of the ultimate rates for quantum and secure commu-

nication through bosonic Gaussian channels. The detailed calculation of such expressions

are left in the Appendix B (Sec. B.2). Refer also to Sec. 1.3 for the characterization of

Gaussian channels.

We have shown that bosonic Gaussian channels are Choi-stretchable and that their two-

way quantum capacities can be upper-bounded as [1, Eq. (18)]

C(E) ≤ Φ(E) ≤ lim inf
µ→∞

S(ρµE‖σ̃
µ
s ) , (2.108)

for a suitable converging sequence of separable states σ̃µs . For Gaussian channels, the

sequences in the above equation involve Gaussian states, for which we easily compute

the relative entropy. In fact, for any two Gaussian states, ρ1 and ρ2, we prove in Ap-

pendix B(Sec. B.2.1) the general formula S(ρ1||ρ2) = Σ(V1, V2) − Σ(V1, V1), where Σ is

given by a simple functional of their statistical moments, namely [1, Theorem 7]

Σ(V1, V2) :=
1

2 ln 2

{
ln det

(
V2 +

iΩ

2

)
+ Tr [V1G(V2)]

}
, (2.109)

where G(V ) = 2iΩ coth−1(2V iΩ) is the so-called Gibbs matrix of the Gaussian state with

covariance matrix V .

The optimization over the set of all the separable states appearing in the definition of the

86



2.7 Ultimate limits in quantum channel communications

REE is here circumvented by choosing a good separable candidate state. This is given by

a two-mode Gaussian state with CM given by

V =

 aI cZ

cZ bI

 , (2.110)

with

c = csep :=

√
(a− 1

2
)(b− 1

2
) , (2.111)

which defines the maximally-correlated separable Gaussian state. It is straightforward to

check that this state entails the maximum correlations among all the separable states, e.g.,

as quantified by its quantum discord [103].

2.7.2.1 Pure loss channel

This Gaussian channel is the standard model to describe losses in optical communications

through free-space links or telecom fibres. The lossy channel Eη is characterized by a

transmissivity parameter η, which quantifies the fraction of input photons that survives

at the output. It is represented by a beam splitter mixing the input signal witha zero-

temperature environment (backgorund thermal noise is negligible at optical and telecom

frequencies). For Eη we compute the entanglement flux Φ(η) ≤ − log2(1 − η). This

coincides with the reverse coherent information of this channel IRC(η), first derived in

Ref. [33]. Thus, we find that this channel is distillable and all its two-way capacities are

given by [1, Eq. (19)]

C(η) = D2(η) = Q2(η) = K(η) = − log2(1− η). (2.112)

Interestingly, this capacity coincides with the maximum discord [104] that can be dis-

tributed, since we may write [105] IRC(η) = D(B|A), where the latter is the discord of

the (asymptotic) Gaussian Choi matrix ρEη [103]. We also prove the strict separation

Q2(η) > Q(η), where Q is the unassisted quantum capacity [94,95].

Expanding Eq. (2.112) at high loss η ' 0, we find

C(η) ' η/ ln 2 ' 1.44η (bits per channel use), (2.113)

or about η nats per channel use. This completely characterizes the fundamental rate-loss

scaling which rules long-distance quantum optical communications in the absence of quan-

tum repeaters. It is important to remark that our work also proves the achievability of this
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scaling. This is a major advance with respect to existing literature, where previous studies

with the squashed entanglement [106] only identified a non-achievable upper bound.

In Fig. 2.7, we compare the scaling of Eq. (2.113) with the maximum rates achievable by

current QKD protocols.

The capacity in Eq. (2.112) is also valid for two-way quantum communication with lossy

channels, assuming that η is the maximum transmissivity between the forward and feed-

back channels. It can also be extended to a multiband lossy channel, for which we write

C = −
∑

i log2(1− ηi), where ηi are the transmissivities of the various bands or frequency

components. For instance, for a multimode telecom fibre with constant transmissivity η

and bandwidth W , we have [1, Eq. (21)]

C = −W log2(1− η). (2.114)

Finally, note that free-space satellite communications may be modeled as a fading lossy

channel, i.e., an ensemble of lossy channels Eηi with associated probabilities pi [107].

In particular, slow fading can be associated with variations of satellite-Earth radial dis-

tance [108,109]. For a fading lossy channel {Eηi , pi}, we may write [1, Eq. (22)]

C ≤ −
∑
i

pi log2(1− ηi) . (2.115)

Quantum communications with Gaussian noise

The fundamental limit of the lossy channel bounds the two-way capacities of all channels

decomposable as E = E ′′ ◦ Eη ◦ E ′ where Eη is a lossy component while E ′ and E ′′ are extra

channels. A channel E of this type is stretchable with resource state σ = ρEη 6= ρE and we

may write C(E) ≤ − log2(1 − η). For Gaussian channels, such decompositions are known

but we achieve tighter bounds if we directly stretch them using their own Choi matrix.

2.7.2.2 Thermal loss channel

This Gaussian channel can be modeled as a beamsplitter with transmissivity η in a thermal

background with n̄ mean photons. Its action on input quadratures x̂ = (q̂, p̂) is given

by x̂ → √ηx̂ +
√

1− ηx̂E with E being a thermal mode. This channel is central for

microwave communications [118–121] but also important for CV QKD at optical and

telecom frequencies, where Gaussian eavesdropping via entangling cloners results into a

thermal-loss channel [11].
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Figure 2.7: Ideal performances in QKD. We plot the secret key rate (bits per channel use) versus Alice-

Bob’s distance (km) at the loss rate of 0.2 dB per km. The secret key capacity of the channel (red line)

sets the fundamental rate limit for point-to-point QKD in the presence of loss. Compare this capacity

with a previous non-achievable upperbound [106] (dotted line). We then show the maximum rates that

are potentially achievable by current protocols, assuming infinitely long keys and ideal conditions, such as

unit detector efficiencies, zero dark count rates, zero intrinsic error, unit error correction efficiency, zero

excess noise (for CVs), and large modulation (for CVs). In the figure, we see that ideal implementations of

CV protocols (purple lines) are not so far from the ultimate limit. In particular, we consider: (i) One-way

no-switching protocol [110], coinciding with CV-MDI-QKD [75,111] in the most asymmetric configuration

(relay approaching Alice). For high loss (η ' 0), the rate scales as η/ ln 4, which is just 1/2 of the capacity.

Same scaling for the one-way switching protocol of ref. [112]; (ii) Two-way protocol with coherent states

and homodyne detection [113, 114] which scales as ' η/(4 ln 2) for high loss (thermal noise is needed for

two-way to beat one-way QKD [113]). For the DV protocols (dashed lines), we consider: BB84 with

single-photon sources [21] with rate η/2; BB84 with weak coherent pulses and decoy states [115] with rate

η/(2e); and DV-MDI-QKD [116,117] with rate η/(2e2). This is Fig. 6 from [1]
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Figure 2.8: Two-way capacities for Gaussian channels in terms of the relevant channel parameters.

(a) Two-way capacity C(η, n̄) of the thermal-loss channel as a function of transmissivity η for n̄ = 1 thermal

photon. It is contained in the shadowed area identified by the lower bound (LB) and upper bound (UB) of

Eq. (2.118). Our upper bound is clearly tighter than those based on the squashed entanglement, computed

in ref. [106] (dotted) and ref. [100] (dashed). Note that C(η, n̄) ' − log2(1−η)−h(n̄) at high transmissivities.

For n̄ = 0 (lossy channel) the shadowed region shrinks into a single line. (b) Two-way capacity C(g, n̄) of

the amplifier channel as a function of the gain g for n̄ = 1 thermal photon. It is contained in the shadowed

specified by the bounds in Eq. (2.120). For small gains, we have C(g, n̄) ' log2[g/(g−1)]−h(n̄). For n̄ = 0

(quantum-limited amplifier) the shadowed region shrinks into a single line. (c) Two-way capacity C(ξ) of

the additive-noise Gaussian channel with added noise ξ. It is contained in the shadowed region specified

by the bounds in Eq. (2.123). For small noise, we have C(ξ) ' −1/ ln 2 − log2 ξ. Our upper bound is

much tighter than those of ref. [106] (dotted), ref. [100] (dashed), and ref. [62] (dot-dashed). This is Fig. 7

from [1]
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For an arbitrary thermal-loss channel Eη,n̄ we apply our reduction method and compute

the entanglement flux [1, Eq. (23)]

Φ(η, n̄) ≤ − log2

[
(1− η)ηn̄

]
− h(n̄), (2.116)

for n̄ < η/(1− η), while zero otherwise. Here we set

h(x) := (x+ 1) log2(x+ 1)− x log2 x. (2.117)

Combining this result with the lower bound given by the reverse coherent information, we

write the following inequalities for the two-way capacity of this channel [1, Eq. (25)]

− log2(1− η)− h(n̄) ≤ C(η, n̄) ≤ Φ(η, n̄). (2.118)

As shown in Fig. 2.8a, the two bounds tend to coincide at sufficiently high transmissivity.

We clearly retrieve the previous result of the lossy channel for n̄ = 0.

2.7.2.3 Quantum amplifier

This channel Eg,n̄ is described by x̂→ √gx̂ +
√
g − 1x̂E , where g > 1 is the gain and E is

the thermal environment with n̄ mean photons. We compute [1, Eq. (26)]

Φ(g, n̄) ≤ log2

(
gn̄+1

g − 1

)
− h(n̄), (2.119)

for n̄ < (g− 1)−1, while zero otherwise. Combining this result with the coherent informa-

tion [62], we get [1, Eq. (27)]

log2

(
g

g − 1

)
− h(n̄) ≤ C(g, n̄) ≤ Φ(g, n̄), (2.120)

whose behavior is plotted in Fig. 2.8b.

In the absence of thermal noise (n̄ = 0), the previous channel describes a quantum-limited

amplifier Eg, for which the bounds in Eq. (2.120) coincide. This channel is therefore

distillable and its two-way capacities are [1, Eq. (28)]

C(g) = D2(g) = Q2(g) = K(g) = − log2(1− g−1). (2.121)

In particular, this proves that Q2(g) coincides with the unassisted quantum capacity

Q(g) [62, 122]. The result of Eq. (2.121) sets the fundamental limit for key generation,

entanglement distribution and quantum communication with amplifiers. A trivial conse-

quence is that infinite amplification is useless for communication since Camp(∞)→ 0. For

an amplifier with typical gain 2, the maximum achievable rate for quantum communication

is just 1 qubit per use.
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2.7.2.4 Additive-noise Gaussian channel

This channel respresents the simplest model of bosonic decoherence and it can be seen as

the direct extension of the classical model of a Gaussian channel to the quantum regime.

It can be seen as the action of a random Gaussian displacement over incoming states. In

terms of input-output transformations, it is described by x̂ → x̂ + (z, z)T where z is a

classical Gaussian variable with zero mean and variance ξ ≥ 0. For this channel Eξ we

find the entanglement flux [1, Eq. (29)]

Φ(ξ) ≤ ξ − 1

ln 2
− log2 ξ, (2.122)

for ξ < 1, while zero otherwise. Including the lower bound given by the coherent informa-

tion [62], we get [1, Eq. (30)]

− 1

ln 2
− log2 ξ ≤ C(ξ) ≤ Φ(ξ) . (2.123)

In Fig. 2.8c, see its behavior and how the two bounds tend to rapidly coincide for small

added noise.

It is interesting to note how quantum communication rapidly degrades when we compose

quantum channels. For instance, a quantum-limited amplifier with gain 2 can transmit

Q2 = 1 qubit per use from Alice to Bob. This is the same amount which can be transmitted

from Bob to Charlie, through a lossy channel with transmissivity 1/2. By using Bob as

a quantum repeater, Alice can therefore transmit at least 1 qubit per use to Charlie. If

we remove Bob and we compose the two channels, we obtain an additive-noise Gaussian

channel with variance ξ = 1/2, which is limited to Q2 . 0.278 qubits per use.

2.8 Cost of classical communication

It is important to discuss the cost associated with the CCs. In fact, in order to achieve its

performance, an optimal protocol will need a certain number of classical bits per channel

use. Furthermore, the physical transmission of these bits is ultimately restricted by the

speed of light. It is therefore essential to consider these aspects in order to translate a

capacity, which is expressed in terms of target-bits (e.g. secret bits) per channel use, into

a practical throughput, which is expressed in terms of target-bits per second. Consider

the case of a bosonic lossy channel which is the most important for quantum optical

communications.

By definition, an adaptive protocol is assisted by unlimited and two-way CCs. This is
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2.8 Cost of classical communication

a very general formulation but it has an issue for practical applications: An adaptive

protocol, which may be optimal in terms of target-bits per channel use, may have zero

throughput in terms of target-bits per second, just due the fact that its implementation

may require infinite rounds of feed-forward and feedback CCs in each channel use. The

existence of such protocol is not excluded by the TGW bounds [106], which are non-tight

and do not have control on the CCs. By contrast, this problem is completed solved by our

bound.

In fact, for any distillable channel E (e.g., bosonic lossy channel, quantum-limited amplifier,

dephasing or erasure channel), the generic two-way capacity C(E) is equal to D1(E). This

means that an optimal protocol achieving the capacity is non-adaptive and it does not

involve infinite rounds of CCs, but just a single round of forward or backward CCs.

For the specific case of a bosonic lossy channel, with transmissivity η, we find that an

optimal key-generation protocol, achieving the repeaterless bound K(η) = − log2(1 − η),

can be implemented by using backward CCs. In fact, an optimal key-generation protocol

is the following: Alice prepares TMSV states Φµ
AA′ sending A′ to Bob; Bob heterodynes

each output mode, with outcome Y , and sends final CCs back to Alice; Alice measures all

her modes A by means of an optimal coherent detection. Taking the limit for large µ, the

key rate of the parties achieves the bound K(η).

Because this is a generalized Devetak-Winter rate (in reverse reconciliation), the amount

of CCs required by the protocol (bits per channel use) is equal to the following conditional

entropy [93]

γCC := S(Y |A) = S(Y )− [S(A)− S(A|Y )], (2.124)

where S(Y ) = H(Y ) is the Shannon entropy of Bob’s outcomes Y , while S(A) and S(A|Y )

are the von Neumann entropies of Alice’s reduced state ρA and conditional state ρA|Y .

These quantities are all easily computable for any finite value of µ. By taking the limit

for large µ, we derive the asymptotic cost

γCC(η) =
2η log2 π + (2η − 3) log2(3− 2η) + 3 log2 3

2η
≤ log2(3πe) ≈ 4.68 classical bits/use,

(2.125)

where the latter bound is achieved for low transmissivities (long-distances), i.e., γCC(η '

0) ' log2(3πe). According to Eq. (2.125), at any transmissivity η, Bob needs to send Alice

no more than log2(3πe) classical bits per channel use.

Consider a practical scenario where the rounds of the protocol are not infinite but yet a

very large number, e.g., n = 109, so that the performance of such a large block of data is
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close to the asymptotic one. The amount of classical bits to be transmitted is linear in

n, and the total cost is no larger than 4.68× 109 bits, i.e., less than 1 gigabyte per block.

Assuming the existence of a broadband classical channel between Alice and Bob, the extra

time associated with the transmission of this classical overhead can be made negligible (for

instance, it may happen at the beginning of the second large block of quantum commu-

nication). Assuming that the procedures of error correction and privacy amplification are

also sufficiently fast within the block, then the final achievable throughput (secret-bits

per second) will only depend on the capacity K(η) (secret-bits per use) multiplied by the

clock of the system (uses per second). Clearly, this is a simplified reasoning which does

not consider other technical issues.
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Finite-energy resource bounds for

private communication over

Gaussian channels

So far we have seen that, since they are teleportation covariant, bosonic Gaussian channels

can be simulated by means of continuous variable teleportation over their asymptotic Choi

matrices. As discussed in the previous Chapter, a bosonic Choi matrix is defined by prop-

agating half of a two-mode squeezed vacuum state through the channel, and then taking

the limit for infinite energy. This results in an energy-unbounded and therefore unphysical

state. Thus at finite energy, the simulation is imperfect with an associated simulation error

that must be carefully handled and propagated at the output of the adaptive protocols

(see the discussions leading to Eq. (2.75) and (2.76)). In order to circumvent the limit for

infinite energy and the employment of asymptotic Choi matrices, we provide an alterna-

tive way to simulate bosonic Gaussian channels. This is obtained by implementing the CV

teleportation protocol over a suitably-defined class of finite-energy Gaussian states. This

approach removes the limit in the energy in the resource state, even though it survives

at the level of the CV Bell detection, which is defined in Eq. (1.104) as an asymptotic

Gaussian measurement, whose limit realizes an ideal projection onto displaced EPR states.

Following the strategy described in the previous Chapter, here we combine two types of

finite-energy simulation of phase-insensitive Gaussian channels with teleportation stretch-

ing and the relative entropy of entanglement in order to derive non-asymtotic upper bounds
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on the secret key capacity of these channels.

We first consider the finite-energy simulation developed in Refs. [81, 123, 124], and we

show [5] how this gives upper bounds on K(E) that roughly approximate the asymptotic

ones.

More recently, Ref. [125] derived a more general class of resource states for the perfect

teleporatation simulation of bosonic Gaussian channels and studied their performance in

term of the entanglement of formation. Here we adopt also these resource states which

can be parametrized in terms of their purity and optimized with respect to the REE. We

therefore derive [6] upper bounds to the secret-key capacity of bosonic channels which can

be made as close as possible to the infinite-energy ones of the previous Chapter.

3.1 Simulation of Gaussian channels with finite-energy re-

source states

Recently, Ref. [81] has shown that all single-mode phase-insensitive Gaussian channels can

be simulated by applying CV teleportation to a particular class of Gaussian states as the

resource. We extensively described Gaussian channels in Sec. 1.3, here we recall some of

their characterizing properties for the sake of clarity. Consider a single-mode Gaussian

state with mean value x̄ and covariance matrix (CM) V. As we already know, the action

of a single-mode Gaussian channel can be expressed in terms of the statistical moments

as (see also Eq. (1.67))

x̄→ Tx̄, V→ TVTT + N, (3.1)

where T and N = NT are 2×2 real matrices satisfying the conditions of Eq. (1.68) [11]. In

particular, as shown in Table 1.2, the class of phase-insensitive is characterized by diagonal

matrices, i.e.

T =
√
ηI, N = vI (3.2)

where η ∈ R is a transmissivity parameter, while v ≥ 0 represents the added noise.

Suppose now that Alice and Bob are implementing a BK protocol for CV teleportation

with a generic quantum resource given by a two-mode Gaussian state with zero first

statistical moment and covariance matrix that in standard form reads

VAB =

 aI cZ

cZ bI

 . (3.3)
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The input state to be teleported has displacement dc and covariance matrix Vc. By

repeating the procedure depicted in Sec. 1.4.1, contrary to what happens in Eqs. (1.102)

and (1.103), once Bob applies the final conditional displacement he ends up with an output

state that does not coincide with the input and reads

q̂B → q̂out = q̂B − g
√

2Q− (3.4)

p̂B → p̂out = p̂B + g
√

2P+ (3.5)

where g is Bob’s gain for the transformation from photocurrent to output field [126] which

is set to g = 1 for a maximally entangled resource. At this stage, once the teleportation

process has taken place, the statistical moment of the output state can be computed as in

Refs. [127,128] and they can be given in terms of the statistical moments of the inputs and

of the resource state of Eq. (3.3). It can be shown then that CV teleportation is equivalent

to a phase-insensitive channel characterized by Eq. (3.2) with parameters related to the

protocol and its resource state as follows

√
η = g , v = ag2 − 2cg + b . (3.6)

Viceversa, by fixing the phase-insensitive Gaussian channel, i.e. fixing the pair (η, v), the

problem is to find the resource state CM that simulates the corresponding channel with

finite mean energy. By solving this, imposing also minimum entanglement, as measured

by the logarithmic negativity [35, 129], the authors of [81] prove that a phase-insensitive

Gaussian channel Eη,v can be simulated as follows

Eη,v(ρ) = Tη(ρ⊗ σv), (3.7)

where Tη is the Braunstein-Kimble protocol with gain
√
η, and σv is a zero-mean two-mode

Gaussian state with CM

V(σv) =

 aI cZ

cZ bI

 , (3.8)

where [81]

a =
2b+ (η − 1)e−2r

2η
, c =

2b− e−2r

2
√
η

, (3.9)

b =
− |η − 1|+ ηe2r + e−2r

2[−e2r |η − 1|+ η + 1]
, (3.10)

and the entanglement parameter r ≥ 0 is connected to the channel parameter via the

relation

v =
e−2r

2
(η + 1). (3.11)
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To conclude we further observe that, in the simulation of Eq. (3.7), a Braunstein-Kimble

protocol with an ideal CV Bell detection obtained as a limit for infinite energy (see

Eq. 1.104) is exploited. This means that the finite-energy feature of the simulation is

only at the level of the resource state.

We also notice that the expressions of Eq. (3.10) diverge for the pure-loss and the pure

amplifier channel so that these two channels cannot be simulated using that resource state

(more details later on). Fortunately, this issue is removed by the finite-energy simula-

tion we are describing in the following and which has been derived by Tserkis et al. in

Ref. [125].

In this work the same problem is adressed. The difference is that, as a quantifier of the

entanglement, the entanglement of formation is employed. This allows to find a suitable

class of resource states, with the same entanglement as the Choi state and minimum mean

energy, that are able to simulate any phase-insensitive Gaussian channel.

In particular, Ref. [125] shows that we can simulate a phase-insensitive Gaussian channel

as follows

Eη,v(ρ) = Tη(ρ⊗ σ̃v), (3.12)

where now the resource state σ̃v is characterized by the following CM

V(σ̃v) =

 ãI c̃Z

c̃Z b̃I

 , (3.13)

with elements

ã =
|1− η|(ν+ − ν−) + (1 + η)v − 2γ

(1− η)2
, (3.14)

b̃ =
η|1− η|(ν+ − ν−) + (1 + η)v − 2γ

(1− η)2
, (3.15)

c̃ =
τ |1− η|(ν+ − ν−) + 2ηv − (1 + η)γ

√
η(1− η)2

, (3.16)

where we have set

γ :=
√
η(v − |1− η|ν−)(v + |1− η|ν+). (3.17)

Note that for 0 < η < 1, we get states with a ≥ b, while for η > 1 we get a ≤ b. These

elements are expressed in terms of the channel parameters, η and v, and may vary over

the symplectic spectrum ν± with the constraints

1/2 ≤ ν− ≤ n̄+ 1/2, ν− ≤ ν+ , (3.18)
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where n̄ is the mean thermal number of the Gaussian channel (thermal-loss or amplifier).

Note that states with reversed symmetry for each case, i.e. a ≤ b for η < 1 and a ≥ b for

η > 1, can be retrieved by interchanging the role of ν− and ν+.

According to Eq. (3.18), for thermal-loss and amplifier channels, we have some freedom

in choosing ν± so that there is an entire class over which we may optimize our upper

bounds. One possible approach is fixing the purity p = (ν−ν+)−1 of the resource state

and optimizing over the remaining free parameter. Note that the asymptotic Choi matrix

can be retrieved in the limit of p → 0. In Sec. 3.3 we will see how this feature allows us

to approximate the infinite-energy bounds as much as we want by using a small but yet

non-zero value of the purity p.

For the special case of η = 1, we have an additive-noise Gaussian channel with added-noise

variance v > 0. In this case, taking the limit η → 1 for the class in Eqs. (3.14)-(3.16) we

get the following parametrization

ã =
ν2
− + 2ν−(ν+ − v) + (ν+ + v)2

4v
, (3.19)

b̃ =
ν2
− + 2ν−(ν+ + v) + (ν+ − v)2

4v
, (3.20)

c̃ =
(ν− + ν+ − v)(ν− + ν+ + v)

4v
. (3.21)

3.2 Finite-resource teleportation stretching of an adaptive

protocol

Here we plug the two previous finite-resource simulations into the tool of teleportation

stretching. By following the recipe of Sec. 2.5 and 2.6, we show how to use the finite-

resource simulation to simplify an adaptive protocol and reduce the REE bound to a

single-letter quantity.

Assume that the adaptive protocol described in Sec. 2.1 is performed over a phase-

insensitive Gaussian channel Eη,v, so that we may use the simulation of Eq. (3.7), where Tη

is the Braunstein-Kimble protocol with gain
√
η and σv is a zero-mean two-mode Gaussian

state, specified by Eqs. (3.8)-(3.11). The line of reasoning is clearly the same also for the

resource σ̃v specified by Eq.s (3.14)-(3.16). We may re-organize an adaptive protocol in

such a way that each transmission through Eη,v is replaced by its resource state σv. At

the same time, each teleportation-LOCC Tη is included in the adaptive LOCCs of the

protocol, which are all collapsed into a single LOCC Λ̄η (trace-preserving after averaging

99
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over all measurements). In this way, we may decompose the output state ρnab := ρab(E⊗nη,v )

as [5]

ρnab = Λ̄η(σ
⊗n
v ) . (3.22)

The computation of ER(ρnab) can now be remarkably simplified. In fact, we may write

ER(ρnab) = inf
σsep

S(ρnab||σsep)

(1)

≤ inf
σsep

S[Λ̄η(σ
⊗n
v )||Λ̄η(σsep)]

(2)

≤ inf
σsep

S(σ⊗nv ||σsep) = ER(σ⊗nv ), (3.23)

where: (1) we consider the fact that Λ̄η(σsep) form a subset of specific separable states,

and (2) we use the monotonicity of the relative entropy under the trace-preserving LOCC

Λ̄η. Therefore, by replacing in Eq. (2.38), we get rid of the optimization over the protocol

(disappearing with Λ̄η) and we may write

K(Eη,v) ≤ lim
n

ER(σ⊗nv )

n
:= E∞R (σv) ≤ ER(σv) , (3.24)

where we use the fact that the regularized REE is less than or equal to the REE. Thus,

we may write the following theorem:

Theorem 3.2.1 ( [5] ) Consider a phase-insensitive bosonic Gaussian channel Eη,v, which

is stretchable into a two-mode Gaussian state σv as given in Eqs. (3.8)-(3.11). Its secret-

key capacity must satisfy the bound

K(Eη,v) ≤ ER(σv) := inf
σsep

S(σv||σsep) . (3.25)

It is interesting to note that the new bound in Eq. (3.25) cannot beat the asymptotic

bound established in the previous Chapter for bosonic channels, i.e.,

K(Eη,v) ≤ inf
σµsep

lim inf
µ→+∞

S(ρµEη,v ||σ
µ
sep), (3.26)

where ρµEη,v is a Choi-approximating sequence, and σµsep is an arbitrary sequence of sepa-

rable states converging in trace norm. This can be seen from a quite simple argument. In

fact, according to Eqs. (2.28) and (3.7), we may write

ρµEη,v = I ⊗ Eη,v(Φµ)

= I ⊗ Tη(Φµ ⊗ σv) = ∆(σv), (3.27)
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where ∆ is a trace-preserving LOCC. Therefore, ER(ρµEη,v) ≤ ER(σv) and this relation

is inherited by the bounds above. Notwithstanding this no go for the finite-resource

simulation, we show that its performance is good and reasonably approximates the infinite-

energy bounds that are found via Eq. (3.26).

3.3 Finite-resource bounds for phase insensitive Gaussian

channels

We now proceed by computing the REE in Eq. (3.25) for the class of single-mode phase-

insensitive Gaussian channels. For this, we exploit the formula of Eq. (2.109), which has

been derived in [82].

Again, the computation of the REE involves an optimization over the set of separable

states. Following the recipe of Sec. 2.7.2, we may construct a good candidate directly

starting from the CM in Eq. (3.8). This separable state has CM with the same diag-

onal blocks as in Eq. (3.8), but where the off-diagonal term is replaced as follows (see

Eq. (2.111))

c→ csep :=
√

(a− 1/2)(b− 1/2) . (3.28)

By using this separable state σ∗sep we may write the further finite-resource upper bounds

for both σv and σ̃v

K(Eη,v) ≤ ER(σv) ≤ E∗R(σv) = S(σv||σ∗sep) =: Ψ(E) , (3.29)

K(Eη,v) ≤ ER(σ̃v) ≤ E∗R(σ̃v) = S(σ̃v||σ∗sep) . (3.30)

In particular for Eq. (3.30) we can fix the purity p and derive a further upper bound on

the secret key capacity. To do so, let us call Sp the set of resource states σ̃v with purity

equal to p and satisfying Eqs. (3.14)-(3.16). Then, for any p we have

K(Eη,v) ≤ Υp := min
σ̃v∈Sp

S(σ̃v‖σ∗sep) . (3.31)

Since for p→ 0, the resource state σ̃v approaches the Choi state of the channel, we clearly

have that Υp→0 coincides with the entanglement Φ(Eη,v) flux of the channel.

In what follows, we compute these bound for the various types of phase-insensitive Gaus-

sian channels and for the two different finite-energy parametrization of the resource states

σv and σ̃v.
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3.3.1 Thermal-loss channel

In terms of the statistical moments, the action of the thermal-loss channel Eη,n̄ can be

described by the matrices in Eq. (3.2) with parameter v = (1− η)(n̄+ 1/2). This means

that the squeezing parameter r of the resource state reads

r =
1

2
ln

[
η + 1

(2n̄+ 1) (1− η)

]
. (3.32)
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Figure 3.1: Finite-resource bound Ψ(Eη,n̄) on the secret-key capacity of the thermal loss channel

(red upper curve) as a function of the transmissivity η, compared with the infinite-energy bound

Φ(Eη,n̄) (blue lower curve) derived in Eq. (2.116). The curves are plotted for n̄ = 1 thermal

photons. This is Fig. 1 from Ref. [5].

By combining this relation with the ones in Eq. (3.10) and computing the relative entropy,

we find1 the finite-resource bound Ψ(Eη,n̄) which is plotted in Fig. 3.1 and therein compared

with the infinite-energy bound Φ(Eη,n̄) of Eq. (2.116), which we recall here

Φ(Eη,n̄) = − log2[(1− η)ηn̄]− h(n̄), (3.33)

for n̄ < η/(1− η) and zero otherwise, and we set h(x) := (x+ 1) log2(x+ 1)− x log2 x. It

is clear that we have

K(Eη,n̄) ≤ Φ(Eη,n̄) ≤ Ψ(Eη,n̄), (3.34)

1The analytical expresssion is too cumbersome to be reported in this Thesis
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3.3 Finite-resource bounds for phase insensitive Gaussian channels

Figure 3.2: Finite-resource bound Υp on the secret-key capacity of the thermal loss channel. The

blue line represents the infinite-energy bound Υp→0 ≡ Φ(Eη,n̄), while the green dashed line is the

approximate finite-energy bound Ψ(Eη,n̄) of Fig. 3.1. We then show the optimized finite-energy

upper bound Υp, plotted for purity p = 1 (black dashed line) and p = 0.01 (red dashed line). This

is Fig. 3b from Ref. [6].

but the two upper bounds are reasonably close.

We then compute numerically the upper bound Υp for the thermal-loss channel, by fixing

the purity p of the resource state and optimizing over the remaining free parameters ã, b̃

and c̃ as in Eq. (3.31). As shown in Fig. 3.2, the finite-energy upper bound Υp rapidly

approaches Φ(Eη,n̄) for decreasing purity p and due to the fact that Φ(Eη,n̄) = limp→0 Υp

we can make the finite energy approximation, that relies on the resource σ̃v, as close as

needed.

3.3.2 Noisy amplifier channel

By repeating the previous calculations for the noisy (thermal) amplifier channel, we find

the finite-resource bound Ψ(Eη,n̄) plotted in Fig. 3.3 and where it is compared with the

infinite-energy bound of Eq. (2.119), that we recall here

Φ(Eη,n̄) = log2

(
ηn̄+1

η − 1

)
− h(n̄), (3.35)

for n̄ < (η − 1)−1 and zero otherwise. In Fig. 3.4 we show the behaviour of Υp for the

noisy amplifier.
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Figure 3.3: Finite-resource bound Ψ(Eη,n̄) on the secret-key capacity of the noisy amplifier channel

(red upper curve) as a function of the gain η, compared with the optimal bound for infinite energy

Φ(Eη,n̄) (blue lower curve). The two curves are plotted for n̄ = 1 thermal photons. This is Fig. 2

from [5].

Figure 3.4: Finite-resource bound Υp on the secret-key capacity of the noisy amplifier channel.

The blue line represents the infinite-energy bound Υp→0 ≡ Φ(Eη,n̄), while the green dashed line

is the approximate finite-energy bound Ψ(Eη,n̄) of Fig. 3.3. We then show the optimized finite-

energy upper bound Υp, plotted for purity p = 1 (black dashed line) and p = 0.01 (red dashed

line). Thermal noise is again equal to n̄ = 1. This is Fig. 3d from Ref. [6].
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3.3 Finite-resource bounds for phase insensitive Gaussian channels

Figure 3.5: Finite-resource bound Υp on the secret-key capacity of the pure amplifier channel.

The blue line represents the infinite-energy bound Υp→0 ≡ K(η). We then show the optimized

finite-energy upper bound Υp, plotted for purity p = 1 (black dashed line) and p = 0.01 (red

dashed line). This is Fig. 3c from Ref. [6].

Pure amplifier channel

As we already mentioned, the resource state described by Eqs. (3.14)-(3.16) allows to

simulate at finite-energy the pure amplifier channel. This channel is distillable, as we

already know, and its secret key capacity is given by Eq. (2.121)

K(η) = − log2(1− η−1) (3.36)

By computing Υp for the pure (quantum-limited) amplifier we obtain the plot of Fig. 3.5

3.3.3 Additive-noise Gaussian channel

This channel Eξ is described by the matrices in Eq. (3.2) with η = 1 and v = ξ. The

finite-resource bound Ψ(Eξ) on the secret key capacity is plotted in Fig. 3.6 and compared

with the infinite-energy bound of Eq. (2.122)

Φ(Eξ) =
ξ − 1

ln 2
− log2 ξ, (3.37)

for ξ < 1, while zero otherwise.

For the finite-energy upper bound Υp we employ the class of states specified in Eqs. (3.19)-

(3.21). The corresponding behaviour is plotted in Fig. 3.7
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Figure 3.6: Finite-resource bound Ψ(Eξ) on the secret-key capacity of the additive noise Gaussian

channel (red upper curve) as a function of the added noise ξ, compared with the optimal bound

for infinite energy Φ(Eξ) (blue lower curve). This is Fig. 3 from Ref. [5].

Figure 3.7: Upper bounds Υp to the secret-key capacity of the additive-noise Gaussian channel

(secret bits per channel use versus added noise ξ). The lower blue line indicates the infinite-energy

bound Υ0 ≡ Φ(Eξ). Then, we show our improved finite-energy bound Υp which is plotted for purity

p = 1 (black dashed line) and p = 0.01 (red dashed line). Note that the bound Ψ(Eξ) coincides

with the finite-bound Υp=1. As we see for decreasing values of purity we can approximate Υ0 as

closely as we want, while keeping the energy of the resource state finite (despite being large). This

is Fig. 4 from Ref. [6].

106



3.4 Extension to repeater-assisted private communication

3.3.4 Pure-loss channel

Consider now the finite-resource teleportation simulation of a pure-losschannel. It is easy

to check that we cannot use the parametrization inEq. (3.10). In fact, for a pure-loss

channel, we have v = (1−η)/2 so that Eq. (3.11) provides e2r = (1+η)/(1−η). Replacing

the latter in Eq. (3.10), we easily see that we have divergences (e.g., the denominator of

b becomes zero). For the pure loss channel, we therefore use a different simulation, where

the resource state is a two-mode squeezed state with CM [130]
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Figure 3.8: Finite-resource bound Ψ(Eη) on the secret-key capacity of the pure-loss channel (red

upper curve) as a function of the transmissivity η, compared with its secret key capacity or PLOB

bound K(η) = − log2(1− η) (blue lower curve). This is Fig. 4 from Ref. [5].

ση =

 aI
√
a2 − 1/4Z√

a2 − 1/4Z aI

 , a =
η + 1

2(1− η)
. (3.38)

By exploiting this resource state, we derive the bound Ψ(Eη) shown in Fig. 3.8, where it

is compared with the secret-key capacity K(η) = − log2(1− η) [1].

Regarding the computation of Υp we obtain the plot shown in Fig. 3.9.

3.4 Extension to repeater-assisted private communication

Here we extend the previous treatment to repeater-assisted private communication. We

consider the basic scenario where Alice a and Bob b are connected by a chain of N quan-

tum repeaters {r1, . . . , rN}, so that there are a total of N + 1 quantum channels {Ei}
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Figure 3.9: Finite-resource bound Υp of the pure-loss channel on the secret-key capacity of the

pure-loss channel as a function of the transmissivity. Note that the bound Ψ(Eη) shown in Fig. 3.8

coincides with the finite-energy bound Υp=1 (black dashed line). This is Fig. 3a from Ref. [6].

between them. Assume that these are phase-insensitive Gaussian channels Ei := Eηi,νi
with parameters (ηi, vi). The most general adaptive protocol for key distribution through

the chain is described in Ref. [27] and goes as follows.

Alice, Bob and all the repeaters prepare their local registers {a, r1, . . . , rN ,b} into a

global initial state ρ0 by means of a network LOCC Λ0, where each node in the chain

applies LOs assisted by unlimited and two-way CCs with all the other nodes. In the first

transmission, Alice picks a system a1 ∈ a and sends it to the first repeater; after another

network LOCC Λ1, the first repeater communicates with the second repeater; then there

is another network LOCC Λ2 and so on, until Bob is eventually reached, which terminates

the first use of the chain.

After n uses of the chain, we have a sequence of network LOCCs L defining the protocol

and an output state ρnab for Alice and Bob which approximates some target private state

with nRn bits. By taking the limit for large n and optimizing over the protocols, we define

the end-to-end or repeater-assisted secret-key capacity [27]

K({Ei}) = sup
L

lim
n
Rn . (3.39)

As shown in Ref. [27], we may extend the upper bound of Eq. (2.38). Then, we may use

teleportation stretching and optimize over cuts of the chain, to simplify the bound to a

single-letter quantity.
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3.4 Extension to repeater-assisted private communication

The network-reduction technique of Ref. [27] can be implemented by using the specific

finite-resource simulation of Eq. (5.29), which leads to the following possible decomposi-

tions of the output state

ρnab = Λ̄i(σ
⊗n
vi ), for any i = 1, . . . , N, (3.40)

where Λ̄i is a trace-preserving LOCC and σvi is the resource state associated with the ith

Gaussian channel. By repeating the derivation of Ref. [27], this leads to

K({Ei}) ≤ min
i
ER(σvi) ≤ min

i
S(σvi ||σ̃i,sep) := Ψ({Ei}) , (3.41)

where Ψ is the upper bound coming from our choice of the separable state σ̃i,sep in the

REE. This upper bound needs to be compared with the one Φ({Ei}) obtained in the limit

of infinite energy [27]. As an example, consider an additive-noise Gaussian channel with

noise variance ξ. Let us split the communication line by using N “equidistant” repeaters,

in such a way that each link is an additive-noise Gaussian channel Ei with the same variance

ξi = ξ/(N + 1). It is easy to check that this is the optimal configuration for the repeaters.

From Eq. (3.41), we derive Ψ({Ei}) = Ψ(Eξ/(N+1)). This bound is plotted in Fig. 3.10

where we can se an acceptable approximation of the corresponding infinite-energy bound

Φ({Ei}).
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Figure 3.10: Secret-key capacity of a chain of N equidistant repeaters creating N+1 additive-noise

Gaussian channels with variances ξi = ξ/(N + 1). We compare the finite-resource upper bound

Ψ({Ei}) (solid lines) with the infinite-energy upper bound Φ({Ei}) (dashed lines) for different values

of N as a function of the overall added noise of the chain ξ. This is Fig. 5 from Ref. [5].
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3.5 Finite number of channel uses

Consider an adaptive (n, ε)-protocol of key generation, meaning that Alice and Bob uses

n times the channel and achieve a target state which is ε-close to a private state with

Rn,ε secret bits. In particular, assume that the channel is a thermal-loss channel L with

transmissivity τ and noise v = 2n̄ + 1. We can then simulate the channel by teleporting

over our resource state ρ̂τ,v; next we may apply teleportation stretching to the adaptive

protocol, and compute the REE on its simplified output in order to get a single-letter

upper bound to the n-use ε-secure secret-key capacity of the channel Kn,ε(L).

Figure 3.11: Upper bound to the n-use ε-secure secret-key capacity of the thermal-loss channel

with τ = 0.7 and n̄ = 1. We assume ε = 10−10 and purity µ = 10−4. We see how Φn(τ, v, ε, p)

(blue solid curve) tends to the asymptotic value Υp for large n (red dashed line), which is slightly

above the infinite-energy bound Υ0(black dashed line). This is Fig. A1 from Ref. [6].

Building on this recipe, one can write the following expansion in n

Kn,ε(L) ≤ Φn(τ, v, ε, µ) (3.42)

:= Υp +
√
n−1EV (ρ̂′τ,v)F (ε) +O

(
log n

n

)
,

where Υp is the finite-energy bound asymptotic in n for fixed purity p computed over an

optimal resource state ρ̂′τ,v, EV (ρ̂′τ,v) is its relative entropy variance, and F is the inverse
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of the cumulative Gaussian distribution, namely

F (ε) = sup{a ∈ R |f(a) ≤ ε} , (3.43)

f(a) = (2π)−1/2

∫ a

−∞
dx exp(−x2/2) . (3.44)

In Fig. 3.11, we numerically plot the upper bound Φn(τ, v, ε, p) versus n uses of a thermal-

loss channel with transmissivity τ = 0.7 and mean thermal number n̄ = 1, and assuming

ε = 10−10. Our resource state is chosen with purity p = 10−4 and optimized over the

remaining free parameter. The non-asymptotic bound is compared with the asymptotic

bound Υp and the infinite-energy bound Υ0.
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Chapter 4

Multi-point quantum

communication

The goal of the present Chapter is to extend the “REE+teleportation” methodology [1] to

a more complex communication scenario [7], in particular that of a single-hop quantum net-

work, where multiple senders and/or receivers are involved. The basic configurations are

represented by the quantum broadcast channel [131–133] where information is broadcast

from a single sender to multiple receivers, and the quantum multiple-access channel [134],

where multiple senders communicate with a single receiver. More generally, we also con-

sider the combination of these two cases, where many senders communicate with many

receivers in a sort of all-in-all quantum communication or quantum interference channel.

In practical implementations, this may represent a quantum bus [135,136] where quantum

information is transmitted among an arbitrary number of qubit registers.

In all these multipoint scenarios, we characterize the most general protocols for entan-

glement distillation, quantum communication and key generation, assisted by adaptive

LOCCs. This leads to the definition of the two-way capacities C = D2, Q2, K between

any pair of sender and receiver. We then consider those quantum channels (for broadcast-

ing, multiple-accessing, and all-in-all communication) which are teleportation-covariant.

For these channels, we can completely reduce an adaptive protocol into a block form in-

volving a tensor product of Choi matrices. Combining this reduction with the REE, we

then bound their two-way capacities by means of the REE of their Choi matrix, therefore

extending the methods of Chapter 2 to multipoint communication.

Our upper bounds applies to both discrete-variable (DV) and continuous-variable (CV)

channels. As an example, we consider the specific case of a 1-to-M thermal-loss broad-
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cast channel through a sequence of beamsplitters subject to thermal noise. In particular,

we discuss how that the two-way capacities Q2, D2 and K between the sender and each

receiver are all bounded by the first point-to-point channel in the “multisplitter”. This

bottleneck result can be extended to other Gaussian broadcast channels. In the specific

case of a lossy broadcast channel (without thermal noise), we find a straighforward exten-

sion of the fundamental rate-loss scaling, so that any sender-receiver capacity is bounded

by − log2(1 − η) with η being the transmissivity of the first beamsplitter. These results

have been achieved in Ref. [7].

4.1 Quantum broadcast channel

Here we consider quantum and private communication in a single-hop point-to-multipoint

network. We adapt our techniques to bound the optimal rates that are achievable in

adaptive protocols involving multiple receivers. For the sake of simplicity, we present the

theory for non-asymptotic simulations. The theoretical treatment of asymptotic simula-

tions goes along the lines described previously in Sec. 2.4.1 and is discussed afterwards.

Consider a quantum broadcast channel E where Alice (local register a) transmits a system

a ∈ a to M different Bobs; the generic ith Bob (with i = 1, . . . ,M) receives an output

system bi which may be combined with a local register bi for further processing. Denote

by D(Hs) the space of density operators defined over the Hilbert space Hs of quantum

system s. Then, the quantum broadcast channel is a completely-positive trace preserving

(CPTP) map from Alice’s input space D(Ha) to the Bobs’ output space D(⊗iHbi). The

most general adaptive protocol over this channel goes as follows.

All the parties prepare their initial systems by means of a LOCC Λ0. Then, Alice picks

the first system a1 ∈ a which is broadcast to all Bobs a1 → {bi1} through channel E . This

is followed by another LOCC Λ1 involving all parties. Bobs’ ensembles are updated as

bi1b
i → bi. Then, there is the second broadcast a 3 a2 → {bi2} through E , followed by

another LOCC Λ2 and so on. After n uses, Alice and the ith Bob share an output state

ρn
abi

which is epsilon-close to a target state of nRni bits. The generic broadcast capacity

for the ith Bob is defined by maximizing the asymptotic rate over all the adaptive LOCCs

P = {Λ0,Λ1, . . .}, i.e., we have [7]

C(Ei) = Ci := sup
P

lim
n→∞

Rni , (4.1)

where Ei is the channel from Alice to the i-th Bob. By specifying the adaptive protocol to a
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particular target state, i.e., to a particular task (entanglement distribution, reliable trans-

mission of quantum information, key generation or deterministic transmission of secret

bits), one derives the entanglement-distribution broadcast capacity (Di
2), the quantum

broadcast capacity (Qi2), the secret-key broadcast capacity (Ki), and the private broad-

cast capacity (P i2). These are all assisted by unlimited two-way CCs between the parties

and it is easy to check that they must satisfy Di
2 = Qi2 ≤ Ki = P i2. In order to bound

the previous capacities, let us introduce the notion of teleportation-covariant broadcast

channel. It is explained for the case of two receivers, Bob and Charlie, with the exten-

sion to arbitrary M receivers being just a matter of technicalities. This is a broadcast

channel which suitably commutes with teleportation. Formally, this means that, for any

teleportation unitary Uk at the channel input, we may write [7]

E(UkρU
†
k) = (Bk ⊗ Ck)E(ρ)(Bk ⊗ Ck)† , (4.2)

for unitaries Bk and Ck at the two outputs. If this is the case, it is immediate to prove

that E can be simulated by a generalized teleportation protocol over its Choi matrix

ρE = IA ⊗ EA′(ΦAA′), (4.3)

where the latter is defined by sending half of an EPR ΦAA′ through the broadcast channel.

In other words, the broadcast channel is Choi-stretchable and its LOCC simulation is based

on teleportation. See Fig. 4.1.

Figure 4.1: Simulation of a teleportation-covariant quantum broadcast channel. We may replace

the broadcast channel E : a → bc by teleportation over its Choi matrix ρE , with CCs to Bob

and Charlie, who will implement correction unitaries. The broadcast channel is therefore Choi-

stretchable and its LOCC simulation is based on teleportation. This is Fig. 3 from Ref. [7].

We may now simplify any adaptive protocol performed over a teleportation-covariant

broadcast channel. The steps of the procedure are shown in Fig. 4.2. As a result, the total
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output state of Alice, Bob and Charlie can be decomposed in the form

ρnabc := ρabc(E⊗n) = Λ̄
(
ρ⊗nE

)
, (4.4)

where Λ̄ is a trace-preserving LOCC. If we now trace one of the two receivers, e.g., Charlie,

we still have a trace-preserving LOCC between Alice and Bob, and we may write the

following

ρnab = TrcΛ̄
(
ρ⊗nE

)
= Λ̄a|bc

(
ρ⊗nE

)
, (4.5)

where Λ̄a|bc is local with respect to the cut a|bc [7].
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Figure 4.2: Stretching of an adaptive protocol over a teleportation-covariant quantum broadcast

channel. Top panels. The generic ith transmission ai → {bi, ci} over the broadcast channel E

(red line) is replaced by a teleportation over its Choi matrix ρE (following the procedure shown in

Fig. 4.1). The input system and the upper half of the Choi matrix are subject to a Bell detection

which becomes part of Alice’s LO (upper LO). The result of the Bell detection k is classically

communicated to Bob and Charlie so that they can apply two correction unitaries which are then

included into their respective LOs (middle and lower LOs). Bottom panels. The Choi matrix is

stertched in time out of the adaptive LOCCs which are then collapsed into a single trace-preserving

LOCC. After n uses, we can express the output in terms of n copies of the Choi matrix ρE of the

broadcast channel, plus a trace-preserving single final LOCC Λ̄ as in Eq. (4.4). This is Fig. 4 from

Ref. [7].
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Let us now compute the REE of Alice and Bob’s output state ρnab. Using Eq. (4.5)

and the monotonicity of the REE under Λ̄a|bc, we derive

ER(ρnab) := inf
σs(a|b)

S (ρnab||σs)

≤ inf
σs(a|bc)

S
(
ρ⊗nE ||σs

)
:= ER(a|bc)(ρ

⊗n
E ), (4.6)

where we call ER(a|bc) the REE with respect to the bipartite cut a|bc. Note that the set

of states {σs(a|bc)}, separable between a and bc, includes the set of states {σs(a|b|c)}

which are separable with respect to a, b and c. Therefore, we may write the further

upper-bound

ER(a|bc)(ρ
⊗n
E ) ≤ inf

σs(a|b|c)
S
(
ρ⊗nE ||σs

)
:= ER(ρ⊗nE ). (4.7)

For Alice and Bob (i = B), we can then exploit the weak converse bound in Eq. (2.38)

where the optimization must be done over all the adaptive broadcast protocols. Combining

this bound with Eqs. (4.6) and (4.7), we get

CB ≤ sup
L

lim
n

ER(ρnab)

n
≤ E∞R(a|bc)(ρE) ≤ E

∞
R (ρE), (4.8)

where E∞R (ρ) := limn n
−1ER(ρ⊗n) is the regularized version of the REE. Then, using the

subadditive over tensor products, we may also write

ER(ρnab) ≤ nER(a|bc)(ρE) ≤ nER(ρE), (4.9)

which clearly leads to the single-letter upper bounds

CB ≤ ER(a|bc)(ρE) ≤ ER(ρE). (4.10)

We find the same bounds for the capacity of Alice and Charlie (i = C). In general, for

arbitrary M receivers, we may extend the reasoning and write the following upper bounds

for the capacity between Alice and the ith Bob [7]

Ci ≤ ER(a|b1···bM )(ρE) ≤ ER(ρE) := Φ(E) , (4.11)

where Φ(E) is the entanglement flux of the broadcast channel E , defined as the REE of its

Choi matrix ρE .

4.1.1 Extension to continuous variables

By repeating the reasoning of Sec. 2.4.1 we can extend the simulation to bosonic broadcast

channel. In fact, the error in the channel simulation can be propagated to the output state

117



Chapter 4: Multi-point quantum communication

of the adaptive protocol, so that, for any energy constraint on the local registers, we may

write the trace-norm limit ∥∥∥ρnabc − Λ̄µ

(
ρµ⊗nE

)∥∥∥ µ→ 0, (4.12)

where Λ̄µ is an imperfect stretching-LOCC associated with the imperfect teleportation

LOCC T µ. By tracing one of the outputs, e.g., Charlie, one gets∥∥∥ρnab − Λ̄a|bc
µ

(
ρµ⊗nE

)∥∥∥ µ→ 0, (4.13)

where Λ̄
a|bc
µ is an imperfect stretching-LOCC associated with Alice and Bob, which is

local with respect to the bipartite cut a|bc.

The next step is to extend the definition of REE to asymptotic states. In particular, we

define

ER(a|bc)(ρE) := inf
σµs (a|bc)

lim inf
µ→+∞

S(ρµE ||σ
µ
s ), (4.14)

where σµs (a|bc) is an arbitrary converging sequence of states that is separable with respect

to the cut a|bc. Then, we also define the entanglement flux of the bosonic broadcast

channel as

Φ(E) = ER(ρE) := inf
σµs

lim inf
µ→+∞

S(ρµE ||σ
µ
s ), (4.15)

where σµs is an arbitrary converging sequence of separable states (with respect to all

the local systems a|b|c). By applying a direct extension of the weak converse bound in

Eq. (2.38), we then derive the same result as in Eq. (4.10) for the capacity CB between

Alice and Bob, given that the REE quantities are suitably extended as in Eqs. (4.14)

and (4.15). In general, for arbitrary M receivers, we have the corresponding extension of

Eq. (4.11).

4.1.2 Thermal-loss quantum broadcast channel

Now that we have rigorously extended the treatment to CV systems, we study the example

of a bosonic broadcast channel from Alice to M Bobs which introduces both loss and

thermal noise. This is an optical scenario that may easily occur in practice. For instance,

it may represent the practical implementation of a single-hop QKD network, where a party

wants to share keys with several other parties for broadcasting private information. The

latter may also be a common key to enable a quantum-secure conferencing among all the

trusted parties.

One possible physical representation is a chain of M+1 beamsplitters with transmissivities

(η0, η1, . . . ηM ) in which Alice’s input mode A′ subsequently interacts with M + 1 modes
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4.1 Quantum broadcast channel

(E0, E1, E2, . . . , EM ) described by thermal states ρEi(n̄i) with n̄i mean number of photons.

The M output modes (B1, B2, . . . , BM ) are then given to the different Bobs, with the extra

modes E and E′ being the leakage to the environment (or an eavesdropper). See Fig. 4.3

for a schematic representation of this thermal-loss broadcast channel E = EA′→B1...BM .

Figure 4.3: Thermal-loss quantum broadcast channel EA′→B1...BM
from Alice (mode A′) to M

Bobs (modes B1, . . . , BM ), realized by a multi-splitter, i.e., a sequence of M+1 beamsplitters with

transmissivities (η0, η1, . . . ηM ). The environmental modes E0, E1 . . . , EM are in thermal states.

Modes E and E′ describe leakage to the environment. This is Fig. 5 from Ref. [7].

The generic capacity Ci between Alice and the ith Bob is upper bounded by

Ci ≤ ER(A|B1···BM )(ρE) := inf
σµs (A|B1···BM )

lim inf
µ→+∞

S(ρµE ||σ
µ
s ), (4.16)

where the state ρµE := IA ⊗ EA′→B1...BM (Φµ
AA′) is the Choi-approximating state obtained

by sending one half of a TMSV state Φµ
AA′ , and σµs (A|B1 · · ·BM ) is a converging sequence

of states that are separable with respect to the cut A|B1 · · ·BM . Now notice that we may

write

ρµE = LA|B′1E1···EM

[
ρµEA′→B′1

⊗
⊗M

i=1
ρEi(n̄i)

]
, (4.17)

where ρµEA′→B′1
:= IA⊗EA′→B′1(Φµ

AA′) is associated with the first beamsplitter, and LA|E1···EM

is a trace-preserving LOCC, local with respect to the cut A|B′1E1 · · ·EM . Also note that,

for any separable state σµs (A|B′1) we have that the output state

σ̃µs = LA|B′1E1···EM

[
σµs (A|B′1)⊗

⊗M

i=1
ρEi(n̄i)

]
(4.18)
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is separable with respect to the cut A|B1 · · ·BM . As a result we have that

ER(A|B1···BM )(ρE)
(1)

≤ inf
σ̃µs (A|B1···BM )

lim inf
µ→+∞

S(ρµE ||σ̃
µ
s )

(2)

≤ inf
σµs (A|B′1)

lim inf
µ→+∞

S(ρµEA′→B′1
||σµs ) := Φ(EA′→B′1), (4.19)

where we use: (1) the fact that σ̃µs (A|B1 · · ·BM ) are specific types of σµs (A|B1 · · ·BM ); and

(2) monotonicity and additivity of the relative entropy with respect to the decompositions

in Eqs. (4.17) and (4.18).

Because EA′→B′1 is a thermal-loss channel with transmissivity η0 and mean photon number

n̄0, we know its entanglement flux is bounded by

Φ(EA′→B′1) ≤ − log2

[
(1− η0)ηn̄0

0

]
− h(n̄0), (4.20)

for n̄0 < η0/(1− η0), while zero otherwise. Here we set

h(x) := (x+ 1) log2(x+ 1)− x log2 x. (4.21)

Thus, we find that the capacity between Alice and the ith Bob must satisfy [7]

Ci ≤


− log2

[
(1− η0)ηn̄0

0

]
− h(n̄0) for n̄0 <

η0
1−η0 ,

0 for n̄0 ≥ η0
1−η0 .

(4.22)

As expected, the first beamsplitter is a universal bottleneck which restricts the capacities

between Alice and any of the receiving Bobs.

In the specific case of a lossy broadcast channel with no thermal noise (ni = 0 for any i),

we may specify Eq. (4.22) into the following simple bound

Ci ≤ − log2(1− η0) . (4.23)

Let us note that, contrary to another work [137], our analysis of the lossy broadcast channel

builds upon a rigorous extension of channel simulation and teleportation stretching to CV

systems, which includes a suitable generalization of the REE to asymptotic states.

Most importantly, notice that our derivation can be generalized to other bosonic broadcast

channels, where the M + 1 beamsplitters are replaced by arbitrary Gaussian unitaries
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UA′E0 , UB′1E1
, . . . , UB′MEM . In this general case, we repeat the previous reasonings to find

that the capacities must satisfy the bottleneck relation

Ci ≤ Φ(EA′→B′1), (4.24)

where the latter is the entanglement flux of the first Gaussian channel EA′→B′1 , determined

by the action of the Gaussian unitary UA′E0 on the input mode A′ and the thermal mode

E0.

4.2 Quantum multiple-access channel

Let us now study multipoint-to-point quantum communication, i.e., a quantum multiple-

access channel from M senders (Alices) to a single receiver (Bob). This channel is a CPTP

map from Alices’ input space D(⊗iHai) to Bob’s output space D(Hb). The most general

adaptive protocol over this channel goes as follows. All the parties prepare their initial

systems by means of a LOCC Λ0. Then, the ith Alice picks the first system from her

local ensemble, i.e., ai1 ∈ ai. All Alice’s input systems are sent through the quantum

multiple-access channel E with output b1 for Bob, i.e.,

a1
1, . . . , a

i
1, . . . , a

M
1
E→ b1 . (4.25)

This is followed by another LOCC Λ1 involving all parties. Bob’s ensemble is updated as

b1b→ b. Then, there is the second transmission {ai} 3 {ai2} → b2 through E , followed by

another LOCC Λ2 and so on. After n uses, the ith Alice and Bob share an output state

ρn
aib

which is epsilon-close to a target state with nRni bits.

The generic multiple-access capacity for the ith Alice is defined by maximizing the asymp-

totic rate over all the adaptive LOCCs P = {Λ0,Λ1, . . .}, i.e., we have Ci := supP limnR
n
i .

As before, by specifying the adaptive protocol to a particular task, one derives the entan-

glement distribution multiple-access capacity (Di
2), the quantum multiple-access capacity

(Qi2), the secret-key multiple-access capacity (Ki) and the private multiple-access capacity

(P i2). These are all assisted by unlimited two-way CCs between the parties and satisfy

Di
2 = Qi2 ≤ Ki = P i2.

Let us introduce the notion of teleportation-covariant multiple-access channel. For the

sake of simplicity, this is explained for the case of two senders, with the extension to

arbitrary M senders being just a matter of technicalities. We also consider the case of

DV channels, with the extension to CV channels left implicit. A quantum multiple-access
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channel is teleportation-covariant if, for any teleportation unitaries, U1
k1

and U2
k2

, we may

write [7]

E
[
(U1

k1 ⊗ U
2
k2)ρ(U1

k1 ⊗ U
2
k2)†

]
= VkE(ρ)V †k , (4.26)

for some unitary Vk, with k depending on both k1 and k2. If this is the case, then we can

replace E with teleportation over its Choi matrix, which is defined by sending halves of

two EPR states through the channel, i.e.,

ρE = IA1A2 ⊗ EA′1A′2(ΦA1A′1 ⊗ ΦA2A′2). (4.27)

See also Fig. 4.4 for further explanations.

Figure 4.4: Simulation of a teleportation-covariant quantum multiple-access channel. We can

replace the multiple-access channel E : a1a2 → b (left) by double teleportation over its tripartite

Choi matrix ρE (right). This Choi matrix is obtained by sending halves (A′1 and A′2) of two EPR

states Φ through E , with output B. Then, systems a1 and A1 are subject to a Bell detection with

outcome k1. Similarly, systems a2 and A2 are subject to a Bell detection with outcome k2. The

outcomes are CCed to Bob who applies a correction unitary on system B. Since the channel is

teleportation-covariant, i.e., it commutes with the teleportation unitaries according to Eq. (4.26),

Bob’s correction unitary V −1
k on B re-generates the original channel E : a1a2 → b. This is Fig. 6

from Ref. [7].

By using the channel simulation, we may fully simplify any adaptive protocol performed

over a teleportation-covariant multiple-access channel E . In fact, each transmission through

E can be replaced by double teleportation on its Choi matrix ρE , with the Bell detections

and Bob’s correction unitary being included in the LOCCs of the protocol. By stretching

n uses of the adaptive protocol (see Fig. 4.5), we find that the total output state of Alice 1,

Alice 2 and Bob reads [7]

ρna1a2b = Λ̄
(
ρ⊗nE

)
. (4.28)
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4.2 Quantum multiple-access channel

If we now trace one of the two senders, e.g., Alice 2, we still have an LOCC between Alice

1 and Bob. In other words, we may write the following

ρna1b = Λ̄a1a2|b
(
ρ⊗nE

)
, (4.29)

where Λ̄a1a2|b is local with respect to the cut a1a2|b. For Alice 1 and Bob (i = 1), we can

a1

L

O

C

C

b

a1

a2

b

L

O

C

C

b b

Λ��ℰ
a2

�

�

�

Alice 1

Alice 2

Bob

⊗�

�

a1

a2

a1

a2

Figure 4.5: Teleportation stretching of an adaptive protocol implemented over a

teleportation-covariant multiple-access channel (generic mth transmission shown on the

left). After n uses, we can express the output in terms of n copies of the Choi matrix ρE

of the quantum multiple-access channel, subject to a trace-preserving LOCC Λ̄. This is

Fig. 7 from Ref. [7].

now write

ER(ρna1b) := inf
σs(a1|b)

S
(
ρna1b||σs

)
≤ inf

σs(a1a2|b)
S
(
ρ⊗nE ||σs

)
:= ER(a1a2|b)(ρ

⊗n
E )

≤ inf
σs(a1|a2|b)

S
(
ρ⊗nE ||σs

)
:= ER(ρ⊗nE ). (4.30)

By applying the weak converse bound, we then derive [7]

C1 ≤ sup
L

lim
n

ER(ρna1b)

n
≤ E∞R(a1a2|b)(ρE) ≤ E

∞
R (ρE), (4.31)

and using the subadditivity of the REE over tensor products, it is easy to show the single-

letter version

C1 ≤ ER(a1a2|b)(ρE) ≤ ER(ρE). (4.32)

Note that we find the same bound for the other capacity for Alice 2 and Bob (i = 2). The

reasoning can be readily extended to arbitrary M senders, so that the capacity between

the ith Alice and Bob reads [7]

Ci ≤ ER(a1···aM |b)(ρE) ≤ ER(ρE) := Φ(E), (4.33)
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where Φ(E) is the entanglement flux of the quantum multiple-access channel. As previously

mentioned, the result can be extended to CV systems by employing asymptotic simulations

and extending the notions.

4.3 All-in-all quantum communication

In this section we extend our technique to a single-hop quantum network involving multiple

(MA) senders and multiple (MB) receivers, which is also known as quantum interference

channel. This is a CPTP map from Alices’ input space D(⊗MA
i=1Hai) to Bobs’ output space

D(⊗MB
j=1Hbj ). As a straightforward generalization of the previous cases, the most general

adaptive protocol over this channel can be described as follows. At the initial stage the

parties exploit a LOCC Λ0 for their systems’ preparation. Then, each Alice picks the first

system from her local ensemble ai1 ∈ ai. The inputs of all Alices are sent to all Bobs

through channel E resulting into the outputs {bi1}, i.e.,

a1
1, . . . , a

i
1, . . . , a

MA
1

E→ b11, . . . , b
j
1, . . . , b

MB
1 . (4.34)

After this first transmission, there is another LOCC Λ1, after which all Bobs’ ensembles

are updated bj1b
j → bj . Next, there is the second transmission ai 3 {ai2} → {b

j
2} through

E , followed by another LOCC Λ2 and so on. Thus, after n uses of the channel, the ith

Alice and the jth Bob share an output state ρn
aibj

, which is ε-close to a target state of nRnij

bits. By maximizing the asymptotic rate over all the adaptive LOCCs P = {Λ0,Λ1, . . .}

we can define the generic interference capacity for the ith Alice and the jth Bob as [7]

Cij := sup
P

lim
n→∞

Rnij . (4.35)

As usual, depending on the task, one specifies three different capacities assisted by unlim-

ited two-way CCs: The entanglement distribution capacity (Dij
2 ), the quantum capacity

(Qij2 ), the secret-key capacity (Kij) and the private capacity (P ij2 ) of the quantum inter-

ference channel (with Dij
2 = Qij2 ≤ Kij = P ij2 ). As for the case of the broadcast and the

multiple-access channels we bound these capacities by using REE+teleportation stretch-

ing. We proceed by considering two senders and two receivers being the extension to

arbitrary MA and MB just a matter of technicalities. The definition of a teleportation-

covariance quantum interference channel relies once again on the commutation with tele-

portation, i.e., for any teleportation unitaries U1
k1

and U2
k2

we must have [7]

E
[
(U1

k1 ⊗ U
2
k2)ρ(U1

k1 ⊗ U
2
k2)†

]
= VE(ρ)V†, (4.36)
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where V = V 1
l1
⊗ V 2

l2
for unitaries V 1

l1
and V 2

l2
, with both l1 and l2 depending on k1 and

k2. If this condition holds then the channel can be simulated by teleportation over its

Choi matrix, which is formally defined as in Eq. (4.27). See Fig. 4.6 for this simulation.

Thus, an adaptive protocol can be simplified since each use of channel E can be replaced

Figure 4.6: Simulation of a teleportation-covariant quantum interference channel. The channel

E : a1a2 → b1b2 (left) can be simulated by its Choi matrix ρE (right). Systems a1 and A1 are

subject to a Bell detection with outcome k1. Similarly, systems a2 and A2 are subject to a Bell

detection with outcome k2. Both outcomes k1 and k2 are then classically communicated to Bob 1

and Bob 2 who apply two correction unitaries on B1 and B2. Since the channel is teleportation-

covariant, i.e., it commutes with the teleportation unitaries according to Eq. (4.36), the two Bobs

are able to recover the original channel E : a1a2 → b1b2 by applying correction unitaries (V 1
l1

)−1

and (V 2
l2

)−1. This is Fig. 8 from Ref. [7].

by teleportation and both the Bell detections and Bobs’ correction unitaries become part

of the LOCCs. By stretching n uses of the channel (see Fig. 4.7), we have the following

output state shared between Alice 1, Alice 2, Bob 1 and Bob 2

ρa1a2b1b2 = Λ̄(ρ⊗nE ). (4.37)

By tracing over one sender and one receiver, say Alice 2 and Bob 2, we then derive

ρna1b1 = Λ̄a1a2|b1b2(ρ⊗nE ) , (4.38)

where Λ̄a1a2|b1b2 is a trace-preserving LOCC between Alice 1 and Bob 1, local with respect

to the cut a1a2|b1b2.

It follows that the capacity for Alice 1 and Bob 1 (i = j = 1) is upper bounded by [7]
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Figure 4.7: Teleportation stretching of an adaptive protocol over a quantum interference channel

(generic mth transmission shown on the left). After n uses, we can express the output in terms of

n copies of the Choi matrix ρE of the quantum interference channel, subject to a trace-preserving

LOCC Λ̄. This is Fig. 9 from Ref. [7].

C11 ≤ sup
L

lim
n→∞

ER(ρna1b1)

n
≤ E∞R(a1a2|b1b2)(ρE) ≤ E

∞
R (ρE). (4.39)

In terms of single-letter bounds we find

C11 ≤ ER(a1a2|b1b2)(ρE) ≤ ER(ρE). (4.40)

Clearly, we find the same result in all other cases, i.e., for any sender-receiver pair (i, j).

In general, for arbitrary MA senders and MB receivers, we may write [7]

Cij ≤ ER(a1···aMA |b1···bMB )(ρE) ≤ ER(ρE) := Φ(E), (4.41)

where Φ(E) is the entanglement flux of the quantum interference channel. The extension

to CV systems exploits asymptotic simulations along the lines of Sec. 2.4.1.
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Chapter 5

Ultimate performance of Quantum

Metrology and Quantum Channel

Discrimination

The level of generality at which we have developed quantum channel simulation and tele-

portation stretching is such that we can apply their combination to other contexts beside

quantum communication. In particular, our methodology can be applied to simplify other

types of adaptive protocols whose performances are given in terms of functionals that are

monotonic under CPTP maps. In this Chapter we first review the results of Ref. [42] by

showing how we can rely on our technique in order to bound the ultimate adaptive perfor-

mance of quantum metrology. In the second part, by employing a different version of the

standard teleportation protocol, namely the port-based teleportation (PBT), we are able

to achieve a more powerful channel simulation that leads us to determine a universal lower

bound for the probability of error affecting the discrimination of two arbitrary quantum

channels.

Quantum metrology [138,139], also known as quantum parameter estimation, aims at op-

timally estimating unknown classical parameters which are encoded in quantum states as

well as in quantum channels. Also in this setting, the ultimate limits of the performances

must be addressed by considering the most general strategies for quantum parameter esti-

mation that are allowed by quantum mechanics. These protocols are inevitably adaptive,

involving joint quantum operations and an unlimited use of entanglement.

Let us start by formulating the general problem. Suppose that we have a black-box which
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is implementing a quantum transformation described by the quantum channel Eθ, where θ

is an unknown classical parameter with a uniform prior probability distribution. In order

to retrieve the best value for the parameter θ, we probe the box a number n of times

obtaining the sequence of outcomes x = (x1, x2, . . . , xn). Statistically, this means that we

generate an estimator θ̃ = θ̃(x), i.e. a mapping from the set of measurement outcomes into

the space of parameters, such that its error variance δθ2 = 〈(θ̃(x)− θ)2〉 is minimal [139].

Here the average is assumed over the n probings of the box. We expect that the error

variance or the standard deviation δθ to decrease with n. A fundamental question is then

to determine which is the optimal scaling in n for a given quantum channel. We know

that for certain channels the scaling is δθ ∼ n−1/2, known as the “standard quantum

limit”(SQL), and it is also what we expect in a completely classical setting. Remarkably,

there are channels that behave fully quantum and this limit can be beaten. In fact, it is

a known result [41] that the optimal limit that is reachable in the quantum realm is the

“Heisenberg scaling”(HS), i.e. δθ ∼ n−1. To decide if the estimation of the parameter in

Eθ is limited by the SQL or the HS we need to adopt adaptive protocols.

5.1 Protocols for quantum parameter estimation

In order to estimate the parameter θ with an optimal estimator θ̃ characterized by mini-

mal error variance δθ2, the simplest strategy is represented by a block protocol which can

be direct or ancillary-assisted. In a block protocol of parameter estimation, the involved

elementary operations are represented by the preparation of a suitable input state to probe

the channel and the detection of the output of the channel by means of an optimal posi-

tive operator-valued measure (POVM). In a direct protocol, Fig 5.1 panel a, we prepare

the same input state σ for all the n probings of the channel, and then the output state

ρ⊗nθ = Eθ(σ)⊗n is detected with a joint POVM.

In an assisted protocol, Fig 5.1 panel b, for each probing of the channel we use a joint

state σ of the input system and an ancillary system. The total output state, which now

reads ρ⊗nθ = [(Eθ ⊗ I)σ]⊗n is then jointly measured. Note that clearly an assisted protocol

is equivalent to a direct one performed over the extended channel Eθ ⊗ I.

The most general adaptive protocol involves additional ingredients that complicate con-

siderably the analysis. In fact, in such a setting each probing of the channel takes place

between joint quantum operations and unlimited entanglement in principle could be dis-

tributed between the input and the output. Moreover, feedback may also be exploited
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Figure 5.1: Block protocols for direct (panel a) and assisted (panel b) quantum parameter estima-

tion. In both strategies, the n istances of the quantum channel Eθ are identically and independently

probed with the same input σ. At the output the quantum state has a tensor product structure

and it is subjectd by an optimal POVM, whose outcome is post-processed into an (unbiased)

estimator θ̃.

in order to optimize the inputs for the next probings. An adaptive protocol for quantum

metrology runs similarly to the one for quantum communication, described in Sec. 2.1.

The main difference is that the trace-preserving LOCCs Λi are now substituted by joint

quantum operations (QO) Qi which can be assumed to be trace-preserving, since any non-

trace preserving mapping can be postponed and included in the final collective POVM by

following the principle of the deferred measurement [10].

After n adaptive probings, the output for Alice and Bob will result in the state ρnθ which

clearly depends on the sequence of QOs Q := {Q0, . . . ,Qn}. The final step consists in

detecting the final state with a joint POVM, whose outcome is then processed into the

estimator θ̃.

Suppose we implement an optimal adaptive protocol so that we are implicitly optimis-

ing over all the possible protocol Q and all the possible joint POVMs. The ultimate

lower bound for the error variance δθ of any unbiasd estimator is given by the quantum

Cramér-Rao bound (QCRB)

δθ2 ≥ 1

QFI(ρnθ )
, (5.1)

where QFI is the quantum Fisher information [139], QFI(ρnθ ) := Tr(L2
θρ
n
θ ), and Lθ is the

symmetric logarithmic derivative (SLD) that can be represented as follows [139,140]

Lθρnθ =
∑

j,k:λj+λk>0

2

λj + λk
〈ej |

dρnθ
dθ
|ek〉|ej〉〈ek| (5.2)
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once we have introduced the spectral decomposition of the output, i.e. ρnθ =
∑

j λj〉|ej〉〈ej |.

By relying on the definition of the quantum fidelity F (ρ, σ) := Tr
√√

ρσ
√
ρ and taking

the limit for dθ → 0, we can alternatively express the QFI as [139]

QFI(ρnθ ) = lim
dθ→0

8[1− F (ρnθ , ρ
n
θ+dθ)]

dθ2
. (5.3)

Two fundamental properties of the QFI are the following

• Monotonicity under the action of CPTP maps M, i.e. quantum channels

QFI[M(σθ)] ≤ QFI(σθ) . (5.4)

• Additivity over tensor product of states. Given two parameter-dependent states σθ

and σ′θ, we have

QFI(σθ ⊗ σ′θ) = QFI(σθ) + QFI(σ′θ) . (5.5)

Note that a block protocol, direct or assisted, is restricted to the SQL. In fact, given that

the output of such a strategy is a tensor product state ρ⊗nθ , by exploiting Eq. (5.5), we

can write QFI(ρ⊗nθ ) = nQFI(ρθ). In this way the associated QCRB becomes

δθ2 ≥ 1

nQFI(ρθ)
. (5.6)

In an adaptive protocol setting, the output state does not necessarily have a tensor product

structure and the error variance could potentially behave differently from Eq. (5.6) and

beat the SQL. However, as we will see in the next two sections, the characteristic feature

of an adaptive protocol reduction into a block one, which allow us to write the output as

a tensor product, automatically limits the performances of the protocol to the SQL. In

Sec. 5.9 we will employ a slight modification of the channel simulation in order to cover

quantum channels that beat the SQL.

5.2 Protocol reduction for co-programmable channels

By following the procedure devised in Ref. [42], we show that the reduction of any adaptive

protocol for parameter estimation can be obtained when co-programmable channels are

employed. We say that an ensemble P of quantum channels is co-programmable if, for any

channel E ∈ P, we may write

E(ρ) = S(ρ⊗ πE) , (5.7)
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with the same joint quantum operation (trace preserving) S and a channel-dependent pro-

gram state πE . For this class of channel is then possible to decompose the output of the

protocol in terms of the tensor product of many copies of the program state. In this way,

due to the considerations made at the end of the previous section, we have that quantum

metrology with a co-programmable channel is limited by the SQL.

We have already mentioned programmability as a particular example of channel simula-

tion. This idea was introduced in Ref. [38], where, in the context of quantum computation,

the authors design a quantum gate array through which an arbitrary quantum channel is

simulated by a universal unitary and a program state. With a finite number of systems

for the program state, this kind of simulation can be only probabilistic. Viceversa, per-

fect simulation can be achieved by using ideally an infinite number of systems, this is a

fundamental feature of port-based teleportation which we will describe later in Sec. 5.6.1.

A deterministic simulation was given later in Ref. [141] for the particular class of co-

programmable channels. Ref. [42] considered co-programmable channels in both discrete

and continuous variable settings, also identifying the crucial connection with quantum

teleportation.

Let us extend the notion of co-programmable quantum channel to the context of parameter

estimation. Assume that the parametrised quantum channel Eθ spans a family of co-

programmable channels, so that, for any θ, we can write the following simulation

Eθ(ρ) = S(ρ⊗ πEθ) . (5.8)

By plugging this into the adaptive protocol, as we did for quantum communication, we can

replace each istance of the channel with its simulation. Namely, each use of the channel Eθ
is substituted with its program state πEθ . Then all the program states are stretched back

in time while all the simulators S collapse, together with the preparation of the initial

state, into a single final QO Q. Therefore we have [8, 42]

ρnθ = Q(π⊗nEθ ) . (5.9)

As we already noticed, monotonicity and additivity of the QFI are enough to restrict the

QCRB for the estimation of a parameter θ encoded in Eθ to the SQL. In fact we may

write [8, 42]

QFI(ρnθ ) = QFI
[
Q(π⊗nEθ )

]
≤ QFI(π⊗nEθ ) = nQFI(πEθ) (5.10)
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so that the error variance satisfies

δθ2 ≥ 1

nQFI(πEθ)
. (5.11)

Note that this bound is not necessarily achievable since we do not know if the state

πEθ is generated by transmission of some input state through Eθ. Contrarily, for jointly

teleportation covariant channel, the bound is always achievable, the optimal strategy is

non-adaptive and it is defined by sending parts of maximally entangled states and then

measuring the output Choi matrices. Joint teleportation-covariance means that we can

write for any θ the following relation [8, 42]

Eθ(UρU †) = V Eθ(ρ)V † , (5.12)

where the output unitaries V do not depend on the noise parameter, i.e. the ensemble of

channels {Eθ} is teleportation covariant with the same set of output correction unitaries,

so that the noise parameter is uniquely associated with a environmental state dilating the

channel. If Eq. (5.12) is valid, then Eq. (5.8) explicitly becomes

Eθ(ρ) = T (ρ⊗ ρEθ) , (5.13)

where T is teleportation, independent from θ, which is in turn encoded in the channel’s

Choi matrix ρEθ . The stretching is then repeated and we get [8, 42]

ρnθ = Q
(
ρ⊗nEθ

)
(5.14)

for some quantum channel Q. This means that the estimation of a teleportation-covariant

channel is limited by the SQL with a pre-factor given by the Choi matrix of the Channel,

i.e. [8, 42]

δθ2 ≥ 1

nQFI(ρEθ)
. (5.15)

As a consequence, teleportation simulation not only allows to compute explicitly the upper

bound, but it also provides a matching lower bound. As a matter of facts, an optimal

strategy that saturates the bound employs a block (assisted) estimation protocol where

the maximally entangled state is used at the input of the channel in an identical and

independent way. This strategy gives a QFI exactly equal to nQFI(ρEθ), so that the QCRB

in Eq. (5.15) is asymptotic achievable for large n. In Ref. [42], the authors gives analytical

expressions for the QCRB of teleportation-covariant discrete variable channels. These are
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represented, as we learned, by the erasure, dephasing and depolarizing channels. More

precisely, they satisfy joint teleportation covariance and the parameter θ is identified with

the channel-defining probability p. For each family of these channels Ep the Choi matrix

is computed, so that

QFI(ρEp) =
1

p(1− p)
(5.16)

and by using Eq. (5.15) we find that the adaptive estimation of p is bounded by the

following asymptotically-achievable QCRB [42]

δp2 ≥ p(1− p)
n

. (5.17)

5.3 Teleportation stretching of adaptive metrology in con-

tinuous variables

To apply the methodology of Sec. 2.5.1 to adaptive parameter estimation, we need joint

teleportation covariance for the family of channels Eθ spanned by varying the parameter θ.

If this is the case, then we may repeat the previous procedure and decompose the output

state ρnθ by using [42] ∥∥∥ρnθ −Qµ(ρµ⊗nEθ )
∥∥∥ ≤ nεµ,N , (5.18)

for any θ, finite number of uses n and finite energy N . To evaluate the QFI of ρnθ , we now

exploit the connection with the Bures distance dB and the trace distance D. In fact, for

dθ → 0 we may write

QFI(ρnθ ) =
4d2

B(ρnθ , ρ
n
θ+dθ)

dθ2
, (5.19)

where

dB(ρ, σ) :=
√

2[1− F (ρ, σ)]

≤
√

2D(ρ, σ) =
√
||ρ− σ||. (5.20)

Using the triangle inequality for the Bures distance and properties of the fidelity (mono-

tonicity under CPTP maps and multiplicativity over tensor products), we may write [42]

dB(ρnθ , ρ
n
θ+dθ) ≤

√
2[1− (Fµθ )n] + 2

√
nδ(µ,N), (5.21)

where Fµθ := F (ρµEθ , ρ
µ
Eθ+dθ). For any finite n and N , we may take the limit for large µ and

write

dB(ρnθ , ρ
n
θ+dθ) ≤ lim

µ→∞

√
2[1− (Fµθ )n] =

√
2[1− (F∞θ )n] , (5.22)
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where F∞θ := limµ→∞ F
µ
θ . In other words, we have

QFI(ρnθ ) ≤
8[1− (F∞θ )n]

dθ2
. (5.23)

It is easy to check [42] that the upper bound is additive, so that

QFI(ρnθ ) ≤ n
8[1− F∞θ ]

dθ2
:= nQFI∞θ . (5.24)

It is important to note that the upper bound does not depend on the specifics of the

adaptive protocol and also on energy constraint N . Therefore, the bound is valid for

all possible adaptive protocols, both constrained and unconstrained (i.e., we can safely

remove the energy constraint at the end of the calculations). Also notice that the upper

bound is asymptotically achievable by an unconstrained block (assisted) protocol, where

n TMSV states Φµ are used to probe the channel, so that one collects the output product

state ρµ⊗nEθ . By making an optimal measurement, we achieve

QFI(ρµ⊗nEθ ) = n
8[1− Fµθ ]

dθ2
, (5.25)

whose limit for large µ coincides with the upper bound in Eq. (5.24). Because, this protocol

uses independent probing states, the QCRB is achievable for large n.

In conclusion, Eq. (5.24) is indeed the ultimate QFI achievable with adaptive estimation

protocols. Thus, we may say that the optimal adaptive estimation of a noise parameter

θ encoded in a teleportation-covariant bosonic channel Eθ (so that the family is jointly

tele-covariant) is limited to the SQL. In fact, it satisfies the asymptotically achievable

QCRB [42]

δθ2 ≥ (nQFI∞θ )−1 , (5.26)

where QFI∞θ is related to the asymptotic Choi matrix of the channel ρEθ according to the

limit in Eq. (5.24).

Now let us consider a thermal loss-channel Etherm
η,n̄ , see Sec. 2.7.2.2, with transmissivity

η ∈ [0, 1] and noise ν = (1 − η)(n̄ + 1/2). This channel is jointly teleportation-covariant

in the thermal number. Therefore, if we consider the adaptive estimation of the param-

eter n̄, which can be related to a measurement of temperature, by using Eq. (5.26) one

computes [42]

QFI∞n̄ =
1

n̄(n̄+ 1)
⇒ δn̄2 ≥ n̄(n̄+ 1)

n
. (5.27)
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We see that the QCRB does not depend on the loss parameter η, as long as it is less

than 1. This implies that, for any η < 1, we achieve the same accuracy as we would get

in a direct measurement of the environment (η = 0).

Consider now a noisy quantum amplifier Eamp
η,n̄ which is defined by a gain η > 1 and noise

ν = (η − 1)(n̄ + 1/2) with thermal number n̄. This is teleportation covariant and jointly

tele-covariant in the parameter n̄. For the adaptive estimation of n̄ > 0, one gets [42]

the same QCRB of Eq. (5.27). Finally, consider an additive-noise Gaussian channel Eadd
ν

which is defined by η = 1 and ν ≥ 0. This is joint teleportation covariant in the added

noise ν, whose optimal adaptive estimation is bounded by [42] QFI∞ν = ν−2 and therefore

the QCRB

δν2 ≥ ν2/n . (5.28)

5.4 Sub-optimal simulation of bosonic Gaussian channels

By following the recipe provided in Chapter 3, at this stage of the discussion, we are

naturally led to compute finite-resource QCRBs for each single-mode Gaussian channel

and to compare them with those obtained previously with the asymptotic Choi state.

We are thus interested in finding a finite-energy resource state σν that can simulate a

phase-insensitive Gaussian channel Eη,ν as in Eq. (3.7), i.e.

Eη,ν(ρ) = Tη(ρ⊗ σν) , (5.29)

It is worth remarking that there exist many finite-energy resource states that can simu-

late a given channel. Here we consider a choice for σν different from the two described

in Sec. 3.1 to derive weak converse upper bounds for the secret key capacity of phase-

insensitive Gaussian channels. It is straightforward to verify that a phase-insensitive

channel can be simulated with teleportation over the following Gaussian state with zero

mean and CM [8]

V(σν) =

 aI cZ

cZ bI

 , (5.30)

with the following elements

a =
1

2
cosh 2r, b =

|1− η|
2

+
η

2
cosh 2r, c =

√
η

2
sinh 2r , (5.31)

where

r = −1

2
ln

[
2ν − |1− η|

2η

]
. (5.32)
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Note that the form of the simulation in Eq. (5.29) is such that the noise parameter ν only

appears in the resource state σν or, in other words, the teleportation LOCC Tη does not

depend on ν. For this reason, the family of channels Eη,ν with fixed η but varying ν is

a family of jointly teleportation-simulable channels (which is a condition implied by the

joint teleportation covariance). As a result, the adaptive estimation of the parameter ν

can be completely simplified, so that the n-use output state of a comb reads ρnν = Λη(σ
⊗n
ν )

for some global quantum channel Λη which is independent from the unknown parameter ν.

As a consequence, we may simplify the QFI of the output state ρnν and write the following

QCRB for the adaptive estimation of ν [8]

δν2 ≥ 1

nQFI(σν)
. (5.33)

0 2 4 6 8 10
n
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Figure 5.2: Quantum Fisher information QFI(σn̄) associated with the adaptive estimation of the

thermal number n̄ of a thermal-loss channel Eη,n̄. Assuming the sub-optimal simulation we find

QFI(σn̄) = n̄−2 (upper red line). Compare this with QFI∞n̄ = [n̄(n̄+ 1)]−1 which was computed in

Eq.(5.27) using the asymptotic simulation (lower blue line). This is Fig. 6 from Ref. [8].

As an example consider the additive-noise Gaussian channel Eadd
ν . This channel can be

simulated by exploiting a resource state σν whose CM is given by Eq. (5.30)-(5.32) with

η = 1. We may then compute the QFI from the quantum fidelity between gaussian

states [82], and by using Eq. (5.3) we find the QCRB δv2 ≥ v2/n [8]. Note that this

exactly coincides with the tight achievable bound of Eq. (5.28) which is obtained by

simulating the channel via its asymptotic Choi matrix.
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Consider now the adaptive estimation of the thermal number n̄ of a thermal-loss channel

E loss
η,n̄ assuming the sub-optimal simulation. Putting ν = (1− η)(n̄+ 1/2) in Eq. (5.33) we

compute the QCRB for δn̄2. We do not find the tight achievable bound of Eq. (5.27) but

a larger bound given by [8]

δn̄2 ≥ n̄2/n . (5.34)

For comparison, in Fig. 5.2 we plot the QFI for the asymptotic and finite-energy resource

state. It is a open problem to find a finite-energy resource that can match the asymptotic

bound. Finally, one may easily check that Eq. (5.34) also holds for a noisy amplifier Eamp
η,n̄

assuming its sub-optimal simulation.

5.5 Quantum channel discrimination

We now move on by considering the scenario of quantum channel discrimination (QCD), in

particular we aim at assessing the ultimate performance for discriminating two arbitrary

quantum channels acting on a finite-dimensional Hilbert space. Quantum channel discrim-

ination [143–147], together with quantum state discrmination, represents a fundamental

tool for the basic formulation of quantum hypothesis testing, a central area in quantum

information with many analysis for both discrete and continuous variable systems. If on

the one hand, due to the seminal work of Helstrom [55], we know how to bound the error

probability affecting the symmetric discrimination of two arbitrary quantum state, on the

other, a similar bound is still missing for the discrimination of two arbitrary quantum chan-

nels. The main problem in quantum channel discrimination (QCD) is that the strategies

involve an optimization over the input state and the output measurement, and this process

may also be adaptive in the most general case, so that feedback from the output is used

to update the input. The ultimate performance of adaptive QCD is not known because of

the extreme difficulty to handle feedback-assistance in quantum protocols. At the same

time, it is also known that adaptiveness needs to be considered in QCD. In fact, apart

from the cases where two channels are classical [148], co-programmable or teleportation-

covariant (see [42] and Sec. 5.2), feedback may greatly improve the discrimination. For

instance, Ref. [149] presented two channels which can be perfectly distinguished by using

feedback in just two adaptive uses, while they cannot be perfectly discriminated by any

number of uses of a block (non-adaptive) protocol, where the channels are probed in an

identical and independent fashion, i.e., using multiple copies of the same input state.
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Here we derive a universal lower bound for the error probability affecting the discrimina-

tion of two arbitrary quantum channels. To do this we design a technique which reduces an

adaptive protocol over an arbitrary finite-dimensional quantum channel into a block pro-

tocol over multiple copies of the channel’s Choi matrix. This is obtained by substituting

the standard teleportation protocol with port-based teleportation(PBT) [43–45, 150–154]

into the simulation of the channel and suitably generalizing the technique of teleporta-

tion stretching devised in Sec. 2.5. This reduction clearly applies to adaptive protocols

with any task (not just QCD). When applied to QCD, it allows us to bound the ulti-

mate error probability by using the Choi matrices of the channels. As a direct application

of this result, we derive interesting bounds on the the ultimate adaptive performance of

quantum illumination [51–54,155–159]. We then go back to adaptive quantum metrology

and exploit PBT-stretching to prove a fundamental bound on the parameter estimation

that asymptotically follows the Heisenberg scaling. Further applications for quantum and

private communications are discussed. These methods and results have been established

in [9].

Let us start by considering an adaptive strategy for the binary and symmetric discrimi-

nation of two aribitrary equiprobable quantum channels {Eu} = {E0, E1} in a black-box,

where u ∈ {0, 1} is binary digit labelling the the channel and having equal priors. An

adaptive discrimination protocol Pn consists of local registers a and b prepared initially

in a state1 ρ0, which are then used to probe the black-box n times with the assistance of

a sequence of QOs {Λ1, . . . ,Λn} defining the protocol Pn.

The output state ρn(u) of the protocol Pn is finally detected by an optimal positive-

operator valued measure (POVM). For binary discrimination, this is the Helstrom POVM,

which leads to the following error probability conditioned on Pn [55]

p(E0 6= E1|Pn) =
1−D [ρn(0), ρn(1)]

2
, (5.35)

where D(ρ, σ) := ||ρ − σ||/2 is the trace distance. In Eq. (5.35) and in the following,

we use the compact notation E0 6= E1, meaning that, once the input is fixed, we are

discriminating between the two output states ρn(0) = Λn ◦ E0 ◦ . . . ◦ E0 ◦ Λ1(ρ0) and

1We are omitting the superscripts ab to simplify the notation and since there is no space for ambiguity
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ρn(1) = Λn ◦ E1 ◦ . . . ◦ E1 ◦ Λ1(ρ0), which clearly depend on the specific protocol Pn.

By means of an optimization over all discrimination protocols Pn, we define the minimum

error probability affecting the n-use adaptive discrimination of E0 and E1, i.e., we may

write

pn(E0 6= E1) := inf
Pn

p(E0 6= E1|Pn). (5.36)

This is generally less than the n-copy diamond distance between the two channels E⊗n0

and E⊗n1

pn(E0 6= E1) ≤
1− 1

2 ||E
⊗n
0 − E⊗n1 ||�

2
. (5.37)

The fundamental question is now the following: Can we complete Eq. (5.37) with a lower

bound? Up today, this lower has been only proven for co-programmable channels (see

Eq. (5.8)), with different program states π0 and π1. In this case, we have [42].

pn ≥ [1−D(π⊗n0 , π⊗n1 )]/2 (5.38)

In general, as we already discussed for parameter estimation, this bound is non-achievable.

Remarkably, for jointly teleportation-covariant channels the bound is always achievable

and the optimal strategy is non-adaptive. Recall that jointly teleportation-covariant chan-

nels are such that S becomes teleportation and the program state is a Choi matrix ρEu .

For these channels, Ref. [42] found that Eq. (5.37) holds with an equality and we may

write ||E⊗n0 − E⊗n1 ||� = ||ρ⊗nE0 − ρ
⊗n
E1 ||.

The aim of the following sections is to establish a universal lower bound for pn(E0 6= E1)

which is valid for arbitrary channels. As we will show, this is possible by resorting to a more

general simulation of the channels involving multi-copy program states, i.e. simulation of

the type S(ρ⊗ π⊗Mu ).

5.6 Port-based channel simulation

5.6.1 Port-based teleportation and simulation error

Let us describe port-based teleportation for qudit system of arbitrary finite dimension

d ≥ 2 [43,44]. See Fig. 5.3a, for a graphical description.

Alice and Bob exploit two ensembles of M ≥ 2 qudits, i.e., Alice has A := {A1, . . . , AM}

and Bob has B := {B1, . . . , BM} representing the output “ports”. The generic ith pair

(Ai, Bi) is initialized in a maximally-entangled state, so that the global resource state
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Figure 5.3: From port-based teleportation (PBT) to Choi-simulation of a quantum channel (see

also Ref. [43]). (a) Schematic representation of the PBT protocol. Alice and Bob share an M ×M

qudit state which is given by M maximally-entangled states Φ⊗MAB . To teleport an input qubit state

ρC , Alice applies a suitable POVM {Πi} to the input qubit C and her A qubits. The outcome

i is communicated to Bob, who selects the i-th among his B qubits (tracing all the others). The

performance does not depend on the specific “port” i selected and the average output state is given

by ΓM (ρC) where ΓM is the PBT channel. The latter reduces to the identity channel in the limit

of many ports M → ∞. (b) Suppose that Bob applies a quantum channel E on his teleported

output. This produces the output state EM (ρC) of Eq. (5.54). For large M , one has EM → E in

diamond norm. (c) Equivalently, Bob can apply E⊗M to all his qubits B in advance to the CC

from Alice. After selection of the port, this will result in the same output as before. (d) Now note

that Alice’s LO and Bob’s port selection form a global LOCC T M (trace-preserving by averaging

over the outcomes). This is applied to a tensor-product state ρ⊗ME where ρE is the Choi matrix

of the original channel E . Thus the approximate channel EM is simulated by applying T M to

ρC ⊗ ρ⊗ME as in Eq. (5.55). This is Fig. 1 from Ref. [9].
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reads

Φ⊗MAB =

M⊗
i=1

|Φ〉i〈Φ|, |Φ〉i := d−1/2
∑
k

|k〉Ai ⊗ |k〉Bi . (5.39)

This resource state may be otimized in a suitable way to increase the performance of

the PBT protocol [44]. This is done by acting with an operator on Alice’s qudits before

detection. This operator unfortunately is non-trace preserving and it cannot be included in

our description, where the monotonicity under trace-preserving QOs is crucial. To teleport

the state of a qudit C, Alice performs a joint measurement on C and her ensemble A.

This is a POVM {Πi
CA}Mi=1 with M possible outcomes, see Refs. [43, 44] for more details.

As soon as Alice communicates the outcome i to Bob, he discards all the ports but the

ith one, which contains the teleported state (see Fig. 1a). The scheme is invariant under

permutations of the Bell pairs and , therefore, of the ports. For this reason the equiprobable

measurement outcomes are independent of the input, and the output is invariant under

permutation of the ports. By averaging over the outcomes, we define the teleported state

ρMB = ΓM (ρC) , (5.40)

where ΓM is the corresponding PBT channel explicitly given by the following representa-

tion

ΓM (ρC) =
M∑
i=1

TrAB̄iC

[
Πi
CA

(
ρC ⊗ Φ⊗MAB

)]
, (5.41)

where TrB̄i denotes the trace over all ports B but Bi In the limit of many ports M , we

have that ΓM approximates an identity channel I so that Bob’s output becomes a perfect

replica of Alice’s input. More precisely, for any M , we prove that in the diamond norm

we have the following error.

Lemma 5.6.1 ( [9] ) In arbitrary finite dimension d, the diamond distance between the

M -port PBT channel ΓM and the identity channel I satisfies

δM := ||I − ΓM ||� ≤ 2d(d− 1)M−1 . (5.42)

Proof : As noted in Ref. [160], the channel ΓM associated with the qudit PBT protocol

of Ref. [43] is covariant under unitary transformations, i.e.,

ΓM (UρU †) = UΓM (ρ)U †, (5.43)

for any input state ρ and unitary operator U . Ref. [160] has also shown that, for a channel

with such a symmetry, the diamond distance with the identity map is saturated by a
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maximally entangled state, i.e.,

‖I − ΓM‖� = ‖|Φ〉〈Φ| − I ⊗ ΓM (|Φ〉〈Φ|) ‖ , (5.44)

where |Φ〉 = d−1/2
∑d

k=1 |k〉|k〉. Here we further show that

‖|Φ〉〈Φ| − I ⊗ ΓM (|Φ〉〈Φ|) ‖ = 2[1− fe(ΓM )] , (5.45)

where fe(ΓM ) is the entanglement fidelity of the PBT channel ΓM , i.e. fe(ΓM ) :=

Tr |Ψ〉〈Ψ|(Ir ⊗ ΓM )|Ψ〉〈Ψ|, where the purification |Ψ〉 is such that ρC = Trr |Ψ〉rC〈Ψ|.

In order to prove EQ. (5.45), first note that the map ΛM = I ⊗ ΓM is covariant under

twirling unitaries of the form U ⊗ U∗, i.e.,

ΛM

[
(U ⊗ U∗)ρ(U ⊗ U∗)†

]
= (U ⊗ U∗)ΛM (ρ)(U ⊗ U∗)†, (5.46)

for any input state ρ and unitary operator U . This implies that the state ΛM (|Φ〉〈Φ|) is

invariant under twirling unitaries, i.e.,

(U ⊗ U∗)ΛM (|Φ〉〈Φ|)(U ⊗ U∗)† = ΛM (|Φ〉〈Φ|) . (5.47)

This is therefore an isotropic state of the form

ΛM (|Φ〉〈Φ|) = p|Φ〉〈Φ|+ 1− p
d2

I, (5.48)

where I is the two-qudit identity operator. We may rewrite this state as follows

ΛM (|Φ〉〈Φ|) = F |Φ〉〈Φ|+ (1− F )ρ⊥, (5.49)

where ρ⊥ is state with support in the orthogonal complement of Φ, and F is the singlet

fraction

F := 〈Φ|ΛM (|Φ〉〈Φ|)|Φ〉 = p+ (1− p)d−2. (5.50)

Thanks to the decomposition in Eq. (5.49) and using basic properties of the trace norm,

we may then write

‖|Φ〉〈Φ| − ΛM (|Φ〉〈Φ|) ‖

= ‖(1− F )|Φ〉〈Φ| − (1− F )ρ⊥‖

= (1− F )‖|Φ〉〈Φ|‖+ (1− F )‖ρ⊥‖

= 2(1− F )

= 2[1− fe(ΓM )], (5.51)
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where the last step exploits the fact that the singlet fraction F is the channel’s entangle-

ment fidelity fe(ΓM ).

Finally, we use the fact that the entanglement fidelity of ΓM is bounded as [45]

fe(ΓM ) ≥ 1− d(d− 1)M−1. (5.52)

Therefore, combining Eqs. (5.44), (5.45), and (5.52), we derive

‖I − ΓM‖� ≤ 2d(d− 1)M−1 � . (5.53)

5.6.2 Channel simulation via PBT

Channel simulation through PBT was first shown in Ref. [45] where PBT was introduced

as a possible design for a programmable quantum gate array [38]. As depicted in Fig. 5.3b,

suppose that Bob applies an arbitrary channel E to the teleported output, so that Alice’s

input ρC undergoes the action of the following approximate channel

EM (ρC) := E ◦ ΓM (ρC). (5.54)

Note that the port selection commutes with E , because the POVM acts on a different

Hilbert space [45]. Therefore, Bob can equivalently apply E to each port before Alice’s

CC, i.e., apply E⊗M to his B qudits before selecting the output port, as shown in Fig. 5.3c.

This leads to the following simulation for the approximate channel

EM (ρC) = T M (ρC ⊗ ρ⊗ME ) , (5.55)

where T M is a trace-preserving LOCC and ρE is the channel’s Choi matrix (see Fig. 5.3d).

By construction, the simulation LOCC T M is universal, i.e., it does not depend on the

channel E . This means that, at fixed M , the channel EM is fully determined by the

program state ρE . One can bound the accuracy of the simulation. From Eq. (5.54) and

the monotonicity of the diamond norm, we get [9]

||E − EM ||� ≤ δM , (5.56)

where δM is the simulation error in Eq. (5.42), with the dimension d being the dimension

of the input Hilbert space.
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5.7 Port-based teleportation stretching of an adaptive pro-

tocol

Channel simulation with port-based teleportation develops similarly to the simulation with

standard teleportation and it is at the core of the PBT stretching. The main difference

is at the level of the propagation of the error in the simulation which comes form the

approximation of the channel at a finite number of copies M of resource state. To achieve

the PBT stretching of an adaptive protocol, we first need to replace each channel E with

its M -port approximation EM while controlling the propagation of the simulation error

δM from the channel to the output state. As we have see this is a crucial step also in

simulations via standard teleportation. Second, we need to “stretch” the protocol by

replacing the approximate channel EM with its Choi matrices ρ⊗ME and then suitably re-

organize all the remaining QOs. Here we describe the technique for a generic task, before

specifying it for QCD.

Given an adaptive protocol Pn over a channel E with output ρn, consider the same protocol

over the simulated channel EM , so that we get the different output ρMn . Later in Sec. 5.7.1,

using the “peeling” argument, we bound the output error in terms of the channel simulation

error

||ρn − ρMn || ≤ n||E − EM ||� ≤ nδM . (5.57)

Once understood that the output state can be closely approximated, let us simplify the

adaptive protocol over EM . Using the simulation in Eq. (5.55), we may replace each

channel EM with the resource state ρ⊗ME , iterate the process for all n uses, and collapse

all the simulation LOCCs and QOs as shown in Fig. 5.4. As a result, we may write the

multi-copy Choi decomposition

ρMn = Λ̄(ρ⊗nME ) , (5.58)

for a trace-preserving QO Λ̄. Now, we can combine the two ingredients of Eqs. (5.57)

and (5.58), into the following

Lemma 5.7.1 (PBT stretching [9]) Consider an adaptive quantum protocol (with ar-

bitrary task) over an arbitrary d-dimensional quantum channel E (which may be unknown

and parametrized). After n uses, the output ρn of the protocol can be decomposed as follows

||ρn − Λ̄(ρ⊗nME )|| ≤ nδM , (5.59)
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Figure 5.4: Port-based teleportation stretching of a generic adaptive protocol over a quantum

channel E . (a) We show the last transmission an → bn through E , which occurs between two

adaptive QOs Λn−1 and Λn. This last step produces the output state ρn. (b) In each transmission,

we replace E with its M -port simulation EM so that the output of the protocol becomes ρMn which

approximates ρn for large M . Note that, in the last transmission, the register state ρaban undergoes

the transformation ρabbn = Iab ⊗ EM (ρaban). (c) Each propagation through EM is replaced by

its PBT simulation. For the last transmission, this means that ρabbn = Iab ⊗ T M (ρaban ⊗ ρ⊗ME )

where T M is the LOCC of the PBT and ρE is the Choi matrix of the original channel. (d) All the

adaptive QOs Λi and the simulation LOCCs T M are collapsed into a single (trace-preserving) QO

Λ̄. Correspondingly, n instances of ρ⊗ME are collected. As a result, the approximate output ρMn is

given by Λ̄ applied to the tensor-product state ρ⊗nME as in Eq. (5.58). This is Fig. 2 from Ref. [9].
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where Λ̄ is a trace-preserving QO, ρE is the Choi matrix of E, and δM is the M -port

simulation error in Eq. (5.42).

In protocols of channel estimation or discrimination, where E is parametrized, we may

write Eq. (5.59) with ρE storing the parameter of the channel. In particular, for QCD we

have {Eu}u=0,1 and the output ρn(u) of the adaptive protocol Pn can be decomposed as

follows

||ρn(u)− Λ̄(ρ⊗nMEu )|| ≤ nδM . (5.60)

5.7.1 Propagation of the simulation error

For the sake of completeness, we now give the proof of the first inequality in Eq. (5.57).

Consider the adaptive protocol described in the main text. For the n-use output state we

may compactly write

ρn = Λn ◦ E ◦ Λn−1 ◦ · · · ◦ E ◦ Λ1 ◦ E(ρ0), (5.61)

where Λ’s are adaptive QOs and E is the channel applied to the transmitted signal system.

Then, ρ0 is the preparation state of the registers, obtained by applying the first QO Λ0

to some fundamental state. Similarly, for the M -port simulation of the protocol, we may

write

ρMn = Λn ◦ EM ◦ Λn−1 ◦ · · · ◦ EM ◦ Λ1 ◦ EM (ρ0), (5.62)

where EM is in the place of E . (Note that the following reasoning applies to a fixed channel

E or, more generally, to classically-parametrized unknown channel Eu).

Consider now two instances (n = 2) of the adaptive protocol. We may bound the trace

distance between ρ2 and ρM2 using the same “peeling” argument leading to Eq. (2.74)∥∥ρ2 − ρM2
∥∥ = ‖Λ2 ◦ E ◦ Λ1 ◦ E(ρ0)

− Λ2 ◦ EM ◦ Λ1 ◦ EM (ρ0)||
(1)

≤ ||E ◦ Λ1 ◦ E(ρ0)− EM ◦ Λ1 ◦ EM (ρ0)||
(2)

≤ ||E ◦ Λ1 ◦ E(ρ0)− E ◦ Λ1 ◦ EM (ρ0)||

+ ||EM ◦ Λ1 ◦ E(ρ0)− EM ◦ Λ1 ◦ EM (ρ0)||
(3)

≤ ||E(ρ0)− EM (ρ0)||

+ ||E [Λ1 ◦ EM (ρ0)]− EM [Λ1 ◦ EM (ρ0)]||
(4)

≤ 2||E − EM ||� . (5.63)
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In (1) we use the monotonicity of the trace distance under completely-positive trace-

preserving (CPTP) maps (i.e., quantum channels); in (2) we employ the triangle inequality;

in (3) we use the monotonicity with respect to the the CPTP map E ◦Λ1 whereas in (4) we

exploit the fact that the diamond norm is an upper bound for the trace norm computed

on any input state. Generalizing the result of Eq. (5.63) to arbitrary n, we achieve the

first inequality in Eq. (5.57)

5.7.2 A fundamental lower bound for the error probability

We have now all the necessary ingredients to derive the lower bound for the minimum

probability of error pn(E0 6= E1) in Eq. (5.37), affecting the symmetric discrimination of

two arbitrary finite dimensional quantum channels. Consider an arbitrary protocol Pn,

for which we may write Eq. (5.35). Combining Lemma 2 with the triangle inequality leads

to

||ρn(0)− ρn(1)|| ≤ 2nδM + ||Λ̄(ρ⊗nME0 )− Λ̄(ρ⊗nME1 )||

≤ 2nδM + ||ρ⊗nME0 − ρ⊗nME1 ||, (5.64)

where we also use the monotonicity of the trace distance under channels. Because Λ̄ is

discarded, the bound does no longer depend on the details of the protocol Pn, which means

that it applies to all adaptive protocols. Thus, using Eq. (5.64) in Eqs. (5.35) and (5.36),

we get the following.

Theorem 5.7.2 ( [9] ) Consider the adaptive discrimination of two channels {Eu}u=0,1

in dimension d. After n probings, the minimum error probability satisfies the bound

pn(E0 6= E1) ≥ B :=
1− nδM −D(ρ⊗nME0 , ρ⊗nME1 )

2
, (5.65)

where M may be chosen to maximize the right hand side.

Let us bound the trace distance in Eq. (5.65) as [83]

D2 ≤ 1− F 2nM , F := Tr
√√

ρE1ρE2
√
ρE1 , (5.66)

where F is the fidelity between the Choi matrices of the channels. If we also exploit

Eq. (5.42), we may write

B ≥ 1

2
−
√

1− F 2nM

2
− d(d− 1)n

M
. (5.67)
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In the previous formula there are terms with opposite monotonicity in M . For this reason,

the maximum value of B is achieved at some intermediate value of M .

One possible choice2 is M = 4d(d − 1)n, so that B ≥ (1 − 2
√

1− F 8d(d−1)n2)/4. In

particular, consider two infinitesimally-close channels, so that F ' 1 − ε where ε ' 0 is

the infidelity. By expanding in ε, we may write [9]

B ≥ 1

4
− n

√
2d(d− 1)ε '

exp(−4n
√

2d(d− 1)ε)

4
. (5.68)

Discriminating between two close quantum channels is a problem in many physical scenar-

ios. For instance, this is typical in quantum illumination [51–54, 155–159] (discussed be-

low), quantum optical resolution [48,50] (mentioned below), ideal quantum reading [46,47]

and also tests of quantum field theories in non-inertial frames [161], e.g., for detecting ef-

fects such as the Unruh or the Hawking radiation.

5.8 Ultimate limit of adaptive quantum illumination

5.8.1 Standard (non-adaptive) protocol

In quantum illumination [51–53, 155], the aim is to determine whether a low-reflectivity

object is present or not in a region with thermal noise. We therefore prepare a signal

system s and an idler system i in a joint entangled state ρsi. The signal system is sent to

probe the target while the idler system is retained for its measurement together with the

potential signal reflection from the target. If the object is absent, the “reflected” system

is just thermal background noise. If the object is present, then this is composed of the

actual reflection of the signal from the target plus thermal background noise. This object

can be modelled by a beam splitter, with very small transmissivity η � 1, which combines

the each incoming optical mode (signal system) with a thermal mode with b mean number

of photons.

In the discrete-variable version of quantum illumination [155], the signal system is prepared

in an ensemble of d optical modes, with 1 photon in one of the modes and vacuum in the

others. This is the number of modes which are distinguished by the detector in each

2In general, by setting M = xnd(d1) for some x > 2, we get B ≥ 1/2− 1/x− 1/2
√

1F 2xd(d1)2 .
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detection process. If we introduce the following d−dimensional computational basis

|1〉 :=

d︷ ︸︸ ︷
|00 . . . 01〉, (5.69)

|2〉 := |00 . . . 10〉 , (5.70)

...

|d− 1〉 := |01 . . . 00〉 , (5.71)

|d〉 := |10 . . . 00〉 , (5.72)

then the entangled signal-idler state can be written as

ψsi = |ψ〉si 〈ψ| , |ψ〉si = d−1/2
d∑

k=1

|kk〉si . (5.73)

Let us define the d-dimensional identity operator Id :=
∑d

k=1 |k〉 〈k| which projects onto

the subspace spanned by the 1-photon states, and the (d+1)-dimensional identity operator

Id+1 :=
∑d

k=0 |k〉 〈k| which also includes the vacuum state |0〉 := |00 . . . 00〉. Then, we have

the reduced idler state

ψi := Trs(ψsi) = d−1Idi , (5.74)

and we define the thermal state of the environment as [155]

ρth(b) := (1− db)|0〉〈0|+ bId, (5.75)

where b is the mean number of thermal photons per mode. Here b� 1 and db� 1, where

db is the mean number of thermal photons in each detection event.

The output (d+ 1)× d state of the reflected signal and retained idler is given by

Target absent: σ = ρth(b)⊗ d−1Idi ,

Target present: ρ = (1− η)σ + ηψsi.
(5.76)

If the target is probed n times, then we may use the QCB to bound Q the error probability

perr in the discrimination of ρ and σ. In the regime of signal-to-noise-ratio ηd/b . 1, one

finds [155]

Q = 1− η2d

8b
+O(b2, ηb) , (5.77)

which tightens the QCB by a factor d with respect to the unentangled case where Q ≈

1− η2/(8b). From Eq. (5.77), we may write the following bound for the error probability

of target detection after n probings [155]

pn(σ 6= ρ) ≤ 1

2
exp

(
−η

2dn

8b

)
. (5.78)
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In particular, for ηd/b ' 1, this can be written as

pn(σ 6= ρ) ≤ 1

2
exp

(
−ηn

8

)
. (5.79)

5.8.2 Adaptive protocol

The adaptive formulation of the discrete variable protocol of quantum illumination as-

sumes an unlimited quantum computer with two register a and b, prepared in an arbitrary

joint quantum state. In each probing, a system a is picked from the input register a and

sent to the target. Its reflection a′ is stored in the output register b. A adaptive quantum

operation (QO) is applied to both the update registers before the next transmission and

so on. Therefore any probing is interleaved by the application of adaptive QOs Λ’s to

the registers, defining the adaptive protocol Pn (see also the main text for this descrip-

tion). After n probings, the state of the registers is ρn(u) where u = 0, 1 is a bit encoding

the absence or presence of the target. This state is optimally measured by an Helstrom

POVM. By optimizing over all protocol Pn, we define the minimum error probability pn

for adaptive quantum illumination.

Following the constraints and typical regime of DV quantum illumination, we assume that

the signal systems are (d + 1)-dimensional qudits described by a basis {|0〉 , |1〉 , . . . , |d〉},

where |i〉 := |0 · · · 010 · · · 0〉 has one photon in the ith mode. For this reason, the two

possible quantum illumination channels, E0 and E1, are (d + 1)-dimensional channels. In

particular, consider as their input the maximally-entangled state

Ψsi =
1

d+ 1

d∑
k,j=0

|kk〉si〈jj|, (5.80)

which is similar to ψsi in Eq. (5.73) but also includes the vacuum state. Then, we may

write the following two (d+ 1)× (d+ 1) dimensional Choi matrices

Target absent: σ := ρE0 = ρth(b)⊗ (d+ 1)−1Id+1
i ,

Target present: ρ := ρE1 = (1− η)σ + ηΨsi.
(5.81)

It is clear that E0 and E1 are not jointly teleportation-covariant due to the fact that they

have different transmissivities (η0 = 0 and η1 = η).

To bound pn we apply Theorem 5.7.2 of the main text and, more specifically, Eq. (5.68)

of the main text, because η � 1 and, therefore, the fidelity between the Choi matrices can

be expanded as F (σ, ρ) ' 1 − ε. Thus, let us start by computing this fidelity. Let us set

x =
√

1− bd and note that we may write

√
σ = (x|0〉s〈0|+

√
bIds)⊗ (d+ 1)−1/2Id+1

i . (5.82)
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Then, we may compute

Ω2 : =
√
σρ
√
σ

=
1

(d+ 1)2

{
(1− η)

[
x4|0〉s〈0|+ b2Ids

]
⊗ Id+1

i

+ η

x2|00〉si〈00|+
√
bx

d∑
k=1

(|00〉si〈kk|+ |kk〉si〈00|) +b
d∑

j,k=1

|kk〉si〈jj|

 . (5.83)

One can check that Ω2 has d2 degenerate eigenvalues equal to b2(d + 1)−2, d degenerate

eigenvalues equal to (1 − η)x4(d + 1)−2, and other d + 1 eigenvalues {λi} given by the

diagonalization of the matrix (d+ 1)−2M where M is the matrix with elements

M1,1 = (1− η)x4 + ηx2 , Mi,i = b(b+ η) , i 6= 1 (5.84)

M1,j = Mj,1 = ηx
√
b , Mi,j = ηb , i 6= j (5.85)

Once we diagonalize Ω2 we take the square root of its eigenspectrum so as to compute

that of Ω. Finally, their sum provides TrΩ = F (σ, ρ). We are interested in the regime of

low thermal noise b � 1 and low reflectivity η � 1, thus we may expand at the leading

orders in η and b to get

F (σ, ρ) = 1− ηd+ 2b− 2
√
ηdb

2(d+ 1)
+O(η2, η3/2b1/2, ηb, b3/2) (5.86)

= 1− ηd

2(d+ 1)
+O(η2,

√
ηb, b). (5.87)

In the typical signal-to-noise-ratio ηd/b ' 1 of quantum illumination [155], we may directly

re-write Eq. (5.86) as F (σ, ρ) ' 1− ε, where

ε :=
ηd+ 2b− 2

√
dηb

2(d+ 1)
' dη

2(d+ 1)
< η/2. (5.88)

By replacing the latter in Eq. (5.68) of the main text (and assuming the correct dimension

d → d + 1), we get the following lower bound for the minimum error probability pn of

adaptive quantum illumination [9]

pn ≥
1

4
exp(−4nd

√
η). (5.89)

5.8.3 Single-photon quantum optical resolution

Consider a microscope-type problem where we aim at locating a point in two possible

positions, either s/2 or −s/2, where the separation s is very small. Assume we are lim-

ited to use probe states with at most one photon and an output finite-aperture optical
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system (this makes the optical process to be a qubit-to-qutrit channel, so that the input

dimension is d = 2). Apart from this, we are allowed to use an arbitrary large quantum

computer and arbitrary QOs to manipulate its registers. We may apply Eq. (5.68) with

ε ' ηs2/16, where η is a diffraction-related loss parameter. In this way, we find that

the error probability affecting the discrimination of the two positions is approximately

bounded by B & 1
4 exp(−2ns

√
η) [9].

5.9 Port-based teleportation implies the Heisenberg scaling

As already fully discussed in Sec. 5.2, the adaptive estimation of a noise parameter θ

encoded in a teleportation-covariant channel (i.e., such that the parametrized class of

channels Eθ is jointly-teleportation covariant) is limited to the standard quantum limit

(SQL). More generally, the adaptive estimation of a parameter in a quantum channel

cannot beat the SQL if the channel has a single-copy simulation, i.e., of the type

Eθ(ρ) = S(ρ⊗ πθ), (5.90)

where S is a (parameter-independent) trace-preserving QO and πθ is a program state

(depending on the parameter). To beat the SQL, the channel should not admit a simulation

as in Eq. (5.90) but a multi-copy version

Eθ(ρ) = S(ρ⊗ π⊗Mθ ), (5.91)

for some M > 1. This is approximately the type of simulation that we can achieve by

using PBT.

First of all, we may replace the channel Eθ with its M -port approximation EMθ := Eθ ◦ΓM ,

where ΓM is the M -port PBT channel. Using Lemma 5.6.1, the simulation error may be

bounded as

||Eθ − EMθ ||� ≤ δM := ||I − ΓM ||� ≤ 2βM−1, (5.92)

where we set β := d(d − 1). By repeating the steps shown in Fig. 5.3, we may write the

metrological equivalent of Eq. (5.55). In other words, for any input state ρC , we may write

the simulation

EMθ (ρC) = T M (ρC ⊗ ρ⊗MEθ ), (5.93)

where T M is a trace-preserving LOCC and ρEθ is the Choi matrix of Eθ. Then, we may

also repeat the PBT stretching in Fig. 5.4. In this way, the n-use output state ρn = ρn(θ)
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of an adaptive parameter estimation protocol can be decomposed as in Lemma 5.7.1, i.e.,

||ρn(θ)− Λ̄(ρ⊗nMEθ )|| ≤ nδM . (5.94)

Using the decomposition in Eq. (5.94), we may write a bound for the optimal quantum

Fisher information QFI
n
θ := supPn QFIθ[Pn], where QFIθ[Pn] is the QFI associated with

the protocol Pn. For large n, we obtain the Heisenberg scaling [9]

QFI
n
θ . n

2QFI(ρEθ), (5.95)

where

QFI(ρEθ) =
4d2

B(ρEθ , ρEθ+dθ)

dθ2
. (5.96)

In order to prove Eq. (5.95), consider the function

qn(θ, δ) = 2
dB[ρn(θ), ρn(θ + δ)]

δ
. (5.97)

We set uθ := Λ̄(ρ⊗nMEθ ) and apply twice the triangular inequality, so that we may write

dB[ρn(θ), ρn(θ + δ)] ≤ dB[ρn(θ), uθ]+ (5.98)

dB[uθ, uθ+δ] + dB[uθ+δ, ρn(θ + δ)].

Bounding the Bures distance with the trace distance, we get

d2
B[ρn(θ), uθ] ≤

‖ρn(θ)− uθ‖
2

≤ nδM
2
≤ βn

M
. (5.99)

Using Eqs. (5.98) and (5.99), we may write

qn(θ, δ) ≤ 2
dB[uθ, uθ+δ]

δ
+

4

δ

√
βn

M
. (5.100)

We may bound dB in Eq. (5.100) as follows

dB[uθ, uθ+δ]
(1)

≤ dB[ρ⊗nMEθ , ρ⊗nMEθ+δ ]

(2)
=
√

2[1− F (ρ⊗nMEθ , ρ⊗nMEθ+δ )]

(3)
=
√

2(1− FnM )
(4)

≤
√

2nM(1− F )

(2)
=
√
nMdB[ρEθ , ρEθ+δ ], (5.101)

where: (1) we use the monotonicity of the Bures distance under the CPTP map Λ̄, (2) we

use the standard relation between Bures distance and fidelity, (3) we set F := F (ρEθ , ρEθ+δ)
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and exploit the multiplicativity of the fidelity over tensor products, and (4) we use the

inequality Fn ≥ 1− n+ nF . Therefore, from Eq. (5.100), we may derive the inequality

qn(θ, δ) ≤ 2
√
nM

dB[ρEθ , ρEθ+δ ]

δ
+

4

δ

√
βn

M
. (5.102)

Now notice that

lim
δ→0

2
dB[ρEθ , ρEθ+δ ]

δ
=
√

QFI(ρEθ). (5.103)

This means that for any ε > 0, there is δ < δε such that

qn(θ, δ) ≤
√
nM

[√
QFI(ρEθ) + ε

]
+

4

δ

√
βn

M
. (5.104)

Setting M = n1+z (for any z > 0) implies

qn(θ, δ) ≤ κn(θ, δ|ε, z) (5.105)

:=
√
n2+z

[√
QFI(ρEθ) + ε

]
+

4

δ

√
β

nz
.

Note that, by definition, QFInθ := limδ→0 qn(θ, δ)2. Then, assume that the limit

lim
n→∞

lim
δ→0

qn(θ, δ)2

n2+z
(5.106)

exists for any z > 0. Then, using Eq. (5.105), which is valid for any n and δ, we may write

lim
n→∞

lim
δ→0

qn(θ, δ)√
n2+z

≤ lim inf
n→∞, δ→0

κn(θ, δ|ε, z)√
n2+z

≤
√

QFI(ρEθ) + ε. (5.107)

The previous inequality leads to

lim
n→∞

QFInθ
n2+z

≤
[√

QFI(ρEθ) + ε

]2

, (5.108)

for any ε, z > 0. Now, sending ε and z to zero gives the following scaling for large n

QFInθ . n
2QFI(ρEθ) . (5.109)

Since this upper bound holds for any protocol P (because Λ̄ disappears), then the asymp-

totic scaling in Eq. (5.109) may be extended to QFI
n
θ as in Eq. (5.95). In conclusion we

have obtained un upper bound for the quantum Fisher information corresponding to the

Heisenberg (quadratic) scaling in the number of uses.
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5.10 Port-based teleportation stretching of private commu-

nication and single-letter upper bounds

Consider the M -port approximation EM of E , as achieved by the PBT simulation with

error δM . Correspondingly, we have an M -port approximate output state ρMn such that∥∥ρn − ρMn ∥∥ ≤ nδM as in Eq. (9) of the main text. Then, we may stretch an adaptive

protocol P over EM and write ρMn = Λ̄(ρ⊗nME ) for a trace-preserving LOCC Λ̄. Using the

triangle inequality, we may write

∥∥ρMn − φn∥∥ ≤ ∥∥ρMn − ρn∥∥+ ‖ρn − φn‖

≤ nδM + ε := γ. (5.110)

Now consider an entanglement measure E. For instance, E may be the relative entropy

of entanglement ER (REE) [36, 87, 88] or the squashed entanglement ESE (SE) [162]. In

particular, these measures satisfy a suitable continuity property. For d-dimensional states

ρ and σ such that ‖ρ− σ‖ ≤ γ, we may write the Fannes-type inequality

|E(ρ)− E(σ)| ≤ g(γ) log2 d+ h(γ), (5.111)

where g, h are regular functions going to zero in ε′. For the REE and the SE, these

functions are

REE: g(γ) = 4γ, h(ε) = 2H2(γ), (5.112)

SE: g(γ) = 16
√
γ, h(γ) = 2H2(2

√
γ), (5.113)

where H2 is the binary Shannon entropy.

By applying Eq. (5.111) to Eq. (5.110), we get

∣∣E(ρMn )− E(φn)
∣∣ ≤ g(γ) log2 d+ h(γ), (5.114)

where E(φn) ≥ nRn (normalization) and

E(ρMn ) = E[Λ̄(ρ⊗nME )] ≤ nM E(ρE), (5.115)

which exploits the monotonicity of E under trace-preserving LOCCs and the subadditivity

over tensor-product states. Therefore, we may write

Rn ≤M E(ρE) +
g(nδM + ε) log2 d+ h(nδM + ε)

n
. (5.116)
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Note that for a private state, we may write log2 d ≤ cn for some constant c. Thus,

for any adaptive key generation protocol P over a d-dimensional quantum channel E , the

maximum ε-secure key rate that can be generated after n uses is bounded as in Eq. (5.116)

where E is an entanglement measure (as the REE or the SE), M is the number of ports,

and δM is the error of the M -port PBT.

We can find alternate bound by extending the definition of channel’s REE to a tripartite

version. Consider three finite-dimensional systems a′, a and b′, and a quantum channel

E = Ea→b from a to the output system b. Consider a generic input state ρa′ab′ transformed

into an output state ω
a′bb′ := Ea→b(ρa′ab′) by the action of this channel. Then, one can

define a tripartite version of channel’s REE as

ẼR(E) := sup
ρa′ab′

ER(a′|bb′)ω − ER(a′a|b)ρ, (5.117)

which satisfies K(E) ≤ ẼR(E) [163]. Moreover, if two channels are close in diamond norm

‖E − E ′‖� ≤ 2ε, then one may also write the continuity property [163]

|ẼR(E)− ẼR(E ′)| ≤ 2ε log2 d+ f(ε), (5.118)

f(ε) := (1 + ε) log2 (1 + ε)− ε log2 ε, (5.119)

where d is the dimension of the Hilbert space. Finally, as a straightforward application of

the LOCC simulation of a quantum channel E via a resource state σ, one may write the

data-processing upper bound ẼR(E) ≤ ER(σ).

In our channel simulation via PBT, we have a multi-copy resource state σ = ρ⊗ME for the

M -port approximation EM of the d-dimensional channel E . This means that we may write

ẼR(EM ) ≤ ER(ρ⊗ME ) ≤MER(ρE). (5.120)

Then, because we have

||E − EM ||� ≤ ||I − ΓM ||� := δM ≤ 2d(d− 1)M−1, (5.121)

from Eq. (5.118) we may derive

ẼR(E) ≤ ER(ρ⊗ME ) + δM log2 d+ f(δM/2). (5.122)

As a result, we may write the upper bound [9]

K(E) ≤ ER(ρ⊗ME ) + δM log2 d+ f(δM/2)

≤MER(ρE) +
2d(d− 1)

M
log2 d+ f

[
d(d− 1)

M

]
:= KM

UB(E). (5.123)
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upper bounds

The tightest upper bound is obtained by minimizing KM
UB(E) over M , which is typically a

finite value.

Let us apply the bound to channels that are nearly entanglement-breaking, so that ER(ρE)�

1. In this case, we expect that the optimal value of M is large. It is easy to see that a

sub-optimal choice for M is given by

M̃ =

√
2d(d− 1) log2 d

ER(ρE)
, (5.124)

which provides the upper bound [9]

K(E) ≤ 2
√

2d(d− 1) log2 d
√
ER(ρE)

+ f

[√
d(d− 1)ER(ρE)

2 log2 d

]
. (5.125)

The bound in Eq. (5.125) is particularly interesting for almost entanglement-breaking

channels, such that ER(ρE) . (log2 d)/[8d(d− 1)].
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Chapter 6

Concluding remarks

In this thesis we have first contributed to advance the study of the ultimate bounds on

the two-way assisted quantum capacities of quantum channels in both finite and infinite

dimensions. In the specific, we have established the ultimate upper bounds for point-to-

point quantum communication, entanglement distribution and secret key generation with

qubits and bosonic systems. Implicitly, these bounds provide the crucial benchmarks to

test quantum repeaters. In fact in order for a quantum repater to be advantageous over

point-to-point communications, it must surpass these benchmarks. To derive our results

we have designed a general reduction method for adaptive protocols which is summarized

in the following.

Summary of the methodology [1, 3]

(1) We have designed an adaptive-to-block reduction method which reduces any adap-

tive protocol for quantum communication, entanglement distribution and key generation

to the computation of a single-letter quantity. This is possible by combining the following

two main ingredients:

(1.1) Channel’s REE. We have extended the notion of relative entropy of entanglement

(REE) from states to channels. In particular, we have shown that the two-way

capacity C(E) of any channel E is upper bounded by a suitably-defined REE bound

EFR (E).

(1.2) LOCC simulation and teleportation stretching. We have introduced the

most general form of simulation of a quantum channel within a quantum/private

communication scenario. This is based on arbitrary LOCCs (even asymptotic) and
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can be used to stretch an arbitrary channel E into a resource state σ. By exploiting

this simulation, we have shown how to reduce an adaptive protocol (achieving an

arbitrary task) into a block form, so that its output can be decomposed as Λ̄(σ⊗n)

for a trace-preserving LOCC Λ̄. This is valid at any dimension (finite or infinite)

and can be extended to more complex communication scenarios.

Thus, the insight of our entire reduction method is the combination of (1.1) and (1.2).

‘REE+teleportation stretching’ allows us to exploit the properties of the REE (monotonic-

ity, subadditivity) and simplify EFR (E) into a single-letter quantity so that we may write

C(E) ≤ ER(σ) for any σ-stretchable channel. This is valid at any dimension.

(2) Teleportation covariance. At any dimension (finite or infinite), we have identified

a simple criterion (teleportation covariance) which allows us to find those channels which

are stretchable into their Choi matrices (Choi-stretchable channels). For these channels,

we may write C(E) ≤ ER(ρE), with the latter being the entanglement flux of the channel.

(3) Tight bounds and two-way capacities. We have shown that the entanglement

flux is the tightest upper bound for the two-way capacities of many quantum channels at

any dimension, including Pauli, erasure and bosonic Gaussian channels. In particular, we

have established the two-way capacities (Q2, D2 and K) of the bosonic lossy channel, the

quantum-limited amplifier, and the dephasing channel in arbitrary finite dimension, plus

the secret key capacity K of the erasure channel in arbitrary finite dimension. All these

capacities have extremely simple formulas. For our calculations we have derived a simple

formula for the relative entropy between two arbitrary Gaussian states.

(4) Fundamental rate-loss tradeoff. We have finally characterized the rate-loss trade-

off affecting quantum optical communications, so that the rate of repeaterless QKD is

restricted to 1.44η bits per channel use at long distances. This rate is achievable with

one-way CCs and provides the maximum throughput of a point-to-point QKD protocol.

Future research in this topic should be devoted to the determination of the two-way

quantum capacities of those quantum channels that still have a gap between the lower and

the upper bound. These are represented for example by the amplitude damping channel,

depolarizing channel, the thermal loss channel and the noisy amplifier channel. The ap-

proaches could be different, for example one could study the possibility of finding different
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simulation of the quantum channel relying on other resource states for which the com-

putation of the REE gives an upper bound closer to the (reverse) coherent information.

Conversely one can also look for a different definiton of the weak converse upper bound

that exploits other entanglement monotones that, once computed on the Choi state of the

channel, may provide a bound below the REE.

Our reduction method is very general and it can be applied to any other task whose

performance are given in terms of functionals that are monotonic under the action of com-

pletely positive trace-preserving operations. This is the case of quantum metrology and

quantum channel discrimination. In the former scenario, we have reviewed some results

obtained by applying our reduction technique to adaptive protocols for quantum param-

eter estimation. According to these, the quantum Cramér-Rao bound for programmable

teleportation covariant channels is limited by the standard quantum limit (SQL), with

the quantum Fisher information computed on the Choi matrix of the channel. As a

consequence, in order to check if a channel could beat the SQL and potentially reach the

Heisenberg scaling, we need to modify the simulation by using a multi-copy resource state.

This modification can be achieved by substituting the standard teleportation with port-

based teleportation (PBT) at the core of the channel simulation. By doing this we are then

able to show that the Heisenberg scaling directly follows from the PBT scheme. The same

PBT-simulation is then exploited in the adaptive discrimination of two arbitrary quan-

tum channels acting on a finite-dimensional Hilbert space. Here we established a general

and fundamental lower bound for the error probability affecting the discrimination . This

bound is conveniently expressed in terms of the Choi matrices of the channels involved,

and for this reason it is computable. In the end we apply our bound in the context of

adaptive quantum illumination. It would be interesting to extend our lower bound on the

error-probability to bosonic channels but this would require the generalization of the PBT

scheme to continuous variables, which is still a subject of study.
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Appendix A

Proof of the uniform convergence

in the teleportation simulation of

bosonic Gaussian channels

The contents of this Appendix are taken from [4].

A.1 Proof of Theorem 2.4.2

Let us start by showing the implication

rank(N) = 2 =⇒ lim
µ→∞

‖Gµ − G‖� = 0 Eq. (2.68). (A.1.1)

Consider an arbitrary single-mode Gaussian channel G[T,N,d], so that it transforms the

statistical moments as in Eq. (1.67). As we know from Eq. (2.58), for any input state ρRc,

we may write

IR ⊗ Gµ(ρRc) = IR ⊗ GB ◦ TcAB(ρRc ⊗ Φµ
AB) (A.1.2)

= IR ⊗ (Gc ◦ Iµc )(ρRc) (A.1.3)

= IR ⊗ Gµc (ρRc) (A.1.4)

where T is the LOCC of the standard BK protocol and Iµ is the BK channel, which is

locally equivalent to an additive-noise Gaussian channel (B2 form) with added noise ξ.

Therefore, for the Gaussian channel Gµ we may write the modified transformations

x̄→ Tx̄ + d, V→ TVTT + N+ξTTT . (A.1.5)
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As we can see, the transformation of the first moments is identical. The transformation

of the second moments is characterized by the modified noise matrix

Nξ = N+ξTTT . (A.1.6)

In other words, we may write Gµ[T,Nξ,d].

Because G and Gµ have the same displacement, we can set d = 0 without losing generality.

Consider the unitary reduction of G[T,N,0] into the corresponding canonical form C by

means of two Gaussian unitaries Û and Ŵ as in Eq. (1.69). Because d = 0, we may assume

that these unitaries are canonical (i.e., with zero displacement), so that they are one-to-

one with two symplectic transformations, SA and SB, in the phase space. To simplify the

notation define the Gaussian channels

U(ρ) := ÛρÛ †, W(ρ) := ŴρŴ †. (A.1.7)

Then we may write

G =W ◦ C ◦ U , (A.1.8)

Gµ =W ◦ C ◦ U ◦ Iµ. (A.1.9)

Then notice that we may re-write

Gµ =W ◦ Cµ ◦ U , (A.1.10)

where we have defined

Cµ := C ◦ U ◦ Iµ ◦ U−1. (A.1.11)

In Sec. A.2 we prove the following.

Lemma A.1.1 Consider a Gaussian channel G with τ := det T 6= 1 and rank(N) = 2.

Then C and Cµ have the same unitary dilation but different environmental states ρe and

ρµe , i.e., for any input state ρ we may write

C(ρ) = D(ρ⊗ ρe), Cµ(ρ) = D(ρ⊗ ρµe ), (A.1.12)

where D(ρce) := Tre

(
ÛceρcaeÛ

†
ce

)
with Ûce unitary. Furthermore

lim
µ→∞

F (ρµe , ρe) = 1. (A.1.13)
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A.1 Proof of Theorem 2.4.2

Using this lemma in Eqs. (A.1.8) and (A.1.10) leads to

G(ρ) =W ◦D[U(ρ)⊗ ρe], (A.1.14)

Gµ(ρ) =W ◦D[U(ρ)⊗ ρµe ] . (A.1.15)

Clearly these relations can be extended to the presence of a reference system R, so that

for any input ρRc, we may write

IR ⊗ Gc(ρRc) = IR ⊗W ◦ D[U(ρRc)⊗ ρe], (A.1.16)

IR ⊗ Gµc (ρRc) = IR ⊗W ◦ D[U(ρRc)⊗ ρµe ]. (A.1.17)

As a result for any ρRc, we may bound the trace distance as follows

‖IR ⊗ Gµc (ρRc)− IR ⊗ Ga(ρRc)‖ (A.1.18)

= ‖IR ⊗W ◦ D[U(ρRc)⊗ ρµe ]− IR ⊗W ◦ D[U(ρRc)⊗ ρe]‖ (A.1.19)

(1)

≤ ‖U(ρRc)⊗ ρµe − U(ρRc)⊗ ρe‖ (A.1.20)

(2)
= ‖ρµe − ρe‖

(3)

≤ 2
√

1− F (ρµe , ρe)2, (A.1.21)

where we use: (1) the monotonicity under CPTP maps (including the partial trace)

(2) multiplicity over tensor products; and (3) one of the Fuchs-van der Graaf relations.

As we can see the upper-bound in Eq. (A.1.21) does not depend on the input state ρRc.

Therefore, we may extend the result to the supremum and write

‖Gµ − G‖� := sup
ρRc

‖IR ⊗ Gµc (ρRc)− IR ⊗ Gc(ρRc)‖

≤ 2
√

1− F (ρµe , ρe)2. (A.1.22)

Now, using Eq. (A.1.13), we obtain

lim
µ→∞

‖Gµ − G‖� = 0, (A.1.23)

proving the result for τ := det T 6= 1 and rank(N) = 2, i.e.,

τ := det T 6= 1

rank(N) = 2

 =⇒ Eq. (2.68). (A.1.24)

Let us now remove the assumption τ := det T 6= 1. Note that the Gaussian channels

with τ = 1 and rank(N) = 2 are those G̃ unitarily equivalent to the B2 form C[1, 2, ξ′]
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with added noise ξ′ ≥ 0. In this case, we dilate the form in the asymptotic single-mode

representation described in Sec. 1.3.1.1. In other words, we may write

G̃ =W ◦ C[1, 2, ξ′] ◦ U (A.1.25)

=W ◦ lim
τ→1
C[τ, 2, n̄ξ′,τ ] ◦ U (A.1.26)

= lim
τ→1

W ◦ C[τ, 2, n̄ξ′,τ ] ◦ U (A.1.27)

where n̄ξ′,τ := [ξ′(1 − τ)−1 − 1]/2 and it is easy to check the commutation of the limit.

Let us call Bτ the beam-splitter dilation associated with the attenuator C form C[τ, 2, n̄],

and call ρe(n̄) the corresponding thermal state of the environment. Then, we may write

the approximation

G̃ = lim
τ→1

G̃τ , (A.1.28)

G̃τ (ρ) :=W ◦ Bτ [U(ρ)⊗ ρe(n̄ξ′,τ )]. (A.1.29)

Similarly, for the teleportation-simulated channel, we may write

G̃µ = lim
τ→1

G̃µ,τ , (A.1.30)

G̃µ,τ (ρ) :=W ◦ Bτ [U(ρ)⊗ ρµe (n̄ξ′,τ )], (A.1.31)

where ρµe (n̄ξ′,τ ) is a modified environmental state.

We can now exploit the triangle inequality. For any input ρ and any τ < 1, we may write∥∥∥G̃µ(ρ)− G̃(ρ)
∥∥∥ ≤ ∥∥∥G̃µ(ρ)− G̃µ,τ (ρ)

∥∥∥ (A.1.32)

+
∥∥∥G̃µ,τ (ρ)− G̃τ (ρ)

∥∥∥+
∥∥∥G̃τ (ρ)− G̃(ρ)

∥∥∥ .
By taking the limit for τ → 1 and using Eqs. (A.1.28) and (A.1.30), we find∥∥∥G̃µ(ρ)− G̃(ρ)

∥∥∥ ≤ lim
τ→1

∥∥∥G̃µ,τ (ρ)− G̃τ (ρ)
∥∥∥ . (A.1.33)

Repeating previous arguments, from Eqs. (A.1.29) and (A.1.31), we easily derive∥∥∥G̃µ,τ (ρ)− G̃τ (ρ)
∥∥∥ ≤ 2

√
1− F [ρµe (n̄ξ′,τ ), ρe(n̄ξ′,τ )]2, (A.1.34)

so that ∥∥∥G̃µ(ρ)− G̃(ρ)
∥∥∥ ≤ lim

τ→1
2
√

1− F [ρµe (n̄ξ′,τ ), ρe(n̄ξ′,τ )]2. (A.1.35)

The previous inequality holds for any input state and can be easily extended to the presence

of a reference system R, so that we may write∥∥∥G̃µ − G̃∥∥∥
�
≤ lim

τ→1
2
√

1− F [ρµe (n̄ξ′,τ ), ρe(n̄ξ′,τ )]2. (A.1.36)
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A.1 Proof of Theorem 2.4.2

One can easily check (see Appendix A.3), that the previous inequality leads to uniform

convergence

lim
µ→∞

∥∥∥G̃µ − G̃∥∥∥
�

= 0 , (A.1.37)

completing the proof of the implication in Eq. (A.1.1).

Let us now show the opposite implication

rank(N) = 2⇐= Eq. (2.68), (A.1.38)

or, equivalently,

rank(N) < 2 =⇒ No uniform convergence. (A.1.39)

Note that Gaussian channels with rank(N) < 2 are the identity channel B2(Id), having

zero rank, and the B1 form, having unit rank. We already know that there is no uniform

convergence in the teleportation simulation of the identity channel and this property triv-

ially extends to the teleportation simulation UµG = UG ◦ Iµ of any Gaussian unitary UG.

In fact, it is easy to check that

∥∥UµG − UG∥∥� = ‖Iµ − I‖� = 2 , (A.1.40)

due to invariance under unitaries. For the B1 form C̃ = C[1, 1, 0], we now explicitly show

that there is no uniform convergence in its teleportation simulation. Let us consider the

simulation C̃µ by means of a µ-energy BK protocol and consider an input TMSV state

Φµ̃
Rc with diverging energy µ̃. We have the two output states

ρµ̃Rc := IR ⊗ C̃c(Φµ̃
Rc), ρ

µ,µ̃
Rc := IR ⊗ C̃µc (Φµ̃

Rc). (A.1.41)

In particular, note that ρµ,µ̃Rc is a Gaussian state with CM

Vµ,µ̃ =


µ̃ 0

√
µ̃2 − 1 0

0 µ̃ 0 −
√
µ̃2 − 1√

µ̃2 − 1 0 µ̃+ ξ 0

0 −
√
µ̃2 − 1 0 µ̃+ ξ + 1

 , (A.1.42)

where ξ is the added noise associated with the BK protocol and depends on µ according

to ξ = 2(µ−
√
µ2 − 1). Using the Fuchs-van de Graaf inequalities [83], already introduce

in Eq. (1.118) we may write∥∥∥ρµ,µ̃Rc − ρµ̃Rc∥∥∥ ≥ 2
[
1− F

(
ρµ,µ̃Rc , ρ

µ̃
Rc

)]
. (A.1.43)
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Then, by computing the fidelity [82] and expanding in µ̃, we obtain

F
(
ρµ,µ̃Rc , ρ

µ̃
Rc

)
' O(µ̃−1/4), (A.1.44)

so that

lim
µ̃→∞

∥∥∥ρµ,µ̃Rc − ρµ̃Rc∥∥∥ = 2, (A.1.45)

which clearly implies
∥∥∥C̃µ − C̃∥∥∥

�
= 2. Then, we may extend the result to any Gaussian

channel which is unitarily equivalent to the B1 form. Consider Eqs. (A.1.8) and (A.1.10)

with C̃ = C[1, 1, 0], i.e,

G =W ◦ C̃ ◦ U , Gµ =W ◦ C̃µ ◦ U , (A.1.46)

where

C̃µ := C̃ ◦ U ◦ Iµ ◦ U−1. (A.1.47)

Assume the input state Ψµ̃
Rc := IR ⊗ U−1(Φµ̃

Rc), so that we have the two output states

ρµ̃Rc := IR ⊗ Gc(Ψµ̃
Rc) = IR ⊗W ◦ C̃(Φµ̃

Rc), (A.1.48)

ρµ,µ̃Rc := IR ⊗ Gµc (Ψµ̃
Rc) = IR ⊗W ◦ C̃µ(Φµ̃

Rc). (A.1.49)

Because the fidelity is invariant under unitaries, we may neglect UB and write

F
(
ρµ,µ̃Rc , ρ

µ̃
Rc

)
= F

[
IR ⊗ C̃µ(Φµ̃

Rc), IR ⊗ C̃(Φ
µ̃
Rc)
]
. (A.1.50)

Let us derive the CM Ṽµ,µ̃ of the state IR ⊗ C̃µ(Φµ̃
Ra). Starting from the CM Vµ of the

TMSV in Eq. (1.43) and applying Eq. (A.1.47), we easily see that this CM is given by

Ṽµ,µ̃ = Vµ + 0⊕
[
ξSASTA + diag(0, 1)

]
, (A.1.51)

where 0 is the 2 × 2 zero matrix, and SA is the symplectic matrix associated with the

Gaussian unitary U (which can be taken to be canonical without losing generality). Let

us set

SA =

 a c

d b

 , (A.1.52)

where the elements are real values such that det SA = +1 (because SA is symplectic).

Then, we may compute the fidelity and expand it at the leading order in µ̃, finding

F
[
IR ⊗ C̃µ(Φµ̃

Rc), IR ⊗ C̃(Φ
µ̃
Rc)
]4

' γµ̃−1 +O(µ̃−3/2), (A.1.53)

γ :=
a2 + c2 + 2ξ

2ξ(a2 + c2 + ξ)2
> 0. (A.1.54)
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Clearly, this implies ‖Gµ − G‖� = 2 for any Gaussian channel unitarily equivalent to the

B1 form. �

Note that the rank of the noise matrix N is indeed a fundamental quantity in the pre-

vious proof. Given a single-mode Gaussian channel G[T,N,d], consider its teleportation

simulation Gµ[T,Nξ,d]. For all channels with rank(N) = 2, we may write

rank(Nξ) = rank(N) for any ξ. (A.1.55)

This means that Gµ may have the same canonical form and, therefore, the same unitary

dilation as G. By contrast, for Gaussian channels with rank(N) < 2, such as the identity

channel or the B1 form, we can see that we have rank(Nξ) > rank(N) for ξ 6= 0, so that

the canonical form changes its class because of the teleportation simulation. As a result,

the dilation changes and the data-processing bound in Eqs. (A.1.18)-(A.1.21) cannot be

applied.

A.2 Proof of Lemma A.1.1

Consider the canonical forms C with τ := det T 6= 1 and rank(N) = 2. These correspond

to A2, C(Att), C(Amp), and D. Given C, consider the variant

Cµ := C ◦ U ◦ Iµ ◦ U−1, (A.2.56)

where U is a canonical Gaussian unitary with associated symplectic matrix SA, and Iµ is

the BK teleportation channel, which is locally (point-wise) equivalent to an additive-noise

Gaussian channel (B2 form) with added noise

ξ = 2[µ−
√
µ2 − 1]. (A.2.57)

Note that we may use the Bloch-Messiah decomposition [164,165]

SA = O1SqO2, (A.2.58)

where O’s are symplectic orthogonal matrices, while Sq = diag(r, r−1) for r > 0 is a

squeezing matrix. Here we show that C and Cµ have the same unitary dilation with

different environmental states ρe and ρµe , whose fidelity F (ρµe , ρe)
µ→∞→ 1. Let us start

with the form C.
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A.2.1 Lossy channel C(Att) and amplifier C(Amp)

Consider the canonical C form C(τ > 0, 2, n̄) representing either a thermal-loss channel

(0 < τ < 1) or a noisy quantum amplifier (τ > 1). Their action on the input covariance

matrix (CM) V is given by

V→ τV + |1− τ |ωI , (A.2.59)

where ω := 2n̄+ 1 ≥ 1. From Eq. (A.2.56), we may write

V→ τ(V + ξSASTA) + |1− τ |ωI

= τV + |1− τ |W̃, (A.2.60)

where we have set

W̃ := ωI + γSASTA, γ :=
ξτ

|1− τ |
≥ 0. (A.2.61)

According to Eqs. (A.2.60) and (A.2.61), we may represent Cµ(τ > 0, 2, n̄) with the same

two-mode symplectic matrix M(C) of the original C form, but replacing the thermal state

ρe(n̄) with a zero-mean Gaussian state ρµe whose CM can be written as W̃. To check this

is indeed the case, we need to verify that W̃ is a bona fide CM (see Eq. (1.56)). It is

certainly positive definite, so we just need to check that its symplectic eigenvalue is greater

than 1. Note that we may apply the orthogonal symplectic O1 so that

W : = OT
1 W̃O1 = ωI + γS2

q . (A.2.62)

The symplectic eigenvalue is equal to

ν =
√

det W =
√
ω2 + γ2 + γω (r2 + 1/r2)

≥ ω + γ ≥ 1 . (A.2.63)

Finally we compute the fidelity between the environmental states, finding

F (ρµe , ρe) =
√

2r
[√

(γr2ω + ω2 + 1) (γω + r2 (ω2 + 1))

−
√

(ω2 − 1) (γω + γr4ω + r2 (γ2 + ω2 − 1))
]−1/2

, (A.2.64)

which goes to 1 for µ→∞ (so that ξ → 0 and γ → 0). This is true for any finite value of

the squeezing r > 0 and the thermal variance ω.

170



A.2 Proof of Lemma A.1.1

A.2.2 Conjugate of the amplifier D

Let us consider the D form C(τ < 0, 2, n̄) which transforms the input as follows

V→ −τZVZ + (1− τ)ωI. (A.2.65)

Then, the action of Cµ(τ < 0, 2, n̄) can be written as

V→ −τZ(V + ξSASTA)Z + (1− τ)ωI

= −τZVZ + (1− τ)
(
ωI− κZSASTAZ

)
= −τZVZ + (1− τ)W̃ (A.2.66)

where κ := ξτ/(1 − τ) ≤ 0. Using the Bloch-Messiah decomposition of Eq. (A.2.58) and

ZS2
qZ = S2

q , we may write

W̃ = ωI− κZO1S
2
qO

T
1 Z

= ωI− κ(ZO1Z)S2
q(ZOT

1 Z). (A.2.67)

Thus, we may represent Cµ(τ < 0, 2, n̄) with the same two-mode symplectic matrix M(D)

as the original D form, but replacing the thermal state ρe(n̄) with a zero-mean Gaussian

state ρµe whose CM can be written as W̃ in Eq. (A.2.67). To check this is indeed the case,

we need to verify that W̃ is a bona fide CM. First notice that the matrix Σ := ZO1Z is

orthogonal and symplectic. We may therefore apply the symplectic ΣT and write

W = ΣTW̃Σ = ωI− κS2
q .

Because κ ≤ 0, this is positive definite and it has symplectic eigenvalue

ν =
√
ω2 + κ2 − ωκ(r2 + 1/r2)

≥ ω − κ ≥ 1 . (A.2.68)

Finally we compute the fidelity between the environmental states, finding

F (ρµe , ρe) =
√

2r
[√

(−κr2ω + ω2 + 1) (−κω + r2 (ω2 + 1))

−
√

(1− ω2) (κω + κr4ω − r2 (κ2 + ω2 − 1))
]−1/2

, (A.2.69)

which goes to 1 for large µ (so that ξ → 0 and κ→ 0). This is true for any finite value of

the squeezing r > 0 and the thermal variance ω.
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A.2.3 Canonical form A2

The A2 form C(0, 1, n̄) transforms the input CM as

V→ ΠVΠ + ωI , (A.2.70)

where

Π :=
I + Z

2
= diag(1, 0). (A.2.71)

The action of the variant Cµ(0, 1, n̄) is given by

V→ Π(V + ξSAST
A)Π + ωI = ΠVΠ + W̃ , (A.2.72)

where

W̃ := ωI+ξΠSAST
AΠ. (A.2.73)

Thus, we may represent Cµ(0, 1, n̄) with the same two-mode symplectic matrix M(A2) of

the original A2 form, but replacing the thermal state ρe(n̄) with a zero-mean Gaussian

state ρµe whose CM can be written as W̃ in Eq. (A.2.73). To check this is indeed the case,

we need to verify that W̃ is a bona fide CM. W̃ is clearly positive definite. To derive its

symplectic eigenvalue, let us set

SA =

 a c

d b

 , (A.2.74)

where the real entries must satisfy det SA = ab− cd = 1. Then we get

W̃ =

 ξ(a2 + c2) + ω 0

0 ω

 , (A.2.75)

with symplectic eigenvalue

ν =
√

[ξ(a2 + c2) + ω]ω ≥ ω ≥ 1 . (A.2.76)

Finally we compute the fidelity between the environmental states, yielding

F (ρµe , ρe) =
√

2
[√

(ω2 + 1) (ξω (a2 + c2) + ω2 + 1)

−
√

(ω2 − 1) (ξω (a2 + c2) + ω2 − 1)
]−1/2

, (A.2.77)

which clearly goes to 1 for large µ (i.e., for ξ → 0). This is true for any finite value of the

real parameters a and c, and the thermal variance ω.
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A.3 Asymptotic results for the B2 form

Consider the B2 form C[1, 2, ξ′] with added noise ξ′. This can be expressed as an asymptotic

C form C(0 < τ < 1, 2, n̄) with τ → 1 and thermal variance

ω = ξ′/(1− τ). (A.3.78)

The channel C[1, 2, ξ′] and its simulation Cµ[1, 2, ξ′] [according to Eq. (A.2.56)] have the

same (asymptotic) unitary dilation but different environmental states ρe and ρµe . These

are the states associated with C(0 < τ < 1, 2, n̄ξ′,τ ) and Cµ(0 < τ < 1, 2, n̄ξ′,τ ) where

n̄ξ′,τ := [ξ′(1 − τ)−1 − 1]/2. Using Eq. (A.3.78) in Eq. (A.2.64) and taking the limit for

τ → 1, we may write

F (ρµe , ρe) = 2

√
rξ′
√
ξξ′ + r4ξξ′ + r2(ξ2 + ξ′2)

2ξξ′(1 + r4) + r2(ξ2 + 4ξ′2)
+O(τ − 1), (A.3.79)

where ξ is defined in Eq. (A.2.57) and r is a squeezing parameter associated with the input

canonical unitary UA. Then, the limit in ξ → 0 (i.e., µ→∞) provides

F (ρµe , ρe) = 1 +O(ξ) +O(τ − 1) . (A.3.80)

Similarly, we may write the expansion

2
√

1− F (ρµe , ρe)2 = O(ξ) +O(τ − 1). (A.3.81)
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Appendix B

Fundamental limits to quantum

and secure communication

through quantum channels

The contents of this Appendix have been published as Supplementary Notes of [1], where

I contributed by deriving the analytical formulas of the upper bounds on the two-way

quantum capacities for the discrete variable channels. Specifically Eqs. (B.1.19), (B.1.29),

(B.1.33), (B.1.35), (B.1.44), (B.1.51), (B.1.57) and (B.1.88). The other derivations pre-

sented here were done by my co-authors as specified in the “Authors contributions ”of [1].

B.1 Ultimate limits in qubit communications

Consider an arbitrary discrete variable channel E in dimension d, we can easily derive its

Choi matrix ρE = I ⊗ E(Φ) from the maximally-entangled state

Φ =
1√
d

d−1∑
i=0

|ii〉, (B.1.1)

where {|0〉 , . . . , |i〉 , . . . , |d− 1〉} is the computational basis of the qudit. We write the

spectral decomposition

ρE =
∑
k

pk|ϕk〉〈ϕk|, (B.1.2)

where p = {pk} are the eigenvalues of the Choi matrix. The von Neumann entropy is

simply equal to the Shannon entropy of the previous eigenvalues, i.e.,

S(ρE) = H(p) := −
∑
k

pk log2 pk. (B.1.3)
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From the Choi matrix we may compute the coherent and reverse coherent information of

the channel. In particular, for unital channels, these quantities coincide and are given by

the simple formula in Eq. (2.17), i.e.,

IC(E) = IRC(E) = log2 d− S(ρE) = log2 d−H(p). (B.1.4)

To compute the entanglement flux of the channel (upper bound), recall that we have

Φ(E) := ER(ρE) ≤ S(ρE ||σ̃s) , (B.1.5)

for some suitable separable state σ̃s. Let us write its spectral decomposition

σ̃s =
∑
k

sk|λk〉〈λk|, (B.1.6)

where |λk〉 (sk) are the orthogonal eigenstates (eigenvalues) of σ̃s. We may then write

S(ρE ||σ̃s) = −S(ρE)− Tr (ρE log2 σ̃s) = −H(p)−
∑
k

〈λk|ρE |λk〉 log2 sk . (B.1.7)

The separable state σ̃s may be constructed by applying the channel I ⊗ E to the input

separable state

σs =
1

d

d−1∑
i=0

|ii〉 〈ii| , (B.1.8)

so that we have the output

σ̃s =
1

d

d−1∑
i=0

|i〉〈i| ⊗ E(|i〉〈i|). (B.1.9)

This specific choice will be optimal in some cases and suboptimal in others.

B.1.1 Erasure channel in arbitrary finite dimension

Consider a qudit in arbitrary dimension d with computational basis {|i〉} (results can be

easily specified to the case of a qubit d = 2). The erasure channel replaces an incoming

qudit state ρ with an orthogonal erasure state |e〉 with some probability p. In other words,

we have the action

Eerase(ρ) = (1− p)ρ+ p|e〉〈e| . (B.1.10)

The simplicity of this channel relies in the fact that the input states either are perfectly

transmitted or they are lost (while in other quantum channels, the input states are all

transmitted into generally-different outputs). This feature allows one to apply simple rea-

sonings such as those in ref. [89] which determined the Q2 of this channel (more precisely,

the Q2 of the qubit erasure channel, but the extension to arbitrary d is trivial).
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It is easy to see that this channel is teleportation-covariant (and therefore Choi-stretchable).

In fact, any input unitary U applied to the state ρ is mapped into an output augmented

unitary U ⊕ I, i.e., we may write

Eerase(UρU
†) = (U ⊕ I)Eerase(ρ)(U ⊕ I)†. (B.1.11)

Let us write the Kraus decomposition of this channel

Eerase(ρ) = AρA† +
d−1∑
i=0

AiρA
†
i , (B.1.12)

where A :=
√

1− pI (with I being the d × d identity) and Ai :=
√
p|e〉〈i|. We then

compute its Choi matrix

ρEerase = (1− p)Φ +
p

d
(I ⊗ |e〉〈e|). (B.1.13)

Note that Tr[Φ(I ⊗ |e〉〈e|)] = 0, so that Eq. (B.1.13) is the spectral decomposition of ρE

over two orthogonal subspaces, where Φ has eigenvalue 1− p, and I ⊗ |e〉〈e| is degenerate

with d eigenvalues equal to p/d. Therefore, it is easy to compute the von Neumann entropy,

which is

S (ρEerase) = −(1− p) log2(1− p)− p log2

(p
d

)
. (B.1.14)

To compute the entanglement flux of the channel, we consider the separable state σ̃s in

Eq. (B.1.9), which here becomes

σ̃s =
1

d

d−1∑
i=0

[(1− p)|ii〉〈ii|+ p|i, e〉〈i, e|] . (B.1.15)

We have now all the elements to be used in Eq. (B.1.7), which provides

Φ(Eerase) ≤ S(ρEerase ||σ̃s) = (1− p) log2 d. (B.1.16)

For the lower bound, one can easily check that the coherent and reverse coherent infor-

mation of this channel are not sufficient to reach the upper bound, since we get

IC(Eerase) = (1− 2p) log2 d, IRC(Eerase) = (1− p) log2 d−H2(p), (B.1.17)

where the extra term H2(p) is the binary Shannon entropy. Note that these quantities

are achievable rates for one-way entanglement distribution but not necessarily the optimal

rates. Indeed it is easy to find a strategy based on one-way backward CCs which reaches

(1− p) log2 d. This follows the same reasoning of ref. [89].
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Alice can send halves of EPR states to Bob in large n uses of the channel. A fraction

1 − p will be perfectly distributed. The identification of these good cases can be done

by Bob performing a dichotomic POVM {|e〉〈e|, I − |e〉〈e|} on each received system and

communicating to Alice which instances were perfectly transmitted. At that point Alice

and Bob possess n(1− p) EPR states with log2 d ebits each. On average this gives a rate

of (1− p) log2 d ebits per channel use. Thus, one may write

D1(ρEerase) ≥ (1− p) log2 d , (B.1.18)

whose combination with Eq. (B.1.16) provides

C(Eerase) = D2(Eerase) = Q2(Eerase) = K(Eerase) = Φ(Eerase) = (1− p) log2 d. (B.1.19)

Since the two-way quantum capacity of the erasure channel is already known [89], our

novel result regards the determination of its secret key capacity

K(Eerase) = (1− p) log2 d. (B.1.20)

It is clear that, for qubits, we have K(Eerase) = 1− p.

Qubit Pauli channels

Consider a Pauli channel P acting on a qubit state ρ. The Kraus representation of this

channel is

P(ρ) =
3∑

k=0

pkPkρP
†
k = p0ρ+ p1XρX + p2Y ρY + p3ZρZ, (B.1.21)

where p := {pk} is a probability distribution and Pk ∈ {I,X, Y, Z} are Pauli operators,

with I the identity and

X :=

 0 1

1 0

 , Y :=

 0 −i

i 0

 , Z :=

 1 0

0 −1

 . (B.1.22)

It is easy to check that a Pauli channel is teleportation-covariant and, therefore, Choi-

stretchable. Teleportation covariance simply comes from the fact that the Pauli operators

(qubit teleportation unitaries) either commute or anticommute with the other Pauli oper-

ators (Kraus operators of the channel). For a Pauli channel we can also write the stronger

condition

[ρP , P
∗
k ⊗ Pk] = 0 for any k, (B.1.23)
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i.e., its Choi matrix is invariant under twirling operations restricted to the generators of

the Pauli group. In fact, the Choi matrix of a Pauli channel is Bell-diagonal, i.e., it has

spectral decomposition

ρP =
3∑

k=0

pkΦk, (B.1.24)

where the eigenvalues pk are the channel probabilities, and the eigenvectors Φk are the

four Bell states {
|00〉 ± |11〉√

2
,
|10〉 ± |01〉√

2

}
. (B.1.25)

It is clear that S(ρP) = H(p). Then, using the separable state σ̃s as in Eq. (B.1.9), we

derive the following upper bound for the entanglement flux of this channel

Φ(P) ≤ 1−H(p) +H2(p1 + p2). (B.1.26)

Since a Pauli channel is unital, its (reverse) coherent information is just given by I(R)C(P) =

1−H(p). Therefore, the two-way capacity of a Pauli channel with arbitrary distribution

p := {pk} must satisfy

1−H(p) ≤ C(P) ≤ 1−H(p) +H2(p1 + p2). (B.1.27)

Latter result can be made stronger by exploiting the fact that ρP is Bell-diagonal. For

any such a state we can compute the REE by using the formula of Ref. [36]. In fact, let

us set pmax := max{pk}, then we may write

ER(ρP) =


1−H2(pmax) if pmax ≥ 1

2

0 otherwise.

(B.1.28)

Thus, we have the tighter upper bound

1−H(p) ≤ C(P) ≤ Φ(P) =


1−H2(pmax) if pmax ≥ 1

2

0 otherwise.

. (B.1.29)

In the following subsections, we specialize this result to depolarising and dephasing chan-

nels.

Qubit depolarising channel

This is a Pauli channel with probability distribution

p =

{
1− 3p

4
,
p

4
,
p

4
,
p

4

}
, (B.1.30)
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so that we have

Pdepol(ρ) =

(
1− 3p

4

)
ρ+

p

4
(XρX + Y ρY + ZρZ) = (1− p)ρ+ p

I

2
. (B.1.31)

Let us set

κ(p) := 1−H2

(
3p

4

)
. (B.1.32)

Then, from Eq. (B.1.29), we derive the following bounds for the two-way capacity of the

depolarising channel

κ(p)− 3p

4
log2 3 ≤ C(Pdepol) ≤ κ(p), (B.1.33)

for p ≤ 2/3, while C(Pdepol) = 0 otherwise.

Qubit dephasing channel

This is a Pauli channel with probability distribution p = {1− p, 0, 0, p}, so that we have

Pdeph(ρ) = (1− p)ρ+ pZρZ. (B.1.34)

It is easy to see that H(p) = H2(pmax) = H2(p), so that Eq. (B.1.29) leads to

C(Pdeph) = D2(Pdeph) = Q2(Pdeph) = K(Pdeph) = Φ(Pdeph) = 1−H2(p), (B.1.35)

which also coincides with the unassisted quantum capacity of this channel Q(Pdeph) [70].

B.1.2 Pauli channels in arbitrary finite dimension

Let us now consider Pauli channels Pd in arbitrary dimension d ≥ 2. These qudit channels

are also called “Weyl channels” and they have Kraus representation

Pd(ρ) =
d−1∑
a,b=0

pab(X
aZb)ρ(XaZb)†, (B.1.36)

where pab is a probability distribution for a, b ∈ Zd := {0, 1, . . . , d− 1}. Here X and Z are

generalized Pauli operators whose action on the computational basis {|j〉} is given by

X |j〉 = |j ⊕ 1〉 , Z |j〉 = ωj |j〉 , (B.1.37)

where ⊕ is the modulo d addition and

ω := exp(i2π/d). (B.1.38)

These operators satisfy the generalized commutation relation

ZbXa = ωabXaZb. (B.1.39)
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Not only for d = 2 (qubits) but also at any d ≥ 2 a Pauli channel is teleportation-covariant.

The channel’s Choi matrix ρPd is Bell-diagonal with eigenvalues {pab}, so that we may

write its von Neumann entropy in terms of the Shannon entropy as follows

S(ρPd) = H({pab}). (B.1.40)

Note that the Choi matrix can also be written as

ρPd =
1

d

d−1∑
a,b,j,k

pab(I ⊗XaZb)|jj〉〈kk|(I ⊗XaZb)† =
1

d

d−1∑
a,b,j,k

pab ω
b(j−k)|j, j ⊕ a〉〈k, k ⊕ a|.

(B.1.41)

Then, let us consider a separable state σ̃s which is constructed as in Eq. (B.1.9). This

state can be re-written as

σ̃s =
1

d

d−1∑
a,b,i=0

pab|i, i⊕ a〉〈i, i⊕ a|. (B.1.42)

By applying Eq. (B.1.7), we find

Φ(Pd) ≤ log2 d−H({pab}) +H({pa}), (B.1.43)

where pa :=
∑d−1

b=0 pab. Since the d-dimensional Pauli channel is unital, we may also write

I(R)C(Pd) = log2 d − H({pab}), so that we derive the following bounds for its two-way

capacity

log2 d−H({pab}) ≤ C(Pd) ≤ log2 d−H({pab}) +H({pa}), (B.1.44)

which generalizes Eq. (B.1.27) to arbitrary dimension d. In the following two subsections,

we consider the specific cases of the depolarising and dephasing channels in arbitrary finite

dimension d.

B.1.3 Depolarising channel in arbitrary finite dimension

Consider a depolarising channel acting on a qudit with dimension d ≥ 2. This channel

can be written as

Pd-depol(ρ) = (1− p)ρ+ p
I

d
= AρA† +

d−1∑
i,j=0

AijρA
†
ij , (B.1.45)

where A =
√

1− pI and Aij =
√
p/d|i〉〈j|. Its Choi matrix is the isotropic state

ρPd-depol = (1− p)|Φ〉〈Φ|+ p

d2
I ⊗ I, (B.1.46)
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satisfying the twirling condition

[
ρPd-depol , U

∗ ⊗ U
]

= 0, (B.1.47)

for any qudit unitary U .

The REE of an isotropic state can be evaluated exactly by using the formula of ref. [166].

Thus we can exactly compute the entanglement flux of the d-dimensional depolarising

channel. Let us set

f :=
d2 − 1

d2
p, κ(d, p) := log2 d−H2 (f)− f log2(d− 1). (B.1.48)

Then, we may write the following expression

Φ(Pd-depol) = ER

(
ρPd-depol

)
=


κ(d, p) if p ≤ d

d+1 ,

0 otherwise.

(B.1.49)

Because the depolarising channel is unital, we may use Eq. (B.1.4) to compute its (reverse)

coherent information. We specifically find

I(R)C(Pd-depol) = log2 d−H2 (f)− f log2(d2 − 1) = κ(d, p)− f log2(d+ 1). (B.1.50)

Thus, the two-way capacity of this channel must satisfy the bounds

κ(d, p)− f log2(d+ 1) ≤ C(Pd-depol) ≤ κ(d, p), (B.1.51)

for p ≤ d/(d+ 1), while zero otherwise.

B.1.4 Dephasing channel in arbitrary finite dimension

Consider a generalized dephasing channel affecting a qudit in arbitrary dimension d ≥ 2.

This channel has Kraus representation [167]

Pd-deph(ρ) =
d−1∑
i=0

PiZ
iρ(Z†)i, , (B.1.52)

where Z is the generalized Pauli (phase-flip) operator defined in Eq. (B.1.37), and Pi is

the probability of i phase flips.

The channel’s Choi matrix is

ρPd-deph =
∑
mjl

Pm
d

exp

[
2iπ

d
(j − l)m

]
|jj〉〈ll|. (B.1.53)
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By diagonalizing, we find d non-zero eigenvalues P := {P0, . . . , Pd−1}, so that the Von

Neumann entropy is given by

S(ρPd-deph) = H(P). (B.1.54)

The separable state σ̃s in Eq. (B.1.9) turns out to be diagonal in the computational basis

and takes the form

σ̃s =

d−1∑
i=0

1

d
|ii〉〈ii| . (B.1.55)

Thus, using Eq. (B.1.7), we find

Φ(Pd-deph) ≤ S(ρPd-deph ||σ̃s) = log2 d−H(P). (B.1.56)

Since this channel is unital, from Eq. (B.1.4) we have that its (reverse) coherent information

is I(R)C(Pd-deph) = log2 d −H(P), so that lower and upper bounds coincide. This means

that this channel is distillable and its two-way capacity is equal to

C(Pd-deph) = D2(Pd-deph) = Q2(Pd-deph) = K(Pd-deph) = Φ(Pd-deph) = log2 d−H(P).

(B.1.57)

B.1.5 Amplitude damping channel

The amplitude damping channel describes the process of energy dissipation through spon-

taneous emission in a two-level system. Its application to an input qubit state is defined

by the Kraus representation

Edamp(ρ) =
∑

i=0,1AiρA
†
i , (B.1.58)

where

A0 := |0〉 〈0|+
√

1− p |1〉 〈1| , A1 :=
√
p |0〉 〈1| , (B.1.59)

and p is the probability of damping. This channel is not teleportation-covariant. In fact,

because we have

|0〉 〈0| → |0〉 〈0| , |1〉 〈1| → p |0〉 〈0|+ (1− p) |1〉 〈1| , (B.1.60)

there is no unitary U able to realize UEdamp(|0〉 〈0|)U † = Edamp(X |0〉 〈0|X) for Pauli

operator X.

The amplitude damping channel can be decomposed as

Edamp = ECV→DV ◦ Eη(p) ◦ EDV→CV, (B.1.61)
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where EDV→CV is an identity mapping from the original qubit (e.g. a spin) to a single-rail

qubit, which is the subspace of a bosonic mode spanned by the vacuum and the single

photon states; then, Eη(p) is a lossy channel with transmissivity η(p) := 1 − p; finally,

ECV→DV is an identity mapping from the single-rail qubit to the original qubit. Note that

the two mappings can be performed via perfect hybrid teleportation and the middle lossy

channel preserves the 2-dimensional effective Hilbert space of the system.

Thanks to this decomposition, we can include EDV→CV in Alice’s LOs and ECV→DV into

Bob’s LOs. The middle lossy channel Eη(p) can therefore be stretched into its asymp-

totic Choi matrix ρEη(p) . Overall, this means that the amplitude damping channel can be

stretched into the asymptotic resource state σ = ρEη(p) by means of an asymptotic simula-

tion. By applying teleportation stretching, we therefore reduce the output of an adaptive

protocol to the form

ρnab := ρab(E⊗ndamp) = Λ̄
(
ρ⊗nEη(p)

)
, (B.1.62)

where both Λ̄ and ρEη(p) are intended as asymptotic limits. Thus, our reduction method

provides the upper bound

C(Edamp) ≤ Φ
[
Eη(p)

]
= − log2 p. (B.1.63)

We can combine the latter result with the fact that we cannot exceed the logarithm of the

dimension of the input Hilbert space (see this simple “dimensionality bound” in the main

text, in the discussion just before Proposition 5). This leads to

C(Edamp) ≤ min{1,− log2 p}. (B.1.64)

The best lower bound is given by optimizing the reverse coherent information over the

input states ρu = diag(1− u, u) for 0 ≤ u ≤ 1. In fact, we have [32]

IRC(p) := max
u

IRC(Edamp, ρu) = max
u
{H2 (u)−H2 (up)}. (B.1.65)

This is an achievable lower bound for entanglement distribution assisted by a final round

of backward CCs. Note that this is strictly higher than the Q1 = Q of the channel, which

is given by [32]

Q1(Edamp) = max
u
{H2[u(1− p)]−H2 (up)}. (B.1.66)

Thus, in total, we may write

IRC(p) ≤ C(Edamp) ≤ min{1,− log2 p}. (B.1.67)
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An alternative upper bound for the two-way capacity of a quantum channel is its squashed

entanglement, i.e., we may write [168]

C(E) ≤ Esq(E). (B.1.68)

The squashed entanglement of an arbitrary channel E , from system A to system B, is

defined as [168]

Esq(E) :=
1

2
max
ρA

inf
VC→EF

[S(B|E)ω + S(B|F )ω], (B.1.69)

where ρA is an arbitrary input state, and ω is the global output state

ωBEF := VC→EF [UEA→BC(ρA)], (B.1.70)

with UEA→BC being an isometric extension of E and VC→EF being an arbitrary “squashing

isometry”.

In Eq. (B.1.69), the terms in the brackets are conditional von Neumann entropies computed

over ωBEF , i.e.,

S(B|E)ω = S(BE)ω − S(E)ω, S(B|F )ω = S(BF )ω − S(F )ω. (B.1.71)

Then note that the most general input state reads

ρA =

 1− γ c∗

c γ

 , (B.1.72)

where γ ∈ [0, 1] is the population of the excited state |1〉, while the off-diagonal term

|c| ≤
√

(1− γ)γ accounts for coherence. Thus, the maximization in Eq. (B.1.69) is mapped

into a maximization over parameters γ and c.

Let us compute the squashed entanglement of the amplitude damping channel Edamp.

Recall that its action is described by Eq. (B.1.58) with Kraus operators as in Eq. (B.1.59).

In the computational basis {|00〉 , |01〉 , |10〉 , |11〉}, the unitary dilation of Edamp is therefore

given by the following matrix

Up =


1 0 0 0

0
√

1− p √
p

0 −√p
√

1− p 0

0 0 0 1

 , (B.1.73)

so that we may write

Edamp(ρA) = TrC [Up(ρA ⊗ |0〉〈0|C)U †p ], (B.1.74)
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where C is an environmental qubit prepared in the fundamental state |0〉. It is clear

that Eq. (B.1.74) expresses the isometric extension of the channel, i.e., it corresponds to

Edamp(ρA) = TrC [Udamp

A→BC(ρA)].

As a squashing channel we consider another amplitude damping channel but with damping

probability equal to 1/2, so that its unitary dilation is V = U1/2. In other words, we

consider the squashing isometry VC→EF =
[
Udamp

C→EF
]
p=1/2

(so that we are more precisely

deriving an upper bound of the squashed entanglement of the channel). Let us derive the

global output state ωBEF step-by-step.

The state of systems B and C at the output of the dilation Up is given by

ρBC := Up(ρA ⊗ |0〉〈0|C)U †p =


1− γ √

pc∗
√

1− pc∗ 0

c
√
p pγ

√
1− p√pγ 0

c
√

1− p
√

1− p√pγ (1− p)γ 0

0 0 0 0

 . (B.1.75)

Now the system C is sent through the squashing amplitude damping channel with proba-

bility 1/2. At the output of the dilation U1/2 we have the final output state

ωBEF = (IB ⊗ U1/2)ρBC ⊗ |0〉〈0|F (IB ⊗ U1/2)†

=



1− γ
√
pc∗√
2

√
pc∗√
2

0
√

1− pc∗ 0 0 0

c
√
p√
2

pγ
2

pγ
2 0

√
(1−p)pγ√

2
0 0 0

c
√
p√
2

pγ
2

pγ
2 0

√
(1−p)pγ√

2
0 0 0

0 0 0 0 0 0 0 0

c
√

1− p
√

(1−p)pγ√
2

√
(1−p)pγ√

2
0 γ − pγ 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



. (B.1.76)

We now proceed with the calculation of the entropies in Eq. (B.1.71), which are obtained

from the eigenvalues of the reduced states ρBE , ρBF , ρE and ρF . We obtain

ρE = ρF =

 1− pγ
2

√
pc∗√
2

c
√
p√
2

pγ
2

 , (B.1.77)
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with eigenvalues

λ1,2 =
1

2

(
1±

√
2|c|2p+ (pγ − 1)2

)
. (B.1.78)

The eigenvalues of ρBE and ρBF are too complicated to be reported here but it is easy

to check that, exactly as for λ1,2 in previous Eq. (B.1.78), their dependence on c is just

through the modulus |c|, so that we can choose c to be real without losing generality.

Because c is real, we also have that the entropic functional z(ρ) = S(B|E)ω + S(B|F )ω

computed over the input state ρ is exactly the same as that computed over the state ZρZ,

with Z being the phase-flip Pauli operator. Using the latter observation, together with

the concavity of the conditional quantum entropy, one simply has

z(ρ) =
z(ρ) + z(ZρZ)

2
≤ z

(
ρ+ ZρZ

2

)
= z(ρ̄), (B.1.79)

where ρ̄ is diagonal. This means that we may reduce the maximization to diagonal input

states (c = 0).

As a result, we may just consider

ρE = ρF =

 1− pγ
2 0

0 pγ
2

 , (B.1.80)

with eigenvalues

λ1 =
pγ

2
, λ2 = 1− pγ

2
, (B.1.81)

and

ρBE = ρBF =



1
2(p− 2)γ + 1 0 0 0

0 pγ
2

√
(1−p)pγ√

2
0

0

√
(1−p)pγ√

2
γ − pγ 0

0 0 0 0

 , (B.1.82)

with eigenvalues

ν1 =
γ

2
(2− p), ν2 = 1− ν1, ν3 = ν4 = 0. (B.1.83)

From the previous eigenvalues, we compute the conditional quantum entropies in Eq. (B.1.71).

Thus, we find that the squashed entanglement of the amplitude damping channel must

satisfy the bound

Esq(Edamp) ≤ max
γ
{H2(ν1)−H2(λ1)} , (B.1.84)

where H2 is the binary Shannon entropy of Eq. (2.12). In particular, the function H2(ν1)−

H2(λ1) is concave and symmetric in γ, so that the maximum is reached for γ = 1/2, which
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corresponds to a maximally mixed state at the input. This reduces Eq. (B.1.84) to the

simple bound

Esq(Edamp) ≤ H2

(
1

2
− p

4

)
−H2

(
1− p

4

)
. (B.1.85)

If we choose a squashing amplitude damping channel with generic probability of damping

η and we repeat the calculation from the beginning we obtain the following bound for the

squashed entanglement

Esq(Edamp) ≤ 1

2
max
γ

min
η
{H2(γ − pγη)+ H2 [γ(1− p+ pη)]−H2 [pγ(1− η)]−H2(pγη)} .

(B.1.86)

The minimum of the function inside the curly bracket is for η = 1/2, so our choice of

a balanced amplitude damping channel as a squashing channel is now justified. Note

that the sub-optimal choice η = 0 corresponds to use the identity as squashing channel;

correspondingly, the right hand side of Eq. (B.1.86) becomes half of the entanglement-

assisted classical capacity CA of the amplitude damping channel, i.e.,

Esq(Edamp) ≤ 1

2
CA(Edamp) =

1

2
max
γ
{H2(γ) +H2 [γ(1− p)]−H2(pγ)} . (B.1.87)

In conclusion, combining the lower bound of Eq. (B.1.65) and the upper bound of Eq. (B.1.85),

we find that the two-way capacity of the amplitude damping channel is within the sandwich

max
u
{H2 (u)−H2 (up)} ≤ C(Edamp) ≤ H2

(
1

2
− p

4

)
−H2

(
1− p

4

)
. (B.1.88)

Note that, for high damping (p ' 1), the upper bound in Eq. (B.1.88) provides the

scaling of . 0.793(1 − p) bits per channel use, while Eq. (B.1.64) provides the scaling of

. 1.44(1− p) bits per channel use.

B.2 Ultimate limits in bosonic communications

B.2.1 Relative entropy between Gaussian states

Before giving the results for the two-way capacities for quantum and secure communication

through for bosonic Gaussian channel, we provide a fundamental tools for their deriva-

tion. Namely we provide a simple formula for the relative entropy between two arbitrary

Gaussian states ρ1(u1, V1) and ρ2(u2, V2) directly in terms of their statistical moments.

Our formula improves and thus supersedes previous expressions [169, 170]. We have the

following
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Theorem B.2.1 ( [1], Theorem 7) For two arbitrary multimode Gaussian states, ρ1(u1, V1)

and ρ2(u2, V2), the entropic functional

Σ := −Tr (ρ1 log2 ρ2) (B.2.89)

is given by

Σ(V1, V2, δ) =
ln det

(
V2 + iΩ

2

)
+ Tr(V1G2) + δTG2δ

2 ln 2
, (B.2.90)

where δ := u1 − u2 and Gi := G(Vi) = 2iΩ coth−1(2ViiΩ). As a consequence, the von

Neumann entropy of a Gaussian state ρ(u, V ) is equal to

S(ρ) := −Tr (ρ log2 ρ) = Σ(V, V, 0) , (B.2.91)

and the relative entropy of two Gaussian states ρ1(u1, V1) and ρ2(u2, V2) is given by

S(ρ1||ρ2) := Tr [ρ1(log2 ρ1 − log2 ρ2)]

= −S(ρ1)− Tr (ρ1 log2 ρ2)

= −Σ(V1, V1, 0) + Σ(V1, V2, δ) . (B.2.92)

Proof : The starting point is the use of the Gibbs-exponential form for Gaus-

sian states [82]. Start with zero-mean Gaussian states, this can be written as ρi =

Z−1
i exp[−x̂TGix̂/2], where Gi = g(Vi) is the Gibbs-matrix and Zi = det (Vi + iΩ/2)1/2 is

the normalization factor (with i = 1, 2). Then, replacing into the definition of Σ given in

Eq. (B.2.89), we find

(2 ln 2)Σ = 2 lnZ2 + Tr
(
ρ1x̂

TG2x̂
)

= ln det (V2 + iΩ/2)

+
∑
jk

Tr (ρ1x̂j x̂k)G2jk . (B.2.93)

Using the commutator 〈[x̂j , x̂k]〉 = iΩjk and the anticommutator 〈{x̂j , x̂k}〉 = 2Vjk, we

derive

∑
jk

Tr (ρ1x̂j x̂k)G2jk = Tr

[(
V1 +

iΩ

2

)T
G2

]
(B.2.94)

= Tr (V1G2) ,

where we also exploit the fact that Tr(ΩG) = 0, because Ω is antisymmetric and G is

symmetric (as V ).
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Let us now extend the formula to non-zero mean values (with difference δ = u1 − u2).

This means to perform the replacement x̂→ x̂− u2, so that

Tr (ρ1x̂j x̂k)→ Tr [ρ1(x̂j − u2j)(x̂k − u2k)]

= Tr [ρ1(x̂j − u1j + δj)(x̂k − u1k + δk)]

= Tr [ρ1(x̂j − u1j)(x̂k − u1k)] + δjδk . (B.2.95)

By replacing this expression in Eq. (B.2.94), we get∑
jk

Tr (ρ1x̂j x̂k)G2jk → Tr (V1G2) + δTG2δ . (B.2.96)

Thus, by combining Eqs. (B.2.93) and (B.2.96), we achieve Eq. (B.2.90). The other

Eqs. (B.2.91) and (B.2.92) are immediate consequences. This completes the proof of

Theorem B.2.1. �

As discussed in ref. [82], the Gibbs-matrix G becomes singular for a pure state or, more

generally, for a mixed state containing vacuum contributions (i.e., with some of the sym-

plectic eigenvalues equal to 1/2). In this case the Gibbs-exponential form must be used

carefully by making a suitable limit. Since Σ is basis independent, we can perform the

calculations in the basis in which V2, and therefore G2, is diagonal. In this basis

Σ =
1

2

n∑
k=1

∑
±
α±k log2(v2k ± 1/2) , (B.2.97)

where {v2k} is the symplectic spectrum of V2, and

α±k = 1± [(V1)k,k + (V1)k+n,k+n] . (B.2.98)

Now, if v2k = 1/2 for some k, then its contribution to the sum in Eq. (B.2.97) is either

zero or infinity.

B.2.2 Fundamental rate-loss scaling in quantum optical communications

Coherent and reverse coherent information of a Gaussian channel

Here we discuss the computation of the (reverse) coherent information for the most impor-

tant single-mode Gaussian channels, i.e., the thermal-loss channel, the amplifier channel

and the additive-noise Gaussian channel. Compactly, their action on input quadratures is

given by

x̂→ √ηx̂+
√
|1− η|x̂E + z, (B.2.99)
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where η ≥ 0 is the transmission (or gain), E is the environmental mode in a thermal state

with n̄ mean photons, and z is a classical Gaussian variable with CM ξI ≥ 0. The Choi

matrix ρE of this Gaussian channel E = E(η, n̄, ξ) is defined as an asymptotic limit. At

the input we consider a sequence of TMSV states Φµ with CM as in Eq. (1.43). Then, at

the output, we get a sequence of finite-energy Gaussian states

ρµE := I ⊗ E(Φµ), (B.2.100)

whose limit defines ρE := limµ ρ
µ
E . The quasi-Choi matrices ρµE are zero-mean Gaussian

states with CM

V µ(η, n̄, ξ) =

 µI γZ

γZ βI

 ,

β : = ηµ+ |1− η|
(
n̄+

1

2

)
+ ξ , (B.2.101)

γ : =
√
η(µ2 − 1/4) .

Let us consider the symplectic eigenvalues of the output CM in Eq. (B.2.101), which are

given by

ν± =

√
∆±

√
∆2 − 4 detV µ

2
, ∆ := µ2 + β2 − 2γ2. (B.2.102)

Using the formula of the von Neumann entropy for Gaussian states and the definitions of

the coherent information IC and reverse coherent information IRC, we may write

IC(E ,Φµ) = I(A〉B)ρµE
= s(β)− s(ν−)− s(ν+) , (B.2.103)

IRC(E ,Φµ) = I(A〈B)ρµE
= s(µ)− s(ν−)− s(ν+) , (B.2.104)

where function s(x) := (x+ 1/2) log2(x+ 1/2)− (x− 1/2) log2(x− 1/2). It is easy to see

that these quantities are continuous and increasing in µ, for any fixed values of η, n̄ and

ξ. For instance, for the lossy channel (0 ≤ η ≤ 1, n̄ = ξ = 0), we simply have

I(A〉B)ρµE
= s

[
1− η

2
+ ηµ

]
− s

[η
2

+ (1− η)µ
]
, (B.2.105)

I(A〈B)ρµE
= s(µ)− s

[η
2

+ (1− η)µ
]
. (B.2.106)

Thus, the limit for µ → +∞ in the expressions of Eq. (B.2.104) is regular and finite.

The asymptotic values represent the coherent and reverse coherent information of the
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considered Gaussian channels, i.e., we have

IC(E) = I(A〉B)ρE := lim
µ
I(A〉B)ρµE

, (B.2.107)

IRC(E) = I(A〈B)ρE := lim
µ
I(A〈B)ρµE

, (B.2.108)

as already defined in Eqs. (2.29) and (2.30). Correspondingly, the hashing inequality can

be safely extended to the limit, i.e., from

max{I(A〉B)ρµE
, I(A〈B)ρµE

} ≤ D1(ρµE), (B.2.109)

we may write

max{IC(E), IRC(E)} ≤ D1(ρE) := lim
µ
D1(ρµE). (B.2.110)

For the thermal-loss channel, the best lower bound is the reverse coherent information,

given by [33]

IRC(η, n̄) = − log2 (1− η)− h(n̄), (B.2.111)

where h(x) := (x + 1) log2(x + 1) − x log2 x is the entropic function. In particular, for a

lossy channel (n̄ = 0), one has

IRC(η) = − log2 (1− η) . (B.2.112)

For the amplifier channel, the best lower bound is given by the coherent information,

which is equal to [33,62]

IC(η, n̄) = log2

(
η

η − 1

)
− h(n̄), (B.2.113)

and becomes

IC(η) = log2

(
η

η − 1

)
, (B.2.114)

for the quantum-limited amplifier (n̄ = 0). The coherent information and reverse coherent

information of the additive-noise Gaussian channel coincide. We have [62]

IC(ξ) = IRC(ξ) = − log2 ξ −
1

ln 2
. (B.2.115)

B.2.3 Entanglement flux of a Gaussian channel

Here we discuss how to compute the entanglement flux of a single-mode Gaussian channel

(in canonical form). We provide the general recipe and then we go into details of the
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specific channels in the next subsections. The entanglement flux of a Gaussian channel E

satisfies

Φ(E) ≤ lim inf
µ→+∞

S(ρµE ||σ̃
µ
s ) , (B.2.116)

where ρµE is a sequence of quasi-Choi matrices as defined in Eq. (B.2.100) with CMs as in

Eq. (B.2.101), while σ̃µs is a suitable sequence of separable Gaussian states.

For any µ, we choose a separable Gaussian state σ̃µs with CM Ṽ µ(η, n̄, ξ) as in Eq. (B.2.101)

but with the replacement

γ →
√

(µ− 1/2)(β − 1/2), (B.2.117)

for the off-diagonal term. At fixed marginals µ and β, this is the most-correlated separable

Gaussian state that we can build according to Eqs. (2.110) and (2.111); it has maximum

(non-Gaussian) discord [103] and minimizes the relative entropy S(ρµE ||σ̃
µ
s ) as long as ρµE

is an entangled state. In the specific case where the channel E is entanglement-breaking,

then ρµE becomes separable and we can trivially pick σ̃µs = ρµE , which gives S(ρµE ||σ̃
µ
s ) = 0.

In general, we are left with the analytical calculation of the relative entropy S(ρµE ||σ̃
µ
s )

between two Gaussian states. This can be done in terms of their statistical moments

according to our formula for the REE between two arbitrary multimode Gaussian states,

which is given in the “Methods” section of our paper. For S(ρµE ||σ̃
µ
s ) we find regular

expressions with a well-defined limit, so that we can put lim infµ = limµ in Eq. (B.2.116).

We provide full algebraic details below for the various Gaussian channels.

B.2.4 Entanglement flux of a thermal-loss channel

Consider a thermal-loss channel Eloss(η, n̄) with transmissivity 0 ≤ η ≤ 1 and thermal

number n̄, so that thermal noise has variance ω = n̄+1/2. For n̄ ≥ η(1−η)−1, this channel

is entanglement-breaking and we have Φ(η, n̄) = 0. For n̄ < η(1 − η)−1 we compute the

relative entropy Sµ := S
(
ρµE ||σ̃

µ
s

)
from the CMs V µ(η ≤ 1, n̄, 0) and Ṽ µ(η ≤ 1, n̄, 0) of the

zero-mean Gaussian states ρµE and σ̃µs . Using our formula for the relative entropy between

Gaussian states, we get

Sµ = −S1 +
∆

2 ln 2
+

1

2
log2

{
2µ− 1

4
[2ω − 1 + 2η(µ− ω)]

}
, (B.2.118)

where S1 is the contribution of the von Neumann entropy, while the other two terms come

from the entropic functional Σ(V µ, Ṽ µ, 0). The term ∆ is analytical but too cumbersome
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to be reported here. By expanding for large µ, we may write

∆→ 2

[
1− 2ω coth−1

(
1 + η

η − 1

)]
+O(µ−1) , (B.2.119)

S1 → h(n̄) + log2 [e(1− η)µ] +O(µ−1), (B.2.120)

and
1

2
log2

{
2µ− 1

4
[2ω − 1 + 2η(µ− ω)]

}
→ log2 µ

√
η +O(µ−1) . (B.2.121)

Taking the limit S∞ = lim infµ S
µ = limµ S

µ, we get

S∞ = − log2

[
(1− η)ηn̄

]
− h(n̄) . (B.2.122)

As a result, by replacing in Eq. (B.2.116), we find that the entanglement flux of a thermal-

loss channel Eloss(η, n̄) satisfies

Φ(η, n̄) ≤ Φloss(η, n̄) :=


− log2 [(1− η)ηn̄]− h(n̄) for n̄ < η

1−η ,

0 otherwise.

(B.2.123)

The thermal bound in Eq. (B.2.123) is clearly tighter than previous bounds based on

the squashed entanglement, such as the “Takeoka-Guha-Wilde” (TGW) thermal bound [106]

KTGW = log2

[
(1− η)n̄+ 1 + η

(1− η)n̄+ 1− η

]
, (B.2.124)

and its improved version [100]. However, Φloss does not generally coincide with the

achievable lower-bound [33] given by the reverse coherent information of the channel in

Eq. (B.2.111). Thus, the generic two-way capacity of the thermal-loss channel satisfies the

sandwich relation

− log2 (1− η)− h(n̄) ≤ Closs(η, n̄) ≤ Φloss(η, n̄). (B.2.125)

It is easy to check that, for a lossy channel (n̄ = 0), the bounds Eq. (B.2.125) coincide,

therefore establishing

Closs(η) = − log2 (1− η) . (B.2.126)

Full calculation details for the lossy channel

For the sake of completeness, we provide the specific details of the computation of the

relative entropy Sµ for the specific case of a lossy channel. After some algebra, we achieve

Sµ = log2

[(
µ− 1

2

)
√
η

]
− s

[
(1− η)µ+

η

2

]
+

∆

2 ln 2
, (B.2.127)
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where

∆ :=
c− (2µ− 1)(1− η)a

b
coth−1

[
(1− η)(1− 2µ)− a

2

]
− c+ (2µ− 1)(1− η)a

b
coth−1

[
(1− η)(1− 2µ) + a

2

]
, (B.2.128)

and

a :=
√

1− (6− η)η + 4µ[1 + (4− η)η + (1− η)2µ], (B.2.129)

b :=
√

8µ+ (2µ− 1)[4η + (2µ− 1)(1− η)2], (B.2.130)

c := 2η(2µ− 1)
(

2
√

4µ2 − 1− 1− 2µ
)
− η2(2µ− 1)2 − (1 + 2µ)2. (B.2.131)

We now insert the expression of ∆ in Eq. (B.2.127) and we take the limit for µ → +∞.

This limit is defined (i.e., lim infµ = limµ) and we get

S∞ = lim
µ→+∞

Sµ = − log2(1− η) . (B.2.132)

We can show this limit step-by-step. First note that, for large ν, we have

s(ν)→ log2 eν +O(ν−1) . (B.2.133)

Thus, in the limit of µ→ +∞, the first two terms in the RHS of Eq. (B.2.127) become

log2

[(
µ− 1

2

)
√
η

]
→ log2 (µ

√
η) +O(µ−1), (B.2.134)

−s
[
(1− η)µ+

η

2

]
→ − log2[e(1− η)µ] +O(µ−1). (B.2.135)

Then, it is easy to show that, for µ→ +∞, we have

∆→
[
−4(1− η)µ+O(µ0)

]
coth−1

[
−2(1− η)µ+O(µ0)

]
−
[
−2 +O(µ−1)

]
coth−1

[
1 + η

1− η
+O(µ−1)

]
→ 2− ln η +O(µ−1) . (B.2.136)

In conclusion, by using Eqs. (B.2.134), (B.2.135) and (B.2.136) into Eq. (B.2.127), we

obtain the final result in Eq. (B.2.132).

B.2.5 Entanglement flux of a quantum amplifier

Consider an amplifier channel Eamp(η, n̄) with gain η > 1 and thermal number n̄, so that

thermal noise has variance ω = n̄ + 1/2. For n̄ ≥ (η − 1)−1 this channel is entanglement
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breaking and therefore Φ(η, n̄) = 0. For n̄ < (η − 1)−1 we compute the relative entropy

Sµ := S
(
ρµE ||σ̃

µ
s

)
from the CMs V µ(η > 1, n̄, 0) and Ṽ µ(η > 1, n̄, 0) of the zero-mean

Gaussian states ρµE and σ̃µs . Up to terms O(µ−1), we get

S(ρµE)→ h(n̄) + log2 e(η − 1)µ, − Tr
(
ρµE log2 σ̃

µ
s

)
→

ln(ηµ2) + 2 + 4ω coth−1
(
η+1
η−1

)
2 ln 2

.

(B.2.137)

For large µ we therefore obtain

S∞ = log2

(
ηn̄+1

η − 1

)
− h(n̄). (B.2.138)

Thus we find

Φ(η, n̄) ≤ Φamp(η, n̄) :=


log2

(
ηn̄+1

η − 1

)
− h(n̄) for n̄ < (η − 1)−1,

0 otherwise.

(B.2.139)

In general, Φamp(η, n̄) does not coincide with the best known lower bound which is given

by the coherent information of the channel in Eq. (B.2.113). Thus, the two-way capacity

of a quantum amplifier channel satisfies

log2

(
η

η − 1

)
− h(n̄) ≤ Camp(η, n̄) ≤ Φamp(η, n̄). (B.2.140)

It is easy to check that, for the quantum-limited amplifier (n̄ = 0), the previous upper

and lower bounds coincide, thus determining its two-way capacity

Camp(η) = log2

(
η

η − 1

)
. (B.2.141)

Thus, Camp(η) turns out to coincide with the unassisted quantum capacity Qamp(η) [62,

122].

B.2.6 Entanglement flux of an additive-noise Gaussian channel

Consider an additive-noise Gaussian channel Eadd(ξ) with noise variance ξ ≥ 0. For ξ ≥ 1

this channel is entanglement breaking and therefore we have Φ(ξ) = 0. For ξ < 1 we

compute the relative entropy Sµ := S
(
ρµE ||σ̃

µ
s

)
from the CMs V µ(1, 0, ξ) and Ṽ µ(1, 0, ξ) of

the zero-mean Gaussian states ρµE and σ̃µs . Discarding terms O(µ−1), we get

S(ρµE)→ log2(e2ξµ), − Tr
(
ρµE log2 σ̃

µ
s

)
→

ln
[

(2µ−1)(2ξ+2µ−1)
4

]
+ 2(1 + ξ)

2 ln 2
. (B.2.142)
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which leads to

S∞ = lim inf
µ
Sµ = lim

µ
Sµ =

ξ − 1

ln 2
− log2 ξ . (B.2.143)

Thus we find

Φ(ξ) ≤ Φadd(ξ) :=


ξ−1
ln 2 − log2 ξ for ξ < 1,

0 otherwise.

(B.2.144)

The best lower bound is its coherent information IC(ξ) of Eq. (B.2.115), so that the two-

way capacity satisfies

−1/ ln 2− log2 ξ ≤ Cadd(ξ) ≤ Φadd(ξ) . (B.2.145)

B.2.7 Secondary canonical forms

For the conjugate of the amplifier it is easy to check that this channel is always entanglement-

breaking, so that it has zero flux and, therefore, zero two-way capacity C = 0. The A2-form,

which is a ‘half’ depolarising channel, is also an entanglement-breaking channel, so that

Φ = C = 0. Finally, for the “pathological” B1-form, we find the trivial bound Φ = +∞.
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[122] M. M. Wolf, D. Pérez-Garćıa, and G. Giedke, “Quantum capacities of bosonic chan-

nels,” Phys. Rev. Lett., vol. 98, p. 130501, 2007.

[123] P. Liuzzo-Scorpo and G. Adesso, “Optimal secure quantum teleportation of coherent

states of light,” Proc. SPIE 10358, Quantum Photonic Devices, vol. 103580V, 2017.

[124] P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Erratum: Optimal

continuous variable quantum teleportation with limited resources [phys. rev. lett.

119, 120503 (2017)],” Phys. Rev. Lett., vol. 120, p. 029904, 2018.

[125] J. D. S. Tserkis and T. C. Ralph, “Simulation of gaussian channels via teleportation

and error correction of gaussian states,” arXiv:1803.03516, 2018.

[126] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and

E. S. Polzik, “Unconditional quantum teleportation,” Science, vol. 282, no. 5389,

pp. 706–709, 1998.

[127] S. Pirandola and S. Mancini, “Quantum teleportation with continuous variables: A

survey,” Laser Physics, vol. 16, no. 10, pp. 1418–1438, 2006.
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