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Abstract

A natural starting point for an age-period-cohort analysis is to assess the suit-

ability of an independence model. If necessary, modifications are then made

to the independence model to account for the effects of period and cohort.

Data are usually made available for analysis in a two-way contingency table

categorised in terms of rounded age and rounded period. The linear relation-

ship age = period − cohort does not hold exactly under rounding and the

observation in a cell rounded age-by-period is not necessarily the same as an

observation in a cell rounded age-by-cohort. In practice, independence models

are discretised incorrectly such that the age-by-period data are used for model

fitting as if the data are rounded age-by-cohort. The independence model is

often deemed to be unsuitable as a description of the data and modifications

are made to the independence model according to a proportional hazards as-

sumption. We investigate whether the need for modifications is only apparent

due to the misrounded treatment of the data. The case of Bovine Spongiform

Encephalopathy is used as an illustrative example.
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Chapter 1

Introduction

The thesis is a contribution to the field of age-period-cohort (APC) modelling.

In this chapter, we compare our research objectives to the research objectives

of earlier work on APC modelling.

The existing literature

The modelling of mortality has been a topic of commercial and general scien-

tific interest for hundreds of years (Dickson et al. 2009, page 1). Since the early

eighteenth century, life insurance companies have employed actuaries to pro-

vide a scientific framework for managing the companies’ assets and liabilities.

The number of deaths amongst the insured lives determines the liabilities of

the company each year. A policyholder agrees to pay a series of premiums to

the company until death, and then receives a predetermined lump sum at the

time of death. If the policyholder dies much sooner than expected, then the

life insurance company makes a loss on that policy. A systematic understating

of longevity for all policyholders could lead to bankruptcy for the company. It

is important for insurance companies to accurately predict life expectancy to

14



ensure policies are profitable.

It is important to consider some basic characteristics that influence human

longevity such as smoking status and nationality, but, in particular, year of

birth. On average, human longevity has increased over time such that any

person can expect to live a longer life than their biological parents. For the

United Kingdom (UK), the Human Mortality Database (HMD) website shows

that the duration of human life was expected to be 57 years for a person born in

1922 and 81 years for a person born in 2016 (Shkolnikov et al. 2018 (accessed

January 27, 2018)). Not accounting for the increasing longevity would lead

to substantial losses for life insurance companies due to the understating of

longevity.

The risk of mortality faced by a person at a particular moment in time can

be attributed to a combination of three related time variables: (i) their time

of birth, “cohort”; (ii) the calendar time, “period”; and (iii) their age. An age

effect captures the mortality risk at a particular age which people experience

regardless of their cohort, while a period effect captures the risk that impacts

everyone in a particular period regardless of his or her age. Typically, the age

effect for mortality is U-shaped due to complications at birth, followed by a

period of stability, and an increasing risk after age 30 (Lawless 1982, page 11).

The period effect for mortality is typically decreasing due to improvements in

healthcare and in the education of healthy living.

Ryder (1997, page 68) described the members of a cohort as having a

unique location in the stream of history because people from different cohorts

experience different ages in different periods. A person born at time 2000 would

be aged five in period 2005. This would lead people not to experience mortality

risk in the same way. It would be necessary to consider age-period interaction

effects if the risk of mortality at a certain age depends on the current period.

For example, the likelihood of contracting a fatal disease at birth is likely to be

determined by the quality of healthcare, which will vary with period. A cohort

effect captures the accumulation of age-period interaction effects and reflects

15



a constant level of mortality risk that is faced uniformly throughout life.

Modelling simultaneously the effects of age, period and cohort on mortality

risk was the original motivation for the subject of APC modelling. In a classic

APC study, Kermack et al. (1934, pages 446–448) reported that age and cohort

have a significant effect on the mortality risk in England, Scotland and Wales.

Their estimate of mortality risk increases strongly and is strictly increasing

with age. Mortality risk fluctuates up and down for people born between the

late eighteenth century and the mid nineteenth century, and then decreases

significantly with cohort thereafter. This decreasing cohort effect is consistent

with increasing longevity.

While APC models were originally used in actuarial science to study all-

cause human mortality, they have since been used to answer substantial ques-

tions in other subject areas. APC models are frequently used in the area of

medicine to study disease diagnosis. For example, in another classic APC

study, Greenberg et al. (1950) explored how age, period and cohort simulta-

neously impact on the risk of syphilis diagnosis for black females in North

Carolina. The age effect for syphilis diagnosis was reported to be unimodal

and peaked at age 18. More recently, Murayama et al. (2006) studied how the

risk of pleural malignant mesothelioma diagnosis varies with age and cohort.

Overall, the most frequent application of APC models is in medicine to study

cause-specific human mortality such as mortality due to lung cancer (Kupper

et al. 1985; Clayton and Schifflers 1987a).

APC modelling is not only relevant to the study of human survival. APC

models have been used in sociology to study attendance at religious services

and belief in the afterlife (Schwadel 2011; Hayward and Krause 2015). In par-

ticular, Schwadel (2011, page 187) reported that age, period and cohort have a

significant effect on the probability of church attendance in the United States.

The estimated probability of attendance increases strongly with age from ap-

proximately 0.35 at age 20-24 to around 0.52 at age 70-74. The attendance

probability is slowly decreasing on average with period and cohort to suggest
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a gradual decline in religious participation over time. Schomerus et al. (2015)

conducted an APC analysis to study the desire for social distance from a per-

son with schizophrenia. It is not only humans that are the subjects of APC

studies. Dealler and Kent (1995) conducted an APC study to investigate the

effects of age, period and cohort on the diagnosis of a fatal neurodegenerative

disease in cattle called Bovine Spongiform Encephalopathy (BSE).

In general, the purpose of APC modelling is to separate the effects of

age, period and cohort on some phenomenon. However, it is impossible to

separate the three effects into distinct contributions because of a fundamental

confounding problem. Johnston et al. (2018, page 1958) define confounding

as the situation in which the relationship between two variables is distorted

because of a strong relationship between one or two of the variables and a

third variable included in the analysis. Since age, period and cohort are linearly

determined by the equation cohort = period−age, the relationship between the

age-at-death distribution and period is distorted by the inclusion of cohort in a

survival model. The confounding concept can be extended to a situation with

four variables to say that the relationship between age, period and a response

variable is distorted by the inclusion of cohort in a non-survival model. Thus,

cohort is confounded with age and period (Rodgers 1982, page 775).

APC models suffer from the most severe case of confounding, the issue of

identifiability, in which the relationship between variables cannot be identified

uniquely (Mason et al. 1973; Smith and Wakefield 2016). Note that, a lack of

identifiability can result from the exact linear dependency between age, period

and cohort as well as from over-parameterisation (Blalock 1966). In APC

literature, confounding is synonymous with a lack of identifiability.

Much of the APC literature consists of attempts to overcome confounding.

One approach is to set additional constraints such as setting parameters equal

to zero or minimising a penalty function (Mason et al. 1973; Osmond and

Gardner 1982). Another approach is to remove one linear term for age, period

or cohort from the model formulation, or to only interpret parameters for
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nonlinear terms in age, period and cohort such as the coefficients for quadratic

and cubic terms (Holford 1983). Many authors decide to parameterise models

with only two of age, period and cohort in order to avoid the identifiability issue

(Kermack et al. 1934; Sasieni and Adams 2001; Murayama et al. 2006). The

remainder of the APC literature mostly consists of statisticians fitting APC

models to data using the proposed solutions. A summary on the approaches

to deal with confounding/identifiability issues was recently published in Smith

and Wakefield (2016).

One reason that research on APC modelling is still being produced is to

create a methodology that will help statisticians to gain a meaningful insight

into the distinct effects of age, period and cohort. Some major new textbooks

on APC modelling have recently been published such as Yang and Land (2013)

and O’Brien (2015). The purpose of both textbooks is to introduce and illus-

trate a new method to overcome the confounding issues. In particular, Yang

and Land (2013, Chapter 5) introduce an intrinsic estimator which has been

used in applied APC studies to estimate simultaneously the parameters for

age, period and cohort (Schwadel 2011; Kramer et al. 2015). Glenn (1976)

is critical about the proposed solutions to the APC confounding problem and

describes attempts to solve confounding as futile.

The thesis

APC models are typically fitted to data that take one particular format. For

survival studies, the age-at-death, period-at-death and cohort are real numbers,

but are interval censored (Collett 2015, page 3) in that for recording purposes

they are rounded down to the nearest integer. A summary of the database is

made available for analysis as a two-way contingency table categorised in terms

of age and period. There are a large number of cases in which APC models

are fitted to age-by-period data and this practice has occurred throughout the
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entire history of APC modelling (Kermack et al. 1934; Clayton and Schifflers

1987a; Choi et al. 2016). The data are similarly made available in a table

rounded age-by-period for non-survival APC studies (Schomerus et al. 2015,

page 20).

When age, period and cohort are rounded down to the nearest integer,

the exact relationship cohort = period− age does not hold exactly. Given the

value of age and period, the cohort variable can be determined from the age-

by-period table as either cohort = period− age or cohort = period− age− 1.

For example, under rounding, a person born in the year 2000 could be either

be aged four or five in the year 2005. This means that each cell of the age-by-

period table contains two distinct cohort integers (Yang and Land 2013, page

16). In the formulation of an APC model to study how some phenomenon

varies with age, period and cohort, the cohort variable is usually assumed by

statisticians to be determined exactly as the difference between period and age

(Clayton and Schifflers 1987a, page 459; Murayama et al. 2006, page 4). It is

therefore assumed that each cell of the age-by-period table corresponds to one

cohort value.

A natural starting point for an APC analysis is to consider the fit of an

independence model, which assumes, for example, that the mortality risk of a

person depends on age but is independent of period and cohort so that human

longevity is not changing over time. The independence model may be deemed

not to fit the data well, but it is still the natural starting point. If necessary,

modifications are then made to the independence model to account for the

effects of period and cohort on mortality risk. It is important to discretise

the independence model correctly to reflect the fact that the data are rounded

age-by-period. However, we explain that, in practice, independence models

are discretised incorrectly, or equivalently are “misrounded”, such that the age-

by-period data are used for model fitting as if the data are rounded age-by-

cohort. There are many examples of misrounding, but a prime example that

we consider in detail in this thesis is the APC study conducted by Dealler and

Kent (1995) for the incidence of BSE.
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The independence model is often deemed to be unsuitable as a descrip-

tion of age, period and cohort effects apparent in the age-by-period data, and

modifications to the independence model are usually made according to a pro-

portional hazards (PH) assumption (Holford 1983; Liu et al. 2001; Kramer

et al. 2015). This thesis investigates the misleading conclusions that can arise

under certain circumstances when assessing the fit an independence model for

a misrounded treatment of the age-by-period data as rounded age-by-cohort.

We then assess whether the need for modifications to the independence model

is only apparent due to the misrounded treatment of the data.

One misleading conclusion is that, when the number of births is strictly

increasing over time, there appears to be a strict under-reporting for the num-

ber of deaths in each cell of the age-by-period table. When instead the number

of births is strictly decreasing over time, there is apparent over-reporting of the

death counts. Another misleading conclusion is that life expectancy can falsely

appear to be changing over time when in reality life expectancy is not changing

under the independence model. The final misleading conclusion is that there

can appear to be a systematic increase in life expectancy over time when in

reality life expectancy is not changing. If it is found to be statistically signifi-

cant, this final misleading conclusion could have important implications for the

study of human mortality. However, we note that the potential for misleading

conclusions is greatest when the number of births is changing substantially

over time. If the number of births is changing slowly, then the misleading con-

clusions will not be apparent and a misrounded treatment of the age-by-period

data is sufficient when fitting the independence model.

BSE is a fatal neurodegenerative disease in cattle, which is perhaps better

known as “mad cow disease”. BSE was first observed in cattle in the United

Kingdom in 1986 and its incidence grew rapidly over the following years to

cause considerable havoc in the cattle industry. Dealler and Kent (1995) anal-

ysed BSE incidence data rounded in terms of age and period to assess the

suitability of the independence model and to investigate various modifications.

They found large departures from independence and concluded that the inde-
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pendence model was not suitable as a description of BSE incidence. The case

of BSE is used as an illustrative example to assess how a misrounded treatment

of age-by-period data can affect the results of an APC analysis.

We aim to conclude whether an exact treatment of the age-by-period data

is necessary to assess the suitability of an independence model in the case of

BSE incidence. One possible limitation of our statistical analysis is that we

assume that the number of BSE cases follows a Poisson model, so that cases

occur independently. But if BSE was passed on by infected cattle due to the

close proximity with other cattle, then it would be necessary to consider a

spatial dependence for BSE cases. Infected cattle feed is believed to be the

major source of BSE transmission and it is believed that infectivity can also be

passed on from mother to calf at birth (Dealler and Kent 1995, page 6). BSE

is an interesting case study for a consideration of misrounding issues because

the potential for misleading conclusions is most severe when the number of

cases is rapidly changing over time.

In summary, our research objective is to investigate the potential for mis-

leading conclusions when assessing the fit of an independence model for a mis-

rounded treatment of data, and to assess whether the need for modifications

to the independence model is only apparent due to the misleading conclusions.

This research is highly relevant due to the common publication of data as

rounded age-by-period coupled with the common mistreatment of the data as

rounded age-by-cohort. The research objectives of the previous APC literature

can perhaps be summarised as the proposition and critique of approaches to

overcome the APC confounding problem, as well as the use of such approaches

to gain a meaningful insight into the effects of age, period and cohort in real

case studies. So the objectives of this thesis and of past literature are very

different.

If the potential for misleading conclusions were found to be statistically

significant, then our research would have important implications for many pre-

vious APC studies. In particular, if an independence model is suitable for
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human mortality, then the apparent increasing longevity, which has been re-

ported on numerous occasions (Kermack et al. 1934; Lee and Hsieh 1996),

is only apparent due to misrounding. In any case study, the potential for

misleading conclusions can be overcome by following one of two exact treat-

ments of data: (i) fitting a correctly discretised independence model to the

age-by-period data, or (ii) fitting the mis-discretised independence model to

age-by-cohort data. The second exact treatment may not be possible in many

circumstances because age-by-cohort data is rarely made available for analysis.

In this thesis, we demonstrate how to carry out the first exact treatment in

the case of BSE incidence.

In actuarial mathematics, the hazard rate or “force of mortality” at a

certain age is estimated as a ratio with the total number of deaths at that age

taken as the numerator and the total time exposed to risk at that age taken

as the denominator (CT4 2012, unit 9 page 4). Deaths and exposure time are

initially recorded by age and period, and then the total deaths and exposure

time are obtained for each age by summing over all periods (CT4 2012, unit

10 pages 4–7). The second exact treatment of data would require deaths and

exposure time to be initially recorded by age and cohort rather than by age

and period. On the other hand, the first exact treatment would involve no

change in the recording of deaths and exposure time.

In Chapter 2, the APC model is defined for continuous, discrete and

rounded time as a Poisson model for deaths. The independence model is de-

fined as a special case in which the age-at-death distribution does not vary

with cohort. In Chapter 3, we investigate how modifications should be made

to the independence model to incorporate effects of period and/or cohort when

formulating an APC model. The method of handling dependence is different

for continuous and discrete time.

In Chapter 4, we establish a new method to fit some APC models to data

and explain that the way of handling dependence in the APC literature is

not consistent with our findings. We explain that statisticians usually fit a
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discrete independence model to describe rounded data and that modifications

are usually made according to a PH assumption. An important distinction we

make is between survival and regression as two settings for APC modelling.

In Chapter 5, we provide an overview for the concept of confounding in APC

models. It is important to consider the confounding issue when modifications

are made to the independence model.

In Chapter 6, we explain that data are usually provided in a contingency

table rounded age-by-period, but that the data are used for model fitting as if

they are rounded age-by-cohort. We explain that this misrounded treatment of

data can be problematic when assessing the fit of an independence model due

to the potential for misleading conclusions. The need for modifications to the

independence model might only be apparent due to the misrounded treatment

of data. In Chapter 7, we assess the suitability of an independence model for

the case of BSE incidence. We investigate whether an independence model

provides a good description of the age-by-period data, and, hence, whether a

misrounded treatment of data led Dealler and Kent (1995) to find dramatic

departures from the independence model which should not have been apparent

in reality.
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Chapter 2

Time concepts in

age-period-cohort analysis

In the context of survival analysis, an individual enters a system at an initial

event and exits the system later on at a final event. Consider “birth” and

“death” as unifying terms for the entry and exit events, respectively. The time

of birth for an individual is referred to as their cohort, and the time at which

an individual is observed after birth is the period. The age of an individual is

determined as the time-gap between cohort and period:

age = period− cohort. (2.1)

Examples of exit events in the literature are discussed in Chapter 4 such as

death due to lung cancer (Peto et al. 1995) and diagnosis of cervix cancer

(Sasieni and Adams 2001). The entry event is birth for almost all applied

APC studies.

In this chapter, we define three different time concepts for survival anal-

ysis: discrete time, continuous time and a discretisation of continuous time.

The discretisation of continuous time is usually done by integer rounding so

that age, period and cohort are grouped into one-year intervals. We distin-

guish between three integer rounding styles: down, up and nearest. This third
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time concept is a convenient presentation of continuous data and other time

groupings could be considered such as five-year groupings. The key distinction

is between discrete time and rounded time. The three time concepts have been

compared in the survival literature (Lawless 1982, Chapters 2 and 3), but the

comparison has not been set out explicitly in the APC literature.

The time concept is a major theme throughout the thesis because data

for APC modelling are typically made available in rounded time. While the

identity (2.1) holds exactly in continuous and discrete time, the identity holds

only approximately in rounded time. A confounding issue defined in Chapter

5 arises when the identity holds true. A misrounding issue defined in Chapters

6 and 7 can arise when the identity does not hold true. We explore the extent

to which the linear identity holds true for different time concepts and rounding

styles so that we can assess the extent to which there are issues of confounding

and misrounding. While textbooks on survival analysis work mostly in contin-

uous time (Cox and Oakes 1984; Collett 2015), we give much attention to all

three time concepts and relatively more attention to rounded time. Our focus

on rounded time is unique to the APC literature.

For each time concept, we define an APC model as a Poisson model for

deaths indexed by age and cohort. The Poisson intensity is written as a product

of a cohort intensity and a survival distribution, where the cohort intensity is

the birth rate for a population and survival distribution is the probability

distribution of the age-at-death for an individual. An independence model is

defined as a special case of the APC model in which the survival distribution

is assumed not to vary with period or cohort. In Chapter 3, we show how

modifications should be made to the independence model to derive a formula

for the APC model.
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2.1 Discrete time and continuous time

In survival analysis, an individual has three main quantities of interest which

we will treat as random: a cohort, C; a period-at-death, P ; and an age-at-

death, A. The three time variables are related by the linear identity

P = A+ C. (2.2)

In this thesis, we show that the linear identity makes APC modelling mathe-

matically interesting.

Time of

birth, C

Time of

death, P
Age at

death, A
Calendar

time

Continuous time

In continuous time, the variables C and P are defined on the real numbers

R = (−∞,∞) with P > C, so that A ∈ (0,∞) = R+. Let λ(a, c) denote

the intensity of deaths for cohort C = c at age a. The bivariate function,

λ(a, c) ∈ R+, can be factorised into the product of a cohort intensity κ(c) ∈ R+

and a probability density function

f(a | c) = lim
δ→0+

Pr (A ∈ [a, a+ δ) | C = c) · 1

δ
∈ R+.

The cohort intensity is the intensity of individuals born in cohort c and can

be written in terms of λ(a, c) as κ(c) =
∫∞

0 λ(a, c) da. The probability density

function can be written in terms of λ(a, c) as

f(a | c) =
λ(a, c)

κ(c)
=

λ(a, c)∫∞
0 λ(a, c) da

. (2.3)
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Definition (2.3) implies that
∫∞

0 f(a | c) da = 1 for any c ∈ R. The function

λ(a, c) characterises f(a | c) because for a fixed c value, f(a | c) ∝ λ(a, c).

We choose to omit the period label p in λ(a, c) because the intensity of deaths

indexed in terms of a, p and c can be equivalently indexed in terms of a and c

due to equation (2.2).

We assume that deaths form a Poisson process so that the number of

deaths in age interval (a1, a2) for a group of individuals born in cohort interval

(c1, c2) is

Ndeath ((a1, a2), (c1, c2)) ∼ Poisson
(∫ a2

a1

∫ c2

c1

λ(a, c) dc da
)

(2.4)

where

λ(a, c) = κ(c) · f(a | c). (2.5)

The probability that there are exactly x deaths in the age-cohort space con-

sisting of ages (a1, a2) and cohorts (c1, c2) can then be written as

1

x!

(∫ a2

a1

∫ c2

c1

λ(a, c) dc da
)x

exp

(
−
∫ a2

a1

∫ c2

c1

λ(a, c) dc da
)
.

Alternatively, the probability of exactly x deaths occurring at ages (a1, a2) for

cohorts (c1, c2) can be written under a Binomial model as
(
n
x

)
px(1 − p)n−x,

where n is the number of births in cohort interval (c1, c2) and

p =
1

n

∫ a2

a1

∫ c2

c1

λ(a, c) dc da.

The Poisson model is a close approximation to a Binomial model for a small

x and a small p (Lipschutz and Schiller 1998, page 191).

The Poisson model assumes that deaths occur independently so that the

death of one individual does not influence the death of another individual. A

Poisson model would not be appropriate if the death of one individual causes

the death of another individual. In Chapter 7, we use a Poisson to describe

the incidence of Bovine Spongiform Encephalopathy (BSE) in cattle. Infected

cattle feed is believed to be the major source of BSE transmission. However,

if BSE was passed on by infected cattle due to the close proximity with other

27



cattle, then it would be necessary to consider a spatial dependence for BSE

cases and a Poisson model would not be suitable. A Poisson model is often

used to describe deaths in the APC literature (Clayton and Schifflers 1987a;

Lee and Hsieh 1996). Some other models for deaths used in applied APC

studies include the Neyman Type A model (Barrett 1973) and the Negative

Binomial model (Jean et al. 2013). In this thesis, we only use the Poisson

model.

Discrete time

In discrete time, the variables C and P are defined on the set of integers

Z = {. . . ,−1, 0, 1, . . .} with P ≥ C, so that A ∈ N0 = {0, 1, 2, . . .}. Let λa,c

denote the expected number of deaths at age a for a group of individuals born

in cohort c. The bivariate function, λa,c ∈ R+, can be factorised into the

product of a cohort intensity κc ∈ R+ and a probability mass function

fa|c = Pr(A = a | C = c) ∈ (0, 1).

The cohort intensity is the expected number of individuals born in cohort c

and can be written in terms of λa,c as κc =
∑∞

a=0 λa,c. The probability mass

function can be written in terms of λa,c as

fa|c =
λa,c
κc

=
λa,c∑∞
a=0 λa,c

. (2.6)

Definition (2.6) implies that
∑∞

a=0 fa|c = 1 for any c ∈ Z. The function λa,c

characterises fa|c because for a fixed c value, fa|c ∝ λa,c.

We assume that deaths form a Poisson process so that the number of

deaths at age a for a group of individuals born in cohort c is

Ndeath
a,c ∼ Poisson

(
λa,c = κc · fa|c

)
. (2.7)

The probability of exactly x deaths occurring at age a for cohort c is

Pr
(
Ndeath
a,c = x

)
=

(λa,c)
x exp (−λa,c)
x!

.
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Alternatively, the probability of exactly x deaths occurring at age a for cohort

c can be written under a Binomial model as
(
n
x

)
px(1 − p)n−x, where n is the

number of births in cohort c and p =
λa,c
n . Similar to continuous time, the

Poisson model is a close approximation to a Binomial model for a small x and

a small p.

When time is discrete, there is no concept of fractional time such as months

or days. Deaths are counted at time instances rather than in time intervals.

In discrete time, we allow for A = 0 so that an individual can die at birth.

We explain in Chapter 4 that applied APC studies are mostly concerned with

modelling fa|c. The models (2.4) and (2.7) are APC models. In this thesis, we

refer to λ(a, c) = κ(c) · f(a) and λa,c = κc · fa as independence models because

they do not allow the survival distribution to depend on period and cohort. In

Chapter 3, we explore how modifications should be made to the independence

models to allow for departures from independence due to period and cohort.

2.2 Rounded time

The underlying time concept can either be continuous or discrete. The time

concept is typically continuous for applied APC studies, however, there is a

third time concept that is created when the continuous variables A, P and

C are discretised (Kermack et al. 1934; Clayton and Schifflers 1987a). A dis-

cretisation of time means that continuous time is treated as if it were discrete

time. Time can be discretised into one-year intervals by integer rounding and

we work exclusively with integer rounding in this thesis.
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Rounding styles and near identities

Suppose time is continuous so that A, P and C all have a fractional part and

let

I = [A], J = [P ], K = [C]. (2.8)

The square brackets [·] are a shorthand for either rounding down to the nearest

integer, rounding up to the nearest integer, or rounding to the nearest integer.

Taking the age-at-death as an example, the floor and ceiling functions can be

defined as

bAc = max{z ∈ Z | a > z}

dAe = min{z ∈ Z | a < z}.

In this thesis, we consider three styles of integer rounding:

1. Rounding down - The square brackets are replaced with the floor function

b·c;

2. Rounding up - The square brackets are replaced with the ceiling function

d·e;

3. Rounding nearest - Consider the A variable as an example and let

d(A) = A− bAc ∈ (0, 1)

denote the fractional part of A. We assume that d(A) cannot take a

value of zero. We round down to the nearest integer for d(A) < 0.5 and

round up to the nearest integer for d(A) ≥ 0.5. In summary, we replace

[A] with bA + 0.5c which is because bA + 0.5c = bAc for d(A) < 0.5

and bA + 0.5c = dAe for d(A) ≥ 0.5. The same logic can be applied

to the variables P and C. Note that, for nearest rounding we could not

replace [A] with dA − 0.5e because dA − 0.5e = bAc for d(A) ≤ 0.5 and

dA− 0.5e = dAe for d(A) > 0.5.
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The variable I is defined on the set N0 for down and nearest rounding,

and is defined on N for rounding up. Note that, for rounding up, we can also

write I in terms of the floor function as bAc + 1. The variables J and K can

be written similarly for the three rounding styles.

Our work on integer rounding in this thesis can be extended for a gen-

eral discretisation of A, P and C over θ-year intervals. For example, we can

discretise A by using the following formula:

I = θ

(⌊
A

θ
+
z1

2

⌋
+ z2

)
; (2.9)

where z1 = z2 = 0 for a downward discretisation, z1 = 0 and z2 = 1 for an

upward discretisation, and z1 = 1 and z2 = 0 for a nearest discretisation. For

example, a value of I = 50 for a downward discretisation with θ = 5 would

correspond to a discretisation of A ∈ (50, 55). The variable I would be defined

on the set θ ·N0 for a downward or nearest discretisation, and would be defined

on θ · N for an upward discretisation. Substituting θ = 1 into equation (2.9)

would produce the definition of I for the three rounding styles.

In this section, we explain that the basic continuous identity P = A+ C

from (2.2) transforms under a rounded discretisation into the “near identities”:

J = I +K, (2.10)

J = I +K + 1, (2.11)

J = I +K − 1. (2.12)

It is widely known that (2.10) and (2.11) can hold for rounding down, however,

these two near identities are rarely stated explicitly. We prove in Case 1 that

these two near identities hold true and the proof requires us to consider the

fractional parts of A and C. We do not let d(A) + d(C) take values of zero or

one because P cannot take an integer value. The rule of A, P and C not taking

integer values is a consequence of time being defined on the real numbers.

The following rule for the near identities is true with respect to the three

rounding styles:
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• Case 1 - When rounding down to the nearest integer,

J − I −K =


0, if d(A) + d(C) ∈ (0, 1)

1, if d(A) + d(C) ∈ (1, 2).

• Case 2 - When rounding up to the nearest integer,

J − I −K =


−1, if d(A) + d(C) ∈ (0, 1)

0, if d(A) + d(C) ∈ (1, 2).

• Case 3 - When rounding to the nearest integer,

J−I−K =


+1, if d(A), d(C) ∈ (0, 0.5) and d(A) + d(C) ∈ [0.5, 1)

−1, if d(A), d(C) ∈ [0.5, 1) and d(A) + d(C) ∈ (1, 1.5)

0, otherwise.

Near identities in the Lexis diagram

A Lexis diagram is a two-dimensional graph with three axes, where each axis

represents values of either age, period or cohort. There is a horizontal axis,

a vertical axis and a diagonal axis. There are many possible ways to display

the Lexis diagram and the direction of the diagonal axis depends on the choice

of display. In this thesis, we only display the diagram in age-cohort space

as in Figure 2.1, with age on the horizontal axis, cohort on the vertical axis,

and period on a positive-diagonal axis. Positive diagonal means that period

increases in a north-east direction.

The Lexis diagram is named after the German statistician Wilhelm Lexis

for his work in Lexis (1875), which is written in the German language. Van-

deschrick (2001, Chapter 2) provides a detailed description of the diagram in

the English language. The name Lexis diagram might be a misnomer because

Vandeschrick (2001, Chapters 3 and 4) explains that there are other researchers
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including Gustav Zeuner and Otto Brasche who are more worthy than Wilhelm

Lexis of being attributed as the inventor of the diagram.

age A

co
ho

rt
 C

Ti,i+k,k−1

Ti,i+k+1,k

Ti,i+k,k

Ti,i+k+1,k+1

●

P = i+k+3

P = i+k+2

P = i+k+1

P = i+k

P = i+k−1

i−1 i i+1 i+2

k−1

k

k+1

k+2

Figure 2.1: A Lexis diagram in age-cohort space. The triangle labels depicted with

letter T are stated only for a rounding down style. The variables A, P and C are

assumed to have fractional parts so they can not be defined at any point on the

network of lines.

The network of lines drawn perpendicular to each axis produces a trian-

gular grid with each triangle corresponding to a three-way rounding of age,

period and cohort. Each triangle in the grid corresponds to one particular

near identity when adopting the styles of rounding down or rounding up. For

rounding nearest, however, each triangle in the grid does not correspond to

one particular near identity and we must divide each triangle in the grid into
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four smaller triangles to produce Lexis regions that each correspond to a near

identity. Thus, we divide a square in the Lexis diagram into eight parts as in

Figure 2.2.

Let T label a triangle in a Lexis diagram for a three-way rounding of age,

period and cohort, but not necessarily outlined by the triangular grid, so that

Ti,j,k = {(A,P,C) : I = i, J = j,K = k}. (2.13)

For any rounding style, the number of deaths in the region Ti,j,k is derived as

the following discretisation of the continuous model from (2.4):

Ndeath
i,j,k ∼ Poisson (λi,j,k) (2.14)

where

λi,j,k =

∫∫
Ti,j,k

λ(a, c) da dc.

The triangle labels in Figure 2.1 are only true for a rounding down style. The

triangle labelled by Ti,i+k,k is enclosed vertically by ages (i, i+ 1), horizontally

by cohorts (k, k + 1) and diagonally by periods (i + k, i + k + 1). If the floor

function is applied to all values in these three time intervals, then this triangle

is deduced to correspond to age I = i, period J = i + k and cohort K = k.

The Lexis diagram labels for a rounding up style are easy to deduce given the

labels for a rounding down style. For rounding up, the triangle Ti,j,k would be

enclosed by ages (i − 1, i), cohorts (k − 1, k) and periods (j − 1, j). Hence, a

triangle labelled as Ti,j,k in the Lexis diagram for a rounding down style would

instead be labelled as Ti+1,j+1,k+1 for a rounding up style.

Suppose we classify each element of the triangular grid as either a lower

triangle or an upper triangle:

T
(L)
i,k = {(A,P,C) : A ∈ (i, i+ 1), P ∈ (i+ k, i+ k + 1), C ∈ (k, k + 1)},

(2.15)

T
(U)
i,k = {(A,P,C) : A ∈ (i, i+ 1), P ∈ (i+ k + 1, i+ k + 2), C ∈ (k, k + 1)}.

(2.16)
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Figure 2.2: A square in the Lexis diagram separated into eight triangles. The near

identity is considered for each triangle under the three rounding styles.

In Figure 2.2, a lower triangle is a collection of the triangles labelled numerically

as 1, 5, 6 and 7. An upper triangle is a collection of the triangles labelled nu-

merically as 2, 3, 4 and 8. This classification is mostly helpful when discussing

near identities for the styles of rounding down and rounding up, and becomes

helpful in Chapter 6 when distinguishing between Lexis squares and Lexis par-

allelograms. For rounding down, T (L)
i,k = Ti,i+k,k and T

(U)
i,k = Ti,i+k+1,k. But for

rounding up, T (L)
i,k = Ti+1,i+k+1,k+1 and T (U)

i,k = Ti+1,i+k+2,k+1. When rounding

down, lower triangles satisfy (2.10) and upper triangles satisfy (2.11). When

rounding up, lower triangles satisfy (2.12) and upper triangles satisfy (2.10).

For nearest rounding, there are two near identities that hold true in each

element of the triangular grid. Further, all three near identities can hold for

nearest rounding compared to the two identities for rounding down and up.

The near identities (2.10) and (2.11) hold for lower triangles, whereas the

identities (2.10) and (2.12) hold for upper triangles. Specifically, in Figure
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2.2, the first near identity (2.10), which is analogous to the continuous linear

identity, holds for the triangles 1, 2, 4, 5, 7 and 8. To illustrate how to obtain

a particular identity for a chosen triangle, consider the following example. The

fractional parts of A, C and P in triangle 6 are d(A) ∈ (0, 0.5), d(C) ∈ (0, 0.5)

and d(P ) = d(A)+d(C) ∈ [0.5, 1). When applying nearest rounding to triangle

6, we derive

I = bAc, K = bCc, J = dP e. (2.17)

Using the fractional part expansion

A+ C = (bAc+ bCc) + d(A) + d(C),

the interval for P can be written as

A+ C ∈
[

0.5 + bAc+ bCc, 1 + bAc+ bCc
)
. (2.18)

Applying the ceiling function to each value in the interval (2.18) leads to

dA+ Ce = 1 + bAc+ bCc. (2.19)

For the variables stated in (2.17), the equation (2.19) implies that

J − I −K = 1 + bAc+ bCc − bAc − bCc = 1.

2.3 Discussion

In this chapter, the APC model was defined for continuous, discrete and

rounded time as a Poisson model for deaths. Other models for deaths can

be considered if the deaths of individuals do not occur independently. The

Poisson intensity of the APC model, which describes the intensity or expected

quantity of deaths at a particular point in the age-cohort space, is written in

continuous time as λ(a, c) = κ(c)·f(a | c) and in discrete time as λa,c = κc ·fa|c.

In rounded time, the Poisson intensity is a discretisation of λ(a, c) over a region
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in the Lexis diagram. In this thesis, the term APC model will be synonymous

with the Poisson intensities λ(a, c) and λa,c. When the survival distribution is

independent of period and cohort, so that λ(a, c) = κ(c)·f(a) and λa,c = κc ·fa,

we refer to the Poisson intensities as independence models. In Chapter 3, we

investigate how modifications should be made to f(a) and fa to handle depen-

dence on period and cohort.

In Chapter 5, we show that there are confounding problems when the

linear identity holds true. In this chapter, we showed that the linear identity

age = period − cohort holds true in continuous time and discrete time. The

linear identity does not always hold true in rounded time, and, instead, three

non-identities arise in rounded time. In particular, the value of period− age−

cohort can be equal to +1, −1 or 0 when age, period and cohort are rounded

to the nearest integer. The distinction between discrete time and rounded

time is very important in this thesis. In Chapter 6, we explain that data are

typically made available for analysis in rounded time with age, period and

cohort rounded down to the nearest integer. The Lexis diagram is helpful

in illustrating the rounding of the data. We also show that there can be

a substantial loss in accuracy for a statistical analysis when fitting discrete

independence models to rounded data. The loss in accuracy is only explored

for rounding down.
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Chapter 3

Models for the survival

distribution

In continuous time, the Poisson intensity of an APC model was described in

equation (2.5) as equal to λ(a, c) = κ(c) · f(a | c). In discrete time, the

Poisson intensity of an APC model was described in equation (2.7) as equal

to λa,c = κc · fa|c. The Poisson intensity is a product of a cohort intensity

and a survival distribution. The independence models λ(a, c) = κ(c) · f(a)

and λa,c = κc · fa are a special case of the APC model. In this chapter,

we investigate how modifications should be made to f(a) and fa to derive a

suitable parameterisation for f(a | c) and fa|c. In Section 3.1, we list five

different ways to express the survival distribution and this list is standard

in textbooks on survival analysis (Lawless 1982, Chapter 1). The survival

distribution of an individual can depend on their covariates such as gender and

smoking status, but, we focus particularly on period and cohort as covariates.

Covariate models take the survival distribution for a baseline group of

individuals with the same covariates and describe a general survival distribu-

tion that is defined through departures from the baseline distribution due to

difference in covariates. The functions f(a) and fa are viewed as the baseline

survival distribution. A covariate is a modification of f(a) and fa to incor-
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porate the effects of covariates. Cox and Oakes (1984, Chapter 5) present a

list of covariate models such as PH models and accelerated failure time (AFT)

models. In Section 3.3, we assess the suitability of various covariate mod-

els in continuous and discrete time for a situation in which covariates do not

vary with age. The baseline survival distribution can be parametric so we re-

view parametric survival models for continuous and discrete time in Section

3.2. Survival textbooks generally review parametric models in continuous time

such as Kalbfleisch and Prentice (2002, Chapter 2), but, it is not standard to

review parametric models in discrete time. We discuss parametric models in

continuous, discrete and rounded time.

A covariate can be either a function of age or a constant value for each

individual. Period p = c+a is an example of an age-dependent covariate since

period is a function of age, whereas cohort is age-independent since cohort

stays constant throughout an individual’s life. A distinction between age-

independent and age-dependent covariates is made by Cox and Oakes (1984,

Chapter 8). In Section 3.4, we explore the suitability of various covariate

models in continuous and discrete time for a situation in which some covariates

vary with age. We find that only covariate models for the hazard function are

suitable under age-dependent covariates and that some of the covariate models

that were suitable under age-independent covariates are no longer suitable.

Further, only the PH model is suitable when modifying the independence model

in continuous time, while only the complementary log-log (CLL) and discrete

logistic (DL) models are suitable when modifying the independence model

in discrete time. In Chapter 4, we explain that statisticians usually make

modifications to the independence model by using a PH model.
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3.1 Survival distribution

In Chapter 2, we defined A as the age-at-death for an individual and referred

to the probability distribution of A as the survival distribution. The survival

distribution was represented by a probability mass function in discrete time

and a probability density function in continuous time. In this section, the

survival distribution is defined as a function of age independently of covariates

for all three time concepts: discrete, continuous and rounded. Covariates

are introduced in Section 3.3 to allow the survival distribution to depend on

covariates such as period and cohort.

Continuous time

In continuous time, the survival distribution has probability mass on the in-

terval R+ and can be defined by a cumulative distribution function

F (a) = Pr(A ≤ a),

such that (i) F (a) is continuous, (ii) F (a) is strictly increasing, and (iii)

lima→∞ F (a) = 1. Other ways to describe the survival distribution are:

• survivor function - S(a) = Pr(A > a) = Pr(A ≥ a) = 1− F (a)

• probability function - f(a) = F ′(a) = limδa→0+
Pr(a≤A<a+δa)

δa

• hazard function - h(a) = limδa→0+
Pr(a≤A<a+δa|A≥a)

δa

• cumulative hazard function - H(a) =
∫ a

0 h(u) du.

The hazard function and probability function always satisfy the inequality 0 <

f(a) < h(a) < ∞. The cumulative distribution function is strictly increasing

because we assume that f(a) > 0 for all a.
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We say probability function as a shorthand for both probability density

and probability mass functions. In continuous time, Pr(A > a) = Pr(A ≥ a)

because Pr(A = a) = 0 for all a ∈ R+. It is standard for a textbook on survival

modelling to mention all five of these expressions for the survival distribution,

for example, see Lawless (1982, Chapter 1).

The hazard function captures the risk of death for an individual at a

certain time in life conditional on the individual surviving to that particular

time. The probability that an event, B, occurs given that another event, A,

has already occurred is

Pr(B | A) =
Pr(A and B)

Pr(A)
. (3.1)

We can use the conditional probability formula to write the hazard function

in terms of the probability function and survivor function as

h(a) =
1

Pr(A ≥ a)
· lim
δa→0+

Pr(a ≤ A < a+ δa)

δa
=
f(a)

S(a)
.

Further, the hazard function can be written in terms of only the survivor

function so that

h(a) =
d
daF (a)

S(a)
= −

d
daS(a)

S(a)
= − d

da
logS(a). (3.2)

By rearranging (3.2), the survivor function is written as a function of the

cumulative hazard function as

S(a) = exp

(
−
∫ a

0
h(u) du

)
= exp(−H(a)). (3.3)

In continuous time, if we know the hazard function, then we can use (3.3) to

obtain the probability function:

f(a) = S(a) · h(a) = exp

(
−
∫ a

0
h(u) du

)
· h(a). (3.4)

Notice that, since lima→∞ S(a) = 1− lima→∞ F (a) = 0, the cumulative hazard

function tends to infinity as a→∞.
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Discrete time

In discrete time, the survival distribution has probability mass at N0 and can

be defined by a cumulative distribution function

Fa = Pr(A ≤ a),

such that (i) Fa is strictly increasing and (ii) lima→∞ Fa = 1. Other ways to

describe the survival distribution are:

• survivor function - Sa = Pr(A > a) = Pr(A ≥ a+ 1) = 1− Fa

• probability function - fa = Pr(A = a) = Fa − Fa−1

• hazard function - ha = Pr(A = a | A ≥ a)

• cumulative hazard function - Ha.

The hazard function and probability function satisfy the inequalities 0 < fa < 1

and 0 < ha ≤ 1. The cumulative distribution function is strictly increasing

because we assume that fa > 0 for all a. The five expressions for the survival

distribution in continuous and discrete time can be found in Kalbfleisch and

Prentice (2002, Chapter 1).

The hazard function is the probability of death for an individual at a

certain time in life conditional on their survival to that particular time. The

quantity

1− hu = Pr(A 6= u | A ≥ u)

is the probability of survival for an individual at age u conditional on their

survival to age u. Hence, the survivor function can be written in terms of the

hazard function as

Sa = Pr(A ≥ a+ 1) =
∏

0≤u≤a
Pr(A 6= u | A ≥ u) =

∏
0≤u≤a

(1− hu) .
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There are two ways in which we can define the cumulative hazard function

in discrete time. One method is to assume that Ha = − logSa, as in equation

(3.3), so that Ha = −
∑a

u=0 log (1− hu). The cumulative hazard function then

tends to infinity as a → ∞. The other method is to replace the integral in

(3.3) with a sum so that Ha =
∑a

u=0 hu. Both approaches are discussed by

Collett (2015, pages 35–36) and both approaches are approximately equivalent

for small hu since x ≈ − log(1− x) for small x.

We can use the conditional probability formula in (3.1) to write the hazard

function in terms of the probability function and survivor function as

ha =
Pr(A = a)

Pr(A ≥ a)
=

fa
Sa−1

. (3.5)

The probability function can then be written in terms of the hazard function

as

fa =
∏

0≤u≤a−1

(1− hu) · ha. (3.6)

Note that, equation (3.6) holds only for ages greater than zero and that f0 =

h0 > 0 is always true.

Rounded time

In Section 2.2, we discussed the discretisation of continuous time for three

rounding styles. In Table 3.1, we use θ1 to describe a lower bound and θ2 to

describe an upper bound for a time interval. For the three rounding styles, the

probability function can be defined as

f∗i = Pr(I = i) =

∫ i+θ2

i+θ1

f(u) du = F (i+ θ2)− F (i+ θ1) (3.7)

and the hazard function can be defined as

h∗i = Pr(I = i | I ≥ i) =
f∗i∑
u≥i f

∗
u

6=
∫ i+θ2

i+θ1

h(u) du.
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In particular, when rounding age down to the nearest integer, the probability

function is defined by integrating f(a) over the interval (i, i+ 1) so that

f∗i = F (i+ 1)− F (i). (3.8)

The hazard function cannot be expressed as a discretisation of h(a) over the

interval (i, i+ 1), but it can be expressed in terms of a discretisation of f(a).

The quantity f∗i is an important component of the independence model de-

scribed in Chapter 6. The purpose of this thesis is to assess the misleading

conclusions that can arise when assessing the suitability of an independence

model for a mistreatment of data.

Table 3.1: Constants used to define the probability function and hazard func-

tion in rounded time.

Style of integer rounding θ1 θ2

Rounding down 0 1

Rounding up -1 0

Rounding nearest −1
2

1
2

3.2 Parametric models

In this thesis, a model is called parametric if it contains a finite number of

parameters. In this section, we present some parametric models for the survival

distribution in continuous and discrete time; parametric models in rounded

time can be obtained by equation (3.7). The models in this section can be

considered as a base model to the covariate models of Section 3.3.
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Continuous time

The five expressions for the survival distribution can be thought of as equiv-

alent because one expression is enough to define the other four expressions.

Since they are equivalent, we focus on just one expression when defining an

APC survival model in Chapter 4 and we choose to focus on the hazard func-

tion because the hazard function allows for a convenient incorporation of age-

dependent covariates; a conclusion we reach in Section 3.4.

The monotonicity properties of h(a) can be split into five main categories:

• constant —
d
da
h(a) = 0 for all a (→)

• increasing —
d
da
h(a) > 0 for all a (↗)

• decreasing —
d
da
h(a) < 0 for all a (↘)

• unimodal — increasing, constant, then decreasing (∩)

• U-shaped — decreasing, constant, then increasing. (∪)

The hazard function for human mortality is typically U-shaped due to compli-

cations at birth, a low risk of death during midlife, and a high risk of death

when reaching old age. Kermack et al. (1934) argued that the Gompertz–

Makeham model with an increasing hazard function is a good representation

of the hazard function for the mortality of Scottish and English males. As in

discrete time, we assign symbols such as ↗ to each of the five monotonicity

categories for the hazard function. The five monotonicity symbols are used for

parametric models in Table 3.2 and for covariate models in Table 3.4.

Let F (D)(a,ααα) be the cumulative distribution function from family D for

A ∈ R+, where ααα is defined in (3.9). A near exhaustive list of parametric mod-

els for the continuous survival distribution are presented in Table 3.2. Similar

lists of continuous parametric models can be found in Cox and Oakes (1984,
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Chapter 2) and Kalbfleisch and Prentice (2002, Chapter 2). In Table 3.2, we

use φ(·) and Φ(·) to denote the probability function and cumulative distri-

bution function of a standard normal distribution, respectively. The Gamma

model is written in terms of an incomplete gamma function

Iκ7(π7a) =

∫ π7a

0
uκ7−1e−u du

as well as the gamma function Γ(κ7) = Iκ7(∞).

A model family can be a submodel of a more general model family, in

particular, the exponential family is a submodel of the Weibull family if κ6 = 1

and π6 = κ1. The hazard function of the Weibull family can take a variety of

shapes: h(Weibull)(a, κ6, π6) is constant for κ6 = 1, increasing for κ6 > 1 and

decreasing for κ6 < 1. The Gamma and Weibull models are special cases of a

three-parameter generalised gamma model

f(a) =
ρ(π)κak−1e−(πa)ρ

Γ
(
κ
ρ

)
for ρ = 1 and ρ = κ, respectively (Kalbfleisch and Prentice 2002, page 37). We

explain in Chapter 4 that perhaps the first ever age-period-cohort model had

a Gamma model to describe the survival distribution (Greenberg et al. 1950).

A notable model family is increasing-decreasing-bathtub (IDB) which is U-

shaped if 0 < κ13 < π13γ13 (Hjorth 1980). The quadratic model is discussed

by Elbatal and Butt (2014), and the generalised Pareto and Gamma-prime

models are discussed by Davis and Feldstein (1979).

Each model family can be discretised to define a model family in rounded.

We can calculate the probability function for a rounding down style as

f
∗(D)
i,ααα = S(D)(i,ααα)− S(D)(i+ 1,ααα).

The probability function of the exponential family is f∗(Exp.)
i,κ1

= e−κ1i·(1− e−κ1),

which is equivalent to the probability function of a Geometric family (Kalbfleisch

and Prentice 2002, page 46). For the uniform family, the survival distribution

is the same for continuous and rounded time:

f
∗(Unif.)
i,M =

1

M
= f (Unif.)(a,M) 0 ≤ i ≤M, 0 < a < M.
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However, it is difficult to write f∗(D)
i,ααα in a simple and concise form for most

model families. For instance, Gompertz is one of the simplest two-parameter

families in our list and its discretised probability function is equal to

f
∗(Gompertz)
i,ααα = exp

(
−κ4

π4
eπ4i

)
− exp

(
−κ4

π4
eπ4i

)eπ4
.

Discrete time

The monotonicity properties of ha can be split into five main categories:

• constant — ha+1 − ha = 0 for all a (→)

• increasing — ha+1 − ha > 0 for all a (↗)

• decreasing — ha+1 − ha < 0 for all a (↘)

• unimodal — increasing, constant, then decreasing (∩)

• U-shaped — decreasing, constant, then increasing. (∪)

The list of five categories is not exhaustive and other monotonicity categories

can exist. For product-reliability testing, the hazard function is typically U-

shaped due to an initial burn-in period, followed by a period of stability, and

followed later by a wear-and-tear period (Hjorth 1980). We have assigned a

symbol such as ↗ to each of the five monotonicity categories as shown in

brackets and these symbols allow us to write concisely the shape of the hazard

function for parametric models. The five monotonicity symbols are used to

describe parametric models in Table 3.3 and covariate models in Table 3.5.

Given we know fa, the function Fa is often difficult to write in a simple

and concise form, which means ha is also intractable to some extent. In par-

ticular, it is difficult to write a simple expression for ha for the Poisson and

Binomial models. It was proved by Gupta et al. (1997) that even if ha is in-

tractable to some extent, we can still determine its monotonicity by checking
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the monotonicity of fu+1

fu
. Specifically, letting ηu = fu+1

fu
− fu+2

fu+1
, Gupta et al.

proved that:

• if ηu = 0 for all u, then ha is constant;

• if ηu > 0 for all u, then ha is increasing;

• if ηu < 0 for all u, then ha is decreasing.

The key to the proof is that we can use equation (3.6) to write

1

ha+1
− 1

ha
=

(
fa+2

fa+1
− fa+1

fa

)
+

(
fa+3

fa+2

fa+2

fa+1
− fa+2

fa+1

fa+1

fa

)
+ · · · .

One notable result is that a Poisson model has a hazard function that is

increasing because if A ∼ Poisson(λ), then fa = λae−λ

a! , fa+1

fa
= λ

a+1 and

ηa = λ
(a+1)(a+2) > 0.

Let D denote a name for a model family such that A ∼ D. We use F (D)
a,ααα to

denote the cumulative distribution function from family D for A ∈ N0, where

αααT = (α1, α2, . . . , αm) (3.9)

is a finite parameter vector. A comprehensive list of parametric models for the

discrete survival distribution are presented in Table 3.3. This table presents

some of the discrete parametric models reviewed by Johnson et al. (2005, Chap-

ter 11). The last six model families in the table are introduced in Nakagawa and

Osaki (1975), Salvia and Bollinger (1982), Stein and Dattero (1984), Xekalaki

(1983), Adams and Watson (1989) and Lai and Wang (1995), respectively.

The simplest model family is Geometric because it assumes that the haz-

ard function is constant such that, at each time step, an individual either dies

with probability h(Geometric)
a,π1 = π1 or survives with probability 1− π1 indepen-

dently of their current age.

A hazard function can take a variety of shapes depending on the parameter

values. The discrete Weibull family proposed by Nakagawa and Osaki (1975)

is named after the continuous Weibull family due to the variety of shapes the
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hazard function can take. The discrete Weibull family has a hazard function

that is increasing for γ2 > 1, decreasing for 0 < γ2 < 1 and constant at

1−π2 for γ2 = 1. For other parametric families, the hazard function is strictly

increasing when γ5 < 0, π7 ≥ 0 or η(a,N) is strictly increasing with a. The

hazard function is strictly decreasing if γ5 > 0 or η(a,N) is strictly decreasing

with a. The Lai–Wang family has a U-shaped hazard function if π7 < 0.

The Geometric family is a special case for a Xekalaki family with γ5 = 0 or

an Adams–Watson family with η(a,N) constant in a. Johnson et al. (2005,

page 517) explains that the probability function of a Xekalaki family comes

from a Waring distribution for γ5 > 0 and from a negative hypergeometric

distribution for γ5 < 0 . The Adams–Watson family assumes that the logit of

the hazard function is a polynomial.

3.3 Covariate models with age-independent covari-

ates

The survival distribution of an individual can depend on their covariates such

as gender or smoking status, and we focus on period and cohort as covariates.

We use the term covariate model to refer to a model for the survival distribution

that is conditional on covariates. There are many examples of covariate models

in the survival literature such as the proportional hazards (PH) model and

accelerated failure time (AFT) model (Cox 1972; Collett 2015). In this section,

we assess the suitability of various covariate models in continuous and discrete

time when covariates are age-independent.

Let xT = (x1, . . . , xq) be a q-vector of covariates for an individual and let

ψ = xTβββ ∈ R (3.10)
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be a linear predictor associated with x and a parameter vector

βββT = (β1, . . . , βq) . (3.11)

We use the term base model to refer to the survival distribution for a reference

individual or reference group of individuals. The individual or group of indi-

viduals represented by the base model has a particular set of covariate values.

The base model can be viewed as the independence model before modifications

are made to consider the effect of covariates such as period and cohort.

For example, the base model could refer to the survival distribution for

males so that ψ = βx, where x = 1 if the individual is female and x = 0 if

the individual is male. The parameter β defines the survival distribution for

females through a departure from the male survival distribution. By consider-

ing a second covariate, the base model could refer to the survival distribution

for males born at time c = 2000 so that ψ = β1x+ β2[c− 2000].

A covariate model takes the base model and describes the survival distri-

bution for any individual by a departure from the base model through ψ. The

base model corresponds to ψ = 0 and is obtained by substituting the covari-

ates of the reference individual or individuals into ψ. The Cox model (Cox

1972), in which the departures are defined by shifting the hazard function by

a constant of proportionality, is a prime example of a covariate model.

A covariate model takes a function of the base model and ψ. The base

model is not necessarily parametric and can be nonparametric. We say that

a model is nonparametric if the model cannot be expressed in terms of a fi-

nite number of parameters. Letting G be a functional, a covariate model in

continuous time is

Fψ(a) = G(F0(a), ψ) (3.12)

and a covariate model in discrete time is

Fa,ψ = G(Fa,0, ψ). (3.13)
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We say that a covariate model is valid if each of the five expressions for the

survival distribution has the same range before and after the functional trans-

formation. For example, in continuous time, the survivor function should al-

ways have a range of [0, 1) and the hazard function should have a range of R+.

It is not necessary to assess the range for every expression since S(a) ∈ [0, 1]

would imply that F (a) ∈ [0, 1].

In Table 3.4, we present a list of five covariate models in continuous time.

The first and third columns of the table state the name and form of the co-

variate model. In the case of a parametric base model, the final column states

a family for which the covariate model is closed. A model is closed if the base

model and covariate model both share the same family. If the range of the

base model in column two is the same as the range of the covariate model in

column three, then we say that the covariate model is valid. An important

assumption we make is that the base model is valid.

A prime example of a valid functional in continuous time is the propor-

tional hazards (PH) functional introduced by Cox (1972), which assumes that

the hazard functions between individuals differ by a constant of proportion-

ality. The PH functional has a hazard function hψ(a) = h0(a)eψ which is

restricted to the interval R+ and a survivor function Sψ(a) = S0(a)e
ψ which

is restricted to [0, 1]. Parallel hazards is an example of an invalid functional

because the hazard function hψ(a) = h0(a) + ψ takes values on R. Parallel

hazards is considered here as an illustrative example of an invalid model, but

it is never used in practice. We present two covariate models for the quantile

function of A:

Q(u) = F−1(u) ∈ R+ for u ∈ [0, 1].

The quantile function is a sixth expression for the survival distribution.

A similar list of covariate models was compiled by Cox and Oakes (1984,

Chapter 5) which included parallel hazards, proportional hazards, proportional

odds (PO) and accelerated age-at-death (AA). Note that, the AA functional

is commonly known as accelerated failure time (AFT). The “logit” of a vari-
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able x means that logit(x) = log
(

x
1−x

)
. The PO functional, which assumes

that the logit of the survivor function differs between individuals by an addi-

tive constant, is valid because its survivor function Sψ(a) = S0(a)eψ

S0(a)eψ+F0(a)
is

restricted to the interval [0, 1]. In Table 3.4, multiple entries for a particular

functional indicate equivalent ways to write a covariate model. For example,

proportional hazards implies that the cumulative distribution function can be

written as Fψ(a) = 1− [1− F0(a)]e
ψ .

The AA functional, which assumes that the quantile function differs be-

tween individuals by a constant of proportionality, is another very widely used

functional. Cox and Oakes (1984, pages 64–65) state that the AA functional

implies that the cumulative distribution function and hazard function can be

written as F0

(
eψa
)
and h0

(
eψa
)
eψ, respectively. Textbooks on survival anal-

ysis tend to only mention the PH and AA functionals so it is rare to see a

comparison of three or more functionals.

Letting X and Y be two variables, a location-scale model can be written

as Y = a+ bX where a and b are real numbers. The log location scale (LLS)

model

logQψ(u) = ψ + eψ logQ0(u)

adjusts the location and scale of the logarithm of the base quantile function.

An AA functional logQψ(u) = logQ0(u) − ψ adjusts only the location. The

AA functional is valid because Qψ(u) = e−ψQ0(u) ∈ R+. A location-scale

functional Qψ(u) = eψQ0(u)+ψ is invalid since the quantile function is allowed

to be negative. Models for the quantile function such as the AA and LLS

functionals differ from other functionals in that the linear predictor ψ acts

on age itself. For example, in the expression for the cumulative distribution

function in the AA functional, the effect of covariates is to multiply age a by

eψ. In comparison, the effect of covariates in the PH model is to multiply the

hazard function by eψ.

The final column of Table 3.4 states a family or multiple families for which

the covariate model is closed. For example, the Gompertz family is closed under
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the PH functional since

h
(Gomp.)
ψ (a, κ4, π4) = h

(Gomp.)
0 (a, κ4, π4)eψ = h

(Gomp.)
0 (a, κ4e

ψ, π4). (3.14)

Collett (2015, Chapters 5 and 6) explains how to fit the majority of these

closed models to data.

In Table 3.5, we present a list of covariate models in discrete time. It is

necessary to use different functionals in continuous and discrete time because

the probability function and hazard function have a range of R+ in continuous

time, but have a range of (0, 1) and (0, 1] respectively in discrete time. The

PH model in discrete time is invalid because it allows the hazard function to

exceed one and allows the survivor function to be negative. A discrete logistic

(DL) functional assumes that the logit of the hazard function differs between

individuals by an additive constant, so that

logit (ha,ψ) = logit (ha,0) + ψ.

The DL functional was suggested by Cox (1972) to ensure that the hazard

function takes values between zero and one. The survivor function of a DL

functional can perhaps be written in its simplest form as

Sa,ψ =
∏
u≤a

(1− hu,ψ) =
∏
u≤a

(
1− hu,0

(1− hu,0) + hu,0eψ

)
∈ [0, 1).

Another way to bound the hazard function between zero and one is to

use the complementary log-log (CLL) functional suggested by Kalbfleisch and

Prentice (2002, page 47). The CLL functional has a survivor function that can

be written in the following simple form:

Sa,ψ = [Sa,0]e
ψ

∈ [0, 1).

The CLL functional and the continuous time PH functional both assume that

the survivor function differs between individuals by a power constant. The PO

functional is valid in both continuous and discrete time.
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3.4 Covariate models with age-dependent covariates

In this section, we consider age-dependent covariates and reassess the suit-

ability of the covariate models from the previous section. We conclude that

only the PH, CLL and DL functionals are suitable to describe the survival dis-

tribution of an APC survival model. This conclusion justifies the widespread

adoption of the PH functional in APC modelling (Clayton and Schifflers 1987b;

Carstensen 2007; Jean et al. 2013).

A covariate is age-independent if the covariate is fixed throughout the life

of an individual. A covariate is age-dependent if the covariate varies either

deterministically or randomly with age. An individual’s blood pressure is a

possible covariate that would change randomly with age, whereas period is a

covariate that increases linearly with age according to the identity p = c + a.

Cohort is a covariate that remains the same for all ages so is age-independent.

Random covariates do not feature any further in this thesis. Modelling with

age-dependent covariates is well established in survival modelling (Collett 2015,

Chapter 8). Collett explains how to fit the Cox PH model to data under age-

dependent covariates.

Letting xj(a) be the value of the jth covariate at age a ∈ R+, the linear

predictor associated with βββ and a covariate vector x(a)T = (x1(a), . . . , xq(a))

is

ψ(a) = x(a)Tβββ. (3.15)

Similarly, letting xj,a be the value of the jth covariate at age a ∈ N0, the

linear predictor associated with covariate vector xTa = (x1,a, . . . , xq,a) and a

parameter vector βββ is

ψa = xTaβββ. (3.16)

If we consider period as the only covariate, then an individual born at time

2000 will have a period covariate of x1,a = 2000 + a. Age is implicit in the
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systematic part of the model, but is not explicit because age cannot be a

covariate. The presence of age in the systematic part of the model results in

some covariate models becoming illogical.

Under age-dependent covariates, we can adjust our definitions from (3.12)

and (3.13) to write the covariate model in continuous time as

Fψ(a)(a) = G (F0(a), ψ(a)) (3.17)

and in discrete time as

Fa,ψa = G
(
Fa,0, ψa

)
. (3.18)

We cannot simply exchange ψ with ψ(a) in Table 3.4, or exchange ψ with ψa

in Table 3.5, to derive expressions for a covariate model. For instance, the PH

model under age-dependent covariates is written as

hψ(a)(a) = h0(a)eψ(a). (3.19)

The survivor function implied by this PH functional is not simply equal to

S0(a)eψ(a), but is instead derived with the use of definition (3.3) as

Sψ(a)(a) = exp

(
−
∫ a

0
h0(u)eψ(u)du

)
. (3.20)

Some of the covariate models in Section 3.3 do not make logical sense when

at least one covariate is age-dependent. The quantile function of the AA model

can be written as Qψ(a)(u) = Q0(u)e−ψ(a) for u ∈ (0, 1] under age-dependent

covariates. The AA does not seem logical due to an assumption, for example,

that the median age-at-death corresponding to u = 0.5 depends on age itself.

The LLS model similarly assumes that the median age-at-death depends on

age. So we argue that covariate models for the quantile function are also not

suitable to describe the survival distribution under age-dependent covariates.

For age-independent covariates, we stated in Tables 3.4 and 3.5 that the

PO functional is valid for continuous and discrete time. Under age-dependent

covariates, the PO survivor function can be written in continuous time as

Sψ(a)(a) =
S0(a)eψ(a)

S0(a)eψ(a) + F0(a)
∈ [0, 1). (3.21)
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We argue that the PO functional does not make sense because it assumes

that the probability of survival to age a only depends on the covariates of

the individual at age a. Hence, the survival to age a for an individual is

independent of their survival at ages 0 < u < a. It is important to consider

past survival so that the survivor function at age a depends on x(u) for all

u ∈ (0, a]. There is an element of fortune telling by the PO functional because

the unknown future values in the covariate vector, x(a), are treated as known

at birth. This fortune telling does not apply to period since period is known

for an individual at age a given the cohort of the individual is known.

It is appropriate, however, to assume that the hazard function depends

only on x(a) since the hazard function conditions on x(a) being known at age

a. Further, the PH, CLL and DL functionals are the only covariate models

discussed in this chapter that are logical for age-dependent covariates. For the

definition of the PH survivor function in equation (3.20), the integration of

hψ(u)(u) over the interval u ∈ (0, a] takes into account the survival experience

for an individual before age a. The CLL model for age-dependent covariates

is written as

ha,ψa = 1− (1− ha,0)e
ψa
. (3.22)

The survivor function of a CLL model is then written as

Sa,ψa =
∏
u≤a

(1− hu,0)e
ψu ∈ [0, 1). (3.23)

3.5 Conclusion

The survival distribution for an individual in continuous and discrete time can

be expressed in various ways including in terms of the survivor function, the

probability function, the hazard function and the quantile function. Each ex-

pression for the survival distribution can be thought of as equivalent since, for
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example, if we know the hazard function for an individual, then their probabil-

ity function can be obtained by some integral or product formula. In Chapter

2, APC models were expressed in terms of the probability functions, f(a | c)

and fa|c. The independence models λ(a, c) = κ(c) · f(a) and λa,c = κc · fa were

defined as a special case of the APC models.

In this chapter, we considered a variety of parametric models for f(a)

and fa that consisted of at most three parameters. We then took f(a) and

fa to define a baseline survival distribution and explored through a variety of

functionals how a dependence on the covariates period and/or cohort should

be introduced to the independence models. We concluded that the choice of

functional is contingent on whether the APC model is to be parameterised

with only cohort, only period, or both cohort and period.

We distinguished between cohort as an age-independent covariate and

period as an age-dependent covariate. If the survival distribution is assumed

to vary only with cohort, so that there are no age-dependent covariates, then

there are many possible ways to handle dependence in the APC model. For

instance, in continuous time, the dependence can be introduced by functionals

such as PO, LLS and PH. PO is a functional for the survivor function, LLS is

a functional for the quantile function, and PH is a functional for the hazard

function.

If the survival distribution is assumed to vary only with period or with

both cohort and period, then there are few ways to handle dependence because

only functionals for the hazard function are appropriate under age-dependent

covariates. The reason is that the hazard function at age a can be assumed to

depend only on the covariates at age a. It is not appropriate however to assume

that the survivor function at age a only depends on the covariates at age a.

We conclude that f(a) should be modified according to a PH functional, while

fa should be modified according to either a CLL functional or a DL functional.

In Chapter 4, we show how to fit the modified models to data and explain
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that the way of handling dependence in the APC literature is not consistent

with our findings. Statisticians usually fit the discrete model λa,c = κc · fa|c to

rounded data, where fa|c is specified according to a PH functional. In Chap-

ter 6, we explain that as opposed to estimating a discrete Poisson intensity,

statisticians should estimate a Poisson intensity that is discretised over an

appropriate region in the Lexis diagram.
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Chapter 4

Age-period-cohort modelling

In this chapter, we establish a method to fit APC models to data in the sta-

tistical package R. A simple parameterisation of the APC model is used as

an illustrative example to explain how the method works. In Chapter 3, we

explained that if the independence model indexed in continuous time is to be

modified to incorporate the effects of both period and cohort, then f(a | c)

should be specified according to a PH functional. But if the independence

model indexed in discrete time is to be modified to incorporate period and co-

hort, then fa|c should be specified according to either a CLL functional or DL

functional. It is not necessary to consider both the CLL and DL functionals,

and we choose to write discrete models in terms of the CLL functional. Our

method for fitting APC models is different for continuous time and discrete

time. Our method allows the user to specify a range of parameterisations for

the baseline survival function and for the linear predictor.

In Section 4.3, we present a range of APC models studied in the literature.

The exit event in not necessarily death and there are a range of exit events

studied in the literature including lung cancer (Peto et al. 1995) and homicide

arrest (Fu 2008). The entry event is birth for almost every APC study. We

explain that our methodology for making modifications to the independence

model is not consistent with the APC literature. This is because statisticians
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usually formulate discrete models to describe rounded data and make mod-

ifications to the discrete independence model according to the discrete PH

functional from Table 3.5 (Barrett 1973; Clayton and Schifflers 1987b; Jean

et al. 2013). Models should be discretised correctly to match the rounding of

the data. In Chapter 6, we investigate whether the need for modifications is

only apparent due to misleading conclusions that arise when fitting discrete

independence models to rounded data.

An important distinction we make in this thesis is that an APC model

can either be a survival model or a regression model. This distinction between

model settings has not been made explicit in the literature and is discussed

more in Section 4.4. An APC regression model considers how the distribution

of some response variable, that is unrelated to the death of an individual, varies

with age, period and cohort. Chapters 2 and 3 are exclusive to the survival

setting of APC modelling. The confounding issue discussed in Chapter 5 is

relevant for both the survival and regression settings. The issue of misrounding

discussed in Chapters 6 and 7 is only relevant to the survival setting.

APC survival modelling can be viewed from two perspectives: the pop-

ulation level and the individual level. At the individual level, the survival

distribution for an individual is modelled conditional on the period and their

cohort. Textbooks on survival modelling tend to focus on the individual per-

spective (Cox and Oakes 1984; Collett 2015). At the population level, both

the survival distribution and cohort intensity are modelled. A population level

perspective is adopted when describing Poisson models for deaths in Chapter 2

and an individual level perspective is adopted in Chapter 3. All APC survival

models in this chapter adopt a population level perspective.
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4.1 Survival setting in continuous time

Recall from (2.4) that the Poisson model indexed in continuous time by age

and cohort has an intensity function λ(a, c) = κ(c) · f(a | c). In equation

(3.15), we defined the linear predictor ψ(a) as a product of a covariate vector

x(a)T and a parameter vector βββ. If period and cohort are the only covariates

that affect the survival distribution for an individual, so that ψ(a) is only a

function of p and c, the probability function defined under the covariate model

in (3.17) can be written as

fψ(a)(a) ≡ f(a | c).

In Chapter 3, we showed that, in continuous time, dependence in the APC

model should be handled by specifying the survival distribution according to

a PH model. Recalling the survivor function in (3.20), the Poisson intensity

for deaths in the APC model is then written as

λ(a, c) = κ(c) · f(a | c)

= κ(c) · S(a | c) · h(a | c)

= κ(c) · exp

(
−
∫ a

0
h0(u)eψ(u) du

)
· h0(a)eψ(a). (4.1)

Any valid APC model must ensure that κ(c) > 0 for all c.

Let aj ∈ R+ and cj ∈ R be the age-at-death and cohort respectively

for individuals j = 1, 2, . . . , n. The data can be written in vectors as aT =

(a1, a2, . . . , an) and cT = (c1, c2, . . . , cn). While the linear predictor ψ(a) con-

sists of the parameter vector βββ, the base hazard function h0(a) consists of the

parameter vector ααα. The likelihood function for the data can be written as

L (ααα,βββ | a, c) =
n∏
j=1

f (aj | cj) .

The logarithm of the likelihood function for the data is then
n∑
j=1

log f (aj | cj) . (4.2)
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In this section, we establish a method to fit ααα and βββ to data by maximising

the log likelihood function. To illustrate this method, it is helpful to consider a

simple dataset. In the following R code, we draw n = 1000 observations of the

age-at-death from an exponential distribution with parameter κ1 = 0.5 and

draw 1000 observations of cohort from a uniform distribution on the interval

[1, 5]:

n <- 1000; a <- rexp(n,0.5); c <- runif(n,1,5).

In Table 3.2, the exponential distribution was defined with a parameter κ1.

It is also helpful to consider a simple parametric form for f (aj | cj). Sup-

pose that the baseline hazard function follows a Weibull distribution so that

h0(aj) = α1α2 (α2aj)
α1−1

where α1 > 0 and α2 > 0. The Weibull distribution was defined in Table 3.2.

We write the baseline hazard function in R as a function of data vector a and

parameter vector αααT = (α1, α2):

h0 <- function(a,alpha) {

alpha[1]*alpha[2]* ( (alpha[2]*a)∧(alpha[1]-1) )

}

Nalpha <- 2 ##the length of ααα.

It is necessary to specify the length of the vector ααα through Nalpha. The

function h0 creates a vector of base hazard functions evaluated at the observed

ages at death,

hT0 = (h0(a1), h0(a2), . . . , h0(an)) . (4.3)

Suppose that we specify the covariate vector at age aj as x(aj)
T = (cj , pj)

with a corresponding parameter vector βββT = (β1, β2), where β1 and β2 can
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take values on R. The matrix of covariates at death is

X =




x(a1)T

x(a2)T

...

x(an)T

=




c1 p1

c2 p2

...
...

cn pn

.

The following R function, Xmake, takes the data vectors a and c as inputs and

produces the matrix X:

Xmake <- function(a,c) { cbind(c,a+c) } ##covariate matrix

Nbeta <- 2 ##the length of βββ.

It is necessary to specify the number of columns in X, or equivalently, the

length of βββ, through Nbeta. The function Xmake is written only in terms of a

and c because the period covariates for j = 1, 2, . . . , n can be determined as

the sum a+c due to the linear identity p = a+ c.

In this example, the linear predictor at age aj is ψ(aj) = x(aj)
Tβββ =

β1cj + β2pj and the hazard function at age aj is

h(aj | cj) = h0 (aj) · exp (ψ (aj))

= α1α2 (α2aj)
α1−1 · exp (β1cj + β2pj) . (4.4)

The probability density function implied by our choice of h0(aj) and ψ(aj) is

obtained by the definition

f (aj | cj) = exp

(
−
∫ aj

0
h(u | cj) du

)
· h(aj | cj). (4.5)

It is difficult to calculate the integral of h(u | cj) over the interval u ∈ [0, aj ]

so we write the probability density function as the following Riemann Sum:

exp

(
− 1

m
·
m∑
`=1

h

(
aj ·

`

m

∣∣∣∣ cj)
)
· h(aj | cj). (4.6)

The Riemann Sum approximation to an integral is discussed by Adams (2006,

page 286).
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The user must specify the value of m. The accuracy of the Riemann Sum

approximation to f(aj | cj) will increase as the value of m increases. In this

example, we choose to set

m <- 30.

The user can also specify a variable scalePar to scale the vectors ααα and βββ,

which is helpful because the value of exp(ψ(aj)) will be close to or equal to

infinity when the observed cohorts are large and/or when the matrix of covari-

ates is specified with quadratic or cubic terms in cohort or period. Similarly,

the value of h0(aj) could be close to infinity when the observed age at deaths

are large. In this example, we consider linear terms for period and cohort as

well as small values for a and c, so it is sufficient to set

scalePar <- 1.

We establish a function apc.cont in the statistical package R to calculate

the log likelihood function for a particular value of ααα and βββ. Details on this

function are given in Appendix 9.2. For our particular specification of n,

a, c, h0, Xmake, Nalpha„ Nbeta, m and scalePar, we find that the value of

apc.cont(rep(0.1,4)) is equal to -452.224 to three decimal places. That is,

if the parameters α1, α2, β1 and β2 are all set equal to 0.1, then the value of

the log likelihood function is equal to -452.224. If the four parameters are set

equal to one, we find that the log likelihood function is equal to −∞.

The initial values for an optimisation procedure, init must be chosen

so that apc.cont(init) does not return −∞, otherwise the procedure will

not converge to set of optimal parameters. To find the set of parameters

that maximise the log likelihood function, we run the following optimisation

procedure:

init <- rep(0.1, Nalpha+Nbeta) ##initial values

fit <- optim( init, apc.cont,

control=list(fnscale=-1,maxit=5000) ) ##optimisation procedure
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fit$par <- fit$par / scalePar ##scaling of parameters.

The argument fnscale=-1 states that the function apc.cont is to be max-

imised rather than minimised. The argument maxit=5000 states that the op-

timisation should be stopped after 5,000 iterations if an optimal solution to

param has not been found beforehand. The command fit$par / scalePar

rescales the vector param. It is helpful to try different values for init in the

function fit to check that the set of parameters returned do maximise the log

likelihood function.

After typing fit into R, we find that the maximum likelihood estimates

of the parameters are α̂1 = 1.373, α̂2 = 0.780, β̂1 = −0.147 and β̂2 = 0.135 to

three decimal places. The corresponding value of the log likelihood function is

-756.585. Recalling (4.4) and (4.5), the fitted probability density function is

f̂ (a | c) = exp

(
−
∫ a

0
ĥ(u | c) du

)
· ĥ(a | c) (4.7)

where

ĥ(a | c) = 1.373 · 0.780 (0.780a)0.373 · exp (−0.147c+ 0.135p) (4.8)

= 0.976 · a0.373 · exp(0.135a) · exp (−0.012c) . (4.9)

Since an exponential distribution with parameter κ1 = 0.5 is equivalent to

a Weibull distribution with parameters α1 = 1 and α2 = 0.5, our estimates α̂1

and α̂2 do not provide a very accurate description of the data. The observed

age at deaths were simulated from an exponential distribution with no period

or cohort dependence, so the parameters β̂1 and β̂2 should be close to zero.

However, β̂1 and β̂2 do seem quite large. Perhaps the loss in accuracy is

a result of age entering implicitly into the linear predictor through period.

This is because, when substituting p = a + c into (4.8) to derive (4.9), the

contribution to the hazard function for cohort c, written as exp (−0.012c), is

very close to one.

In Figure 4.1, a histogram is plotted for the n = 1000 observed age at

deaths drawn from an exponential distribution with parameter 0.5. The Rie-
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mann Sum approximations of f̂(a | 1) and f̂(a | 4) are also plotted. Relative

frequency takes the number of deaths for a particular year of age and divides

by the total number of observations, n. The two curves provide a reasonable

description of the data since the fitted density and the bars both peak in the

first year of age and are both decreasing on average thereafter. The two curves

do not change very much with cohort which reflects the fact that the data are

generated with no cohort dependence. So the fitted density function f̂ (a | c)

seems to describe the exponential data well.
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Figure 4.1: A histogram for the observed age at deaths for individuals j =

1, 2, . . . , 1000, which are drawn from an exponential distribution with parameter 0.5.

The two curved lines are the fitted density functions for cohorts c = 1 and c = 4 for

the model defined in equation (4.7).

The method described in this section can be applied to many other ex-
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amples. We could fit models to real data or simulate some observations of

the age at death with a dependence on cohort. The parameterisation of the

APC model is determined by h0 and Xmake. The parametric form for h0 could

be specified according to any of the models from Table 3.2. For example, the

Exponential and Gompertz models would be coded respectively as

h0 <- function(a,alpha) { alpha[1] }

h0 <- function(a,alpha) { alpha[1] * exp(alpha[2]) }.

We could consider quadratic period and cohort terms if the cohort and period

effects are nonlinear, so that

Xmake <- function(a,c) { cbind( c, c∧2, a+c, (a+c)∧2 ) }.

An existing R function coxph can also be used to estimate an APC model

under a PH assumption. The APC model is estimated by maximising the

Cox partial likelihood function described by Collett (2015, page 297). The

partial likelihood function only depends on the rank order of the ages at death

a1, a2, . . . , an (Collett 2015, page 66). A benefit of apc.cont is that it can

be used to estimate both the base model and linear predictor simultaneously.

Also, apc.cont accounts for the exact time-gaps between deaths by calculating

the hazard function for all individuals at all intermediate times between birth

and death.

4.2 Survival setting in discrete time

Recall from (2.7) that the Poisson model indexed in discrete time by age and

cohort has an intensity function λa,c = κc · fa|c. In equation (3.16), we defined

the linear predictor ψa as a product of a covariate vector xTa and a parameter

vector βββ. If period and cohort are the only covariates that affect the survival

distribution for an individual, so that ψa is only a function of p and c, the
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probability function defined under the covariate model in (3.18) can be written

as

fa,ψa ≡ fa|c.

In Chapter 3, we showed that, in discrete time, dependence in the APC model

should be handled by specifying the survival distribution according to either

a CLL functional or a DL functional. It is not necessary to consider both

functionals and we choose to write discrete APC models in terms of the CLL

functional. Recalling the hazard function and survivor function defined in

equations (3.22) and (3.23), the Poisson intensity for deaths in the APC model

is then written for a = 1, 2, . . . as

λa,c = κc · fa|c

= κc · Sa−1|c · ha|c

= κc
∏

u≤a−1

(1− hu,0)e
ψu
[
1− (1− ha,0)e

ψa
]
. (4.10)

For a = 0, the Poisson intensity is

λ0,c = κc

[
1− (1− h0,0)e

ψ0
]
.

Any valid APC model must ensure that κc > 0 for all c.

Let aj ∈ N0 and cj ∈ Z be the age-at-death and cohort respectively

for individuals j = 1, 2, . . . , n. The data can be written in vectors as aT =

(a1, a2, . . . , an) and cT = (c1, c2, . . . , cn). While the linear predictor ψa con-

sists of the parameter vector βββ, the base hazard function ha,0 consists of the

parameter vector ααα. The likelihood function for the data can be written as

L (ααα,βββ | a, c) =

n∏
j=1

faj |cj .

The logarithm of the likelihood function for the data is then
n∑
j=1

log faj |cj . (4.11)

Similar to Section 4.1, the purpose of this section is to establish a method

to fit ααα and βββ to data by maximising the log likelihood function. To avoid
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repetition, we do not discuss the method in as much detail. It is helpful to

consider a simple dataset and a simple parametric form for faj |cj . We draw

n = 1000 observations of the age-at-death from a geometric distribution with

parameter π1 = 0.4 and draw 1000 observations of cohort from a binomial

distribution with trial parameter 5 and success probability 0.5:

n <- 1000; a <- rgeom(n,0.4); c <- rbinom(n,5,0.5).

Suppose that the baseline hazard function follows a discrete Weibull dis-

tribution so that

ha,0 = 1− (α1)(a+1)α2

(α1)(a)α2
,

where 0 < α1 < 1 and α2 > 0. The geometric and discrete Weibull distribu-

tions were defined in Table 3.3. We write the discrete Weibull hazard function

in R as a function of data vector a and parameter vector αααT = (α1, α2):

h0 <- function(a,alpha) {

1- ( ( (alpha[1])∧((a+1)∧alpha[2]) ) /

( (alpha[1])∧(a∧alpha[2]) ) )

}

Nalpha <- 2.

The function h0 creates a vector of baseline hazard functions evaluated at the

observed ages at death,

hT0 = (ha1,0, ha2,0, . . . , han,0) . (4.12)

Suppose that we specify the covariate vector at age aj as xTaj =
(
cj , pj , p

2
j

)
with a corresponding parameter vector βββT = (β1, β2, β3), where β1, β2 and β3

can take values on R. The matrix of covariates at death is

X =




xTa1
xTa2
...

xTan

=




c1 p1 p2

1

c2 p2 p2
2

...
...

...

cn pn p2
n

.
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The following R function, Xmake, takes the data vectors a and c as inputs and

produces the matrix X:

Xmake <- function(a,c) { cbind( c, a+c, (a+c)∧2 ) }

Nbeta <- 3.

In this example, the linear predictor at age aj is ψaj = xTajβββ = β1cj +

β2pj + β3p
2
j and the hazard function at age aj is

haj |cj =
(
1− haj ,0

)exp(ψaj )

=

(
(α1)(aj+1)α2

(α1)(aj)α2

)exp(β1cj+β2pj+β3p2j)

. (4.13)

The probability mass function implied by our choice of haj ,0 and ψaj is obtained

for a = 1, 2, . . . by the definition

faj |cj =
∏

u≤aj−1

(
1− hu|cj

)
· haj |cj . (4.14)

For a = 0, the probability mass function is obtained as

f0|cj = h0|cj = (1− h0,0)exp(ψ0) (4.15)

= (α1)exp(cj(β1+β2)+β3c2j) . (4.16)

We establish a function apc.disc in the statistical package R to calculate

the log likelihood function for a particular value of ααα and βββ. Details on this

function are given in Appendix 9.2. For our particular specification of n, a, c,

h0, Nalpha, Xmake, Nbeta and scalePar, we find the set of parameters that

maximise the log likelihood by running the following optimisation procedure:

init <- rep(0.1, Nalpha+Nbeta)

fit <- optim( init, apc.disc,

control=list(fnscale=-1,maxit=5000) )

fit$par <- fit$par / scalePar.

After typing fit into R, we find that the maximum likelihood estimates

of the parameters are α̂1 = 0.607, α̂2 = 0.927, β̂1 = −0.019, β̂2 = 0.037
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and β̂3 = 0.000 to three decimal places. The corresponding value of the log

likelihood function is -1699.540. Recalling (4.13) and (4.14), the fitted hazard

function is

ha|c =

(
(0.607)(a+1)0.927

(0.607)(a)0.927

)exp(−0.019c+0.037p)

. (4.17)

The probability mass function can be obtained for a = 1, 2, . . . by definition

(4.14) as the product of ha|c and

a−1∏
u=0

1−

(
(0.607)(u+1)0.927

(0.607)(u)0.927

)exp(−0.019c+0.037(u+c))
 .

For a = 0, the probability mass function is obtained using (4.16) as f0|c =

(0.607)exp(0.017c) .

Since the discrete Weibull distribution is a special case of the geometric

distribution for α1 = 1−π1 = 0.6 and α2 = 1, our estimates α̂1 and α̂2 provide

a very accurate description of the data. The observed age at deaths were sim-

ulated from a geometric distribution with no period or cohort dependence, so

the parameters β̂1, β̂2 and β̂3 should be close to zero. Indeed, the β parameters

are close to zero. The loss of accuracy experienced when fitting a continuous

model in Section 4.1 did not occur in this discrete example.

In Figure 4.2, a bar plot is produced for the n = 1000 observed age

at deaths drawn from a geometric distribution. Two fitted probability mass

functions f̂a|1 and f̂a|4 are also plotted. The two curves provide a reasonable

description of the data since the bars and the fitted density both peak in the

first year of age and are both decreasing on average thereafter. The two curves

do not change very much with cohort which reflects the fact that the data are

generated with no cohort dependence. So the fitted mass function f̂a|c seems

to provide a good description of the geometric data.

The method described in this section can be applied to many other exam-

ples. The parameterisation of the APC model is determined by h0 and Xmake.

The parametric form for h0 could be specified according to any of the models
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Figure 4.2: A bar plot for the observed age at deaths for individuals j =

1, 2, . . . , 1000, which are drawn from a geometric distribution with parameter 0.4.

The two curved lines are the fitted probability mass functions for cohorts c = 1 and

c = 4 for the model described in equation (4.17).

from Table 3.3. For example, the Geometric, Xekalaki and Salvia–Bollinger

models would be coded respectively as

h0 <- function(a,alpha) { alpha[1] }

h0 <- function(a,alpha) { 1 / ( alpha[1] + (alpha[2]*a) ) }

h0 <- function(a,alpha) { alpha[1] / (a+1) }.

The function Xmake is specified in the same way as the case for continuous time

described in Section 4.1.
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4.3 Survival setting in the literature

We used the terms “birth” and “death” in Chapter 2 as unifying terms for an

entry event and an exit event, respectively. This is helpful because, in many

cases, entry and exit are at the birth and death of an individual (Kermack

et al. 1934; Osmond and Gardner 1982; Choi et al. 2016). The entry event is

very often at birth, but there are various exit events that have been studied

in the APC literature. Death from any cause has been studied by Kermack

et al. (1934) and Lee and Hsieh (1996). The most common exit event seems

to be death due to cancer. There are examples of APC survival models with

exit at death due to lung cancer (Stevens and Moolgavkar 1984; Peto et al.

1995), cervix cancer (Barrett 1973), bladder cancer (Barrett 1978; Osmond

and Gardner 1982), breast cancer (Clayton and Schifflers 1987b; Choi et al.

2016) and prostate cancer (James and Segal 1982; Holford 1983). Frost (1940)

studied deaths due to tuberculosis, and more recently Kramer et al. (2015)

studied deaths due to heart disease.

Rather than exits at death, many researchers have studied exits at the

diagnosis of a disease, especially cancer. There are examples of APC survival

models with exit at the diagnosis of bladder cancer (Clayton and Schifflers

1987a), cervix cancer (Sasieni and Adams 2001), thryoid cancer (Liu et al.

2001), breast cancer (Moolgavkar et al. 1979; Leung et al. 2002), lung cancer

(Murayama et al. 2006) and testis cancer (Carstensen 2007). Greenberg et al.

(1950) is a landmark paper on APC survival modelling because they provide

perhaps the first consideration of the effects of period and cohort on the hazard

function. Greenberg et al. carried out a study for the diagnosis of syphilis. An

“individual” in our framework is not necessarily a human. Dealler and Kent

(1995) and Anderson et al. (1996) studied the diagnosis of Bovine Spongiform

Encephalopathy (BSE) for cattle. These two papers on BSE are very important
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in this thesis and are discussed in detail in Chapter 7. There are also examples

of exit events that are not related to death or disease diagnosis such as homicide

arrest (Fu 2008) and hip fracture (Jean et al. 2013).

A natural starting point for an APC analysis is to consider the fit of an

independence model. An independence model means that the survival distri-

bution is assumed not to vary with covariates such as period or cohort. In

discrete time, we can use (4.10) to write the independence model as

λa,c = κc · fa.

The independence model may be deemed not to fit the data well, but it is

still the natural starting point. If necessary, modifications are then made to

the independence model to account for departures from independence due to

period and cohort effects. In Section 4.2, we showed that modifications to allow

for covariate effects of period and cohort should be made according to either a

CLL or DL model. The probability function fa was written in equation (3.5)

as a product of Sa−1 and ha. When allowing for a dependence on period and

cohort, the probability function fa|c ≡ fa,ψa is a product of Sa−1|c and ha|c.

Letting wa,c = κc · Sa−1|c be the expected number of individuals born in

cohort c who are at risk of death at age a, the Poisson intensity for deaths

which is a product of κc and fa|c can be rewritten in terms of the hazard

function as

λa,c = wa,c · ha|c.

In real studies, time is truly continuous, but data on the observed ages at

death and periods at death are rounded down to the nearest and published

in a contingency table categorised in terms of age and period. This form of

data is discussed further in Section 6.1. Data are usually provided on both

the number of deaths and the number at risk (Barrett 1973; Moolgavkar et al.

1979; Lee and Hsieh 1996). The value of cohort in the tables is assumed to be

determined by the equation c = p−a. The number at risk is often converted to

person-years to derive the total time exposed to risk of death at age a for those

born in cohort c. Carstensen (2007, pages 3022–3023) shows how to convert

78



the population data to person-years. The number at risk or person-years are

treated as known and the discrete Poisson intensity λa,c is fitted to the rounded

data by only estimating the hazard function ha|c.

An independence model is often deemed to be unsuitable as a description

of the Poisson intensity apparent in the age-by-period data. Recalling Table

3.5, the PH model can be written in discrete time as the following additive

function:

log ha|c = ηa + ψa,

where ηa = ha,0. Modifications to the discrete independence model λa,c are

usually made according to a PH assumption (Holford 1983; Liu et al. 2001;

Kramer et al. 2015). In Table 3.5, we stated that the PH model is invalid in

discrete time because, in discrete time, the hazard function is a probability

and so it has a range on the interval [0, 1]. It is inappropriate to multiply the

discrete hazard function by an arbitrary constant. The independence model

should be parameterised in continuous time and modifications should be made

to h(a | c) according to equation (4.1).

The Kronecker delta is a function of two variables which takes value one if

the variables are equal and zero otherwise. For variables u and v, the Kronecker

delta can be written as

zu,v =


0 if u 6= v

1 if u = v.

(4.18)

Suppose that a− and a+ represent the smallest and largest ages at death in

the two contingency tables. Leung et al. (2002) and Jean et al. (2013) initially

fitted an independence model parameterised with dummy variables so that

log ha =
a+∑

u=a−

zu,a · αu = αa.

The values of αa are unconstrained. They dismissed the fit of the independence

model and assumed that the effect of cohort or period on the logarithm of the
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hazard function is linear. That is, they fitted the following models:

log ha|c = αa + πp,

log ha|c = αa + γc.

The linear trend parameters π and γ are unconstrained real numbers.

Suppose that p− and c+ represent the smallest and largest periods at

death in the two contingency tables, and let c− and c+ denote the smallest

and largest observed cohorts. The fit of the two models with linear effects

for period and cohort were also deemed to be unsuitable as a description of

the Poisson intensity underlying the data. Both research groups made further

modifications to their models and fitted the following three models to the

contingency table data:

log ha|c = αa +

p+∑
u=p−

zu,p · πu = αa + πp, (4.19)

log ha|c = αa +

c+∑
u=c−

zu,c · γu = αa + γc, (4.20)

log ha|c = αa + πp + γc. (4.21)

The three models were also fitted in APC studies conducted by Holford

(1983), Liu et al. (2001) and Kramer et al. (2015) to describe departures from

the independence model. In a classic study, Kermack et al. (1934) fitted the

model described in equation (4.20) to data on all-cause mortality. The final

model described in equation (4.21) has received much attention in the literature

because of a fundamental confounding problem. The problem is that it is not

possible to identify the linear trends of αa, πp and γc. Numerous attempts have

been made to produce meaningful estimates of the linear trend parameters such

as the minimisation of a penalty function by Osmond and Gardner (1982) and

the use of an intrinsic estimator by Yang and Land (2013, Chapter 5). In

Section 5.3, we demonstrate the issue of confounding for the dummy variable

parameterisation of the APC model.

Clayton and Schifflers (1987b) assigned dummy variables to describe the
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base hazard function, but assumed that the effects of period and cohort on the

base hazard are linear as opposed to nonlinear. Their model can be obtained

by replacing πp and γc with some linear trends πp and γc. This model has the

same confounding issue as the model described in (4.21). To avoid confounding

issues, Moolgavkar et al. (1979) replaced the period parameters in equation

(4.21) with an interaction term in age and cohort. Their fitted model can be

written as

log ha|c = αa + γc +

a+∑
u=a−

zu,a · ξu ·
c+∑

u=c−

zu,c · δu

= αa + γc + ξaδc.

Lee and Hsieh (1996) modified the independence model by assigning a cubic

polynomial to describe the effect of cohort:

log ha|c = αa + γ1c+ γ2c
2 + γ3c

3.

In this thesis, we assume that deaths follow a Poisson model. While

it is common for APC studies to adopt the Poisson assumption, there are

some cases in which a different distribution is assumed for deaths. Barrett

(1973) assumes that deaths follow a Neyman Type A model and fit the dummy

variable parameterisation of the PH model from equation (4.21) to data on

cervix cancer. Similarly, deaths are assumed to follow a Negative Binomial

model by Jean et al. (2013) in a study of data on hip fractures.

4.4 Regression setting

An important distinction we make in this chapter is between two settings for

APC modelling: survival and regression. This distinction has not been made

explicit in the literature. The distinction between survival and regression is

important because the issues discussed in Chapters 6 and 7 are only relevant to
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the survival setting. The issue of misrounding does not apply to the regression

setting. The fundamental problem of confounding is explained in Chapter 5

and is compared for the survival and regression settings. In this chapter, we

have so far discussed APC models in the survival setting. The purpose of this

section is to define the APC regression model and to present some examples

of regression models from the literature. We use the term “regression model”

to refer to the broad class of statistical models known as generalised linear

models (GLMs) (Nelder and Wedderburn 1972).

Consider a response variable Y conditional on a general set of covariates

xT = (x1, . . . , xq) with the corresponding parameter vector βββT = (β1, . . . , βq).

An introductory text on statistical modelling will usually start with a basic

linear regression model (Dobson and Barnett 2008, page 45):

Y | xT ∼ Normal
(
xTβββ, σ2

Y

)
. (4.22)

A GLM is a generalisation of the regression model in (4.22) to allow for vari-

ous response distributions including the Normal distribution. A suitable link

function, denoted by g, should be chosen to constrain a parameter such as the

mean E[Y ] to an appropriate interval (Dobson and Barnett 2008, pages 51–52):

g(E[Y ]) = xTβββ.

While an identity link g(E[Y ]) = E[Y ] is suitable for a normally distributed

response, it is not so appropriate for a Poisson response and a logarithmic

link g(E[Y ]) = log(E[Y ]) should be used to constrain the response mean to be

non-negative.

An APC regression model has a response variable that is not related to a

time-gap between birth and death, and this response can be measured multiple

times while the individual is alive. In an APC survival model, the response

variable is the age-at-death, A, for an individual and the response distribution

is a probability distribution for age that is considered to be conditional on

period and cohort. The age-at-death can only be measured once. The response

distribution for regression modelling is considered to be conditional on age,
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period and cohort. So age is a part of the response distribution in survival

modelling, whereas age is a covariate in the regression model. Period and

cohort are covariates in any APC model.

There are significantly fewer examples for APC regression models in the

literature than for APC survival models. APC regression models have been

considered in a range of subject areas such as in the study of obesity (Diouf

et al. 2010), in the study of religious attendance (Hayward and Krause 2015),

and in the study of deer hunting licenses (Winkler and Warnke 2013). In the

survival setting, the response character is determined by the time concept since

in continuous time, for example, the age-at-death is continuous and defined on

the interval R+.

The time concept is still very important in APC regression modelling

because time impacts on the covariates age, period and cohort. Time does not

influence the response distribution or link function of the regression model. In

a survival context, the time concept influences both the response distribution

and link function due to the response variable being a statistic based on age. In

a survival context, the link function refers to the functional and we concluded

in Chapter 3 that only the PH functional was suitable to describe the survival

distribution in continuous time, while only the CLL or DL functionals were

suitable in discrete time.

Recalling the linear predictor from (3.10), the function glm can be used

in the statistical package R to fit a GLM to data:

glm( formula, family ). (4.23)

The argument formula is a formula object with the response variable Y on

the left and the covariates on the right. The argument family is an argument

for both the distribution of Y and the link function g. The family argument

can be specified for example as poisson, gaussian and binomial.

For example, Xu et al. (1995) studied an individual’s expiratory volume

in one second (FEV1) measurable in litres. The response variable has a range
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on the positive real numbers R+. They assumed that the response variable

was normally distributed and chose an identity link function. They assigned a

quadratic polynomial to describe the effect of age, assigned dummy variables

to describe the effect of period, and proposed the use of an interaction term

between age and cohort, so that E[Y ] = µ+α1a+α2a
2 + πp + γc. They fitted

the following APC model:

glm( Y ∼ poly(a,2)+factor(p)+a:factor(c), gaussian ).

Schomerus et al. (2015) studied the desire for social distance from a person

with depression and schizophrenia. The desire for social distance was measured

as a sum-score out of 28. This means that the response variable has a range

of {0, 1, 2, . . . , 28}. They assumed that the response variable is normally dis-

tributed and that the effects of age and cohort were linear on the desire for

social distance, but that period had a nonlinear effect. That is, the response

variable and covariates were related by the equation E[Y ] = µ + αa + πp + c.

They fitted the following APC model:

glm( Y ∼ a+factor(p)+c, gaussian ).

Suppose that an experiment is conducted where the outcome is binary such

that there is a success event and a failure event. The experiment is repeated

for N trials. Let Y` be the outcome of the `th trial which takes a value of one

for success and a value of zero for failure. Let Z =
∑N

`=1 Y` be a count for the

total number of success experiments. Diouf et al. (2010) conducted a study on

obesity. The response variable in their study is binary where the success event

is the observation of obesity. Similarly, Schwadel (2011) conducted a study

on religious attendance and the response variable is binary. In this second

case, the success event is the observation of religious attendance. Diouf et al.

(2010) and Schwadel (2011) assumed that Z followed a Binomial distribution

with trial parameter N and a probability parameter θ. Dummy variables were

assigned to age, period and cohort and a logit link function was chosen to
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describe the relationship between θ and covariates, so that

Z | a, p, c ∼ Binomial
(
N, θ =

1

1 + e−xTβββ

)
.

They both fitted the following APC model:

glm( cbind(Z, N-Z) ∼ factor(a)+factor(p)+factor(c), binomial ).

When family is set to binomial, the response variable on the left hand side

of the formula object must be specified as a data frame with the first col-

umn corresponding to the number of success events and the second column

corresponding to the number of failure events.

4.5 Conclusion

In Chapter 3, we explained that the survival distribution of a continuous APC

model, f(a | c), should be specified according to a PH functional. We also

explained that the survival distribution of a discrete APC model, fa|c, should

be specified according to either a CLL or DL functional. In this chapter,

we presented two new functions coded in the statistical package R to fit the

survival distribution of an APC model to data by maximising a likelihood

function. The function apc.cont specifies a PH formula for f(a | c), while

apc.disc specifies a CLL formula for fa|c.

Both functions estimate the baseline survival distribution and linear pre-

dictor simultaneously. The data consist of j = 1, 2, . . . , 1000 random simu-

lations of the age-at-death and cohort, which are real numbers in continuous

time and integers in discrete time. The likelihood function is a product of

the 1000 individual probability functions, f(aj | cj) and faj |cj . A benefit of

using apc.cont and apc.disc is that, to calculate the probability function for

each individual, they both calculate the hazard function for each individual

at all intermediate times between birth and death. So our estimation method
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accounts for the entire survival experience of individuals and considers the ex-

act time-gaps between deaths. Both apc.cont and apc.disc seem to be valid

methods for the estimation of f(a | c) and fa|c since our fitted models f̂(a | c)

and f̂a|c both gave a reasonable fit to the simulated data.

The existing R function coxph fits survival models specified according

to a PH functional by maximising a partial likelihood function. The partial

likelihood function for age-dependent covariates is presented by Collett (2015,

page 297). We can use coxph to fit APC models by specifying period and/or

cohort as covariates. A drawback with using coxph to fit APC models is that

the parameter estimates only depend on the rank order of the ages at death,

so the exact time-gaps between deaths are not considered.

We also explained that the way of handling dependence in the APC lit-

erature is not consistent with our findings. Data are typically rounded and

published in a contingency table categorised in terms of age and period. Statis-

ticians usually fit a discrete independence model λa,c = κc · fa to describe the

age-by-period data. Modifications are then made to the independence model

using a PH functional as opposed to a CLL or DL functional. In Chapter

6, we explain that, since the discrete independence model is equivalent to a

continuous independence model discretised over an age-by-cohort region in the

Lexis diagram, the age-by-period data are used for model fitting as if they are

rounded age-by-cohort. We then investigate whether the need for modifica-

tions to the independence model is only apparent in the literature due to the

misrounded treatment of the data.

We also distinguished between survival and regression as two settings for

APC modelling. In a survival context, an APC model considers how the age-

at-death distribution varies with period and cohort. In a regression context,

an APC model considers how some response variable, which is unrelated to the

death of an individual, varies with age, period and cohort. The confounding

issue discussed in Chapter 5 is relevant to both regression and survival models.

However, the issues discussed in Chapters 6 and 7 are only relevant to the
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survival models.
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Chapter 5

Confounding in

age-period-cohort models

It is important to consider issues of confounding when modifications are made

to the independence models λ(a, c) and λa,c. Johnston et al. (2018, page 1958)

define confounding as the situation in which the relationship between two vari-

ables is distorted because of a strong relationship between one or two of the

variables and a third variable included in the analysis. Since age, period and

cohort are linearly determined by the equation cohort = period − age, the

relationship between the age-at-death distribution and period is distorted by

the inclusion of cohort in a survival model. The confounding concept can be

extended to a situation with four variables to say that the relationship between

age, period and a response variable is distorted by the inclusion of cohort in

a regression model. Thus, cohort is confounded with age and period (Rodgers

1982, page 775).

APC models suffer from the most severe case of confounding, the issue of

identifiability, in which the relationship between variables cannot be identified

uniquely (Mason et al. 1973; Holford 1983; Smith and Wakefield 2016). In

APC literature, confounding is synonymous with a lack of identifiability. The

confounding issue in APC models is that it is impossible to separate parameters
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for linear terms in age, period and cohort (Mason et al. 1973; Rodgers 1982).

It is also impossible to separate parameters for quadratic terms and two-way

interaction terms in age, period and cohort (Rodgers 1982; Fienberg and Mason

1985).

In continuous and discrete time, it is only necessary to consider two vari-

ables in the formulation of an APC model. Identifiability issues are not exclu-

sive to APC modelling and occur in other literature such as errors-in-variables

modelling (Draper and Smith 1998, page 90) and analysis of variance (Draper

and Smith 1998, pages 474–478) as a result of having too many parameters to

estimate given the available data. An estimate of the model parameters can

still be obtained by removing parameters until the number of parameters is

equal to the number of data observations. Parameters of APC models can-

not be identified even after dealing with overparameterisation because there

are still linear dependencies between variables in the model formulation. One

approach to dealing with APC confounding is to study models parameterised

with only two of age, period and cohort (Clayton and Schifflers 1987a; Lee and

Hsieh 1996). Glenn (2005) and Smith and Wakefield (2016) summarise the

approaches used to identify the parameters of APC models.

In Section 5.1, we explain the APC confounding issue in more detail. Con-

founding is compared for models with interaction terms and without interaction

terms. In Sections 5.2 and 5.3, we introduce data and look at confounding

issues through the design matrix. A distinction is made between confound-

ing arising due to overparameterisation (Draper and Smith 1998, page 474)

and confounding arising due to the APC linear identity. In Section 5.2, we

explore confounding for an APC regression model parameterised with orthog-

onal polynomials. In Section 5.3, we demonstrate confounding for the APC

survival model parameterised with dummy variables in (4.21). We show that

confounding issues arise between parameters for first-order orthogonal polyno-

mials, but it is not so clear how issues arise for factor variables. We highlight

a special case in which the factor model has no confounding issue in relation

to the APC linear identity.
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5.1 Confounding

In general, the purpose of APC modelling is to separate the effects of age, pe-

riod and cohort on some phenomenon. However, it is impossible to separate the

three effects into distinct contributions because of a fundamental confounding

problem. Since age, period and cohort are linearly determined by the equation

cohort = period− age, the relationship between the age-at-death distribution

and period is distorted by the inclusion of cohort in a survival model. The

relationship between age, period and a response variable is distorted by the

inclusion of cohort in a regression model.

A model formulated in terms of age, period and cohort is equivalent to a

model formulated in terms of age and period or age and cohort. Let φ(a, p, c)

denote a function in age, period and cohort. Letting u1, u2 and u3 be real

numbers, a linear function of age, period and cohort can be written as

φ(a, p, c) = u1a+ u2p+ u3c. (5.1)

By substituting c = p− a and p = a+ c into (5.1), the linear function can be

written equivalently as φ(a, p, c) = b1a+ b2p or φ(a, p, c) = e1a+ e2c, where

b1 = u1 − u3, e1 = u1 + u2, b2 = e2 = u2 + u3. (5.2)

Equation (5.2) shows that each parameter for a linear term is a compound

parameter that accounts for contributions from two variables rather than one

variable. In particular, e1 is not the true coefficient for age and is instead

a summation of the coefficients for age and period. The period coefficient is

absorbed by the coefficients for age and cohort to form the compound param-

eters e1 and e2. The compound parameter e2 was discussed by Clayton and

Schifflers (1987b, page 474) and named as net drift.

The APC models presented in equations (4.4) and (4.13) do not suffer

from confounding, because h(aj | cj) and haj |cj cannot be written in terms of
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a linear combination of aj , pj and cj . In the first case, the logarithm of the

hazard function is

log h(aj | cj) = γ(α1, α2) + (α1 − 1) log aj + β1cj + β2pj , (5.3)

where γ(α1, α2) is a constant determined by the values of α1 and α2.

There can also be confounding in APC models due to the inclusion of

quadratic terms and second-order interaction terms for age, period and cohort

(Rodgers 1982, page 783). Letting u1, . . . , u6 be real numbers, consider the

nonlinear function

φ(a, p, c) = u1a
2 + u2p

2 + u3c
2 + u4ap+ u5ac+ u6pc. (5.4)

By substituting c = p− a and p = a+ c into (5.4), the nonlinear function can

be written as φ(a, p, c) = b1a
2 + b2p

2 + b3ap or φ(a, p, c) = e1a
2 + e2c

2 + e3ac,

where

b1 = u1 + u3 − u5, e1 = u1 + u2 + u4, b2 = e2 = u2 + u3 + u6 (5.5)

b3 = u4 + u5 − u6 − 2u3, e3 = u4 + u5 + u6 + 2u2.

Parameter e2 is not the true coefficient for a quadratic cohort term, but is

instead a summation of coefficients for the quadratic period term, the quadratic

cohort term and the interaction term between period and cohort. The net drift

parameter in (5.2), written as u2 +u3, which accounts for the first-order effects

of period and cohort, is comparable to the parameter written as u2 + u3 + u6

in (5.5) which accounts for the second-order effects of period and cohort.

If the three two-way interaction terms are not included in the model,

then the parameters for quadratic terms can be identified uniquely. The APC

confounding problem can be defined more generally for an Nth order case in

which it is impossible to identify uniquely the coefficients for Nth order terms

in age, period and cohort when the model contains all Nth order interaction

terms. The confounding problem was discussed for cases N = 1 and N = 2,

but can also be applied to cases N = 3, 4, 5, . . ..
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5.2 Confounding for polynomial functions

In this section, we introduce data and look at confounding issues through the

design matrix. A design matrix is a matrix of coefficients for parameters with

each column corresponding to a different parameter and each row correspond-

ing to a different observation index. The design matrix for a generalised linear

model is presented by Dobson and Barnett (2008, page 37). The observation

index used in this chapter is displayed in Figure 5.1.

age A

co
ho

rt
 C

● ● ● ●4

● ● ● ●1 5

● ● ● ●2 6

● ● ● ●3

1 2 3 4

1

2

3

4

Figure 5.1: A Lexis diagram in age-cohort space for discrete time. Age, period and

cohort are only defined at the vertices. Period is calculated as p = a + c − 2. The

six filled vertices represent cells of a hypothetical age-by-period contingency table for

deaths. For example, cell two corresponds to a = 1, p = 2 and c = 3. This display of

age-by-period cells in age-cohort space is similar to the data in Table 7.1.
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Suppose that age a and period p are defined on the sets {1, 2, . . . , L(a)}

and {1, 2, . . . , L(p)} respectively, and that data on death counts are published

in the form of a two-way contingency table categorised in terms of age and

period. If the number of levels for age and period is L(a) = 2 and L(p) = 3,

then there are L(a)L(p) = 6 cells of the age-by-period table. The number of

cells is chosen to be small for illustrative purposes, but the number of cells

could be chosen to be very large. Cohort is redefined as c = p − a + L(a) so

that cohort is defined on the set {1, 2, . . . , L(c)} (Barrett 1973; Clayton and

Schifflers 1987b). The number of levels for cohort is equal to

L(c) = L(a) + L(p) − 1. (5.6)

An age-by-period table with two age levels and three period levels has L(c) = 4

levels for cohort. In Figure 5.1, we assign a numeric label to each cell of this

hypothetical age-by-period table and depict the corresponding value of age,

period and cohort for each cell.

Consider a response variable Y and a covariate x that is categorical with

L(x) levels. Letting ψq (x) denote a qth order polynomial in x ∈ {1, 2, . . . , L(x)},

we assume in this section that polynomials are orthogonal such that

L(x)∑
x=1

ψq1(x) · ψq2(x) = 0 (5.7)

for q1 6= q2 and for q1, q2 ≤ L(x) − 1 (Draper and Smith 1998, page 462). The

levels of age, period and cohort are L(a) = 2, L(p) = 3 and L(c) = 4 respectively,

so we only need to consider polynomials up to order three. Letting x̄ = L(x)+1
2

be the mean of x, Draper and Smith (1998, page 466) present the following

formulae for orthogonal polynomials of orders one to three:

ψ1(x) = λ
(x)
1 (x− x̄) (5.8)

ψ2(x) = λ
(x)
2

[x− x̄]2 −

[[
L(x)

]2 − 1
]

12


ψ3(x) = λ

(x)
3

[x− x̄]3 −

[
3
[
L(x)

]2 − 7
]

[x− x̄]

20

 .
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A polynomial of order zero is always equal to one and the variables λ(x)
1 , λ(x)

2

and λ(x)
3 are constants chosen to ensure ψq(x) takes an integer value.

A regression model for Y parameterised with orthogonal polynomials in a

has the vector form

aTααα =
L(a)∑
u=1

αu−1ψu−1(a)

where αααT =
(
α0 . . . αL(a)−1

)
and aT =

(
ψ0(a) . . . ψL(a)−1(a)

)
. Letting

a(l) denote the level of a for the lth cell of the age-by-period table, the design

matrix of this regression model can be written as

A = (au,v) with au,v = ψv−1(a(u)), (5.9)

where u ∈ {1, 2, . . . , L(a)L(p)} and v ∈ {1, 2, . . . , L(a)}. For example, we use

definition (5.8) to calculate the the second row of A as(
ψ0(a(2)) ψ1(a(2))

)
=
(
ψ0(1) ψ1(1)

)
=
(

1 −1
)
.

A regression model for Y parameterised with orthogonal polynomials in

a, p and c has the vector form

xTβββ =
L(a)∑
u=1

αu−1ψu−1(a) +
L(p)∑
v=1

πv−1ψv−1(p) +
L(c)∑
w=1

γw−1ψw−1(c) (5.10)

where βββT =
(
α0 . . . αL(a)−1 π0 . . . πL(p)−1 γ0 . . . γL(c)−1

)
and xT

is equal to(
ψ0(a) . . . ψL(a)−1(a) ψ0(p) . . . ψL(p)−1(p) ψ0(c) . . . ψL(c)−1(c)

)
.

By defining the design matrix for each covariate according to (5.9) with the

range of u staying the same, and merging the three resulting matrices A, P

and C to form a full design matrix, the design matrix of the APC regression
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model parameterised with orthogonal polynomials is derived as

X =





xT1

xT2

xT3

xT4

xT5

xT6

=

A P C



1 −1 1 −1 1 1 −1 −1 3

1 −1 1 0 −2 1 1 −1 −3

1 −1 1 1 1 1 3 1 1

1 1 1 −1 1 1 −3 1 −1

1 1 1 0 −2 1 −1 −1 3

1 1 1 1 1 1 1 −1 −3

.

The cross-product of a design matrix, X, is written as XTX. A model has

an identifiability issue if the cross-product of its design matrix has a zero de-

terminant (Draper and Smith 1998, Chapter 16). A zero determinant indicates

that there are linear dependencies between columns of the design matrix. The

cross-product for the design matrix of the orthogonal APC regression model

has a zero determinant because of overparameterisation, that is, there are more

parameters than observations (Draper and Smith 1998, page 474). We choose

to set π0 = γ0 = γ3 = 0 to remove three columns from the full design matrix

and derive the following reduced matrix:

Xr =

ψ1 ψ1 ψ1



1 −1 −1 1 −1 −1

1 −1 0 −2 1 −1

1 −1 1 1 3 1

1 1 −1 1 −3 1

1 1 0 −2 −1 −1

1 1 1 1 1 −1

.

The number of observations is equal to the number of remaining model pa-

rameters, and, in theory, the cross-product XT
rXr should not have a zero de-

terminant. However, the determinant is still zero because there is a linear

dependency between columns of Xr relating to the first-order polynomials in

age, period and cohort. Specifically, the following equation holds true for all
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l ∈ {1, 2, . . . , L(a)L(p)}:

ψ1(a(l)) + ψ1(c(l))− 2ψ1(p(l)) = 0. (5.11)

For example, the quantity in (5.11) can be calculated for the second row of the

design matrix as

ψ1(a(2)) + ψ1(c(2))− 2ψ1(p(2)) = ψ1(1) + ψ1(3)− 2ψ1(2)

= −1 + 1− 0

= 0.

There are no further linear dependencies between columns after setting one of

α1, π1 and γ1 equal to zero to produce a final design matrix, Xr2. Notice that,

it is not necessary to set γ3 = 0 once removing two intercept parameters and

one parameter for a first-order polynomial.

The number of linearly independent parameters for model (5.10), which

we label as ρorth, is equal to the number of parameters minus the number of

parameter constraints. Since it is necessary to remove three columns from the

original design matrix to derive a final matrix without linear dependencies and

the number of levels for cohort is defined according to (5.6), we can write ρorth

in terms of the number of levels for age and period as

ρorth =
(
L(a) + L(p) + L(c)

)
− 3 = 2

(
L(a) + L(p)

)
− 4. (5.12)

Two constraints were imposed to remove the linear dependencies caused by

overparameterisation. The third constraint is non-standard for general regres-

sion modelling and occurs in the context of APC modelling due to the linear

identity.

The number of degrees of freedom for the orthogonal APC regression

model, which we label as δorth and which is equal to the number of observations

minus the number of linearly independent parameters, can be written as

δorth = L(a)L(p) −
[
2 ·
(
L(a) + L(p)

)
− 4
]

=
(
L(a) − 2

)(
L(p) − 2

)
. (5.13)
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The equation (5.13) only holds for levels of age and period greater than one.

The orthogonal APC regression model has six linearly independent param-

eters to be estimated given data for six cells of an age-by-period table, so

there are zero degrees of freedom. Even if the number of initial parameters is

substantially lower than the number of cells in an age-by-period table, such

that the number of degrees of freedom is large, there will still be three linear

dependencies in the model design matrix.

5.3 Confounding for factor variables

The Kronecker delta function was defined in equation (4.18). In this section,

we will use zu,a, x
(p)
v,p and x

(c)
w,c to denote Kronecker delta functions for age,

period and cohort. Supposing that we incorporate an intercept to the APC

survival model parameterised with dummy variables in (4.21), the base model

can be written in vector form as

log ha|c = µ+ αa = zTααα (5.14)

where

zT =
(

1 z1,a z2,a · · · zL(a),a

)
and αααT =

(
µ α1 α2 · · · αL(a)

)
. Let Z denote the design matrix for the

base model and suppose that a(l) is the level of age for the lth row of Z. If ea(l)

is a vector of length L(a) with a one in the a(l)th place and zeros elsewhere,

then the lth row of Z is

zTl =
(

1 eTa(l)

)
. (5.15)

For example, we can write eTa(2) =
(

1 0
)
so that the second row of the design
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matrix is zT2 =
(

1 1 0
)
. The full design matrix for the base model is

Z =





zT1

zT2

zT3

zT4

zT5

zT6

=





1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

.

The cross-product ZTZ has a zero determinant because, for all l, there is

a linear dependency between columns relating to the intercept parameter:

L(a)∑
u=1

zu,a(l) = 1. (5.16)

For example, the second row of the design matrix has a dependency z1,1 +

z2,1 = 1 + 0 = 1. This dependency is standard for analysis of variance and is

demonstrated by Draper and Smith (1998, page 478). We choose to set α1 = 0

to remove a column from Z and derive the following reduced matrix:

Zr =





1 0

1 0

1 0

1 1

1 1

1 1

.

The determinant of ZTr Zr is non-zero. The number of degrees of freedom for

the base model, which we denote as δbase, is calculated similarly to (5.13) as

δbase = L(a)
(
L(p) − 1

)
.

The base model has four degrees of freedom so the design matrix for the sys-

tematic part of the APC model can consist of four columns at most if the base

model and systematic part are to be estimated simultaneously.
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Letting x(p)
v,p and x(c)

w,c also be Kronecker delta functions, the factor APC

survival model has a systematic part that can be written in vector form as

xTβββ = πp + γc (5.17)

where

xT =
(
x

(p)
1,p x

(p)
2,p · · · x

(p)

L(p),p
x

(c)
1,c x

(c)
2,c · · · x

(c)

L(c),c

)
and βββT =

(
π1 π2 · · · πL(p) γ1 γ2 · · · γL(c)

)
. Letting X denote the

design matrix for the systematic part of the model, the lth row of X can be

written similarly to (5.15) as

xTl =
(
eTp(l) eTc(l)

)
. (5.18)

For example, the second row of X corresponds to p = 2 and c = 3 so that

eTp(2) =
(

0 1 0
)
and eTc(2) =

(
0 0 1 0

)
. The full design matrix for the

systematic part of the model is

X =





xT1

xT2

xT3

xT4

xT5

xT6

=





1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

.

The cross-product XTX has a zero determinant because the systematic

part has more parameters than there are observations. There is also a linear

dependency similar to (5.16) for each covariate because, for all l,

L(p)∑
v=1

x
(p)
v,p(l) =

L(c)∑
w=1

x
(c)
w,c(l) = 1.

We stated that, if the base model and systematic part are both to be estimated,

then X should have at most four columns because δbase = 4. We choose to

set π1 = γ1 = γ2 = 0 to remove three columns from the design matrix for the
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systematic part and derive the following reduced matrix:

Xr =





0 0 0 0

1 0 1 0

0 1 0 1

0 0 0 0

1 0 0 0

0 1 1 0

.

We merge the matrices Zr and Xr to form a design matrix for the full

factor APC survival model, so that

Mr = (Zr,Xr) =





1 0 0 0 0 0

1 0 0 0 1 0

1 0 1 0 0 1

1 1 0 1 0 0

1 1 0 0 0 0

1 1 1 0 1 0

.

There is no confounding issue because MT
r Mr has a non-zero determinant.

In Section 5.2, we explained that confounding arises in an orthogonal APC

regression model due a linear dependency between first-order polynomials in

age, period and cohort. This confounding is a consequence of the linear identity

between age, period and cohort. However, the factor APC survival model

described in this section has no confounding issue in relation to the linear

identity. Here, confounding in relation to the APC linear identity depends

on the number of levels for age and period in the age-by-period table because

confounding only arises if L(a) and L(p) are both greater than two.

The factor APC survival model has an initial design matrix M = (Z,X).

Each row of the design matrix corresponds to a cell in an age-by-period con-

tingency table with a total of L(a)L(p) cells. Each column of the design matrix
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corresponds to a parameter so the total number of model parameters is

L(a) + L(p) + L(c) + 1 = 2
(
L(a) + L(p)

)
.

We must set three parameters equal to zero to remove the three sum-to-

one linear dependencies that are standard for analysis of variance (Draper

and Smith 1998, page 478). The number of remaining parameters is then

2
(
L(a) + L(p)

)
− 3. The parameters should be identifiable if the number of

cells is greater than or equal to the number of remaining parameters such that

L(a)L(p) ≥ 2
(
L(a) + L(p)

)
− 3.

This inequality implies that(
L(a) − 2

)(
L(p) − 2

)
≥ 1. (5.19)

However, if L(a) and L(p) are both greater than two so that (5.19) is

satisfied, thenMTM still has a zero determinant because there is an additional

linear dependency that is attributable to the APC linear identity. A fourth

constraint is then necessary to identify the model parameters. If at least one of

L(a) and L(p) is equal to two, then there is one parameter too many to identify,

and, hence, a fourth constraint not attributable to the APC linear identity is

necessary to identify the model parameters. The number of degrees of freedom

for the factor model was stated by Fienberg and Mason (1985, page 72) as

equal to

δfactor = L(a)L(p) −
[
2 ·
(
L(a) + L(p)

)
− 4
]

=
(
L(a) − 2

)(
L(p) − 2

)
(5.20)

for L(a) ≥ 2 and L(p) ≥ 2.

5.4 Conclusion

Confounding issues can arise in models that are parameterised in terms of age,

period and cohort. There is confounding if a model consists of an additive
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combination of linear terms in age, period and cohort, as in equation (5.1).

There is also confounding if a model consists of an additive combination of

quadratic terms and two-way interaction terms in age, period and cohort, as

in equation (5.4). However, not all models parameterised simultaneously in

terms of the three variables suffer from confounding. In particular, the two

models presented in equations (4.4) and (4.13) do not suffer from a lack of

identifiability.

To overcome issues of confounding, one option is to parameterise models

with only two of the three variables. However, if a model consists of an additive

combination of two linear terms, then caution is needed when interpreting the

parameters of the linear terms. For example, coefficients for the linear age and

cohort terms, a and c, would absorb the coefficient of the linear period term,

p. It is necessary to interpret the two model parameters in terms of the third

ignored variable.

The existence of confounding in a model can be checked by assessing

whether there are linear dependencies in the columns of the model design ma-

trix. Linear dependencies between columns can arise due to the APC linear

identity as well as due to overparameterisation. The appearance of confound-

ing in relation to the linear identity is clear for polynomial functions, but is

not so clear for factor variables. In a model parameterised with orthogonal

polynomials, there is a clear linear dependency between the columns for first-

order polynomials in age, period and cohort. It is not so clear where the linear

dependency arises in the columns of a design matrix for a model parameterised

with factor variables.
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Chapter 6

Misrounding effects for

age-period-cohort modelling

The purpose of this chapter is to show the potentially misleading effects that

can be apparent when studying an APC model under a misrounded treatment

of data. Data are usually made available for model fitting in the form of a

two-way contingency table categorised in terms of age and period (Frost 1940;

Greenberg et al. 1950; Clayton and Schifflers 1987b). To estimate the Poisson

intensity, researchers recategorise the age-by-period data in terms of an age-

by-cohort rounding by adopting a particular surrogate convention. One very

popular surrogate convention is to assume that the linear identity holds true

so that cohort = period− age (Clayton and Schifflers 1987a; Murayama et al.

2006). An age-by-period rounding corresponds to a parallelogram region in

a Lexis diagram, whereas an age-by-cohort rounding corresponds to a Lexis

square.

The applied models from Section 4.3 are typically formulated in discrete

time. Under independence, a discrete model is equivalent to a model discretised

age-by-cohort. The fitting of a discrete model to age-by-period data means

that the data are used for model fitting as if the data are rounded age-by-

cohort. This misrounded treatment of data has been carried out in many
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applied APC studies such as Clayton and Schifflers (1987a), Dealler and Kent

(1995) and Jean et al. (2013). In Sections 6.3, 6.4 and 6.5, we show that

three potentially misleading effects can appear for a misrounded treatment of

data. The three misrounding effects can be summarised as: (i) an apparent

under-reporting of deaths; (ii) an apparent longer life expectancy; and (iii)

an apparent lengthening of life expectancy. Misrounding effects can only be

significant if the cohort intensity is changing rapidly.

Each effect is a qualitative interpretation of a mathematical result. It

is helpful to remove statistical fluctuations in the observations so we work

with the Poisson intensities, that is, the expected counts. The first effect

relates to a difference between expected counts, the second effect relates to

a difference between expected count ratios and the third effect relates to a

difference between expected count cross-ratios. It is possible for three, two,

one or even none of the effects to hold true as each effect depends on the

particular circumstances. Many statisticians could have been affected by these

three effects to some extent due to the widespread adoption of misrounding.

In particular, the third misrounding effect could have important implications

for studies of human mortality.

In Section 6.1, we formulate Poisson models for age-by-period and age-by-

cohort regions in the Lexis diagram. In Section 6.2, we define a misrounded

treatment and an exact treatment for an age-by-period rounding of data. We

also distinguish between three different surrogate conventions. Chapter 7 pro-

vides a detailed illustration of the ideas in this chapter for the case of Bovine

Spongiform Encephalopathy (BSE) incidence. It is often sufficient to study

an APC model under a misrounded treatment because misrounding effects are

not significant if the cohort intensity is constant or changing very slowly. Note

that, only the rounding down convention from Section 2.2 is used in Chapters

6 and 7.
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6.1 Two-way rounding

A rounding of age, period and cohort can be presented in different ways. Ide-

ally age, period and cohort would all be rounded simultaneously and the death

counts would be displayed in triangles of the Lexis diagram as in Figure 2.1. A

three-way rounding is often not used by data collectors and a two-way rounding

in terms of age and period is used instead (Clayton and Schifflers 1987a, pg.

451). A two-way rounding is a grouping of a pair of adjacent lower and upper

Lexis triangles that forms either an age-by-cohort square, an age-by-period par-

allelogram or a period-by-cohort parallelogram. Note that, an age-by-cohort

rounding has a unique integer for age and cohort, but has two possible integers

for period. Carstensen (2007, page 3024) refers to age-by-period regions as

A-sets and age-by-cohort regions as C-sets.

Recalling Section 2.2, we assume in this chapter that the age-at-death,

period-at-death and cohort are rounded down to the nearest integer so that

I = bAc, J = bP c and K = bCc.

Letting R(AC)
i,k denote an age-by-cohort Lexis region and letting R(AP)

i,j denote

an age-by-period Lexis region, we can write

R
(AC)
i,k = {(a, p, c) : I = i,K = k}

and

R
(AP)
i,j = {(a, p, c) : I = i, J = j}.

Recalling the definition of lower and upper Lexis triangles in (2.15) and (2.16),

we pair the lower triangle T (L)
i,k and the upper triangle T (U)

i,k to write

R
(AC)
i,k = T

(L)
i,k ∪ T

(U)
i,k . (6.1)

If i and k are known, then j can either take a value of i+ k or i+ k + 1. The

Lexis square (6.1) is displayed in Figure 6.1 for a rounding down convention.
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Figure 6.1: A Lexis diagram in age-cohort space with some highlighted age-by-cohort

regions.

An age-by-period region can be defined similarly as a pairing of triangles

T
(L)
i,j−i and T

(U)
i,j−i−1. however, we must consider two scenarios because R(AP)

i,j

can be one of two parallelogram regions in Figure 2.1. The first scenario is

that if j = i+ k then

R
(AP)
i,i+k = T

(L)
i,k ∪ T

(U)
i,k−1. (6.2)

The second scenario is that if j = i+ k + 1 then

R
(AP)
i,i+k+1 = T

(L)
i,k+1 ∪ T

(U)
i,k . (6.3)

The Lexis parallelograms (6.2) and (6.3) are displayed in Figure 6.2 for a

rounding down convention.

The Poisson intensity λ(a, c) from equation (2.5) should be viewed as the

intensity of deaths at one particular instant in the age-cohort space of Figure
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Figure 6.2: A Lexis diagram in age-cohort space with some highlighted age-by-period

regions. In Section 6.3, we compare the number of deaths occuring in regions R(AC)
i,k

and R
(AP)
i,i+k. In Section 6.4, we compare the ratio of deaths in regions R(AP)

i+1,i+k+1

and R(AP)
i,i+k with the ratio of deaths in regions R(AC)

i+1,k and R(AC)
i,k . In Section 6.5, we

investigate how the ratio of deaths in regions R(AP)
i+1,i+k+1 and R(AP)

i,i+k changes for unit

increases in k.

2.1. The number of deaths for cohort k at age i, denoted as Ni,k, follows a

Poisson distribution:

Ni,k ∼ Poisson(νi,k), (6.4)

where

νi,k =

∫∫
R

(AC)
i,k

λ(a, c) dc da

=

∫ i+1

i

∫ k+1

k
f(a | c) · κ(c) dc da. (6.5)
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The number of deaths in period j at age i, denoted as Mi,j , follows a Poisson

distribution:

Mi,j ∼ Poisson(µi,j), (6.6)

where

µi,j =

∫∫
R

(AP)
i,j

λ(a, c) dc da

=

∫ i+1

i

∫ j+1−a

j−a
f(a | c) · κ(c) dc da. (6.7)

We have integrated λ(a, c) over the region R(AC)
i,k to define the Poisson intensity

for age-by-cohort counts, νi,k, and we have integrated λ(a, c) over the region

R
(AP)
i,j to define the Poisson intensity for age-by-period counts, µi,j . The data

typically made available for an APC analysis are observations of Mi,j (Green-

berg et al. 1950; Clayton and Schifflers 1987a; Liu et al. 2001).

In Section 3.1, we described a survival distribution that is independent

of covariates, and, in Section 3.3, we described a survival distribution that

is conditional on covariates. The expressions for νi,k and µi,j can be written

more simply under the following independence assumption for the survival

distribution:

λ(a, c) = κ(c) · f(a). (6.8)

Recall from Section 3.1 that F (a) =
∫ a

0 f(u)du and let the integrated intensity

at cohort c be written as

Q(c) =

∫ c

0
κ(v) dv. (6.9)

Under the independence assumption from (6.8), the Poisson intensities de-

scribed in (6.5) and (6.7) can be simplified to

νi,k = [F (i+ 1)− F (i)] · [Q(k + 1)−Q(k)] = f∗i · κ∗k (6.10)

and

µi,j =

∫ 1

0
f(a+ i) [Q(j − i− a+ 1)−Q(j − i− a)] da. (6.11)

108



The new expression for νi,k is much simpler since it is a function of i multiplied

by a function of k, but the new expression for µi,j is still quite complex. The

probability function in rounded time, f∗i , was defined in (3.8), and the cohort

intensity in rounded time, κ∗k, is equal to Q(k + 1) − Q(k). The two Poisson

intensities defined in (6.10) and (6.11) are key quantities in this chapter.

6.2 Misrounding

Data must be categorised in terms of age and cohort in order to estimate

λ(a, c). Since data are typically made available as observations of Mi,j , we

recategorise Mi,j in terms of age and cohort to derive a surrogate for Ni,k

which we denote as N (s)
i,k . We outline three surrogate conventions in Table

6.1. The first convention labelled by s = 1 assumes that k = j − i so that

Mi,j can be indexed by age and cohort as Mi,i+k = N
(1)
i,k . This first surrogate

convention is analogous to the basic continuous identity in (2.2) and has been

used by many authors including Moolgavkar et al. (1979, page 494), Clayton

and Schifflers (1987a, page 459) and Murayama et al. (2006, page 4). We later

illustrate this first surrogate convention in Table 7.1. We show in Section 6.3

that there is only equality between the expectations of N (s)
i,k and Ni,k, denoted

as ν(s)
i,k and νi,k, for a constant cohort intensity.

In terms of the Lexis regions in Figures 6.1 and 6.2, we can say that:

1. the first surrogate convention s = 1 treats a count from region R(AP)
i,i+k as

the count for region R(AC)
i,k ,

2. the second surrogate convention s = 2 treats a count from region R(AP)
i,i+k+1

as the count for region R(AC)
i,k ,

3. the third surrogate convention s = 3 treats an average of the counts from

regions R(AP)
i,i+k and R(AP)

i,i+k+1 as the count for region R(AC)
i,k .
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The distinction between the three surrogate conventions has not been made

before. Applying a surrogate convention is necessary, but misrounding is not

necessary and can be problematic. Note that, rather than a basic surrogate

convention, the Human Mortality Database smooths age-by-period counts via

a regression equation to derive age-by-cohort counts (Wilmoth et al. 2017 (ac-

cessed August 22, 2018, Section 4.2)).

Table 6.1: There are three ways, labelled by s for “surrogate”, in which we can

use Mi,j to derive a surrogate for Ni,k. The surrogate N (s)
i,k has an expectation

denoted as ν(s)
i,k . We defined Ni,k and Mi,j in (6.4) and (6.6), respectively.

s N
(s)
i,k ν

(s)
i,k

1 Mi,i+k µi,i+k

2 Mi,i+k+1 µi,i+k+1

3 1
2 (Mi,i+k +Mi,i+k+1) 1

2 (µi,i+k + µi,i+k+1)

Recalling (3.9) and (3.11), the probability density function f(a | c) is a

function of the parameter vectors αααT = (α1, . . . , αm) and βββT = (β1, . . . , βq).

Supposing that the cohort intensity is also parametric, we can write κ(c) as

a function of a parameter vector ξξξT = (ξ1, . . . , ξr). The bivariate function

λ(a, c) = f(a | c) · κ(c) is then a function of ααα, βββ and ξξξ. Let

N(s) ≡
(
N

(s)
i,k

)
i,k

be a matrix of random surrogate death counts for i ∈ {i− + 1, . . . , i+} and

k ∈ {k− + 1, . . . , k+}. Suppose that we replace a with i and replace c with k,

so that the Poisson intensity indexed in discrete time in (2.7) is written as

λi,k = κk · fi|k ∼= νi,k. (6.12)

Recalling (6.10), the Poisson intensities λi,k and νi,k are equivalent under the

independence assumption because we can write νi,k as a product of a cohort
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intensity and a survival distribution:

λi,k = fi κk = f∗i κ
∗
k = νi,k. (6.13)

We stated in Section 4.3 that a natural starting point for an APC analysis

is to consider the fit of an independence model, and, if necessary, modifica-

tions are made to the independence model to account for departures from

independence due to period and cohort effects. Data made available for an

APC analysis are usually observations of Mi,j (Greenberg et al. 1950; Clayton

and Schifflers 1987a; Liu et al. 2001). It is important to discretise the indepen-

dence model λ(a, c) correctly to reflect that the data are rounded age-by-period.

We can summarise our discussion in Section 4.3 to say that researchers typi-

cally estimate the discrete independence model λi,k = νi,k, given observations

N(1) = n(1), by maximising the following Poisson likelihood function for s = 1

(Holford 1983; Dealler and Kent 1995; Kramer et al. 2015):

LA1

(
ααα,βββ,ξξξ | N(s) = n(s)

)
=

i+∏
i=i−+1

k+∏
k=k−+1

(λi,k)
n
(s)
i,k exp(−λi,k)
n

(s)
i,k !

. (6.14)

However, this means that the independence model is discretised incorrectly, or

is “misrounded”, say, because the fitting of λi,k to age-by-period data means

that the age-by-period data are used for model fitting as if the data are rounded

age-by-cohort. That is, the observations in Lexis parallelograms are used for

model fitting as if they are observations in Lexis squares.

An exact treatment of the age-by-period data would be to estimate the

Poisson intensity ν(s)
i,k by maximising the following likelihood function:

LE1

(
ααα,βββ,ξξξ | N(s) = n(s)

)
=

i+∏
i=i−+1

k+∏
k=k−+1

(
ν

(s)
i,k

)n(s)
i,k

exp
(
−ν(s)

i,k

)
n

(s)
i,k !

. (6.15)

In Appendix 9.3, we demonstrate how to implement the exact approach to

fitting the independence model. The two likelihood functions are labelled with

subscripts “A” or “E” to indicate an approximate or exact treatment of data

in the fitting of an independence model. The distinction between exact and

approximate treatments of data has not been made before.
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In Section 4.3, we showed that the discrete independence model is usually

modified by a PH assumption. We will investigate whether the need for mod-

ifications to the independence model is only apparent due to the misrounded

treatment of the age-by-period data. In the remainder of this chapter, we show

that misleading conclusions can arise when fitting the independence model for a

misrounded treatment of data. The potential for misleading conclusions can be

overcome by adopting an exact treatment of the age-by-period data. We note

that the potential for misleading conclusions is most severe when the cohort

intensity is changing rapidly. If the cohort intensity is changing slowly, then it

would be sufficient to carry out a misrounded treatment of the age-by-period

data. In Chapter 7, the case of Bovine Spongiform Encephalopathy (BSE) is

used as an illustrative example to investigate the implications of misrounding

on the outcome of an APC study. BSE is a prime example since the cohort

intensity for BSE incidence is rapidly changing.

6.3 Under-reporting of deaths

The first misrounding effect is that there is a strict inequality between the

Poisson intensities for N (s)
i,k and Ni,k which holds for s = 1 and s = 2 under

certain conditions for the cohort intensity and survival distribution. Some

important conditions for the cohort intensity are that κ(c) is strictly increasing

so that d
dcκ(c) > 0 for all c, strictly decreasing so that d

dcκ(c) < 0 for all

c, or constant so that d
dcκ(c) = 0 for all c. The power function, κ(c) =

ξ1c
ξ2 with ξ1 > 0, has a first derivative equal to ξ1ξ2c

ξ2−1. Hence, the power

function is strictly increasing for ξ2 > 0, strictly decreasing for ξ2 < 0 and

constant for ξ2 = 0. An important condition for the survival distribution is

the independence assumption defined in (6.8).

If the cohort intensity is strictly increasing and the survival distribution
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is independent of cohort, then

ν
(1)
i,k < νi,k ∀ i, k, (6.16)

ν
(2)
i,k > νi,k ∀ i, k. (6.17)

However, if the cohort intensity is strictly decreasing and the survival distri-

bution is independent of cohort, then the inequalities reverse so that

ν
(1)
i,k > νi,k ∀ i, k, (6.18)

ν
(2)
i,k < νi,k ∀ i, k. (6.19)

If the cohort intensity is the same for all cohorts, so that κ(c) = ξ for all c,

then for s = 1 and s = 2,

ν
(s)
i,k = νi,k ∀ i, k. (6.20)

The five results (6.16)-(6.20) are proved in Theorem 6.1. Note that, strict

inequalities exist for the first and second surrogate conventions, but there may

not be strict inequalities for the third convention.

The percentage loss in accuracy incurred by carrying out a misrounded

treatment of data as opposed to an exact treatment can be calculated for each

(i, k) cell as 100 ·
∣∣∣∣ν(s)i,k

νi,k
− 1

∣∣∣∣. This is because, under a misrounded treatment

of data, it is assumed that the observation in cell (i, k) of the surrogate data

has an expected value of νi,k. In reality, the observation in cell (i, k) has an

expected value of ν(s)
i,k . For example, if ν(s)

i,k > νi,k for all i and k, then a

statistician’s estimate of νi,k under a misrounded treatment of data would be

overstated for each (i, k) cell.

In Figures 6.3 and 6.4, we illustrate inequalities (6.16) and (6.18) respec-

tively for a particular choice of f(a) and κ(c). In Appendix 9.3, we outline

a method to calculate
ν
(1)
i,k

νi,k
for a particular parametric form for λ(a, c), which

consists of a Gamma survival distribution and an exponential cohort intensity.

This method can be applied to any parametric form. In Figure 6.3, the per-

centage loss in accuracy is most severe for earlier cohorts since the percentage

loss is approximately 45% for cohort 2001 and decreases to approximately 15%
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Figure 6.3: The calculation of
ν
(1)
i,k

νi,k
for an exponential survival distribution A ∼

Exponential (κ1 = 0.5) with a ≥ 0 and a cohort intensity κ(c) = [c− 2000]2 with c ≥

2000. The exponential family was described in Table 3.2. The survival distribution

is independent of cohort and the cohort intensity is strictly increasing.

for cohort 2005. In Figure 6.4, the percentage loss in accuracy is severe for

cohort 2001 at approxmiately 295-1140%. For cohort 2003 and 2005, the loss

in accuracy is not so severe and has a range of approximately 10-75%.

The first misrounding effect tells us that
ν
(1)
i,k

νi,k
is strictly greater than,

strictly less than or strictly equal to one for certain conditions, but this ef-

fect does not tell us about the pattern of change in
ν
(1)
i,k

νi,k
with i and k. In

Figure 6.3, the independence of the ratio
ν
(1)
i,k

νi,k
with i is explained in Section

6.4 by the second misrounding effect. The convergence of
ν
(1)
i,k

νi,k
towards one for
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unit increases in k is not explained by any of the three misrounding effects

discussed in this chapter. In this thesis, we use a Riemann Sum approximation

to estimate ν(1)
i,k and νi,k. The Riemann approximations, written in code as the

functions parallelogram and square, are discussed in detail in Appendix 9.3.
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, k(1

)
÷

ν i
,k

k = 2001
k = 2003
k = 2005

Figure 6.4: The calculation of the ratio
ν
(1)
i,k

νi,k
for a Gamma survival distribution A ∼

Gamma (π7 = 3, κ7 = 20) with a ≥ 0 and a cohort intensity κ(c) = [c− 2000]−2 with

c ≥ 2000. The gamma family was described in Table 3.2. The survival distribution

is independent of cohort and the cohort intensity is strictly decreasing. A horizontal

line is drawn at the point the y-axis equals one.

The first result (6.16) means that if the survival distribution is the same

for all individuals and the number of births is increasing on average over time,

then we should expect to encounter a strict understatement of deaths under

misrounding for the first surrogate convention. The third result (6.18) means
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that if instead the number of births is expected to decrease over time, then we

expect to encounter a strict overstatement of deaths under misrounding for the

first surrogate convention. A very similar interpretation can be made for the

second and fourth results in (6.17) and (6.19). The fifth result (6.20) means

that if the survival distribution is the same for all individuals and the number

of births is not changing over time, then an approximate modelling approach

is equivalent to an exact modelling approach.

The first four results are apparent because of a misrounded treatment of

data. An exact treatment of data outlined in (6.15) must be adopted to ensure

these four results are not apparent. In Chapter 7, we estimate the cohort

intensity for BSE incidence which we deem to be strictly increasing with cohort

until a particular time point and strictly decreasing thereafter. This leads to

an apparent understating of case numbers followed by an apparent overstating

of case numbers.

Theorem 6.1: Under the independence model, λ(a, c) = κ(c) · f(a), the

following results hold true under particular surrogate conventions:

(a) If κ(c) is strictly increasing, then ν(1)
i,k < νi,k for all i and k. But if κ(c)

is strictly decreasing, then ν
(1)
i,k > νi,k for all i and k. Also, if κ(c) is

constant, then ν(1)
i,k = νi,k for all i and k.

(b) If κ(c) is strictly increasing, then ν(2)
i,k > νi,k for all i and k. But if κ(c)

is strictly decreasing, then ν
(2)
i,k < νi,k for all i and k. Also, if κ(c) is

constant, then ν(2)
i,k = νi,k for all i and k.

Proof : (a) Recall the expressions for νi,k and µi,j in (6.10) and (6.11). Also

recalling the definition of ν(1)
i,k from Table 6.1, we can write ν(1)

i,k − νi,k as∫ 1

0
f(a+ i) [Q(k + 1− a)−Q(k − a)] da−

∫ 1

0
f(a+ i) [Q(k + 1)−Q(k)] da.
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Simplifying the subtraction of the two integrals to get one integral, we get the

following:∫ 1

0
f(a+ i){ [Q(k + 1− a)−Q(k − a)]− [Q(k + 1)−Q(k)] } da. (6.21)

Let us define a new function for the cumulative change in the cohort intensity

over a unit interval:

φ(a, k) = Q(k + 1− a)−Q(k − a). (6.22)

If κ(c) is strictly increasing, then φ(a, k) is strictly decreasing with a because,

for all a and all k,

∂

∂a
φ(a, k) = κ(k − a)− κ(k + 1− a) < 0.

Further, a function φ(a, k) which is strictly decreasing with a implies that, for

all a ∈ (0, 1) and all k,

Q(k + 1− a)−Q(k − a) < Q(k + 1)−Q(k).

Hence, if κ(c) is strictly increasing then expression (6.21) is negative for all i

and k and we conclude that ν(1)
i,k − νi,k < 0 for all i and k.

If κ(c) is strictly decreasing, then φ(a, k) is strictly increasing with a

because, for all a and all k, ∂
∂aφ(a, k) = κ(k−a)−κ(k+1−a) > 0. A function

φ(a, k) which is strictly increasing with a implies that, for all a ∈ (0, 1) and all

k,

Q(k + 1− a)−Q(k − a) > Q(k + 1)−Q(k).

Hence, if κ(c) is strictly decreasing, then expression (6.21) is positive for all i

and k and we conclude that ν(1)
i,k − νi,k > 0 for all i and k.

Also, if κ(c) is constant with c, then φ(a, k) is constant with a since
∂
∂aφ(a, k) = κ(k − a)− κ(k + 1− a) = 0. Further, a function φ(a, k) which is

constant with a implies that, for all a ∈ (0, 1) and all k,

Q(k + 1− a)−Q(k − a) = Q(k + 1)−Q(k).
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Hence, if κ(c) is constant, then expression (6.21) is equal to zero for all i and

k and we conclude that ν(1)
i,k − νi,k = 0 for all i and k.

(b) Recalling the definition of ν(2)
i,k from Table 6.1, we can write ν(2)

i,k − νi,k as∫ 1

0
f(a+ i){ [Q(k + 2− a)−Q(k + 1− a)]− [Q(k + 1)−Q(k)] } da. (6.23)

We showed in part (a) of the proof that, if κ(c) is strictly increasing, then

φ(a, k) is strictly decreasing with a, so that, for all a ∈ (0, 1) and all k,

Q(k + 2− a)−Q(k + 1− a) > Q(k + 1)−Q(k).

Hence, if κ(c) is strictly increasing then (6.23) is positive for all i and k and

we conclude that ν(2)
i,k − νi,k > 0 for all i and k.

We also showed in part (a) that, if κ(c) is strictly decreasing, then φ(a, k)

is strictly increasing with a, so that, for all a ∈ (0, 1) and all k,

Q(k + 2− a)−Q(k + 1− a) < Q(k + 1)−Q(k).

Hence, if κ(c) is strictly decreasing, then (6.23) is negative for all i and k and

we conclude that ν(2)
i,k − νi,k < 0 for all i and k.

Finally, we showed in part (a) that if κ(c) is constant with c, then φ(a, k)

is constant with a, so that, for all a ∈ (0, 1) and all k,

Q(k + 2− a)−Q(k + 1− a) = Q(k + 1)−Q(k).

Hence, if κ(c) is constant, then (6.23) is equal to zero for all i and k and we

conclude that ν(2)
i,k − νi,k = 0 for all i and k. This completes the proof.

6.4 Longer life expectancy

The second misrounding effect is that there is a strict inequality between the

ratio of Poisson intensities for N (s)
i,k and Ni,k, which holds for s = 1 and s = 2,
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under certain conditions for the cohort intensity and survival distribution.

Relative to the first misrounding effect, there are no additional assumptions for

the cohort intensity, but there is one new condition for the survival distribution

in addition to the independence assumption.

Suppose that log f(a) is twice differentiable. Some important conditions

for the survival distribution are that f(a) is log concave so that d2

da2 log f(a) < 0

for all a, log convex so that d2

da2 log f(a) > 0 for all a, or log linear so that
d2

da2 log f(a) = 0 for all a. Recall the Gamma family from Table 3.2. The

probability function for the Gamma family is log concave for κ7 > 1, log

convex for κ7 < 1 and log linear for κ7 = 1 because

d2

da2
log f (Gamma)(a, κ7, π7) =

1− κ7

a2
. (6.24)

The independence assumption implies that the ratio of Poisson intensities

for Ni,k is independent of cohort k so that

νi+1,k

νi,k
=

∫ 1
0 f(a+ i+ 1) da∫ 1

0 f(a+ i) da
=
f∗i+1

f∗i
≡ ζi. (6.25)

However, the ratio of Poisson intensities for N (s)
i,k in most cases is dependent

on cohort because, for s = 1 and s = 2,

ν
(s)
i+1,k

ν
(s)
i,k

=

∫ 1
0 f(a+ i+ 1) · [Q(k − a+ s)−Q(k − a+ s− 1)] da∫ 1

0 f(a+ i) · [Q(k − a+ s)−Q(k − a+ s− 1)] da
. (6.26)

The ratio
ν
(s)
i+1,k

ν
(s)
i,k

is independent of cohort when the cohort intensity changes

at an exponential rate so that κ(c) = ξ1 exp(ξ2c) with ξ1 ∈ R+ and ξ2 ∈ R,

because

ν
(s)
i+1,k

ν
(s)
i,k

=

∫ 1
0 f(a+ i+ 1)e−ξ2a da∫ 1

0 f(a+ i)e−ξ2a da
≡ ωi 6= ζi. (6.27)

In Chapter 7, we assume that the cohort intensity for BSE incidence increases

at an exponential rate and then decreases exponentially. Even though
ν
(s)
i+1,k

ν
(s)
i,k

is independent of cohort for a cohort intensity that changes at an exponential

rate, it is still not equal to the ratio of Poisson intensities for Ni,k. If either
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the cohort intensity is constant so that κ(c) = ξ or the survival distribution is

strictly log linear, then the ratios of Poisson intensities are equal for s = 1 and

s = 2:

ν
(s)
i+1,k

ν
(s)
i,k

=
νi+1,k

νi,k
≡ ζi ∀ i, k. (6.28)

If the cohort intensity is strictly increasing and the independent survival

distribution is strictly log concave, or if the cohort intensity is strictly decreas-

ing and the independent survival distribution is strictly log convex, then, for

s = 1 and s = 2,

ν
(s)
i+1,k

ν
(s)
i,k

>
νi+1,k

νi,k
≡ ζi ∀ i, k. (6.29)

However, if the cohort intensity is strictly increasing and the independent sur-

vival distribution is strictly log convex, or if the cohort intensity is strictly

decreasing and the independent survival distribution is strictly log concave,

then for s = 1 and s = 2, the inequality reverses so that

ν
(s)
i+1,k

ν
(s)
i,k

<
νi+1,k

νi,k
≡ ζi ∀ i, k. (6.30)

The results in (6.28), (6.29) and (6.30) are proved in Theorem 6.2. Similar to

the first misrounding effect, there may not be strict inequalities for the third

surrogate convention.

The percentage loss in accuracy incurred by carrying out a misrounded

treatment of data as opposed to an exact treatment can also be calculated for

each (i, k) cell in terms of the relative ratio as 100 ·
∣∣∣∣(νi+1,k

νi,k
÷ ν

(s)
i+1,k

ν
(s)
i,k

)
− 1

∣∣∣∣.
This is because it is assumed under a misrounded treatment of data that the

ratio of counts taken from cells (i, k) and (i + 1, k) has an expected value of
νi+1,k

νi,k
= ζi. In reality, the ratio of counts taken from cells (i, k) and (i + 1, k)

has an expected value of
ν
(s)
i+1,k

ν
(s)
i,k

, which can not be written as independent of k

except in the case of an exponential cohort intensity or a log linear survival

distribution. For example, if
ν
(s)
i+1,k

ν
(s)
i,k

>
νi+1,k

νi,k
, then, in general, a statistician’s
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estimate of νi,k under a misrounded treatment of data would have ratios that

are overstated and varying with cohort for each pair of (i, k) cells.

We illustrate the results (6.28) and (6.30) in Figures 6.5 and 6.6, respec-

tively. An exponential survival distribution is strictly log linear so leads to an

equality νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

= 1 for all i and k. This equality explains why the curves

in Figure 6.3 are independent of i for each cohort year. In this case, there is no

loss in accuracy in terms of the count ratios when carrying out a misrounded

treatment of data. A log concave Gamma survival distribution coupled with a

decreasing power function leads to an inequality νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

> 1 for all i and

k. The convergence of the curves in Figure 6.6 towards one is later explained

by the third misrounding effect. In this second case, a statistician incurs a

0.1-34.8% loss in accuracy in terms of the count ratios.

The results presented in this section can be interpreted in terms of the ex-

pected conditional age-at-death, E [A | c]. Under an independence assumption,

the logarithm of the ratio of Poisson intensities for Ni,k, written as log
(
νi+1,k

νi,k

)
,

is a discretised analogue of the relative rate of change in the survival distribu-

tion, d
da log f(a). If

ν
(s)
i+1,k

ν
(s)
i,k

is strictly less than νi+1,k

νi,k
, then under misrounding,

the relative rate of change in the survival distribution appears too small at

each age and may appear to be changing with cohort. We illustrate in Figure

6.7 that if
ν
(1)
i+1,k

ν
(1)
i,k

is strictly less than νi+1,k

νi,k
, then the survival distribution will

appear too far to the left so that the expected age-at-death will appear too

small. The expected age-at-death also appears to be changing with cohort so

that d
dcE[A | c] 6= 0.

In general, we can say that if
ν
(s)
i+1,k

ν
(s)
i,k

is strictly less than νi+1,k

νi,k
, then E[A | c]

will appear too small and may appear to change with cohort when in fact the

expected age-at-death is not changing with cohort due to the independence

assumption. Similarly, if
ν
(s)
i+1,k

ν
(s)
i,k

is strictly greater than νi+1,k

νi,k
, then E[A | c]

will appear too large and may appear to change with cohort. Also, if
ν
(s)
i+1,k

ν
(s)
i,k

is strictly equal to νi+1,k

νi,k
, then the expected age-at-death will appear correctly

and appear unchanging with cohort under misrounding.
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Figure 6.5: The calculation of νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

for an exponential survival distribution

A ∼ Exponential (κ1 = 0.5) with a ≥ 0 and a cohort intensity κ(c) = [c− 2000]2 with

c ≥ 2000. The exponential family was described in Table 3.2 and the calculation of
ν
(1)
i,k

νi,k
was illustrated in Figure 6.3. The survival distribution is independent and log

linear, while the cohort intensity is strictly increasing.

One interpretation of the second result (6.29) is that if the survival distri-

bution is strictly log concave and the same for all individuals, and the number

of births is increasing on average over time, then the expected age-at-death

will appear too large and possibly changing with cohort under misrounding

for the first and second surrogate conventions. If instead the survival distri-

bution is strictly log convex, the third result (6.30) tells us that the expected

age-at-death will appear too small and possibly changing with cohort under

misrounding. We show in Chapter 7 that certain conditions led the expected
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Figure 6.6: The calculation of νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

for a Gamma survival distribution

A ∼ Gamma (π7 = 3, κ7 = 20) with a ≥ 0 and a cohort intensity κ(c) = [c− 2000]−2

with c ≥ 2000. The gamma family was described in Table 3.2 and the calculation

of
ν
(1)
i,k

νi,k
was illustrated in Figure 6.4. The survival distribution is independent and

strictly log concave, while the cohort intensity is strictly decreasing.

age-at-death for BSE incidence to appear too large for cattle born before a

certain time instant and then appear too small for cattle born after that time

instant.

Theorem 6.2: Under the independence model, λ(a, c) = κ(c) · f(a), the

following results hold true under surrogate conventions s = 1 and s = 2:

123



• If κ(c) is strictly increasing and f(a) is strictly log concave, or if κ(c) is

strictly decreasing and f(a) is strictly log convex, then
ν
(s)
i+1,k

ν
(s)
i,k

>
νi+1,k

νi,k
= ζi

for all i and k.

• If κ(c) is strictly increasing and f(a) is strictly log convex, or if κ(c) is

strictly decreasing and f(a) is strictly log concave, then
ν
(s)
i+1,k

ν
(s)
i,k

<
νi+1,k

νi,k
=

ζi for all i and k.

• If κ(c) is constant or f(a) is strictly log linear, then
ν
(s)
i+1,k

ν
(s)
i,k

=
νi+1,k

νi,k
= ζi

for all i and k.

Proof : Recall the definition of φ(a, k) from (6.22). Suppose

ψ(a, i) = f(a+ i+ 1)/f(a+ i). (6.31)

We use equations (6.25) and (6.26) to express the ratios
ν
(1)
i+1,k

ν
(1)
i,k

and νi+1,k

νi,k
in

terms of the functions ψ(a, i) and φ(a, k):

νi+1,k

νi,k
=

∫ 1
0 f(a+ i+ 1) da∫ 1

0 f(a+ i) da

=

∫ 1
0 f(a+ i)ψ(a, i) da∫ 1

0 f(a+ i) da

and

ν
(1)
i+1,k

ν
(1)
i,k

=

∫ 1
0 f(a+ i+ 1) [Q(k + 1− a)−Q(k − a)] da∫ 1

0 f(a+ i) [Q(k + 1− a)−Q(k − a)] da

=

∫ 1
0 f(a+ i+ 1)φ(a, k) da∫ 1

0 f(a+ i)φ(a, k) da

=

∫ 1
0 f(a+ i)ψ(a, i)φ(a, k) da∫ 1

0 f(a+ i)φ(a, k) da
. (6.32)

The ratio difference
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
has a denominator equal to

∫ 1

0
f(a+ i)da

∫ 1

0
f(a+ i)φ(a, k)da
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and a numerator equal to∫ 1

0
f(a+ i)da

∫ 1

0
f(a+ i)ψ(a, i)φ(a, k)da

−
∫ 1

0
f(a+ i)φ(a, k)da

∫ 1

0
f(a+ i)ψ(a, i)da. (6.33)

The denominator is always positive since f(a) > 0 for all a and κ(c) > 0 for

all c. So only the numerator needs to be evaluated. It is helpful to introduce

a dummy variable, w, to clarify the product of integrals. By introducing w for

the second integrand in each integral product, the numerator of (6.33) is equal

to ∫ 1

0

∫ 1

0
f(a+ i)f(w + i)[ψ(w, i)φ(w, k)− ψ(w, i)φ(a, k)] da dw. (6.34)

If instead w is introduced for the first integrand in each integral product, the

numerator of (6.33) is equal to∫ 1

0

∫ 1

0
f(a+ i)f(w + i)[ψ(a, i)φ(a, k)− ψ(a, i)φ(w, k)] da dw. (6.35)

Expressions (6.34) and (6.35) are mathematically equivalent so we can take an

average of (6.34) and (6.35) to derive the following double integral:

1

2

∫ 1

0

∫ 1

0
f(a+ i)f(w + i)[ψ(w, i)− ψ(a, i)][φ(w, k)− φ(a, k)] da dw.

For
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
to be strictly negative or non-negative, it is sufficient to

show that

[ψ(w, i)− ψ(a, i)] [φ(w, k)− φ(a, k)] (6.36)

is negative or non-negative respectively for all w, a, i and k. This can be

determined by assessing the monotonicity properties of ψ(·) and φ(·). By

taking the logarithm of ψ(a, i) from (6.31) and differentiating with respect to

a, we derive the equation

d

da
[log(ψ(a, i))] =

d

da
log(f(a+ i+ 1))− d

da
log(f(a+ i)). (6.37)

If f(a) is strictly log concave, then log(f(a)) is strictly concave and the quantity

in (6.37) is strictly negative. The slope of log(ψ(a, i)) is then always negative,
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and ψ(a, i) is strictly decreasing with a. So if f(a) is strictly log convex then

ψ(a, i) is strictly increasing with a, and if f(a) is strictly log linear then ψ(a, i)

is constant with a. We showed in the proof of Theorem 6.1 that: (i) if κ(c)

is strictly increasing, then φ(a, k) is strictly decreasing with a; (ii) if κ(c) is

strictly decreasing, then φ(a, k) is strictly increasing with a; and (iii) if κ(c) is

constant, then φ(a, k) is constant with a.

If κ(c) is strictly increasing and f(a) is strictly log concave, then the

inequality
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
> 0 is true for all i and k since:

• if w < a, then ψ(w, i) > ψ(a, i) and φ(w, k) > φ(a, k)

• if w > a, then ψ(w, i) < ψ(a, i) and φ(w, k) < φ(a, k).

If κ(c) is strictly decreasing and f(a) is strictly log convex, then the inequality
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
> 0 is true for all i and k since:

• if w < a, then ψ(w, i) < ψ(a, i) and φ(w, k) < φ(a, k)

• if w > a, then ψ(w, i) > ψ(a, i) and φ(w, k) > φ(a, k).

If κ(c) is strictly increasing and f(a) is strictly log convex, then the inequality
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
< 0 is true for all i and k since:

• if w < a, then ψ(w, i) < ψ(a, i) and φ(w, k) > φ(a, k)

• if w > a, then ψ(w, i) > ψ(a, i) and φ(w, k) < φ(a, k).

If κ(c) is strictly decreasing and f(a) is strictly log concave, then the inequality
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
< 0 is true for all i and k since:

• if w < a, then ψ(w, i) > ψ(a, i) and φ(w, k) < φ(a, k)

• if w > a, then ψ(w, i) < ψ(a, i) and φ(w, k) > φ(a, k).
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Hence, if κ(c) is constant and/or f(a) is strictly log linear, then the equality
ν
(1)
i+1,k

ν
(1)
i,k

− νi+1,k

νi,k
= 0 holds true for all i and k because, at least one of the equalities

ψ(w, i) = ψ(a, i) and φ(w, k) = φ(a, k) will hold true for all values of a and w.

Recalling equation (6.26), the ratio
ν
(2)
i+1,k

ν
(2)
i,k

can be expressed in terms of

ψ(a, i) and φ(a, k) as the following:

ν
(2)
i+1,k

ν
(2)
i,k

=

∫ 1
0 f(a+ i+ 1) [Q(k + 2− a)−Q(k + 1− a)] da∫ 1

0 f(a+ i) [Q(k + 2− a)−Q(k + 1− a)] da

=

∫ 1
0 f(a+ i+ 1)φ(a, k + 1) da∫ 1

0 f(a+ i)φ(a, k + 1) da

=

∫ 1
0 f(a+ i)ψ(a, i)φ(a, k + 1) da∫ 1

0 f(a+ i)φ(a, k + 1) da
.

By taking the ratio difference and introducing a dummy variables to clarify

the product of integrals as in (6.34) and (6.35), we derive a numerator for
ν
(2)
i+1,k

ν
(2)
i,k

− νi+1,k

νi,k
that is mathematically equivalent to

1

2

∫ 1

0

∫ 1

0
f(a+ i)f(w + i)[ψ(w, i)− ψ(a, i)][φ(w, k + 1)− φ(a, k + 1)] da dw.

The inequalities derived in the previous paragraph remain the same for the

second surrogate convention as we only need to replace φ(·, k) with φ(·, k+ 1).

This completes the proof.

6.5 Lengthening of life expectancy

The third misrounding effect is that there is a strict inequality for the cross-

ratio of Poisson intensities for N (s)
i,k , which holds for s = 1 and s = 2, under

certain conditions for the cohort intensity and survival distribution. The third

misrounding effect is described in Theorem 6.3. Relative to the second mis-

rounding effect, there are no new assumptions for the survival distribution,

but there is one new condition for the cohort intensity in addition to the strict

monotonicity condition. Suppose that log κ(c) is twice differentiable. An im-

127



portant new condition is that κ(c) is log concave, log convex or log linear. For

example, a power function κ(c) = ξ1c
ξ2 is log concave for ξ2 > 0, log convex

for ξ2 < 0 and log linear for ξ2 = 0 because d2

dc2 log κ(c) = − ξ2
c2
.

Recalling (6.25), the independence assumption implies that the cross-ratio

of Poisson intensities for Ni,k is equal to one so that, for all i and k,

νi+1,k+1

νi,k+1

÷
νi+1,k

νi,k
= 1. (6.38)

However, the cross-ratio of Poisson intensities for N (s)
i,k may not be equal to one

for s = 1 and s = 2. If the survival distribution is independent of cohort and

either the cohort intensity or survival distribution is strictly log linear, then,

for s = 1 and s = 2, the cross-ratio of Poisson intensities for N (s)
i,k is equal to

one for all i and k:

ν
(s)
i+1,k+1

ν
(s)
i,k+1

÷
ν

(s)
i+1,k

ν
(s)
i,k

= 1. (6.39)

If the cohort intensity and the independent survival distribution are both

strictly log concave or strictly log convex, then, for s = 1 and s = 2, and for

all i and k,

ν
(s)
i+1,k+1

ν
(s)
i,k+1

÷
ν

(s)
i+1,k

ν
(s)
i,k

< 1. (6.40)

However, if the cohort intensity is strictly log convex and the independent

survival distribution is strictly log concave, or if the cohort intensity is strictly

log concave and the independent survival distribution is strictly log convex,

then for s = 1 and s = 2, the inequality reverses so that, for all i and k,

ν
(s)
i+1,k+1

ν
(s)
i,k+1

÷
ν

(s)
i+1,k

ν
(s)
i,k

> 1. (6.41)

For other conditions, there is not a strict equality or inequality for the cross-

ratio of Poisson intensities for N (s)
i,k . There may not be strict inequalities or

equalities for the third surrogate convention. Theorem 6.3 proves that the three

results (6.39), (6.40) and (6.41) hold true. In Figures 6.5 and 6.6, and later

on in Figure 7.4, the value of
ν
(1)
i+1,k+1

ν
(1)
i,k+1

÷ ν
(1)
i+1,k

ν
(1)
i,k

can be determined by holding i
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constant and increasing k by one. For each figure, this theorem can be seen to

hold.

The results in this section can be interpreted in terms of the change in

the expected age-at-death with cohort, d
dcE [A | c]. Under an independence

assumption, the logarithm of the cross-ratio of Poisson intensities for Ni,k,

written as log
(
νi+1,k+1

νi,k+1
÷ νi+1,k

νi,k

)
, is a discretised analogue of the mixed deriva-

tive, d2

da dc log f(a | c). If ν
(s)
i+1,k+1

ν
(s)
i,k+1

is strictly greater than
ν
(s)
i+1,k

ν
(s)
i,k

, then the mixed

derivative will appear to be positive so that, under misrounding, the relative

rate of change in the survival distribution, d
da log f(a | c), appears to be in-

creasing with cohort. In Figure 6.7, we show that, if
ν
(1)
i+1,k+1

ν
(1)
i,k+1

is strictly greater

than
ν
(1)
i+1,k

ν
(1)
i,k

, then the survival distribution will appear to be shifting to the right

for newer cohorts. Hence, the expected age-at-death will appear to be getting

larger over time so that d
dcE [A | c] > 0 for all c.

In general, we can say that if
ν
(s)
i+1,k+1

ν
(s)
i,k+1

is strictly greater than
ν
(s)
i+1,k

ν
(s)
i,k

, then

under misrounding, it will incorrectly appear that the expected age-at-death

is increasing across generations, so that d
dcE [A | c] > 0 for all c, when in fact

the expected age-at-death is not changing with cohort. Similarly, if
ν
(s)
i+1,k+1

ν
(s)
i,k+1

is

strictly less than
ν
(s)
i+1,k

ν
(s)
i,k

, then under misrounding, it will incorrectly appear that

the expected age-at-death is decreasing across generations so that d
dcE [A | c] <

0 for all c. Also, if
ν
(s)
i+1,k

ν
(s)
i,k

is strictly equal to
ν
(s)
i+1,k+1

ν
(s)
i,k+1

, then under misrounding,

the expected age-at-death will correctly appear to stay the same over time so

that d
dcE [A | c] = 0.

One interpretation of the second result (6.40) is that if the relative rate of

change in the survival distribution and cohort intensity are strictly increasing

on average, then newer generations of individuals will appear to live shorter

lives on average under misrounding for the first and second surrogate con-

ventions. In relation to (6.41), if the relative rate of change in the survival

distribution is strictly decreasing and the relative rate of change in the co-

hort intensity is strictly increasing, then newer generations of individuals will
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Figure 6.7: The calculation of
ν
(1)
i,k∑
i ν

(1)
i,k

for a Gamma survival distribution A ∼

Gamma (π7 = 3, κ7 = 20) with a ≥ 0 and a cohort intensity κ(c) = [c − 2000]−2

with c ≥ 2000. The quantity
ν
(1)
i,k∑
i ν

(1)
i,k

is a discrete representation of the survival dis-

tribution that is apparent under misrounding for s = 1. The solid line is equal to f∗i .

The survival distribution is log concave and the cohort intensity is log convex.

appear to live longer lives on average under misrounding. For this second sce-

nario, we plot a discrete representation of the survival distribution,
ν
(1)
i,k∑
i ν

(1)
i,k

,

in Figure 6.7, which is apparent under misrounding for s = 1. By holding i

constant and increasing k by one, we can determine from Figure 6.6 that the

plotted values of
ν
(1)
i,k∑
i ν

(1)
i,k

correspond to the inequality
ν
(1)
i+1,k+1

ν
(1)
i,k+1

÷ ν
(1)
i+1,k

ν
(1)
i,k

> 1.

In Chapter 7, we fit a log linear cohort intensity to data on BSE incidence.

So, under our model, the expected age-at-death for BSE incidence appears to

stay the same over time. The conclusion of an increasing expected age-at-death
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is often reached in APC studies for human mortality (Clayton and Schifflers

1987a; Lee and Hsieh 1996; Kramer et al. 2015) and seems to be an important

topic of debate for society. It would be interesting for further research to assess

the extent to which the apparent lengthening of life for humans is attributable

to the third misrounding effect.

We can combine the results of the second and third misrounding effects

in Theorems 6.2 and 6.3 respectively, to fully describe the appearance of the

survival distribution. For example, in Figure 6.7, we illustrate that if the cohort

intensity is strictly log convex and strictly decreasing, and if the independent

survival distribution is strictly log concave, then the expected age-at-death

appears too small but is increasing for newer cohorts towards the true expected

age-at-death which would be apparent for a misrounded treatment of data.

This true expected age-at-death is indicated by the true survival distribution,

f∗i =
∫ i+1
i f(a) da, which is the solid line depicted in Figure 6.7.

Theorem 6.3: Under the independence model, λ(a, c) = κ(c) · f(a), the

following results hold true under surrogate conventions s = 1 and s = 2:

• If both κ(c) and f(a) are strictly log concave or strictly log convex,
ν
(s)
i+1,k+1

ν
(s)
i,k+1

<
ν
(s)
i+1,k

ν
(s)
i,k

for all i and k.

• If one of κ(c) and f(a) is strictly log concave and the other is strictly log

convex, then
ν
(s)
i+1,k+1

ν
(s)
i,k+1

>
ν
(s)
i+1,k

ν
(s)
i,k

for all i and k.

• If at least one of κ(c) and f(a) is strictly log linear, then
ν
(s)
i+1,k+1

ν
(s)
i,k+1

=
ν
(s)
i+1,k

ν
(s)
i,k

for all i and k.

Proof : Recalling (6.22), (6.31) and (6.32), the absolute difference between
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ν
(1)
i+1,k

ν
(1)
i,k

and
ν
(1)
i+1,k+1

ν
(1)
i,k+1

can be written as

ν
(1)
i+1,k+1

ν
(1)
i,k+1

−
ν

(1)
i+1,k

ν
(1)
i,k

=
ν

(1)
i+1,k+1 · ν

(1)
i,k − ν

(1)
i+1,k · ν

(1)
i,k+1

ν
(1)
i,k+1 · ν

(1)
i,k

, (6.42)

where the numerator is equal to∫ 1

0
f(a+ i)ψ(a, i)φ(a, k + 1) da ·

∫ 1

0
f(a+ i)φ(a, k) da

−
∫ 1

0
f(a+ i)ψ(a, i)φ(a, k) da ·

∫ 1

0
f(a+ i)φ(a, k + 1) da. (6.43)

The denominator of (6.42) is positive because κ(c) > 0 for all c and so ν(1)
i,k > 0

for all i and k. It is sufficient to work with the numerator to find a strict

inequality or equality for (6.42).

We introduce a dummy variable w for the second integrand in each integral

product so that the numerator (6.43) is equal to∫ 1

0

∫ 1

0
f(a+ i)f(w + i)ψ(a, i)g(a,w, k) da dw; (6.44)

where

g(a,w, k) ≡ φ(a, k + 1)φ(w, k)− φ(a, k)φ(w, k + 1).

Notice that the function g is symmetric because g(a,w, k) = −g(w, a, k). We

can instead introduce w for the first integrand in each integral product so that

the numerator is equal to

−
∫ 1

0

∫ 1

0
f(a+ i)f(w + i)ψ(w, i)g(a,w, k) da dw. (6.45)

Expressions (6.44) and (6.46) are mathematically equivalent so that we can

take an average of (6.44) and (6.46) to derive the following double integral:

1

2

∫ 1

0

∫ 1

0
f(a+ i)f(w + i) [ψ(a, i)− ψ(w, i)] g(a,w, k) da dw. (6.46)

Consider a continuous function

e(x) =
Q(x+ 2)−Q(x+ 1)

Q(x+ 1)−Q(x)
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with a domain and range on the interval R+. The function e(x) can be written

in terms of κ(c) as

e(x) =

∫ 2
1 κ(x+ u) du∫ 1
0 κ(x+ v) dv

.

The quantity d
dx log e(x) is equal to the ratio∫ 2

1 κ
′(x+ u) du ·

∫ 1
0 κ(x+ v) dv −

∫ 1
0 κ
′(x+ v) dv ·

∫ 2
1 κ(x+ u) du∫ 2

1 κ(x+ u) du ·
∫ 1

0 κ(x+ v) dv
.

The denominator of d
dx log e(x) is positive since κ(c) > 0 for all c. So only the

numerator needs to be evaluated. The numerator of d
dx log e(x) can be written

as the following double integral:∫ 2

1

∫ 1

0

[
κ′(x+ u)κ(x+ v)− κ(x+ u)κ′(x+ v)

]
dv du.

The inequality κ′(x+ u)κ(x+ v)− κ(x+ u)κ′(x+ v) > 0 implies that

κ′(x+ u)

κ(x+ u)
− κ′(x+ v)

κ(x+ v)
=

d
du

log κ(x+ u)− d
dv

log κ(x+ v) > 0.

Further, if κ(c) is log convex so that d
dc log κ(c) is strictly increasing with c,

then d
dx log e(x) > 0, and, hence, d

dxe(x) > 0 for all x and all u > v.

Similarly, if κ(c) is log concave so that d
dc log κ(c) is strictly decreasing

with c, then d
dx log e(x) < 0, and, hence, d

dxe(x) < 0 for all x and all u > v.

Also, if κ(c) is log linear so that d
dc log κ(c) does not change with c, then

d
dx log e(x) = 0, and, hence, d

dxe(x) = 0 for all x and all u > v. In summary,

1. if κ(c) is log convex, then e(x) is strictly increasing

2. if κ(c) is log concave, then e(x) is strictly decreasing

3. if κ(c) is log linear, then e(x) is constant.

The difference function e(k − a) − e(k − w) is equivalent to a ratio with

a positive denominator, φ(a, k) · φ(w, k), and a numerator equal to g(a,w, k).
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Hence,

e(k − a)− e(k − w) > 0 =⇒ g(a,w, k) > 0,

e(k − a)− e(k − w) < 0 =⇒ g(a,w, k) < 0,

e(k − a)− e(k − w) = 0 =⇒ g(a,w, k) > 0.

If e(x) is strictly increasing, then e(k − a) − e(k − w) > 0 for a < w and

e(k− a)− e(k−w) < 0 for a > w. It is helpful to note that k− a > k−w for

a < w. Therefore, if κ(c) is strictly log convex, then

1. if a < w, then g(a,w, k) > 0;

2. if a > w, then g(a,w, k) < 0.

Similarly, if e(x) is strictly decreasing, then the inequalities reverse so that

e(k − a) − e(k − w) < 0 for a < w and e(k − a) − e(k − w) > 0 for a > w.

Therefore, if κ(c) is strictly log concave, then

1. if a < w, then g(a,w, k) < 0;

2. if a > w, then g(a,w, k) > 0.

If e(x) is constant, then e(k − a)− e(k −w) = 0 for all a and w. Therefore, if

κ(c) is strictly log linear, then g(a,w, k) = 0 for all a and w.

In the proof of Theorem 6.2, we showed that:

• if f(a) is strictly log concave, then ψ(a, i)− ψ(w, i) < 0 for a > w;

• if f(a) is strictly log convex, then ψ(a, i)− ψ(w, i) > 0 for a > w;

• if f(a) is strictly log linear, then ψ(a, i)− ψ(w, i) = 0 for all a and w.

Overall, if κ(c) and f(a) are both strictly log concave, then the inequality
ν
(1)
i+1,k+1

ν
(1)
i,k+1

− ν
(1)
i+1,k

ν
(1)
i,k

< 0 is true for all i and k since:
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• if a < w, then ψ(a, i) > ψ(w, i) and g(a,w, k) < 0

• if a > w, then ψ(a, i) < ψ(w, i) and g(a,w, k) > 0.

If κ(c) and f(a) are both strictly log convex, then the inequality
ν
(1)
i+1,k+1

ν
(1)
i,k+1

−

ν
(1)
i+1,k

ν
(1)
i,k

< 0 is true for all i and k since:

• if a < w, then ψ(a, i) < ψ(w, i) and g(a,w, k) > 0

• if a > w, then ψ(a, i) > ψ(w, i) and g(a,w, k) < 0.

If κ(c) is strictly log convex and f(a) is strictly log concave, then the inequality
ν
(1)
i+1,k+1

ν
(1)
i,k+1

− ν
(1)
i+1,k

ν
(1)
i,k

> 0 is true for all i and k since:

• if a < w, then ψ(a, i) > ψ(w, i) and g(a,w, k) > 0

• if a > w, then ψ(a, i) < ψ(w, i) and g(a,w, k) < 0.

If κ(c) is strictly log concave and f(a) is strictly log convex, then the inequality
ν
(1)
i+1,k+1

ν
(1)
i,k+1

− ν
(1)
i+1,k

ν
(1)
i,k

> 0 is true for all i and k since:

• if a < w, then ψ(a, i) < ψ(w, i) and g(a,w, k) < 0

• if a > w, then ψ(a, i) > ψ(w, i) and g(a,w, k) > 0.

If at least one of κ(c) and f(a) is strictly log linear, then the equality
ν
(1)
i+1,k+1

ν
(1)
i,k+1

−

ν
(1)
i+1,k

ν
(1)
i,k

= 0 is true for all i and k since at least one of the equalities, ψ(a, i) =

ψ(w, i) and g(a,w, k) = 0, holds true for all a and w.

For surrogate convention s = 2, we would replace g(a,w, k) with g(a,w, k+

1). All of the inequalities and equalities from the previous paragraph would

still hold true. This completes the proof.
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6.6 Conclusion

Data on deaths are usually rounded and published in a contingency table cate-

gorised in terms of age and period. An age-by-cohort contingency table is rarely

made available for analysis. Statisticians take the age-by-period rounded data

as surrogates for age-by-cohort rounded data and fit the discrete independence

model λi,k = κk ·fi to the surrogate data. We describe three possible surrogate

conventions labelled by s, but it is most common to adopt the first convention

s = 1 in which the value of cohort for each (i, j) cell of the age-by-period table

is determined as k = j − i.

The discrete independence model λi,k is equivalent to a continuous inde-

pendence model that has been discretised over an age-by-cohort region in the

Lexis diagram, written as νi,k. So the age-by-period data are used for model

fitting as if the data are rounded age-by-cohort. We compared this misrounded

treatment of the data with an exact treatment. An exact treatment of data

is to fit the continuous independence model that has been discretised over an

age-by-period region in the Lexis diagram, written as ν(s)
i,k , to the surrogate

data. The exact treatment means that the age-by-period data are used for

model fitting as if the data are rounded age-by-period.

Under a misrounded treatment of data, it is assumed that the observation

in cell (i, k) of the surrogate data has an expected value of νi,k. In reality, the

observation in cell (i, k) has an expected value of ν(s)
i,k . In certain circumstances,

there are strict inequalities between νi,k and ν
(s)
i,k for all (i, k) cells which means

that on average the surrogate data either overstate or understate the number

of deaths. A statistician’s estimate of νi,k would be strictly overstated or

understated under a misrounded treatment of data. The percentage loss in

accuracy incurred by carrying out a misrounded treatment of data as opposed

to an exact treatment can be calculated for each (i, k) cell as 100 ·
∣∣∣∣ν(s)i,k

νi,k
− 1

∣∣∣∣.
A statistician might encounter an apparent over-reporting or under-reporting
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in the surrogate data relative to the discrete independence model, which is not

apparent in reality and is not apparent when carrying out an exact treatment

of the surrogate data.

It is also assumed under a misrounded treatment of data that the ratio of

counts taken from cells (i, k) and (i + 1, k) has an expected value of νi+1,k

νi,k
=

ζi. That is, the relative change in the count data with age is the same for

all cohorts. In reality, the ratio of counts taken from cells (i, k) and (i +

1, k) has an expected value of
ν
(s)
i+1,k

ν
(s)
i,k

, which in general is not the same for all

cohorts such that
ν
(s)
i+1,k

ν
(s)
i,k

6= ζi. The percentage loss in accuracy incurred by

carrying out a misrounded treatment of data as opposed to an exact treatment

can be calculated for each (i, k) cell in terms of the relative ratio as 100 ·∣∣∣∣(νi+1,k

νi,k
÷ ν

(s)
i+1,k

ν
(s)
i,k

)
− 1

∣∣∣∣.
Certain conditions lead to strict inequalities between νi+1,k

νi,k
and

ν
(s)
i+1,k

ν
(s)
i,k

and

these inequalities have an interpretation in terms of the location of the ap-

parent survival distribution. For example, if
ν
(s)
i+1,k

ν
(s)
i,k

>
νi+1,k

νi,k
, then the survival

distribution apparent under the misrounded treatment of data is further to

the right than the true distribution, f(a). Further, if
ν
(s)
i+1,k+1

ν
(s)
i,k+1

>
ν
(s)
i+1,k

ν
(s)
i,k

, then

the survival distribution apparent under misrounding is shifting to the right

for newer cohorts, thereby suggesting an increasing longevity when in fact

longevity is not changing under the independence model.

In summary, a misrounded treatment of data can be problematic when

assessing the fit of an independence model due to the potential for misleading

conclusions in relation to the understating or overstating of cell counts, the

understating or overstating of longevity, and false changes in longevity over

time. The potential for misleading conclusions can be overcome by carrying

out an exact treatment of the data. In theory, the concept of misrounding has

significant implications in the APC literature due to the widespread fitting

of discrete independence models to age-by-period data. However, we caution

that the effect of misrounding on a statistical analysis can only be significant
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when the cohort intensity is changing rapidly. In Chapter 4, we explained

that modifications are made to the discrete independence model using a PH

functional. In Chapter 7, we investigate for the illustrative example of BSE

whether the need for modifications to the independence model is only apparent

due to the misrounded treatment of data.
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Chapter 7

Misrounding effects in the case

of BSE incidence

Bovine Spongiform Encephalopathy (BSE) is a fatal neurodegenerative dis-

ease in cattle which is perhaps better known as “mad cow disease”. BSE was

first observed in cattle in the United Kingdom (UK) in 1986 and its incidence

grew rapidly over the following years to cause considerable havoc in the cattle

industry (Donnelly and Ferguson 2000, pages 9–10). The Ministry of Agri-

culture, Fisheries and Farming (MAFF) collected information for each BSE

case and provided public summaries of this database in a contingency table

rounded age-by-period. In contrast, the Central Veterinary Laboratory (CVL)

compiled a more extensive database on BSE cases and were able to construct a

contingency table rounded age-by-cohort (Donnelly and Ferguson 2000, pages

25–29).

Dealler and Kent (1995) and Anderson et al. (1996) analysed the BSE

incidence data to assess the suitability of the independence model λ(a, c) =

f(a) · κ(c) and to investigate various modifications. Dealler and Kent studied

the MAFF data for a misrounded treatment of data and found large depar-

tures from the independence model. Anderson et al. studied the CVL data

for an exact treatment of data and found much smaller departures from the
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independence model. In this chapter, we argue that the two research groups

came to dramatically different conclusions because the exact treatment of data

outlined in Section 6.2 is necessary for the study of BSE incidence due to a

cohort intensity that was changing rapidly and a survival distribution that was

sharply peaked.

In Section 7.1, a parametric form is specified for the independence model

based on a naive inspection of BSE incidence data rounded as age-by-period.

We use a simple parametric form to capture the main features about λ(a, c).

This then allows us to capture the main features about the expected counts in

age-by-cohort and age-by-period regions of the Lexis diagram, νi,k and ν
(1)
i,k . We

choose a Gamma model to describe f(a) and an exponential model to describe

κ(c). In Section 7.2, we fit the model to the age-by-period data for an exact

treatment and integrate the model over Lexis parallelograms to calculate our

estimate of the age-by-period Poisson intensity ν(1)
i,k . We compare the estimate

of ν(1)
i,k to the MAFF data to assess how well the independence model describes

the BSE incidence data.

In Section 7.3, the fitted independence model is integrated over Lexis

squares to calculate our estimate of νi,k. We compare our estimates of ν(1)
i,k and

νi,k to illustrate the three misrounding effects described in Theorems 6.1, 6.2

and 6.3 for the case of BSE incidence. Under our model, the expected age-

at-onset appears too large for cattle born before the ban, appears to decrease

for cattle born at around the time of the ban, and appears too small for cattle

born after the ban. These misrounding effects are mathematical consequences

of the model assumptions such as a log linear cohort intensity and a log concave

survival distribution. In Section 7.4, we simulate observations of the number

of BSE cases under our fitted independence model and explain whether the

misrounding effects are apparent for noisy data. We also explain how modifi-

cations could be made to the independence model to allow the expected age

at onset to vary with cohort.
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7.1 Model for BSE incidence

In order to follow the cause of the disease, the Ministry of Agriculture, Fisheries

and Farming (MAFF) collected information from mid-1989 onwards about each

BSE case (Dealler and Kent 1995) including:

• the date of birth, C ∈ R,

• the date of disease onset, P ∈ R,

• the age at onset, A = P − C ∈ R+.

A date can be converted to a decimal. For example, the cohort of a cow born on

the 18th January 1985 can be written as the decimal 1985 + 18−1
365 = 1985.047.

The minus one deduction in the fractional part of cohort means that the 1st

January rather than the 31st December is converted to an integer. For some

cases, the date of birth and date of onset were either unknown or estimated.

When only the month and year were recorded, the dates were entered into the

database as the first day of the month.

MAFF adopted the rounding down approach from Section 2.2 to present

a cattle’s date of birth, date of onset and age at onset as years:

I = bAc, J = bP c, K = bCc.

The continuous identity A = P − C transformed under discretisation into the

two near-identities

I = J −K and I = J −K − 1.

A cow born in year k = 1980 that is diagnosed with BSE in year j = 1985

could have an age at onset of either i = 4 or i = 5.

MAFF provided public summaries of this database in the form of a two-

way contingency table categorised age-by-period and discretised into years.
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Each cell of the MAFF table is an observation of the Poisson model, Mi,j ,

from equation (6.6), which counts the number of BSE cases in the Lexis paral-

lelogram R
(AP)
i,j . Dealler and Kent (1995) applied the first surrogate convention

from Table 6.1 to recategorise the MAFF table in terms of age and cohort so

that Mi,i+k ≡ N
(1)
i,k . Recalling Figures 6.1 and 6.2, the observed number of

BSE cases in the Lexis parallelogram R
(AP)
i,i+k is treated by Dealler and Kent as

an observation for the number of BSE cases in a Lexis square R(AC)
i,k .

In Table 7.1, we present the observations of N (1)
i,k for the incidence of BSE.

The first surrogate convention is adopted very often in the APC literature and

some examples can be found for other case studies such as in Clayton and

Schifflers (1987a, page 459) and Murayama et al. (2006, page 4). The number

of BSE cases was published for ages two to ten and periods 1989 to 1993. Since

there was no observation for cattle contracting BSE aged ten in period 1989,

the year of birth is defined from 1980 to 1991. It is possible that cattle can

contract BSE after age ten and after period 1993, but the MAFF data do not

cover ages above ten years or periods above 1993. Each positive diagonal of

Table 7.1 represents a certain period, for example, the diagonal from 49 to 17

displays the number of cattle contracting BSE in period 1989.

The simplest model for BSE incidence is an independence model in which

the number of BSE cases, indexed in continuous time by cohort c and age a,

follows a Poisson process with an intensity described in (6.8) as

λ(a, c) = f(a) · κ(c).

Here f(a) is the probability density function of the age at onset given that

a cow is eventually deemed to have BSE, and κ(c) is the intensity for cattle

born at time c which are eventually deemed to have BSE. The Poisson model

assumes that BSE cases occur independently. Infected cattle feed is believed

to be the major source of BSE transmission (Dealler and Kent 1995, page 6).

A Poisson model would not be so suitable if an infected cow can pass on the

disease to another cow due to close proximity and a spatial dependence would

then need to be considered. In this chapter, we choose a Poisson model to
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Table 7.1: Each cell is an observation of N (1)
i,k for the incidence of BSE, where

N
(1)
i,k is a random variable for a count in the region R(AP)

i,i+k from Figure 6.2.

n
(1)
i,k

Age i

2 3 4 5 6 7 8 9 10

1980 17 18

1981 62 43 40

1982 198 123 83 50

1983 879 521 225 172 83

1984 2275 1918 950 440 244

Cohort k 1985 2557 4065 2561 1268 632

1986 781 4399 5741 4073 1983

1987 49 1744 8847 10907 7865

1988 73 4227 16039 17637

1989 85 2015 7497

1990 40 1208

1991 23

describe BSE incidence.

Dealler and Kent (1995) and Anderson et al. (1996) analysed BSE inci-

dence data to assess the validity of the independence model. Various modifica-

tions to the independence model would then be investigated if the model did

not provide a sufficient description of the data. Even though the independence

model may be deemed as unsuitable for a given dataset, the independence

model is still the natural starting point of an APC analysis. For example, the

independence model has been deemed as unsuitable for the study of human

mortality (Clayton and Schifflers 1987a; Kramer et al. 2015). An age-cohort

perspective was deemed to be more appropriate than an age-period perspective

because long-term exposures rather than current exposures were deemed to be

the primary driver of BSE incidence.

We can specify a suitable parametric model for the Poisson intensity,

143



λ(a, c), based on a naive inspection of Table 7.1. Our parameterisation of

λ(a, c) is chosen based on inspection because our intention is for λ(a, c) to

capture the main features of the MAFF data. We can then capture the main

features of the three quantities
ν
(1)
i,k

νi,k
, νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

and
ν
(1)
i+1,k+1

ν
(1)
i,k+1

÷ ν
(1)
i+1,k

ν
(1)
i,k

out-

lined in Theorems 6.1, 6.2 and 6.3, in order to investigate how a misrounded

treatment of data affected the study of BSE incidence. Akaike information

criterion (AIC) is a measure of how well a statistical model fits some data and

it penalises for the number of model parameters (Dobson and Barnett 2008,

page 137). The use of AIC to discriminate between various parametric mod-

els would be helpful if we were to build a more sophisticated model of BSE

incidence.

In this section, we explain that for the case of BSE incidence, the main

features of the MAFF data are that the age at onset density is unimodal and

sharply peaked at around age five, and that the cohort intensity is rapidly

increasing until mid-1988 and rapidly decreasing thereafter. Our simplistic

model consists of four parameters: there are two parameters for κ(c) and

two parameters for f(a). To fully describe the data and achieve small model

residuals, it would be necessary to formulate a sophisticated model that consists

of a large number of parameters. We expect that our simplistic model for BSE

incidence will produce large residuals.

It appears that BSE incidence is approximately doubling with each unit

increase in cohort until cohort 1988, and that the number of cases is approxi-

mately halving thereafter. For instance, the number of cattle contracting BSE

at age eight increases from 62 to 123, and then increases from 123 to 225. The

number of cases for age three decreases from 4227 to 2015, and then decreases

from 2015 to 1208. A feed ban was introduced in mid-1988 to control the

epidemic outbreak of BSE (Dealler and Kent 1995, page 3) and the halving in

BSE incidence for cattle born after mid-1988 is compatible with an effective

feed ban.

We choose to represent the cohort intensity for BSE incidence as the fol-
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lowing function:

κ(c) = ξ1 exp (−ξ2 |c− 1988.5|) for c ≥ 1979, (7.1)

where ξ1 > 0 and ξ2 > 0. The parameter ξ1 is the peak of the cohort intensity,

whereas ξ2 is the rate of change in the cohort intensity. The cohort intensity

is assumed to be increasing exponentially before the feed ban and decreasing

exponentially after the ban. The rate of increase and decrease is assumed to be

the same so that the cohort intensity is symmetric at around the introduction

of the feed ban. The MAFF table has a cohort range of [1979, 1992) because

the Lexis parallelogram R
(AP)
i,i+k extends over cohorts [k − 1, k + 1). We assume

that no cattle born at times c < 1979 contracted BSE, but that cattle born at

times c > 1992 can potentially contract BSE. This cohort intensity is strictly

log linear.

Table 7.2: Each cell is an observation of
N

(1)
i+1,k

N
(1)
i,k

for the incidence of BSE, where

N
(1)
i,k and N

(1)
i+1,k are random variables for a count in the regions R(AP)

i,i+k and

R
(AP)
i+1,i+1+k respectively. These Lexis regions are depicted in Figure 6.2.

n
(1)
i+1,k

n
(1)
i,k

i

2 3 4 5 6 7 8 9

1980 1.06

1981 0.69 0.93

1982 0.62 0.67 0.60

1983 0.59 0.43 0.76 0.48

1984 0.84 0.50 0.46 0.55

k 1985 1.59 0.63 0.50 0.50

1986 5.63 1.31 0.71 0.49

1987 35.59 5.07 1.23 0.72

1988 57.90 3.79 1.10

1989 23.71 3.72

1990 30.20

Most cattle appear to contract BSE at five years old. The survival dis-
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tribution seems to be right skewed because there is a greater spread of case

numbers to the right of the peak at age five. A mode at age five coupled with

right skew means that we should expect cattle to contract BSE at around age

six. The suitability of the independence model to describe BSE incidence can

be judged based on an inspection of the count ratios in Table 7.2. We stated in

Section 6.5 that if the independence model is true, then for certain conditions

for λ(a, c), we can expect to see count ratios that are decreasing with k. The

count ratio for cattle aged four decreases from 1.59 to 1.31, and then decreases

from 1.31 to 1.23. Since the count ratios in each column of Table 7.2 tend

to decrease with k, the data could be compatible with the third misrounding

effect outlined in Theorem 6.3 and the independence model may be suitable.

Before modifications can be made to the independence model, we must first

conclude whether the decreasing pattern in the count ratios is compatible with

the third misrounding effect.

We choose to represent the survival distribution for BSE incidence as the

Gamma model from Table 3.2:

f(a) =
αα2

1 aα2−1 exp (−α1a)

Γ(α2)
for a > 0, (7.2)

where α1 > 0 and α2 > 0. A benefit of the Gamma model relative to the

Weibull model is that it can be easily parameterised in terms of the mean and

variance. It is more intuitive to interpret the age at onset density in terms

of the mean and variance than in terms of the rate and shape parameters,

α1 and α2. The expectation and variance of the age-at-onset are determined

respectively as

µA ≡ E[A] =
α2

α1
and σ2

A ≡ Var[A] =
α2

α2
1

. (7.3)

Recall from (6.24), that the Gamma model is strictly log concave for α2 > 1,

log convex for α2 < 1 and log linear for α2 = 1. The survival distribution

would only have right skew if it has the property of strict log concavity.
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7.2 Exact treatment of data

In Section 6.2, we defined exact and misrounded treatments of age-by-period

data for the estimation of the continuous Poisson intensity, λ(a, c). An exact

treatment refers to correctly using the age-by-period data as if the data are

rounded age-by-period, while a misrounded treatment refers to incorrectly us-

ing the age-by-period data as if the data are rounded age-by-cohort. Each cell

of the MAFF data from Table 7.1 should be assumed to count the number of

BSE cases in a Lexis parallelogram rather than a Lexis square. In Sections 6.3,

6.4 and 6.5, we explained that misleading conclusions can arise under certain

circumstances when carrying out a misrounded treatment of the data. Mis-

leading conclusions can be avoided by carrying out an exact treatment of the

data.

Our model for BSE incidence consists of four parameters to be estimated.

There are two parameters for the cohort intensity, denoted by ξ1 and ξ2, and

there are two parameters for the survival distribution, denoted by µA and

σ2
A. In this section, we carry out an exact treatment of the data by choosing

estimates of the parameters ξ1, ξ2, µA and σ2
A to maximise the likelihood

function described in equation (6.15). The exact likelihood function can be

written more specifically for the case study of BSE as

LBSE

(
µA, σ

2
A, ξ1, ξ2 | N(1) = n(1)

)
=

10∏
i=2

1991∏
k=1980

(
ν

(1)
i,k

)n(1)
i,k

exp
(
−ν(1)

i,k

)
n

(1)
i,k !

,

where

ν
(1)
i,k =

∫∫
R

(AP)
i,i+k

λ(a, c) dc da =

∫ i+1

i

∫ i+k+1−a

i+k−a
λ(a, c) dc da.

There are no parameters for the effects of period and cohort on the survival

distribution due to the independence assumption. In Appendix 9.3, we give

a detailed explanation on how to estimate the model parameters for an exact

treatment in the statistical package R.
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Anderson et al. (1996, page 782) used an exact treatment of the BSE inci-

dence data. The Central Veterinary Laboratory (CVL) collected information

on each BSE case including the date of birth, date of onset and age at onset

(Donnelly and Ferguson 2000, pages 25–29). Anderson et al. were permitted

full access to the CVL database (Donnelly and Ferguson 2000, Preface) and

were able to construct a contingency table cross-categorised in terms of age and

cohort. The data in each cell could correctly be assumed to count the number

of cases in a Lexis square. Dealler and Kent (1995) used a misrounded treat-

ment of the MAFF data because they assumed that each cell of the MAFF

table counted the number of BSE cases in a Lexis square. The parameters

of an independence model were chosen by Dealler and Kent to maximise the

approximate likelihood function described in equation (6.14).

The Poisson intensity for an age-by-cohort region in the Lexis diagram,

νi,k, which was first introduced in equation (6.5), can be written as∫ a=1

a=0

∫ c=1

c=0
λ(i+ a, k + c) dc da.

A Riemann Sum approximation to νi,k is

1

n2

n∑
u=1

n∑
v=1

λ
(
i+

u

n
, k +

v

n

)
. (7.4)

A Riemann Sum for a square region outside of the APC modelling context has

previously been presented by Adams (2006, page 755). This Riemann Sum can

be simplified to a product of two cumulative distribution functions:[
1

n

n∑
u=1

f
(
i+

u

n

)]
·

[
1

n

n∑
v=1

κ
(
k +

v

n

)]
. (7.5)

Similarly, the Poisson intensity for an age-by-period region, ν(1)
i,k , which was

introduced in Table 6.1, can be rewritten as∫ 1

0

∫ 1

0
λ(i+ a, k + c− a) dc da.

We express the Poisson intensity ν(1)
i,k as the following Riemann Sum:

1

n2

n∑
u=1

n∑
v=1

λ
(
i+

u

n
, k +

v

n
− u

n

)
. (7.6)

148



1980 1982 1984 1986 1988 1990 1992

0
2

4
6

8

c

κ̂(
c)

 / 
10

00
0

Figure 7.1: An estimate of the intensity for cattle born at time c which are eventually

deemed to have BSE. The estimate is denoted as κ̂(c) and the estimate was obtained

by maximising an exact likelihood function. The specific parametric formula for

κ̂(c) is stated in (7.8). The dashed vertical line indicates the point in time for the

introduction of the feed ban.

The quantity n breaks a year into n intervals. The value of the continuous

Poisson intensity is assumed not to change within each interval. A choice of

n = 12 will split a year into months and n = 365 will split a year into days.

The larger n is chosen to be, the more accurate our calculation of ν(1)
i,k will

be and also the more computing power will be required for the calculation.

We consider n values of 1 and 365 to be too small and too large respectively,

and choose n to be equal to 30 so that the year is approximately divided

into fortnights. Values of n larger than 30 made very little difference to our
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calculation of ν(1)
i,k .
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Figure 7.2: An estimate of the probability density function for the age at onset of

BSE, given that a cow is eventually deemed to have BSE. The estimate f̂(a) is plotted

for a ∈ [0, 12) and the estimate was obtained by maximising a likelihood function.

The specific parametric formula for f̂(a) is stated in (7.9).

By running the R code presented in Appendix 9.3, we obtained the fol-

lowing parameter estimates to three decimal places:

ξ̂1 = 70, 248.730, ξ̂2 = 0.515, µ̂A = 5.825, σ̂2
A = 1.572. (7.7)

Hence, the cohort intensity estimated for BSE incidence is

κ̂(c) = 70, 248.730 · exp(−0.515 |c− 1988.5|) for c ≥ 1979. (7.8)

The parameters µ̂A and σ̂A imply that the survival distribution estimated for
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BSE incidence can be written in terms of the shape and rate parameters as

f̂(a) = 1.324 · 10−7 a20.584 exp(−3.705a) for a > 0; (7.9)

where α̂1 = µ̂A
σ̂2
A

= 3.705 and α̂2 =
µ̂2A
σ̂2
A

= 21.584. The estimated survival

distribution is strictly log concave because α̂2 is greater than one. Our estimate

of the continuous Poisson intensity can be deduced as the product of κ̂(c) and

f̂(a).

The estimates of the cohort intensity and survival distribution for BSE

incidence are displayed in Figures 7.1 and 7.2, respectively. The estimated

cohort intensity is rapidly increasing before the feed ban and rapidly decreasing

after the ban. The cohort intensity is symmetric about the dashed vertical line

and peaks at 70,248.730. The estimated survival distribution has a mean of

5.825 and has a slight right skew. The survival distribution peaks very close to

the mean and is very sharply peaked so that there is almost no cases of BSE

below age three and above age ten. Hence, the estimated Poisson intensity

seems to be a suitable model for the incidence of BSE based on our inspection

of the MAFF table in Section 7.1.

In Table 7.3, we present the estimate of the age-by-period discretised

Poisson intensity, ν̂(1)
i,k , under our fitted model. We can assess the suitability of

the independence model for BSE incidence, λ̂(a, c), by comparing the fit of the

age-by-period discretised Poisson intensities to the MAFF data. To account

for both the magnitude and sign of the residual, we consider a Pearson residual

for each (i, k) cell (Dobson and Barnett 2008, pg. 167):

Ei,k =
N

(1)
i,k − ν

(1)
i,k√

ν
(1)
i,k

.

In Section 7.1, we explained that our intention was for λ̂(a, c) to capture the

main features of the data. The parametric form specified for our model is

simplistic and we expect the Pearson residuals to be large.

Let X1, . . . , Xm be independent and identically distributed random vari-

ables with expectation µX and variance σ2
X . The sample mean is denoted by
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Table 7.3: Each cell is an estimate of the age-by-period discretised Poisson

intensity, ν(1)
i,k , for the independence model described in (7.8) and (7.9). The

calculations are rounded to the nearest integer.

ν̂
(1)
i,k

i

2 3 4 5 6 7 8 9 10

1980 3 49 191 292 230 112 37 9 2

1981 5 82 320 488 385 187 63 16 3

1982 8 137 535 817 644 313 105 26 5

1983 14 229 895 1367 1078 523 176 44 9

1984 24 384 1498 2287 1804 876 294 74 15

k 1985 40 642 2508 3828 3020 1466 492 124 25

1986 66 1075 4197 6407 5054 2454 824 207 41

1987 111 1799 7025 10724 8459 4107 1378 346 69

1988 185 2968 11459 17336 13580 6559 2192 549 109

1989 222 3253 11669 16746 12638 5942 1947 480 94

1990 139 2012 7153 10208 7675 3600 1177 290 57

1991 83 1202 4274 6099 4586 2151 703 173 34

X̄ = 1
m

∑m
u=1Xu. The central limit theorem (CLT) states that, asm→∞, the

sample mean tends in distribution to a normal distribution with mean µX and

variance σ2
X
m (Lipschutz and Schiller 1998, page 188). Given X̄ ∼ N

(
µX ,

σ2
X
m

)
,

there is a 0.95 probability that

Z =
X̄ − µX√
σ2
X/m

∼ N(0, 1)

will take a value in the interval (−1.96, 1.96). The formula for the Pearson

residual can be derived by substituting m = 1 and X1 = N
(1)
i,k into the expres-

sion for Z. If it is reasonable to assume that Ei,k ∼ N (0, 1) for all i and k,

then our model can be considered to fully describe the MAFF data when the

absolute value of each Pearson residual is less than 1.96.

A measure of the total fit of our model to the 44 cells in the MAFF data

can be assessed by carrying out a chi-squared test. Let χ2
q(5%) denote the
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Table 7.4: Each cell is an estimate of the Pearson residual ei,k =
n
(1)
i,k−ν

(1)
i,k√

ν
(1)
i,k

to

one decimal place. The quantities n(1)
i,k and ν̂(1)

i,k are displayed in Tables 7.1 and

7.3, respectively.

êi,k
i

2 3 4 5 6 7 8 9 10

1980 2.5 11.8

1981 -0.1 6.9 20.8

1982 -6.5 1.8 11.0 19.5

1983 -6.1 -0.1 3.7 19.3 25.1

1984 -0.3 2.7 2.5 8.5 19.8

k 1985 1.0 3.8 -8.4 -5.2 6.3

1986 -9.0 -3.1 -8.3 -13.8 -9.5

1987 -5.9 -1.3 21.7 1.8 -6.5

1988 -8.2 23.1 42.8 2.3

1989 -9.2 -21.7 -38.6

1990 -8.4 -17.9

1991 -6.6

critical value at a 5% significance level for a chi-squared distribution with q

degrees of freedom. If Ei,k ∼ N (0, 1) for all i and k, then the sum of squares,

S∗ =

10∑
i=2

1991∑
k=1980

E2
i,k,

follows a chi-squared distribution with 44 − 4 = 40 degrees of freedom (Dob-

son and Barnett 2008, pages 167–168). The number of degrees of freedom is

calculated as the number of non-empty cells in Table 7.4 minus the number of

estimated parameters. The value of χ2
40(5%) can be obtained from Lipschutz

and Schiller (1998, page 361) as 55.8. Therefore, if it is reasonable to assume

that Ei,k ∼ N(0, 1) for all i and k, then our model can be considered to fully

describe the MAFF data at a 5% significance level when S∗ is less than 55.8.

The values of the Pearson residuals for our model are displayed in Table

7.4. An inspection of this table suggests that the independence model does not
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give a good description of the MAFF data because the majority of the residuals

are outside of the interval (−1.96, 1.96) and the sum of squares is clearly much

greater than 55.8. In particular, the model fit is quite poor in the upper-right

and lower-left parts of Table 7.4. It is clear that some modifications would help

to improve the fit of λ̂(a, c). In this case, the modifications relate to building a

more sophisticated independence model rather than introducing a dependence

on period or cohort. One recommendation is to assign less probability mass

to younger ages to overcome the overstating of BSE incidence, and to assign

more mass to older ages to overcome the understating of incidence.

Our simplistic model only has four parameters and modifications to achieve

a good fit will require the incorporation of a large number of parameters. The

purpose of λ̂(a, c) is to capture the main features of the data such as a sharply

peaked survival density with a mean of approximately six years as well as a

cohort intensity that increases rapidly and then decreases rapidly. Figures 7.1

and 7.2 show that λ̂(a, c) does capture the main features of the data. Our

fitted model allows us to capture the main features about νi,k and ν
(1)
i,k , so

that we can then capture the main features about the three quantities
ν
(1)
i,k

νi,k
,

νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

and
ν
(1)
i+1,k+1

ν
(1)
i,k+1

÷ ν
(1)
i+1,k

ν
(1)
i,k

. Further, in Section 7.3, our fitted model

allows us to investigate approximately how the three misrounding effects out-

lined in Theorems 6.1, 6.2 and 6.3 impacted on the study of BSE incidence by

Dealler and Kent. We conclude that our simplistic model provides a sufficient

fit for us to demonstrate the flaws of an analysis for BSE incidence under a

misrounded treatment of data.

7.3 Misrounding effects for BSE incidence

In this section, we show that for our estimate of the Poisson intensity, there

are three misleading effects that appear when using a misrounded treatment of
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the MAFF data to fit an independence model. Under a misrounded treatment,

the MAFF data are assumed to be observations in Lexis squares as opposed to

Lexis parallelograms. This means that the number of BSE cases in cell (i, k)

of the MAFF table is assumed to have an expected value of νi,k rather than its

true expectation ν(1)
i,k . All three effects are mathematical consequences of the

model assumptions such as a cohort intensity that is strictly log linear, strictly

increasing before the feed ban and strictly decreasing after the feed ban. Also,

the survival distribution is assumed to be independent of cohort and strictly

log concave.

The first misrounding effect is about an apparent under-reporting of case

numbers before the feed ban and an apparent over-reporting of case numbers

after the feed ban. The age-by-cohort discretised Poisson intensity, νi,k, is

the expected number of cases in the Lexis square, R(AC)
i,k , as depicted in Fig-

ure 6.1. The estimate of this Poisson intensity is presented in Table 7.5 and

can be calculated from our independence model using the product formula,[
F̂ (i+ 1)− F̂ (i)

]
·
[
Q̂(k + 1)− Q̂(k)

]
. A comparison of each pair of (i, k) cells

in Tables 7.3 and 7.5 shows that the following strict inequalities hold true for

any i:

ν̂
(1)
i,k < ν̂i,k for k = 1980, 1981, . . . , 1988; (7.10)

ν̂
(1)
i,k > ν̂i,k for k = 1989, 1990, 1991. (7.11)

For example, the number of cattle born in year 1982 that contract BSE aged

three is expected to be 137 for an age-by-period rounding, but is expected to

be 188 for an age-by-cohort rounding.

In Theorem 6.1, we proved that certain inequalities hold between Pois-

son intensities for the number of deaths in Lexis parallelograms and in Lexis

squares. The two inequalities (7.10) and (7.11) hold true because, in our model

for BSE incidence, the cohort intensity is strictly increasing before the feed ban

and is strictly decreasing after the ban. However, it is surprising that a strict

inequality holds for cohort k = 1988 since the cohort intensity is increasing and

then decreasing during the time interval (1988, 1989). The equality of obser-
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Table 7.5: Each cell is an estimate of the age-by-cohort discretised Poisson

intensity, νi,k, for the independence model described in (7.8) and (7.9). The

calculations are rounded to the nearest integer.

ν̂i,k
i

2 3 4 5 6 7 8 9 10

1980 4 67 250 369 284 136 45 11 2

1981 7 112 418 617 475 227 75 19 4

1982 12 188 700 1033 796 380 126 31 6

1983 21 315 1172 1729 1332 636 211 52 10

1984 35 527 1961 2893 2228 1064 353 88 17

k 1985 58 883 3282 4842 3730 1780 590 147 29

1986 97 1477 5494 8104 6242 2980 987 246 49

1987 162 2472 9194 13564 10447 4987 1653 411 81

1988 233 3562 13247 19543 15052 7185 2381 592 117

1989 158 2409 8961 13219 10181 4860 1611 401 79

1990 94 1440 5354 7898 6083 2904 962 239 47

1991 56 860 3199 4719 3635 1735 575 143 28

vations for some of the paired (i, k) cells is only apparent due to our rounding

of ν̂(1)
i,k and ν̂i,k to the nearest integer.

In Figure 7.3, we plot the ratio of discretised Poisson intensities,
ν̂
(1)
i,k

ν̂i,k
, as

a function of i for two cohorts before the ban and for two cohorts after the

ban. It can be seen that the two inequalities hold true since
ν̂
(1)
i,k

ν̂i,k
< 1 for the

pre-ban cohorts and
ν̂
(1)
i,k

ν̂i,k
> 1 for post-ban cohorts. Before the feed ban, the

ratio
ν̂
(1)
i,k

ν̂i,k
is independent of cohort and takes values between 0.682 and 0.845

to three decimal places. The estimated ratio of Poisson intensities after the

ban is independent and takes values between 1.206 and 1.482 to three decimal

places. For
ν̂
(1)
i,k

ν̂i,k
, the patterns of change with age i before and after the ban

are later explained by the second misrounding effect. The independence of
ν̂
(1)
i,k

ν̂i,k

with k is not explained by any of the three misrounding effects.
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Figure 7.3: The curved lines are calculations for the estimated ratio of Poisson

intensities
ν̂
(1)
i,k

ν̂i,k
for particular cohorts. The values of ν̂(1)i,k and ν̂i,k are presented in

Tables 7.3 and 7.5. Each curved line consists of nine points which have been joined

together with straight lines. The horizontal line drawn at the point the y-axis equals

one indicates an idealistic value for the ratio of intensities.

The level of apparent under-reporting for any cohort before the feed ban,

which can be measured as a percentage as
(

1− ν̂
(1)
i,k

ν̂i,k

)
·100, takes values between

15.50 and 31.85 to two decimal places. The percentage of apparent over-

reporting after the feed ban,
(
ν̂
(1)
i,k

ν̂i,k
− 1

)
· 100, takes values between 20.65 and

48.23 to two decimal places. The levels of under-reporting and over-reporting

are also decreasing before and after the ban for unit increases in cohort. The

levels of under-reporting and over-reporting are quite large due to the fast rate

of change in the cohort intensity over time. Hence, if the independence model
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is suitable and a misrounded treatment of data is adopted for model fitting,

then we expect the number of cases to appear too small before the feed ban

and too large after the ban.

The percentage loss in accuracy incurred by carrying out a misrounded

treatment of data as opposed to an exact treatment can be calculated for each

(i, k) cell as 100 ·
∣∣∣∣ ν̂(s)i,k

ν̂i,k
− 1

∣∣∣∣. This is because, under a misrounded treatment

of data, it is assumed that the observation in cell (i, k) of the MAFF data

has an expected value of νi,k. In reality, the observation in cell (i, k) has an

expected value of ν(1)
i,k . A statistician’s estimate of νi,k under a misrounded

treatment of data would be strictly overstated after the ban by around 21-

48% and understated before the ban by around 16-32%. Overall, a statistician

incurs a loss in accuracy of approximately 16-48% per cell of the MAFF table.

The second misrounding effect is about an expected age-at-onset for BSE

that appears too large before the ban and too small after the ban. The esti-

mated ratios of age-by-cohort and age-by-period discretised Poisson intensities,
ν̂i+1,k

ν̂i,k
and

ν̂
(1)
i+1,k

ν̂
(1)
i,k

, are presented in Tables 7.6 and 7.7, respectively. A compari-

son of the estimates for each pair of (i, k) cells shows that the following strict

inequalities hold true for any i:

ν̂
(1)
i+1,k

ν̂
(1)
i,k

>
ν̂i+1,k

ν̂i,k
for k = 1980, 1981, . . . , 1988; (7.12)

ν̂
(1)
i+1,k

ν̂
(1)
i,k

<
ν̂i+1,k

ν̂i,k
for k = 1989, 1990, 1991. (7.13)

For example, the number of cases for cattle born in year 1982 increases by a

factor of 3.941 between ages three and four under an age-by-period rounding,

but only increases by a factor of 3.754 under an age-by-cohort rounding.

In Theorem 6.2, we proved that certain inequalities hold between ratios

of Poisson intensities for the number of deaths in Lexis parallelograms and in

Lexis squares. The two inequalities (7.12) and (7.13) hold true because, in

our model for BSE incidence, the survival distribution is log concave and the

cohort intensity is strictly increasing before the ban and is strictly decreasing
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Table 7.6: Each cell is a calculation for the ratio of age-by-cohort discretised

Poisson intensities, ν̂i+1,k

ν̂i,k
, for the independence model described in (7.8) and

(7.9). Our calculations of ν̂i,k are displayed in Table 7.5. The calculations are

presented to three decimal places.

ν̂i+1,k

ν̂i,k

i

2 3 4 5 6 7 8 9

∀ k 15.480 3.754 1.485 0.774 0.479 0.332 0.249 0.198

Table 7.7: Each cell is an estimate of the ratio of age-by-period rounded Poisson

intensities,
ν̂
(1)
i+1,k

ν̂
(1)
i,k

, for the independence model described in (7.8) and (7.9). Our

calculations of ν̂(1)
i,k are displayed in Table 7.3. The calculations are presented

to three decimal places.

ν̂
(1)
i+1,k

ν̂
(1)
i,k

i

2 3 4 5 6 7 8 9

≤ 1987 16.451 3.941 1.537 0.793 0.487 0.337 0.252 0.199

k 1988 16.299 3.901 1.524 0.787 0.485 0.335 0.251 0.199

1989 14.888 3.623 1.445 0.758 0.472 0.329 0.247 0.197

≥ 1990 14.666 3.588 1.436 0.755 0.471 0.328 0.247 0.196

after the ban. Similar to our interpretation of the first misrounding effect, it

is surprising that there is a strict inequality for cohort year 1988.

In Figure 7.4, we plot the relative difference between ratios for age-by-

cohort and age-by-period intensities, ν̂i+1,k

ν̂i,k
÷ ν̂

(1)
i+1,k

ν̂
(1)
i,k

, as a function of i for two

cohorts before the ban and two cohorts after the ban. It can be seen that the

two inequalities (7.12) and (7.13) hold true. The estimated ratio for age-by-

cohort intensities is a function of i and is independent of k:

ν̂i+1,k

ν̂i,k
≡ ζ̂i =

F̂ (i+ 2)− F̂ (i+ 1)

F̂ (i+ 1)− F̂ (i)
∀ i, k.

The estimated ratio for age-by-period intensities is largely independent of co-

hort because the value of
ν̂
(1)
i+1,k

ν̂
(1)
i,k

is independent of k for cohorts 1980 to 1987.

The ratio then decreases with cohort for all i until cohort 1989 and thereafter

the ratio is independent of cohort. We explained in (6.27) that these indepen-
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dent ratios are a mathematical consequence of a log linear cohort intensity.

The relative ratio ν̂i+1,k

ν̂i,k
÷ ν̂

(1)
i+1,k

ν̂
(1)
i,k

takes values between 0.941 and 0.993 before

the ban and values between 1.001 and 1.055 after the ban. In Section 6.4, we

explained that strict inequalities such as the inequalities described in (7.12) and

(7.13) can be interpreted in terms of the expected age-at-onset. Further, we

can say that if the independence model is suitable and a misrounded treatment

of data is adopted for model fitting, then the expected age-at-onset for BSE

appears too large before the feed ban and too small after the ban. However, the

discrepancy from the true expected age-at-onset will not be significant since

the estimate of the relative ratio is close to one for all i and k.

The percentage loss in accuracy incurred by carrying out a misrounded

treatment of data as opposed to an exact treatment can also be calculated for

each (i, k) cell in terms of the relative ratio as 100·
∣∣∣∣( ν̂i+1,k

ν̂i,k
÷ ν̂

(s)
i+1,k

ν̂
(s)
i,k

)
− 1

∣∣∣∣. This
is because it is assumed under a misrounded treatment of data that the ratio of

counts taken from cells (i, k) and (i+1, k) has an expected value of ν̂i+1,k

ν̂i,k
= ζ̂i.

In reality, the ratio of counts taken from cells (i, k) and (i+1, k) has an expected

value of
ν̂
(s)
i+1,k

ν̂
(s)
i,k

. A statistician’s estimate of νi,k under a misrounded treatment

of data would have ratios that are overstated before the ban by around 0.7-

5.9% and that are understated after the ban by around 0.1-5.5%. Overall, a

statistician incurs a loss in accuracy in terms of count ratios of approximately

0.1-5.9% for each pair of cells in the MAFF table. The 0.1-5.9% loss in accuracy

in the count ratios is much less than the 16-48% loss for the counts.

The final misrounding effect is about an apparent decrease in the expected-

at-onset at around the time of the feed ban. In Theorem 6.3, we proved that

certain inequalities hold between count cross-ratios of Poisson intensities for

the number of deaths in Lexis parallelograms. Our estimates in Table 7.7 show
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Figure 7.4: The curved lines are calculations for the relative difference between ratios

for age-by-cohort and age-by-period Poisson intensities, ν̂i+1,k

ν̂i,k
÷ ν̂

(1)
i+1,k

ν̂
(1)
i,k

, for particular

cohorts. The values of ν̂i+1,k

ν̂i,k
and

ν̂
(1)
i+1,k

ν̂
(1)
i,k

are presented in Tables 7.6 and 7.7. Each

curved line consists of eight points which have been joined together with straight lines.

The horizontal line drawn at the point the y-axis equals 1.0 indicates an idealistic value

of the relative difference between ratios. The cohort intensity is strictly log linear and

the survival distribution is strictly log concave.

that the following equalities and inequalities hold true for any i:

ν̂
(1)
i+1,k+1

ν̂
(1)
i,k+1

=
ν̂

(1)
i+1,k

ν̂
(1)
i,k

for k = 1980, 1981, . . . , 1986, 1990. (7.14)

ν̂
(1)
i+1,k+1

ν̂
(1)
i,k+1

<
ν̂

(1)
i+1,k

ν̂
(1)
i,k

for k = 1987, 1988, 1989. (7.15)

The equality (7.14) implies that the survival distribution for BSE incidence
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appears to be unchanging before the feed ban and unchanging after the ban.

The equalities are a consequence of a strictly log linear cohort intensity. How-

ever, the inequality (7.15) implies that the survival distribution is shifting to

the left at around the time of the feed ban.

Building on our discussion of the second misrounding effect for BSE inci-

dence, we can say that the expected age-at-onset appears too large before the

feed ban, appears to decrease below the true expected age-at-onset at around

the time of the ban, and then appears too small after the ban. This appar-

ent shift in the survival distribution is indicated by the shift between the two

curves in Figure 7.4 for cohorts 1987 and 1990. Since our independence model

assumes that the survival distribution is independent of cohort, the change in

the expected age-at-onset is only apparent due to misrounding. Hence, if the

independence model is true and a misrounded treatment of data is adopted for

model fitting, then the expected age-at-onset for BSE will appear to decrease

at around the time of the feed ban.

7.4 Implications for BSE incidence

In this chapter, we have shown that if an independence model λ(a, c) = f(a) ·

κ(c) is true for BSE incidence and a misrounded treatment is carried out for

the MAFF data rounded age-by-period, then there are misleading effects that

arise when we assess the suitability of the independence model. One effect is

that the expected number of BSE cases appears to be too small for cohorts

c < 1988.5 and too large for cohorts c > 1988.5. Another effect is that the

expected age-at-onset for BSE appears too large for cattle born before the ban,

appears to decrease for cattle born at around the time of the ban, and appears

too small for cattle born after the ban.

The MAFF data presented in Table 7.1 consists of signal and noise. By
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signal, we refer to the underlying true intensity of deaths indexed in continuous

time by age and cohort, λ(a, c). A substantial amount of noise in the data can

make it difficult to identify the signal. For instance, Dealler and Kent (1995,

page 5) stated that powerful commercial and political forces could have led to

a substantial under-reporting of cases after the feed ban. This is because there

was a large fall after the ban in the level of compensation offered to farmers for

BSE cases. Also, veterinary officers were sometimes reluctant to record cases

of BSE as it would be expensive for MAFF.

The true number of deaths in age-by-period regions and age-by-cohort

regions of the Lexis diagram, denoted by ν(s)
i,k and νi,k, can be derived as a con-

sequence of the signal. Our estimate of λ(a, c) derived for an exact treatment

of the MAFF data was presented in equations (7.8) and (7.9). The estimate

λ̂(a, c) was discretised to obtain our corresponding estimates of ν(s)
i,k and νi,k.

Estimates of the ratios
ν
(1)
i,k

νi,k
and

νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

were illustrated in Figures 7.3

and 7.4 for each some (i, k) cells. The misleading effects that resulted from

a misrounded treatment of the MAFF data were only discussed in terms of

the two ratios, that is, they were only discussed in terms of the signal. The

misleading effects may not be apparent when accounting for noise in the data.

Suppose that we simulate values of n(1)
i,k from a Poisson model with pa-

rameter ν̂(1)
i,k and simulate values of ni,k from a Poisson model with parameter

ν̂i,k. In Figure 7.5, the simulated count ratio
n
(1)
i,k

ni,k
is plotted for cohorts 1980,

1987 and 1991. This plot incorporates noise into Figure 7.3. For cohorts 1980

and 1987, the ratio
n
(1)
i,k

ni,k
is less than one for all ages with the exception of the

cell corresponding to cohort 1980 and age ten. If we exclude this outlier, we

can say that
n
(1)
i,k

ni,k
takes values between 0.300 and 0.800 for cohort 1980 and

takes values between 0.667 and 0.954 for cohort 1987 to three decimal places.

In comparison, the underlying ratio
ν
(1)
i,k

νi,k
was estimated to take values between

0.682 and 0.845 to three decimal places.

For cohort 1991, the ratio
n
(1)
i,k

ni,k
is strictly greater than one and it only

takes values between 1.196 and 1.464. In comparison, the underlying ratio
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Figure 7.5: A simulation of the ratio of counts,
n
(1)
i,k

ni,k
, for particular cohorts. The

expected value of the simulated count ratio is
ν̂
(1)
i,k

ν̂i,k
and its values are presented in

Figure 7.3.

ν
(1)
i,k

νi,k
was estimated to take values between 1.206 and 1.482 to three decimal

places. Since the simulated count ratio is not very close to one, and the count

ratio largely satisfies the strict inequalities outlined in Theorem 6.1 for certain

conditions about the cohort intensity, we can conclude that the level of under-

reporting before the feed ban and the level of over-reporting after the ban that

are apparent in the signal are also apparent in the noisy data. Hence, if the

independence model is true and a misrounded treatment is carried out for the

MAFF data, there are misleading effects that are apparent in relation to the

under-reporting and over-reporting of BSE cases. The first misleading effect

was likely to have affected the analysis of BSE incidence conducted by Dealler
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Figure 7.6: A simulation of the relative ratio, ni+1,k

ni,k
÷ n

(1)
i+1,k

n
(1)
i,k

, for cohorts 1980, 1987

and 1991. The expected value of the simulated relative ratio is ν̂i+1,k

ν̂i,k
÷ ν̂

(1)
i+1,k

ν̂
(1)
i,k

. So this

plot can be viewed as introducing noise to Figure 7.4.

and Kent (1995).

In Figure 7.6, the simulated relative ratio
ni+1,k

ni,k
÷ n

(1)
i+1,k

n
(1)
i,k

is plotted for

cohorts 1980, 1987 and 1991. This plot incorporates noise into Figure 7.4.

The simulations of the relative ratio fluctuate with age above and below one

for all cohorts. In comparison, the underlying relative ratio
νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

is

strictly less than one for cohorts 1980 and 1987 and is strictly greater than

one for cohort 1991. Since the simulated relative ratio is close to one, and it

does not satisfy the strict inequalities outlined in Theorems 6.2 and 6.3, we can

conclude that the decrease in the expected age-at-onset for BSE incidence over
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time that is apparent in the signal is not apparent for the noisy data. Hence,

if an independence model is true and a misrounded treatment is carried out

for the MAFF data, the second misleading effect in relation to the changing

age-at-onset distribution is not apparent and is unlikely to have affected the

analysis of BSE incidence conducted by Dealler and Kent (1995).

In Table 7.2, we took the counts for cells (i, k) and (i+ 1, k) in the MAFF

table and calculated their ratio. It was apparent that the count ratio was

decreasing on average with cohort for each year of age. We stated towards

the end of Section 7.1 that before modifications are made to the independence

model, we must first conclude whether the decreasing pattern in Table 7.2

is attributable to Theorem 6.3. Since the decrease in the expected age-at-

onset for BSE incidence over time is apparent in the signal but not apparent

for the noisy data, the decreasing pattern in the observed ratios cannot be

attributed to Theorem 6.3. A model for BSE incidence should allow for a

slight dependence on cohort.

The conclusions reached in Chapter 3 inform us how dependence should

be handled in an APC model. If we were to allow the survival distribution to

vary with period and cohort, then a prime example which also does not suffer

from the confounding issues discussed in Chapter 5 would be to specify the age

at onset density according to equations (4.4) and (4.5). If we were to allow the

survival distribution to vary only with cohort, then we could extend our model

for BSE to specify that the age at onset follows a Gamma distribution where

the mean µA varies with cohort. Recalling the gamma density from (9.3), we

can write, for a > 0 and c ≥ 1979,

f(a | c) =
α1(c)α2(c)aα2(c)−1 exp (−α1(c)a)

Γ(α2(c))
, (7.16)

where

α1(c) =
µA · exp (−β(c− 1980))

σ2
A

≡ µA(c)

σ2
A

(7.17)

and

α2(c) =
(µA · exp (−β(c− 1980)))2

σ2
A

≡
µ2
A(c)

σ2
A

. (7.18)
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We assume that the expected age at onset is a function of c, which means that

the shape and rate parameters are also functions of c. The variance does not

change with c. If β > 0, then the expected age at onset density is decreasing

with c.
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Figure 7.7: A calculation of νi+1,1987

νi,1987
÷ ν

(1)
i+1,1987

ν
(1)
i,1987

under a dependence model with

κ(c) and f(a | c) specified according to equations (7.1) and (7.16), respectively. The

values of the cross ratio are evaluated at the parameters ξ1 = 70, 248.730, ξ2 = 0.515,

µA = 5.825, σ2
A = 1.572. The three curves differ in their value of β.

Suppose that the Poisson intensity is written in its dependence form,

λ(a, c) = κ(c) ·f(a | c). Let cohort intensity κ(c) take the form of the exponen-

tial model in equation (7.1) and let f(a | c) take the form of the gamma density

in (7.16). Under dependence, the discretised Poisson intensities νi,k and ν(1)
i,k

are defined according to equations (6.5) and (6.7), where µi,i+k = ν
(1)
i,k . The

167



value of β has a significant effect on the expected count ratio,
ν
(1)
i,k

νi,k
, and the

expected count cross ratio, νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

. In Figure 7.7, the expected count

cross ratio for cohort 1987 is plotted for various β values, where the other pa-

rameters are set equal to the maximum likelihood estimates presented in (7.7)

that were calculated for an independence model. That is, ξ1 = 70, 248.730,

ξ2 = 0.515, µA = 5.825 and σ2
A = 1.572. In Appendix 9.4, we explain how the

three curves were obtained. Cohort 1987 is used as an illustrative example and

any cohort could have been chosen for this illustration. Note that, for cohort

c = 1987, the mean µA(c) is equal to 5.825 for β = 0, 4.105 for β = 0.05 and

2.893 for β = 0.10.

For β = 0, we obtain the curve from Figure 7.4. As β increases, the mean

of the age at onset changes with cohort at a faster rate. The cross ratio is very

close to one for β = 0, but the values of the cross ratio diverge away from one

for each increase in β. The gap between the curves for β = 0 and β = 0.10 is

quite substantial. If an independence model is true, so that β = 0, a statistician

would incur a small loss in accuracy of between 0.7-5.9% when carrying out

a misrounded treatment of data as opposed to an exact treatment. However,

if a dependence model is true with β equal to 0.5, then a statistician would

incur a loss of between 23.4-43.2%. Thus, it appears that an exact treatment

of data is necessary in case studies where the survival distribution is changing

rapidly over time. A misrounded treatment could be sufficient in cases where

the survival distribution does not change over time.

7.5 Conclusion

We assessed the suitability of an independence model λ(a, c) = κ(c) · f(a)

for the incidence of BSE. We argued that a simplistic parameterisation of the

independence model with a gamma age at onset density and an exponential
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cohort intensity captured the main features of the MAFF data. The model was

estimated for an exact treatment of the MAFF data and the model was discre-

tised to obtain estimates of the quantities νi,k and ν(1)
i,k . We then investigated

whether the misleading effects outlined in Theorems 6.1, 6.2 and 6.3 impacted

significantly on the study of BSE incidence conducted by Dealler and Kent

(1995). Theorem 6.1 led to a substantial loss in accuracy in their statistical

analysis. The decreasing count ratios in the MAFF data were found not to be

compatible with Theorem 6.3 and a slight dependence should be incorporated

into the model.

A misrounded treatment of data was an issue for the study of BSE in-

cidence due to a cohort intensity that was rapidly changing and a survival

distribution that was sharply peaked. A misrounded treatment of the data led

Dealler and Kent (1995) to find dramatic departures from the independence

model. The independence model was deemed to be unsuitable for the study

of BSE incidence. Anderson et al. (1996, pages 782–784) adopted an exact

treatment of data for the study of BSE incidence and as a result found much

smaller departures from the independence model. The smaller departures are

consistent with our findings. We argue that the BSE incidence data are com-

patible with a survival distribution that has a slight dependence on cohort and

that Dealler and Kent (1995) were misled by the effects of misrounding. Some

small modifications to the independence model were necessary in the study of

BSE incidence.

Note that, an age-by-cohort rounding of data is not necessarily superior to

age-by-period rounded data for a statistical analysis. If the data are rounded

in terms of age and period, as in the MAFF data, then the Poisson intensity

should be discretised over a Lexis parallelogram. The estimate of the Poisson

intensity λ̂(a, c) would be the same for the exact treatment of age-by-period

data in which n(1)
i,k is assumed to have an expected value of ν(1)

i,k , and for the

exact treatment of age-by-cohort data in which ni,k is assumed to have an

expected value of νi,k. The knowledge that there are two methods of deriving

the same estimate is helpful because data are almost always rounded in terms
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of age and period and are rarely made available as rounded age-by-cohort.

Data presented as rounded age-by-cohort by the Human Mortality Database

(HMD) are actually obtained as a smoothing of age-by-period data (Wilmoth

et al. 2017 (accessed August 22, 2018, Section 4.2)).

A misrounded treatment of data has been adopted by Dealler and Kent

and by other researchers because age-by-period counts and age-by-cohort counts

are a close approximation to each other in most circumstances, and it is easier

to discretise λ(a, c) over a Lexis square than it is to discretise λ(a, c) over a

Lexis parallelogram. A misrounded treatment is sufficient for studies in which

the cohort intensity is not changing or is changing very slowly. Care is needed

when the cohort intensity is changing rapidly as in the case of BSE.
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Chapter 8

Conclusion

In this thesis, we investigated the potential for misleading conclusions when

assessing the fit of an independence model for a misrounded treatment of data,

and assessed whether the need for modifications to the independence model

is only apparent due to the misleading conclusions. This research is highly

relevant due to the common publication of data as rounded age-by-period

coupled with the common mistreatment of the data as rounded age-by-cohort.

We found that the potential for misleading conclusions is significant when the

cohort intensity or survival distribution is changing significantly over time.

Findings

In Chapter 3, we found that modifications to the independence model are

contingent on whether we introduce effects of only cohort, only period, or both

cohort and period. If the survival distribution is assumed to vary only with

cohort, then there are many possible ways to handle dependence in the APC

model. For instance, in continuous time, the dependence can be introduced by

functionals such as PO, LLS and PH. If the survival distribution is assumed
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to vary only with period or with both cohort and period, then there are few

ways to handle dependence because only functionals for the hazard function

are appropriate. The density function f(a) should be modified according to

a PH functional, while the mass function fa should be modified according to

either a CLL functional or a DL functional.

In Chapter 4, we presented two new functions coded in the statistical

package R to fit the survival distribution of an APC model to data. The

function apc.cont specifies a PH formula for f(a | c), while apc.disc specifies

a CLL formula for fa|c. A benefit of using apc.cont and apc.disc is that

they account for the entire survival experience of individuals and consider the

exact time-gaps between deaths. We also explained that the way of handling

dependence in the APC literature is not consistent with our findings. Data are

typically rounded and published in a contingency table categorised in terms

of age and period. Statisticians usually fit a discrete independence model

λa,c = κc · fa to describe the age-by-period data. Modifications are then made

to the independence model using a PH functional as opposed to a CLL or

DL functional. We also distinguished between survival and regression as two

settings for APC modelling. The concept of misrounding is only relevant to

survival models.

In Chapter 5, we provided an overview for the concept of confounding in

APC models. We explained that confounding does not only relate to linear

terms in age, period and cohort as there can also be a lack of identifiability

for quadratic terms and cubic terms when a model contains certain interac-

tion terms. Not all models parameterised simultaneously in terms of the three

variables suffer from confounding. Caution is needed when interpreting the

parameters of linear terms in models parameterised with only two variables be-

cause the coefficients of the two linear terms absorb the coefficient of the third

ignored variable. Linear dependencies between columns of the model design

matrix can arise due to the APC linear identity as well as due to overparame-

terisation. The appearance of confounding in relation to the linear identity is

clear for polynomial functions, but is not so clear for factor variables.
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In Chapter 6, we explained that statisticians usually take age-by-period

rounded data as surrogates for age-by-cohort rounded data and fit the discrete

independence model λi,k = κk · fi to the surrogate data. The age-by-period

data are used for model fitting as if the data are rounded age-by-cohort. We

found that this misrounded treatment of the data can be problematic when

assessing the fit of an independence model due to the potential for misleading

conclusions. In certain circumstances, we found that a statistician encounters

an apparent over-reporting or under-reporting in the surrogate data relative to

the discrete independence model, which is not apparent in reality and is not

apparent when carrying out an exact treatment of the surrogate data. Also, in

certain circumstances, the expected age at death may appear to be increasing

or decreasing over time under a misrounded treatment of data, when in fact

longevity is not changing under the independence model. The potential for

misleading conclusions can be overcome by carrying out an exact treatment of

the data. However, we caution that the effect of misrounding on a statistical

analysis can only be significant when the cohort intensity is changing rapidly.

In Chapter 7, we assessed the suitability of an independence model λ(a, c) =

κ(c) · f(a) for the incidence of BSE. We found that a misrounded treatment of

the data was an issue for the study of BSE incidence due to a cohort intensity

that was rapidly changing and a survival distribution that was sharply peaked.

A misrounded treatment of the data led Dealler and Kent (1995) to find dra-

matic departures from the independence model. The independence model was

deemed to be unsuitable for the study of BSE incidence. Anderson et al. (1996,

pages 782–784) adopted an exact treatment of data for the study of BSE in-

cidence and as a result found much smaller departures from the independence

model. A substantial loss in accuracy relating to the apparent under-reporting

and over-reporting of BSE cases affected the statistical analysis of Dealler and

Kent (1995). We found that the decreasing count ratios in the MAFF data

were not to be compatible with an independence model and concluded that a

slight dependence should be incorporated into the model.

An age-by-cohort rounding of data is not necessarily superior to age-by-
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period rounded data for a statistical analysis. The estimate of the Poisson

intensity λ̂(a, c) would be the same for the exact treatment of age-by-period

data in which n(1)
i,k is assumed to have an expected value of ν(1)

i,k , and for the

exact treatment of age-by-cohort data in which ni,k is assumed to have an

expected value of νi,k. A misrounded treatment of data has been adopted by

Dealler and Kent (1995) and by other researchers because age-by-period counts

and age-by-cohort counts are a close approximation to each other in most

circumstances, and it is easier to discretise λ(a, c) over a Lexis square than it

is to discretise λ(a, c) over a Lexis parallelogram. A misrounded treatment is

sufficient for studies in which the cohort intensity is not changing or is changing

very slowly.

The contents of this thesis can be used by other statisticians. This thesis

should allow a statistician to better appreciate different time concepts, in par-

ticular, the difference between models specified in discrete time and rounded

time. Statisticians could implement an exact treatment of age-by-period data

to avoid the misleading effects that can be apparent for a misrounded treat-

ment of data. The extent to which a statistician should be worried about the

effects of misrounding depends on the circumstances. If the number of births

or the expected age-at-death for an individual is slowly changing over time,

then it is sufficient to adopt a misrounded treatment. However, if the number

of births or the expected age-at-death is rapidly changing over time, then a

statistician should adopt an exact treatment. For any circumstance, a good

practice for statisticians would be to discretise APC models correctly in order

to describe exactly the rounding of the data.

The contents of this thesis could eventually form a textbook on APC

modelling. The existing textbooks on APC modelling aim to demonstrate and

critique the innovative approaches used to overcome the confounding problem

(Fienberg and Mason 1985; Glenn 2005; Yang and Land 2013; O’Brien 2015).

These approaches involve manipulating the model specification, the method

of parameter estimation or even the rounding of the data in order to tease

out the simultaneous effects of age, period and cohort on a response variable.
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The textbooks are not so suitable as an introduction to APC modelling. Our

exploration of the misrounding concept provides a fresh perspective to the

existing literature.

Future research

In this thesis, we explained that statisticians usually fit a discrete model λi,k =

κk · fi|k to data rounded age-by-period. When the survival distribution is

independent of period and cohort so that fi|k = fi, the discrete model is

equivalent to a continuous model discretised over an age-by-cohort region in

the Lexis diagram so that λi,k = νi,k. This meant that the age-by-period data

were used for model fitting as if they were rounded age-by-cohort, and we

called this a misrounded treatment of the data.

However, when the survival distribution varies with period and/or cohort,

the discrete model is not equivalent to a continuous model discretised in terms

of age and cohort so that λi,k 6= νi,k. The discrete model can perhaps be

written in terms of the continuous model λ(a, c) = κ(c) · f(a | c) as a product

of κk =
∫ k+1
k κ(c)dc and fi|k =

∫ i+1
i

∫ k+1
k f(a | c)dcda. Under dependence, the

discrete model does not make sense as a discretisation of the continuous model

over a region in the Lexis diagram. The concept of a misrounded treatment

becomes a concept of a misdiscretised treatment of the age-by-period data.

Hence, we can investigate the potential for misleading conclusions when fitting

APC models for a misdiscretised treatment of the data. This would involve

considering the expected count ratio
ν
(s)
i,k

λi,k
as opposed to

ν
(s)
i,k

νi,k
in order to assess

the loss in accuracy of carrying out a misdiscretised treatment rather than an

exact treatment of the age-by-period data.

Under independence, the relative rate of change in the cohort intensity is a

primary driver of disparities between expected counts, count ratios and count
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cross-ratios. There may not be strict inequalities between counts, count ratios

and count cross-ratios for a dependence assumption. However, if the speed of

change in the survival distribution with cohort is a primary driver of disparities,

then these disparities could potentially be larger relative to the disparities for

an independence assumption. Figure 7.7 suggested that a rapidly changing

survival distribution would lead to large disparities from one. Further, given

a misdiscretised treatment of the data, the change in the apparent survival

distribution over time could be noticeably different to the change in the true

survival distribution over time.

One particularly interesting case study is human mortality. The lengthen-

ing of human lives over time has been reported by academic papers (Kermack

et al. 1934; Lee and Hsieh 1996) and by various media outlets. We can assess

the extent to which the apparent lengthening of human lives is attributable to

misrounding or misdiscretisation. I suspect that misrounding or misdiscretisa-

tion effects would not be significant for human mortality because the number

of births changes slowly over time. It may then be unnecessary to study human

mortality for an exact treatment of the data. It would be interesting to con-

sider how a slowly changing cohort intensity coupled with a changing survival

distribution would impact on disparities for expected counts, count ratios and

count cross-ratios.

The case study of mortality due to Pleural Malignant Mesothelioma (PMM)

may be interesting because PMM has a cohort intensity that is rapidly increas-

ing and then rapidly decreasing. The shape of the cohort intensity for BSE

incidence is closely related to the volume of infected cattle feed, whereas the

shape of the cohort intensity for PMM mortality is closely related to the vol-

ume of asbestos (Murayama et al. 2006). PMM has been studied for European

countries by Peto et al. (1999) and for Japan by Murayama et al. (2006). Peto

et al. and Murayama et al. both report that the risk of PMM mortality is

increasing for newer cohorts. We can explore whether this apparent decrease

in life expectancy over time is compatible with an independence model.

176



We fitted a simplistic model for BSE incidence that consisted of four pa-

rameters. The Pearson residuals of this model were quite large, but the model

allowed us to illustrate the fundamental flaws of studying an independence

model for a misrounded treatment of data. It would be interesting to fit more

sophisticated models with the necessary number of parameters to produce small

Pearson residuals, and, hence, to replicate the effects of misrounding or mis-

discretisation encountered in various case studies including BSE, PMM and

human mortality. These models would allow for a survival distribution depen-

dent on cohort if an independence assumption is not suitable.
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Chapter 9

Appendix

This chapter contains a glossary of key terms used throughout the thesis and

contains code used for fitting APC models and independence models.

9.1 Glossary

It is helpful to think of cohort, period and age as the time-of-birth, current time

and the time elapsed since birth for an individual, respectively. We provide a

more general definition below. Note that, by time, we refer to calendar time.

Cohort - The random time of birth for an individual, C = c.

Period - The time at which an individual is observed after birth, p. This is

the time scale on which the period-at-death is defined.

Age - The time-gap between cohort and period, a = p − c, that is, period

minus cohort. This is the time scale on the age-at-death is defined.
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Linear identity - The equation a = p− c is the linear identity.

Cohort intensity - It is helpful to think of the cohort intensity as the number

or rate of individuals born at time c.

Survival distribution - The probability distribution for the age-at-exit for

an individual, possibly conditional on covariates. This can be expressed in

continuous time, for example, as a probability density function or a hazard

function.

Poisson intensity - The expected number or intensity of deaths at a particular

point in the age-cohort space.

Independence model - A special case of the Poisson intensity in which the

survival distribution does not vary with covariates, particularly period and

cohort.

APC model - In a survival context, the model considers how the age-at-death

distribution varies with period and/or cohort. In this thesis, APC model is

synonymous with the Poisson intensity. In a regression context, the model

considers how the distribution of a non-survival response variable varies with

age, period and cohort.

Base model - The survival distribution for a reference individual or reference

group of individuals that share a particular set of covariate values. The base

model can be viewed as the independence model before modifications are made

to incorporate the effects of period and cohort.

Covariate model - A covariate model takes the base model and describes the

survival distribution for any individual by a departure from the base model

through ψ = x(a)Tβββ, where x is a vector of covariates at age a. The base

model corresponds to ψ(a) = 0 for all a. If the covariates are period and

cohort, then the covariate model is an APC model.

Functional - A function of a function. In this thesis, functionals are used
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to introduce dependence to the independence model in order to formulate a

covariate model.

Confounding - In this thesis, confounding is synonymous with a lack of iden-

tifiability.

Surrogate - Taking age-by-period data and recategorising the data in terms

in age and cohort means that the age-by-period data are used as surrogates

for age-by-cohort data.

Age-by-period data - A two-way contingency table categorised in terms of

rounded age and rounded period. Each cell of the table counts the number of

deaths for a particular age and period. An age-by-period region in the Lexis

diagram is a parallelogram.

Age-by-cohort data - A two-way contingency table categorised in terms of

rounded age and rounded cohort. Each cell of the table counts the number of

deaths for a particular age and cohort. An age-by-cohort region in the Lexis

diagram is a square.

Misrounded treatment / Misrounding - This concept requires some data,

a model and a treatment of data in the model. Misrounding means that data

rounded age-by-period are used for model fitting as if the data are rounded

age-by-cohort.

Exact treatment - Data rounded age-by-period are used for model fitting as

if the data are rounded age-by-period.

9.2 Estimation of the age-period-cohort model

In Sections 4.1 and 4.2, we established a method to fit APC models to data

by maximising a likelihood function. The functions apc.cont and apc.disc
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written in the statistical package R were key components of the method since

they calculate the log likelihood function for a particular choice of ααα and βββ. In

this section, we give full details of the two functions.

Continuous time

The following function calculates the value of the log likelihood function (4.2)

for a particular choice of
(
αααT ,βββT

)
, where f (aj | cj) is defined according to the

Riemann Sum in (4.6):

apc.cont <- function(param) {

##part one

alpha <- param[1:Nalpha] / scalePar

beta <- param[(Nalpha+1):(Nalpha+Nbeta)] / scalePar

##part two

Psi <- matrix(0,n,m)

for (ell in (1:m)) {

X <- Xmake( a*(ell/m), c )

Psi[,ell] <- X %*% beta

}

##part three

H <- matrix(0,n,m)

for (ell in (1:m)) {

H[,ell] <- exp(Psi[,ell])* h0(a*(ell/m),alpha)

}

##part four

S <- exp( - H %*% rep(1/m,m) )

f <- S*H[,m]
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sum( log(f) )

}.

Before running apc.cont, it is necessary for the user to specify n, a, c, h0,

Nalpha, Xmake, Nbeta, m and scalePar. The argument param is the full pa-

rameter vector

(
αααT ,βββT

)
=
(
α1, α2, . . . , αnα , β1, β2, . . . , βnβ

)
, (9.1)

where nα and nβ denote the size of vectors ααα and βββ. Notice that, the last line

of code in apc.cont is sum( log(f) ) which is the log likelihood function.

We have split the R function apc.cont into four parts. Part one defines the

argument param as the vector (9.1) multiplied by a constant scalePar. For this

example, if scalePar <- 100, then the vector param <- c(1,1,2,2) implies

that alpha <- c(0.01,0.01) and beta <- c(0.02,0.02). The maximum

likelihood estimates of the parameters that are returned when applying optim

to apc.cont are divided by scalePar to produce the unscaled parameters. We

do not use scaling in this example, so we set scalePar <- 1.

Part two produces a matrix of linear predictors, Psi. First, a covariate

matrix for the `th intermediate time is constructed through X. Specifically, the

matrix X is code for

X` =




x
(
a1 · `m

)T
x
(
a2 · `m

)T
...

x
(
an · `m

)T
=




c1

(
a1 · `m

)
+ c1

c2

(
a2 · `m

)
+ c2

...
...

cn
(
an · `m

)
+ cn

,

where Xm = X. The rows of Psi correspond to different individuals labelled

by j = 1, 2, . . . , n and the columns consider the value of the linear predictor

at some intermediate times before and at death for each individual. The in-

termediate times are labelled by ` = 1, 2, . . . ,m and the final column of Psi is
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the observed linear predictor at death. The matrix Psi is code for

ΨΨΨ =




ψ
(
a1 · 1

m

)
ψ
(
a1 · 2

m

)
· · · ψ (a1)

ψ
(
a2 · 1

m

)
ψ
(
a2 · 2

m

)
· · · ψ (a2)

...
...

...
...

ψ
(
an · 1

m

)
ψ
(
an · 2

m

)
· · · ψ (an)

.

The `th column of ΨΨΨ is equal to X`βββ.

Part three produces a matrix of hazard functions, H. Recalling (4.12), we

can consider a vector of baseline hazard functions at an `th intermediate time

between birth and death, so that

hT0,` =

(
h0

(
a1 ·

`

m

)
, h0

(
a2 ·

`

m

)
, . . . , h0

(
an ·

`

m

))
. (9.2)

The `th column of H is a product of the `th column of ΨΨΨ and of h0,`. The

element in the jth row and `th column of H is h
(
aj · `m | cj

)
= h0

(
aj · `m

)
·

ψ
(
aj · `m

)
. In full, H is code for the hazard function for each individual con-

sidered at a series of times before and at death:

H =




h
(
a1 · 1

m | c1

)
h
(
a1 · 2

m | c1

)
· · · h (a1 | c1)

h
(
a2 · 1

m | c2

)
h
(
a2 · 2

m | c2

)
· · · h (a2 | c2)

...
...

...
...

h
(
an · 1

m | cn
)

h
(
an · 2

m | cn
)
· · · h (an | cn)

.

Part four calculates the Riemann Sum approximation to the log likelihood

function, sum( log(f) ). First, a vector of survivor functions written in ap-

proximate form as Riemann Sums is calculated for each individual at their age

of death. The vector denoted in code by S can be written as

S =




exp

(
− 1
m ·
∑m

`=1 h
(
a1 · `m | c1

))
exp

(
− 1
m ·
∑m

`=1 h
(
a2 · `m | c2

))
...

exp
(
− 1
m ·
∑m

`=1 h
(
an · `m | cn

)) .
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The vector S is calculated by taking the product of H and a vector of length m

with each element being 1
m , and then by taking the exponential of minus the

calculated product. A vector of probability density functions at death, denoted

by f, is then calculated as a product of S and the final column of matrix H.

The vector of probability densities is

f =




f(a1 | c1)

f(a2 | c2)
...

f(an | cn)

,

where f (aj | cj) is defined in (4.6). The log likelihood function defined in (4.2)

is calculated as sum( log(f) ).

Discrete time

The following R function calculates the value of the log likelihood function

(4.11) for a particular choice of
(
αααT ,βββT

)
, where faj |cj is defined according to

equations (4.13) and (4.14):

apc.disc <- function(param) {

##Part one

alpha <- param[1:Nalpha] / scalePar

beta <- param[(Nalpha+1):(Nalpha+Nbeta)] / scalePar

for (j in 1:n) {

##Part two

X <- Xmake( 0:a[j], c[j] )

Psi <- X %*% beta

H <- 1-( (1-h0(0:a[j],alpha))∧(exp(Psi)) )
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##Part three

if (a[j]==0) { f[j] <- H }

else { S <- prod( (1-H)[1:a[j]] );

f[j] <- S*H[a[j]+1] }

}

##Part four

sum ( log(f) )

}.

The argument param has the same meaning as in equation (9.1). Before run-

ning apc.disc, it is necessary for the user to specify n, a, c, h0, Nalpha, Xmake,

Nbeta and scalePar. The variable scalePar was defined in Section 4.1 as a

scaling variable for ααα and βββ and we choose to set scalePar to one in this

example.

We have split the R function apc.disc into four parts. Part one defines

the argument param. Part two first defines a covariate matrix for the jth

individual through X. This jth covariate matrix, which we will denote as Xj ,

can be written as

Xj =




xT0

xT1
...

xTaj

=




cj cj (cj)

2

cj cj + 1 (cj + 1)2

...
...

...

cj cj + aj (cj + aj)
2

.

Each row of Xj corresponds to the covariates for the jth individual at a partic-

ular age and the rows are ordered by ascending age. The first row corresponds

to age zero and the final row corresponds to the age at death. So the number

of rows in Xj will vary between individuals. The following vector of linear
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predictors for the jth individual is constructed through Psi:

ψψψj = Xjβββ =




xT0 βββ

xT1 βββ
...

xTajβββ

.

Also, a vector of hazard functions for the jth individual is constructed through

H, which can be written as

hj =




h0|cj

h1|cj
...

haj |cj

=




1− (1− h0,0)exp(xT0 βββ)

1− (1− h1,0)exp(xT1 βββ)

...

1−
(
1− haj ,0

)exp
(
xTajβββ

) .

In part three of apc.disc, the probability mass function faj |cj is defined

for the jth individual. In Section 3.1, we stated that, with the exception of

age zero, the probability mass function is defined according to the product

formula (3.6). At age zero, the probability mass function is defined as equal

to the hazard function. We use an if command to distinguish between these

two definitions, so that if aj = 0, the probability mass function is defined in

correspondence with equation (4.15) as equal to h0|cj = 1− (1− h0,0)exp(xT0 βββ).

For ages a = 1, 2, . . ., the code S calculates the survivor function for the jth

individual, which is defined as Saj−1|cj =
∏
u≤aj−1

(
1− hu|cj

)
in the product

formula of equation (4.14). Notice that, the length of the vector H is equal

to a[j]+1. The function faj |cj , written in code as f[j], is then obtained by

multiplying Saj−1|cj with the final element of the vector hj .

The for command carries out the calculation of faj |cj in parts two and

three for all n individuals to produce a vector f T =
(
fa1|c1 , fa2|c2 , . . . , fan|cn

)
.

Part four takes the logarithm and sum of f to calculate the log likelihood

function described in (4.11).
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9.3 Estimation of the independence model

In Section 7.2, we estimate the independence model for the exact treatment of

data in the case of BSE incidence. The purpose of this section is to provide de-

tails on how the exact treatment was carried out to produce the parameters es-

timates presented in equation (7.7). We also show how the parameter estimates

were used to calculate expected count ratios and count cross-ratios. The inde-

pendence model consists of the parameters ααα and ξξξ since f(a) consists of pa-

rameters αααT = (α1, . . . , αm) and κ(c) consists of parameters ξξξT = (ξ1, . . . , ξr).

Under a Poisson model, the likelihood function for the parameters ααα and ξξξ,

given data on deaths provided in a contingency table categorised in terms of

age and period, is

LE1

(
ααα,ξξξ | N(1) = n(1)

)
=

i+∏
i=i−+1

k+∏
k=k−+1

(
ν

(1)
i,k

)n(1)
i,k

exp
(
−ν(1)

i,k

)
n

(1)
i,k !

,

where

ν
(1)
i,k = µi,i+k =

∫∫
R

(AP)
i,i+k

λ(a, c) dc da

=

∫ i+1

i

∫ i+k+1−a

i+k−a
λ(a, c) dc da.

Model estimation

The random number of deaths in period j at age i is denoted as Mi,j . An age-

by-period contingency table of observed counts can be written as m = (mi,j).

By applying the first surrogate convention, so that mi,i+k = n
(1)
i,k , the age-by-

period table is presented in terms of age and cohort. The resulting table can

be written in matrix form as n(1) =
(
n

(1)
i,k

)
. An example is presented in Table

7.1 for the case of BSE incidence. The code Data is a data frame for n(1).
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Data <- matrix(c(

rep(NA,7),17,18,

rep(NA,6),62,43,40,

rep(NA,5),198,123,83,50,

rep(NA,4),879,521,225,172,83,

rep(NA,3),2275,1918,950,440,244,rep(NA,1),

rep(NA,2),2557,4065,2561,1268,632,rep(NA,2),

rep(NA,1),781,4399,5741,4073,1983,rep(NA,3),

49,1744,8847,10907,7865,rep(NA,4),

73,4227,16039,17637,rep(NA,5),

85,2015,7497,rep(NA,6),

40,1208,rep(NA,7),

23,rep(NA,8)

),

nrow=12, ncol=9, byrow=TRUE)

Data <- as.data.frame(Data).

It is helpful but not essential to label the rows and columns of the data. The

columns correspond to ages i = 2, 3, . . . , 10, while the rows correspond to

cohorts k = 1980, 1981, . . . , 1991.

colnames(Data) <- 2:10

rownames(Data) <- 1980:1991.

In Chapter 7, the following Gamma model is chosen to describe f(a) for

the case of BSE incidence:

f(a) =
αα2

1 aα2−1 exp (−α1a)

Γ(α2)
for a > 0, (9.3)

where α1 > 0 and α2 > 0. We reparameterise the Gamma model in terms of

the mean and variance. Letting α∗1 and α∗2 denote the mean and variance of

the age-at-onset, the rate parameter α1 (rateGam) and the shape parameter
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α2 (shapeGam) are determined as

α1 =
α∗1
α∗2

and α2 =
(α∗1)2

α∗2
. (9.4)

Also, alpha is a vector of length two in which alpha[1] is α∗1 and alpha[2] is

α∗2. In R, we write a function f which takes age a and a parameter vector αααT =

(α∗1, α
∗
2) as inputs and calculates the probability density function described in

(9.3):

shapeGam <- function(alpha) { (alpha[1]∧2)/ alpha[2] }

rateGam <- function(alpha) { alpha[1]/alpha[2] }

f <- function(a,alpha) { dgamma(a, shape=shapeGam(alpha),

rate=rateGam(alpha)) }.

In Chapter 7, we choose the following symmetric exponential model to

describe κ(c) for the case of BSE incidence:

κ(c) = ξ1 exp (−ξ2 |c− 1988.5|) for c > 1979, (9.5)

where ξ1 > 0 and ξ2 > 0. In R, we write a function q which takes cohort c and

a parameter vector ξξξT = (ξ1, ξ2) as inputs and calculates the cohort intensity

described in (9.5):

q <- function(c,xi) {100000*xi[1]* exp(-xi[2]* abs(c-1988.5))} .

The parameter ξ2 corresponds to xi[2] and parameter ξ1 corresponds to

100000*xi[1]. The parameter xi[1] is multiplied by 100,000 because the

optimisation procedure could be time consuming if the optimal value of xi[1]

is very large.

The independence model can then be defined as a product of f(a) and

κ(c). In R, we write a function lambda which takes a, c, ααα and ξξξ as inputs and

produces the independence model:

lambda <- function(a,c,alpha,xi) { f(a,alpha) * q(c,xi) }.

The Poisson intensity for a parallelogram region in the Lexis diagram,
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ν
(1)
i,k , can be written as∫ a=1

a=0

∫ c=1

c=0
λ(i+ a, k + c− a) dc da.

Since ν(1)
i,k is difficult to calculate by numerical integration, we express the

Poisson intensity as the following Riemann Sum from (7.6):

1

n2

n∑
u=1

n∑
v=1

λ
(
i+

u

n
, k +

v

n
− u

n

)
.

Before we calculate the Riemann Sum, it is necessary to specify the value

of Riemann Sum divisor, n, as well as the number of rows and columns in

the data. It also helpful to state the lower limits for age and cohort in the

age-by-period table described by Data.

c0 <- as.numeric( rownames(Data)[1] ) -1 ##lower limit for cohort

a0 <- as.numeric( colnames(Data)[1] ) ##lower limit for age

nAge <- ncol(Data) ##number of columns

nCoh <- nrow(Data) ##number of rows

n <- 30.

The larger n is chosen to be, the more accurate will be our approximation

to ν
(1)
i,k . Note that, ν(1)

i,k is the expected count in a Lexis region R
(AP)
i,i+k and

this region depicted in Figure 6.2 extends over ages [i, i+ 1) and cohorts [k −

1, k + 1). In R, we write a function parallelogram which takes parameter

vectors ααα and ξξξ as inputs and returns a matrix with elements corresponding to

the Riemann Sum approximation to ν(1)
i,k for ages i = 2, 3, . . . , 10 and cohorts

k = 1980, 1981, . . . , 1991:

u <- c(); v <- c()

parallelogram <- function(alpha,xi) {

pA <- matrix(nrow=nCoh, ncol=1)

A <- matrix(nrow=nCoh, ncol=nAge)

for (i in 1:nAge) {

for (k in 1:nCoh) {

for (delta2 in 1:n) {
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for (delta1 in 1:n) {

u[delta1] <- lambda( a0 +i-1 +(delta2/n), c0+ k + (delta1-delta2)/n,

alpha,xi ) *(1/(n∧2))

}

v[delta2] <- sum(u)

}

pA[k,] <- sum(v)

}

A[,i] <- pA

}

A

}.

The code delta2 is used for variable u and delta1 is used for variable v. Also,

i is replaced with a0+i and k is replaced with c0+k, where a0 is the lower

bound for age in the dataset and c0 is the lower bound for cohort.

We next carry out an optimisation procedure to find the values of the

parameter vectors ααα and ξξξ which maximise the likelihood function described

at the start of this section LE1

(
ααα,ξξξ | N(1) = n(1)

)
. The logarithm of the

likelihood function is

i+∑
i=i−+1

k+∑
k=k−+1

[
n

(1)
i,k

(
log ν

(1)
i,k

)
− ν(1)

i,k

]
+ constant.

For the case of BSE incidence, i− = 1, i+ = 10, k− = 1979 and k+ = 1991. In

R, we write a function MLE.stat that takes parallelogram and Data as inputs

and returns a matrix with each element corresponding to the contribution

to the log likelihood function for cell (i, k),
[
n

(1)
i,k

(
log ν

(1)
i,k

)
− ν(1)

i,k

]
. We also

write a function MLEvalueOP that takes the full parameter vector
(
αααT ,βββT

)
=

(α1, α2, ξ1, ξ2) as an input and returns the summation of MLE.stat over all

cells, that is, it returns the value of the log likelihood function. Specifically,

we write

nAlpha <- 2; nXi <- 2
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MLEvalueOP <- function(param) {

alpha <- param[1:nAlpha]

xi <- param[(nAlpha+1):(nAlpha+nXi)]

MLE.stat <- (Data*log(parallelogram(alpha,xi))) -

parallelogram(alpha,xi)

ifelse( any(is.na( log(parallelogram(alpha,xi)) ) ),

NA, sum(MLE.stat, na.rm=TRUE) )

}.

It is necessary to specify the length of ααα and ξξξ, denoted in code by nAlpha and

nXi, in order to define the full parameter vector param.

We then use the existing R function optim to find the vectors ααα and

ξξξ that maximise the likelihood function LE1

(
ααα,ξξξ | N(1) = n(1)

)
. In R, this

means that we find the value of param that maximises MLEvalueOP:

optim( c(1,1,1,1), MLEvalueOP, control=list(fnscale=-1) ).

We choose to start the optimisation procedure at an initial vector
(
αααT , ξξξT

)
=

(1, 1, 1, 1). Note that, the command fnscale=-1 states that we want to max-

imise MLEvalueOP as opposed to minimise. The output of optim was the pa-

rameter estimates α̂∗1 = 5.825, α̂∗2 = 1.572, ξ̂1 = 0.702 and ξ̂2 = 0.515. These

estimates are presented in equation (7.7).

Using the fitted model

The maximum likelihood estimates of the model parameters, which are pre-

sented in equation (7.7), can be written in R as

alphaM <- c(5.825,1.572); xiM <- c(0.702,0.515).

The Poisson intensity for a square region in the Lexis diagram, νi,k, which was
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first introduced in equation (6.5), can be written as∫ a=1

a=0

∫ c=1

c=0
λ(i+ a, k + c) dc da.

We express the Poisson intensity as the following Riemann Sum:

1

n2

n∑
u=1

n∑
v=1

λ
(
i+

u

n
, k +

v

n

)
. (9.6)

In R, we write a function square which takes parameter vectors ααα and βββ

as inputs and returns a matrix with each element corresponding to the Rie-

mann Sum approximation of νi,k for ages i = 2, 3, . . . , 10 and cohorts k =

1980, 1981, . . . , 1991:

u2 <- c(); v2 <- c()

square <- function(alpha,xi) {

pB <- matrix(nrow=nCoh, ncol=1); B <- matrix(nrow=nCoh, ncol=nAge)

for (i in 1:nAge) {

for (k in 1:nCoh) {

for (delta2 in 1:n) {

for (delta1 in 1:n) {

u2[delta1] <- lambda( a0 +i-1 +(delta2/n), c0+ k + (delta1/n),

alpha,xi ) *(1/(n∧2))

}

v2[delta2] <- sum(u2)

}

pB[k,] <- sum(v2)

}

B[,i] <- pB

}

B

}.

In R, we obtain the maximum likelihood estimates of ν(1)
i,k and νi,k by

substituting alphaM and xiM into the functions parallelogram and square:

parallM <- parallelogram(alphaM, xiM)
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squareM <- square(alphaM, xiM)

round(parallM,0) ##presented in Table 7.3

round(squareM,0) ##presented in Table 7.5.

The ratio ν(1)
i,k ÷ νi,k is used to calculate the percentage loss in accuracy in

carrying out a misrounded treatment of data as opposed to an exact treatment.

In R, we calculate ν(1)
i,k ÷ νi,k by taking the ratio of parallM and squareM:

round(parallM/squareM,2) ##plotted in Figure 7.3.

We simulate values of N (1)
i,k and Ni,k from a Poisson model with parameters ν̂(1)

i,k

and ν̂i,k. The quantities ν̂(1)
i,k and ν̂i,k are our maximum likelihood estimates

for the expected number of deaths in age-by-period and age-by-cohort regions

of the Lexis diagram, denoted by ν(1)
i,k and νi,k. The simulations n(1)

i,k and ni,k

can be viewed as incorporating noise into ν̂(1)
i,k and ν̂i,k. Our aim is to assess

whether the patterns in ν̂
(1)
i,k and ν̂i,k are apparent for noisy data. To derive

the simulations, we type the following code into R:

p.simA <- matrix(nrow=nCoh, ncol=1)

simA <- matrix(nrow=nCoh, ncol=nAge)

for (i in 1:nAge) {

for (k in 1:nCoh) {

p.simA[k,] <- rpois(1,parallM[k,i])

}

simA[,i] <- p.simA

}

simA

p.simB <- matrix(nrow=nCoh, ncol=1)

simB <- matrix(nrow=nCoh, ncol=nAge)

for (i in 1:nAge) {

for (k in 1:nCoh) {

p.simB[k,] <- rpois(1,squareM[k,i])
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}

simB[,i] <- p.simB

}

simB.

The function rpois(1, parallM[k,i]) simulates one value from a Poisson

distribution with parameter ν̂(1)
i,k , while rpois(1, squareM[k,i]) simulates

one value from a Poisson distribution with parameter ν̂i,k. The code simA and

simB are matrices with cell (i, k) corresponding to the observations n(1)
i,k and

ni,k, respectively.

The ratio of simulated counts, n(1)
i,k ÷ ni,k, can be calculated in R for all

(i, k) cells as

round(simA/simB,2) ##plotted in Figure 7.5.

This ratio can be compared with round(parallM/squareM,2) to assess whether

the expected pattern in N (1)
i,k ÷Ni,k is also apparent for the simulated data.

9.4 Modifying the independence model

In Section 7.4, we modified our independence model for BSE incidence to allow

the mean of the age at onset to vary with cohort. The Poisson intensity of the

APC model is λ(a, c) = κ(c) · f(a | c), where the age at onset density f(a | c)

is defined according to the gamma density in (7.16) and the cohort intensity

is defined in (7.1). The cohort intensity is the same as in the independence

model from Appendix 9.3 and is written in R as

q <- function(c,xi) {

100000*xi[1]* exp(-xi[2]* abs(c-1988.5) )

}.
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In our code, alpha[1] is the mean and alpha[2] is the variance of the age

at onset. The rate and shape parameters α1(c) and α2(c) defined in equations

(7.17) and (7.18) can be written as

rateGam <- function(alpha,beta,c) {

(alpha[1]* exp(-beta[1]*(c-1980))) / alpha[2]

}

shapeGam <- function(alpha,beta,c) {

( (alpha[1]* exp(-beta[1]*(c-1980)))∧2 ) / alpha[2]

}.

The functions rateGam and shapeGam take alpha, beta and c as inputs and pro-

duce values of α1(c) and α2(c). To introduce dependence, we multiply the mean

alpha[1] by a function of cohort, exp(-beta[1]*(c-1980)), where beta[1]

is a parameter for the cohort effect on µA. Since exp(-beta[1]*(c-1980)) is

equal to one for cohort 1980, the cohort effect β is relative to cohort 1980.

The age at onset density f(a | c) and the Poisson intensity λ(a, c) = f(a |

c) · κ(c) can be written in R as

f <- function(a,c,alpha,beta) {

dgamma(a, shape=shapeGam(alpha,beta,c),

rate=rateGam(alpha,beta,c))

}

lambda <- function(a,c,alpha,beta,xi) {

f(a,c,alpha,beta)*q(c,xi)

}.

Our aim in this section is to obtain the curves illustrated in Figure 7.7. This

figure shows the effect of β on the expected count ratio,
ν
(1)
i,k

νi,k
, and the expected

count cross-ratio, νi+1,k

νi,k
÷ ν

(1)
i+1,k

ν
(1)
i,k

. The function parallelogram introduced in

Appendix 9.3 takes alpha and xi as inputs and produces a matrix with each

element corresponding to a Riemann Sum approximation of ν(1)
i,k in the case of
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independence. The following function parallelogramR takes cohort k and the

parameter vectors alpha, beta and xi as inputs and produces a vector,

v(1)T
k =

ν(1)
3,k

ν
(1)
2,k

,
ν

(1)
4,k

ν
(1)
3,k

, . . . ,
ν

(1)
10,k

ν
(1)
9,k

 :

a0 <- 2; u <- c(); v <- c(); aRatio <- c()

parallelogramR <- function(k,alpha,beta,xi) {

A <- c()

for (i in 1:nAge ) {

for (delta2 in 1:n) {

for (delta1 in 1:n) {

u[delta1] <- lambda( a0 +i-1 +(delta2/n), k +(delta1-delta2)/n,

alpha, beta, xi ) *(1/(n∧2))

}

v[delta2] <- sum(u)

}

pA <- sum(v)

A[i] <- pA

}

for (j in 1:8) {aRatio[j] <- A[j+1]/A[j]}

aRatio

}.

The function square introduced in Appendix 9.3 takes alpha and xi as

inputs and produces a matrix with each element corresponding to a Riemann

Sum approximation of νi,k in the case of independence. The following function

squareR takes cohort k and the parameter vectors alpha, beta and xi as inputs

and produces a vector,

vTk =

(
ν3,k

ν2,k
,
ν4,k

ν3,k
, . . . ,

ν10,k

ν9,k

)
:

u2 <- c(); v2 <- c(); bRatio <- c()

squareR <- function(k,alpha,beta,xi) {
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B <- c()

for (i in 1:nAge) {

for (delta2 in 1:n) {

for (delta1 in 1:n) {

u2[delta1] <- lambda( a0+ i-1 +(delta2/n), k +(delta1/n),

alpha,beta,xi ) *(1/(n∧2))

}

v2[delta2] <- sum(u2)

}

pB <- sum(v2)

B[i] <- pB

}

for (j in 1:8) {bRatio[j] <- B[j+1]/B[j]}

bRatio

}.

The maximum likelihood estimates of the model parameters, which are

presented in equation (7.7), can be written in R as

alphaM <- c(5.825,1.572); xiM <- c(0.702,0.515).

Suppose the parameters in λ(a, c) = κ(c) · f(a | c) are set to µA = 5.825, σ2
A =

1.572, ξ1 = 0.702 and ξ2 = 0.515, with β yet to be specified. The following

code, R.ratio1, takes vector v1987 and divides it by v1987(1) to produce a

vector of cross ratios,(
ν3,1987

ν2,1987
÷
ν

(1)
3,1987

ν
(1)
2,1987

,
ν4,1987

ν3,1987
÷
ν

(1)
4,1987

ν
(1)
3,1987

, . . . ,
ν10,1987

ν9,1987
÷
ν

(1)
10,1987

ν
(1)
9,1987

)
:

R.ratio1 <- squareR( 1987, alphaM, 0, xiM ) /

parallelogramR( 1987, alphaM, 0, xiM ).

In R.ratio1, the parameter β is set equal to zero. The following code, R.ratio2

and R.ratio3, also produce a vector of cross ratios for cohort 1987, but with

β = 0.05 and β = 0.10:
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R.ratio2 <- squareR( 1987, alphaM, 0.05, xiM ) /

parallelogramR( 1987, alphaM, 0.05, xiM )

R.ratio3 <- squareR( 1987, alphaM, 0.10, xiM ) /

parallelogramR( 1987, alphaM, 0.10, xiM ).

This demonstration can be carried out for other cohorts.
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