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Abstract 

Heteronuclear metal complexes for dual-modal imaging 

The design of dual- or multi-modal probes, in which two or more independent 

reporters are integrated into one unit, is an area of immense interest, as visualisation of 

biological matter can be enhanced enormously by sequentially exploiting the advantages of 

each detection mode. In particular, dual optical/MRI contrast agents are appealing, as the 

combination of a luminescent dye with an MRI-active unit within a single entity, produces a 

superior probe capable of imaging both the ‘bigger picture’ and the intricate detail within a 

cell. By combining the synergistic signals arising from both imaging modalities, images can be 

developed to reveal exquisite detail.     

To this end, a series of water-soluble, heterometallic ruthenium(II)-based complexes 

based on compartmental bridging ligands have been synthesised for exploitation as dual-

modal contrast agents. Incorporation of the commonly used MRI-active metal, GdIII, into the 

probe design to produce multimetallic RuII-GdIII hybrids has been investigated, as well as the 

relatively unexploited paramagnetic properties of MnII in RuII-MnII hybrids. Assessment of the 

concentration-normalised longitudinal relaxivity values (r1) for each of the complexes has 

been undertaken, and the RuII-GdIII hybrids have been evaluated as probes for cellular 

imaging.  

Incorporation of the NIR-luminescent LnIII ions, YbIII and NdIII, in place of the MRI-active 

metals GdIII and MnII, has also provided a route to dual-modal optical/NIR imaging probes. 

Photoinduced energy-transfer from the photoactivated RuII centre has been shown to 

sensitise emission from the LnIII ion, producing a dual-luminescent probe that has 

distinguishable emission, owing to the luminescent lifetimes of the two different metal 

centres being orders-of-magnitude apart.  
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1.1) Biological Imaging  

Biological imaging can be deemed to be one of the most important scientific 

discoveries of the 20th century due to the remarkable impact it has had on modern medicine. 

Since their inception, whole-body imaging modalities such as single-photon emission 

computed tomography (SPECT), positron emission tomography (PET) and magnetic resonance 

imaging (MRI) have become ubiquitous in medical diagnostics for detecting a wide variety of 

medical ailments[1–3]. In particular, numerous cancers can now be identified and treated more 

promptly[4,5]. However, the relatively low resolution and sensitivity associated with these 

techniques hinders their utility for imaging intricate detail at the cellular and subcellular level.  

In contrast, when coupled with luminescence (a term that encompasses both 

fluorescence and phosphorescence), optical microscopy has superb sensitivity and resolution 

(ca. 200-250 nm). With the recent advancement of ‘super-resolution’ microscopy 

techniques[6] such as stimulated emission depletion microscopy (STED)[7] and saturated 

structured-illumination microscopy (SSIM), spatial resolution well below the limit imposed by 

the diffraction of light has also been realised (ca. 20-100 nm). As such, the visualisation of 

cellular level detail is now straightforward, and the possibility of monitoring the subcellular 

biological processes that are the basis of disease, rather than just imaging their end effects, 

has become a reality[8]. In this way, modern medicine has been revolutionised as more 

incidents of life-threatening medical conditions can be detected earlier, and the success of 

treatment can be more easily monitored. 

This thesis will focus upon the utilisation of both MRI and optical microscopy in the 

field of biological imaging. In both cases the application of metal complexes as imaging agents 

will be reviewed, with select recent examples from the literature being highlighted. The 

relatively novel field of dual-modality imaging, in which two or more independent reporters 

are integrated into the same unit, will also be considered, with particular emphasis being 

placed upon mixed-metal complexes capable of acting as dual-modal probes that combine 

optical microscopy and MR imaging.  
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1.2) Magnetic Resonance Imaging 

MRI has become a prominent imaging technique in clinical medicine due to its non-

invasive nature and its versatility. Unlike other whole-body imaging modalities such as PET 

and X-ray, MRI does not use unpleasant radiochemicals or ionising radiation to produce an 

image, but rather relies on the principles of nuclear magnetic resonance (NMR) spectroscopy. 

This makes MRI a much softer and safer investigative procedure, and as such, its utilisation in 

medical diagnostics is rapidly accelerating. The NHS in England reported that the number of 

MRI examinations undertaken in 2017/2018 was 3.4 million, which was a growth of 59 % over 

a five-year period[9]. The technique is now routinely used to diagnose conditions of the central 

nervous system including multiple sclerosis[10] and Alzheimer’s disease[11], as well as vascular 

abnormalities[12] and numerous types of cancer[13,14]. 

To produce a three-dimensional image of the area of the body under examination, 

MRI takes advantage of the water molecules that comprise the bulk of human tissue (average 

65 %). Under normal conditions the spin angular momentum vectors of the protons on the 

water molecules are disordered and in random orientations (figure 1.01A): however, when a 

strong magnetic field is applied the protons align their spins either in the direction of the 

magnetic field or against it. Nearly equal numbers of protons align in each direction and so 

the majority cancel each other out; however, a very small excess do not cancel, and it is these 

protons that MRI takes advantage of (figure 1.01B). A pulsed radiofrequency current specific 

to hydrogen is applied to disrupt the alignment of the unmatched protons with the applied 

magnetic field, as they absorb the energy and flip their spins in a specific direction at a specific 

frequency of resonance known as the Larmor frequency (figure 1.01C). As the radiofrequency 

field is removed the protons slowly relax back to their previous energy level (aligned with the 

applied magnetic field) and emit radio waves that are detected and converted into an image 

(figure 1.01D).  

Differentiation of the various tissues within the body occurs as a result of the water 

protons in different chemical environments taking different amounts of time to realign with 

the magnetic field (different relaxation rates), as well as the varying water densities within 

the tissues. However, signal intensities and sensitivity can be enhanced by administering a 

paramagnetic metal complex known as a contrast enhancement agent. The normal tumbling 

of these highly paramagnetic complexes produces an oscillating magnetic field, which 
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increases the rate at which the protons relax back to their ground state (aligned with the 

applied magnetic field), allowing the absorption of another photon more quickly. This 

produces brighter images and better contrast. The first such probe to be approved for human 

use in 1988 was a low molecular weight compound that utilised the unique magnetic 

properties of the GdIII ion. Three decades on from this, a number of GdIII-based agents are 

now commercially available, and approximately one in three MRI examinations undertaken 

each year involves the administration of a contrast agent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.1) Gadolinium(III)-Based Contrast Agents 

In the European Union there are currently eight GdIII-based compounds approved for 

use as MRI contrast agents in humans by the European Medicines Agency (EMA)[15] (figure 

1.02). GdIII is a perfect central metal ion for use in such agents, as it has seven unpaired 

electrons, and hence a high magnetic moment (7.94 μB), coupled with a long electron spin 

relaxation time (10-9 s) at the low magnetic field strengths used in MRI examinations (20-60 

MHz). When combined, these properties help to shorten the longitudinal relaxation time (T1) 

of water protons in tissues, which in turn enhances the relaxation rate (1/T1). This generates 

greater contrast and a brighter image where the agent has distributed compared to areas 

where there is no contrast agent accumulation. Complexes of this kind are known as positive 

A) Magnetic field off B) Magnetic field on C) Radiofrequency 

pulse on 

D) Radiofrequency 

pulse off 

Magnetic field on 

Figure 1.01: Simplified depiction of proton spin angular momentum vectors during an 

MRI examination. A) the magnetic field is off and the proton spins are in random 

orientations; B) a strong magnetic field is applied and an excess of the proton spins are 

aligned with the field; C) a pulsed radiofrequency current is applied and the proton spins 

flip out of alignment with the applied magnetic field; D) the radiofrequency pulse is 

removed and the proton spins return to their alignment with the applied magnetic field, 

releasing a detectable energy that is converted into an image 
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contrast agents and their efficiency is assessed by their concentration-normalised longitudinal 

relaxivity value (r1), defined as the increase in the relaxation rate of water protons per 

millimole of contrast agent (mM-1 s-1). On average, the commercially available contrast agents 

have relaxivity values in the range r1 = 3.5-4.8 mM-1 s-1 (20 MHz, 25 °C, pH 8.5).  

Conversely, there also exist negative contrast agents, which affect the transverse 

relaxation time (T2) of water protons, and darken an image with increasing relaxation rates 

(1/T2). Probes of this kind include superparamagnetic materials such as iron oxide 

nanoparticles[16,17], but this thesis will not consider them in any detail.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.02: Structures of the eight commercially available GdIII-based MRI contrast 

agents approved for use in humans 
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Although the GdIII ion has excellent properties for use in T1-weighted MRI 

examinations, free GdIII ions are highly toxic in vivo. The radius of the GdIII ion is similar to that 

of the CaII ion, which can have unfortunate effects if transmetallation occurs. CaII-mediated 

signalling can be disrupted and kinetically and thermodynamically stable GdIII-based 

complexes can accumulate in the body, causing toxic effects. In rare circumstances, GdIII-

based contrast agents have been linked to the onset of nephrogenic systemic fibrosis (NSF) in 

patients with renal impairment[18,19]. This is a severe and potentially fatal syndrome that 

involves the formation of excess fibrous connective tissue in internal organs and the skin.  

To prevent toxicity from free metal ions, the GdIII ion is tightly bound within a chelating 

ligand based on a polyaminocarboxylate motif. The high coordination number of the GdIII ion 

allows eight coordination bonds to be made to nitrogen and oxygen donor atoms, which 

ensures excellent kinetic and thermodynamic stability of the compound in vivo. Three of the 

commercially approved agents currently in use are based on macrocyclic structures, which, 

on average, tend to have higher stability constants than those structures comprised of acyclic 

motifs. These more stable macrocyclic structures (Dotarem, Gadovist and ProHance) tend to 

be linked to less toxic effects when used for in vivo imaging.  

 

1.2.1.1) Relaxivity Enhancement of Gadolinium(III)-Based Contrast Agents 

The aim of administering a contrast agent during an MRI examination is to maximise 

the concentration-normalised longitudinal relaxivity value (r1) of the water protons, as the 

higher a relaxivity value achieved, the better the contrast of the image, and the more detail 

that can be observed. If relaxivity values of the order of r1 = 100-200 mM-1 s-1 were to be 

realised, the contrast of the image would be such that more sensitive molecular imaging could 

be carried out. Higher relaxivity values would also allow lower concentrations of the contrast 

agent to be administered, which would help to abate the toxic effects that free GdIII ions have 

in vivo. 

In order to design a new generation of improved GdIII-based contrast agents with 

higher relaxivity values per millimole of agent, a number of parameters need to be 

optimised[20]. The hydration of the central GdIII ion (q value) and the distance between the 

water protons and the unpaired electron spin (r) play a key role in the relaxivity achievable by 

a contrast agent. At least one water molecule needs to be bound to the GdIII metal centre at 
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any given time, which is facilitated by the octadentate chelating ligands described previously. 

They guarantee that one of the nine coordination sites on the GdIII ion will be vacant for a 

water molecule to bind, which helps to improve the relaxivity, as the distance between the 

paramagnetic metal centre and the water proton is reduced. A rapid exchange rate between 

the water molecules bound to the GdIII centre and the surrounding bulk water molecules (kex) 

helps to improve the relaxivity value even further, as turnover rates on the microsecond 

timescale ensure that each GdIII ion can relax a large number of protons on water molecules 

over a shorter period of time.  

Increasing the number of water molecules that can bind to the paramagnetic metal 

centre at any given time will also improve upon the relaxivity values achievable by a contrast 

agent; however, this may affect the complex integrity in vivo if the GdIII ion makes less 

coordination bonds to the stabilising chelate. A hydroxypyridonate (HOPO)-based chelating 

ligand circumvented this issue (figure 1.03), as a high relaxivity value was measured for the 

complex (7.7 mM-1 s-1, 20 MHz, 25 °C, pH 8.5) (attributed to the two water molecules bound 

to the GdIII centre), yet high stability of the complex was still reported even though only six 

coordination bonds were made to the metal centre[21]. The probe design was such that the 

energy barrier between the intermediate tris(aqua) complex and the observed bis(aqua) 

complex was low, which reduced the mean residence time of the bound water molecules in 

the first coordination sphere (τM). 

 

 

 

 

 

 

 

 

A final key aspect of a contrast agent’s design to be optimised for high relaxivity values 

is the tumbling rate of the species, which is characterised by the rotational correlation time 

(τR). Larger complexes with high molecular weights have been shown to boast higher relaxivity 

values in comparison to smaller complexes, as the larger size encourages slower rotation in 

solution. This slower tumbling rate of the larger paramagnetic complexes produces an 

Figure 1.03: Structure of a hydroxypyridonate-based ligand for an MRI 

contrast agent with high stability and two coordinated water molecules 
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oscillating magnetic field, which has components closer to the Larmor frequency for 

hydrogen, and so the rate at which the water protons relax back to their ground state (aligned 

with the applied magnetic field) is increased. This allows absorption of another photon more 

quickly compared to the smaller complexes, and hence the relaxivity value for the larger 

complexes is increased in comparison. Strategies such as incorporating GdIII ions into 

nanoparticles[22] have been used effectively to reduce the rotational correlation time, as well 

as tethering the paramagnetic metal centre to a rigid macromolecule[23]. When coupled with 

a luminescent metal centre this also produces probes capable of dual-modal optical/MR 

imaging that will be discussed in detail later in this thesis (section 1.4.1).  

 

1.2.2) Manganese(II)-Based Contrast Agents 

The GdIII ion is currently the most prevalent paramagnetic metal centre used in 

contrast agents for T1-weighted MRI examinations, but originally the MnII ion was considered 

for the role due to its amenable physical properties. The ion was initially discounted for in 

vivo imaging on toxicity grounds; however, recently, with the design of better stabilising 

chelating ligands, MnII-based contrast agents, including those based on nanoparticles[24,25] 

and macromolecules[26,27], are once again being considered as GdIII-free alternatives[28]. GdIII-

based contrast agents have been shown to have toxic effects when administered in vivo, 

especially in patients with impaired renal function. As some 14 % of the US population is 

affected by chronic kidney disease (CKD), the development of a safer probe that is compatible 

with imaging the kidney would have a large impact on modern medicine.  

Comparable to the GdIII ion, high spin MnII has a number of physical properties that 

make it an efficient ion for use in MRI. It has five unpaired electrons and hence a high spin 

quantum number (s = 5/2), a long electronic relaxation time, and fast water exchange kinetics. 

Unlike GdIII, however, MnII is also a biologically relevant ion as it is a natural constituent of 

cells, being involved in mitochondrial function. This makes MnII a suitable ion for imaging 

mitochondria-rich organs such as the kidney, as the greater the density of mitochondria in a 

cell, the higher the level of MnII uptake, and the better contrast seen in the image. 

Free MnII ions are still toxic to the human body, however, and overexposure can lead 

to a neurodegenerative disorder known as ‘manganism’, whose symptoms resemble those of 

Parkinson’s disease. Only one commercially available MnII-based contrast agent has ever been 
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approved for use in humans, known as mangafodipir trisodium (Mn-DPDP) or Teslascan® (1, 

figure 1.04), but it was removed from the EU market in 2010 over concerns for its toxicity in 

patients, as the complex was found to partially dissociate in vivo. It is worth noting, however, 

that free MnII ions have an efficient elimination pathway through the hepatobiliary system, 

which free GdIII ions do not have, and so accumulation and toxicity is not as severe an issue 

for MnII-based contrast agents as they are for complexes with GdIII as the paramagnetic ion. 

Macrocycle-based ligand structures have shown excellent stability with GdIII ions, 

however, their use with MnII ions is flawed. The d-block MnII ion has a smaller ionic radius 

than the lanthanide GdIII ion and so can make fewer coordination bonds. This is an issue when 

using macrocyclic ligands, as they saturate the metal coordination, which prohibits a water 

co-ligand from binding. This produces an impasse, whereby improving the in vivo stability of 

the MnII-based complex has detrimental effects on its relaxivity efficiency[29]. For this reason, 

alternative acyclic ligand types are now being considered.  

 

 

 

 

 

 

 

 

 

One such alternative from Caravan and co-workers[30] is the hexadentate acyclic ligand 

PyC3A (N-picolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate) (2, figure 1.04), which 

showed high stability compared to the commercial contrast agents Magnevist® (GdIII-based) 

(figure 1.02) and Teslascan® (MnII-based). When challenged with 25 mole equivalents of ZnII 

(pH 6.0, 37 °C), the PyC3A ligand was 20-fold more resistant to metal ion displacement than 

the diethylenetriaminepentaacetic acid (DTPA) ligand in Magnevist®, and it was also found to 

be > 105 times more stable at pH 7.4 than the dipyridoxyl diphosphate ligand (DPDP) in 

Teslascan®.  

The complex also demonstrated excellent properties when tested as an MRI contrast 

agent in vivo. When administered to mice (60 μmol/kg) the agent was > 99 % eliminated by a 

Figure 1.04: Structures of MnII-based MRI contrast agents 

1 2 
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mixed renal/hepatobiliary pathway within 24 hours, and when administered to baboons (0.01 

mmol/kg) the agent’s high stability was enduring, as analysis of blood and urine samples 

revealed excretion of the agent intact[31]. The relaxivity value measured in bovine blood 

plasma (r1 = 3.8 mM-1 s-1) was also comparable to both acyclic and macrocyclic commercial 

GdIII-based agents (Magnevist®, r1 = 4.1 mM-1 s-1; Dotarem®, r1 = 3.6 mM-1 s-1) under identical 

conditions (60 MHz, 37 °C, pH 7.4), which was attributed to the fast water exchange rate of 

the water co-ligand (kex = 1.0 x 108 s-1, 37 °C).  

A further benefit arising from the design of the PyC3A ligand was the potential to easily 

modify the structure by straightforwardly substituting the N-pyridyl donor constituent. A 

short, cyclic peptide shown to have high selectivity for fibrin (the main component of a blood 

clot) was used to link four MnII-PyC3A units together, in order to create a complex capable of 

molecular imaging of thrombosis. No loss of stability was noted with the synthetic 

modification, and due to the larger size and slower molecular rotation of the complex in 

solution, the per MnII ion relaxivity value in pH 7.4 buffer was increased four-fold compared 

to the smaller, parent complex (r1 = 8.5 mM-1 s-1 and r1 = 2.1 mM-1 s-1, respectively).  

As research continues to resolve the issue of poor kinetic and thermodynamic stability 

of MnII-based contrast agents, whilst improving upon the relaxivity values achievable by the 

paramagnetic central ion, it becomes more of a possibility that soon the GdIII-based 

commercial agents will be supplemented with less toxic MnII alternatives.  
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1.3) Optical Microscopy 

In comparison to the whole-body imaging technique of MRI, optical microscopy has a 

resolution capable of elucidating detail at the cellular level. As most diseases and cancerous 

tissues begin at the molecular level, the ability to monitor the biological processes that are 

the basis of these life-threatening illnesses is extremely important for their earlier detection 

and treatment. Cells are transparent and colourless, however, and so extracting any kind of 

detailed image of their morphology is difficult without help from a differential cell stain. 

Luminescent dyes are widely used for this purpose in optical microscopy as they provide 

excellent sensitivity and resolution, and many dyes have been designed to target specific 

biomolecules[32] and chemical species[33]. Indeed, one of the key features of a cancerous 

tumour is oxygen deprivation (hypoxia)[34], and so a luminescent probe that shows sensitivity 

to oxygen via changes in emission intensity and lifetime can be used to monitor the oxygen 

levels in living cells to assess their health status[8,35]. Three key organic compounds 

fluorescein, rhodamine and BODIPY (figure 1.05) tend to form the foundation of such agents.  

 

 

Such fluorescent imaging agents allow biological entities and their processes to be 

tracked, with the view of tracing molecular abnormalities in particular. This is not a 

straightforward undertaking, however, with several requirements for an effective probe 

needing to be met. To be even considered for application as a bioimaging agent, a 

luminophore must first pass a few suitability tests related to its solubility and stability, toxicity, 

and uptake and localisation in vitro.  

When entering a biological environment it is essential that the probe remains intact 

in order to avoid any cytotoxic effects, and it should be photochemically stable when 

irradiated with light to avoid any unwanted dissociation. The probe should also be resilient to 

Figure 1.05: Structures of the common organic fluorophores which form the foundation 

of many optical microscopy imaging agents. A) fluorescein, B) rhodamine, C) BODIPY  

B A

A 
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photobleaching, although an exception to this stipulation is light-activated drug-delivery 

systems which require ligands to be photolabile in order to have therapeutic effects[36]. With 

regards to solubility, a probe should readily dissolve into a biologically appropriate solvent 

such as a buffer solution to aid their cellular uptake, and should remain in solution indefinitely 

to avoid unwanted leaching out of the cell. The ability to cross lipophilic cell membranes and 

barriers is also a desired trait of the probe, with the additional feature of specific localisation 

in a site of interest such as lysosomes[37] or mitochondria[38] being preferred. 

Although fluorescent organic dyes have found great utility in optical imaging, their 

effectiveness is not without flaws. The short emission lifetimes of the probes permits the 

unwanted interference of autofluorescence from endogenous biomolecules, and synthetic 

modification of the probe to tailor the absorption and emission properties is not 

straightforward. To try and combat these issues, research into the use of phosphorescent 

transition-metal coordination compounds as non-invasive probes has recently increased in 

popularity[39,40]. Most probes tend to be based on a mid-to-late-transition metal with a d6 low-

spin octahedral electronic configuration. The kinetic inertness of these heavy metal 

complexes abates their toxicity towards biological matter due to the low rate of ligand 

exchange, and many such complexes have long-lived and well known luminescence from 

metal-to-ligand-charge-transfer (MLCT) excited states. 

 

1.3.1) Metal Complexes as Cellular Imaging Agents 

Metal complexes possess additional attractive features for use in biological imaging to 

those detailed above, but when discussing the benefits of using metal-based complexes as 

emissive probes it first seems pertinent to briefly detail the mechanism by which the 

complexes absorb and emit radiation. This can be described with a simplified Jablonski 

diagram (figure 1.06). 

On absorption of a photon, an electron in the chromophore is promoted into a higher 

energy orbital, taking the molecule from the ground state (S0) to an excited singlet state (S*). 

This is a fast, spin-allowed process typically a few femtoseconds in duration. Due to the 

combination of a low-oxidation d6 metal centre with π-acceptor ligands such as 2,2’-

bipyridine, this state usually has MLCT character and displays a strong absorption coefficient 

(ca. 104 M-1 cm-1). From the many electronic levels of this excited state, the chromophore can 

either re-emit this photon as fluorescence (τ = nanoseconds) or can undergo inter-system 
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crossing (ISC) to an excited triplet state (T*, usually 3MLCT). This process is slower than 

absorption (typically femtoseconds to nanoseconds in duration) as it violates the spin 

selection rule, but it is facilitated by spin orbit coupling due to the presence of a heavy metal 

atom with a high spin-orbit coupling constant, ζ. Emission from the 3MLCT energy level results 

in longer-lived phosphorescence (τ = microseconds or longer) due to the formally spin-

forbidden nature (i.e. ΔS ≠ 0) of this radiative transition. It is this emission from the 3MLCT 

state with long decay lifetimes, as well as several other ideal characteristics, which make 

metal complexes superior to probes that are purely organic in nature for application in cellular 

imaging.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the most useful features of phosphorescent transition-metal complexes is that 

colour tuning across the visible spectrum is particularly straightforward with the judicious 

choice of ligand. Fine-control of the absorption and emission properties of the complex is also 

made possible by simply attaching electron-withdrawing or -donating groups to the ligand 

periphery. This means that metal complexes can be designed to absorb and emit in the 

‘biological optical window’ (λ = 650-950 nm), where the absorption of light by most 

biomolecules in tissues is the lowest[41]. The use of longer wavelength light to excite metal 

complexes also has the benefit of being less photodamaging to cells during imaging, and can 

penetrate tissue to increased depths compared to higher energy radiation. This is in stark 
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Figure 1.06: A simplified Jablonski diagram illustrating the transitions between electronic 

states of a metal complex for the processes of fluorescence and phosphorescence. Coloured 

and block arrows represent radiative and non-radiative processes, respectively. 

(A = absorption, F = fluorescence, P = phosphorescence, S0 = singlet ground state, S* = singlet 

excited state, T* = triplet excited state, IC = internal conversion, ISC = inter-system crossing, 

fs, ps, ns, μs, ms = femto-, pico- nano-, micro- and milli-second) 
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comparison to organic fluorophores where such straightforward synthetic modification is 

unlikely. Tailoring the excitation wavelength to be anywhere other than the UV-visible region 

of the electromagnetic spectrum is therefore difficult, and consequently most organic 

fluorophores are often characterised by the unwanted interference of autofluorescence from 

endogenous biomolecules[42]; an effect made worse by the fact that this cannot be removed 

by time-gating as the probe fluorescence is also short-lived. 

As was noted previously, emission from metal complexes is usually long-lived due to 

the heavy metal atom with a high spin-orbit coupling constant, ζ, facilitating ISC, which 

harvests a high triplet quantum yield following photoexcitation. Emission lifetimes are two to 

three orders-of-magnitude longer than those of organic entities, and as such, 

phosphorescence from the metal-based probe can be distinguished from the cell’s shorter-

lived autofluorescence by time-gated detection (figure 1.07)[38]. A time delay of a few tens of 

nanoseconds between the excitation pulse and detection of the signal allows for the decay of 

any background fluorescence. This makes it possible to isolate the desired signal only, giving 

an enhanced signal-to-noise ratio and very low detection limits. This attribute is also 

particularly advantageous when using phosphorescence lifetime imaging (PLIM) to study 

metal complexes in vitro. 
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Figure 1.07: Illustration of the concept of time-gating in order to distinguish 

a desired signal from short-lived background autofluorescence in a cell 
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The fact that emission originates from a 3MLCT state in heavy metal complexes, which 

is a different state from that which was excited in the first place, means that overlap of the 

absorption and emission spectra is small due to the large energy difference between the two 

energy levels. This is a particular problem with organic fluorophores, which normally absorb 

into, and emit from, the same S1 excited state, quite often leading to self-absorption and 

hence quenching of luminescence.  

A final benefit of using metal complexes as phosphorescent probes is that the long-

lived excited state has more time to interact with dissolved molecular oxygen in solution, 

which is useful for a number of reasons. Firstly, the phosphorescence lifetime of the metal-

based probe is sensitive to the concentration of oxygen in the surrounding environment, 

which is a property that can be exploited for phosphorescent lifetime imaging (PLIM). An 

image is produced based on the differential excited-state decay rates of the probe due to 

differences in the concentration of oxygen inside a cell, which can be used to detect hypoxic 

tissues such as cancerous tumours. Secondly, phosphorescent probes interacting with 

dissolved molecular oxygen results in the formation of singlet oxygen (1Δg state), which is 

highly reactive towards biomolecules and leads to phototoxicity. This forms the basis of the 

use of heavy metal complexes therapeutically in photodynamic therapy (PDT)[43]. Both of 

these topics will be touched upon later in this thesis.  

The current developments in using metal complexes as biological probes for 

luminescence imaging and therapeutic applications will now be assessed. In particular, 

emphasis will be placed upon RuII-based complexes and the progress made over the last 

decade. Other d-block metal complexes will also be briefly considered including those based 

on ReI, IrIII, and PtII. As the topic area is rather broad and rich with cutting-edge research, only 

select recent examples are included. 

 

1.3.2) Ruthenium(II)-Based Cellular Imaging Agents  

The archetypal RuII complex, [Ru(bipy)3]2+ (where ‘bipy’ denotes the ligand 2,2’-

bipyridine), is well-studied and has ideal photophysical properties for luminescent imaging. 

Due to a combination of the low-oxidation state d6 metal centre with 2,2’-bipyridine π-

acceptor ligands, the lowest excited state of the complex has {RuII→π*(N^N)} MLCT character. 

ISC from the initially-generated singlet excited state to the triplet manifold is fast, owing to 
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the heavy atom effect, and therefore, phosphorescence from the 3MLCT state is usually the 

main radiative decay mechanism. This leads to long emissive lifetimes (τ > 500 ns)[44], which 

are beneficial for time-gated detection in PLIM, for example, whereby cellular 

autofluorescence can be excluded. The complex has limited 

cell permeability, however, which restricts its application 

as a cellular imaging probe. As such, the vast majority of 

reported RuII-based cellular imaging agents tend to be 

based around the [Ru(N^N)3]2+ core (figure 1.08), in which 

at least one of the polypyridyl (N^N) ligands has been 

modified to bestow improved cell permeation properties.  

Good examples of this are the well-known 

molecular ‘light-switch’ complexes [Ru(bipy)2(dppz)]2+ (where ‘dppz’ denotes the ligand 

dipyrido[3,2-a:2′,3′-c]phenazine) (3, figure 1.09) and [(phen)2Ru(tpphz)Ru(phen)2]4+ (where 

‘tpphz’ denotes the ligand tetrapyrido[3,2-a: 2′,3′-c: 3″,2″-h: 2″,3‴-j]phenazine) (4, figure 

1.09), which both contain extended N^N ligands capable of binding to nuclear DNA[45,46]. The 

complexes are non-emissive at room temperature in water, but display intense luminescence 

when bound to double-helical DNA due to shielding of the phenazine nitrogen atoms from 

any hydrogen-bonded water molecules, which act as quenchers. This remarkable behaviour 

allows for sensitive probing of the DNA environment, as the intensity and the maximum 

energy of the photoluminescence responds to subtle changes in the DNA helix structure.  

 

 

 

 

 

 

 

 

 

Due to its excellent light-harvesting properties, compound 4 from Thomas and co-

workers has lent itself to a number of different modalities for imaging cellular DNA. As its 

emission is fairly long-lived (τ > 160 ns), the complex was investigated as the first example of 

Figure 1.09: Examples of RuII-based complexes that target the nucleus of a cell by binding to DNA 

3 4 

Figure 1.08: The core structure 

of RuII cellular imaging agents. 

(N^N = polypyridyl) 
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a transition-metal-based cellular DNA probe using two-photon phosphorescent lifetime 

imaging microscopy (2P-PLIM)[47]. The luminescence lifetime was orders-of-magnitude longer 

than conventional fluorescent lifetime imaging microscopy (FLIM), allowing for complete 

removal of any interfering autofluorescence from endogenous fluorophores and leading to 

high levels of sensitivity from a cellular DNA probe. The complex has also shown excellent 

potential as a super-resolution probe[48]; imaging both mitochondria and DNA when used 

alongside SSIM and STED imaging techniques. In particular, 3D-STED images of nuclear DNA 

were produced with unprecedented resolution. Furthermore, as the complex consists of two 

electron-dense metal centres and is kinetically unreactive, along with its OsII analogue[49], it 

has also been used to produce high-resolution images of cellular DNA through the non-light-

based imaging technique of transmission electron microscopy (TEM).   

As well as imaging nuclear DNA[50]
, RuII-based luminescent dyes are also being 

developed as potential anti-cancer therapeutic agents[51,52]. In comparison to commonly used 

platinum-based compounds such as cisplatin, RuII-based compounds have been shown to 

cause fewer and less severe side effects, which may in part be due to their improved suitability 

towards physiological conditions such as slow ligand exchange in water.  

One way in which anti-cancer properties are bestowed upon a RuII-based complex is 

to adorn the probe with an already established anti-cancer drug (5-6, figure 1.10). Not only 

can the luminescence from the metal centre act as a monitor for drug localisation, but the 

pharmacokinetic and pharmacodynamic properties of the parent drug can also be improved 

upon as the metal complex aids in cellular uptake. Recently, a luminescent and photolabile 

RuII complex, [Ru(phen)2Ec2]Cl2 (5, figure 1.10), was developed as a dual cellular imaging agent 

and a light-activated drug-delivery system by attaching two econazole molecules (an 

imidazole-based drug currently being investigated for oral and intravenous applications in the 

treatment of cancer[53]) to a [Ru(phen)2]2+ core[36].  
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The probe accumulated in the cytoplasm of both live and fixed DLD-1 colon carcinoma 

cells (20 μM, 4 hours, 37 °C), with red luminescence being observed under physiological 

conditions in the dark (figure 1.11a). This confirmed that no ligand exchange occurred under 

these conditions, as the corresponding photoactivated complex, in which one of the 

econazole ligands has been photocleaved, is non-luminescent. Upon increasing irradiation 

times with green light (λex = 520 nm), however, a decrease in emission intensity was observed 

(figure 1.11a), indicating the selective cleavage of a metal-drug bond to produce free 

econazole and [Ru(phen)2Ec(H2O)]2+. 

 

 

 

 

 

 

 

To measure the cytotoxicity of the prodrug, various tumour cell lines were incubated 

with the complex for 24 hours and then irradiated with light for 15 minutes. Cell viability 

studies revealed a significant increase in cytotoxicity upon irradiation with green light, 

compared to control cells that were left in the dark and those incubated with just the parent 

drug econazole nitrate.  

Figure 1.10: Examples of RuII-based complexes linked to anti-cancer drugs (highlighted in red) 

5 6 

Figure 1.11: a) Confocal luminescence microscopy images of DLD-1 cells treated with 5 and 

irradiated with light for different time periods. (Scale bar = 20 μm); b) Mean luminescence 

intensities of cell samples after light treatment. (Reproduced with permission from ref. 36. 

Copyright (2015) Royal Society of Chemistry) 

 



Chapter 1 - Introduction 

 

19 

This work demonstrated the promise that metal-complex-based, light-activated drug 

delivery shows for the improved transport of drugs. Their prodrug forms can be supplied in 

fairly high concentrations and their localisation monitored by luminescence, whilst they are 

physiologically inert in the dark and only selectively toxic to cells upon irradiation with light. 

RuII polypyridyl complexes can lack selectivity for cancerous cells, however, being 

taken up equally well by healthy cells, leading to unwanted phototoxicity to normal tissue. 

Therefore, substituting the complexes with targeting groups that are known to bind to 

receptors in cancerous cells can guide the probes to selectively accumulate in unhealthy 

tissues. One such [Ru(phen)2(N^N)]2+ probe was tethered to a tamoxifen molecule (6, figure 

1.10), which is known to competitively bind to oestrogen receptors in breast cancer cells[54]. 

This blocks the effect of oestrogen on these receptors and stops the encouragement of 

cancerous cell growth by initiating programmed cell death. The RuII metal centre was shown 

to be an efficient phosphorescent guide and producer of singlet oxygen (1O2) under two-

photon irradiation (λex = 830 nm), which makes the probe a candidate for use in PDT. Reactive 

oxygen species (ROS) such as 1O2 are highly cytotoxic; damaging intracellular biomolecules 

and ultimately instigating cell death. If carefully controlled, this generation of ROS can be used 

to treat a small abnormal area of tissue without the need for surgery. 

Compared to a control molecule not adorned with a tamoxifen unit, compound 6 

demonstrated enhanced cellular uptake and two-photon photodynamic therapy (2P-PDT) 

abilities in MCF-7 breast cancer cells, whereas little uptake and phototoxicity was 

demonstrated in non-cancerous cell lines (HL-7702 and COS-7) (figure 1.12). The tamoxifen 

moiety was confirmed as the key mediator for uptake of the complex into the breast cancer 

cells, as a competition experiment with an oestrogen receptor inhibitor led to suppressed 

uptake of the probe. Cell viabilities of ca. 90 % were measured with increasing concentrations 

of compound 6 in the dark, however, a reduction in the viability of MCF-7 cells by 99 % was 

achieved with a probe concentration of only 16 μM when the cells were irradiated. This 

demonstrated that like other 2P-PDT agents, cytotoxicity could be selectively ‘switched-on’ 

through irradiation with light, but that also selective uptake into unhealthy breast cancer cells 

could be orchestrated by tethering the RuII probe to an oestrogen-receptor targeting 

molecule (tamoxifen). This leads the way to a new design of 2P-PDT agents, whereby healthy 

tissue will remain unaffected by treatment. 
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1.3.3) Other D-Block Metal Cellular Imaging Agents 

Progress in developing luminescent ReI complexes as cellular imaging agents has 

occurred steadily since Coogan and co-workers first reported their potential in 2007[55]. The 

archetypal structure for such complexes is that of fac-[Re(CO)3(N^N)X]n+ (figure 1.13), where 

N^N is a polypyridyl ligand such as 2,2’-bipyridine or 1,10-phenanthroline, and X is a 

monodentate ancillary ligand such as a halide or substituted pyridine.  

In general, complexes of this nature exhibit intense 

and fairly long-lived luminescence ( > 200 ns), usually in 

the lower-energy region of the visible spectrum and 

typically from a 3MLCT {ReI→π*(N^N)} state[56]. Tuning of 

both absorption and emission energies is, therefore, made 

facile by the introduction of electron-withdrawing or 

electron-donating groups onto the polypyridyl ligand, 

leading to a blue- or red-shift in energy, respectively. 

Conversely, studies have shown that modification of the 

spectator ligand, X, only produces small changes to the photophysical behaviour of the 

complexes[57]. This presents the opportunity to tailor the uptake and localisation properties 

of the complexes[58] without compromising the desired luminescent properties of the probe. 

The inherent versatility that comes from the easy synthetic modification of the ancillary 

ligand, X, also allows ReI complexes to be designed with the intention of sensing particular 

entities that may indicate certain health problems. For example, the ability to sense certain 

Figure 1.12: Confocal luminescence microscopy images of MCF-7 cells treated with 6 for a) 0.5 h, 

b) 1 h, and c) 2.5 h; d) COS-7 cells incubated with 6 for 2.5 h; e) MDA-MB-231 cells incubated with 

6 for 2.5 h; f) HL-7702 cells incubated with 6 for 2.5 h. The nucleus was stained with Hoechst 

33342 (λex: 405 nm, λem: 430–470 nm) and 6 (λex: 488 nm, λem: 570–630 nm) (Scale bar = 30 μm). 

g) Fluorescence intensity of 6 in different cells after 2.5 h incubation.  

(Reproduced with permission from ref. 54. Copyright (2018) Royal Society of Chemistry) 

 

Figure 1.13: The core structure 
of ReI cellular imaging agents.  

(N^N = polypyridyl,  
X = halide or pyridyl) 
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sugars[59] (glucose in particular) can aid in the tracking of rapidly growing cancer cells due to 

their propensity to catabolize glucose at high rates.  

In addition to the useful properties bestowed on ReI complexes by the polypyridyl and 

ancillary ligands, the three carbon monoxide (CO) ligands give rise to potential anti-cancer 

properties[60]. CO-releasing molecules (CORMs) have shown excellent promise when used to 

deliver moderate doses of toxic CO gas to cancerous cells, as the ensuing disruption to 

mitochondrial function induces cell death. However, target selectivity and dosage control are 

hard to orchestrate in most cases. Luminescent ReI compounds that are photoactivatable are, 

therefore, incredibly useful as photo-CORMs, as the photoinduced release of CO ligands can 

be carefully controlled by irradiation, and the localisation of the probe and degree of CO 

delivery can be monitored by luminescence microscopy.  

A 2-(2-pyridyl)benzothiazole (pbt) ReI complex (7a, figure 1.14) entrapped in the pores 

of mesoporous silica nanoparticles (MSNs) displayed luminescence ‘turn-off’ upon irradiation 

with low-power UV light, due to the resulting ReI complex being non-luminescent upon 

photoinduced release of one of the CO ligands[61]. This property was used to monitor the CO-

induced cell death in MDA-MB-231 (human breast cancer) cells incubated with the ReI-loaded 

MSNs, as the orange intracellular luminescence was diminished upon the photoinduced 

release of a CO ligand. Replacing the ancillary ligand with a water molecule (7b, figure 1.14) 

produced a ReI photo-CORM that not only displayed orange emission (λem = 605 nm) ‘turn-

off’, but also exhibited blue luminescence ‘turn-on’ (a 200 nm blue-shift) upon complete loss 

of all three CO ligands (figure 1.15)[62]. Again, tracking of the CO-induced cell death in MDA-

MB-231 cells incubated with the ReI complex was achieved by monitoring the progressive loss 

of orange luminescence, but this time the concomitant gain of blue luminescence from the 

free pbt ligand was used to signal the end point in CO delivery.  

 

 

 

 

 

 

Figure 1.14: Examples of photoactivatable CO-releasing (photo-CORM) ReI complexes 

7 

X = P(C6H5)3 (a) 

H2O (b) 
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In the case of IrIII-based probes, heteroleptic complexes of the type [Ir(C^N)2(N^N)]+ 

(figure 1.16) are the most widely investigated, where C^N is a monoanionic cyclometalating 

ligand such as 2-phenylpyridine (ppy) or 2,4-difluorophenylpyridine (dfppy) and N^N is a 

polypyridyl ligand such as 2,2’-bipyridine or 1,10-phenanthroline[63]. Density functional theory 

calculations have shown that the highest occupied molecular orbital (HOMO) in these 

complexes is composed of the IrIII d-orbitals and the π-orbitals of the phenyl rings, whereas 

the lowest unoccupied molecular orbital (LUMO) is 

localised on the heterocyclic rings of the cyclometalated 

ligands[64]. Although the polypyridyl ligand is not directly 

involved in the lowest excited state, it can affect the 

excited-state energy by adjusting the electron density at 

the metal centre[65]. As a result of this, emission from IrIII 

compounds is tuneable across the visible spectrum from 

blue to red, and emission lifetimes ranging from 

nanoseconds to milliseconds can be achieved.  

The bis-cyclometalated nature of the compounds also offers distinct advantages when 

considering the complexes as imaging agents. The overall formal charge of the complex is 

lower (+1 rather than +3 in [Ir(N^N)3]3+ complexes), which bestows good cellular uptake 

Figure 1.15: Time-resolved luminescence traces of 7b in acetonitrile upon 

exposure to low-power UV illumination at two minute intervals. (Reproduced with 

permission from ref. 62. Copyright (2016) American Chemical Society) 

Figure 1.16: The core structure 

of IrIII cellular imaging agents. 

(N^N = polypyridyl,  

C^N = cyclometalated ligand) 
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properties on the complex, as lower-charged compounds pass across cell membranes more 

readily than those with higher charges. The lipophilicity associated with the cyclometalated 

core also aids the transport of the complexes into the cell structure; however, it does seem 

to hinder control over specificity of localisation. Finally, the σ-donating character of the 

ligands raises the energy of the metal-centred orbitals. This improves their ability to 

participate in the excited-state of the complex, leading to high triplet-state conversion 

efficiencies and an increase in the radiative rate constant[66]. As such, IrIII-based complexes 

are often used to monitor the oxygen concentration in cells and in vivo, as molecular oxygen 

with a triplet ground state efficiently quenches the phosphorescence from the IrIII triplet-

excited-state via energy-transfer. This change in emission intensity and lifetime from the IrIII 

centre provides a means to quantify the oxygen concentration wherever the probe is 

localised.  

A deprivation of adequate oxygen supply, known as hypoxia, can affect gene 

expression and can greatly accelerate the progression of tumour growth. At the other 

extreme, an excess of molecular oxygen (hyperoxia) can cause increased levels of reactive 

oxygen and nitrogen species (RONs), which can affect the central nervous system. A 

quantitative detection method for the levels of oxygen in vivo is, therefore, an extremely 

important tool for the earlier detection of these diseases. Exploiting the luminescence 

properties of an IrIII complex provides a non-invasive method that can be used alongside 

imaging techniques such as PLIM. In general, most probes have been designed to detect 

hypoxic conditions[8,67]; however, one recently reported dual-phosphorescent IrIII-based 

probe from Lo and co-workers sequentially imaged both hypoxia and hyperoxia (8, figure 

1.17)[68].  

 

 

 

 

 

 

 

 

8 

Figure 1.17: A dual-phosphorescent IrIII probe for sequential imaging of 

hypoxic and hyperoxic conditions 
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The complex in question displayed naked-eye distinguishable green, orange and red 

emission in aqueous buffer solution under three different oxygen concentrations – hypoxic 

(N2 atmosphere), normoxic (air) and hyperoxic (O2 atmosphere), respectively (figure 1.18). 

This emission sensitivity to oxygen concentration was reproduced when the probe was 

incubated (5 μM, 2h) with three different cell types (HeLa, HepG2, and 3T3) under low (5 %) 

and high (50 %) oxygen environments, as the green luminescence was predominant under 

the hypoxic conditions, and red luminescence under the hyperoxic environment. This 

demonstration of spectral response to intracellular oxygen concentration from a single small 

molecule opens the door to more easily diagnosing abnormal molecular oxygen levels in vivo 

that are the underlying cause of many diseases.  

 

 

 

 

 

 

 

 

Unlike the d6 metals IrIII, RuII and ReI that adopt a distorted octahedral arrangement, 

PtII is a d8 metal ion and prefers to assume a 4-coordinate square planar configuration. The 

metal has found widespread use in the chemotherapeutic agents cisplatin, carboplatin and 

oxaliplatin (figure 1.19), which stop cancer cells from multiplying by forming covalent Pt-DNA 

crosslinks. However, the evolution of resistant cell lines and the lack of control over specific 

localisation leading to non-cancerous cell death are issues needing to be addressed with these 

chemotherapeutic agents. For this reason new PtII-based complexes are currently being 

investigated for use in PDT, as the toxicity can be controlled by light-activation, significantly 

reducing damage to healthy tissues[69,70].  

 

 

 

 

 

Figure 1.18: Luminescence spectrum of 8 in PBS/MeOH (9:1, v:v) under N2 (blue), air 

(green), and O2 (red) atmospheres and photographs of 8 upon excitation by a UV lamp. 

(Reproduced with permission from ref. 68. Copyright (2018) American Chemical Society) 
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One such example was based on a methyl-substituted, cyclometalating N^C^N ligand 

(9, figure 1.20)[71]. The complex demonstrated excellent light toxicity in several cancerous cell 

lines (HeLa, SW480 and EJ) as well as in the cisplatin-resistant bladder cancer cell line, EJ-R, at 

low concentrations (0.1–1 μM) and low doses of visible light (λex = 405 nm, 3.6 J cm−2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20: An example of a cyclometalated 
PtII-based PDT agent  

 

9 

Figure 1.19: Structures of PtII-based chemotherapeutic drugs.  

D) cisplatin, E) carboplatin and F) oxaliplatin 

D
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1.4) Dual-Modality Imaging 

Collectively, the arsenal of imaging techniques available covers the complete 

spectrum of diagnostic eventualities: from imaging tumours in larger three-dimensional 

systems (MRI, PET, X-ray), down to tracing microscopic abnormalities inside a cell (optical). 

However, it remains the case that no individual technique reigns supreme with regards to 

suitability for all applications. Each method suffers from an inherent limitation, such as  poor 

resolution or lack of sensitivity, restricting its ability to interrogate all aspects of structure and 

function[72].  

This issue is not a trivial one to resolve, however, as the simple combination of two 

separate probes is not a practical option. Co-localisation in an area of interest is unlikely as 

identical bio-distribution is difficult to engineer. The design of dual- or multi-modal probes, in 

which two or more independent reporters are integrated into one unit, is therefore an area 

of immense interest. Identical pharmacokinetics are guaranteed as the probes are tethered 

together through chemical bonds, and the visualisation of biological matter can be enhanced 

enormously by simultaneously exploiting the advantages of each detection mode. By 

combining the synergistic signals arising from both imaging modalities, images can be 

developed to reveal exquisite detail.    

A combined positron emission tomography–computed tomography (PET-CT) 

scanner[73] has already established the evolution of medical diagnosis, with hybrid PET-MRI 

scanners[74] following suit just this decade. Data from both devices can be taken sequentially 

and superimposed to form a single image. The amalgamation of data from the two separate 

sources allows both accurate diagnosis of health issues such as cancer, but also the facile 

monitoring of the success of treatment. A drawback to such systems, however, is that they 

still require the use of both ionising radiation and unpleasant radiochemicals. For this reason, 

research into multi-modal probes finds itself favouring optical microscopy/MRI hybrids, as 

both techniques are relatively mild towards biological matter in comparison. Interest has 

grown to such an extent recently that this combination now finds itself in the pre-clinical 

phase[75]. 
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1.4.1) Dual Optical/MR Imaging Agents 

Optical imaging has excellent sensitivity and resolution compared to MRI, but the 

depth of tissue penetration it can achieve is only in the millimetre range. In contrast, MRI can 

image optically opaque systems. The practicality of utilising luminescence is, therefore, 

limited to cellular and subcellular level imaging; quite complementary to the capability of MRI 

to image whole bodies/organs. It therefore stands to reason that when a luminescent dye and 

an MRI-active unit are combined into a single, dual-modal entity, a superior probe will be 

produced; not only capable of imaging the ‘bigger picture’, but also capable of delving into 

the intricate detail within a cell. 

There are many interesting approaches described in the literature of ways in which 

these two modes of imaging have been integrated into a single probe. The simplest method 

is the attachment of small organic fluorophores to the pendant arms of the already 

established MRI contrast agents (figure 1.02)[76–78]. Although this practice appears to be 

effective, with the design of biologically relevant porphyrin-GdIII amalgams being reported[79], 

in the majority of cases the issue of interfering background autofluorescence still remains a 

fundamental flaw that needs to be addressed. Larger organic systems such as quantum 

dots[80,81] and nanoparticles[82] functionalised with GdIII-chelates have also been described. 

Luminescent LnIII ions – mostly EuIII and TbIII (both of whom emit in the visible region 

of the electromagnetic spectrum) – have also been extensively exploited in the design of dual-

modal probes. A distinct chelating structure is usually loaded with either a magnetic GdIII ion 

or a photoluminescent LnIII ion and then mixtures of the two probes administered[83]. Parallel 

bio-distributions are hypothesised in this case due to the isostructural nature of the probes 

and the chemical similarity of the LnIII ions. A distinct challenge with this method, however, is 

the opposing requirements that each LnIII ion has with regards to coordinating water 

molecules. To obtain an efficient contrast agent for MR imaging purposes, coordination of a 

water molecule to the GdIII ion is essential. For the purposes of optical imaging, however, 

coordination of a water molecule is deleterious to the luminescence of the LnIII ion. Hence a 

‘Catch-22’ situation is created that is particularly difficult to resolve. However, recent 

advances using TbIII[84,85] or DyIII[86] as both the magnetic unit and the photoluminescent unit 

has proven successful, as well as linking multiple [Gd(DOTA)]- (commercial Dotarem®) 

chelates to the surface of NaGdF4:YbIII,TmIII upconverting nanoparticles[87]. 
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This thesis will focus upon the strategy of combining a photoluminescent transition-

metal moiety with a magnetic GdIII unit. GdIII has already been shown to act as an efficient 

contrast agent for MRI (section 1.2.1) due to its seven unpaired electrons and high 

paramagnetic relaxivity[15,88], and so the vast majority of literature in this area involves this 

particular LnIII ion. However, there has been a recent report of integrating MnO2 nanosheets 

with [Ru(bipy)3][PF6]2 to produce an optical/MRI dual-modal probe that takes advantage of 

the paramagnetic properties of the MnII ion[89].  

The incorporation of a luminescent transition-metal ion into the design helps to 

overcome many of the issues encountered with the previous attempts at producing dual-

modal probes, due to the many advantageous properties that metal complexes possess when 

applied to biological imaging (section 1.3.1). Numerous d-block metals have been utilised[90–

93], however, this thesis will place particular emphasis on d-f hybrids utilising the luminescent 

properties of a RuII metal centre, and will briefly survey potential dual-modal optical/MRI 

complexes based on ReI, IrIII and PtII as well.  

 

1.4.1.1) Ruthenium(II)-Gadolinium(III) Heteropolymetallic Complexes 

Integrating RuII metal centres into the design of dual-modal optical/MRI probes is a 

judicious choice, as these complexes exhibit excellent light-harvesting abilities as well as the 

propensity to emit luminescence towards the red (and more biologically penetrative) end of 

the visible spectrum. The first such reported example utilised two terpyridine-based ligands 

adorned with diethylenetriamine-N,N,N”,N”-tetraacetate (DTTA) polycarboxylates at the 4’-

positions to bind two MRI-active GdIII  ions (10, figure 1.21)[94]. The relaxivity value measured 

for this dual-modal RuGd2 probe was r1 = 7.8 mM-1 s-1 per GdIII ion (20 MHz, 37 °C), which is 

higher than the commercial MRI agents under the same experimental conditions (r1 = 3.8-4.0 

mM-1 s-1 per GdIII ion).  

This increase in proton relaxivity was attributed to a number of factors. Firstly, the 

water co-ligand exchange rate (measured for the FeII analogue) was faster than that of the 

commercial agent Magnevist® ([Gd(DTPA)]2-) (kex = (5.1 ± 0.3) x 106 s-1 and kex = (3.3 ± 0.2) x 

106 s-1, respectively) due to the presence of two water molecules bound to each of the GdIII 

centres (one more than the commercial agent). Secondly, the larger size of the complex and 
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the rigidity of the terpyridine ligands contributed to slowing the rotational correlation time of 

the probe in solution (τR = 410 ± 10 ps).  

Unfortunately, enhancing the rigidity of the complex by directly linking the GdIII 

binding site to the terpyridine ligand had a negative effect on the stability of the complex. The 

basicity of the electron lone-pair on the central nitrogen atom on the DTTA ligand was 

reduced by the electron-withdrawing nature of the aromatic ligand, making GdIII dissociation 

in vivo more likely in comparison to the commercial MRI agents. Utilisation of the terpyridine 

ligands also had a negative effect on the luminescent properties of the dual-modal probe, as 

the RuII centre was not emissive at room temperature in water (as has been found with the 

parent compound, [Ru(terpy)2]2+)[95]. This is due to thermal quenching of the lowest energy 

3MLCT excited-state by non-radiative decay of the low-lying triplet metal-centred (3MC) state.  

 

 

 

 

 

 

 

 

A second reported RuII-GdIII heteropolymetallic complex from the Parac-Vogt group 

also utilised an acyclic motif for binding the MRI-active GdIII ion, however, in this example the 

[Gd(DTPA)] chelate was straddled by two luminescent [Ru(bipy)2(ph-phen)]2+ units (11, figure 

1.22)[96]. In this case, the relaxivity value measured in water was r1 = 7.0 mM-1 s-1 (20 MHz, 37 

°C), increasing to r1 = 14.3 mM-1 s-1 (20 MHz, 37 °C) when measured in a 4 % solution of human 

serum albumin (HSA). This confirmed that the probe was making non-covalent interactions to 

the protein, as the mobility of the MRI agent was reduced, which led to the longitudinal 

relaxation rate doubling in value.  

 

 

 

 

Figure 1.21: An example of a combined RuII-GdIII
2 dual-modal optical/MR imaging agent 

10 
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Although the relaxivity value measured in water was an improvement on the parent 

[Gd(DTPA)]2- MRI agent, it was hampered by the slow water exchange rate brought about by 

a long residence time of the bound water molecule in the first coordination sphere (τM = 808 

± 34 ns). The stability of the complex to GdIII dissociation was also not considered for the 

purposes of in vivo imaging. The luminescence behaviour of the [Ru2Gd]4+ dual-modal probe 

was an improvement on the terpyridine-based RuGd2 complex (10), however. Upon excitation 

into the 1MLCT absorption band at λex = 440 nm, the complex displayed bright red emission 

in water (λem = 550-850 nm, centred at λem = 620 nm, ϕ = 4.7 %), which was long-lived (τ = 540 

ns). 

As the acyclic GdIII chelates have been found to have reduced stability with regards to 

GdIII dissociation in vivo, a number of recently published RuII-GdIII potential dual-modal probes 

have chosen to use the more stable macrocyclic [Gd(DOTA)] motif for binding the MRI-active 

metal centre (figure 1.23).  

 

 

 

 

 

 

 

 

 

 

 

N^N = 2,2’-bipyridine (a) 
            1,10-phenanthroline (b) 

12 13 

Figure 1.23: Examples of combined RuII-GdIII dual-modal optical/MR imaging agents with 

macrocyclic GdIII binding sites 

Figure 1.22: An example of a combined RuII
2-GdIII dual-modal optical/MR imaging agent 

11 
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The first example was a simple bimetallic [RuGd]2+ complex based on a central 

[Ru(bipy)2(phen)]2+ core (12, figure 1.23)[97], which had a measured relaxivity value in water 

of r1 = 4.7 mM-1 s-1 (20 MHz). This value is marginally improved upon compared to that of the 

commercial agent [Gd(DOTA)]-, due to the [RuGd]2+ probe’s higher molecular weight reducing 

its rotational correlation time, however, there is no indication of the experimental 

temperature which makes it difficult to accurately compare the values. To evaluate the 

probe’s MRI capabilities in vivo it was administered to a Kunming mouse (0.2 mL, 2 mM). 

Bladder contrast enhancement was detected five minutes after injection, continued for up to 

six hours, and then returned to zero after 22 hours. This is likely due to the excretion of the 

probe; however, no experimental procedures were carried out to quantify this. 

When tested as a luminescent marker the probe also showed promising activity. In 

PBS buffer at pH 7.4 the 1MLCT absorption maximum was found to be λabs = 450 nm. Upon 

excitation in to this band, a typical luminescence profile was recorded for the 

[Ru(bipy)2(phen)]2+ core with an emission maximum centred at λem = 605 nm and a lifetime of 

τ = 688 ns. Incubation of the probe (10 μM, 15 minutes, 37 °C) in human liver carcinoma cells 

(HepG2) led to clear intracellular luminescence detectable in the nuclear region and the 

cytoplasm, with minimal cytotoxicity being observed (cell viabilities were > 90 % even with 

probe concentrations of up to 100 μM). Incubation of the probe in the small crustacean, 

Daphnia magna, confirmed its successful application to in vivo imaging. 

Further trimetallic [RuGd2]2+ complexes in which the luminescent centre was either 

[Ru(bipy)2]2+ or  [Ru(phen)2]2+ (13a-b, figure 1.23)[98,99] were also reported for their potential 

as dual-modal optical/MR imaging agents. Introduction of the GdIII chelates was achieved by 

coordination of pendant pyridine rings (on substituted DOTA ligands) to the two vacant 

binding sites on the RuII metal centre.   

The relaxivity values measured for the complexes were modest (r1 = 5.8 mM-1 s-1 and 

r1 = 6.2 mM-1 s-1 per GdIII ion, respectively) (20 MHz, 37 °C, pH 7.4, PBS), but both were an 

improvement upon the value for the parent [Gd(DOTA)]- complex (r1 = 3.4 mM-1 s-1) under the 

same experimental conditions. When measured in the presence of a 4.5 % HSA solution, both 

of the complexes displayed enhanced relaxivity values (r1 = 14.3 mM-1 s-1 and r1 = 15.4 mM-1 

s-1 per GdIII ion, respectively) due to the non-covalent interactions between the probe and the 

protein, which slow down the molecular tumbling in solution.  
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The probes demonstrated typical luminescent properties for the [Ru(bipy)2]2+ and 

[Ru(phen)2]2+ central units, with 1MLCT absorption maxima at λabs = 480 nm, and emission 

maxima in the region of λem = 590-595 nm when measured in 0.1 M Tris-HCl buffer at pH 7.4 

and room temperature. When incubated with HeLa cells (50 μM, 24 h, 37 °C), both [RuGd2]2+ 

imaging agents showed high cytotoxic properties (cell viabilities between 46.0-19.5 %) at 

relatively low concentrations of the probes due to the promotion of apoptosis (programmed 

cell death). This suggests that rather than being potential dual-modal imaging agents, the 

probes may be useful as therapeutic anti-cancer agents.  

 

1.4.1.2) Other D-Block Metal-Gadolinium(III) Heteropolymetallic Complexes 

ReI metal centres are good candidates to be the luminescent component of a dual-

modal optical/MRI probe, as the metal tolerates a comprehensive range of synthetic 

possibilities. In theory, the formation of bio-conjugates and more complicated architectures 

is facile due to the ease in which the labile chloride ligand on the central ReI atom can be 

substituted. Its chemistry is also analogous to that of 99mTcI, the most commonly used 

radioisotope in medicine. As such, dual-modal imaging probes integrating ReI centres can also 

be thought of as prospective dual-modal MRI/SPECT probes as well[100]. As a result of these 

attractive qualities, one of the first examples of a d-f dual probe was a ReI-GdIII complex[101].  

A [Re(bipy)(CO)3]+ core was attached to a [Gd(DOTA)] chelate through a pyridine 

spacer unit (14, figure 1.24). When excited in the near-UV (λex = 337 nm), the lifetime of the 

ReI 3MLCT emission (λem = 600 nm, water) was improved upon greatly compared to the parent 

complex [Re(bipy)(CO)3Cl] (τ = 240 ns and τ < 10 ns, respectively)[102] because of the 

substitution of the chloride ligand with an N-bound pyridyl group. This longer luminescence 

lifetime would allow for the efficient gating of any background autofluorescence if the probe 

were to be used as a luminescent dye.  

The relaxivity value measured in water was large at high frequency values (r1 = 8.6 

mM-1 s-1, 500 MHz), which was attributed to a dihydrate coordination state and most likely a 

high water exchange rate as a result of this. When measured in PBS, the relaxivity value 

decreased (r1 = 3.9 mM-1 s-1, 500 MHz), however, as a consequence of phosphate anions 

competitively binding to the GdIII ion and reducing the number of water molecules bound to 

the paramagnetic centre. This may be an issue for use of the probe in vivo as many biological 

entities may cause this detrimental effect to occur. 
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Later examples from the same group[103] addressed this issue and highlighted the 

importance that judicious design of the spacer ligand between the two metal centres has on 

the dual-modal imaging abilities of a probe. Simple [Gd(DOTA)] complexes were synthesised 

in which the ReI and GdIII binding sites were bridged by differing ligands containing triazole 

units (15-16, figure 1.24). In complex 15 the triazole unit bridges both of the metal centres. 

This direct coordination of the ReI centre to the triazole unit reduced the donor ability of the 

other nitrogen atoms in the ring, and as such an equilibrium existed in which the triazole unit 

was either coordinated or uncoordinated to the GdIII ion, leaving a vacant site available for a 

second water molecule to bind. In complex 16, however, the ReI centre was separated from 

the triazole unit by an alkyl spacer and so an octadentate GdIII chelate was favoured, leaving 

only one vacant binding site available for a water molecule.  

Upon photoexcitation (λex = 337 nm), both complexes displayed similar ReI 3MLCT-

based emission profiles in water (λem = 600 nm, τ ≈ 110 ns), however, the different 

coordination environment at the ReI centres affected the relaxometric properties of the two 

probes. Complex 15 showed an increased relaxivity value (r1 = 5.3 ± 0.5 mM-1 s-1) compared 

to complex 16 (r1 = 4.2 ± 0.4 mM-1 s-1) when measured in water under the same experimental 

conditions (7 T, 37 °C, pH 7.4); most likely due to an increased hydration number (q = 2) in 

complex 15. However, when measured in PBS, the extra vacant coordination site in complex 

Figure 1.24: Examples of combined ReI-GdIII dual-modal optical/MR imaging agents  

14 

15 16 
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15 left the probe susceptible to competitive phosphate anion binding and the relaxivity value 

decreased greatly (r1 = 3.2 ± 0.3 mM-1 s-1). The relaxivity value for complex 16 was found to 

be phosphate-independent (r1 = 4.1 ± 0.4 mM-1 s-1) as the coordinated triazole unit shielded 

the GdIII centre from the anion.  

This work demonstrated that dual-modal imaging systems should ideally comprise two 

well-separated imaging components within a single assembly. Increasing the hydration state 

around the paramagnetic centre was also shown to be a double-edged sword, as although 

the relaxivity value of the probe was initially improved, it left the probe vulnerable to 

competitive binding of unwanted anions, which had a detrimental effect on the relaxivity 

value achieved.  

The combined imaging proficiencies of IrIII and GdIII components have largely been 

unexplored thus far despite IrIII complexes being well documented as effective luminescent 

probes (section 1.3.3). An initial bimetallic [IrGd]+ example (17, figure 1.25) showed 

impressive dual abilities when applied to both MR imaging of murine livers and 

photoluminescent staining of KB (human nasopharyngeal epidermal carcinoma) and L02 

(human normal hepatocyte) cell lines, however[104].  

 

 

 

 

 

 

 

The relaxivity value in saline solution was measured as r1 = 3.4 mM-1 s-1 (128 MHz, 25 

°C), which is quite a low value, but one difficult to compare to current mononuclear contrast 

agents without measuring them under the same experimental conditions. The low relaxivity 

value did not hamper the MRI abilities of compound 17 in vivo, however, as successful 

assessment was carried out in mice. The probe was administered (100 μL, 0.05 mM per kg of 

body weight) and the T1 contrast enhancement monitored at 30, 55 and 85 minutes. After 30 

minutes brighter contrast was observed due to accumulation of the probe in the liver (figure 

Figure 1.25: An example of a combined IrIII-GdIII dual-modal optical/MR imaging agent 

17 
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1.26B), which then slowly decreased until it had returned after 85 minutes to the levels of 

pre-contrast agent administration (figure 1.26D). Comparing analyses of tissue samples taken 

from both an injected mouse and a control mouse (injected with PBS buffer only), no tissue 

damage, inflammation or lesions were found, instilling confidence in the low toxicity of the 

probe. Bio-distribution studies did show, however, that the concentration of free GdIII ions 

was often quite high in certain organs, questioning the stability of the [Gd(DOTA)] unit in this 

case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under photoexcitation at λex = 405 nm in water, compound 17 displayed typical IrIII-

based luminescence centred at λem = 560 nm, with a quantum yield of 1.4 %. When incubated 

with both KB and L02 cell lines (20 μM, 30 minutes, 37 °C, PBS), the probe was found to 

localise in the mitochondria (confirmed with co-localisation experiments with MitoTracker® 

complexes Janus Green B and Red CM-H2XRos) (figure 1.27), which was attributed to the 

positive charge on the complex. Cytotoxicity MTT experiments revealed that L02 cells showed 

low viability (< 75 %) compared to the KB cancer cells (> 90 %) when incubated with compound 

17 at high concentrations (> 50 μM, 24h, 37 °C).  

Figure 1.26: Progressive MR images of the liver from a male mouse administered with 17 (100 

μL, 0.05 mM per kg of body weight): A) pre-injection, B) 30 min, C) 55 min, and D) 85 min after 

intravenous injection. (Reproduced with permission from ref. 104. Copyright (2012) Elsevier) 
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Overall the probe showed excellent promise when applied to both aspects of 

biological imaging sequentially, however, the relaxivity value reported was regrettably rather 

low. This could be a product of the saturated skeleton permitting free rotation of the Gd III 

chelate independently of the IrIII moiety, hence hindering the desired slow molecular tumbling 

in solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.27: Confocal images of KB cells (a1–a3) and L02 cells (b1–b3) co-incubated with 

17 (20 μM) and MitoTracker® probes in PBS for 30 min at 37 °C. a1, b1 and c1 show 17-

labelled mitochondria (λex = 405 nm), a3 and b3 show Janus green B labelled 

mitochondria (λex = 488 nm), c3 shows MitoTracker® Red CM-H2XRos labelled 

mitochondria (λex = 543 nm). The overlapped merged images are shown in a2, b2 and c2. 

(Reproduced with permission from ref. 104. Copyright (2012) Elsevier) 

KB Cells 

L02 Cells 

Compound 17 MitoTracker® Merged 17 /MT® 
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Attaching a luminescent PtII centre to an MRI-active GdIII centre is an attractive 

undertaking, as not only would the probe have dual-modal imaging capabilities, but the PtII 

unit may also have therapeutic properties such as those of the common anti-cancer drug, 

cisplatin[105]. Production of such a probe, capable of both diagnostic and therapeutic 

capabilities, would transform the real-time monitoring of cancer treatment[106]. However, 

imparting water-solubility to such PtII-GdIII hybrids has proven difficult, and as a consequence, 

only one example has so far been reported, by the Pope group (18, figure 1.28)[107]. 

The probe in question consisted of a [Gd(DOTA)] chelating structure tethered to a 

cyclometalated PtII complex via a pendant pyridine donor. The relaxivity value measured in 

water was r1 = 7.1 mM-1 s-1 (30 MHz, 37 °C, pH 6.7), which was consistent with a hydration 

state of q = 1. Upon photoexcitation in to the 1MLCT absorption band (λex = 425 nm) in 

aqueous solution, visible luminescence was observed (λem = 617 nm) with a lifetime of τ = 59 

ns, although this value was quenched in comparison to the cyclometalated PtII unit on its own 

(τ = 116 ns). The emission occurred in the red (more biologically penetrative) end of the 

electromagnetic spectrum, which helps to avoid luminescence from endogenous 

biomolecules during imaging; however, the lifetime of the luminescence would be rather 

short for use in time-gated imaging. Luminescent imaging studies with MCF-7 cells revealed 

that the complex was not well taken up, but this may have been as a consequence of the 

probe’s neutral charge or its amphiphilic nature.  

 

 

 

 

 

 

 

 

1.4.1.3) ‘Metallostar’ Heteropolymetallic Complexes 

Dual-modal optical/MRI probes described thus far have typically been bi- or tri-

metallic in nature – comprising one luminescent d-block metal centre and one or two MRI-

active GdIII centre(s) – and have tended to have respectable relaxivity values consistent with 

Figure 1.28: An example of a combined PtII-GdIII dual-modal optical/MR imaging agent 

18 
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their low molecular weights. Increased relaxivity values have been realised, however, through 

the design of ‘metallostars’ – supramolecular heteropolymetallic structures that have both 

large molecular weights and low internal flexibilities. The design tends to consist of multiple 

GdIII chelates surrounding a d-block metal centre, which leads to a high density of 

paramagnetic ions (and numerous vacant coordination sites for binding of water molecules) 

confined to a small molecular volume.  

The first reported example of such an entity was generated by Desreux and co-

workers[108,109] in their search for an improved MRI contrast agent. When mixed with FeII ions, 

phenanthroline derivatives of [Gd(DOTA)] self-assembled into a tetranuclear [FeGd3]2+
 system 

(19, figure 1.29). A relaxivity measurement of 12.2 mM-1 s-1 per GdIII ion (20 MHz, 37 °C) was 

achieved, which was a threefold improvement from the GdIII chelate on its own.  

Livramento and co-workers[110–112] extended this work further by assembling three 

2,2’-bipyridyl ligands, each with the capacity to chelate two GdIII ions, around a central FeII 

ion. The large size and rigidity of the [FeGd6]4- entity (20, M = Fe, figure 1.29), combined with 

six MRI-active GdIII centres within one structure, resulted in a substantial relaxivity value of 

27.0 mM-1 s-1 (4.5 mM-1 s-1 per GdIII ion, 20 MHz, 25 ⁰C). In vivo MRI feasibility experiments 

conducted on mice showed that the signal enhancement was approximately four times higher 

with the ‘metallostar’ species than with the commercial contrast agent [Gd(DOTA)]-.  
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Figure 1.29: Examples of d-f polymetallic ‘metallostar’ assemblies 
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The potential for these systems to behave as dual-modal optical/MRI probes was not 

explored, however, until Bünzli and co-workers[113] introduced a photoactive [Ru(bipy)3]2+ 

core to produce an isostructural [RuGd6]4-
 complex (20, M = Ru, figure 1.29). Not only did this 

bestow improved kinetic and thermodynamic stability onto the ‘metallostar’ when in 

biological media compared to the FeII analogue, but the issues of autofluorescence and 

biodegradation were also circumvented. Photoexcitation of the [Ru(bipy)3]2+ core at λex = 450 

nm produced a broad emission band between λem = 550-850 nm at room temperature in 

doubly-distilled water, and the relaxivity value measured for the [RuGd6]4-
 complex was 

similar to that of the FeII analogue at approximately 5.5 mM-1 s-1 per GdIII ion (60 MHz, 25 °C).  

Although this large, heptametallic structure showed excellent potential for use as a 

dual-modal probe, since its publication there have been limited reports of similar d-f 

heterometallic complexes of this size. Other tetranuclear ‘metallostars’ using both RuII and 

GdIII ions have been reported, however, with the design of complexes able to specifically label 

particular biomolecules beginning to be explored[99, 114–116]. 

Parac-Vogt and co-workers[114] reported of a [RuGd3]- ‘metallostar’ consisting of a 

central RuII ion surrounded by three 1,10-phenanthroline ligands linked to DTPA-moieties via 

amide bonds (21a, figure 1.30). The rigidity of the ligands, and the introduction of three GdIII 

centres (each with a hydration state of q = 1), helped to produce a large relaxivity value of r1 

= 12.0 mM-1 s-1 per GdIII ion (20 MHz, 37 °C). When measured in a 4 % HSA solution no increase 

in this value was observed, however, indicating that the complex made no interactions with 

the protein. The complex also showed appropriate photophysical properties for use in optical 

microscopy: upon excitation into the RuII-based 1MLCT band at λex = 450 nm, red emission 

centred around λem = 610 nm was produced, with a good quantum yield of luminescence 

compared to other RuII-GdIII hybrids (ϕ = 4.8 %).  

A [RuGd3]5+ ‘metallostar’ based on the same [Ru(phen)3]2+ photoactive core was 

reported by the same group (21b, figure 1.30) as the first example of a tissue-selective dual-

modal contrast agent[115]. The probe had three RGD peptides linked to macrocyclic 

[Gd(DOTA)] chelates, which enabled it to detect αvβ3-integrin-expressing tissues. Upon 

binding of the RGD-peptide to the integrin, local immobilisation of the contrast agent 

occurred, which resulted in a slower tumbling rate in solution. This improved the agent’s 

relaxivity, and hence the contrast of the image, allowing for facile detection of the tissues 

expressing the particular integrin (which are often cancerous). 
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The relaxivity value measured for the probe in water was r1 = 9.7 mM-1 s-1 (20 MHz, 37 

°C), which was fairly low for a probe of this size (τR
 = 469 ± 11 ps), however. This was attributed 

to a slow water-exchange rate (τM
 = 850 ± 1 ns) as a result of the two amide bonds near the 

GdIII centres. The probe’s photoluminescent properties redeemed its use as an imaging agent, 

however, as a typical RuII-based emission profile was observed with a fair luminescence 

quantum yield (ϕ = 4.7 %). The emission was also long-lived (τ = 804 ± 6 ns) and was detectable 

in the NIR region as well as the visible, making the probe an ideal candidate for both 

luminescence and MRI detection of αvβ3-integrin-expressing tissues. 

Subsequent terpyridine-based [RuGd3] ‘metallostar’ species reported displayed vastly 

different levels of success when appraised for their dual-modal optical/MR imaging abilities 

(figure 1.31). In the case where the RuII ion was bound to 2,2’-bipyridine units linked to 

pyridine-bis(iminodiacetate) GdIII chelates[116] (22, figure 1.31), the photoluminescent 

properties of the probe were typical. Upon photoexcitation at λex = 472 nm in water at pH 7.4, 

red emission was observed (λem = 660 nm) with a luminescence quantum yield of ϕ = 2.6 %. 

However, when the d-block metal core was [Ru(terpy)]2+ (23, figure 1.31)[99], the probe was 

non-luminescent at room temperature in water, impairing its use as a probe for optical 

microscopy. When incubated with HeLa cells (50 μM, 24 h, 37 °C), compound 23 did show 

high cytotoxic properties (cell viabilities of 16.5 %) due to the promotion of programmed cell 

Figure 1.30: Examples of tetranuclear RuII-GdIII ‘metallostar’ assemblies 
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a) R = 
 n = 1- 

b) R = 
 n = 5+  
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death, which suggests that the probe may be more useful as a therapeutic anti-cancer agent 

rather than a dual-modal imaging agent. 

The relaxivity value measured for the [Ru(bipy)3]2+-based probe (22) also exceeded 

that of the [Ru(terpy)]2+-based probe (23) (r1
 = 17.0 mM-1 s-1 and 7.5 mM-1 s-1 per GdIII ion, 

respectively, 20 MHz, 37 °C). This was due to the superior design of the former probe over 

the latter. The rigid, highly conjugated design of compound 22 resulted in a particularly slow 

tumbling rate in solution (τR
 = 252 ps) as the whole molecule rotated as one large entity. The 

saturated linkers in compound 23, however, allowed the different metal centres to rotate 

independently of one another, leading to a reduced tumbling rate. Utilisation of the 

[Gd(DTPA)] acyclic chelate in compound 22 compared to the macrocyclic [Gd(DOTA)] chelate 

in compound 23 also had a marked effect on the values measured, due to the difference in 

hydration state of the two complexes. Compound 22 had two vacant coordination sites, and 

as such the residence lifetime of the GdIII-coordinated water molecules was very short (τM
 = 

77.5 ns). In comparison, the macrocyclic chelate allowed only one water molecule to bind to 

the GdIII centre (being octadentate), which will have resulted in a reduced residence lifetime 

and, therefore, a lower relaxivity value. No consideration for the in vivo stability of the two 

complexes was made, however, and so although the reduced chelate coordination in 

compound 22 increased the q value, it may also have facilitated unwanted leaching of the 

GdIII ion.  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.31: Examples of tetranuclear RuII-GdIII ‘metallostar’ assemblies 
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1.5) Summary 

Phosphorescent transition-metal complexes, particularly those based on the d6 metal 

ions RuII, ReI and IrIII, have shown extensive applicability to luminescent imaging as both 

individual probes for optical microscopy, and when coupled with MRI-active GdIII ions to 

afford potential dual-modal optical/MRI contrast agents. This is in part due to the excellent 

light-harvesting and emitting abilities of the metal centres, and in part due to their 

amenability towards effective cellular staining.  

The heavy metal atom facilitates ISC from the initially-generated singlet excited-state 

to a triplet excited-state manifold, and as such, long-lived phosphorescence is the main 

radiative decay mechanism for the majority of the reported probes. This enables imaging 

techniques such as PLIM to completely remove interference arising from autofluorescence of 

endogenous biomolecules, providing high resolution and sensitivity. The ease of synthetically 

modifying the metal complexes also opens up the possibility of controlling the 

phosphorescence energy, facilitating the tuning of emission to be anywhere in the UV-visible-

NIR region of the electromagnetic spectrum. This is particularly advantageous in cellular 

imaging, as the complexes can be designed to absorb and emit in the ‘biological optical 

window’ (λem = 650-950 nm), where competing absorption from most biomolecules in tissues 

is the lowest. Control of cellular localisation is also possible through judicious synthetic 

modification of the ligand architecture.  

A number of luminescent metal complexes are now being rationally designed to have 

additional therapeutic applications, such as photoactivatable ReI photo-CORMS that can be 

selectively photoinduced to deliver toxic CO gas to cancerous cells, and numerous PDT agents 

that bear no cytotoxicity until irradiated. In these cases, the luminescence from the metal 

centre has a dual function; allowing the visual monitoring of the localisation of the probe, as 

well as inducing cytotoxic effects. 

With regards to probes for dual-modal optical/MR imaging, in which two independent 

reporters are integrated into one unit, progress in developing these relatively novel contrast 

agents is steady. Incorporation of a luminescent metal centre into the probe is proving facile 

due to the wealth of new transition-metal complexes currently being reported. However, 

extracting the full potential from the MRI-active aspect of the probe is proving a challenge. 

Ideally, the paramagnetic GdIII ion needs to be securely ensconced within a 
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polyaminocarboxylate chelating structure, whilst leaving a high number of vacant 

coordination sites for the crucial binding of water molecules, without compromising the 

complex’s stability and facilitating the leaching of toxic GdIII ions in vivo. So far, however, an 

increase in vacant coordination sites to improve relaxivity has led to the competitive binding 

of unwanted anions such as phosphate, which has interrupted coordination of water 

molecules, and thereby reduced the relaxivity values achieved. In some cases an increased 

number of vacant sites around the GdIII centre has improved the mean residence time of the 

water molecule in the first coordination sphere, however, which is having a positive impact 

on the relaxivity values attainable.  

The main current stumbling block that still needs to be addressed with regards to dual-

modal optical/MR imaging, however, is the discrepancy between the working concentrations 

of the two independent probes. Luminescence gives a response over a subnanomolar to 

micromolar concentration range, but MRI contrast enhancement is likely to be poor at 

submicromolar concentrations. In theory, lower concentrations of an MRI contrast agent can 

be administered if relaxivity values of the order of r1 = 100-200 mM-1 s-1 are attained. Larger 

complexes with high molecular weights have been shown to boast higher relaxivity values in 

comparison to smaller complexes, as the larger size encourages slower rotation in solution. 

Attempts to address this issue have begun with the synthesis of supramolecular 

heteropolymetallic structures known as ‘metallostars’, as they have large molecular weights, 

low internal flexibilities and a high density of paramagnetic ions confined to a small molecular 

volume. The relaxivity values attained by these complexes are in the order of r1 = 30-50 mM-

1 s-1, and so they are ideal candidates for investigation and improvement as dual-modal 

optical/MRI contrast agents.  
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1.6) Research Objectives 

The main endeavour of this work is to design and synthesise new heterometallic 

complexes for exploitation as potential dual-modal optical/MRI contrast agents. In particular, 

the transition metal ruthenium(II) has been selected as the luminescent component of the 

probe due to its excellent record as a cellular imaging agent. The metal exhibits long-lived 

phosphorescence in the ‘biological optical window’, and has proven amenability for use in 

biological imaging, with low cytotoxicity being reported in the majority of cases. Synthetic 

modification of the archetypal [Ru(bipy)3]2+ complex is also facile and provides entry to a 

wealth of rationally designed structures. 

Incorporation of the commonly used MRI-active metal GdIII into the probe design to 

produce multimetallic RuII-GdIII hybrids will be investigated, as well as the relatively 

unexploited paramagnetic properties of MnII in RuII-MnII hybrids. Ideally, improving the rigidity 

and increasing the molecular weight of these multimetallic arrays will see an improvement in 

measured relaxivity values, which in turn will hopefully lower the current working 

concentrations of the MRI-active component and make dual-modal probes a more realistic 

target for clinical applications. To this end, a systematic increase in the number of MRI-active 

metal centres in the dual-modal probes will be investigated, starting with simple bimetallic 

structures and culminating in the design and synthesis of a [RuGd6]4- ‘metallostar’ entity.  

Incorporation of the NIR-luminescent LnIII ions, YbIII and NdIII, in place of the MRI-active 

metals GdIII and MnII, also provides a route to dual-modal optical/NIR imaging probes. Energy-

transfer from the photoactivated RuII centre can sensitise emission from the LnIII ion, 

producing a dual-luminescent probe that has distinguishable emission owing to the 

luminescent lifetimes of the two different metal centres being orders-of-magnitude apart.  
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2.1) Previous Work in the Ward Group 

Mixed d-f metal complexes, in which a luminescent d-block metal centre (namely IrIII) 

sensitises visible luminescence from a lanthanide ion (EuIII and TbIII) via d→f energy-transfer, 

have been an area of interest in the Ward group for a number of years[1,2]. The IrIII-GdIII 

analogues were initially synthesised as control compounds due to the absence of Ir→Gd 

energy-transfer; however, these complexes are of interest in their own right due to the 

potential they hold as dual-modal imaging agents. The photoluminescent IrIII centre can be 

exploited for luminescent imaging, whereas the magnetic GdIII centre is an MRI-active 

reporter (24, figure 2.01).  

The kinetic lability of the GdIII ion binding site within the previously published 

complexes makes them unsuitable candidates for dual-modal imaging agents, however; as 

free, solvated GdIII ions have been shown to be highly toxic within the human body[3]. Careful 

consideration of the GdIII chelate structure was necessary, therefore, to improve upon the 

design of the probes and to provide confidence in their integrity when used for in vitro 

imaging. 

 

 

 

 

 

 

 

The mixed d-f metal complexes were modified to incorporate the GdIII chelates DOTA 

and DTPA (25-26, figure 2.02), which are already approved for commercial use as MRI contrast 

agents (figure 1.02), as these polyaminocarboxylate binding sites provide high kinetic and 

thermodynamic stability in aqueous media[1,4]. Indeed, when one equivalent of a competing 

DOTA ligand was added to a 0.1 mM sample of compound 26 (EuIII analogue) in water, no 

significant changes to the sensitised EuIII-based emission profile were seen. If the competing 

ligand had stripped the EuIII ion from the chelate, a decrease in the EuIII-based emission 

intensity would have been recorded.  

Figure 2.01: An example of a previously synthesised IrIII-GdIII 

complex with a labile GdIII binding site 

24 
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A further characteristic of the original IrIII-GdIII probe design that is sub-optimal for 

their application as dual-modal optical/MR imaging agents, was the presence of saturated 

linkers in the carbon skeleton between the two metal complex centres (25, figure 2.02). These 

permit independent rotation of the two different metal centres, which could be deleterious 

to the probe’s success as an MRI contrast agent, as the rotational correlation time (R) of the 

GdIII centre would be shortened by the ability of that unit to rotate independently. Installing 

an element of rigidity into the ligand architecture with an acetylenic connector (26, figure 

2.02) helps to slow down the tumbling rate of the GdIII complex unit in solution, as the entire 

structure now rotates as one large entity. This gives longer rotational correlation times which, 

in turn, should improve the relaxivity values achievable by the dual-probe. Indeed, an 

unusually high relaxivity value of r1 = 11.9 mM-1 s-1 (20 MHz, 37 °C) was measured for the low 

molecular weight compound 26, which is comparable to that of a probe that contains more 

than one GdIII centre[5]. 

 

 

 

 

 

 

In further studies, the alkyne-bridged IrGd dinuclear structure (26) was extended to 

incorporate a second GdIII chelate[6] (27, figure 2.03). In principle, the relaxivity value 

measured for this trinuclear IrGd2 species should have improved upon the value measured 

for the dinuclear IrGd species, as its larger size means it tumbles even more slowly in solution. 

The increased number of GdIII centres in the trinuclear IrGd2 analogue should also have 

doubled the number of vacant coordination sites for water molecules to bind compared to 

the dinuclear IrGd structure. However, the addition of a further GdIII centre resulted in an 

unprecedented lower relaxivity value being measured for the trinuclear IrGd2 probe when 

both complexes were measured in a H2O/DMSO (95:5, v:v) mixture (r1 = 14.0 mM-1 s-1 and r1 

= 12.6 mM-1 s-1 (20 MHz, 37 °C) for IrGd and IrGd2, respectively). The unexpected lower r1 

26 25 

Figure 2.02: Examples of previously prepared dinuclear dual-modal IrIII-GdIII probes[1,4] 
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value measured for the trinuclear IrGd2 species was ascribed to the compound’s poor 

solubility in water, which may have induced aggregation in solution leading to the hydration 

state of the GdIII centres being affected.  

 

 

 

 

 

 

 

 

To expand upon this work, and to navigate around the issue of lack of water solubility 

for the trinuclear IrGd2 probe, ruthenium(II) bis(2,2’-bipyridine)-based analogues of the two 

irdium-based acetylene-bridged optical/MR imaging agents (26 and 27) have been 

synthesised. As ruthenium-based complexes have shown excellent promise as water-soluble, 

non-toxic optical microscopy agents (section 1.3.2), and as potential dual-modal optical/MRI 

probes (section 1.4.1.1), replacing the hydrophobic iridium centre with a ruthenium centre as 

the emissive unit was an obvious next step. In an attempt to extend the series of acetylene-

bridged dual-probes even further, the synthesis of a larger RuGd6 ‘metallostar’ species 

(section 1.4.1.3) has also been undertaken (Ru-Alkyne-Metallostar-Gd, figure 2.04).  

As a final endeavour, the linking unit’s contribution to the relaxivity values measured 

has been investigated by modification of the dinuclear probe design to include a triazole linker 

in place of the acetylene bridge (Ru-Triazole-Dyad-Gd, figure 2.04). The synthesis, 

characterisation and photophysical properties of these ruthenium-based scaffolds, without 

the MRI-active metal centre bound, will be presented in this chapter. 

 

 

 

 

 

 

27 

Figure 2.03: A trinuclear dual-modal IrIII-GdIII
2 species 

Ru-Triazole-Dyad-Gd Ru-Alkyne-Metallostar-Gd 

Figure 2.04: Structures of new optical/MRI dual-modal imaging agents synthesised  
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2.2) An Alkyne-Bridged Scaffold for a Dinuclear Dual-Modal Imaging Agent 

2.2.1) Synthesis and Characterisation 

Upon removal of the metal ion in the polyaminocarboxylate binding site, 

retrosynthetic analysis of the target dinuclear RuM (M = Gd, Mn, Zn, Yb, Nd) species yielded 

synthons A(dyad) and B (scheme 2.01). With the alkyne substituent in place at the 4-position 

of the pyridine-based chelate B, a complementary halogen on the 1,10-phenanthroline ligand 

on synthon A(dyad) was necessary to take advantage of the robust Sonogashira[7] coupling 

reaction to form the crucial carbon-carbon bond. The ruthenium metal centre was 

incorporated into the complex before attempting the coupling reaction to block the binding 

site of the 3-bromo-1,10-phenanthroline ligand[8,9]. This circumvented any issues arising from 

the CuI ions preferentially binding to the phenanthroline ligand instead of participating in the 

Sonagashira catalytic cycle, and allowed for a 'chemistry-on-complex' approach, which has 

been proven successful in similar synthetic endeavours[10]
.
 The syntheses of these two 

synthons will now be briefly detailed. Full experimental details can be found in chapter 6. 

 

 

 

 

 

The synthesis of synthon A(dyad) was achieved in two steps following literature 

preparations (scheme 2.02). At first, 1,10-phenanthroline monohydrochloride monohydrate 

was subjected to bromination, to yield a mixture of both 3-bromo-1,10-phenanthroline and 

3,8-dibromo-1,10-phenanthroline, which were separated by column chromatography[11]. 

Substitution at these positions is desired as the most intense electronic transitions occur 

along this long axis of the compound, providing high levels of electronic delocalisation without 

interfering with coordination to the RuII centre (it has been noted that substitution at the 2,9-

positions can render complexes photolabile[12]). Introduction of the ruthenium(II) bis(2,2’-

Scheme 2.01: Retrosynthetic analysis of the monosubstituted alkyne-bridged scaffold 

M = Gd, Mn, 
Zn, Yb, Nd 

         
A(dyad) B 
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bipyridine) centre was achieved through the straightforward mixing of 3-bromo-1,10-

phenanthroline with cis-bis(2,2’-bipyridine)-dichloro-ruthenium hydrate[13] in methanol. The 

mixture was heated at reflux for eight hours before the addition of saturated KPF6 solution 

induced precipitation of the product. The solid was dissolved in dichloromethane and washed 

with water to produce the pure compound (verified by 1H NMR spectroscopy) in near 

quantitative yield.  

 

 

 

 

 

 

 

 

The synthesis of synthon B was achieved in five steps following modified literature 

preparations (scheme 2.03), with positive electrospray mass spectrometry (ES+MS) and 1H 

NMR spectroscopy verifying the successful isolation of each synthetic target. At first, 

commercially available 4-hydroxy-2,6-dimethylpyridine was brominated at the 4-position 

using phosphorus pentabromide[14]. The resulting 4-bromo-2,6-dimethylpyridine was then 

converted to the bis(bromomethyl) compound using N-bromosuccinimide (NBS), catalytic 

benzoyl peroxide and UV irradiation to initiate the radical reaction[15]. Installation of the 

crucial tertiary-butyl protected pendant ‘arms’ of the metal chelate was achieved through a 

substitution reaction with di-(tert-butyl)-iminodiacetate[16], and then a straightforward 

Sonogashira reaction with trimethylsilylacetylene (TMSA) introduced the trimethylsilyl-

protected alkyne group at the 4-position of the pyridine ring. Deprotection of the 

trimethylsilyl group to reveal the free alkyne was carried out in THF using tetra-n-

butylammonium fluoride (TBAF), but as the deprotection was performed in situ before 

reacting synthon B on further, no characterisation data were recorded for this species. 

 

 

 

Scheme 2.02: Synthetic route to synthon A(dyad). i) PhNO2, Br2, 130-140 °C, 3h; 

ii) MeOH, Ru(bipy)2Cl2.2H2O, reflux, 8h 

A(dyad) 
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With the successful synthesis of synthons A(dyad) and B, a Sonogashira coupling 

reaction between the two entities was performed to produce the Ru-Alkyne-Dyad-Ester 

species (scheme 2.04). One equivalent of synthon A(dyad) was mixed with copper iodide and 

one ninth of an equivalent of the palladium catalyst [1,1′-

bis(diphenylphosphino)ferrocene]dichloropalladium(II) ((dppf)PdCl2) in an anhydrous 

mixture of DMF and diisopropylamine (5:1, v:v). In a separate flask, two equivalents of 

synthon B were dissolved in the same solvent system. Both flasks were deoxygenated with 

argon for thirty minutes, before the solution of synthon B was added dropwise with constant 

stirring to the other reagents. The reaction was left stirring under argon at room temperature 

for sixteen hours, before a crude mass spectrum confirmed the successful coupling of the two 

synthons. A molecular ion peak at m/z = 604.7 was observed for the [M – 2PF6]2+ ion of the 

Ru-Alkyne-Dyad-Ester species, and a peak at m/z = 337.0 for the [M – 2PF6]2+ ion of synthon 

A(dyad) was not present. Purification was achieved on silica gel (200-300 mesh) to afford Ru-

Alkyne-Dyad-Ester in a moderate yield (50 %).  

 

 

  

Scheme 2.03: Synthetic route to synthon B. i) CHCl3, PBr5, reflux, 3h; melt, 120 °C, 16h; 

ii) CHCl3, NBS, benzoyl peroxide (cat.), reflux, 48h, h; THF, diethyl phosphite, iPr2NEt, rt, 

5h, Ar; iii) MeCN, di-tert-butyl iminodiacetate, Na2CO3, rt, 24h; iv) iPr2NH, TMSA, 

Pd(PPh3)2Cl2, CuI, PPh3, 83 °C, 24h, Ar; v) THF, TBAF, rt, 16h 

 

B 
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Figure 2.05: 1H NMR spectrum (d6-acetone, 400 MHz) of Ru-Alkyne-Dyad-Ester at 298 K. 
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring) 
 

Hb 

Hpy 

Hb 

Hb Hp Hb Hb 
Hb 

Hb 
Hb 

Hp 

Hp Hp 

Hb / Hp 

 

 

 

 

 

 

 

The successful purification of Ru-Alkyne-Dyad-Ester was verified using 1H NMR 

spectroscopy (figure 2.05) and high-resolution mass spectrometry (HRMS) (appendix 2.01). 

The aromatic region of the 1H NMR spectrum (400 MHz, d6-acetone) integrates to the 

expected twenty-five protons, with the singlet at δ = 7.61 ppm corresponding to the H3/H5 

protons on the pyridine ring, and the remaining signals tallying to a combination of the three 

N^N ligands. In the aliphatic region there are singlet peaks at δ = 1.45 ppm, δ = 3.49 ppm and 

δ = 4.00 ppm integrating as 36, 8 and 4 protons, respectively, which represent the protons on 

the pendant ‘arms’ of the metal chelate. The residual solvent peak for acetone can be seen at 

δ = 2.05 ppm, and the two signals at δ = 2.78 ppm and δ = 2.82 ppm can be ascribed to HOD 

and H2O, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

A(dyad) B 

i 

Scheme 2.04: Synthetic route to Ru-Alkyne-Dyad-Ester. 

i) DMF: iPr2NH (5:1, v:v), (dppf)PdCl2, CuI, rt, 16h, Ar 

 

Ru-Alkyne-Dyad-Ester 
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The calculated m/z value for the [M – 2PF6]2+ ion in the high-resolution mass spectrum 

(604.7316) tallied well with the value observed (604.7318), with the isotope pattern matching 

that expected for the RuII ion.  

With convincing evidence for the successful synthesis of Ru-Alkyne-Dyad-Ester, the 

final step in the synthetic route towards the alkyne-bridged scaffold for a dinuclear dual-

modal probe was to remove the tertiary-butyl protecting groups on the pendant ‘arms’ of the 

pyridine-based chelate. This produced an environment in which the MRI-active metal ions 

could bind (scheme 2.05) and was achieved by stirring Ru-Alkyne-Dyad-Ester in 

dichloromethane with trifluoroacetic acid (TFA) for eighteen hours at room temperature. 

Repeated washings were used to remove the TFA, before the compound was dissolved in the 

minimum amount of methanol and precipitated with an excess of diethyl ether. The solid was 

then collected by centrifugation and dried under a stream of nitrogen to yield the compound 

in nearly quantitative yield. Again, 1H NMR spectroscopy (figure 2.06) and HRMS (appendix 

2.02) were used to verify the successful synthesis and purity of Ru-Alkyne-Dyad-Acid.  

 

 

 

 

 

 

 

The calculated m/z value for the [M – 2PF6]2+ ion in the high-resolution mass spectrum 

was 492.6055 and the observed value was 492.6056, with the isotope pattern matching that 

expected for the RuII ion. In the aliphatic region of the 1H NMR spectrum (500 MHz, d6-DMSO, 

303 K), there are two sharp singlets at δ = 3.46 ppm and δ = 3.94 ppm, which can be assigned 

to the protons on the pendant ‘arms’ of the pyridine-based chelate. The large peak at δ = 1.45 

ppm seen in the spectrum for Ru-Alkyne-Dyad-Ester is no longer present, which verifies the 

successful removal of the tertiary-butyl protecting groups, but a signal for the carboxylic acid 

protons is not visible due to hydrogen-deuterium exchange with the bulk solvent. The signal 

at δ = 2.50 ppm is the residual solvent peak for DMSO, and the broad signals for H2O and HOD 

are at δ = 3.33 ppm and δ = 3.30 ppm, respectively. In the aromatic region there are several 

Ru-Alkyne-Dyad-Acid 

i 

Ru-Alkyne-Dyad-Ester 

Scheme 2.05: Synthetic route to Ru-Alkyne-Dyad-Acid. i) CH2Cl2, TFA, rt, 18h 
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integrals that tally to the twenty-five protons expected, with the singlet at δ = 7.56 ppm 

corresponding to the two equivalent H3/H5 protons on the pendant pyridine ring. A two-

dimensional 1H-1H NMR correlation spectrum (500 MHz, d6-DMSO, 303 K) (appendix 2.03) 

was used in conjunction with the one-dimensional 1H NMR spectrum to assign the protons on 

the 1,10-phenanthroline ligand and the 2,2’-bipyridine ligands, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for both Ru-Alkyne-

Dyad-Ester and Ru-Alkyne-Dyad-Acid, and extinction coefficients were measured in 

acetonitrile for Ru-Alkyne-Dyad-Ester and in water for Ru-Alkyne-Dyad-Acid. Emission 

profiles and lifetimes of emission were recorded for both compounds (including as a frozen 

glass at 77 K), and the quantum yield of emission was measured for Ru-Alkyne-Dyad-Acid 

against [Ru(bipy)3]Cl2.6H2O in aerated water. Finally, excitation spectra were measured in 

each solvent.  

 

Figure 2.06: 1H NMR spectrum (d6-DMSO, 500 MHz) of Ru-Alkyne-Dyad-Acid at 303 K. 

(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring) 

Hp 
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2.2.2.1) UV/Vis Absorption 

UV/Vis absorption profiles for Ru-Alkyne-Dyad-Ester and Ru-Alkyne-Dyad-Acid were 

recorded in EtOH/MeOH (4:1, v:v) (figure 2.07a) and acetonitrile (figure 2.07b) at 298 K. No 

discernible differences between the two compounds can be seen in either of the solvents, 

demonstrating that the tertiary-butyl protecting groups on the metal chelate have a negligible 

effect on the ground state absorption properties.  

When comparing the spectra for Ru-Alkyne-Dyad-Ester and Ru-Alkyne-Dyad-Acid to 

that of the parent [Ru(bipy)2(phenBr)]2+ compound, and to a previously published compound 

with extended conjugation along the phenanthroline ligand[10], ([{Ru(bipy)2(phen)}2CΞC]4+) 

(table 2.01), it can be seen that the spectra have similar features. Both Ru-Alkyne-Dyad-Ester 

and Ru-Alkyne-Dyad-Acid show an intense absorption band in the UV region (λabs < 300 nm) 

similar to [Ru(bipy)2(phenBr)]2+, which can be assigned as the π→π* transition centred on the 

bipyridine ligands. The weaker band centred around λabs = 325 nm, therefore, must be the 

π→π* transition centred on the phenanthroline backbone. Comparing these absorption 

values to those of [{Ru(bipy)2(phen)}2CΞC]4+ shows similar red-shifting of the π→π* transition 

on the extended phenanthroline ligand in comparison to the π→π* transition on the 

bipyridine ligands. Finally, it can be seen that both complexes have a broad absorption 

spanning the range λabs = 375-550 nm, with the maximum centred around λabs = 440 nm. These 

are the 1MLCT absorptions associated with both the 2,2’-bipyridine and 1,10-phenanthroline 

ligands, overlapping in energy. 

  

 

 

 

 

 

 

 

 

 

b) a) 

300 350 400 450 500 550

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

O
p

ti
c

a
l 
D

e
n

s
it

y
 /
 a

.u
.

Wavelength / nm

 Ru-Alkyne-Dyad-Ester

 Ru-Alkyne-Dyad-Acid

300 350 400 450 500 550

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

O
p

ti
c

a
l 
D

e
n

s
it

y
 /
 a

.u
.

Wavelength / nm

 Ru-Alkyne-Dyad-Ester

 Ru-Alkyne-Dyad-Acid

Figure 2.07: Normalised (at λabs = 440 nm) UV/Vis absorption spectra of Ru-Alkyne-Dyad-Ester 

(red) and Ru-Alkyne-Dyad-Acid (blue) at 298 K. a) EtOH/MeOH (4:1, v:v), and b) MeCN  
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2.2.2.2) Emission 

Luminescence profiles and the lifetime of the luminescence decay for Ru-Alkyne-

Dyad-Ester and Ru-Alkyne-Dyad-Acid were recorded in several aerated solvents (table 2.02), 

but profiles in EtOH/MeOH (4:1, v:v) at 298 K and 77 K (figure 2.08a) and acetonitrile (figure 

2.08b) will be reviewed for comparison purposes.  

Upon excitation into the 1MLCT absorption bands at λex = 440-445 nm, both complexes 

in each solvent at 298 K produce broad and featureless emission profiles. This is typical for 

[Ru(bipy)2(N^N)]2+-based compounds, indicating spin-forbidden 3MLCT {RuII→π*(N^N)} 

transitions. The emission is centred around λem = 645 nm, with Ru-Alkyne-Dyad-Acid having 

a red-shift in its emission maximum (~10 nm) compared to Ru-Alkyne-Dyad-Ester. These 

values are, in turn, both red-shifted in comparison to the parent complex [Ru(bipy)2(phen)]2+ 

in acetonitrile (table 2.02) due to the extended π-network along the phenanthroline 

backbone. The lowest unoccupied molecular orbitals (LUMO) on Ru-Alkyne-Dyad-Ester and 

Ru-Alkyne-Dyad-Acid have been stabilised and, therefore, the energy of the emission maxima 

have been lowered, as has been seen for similar complexes with extended conjugation[17].  

The broad and featureless profiles observed at 298 K changed to include more 

vibrational structure when the emission was measured as a frozen glass at 77 K for both 

compounds. The main emission band blue-shifted (~30 nm) and two less intense shoulders 

Table 2.01: UV/Vis absorption data for Ru-Alkyne-Dyad-Ester and Ru-Alkyne-Dyad-Acid at 298 K. 
[a]Data taken from ref. 10. 

Compound Solvent λabs (nm) [ε (x 104 M-1 cm-1)] 

[a][Ru(bipy)2(phenBr)]2+ MeCN 272 [6.6], 286 [6.5], 448 [1.5] 
[a][{Ru(bipy)2(phen)}2CΞC]4+ MeCN 286 [14], 342 [4.3], 356 [2.5], 440 [2.5] 

Ru-Alkyne-Dyad-Ester 

CH2Cl2 287, 329 (sh), 445 (br) 

EtOH/MeOH (4:1, v:v) 286, 321 (sh), 442 (br) 

MeCN 286 [88], 321 (sh) [39], 444 (br) [14] 

THF 287, 323 (sh), 442 (br) 

DMF 288, 322 (sh), 449 (br) 

Ru-Alkyne-Dyad-Acid 

EtOH/MeOH (4:1, v:v) 286, 325 (sh), 441 (br) 

MeOH 286, 325 (sh), 441 (br) 

MeCN 286, 324 (sh), 444 (br) 

H2O 285 [12], 325 (sh) [5.5], 442 (br) [1.6] 

DMF 288, 325 (sh), 447 (br) 
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appeared on the lower-energy side. This small blue-shift is consistent with the charge-transfer 

state no longer being stabilised by the fast solvent reorganisation that occurs at 298 K. The 

solvent dipoles are immobile on the timescale of the excited-state at 77 K and so cannot 

respond to the electronic configuration change that occurs upon an excitation. This also has 

an effect on the luminescence decay lifetimes, which are on a microsecond timescale for both 

complexes at 77 K, compared to a nanosecond timescale when measured at 298 K.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The luminescence decay lifetimes recorded in aerated acetonitrile and EtOH/MeOH 

(4:1, v:v) at 298 K were ca. τ = 250 ns, which were of similar magnitude to the lifetime of the 

luminescence from the conjugated dinuclear complex [{Ru(bipy)2(phen)}2CΞC]4+ compound in 

acetonitrile (table 2.02) and are typical for spin-forbidden 3MLCT {RuII→π*(N^N)} transitions. 

The luminescence quantum yield value (φ) for Ru-Alkyne-Dyad-Acid was calculated to be φ = 

0.020 when measured against [Ru(bipy)3]Cl2.6H2O[18] as a standard in aerated water at 298 K, 

which is quite low in comparison to the original IrGd compound (26) (φ = 0.040)[4]. 
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Figure 2.08: Normalised (at λem = max intensity), corrected emission spectra in aerated solvents. 

a) Ru-Alkyne-Dyad-Ester (magenta, 77 K, λex = 440 nm, and red, 298 K, λex = 445 nm) and Ru-

Alkyne-Dyad-Acid (cyan, 77 K, and blue, 298 K, λex = 445 nm for both) in EtOH/MeOH (4:1, v:v);  

b) Ru-Alkyne-Dyad-Ester (red) and Ru-Alkyne-Dyad-Acid (blue) in MeCN at 298 K (λex = 445 nm) 
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Excitation spectra recorded at λem = 630 nm in aerated EtOH/MeOH (4:1, v:v) at 298 K 

for both Ru-Alkyne-Dyad-Ester and Ru-Alkyne-Dyad-Acid were overlaid with UV/Vis 

absorption spectra recorded in the same solvent (figure 2.09). A good match between the 

spectra can be seen, which is a clear indication that the emission observed for both complexes 

occurs as a result of absorption in to the 1MLCT band.  

 

 

 

 

 

 

 

 

 

 

Table 2.02: Luminescence data for Ru-Alkyne-Dyad-Ester and Ru-Alkyne-Dyad-Acid 

in aerated solvents. [a]Data taken from ref. 17. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ 298 K (ns) 
[τ 77 K (μs)] 

[a][Ru(bipy)2(phen)]2+ MeCN 610 147 
[a][{Ru(bipy)2(phen)}2CΞC]4+ MeCN 648 225 

Ru-Alkyne-Dyad-Ester 

CH2Cl2 627 571 

EtOH/MeOH 
(4:1, v:v) 

640 [611, 660 (sh) 
711 (sh)] 

275 [6.2] 

MeCN 647 240 

THF 659 296 

DMF 664 294 

Ru-Alkyne-Dyad-Acid 

EtOH/MeOH 
(4:1, v:v) 

646 [611, 662 (sh) 
706 (sh)] 

232 [5.8]  

MeOH 653 226 

MeCN 658 241 

H2O 661 341 

DMF 664 241 

 

 

 

 

 

 

Figure 2.09: Normalised (at λ = 440 nm) spectra in aerated EtOH/MeOH (4:1, v:v) at 298 K.  

Corrected excitation spectra at λem = 630 nm (red) and UV/Vis spectra (blue) of 

a) Ru-Alkyne-Dyad-Ester and b) Ru-Alkyne-Dyad-Acid 
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2.3) An Alkyne-Bridged Scaffold for a Trinuclear Dual-Modal Imaging Agent 

2.3.1) Synthesis and Characterisation 

To extend the dual-modal imaging potential of the dinuclear RuGd species, a 3,8-

disubstituted phenanthroline scaffold around the central RuII unit has also been synthesised 

as a basis for trinuclear RuGd2 complexes. It was postulated that the increase in length along 

the rigid backbone should reduce the rotational correlation time of the molecule in solution 

even further, which in turn should improve the relaxivity values that can be achieved.  

Retrosynthetic analysis of this compound yielded similar synthons to those for the 

monosubstituted phenanthroline scaffold (scheme 2.01), however, for synthon A(triad) the 

phenanthroline ligand is brominated at both the 3- and 8-positions to allow for a coupling 

reaction at both sides of the scaffold. Synthesis of this synthon is parallel to the 

monosubstituted analogue (scheme 2.02), but starting from 3,8-dibromo-1,10-

phenanthroline instead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling of the synthons through a Sonogashira reaction was exactly analogous to the 

synthesis of the monosubstituted phenanthroline scaffold (scheme 2.06i), although a further 

two equivalents of synthon B were added after sixteen hours of reaction time, as some of the 

A(triad) B 

Ru-Alkyne-Triad-Ester 

Ru-Alkyne-Triad-Acid 

Scheme 2.06: Synthetic route to Ru-Alkyne-Triad-Acid. i) DMF: iPr2NH (5:1, v:v), 

(dppf)PdCl2, CuI, rt, 40h, Ar; ii) CH2Cl2, TFA, rt, 18h 
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intermediate monosubstituted scaffold entity was detected by ES+MS. Stirring at room 

temperature for a further twenty-four hours was necessary to drive the reaction to 

completion to produce Ru-Alkyne-Triad-Ester in a slightly reduced yield (45 %) compared to 

Ru-Alkyne-Dyad-Ester (50 %). 

The 1H NMR spectrum (400 MHz, d6-acetone) (figure 2.10) shows the expected singlet 

peaks at δ = 1.45 ppm, δ = 3.49 ppm and δ = 3.99 ppm for the protons on the 

polyaminocarboxylate binding site. Compared to the monosubstituted phenanthroline 

scaffold, the peaks all integrate to twice the number of protons (72, 16 and 8, respectively), 

as there are now two chelate centres on the compound. The aromatic region is also simpler 

for Ru-Alkyne-Triad-Ester as there is now twofold symmetry in the molecule (a C2 axis). The 

singlet peak at δ = 7.56 ppm equates to the four equivalent H3/H5 protons on the two pendant 

pyridine rings, and the singlet at δ = 8.48 ppm corresponds to the H5/H6 phenanthroline 

protons. The final four protons on the phenanthroline ligand manifest as doublet signals at δ 

= 8.67 ppm and δ = 9.05 ppm (with a low coupling value of J = 1.9 Hz), and the integrals of the 

remaining six signals in the aromatic region combine to the expected sixteen protons on the 

two 2,2’-bipyridine ligands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: 1H NMR spectrum (400 MHz, d6-acetone) of Ru-Alkyne-Triad-Ester at 298 K. 
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring) 
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Further characterisation was achieved with HRMS (appendix 2.04), with the calculated 

and the actual m/z values found for the [M – 2PF6]2+ ion tallying well (912.4067 and 912.4073, 

respectively).  

Removal of the tertiary-butyl groups using TFA to reveal the deprotected Ru-Alkyne-

Triad-Acid compound was achieved in an identical fashion to the monosubstituted 

phenanthroline scaffold (scheme 2.06ii). 1H NMR spectroscopy in D2O (figure 2.11) was used 

to characterise the complex, and two-dimensional 1H-1H correlation spectroscopy (appendix 

2.05) was used to identify each signal. The 1,10-phenanthroline ligand protons appear as 

three singlet peaks equating to two protons each at δ = 8.25 ppm, δ = 8.35 ppm and δ = 8.74 

ppm, with the majority of the bipyridine signals residing further upfield in comparison. The 

H3/H5 protons of the pendant pyridine rings appear as a singlet at δ = 7.69 ppm, and the 

pendant ‘arms’ of the chelate produce singlets at δ = 4.16 ppm and δ = 4.74 ppm. The residual 

H2O signal occurs as a large peak at δ = 4.79 ppm. Overall, the NMR peaks appear broad and 

lack structure compared to those for Ru-Alkyne-Triad-Ester, possibly due to a combination of 

aggregation by π-stacking of the hydrophobic regions of the molecules in solution, and slow 

molecular tumbling in the more viscous solvent, D2O. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: 1H NMR spectrum (400 MHz, D2O) of Ru-Alkyne-Triad-Acid at 298 K. 
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring) 
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A high-resolution mass spectrum (appendix 2.06) also confirms successful isolation of 

the Ru-Alkyne-Triad-Acid species with a detected m/z value of 688.1568 for the [M – 2PF6]2+ 

ion agreeing well with the calculated m/z value, 688.1563.  

 

2.3.2) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for both Ru-Alkyne-

Triad-Ester and Ru-Alkyne-Triad-Acid, and extinction coefficients were measured in 

acetonitrile for Ru-Alkyne-Triad-Ester and in water for Ru-Alkyne-Triad-Acid. Emission 

profiles and lifetimes of emission were recorded for both compounds (including as a frozen 

glass at 77 K for Ru-Alkyne-Triad-Ester), and the quantum yield of emission was measured for 

Ru-Alkyne-Triad-Acid against [Ru(bipy)3]Cl2.6H2O in aerated water. Finally, excitation spectra 

were measured in each solvent.  

 

2.3.2.1) UV/Vis Absorption 

UV/Vis absorption profiles for Ru-Alkyne-Triad-Ester and Ru-Alkyne-Triad-Acid 

recorded in EtOH/MeOH (4:1, v:v) can be compared (figure 2.12a). Both spectra have a similar 

structure, with an intense peak centred around λabs = 350 nm for the π→π* transition on the 

phenanthroline backbone, and two less intense peaks in the region λabs = 375-550 nm, which 

are the distinct 1MLCT absorptions for the two different N^N ligands.  
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Figure 2.12: Normalised (at λabs = 435 nm) UV/Vis absorption spectra in EtOH/MeOH (4:1, v:v) at 

298 K. a) Ru-Alkyne-Triad-Ester (red) and Ru-Alkyne-Triad-Acid (blue); b) Ru-Alkyne-Dyad-Ester 

(green) and Ru-Alkyne-Triad-Ester (red) 
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When comparing the spectrum for Ru-Alkyne-Triad-Ester to Ru-Alkyne-Dyad-Ester, 

the effect of increasing the conjugation along the phenanthroline backbone by adding a 

second pendant metal chelate can be seen (figure 2.12b). The π→π* transition on the 

phenanthroline ligand is much more intense in Ru-Alkyne-Triad-Ester, and it has red-shifted 

by ~30 nm compared to Ru-Alkyne-Dyad-Ester, in which the phenanthroline ligand is only 

monosubstituted. The 1MLCT absorption for the phenanthroline ligand has also red-shifted in 

the disubstituted phenanthroline species and now appears as a distinct shoulder (λabs = 480 

nm) at lower energy than the 1MLCT absorption for the two bipyridine ligands, which itself 

appears unaffected by the addition of a second metal chelate. These spectral changes are 

corroborated by a previously published compound with extended conjugation along the 

phenanthroline ligand[12], [Ru(dtbbipy)2(3,8-pyCΞCphen)]2+ (table 2.03). 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2.2) Emission 

Luminescence profiles and the lifetime of the luminescence decay for Ru-Alkyne-

Triad-Ester and Ru-Alkyne-Triad-Acid were recorded in several aerated solvents (table 2.04), 

but profiles in EtOH/MeOH (4:1, v:v) at 298 K and 77 K (figure 2.13a) will be reviewed for 

comparison purposes.  

Table 2.03: UV/Vis absorption data for Ru-Alkyne-Triad-Ester and Ru-Alkyne-Triad-Acid at 298 K. 
[a]Data taken from ref. 12. 

Compound Solvent λabs (nm) [ε (x103 M-1 cm-1)] 

[a][Ru(dtbbipy)2(3,8-pyCΞCphen)]2+ CH2Cl2 287 [11], 371 [6.8], 440 [1.9], 502 [1.1] 

Ru-Alkyne-Triad-Ester 

CH2Cl2 357, 437, 476 (sh) 

EtOH/MeOH 
(4:1, v:v) 

352, 436, 476 (sh) 

MeCN 351 [56], 437 [14], 476 (sh) [9.3] 

DMF 352, 439, 480 (sh) 

THF 355, 437, 481 (sh) 

Ru-Alkyne-Triad-Acid 

EtOH/MeOH 
(4:1, v:v) 

350, 434, 476 (sh) 

MeOH 351, 434, 481 (sh) 

H2O 349 [46], 434 [6.5], 485 (sh) [3.7] 

DMF 355, 439, 484 (sh) 
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Upon excitation in to the 1MLCT absorption band at λex = 435 nm, both complexes 

produce broad and featureless emission profiles at 298 K indicating spin-forbidden 3MLCT 

{RuII→π*(N^N)} transitions. The emission is centred around λem = 680 nm, with Ru-Alkyne-

Triad-Acid having a red-shift in its emission maximum (~5-10 nm) compared to Ru-Alkyne-

Triad-Ester. When frozen as a glass at 77 K, the luminescence profile for Ru-Alkyne-Triad-

Ester transformed to include more vibrational structure, with two less intense shoulders 

appearing at lower energy, and the main emission band (the 0-0 transition) blue-shifted by 

~30 nm compared to the emission in fluid solution. The reason for this (rigidochromism) was 

discussed earlier. Unfortunately, Ru-Alkyne-Triad-Acid had limited solubility in EtOH/MeOH 

(4:1, v:v) and an emission spectrum at 77 K could not be measured.  

Again, the effect of increasing the conjugation along the phenanthroline backbone by 

adding a second pendant metal chelate can be seen when comparing the luminescence 

profiles of Ru-Alkyne-Dyad-Ester and Ru-Alkyne-Triad-Ester (figure 2.13b). At both 298 K and 

77 K in EtOH/MeOH (4:1, v:v), the emission maximum for Ru-Alkyne-Triad-Ester is red-shifted 

by 35 nm compared to Ru-Alkyne-Dyad-Ester.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Normalised (at λem = max intensity), corrected emission spectra in aerated 

EtOH/MeOH (4:1, v:v) at 298 K and as a glass at 77 K. a) Ru-Alkyne-Triad-Ester (magenta, 77 K 

and red, 298 K, λex = 435 nm for both) and Ru-Alkyne-Triad-Acid (blue, 298 K, λex = 435 nm); 

b) Ru-Alkyne-Dyad-Ester (blue, 77 K and green, 298 K, λex = 440 nm for both) and Ru-Alkyne-

Triad-Ester (magenta, 77 K and red, 298 K, λex = 435 nm for both) 

b) a) 

550 600 650 700 750 800 850

 

 

E
m

is
s

io
n

 I
n

te
n

s
it

y
 /
 a

.u
.

Wavelength / nm

 Ru-Alkyne-Triad-Ester, 77 K

 Ru-Alkyne-Triad-Ester, 298 K

 Ru-Alkyne-Triad-Acid, 298 K

550 600 650 700 750 800 850

E
m

is
s

io
n

 I
n

te
n

s
it

y
 /
 a

.u
.

Wavelength / nm

 Ru-Alkyne-Dyad-Ester, 77 K

 Ru-Alkyne-Dyad-Ester, 298 K

 Ru-Alkyne-Triad-Ester, 77 K

 Ru-Alkyne-Triad-Ester, 298 K



Chapter 2 - Synthesis and Photophysical Properties of Scaffolds for Dual-Modal Imaging Agents 

 

73 

The luminescence decay lifetime in aerated solvent at 298 K for Ru-Alkyne-Triad-Ester 

was ca. τ = 300 ns, reducing to ca. τ = 250 ns for Ru-Alkyne-Triad-Acid, due to the carboxylic 

acid groups quenching the luminescence more than the tertiary-butyl groups. When 

measured as a frozen glass at 77 K, the decay lifetime recorded for Ru-Alkyne-Triad-Ester was 

τ = 3.8 µs, which is reduced compared to Ru-Alkyne-Dyad-Ester (τ = 6.2 µs). This effect is also 

reflected in the luminescence quantum yield value (φ) of Ru-Alkyne-Triad-Acid, which was 

calculated to be φ = 0.006 when measured against [Ru(bipy)3]Cl2.6H2O[18] as a standard in 

aerated water at 298 K. This value is significantly reduced compared to Ru-Alkyne-Dyad-Acid 

(φ = 0.020), illustrating the deleterious effect that the extra substitution in Ru-Alkyne-Triad-

Acid has on the emission intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Excitation spectra recorded at λem = 660 nm in aerated EtOH/MeOH (4:1, v:v) at 298 K 

for both Ru-Alkyne-Triad-Ester and Ru-Alkyne-Triad-Acid were overlaid with UV/Vis 

absorption spectra recorded in the same solvent (figure 2.14). A good match between the 

spectra can be seen, which is a clear indication that the emission observed for both complexes 

occurs as a result of absorption in to the 1MLCT band. 

 

 

Table 2.04: Luminescence data for Ru-Alkyne-Triad-Ester and Ru-Alkyne-Triad-Acid in aerated 

solvents. [a]Data taken from ref. 12. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ1, τ2 

298 K (ns) 
[τ 77 K (μs)] 

A1, A2 

(%) 
[a][Ru(dtbbipy)2(3,8-pyCΞCphen)]2+ CH2Cl2 657 591 -- 

Ru-Alkyne-Triad-Ester 

CH2Cl2 662 650 -- 

EtOH/MeOH 
(4:1, v:v) 

676 [645, 701 
(sh), 742 (sh)] 

284 [3.8] -- 

MeCN 683 271 -- 

DMF 702 280 -- 

THF 706 306 -- 

Ru-Alkyne-Triad-Acid 

EtOH/MeOH 
(4:1, v:v) 

681 273, 49 95, 5 

MeOH 691 235, 120 98, 2 

H2O 697 209, 102 26, 74 

DMF 702 259, 49 87, 13 
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Figure 2.14: Normalised (at λ = 435 nm) spectra in aerated EtOH/MeOH (4:1, v:v) at 298 K.  

Corrected excitation spectra at λem = 660 nm (red) and UV/Vis spectra (blue) of 

a) Ru-Alkyne-Triad-Ester and b) Ru-Alkyne-Triad-Acid 
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2.4) An Alkyne-Bridged Scaffold for a ‘Metallostar’ Dual-Modal Imaging Agent 

2.4.1) Synthesis and Characterisation 

As the synthetic route developed proved amenable to producing both a 

monosubstituted and disubstituted phenanthroline scaffold around the central RuII unit, the 

same method was used to synthesise a larger ‘metallostar’ entity capable of binding six MRI-

active metal centres (figure 2.15). 

 

 

 

 

 

 

 

Previously, ‘metallostars’ have been made by a convergent approach in which the pre-

prepared ligands, with the MRI-active metal centre already bound, are assembled around the 

central luminescent metal centre by mixing the components in a 3:1 ratio[19–21]. However, in 

this example, the central ruthenium complex component was synthesised first, before the 

insertion of the GdIII metal centres.  

Retrosynthetic analysis of the targeted ‘metallostar’ species produced synthons very 

similar to the previous scaffolds (scheme 2.01), including 4-ethynyl-2,6-disubstituted pyridine 

(synthon B) and a ruthenium centre surrounded by brominated 1,10-phenanthroline ligands 

to take advantage of the Sonogashira coupling reaction (synthon A(metallostar)). In this case, 

to allow introduction of six pendant metal chelates, the RuII-based synthon was tris(3,8-

dibromo-1,10-phenanthroline)Ru(II) hexafluorophosphate (scheme 2.07). Two equivalents of 

3,8-dibromo-1,10-phenanthroline were heated with ruthenium(III) chloride trihydrate in DMF 

to produce bis(3,8-dibromo-1,10-phenanthroline)Ru(II)-dichloride hydrate, which was 

subsequently heated with a further equivalent of 3,8-dibromo-1,10-phenanthroline in 

ethylene glycol to produce the final synthon, A(metallostar). Purification was achieved by 

column chromatography and was verified by 1H NMR spectroscopy and HRMS.  

 

Figure 2.15: A ‘metallostar’ dual-modal RuII-GdIII
6 species 

Ru-Alkyne-Metallostar-Gd 
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Synthesis of the Ru-Alkyne-Metallostar-Ester species was achieved by subjecting 

synthon A(metallostar) to six independent Sonogashira reactions with synthon B (scheme 

2.08i). Initially, twelve equivalents of synthon B were added to a deoxygenated solution of 

synthon A(metallostar), (dppf)PdCl2 and copper iodide dissolved in an anhydrous mixture of 

DMF and triethylamine (5:1, v:v). The solution was stirred at room temperature for sixteen 

hours, before a further twelve equivalents of synthon B were added. The resulting solution 

was left stirring for seven days before the crude product was extracted and purified by column 

chromatography on silica gel (200-300 mesh), and then by size-exclusion chromatography on 

Sephadex® LH-20. A low yield was finally achieved (15 %), but this was due to incomplete 

conversion of the starting material to the fully-substituted product. Some of the equivalents 

of synthon B were lost to the competing Glaser reaction in which two alkyne groups coupled 

to a di-yne in the presence of copper iodide. Addition of further equivalents of synthon B may 

help to overcome this issue and avoid the partially-substituted entities in the future.  

Successful isolation of Ru-Alkyne-Metallostar-Ester was confirmed by ES+MS 

(appendix 2.07), as a molecular ion peak at m/z = 2168.6 for the [M – 2PF6]2+ species was 

recorded with the typical RuII ion isotope pattern. The 1H NMR spectrum (figure 2.16, 400 

MHz, d6-acetone) is very simple as the compound only has seven different proton 

environments due to the symmetry in the molecule. The peaks are also broad as the molecule 

is very large and tumbles slowly in solution.  

 

 

 

 

 

Scheme 2.07: Synthetic route to synthon A(metallostar). i) DMF, RuCl3.3H2O, 

LiCl, reflux, 7h; ii) ethylene glycol, 3,8-dibromo-1,10-phenanthroline, 120 °C, 16h 

A(metallostar) 
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A singlet at δ = 1.41 ppm integrating to ca. 216 protons accounts for the twenty-four 

tertiary-butyl groups on the six polyaminocarboxylate chelates, and the remaining two 

singlets in the aliphatic region at δ = 3.45 ppm and δ = 3.96 ppm represent the two proton 

environments on the chelate ‘arms’.  The residual solvent peak is present at δ = 2.05 ppm and 

a broad peak at δ = 2.84 ppm is due to H2O and HOD in the solvent. In the aromatic region 

there are 4 broad singlets at δ = 7.55 ppm, δ = 8.49 ppm, δ = 8.81 ppm and δ = 9.06 ppm 

integrating as 12, 6, 6 and 6 protons, respectively. The peak at δ = 7.55 ppm characterises the 

twelve equivalent H3/H5 protons on the pendant pyridine rings, whilst the other three singlets 

represent the three proton environments on the phenanthroline ligands.  

As the 1H NMR spectrum is so simple due to the high symmetry of the complex, to 

provide further evidence of successful synthesis, a DEPTQ 13C NMR spectrum (figure 2.17, 500 

MHz, 1,1,2,2-tetrachloroethane-d2) was also recorded to help assign the carbon 

environments. The large, negative peak at δ = 73.78 ppm is the residual solvent peak for 

1,1,2,2-tetrachloroethane and the remaining sixteen peaks are for the different carbon 

environments. There are eleven negative peaks which correspond to the nine quaternary 

carbon atoms and the two CH2 environments, with the remaining five positive signals 

corresponding to the CH and CH3 environments. Further precise assignment of each individual 

carbon environment (appendix 2.08) was achieved using a two-dimensional HSQC spectrum 

(appendix 2.09) and a two-dimensional HMBC spectrum (appendix 2.10). 

Scheme 2.08: Synthetic route to Ru-Alkyne-Metallostar-Acid. i) DMF: NEt3 (5:1, v:v), 

(dppf)PdCl2, CuI, rt, 8 days, Ar; ii) CH2Cl2, TFA, rt, 18h 

Ru-Alkyne-Metallostar-Acid 

Ru-Alkyne-Metallostar-Ester 

A(metallostar) B 
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 Figure 2.17: DEPTQ 13C NMR spectrum (500 MHz, 1,1,2,2-tetrachloroethane-d2) 

of Ru-Alkyne-Metallostar-Ester at 298 K 

Figure 2.16: 1H NMR spectrum (400 MHz, d6-acetone) of Ru-Alkyne-Metallostar-Ester at 298 K 
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Removal of the tertiary-butyl protecting groups to produce the Ru-Alkyne-

Metallostar-Acid compound was achieved in an analogous way to the previous synthetic 

routes (scheme 2.08ii). Ru-Alkyne-Metallostar-Ester was stirred in dichloromethane and TFA, 

and then washed repeatedly to remove the TFA. The product was then dissolved in the 

minimum amount of methanol and precipitated by addition of an excess of diethyl ether. The 

solid was collected by centrifugation and dried under a stream of nitrogen to yield the 

compound in near quantitative yield. However, once the residual TFA had been removed, the 

resulting Ru-Alkyne-Metallostar-Acid solid was insoluble in all solvents unless the pH was 

adjusted using base. This was most likely due to the substantial number of carboxylic acid 

groups dominating the exterior of the compound.  

1H NMR spectroscopy (figure 2.18, 500 MHz, D2O, pD 4.38) was used to verify the 

successful synthesis and purity of Ru-Alkyne-Metallostar-Acid, although the pD of the D2O 

solution had to be adjusted to pD 4.38 to ensure complete dissolution of the solid. The singlets 

at δ = 3.82 ppm and δ = 4.57 ppm are representative of the polyaminocarboxylate chelate 

protons, but unfortunately the residual H2O peak at δ = 4.79 ppm partially overlaps with the 

signal at δ = 4.57 ppm. There are also unknown impurity peaks at δ = 3.26 ppm and between 

δ = 3.55-3.63 ppm, which partially overlap with the broad signal at δ = 3.82 ppm. The signals 

in the aromatic region have become even broader in comparison to those in the spectrum for 

Ru-Alkyne-Metallostar-Ester and have overlapped. The peak integrating to twelve protons at 

δ = 7.54 ppm most likely represents the H3/H5 protons on the six pendant pyridine rings, with 

the phenanthroline protons making up the remaining signals.  

Again, a DEPTQ 13C NMR spectrum (figure 2.19, 500 MHz, D2O, pD 4.38) was recorded 

to characterise the carbon environments in the compound (appendix 2.11), aided by a two-

dimensional HSQC spectrum (appendix 2.12). The signals are weak in the spectrum because 

of the low concentration of the NMR sample due to its limited solubility, but fourteen peaks 

can be identified for the different carbon environments. The spectrum is similar to that for 

Ru-Alkyne-Metallostar-Ester, although the positive peak at δ = 28.2 ppm and the negative 

peak at δ = 81.2 ppm are no longer present, as they represented the carbon atoms in the 

tertiary-butyl groups that have now been removed. 
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 Figure 2.19: DEPTQ 13C NMR spectrum (500 MHz, D2O, pD 4.38) of  

Ru-Alkyne-Metallostar-Acid at 298 K 

Figure 2.18: 1H NMR spectrum (500 MHz, D2O, pD 4.38) of Ru-Alkyne-Metallostar-Acid at 298 K  
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2.4.2) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for Ru-Alkyne-

Metallostar-Ester and in water at pH 9 for Ru-Alkyne-Metallostar-Acid. Emission profiles and 

lifetimes of emission were recorded for both compounds (including as a frozen glass at 77 K 

for Ru-Alkyne-Metallostar-Ester), and the quantum yield of emission was measured for Ru-

Alkyne-Metallostar-Acid against [Ru(bipy)3]Cl2.6H2O in aerated water. Finally, excitation 

spectra were measured in each solvent.  

 

2.4.2.1) UV/Vis Absorption 

The UV/Vis absorption profile for Ru-Alkyne-Metallostar-Ester was recorded in 

EtOH/MeOH (4:1, v:v) (figure 2.20a) and the profile for Ru-Alkyne-Metallostar-Acid was 

recorded in water at pH 9 (figure 2.20b). The two spectra are similar, with an intense peak 

centred around λabs = 350 nm for the π→π* transition on the phenanthroline ligands, and a 

less intense peak in the region λabs = 480 nm, which is the 1MLCT absorption on the 

phenanthroline ligands.   
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Figure 2.20: Normalised UV/Vis absorption spectra at 298 K. a) Ru-Alkyne-Dyad-Ester (red),  

Ru-Alkyne-Triad-Ester (blue) and Ru-Alkyne-Metallostar-Ester (green) in EtOH/MeOH (4:1, v:v);  

b) Ru-Alkyne-Dyad-Acid (red), Ru-Alkyne-Triad-Acid (blue) and Ru-Alkyne-Metallostar-Acid 

(green, pH 9) in H2O 
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When comparing the spectra for the ‘metallostar’ species to the spectra for the 

monosubstituted and disubstituted phenanthroline scaffolds in both solvents (figure 2.20), 

the consequences of the progressive changes to the N^N ligands around the ruthenium core 

can clearly be seen. Moving from the monosubstituted phenanthroline scaffold to the 

disubstituted phenanthroline scaffold increased the intensity of the π→π* transition on the 

phenanthroline ligand (λabs = 320-350 nm), and also red-shifted the λmax value by ~30 nm, 

which is maintained in the ‘metallostar’ species as the phenanthroline ligand structure is the 

same. Between λabs = 400-550 nm, the 1MLCT absorptions also change sequentially to reflect 

the nature of the ligands surrounding the ruthenium core. The monosubstituted 

phenanthroline scaffold has a broad, featureless absorption, as the transitions on the two 

different N^N ligands overlap. This transforms to include a red-shifted shoulder peak (λabs = 

480 nm) in the profile for the disubstituted phenanthroline scaffold, which is the 1MLCT 

absorption for the more conjugated phenanthroline ligand. Again, this is maintained in the 

spectrum for the ‘metallostar’ species, and the absorption assigned to the 1MLCT on the 

bipyridine ligands (λabs = 440 nm) is no longer present.  

Comparing the absorption data to a previously published ‘metallostar’ species (20, 

figure 1.29, Eu analogue, M = Ru)[20] shows similar trends (table 2.05), although the ligands 

are bipyridine-based in the literature rather than phenanthroline-based and so each 

absorption is blue-shifted in comparison.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.05: UV/Vis absorption data for Ru-Alkyne-Metallostar-Ester and  

Ru-Alkyne-Metallostar-Acid at 298 K. [a]Data taken from ref. 20. 

Compound Solvent λabs (nm) 

[a]RuEu6 (20) H2O 293, 330 (sh), 360 (sh), 450 

Ru-Alkyne-Metallostar-Ester 

CH2Cl2 352, 369 (sh), 475 

EtOH/MeOH  
(4:1, v:v) 

348, 362 (sh), 475 

MeCN 347, 365 (sh), 478 

THF 351, 374 (sh), 484 

DMF 348, 363 (sh), 489 

Ru-Alkyne-Metallostar-Acid H2O (pH 9) 289, 344, 367 (sh), 480 
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2.4.2.2) Emission  

Luminescence profiles and the lifetime of the luminescence decay were recorded in 

several aerated solvents for Ru-Alkyne-Metallostar-Ester and in water at pH 9 for Ru-Alkyne-

Metallostar-Acid (table 2.06). Profiles in EtOH/MeOH (4:1, v:v) at 77 K (figure 2.21a) and in 

water (figure 2.21b) will be reviewed for comparison purposes.  

Upon excitation in to the 1MLCT absorption band at λex = 480-485 nm, both complexes 

produce broad and featureless emission profiles at 298 K, centred around λem = 640-650 nm. 

When frozen as a glass at 77 K, the luminescence profile for Ru-Alkyne-Metallostar-Ester 

displays the usual changes with more vibrational structure on the low energy side of the main 

(0-0) emission band, which has blue-shifted (~20 nm) due to rigidochromism. When 

comparing the ‘metallostar’ species to the monosubstituted and disubstituted 

phenanthroline scaffolds at 77 K (figure 2.21a), it can be seen that the emission maximum for 

the ‘metallostar’ species is red-shifted compared to the monosubstituted phenanthroline 

scaffold, but blue-shifted in comparison to the disubstituted phenanthroline scaffold. This is 

similar for the acid-derivatives in water (figure 2.21b), however, in this case the ‘metallostar’ 

species has the highest energy emission maximum.  
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Figure 2.21: Normalised (at λem = max intensity), corrected emission spectra in aerated solvents. 

a) Ru-Alkyne-Dyad-Ester (red, λex = 440 nm), Ru-Alkyne-Triad-Ester (blue, λex = 435 nm) and Ru-

Alkyne-Metallostar-Ester (green, λex = 485 nm) in EtOH/MeOH (4:1, v:v) at 77 K;  

b) Ru-Alkyne-Dyad-Acid (red, λex = 440 nm), Ru-Alkyne-Triad-Acid (blue, λex = 435 nm) and  

Ru-Alkyne-Metallostar-Acid (green, λex = 480 nm, pH 9) in H2O at 298 K 
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The time-resolved luminescence decay profiles recorded for both the ester-protected 

and carboxylic acid derivatives of the ‘metallostar’ species were complex and were all fitted 

with triexponential decays. Typically, two longer lifetimes (ca. τ = 300-600 ns) were the main 

components, with one much shorter lifetime (ca. τ = 50 ns) making up 2 % of the overall decay.  

Such complex behaviour could arise from aggregation in solution. 

 

 

 

 

 

 

 

 

 

 

 

The luminescence quantum yield value (φ) of Ru-Alkyne-Metallostar-Acid was 

calculated to be φ = 0.003 when measured against [Ru(bipy)3]Cl2.6H2O[18] as a standard in 

aerated water at 298 K. This value is reduced compared to the analogous monosubstituted 

and disubstituted phenanthroline scaffolds (φ = 0.020 and 0.006, respectively), illustrating the 

deleterious effect the extra substitution on the phenanthroline ligands has on the emission 

intensity. 

An excitation spectrum (λem = 635 nm) recorded in aerated EtOH/MeOH (4:1, v:v) at 

298 K for Ru-Alkyne-Metallostar-Ester was overlaid with a UV/Vis absorption spectrum 

recorded in the same solvent (figure 2.22a). A good match between the spectra can be seen, 

which is a clear indication that the emission observed for the complex occurs as a result of 

absorption in to the 1MLCT band.  

 

 

 

 

Table 2.06: Luminescence data for Ru-Alkyne-Metallostar-Ester and Ru-Alkyne-Metallostar-Acid 

in aerated solvents. [a]Data taken from ref. 20. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ1, τ2, τ3

298 K (ns) 
[τ1, τ2, τ3

77 K (ns)] 
A1, A2, A3 

(%) 

[a]RuEu6 (20) H2O 
625, 660 (sh) [584, 

625, 680 (sh)] 
-- -- 

Ru-Alkyne-
Metallostar-Ester 

CH2Cl2 620 785, 338, 52 71, 27, 2 

EtOH/MeOH 
(4:1, v:v) 

643 [619, 676 (sh)] 
660, 384, 43 

[5063, 1111, 145] 
21, 77, 2 
[97, 2, 1] 

MeCN 651 435, 147, 34 59, 38, 3 

THF 659 696, 370, 50 60, 38, 2 

DMF 668 492, 291, 36 86, 12, 2 

Ru-Alkyne-
Metallostar-Acid 

H2O (pH 9) 656 457, 25, 8 78, 8, 14 

 

 

 

 

 

 

 



Chapter 2 - Synthesis and Photophysical Properties of Scaffolds for Dual-Modal Imaging Agents 

 

85 

 

 

 

 

 

 

 

 

 

 

A similar comparison of the excitation spectrum (λem = 660 nm) and the UV/Vis 

absorption spectrum for Ru-Alkyne-Metallostar-Acid recorded in aerated water at pH 9 and 

at 298 K, reveals different results, however (figure 2.22b). The excitation spectrum has the 

same basic shape as the UV/Vis spectrum apart from a new peak at λ = 415 nm. A 

luminescence profile recorded at λex = 415 nm (figure 2.23a) revealed a similar emission band 

centred around λem = 650 nm compared to the profile recorded at λex = 480 nm, but also 

showed more structure with a more pronounced shoulder peak emerging at λem = 705 nm. An 

excitation spectrum recorded at λem = 705 nm (figure 2.23b) is similar to the excitation 

spectrum recorded at λem = 660 nm but does still not match the UV/Vis spectrum.  

This evidence suggests that the compound may have aggregated in solution due to its 

limited solubility in water. This is further supported by the lifetime of the luminescence decay 

in water at pH 9 (τ1 = 457 ns, τ2 = 25 ns, τ3 = 8 ns) not tallying with the expected trend. 

Compared to Ru-Alkyne-Dyad-Acid and Ru-Alkyne-Triad-Acid (τ = 341 ns and τ = 209 ns, 

respectively), the main lifetime component (τ = 457 ns) in Ru-Alkyne-Metallostar-Acid is 

longer-lived. As the quantum yield value measured for Ru-Alkyne-Metallostar-Acid is 

reduced in intensity compared to its less-substituted counterparts, it would be expected that 

the lifetime value measured would also have reduced by the same magnitude. 
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Figure 2.22: Normalised (at λ = 480 nm) spectra in aerated solvents at 298 K. Corrected excitation 

spectra (red) and UV/Vis spectra (blue) of a) Ru-Alkyne-Metallostar-Ester (EtOH/MeOH (4:1, v:v), 

λem = 635 nm) and b) Ru-Alkyne-Metallostar-Acid (H2O, pH 9, λem = 660 nm) 
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Figure 2.23: Corrected spectra of Ru-Alkyne-Metallostar-Acid in aerated H2O (pH 9) at 298 K. 

a) Emission (λex = 415 nm), b) Excitation (λem = 705 nm) 
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2.5) A Triazole-Bridged Scaffold for a Dinuclear Dual-Modal Imaging Agent 

2.5.1) Synthesis and Characterisation 

With the successful production of a series of alkyne-bridged scaffolds based on 

ruthenium(II) bis(2,2’-bipyridine) cores for potential dual-modal optical/MR imaging agents, 

the spacer unit in each pendant ‘arm’, separating the RuII core from the pendant binding site 

for GdIII, was then modified to a triazole entity to assess its effect on the relaxivity value 

measured for a dinuclear framework.  

Retrosynthetic analysis of this alternative triazole-bridged scaffold produced synthons 

C and D (scheme 2.09) with functional groups in place to utilise an azide/alkyne, copper-

catalysed ‘click’ reaction[22,23]. An azide group was attached to the pyridine-based chelate (D) 

and an alkyne substituent was attached to the 1,10-phenanthroline ligand on synthon C, as 

there was no precedent in the literature for connecting an azide group directly to a 1,10-

phenanthroline unit.  

 

 

 

 

 

 

 

The most straightforward route to synthon C was considered to be the simple 

modification of synthon A by reacting it with TMSA in a Sonogashira reaction (scheme 2.10, 

route A). Removal of the trimethylsilyl protecting group proved challenging, however, as the 

ruthenium centre decomposed under various reaction conditions. Using milder bases in the 

reaction, and also changing the alkyne reactant to (triisopropylsilyl)acetylene and 2-methyl-

3-butyn-2-ol proved unsuccessful remedies to the problem, as decomposition was still 

encountered. A second route to the synthon was, therefore, designed, in which the alkyne 

substituent was attached to the 1,10-phenanthroline ligand before the ruthenium(II) bis(2,2’-

bipyridine) centre was bound (scheme 2.10, route B). 

 

C D 

Scheme 2.09: Retrosynthetic analysis of the monosubstituted triazole-bridged scaffold 
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Starting from 3-bromo-1,10-phenanthroline, synthon C was successfully synthesised 

in three steps following literature preparations (scheme 2.11). The trimethylsilyl-protected 

alkyne substituent was attached to the phenanthroline core by reacting 3-bromo-1,10-

phenanthroline with TMSA in the presence of Pd(PPh3)2Cl2 and copper iodide in THF:NEt3 (2:1, 

v:v)[24]. Deprotection of the trimethylsilyl group to reveal the free alkyne was achieved using 

potassium carbonate in a MeOH:THF mixture (2:1, v:v)[25], and then coordination to the 

ruthenium(II) bis(2,2’-bipyridine) centre was accomplished by refluxing the ligand with cis-

bis(2,2’-bipyridine)-dichloro-ruthenium hydrate[13] in methanol. 1H NMR spectroscopy and 

ES+MS were used to characterise each compound.  

 

 

 

 

 

 

 

 

 

 

Scheme 2.11: Synthetic route to synthon C. i) THF: NEt3 (2:1, v:v), Pd(PPh3)2Cl2, 

CuI, TMSA, 70 °C, 24h, Ar; ii) MeOH: THF (2:1, v:v), K2CO3, rt, 6h; iii) MeOH, 

Ru(bipy)2Cl2.2H2O, reflux, 6h 

C 

C A 

Scheme 2.10: The two routes attempted in the synthesis of synthon C. 

Route A: i) MeOH, reflux, 8h; ii) DMF: NEt3 (3:1, v:v), TMSA, 3d, Ar; iii) THF, TBAF, rt, 16h 

Route B: i) MeOH, reflux, 8h 

i i 

ii/iii 
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The synthesis of synthon D proved simple, as it was constructed from a previously 

synthesised compound in one step following a literature preparation[26] (scheme 2.12). 4-

bromo-2,6-disubstituted pyridine was reacted with sodium azide in DMF at 100 °C for two 

days in the presence of a phase transfer catalyst, tetrabutylammonium hydrogensulphate, to 

improve the solubility of the azide in the organic solvent. A good yield of 73 % was achieved, 

and purity was verified by 1H NMR spectroscopy and ES+MS. 

 

 

 

 

 

 

With the successful syntheses of both synthons C and D, the copper-catalysed ‘click’ 

reaction between the two species was attempted using the method described in a literature 

preparation[26] (scheme 2.13). The two synthons were dissolved in deoxygenated, anhydrous 

acetonitrile with copper iodide (10 mol %) as the source of CuI ions. Heating at reflux under 

an argon atmosphere for 24 hours proved effective, as a molecular ion peak at m/z = 626.2 

was observed for the [M – 2PF6]2+ ion of the Ru-Triazole-Dyad-Ester species in an ES+ mass 

spectrum. A low yield of the desired compound was eventually recovered from the reaction, 

however, as the main product was found to be the Glaser-coupled dimeric compound (figure 

2.24). A 1H NMR spectrum of this side-product appeared similar to the 1H NMR spectrum of 

synthon C; however, an ES+ mass spectrum (appendix 2.13) revealed an ion pattern for a 

species with a charge of 4+, demonstrating that there are two ruthenium(II) bis(2,2’-

bipyridine) centres in this compound.  

 

 

 

 

 

 

 

Ru-Triazole-Dyad-Ester 

Scheme 2.13: Synthetic route to Ru-Triazole-Dyad-Ester.  

i) MeCN, CuI, reflux, 24 h, Ar 

D C 

D 4-bromo-2,6-disubstituted pyridine 

Scheme 2.12: Synthetic route to synthon D. i) DMF, NaN3, tBu4NHSO4, 100 °C, 48 h, Ar 
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In future preparations of the Ru-Triazole-Dyad-Ester species, using more equivalents 

of synthon D may help to avoid the unwanted Glaser coupling reaction. Unlike the usual 

conditions for a copper-catalysed ‘click’ reaction, careful removal of all traces of oxygen may 

also help to deter the competing reaction.  

 

 

 

 

 

 

 

Characterisation of the Ru-Triazole-Dyad-Ester species was achieved with HRMS 

(appendix 2.14) and 1H NMR spectroscopy (figure 2.25). The calculated and actual m/z values 

found for the [M – 2PF6]2+ ion agreed well (626.2393 and 626.2401, respectively) and the 1H 

NMR spectrum (d6-acetone, 400 MHz) confirmed the successful isolation of the pure product.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24: Unwanted Glaser-coupled side-product from the 

synthetic route to Ru-Triazole-Dyad-Ester 

Figure 2.25: 1H NMR spectrum (d6-acetone, 400 MHz) of Ru-Triazole-Dyad-Ester at 298 K. 
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring, Ht = proton on triazole ring) 
 

Hb Hb Hb 
Hb Hb 

Hb 

Hb Hp 
Hb / Hp 
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The aromatic region integrates to the twenty-six protons expected. The deshielded 

singlet at δ = 9.29 ppm corresponds to the triazole ring proton, the singlet at δ = 8.09 ppm 

corresponds to the two pendant pyridine ring protons H3 and H5, and the remaining signals 

are from the three N^N ligands. In the aliphatic region, there are characteristic signals for the 

pendant metal chelate protons (three singlets at δ = 1.45 ppm, δ = 3.57 ppm and δ = 4.12 

ppm, integrating to 36, 8 and 4 protons, respectively) and the remaining signals are for 

residual solvent.  

Removal of the tertiary-butyl groups to reveal the Ru-Triazole-Dyad-Acid compound 

was achieved in an identical fashion to the alkyne analogue using TFA in dichloromethane 

(scheme 2.14).   

 

 

 

 

 

 

 

 

The m/z value of the main signal found in the HRMS (appendix 2.15) was 514.1141, 

which was a good match for the calculated m/z value for the [M – 2PF6]2+ ion, 514.1162. A 1H 

NMR spectrum (figure 2.26) in d6-DMSO shows all of the expected peaks for the compound, 

but due to a combination of aggregation of the molecules in solution, and slow molecular 

tumbling, the signals appear broad, even with the sample heated to 373 K.  

In the aromatic region there are a number of signals arising from protons on the three 

N^N ligands, plus the two equivalent H3/H5 protons on the pendant pyridine ring and the 

triazole proton. In the aliphatic region the residual DMSO peak manifests as a large peak at δ 

= 2.50 ppm, and there are two signals representing the chelate ‘arms’ of Ru-Triazole-Dyad-

Acid at δ = 3.53 ppm and δ = 4.09 ppm. Unfortunately, water in the sample appears as a broad 

peak between δ = 3.40-3.90 ppm, which distorts the integration value for the signal at δ = 

3.53 ppm to ten protons rather than the correct value of eight.  

 

Ru-Triazole-Dyad-Acid 

Scheme 2.14: Synthetic route to Ru-Triazole-Dyad-Acid. i) CH2Cl2, TFA, rt, 18h 

Ru-Triazole-Dyad-Ester 
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2.5.2) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for both Ru-Triazole-

Dyad-Ester and Ru-Triazole-Dyad-Acid, and an extinction coefficient was measured for Ru-

Triazole-Dyad-Acid in water. Emission profiles and lifetimes of emission were recorded for 

both compounds (including as a frozen glass at 77 K), and the quantum yield of emission was 

measured for Ru-Triazole-Dyad-Acid against [Ru(bipy)3]Cl2.6H2O in aerated water. Finally, 

excitation spectra were measured in each solvent.  

 

2.5.2.1) UV/Vis Absorption 

UV/Vis absorption profiles for Ru-Triazole-Dyad-Ester and Ru-Triazole-Dyad-Acid 

were recorded in several solvents (table 2.07), but spectra in EtOH/MeOH (4:1, v:v) will be 

reviewed for comparison purposes (figure 2.27a). Both spectra have a similar structure, with 

an intense peak centred around λabs = 285 nm for the π→π* transition on the bipyridine ligand 

and a less intense shoulder peak at λabs = 310 nm for the π→π* transition on the 

Figure 2.26: 1H NMR spectrum (d6-DMSO, 500 MHz) of Ru-Triazole-Dyad-Acid at 373 K. 
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring, Ht = proton on triazole ring) 
 

Ht Hp 
Hp 

Hp 
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phenanthroline ligand. Two less intense peaks overlapping in the region λabs = 375-550 nm 

are the 1MLCT absorptions for the two different types of N^N ligand.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing the spectrum for Ru-Triazole-Dyad-Ester to that of Ru-Alkyne-Dyad-

Ester, it can be seen that changing the phenanthroline ligand substituent has negligible effect 

on the UV/Vis spectrum shape (figure 2.27b). The π→π* transition on the phenanthroline 

ligand (λabs = 310 nm) is slightly more intense in the alkyne-containing species compared to 

Table 2.07: UV/Vis absorption data for Ru-Triazole-Dyad-Ester and Ru-Triazole-Dyad-Acid at 

298 K. [a]Data taken from ref. 10. 

Compound Solvent λabs (nm) [ε (x104 M-1 cm-1)] 

[a][Ru(bipy)2(phenBr)]2+ MeCN 272 [6.6], 286 [6.5], 448 [1.5] 

 Ru-Triazole-Dyad-Ester 

CH2Cl2 287, 323 (sh), 434, 456 (sh) 

EtOH/MeOH 
(4:1, v:v) 

285, 313 (sh), 433, 451 (sh) 

MeCN 284, 318 (sh), 437, 451 (sh) 

THF 287, 321 (sh), 442, 456 (sh) 

DMF 287, 322 (sh), 438, 456 (sh) 

Ru-Triazole-Dyad-Acid 

EtOH/MeOH 
(4:1, v:v) 

285, 312 (sh), 428, 451 (sh) 

MeOH 285, 314 (sh), 431, 450 (sh) 

MeCN 285, 309 (sh), 427, 449 (sh) 

H2O 282 [35], 309 (sh) [12], 428 [5.0], 451 (sh) [5.4] 

DMF 288, 315 (sh), 439, 454 (sh) 
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Figure 2.27: Normalised (at λabs = 450 nm) UV/Vis absorption spectra in EtOH/MeOH 

(4:1, v:v) at 298 K. a) Ru-Triazole-Dyad-Ester (red) and Ru-Triazole-Dyad-Acid (blue); b) 

Ru-Alkyne-Dyad-Ester (green) and Ru-Triazole-Dyad-Ester (red)  
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the triazole-containing one, and the 1MLCT absorption bands (λabs = 375-550 nm) for the two 

different N^N ligands are easier to distinguish in the triazole-bridged analogue, although they 

still overlap with each other. 

 

2.5.2.2) Emission 

Luminescence profiles and the lifetime of the luminescence decay for Ru-Triazole-

Dyad-Ester and Ru-Triazole-Dyad-Acid were recorded in several aerated solvents (table 

2.08), but profiles in EtOH/MeOH (4:1, v:v) at 298 K and 77 K (figure 2.28a) will be reviewed 

for comparison purposes.  

Upon excitation in to the 1MLCT absorption band at λex = 450 nm, both complexes 

produce broad and featureless emission profiles at 298 K indicating spin-forbidden 3MLCT 

{RuII→π*(N^N)} transitions. The emission is centred around λem = 620-625 nm, which is red-

shifted when compared to the parent complex [Ru(bipy)2(phen)]2+ in acetonitrile (table 2.08), 

as the increased conjugation along the phenanthroline ligand in the Ru-Triazole-Dyad 

compounds stabilise the LUMO energy level and lowers the emission energy.  

The emission observed was temperature dependent, as the maximum energy blue-

shifted from λem = 620-625 nm at 298 K to λem = 585 nm in a frozen glass at 77 K for both 

compounds. The luminescence profiles also transformed to include more vibrational 

structure, with two less intense shoulder peaks appearing on the low-energy side of the main 

0-0 transition.  

The effect of changing the phenanthroline ligand substitution from an alkyne linker to 

a triazole linker is more obvious in the luminescence profiles compared to the UV/Vis spectra 

(figure 2.28b). At both 298 K and 77 K in EtOH/MeOH (4:1, v:v), the emission maximum for 

Ru-Triazole-Dyad-Ester is blue-shifted by ~25 nm compared to Ru-Alkyne-Dyad-Ester.  

The luminescence decay lifetimes recorded for both Ru-Triazole-Dyad-Ester and Ru-

Triazole-Dyad-Acid are similar in all solvents to those recorded for the alkyne-bridged 

analogues and are typical for [Ru(bipy)2(N^N)]2+ compounds. This similarity in luminescence 

intensity is also reflected in the luminescence quantum yield values (φ) for the two 

monosubstituted phenanthroline structures, which were calculated to be φ = 0.023 and φ = 

0.020 for Ru-Triazole-Dyad-Acid and Ru-Alkyne-Dyad-Acid, respectively. This indicates that 
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the addition of a triazole-bridge does not have a significant quenching effect on the 

ruthenium-based luminescence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.08: Luminescence data for Ru-Triazole-Dyad-Ester and Ru-Triazole-Dyad-Acid 

in aerated solvents. [a]Data taken from ref. 17. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ1, τ2

298 K (ns) 
[τ1, τ2

77 K (μs)] 
A1, A2 

(%) 
[a][Ru(bipy)2(phen)]2+ MeCN 610 147 -- 

Ru-Triazole-Dyad-Ester 

CH2Cl2 611 233 -- 

EtOH/MeOH 
(4:1, v:v) 

621 [585, 635, 
681 (sh)] 

229 [7.4] -- 

MeCN 624 201 -- 

THF 638 203 -- 

DMF 634 263 -- 

Ru-Triazole-Dyad-Acid 

EtOH/MeOH 
(4:1, v:v) 

623 [586, 634, 
675 (sh)] 

232  
[7.2, 0.95] 

-- 
[93, 7] 

MeOH 627 216, 35 95, 5 

MeCN 626 170 -- 

H2O 631 543 -- 

DMF 636 255, 32 96, 4 

 

 

 

 

 

 

b) a) 

Figure 2.28: Normalised (at λem = max intensity), corrected emission spectra in aerated 

EtOH/MeOH (4:1, v:v) at 298 K and as a glass at 77 K. a) Ru-Triazole-Dyad-Ester (magenta, 77 K 

and red, 298 K, λex = 450 nm for both) and Ru-Triazole-Dyad-Acid (cyan, 77 K and blue, 298 K, λex 

= 450 nm for both); b) Ru-Triazole-Dyad-Ester (magenta, 77 K and red, 298 K, λex = 450 nm for 

both) and Ru-Alkyne-Dyad-Ester (blue, 77 K and green, 298 K, λex = 440 nm for both)  
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Excitation spectra recorded in aerated EtOH/MeOH (4:1, v:v) at 298 K for both Ru-

Triazole-Dyad-Ester (λem = 620 nm) and Ru-Triazole-Dyad-Acid (λem = 610 nm) were overlaid 

with UV/Vis absorption spectra recorded in the same solvent (figure 2.29). A good match 

between the spectra can be seen, which is a clear indication that the emission observed for 

both complexes occurs as a result of absorption in to the 1MLCT band.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.29: Normalised (at λ = 450 nm) spectra in aerated EtOH/MeOH (4:1, v:v) at 298 K.  

Corrected excitation spectra (red) and UV/Vis spectra (blue) of a) Ru-Triazole-Dyad-Ester 

(λem = 620 nm) and b) Ru-Triazole-Dyad-Acid (λem = 610 nm) 
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2.6) Summary 

The scaffolds for bis(2,2-bipyridine)ruthenium(II)-based analogues of previously 

studied iridium-based dinuclear and trinuclear acetylene-bridged complexes have been 

introduced, and their syntheses detailed. The key step in the overall reaction scheme was a 

Sonogashira reaction between a ruthenium(II) bis(2,2-bipyridine)-based compound with a 

pendant bromine atom, and a tertiary-butyl protected polyaminocarboxylate chelate bearing 

a pendant terminal alkyne group, which was achieved with moderate success (45-50 %). Full 

characterisation of both the tertiary-butyl protected entity, and the resultant carboxylic acid 

compound upon removal of the  tertiary-butyl groups, was achieved with 1H NMR 

spectroscopy and high-resolution mass spectrometry for both the monosubstituted and 

disubstituted phenanthroline scaffolds.  

A larger ‘metallostar’ species, with the potential to chelate six MRI-active metal 

centres for each luminescent ruthenium centre, based on alkyne spacers between peripheral 

sites and the core [Ru(phen)3]2+ unit, was also synthesised in a low yield (15 %). In this case, 

successful synthesis was achieved by subjecting the starting ruthenium centre to six 

independent Sonogashira coupling reactions. The Ru-Alkyne-Metallostar-Ester species 

showed good solubility in a wide range of solvents, however, upon removing the tertiary-

butyl protecting groups, the resulting compound containing twenty-four carboxylic acid 

groups on the exterior surface was insoluble in all solvents except aqueous base. Full 

characterisation of the ester-protected and carboxylic acid complexes was achieved with 1H 

and 13C NMR spectroscopy and ES+MS. 

Finally, the probe design was modified to include a triazole linking unit in place of the 

acetylene bridge to assess the linker’s importance in improving relaxivity values. The 

monosubstituted phenanthroline scaffold was successfully synthesised by taking advantage 

of the robust alkyne/azide, copper-catalysed ‘click’ reaction, however, a competing Glaser 

coupling between two alkyne substituents had a detrimental effect on the overall yield, 

reducing it to 20 %. Full characterisation of both the ester-protected compound and the 

carboxylic acid chelate was achieved through 1H NMR spectroscopy and high-resolution mass 

spectrometry.  

UV/Vis absorption spectra for the series of scaffolds showed typical bands for 

[Ru(N^N)3]2+ compounds. Intense absorptions in the UV region (λabs < 400 nm) were ascribed 
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to the π→π* transitions centred on the two different N^N ligands, and weaker bands 

between λabs = 400-550 nm characterised the 1MLCT absorptions. Increasing the conjugation 

along the compound’s backbone on progressing from a monosubstituted to a disubstituted 

phenanthroline ligand, and then to a ‘metallostar’ species, was clearly seen in the spectra as 

both the π→π* transition on the phenanthroline ligand and the 1MLCT absorption red-

shifted. Changing the phenanthroline substitution from an alkyne-bridged ligand to a triazole-

bridged ligand had negligible effect on the UV/Vis absorption properties of the 

monosubstituted phenanthroline scaffold.  

Increasing the number of pendant metal chelating centres surrounding the 

luminescent RuII core, at which MRI-active metal ions could bind, was deleterious to the 

luminescent properties of the scaffolds, however. Upon progressing from one pendant ‘arm’ 

to two and then (in the ‘metallostar’) six pendant alkyne ‘arms’, the quantum yield of 

luminescence compared to [Ru(bipy)3]Cl2.6H2O in aerated water decreased from φ = 0.020 

and φ = 0.023, to φ = 0.006 and then to φ = 0.003. As the compounds need to display bright 

luminescence in their capacity as probes for optical microscopy, this is obviously a drawback; 

however, a solution to this problem may be to increase the concentration of the probes when 

utilising their luminescence for imaging. As the difference between the two working 

concentrations of current luminescent probes and MRI contrast agents is large, increasing the 

concentration needed for the optical microscopy aspect of the dual-modal probe may help to 

overcome this disparity.  

Excitation spectra overlaid with UV/Vis absorption spectra for all of the compounds 

have the same shape, as the fluorescence intensity is proportional to the absorption. This 

gives a good indication that the complexes are pure and do not form aggregates in the ground 

state. This is not the case for Ru-Alkyne-Metallostar-Acid, however, whose spectra do not 

match due to the limited solubility of the compound in all solvents which may cause 

aggregation in solution.  
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2.7) Future Work 

To continue this work further, it would be interesting to extend the triazole-bridged 

scaffold to include a disubstituted (potentially RuGd2 trinuclear) and a ‘metallostar’ 

(potentially RuGd6) species, and to change the luminescent metal centre to IrIII. This may help 

to overcome the solubility issues that were found with the Ru-Alkyne-Metallostar-Acid 

compound and the original IrGd2 (27) compound, as the triazole-bridged analogue will have 

more sites available for protonation.  
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2.9) Appendices  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2.01: High-resolution mass spectrum of Ru-Alkyne-Dyad-Ester.  

Calculated for [C65H73N9O8Ru]2+, 604.7316. 

Appendix 2.02: High-resolution mass spectrum of Ru-Alkyne-Dyad-Acid.  

Calculated for [C49H41N9O8Ru]2+, 492.6055. 
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Appendix 2.04: High-resolution mass spectrum of Ru-Alkyne-Triad-Ester. 

Calculated for [C98H122N12O16Ru]2+, 912.4067. 

Appendix 2.03: The aromatic region of an annotated 1H-1H correlation NMR spectrum 

(500 MHz, d6-DMSO) for Ru-Alkyne-Dyad-Acid at 303 K. (Red lines = protons on 

bipyridine ligand, blue lines = protons on phenanthroline ligand) 
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Appendix 2.06: High-resolution mass spectrum of Ru-Alkyne-Triad-Acid. 

Calculated for [C66H58N12O16Ru]2+, 688.1563. 

Appendix 2.05: The aromatic region of an annotated 1H-1H correlation NMR spectrum 

(400 MHz, D2O) for Ru-Alkyne-Triad-Acid at 298 K. (Red lines = protons on bipyridine 

ligand, blue lines = protons on phenanthroline ligand) 
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Appendix 2.07: Mass spectrum of Ru-Alkyne-Metallostar-Ester 
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Appendix 2.08: Table of NMR assignments (500 MHz, 1,1,2,2-

tetrachloroethane-d2) for Ru-Alkyne-Metallostar-Ester  

 

Carbon Number 
Proton Shift 

(ppm) 
Carbon Shift 

(ppm) 

C1 8.01 153.6 

C2  145.9 

C3 8.83 141.0 

C4  166.7 

C5 8.34 128.7 

C6  131.0 

C7   86.6 

C8  96.0 

C9  170.3  

C10 7.55 123.1 

C11  159.4  

C12 3.92 59.4 

C13 3.41 55.6 

C14  207.8 

C(CH3)3 1.41 28.2 

C(CH3)3 1.41 81.2 
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Appendix 2.09: 1H-13C correlation (HSQC) NMR spectrum (500 MHz, 1,1,2,2-

tetrachloroethane-d2) of Ru-Alkyne-Metallostar-Ester at 298 K. (Green lines = correlation 

on pyridine chelate, blue lines = correlation on phenanthroline ligand) 

Appendix 2.10: 1H-13C correlation (HMBC) NMR spectrum (500 MHz, 1,1,2,2-

tetrachloroethane-d2) of Ru-Alkyne-Metallostar-Ester at 298 K. (Green lines = correlation 

on pyridine chelate, blue lines = correlation on phenanthroline ligand) 
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Appendix 2.11: Table of NMR assignments (500 MHz, D2O, pD 4.38) for  

Ru-Alkyne-Metallostar-Acid 

 

Carbon Number 
Proton Shift 

(ppm) 
Carbon Shift 

(ppm) 

C1 8.06-8.45 154.4 

C2  146.8 

C3 8.81 140.9 

C4  163.3 

C5 8.06-8.45 129.2 

C6  132.7 

C7   90.1 

C8  92.3 

C9  170.1  

C10 7.54 126.8 

C11  150.5  

C12 4.57 58.1 

C13 3.82 57.2 

C14  208.3 
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Appendix 2.12: 1H-13C correlation (HSQC) NMR spectrum (500 MHz, D2O, pD 4.38) of 

Ru-Alkyne-Metallostar-Acid at 298 K. (Green lines = correlation on pyridine chelate, 

blue lines = correlation on phenanthroline ligand) 

Appendix 2.13: Mass spectrum of the Glaser-coupled product from the synthetic 

route to Ru-Triazole-Dyad-Ester 
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Appendix 2.14: High-resolution mass spectrum of Ru-Triazole-Dyad-Ester. 

Calculated for [C65H74N12O8
102Ru]2+, 626.2393. 

Appendix 2.15: High-resolution mass spectrum of Ru-Triazole-Dyad-Acid. 

Calculated for [C49H42N12O8Ru]2+, 514.1162. 
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3.1) Previous Work in the Ward Group 

As was previously discussed in this thesis, the dinuclear IrGd (26) and trinuclear IrGd2 

(27) acetylene-bridged complexes, previously published by the Ward group, demonstrated 

excellent potential as prototypical dual-modal optical/MR imaging agents (section 2.1). 

Unusually high relaxivity values for the GdIII centres of r1 = 14.0 mM-1 s-1 and r1 = 12.6 mM-1 s-

1 (H2O/DMSO (95:5, v:v), 20 MHz, 37 °C) were measured for IrGd and IrGd2, respectively, 

which are comparable values to those observed for other d-f hybrids that contain three or 

four GdIII centres[1]. 

In further studies, the suitability of the two complexes as probes for optical 

microscopy was assessed. Cellular imaging studies and toxicity assays were undertaken with 

the dinuclear IrGd complex in both MCF-7 and HeLa cell lines[2,3]. The staining detected in 

both cases was similar, with emission from the photoluminescent IrIII centre observable in the 

cell cytosol, with additional punctate staining. Co-incubation experiments with the 

commercial nuclear stain DAPI in MCF-7 cells, and the commercial lysosomal stain 

Lysotracker® Red in HeLa cells (figure 3.01), revealed that the complex does not cross the cell 

membrane, but does localise in the lysosomes, albeit not exclusively. Manders coefficients 

(obtained using the Coloc2 plugin in ImageJ) were used to quantify the extent of the co-

localisation between IrGd and Lysotracker® Red, with convincing values of M1/M2 = 

0.91/0.87 being observed. Cell viability after staining with IrGd at concentrations between 25-

100 μM, and for incubation times between 4-24h, was tested by MTT toxicity assay in both 

cell lines. In both cases, it was observed that as the incubation time and the IrGd 

concentration increased, the cell viability decreased; however, at the optimum imaging 

conditions (50 μM, 4h) the cell survival fraction was similar to the control experiments in 0.5-

1 % DMSO (0.8). 

In contrast, the trinuclear IrGd2 complex, when incubated with HeLa cells, performed 

poorly as a luminescent imaging agent when compared to its dinuclear IrGd counterpart[3]. A 

similar staining pattern to the dinuclear probe was observed; however, due to the trinuclear 

probe’s poor solubility in water, larger size and difference in charge (anionic compared to the 

neutral IrGd), the cellular uptake was found to be poorer for IrGd2. This observation was 

reflected in the MTT toxicity data for this complex: surprisingly, at high concentrations and 

incubation times (100 μM, 18h), the survival fractions for the HeLa cells were comparable to 
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those observed for the 1 % DMSO control experiments. In view of the lower cell viabilities 

measured for the dinuclear IrGd complex under these conditions, the measured survival 

fractions were unusually high for IrGd2 considering the complex has an additional toxic GdIII 

metal centre. This suggests that poor internalisation of IrGd2 into the cells is the cause of the 

low cytotoxicity measured, rather than the trinuclear complex being uncharacteristically 

much less toxic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As IrGd demonstrated high solubility in aqueous media and low toxicity in two 

different cell lines, the probe was considered an ideal candidate for additional cellular imaging 

studies. The probe has a triplet-based luminescent lifetime in the order of hundreds of 

nanoseconds, which is sensitive to quenching by molecular oxygen, and so further 

luminescence-based oxygen sensing experiments were conducted in the HeLa cell line. Two-

photon-phosphorescence lifetime imaging (2P-PLIM) of IrGd under increasing concentrations 

of oxygen in oxygen/nitrogen mixtures demonstrated that the IrIII-based emission lifetime 

was sensitive to changes in the oxygen partial pressure, even when fixed inside a HeLa cell 

λex: 780 nm, λem: 390-465 nm λex: 458 nm, λem: 500-550 nm Overlay 

MCF-7 Cells 

HeLa Cells 

IrGd Lysotracker Red 

λex: 561 nm, λem: 590-700 nm Overlay λex: 405 nm, λem: 500-550 nm 

Figure 3.01: Steady-state confocal images of IrGd and commercial stains DAPI and Lysotracker® 

Red. Top) MCF-7 cells stained with DAPI (λex = 780 nm, λem = 390-465 nm) and IrGd (50 μM, 4h, 

λex = 458 nm, λem = 500-550 nm). Scale bar = 10 μm.  

(Reproduced with permission from ref. 2. Copyright (2015) Royal Society of Chemistry).  

Bottom) Live HeLa cells stained with IrGd (50 μM, 18h, λex = 405 nm, λem = 500-550 nm) and 

Lysotracker® Red (λex = 561 nm, λem = 590-700 nm) Scale bar = 10 μm. 

(Reproduced with permission from ref. 3. Copyright (2016) American Chemical Society).  
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(figure 3.02). Lifetime maps with a varying colour scale from orange to blue in accordance 

with the increase of the average luminescence lifetime measured (0-1000 ns) were used to 

depict this sensitivity to oxygen. A clear change in lifetime plot colour from primarily orange 

(low lifetime value, 100 % oxygen) to primarily blue (high lifetime value, 0 % oxygen) can be 

observed with a decrease in oxygen concentration. This increase in luminescence lifetime 

compared to decrease in oxygen concentration is also depicted as a histogram, demonstrating 

a change in the average IrIII-based lifetime from τ = 435 ns (100 % oxygen) to τ = 644 ns (0 % 

oxygen). Although this difference in emission lifetime is modest between the two extremes 

of oxygen concentration, there is scope to make further modifications to the IrIII 

chromophore’s structure in the future to improve upon this sensitivity to oxygen.  

 

 

 

 

 

 

 

 

 

 

 

These results illustrate the excellent promise that the dinuclear IrGd complex shows 

as a potential dual-modal optical/MR imaging agent. It exhibited a high relaxivity value 

compared to other mononuclear GdIII complexes, and localised lysosomal staining was 

confirmed in two different cell lines, coupled with high cell viabilities (> 80 %). The emission 

from the IrIII-based centre was also shown to be sensitive to oxygen concentration, further 

establishing the complex as a potential probe for hypoxic conditions. The trinuclear IrGd2 

counterpart, however, exhibited flaws in its abilities as both an MRI contrast agent and as a 

luminescent imaging agent due to its poor solubility in aqueous media.  

Figure 3.02: Two-photon PLIM imaging of fixed HeLa cells stained with IrGd (50 μM, 
18h, λex = 760 nm) under varying concentrations of oxygen. Scale bar = 10 μm.  

(Reproduced with permission from ref. 3. Copyright (2016) American Chemical Society) 
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This chapter will present the synthesis of water-soluble ruthenium(II) bis(2,2’-

bipyridine)-based analogues of the previously-reported dinuclear and trinuclear iridium 

complexes (Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd, figure 3.03), and their assessment 

as potential dual-modal optical/MR imaging agents. The relaxivity values for the two new 

RuGdn (n = 1, 2) complexes were measured in D2O at 400 MHz and 298 K, and cellular imaging 

studies were undertaken using the HeLa cell line, with cytotoxicity being evaluated through 

clonogenic assay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The synthesis of a larger, acetylene-bridged ‘metallostar’ complex (RuGd6, figure 2.04) 

was also attempted, although issues with water solubility were an unfortunate barrier to this 

complex’s application as a dual-modal imaging agent. Progress towards a bimetallic probe 

with a triazole linking unit separating the RuII core from the pendant binding site for GdIII (Ru-

Triazole-Dyad-Gd, figure 2.04) was better, as this probe showed excellent solubility in water; 

however, in this case, time restrictions were an obstacle to the complex’s appraisal as a dual-

modal imaging agent. 

 

 

 

 

Ru-Alkyne-Dyad-Gd 

Ru-Alkyne-Triad-Gd 

Figure 3.03: Structures of the newly synthesised, water-soluble RuGdn (n = 1, 2) complexes  
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3.2) Synthesis and Characterisation 

3.2.1) Alkyne-Bridged Dinuclear, Trinuclear and ‘Metallostar’ RuII-GdIII Compounds 

The syntheses of dinuclear (Ru-Alkyne-Dyad-Gd) and trinuclear (Ru-Alkyne-Triad-Gd) 

water-soluble, acetylene-bridged complexes were achieved in a similar manner, starting from 

the corresponding monosubstituted and disubstituted phenanthroline carboxylic acid 

scaffolds, Ru-Alkyne-Dyad-Acid and Ru-Alkyne-Triad-Acid, respectively (sections 2.2 and 2.3, 

respectively).  

The dinuclear complex, Ru-Alkyne-Dyad-Gd, was synthesised in 84 % yield by stirring 

1.1 equivalents of GdCl3.6H2O with Ru-Alkyne-Dyad-Acid at room temperature in water (pH 

5-6), for eighteen hours (scheme 3.01). Purification of the compound was achieved by size-

exclusion chromatography on Sephadex® LH-20 in methanol, before counterion exchange 

from a hexafluorophosphate ion to a chloride ion using Dowex® 1x2 chloride form (100-200 

mesh) was used to improve the solubility of Ru-Alkyne-Dyad-Gd in water.  

 

 

 

 

 

 

 

 

The trinuclear complex, Ru-Alkyne-Triad-Gd, was synthesised in 69 % yield in a similar 

manner to its dinuclear counterpart (scheme 3.02); 2.6 equivalents of GdCl3.6H2O were 

stirred with Ru-Alkyne-Triad-Acid in this case to account for the additional pendant metal 

binding site, and as the resulting trinuclear compound is neutral, no counterion exchange was 

necessary. 

 

 

 

 

 

i 

Scheme 3.01: Synthetic route to Ru-Alkyne-Dyad-Gd. i) H2O (pH 5-6), GdCl3.6H2O, rt, 18h 

Ru-Alkyne-Dyad-Acid Ru-Alkyne-Dyad-Gd 
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 As GdIII is paramagnetic, characterisation of Ru-Alkyne-Dyad-Gd and Ru-Alkyne-

Triad-Gd using 1H NMR spectroscopy was not a practical option; however, as the precursor 

carboxylic acid scaffolds showed excellent purity in their 1H NMR spectra (figure 2.06 and 

figure 2.11, respectively) it can be assumed that the two GdIII-substituted compounds also 

exhibited a similar level of purity.  

In order to provide direct evidence for the successful synthesis of the target 

heteronuclear RuGdn (n = 1, 2) complexes, high-resolution mass spectrometry was employed. 

A high-resolution mass spectrum of Ru-Alkyne-Dyad-Gd (appendix 3.01) confirms successful 

isolation of the dinuclear species, as the observed m/z value for the [M – Cl + H]2+ ion 

(570.0562) matches the calculated m/z value (570.0558) well. Successful isolation of the 

trinuclear species was also confirmed using HRMS (appendix 3.02) with the calculated and 

observed m/z values for the [M + 2H]2+ species tallying well (842.5530 and 842.5664, 

respectively). In both cases, the correct isotope pattern for the GdIII ion is clear in the spectra. 

Synthesis of the heptanuclear complex Ru-Alkyne-Metallostar-Gd (RuGd6) proved to 

be more difficult than syntheses of the dinuclear and trinuclear analogues, due to the low 

solubility of the carboxylic acid precursor Ru-Alkyne-Metallostar-Acid (section 2.4) in water, 

and the insolubility of the resulting RuGd6 complex in all solvents. Ru-Alkyne-Metallostar-

Acid was stirred with GdCl3.6H2O (6.6 equivalents) at room temperature in water at pH 5-6 

(scheme 3.03). After 18 hours, a rusty brown precipitate formed, which was unique to the 

‘metallostar’ species, as the dinuclear, Ru-Alkyne-Dyad-Gd, and trinuclear, Ru-Alkyne-Triad-

Gd, analogues had remained in solution upon binding of the GdIII centres. This resulting 

precipitate was insoluble in all solvents and at all pH values where it was assumed that the 

chelation of the GdIII centres had not been compromised.  

 

Scheme 3.02: Synthetic route to Ru-Alkyne-Triad-Gd. i) H2O (pH 5-6), GdCl3.6H2O, rt, 18h 

 

i 

Ru-Alkyne-Triad-Acid Ru-Alkyne-Triad-Gd 
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To characterise the insoluble precipitate, inductively coupled plasma-mass 

spectrometry (ICP-MS) was employed to quantify the masses of the RuII and GdIII ions in the 

sample, and elemental analysis was used to quantify the percentage of carbon, hydrogen and 

nitrogen present (table 3.01). However, neither analytical technique afforded measured 

values that tallied well with the expected results. This may be as a result of excess water being 

present in the sample (we would expect that the hydrophilic exterior surface containing the 

carboxylate oxygen atoms would hydrogen-bond to water molecules). Alternatively, it could 

indicate that the target Ru-Alkyne-Metallostar-Gd compound was not successfully 

synthesised, with a partially-substituted entity precipitating out of solution before full 

incorporation of all six GdIII centres was achieved. Due to the lack of definite evidence for the 

compound’s successful synthesis, and the insolubility of the resulting precipitate in all 

solvents, unfortunately, Ru-Alkyne-Metallostar-Gd was not considered a successful 

candidate to be a dual-modal optical/MR imaging agent and was not tested further. 

 

 

 

 

 

 

 

 

 

 

 

 

Ru-Alkyne-Metallostar-Acid Ru-Alkyne-Metallostar-Gd 

Table 3.01: ICP-MS and elemental analysis results for Ru-Alkyne-Metallostar-Gd  

Analytical 
Technique 

Analyte Expected Value  Measured Value 

ICP-MS 
Ru 25,449 mg kg-1 10,200 mg kg-1 

Gd 236,646 mg kg-1 292,000 mg kg-1 

Elemental Analysis 

C 41.4 % 26.44 % 

H 2.57 % 3.00 % 

N 8.40 % 4.74 % 

 

 

 

Scheme 3.03: Unsuccessful method for the synthesis of Ru-Alkyne-Metallostar-Gd.  

i) H2O (pH 5-6), GdCl3.6H2O, rt, 18h 
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3.2.2) A Triazole-Bridged Dinuclear RuII-GdIII Compound 

A dinuclear Ru-Triazole-Dyad-Gd compound, in which the spacer unit separating the 

[Ru(bipy)2(phen)]2+ core from the GdIII binding site is a triazole entity rather than an alkyne-

bridge, was synthesised from the monosubstituted, triazole-bridged phenanthroline 

carboxylic acid scaffold (section 2.5) in excellent yield (97 %). Ru-Triazole-Dyad-Acid was 

stirred with 1.3 equivalents of GdCl3.6H2O at room temperature in water (pH 5-6) for eighteen 

hours (scheme 3.04), before purification was achieved by size-exclusion chromatography on 

Sephadex® LH-20. In an identical manner to the alkyne-bridged dinuclear compound, 

counterion exchange to a chloride ion was performed using Dowex® 1x2 chloride form (100-

200 mesh) to improve the solubility of Ru-Triazole-Dyad-Gd in water.  

Characterisation of Ru-Triazole-Dyad-Gd was achieved using HRMS (appendix 3.03), 

with the calculated and observed m/z values for the [M – Cl + H]2+ species tallying well 

(591.5644 and 591.5642, respectively), and the correct isotope pattern for the GdIII ion being 

clear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ru-Triazole-Dyad-Acid 

i 

Ru-Triazole-Dyad-Gd 

Scheme 3.04: Synthetic route to Ru-Triazole-Dyad-Gd. i) H2O (pH 5-6), GdCl3.6H2O, rt, 18h 
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3.3) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for Ru-Alkyne-Dyad-Gd, 

Ru-Alkyne-Triad-Gd and Ru-Triazole-Dyad-Gd, and extinction coefficients were measured for 

all compounds in water. Emission profiles and lifetimes of emission were recorded for all 

compounds (including as a frozen glass at 77 K for Ru-Alkyne-Dyad-Gd and Ru-Triazole-Dyad-

Gd), and the quantum yield of emission was measured for all compounds against 

[Ru(bipy)3]Cl2.6H2O in aerated water. Finally, excitation spectra were measured in each 

solvent. Due to the insolubility of the Ru-Alkyne-Metallostar-Gd precipitate, no luminescence 

studies were carried out on this compound.  

 

3.3.1) UV/Vis Absorption 

UV/Vis absorption profiles for Ru-Alkyne-Dyad-Gd, Ru-Alkyne-Triad-Gd and Ru-

Triazole-Dyad-Gd were recorded in several solvents (table 3.02), but spectra in water will be 

reviewed for comparison purposes (figure 3.04).  

 

 

 

 

 

 

 

 

 

 

 

 

The spectra for the three different RuGdn (n = 1, 2) complexes have similar features, 

although the absorption bands associated with the phenanthroline ligand vary slightly in 

energy for each complex depending on the ligand substitution. There is a high energy 

absorption band (λabs = 285 nm) appearing in all of the spectra, which represents the π→π* 

transitions on the 2,2’-bipyridine ligands, but the absorption bands for the π→π* transitions 

Figure 3.04: UV/Vis absorption spectra in H2O at 298 K. Ru-Alkyne-Dyad-Gd 

(red), Ru-Triazole-Dyad-Gd (green) and Ru-Alkyne-Triad-Gd (blue) 

250 300 350 400 450 500 550 600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

O
p

ti
c

a
l 
D

e
n

s
it

y
 /
 a

.u
.

Wavelength / nm

 Ru-Alkyne-Dyad-Gd

 Ru-Triazole-Dyad-Gd

 Ru-Alkyne-Triad-Gd



Chapter 3 - RuII-GdIII Complexes as Dual-Modal Optical/MRI Contrast Agents 

 

121 

on the phenanthroline ligands differ in energy for each complex. The trinuclear Ru-Alkyne-

Triad-Gd compound has a distinct, intense peak centred around λabs = 350 nm, compared to 

Ru-Alkyne-Dyad-Gd and Ru-Triazole-Dyad-Gd, which have less intense shoulder peaks at 

higher energy (λabs = 325 nm and λabs = 310 nm, respectively). The 1MLCT absorption bands 

are present in the range λabs = 375-550 nm for all of the compounds, but again, there are 

differences in the energies of the absorptions depending on the phenanthroline ligand 

substitution. Both of the dinuclear RuGd compounds display a broad 1MLCT absorption band 

with a maximum centred at λabs = 440 nm, which is a combination of the 1MLCT absorptions 

associated with both the 2,2’-bipyridine ligands and the 1,10-phenanthroline ligands, 

overlapping in energy. The 1MLCT absorption bands for the two different N^N ligands in Ru-

Alkyne-Triad-Gd, on the other hand, are completely distinct, with the 1MLCT absorption 

involving the 1,10-phenanthroline ligand (λabs = 485 nm) appearing as a red-shifted shoulder 

peak on the 1MLCT absorption for the 2,2’-bipyridine ligands (λabs = 435 nm). This is due to the 

extended conjugation along the phenanthroline ligand in Ru-Alkyne-Triad-Gd stabilising the 

LUMO and lowering the energy of the 1MLCT absorption for that ligand, in comparison to the 

1MLCT absorption for the 2,2-bipyridine ligands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.02: UV/Vis absorption data for Ru-Alkyne-Dyad-Gd, Ru-Alkyne-Triad-Gd and  

Ru-Triazole-Dyad-Gd at 298 K. [a]Data taken from ref. 4. 

Compound Solvent λabs (nm) [ε (x 103 M-1 cm-1)] 

[a][Ru2Gd] (11) H2O 287 [272], 320 (sh) [46], 425 (sh) [39], 456 [48] 

Ru-Alkyne-Dyad-Gd 

EtOH/MeOH  
(4:1, v:v) 

286, 327 (sh), 440 (br) 

MeOH 286, 327 (sh), 440 (br) 

H2O 286 [56], 326 (sh) [25], 443 (br) [7.5] 

MeCN 286, 326 (sh), 440 (br) 

DMF 288, 327 (sh), 445 (br) 

Ru-Alkyne-Triad-Gd 
MeOH 286, 350, 435, 486 (sh) 

H2O 286 [99], 350 [74], 435 [11], 486 (sh) [5.9] 

Ru-Triazole-Dyad-Gd 

EtOH/MeOH  
(4:1, v:v) 

285, 311 (sh), 437, 451 (sh) 

MeOH 285, 313 (sh), 437, 452 (sh) 

H2O 284 [42], 309 (sh) [14], 440 [6.1], 452 (sh) [6.3] 

DMF 287, 314 (sh), 441, 454 (sh) 
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When comparing the spectra for the three synthesised RuGdn (n = 1, 2) complexes to 

that of a similarly-structured, previously published Ru2Gd compound (11, figure 1.22)[4], it can 

be seen that the complexes have similar features (table 3.02).  

 

3.3.2) Emission 

Luminescence profiles and the lifetime of the luminescence decay for Ru-Alkyne-

Dyad-Gd, Ru-Alkyne-Triad-Gd and Ru-Triazole-Dyad-Gd were recorded in several aerated 

solvents (table 3.03), but profiles in aerated water at 298 K will be reviewed for comparison 

purposes (figure 3.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upon excitation in to the 1MLCT absorption band at λex = 440 nm, all three RuGdn (n = 

1, 2) complexes produce broad and featureless emission profiles at 298 K indicating spin-

forbidden 3MLCT {RuII→π*(N^N)} transitions. The emission is centred around λem = 665 nm for 

Ru-Alkyne-Dyad-Gd, which is red-shifted when compared to Ru-Triazole-Dyad-Gd (λem = 635 

nm). This increase in the maximum emission energy for Ru-Triazole-Dyad-Gd compared to 

Ru-Alkyne-Dyad-Gd must be as a result of exchanging the bridging unit along the 

phenanthroline ligand, as the two dinuclear complexes are otherwise isostructural. The 

maximum emission energy is red-shifted even further for Ru-Alkyne-Triad-Gd (λem = 700 nm) 

compared to the two dinuclear RuGd complexes, as the increase in conjugation along the 
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Figure 3.05: Corrected emission spectra in aerated H2O at 298 K.  

Ru-Alkyne-Dyad-Gd (red), Ru-Triazole-Dyad-Gd (green) and Ru-

Alkyne-Triad-Gd (blue) (λex = 440 nm for all spectra, slit width = 3 nm)  
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phenanthroline backbone by the addition of a second pendant metal chelate stabilises the 

LUMO energy level more than in the monosubstituted scaffolds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To directly compare the emission intensities of the three RuGdn (n = 1, 2) probes, 

excitation wavelengths were chosen where all of the complexes have the same optical density 

in the UV/Vis spectra (0.1 a.u.). It can be seen in the resulting luminescence profiles that the 

emission intensity from Ru-Triazole-Dyad-Gd is lower by a factor of 2 compared to the 

intensity of the emission from Ru-Alkyne-Dyad-Gd, with luminescence quantum yield values 

of φ = 0.011 and φ = 0.021 being measured for the dinuclear triazole-bridged and alkyne-

bridged entities, respectively. Previously, however, the quantum yield values for the two 

carboxylic acid precursor complexes, Ru-Triazole-Dyad-Acid and Ru-Alkyne-Dyad-Acid, were 

measured to be φ = 0.023 and φ = 0.020, respectively. As the quantum yield value has halved 

for Ru-Triazole-Dyad-Gd when compared to Ru-Triazole-Dyad-Acid, it suggests that 

exchanging the alkyne-bridge for a triazole unit along the phenanthroline scaffold has a 

quenching effect, but only when the GdIII centre is bound. This may also account for the 

Table 3.03: Luminescence data for Ru-Alkyne-Dyad-Gd, Ru-Alkyne-Triad-Gd and Ru-Triazole-

Dyad-Gd in aerated solvents. [a]Data taken from ref. 4. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ1, τ2

298 K (ns) 
[τ1, τ2, τ3

77 K (ns)] 
A1, A2 

(%) 
[a][Ru2Gd] (11) H2O 620 540 -- 

Ru-Alkyne-Dyad-Gd 

EtOH/MeOH 
(4:1, v:v) 

654 [612, 662 
(sh) 706 (sh)] 

304 [5280] -- 

MeOH 654 258 -- 

H2O 664 351 -- 

MeCN 665 239 -- 

DMF 671 275 -- 

Ru-Alkyne-Triad-Gd 
MeOH 690 237, 72 97, 3 

H2O 699 402, 164 20, 80 

Ru-Triazole-Dyad-Gd 

EtOH/MeOH 
(4:1, v:v) 

625  
[584, 631] 

219, 20  
[5520, 462, 23] 

[b] 

MeOH 627 220, 34 [b] 

H2O 636 536, 52 [b] 

DMF 635 229, 25 [b] 

[b]The luminescence lifetime decay curves for Ru-Triazole-Dyad-Gd were fitted by a sum of two 

exponentials, corresponding to the bound complex and to a small amount of dissociated complex in 

solution. The lifetime component ratios are insignificant, therefore, due to the different luminescence 

quantum yield values for the bound and dissociated complexes, respectively.  
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existence of two lifetime components in the luminescence decay trace for Ru-Triazole-Dyad-

Gd, compared to only one for Ru-Alkyne-Dyad-Gd. The alkyne-bridged dinuclear complex 

displays long-lived luminescence in aerated water (τ = 351 ns), whereas the triazole-bridged 

analogue exhibits both a long-lived lifetime component (τ1 = 536 ns) and a shorter-lived 

component (τ2 = 52 ns). The longer-lived component for Ru-Triazole-Dyad-Gd is most likely 

from a small portion of dissociated complex in solution, as it is the same (within experimental 

error) as the unquenched emission lifetime from Ru-Triazole-Dyad-Acid (τ = 543 ns), whilst 

the shorter lifetime component represents the genuine partially-quenched emission from the 

bound complex. The luminescence of Ru-Alkyne-Triad-Gd is quenched even further in 

comparison to the dinuclear complexes (φ = 0.006), suggesting that the presence of a second 

GdIII chelate is the source of this effect.  

Excitation spectra recorded in aerated water at 298 K for Ru-Alkyne-Dyad-Gd (λem = 

645 nm), Ru-Alkyne-Triad-Gd (λem = 680 nm) and Ru-Triazole-Dyad-Gd (λem = 635 nm) were 

overlaid with UV/Vis absorption spectra recorded in the same solvent (figure 3.06). A good 

match between the spectra can be seen, which is a clear indication that the emission observed 

for all complexes occurs as a result of absorption into the 1MLCT band.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) a) 

Figure 3.06: Normalised (at λ = max intensity) spectra in aerated H2O at 298 K. Corrected 

excitation spectra (red) and UV/Vis spectra (blue) of a) Ru-Alkyne-Dyad-Gd (λem = 645 nm),  

b) Ru-Alkyne-Triad-Gd (λem = 680 nm) and c) Ru-Triazole-Dyad-Gd (λem = 635 nm) 
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3.4) Dual-Modal Imaging 

Assessment of the two new water-soluble, acetylene-bridged ruthenium(II) bis(2,2’-

bipyridine)-based complexes (Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd) as dual-modal 

optical/MR imaging agents was undertaken. As was discussed previously, the heptanuclear 

probe, Ru-Alkyne-Metallostar-Gd, was not sufficiently water-soluble to be appraised as a 

dual-modal probe, and unfortunately, due to time restrictions, the evaluation of Ru-Triazole-

Dyad-Gd was not accomplished either.  

 

3.4.1) MRI Relaxivity Measurements 

MRI relaxivity experiments for Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd were 

carried out at 400 MHz and 298 K in D2O, alongside the commercial MRI contrast agent 

Magnevist® ([Gd(DTPA)]2-, figure 1.02) for comparison purposes. Solutions of each of the 

probes were prepared at five different concentrations (0 – 2.0 mM) and the longitudinal 

relaxation time (T1) for the residual H2O peak in each sample was measured using a standard 

inversion-recovery pulse sequence. Concentration-normalised longitudinal relaxivity values 

(r1) for each of the probes were then determined from a linear plot of longitudinal relaxation 

time against contrast agent concentration, in accordance with equation 3.01. 

 

 

 

 

 

 

 

It can be seen from linear plots for the three different contrast agents (figure 3.07), 

that when measured at 400 MHz and 298 K, the two RuGdn (n = 1, 2) probes have increased 

relaxivity values in comparison to the commercial contrast agent (table 3.04). Under these 

conditions, Magnevist® has a relaxivity value of r1 = 4.6 mM-1
 s-1, whereas Ru-Alkyne-Dyad-

Gd and Ru-Alkyne-Triad-Gd have measured values of r1 = 6.2 mM-1
 s-1 and r1 = 13.6 mM-1

 s-1, 

respectively. This increase in the measured relaxivity value for the two RuGdn (n = 1, 2) probes 

may arise from a number of factors, previously discussed in this thesis (section 1.2.1.1).  

(
1

T1
)

obs

= (
1

T1
)

0

+ r1[M] 

Equation 3.01: Equation used to calculate the relaxation rate of a contrast agent in solution. 

T1 = longitudinal relaxation time, obs = observed T1 values in the presence of contrast agent, 

0 = observed T1 value in the absence of contrast agent, r1 = relaxivity value,  

[M] = concentration of contrast agent  
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Firstly, the hydration state of each of the GdIII ions (q value) is larger for Ru-Alkyne-

Dyad-Gd and Ru-Alkyne-Triad-Gd (q = 1.6 ± 0.5)[2] compared to Magnevist® (q = 1)[5]. This 

means that more protons on water molecules can be relaxed in a shorter space of time, 

increasing the relaxivity value for the RuGdn (n = 1, 2) probes. In the future, measurement of 

the mean residence time of the bound water molecules in the first coordination sphere (τM), 

and the water co-ligand exchange rate (kex) for the probes, would confirm this.  

The number of water molecules coordinated to each of the GdIII ions (q) in Ru-Alkyne-

Dyad-Gd and Ru-Alkyne-Triad-Gd can be inferred to be the same as the previously tested 

analogous IrIII-based compounds (IrGd and IrGd2), due to the identical polyaminocarboxylate 

LnIII chelation in all of the complexes. The q value was calculated by measuring the lifetime of 

the EuIII-based emission in both H2O and D2O for the dinuclear IrEu compound (26)[2] and 

Table 3.04: Concentration-normalised longitudinal relaxivity values per GdIII 

ion (r1) for Ru-Alkyne-Dyad-Gd, Ru-Alkyne-Triad-Gd and the commercial 

MRI contrast agent Magnevist® measured at 400 MHz and 298 K in D2O 

Compound 
Relaxivity Value per 
GdIII ion (mM-1 s-1) 

Magnevist® 4.6 

Ru-Alkyne-Dyad-Gd 6.2 

Ru-Alkyne-Triad-Gd 6.8 
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Figure 3.07: Plot of concentration (mM) versus relaxation rate of water 

protons (s-1) to determine the concentration-normalised longitudinal relaxivity 

value (r1, mM-1
 s-1) for Ru-Alkyne-Dyad-Gd (red), Ru-Alkyne-Triad-Gd (blue) 

and the commercial MRI contrast agent Magnevist® (green) 
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substituting the values in to the Horrocks equation[6] (equation 3.02). The calculated value of 

q = 1.6 ± 0.5 for each GdIII centre suggests that there is an equilibrium present in solution 

between the mono(aqua) complex and the bis(aqua) complex.  

The kinetic and thermodynamic stability of the GdIII polyaminocarboxylate complex 

units in aqueous media was also inferred to be comparable to the previously tested IrIII-based 

compounds (section 2.1), with one equivalent of a competing DOTA ligand unable to strip the 

LnIII ion from the heptadentate chelate.  

 

 

 

 

 

 

 

The increased hydration state of each of the GdIII ions in Ru-Alkyne-Dyad-Gd and Ru-

Alkyne-Triad-Gd cannot be the only contributing factor to the improved relaxivity values 

measured for the complexes compared to Magnevist®, however. Although Ru-Alkyne-Triad-

Gd contains double the number of GdIII ion binding sites, and hence double the number of 

vacant water coordination sites, compared to Ru-Alkyne-Dyad-Gd, the relaxivity value per 

GdIII ion measured for Ru-Alkyne-Triad-Gd (r1 = 6.8 mM-1
 s-1) was larger than the value 

measured for Ru-Alkyne-Dyad-Gd (r1 = 6.2 mM-1
 s-1). This discrepancy can be accounted for 

by the increased size of Ru-Alkyne-Triad-Gd compared to Ru-Alkyne-Dyad-Gd.  

The larger size and rigidity of both of these complexes compared to mononuclear 

Magnevist® has a slowing effect on the rotational correlation time (τR) of the probes in 

solution. This in turn increases the rate at which the water protons relax back to their ground 

state (aligned with the applied magnetic field), as the oscillating magnetic field generated by 

the slower tumbling rate of the larger, highly paramagnetic complexes in solution has 

components closer to the specific frequency of resonance (the Larmor frequency) for 

hydrogen. This allows absorption of another photon more quickly compared to the smaller 

complexes, and hence the relaxivity value for the larger complexes is increased in comparison, 

with the relaxivity value for the largest complex, Ru-Alkyne-Triad-Gd, benefitting from this 

q = A × (
1

τH2O
−  

1

τD2O
− B) 

Equation 3.02: Equation used to calculate the number of water molecules 

coordinated to the GdIII ions in the series of RuGdn (n = 1, 2) complexes, q =  number 

of coordinated water molecules, A = ‘inner sphere’ correction factor, B = ‘outer 

sphere’ correction factor, τ = EuIII-based lifetime in each solvent 
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reduced rotational correlation time the most. In the future, direct measurement of the 

rotational correlation time (τR) of the probes in solution will confirm this.   

 

3.4.2) Cellular Imaging Studies 

Evaluation of the RuGdn (n = 1, 2) complexes as probes for optical microscopy was 

undertaken in HeLa cells, with the cytotoxicity of the potential imaging agents being assessed 

through clonogenic assay in the same cell line.  

Cells were initially incubated with either Ru-Alkyne-Dyad-Gd or Ru-Alkyne-Triad-Gd 

at concentrations of 25 μM, 50 μM and 75 μM for six or sixteen hours in fully-supplemented 

Dulbecco’s modified eagle medium (DMEM). Cells stained with either of the probes for the 

longer incubation time (16h) at all concentrations were visually unhealthy when viewed under 

the microscope, and cells stained with the lowest concentration of the probes (25 μM) 

demonstrated weak RuII-based emission even at the longer incubation times. These 

preliminary results suggested, therefore, that shorter incubation times and higher 

concentrations would be closer to the optimum imaging conditions for both of the stains.  

Further cellular staining was conducted with HeLa cells incubated with probe 

concentrations of 50 μM, 75 μM and 100 μM for four hours, or with an increased probe 

concentration (75 μM, 100 μM and 150 μM) over a shorter incubation period (two hours). In 

this instance, all of the cells stained for each incubation time, and at each concentration for 

both probes, were visually healthy when viewed under the microscope, apart from the cells 

incubated with a probe concentration of 150 μM, which were not very confluent and were 

beginning to detach from the sterile coverslip.  

RuII-based emission was observed from all of the healthy cells when imaged with a 

confocal microscope (λex = 405 nm, λem = 570-620 nm); however, the emission from the cells 

incubated with each of the probes for only two hours was weak, suggesting lower cellular 

uptake. Those cells incubated for four hours displayed brighter emission, but the images were 

still weak unless the laser power was increased, which may be a consequence of the low 

luminescence quantum yield values measured for each of the RuGdn (n = 1, 2) probes. 

Changing the excitation wavelength to λex = 457 nm or λex = 488 nm proved an unsuccessful 

remedy to this issue, as no emission was observed from either of the RuGdn (n = 1, 2) probes 

between λem = 570-620 nm or λem = 663-738 nm when excited at either of these wavelengths 
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(even at a high laser power), and no emission was observed between λem = 663-738 nm when 

the probes were excited at λex = 405 nm either.   

The optimum imaging conditions for each of the probes was taken to be an incubation 

time of four hours at a concentration of 50 μM, as this allowed for reasonable cellular uptake, 

without high levels of cytotoxicity being observed. Increasing the incubation time and probe 

concentration to levels higher than this did not improve upon the low RuII-based emission 

intensity observed from each of the probes. Example images of HeLa cells incubated with Ru-

Alkyne-Dyad-Gd (figure 3.08a-b) and Ru-Alkyne-Triad-Gd (figure 3.08c-d) show that each of 

the RuGdn (n = 1, 2) probes exhibits punctate cytoplasmic staining, with this observation more 

obvious in a 2.37x zoomed image.  

The observed staining pattern suggests that both of the probes localise in a specific 

organelle within the HeLa cells, such as the lysosomes or the mitochondria. Co-localisation 

studies were carried out, therefore, with the commercial lysosomal and mitochondrial stains 

LysoTracker® Red and MitoTracker® Red to confirm this. These particular commercial stains 

were chosen as they have low absorbance values at the excitation wavelength for Ru-Alkyne-

Dyad-Gd and Ru-Alkyne-Triad-Gd (λex = 405 nm), and therefore, emission should not have 

been detectable in the range λem = 570-620 nm, where the RuII-based emission is observed. 

This should have allowed the luminescence from the organelle stains to be easily distinguished 

from that of Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd. However, due to the low 

luminescence quantum yield values of the RuII-based probes, the laser power needed to 

produce a bright image of Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd was increased to a 

level at which the LysoTracker® Red and MitoTracker® Red probes still weakly absorbed at λex 

= 405 nm and produced observable emission in the range λem = 570-620 nm. As Ru-Alkyne-

Dyad-Gd and Ru-Alkyne-Triad-Gd only produce observable emission under these conditions, 

the co-localisation studies with these particular commercial organelle stains were 

unsuccessful.  

In future experiments, the commercial lysosomal and mitochondrial stains 

LysoTracker® Deep Red and MitoTracker® Deep Red that have no absorbance at λex = 405 nm 

rather than low absorbance values, could be used to track the localisation of Ru-Alkyne-Dyad-

Gd and Ru-Alkyne-Triad-Gd in cells. Commercial organelle stains that absorb at the same 

excitation wavelength as the RuGdn (n = 1, 2) probes, but luminesce in a different emission 

range could also be used to track the specificity of the RuGdn (n = 1, 2) probes. LysoTracker® 
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Blue may be a candidate for this as it exhibits no luminescence in the range λem = 570-620 nm 

when excited at λex = 405 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cytotoxicity of Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd towards the HeLa cell 

line under the optimum imaging conditions (50 μM, 4h), and at an increased probe 

concentration (200 μM, 4h), was assessed by clonogenic assay (figure 3.09). It can be seen 

that both of the RuGdn (n = 1, 2) probes exhibited low toxicity under the conditions used to 

image the cells, with survival fractions of > 0.85 being observed in both cases. Increasing the 

probe concentration four-fold to 200 μM had the expected effect of lowering the cell survival 

fraction in comparison to the lower probe concentration, but good viability levels were still 

Figure 3.08: Confocal images of HeLa cells incubated with a) Ru-Alkyne-Dyad-Gd 
(50 μM, 4h); b) 2.37x zoom; c) Ru-Alkyne-Triad-Gd (50 μM, 4h); d) 2.37x zoom.  

λex = 405 nm and λem = 570-620 nm for all images. Scale bars = 20 μm. 

b) 2.37x zoom 

RuGd 

a) 

RuGd2 

2.37x zoom d) c) 
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observed for both probes (> 0.8). The trinuclear probe Ru-Alkyne-Triad-Gd exhibited lower 

cell survival fractions at both probe concentrations when compared to the dinuclear Ru-

Alkyne-Dyad-Gd counterpart. Again, this result is to be expected considering that there is an 

extra GdIII binding site in the trinuclear species compared to the dinuclear species. 
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Figure 3.09: Clonogenic toxicity assay of HeLa cells incubated with Ru-Alkyne-Dyad-Gd 
and Ru-Alkyne-Triad-Gd at concentrations of 50 μM and 200 μM for 4 hours. Incubations 

were carried out in full DMEM at 37 °C under a 5 % CO2 : 95 % air (v:v) environment for 
seven to ten days until visible cell colonies had formed. Error bars represent the standard 

deviation of six data points (three repeats of a duplicate data set). 
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3.5) Summary 

The two new water-soluble, ruthenium(II) bis(2,2’-bipyridine)-based complexes, Ru-

Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd, exhibited excellent promise when evaluated as 

potential dual-modal optical/MR imaging agents. The RuGdn (n = 1, 2) probes demonstrated 

high relaxivity values compared to the commercial contrast agent, Magnevist®, when 

measured at 400 MHz and 298 K in D2O, owing to their larger size and rigidity, and to the 

increased hydration state of the GdIII centres. The relaxivity values per GdIII ion were measured 

to be r1 = 6.2 mM-1
 s-1 and r1 = 6.8 mM-1

 s-1 for Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd, 

respectively.  

Both of the RuGdn (n = 1, 2) probes also exhibited punctate cytoplasmic staining when 

incubated with HeLa cells (50 μM, 4h), however, co-localisation studies with the commercial 

lysosomal and mitochondrial stains Lysotracker® Red and Mitotracker® Red were 

unsuccessful as the emission from the RuGdn (n = 1, 2) probes was too weak and could not be 

successfully isolated from the highly luminescent commercial stains. Clonogenic toxicity 

assays of HeLa cells incubated with the two RuGdn (n = 1, 2) probes at concentrations of 50 

μM and 200 μM for four hours demonstrated that Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-

Gd exhibited low cytotoxicity, with cell survival fractions of > 0.8 being measured. 
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3.6) Future Work 

To continue this work further, it would be interesting to assess the effectiveness of 

Ru-Triazole-Dyad-Gd as a dual-modal optical/MR imaging agent to compare it to the results 

for the dinuclear acetylene-bridged complex. It would also be interesting to analyse the MRI 

functionality of the new water-soluble, acetylene-bridged RuGdn (n = 1, 2) probes in more 

detail. Measurement of the mean residence time of the bound water molecules in the first 

coordination sphere (τM), the water co-ligand exchange rate (kex) and the rotational 

correlation time (τR), would provide insight in to the increased relaxivity values measured for 

each of the probes compared to the commercial MRI contrast agent, Magnevist®. Measuring 

the r1 values for the RuGdn (n = 1, 2) probes under different experimental conditions, such as 

in a 4 % solution of human serum albumin (HSA) and in PBS, would also aid the understanding 

of how the probes are likely to behave in vivo. Creating a nuclear magnetic relaxation 

dispersion (NMRD) profile for each of the RuGdn (n = 1, 2) probes would also provide insight 

in to how the measured relaxivity values are likely to change depending on the magnet 

frequency.  

With regards to the assessment of the RuGdn (n = 1, 2) probes as luminescent imaging 

agents, further co-localisation experiments conducted with different commercial lysosomal 

and mitochondrial stains may help to elucidate which organelle the probes localise in, and to 

what extent they localise. Further to this, cell organelle extraction after staining with each of 

the RuGdn (n = 1, 2) probes, followed by ICP-MS analysis, could be used to quantify the 

amount of each of the metals in the different cell compartments.  
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3.8) Appendices 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3.02: High-resolution mass spectrum of Ru-Alkyne-Triad-Gd. 

Calculated for [C66H50N12O16RuGd2 + 2H]2+, 842.5530. 

Appendix 3.01: High-resolution mass spectrum of Ru-Alkyne-Dyad-Gd. 

Calculated for [C49H37N9O8RuGd + H]2+, 570.0558. 
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Appendix 3.03: High-resolution mass spectrum of Ru-Triazole-Dyad-Gd. 

Calculated for [C49H38N12O8RuGd + H]2+, 591.5644. 
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4.1) Introduction 

4.1.1) RuII-MnII Complexes as Dual-Modal Optical/MRI Contrast Agents 

Recently, interest in utilising high spin MnII ions as alternative paramagnetic centres 

to GdIII in T1-weighted MRI contrast agents has grown, due to increasing concern for the in 

vivo toxicity of free GdIII ions (section 1.2.2). New ligand structures are beginning to be 

explored to incorporate MnII into probes used for MR imaging purposes; however, examples 

of dual-modal optical/MRI probes based on this metal are rare, with only one recent example 

of MnO2 nanosheets integrated with [Ru(bipy)3][PF6]2 being reported[1].  

This chapter will present the synthesis and photophysical properties of two new 

water-soluble, heterometallic RuII-MnII complexes (Ru-Alkyne-Dyad-Mn and Ru-Alkyne-

Triad-Mn, figure 4.01) based on the 3- and 3,8-substituted phenanthroline scaffolds detailed 

previously (sections 2.2 and 2.3, respectively), and their assessment as dual-modal 

optical/MR imaging agents. The relaxivity values for the new RuMnn (n = 1, 2) probes were 

measured in D2O at 400 MHz and 298 K, but unfortunately assessment of the probes for 

optical microscopy was not undertaken as the RuII-based luminescence was found to be 

quenched and, therefore, was not bright enough to produce an image. The reduced emission 

intensity was found to be a consequence of possible intramolecular electron-transfer 

between the RuII and MnII centres, in a similar process to that which occurs in photosystem II 

(PSII) during photosynthesis in green plants.  

 

 

 

 

 

 

 

 

 

 

 

 

Ru-Alkyne-Dyad-Mn 

Ru-Alkyne-Triad-Mn 

Figure 4.01: Structures of the newly synthesised, water-soluble RuMnn (n = 1, 2) complexes  
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4.1.2) Photoinduced Electron-Transfer in Heterometallic RuII-MnII Complexes 

During photosynthesis, solar energy (hν) is converted into chemical energy through 

the simultaneous reduction of carbon dioxide and the oxidation of water to molecular oxygen. 

This process is very complex and comprises two stages. Firstly, light-dependent reactions 

capture the solar energy and make energy-storage molecules, before light-independent 

reactions then use these molecules to capture and reduce carbon dioxide. The light-

dependent reactions that capture the solar energy begin in the reaction centre of PSII, in 

which resides the primary photoelectron donor, P680 (a chlorophyll dimer), surrounded by 

chlorophyll-binding proteins that absorb light. Upon absorption of one photon of sunlight, 

P680 is promoted from the ground state to an excited-state, and a rapid cascade of electron-

transfer processes is triggered; eventually funnelling the electron to an acceptor quinone 

molecule (QA). This produces a [P680]+ cation, which is reduced back to P680 by electron-transfer 

from an electron donor (a tetramanganese cluster). After four electrons have been 

consecutively transferred, the manganese cluster recovers the four missing electrons by 

oxidising two water molecules, and in doing so produces molecular oxygen (figure 4.02).  

 

 

 

 

 

 

 

 

 

 

 

 

As the conversion of solar energy into fuel is an important part of sustainable energy 

production systems, heterometallic RuII-MnII complexes have been rationally designed in a bid 

to mimic the intramolecular photoinduced electron-transfer (PET) processes that occur 

during photosynthesis. Ruthenium polypyridyl complexes have been chosen as the 

photosensitising component of the PSII mimics, due to their well-studied photophysical and 

Figure 4.02: Simplified depiction of the photoinduced electron-transfer processes in 
PSII during photosynthesis in green plants. The chlorophyll dimer, P680, absorbs a 

photon of light (hν), triggering electron-transfer (ET) to an electron-acceptor molecule 
(QA). An electron-donor molecule (a MnII cluster) then transfers an electron to reduce 
the [P680]+ cation back to P680. The Mn cluster then recovers its electrons by oxidising 

two water molecules to produce molecular oxygen.  
 

P680 QA 
2H2O 

O2 + 4H+ 
MnII Cluster 

hν 

ET ET 
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photochemical properties, and due to the ease in which their structure can be synthetically 

modified. In each case, the [RuII(N^N)3]2+ complex is linked to a coordinated MnII ion through 

an organic spacer ligand (figure 4.03)[2–4].  

 

 

 

 

 

 

 

 

 

 

 

The electron-transfer processes occurring in the RuII-MnII complexes can be described 

with a simplified Jablonksi diagram (figure 4.04). Upon absorption of a photon, the RuII-MnII 

complex is promoted from the ground state to an excited MLCT state, [RuIII-ligand˙-MnII]*, in 

which an electron has formally moved from the RuII centre to one of the surrounding ligands. 

The metal now has a formal charge of 3+ and a ligand radical has formed; (re-emission of the 

photon from the MLCT state at this point would produce characteristic RuII-based 

luminescence). If instead the MnII metal centre donates an electron to the RuIII centre, a new 

charge-separated state is produced ([RuII-ligand˙-MnIII]*) in which the RuIII centre has been 

reduced back to RuII and the MnII centre has been oxidised to MnIII; (similar to the process that 

occurs in PSII between P680 and the manganese cluster). Non-radiative decay of this species 

through an oxidation process results in the complex returning to the electronic ground state, 

[RuII-ligand-MnII]. 

 

 

 

 

 

Figure 4.03: Examples of heterometallic RuII-MnII complexes studied as PSII mimics.  
(solv = a solvent molecule such as MeCN or H2O) 

 

a) R = 
 

b) R = 
 

c) R = 
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In order to observe whether electron-transfer processes are occurring in the newly 

synthesised dinuclear Ru-Alkyne-Dyad-Mn complex, femtosecond transient absorption (TA) 

spectroscopy was utilised. However, as neither the MnII or oxidised MnIII species absorb light 

significantly in the UV/visible region of the electromagnetic spectrum, formation of the MnIII 

species cannot be directly detected by TA spectroscopy. As a control experiment, therefore, 

a RuII-ZnII analogue (Ru-Alkyne-Dyad-Zn) was also synthesised and studied by TA, as the 

resulting complex is isostructural with the MnII-based complex, but the ZnII metal centre has 

a d10 electronic configuration and so is innocent with respect to the electron-transfer 

processes. Comparing the TA data for Ru-Alkyne-Dyad-Mn to Ru-Alkyne-Dyad-Zn, therefore, 

provides an efficient method to analyse whether electron-transfer processes are occurring in 

the MnII-based compound, as they definitely do not occur in the ZnII-based compound. 

 

 

 

 

 

 

 

 

 

RuII-ligand-MnII, electronic ground state 

ℎ𝑣  
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Figure 4.04: Simplified Jablonski diagram illustrating the electron-transfer processes in 
heterometallic RuII-MnII PSII mimics. The RuII metal centre absorbs a photon of light 
(hν) to produce an MLCT state in which the RuII centre has been photo-oxidised to 

RuIII. The MnII centre then transfers an electron (ET) to reduce the RuIII centre to RuII, 
oxidising to MnIII in the process. The MnIII ion then recovers its electron through an 
oxidation process and the whole molecule returns to the  electronic ground state. 

 

[RuIII-ligand·-MnII]*
 

[RuII-ligand·-MnIII]*
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4.2) Synthesis and Characterisation 

4.2.1) Alkyne-Bridged Dinuclear RuII-MnII and RuII-ZnII Compounds 

Both bimetallic heteronuclear complexes, Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-

Zn, were synthesised from the monosubstituted, alkyne-bridged phenanthroline carboxylic 

acid scaffold Ru-Alkyne-Dyad-Acid (section 2.2). One equivalent of Ru-Alkyne-Dyad-Acid was 

dissolved in water at pH 5-6 and stirred at room temperature with 1.3-1.6 equivalents of the 

appropriate metal chloride hydrate (M = Mn or Zn) for eighteen hours (scheme 4.01). The 

excess metal salt was removed by size-exclusion chromatography on Sephadex® G-15 in 

water, to produce the pure, neutral compounds in good yields (80-95 %).  

 

 

 

 

 

 

 

 

 

As ZnII is diamagnetic, the successful synthesis and isolation of pure Ru-Alkyne-Dyad-

Zn was confirmed by 1H NMR spectroscopy (figure 4.05). The aromatic region of the 1H NMR 

spectrum (400 MHz, D2O) integrates to the expected twenty-five protons, although there are 

four singlets at δ = 7.52 ppm, δ = 7.54 ppm, δ = 8.76 ppm and δ = 8.79 ppm that each integrate 

to half a proton. A two-dimensional 1H-1H NMR correlation spectrum (400 MHz, D2O) 

(appendix 4.01) confirms that these peaks correlate to either a H3 or H5 pyridine proton (δ = 

7.52 ppm and δ = 7.54 ppm) and the H2 phenanthroline proton (δ = 8.76 ppm and δ = 8.79 

ppm). These half integral values suggest the presence of two isomers in solution, which were 

not present in the 1H NMR spectrum (d6-DMSO, 500 MHz) of the starting Ru-Alkyne-Dyad-

Acid compound (figure 2.06). As the protons in question are close to the metal chelation 

centre and are only inequivalent in Ru-Alkyne-Dyad-Zn, it would suggest that the two isomers 

are brought about by the chelation of the ZnII ion in the polyaminocarboxylate binding site. 

This is further corroborated by the multiplet at δ = 3.34-3.52 ppm, which integrates as eight 

Ru-Alkyne-Dyad-M  
(M = Mn, Zn) 

i 

Ru-Alkyne-Dyad-Acid 
         

Scheme 4.01: Synthetic route to Ru-Alkyne-Dyad-M (M = Mn, Zn)  

i) H2O (pH 5-6), MCl2.XH2O (M = Mn, Zn), rt, 18h 
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protons, and represents protons on the ‘arms’ of the metal chelate. In the 1H NMR spectrum 

for the starting Ru-Alkyne-Dyad-Acid compound, the protons are equivalent and are 

represented by a singlet at δ = 3.94 ppm; however, once the ZnII ion is bound in Ru-Alkyne-

Dyad-Zn, the protons are inequivalent and manifest as a multiplet due to the presence of the 

isomers. The remaining signals in the aliphatic region of the 1H NMR spectrum represent the 

four protons closest to the pyridine ring on the metal chelate ‘arms’ (δ = 4.15 ppm), the 

residual water peak (δ = 4.79 ppm) and a small amount of unknown impurity (δ = 3.64-3.71 

ppm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Ru-Alkyne-Dyad-Mn contains a paramagnetic metal centre (MnII), characterisation 

by 1H NMR spectroscopy was not practical; however, a high-resolution mass spectrum 

(appendix 4.02) confirmed the successful synthesis of the complex, as the calculated and 

observed m/z values for the [M + 2H]2+ ion tallied well (519.0667 and 519.0658, respectively). 

Further characterisation of Ru-Alkyne-Dyad-Zn was also achieved with HRMS (appendix 

4.03), with the calculated m/z value for the [M + 2H]2+ ion (523.5623) matching the m/z value 

found (523.5632).  

 

Figure 4.05: 1H NMR spectrum (400 MHz, D2O) of Ru-Alkyne-Dyad-Zn at 298 K. 
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring) 
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4.2.2) Alkyne-Bridged Trinuclear RuII-MnII
2

 and RuII-ZnII
2 Compounds 

Both trinuclear, acetylene-bridged compounds (Ru-Alkyne-Triad-Mn and Ru-Alkyne-

Triad-Zn) were synthesised in an analogous manner to their dinuclear counterparts (Ru-

Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-Zn) (scheme 4.02). The starting alkyne-bridged, 

phenanthroline carboxylic acid scaffold in this case was the disubstituted complex, Ru-

Alkyne-Triad-Acid (section 2.3), and 2.4-4.8 equivalents of the appropriate metal chloride 

hydrate (M = Mn or Zn) was added to the reaction mixture to account for the extra vacant 

metal binding site. The pure compounds were produced in good yields (67-82 %), however, 

they were lower than the yields achieved for the dinuclear analogues. This was a consequence 

of incomplete incorporation of both of the metal centres, affording small amounts of the 

monosubstituted products. 

 

 

 

 

 

 

 

 

Again, 1H NMR spectroscopy (400 MHz, D2O) was used to confirm the successful 

synthesis and isolation of pure Ru-Alkyne-Triad-Zn (figure 4.06). When compared to the 1H 

NMR spectrum (400 MHz, D2O) of the starting Ru-Alkyne-Triad-Acid complex (figure 2.11), it 

can be seen that the aromatic region for Ru-Alkyne-Triad-Zn is almost identical to that of the 

starting carboxylic acid compound. The signal integrals tally to the expected twenty-six 

protons; however, the four H3/H5 pyridine protons, which are equivalent in the starting Ru-

Alkyne-Triad-Acid complex and are represented by a singlet at δ = 7.69 ppm, are inequivalent 

in Ru-Alkyne-Triad-Zn and are represented by two broad singlets between δ = 7.55-7.83 ppm 

(corroborated by a two-dimensional 1H-1H NMR correlation spectrum (400 MHz, D2O, 

appendix 4.04)). Similar to the dinuclear Ru-Alkyne-Dyad-Zn complex, this suggests the 

presence of isomers in the sample brought about by the chelation of the ZnII ions in the 

polyaminocarboxylate binding sites. Further evidence for this lies in the aliphatic region of the 

Scheme 4.02: Synthetic route to Ru-Alkyne-Triad-M (M = Mn, Zn).  

i) H2O (pH 5-6), MCl2.XH2O (M = Mn, Zn), rt, 18h 

18h 

i 

Ru-Alkyne-Triad-Acid 
         

Ru-Alkyne-Triad-M (M = Mn, Zn) 
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1H NMR spectrum for Ru-Alkyne-Triad-Zn. Unlike the two distinct singlet peaks at δ = 4.16 

ppm and δ = 4.74 ppm that represent the metal chelate ‘arms’ in the 1H NMR spectrum of the 

Ru-Alkyne-Triad-Acid complex, there are a number of broad peaks whose integrals together 

add up to the twenty-four metal chelate protons in the spectrum for Ru-Alkyne-Triad-Zn. This 

suggests that the protons are no longer equivalent once the ZnII ions are bound. The remaining 

signals in the spectrum are for the residual water peak (δ = 4.79 ppm) and a small amount of 

methanol (δ = 3.34 ppm) in the sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High-resolution mass spectra were recorded for both Ru-Alkyne-Triad-Zn and Ru-

Alkyne-Triad-Mn (appendices 4.05 and 4.06, respectively). In both cases the calculated and 

observed m/z values for the [M – 2Na]2- ion agreed well (748.0553 and 748.0532 for Ru-

Alkyne-Triad-Zn, respectively, and 739.0631 and 739.0598 for Ru-Alkyne-Triad-Mn, 

respectively). 

 

 

 

 

Figure 4.06: 1H NMR spectrum (400 MHz, D2O) of Ru-Alkyne-Triad-Zn at 298 K.  
(Hb = proton on bipyridine ligand, Hp = proton on phenanthroline ligand,  

Hpy = proton on pyridine ring) 
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4.3) MRI Relaxivity  

MRI relaxivity experiments for Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Triad-Mn were 

carried out in D2O at 400 MHz and 298 K, alongside the commercial GdIII-based MRI contrast 

agent, Magnevist® ([Gd(DTPA)]2-, figure 1.02), for comparison purposes. Solutions of each of 

the probes were prepared at five different concentrations (0 – 2.0 mM) and the longitudinal 

relaxation time (T1) for the residual H2O peak in each sample was measured using a standard 

inversion-recovery pulse sequence. Concentration-normalised longitudinal relaxivity values 

(r1) for each of the probes were then determined from a linear plot of longitudinal relaxation 

time against contrast agent concentration, in accordance with equation 3.01. 

From linear plots of the two RuMnn (n = 1, 2) complexes (figure 4.07) it can be seen 

that when measured at 400 MHz and 298 K, Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Triad-Mn 

have respectable relaxivity values of r1 = 3.7 mM-1
 s-1 and r1 = 4.8 mM-1

 s-1, respectively. Under 

the same experimental conditions, the commercial GdIII-based MRI contrast agent, 

Magnevist®, has a similar relaxivity value of r1 = 4.6 mM-1
 s-1, and the previously synthesised 

GdIII-based analogues, Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd, have larger relaxivity 

values of r1 = 6.2 mM-1
 s-1 and r1 = 13.6 mM-1

 s-1, respectively (table 4.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.07: Plot of concentration (mM) versus relaxation rate of water protons (s-1) 

to determine the concentration-normalised longitudinal relaxivity value (r1, mM-1
 s-1) 

for Ru-Alkyne-Dyad-Mn (orange), Ru-Alkyne-Triad-Mn (purple), Ru-Alkyne-Dyad-Gd 

(red), Ru-Alkyne-Triad-Gd (blue) and the commercial MRI contrast agent, Magnevist® 

(green) 
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 The lower relaxivity values measured for the two RuMnn (n = 1, 2) complexes in 

comparison to their GdIII-based analogues is to be expected, as high spin MnII ions have less 

unpaired electrons compared to GdIII ions (five and seven, respectively). This means that MnII 

has a lower magnetic moment (5.92 μB) than GdIII (7.94 μB), and so the relaxivity values 

achievable by MnII-based complexes are lower than those achievable by the analogous 

complexes based on GdIII ions. The d-block MnII ion also has a much smaller ionic radius 

compared to the lanthanide ion, GdIII. This results in the MnII ion being able to make fewer 

coordination bonds than the GdIII ion, and so the number of vacant coordination sites for 

water molecules to bind will be reduced in the RuMnn (n = 1, 2) complexes compared to the 

analogous RuGdn (n = 1, 2) complexes. This in turn will have a reducing effect on the relaxivity 

value measured for the MnII-based probes, as less protons on water molecules can be relaxed 

over a period of time.  

The hydration state of each of the GdIII ions (q value) in Ru-Alkyne-Dyad-Gd and Ru-

Alkyne-Triad-Gd was previously reported to be (q = 1.6 ± 0.5)[5], which suggests that there 

may be an equilibrium present in solution between the mono(aqua) complex and the 

bis(aqua) complex. Determining the q value for the analogous MnII-based probes is not a 

straightforward undertaking, however; as, unlike the LnIII-based complexes, using time-

resolved luminescence measurements is not an option. Instead, the Caravan group have 

devised a method to estimate the hydration state of various MnII complexes using 17O NMR 

line widths[6]. High spin MnII ions bound in different chelating ligands were found to have 

variable q values depending on their coordination environment. MnII ions bound in trans-1,2-

diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) were shown to make 6 coordination 

Table 4.01: Concentration-normalised longitudinal relaxivity values (r1) for 

Ru-Alkyne-Dyad-Mn, Ru-Alkyne-Triad-Mn, Ru-Alkyne-Dyad-Gd, Ru-Alkyne-

Triad-Gd and the commercial GdIII-based MRI contrast agent, Magnevist®, 

measured in D2O at 400 MHz and 298 K  

Compound 
Relaxivity Value 

(mM-1 s-1) 

Magnevist® 4.6 

Ru-Alkyne-Dyad-Mn 3.7 

Ru-Alkyne-Triad-Mn 4.8 

Ru-Alkyne-Dyad-Gd 6.2 

Ru-Alkyne-Triad-Gd 13.6 
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bonds to the chelate, with one vacant coordination site available for a water coligand (q = 0.9) 

(29, figure 4.08), whereas MnII ions bound in DTPA (the same ligand as GdIII-based Magnevist®, 

which has q = 1) (30, figure 4.08) made seven to eight coordination bonds and had no water 

coligands (q = 0). As the polyaminocarboxylate chelate(s) in the newly synthesised RuMnn (n 

= 1, 2) complexes are similar to these structures, it can be tentatively assumed that the MnII 

ion(s) bound in Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Triad-Mn behave in a similar manner and 

have inner-sphere hydration states between q = 0 – 0.9. In the future, measurement of the 

MnII hydration state of the polyaminocarboxylate chelate in Ru-Alkyne-Dyad-Mn and Ru-

Alkyne-Triad-Mn would confirm this.  

 

 

 

 

 

 

 

 

 

As was previously discussed for the GdIII-based analogues, Ru-Alkyne-Dyad-Gd and 

Ru-Alkyne-Triad-Gd (section 3.4.1), the increased size of Ru-Alkyne-Dyad-Mn and Ru-

Alkyne-Triad-Mn compared to Magnevist® will also have had an effect on the measured 

relaxivity values. The larger size and rigidity of both of the RuMnn (n = 1, 2) complexes will 

have had a slowing effect on the rotational correlation time (τR) of the probes in solution, 

which in turn will have increased the r1 value. The water protons will have relaxed back to 

their ground state (aligned with the applied magnetic field) at an increased rate, as the 

oscillating magnetic field generated by the slower tumbling rate of the larger, paramagnetic 

complexes in solution will have had components closer to the specific frequency of resonance 

(the Larmor frequency) for hydrogen. This will have allowed absorption of another photon 

more quickly for Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Triad-Mn compared to the smaller 

complex, Magnevist®. In the future, measurement of the rotational correlation time (τR) of 

the probes in solution will confirm this.   

Figure 4.08: Examples of MnII-based complexes studied for their hydration values. 
29) [Mn(CDTA)(H2O)]2-, 30) [Mn(DTPA)]3- 
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4.4) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for Ru-Alkyne-Dyad-Mn, 

Ru-Alkyne-Dyad-Zn, Ru-Alkyne-Triad-Mn and Ru-Alkyne-Triad-Zn, and extinction 

coefficients were measured for all compounds in water. Emission profiles and lifetimes of 

emission were recorded for all compounds (including as a frozen glass at 77 K for Ru-Alkyne-

Dyad-Mn and Ru-Alkyne-Dyad-Zn), and the quantum yield of emission was measured for all 

compounds against [Ru(bipy)3]Cl2.6H2O in aerated water. Finally, excitation spectra were 

measured in each solvent.  

 

4.4.1) UV/Vis Absorption  

UV/Vis absorption profiles for Ru-Alkyne-Dyad-Mn, Ru-Alkyne-Dyad-Zn, Ru-Alkyne-

Triad-Mn and Ru-Alkyne-Triad-Zn were recorded in several solvents (table 4.02), but spectra 

in water will be reviewed for comparison purposes (figure 4.09).  

 

 

 

 

 

  

 

 

 

 

 

 

The spectra for the dinuclear Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-Zn complexes 

are consistent with those measured for the monosubstituted phenanthroline carboxylic acid 

scaffold (section 2.2.2.1) and for the dinuclear Ru-Alkyne-Dyad-Gd complex (section 3.3.1), 

and the spectra for the trinuclear Ru-Alkyne-Triad-Mn and Ru-Alkyne-Triad-Zn complexes 

are consistent with those measured for the disubstituted phenanthroline carboxylic acid 

scaffold (section 2.3.2.1) and for the trinuclear Ru-Alkyne-Triad-Gd complex (section 3.3.1). 
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Figure 4.09: UV/Vis absorption spectra in aerated H2O at 298 K. 

Ru-Alkyne-Dyad-Zn (blue), Ru-Alkyne-Triad-Zn (green),  

Ru-Alkyne-Dyad-Mn (red) and Ru-Alkyne-Triad-Mn (pink)  

at 298 K.  
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There are high energy absorption bands (λabs = 285 nm) representing the π→π* transitions 

on the 2,2’-bipyridine ligands in the spectra for all four complexes. The π→π* transitions on 

the phenanthroline ligands lie in the range λabs = 300-350 nm, with the absorption band for 

the disubstituted phenanthroline ligand in Ru-Alkyne-Triad-Mn and Ru-Alkyne-Triad-Zn 

having a maximum at lower energy (λabs = 350 nm) than the monosubstituted phenanthroline 

scaffold in Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-Zn (λabs = 325 nm), due to the extended 

conjugation in the disubstituted scaffold stabilising the LUMO more than in the 

monosubstituted ligand. The 1MLCT absorption bands are in the range λabs = 375-550 nm for 

all of the compounds, and parallel to their RuGdn (n = 1, 2) counterparts, the 1MLCT 

absorption band for the phenanthroline ligand either overlaps in energy (λabs = 440 nm) with 

that of the 2,2’-bipyridine ligands (in Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-Zn) or 

manifests as a red-shifted shoulder peak (λabs = 480 nm) in Ru-Alkyne-Triad-Mn and Ru-

Alkyne-Triad-Zn. Again, this is due to the extra stabilisation of the LUMO from the extended 

conjugation in the disubstituted phenanthroline ligand lowering the absorption energy.  

When comparing the spectra for the four synthesised RuMn (M = Mn, Zn, n = 1, 2) 

complexes to that of a similarly-structured, previously published Ru.Mn compound (28b, 

figure 4.03)[2], it can be seen that the complexes have similar features (table 4.02).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.02: UV/Vis absorption data for Ru-Alkyne-Dyad-Mn, Ru-Alkyne-Dyad-Zn, Ru-Alkyne-

Triad-Mn and Ru-Alkyne-Triad-Zn at 298 K. [a]Data taken from ref. 2. 

Compound Solvent λabs (nm) [ε (x 103 M-1 cm-1)] 

[a]Ru.Mn (28b) MeCN 245, 253, 287, 453 

Ru-Alkyne-Dyad-Mn 

EtOH/MeOH (4:1, v:v) 286, 325 (sh), 440 (br) 

MeOH 286, 325 (sh), 440 (br) 

H2O 285 [80], 325 (sh) [34], 441 (br) [10] 

DMF 288, 327 (sh), 444 (br) 

Ru-Alkyne-Dyad-Zn 

EtOH/MeOH (4:1, v:v) 286, 326 (sh), 440 (br) 

MeOH 286, 326 (sh), 440 (br) 

H2O 285 [30], 326 (sh) [13], 440 (br) [3.9] 

DMF 289, 328 (sh), 447 (br) 

Ru-Alkyne-Triad-Mn 
MeOH 287, 351, 435, 481 (sh) 

H2O 286 [86], 350 [59], 435 [7.9], 481 (sh) [4.4] 

Ru-Alkyne-Triad-Zn 
MeOH 286, 349, 435, 478 (sh) 

H2O 285 [88], 348 [55], 435 [9.2], 478 (sh) [5.3] 
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4.4.2) Emission 

Luminescence profiles and the lifetime of the luminescence decay for Ru-Alkyne-

Dyad-Mn, Ru-Alkyne-Dyad-Zn, Ru-Alkyne-Triad-Mn and Ru-Alkyne-Triad-Zn were recorded 

in several aerated solvents (table 4.03), but profiles in aerated water at 298 K will be reviewed 

for comparison purposes (figure 4.10). To directly compare the emission intensities of the 

four RuMn (M = Mn, Zn, n = 1, 2) compounds, excitation wavelengths were chosen where all 

of the complexes have the same optical density in the UV/Vis spectra (0.1 a.u.). It can be seen 

in the resulting luminescence profiles that upon excitation in to the 1MLCT absorption bands 

at λex = 430-440 nm, all of the complexes produce broad and featureless emission profiles at 

298 K indicating spin-forbidden 3MLCT {RuII→π*(N^N)} transitions; however, the maximum 

emission energy and emission intensity varies depending on the phenanthroline ligand 

substitution and the metal ion bound within the polyaminocarboxylate chelate.   

 

 

 

 

 

 

 

 

 

 

 

 

 

As was recorded previously for the monosubstituted and disubstituted 

phenanthroline carboxylic acid scaffolds (sections 2.2.2.2 and 2.3.2.2) and the analogous 

RuGdn (n = 1, 2) complexes (section 3.3.2), extending the conjugation along the 

phenanthroline backbone by the addition of a second pendant metal chelate in RuM2 (M = 

Mn, Zn), lowers the maximum emission energy of the 3MLCT transition from λem = 660 nm for 

the dinuclear complexes (Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-Zn), to λem = 700 nm for 

Figure 4.10: Corrected emission spectra in aerated H2O at 298 K. Ru-Alkyne-Dyad-Zn 

(blue, λex = 440 nm), Ru-Alkyne-Triad-Zn (green, λex = 435 nm), Ru-Alkyne-Dyad-Mn 

(red, λex = 430 nm) and Ru-Alkyne-Triad-Mn (pink, λex = 435 nm) (Slit width = 3 nm) 
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the trinuclear complexes (Ru-Alkyne-Triad-Mn and Ru-Alkyne-Triad-Zn), and also 

significantly reduces the quantum yield values (φ = 0.019 and φ = 0.006, for Ru-Alkyne-Dyad-

Zn and Ru-Alkyne-Triad-Zn, respectively and φ = 0.004 and φ = 0.0008, for Ru-Alkyne-Dyad-

Mn and Ru-Alkyne-Triad-Mn, respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binding of the two different metal ions (MnII and ZnII) in the polyaminocarboxylate 

chelate also has a profound effect on the RuII-based emission intensity measured for each of 

the complexes. When comparing the spectra for the two dinuclear complexes (Ru-Alkyne-

Dyad-Mn and Ru-Alkyne-Dyad-Zn) it can be seen that the intensity of the emission is lower 

by a factor of 5 when the metal ion is MnII compared to ZnII; a result supported by the 

measured luminescence quantum yield values (φ = 0.004 and φ = 0.019, for Ru-Alkyne-Dyad-

Mn and Ru-Alkyne-Dyad-Zn, respectively). This observation is mirrored in the emission 

Table 4.03: Luminescence data for Ru-Alkyne-Dyad-Mn, Ru-Alkyne-Dyad-Zn, Ru-Alkyne-Triad-

Mn and Ru-Alkyne-Triad-Zn in aerated solvents. [a]Data taken from ref. 2. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ1, τ2, τ3 

298 K (ns) 
[τ1, τ2

 77 K (µs)] 
A1, A2 (%) 

[a]Ru.Mn (28b) MeCN 640  2.2 -- 

Ru-Alkyne-Dyad-Gd H2O 664 351 -- 

Ru-Alkyne-Dyad-Mn 

EtOH/MeOH 
(4:1, v:v) 

652 [612, 660 
(sh), 709 (sh)] 

275, 54 
[1.8, 0.45, 0.05] 

[b] 

MeOH 652 241, 58 [b] 

H2O 657 410, 91 [b] 

DMF 666 284, 29 [b] 

Ru-Alkyne-Dyad-Zn 

EtOH/MeOH 
(4:1, v:v) 

654 [617, 668 
(sh), 720 (sh)] 

266 [5.6] -- 

MeOH 658 234 -- 

H2O 666 329 -- 

DMF 673 277 -- 

Ru-Alkyne-Triad-Gd H2O 699 402, 164 20, 80 

Ru-Alkyne-Triad-Mn 
MeOH 694 225, 59, 2 [b] 

H2O 700 456, 164, 21 [b] 

Ru-Alkyne-Triad-Zn 
MeOH 688 231, 95 89, 11 

H2O 695 301, 117 55, 45 

 [b]The luminescence lifetime decay curves for Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Triad-Mn 

were fitted by a sum of two or three exponentials, corresponding to the bound complex and to a 

small amount of dissociated complex in solution. The lifetime component ratios are insignificant, 

therefore, due to the different luminescence quantum yield values for the bound and dissociated 

complexes, respectively.  

 

 

 

 

 

 

 

 

* longer lifetime ascribed to small % of unbound acid in sample 
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spectra for the trinuclear complexes (Ru-Alkyne-Triad-Mn and Ru-Alkyne-Triad-Zn) in which 

the luminescence is partially quenched for the Ru-Alkyne-Triad-Mn complex compared to Ru-

Alkyne-Triad-Zn. Again, the measured quantum yield values reflect the diminished 

luminescence in the MnII-based complex (φ = 0.0008 and φ = 0.006, for Ru-Alkyne-Triad-Mn 

and Ru-Alkyne-Triad-Zn, respectively). When comparing the quantum yield values for the 

four RuMn (M = Mn, Zn, n = 1, 2) compounds to the starting carboxylic acid complexes, Ru-

Alkyne-Dyad-Acid and Ru-Alkyne-Triad-Acid (φ = 0.020 and φ = 0.006, respectively), it can 

be seen that the values for the ZnII-based complexes are the same within experimental error. 

This indicates, therefore, that the RuII-based luminescence is only partially quenched when 

MnII ion(s) are bound in the polyaminocarboxylate chelate(s). 

A possible explanation for the observed partial quenching of the RuII-based 

luminescence could be that coordination of the MnII ion(s) induces a change in the electronic 

properties of the [Ru(bipy)2(phen)]2+ centre. However, as there are no significant differences 

between the absorption and emission spectra for the starting carboxylic acid complexes and 

the RuMnn (n = 1, 2) complexes, this suggests that the excited-state energy and the electronic 

structure are not affected by the MnII ion(s). Instead, the partial quenching of the RuII-based 

luminescence in the RuMnn (n = 1, 2) complexes is most likely a result of photoinduced 

energy-transfer (PEnT) between the two different metal centres, as has been reported for 

previous heterometallic RuII-MnII complexes[8]. MnII-based complexes possess low-energy 

excited-states, but population of these states from the ground state is spin-forbidden and, 

therefore, the transitions are not observed in the absorption spectra. Instead population of 

these low-energy excited-states can occur as a result of PEnT from the excited 

[Ru(bipy)2(phen)]2+ centre, which has a main (0-0) emission band between λem = 610-645 nm. 

The lifetimes of the RuII-based luminescence decay were measured for each of the 

four RuMn (M = Mn, Zn, n = 1, 2) complexes (table 4.03), with the results corroborating the 

trends observed with regards to the partial quenching of the emission in the MnII-based 

complexes. The curves for the dinuclear Ru-Alkyne-Dyad-Zn complex were fitted as 

monoexponential decays in each of the different solvents, with the lifetime values extracted 

(τ ≈ 250-350 ns) approximately matching those of the analogous dinuclear Ru-Alkyne-Dyad-

Gd complex (within experimental error), in which the luminescence is not partially quenched. 

The decay traces for the dinuclear Ru-Alkyne-Dyad-Mn complex were fitted by a sum of two 

exponentials, however; with a longer-lived component (τ1 ≈ 250-350 ns) and a shorter-lived 
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component (τ2 < 100 ns) being observed. As the longer-lived component has the same 

magnitude as the lifetime for the unquenched emission in the Ru-Alkyne-Dyad-Zn and Ru-

Alkyne-Dyad-Gd compounds, it is assumed that this value corresponds to a small amount of 

dissociated complex in solution (the starting carboxylic acid complex), as a result of the MnII 

ion leaching out of the chelate in a competitive solvent. The shorter-lived component, 

therefore, can be assigned as the lifetime of the partially quenched RuII-based decay from the 

non-dissociated Ru-Alkyne-Dyad-Mn complex.  

The trinuclear complexes follow a similar pattern to the dinuclear complexes. The 

lifetime values for the RuII-based luminescence in Ru-Alkyne-Triad-Zn were extracted from a 

biexponential decay curve and are similar (within experimental error) to those of the 

unquenched emission observed for Ru-Alkyne-Triad-Gd in each of the solvents (τ1 ≈ 300 ns 

and τ2 ≈ 100 ns). The RuII-based emission from the Ru-Alkyne-Triad-Mn complex, however, 

has three lifetime components, with two matching those of the unquenched dissociated 

carboxylic acid complex (τ1 ≈ 300 ns and τ2 ≈ 100 ns) and one very short-lived lifetime (τ3 < 21 

ns) representing the RuII-based decay from the bound Ru-Alkyne-Triad-Mn complex. 

If we take the shorter-lived lifetime components for each of the RuMnn (n = 1, 2) 

complexes (τq = 91 ns for Ru-Alkyne-Dyad-Mn, and τq = 21 ns for Ru-Alkyne-Triad-Mn, which 

we assume represent the partially quenched RuII-based luminescence), and the lifetime 

values for the unquenched emission in the RuZnn (n = 1, 2) complexes (τ = 329 ns for Ru-

Alkyne-Dyad-Zn, and τ = 117 ns for Ru-Alkyne-Triad-Zn), the rate of the emission quenching 

(kq) in aerated water for each of the complexes can be calculated using equation 4.01. For Ru-

Alkyne-Dyad-Mn this gives a value of kq = 7.9 x 106 s-1 and for Ru-Alkyne-Triad-Mn a rate of 

kq = 3.9 x 107 s-1.  

 

 

 

 

 

In order to ascertain that the quenching of the RuII-based emission was due to an 

intramolecular process rather than an intermolecular interaction, i.e. occurs between metal 

centres in the same molecule not on different molecules, time-resolved luminescence 

measurements were carried out on increasing concentrations of Ru-Alkyne-Dyad-Mn in 

kq= 
1

τq
 - 

1

τ
 

Equation 4.01: Equation used to calculate the rate constant for the RuII-based emission 

quenching (kq) in RuMnn (n = 1, 2)  complexes. τ and τq are the unquenched (M = Zn) and 

quenched (M = Mn) lifetimes, respectively.    
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aqueous solution. The RuII-based emission lifetime values measured were constant across 

increasing concentrations of Ru-Alkyne-Dyad-Mn, demonstrating that the RuII-based 

emission quenching is independent of concentration and, therefore, occurs as a result of 

interaction within the molecules of Ru-Alkyne-Dyad-Mn. 

Excitation spectra recorded in aerated water at 298 K for Ru-Alkyne-Dyad-Mn (λem = 

640 nm), Ru-Alkyne-Dyad-Zn (λem = 645 nm), Ru-Alkyne-Triad-Mn (λem = 675 nm) and Ru-

Alkyne-Triad-Zn (λem = 690 nm) were overlaid with UV/Vis absorption spectra recorded in the 

same solvent (figure 4.11). A good match between the spectra can be seen, which is a clear 

indication that the emission observed for all complexes occurs as a result of absorption into 

the 1MLCT band.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Normalised (at λ = 440 nm) spectra in aerated H2O at 298 K. Corrected 

excitation spectra (red) and UV/Vis spectra (blue) of a) Ru-Alkyne-Dyad-Mn (λem = 640 nm), 

b) Ru-Alkyne-Dyad-Zn (λem = 645 nm), c) Ru-Alkyne-Triad-Mn (λem = 675 nm) and  

d) Ru-Alkyne-Triad-Zn (λem = 690 nm) 
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4.4.3) Stability Experiment 

The thermodynamic and kinetic stability of the d-block metal ions (MnII and ZnII) 

bound within the polyaminocarboxylate chelate was measured by luminescence 

spectroscopy (figure 4.12), as there was evidence of complex dissociation in aqueous solution 

from the time-resolved luminescence measurements. Ru-Alkyne-Dyad-Mn was dissolved in 

aerated water at a concentration of 1 x 10-5 M in the presence of one equivalent of the 

competing ligand EDTA (the hexadentate acyclic ligand ethylenediaminetetraacetic acid, used 

to sequester metal ions). The RuII-based emission intensity was then monitored by measuring 

a luminescence spectrum (λex = 440 nm) at various time intervals. 

 

  

 

 

 

 

 

 

 

 

 

 

 

It can be seen in the initial luminescence spectrum, in which there is no EDTA present 

in the solution, that the emission intensity is partially quenched (2.5 x 105 a.u.) as the MnII 

ions are bound within the chelate. Upon the addition of the metal scavenging ligand EDTA (at 

t = 0), there is an immediate increase in the RuII-based emission intensity by a factor of 3 (7.5 

x 105 a.u.). This suggests that a portion of the kinetically labile MnII ions have been stripped 

from the Ru-Alkyne-Dyad-Mn complex, and an equilibrium has been established in solution 

between the unquenched emission from the dissociated Ru-Alkyne-Dyad-Acid starting 

complex and the partially quenched emission from the non-dissociated Ru-Alkyne-Dyad-Mn 

complex.  
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Figure 4.12: Kinetic stability experiment of Ru-Alkyne-Dyad-Mn (1 x 105 M) 

with EDTA (1:1) in aqueous solution (λex = 440 nm) 
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A steady increase in the RuII-based emission intensity is seen up to 6 hours after the 

initial addition of the EDTA ligand (8.5 x 105 a.u.), as more of the MnII ions are competitively 

leached out of the polyaminocarboxylate chelate. This is in contrast to the kinetic stability of 

a LnIII ion bound within the chelate, which was discussed previously (section 2.1). When one 

equivalent of a competing DOTA ligand was added to the dinuclear IrEu complex (26), there 

was no evidence to suggest that there was any significant leaching of the EuIII ion out of the 

polyaminocarboxylate chelate over a similar time period. This is most likely due to the 

different number of stabilising coordination bonds that the metals can make to the chelate. 

LnIII ions are larger than d-block metal ions and are known to make 8-9 coordination bonds, 

whereas high-spin MnII ions have been observed to make only 5-8 coordination bonds[6] and 

so are stabilised to a lesser extent. However, it is worth noting that the kinetics of LnIII-

complex formation with macrocyclic ligands such as DOTA is slow compared to complex 

formation with acyclic ligands such as EDTA, and so the results measured for the kinetic 

stability of each metal centre (EuIII vs. MnII) cannot be absolutely compared.  

After 22 hours, a steady decrease in the RuII-based emission intensity can be seen for 

Ru-Alkyne-Dyad-Mn (6 x 105 a.u.), which suggests that the EDTA ligand has now compromised 

the kinetically inert RuII metal centre as well.  
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4.5) Photoinduced Electron-Transfer 

Femtosecond TA spectroscopy was utilised in order to probe whether photoinduced 

electron-transfer (PET) processes were occurring in the newly synthesised dinuclear Ru-

Alkyne-Dyad-Mn complex. However, as neither the MnII or oxidised MnIII species absorb light 

significantly in the UV/visible region of the electromagnetic spectrum, formation of the MnIII 

species cannot be directly detected by TA spectroscopy. As a control experiment, therefore, 

the dinuclear Ru-Alkyne-Dyad-Zn complex was also analysed under identical experimental 

conditions, as the ZnII metal centre has a d10 electronic configuration and so is innocent with 

respect to the PET processes. Comparing the TA data for Ru-Alkyne-Dyad-Mn to Ru-Alkyne-

Dyad-Zn provides an efficient method to analyse whether electron-transfer processes are 

occurring in the the MnII-based complex, as they definitely do not occur in the ZnII-based 

complex. All transient absorption data was acquired in the Laser Laboratory in the Chemistry 

Department at the University of Sheffield and was analysed by PhD student James Shipp. 

Excitation (λex = 400 nm) of a solution of either Ru-Alkyne-Dyad-Zn or Ru-Alkyne-

Dyad-Mn in aerated water with a 40 fs pulse, followed by measurement of the absorption 

spectra at a series of time delays up to seven nanoseconds, produced similarly shaped 

differential TA spectra for both Ru-Alkyne-Dyad-Zn (figure 4.13a) and Ru-Alkyne-Dyad-Mn 

(figure 4.13b). There are positive signals that have maxima at λabs = 367 nm and λabs = 456 nm 

present in both spectra, as well as a broad absorption in the range λabs = 500-700 nm with a 

maximum at λabs = 620 nm. These transient spectral features approximately resemble those 

of the [phen]·- radical anion in other reduced metal complexes such as [ReICl(CO)3(phen·-)]-[9]. 

There are also negative signals that have minima at λabs = 442 nm and λabs = 480 nm, which 

can be ascribed to bleaching of the ground state MLCT.  

Analysis of the dynamics of the transient signals for each of the heteronuclear 

complexes reveals different decay kinetics for Ru-Alkyne-Dyad-Zn and Ru-Alkyne-Dyad-Mn, 

however. For the dinuclear Ru-Alkyne-Dyad-Zn complex (figure 4.13c) two lifetime 

components were extracted; a long-lived component (blue trace) that does not completely 

decay over the pump-probe delay period, and a much shorter-lived component (green trace) 

with a lifetime of τ = 6 ps. This shorter-lived component can be ascribed to fast vibrational 

cooling within the complex, and the longer-lived component (which is much larger than the 

time-limit of the experiment) can be ascribed to the lifetime of the emission from the Ru-
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based 3MLCT state, which was previously measured to be τ = 329 ns in aerated water by time-

resolved luminescence measurements (section 4.4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dynamics of the transient absorption spectra for the dinuclear Ru-Alkyne-Dyad-

Mn complex are more complicated than for Ru-Alkyne-Dyad-Zn (figure 4.13d) and require 

three lifetime components to fit the decay profile satisfactorily. A shorter-lived component, 

with a lifetime of τ = 2 ps (green trace), is ascribed to fast vibrational cooling within the 

complex. A further decay process with a lifetime of τ = 584 ps (red trace) is synchronous with 

the grow-in for the component that subsequently decays with a lifetime of τ = 5 ns (blue 

trace). This indicates that the two components are associated, with one component decaying 

at the same rate that the other grows in. As the processes on these timescales are not present 
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Figure 4.13: Differential transient absorption spectra in aerated H2O at a series of 
time delays following excitation at λex = 400 nm with a 40 fs pulse.  

a) Ru-Alkyne-Dyad-Zn; b) Ru-Alkyne-Dyad-Mn; c) dynamics of transient signals for 
Ru-Alkyne-Dyad-Zn; d) dynamics of transient signals for Ru-Alkyne-Dyad-Mn. 
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in the dinuclear Ru-Alkyne-Dyad-Zn complex, it suggests that they may be a consequence of 

fast PET processes between the RuII and MnII metal centres in Ru-Alkyne-Dyad-Mn, which can 

be described using a simplified Jablonksi diagram (figure 4.14). 

 

 

 

 

 

 

 

 

 

 

 

 

The observed τ = 584 ps decay process (red trace) is consistent with the decay of the 

initially-photogenerated MLCT state of the Ru-Alkyne-Dyad-Mn complex ([RuIII-phen˙-MnII]*) 

to give the new charge-separated state ([RuII-phen˙-MnIII]*) by PET from the MnII centre to the 

photogenerated RuIII centre. This new charge-separated state decays with a τ = 5 ns lifetime, 

which can be tentatively ascribed to back-electron-transfer (BET). Note that direct 

luminescent decay from the RuII-based 3MLCT state is not observed. 

If we assume that the lifetime of the PET process is τ = 584 ps, this gives the rate of 

electron-transfer (ket) between the MnII centre and the photogenerated RuIII centre to be ket = 

1.71 x 109 s-1. This rate of electron-transfer is much faster than previously reported RuII-MnII 

dyads (figure 4.03)[2], that had values in the range ket = 2 x 105 – 2 x 106 s-1. This may be a 

consequence of a decreased intramolecular Ru-Mn distance in the newly synthesised Ru-

Alkyne-Dyad-Mn complex compared to the previously reported complexes, or the extended 

conjugation in the newly synthesised complex facilitating more efficient inner-sphere PET than 

the previous saturated bridging ligands.  

To probe the possible PET process from the MnII centre to the photogenerated RuIII 

centre in Ru-Alkyne-Dyad-Mn further, the redox potentials for the MnII/III and RuII/III couples 

were measured by cyclic voltammetry. For comparison purposes, the RuII/III couple in Ru-
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Figure 4.14: Simplified Jablonski diagram illustrating the possible PET processes in Ru-Alkyne-

Dyad-Mn. The RuII metal centre absorbs a photon of light (hν = 400 nm) to produce an MLCT 

state in which the RuII centre has been photo-oxidised to RuIII. The MnII centre then transfers an 

electron (ET) to reduce the RuIII centre to RuII (τ = 584 ps), oxidising to MnIII in the process. The 

MnIII ion then recovers its electron through an oxidation process and the whole molecule returns 

to the  electronic ground state (τ = 5 ns). 
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Alkyne-Dyad-Zn was also measured.  However, as both Ru-Alkyne-Dyad-Mn and Ru-Alkyne-

Dyad-Zn only have high enough solubility in protic solvents such as water, the potential 

window limits for the voltammetry experiment prevented observation of the RuII/III couples, 

which are masked in the voltammograms for both complexes by the high background current 

(appendix 4.07). The MnII/III couple in Ru-Alkyne-Dyad-Mn is also not obvious in the 

voltammogram at the expected redox potential value (0.80 – 0.90 V), which is an issue that 

has been reported for other RuII-MnII dyads where the MnII/III couple redox potential was 

measured in anhydrous acetonitrile[2]. Attempts at measuring the redox potentials for the 

RuII/III couple in Ru-Alkyne-Dyad-Zn and the MnII/III and RuII/III couples in Ru-Alkyne-Dyad-Mn 

in the anhydrous, aprotic solvent DMF also proved unsuccessful, as the solubility of both 

complexes in the solvent was too low to produce solutions of high enough concentration to 

probe.  
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4.6) Summary 

The two new water-soluble, ruthenium(II) bis(2,2’-bipyridine)-based complexes, Ru-

Alkyne-Dyad-Mn and Ru-Alkyne-Triad-Mn, exhibited mixed potential when evaluated as 

dual-modal optical/MR imaging agents. The probes demonstrated similar relaxivity values (r1 

= 3.7 mM-1
 s-1 and r1 = 4.8 mM-1

 s-1, respectively) to the commercial GdIII-based contrast agent, 

Magnevist®, and reduced relaxivity values when compared to the analogous GdIII-based 

complexes, Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd, when measured in D2O at 400 MHz 

and 298 K. However, considering that RuMnn (n = 1, 2) complexes have a lower number of 

unpaired electrons compared to the RuGdn (n = 1, 2) analogues, and hence lower magnetic 

moments, as well as reduced numbers of water coligands due to the smaller ionic radius of 

the MnII ion compared to the GdIII ion, these relaxivity values can be considered respectable. 

Evaluation of the probes for optical microscopy was not undertaken, however, as the RuII-

based emission was significantly quenched. This was possibly due to both photoinduced 

energy-transfer from the excited [Ru(bipy)2(phen)]2+ centre to the low-energy excited states 

on the MnII metal centre(s), and photoinduced electron-transfer from the MnII centre to the 

photogenerated RuIII centre. 

Transient absorption (TA) spectroscopy was utilised to probe whether photoinduced 

electron-transfer (PET) processes were occurring in the newly synthesised dinuclear Ru-

Alkyne-Dyad-Mn complex, as well as in a Ru-Alkyne-Dyad-Zn analogue for comparison 

purposes. The dynamics of the transient signals for the dinuclear Ru-Alkyne-Dyad-Zn complex 

revealed only two lifetime components; a very short-lived decay (τ = 6 ps) for vibrational 

cooling, and a very long-lived decay (τ > 7 ns) for the decay of the Ru-based 3MLCT state. The 

dynamics of the transient signals for the dinuclear Ru-Alkyne-Dyad-Mn complex were more 

complicated, however, with a fast component (τ = 584 ps) possibly representing ET between 

the MnII centre and the photogenerated RuIII centre. This gave a rate of inner-sphere electron-

transfer to be ket = 1.71 x 109 s-1, which is much faster than previously reported RuII-MnII dyads 

that had values in the range ket = 2 x 105 – 2 x 106 s-1.  

Overall, the newly synthesised RuMnn (n = 1, 2) complexes are not ideal candidates 

for dual-modal optical/MR imaging agents due to the RuII-based emission being significantly 

quenched. The possible ET processes occurring between the two different metal centres 
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mimic those that occur in PSII during photosynthesis in green plants, however, and so the new 

complexes may be useful as artificial models for PSII.  

 

4.7) Future Work 

To continue this work further, it would be interesting to analyse the MRI functionality 

of the new water-soluble RuMnn (n = 1, 2) complexes in more detail. Measurement of the 

MnII hydration state in the polyaminocarboxylate chelate and the rotational correlation time 

(τR) for each of the RuMnn (n = 1, 2) complexes would provide insight into the relaxivity values 

observed. Measuring the r1 values for the RuMnn (n = 1, 2) complexes under different 

experimental conditions, such as in a 4 % solution of human serum albumin (HSA) and in PBS, 

would also aid the understanding of how the complexes are likely to behave in vivo. Creating 

a nuclear magnetic relaxation dispersion (NMRD) profile for each of the complexes would also 

provide insight into how the measured relaxivity values are likely to change depending on the 

magnet frequency.  

With regards to the possible PET observed in the MnII-based complexes, it would be 

appealing to assess whether the complexes can oxidise water molecules to produce molecular 

oxygen, in a similar process to that which occurs in PSII during photosynthesis in green plants.  
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4.9) Appendices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4.01: The aromatic region of an annotated 1H-1H correlation NMR 

spectrum (400 MHz, D2O) for Ru-Alkyne-Dyad-Zn at 298 K. (Red lines = protons on 

bipyridine ligand, blue lines = protons on phenanthroline ligand, green lines = 

protons on pyridine ligand) 

Appendix 4.02: High-resolution mass spectrum of Ru-Alkyne-Dyad-Mn. 

Calculated for [C49H37N9O8RuMn + 2H]2+, 519.0667. 
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Appendix 4.03: High-resolution mass spectrum of Ru-Alkyne-Dyad-Zn. 

Calculated for [C49H37N9O8RuZn + 2H]2+, 523.5623. 

Appendix 4.04: The aromatic region of an annotated 1H-1H correlation NMR 

spectrum (400 MHz, D2O) for Ru-Alkyne-Triad-Zn at 298 K. (Red lines = protons on 

bipyridine ligand, blue lines = protons on phenanthroline ligand, green lines = 

protons on pyridine ligand) 
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Appendix 4.05: High-resolution mass spectrum of Ru-Alkyne-Triad-Zn. 

Calculated for [C66H50N12O16
102Ru64Zn2]2-, 748.0553. 

Appendix 4.06: High-resolution mass spectrum of Ru-Alkyne-Triad-Mn. 

Calculated for [C66H50N12O16
102RuMn2]2-, 739.0631. 
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Appendix 4.07: Cylic voltammograms of Ru-Alkyne-Dyad-Mn (2.0 mM) and 

Ru-Alkyne-Dyad-Zn (1.4 mM) in 0.2 M Bu4NPF6/H2O at a glassy-carbon 

electrode vs. Ag/AgCl. (Scan rate = 100 mV s-1) 
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5.1) Introduction 

5.1.1) Luminescence from Lanthanide Ions 

The lanthanide (Ln) elements have been an appealing topic of research for some time 

now due to the wealth of interesting properties that they possess; especially in terms of their 

interactions with light. Much of their chemistry is dominated by the trivalent cationic species 

(LnIII) with the electronic configuration [Xe]4fn (where n = 0-14), as these ions demonstrate 

distinctive photophysical behaviour, which can be attributed to the 4f orbitals being both 

highly contracted and shielded by the filled outer orbitals. On absorption of a photon, an 

electron on the LnIII ion is promoted to an f-f excited state, but this stored energy is not easily 

dissipated by molecular vibrations (in contrast to transition-metal d-d excited states) due to 

weak coupling between the buried f-orbitals and their surrounding environment. Instead the 

energy is more likely to be re-emitted as a photon in the process of luminescence, producing 

a sharp, monochromatic emission band. 

Overall, the group of elements has a broad range of emission energies across the 

ultraviolet (UV), visible and near-infrared regions (NIR) of the electromagnetic spectrum, with 

each LnIII ion having its own uniquely identifying spectrum of closely-spaced multiple emission 

lines (figure 5.01). This is due to the energy levels being further subdivided into many 

electronic levels, as a consequence of the different possible arrangements of electrons within 

the 4f orbitals arising from spin-orbit coupling. Emission of a photon originates from a single 

excited-state down to the many electronic levels of the ground state, with each transition 

being of a slightly different energy. Ions such as EuIII, TbIII, SmIII and TmIII mainly emit in the 

visible region of the electromagnetic spectrum (red, green, orange and blue, respectively), 

whereas ions such as NdIII, YbIII, ErIII, and PrIII have their main emission bands in the NIR region. 

The practicality of exploiting luminescence from LnIII ions is hindered, however, 

because of their low absorption coefficients (typically ε < 10 M-1 cm-1). This is due to f-f 

transitions being Laporte forbidden, which makes generation of the excited-state by direct 

absorption of light difficult. This selection rule has the potential to be circumvented in a 

number of ways, such as coupling the electronic excited-state of the LnIII ion to the vibrational 

states of the surrounding ligands, or by mixing the f-orbitals with those of opposite parity such 

as the 5d or 6s orbitals. However, both methods rely on the overlap of the f-orbitals with their 

surrounding environment, which does not occur satisfactorily due to the 4f orbitals being 



Chapter 5 - RuII-NdIII and RuII-YbIII Complexes as Dual-Modal Optical/NIR Imaging Agents 

 

171 

highly contracted. Direct excitation of a LnIII ion is, therefore, very inefficient (producing 

particularly low emission intensities), and as a result, lanthanide salts are very pale in colour 

or have no colour at all. To produce strong emission from a LnIII ion, sensitisation has to occur 

through the use of an intense light source such as a laser, or more commonly via an indirect 

manner using a light-harvesting antenna group (known as the ‘antenna effect’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2) Sensitising Luminescence from Lanthanide Ions via d→f Energy-Transfer 

The use of intramolecular photoinduced energy-transfer (PEnT) to sensitise 

luminescence from EuIII (and other LnIII ions) was first pioneered by Weissman in 1942[1]. Since 

then Lehn[2] has reported of a ‘two-component light-conversion molecular device’, from 

which dual luminescence was observed. The chromophore was selectively excited at one 

wavelength; the excited-state energy was funnelled via partial PEnT through an organic 

bridging ligand to a LnIII luminophore; and then the luminophore re-emitted the energy at a 

longer wavelength (figure 5.02). Luminescence from the chromophore was also observed due 

to incomplete PEnT. 

 

Figure 5.01: Emission spectra for the lanthanide ions EuIII and TbIII showing the various f-f 

transitions from a single excited state to the many electronic levels of the ground state 
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The mechanism by which this sensitisation process works is complex, and more than 

one possible pathway has been observed (direct EnT pathways and a photoinduced electron-

transfer-initiated EnT pathway)[3]. The direct EnT pathway is considered to be the more 

conventional of the two and is the one most often observed in sensitisation of LnIII 

luminescence. The overall process can be described with a simplified Jablonski diagram (figure 

5.03).  

On absorption of a photon, an electron in the chromophore is promoted into a higher 

energy orbital taking the molecule from the ground state (S0) to an excited singlet state (S*). 

From the many electronic levels of this excited-state the chromophore undergoes inter-

system crossing (ISC) to an excited triplet state (T*) still centred on the chromophore. From 

the T* energy level on the chromophore, partial ligand-to-metal EnT occurs across to the 

many electronic levels of the excited-state on the lanthanide luminophore (Ln*). Depending 

on the level of conjugation in the organic bridge between the chromophore and the 

luminophore, and the EnT mechanism (through-bond [Dexter] or through-space [Förster]), 

the timescale of this process can vary from nanoseconds to microseconds. Internal conversion 

(IC) from the higher energy electronic levels on the LnIII ion to the lowest energy electronic 

level occurs at this point, before a photon is emitted from the Ln* excited state, which 

collapses to one of the various electronic levels of the Ln ground state. Emission can be in the 

form of fluorescence (τ = ns) or phosphorescence (τ = μs or longer) depending on the nature 

of the emissive level. 

 

Emitter 

(Luminophore) 

Antenna 

(Chromophore) 
Organic bridge 

Partial energy-transfer 

hν hν1 hν2 

Luminescence 
from antenna 

Luminescence 
from lanthanide 

Figure 5.02: Schematic to show the ‘antenna effect’ used to sensitise luminescence 

from a LnIII ion. The incident light absorbed by the chromophore is emitted at a different 

wavelength by the LnIII luminophore due to partial PEnT across an organic bridge 
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5.1.3) Previous Work in the Ward Group 

Sensitised luminescence from LnIII ions was recently reported in heteronuclear IrIII-NdIII 

and IrIII-YbIII dyads by the Ward group[4]. The dinuclear complexes are based on the 

monosubstituted phenanthroline ligand previously discussed in this thesis (section 2.2), with 

an identical polyaminocarboxylate binding site for the LnIII ions; however, the d-block metal 

centre acting as the ‘antenna group’ in this case is [Ir(ppy)2(phen)]+ (where ‘ppy’ denotes the 

ligand phenylpyridine) (31, figure 5.04).  

Following photoexcitation (λex = 355 nm), both IrYb and IrNd produced an IrIII-based 

emission band (λem = 640 nm), which corresponds to luminescence from the 3MLCT/3LLCT 

excited-state. Luminescence from the LnIII ions was observed in the NIR region of the emission 

spectra for each of the complexes, which had to be a result of sensitisation through d→f PEnT, 

as the excitation wavelength at λex = 355 nm was into the IrIII-based absorption band. In the 

spectrum for the dinuclear IrYb complex, a weak emission feature at λem = 980 nm was 

observed, which is the 2F5/2→2F7/2 transition on the YbIII ion. Time-resolved luminescence 

measurements at this wavelength revealed a long-lived lifetime component (τ = 7.4 μs), which 
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Figure 5.03: A simplified Jablonski diagram illustrating the transitions between electronic 

states of a metal complex during the ‘antenna effect’ used to sensitise emission from a LnIII ion. 

S0 = singlet ground state, A = absorption, S* = singlet excited state, IC = internal conversion, F = 

fluorescence, ISC = inter-system crossing, T* = excited triplet state, P = phosphorescence, Ln* = 

excited lanthanide state, L = luminescence, Ln = lanthanide ground state, fs, ps, ns, μs, ms = 

femto-, pico-, nano-, micro- and milli-second respectively. Coloured and block arrows 

represent radiative and non-radiative processes respectively. 
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is characteristic of YbIII-based decay. There was no detectable loss of the IrIII-based emission 

in this complex, however, and so the rate of Ir→Yb PEnT was low. In the spectrum for the 

dinuclear IrNd complex, sensitisation of the NdIII-based luminescence was observed as two 

emission bands at λem = 1060 nm and λem = 1330 nm, which are the 4F3/2→4In transitions (n = 

11/2, 13/2, respectively). Time-resolved luminescence measurements at these wavelengths 

revealed shorter-lived lifetime components of τ = 170 ns, which corresponds to the NdIII-

based decay, as the IrIII-based decay lifetime is much shorter (τ = 33 ns). Quenching of the IrIII-

based luminescence was more pronounced for this complex, with the rate of Ir→Nd PEnT 

calculated to be kEnT = 1.0 x 107 s-1.  

Mixed d/f metal complexes of this kind, in which there are two different metal centres, 

each with distinct photophysical properties, have recently begun to be explored as dual-

modal optical/optical imaging agents. A dinuclear IrEu compound (25, figure 2.02) displayed 

both IrIII-based luminescence and EuIII-based emission after excitation at λex = 780 nm, as a 

consequence of partial Ir→Eu PEnT[5]. As the decay lifetimes for the individual metals were 

different by orders-of-magnitude, they could be identified by time-gated detection, as the 

shorter-lived luminescence from the IrIII component could be rejected. When applied to 

cellular imaging, this enabled autofluorescence-free sensing of two different analytes, 

simultaneously and independently, and as the metals are tethered together through chemical 

bonds, in the same regions of a cell. 

 

 

 

 

 

 

 

 

 

 

 

IrLn (Ln = Nd, Yb) 
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Figure 5.04: Examples of previously prepared dinuclear IrIII-LnIII complexes (Ln = Nd, Yb) 
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To expand upon this work, ruthenium(II) bis(2,2’-bipyridine)-based analogues of the 

dinuclear acetylene-bridged IrLn (Ln = Nd, Yb) complexes have been synthesised (Ru-Alkyne-

Dyad-Ln (Ln = Nd, Yb), figure 5.05). To extend the series of acetylene-bridged, heteronuclear 

d/f complexes further, the synthesis of trinuclear complexes has also been undertaken (Ru-

Alkyne-Triad-Ln (Ln = Nd, Yb), figure 5.05). Emission spectra and time-resolved luminescence 

measurements were recorded for all of the complexes across the visible and NIR regions, with 

sensitised d→f PEnT recorded in all cases. For each of the four RuLnn (Ln = Nd, Yb, n = 1, 2) 

complexes, the rate of Ru→Ln PEnT has been calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.05: Structures of the newly synthesised, water-soluble Ru-Alkyne-Dyad-Ln 
and Ru-Alkyne-Triad-Ln (Ln = Nd, Yb) complexes  
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5.2) Synthesis and Characterisation 

5.2.1) Alkyne-Bridged Dinuclear RuII-NdIII and RuII-YbIII Compounds 

The two heterodinuclear complexes, Ru-Alkyne-Dyad-Nd and Ru-Alkyne-Dyad-Yb, 

were synthesised in good yields (83-95 %) from the monosubstituted phenanthroline 

carboxylic acid scaffold, Ru-Alkyne-Dyad-Acid (section 2.2). One equivalent of the acid was 

dissolved in water at pH 5-6 and stirred at room temperature with 1.6 equivalents of the 

appropriate lanthanide triflate salt (Ln = Nd or Yb) for eighteen hours (scheme 5.01). To 

improve the solubility of the resulting Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb) complexes in water, 

counterion exchange to a chloride ion was performed using Dowex® 1x2 chloride form (100-

200 mesh). To remove the excess lanthanide salt, the complexes were purified by size-

exclusion chromatography on Sephadex® G-15 in water. 

 

 

 

 

 

 

 

 

High-resolution mass spectra were recorded for both Ru-Alkyne-Dyad-Nd and Ru-

Alkyne-Dyad-Yb (appendices 5.01 and 5.02, respectively). In both cases the calculated and 

observed m/z values for the [M – Cl + H]2+ ion agreed well (563.0488 and 563.0497 for Ru-

Alkyne-Dyad-Nd, respectively, and 578.0632 and 578.0632 for Ru-Alkyne-Dyad-Yb, 

respectively), and the distinct isotope pattern observed in each case matched that expected 

for the different lanthanide ions.  

 

 

 

 

 

Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb)          Ru-Alkyne-Dyad-Acid 
         

i 

Scheme 5.01: Synthetic route to Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb).  

i) H2O (pH 5-6), Ln(OTf)3 (Ln = Nd, Yb), rt, 18h 
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5.2.2) Alkyne-Bridged Trinuclear RuII-NdIII
2

 and RuII-YbIII
2 Compounds 

The trinuclear compounds, Ru-Alkyne-Triad-Nd and Ru-Alkyne-Triad-Yb, in which two 

lanthanide metal chelates surround the central RuII metal complex, were synthesised in high 

yields (97-99 %) in an analogous manner to their dinuclear counterparts (scheme 5.02). The 

starting alkyne-bridged, phenanthroline carboxylic acid scaffold in this case was the 

disubstituted complex, Ru-Alkyne-Triad-Acid (section 2.3), and 2.4-2.8 equivalents of the 

appropriate lanthanide triflate salt (Ln = Nd or Yb) was added to the reaction mixture to 

account for the extra vacant metal binding site. As the resulting trinuclear compounds are 

neutral, no counterion exchange was necessary. 

 

 

 

 

 

 

 

Again, HRMS was used to confirm the successful synthesis and isolation of the target 

trinuclear complexes, Ru-Alkyne-Triad-Nd and Ru-Alkyne-Triad-Yb (appendices 5.03 and 

5.04, respectively). In both cases the observed m/z value for the [M + 2H]2+ ion agreed well 

with the calculated value (829.0404 and 829.0429, respectively, for Ru-Alkyne-Triad-Nd, and 

858.0683 and 858.0710, respectively, for Ru-Alkyne-Triad-Yb), and the isotope patterns were 

as expected for each of the different lanthanide ions.  
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Ru-Alkyne-Triad-Acid 
         

Ru-Alkyne-Triad-Ln (Ln = Nd, Yb)         

Scheme 5.02: Synthetic route to Ru-Alkyne-Triad-Ln (Ln = Nd, Yb).  

i) H2O (pH 5-6), Ln(OTf)3 (Ln = Nd, Yb), rt, 18h 



Chapter 5 - RuII-NdIII and RuII-YbIII Complexes as Dual-Modal Optical/NIR Imaging Agents 

 

178 

5.3) Photophysical Properties 

UV/Vis absorption spectra were recorded in several solvents for Ru-Alkyne-Dyad-Nd, 

Ru-Alkyne-Dyad-Yb, Ru-Alkyne-Triad-Nd and Ru-Alkyne-Triad-Yb, and extinction 

coefficients were measured for all compounds in water. Emission profiles and lifetimes for 

the RuII-based emission were recorded for all compounds (including as a frozen glass at 77 K 

for Ru-Alkyne-Dyad-Nd and Ru-Alkyne-Dyad-Yb), and the quantum yield of the RuII-based 

emission was measured for all compounds against [Ru(bipy)3]Cl2.6H2O in aerated water. LnIII-

based emission profiles and luminescence decay lifetimes were measured in deuterium oxide 

and deuterated methanol for Ru-Alkyne-Dyad-Nd and Ru-Alkyne-Dyad-Yb and in deuterium 

oxide for Ru-Alkyne-Triad-Nd and Ru-Alkyne-Triad-Yb. Finally, excitation spectra were 

measured at two different emission wavelengths (one corresponding to RuII-based emission 

and one to sensitised LnIII-based emission) for each complex.   

 

5.3.1) UV/Vis Absorption 

UV/Vis absorption profiles for Ru-Alkyne-Dyad-Nd, Ru-Alkyne-Dyad-Yb, Ru-Alkyne-

Triad-Nd and Ru-Alkyne-Triad-Yb were recorded in several solvents (table 5.01), but spectra 

in water will be reviewed for comparison purposes (figure 5.06).  
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Figure 5.06: UV/Vis absorption spectra in aerated H2O at 298 K.  

Ru-Alkyne-Dyad-Yb (pink), Ru-Alkyne-Dyad-Nd (blue), Ru-Alkyne-Triad-Yb 

(green) and Ru-Alkyne-Triad-Nd (red)  
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The spectra for the dinuclear Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb) complexes are 

consistent with those measured for the monosubstituted phenanthroline carboxylic acid 

scaffold (section 2.2.2.1) and for the dinuclear Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Dyad-M 

(M = Mn, Zn) complexes (sections 3.3.1 and 4.4.1, respectively), and the spectra for the 

trinuclear Ru-Alkyne-Triad-Ln (Ln = Nd, Yb) complexes are consistent with those measured 

for the disubstituted phenanthroline carboxylic acid scaffold (section 2.3.2.1) and for the 

trinuclear Ru-Alkyne-Triad-Gd and Ru-Alkyne-Triad-M (M = Mn, Zn) complexes (sections 

3.3.1 and 4.4.1, respectively). There are typical absorption bands in the high energy region of 

the spectra for the π→π* transitions on the 2,2’-bipyridine ligands (λabs = 285 nm) and the 

1,10-phenanthroline ligands (λabs = 300-350 nm), and the 1MLCT absorption bands are as usual 

in the range λabs = 375-550 nm. The absorption bands associated with the phenanthroline 

ligand have shifted to lower energy for the disubstituted phenanthroline scaffold (Ru-Alkyne-

Triad-Nd and Ru-Alkyne-Triad-Yb) compared to the monosubstituted complexes (Ru-Alkyne-

Dyad-Nd and Ru-Alkyne-Dyad-Yb), due to the extended conjugation in the disubstituted 

scaffold stabilising the LUMO more than in the monosubstituted ligand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.01: UV/Vis absorption data for Ru-Alkyne-Dyad-Nd, Ru-Alkyne-Dyad-Yb, Ru-Alkyne-

Triad-Nd and Ru-Alkyne-Triad-Yb at 298 K. 

Compound Solvent λabs (nm) [ε (x 103 M-1 cm-1)] 

Ru-Alkyne-Dyad-Gd H2O 286 [56], 326 (sh) [25], 443 (br) [7.5] 

Ru-Alkyne-Dyad-Nd 

EtOH/MeOH  
(4:1, v:v) 

286, 326 (sh), 442 (br) 

MeOH 286, 326 (sh), 441 (br) 

H2O 285 [37], 326 (sh) [16], 440 (br) [4.8] 

DMF 288, 328 (sh), 446 (br) 

Ru-Alkyne-Dyad-Yb 

EtOH/MeOH  
(4:1, v:v) 

287, 329 (sh), 441 (br) 

MeOH 286, 328 (sh), 439 (br) 

H2O 286 [12], 327 (sh) [5.2], 442 (br) [1.6] 

DMF 289, 330 (sh), 444 (br) 

Ru-Alkyne-Triad-Gd H2O 286 [99], 350 [74], 435 [11], 486 (sh) [5.9] 

Ru-Alkyne-Triad-Nd 
MeOH 287, 352, 435, 490 (sh) 

H2O 286 [88], 351 [67], 435 [9.9], 490 (sh) [5.3] 

Ru-Alkyne-Triad-Yb 
MeOH 287, 351, 435, 485 (sh) 

H2O 286 [70], 350 [50], 435 [7.2], 488 (sh) [3.9] 
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5.3.2) Emission  

Luminescence profiles and the lifetime of the decay for the RuII-based emission for Ru-

Alkyne-Dyad-Nd, Ru-Alkyne-Dyad-Yb, Ru-Alkyne-Triad-Nd and Ru-Alkyne-Triad-Yb were 

recorded in several aerated solvents (table 5.02), but profiles in aerated water at 298 K will 

be reviewed for comparison purposes (figure 5.07). To directly compare the emission 

intensities of the four RuLnn (Ln = Nd, Yb, n = 1, 2) complexes to the isostructural RuGdn (n = 

1, 2) compounds, excitation wavelengths were chosen where all of the complexes have the 

same optical density in the UV/Vis spectra (0.1 a.u.). It can be seen in the resulting 

luminescence profiles that upon excitation into the 1MLCT absorption bands at λex = 430 nm, 

the four RuLnn (Ln = Nd, Yb, n = 1, 2) complexes produce broad and featureless emission 

profiles at 298 K indicating spin-forbidden 3MLCT {RuII→π*(N^N)} transitions; however, the 

maximum emission energy and emission intensity varies depending on the phenanthroline 

ligand substitution and the nature of the lanthanide ion bound within the 

polyaminocarboxylate chelate.   
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Figure 5.07: Corrected emission spectra in aerated H2O at 298 K showing RuII-based 

luminescence. Ru-Alkyne-Dyad-Gd (purple, λex = 440 nm), Ru-Alkyne-Dyad-Yb (pink, λex = 

430 nm), Ru-Alkyne-Triad-Gd (cyan, λex = 425 nm), Ru-Alkyne-Dyad-Nd (blue, λex = 430 

nm), Ru-Alkyne-Triad-Yb (green, λex = 430 nm) and Ru-Alkyne-Triad-Nd (red, λex = 430 nm) 

(Slit width = 3 nm for all spectra) 
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Table 5.02: Luminescence data for Ru-Alkyne-Dyad-Nd, Ru-Alkyne-Dyad-Yb, Ru-Alkyne-Triad-

Nd and Ru-Alkyne-Triad-Yb in aerated solvents.  

All values are for the RuII-based luminescence unless otherwise stated. 

Compound Solvent 
λem

298 K
 (nm) 

[λem
77 K

 (nm)] 
τ1, τ2, τ3

298 K (ns)[b] 
[τ1, τ2

 77 K (μs)] 

Ru-Alkyne-Dyad-Gd H2O 664 351 

Ru-Alkyne-Dyad-Nd 

EtOH/MeOH  
(4:1, v:v) 

649 [613, 664 
(sh), 709 (sh)] 

260, 26  
[5.6, 0.7] 

MeOH 653 245, 29 

H2O 662 358, 22 

DMF 670 296, 28 

D2O[a] 
1060 782 

1380 1390 

CD3OD[a] 
1060 911 

1380 596 

Ru-Alkyne-Dyad-Yb 

EtOH/MeOH  
(4:1, v:v) 

660 [612, 662 
(sh), 701 (sh)] 

201, 98 
[3.5, 0.7] 

MeOH 660 229, 125 

H2O 663 242, 73 

DMF 674 233, 115 

D2O[a] 980 13043 

CD3OD[a] 980 16000 

Ru-Alkyne-Triad-Gd H2O 699 402, 164 

Ru-Alkyne-Triad-Nd 

MeOH 697 214, 23 

H2O 703 408, 18 

D2O[a] 
1060 704 

1380 481 

Ru-Alkyne-Triad-Yb 

MeOH 693 195, 108 

H2O 700 223, 88 

D2O[a] 980 10529, 302 

[a]Lanthanide-based luminescence. [b]The luminescence lifetime decay curves for the RuLnn (Ln = 

Nd, Yb, n = 1, 2) complexes were fitted by a sum of two exponentials, corresponding to the 

bound complex and to a small amount of dissociated complex in solution. The lifetime 

component ratios are insignificant, therefore, due to the different luminescence quantum yield 

values for the bound and dissociated complexes, respectively.  
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As was observed for the RuGdn (n = 1, 2) (section 3.3.2) and RuMn (M = Mn, Zn, n = 1, 

2) (section 4.4.2) analogues, extending the conjugation along the phenanthroline backbone 

by the addition of a second pendant metal chelate to form trinuclear complexes (Ru-Alkyne-

Triad-Nd and Ru-Alkyne-Triad-Yb), has a two-fold effect on the luminescence properties 

compared to the complexes based on monosubstituted phenanthroline scaffolds (Ru-Alkyne-

Dyad-Nd and Ru-Alkyne-Dyad-Yb). The RuII-based luminescence is partially quenched in Ru-

Alkyne-Triad-Ln (Ln = Nd, Yb) compared to Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb), and the 

maximum emission energy of the 3MLCT transition is lowered from λem = 660 nm for the 

dinuclear complexes (Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb)) to λem = 700 nm for the trinuclear 

complexes (Ru-Alkyne-Triad-Ln (Ln = Nd, Yb)). Changing the lanthanide ion from GdIII to NdIII 

and YbIII also has a quenching effect on the emission intensities observed. Luminescence 

profiles for Ru-Alkyne-Dyad-Acid and Ru-Alkyne-Triad-Ester recorded as a frozen glass at 77 

K (figure 5.08) reveal the 3MLCT excited-state energies of the monosubstituted and 

disubstituted phenanthroline scaffolds to be 16,400 cm-1 and 15,500 cm-1, respectively. 

Therefore, the excited-states on both scaffolds are high enough in energy to sensitise 

emission from the NIR-emitting YbIII and NdIII ions via partial Ru→Ln (Ln = Nd, Yb) PEnT, which 

causes the RuII-based emission to be partially quenched.  
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Figure 5.08: Normalised (at λem = max intensity), corrected emission spectra in 

aerated EtOH/MeOH (4:1, v:v) as a glass at 77 K. Ru-Alkyne-Dyad-Acid (red) and 

Ru-Alkyne-Triad-Ester (blue)  
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5.3.3) Photoinduced Energy-Transfer  

When comparing the luminescence spectra for the three dinuclear complexes (Ru-

Alkyne-Dyad-Ln (Ln = Gd, Nd, Yb)), a clear decrease in the RuII-based emission intensity can 

be observed along the series. Ru-Alkyne-Dyad-Gd demonstrates unquenched RuII-based 

emission, as the lowest excited state for the GdIII ion (6P7/2 ≈ 32,000 cm-1) is too high in energy 

to be directly populated by Ru→Gd PEnT. Ru-Alkyne-Dyad-Yb and Ru-Alkyne-Dyad-Nd, on 

the other hand, display partially quenched RuII-based emission due to partial Ru→Ln (Ln = Nd, 

Yb) PEnT, with the RuII-based emission from Ru-Alkyne-Dyad-Nd quenched to a greater 

extent than that of Ru-Alkyne-Dyad-Yb.  

Luminescence quantum yield values and time-resolved luminescence measurements 

for the three complexes confirm this trend. The luminescence quantum yield value for Ru-

Alkyne-Dyad-Gd was measured previously to be φ = 0.021 (section 3.3.2), whilst the values 

for Ru-Alkyne-Dyad-Yb and Ru-Alkyne-Dyad-Nd are both lower at φ = 0.011 and φ = 0.010, 

respectively. The RuII-based luminescence lifetime curve for Ru-Alkyne-Dyad-Gd was fitted as 

a monoexponential decay in aerated water (τ = 351 ns), whereas Ru-Alkyne-Dyad-Yb and Ru-

Alkyne-Dyad-Nd both exhibit two lifetime components (τ1 = 242 ns, τ2 = 73 ns for Ru-Alkyne-

Dyad-Yb, τ1 = 358 ns, τ2 = 22 ns for Ru-Alkyne-Dyad-Nd) in the same solvent. The longer-lived 

component in both cases is most likely from a small portion of dissociated complex in solution, 

as the values extracted approximately match those of the dinuclear Ru-Alkyne-Dyad-Gd 

complex (within experimental error), in which the luminescence is not partially quenched. 

The shorter-lived components can, therefore, be assigned as the lifetimes of the partially 

quenched RuII-based decay from the non-dissociated Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb) 

complexes. Ru-Alkyne-Dyad-Yb has slightly longer-lived luminescence than Ru-Alkyne-Dyad-

Nd, which matches the results observed from the luminescence spectra (that the RuII-based 

emission from Ru-Alkyne-Dyad-Nd is quenched to a greater extent than that of Ru-Alkyne-

Dyad-Yb). 

If we take the shorter-lived lifetime component representing the partially quenched 

RuII-based decay in each of the Ru-Alkyne-Dyad-Ln (Ln = Nd, Yb) complexes, the rate of PEnT 

in aerated water in each case can be calculated using equation 5.01, where τ is the 

unquenched RuII-based lifetime (τ = 351 ns in Ru-Alkyne-Dyad-Gd) and τq is the partially 

quenched lifetime (τq = 73 ns for Ru-Alkyne-Dyad-Yb, τq = 22 ns for Ru-Alkyne-Dyad-Nd). For 
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Ru-Alkyne-Dyad-Yb this gives the rate of Ru→Yb PEnT to be kEnT = 1.1 x 107 s-1, and for Ru-

Alkyne-Dyad-Nd the rate of Ru→Nd PEnT to be kEnT = 4.2 x 107 s-1, which are similar values to 

the rate of Ir→Nd PEnT measured for the previously synthesised IrNd complex (31). 

 

 

 

 

 

This trend in reduced RuII-based emission intensity observed along the series of Ru-

Alkyne-Dyad-Ln (Ln = Gd, Yb, Nd) complexes is also mirrored in the trinuclear complexes (Ru-

Alkyne-Triad-Ln (Ln = Gd, Yb, Nd)). Again, the Ru-Alkyne-Triad-Gd complex demonstrates 

unquenched RuII-based emission, whereas the Ru-Alkyne-Triad-Yb and Ru-Alkyne-Triad-Nd 

complexes both display partially quenched emission, with the luminescence from Ru-Alkyne-

Triad-Nd being quenched to a greater extent than that from Ru-Alkyne-Triad-Yb. This is 

reflected in the measured luminescence quantum yield values for Ru-Alkyne-Triad-Yb and 

Ru-Alkyne-Triad-Nd (φ = 0.0039 and φ = 0.0007, respectively) when compared to Ru-Alkyne-

Triad-Gd (φ = 0.0062).  

The RuII-based luminescence from Ru-Alkyne-Triad-Gd in aerated water was 

previously found to decay to a sum of two exponentials (τ1 = 402 ns, τ2 = 164 ns), with the 

shorter-lived lifetime being the major component (80 %). The RuII-based luminescence from 

Ru-Alkyne-Triad-Yb and Ru-Alkyne-Triad-Nd also decays biexponentially in aerated water, 

with both complexes displaying a longer-lived component and a much shorter-lived lifetime 

component. The longer-lived component in Ru-Alkyne-Triad-Yb and Ru-Alkyne-Triad-Nd is 

similar to the unquenched value in Ru-Alkyne-Triad-Gd (τ1 = 223 ns, Ru-Alkyne-Triad-Yb and 

τ1 = 408 ns, Ru-Alkyne-Triad-Nd), which is the lifetime of the emission from the dissociated 

complex due to partial leaching of the LnIII ion out of the polyaminocarboxylate chelate in a 

competitive solvent. The shorter-lived component measured for each complex (τ2 = 88 ns, Ru-

Alkyne-Triad-Yb and τ2 = 18 ns, Ru-Alkyne-Triad-Nd) is representative of the partially 

quenched emission from the non-dissociated complexes.  

Again, if we take the value of the shorter-lived luminescence component representing 

the lifetime of the partially quenched emission from the intact complexes (τq = 88 ns, Ru-

kEnT= 
1

τq
 - 

1

τ
 

Equation 5.01: Equation used to calculate the rate of energy-transfer (kEnT) in 

RuLnn (Ln = Nd, Yb, n = 1, 2) complexes. τ and τq are the unquenched (Ln = Gd) 

and quenched (Ln = Nd, Yb) lifetimes, respectively.    
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Alkyne-Triad-Yb and τq = 18 ns, Ru-Alkyne-Triad-Nd), the rate of PEnT in aerated water for 

each of the complexes can be calculated using equation 5.01, where τ = 164 ns for the 

unquenched emission from Ru-Alkyne-Triad-Gd. For Ru-Alkyne-Triad-Yb this gives a value of 

kEnT = 5.3 x 106 s-1 for the rate of Ru→Yb PEnT, which is slower than the rate calculated for the 

dinuclear Ru-Alkyne-Dyad-Yb complex. The rate of Ru→Nd PEnT in Ru-Alkyne-Triad-Nd on 

the other hand was calculated to be kEnT = 4.9 x 107 s-1, which is the same as the rate measured 

for the dinuclear Ru-Alkyne-Dyad-Nd complex, within experimental error.  

The observation that the rates of Ru→Nd PEnT in the RuNdn (n = 1, 2) complexes are 

much faster than the rates of Ru→Yb PEnT in the RuYbn (n = 1, 2) complexes can be explained 

in terms of the spectroscopic overlap between the emission from the [Ru(bipy)2(phen)]2+ 

donor and absorption of the acceptor LnIII ion(s), which is necessary for efficient PEnT. YbIII 

only has one f-f transition (λem = 980 nm) with energy between 10,000-20,000 cm-1 available 

to populate (figure 5.09), which overlaps poorly with the emissive [Ru(bipy)2(phen)]2+ donor 

state in both of the RuYbn (n = 1, 2) complexes, as the RuII-based emission has almost decayed 

to the baseline at this energy. In comparison to YbIII, NdIII has a large density of energy levels 

(figure 5.09), which overlap with the region where the luminescence from the 

[Ru(bipy)2(phen)]2+ donor is most intense, allowing for efficient Ru→Nd PEnT. As a 

consequence the rate of Ru→Nd PEnT is much faster than the rate of Ru→Yb PEnT[6], and the 

RuII-based emission is quenched to a greater extent in the RuNdn (n = 1, 2) complexes 

compared to the RuYbn (n = 1, 2) complexes.  
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Figure 5.09: Partial energy level diagram for the NdIII and YbIII aqua ions, and the main 0-0 

transitions for Ru-Alkyne-Dyad-Acid and Ru-Alkyne-Triad-Ester. *Luminescent energy level. 
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Direct evidence for the sensitised LnIII-based emission can be seen in NIR luminescence 

spectra of the four RuLnn (Ln = Nd, Yb, n = 1, 2) compounds in aerated D2O. An emission 

feature at λem = 980 nm can be seen in the spectra for both Ru-Alkyne-Dyad-Yb (figure 5.10a) 

and Ru-Alkyne-Triad-Yb (figure 5.10b), which is the 2F5/2→2F7/2 transition. These emission 

bands must be a product of sensitised luminescence via Ru→Yb PEnT, as the excitation 

wavelength in both cases was into the RuII-based absorption band (λex = 440 nm). Time-

resolved luminescence measurements in aerated D2O for both Ru-Alkyne-Dyad-Yb and Ru-

Alkyne-Triad-Yb reveal characteristic long-lived decay lifetimes of τ = 13 μs and τ1 = 11 μs, 

respectively, with an additional shorter-lived lifetime component of τ2 = 320 ns measured for 

Ru-Alkyne-Triad-Yb being the long-wavelength tail of the residual RuII-based luminescence.  

For both Ru-Alkyne-Dyad-Nd (figure 5.10a) and Ru-Alkyne-Triad-Nd (figure 5.10b) 

weak signals at λem = 1060 nm and λem = 1380 nm are present in the NIR luminescence spectra, 

which represent the 4F3/2→4In transitions (n = 11/2 and 13/2), respectively. Time-resolved 

luminescence measurements in aerated D2O at these two wavelengths reveal lifetime values 

of τ(1060 nm) = 0.8 μs and τ(1380 nm) = 1.4 μs for Ru-Alkyne-Dyad-Nd and τ(1060 nm) = 0.7 μs and 

τ(1380 nm) = 0.5 μs for Ru-Alkyne-Triad-Nd. The much shorter lifetime values for the NdIII-based 

decay compared to the YbIII-based decay is characteristic for the NdIII ion, as the lower-energy 

luminescence from NdIII-substituted complexes is more easily quenched by molecular 

vibrations[6].  
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Figure 5.10: Normalised (at λem = max intensity), corrected emission spectra in aerated D2O 

at 298 K showing sensitised lanthanide-based luminescence. a) Ru-Alkyne-Dyad-Yb (red) 

and Ru-Alkyne-Dyad-Nd (blue); b) Ru-Alkyne-Triad-Yb (green) and Ru-Alkyne-Triad-Nd 

(pink) (λex = 440 nm for all spectra) 
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Excitation spectra recorded in aerated water at 298 K for Ru-Alkyne-Dyad-Yb (λem = 

645 nm), Ru-Alkyne-Dyad-Nd (λem = 645 nm), Ru-Alkyne-Triad-Yb (λem = 680 nm) and Ru-

Alkyne-Triad-Nd (λem = 680 nm) were overlaid with UV/Vis absorption spectra recorded in the 

same solvent (figure 5.11). A good match between the spectra can be seen, which confirms 

that the RuII-based 3MLCT emission observed for all four RuLnn (Ln = Nd, Yb, n = 1, 2) 

complexes occurs as a result of absorption in to the 1MLCT band.  
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Figure 5.11: Normalised (at λ = 440 nm) spectra in aerated H2O at 298 K. Corrected 

excitation spectra (red) and UV/Vis spectra (blue) of a) Ru-Alkyne-Dyad-Yb (λem = 645 

nm), b) Ru-Alkyne-Dyad-Nd (λem = 645 nm), c) Ru-Alkyne-Triad-Yb (λem = 680 nm) and 

d) Ru-Alkyne-Triad-Nd (λem = 680 nm) 
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Similarly, excitation spectra recorded in aerated D2O at 298 K for Ru-Alkyne-Dyad-Yb 

(λem = 980 nm), Ru-Alkyne-Dyad-Nd (λem = 1060 nm), Ru-Alkyne-Triad-Yb (λem = 980 nm) and 

Ru-Alkyne-Triad-Nd (λem = 1060 nm) were overlaid with UV/Vis absorption spectra recorded 

in the same solvent (figure 5.12). A good match between the spectra can be seen, which is a 

clear indication that the emission observed in the NIR region for all four RuLnn (Ln = Nd, Yb, n 

= 1, 2) complexes occurs as a result of absorption in to the 1MLCT band followed by Ru→Ln 

PEnT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

350 400 450 500 550

In
te

n
s
it

y
 /

 a
.u

.

Wavelength / nm

 Registration at 980 nm in D2O

 UV/Vis in D2O

350 400 450 500 550

In
te

n
s
it

y
 /
 a

.u
.

Wavelength / nm

 Registration at 1060 nm in D2O

 UV/Vis in D2O

c) 

400 450 500 550

In
te

n
s
it

y
 /

 a
.u

.

Wavelength / nm

 Registration at 980 nm in D2O

 UV/Vis in D2O

400 450 500 550

In
te

n
s
it

y
 /
 a

.u
.

Wavelength / nm

 Registration at 1060 nm in D2O

 UV/Vis in D2O

d) 

Figure 5.12: Normalised (at λ = 440 nm) spectra in aerated D2O at 298 K. 

Corrected excitation spectra (red) and UV/Vis spectra (blue) of a) Ru-Alkyne-

Dyad-Yb (λem = 980 nm), b) Ru-Alkyne-Dyad-Nd (λem = 1060 nm), c) Ru-Alkyne-

Triad-Yb (λem = 980 nm) and d) Ru-Alkyne-Triad-Nd (λem = 1060 nm) 
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5.4) Summary 

New water-soluble, ruthenium(II) bis(2,2’-bipyridine)-based complexes Ru-Alkyne-

Dyad-Yb, Ru-Alkyne-Dyad-Nd, Ru-Alkyne-Triad-Yb and Ru-Alkyne-Triad-Nd were evaluated 

as dual-modal optical/NIR imaging agents. For all four of the RuLnn (Ln = Nd, Yb, n = 1, 2) 

complexes, RuII-based luminescence was observed upon photoexcitation at λex = 430 nm, as 

well as sensitised LnIII-based emission as a consequence of Ru→Ln (Ln = Nd, Yb) photoinduced 

energy-transfer.  

Both RuNdn (n = 1, 2) complexes exhibited efficient Ru→Nd PEnT, with the rates 

calculated to be kEnT = 4.2 x 107 s-1 and kEnT = 4.9 x 107 s-1 for Ru-Alkyne-Dyad-Nd and Ru-

Alkyne-Triad-Nd, respectively. In contrast, the rates of Ru→Yb PEnT were calculated to be 

slower in Ru-Alkyne-Dyad-Yb and in Ru-Alkyne-Triad-Yb (kEnT = 1.1 x 107 s-1 and kEnT = 5.3 x 

106 s-1, respectively) due to poorer spectroscopic overlap between the emission from the 

[Ru(bipy)2(phen)]2+ donor and absorption of the acceptor LnIII ion(s) in the RuYbn (n = 1, 2) 

complexes compared to the RuNdn (n = 1, 2) complexes. 

A sensitised emission feature at λem = 980 nm was recorded for both RuYbn (n = 1, 2) 

complexes in aerated D2O, which is the 2F5/2→2F7/2 transition of YbIII, and for both RuNdn (n = 

1, 2) complexes, sensitised emission features at λem = 1060 nm and λem = 1380 nm were 

observed, which represent the 4F3/2→4In transitions (n = 11/2 and 13/2) of NdIII, respectively. 

The lifetimes of the YbIII-based decay in Ru-Alkyne-Dyad-Yb and Ru-Alkyne-Triad-Yb were τ = 

13 μs and τ = 11 μs, respectively, and the lifetimes of the NdIII-based decay in Ru-Alkyne-

Dyad-Nd and Ru-Alkyne-Triad-Nd were in the range τ = 0.5-1.4 μs. The RuII-based decay was 

orders-of-magnitude shorter for each of the four RuLnn (Ln = Nd, Yb, n = 1, 2) complexes (τ = 

18-88 ns) and so it should be possible to detect the luminescence from the LnIII ions separately 

from the emission from the [Ru(bipy)2(phen)]2+ centre by time-gating the detection to reject 

the shorter-lived RuII component.  
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5.5) Future Work 

To continue this work further, it would be interesting to assess the effectiveness of 

Ru-Alkyne-Dyad-Yb, Ru-Alkyne-Dyad-Nd, Ru-Alkyne-Triad-Yb and Ru-Alkyne-Triad-Nd as 

dual-modal optical/NIR imaging agents for cellular imaging.  
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5.7) Appendices 

 

 

 

 

 

 

 

 

 

  

Appendix 5.01: High-resolution mass spectrum of Ru-Alkyne-Dyad-Nd. 

Calculated for [C49H37N9O8
102Ru144Nd + H]2+, 563.0488. 

Appendix 5.02: High-resolution mass spectrum of Ru-Alkyne-Dyad-Yb. 

Calculated for [C49H37N9O8
102Ru173Yb + H]2+, 578.0632. 
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Appendix 5.03: High-resolution mass spectrum of Ru-Alkyne-Triad-Nd. 

Calculated for [C66H50N12O16
102Ru144Nd2 + 2H]2+, 829.0429. 

Appendix 5.04: High-resolution mass spectrum of Ru-Alkyne-Triad-Yb. 

Calculated for [C66H50N12O16
102Ru173Yb2 + 2H]2+, 858.0710. 
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6.1) Characterisation and Reagents 

6.1.1) Materials 

All reagents, unless otherwise stated, were purchased from commercial sources 

(Sigma-Aldrich, Alfa Aesar, Fluorochem) and used as received. All solvents were of HPLC grade 

quality and were obtained from Fisher, excluding deuterated solvents (Sigma-Aldrich, Acros 

Organics, VWR). Dry solvents were obtained from the Grubbs dry solvent system at the 

University of Sheffield.  

6.1.2) Nuclear Magnetic Resonance Spectroscopy  

One-dimensional 1H and 13C NMR spectra and two-dimensional COSY, HMBC and 

HSQC spectra were recorded using either a Bruker Avance III HD 400 spectrometer or a Bruker 

Avance III HD 500 spectrometer. Spectra for Ru-Alkyne-Dyad-Acid and Ru-Alkyne-

Metallostar-Ester were acquired by Dr Sandra van Meurs and spectra for Ru-Alkyne-

Metallostar-Acid were acquired by Dr Craig Robertson. Spectroscopic grade deuterated 

solvents were used and all spectra were calibrated using residual protonated solvent peaks[1]. 

All measurements were taken at room temperature, unless otherwise stated. All chemical 

shifts are quoted in ppm and the following abbreviations are used when reporting the spectra; 

br – broad, s – singlet, d – doublet, dd – doublet of doublets, ddd – doublet of double doublets, 

t – triplet, td – triplet of doublets, tt – triplet of triplets, m – multiplet, phen = 1,10-

phenantholine and bipy = 2,2-bipyridine.  

6.1.3) Mass Spectrometry 

Mass spectra were obtained from the University of Sheffield Mass Spectrometry 

Service and were acquired by either Mr. Simon Thorpe or Ms. Sharon Spey, with the exception 

of Ru-Alkyne-Dyad-Gd, Ru-Alkyne-Triad-Gd, Ru-Alkyne-Dyad-Mn and Ru-Alkyne-Dyad-Zn, 

which were obtained from the University of Warwick Mass Spectrometry Service and were 

acquired by Dr Lijiang Song. Positive electrospray ionisation (ES+) spectra, negative 

electrospray ionisation (ES-) spectra and high-resolution spectra acquired by the University of 

Sheffield Mass Spectrometry Service were recorded on an Agilent Technologies 6530 

Accurate-Mass Q-TOF LC/MS instrument. High-resolution spectra acquired by the University 
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of Warwick Mass Spectrometry Service were recorded on a Bruker MaXis plus instrument. All 

measurements were taken at room temperature.  

6.1.4) Photophysical Measurements 

All UV/Vis, emission, excitation and lifetime measurements were recorded from room 

temperature solutions, unless otherwise stated, using a quartz fluorescence cell with a path 

length of 1 cm. Compounds to be analysed were dissolved in an aerated solvent to the 

concentration at which the maximum optical density at the excitation wavelength was 0.1 

a.u.. 

6.1.4.1) UV/Visible Absorption  

UV/Vis spectra were measured on a Varian Cary 50 Bio UV-Visible Spectrophotometer 

and were baseline corrected. Extinction coefficients (ε) were calculated from a linear plot of 

optical density (at a particular wavelength) against concentration, in accordance with the Beer 

Lambert law (equation 6.01). Typically, solution concentrations of 10-6 to 10-4 M were used 

for extinction coefficient determination.  

 

6.1.4.2) Emission and Excitation 

Photoluminescence spectra were recorded on a Horiba Jobin Yvon Fluoromax-4-

Spectrofluorometer and were corrected using correction files included within the 

FluorEssenceTM software. Near-IR emission and excitation spectra were acquired by Dr Adam 

Woodward at the University of Manchester on an Edinburgh Instrument FP920 

Phosphorescence Lifetime Spectrometer equipped with a 450 watt steady state xenon lamp; 

a 5 watt microsecond pulsed xenon flashlamp (with single 300 mm focal length excitation and 

emission monochromators in Czerny Turner configuration); a red sensitive photomultiplier in 

a Peltier (air cooled) housing (Hamamatsu R928P); and a liquid nitrogen cooled nIR 

photomultiplier (Hamamatsu), and were corrected using correction files included within the 

software. Near-IR emission spectra were recorded by using a 645 nm longpass filter. Low-

A = εlc 

Equation 6.01: The Beer Lambert Law. A = absorbance (a.u.), ε = extinction coefficient 

(M-1 cm-1), l = path length (cm), c = concentration (M) 
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temperature emission spectra were measured in a mix of ethanol/methanol (4:1, v:v): the 

solution was transferred into an NMR tube and frozen in a quartz dewar filled with liquid 

nitrogen to form a glass at 77 K. Emission quantum yield values (ϕ) were calculated using 

equation 6.02, and the reference standard used was [Ru(bipy)3]Cl2.6H2O in aerated double-

distilled water (ϕ = 0.028)[2]. 

 

 

 

 

 

 

6.1.4.3) Emission Lifetime 

The RuII-based emission lifetimes were measured using an Edinburgh Instruments 

Mini-τ instrument fitted with a 405 nm pulsed diode laser as an excitation source. Near-IR 

emission lifetimes were acquired by Dr Adam Woodward at the University of Manchester and 

were measured using an Edinburgh Instrument FP920 Phosphorescence Lifetime 

Spectrometer equipped with a 450 watt steady state xenon lamp; a 5 watt microsecond 

pulsed xenon flashlamp (with single 300 mm focal length excitation and emission 

monochromators in Czerny Turner configuration); a red sensitive photomultiplier in a Peltier 

(air cooled) housing (Hamamatsu R928P); and a liquid nitrogen cooled nIR photomultiplier 

(Hamamatsu). Lifetime data were recorded following excitation with the microsecond 

flashlamp using time-correlated single photon counting (PCS900 plug-in PC card for fast 

photon counting). Low-temperature emission lifetimes were measured in a mix of 

ethanol/methanol (4:1, v:v): the solution was transferred into an NMR tube and frozen in a 

quartz dewar filled with liquid nitrogen to form a glass at 77 K. Decay curves generated by 

single photon counting (SPC) were fitted using Origin® software and the quality of fit judged 

by minimization of reduced chi-squared and sum-of-residuals squared values. 

6.1.5) Relaxation Rates of Contrast Agents in Solution 

Relaxivity measurements for the four synthesised contrast agents (Ru-Alkyne-Dyad-

Gd, Ru-Alkyne-Triad-Gd, Ru-Alkyne-Dyad-Mn, and Ru-Alkyne-Triad-Mn) and the commercial 

contrast agent, Magnevist®, were performed on a Bruker Avance III 400 spectrometer at 298 

ϕs =  ϕr  × (
Is

(1 − 10−A)s
) × (

(1 − 10−A)r

Ir
) ×  (

ηs
2

ηr
2

) 

Equation 6.02: Equation used to calculate emission quantum yield. φ = quantum yield, s = sample 

under investigation, r = reference standard, I = integrated emission intensity, A = optical density 

(absorbance) at excitation wavelength, η = solvent refractive index 
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K. Each compound under investigation was dissolved in D2O at five different concentrations 

(0 – 2.0 mM) and the longitudinal relaxation time (T1) for the residual H2O peak in each sample 

measured using a standard inversion-recovery pulse sequence, with 12 recovery times 

varying between 0.001-60 seconds for Magnevist® and 15 recovery times varying between 

0.001-15 seconds for the four synthesised contrast agents. Concentration-normalised 

longitudinal relaxivity values were determined from a linear plot of longitudinal relaxation 

time (T1) against contrast agent concentration (0 – 2.0 mM) in accordance with equation 6.03. 

 

 

 

 

 

 

6.1.6) Cell Culture 

HeLa cells were cultured in Dulbecco’s modified eagle medium (DMEM, high glucose 

with L-glutamine) purchased from Lonza (500 mL) and supplemented with 10 % (v:v) foetal 

bovine serum (FBS). Cultures were grown as monolayers in T-75 flasks at 37 °C in a 5 % CO2 : 

95 % air (v:v) environment. Once at 75-80 % confluency, cells were subcultured using trypsin-

EDTA (2 mL). Subcultures for live cell staining were seeded on to sterile coverslips (15 mm x 

15 mm) in 6-well plates (100,000/well) and those for clonogenic assays were seeded directly 

in to 6-well plates (200-400/well). All subcultures were incubated in DMEM at 37 °C in a 5 % 

CO2 : 95 % air (v:v) environment overnight to allow for adhesion to the well-plate or coverslip.  

6.1.7) General Cell Staining 

Ru-Alkyne-Dyad-Gd and Ru-Alkyne-Triad-Gd were dissolved in sterile, double-

distilled water to form stock solutions with a concentration of 1 mM. Further dilution to 

generate working solutions of 50-200 μM was achieved using DMEM (high glucose with L-

glutamine) purchased from Lonza (500 mL) and supplemented with 10 % (v:v) foetal bovine 

serum (FBS). 

 

 

(
1

T1
)

obs

= (
1

T1
)

0

+ r1[M] 

Equation 6.03: Equation used to calculate the relaxation rate of a contrast agent in solution. 

T1 = longitudinal relaxation time, obs = observed T1 values in the presence of contrast agent, 

0 = observed T1 value in the absence of contrast agent, r1 = concentration-normalised 

longitudinal relaxivity value, [M] = concentration of contrast agent  
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6.1.7.1) Live Cell Staining  

After removal of the growth media, cells were washed with sterilised phosphate-

buffered saline (PBS, 3 x 2 mL/well) before being treated with a solution of the appropriate 

RuGdn
 (n = 1, 2) complex at concentrations of 50-200 μM (2 mL/well). Cells were incubated 

for 2h or 4h at 37 °C in DMEM in a 5 % CO2 : 95 % air (v:v) environment. After the desired 

incubation time, the media was removed, and the cells were washed with PBS (3 x 2 mL/well) 

to remove excess complex. The cells were then treated with paraformaldehyde solution (4 % 

in PBS, 1 mL/well) for 20 minutes, before being washed with PBS (3 x 2 mL/well) again. The 

coverslips were mounted onto microscope slides (Immu-MountTM, Thermo Scientific) and left 

to dry for a minimum time of 30 minutes before imaging. 

6.1.8) Steady-State Imaging 

Confocal images of fixed HeLa cells were recorded using an inverted Nikon A1 confocal 

microscope with a 60x lens (CFI Plan Apochromat VC 60x oil, NA 1.4). A diode laser (λex = 405 

nm) was used to excite the RuGdn
 (n = 1, 2) complex and a λem = 570-620 nm emission filter 

was used. 

6.1.9) Toxicity Assay - Clonogenic Survival 

After removal of the growth media, live HeLa cells were treated with a solution of the 

appropriate RuGdn
 (n = 1, 2) complex at both 50 μM and 200 μM (1 mL/well). Cells in four 

control wells were left untreated and immersed in DMEM (2 mL/well). Cells were incubated 

for 4h at 37 °C in a 5 % CO2 : 95 % air (v:v) environment. Following incubation, the treatment 

solution was removed, and the cells immersed in fresh DMEM (2 mL/well) and incubated for 

seven to ten days at 37 °C in a 5 % CO2 : 95 % air (v:v) environment until visible cell colonies 

had formed. The growth media was removed, and the cells were fixed and stained with 

methylene blue in methanol (4 g/L) for a minimum of 30 minutes. The staining solution was 

removed, and the number of colonies counted, with each colony representing a surviving cell. 

The survival fraction for cells treated with the RuGdn
 (n = 1, 2) complexes was calculated using 

equation 6.04. Experiments were conducted in duplicate for seeding densities of 200 and 400 

cells/well and repeated three times. Survival fractions quoted are averages of the three 

repeats.  
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6.1.10) Transient Absorption Measurements 

All transient absorption data was acquired by James Shipp in the Laser Laboratory in 

the Department of Chemistry at the University of Sheffield. A Ti:Sapphire regenerative 

amplifier (Spitfire ACE PA-40, Spectra-Physics) provided λex = 800 nm, 1.2 mJ pulses (40 fs 

fwhm, 10 kHz, 1.2 mJ) as the excitation source. λex = 400 nm sample excitation was provided 

by doubling a portion of the λex = 800 nm output, in a β-barium borate crystal within a 

commercially available doubler/tripler (TimePlate, Photop Technologies). λex = 525 nm 

excitation pulses were provided by a commercially available UV/Vis optical parametric 

amplifier with a wavelength range of λ = 240 – 1160 nm (TOPAS, Light Conversion). White 

light, supercontinuum, probe pulses were generated in situ using a portion of the Ti:Sapphire 

amplifier output, focused onto a CaF2 crystal, allowing for the generation of light spanning λ 

= 340 – 790 nm. Detection was achieved using a commercial transient absorption 

spectrometer (Helios, Ultrafast Systems) and was performed by a CMOS sensor for the UV/Vis 

spectral range. The relative polarisation of the pump and probe pulses was set to the magic 

angle of 54.7˚ for anisotropy free measurements.   

 

 

 

 

 

 

 

Survival Fraction = 
no. of colonies formed after treatment with RuGd𝐧 (n = 1, 2) 

average no. of colonies formed in control wells
 

Equation 6.04: Equation used to calculate the survival fraction of cells treated with 

RuGdn (n = 1, 2) complexes in a clonogenic assay 
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6.2) Synthesis of Compounds in Chapter 2 

6.2.1) 4-Bromo-2,6-dimethylpyridine 

 

 

4-Bromo-2,6-dimethylpyridine was prepared by a modified literature procedure[3]. 4-

Hydroxy-2,6-dimethylpyridine (7.2 g, 0.058 mol) and phosphorus pentabromide (25.0 g, 0.058 

mol) were suspended in anhydrous CHCl3 (30 mL) and heated at reflux. After 3 hours, the 

solvent was removed under reduced pressure and the resulting residue heated as a melt at 

120 °C for 16 hours. Once cooled, the product was extracted into ethyl acetate (30 mL), 

washed with a solution of NaOH (1.25 M, 30 mL) and water (2 x 30 mL) and then dried 

(MgSO4). The solvent was removed under reduced pressure to yield 4-bromo-2,6-

dimethylpyridine (3.1 g, 30 %) as a yellow oil. 

Molecular Formula: C7H8NBr, RMM: 185.0 

1H NMR (400 MHz, CDCl3): δ = 2.45 (s, 6H) 7.10 (s, 2H) 

ES+MS: m/z = 186.0 [M + H]+ 

6.2.2) 4-Bromo-2,6-bis(bromomethyl)pyridine 

 

4-Bromo-2,6-bis(bromomethyl)pyridine was prepared by a modified literature 

procedure[4]. 4-Bromo-2,6-dimethylpyridine (3.09 g, 17 mmol), NBS (5.94 g, 37 mmol) and 

benzoyl peroxide (catalytic amount) were suspended in CHCl3 (30 mL) and heated at reflux 

under UV irradiation. The reaction was monitored by TLC (silica, petroleum ether: ethyl 

acetate, 9:1, v:v) every four hours and additional NBS (5.94 g, 37 mmol) and benzoyl peroxide 

(catalytic amount) were added until the complete consumption of both the starting material 

and monosubstituted product was seen. The reaction was then cooled and filtered. The 

filtrate was washed with a solution of NaHCO3 (5 %, 30 mL), brine (30 mL) and water (30 mL), 

dried (MgSO4) and the solvent removed under reduced pressure to yield a mixture of over-

brominated products as a yellow oil. The oil was dissolved in anhydrous THF (30 mL) in a flask 

charged with argon and cooled to 0 °C. Diethyl phosphite (10 mL, 78 mmol) and N,N-
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diisopropylethylamine (17 mL, 98 mmol) were added and the reaction stirred at room 

temperature. The reaction was monitored by TLC (silica, petroleum ether: ethyl acetate, 9:1, 

v:v) every hour until only the desired product was present. After 5 hours the reaction was 

poured onto ice water (30 mL) and extracted with diethyl ether (3 x 30 mL). The combined 

organic extracts were then washed with brine (30 mL) and water (30 mL), dried (MgSO4) and 

the solvent removed under reduced pressure. The resulting brown solid was purified by flash 

column chromatography on silica gel (200-300 mesh) with petroleum ether/ethyl acetate 

(9:1, v:v) as the eluent to afford 4-bromo-2,6-bis(bromomethyl)pyridine (3.79 g, 66 %) as an 

off-white solid. 

Molecular Formula: C7H6NBr3, RMM: 342.8 

1H NMR (400 MHz, CDCl3): δ = 4.48 (s, 4H) 7.55 (s, 2H) 

ES+MS: m/z = 343.8 [M + H]+ 

6.2.3) 4-Bromo-2,6-disubstituted pyridine 

 

 

4-Bromo-2,6-disubstituted pyridine was prepared by a literature procedure[5]. 4-

Bromo-2,6-bis(bromomethyl)pyridine (3.79 g, 11 mmol), di-tert-butyl iminodiacetate (5.42 g, 

22 mmol) and sodium carbonate (11.70 g, 110 mmol) were added to anhydrous MeCN (45 

mL) in a flask charged with argon. The mixture was stirred at room temperature for 24 hours 

and then filtered. The filtrate was evaporated under reduced pressure and the resulting 

yellow oil dissolved in CHCl3 (50 mL), washed with water (2 x 30 mL) and dried (MgSO4). The 

solvent was removed under reduced pressure to yield 4-bromo-2,6-disubstituted pyridine 

(6.89 g, 93 %) as a yellow oil. 

Molecular Formula: C31H50N3O8Br, RMM: 673.3 

1H NMR (400 MHz, CDCl3): δ = 1.41 (s, 36H) 3.42 (s, 8H) 3.94 (s, 4H) 7.68 (s, 2H)  

ES+MS: m/z = 674.3 [M + H]+, 696.3 [M + Na]+ 
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6.2.4) 4-(Trimethylsilyl)ethynyl-2,6-disubstituted pyridine 

 

 

4-Bromo-2,6-disubstituted pyridine (6.89 g, 10.2 mmol), Pd(PPh3)2Cl2 (0.50 g, 0.712 

mmol), CuI (0.30 g, 1.58 mmol) and PPh3 (0.10 g, 0.381 mmol) were added to anhydrous 

iPr2NH (30 mL) and the mixture deoxygenated with argon for 30 minutes. TMSA (15 mL, 108 

mmol) was added with vigorous stirring and the resulting mixture heated at 83 °C for 24 hours. 

Once cooled, the reaction was filtered through celite® with CH2Cl2 until the washings ran clear. 

The solvent was then removed under reduced pressure to afford a black residue, which was 

flash-filtered through silica gel (200-300 mesh) with CH2Cl2. The crude product was then 

purified further using column chromatography on silica gel (200-300 mesh) with petroleum 

ether/ethyl acetate (9:1 to 8:2, v:v) as the eluent to afford 4-(trimethylsilyl)ethynyl-2,6-

disubstituted pyridine (4.25 g, 60 %) as a dark yellow oil.  

Molecular Formula: C36H59N3O8Si, RMM: 689.4 

1H NMR (400 MHz, CDCl3): δ = 0.18 (s, 9H) 1.42 (s, 36H) 3.43 (s, 8H) 3.96 (s, 4H) 7.48 (s, 2H) 

ES+MS: m/z = 690.4 [M + H]+, 712.4 [M + Na]+  

6.2.5) 4-Ethynyl-2,6-disubstituted pyridine 

 

 

4-(Trimethylsilyl)ethynyl-2,6-disubstituted pyridine (0.75 g, 1.09 mmol) and TBAF 

(0.43 g, 1.63 mmol) were dissolved in THF (45 mL) and stirred at room temperature for 16 

hours. The solvent was then removed under reduced pressure and the resulting residue 

dissolved in CH2Cl2 (30 mL), washed with water (2 x 30 mL) and dried (MgSO4). The solvent 

was removed under reduced pressure to afford 4-ethynyl-2,6-disubstituted pyridine (0.62 g, 

92 %) as a dark yellow oil. Due to the instability of the alkyne substituent, 4-ethynyl-2,6-

disubstituted pyridine was generated and used immediately without characterisation. 
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6.2.6) 3-Bromo- and 3,8-dibromo-1,10-phenanthroline  

 

 

3-Bromo-1,10-phenanthroline and 3,8-dibromo-1,10-phenanthroline were prepared 

by a literature procedure[6]. A solution of 1,10-phenanthroline monohydrochloride 

monohydrate (10 g, 43 mmol) in nitrobenzene (20 mL) was heated to 130 °C. A solution of 

bromine (3.3 mL, 65 mmol) in nitrobenzene (9.3 mL) was added to the slurry dropwise over a 

period of an hour and the resulting solution heated for 3 hours. Concentrated ammonium 

hydroxide solution (100 mL) was then slowly added in portions to the cooled reaction mixture 

before extraction with CH2Cl2 (3 x 50 mL). The combined organic layers were washed with 

water (3 x 50 mL) and dried (MgSO4). Removal of the solvent under reduced pressure afforded 

a suspension of the products in nitrobenzene, which was removed via vacuum distillation at 

100 °C. The resulting crude mixture was purified using flash column chromatography on silica 

gel (200-300 mesh) with CH2Cl2/MeOH (100:0 to 99.4:0.6, v:v) as the eluent to afford 3-

bromo-1,10-phenanthroline (3.5 g, 32 %) and 3,8-dibromo-1,10-phenanthroline (2.4 g, 17 %) 

as white powders.  

Molecular Formula: C12H7N2Br, RMM: 258.0 

1H NMR (400 MHz, CDCl3): δ = 7.67 (dd, 1H, J = 8.2 Hz, J = 5.2 Hz) 7.73 (d, 1H, J = 8.9 Hz) 7.84 

(d, 1H, J = 8.9 Hz) 8.26 (dd, 1H, J = 8.2 Hz, J = 1.2 Hz) 8.41 (d, 1H, J = 1.8 Hz) 9.18 – 9.21 (m, 2H)  

ES+MS: m/z = 259.0 [M + H]+ 

Molecular Formula: C12H7N2Br2, RMM: 337.9 

1H NMR (400 MHz, CDCl3): δ = 7.76 (s, 2H) 8.41 (d, 2H, J = 1.9 Hz) 9.19 (d, 2H, J = 1.9 Hz) 

ES+MS: m/z = 338.9 [M + H]+ 
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6.2.7) Bis(2,2’-bipyridine)(3-bromo-1,10-phenanthroline)Ru(II) hexafluorophosphate 

 

 

 

3-Bromo-1,10-phenanthroline (0.95 g, 3.68 mmol) and cis-bis(2,2’-bipyridine)dichloro 

Ru(II) dihydrate[7] (1.90 g, 3.65 mmol) were dissolved in MeOH (30 mL) and refluxed for 16 

hours. Once cooled, the solution was concentrated under reduced pressure and an excess of 

saturated KPF6(aq) solution (20 mL) was added. The solution was left at 4 °C for 16 hours and 

the resulting precipitate dissolved in CH2Cl2 (30 mL), separated and washed with water (3 x 

25 mL). The combined aqueous layers were then washed with further portions of CH2Cl2 (2 x 

25 mL) and the resulting organic extracts combined and dried (MgSO4). The solvent was 

removed under reduced pressure to afford bis(2,2’-bipyridine)(3-bromo-1,10-

phenanthroline)Ru(II) hexafluorophosphate (3.51 g) as a red solid in quantitative yield. 

Molecular Formula: [C32H23N6BrRu]2+[2PF6
-], RMM: 962 

1H NMR (400 MHz, d6-acetone): δ = 7.36 – 7.42 (m, 2H, bipy) 7.60 – 7.66 (m, 2H, bipy) 7.85 

(dd, 1H, J = 1.5 Hz, J = 5.6 Hz, bipy) 7.94 (dd, 1H, J = 5.2 Hz, J = 8.2 Hz, phen) 8.04 (dd, 1H, J = 

1.5 Hz, J = 5.6 Hz, bipy) 8.10 (dd, 1H, J = 1.5 Hz, J = 5.6 Hz, bipy) 8.12 – 8.18 (m, 2H, bipy) 8.19 

(dd, 1H, J = 1.5 Hz, J = 5.6 Hz, bipy) 8.25 (tt, 2H, J = 1.5 Hz, J = 7.9 Hz, bipy) 8.35 (d, 1H, J = 8.9 

Hz, phen) 8.44 (dd, 1H, J = 1.2 Hz, J = 5.2 Hz, phen) 8.45 (d, 1H, J = 8.9 Hz, phen) 8.47 (d, 1H, J 

= 1.9 Hz, phen) 8.78 – 8.87 (m, 5H, 4 x bipy,1 x phen) 9.06 (d, 1H, J = 1.9 Hz, phen) 

ES+MS: m/z = 337 [M – 2PF6]2+  

HRMS ES+: calculated for [C32H23N6BrRu]2+ 337.0099, found 337.0101 
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6.2.8) Ru(II)-Alkyne-Dyad-Ester hexafluorophosphate 

 

 

 

Ru(II)-Alkyne-Dyad-Ester hexafluorophosphate was prepared by a modified 

literature procedure[8]. Bis(2,2’-bipyridine)(3-bromo-1,10-phenanthroline)Ru(II) 

hexafluorophosphate (0.53 g, 0.55 mmol), (dppf)PdCl2.CH2Cl2 (0.05 g, 0.06 mmol) and CuI 

(0.01 g, 0.05 mmol) were dissolved in a mixture of anhydrous DMF and iPr2NH (6 mL, 5:1, v:v) 

and deoxygenated with argon for 30 minutes. To this, a solution of 4-ethynyl-2,6-

disubstituted pyridine (0.62 g, 1.00 mmol) in a deoxygenated mixture of anhydrous DMF and 

iPr2NH (3 mL, 5:1, v:v) was added dropwise. The solution was stirred at room temperature for 

16 hours under argon, before removal of the solvent under reduced pressure. The resulting 

brown solid was purified by column chromatography on silica gel (200-300 mesh) with 

MeCN/H2O/sat. KNO3(aq) (100:0:0 to 100:4:2, v:v:v) as the eluent. The solvent was then 

removed under reduced pressure and the solid dissolved in CH2Cl2 (30 mL), washed with an 

excess of saturated KPF6(aq) solution (20 mL) and separated. The aqueous layer was extracted 

with further portions of CH2Cl2 (2 x 15 mL) and the combined organic layers then washed with 

water (2 x 15 mL) and dried (MgSO4). The solvent was removed under reduced pressure to 

afford Ru(II)-Alkyne-Dyad-Ester hexafluorophosphate (0.41 g, 50 %) as a dark red solid.  

Molecular Formula: [C65H73N9O8Ru]2+[2PF6
-], RMM: 1499 

1H NMR (400 MHz, d6-acetone): δ = 1.45 (s, 36H, tBu) 3.49 (s, 8H, N–CH2–ester) 4.00 (s, 4H, 

CH2–pyridyl) 7.37 – 7.45 (m, 2H, bipy) 7.61 (s, 2H, pyridyl H3/H5) 7.62 – 7.67 (m, 2H, bipy) 7.88 

(d, 1H, J = 5.6 Hz, bipy) 7.96 (dd, 1H, J = 5.2 Hz, J = 8.2 Hz, phen) 8.09 (d, 1H, J = 5.6 Hz, bipy) 

8.13 (d, 1H, J = 5.6 Hz, bipy) 8.14 – 8.20 (m, 2H, bipy) 8.21 (d, 1H, J = 5.6 Hz, bipy) 8.26 (t, 2H, 

J = 7.9 Hz, bipy) 8.40 – 8.50 (m, 3H, phen) 8.67 (d, 1H, J = 1.9 Hz, phen) 8.79 – 8.88 (m, 5H, 4 

x bipy, 1 x phen) 9.04 (d, 1H, J = 1.9 Hz, phen)  

ES+MS: m/z = 604.7 [M – 2PF6]2+  

HRMS ES+: calculated for [C65H73N9O8Ru]2+ 604.7316, found 604.7318 
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6.2.9) Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate 

 

 

 

A solution of Ru(II)-Alkyne-Dyad-Ester hexafluorophosphate (73 mg, 0.049 mmol) in 

CH2Cl2 (3 mL) and TFA (3 mL) was stirred at room temperature for 18 hours. The solvent was 

then removed under reduced pressure to yield a red solid. To remove any residual TFA, the 

solid was dissolved in CH2Cl2 (10 mL) and the solvent removed under reduced pressure. This 

process was repeated ten times. The solid was then washed with MeOH (10 x 10 mL) following 

the same procedure. Finally, the red solid was dissolved in the minimum amount of MeOH 

and precipitated with an excess of diethyl ether. The solid was collected by centrifugation and 

dried under a stream of N2 to yield Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate (61 mg, 98 

%) as a red solid. 

Molecular Formula: [C49H41N9O8Ru]2+[2PF6
-], RMM: 1275 

1H NMR (500 MHz, d6-DMSO, 303 K): δ = 3.46 (s, 8H, N–CH2–acid) 3.94 (s, 4H, CH2–pyridyl) 

7.33 – 7.38 (m, 2H, bipy) 7.53 (d, 1H, J = 5.3 Hz, bipy) 7.56 (s, 2H, pyridyl H3/H5) 7.56 – 7.62 

(m, 2H, bipy) 7.75 (d, 2H, J = 5.3 Hz, bipy) 7.87 (d, 1H, J = 5.3 Hz, bipy) 7.90 (dd, 1H, J = 5.2 Hz, 

J = 8.2 Hz, phen) 8.07 – 8.16 (m, 3H, 2 x bipy, 1 x phen) 8.21 (t, 2H, J = 7.8 Hz, bipy) 8.29 (d, 

1H, J = 1.0 Hz, phen), 8.35 (d, 1H, J = 8.8 Hz, phen), 8.44 (d, 1H, J = 8.8 Hz, phen), 8.78 – 8.90 

(m, 5H, 4 x bipy, 1 x phen), 9.16 (d, 1H, J = 1.0 Hz, phen) 

ES+MS: m/z = 492.6 [M – 2PF6]2+, 328.7 [M – 2PF6 + H]3+   

HRMS ES+: calculated for [C49H41N9O8Ru]2+ 492.6055, found 492.6056 
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6.2.10) Bis(2,2’-bipyridine)(3,8-dibromo-1,10-phenanthroline)Ru(II) hexafluorophosphate 

 

 

3,8-Dibromo-1,10-phenanthroline (0.33 g, 0.98 mmol) and cis-bis(2,2’-bipyridine) 

dichloro Ru(II) dihydrate[7] (0.51 g, 0.98 mmol) were dissolved in MeOH (30 mL) and refluxed 

for 16 hours. Once cooled, the solution was concentrated under reduced pressure and an 

excess of saturated KPF6(aq) solution (20 mL) was added. The solution was left at 4 °C for 16 

hours and the resulting precipitate dissolved in CH2Cl2 (30 mL), separated and washed with 

water (3 x 25 mL). The combined aqueous layers were then washed with further portions of 

CH2Cl2 (2 x 25 mL) and the resulting organic extracts combined and dried (MgSO4). The solvent 

was removed under reduced pressure to afford bis(2,2’-bipyridine)(3,8-dibromo-1,10-

phenanthroline)Ru(II) hexafluorophosphate (1.02 g)  as a red solid in quantitative yield.  

Molecular Formula: [C32H22N6Br2Ru]2+[2PF6
-], RMM: 1040 

1H NMR (400 MHz, d6-acetone): δ = 7.40 (ddd, 2H, J = 1.2 Hz, J = 5.6 Hz, J = 7.9 Hz, bipy) 7.63 

(ddd, 2H, J = 1.2 Hz, J = 5.6 Hz, J = 7.9 Hz, bipy) 8.01 (dd, 2H, J = 1.5 Hz, J = 5.6 Hz, bipy) 8.12 

(dd, 2H, J = 1.5 Hz, J = 5.6 Hz, bipy) 8.16 (td, 2H, J = 1.5 Hz, J = 7.9 Hz, bipy) 8.25 (td, 2H, J = 1.5 

Hz, J = 7.9 Hz, bipy) 8.40 (s, 2H, phen) 8.48 (d, 2H, J = 1.9 Hz, phen) 8.79 (d, 2H, J = 7.9 Hz, bipy) 

8.83 (d, 2H, J = 7.9 Hz, bipy) 9.07 (d, 2H, J = 1.9 Hz, phen) 

ES+MS: m/z = 376.0 [M – 2PF6]2+  

HRMS ES+: calculated for [C32H22N6Br2Ru]2+ 375.9648, found 375.9650 
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6.2.11) Ru(II)-Alkyne-Triad-Ester hexafluorophosphate 

 

 

Bis(2,2’-bipyridine)(3,8-dibromo-1,10-phenanthroline)Ru(II) hexafluorophosphate 

(1.02 g, 0.98 mmol), (dppf)PdCl2.CH2Cl2 (0.05 g, 0.06 mmol) and CuI (0.01 g, 0.05 mmol) were 

dissolved in a mixture of anhydrous DMF and iPr2NH (6 mL, 5:1, v:v) and deoxygenated with 

argon for 30 minutes. To this, a solution of 4-ethynyl-2,6-disubstituted pyridine (1.28 g, 2.07 

mmol) in a deoxygenated mixture of anhydrous DMF and iPr2NH (3 mL, 5:1, v:v) was added 

dropwise. The solution was stirred at room temperature for 16 hours under argon before the 

addition of a further solution of 4-ethynyl-2,6-disubstituted pyridine (1.28 g, 2.07 mmol) in a 

deoxygenated mixture of anhydrous DMF and iPr2NH (3 mL, 5:1, v:v). The reaction was stirred 

under argon for 24 hours before the solvent was removed under reduced pressure. The 

resulting brown solid was purified by column chromatography on silica gel (200-300 mesh) 

with MeCN/H2O/sat. KNO3(aq) (100:0:0 to 100:4:2, v:v:v) as the eluent. The solvent was then 

removed under reduced pressure and the solid dissolved in CH2Cl2 (30 mL), washed with an 

excess of saturated KPF6(aq) solution (20 mL) and separated. The aqueous layer was extracted 

with further portions of CH2Cl2 (2 x 15 mL) and the combined organic layers then washed with 

water (2 x 15 mL), dried (MgSO4) and the solvent removed under reduced pressure. Further 

purification was then achieved by size exclusion chromatography on Sephadex® LH-20 in 

MeOH. The solvent was removed under reduced pressure to afford Ru(II)-Alkyne-Triad-Ester 

hexafluorophosphate (0.94 g, 45 %) as a dark red solid.   

Molecular Formula: [C98H122N12O16Ru]2+[2PF6
-], RMM: 2115 

1H NMR (400 MHz, d6-acetone): δ = 1.45 (s, 72H, tBu) 3.49 (s, 16H, N–CH2–ester) 3.99 (s, 8H, 

CH2-pyridyl) 7.40 – 7.45 (m, 2H, bipy) 7.56 (s, 4H, pyridyl H3/H5) 7.60 – 7.66 (m, 2H, bipy) 8.05 

(d, 2H, J = 5.6 Hz, bipy) 8.12 – 8.21 (m, 4H, bipy) 8.25 (t, 2H, J = 7.9 Hz, bipy) 8.48 (s, 2H, phen) 

8.67 (d, 2H, J = 1.9 Hz, phen) 8.78 – 8.87 (m, 4H, bipy) 9.05 (d, 2H, J = 1.9 Hz, phen)  

ES+MS: m/z = 912.4 [M – 2PF6]2+, 608.6 [M – 2PF6
 + H]3+  

HRMS ES+: calculated for [C98H122N12O16Ru]2+ 912.4067, found 912.4073 
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6.2.12) Ru(II)-Alkyne-Triad-Acid hexafluorophosphate  

A solution of Ru(II)-Alkyne-Triad-Ester hexafluorophosphate (92 mg, 0.044 mmol) in 

CH2Cl2 (3 mL) and TFA (3 mL) was stirred at room temperature for 18 hours. The solvent was 

then removed under reduced pressure to yield a red solid. To remove any residual TFA, the 

solid was dissolved in CH2Cl2 (10 mL) and the solvent removed under reduced pressure. This 

process was repeated ten times. The solid was then washed with MeOH (10 x 10 mL) following 

the same procedure. Finally, the red solid was dissolved in the minimum amount of MeOH 

and precipitated with an excess of diethyl ether. The solid was collected by centrifugation and 

dried under a stream of N2 to yield Ru(II)-Alkyne-Triad-Acid hexafluorophosphate (71 mg, 98 

%) as a red solid. 

Molecular Formula: [C66H58N12O16Ru]2+[2PF6
-], RMM: 1666 

1H NMR (400 MHz, D2O): δ = 4.16 (s, 16H, br, N–CH2–acid) 4.74 (s, 8H, br, CH2-pyridyl) 7.17 –

7.31 (m, 2H, br, bipy) 7.37 – 7.48 (m, 2H, br, bipy) 7.65 (d, 2H, J = 4.0 Hz, br, bipy) 7.69 (s, 4H, 

br, pyridyl H3/H5) 7.90 (d, 2H, J = 4.8 Hz, br, bipy) 7.98 – 8.06 (m, 2H, br, bipy) 8.06 – 8.16 (m, 

2H, br, bipy) 8.25 (s, 2H, br, phen) 8.35 (s, 2H, br, phen) 8.51 – 8.63 (m, 4H, br, bipy) 8.74 (s, 

2H, br, phen)  

ES+MS: m/z = 688.2 [M – 2PF6]2+  

HRMS ES+: calculated for [C66H58N12O16Ru]2+ 688.1563, found 688.1568 
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6.2.13) Tris(3,8-dibromo-1,10-phenanthroline)Ru(II) hexafluorophosphate 

 

 

 

RuCl3.3H2O (0.135 g, 0.52 mmol), 3,8-dibromo-1,10-phenanthroline (0.350 g, 1.04 

mmol) and LiCl (0.131 g, 3.12 mmol) were dissolved in DMF (30 mL) and heated to reflux for 

7 hours. Once cooled, acetone (150 mL) was added and the reaction mixture left at 4 °C for 

16 hours. The black precipitate was filtered, washed with ice cold acetone and dried under a 

stream of N2 to yield crude cis-bis(3,8-dibromo-1,10-phenanthroline)dichloro Ru(II) 

dihydrate (0.262 g, 58 %) as a black solid. The solid was used without further purification. 

Cis-bis(3,8-dibromo-1,10-phenanthroline)dichloro Ru(II) dihydrate (0.170 g, 0.19 

mmol) and 3,8-dibromo-1,10-phenanthroline (0.069 g, 0.20 mmol) were dissolved in ethylene 

glycol (15 mL) and heated at 120 °C for 16 hours. Once cooled, CH2Cl2 (30 mL) and saturated 

KPF6(aq) solution (30 mL) were added and the reaction mixture separated. The compound was 

extracted with further portions of CH2Cl2 (2 x 30 mL) and the combined organic extracts 

washed with water (2 x 15 mL), dried (MgSO4) and the solvent removed under reduced 

pressure. The resulting red solid was purified by column chromatography on silica gel (200-

300 mesh) with MeCN/H2O/sat. KNO3(aq) (100:0:0 to 100:4:2, v:v:v) as the eluent. The solvent 

was then removed under reduced pressure and the solid dissolved in CH2Cl2 (30 mL), washed 

with an excess of saturated KPF6(aq) solution (20 mL) and separated. The aqueous layer was 

extracted with further portions of CH2Cl2 (2 x 15 mL) and the combined organic layers then 

washed with water (2 x 15 mL) and dried (MgSO4). The solvent was removed under reduced 

pressure to afford tris(3,8-dibromo-1,10-phenanthroline)Ru(II) hexafluorophosphate (0.270 

g) as a red solid in quantitative yield.  

Molecular Formula: [C36H18N6Br6Ru]2+[2PF6
-], RMM: 1399 

1H NMR (400 MHz, d6-acetone): δ = 8.39 (s, 6H) 8.53 (d, 6H, J = 1.9 Hz) 9.07 (d, 6H, J = 1.9 Hz) 

ES+MS: m/z = 557.8 [M – 2PF6]2+  

HRMS ES+: calculated for [C36H18N6Br6Ru]2+ 557.7839, found 557.7823  
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6.2.14) Ru(II)-Alkyne-Metallostar-Ester hexafluorophosphate  

 

 

Tris(3,8-dibromo-1,10-phenanthroline)Ru(II) hexafluorophosphate (0.270 g, 0.193 

mmol), (dppf)PdCl2.CH2Cl2 (0.033 g, 0.041 mmol) and CuI (0.005 g, 0.026 mmol) were 

dissolved in a mixture of anhydrous DMF and NEt3 (6 mL, 5:1, v:v) and deoxygenated with 

argon for 30 minutes. To this, a solution of 4-ethynyl-2,6-disubstituted pyridine (1.42 g, 2.30 

mmol) in a deoxygenated mixture of anhydrous DMF and NEt3 (3 mL, 5:1, v:v) was added 

dropwise. The solution was stirred at room temperature for 16 hours before the addition of 

a further solution of 4-ethynyl-2,6-disubstituted pyridine (1.42 g, 2.30 mmol) in a 

deoxygenated mixture of anhydrous DMF and NEt3 (3 mL, 5:1, v:v). The reaction was stirred 

for 7 days under argon before the solvent was removed under reduced pressure. The resulting 

brown solid was purified by column chromatography on silica gel (200-300 mesh) with 

MeCN/H2O/sat. KNO3(aq) (100:0:0 to 200:6:2, v:v:v) as the eluent. The solvent was then 

removed under reduced pressure and the solid dissolved in CH2Cl2 (30 mL), washed with an 

excess of saturated KPF6(aq) solution (20 mL) and separated. The aqueous layer was extracted 

with further portions of CH2Cl2 (2 x 15 mL) and the combined organic layers then washed with 

water (2 x 15 mL) and dried (MgSO4). Further purification was then achieved by size exclusion 

chromatography on Sephadex® LH-20 in MeOH. The solvent was removed under reduced 

pressure to afford Ru(II)-Alkyne-Metallostar-Ester hexafluorophosphate (0.135 g, 15 %) as a 

rusty brown solid. 

Molecular Formula: [C234H318N24O48Ru]2+[2PF6
-], RMM: 4624 

1H NMR (400 MHz, d6-acetone): δ = 1.41 (s, 216H, br, tBu) 3.45 (s, 48H, br, N–CH2–ester) 3.96 

(s, 24H, br, CH2-pyridyl) 7.55 (s, 12H, br, pyridyl H3/H5) 8.49 (s, 6H, br, phen) 8.81 (s, 6H, br, 

phen) 9.06 (s, 6H, br, phen) 

13C NMR (500 MHz, 1,1,2,2-tetrachloroethane-d2, DEPTQ): δ = 28.2 (C(CH3)3) 55.6 (C13) 59.4 

(C12) 81.2 (C(CH3)3) 86.6 (C7) 96.0 (C8) 123.1 (C10) 128.7 (C5) 131.0 (C6) 141.0 (C3) 145.9 (C2) 

153.6 (C1) 159.3 (C11) 166.7 (C4) 170.3 (C9) 207.8 (C14) ES+MS: m/z = 2168.6 [M – 2PF6]2+ 
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6.2.15) Ru(II)-Alkyne-Metallostar-Acid hexafluorophosphate 

 

 

 

A solution of Ru(II)-Alkyne-Metallostar-Ester hexafluorophosphate (0.10 g, 0.022 

mmol) in CH2Cl2 (3 mL) and TFA (3 mL) was stirred at room temperature for 18 hours. The 

solvent was then removed under reduced pressure to yield a rusty brown solid. To remove 

any residual TFA, the solid was dissolved in CH2Cl2 (10 mL) and the solvent then removed 

under reduced pressure. This process was repeated ten times. The solid was then washed 

with MeOH (10 x 10 mL) following the same procedure. Finally, the rusty brown solid was 

dissolved in the minimum amount of MeOH and precipitated with an excess of diethyl ether. 

The solid was collected by centrifugation and dried under a stream of N2 to yield Ru(II)-

Alkyne-Metallostar-Acid hexafluorophosphate (0.07 mg, 99 %) as a rusty brown solid. 

Molecular Formula: [C138H126N24O48Ru]2+[2PF6
-], RMM: 3279 

1H NMR (500 MHz, D2O, pD 4.38): δ = 3.82 (s, 48H, br, N–CH2–acid) 4.57 (s, 24H, br, CH2-

pyridyl) 7.54 (s, 12H, br, pyridyl H3/H5) 8.06-8.45 (m, 12H, br, phen) 8.81 (s, 6H, br, phen) 

13C NMR (500 MHz, D2O, pD 4.38, DEPTQ): δ = 57.2 (C13) 58.1 (C12) 90.1 (C7) 92.3 (C8) 126.8 

(C10) 129.2 (C5) 132.7 (C6) 140.9 (C3) 146.8 (C2) 150.5 (C11) 154.4 (C1) 163.3 (C4) 170.1 (C9) 208.3 

(C14)  
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6.2.16) 4-Azido-2,6-disubstituted pyridine 

 

 

4-Azido-2,6-disubstituted pyridine was prepared by a modified literature 

procedure[9]. 4-Bromo-2,6-disubstituted pyridine (0.90 g, 1.3 mmol), sodium azide (0.87 g, 

13.4 mmol) and tetrabutylammonium hydrogensulfate (0.09 g, 0.3 mmol) were added to 

anhydrous DMF (25 mL) in a flask charged with argon. The suspension was heated at 100 °C 

for 48 hours and then cooled to room temperature. Water (30 mL) was added and the 

compound extracted into di-isopropyl ether (3 x 50 mL). The combined organic layers were 

washed with water (2 x 20 mL) and dried (MgSO4). The solvent was removed under reduced 

pressure to yield 4-azido-2,6-disubstituted pyridine (0.62 g, 73 %) as a dark yellow oil. 

Molecular Formula: C31H50N6O8, RMM: 634.4 

1H NMR (400 MHz, CDCl3): δ = 1.45 (s, 36H) 3.46 (s, 8H) 3.98 (s, 4H) 7.23 (s, 2H)   

ES+MS: m/z = 635.4 [M + H]+ 657.4 [M + Na]+ 

6.2.17) 3-(Trimethylsilyl)ethynyl-1,10-phenanthroline 

 

3-(Trimethylsilyl)ethynyl-1,10-phenanthroline was prepared by a literature 

procedure[10]. 3-Bromo-1,10-phenanthroline (0.40 g, 1.55 mmol), Pd(PPh3)2Cl2 (0.06 g, 0.09 

mmol) and CuI (0.04 g, 0.23 mmol) were dissolved in a mixture of THF and NEt3 (15 mL, 2:1, 

v:v) and deoxygenated with argon for 30 minutes. TMSA (2.20 mL, 15.9 mmol) was added 

dropwise with vigorous stirring and the resulting mixture heated at 70 °C for 24 hours. Once 

cooled, the solvent was removed under reduced pressure to afford a black residue which was 

filtered through celite® with CH2Cl2 until the washings ran clear. The solvent was then 

removed under reduced pressure and the resulting solid filtered through celite® with hexane 

until the washings ran clear. The solvent was removed under reduced pressure and the crude 

product purified by column chromatography on silica gel (200-300 mesh) with CH2Cl2/MeOH 

(199:1, v:v) as the eluent to afford 3-(trimethylsilyl)ethynyl-1,10-phenanthroline (0.05 g, 12 

%) as a beige solid.  
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Molecular Formula: C17H16N2Si, RMM: 276.1 

1H NMR (400 MHz, CDCl3): δ = 0.30 (s, 9H) 7.60 (dd, 1H, J = 7.8 Hz, J = 4.4 Hz) 7.69 (d, 1H, J = 

8.8 Hz) 7.76 (d, 1H, J = 8.8 Hz) 8.20 (dd, 1H, J = 7.8 Hz, J = 1.8 Hz) 8.29 (d, 1H, J = 1.8 Hz) 9.11 

– 9.21 (m, 2H) 

ES+MS: m/z = 277.1 [M + H]+ 

6.2.18) 3-Ethynyl-1,10-phenanthroline 

 

3-Ethynyl-1,10-phenanthroline was prepared by a modified literature procedure[11]. 

3-(Trimethylsilyl)ethynyl-1,10-phenanthroline (56 mg, 0.20 mmol) was dissolved in a mixture 

of MeOH and THF (10 mL, 1:1, v:v). Potassium carbonate (38 mg, 0.28 mmol) was added and 

the resulting solution stirred at room temperature for 6 hours. The solvent was removed 

under reduced pressure and the solid dissolved in CH2Cl2 (20 mL), washed with water (2 x 20 

mL) and dried (MgSO4). The solvent was removed under reduced pressure to afford 3-ethynyl-

1,10-phenanthroline (17 mg, 40 %) as a beige solid.  

Molecular Formula: C14H8N2, RMM: 204.1 

1H NMR (400 MHz, CDCl3): δ = 3.34 (s, 1H) 7.60 (dd, 1H, J = 8.0 Hz, J = 4.4 Hz) 7.69 (d, 1H, J = 

8.8 Hz) 7.76 (d, 1H, J = 8.8 Hz) 8.20 (dd, 1H, J = 8.0 Hz, J = 1.8 Hz) 8.30 (d, 1H, J = 2.1 Hz) 9.16 

(dd, 1H, J = 4.4 Hz, J = 1.8 Hz) 9.19 (d, 1H, J = 2.1 Hz) 

ES+MS: m/z = 205.1 [M + H]+ 

6.2.19) Bis(2,2’-bipyridine)(3-ethynyl-1,10-phenanthroline)Ru(II) hexafluorophosphate  

 

 

3-Ethynyl-1,10-phenanthroline (17 mg, 0.083 mmol) and cis-bis(2,2’-

bipyridine)dichloro Ru(II) dihydrate[7] (41 mg, 0.079 mmol) were dissolved in MeOH (10 mL) 

and refluxed for 6 hours. Once cooled, the solvent was removed under reduced pressure and 

the resulting red solid purified by column chromatography on silica gel (200-300 mesh) with 
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MeCN/H2O/sat. KNO3(aq) (100:0:0 to 100:10:5, v:v:v) as the eluent. The solvent was then 

removed under reduced pressure and the solid dissolved in CH2Cl2 (30 mL), washed with an 

excess of saturated KPF6(aq) solution (20 mL) and separated. The aqueous layer was extracted 

with further portions of CH2Cl2 (2 x 15 mL) and the combined organic layers then washed with 

water (2 x 15 mL) and dried (MgSO4). The solvent was removed under reduced pressure to 

afford bis(2,2’-bipyridine)(3-ethynyl-1,10-phenanthroline)Ru(II) hexafluorophosphate (75 

mg) as a red solid in quantitative yield. 

Molecular Formula: [C34H24N6Ru]2+[2PF6
-], RMM: 908 

1H NMR (400 MHz, d6-acetone): δ = 4.18 (s, 1H) 7.40 (ddt, 2H, J = 1.4 Hz, J = 5.7 Hz, J = 7.8 Hz, 

bipy) 7.64 (ddd, 2H, J = 1.3 Hz, J = 5.7 Hz, J = 7.8 Hz, bipy) 7.88 (dd, 1H, J = 0.7 Hz, J = 5.7 Hz, 

bipy) 7.96 (dd, 1H, J = 5.3 Hz, J = 8.3 Hz, phen) 8.05 (dd, 1H, J = 0.7 Hz, J = 5.7 Hz, bipy) 8.13 – 

8.19 (m, 3H, bipy) 8.21 (dd, 1H, J = 0.7 Hz, J = 5.7 Hz, bipy) 8.26 (tdd, 2H, J = 1.4 Hz, J = 2.7 Hz, 

J = 7.9 Hz, bipy) 8.39 (d, 1H, J = 8.8 Hz, phen) 8.44 – 8.48 (m, 3H, phen) 8.79 – 8.88 (m, 5H, 4 

x bipy, 1 x phen) 8.92 (d, 1H, J = 1.6 Hz, phen) 

ES+MS: m/z = 309.1 [M – 2PF6]2+, 763 [M – PF6]+  

HRMS ES+: calculated for [C34H24N6Ru]2+ 309.0552, found 309.0556 

6.2.20) Ru(II)-Triazole-Dyad-Ester hexafluorophosphate 

 

 

 

Ru(II)-Triazole-Dyad-Ester hexafluorophosphate was prepared by a modified 

literature procedure[9]. Bis(2,2’-bipyridine)(3-ethynyl-1,10-phenanthroline)Ru(II) 

hexafluorophosphate (75 mg, 0.083 mmol), 4-azido-2,6-disubstituted pyridine (0.11 g, 0.17 

mmol) and CuI (0.01 g, 0.05 mmol) were dissolved in MeCN (20 mL) and deoxygenated with 

argon for 30 minutes. The solution was then refluxed for 24 hours under argon, before 

removal of the solvent under reduced pressure. The resulting orange solid was purified by 

column chromatography on silica gel (200-300 mesh) with MeCN/H2O/sat. KNO3(aq) (100:0:0 

to 100:2:1 to 100:4:2, v:v:v) as the eluent. The solvent was then removed under reduced 
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pressure and the solid dissolved in CH2Cl2 (30 mL), washed with an excess of saturated KPF6(aq) 

solution (20 mL) and separated. The aqueous layer was extracted with further portions of 

CH2Cl2 (2 x 15 mL) and the combined organic layers then washed with water (2 x 15 mL) and 

dried (MgSO4). Further purification was then achieved by size exclusion chromatography on 

Sephadex® LH-20 in MeOH. The solvent was removed under reduced pressure to afford Ru(II)-

Triazole-Dyad-Ester hexafluorophosphate (26 mg, 20 %) as an orange solid.   

Molecular Formula: [C65H74N12O8Ru]2+[2PF6
-], RMM: 1542 

1H NMR (400 MHz, d6-acetone): δ = 1.44 (s, 36H, tBu) 3.57 (s, 8H, N–CH2–ester) 4.12 (s, 4H, 

CH2-pyridyl) 7.36 – 7.44 (m, 2H, bipy) 7.66 (ddd, 1H, J = 1.1 Hz, J = 5.7 Hz, J = 7.8 Hz, bipy) 7.73 

(ddd, 1H, J = 1.1 Hz, J = 5.7 Hz, J = 7.8 Hz, bipy) 7.93 – 7.99 (m, 2H, 1 x bipy, 1 x phen) 8.09 (s, 

2H, pyridyl H3/H5) 8.11 (d, 1H, J = 5.7 Hz, bipy) 8.13 – 8.19 (m, 2H, bipy) 8.21 (d, 1H, J = 5.7 Hz, 

bipy) 8.25 – 8.32 (m, 2H, bipy) 8.36 (td, 1H, J = 1.1 Hz, J = 7.8 Hz, bipy) 8.43 – 8.50 (m, 3H, 

phen) 8.79 – 8.87 (m, 3H, 2 x bipy, 1 x phen) 8.90 (t, 2H, J = 8.4 Hz, bipy) 8.95 (d, 1H, J = 1.6 

Hz, phen) 9.27 (d, 1H, J = 1.6 Hz, phen) 9.29 (s, 1H, triazole)  

ES+MS: m/z = 626.2 [M – 2PF6]2+  

HRMS ES+: calculated for [C65H74N12O8
102Ru]2+ 626.2393, found 626.2401 

6.2.21) Ru(II)-Triazole-Dyad-Acid hexafluorophosphate 

 

  

 

A solution of Ru(II)-Triazole-Dyad-Ester hexafluorophosphate (26 mg, 0.017 mmol) in 

CH2Cl2 (3 mL) and TFA (3 mL) was stirred at room temperature for 18 hours. The solvent was 

then removed under reduced pressure to yield a red solid. To remove any residual TFA, the 

solid was dissolved in CH2Cl2 (10 mL) and the solvent removed under reduced pressure. This 

process was repeated ten times. The solid was then washed with MeOH (10 x 10 mL) following 

the same procedure. Finally, the red solid was dissolved in the minimum amount of MeOH 

and precipitated with an excess of diethyl ether. The solid was collected by centrifugation and 

dried under a stream of N2 to yield Ru(II)-Triazole-Dyad-Acid hexafluorophosphate (20 mg, 

90 %) as an orange solid. 
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Molecular Formula: [C49H42N12O8Ru]2+[2PF6
-], RMM: 1318 

1H NMR (400 MHz, d6-DMSO, 373 K): δ = 3.53 (s, 8H, N–CH2–acid) 4.09 (s, 4H, CH2-pyridyl) 

7.33 – 7.41 (m, 2H, bipy) 7.58 – 7.65 (m, 2H, bipy) 7.67 (t, 1H, J = 6.2 Hz, bipy) 7.77 (d, 1H, J = 

3.9 Hz, bipy) 7.84 – 7.99 (m, 5H, 2 x bipy, 1 x phen, 2 x pyridyl H3/H5) 8.06 – 8.13 (m, 2H, bipy) 

8.17 (d, 1H, J = 4.8 Hz, phen) 8.22 (t, 1H, J = 7.2 Hz, bipy) 8.29 (t, 1H, J = 7.2 Hz, bipy) 8.41 (s, 

2H, phen) 8.59 (s, 1H, phen) 8.72 – 8.88 (m, 5H, 4 x bipy, 1 x phen) 9.23 (s, 1H, phen) 9.34 (s, 

1H, triazole) 

ES+MS: m/z = 514 [M – 2PF6]2+  

HRMS ES+: calculated for [C49H42N12O8Ru]2+ 514.1162, found 514.1141 
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6.3) Synthesis of Compounds in Chapter 3 

6.3.1) Ru(II)-Alkyne-Dyad-Gd(III) chloride 

 

 

 

Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate (45 mg, 0.035 mmol) was dissolved in 

water (3 mL) and cooled to 0 °C. A solution of GdCl3.6H2O (14 mg, 0.038 mmol) in water (0.5 

mL) was added dropwise and the mixture stirred at room temperature. After one hour, the 

solution was taken to pH 5-6 using a solution of NaOH(aq) (1M) and left to stir at room 

temperature for 18 hours. Saturated KPF6(aq) solution was then added to produce a red 

precipitate which was filtered and washed with water. The red solid was then dissolved in the 

minimum amount of MeOH and precipitated with an excess of diethyl ether. The precipitate 

was collected by centrifugation and purified further using Sephadex® LH-20 in MeOH. The 

solvent was removed under reduced pressure and the resulting red solid dried under a stream 

of N2. Counterion exchange was then achieved using Dowex® 1x2 chloride form (100-200 

mesh) in water. The solution was filtered, the water removed under reduced pressure and 

the resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-Dyad-Gd(III) chloride 

(35 mg, 84 %) as a red solid.  

Molecular Formula: [C49H37N9O8RuGd]+[Cl-], RMM: 1174 

ES+MS: m/z = 570.1 [M – Cl + H]2+, 380.4 [M – Cl + 2H]3+  

HRMS ES+: calculated for [C49H37N9O8RuGd + H]2+ 570.0558, found 570.0562 
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6.3.2) Ru(II)-Alkyne-Triad-Gd(III)  

 

 

Ru(II)-Alkyne-Triad-Acid hexafluorophosphate (100 mg, 0.060 mmol) was dissolved in 

water (3 mL) and cooled to 0 °C. A solution of GdCl3.6H2O (59 mg, 0.159 mmol) in water (0.5 

mL) was added dropwise and the mixture stirred at room temperature. After one hour, the 

solution was taken to pH 5-6 using a solution of NaOH(aq) (1M) and left to stir at room 

temperature for 18 hours. The solution was then purified using Sephadex® LH-20 in water. 

The solvent was removed under reduced pressure and the resulting red solid dried under a 

stream of N2 to yield Ru(II)-Alkyne-Triad-Gd(III) (70 mg, 69 %) as a red solid.  

Molecular Formula: C66H50N12O16RuGd2, RMM: 1683 

ES+MS: m/z = 842.1 [M + 2H]2+ 852.5 [M + Na + H]2+ 864.6 [M + 2Na]2+  

HRMS ES+: calculated for [C66H50N12O16RuGd2 + 2H]2+ 842.5530, found 842.5664 

6.3.3) Ru(II)-Alkyne-Metallostar-Gd(III) sodium  

 

 

 

 

Ru(II)-Alkyne-Metallostar-Acid hexafluorophosphate (38 mg, 0.011 mmol) was 

dissolved in water (3 mL) and the pH of the solution adjusted to 5-6 using a solution of 

NaOH(aq) (0.1 M). With stirring, a solution of GdCl3.6H2O (27 mg, 0.073 mmol) in water (0.5 

mL) was added dropwise. The mixture was stirred at room temperature and the pH readjusted 

to 5-6 using NaOH(aq) (0.1 M) when necessary. After 18 hours, a rusty brown precipitate 

formed which was filtered and washed with water. Due to the resulting solid’s insolubility in 

all solvents, however, no characterisation was achieved to ascertain successful synthesis of 

the target compound.  
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6.3.4) Ru(II)-Triazole-Dyad-Gd(III) chloride 

 

 

 

Ru(II)-Triazole-Dyad-Acid hexafluorophosphate (20 mg, 0.015 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using a solution of NaOH(aq) (0.1 M). 

With stirring, a solution of GdCl3.6H2O (7 mg, 0.019 mmol) in water (0.5 mL) was added 

dropwise. The mixture was stirred at room temperature and the pH readjusted to 5-6 using 

NaOH(aq) (0.1 M) when necessary. After 18 hours, Dowex® 1x2 chloride form (100-200 mesh) 

was added and the solution was left stirring for a further 24 hours. The solution was filtered, 

concentrated under reduced pressure and purified on Sephadex® G-15. The solvent was 

removed under reduced pressure and the resulting orange solid dried under a stream of N2 

to yield Ru(II)-Triazole-Dyad-Gd(III) chloride (18 mg, 97 %) as an orange solid.  

Molecular Formula: [C49H38N12O8RuGd]+[Cl-], RMM: 1217 

ES+MS: m/z = 591 [M – Cl + H]2+, 1182 [M – Cl]+  

HRMS ES+: calculated for [C49H38N12O8RuGd + H]2+ 591.5644, found 591.5642 

 

 

 

 

 

 

 



Chapter 6 – Experimental Methods 

 

221 

6.4) Synthesis of Compounds in Chapter 4 

6.4.1) Ru(II)-Alkyne-Dyad-Mn(II) 

 

 

 

 

Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate (130 mg, 0.102 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using a solution of NaOH(aq) (0.1 M). 

With stirring, a solution of MnCl2.4H2O (26 mg, 0.131 mmol) in water (0.5 mL) was added 

dropwise. The mixture was stirred at room temperature and the pH readjusted to 5-6 using 

NaOH(aq) (0.1 M) when necessary. After 18 hours, the reaction mixture was concentrated 

under reduced pressure and purified on Sephadex® G-15. The solvent was removed under 

reduced pressure and the resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-

Dyad-Mn(II) (100 mg, 95 %) as a red solid.  

Molecular Formula: C49H37N9O8RuMn, RMM: 1036 

ES+MS: m/z = 519.1 [M + 2H]2+  

HRMS ES+: calculated for [C49H37N9O8RuMn + 2H]2+ 519.0667, found 519.0658 

6.4.2) Ru(II)-Alkyne-Dyad-Zn(II) 

 

 

 

 

Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate (38 mg, 0.030 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using a solution of NaOH(aq) (0.1 M). 

With stirring, a solution of ZnCl2.XH2O (10 mg, 0.049 mmol) in water (0.5 mL) was added 

dropwise. The mixture was stirred at room temperature and the pH readjusted to 5-6 using 

NaOH(aq) (0.1 M) when necessary. After 18 hours, the reaction mixture was concentrated 
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under reduced pressure and purified on Sephadex® G-15. The solvent was removed under 

reduced pressure and the resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-

Dyad-Zn(II) (25 mg, 80 %) as a red solid.  

Molecular Formula: C49H37N9O8RuZn, RMM: 1045 

1H NMR (400 MHz, D2O): δ = 3.34 – 3.52 (m, 8H, N–CH2–Zn) 4.15 (s, 4H, CH2–pyridyl) 7.16 –

7.26 (m, 2H, bipy) 7.39 – 7.46 (m, 2H, bipy) 7.48 (s, 1H, pyridyl H3 or H5) 7.52 (s, 0.5H, pyridyl 

H3 or H5) 7.54 (s, 0.5H, pyridyl H3 or H5) 7.58 (d, 1H, J = 5.3 Hz, bipy) 7.68 (d, 1H, J = 5.3 Hz, 

bipy) 7.73 (t, 1H, J = 6.5 Hz, phen) 7.91 (d, 1H, J = 5.3 Hz, bipy) 7.94 (d, 1H, J = 5.3 Hz, bipy) 

7.99 (t, 2H, J = 7.5 Hz, bipy) 8.09 (t, 2H, J = 7.5 Hz, bipy) 8.18 (d, 1H, J = 4.8 Hz, phen) 8.19 – 

8.29 (m, 2H, phen) 8.35 (d, 1H, J = 4.5 Hz, phen) 8.50 – 8.64 (m, 5H, 4 x bipy, 1 x phen) 8.76 (s, 

0.5H, phen) 8.79 (s, 0.5H, phen) 

ES+MS: m/z = 523.6 [M + 2H]2+  

HRMS ES+: calculated for [C49H37N9O8RuZn + 2H]2+ 523.5623, found 523.5632 

6.4.3) Ru(II)-Alkyne-Triad-Mn(II) disodium 

 

 

Ru(II)-Alkyne-Triad-Acid hexafluorophosphate (41 mg, 0.025 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using a solution of NaOH(aq) (0.1 M). 

With stirring, a solution of MnCl2.4H2O (12 mg, 0.061 mmol) in water (0.5 mL) was added 

dropwise. The mixture was stirred at room temperature and the pH readjusted to 5-6 using 

NaOH(aq) (0.1 M) when necessary. After 18 hours, the reaction mixture was concentrated 

under reduced pressure and purified on Sephadex® G-15. The solvent was removed under 

reduced pressure and the resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-

Triad-Mn(II) disodium (25 mg, 67 %) as a red solid.  

Molecular Formula: [C66H50N12O16RuMn2]2-[2Na+], RMM: 1523 

ES-MS: m/z = 739.1 [M – 2Na]2-  

HRMS ES-: calculated for [C66H50N12O16
102RuMn2]2- 739.0631, found 739.0598 
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6.4.4) Ru(II)-Alkyne-Triad-Zn(II) disodium 

 

 

Ru(II)-Alkyne-Triad-Acid hexafluorophosphate (9 mg, 5.20 µmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using a solution of NaOH(aq) (0.1 M). 

With stirring, a solution of ZnCl2.XH2O (5 mg, 25 µmol) in water (0.5 mL) was added dropwise. 

The mixture was stirred at room temperature and the pH readjusted to 5-6 using NaOH(aq) 

(0.1 M) when necessary. After 18 hours, the reaction mixture was concentrated under 

reduced pressure and purified on Sephadex® G-15. The solvent was removed under reduced 

pressure and the resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-Triad-

Zn(II) disodium (7 mg, 82 %) as a red solid.  

Molecular Formula: [C66H50N12O16RuZn2]2-[2Na+], RMM: 1542 

1H NMR (400 MHz, D2O): δ = 3.50 (s, 16H, br, N–CH2–Zn) 4.18 (s, 8H, br, CH2–pyridyl) 7.14 – 

7.36 (2H, br, bipy) 7.36 – 7.50 (2H, br, bipy) 7.55 (s, 2H, br, pyridyl H3 or H5) 7.60 – 7.83 (m, 

4H, br, 2 x bipy, 2 x pyridyl H3 or H5) 7.84 – 7.95 (2H, br, bipy) 7.95 – 8.06 (m, 2H, br, bipy) 8.06 

– 8.18 (m, 2H, br, bipy) 8.27 (s, 2H, br, phen) 8.36 (s, 2H, br, phen) 8.47 – 8.69 (m, 4H, br, bipy) 

8.80 (s, 2H, br, phen)  

ES-MS: m/z = 748.1 [M – 2Na]2-  

HRMS ES-: calculated for [C66H50N12O16
102Ru64Zn2]2- 748.0553, found 748.0532 
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6.5) Synthesis of Compounds in Chapter 5 

6.5.1) Ru(II)-Alkyne-Dyad-Nd(III) chloride 

 

 

 

 

Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate (15 mg, 0.012 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using NaOH(aq) (0.1 M). With stirring, 

a solution of Nd(OTf)3 (11 mg, 0.019 mmol) in water (0.5 mL) was added dropwise. The 

mixture was stirred at room temperature and the pH readjusted to 5-6 using NaOH(aq) (0.1 M) 

when necessary. After 18 hours, a small portion of Dowex® 1x2 chloride form (100-200 mesh) 

was added and the mixture stirred at room temperature for a further 24 hours. The solution 

was then filtered, concentrated under reduced pressure and purified on Sephadex® G-15. The 

solvent was removed under reduced pressure and the resulting red solid dried under a stream 

of N2 to yield Ru(II)-Alkyne-Dyad-Nd(III) chloride (13 mg, 95 %) as a red solid.  

Molecular Formula: [C49H37N9O8RuNd]+[Cl-], RMM: 1158 

ES+MS: m/z = 563.0 [M – Cl + H]2+, 375.7 [M – Cl + 2H]3+  

HRMS ES+: calculated for [C49H37N9O8
102Ru144Nd + H]2+ 563.0488, found 563.0497 

6.5.2) Ru(II)-Alkyne-Dyad-Yb(III) chloride 

 

 

 

 

Ru(II)-Alkyne-Dyad-Acid hexafluorophosphate (18 mg, 0.014 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using NaOH(aq) (0.1 M). With stirring, 

a solution of Yb(OTf)3 (14 mg, 0.023 mmol) in water (0.5 mL) was added dropwise. The mixture 

was stirred at room temperature and the pH readjusted to 5-6 using NaOH(aq) (0.1 M) when 

necessary. After 18 hours, a small portion of Dowex® 1x2 chloride form (100-200 mesh) was 
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added and the mixture stirred at room temperature for a further 24 hours. The solution was 

then filtered, concentrated under reduced pressure and purified on Sephadex® G-15. The 

solvent was removed under reduced pressure and the resulting red solid dried under a stream 

of N2 to yield Ru(II)-Alkyne-Dyad-Yb(III) chloride (14 mg, 83 %) as a red solid.  

Molecular Formula: [C49H37N9O8RuYb]+[Cl-], RMM: 1190 

ES+MS: m/z = 578.1 [M – Cl + H]2+  

HRMS ES+: calculated for [C49H37N9O8
102Ru173Yb + H]2+ 578.0632, found 578.0632 

6.5.3) Ru(II)-Alkyne-Triad-Nd(III) 

 

 

 

 

Ru(II)-Alkyne-Triad-Acid hexafluorophosphate (11.4 mg, 0.007 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using NaOH(aq) (0.1 M). With stirring, 

a solution of Nd(OTf)3 (10 mg, 0.017 mmol) in water (0.5 mL) was added dropwise. The 

mixture was stirred at room temperature and the pH readjusted to 5-6 using NaOH(aq) (0.1 M) 

when necessary. After 18 hours, the reaction mixture was concentrated under reduced 

pressure and purified on Sephadex® G-15. The solvent was removed under reduced pressure 

and the resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-Triad-Nd(III) (11 

mg, 97 %) as a red solid.  

Molecular Formula: C66H50N12O16RuNd2, RMM: 1656 

ES+MS: m/z = 829.0 [M + 2H]2+, 553.0 [M + 3H]3+, 415.0 [M + 4H]4+  

HRMS ES+: calculated for [C66H50N12O16
102Ru144Nd2 + 2H]2+ 829.0429, found 829.0404 
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6.5.4) Ru(II)-Alkyne-Triad-Yb(III) 

 

 

 

 

Ru(II)-Alkyne-Triad-Acid hexafluorophosphate (7.4 mg, 0.004 mmol) was dissolved in 

water (3 mL) and the pH of the solution adjusted to 5-6 using NaOH(aq) (0.1 M). With stirring, 

a solution of Yb(OTf)3 (7 mg, 0.011 mmol) in water (0.5 mL) was added dropwise. The mixture 

was stirred at room temperature and the pH readjusted to 5-6 using NaOH(aq) (0.1 M) when 

necessary. After 18 hours, the reaction mixture was concentrated under reduced pressure 

and purified on Sephadex® G-15. The solvent was removed under reduced pressure and the 

resulting red solid dried under a stream of N2 to yield Ru(II)-Alkyne-Triad-Yb(III) (7.5 mg, 99 

%) as a red solid.  

Molecular Formula: C66H50N12O16RuYb2, RMM: 1714 

ES+MS: m/z = 858.1 [M + 2H]2+, 572.4 [M + 3H]3+, 429.5 [M + 4H]4+  

HRMS ES+: calculated for [C66H50N12O16
102Ru173Yb2 + 2H]2+ 858.0710, found 858.0683 
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