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Abstract 
 

The main purpose of this thesis focuses on the investigation of the frequency 

domain analysis and design approaches for nonlinear damping systems. With the 

development of modern mechanical and civil engineering structures, the 

vibration control has become a more and more important problem for the 

structural system protection. As typical energy dissipation equipments for the 

structural vibration control purpose, damping devices have been designed and 

fitted in many modern structural systems. Traditional frequency domain design 

methods for linear damping devices have been widely studied by engineers and 

applied in engineering practice, where the system output frequency response is 

equal to the input spectrum multiplied by the system frequency response 

function. 

 

Recently, nonlinear damping devices have received more and more attentions 

and been applied in practical engineering systems to overcome the limitations of 

linear damping devices in the system vibration control. The analysis and design 

of nonlinear systems, however, are far more complicated than the design of 

linear systems. The frequency domain design methods for linear systems cannot 

easily be extended to the nonlinear cases. Traditional frequency domain analysis 

and design methods for nonlinear systems involve complicated computations, 

and are, consequently, difficult to be applied in practice. Therefore, more 

effective frequency domain analysis and design approaches should be developed 

to facilitate the design of nonlinear damping devices and to satisfy the demand 

for better vibration performance in practical engineering structural systems. 

Motivated by this requirement, several new frequency domain analysis and 

design approaches have been proposed for the analysis of the performance and 

the design of the characteristic parameters of nonlinear viscous damping devices. 

The main contributions of the research work can be summarized as follows. 
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(1) Based on the Ritz-Galerkin method, a new method for the evaluation of the 

transmissibility of nonlinear SDOF viscously damped vibration systems under 

general harmonic excitations is derived. The effects of damping characteristic 

parameters on the system transmissibility are investigated. The results reveal 

that properly designed nonlinear fluid viscous dampers can produce more ideal 

vibration control over a wide frequency range. 

 

(2) The Output Frequency Response Function (OFRF) is a concept recently 

proposed at Sheffield for the analysis and design of nonlinear systems in the 

frequency domain. Based on the OFRF, a frequency domain analysis and design 

approach has been developed to study the impact of additional nonlinear viscous 

damping devices on the vibration isolation behaviours of MDOF viscously 

damped vibration systems, and to design the characteristic parameters of 

additional damping devices for a desired system vibration performance. 

 

(3) Based on the OFRF, a new concept called Vibration Power Loss Factor 

(VPLF) is proposed to evaluate the effects of additional fluid viscous dampers 

on the vibration control of structural systems subjected to general loading 

excitations. A novel VPLF and OFRF based approach is then proposed for the 

design of additional fluid viscous dampers to achieve a desired vibration 

performance when the structural systems are subject to general loading 

excitations. The advantages of using different types of additional fluid viscous 

dampers in structural systems for the vibration control purpose are also 

investigated. 

 

(4) Using the Finite Element (FE) model analyses, the effectiveness of the 

application of the proposed OFRF and VPLF based frequency domain design 

approaches in the design of additional fluid viscous dampers for the vibration 

control in more complicated structural systems has been verified. 
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The frequency domain analysis and design approaches proposed in this thesis 

provide a significant basis and important guidelines for the analysis and design 

of a wide class of nonlinear viscously damped engineering structural systems. 

The results reveal the advantages of additional nonlinear viscous damping 

devices in the system vibration control and have considerable significance for 

the design of the damping characteristic parameters to achieve a desired system 

vibration performance. 
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Chapter 1 
 

Introduction 
 

1.1 Background 

 

1.1.1 Damping system design 

 

Vibration control of systems is a generic problem which is fundamental in 

vibration suppression, noise attenuation, and control system designs [1-4]. With 

the development of modern mechanical and civil engineering systems, the safety 

and reliability related issues have become more and more important. In order to 

reduce unwanted structural vibration to an acceptable level, many vibration 

control approaches have been studied and applied in practical mechanical and 

civil engineering systems. Traditional vibration control methods are to increase 

the structure stiffness by adding sub-structures and new materials or to increase 

the system mass in the original design. However, these methods increase the 

construction cost and change the frequency domain characteristics of original 

structural systems, so that, in some special cases, the system vibration may even 

become worse [5]. Comparatively, there is a more effective approach to improve 

structural system safety and reliability against strong excitations [6], which is to 

supplement vibration control devices having suitable dynamic characteristics 

into structural systems to suppress the vibration and dissipate the energy. 

Especially for the existing mechanical and civil engineering systems, where the 

extra sub-structures and new materials are difficult and even impossible to apply, 

additional vibration control devices are much easier to operate with lower 

construction cost. The application of additional vibration control devices can 

significantly improve structures’ performance under seismic, wind, blast and 
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other types of loading excitations. Their effectiveness in vibration control and 

energy dissipation has been verified by many theoretical analyses and 

experimental tests [5]. 

 

As one of the most typical vibration control devices, damping devices are a kind 

of energy dissipation equipments and often installed inside mechanical and civil 

engineering structural systems for vibration control purpose. Because of great 

vibration control effect that damping devices can achieve, adding additional 

damping has received special attentions by engineers and played an important 

role in the design of modern vibration control systems. 

 

In order to maximize energy dissipation and vibration control effects of damping 

devices in vibration systems, many different kinds of damping devices have 

been studied and applied in practical engineering applications, such as 

multi-storey buildings, long-span bridges, towers and vehicles, etc.. The 

commonly used damping devices can be classified into either active or passive 

damping devices. Active damping devices suppress the structural vibration by 

using an appropriate feedback control system, while passive damping devices 

suppress the structural vibration by the inherent energy dissipation 

characteristics of dampers. For examples, an active controlled tuned mass 

damper with an 800T steel ball was applied in the 101 storey Taipei Financial 

Centre to suppress the structural vibration induced by wind and seismic 

excitations [7]; The engineering designers installed two passive tuned liquid 

column dampers on the top of the One Wall Centre Hotel and tested the 

building’s vibrations induced by wind loading excitations. Their results revealed 

that additional damping devices are quite efficient in the vibration control and 

take up less space [8]. 

 

As one of the most commonly used passive damping devices, fluid viscous 

damper has significant advantages in the vibration control design of practical 



CHAPTER 1. Introduction                                                                          3 

engineering systems. It has been intensively studied and proved to be the most 

cost-effective and least space-intensive vibration control device. It has almost no 

effect on the original system’s mass and stiffness and its effectiveness in 

vibration control and energy dissipation has been verified by a lot of theoretical 

studies and practical applications [9-12]. Because linear fluid viscous dampers 

have been shown to have some disadvantages and limitations in the vibration 

control system design, nonlinear fluid viscous dampers have been used to 

provide a better solution of vibration control in many practical engineering 

systems [3, 5, 13]. 

 

Damping design is one of the most significant and challenging problems in the 

modern mechanical and civil engineering system design [9, 12, 14]. However, 

the analysis and design of nonlinearly damped vibrating systems are generally 

difficult. This is because there are no adequate generic techniques for the 

nonlinear system analysis and design [15], An effective analysis and design 

methodology for nonlinear structural systems is yet to be developed. 

 

1.1.2 Analysis and design of linear and nonlinear systems in the 

time and frequency domains 

 

With appropriate mathematical models or function descriptions, the system 

studies can often be transformed into the investigation on the characteristics of 

system models [16], and the studies can be conducted in either the time or the 

frequency domain. 

 

The time domain analysis is a natural analysis method for most practical 

systems. The input and output signals of systems are all physical variables 

changing with time. The state-space, differential and difference equations are 

extensively used as the time domain models of systems. 
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Besides the time domain analysis, there are also many transform domain 

analysis methods for system studies. The frequency domain analysis is a special 

case of transform domain methods where the Fourier transform is used to 

represent the systems’ behaviours and characteristics by using the functions of 

frequency variables. The specifications and criteria for the system design are 

usually expressed by the frequency domain concepts such as, e.g., the system 

transmissibility and phase delay etc.. Compared with the time domain analysis, 

the frequency domain analysis can provide more physically meaningful insights 

into system dynamic behaviors such as the stability and resonance, etc. [17]. 

Consequently, extensive theoretical and applied research studies have been 

conducted on the system frequency domain analysis and design in system, 

control, and relevant subject areas [18, 19]. 

 

Linear systems have been intensively studied in both the time and frequency 

domains [17, 20-22]. For linear systems, it is possible to use the responses to a 

small set of inputs to predict the response to any possible input [23]. Linear 

systems’ time-domain output to a general input can be numerically and 

theoretically calculated from the system model. Linear systems’ output 

frequency response can be obtained by multiplying the input spectrum and the 

linear system’s frequency response function, which is referred to as FRF [21]. 

This simple linear systems’ frequency domain relationship analytically describes 

the effects of system properties on the output frequency response [24]. In the 

early days, researchers focused on the linear damping system designs [17, 20, 25] 

because linear system models in terms of differential and difference equations 

are easy to solve and most weakly nonlinear systems can be approximated by 

equivalent linear systems under certain conditions which is known as 

linearization [22, 26]. 

 

However, many practical engineering systems cannot easily be described by a 

simple linear model or mathematical function. The relationship between the 
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input and output spectrum of nonlinear systems is much more complicated. The 

nonlinearities in systems can make the output response sensitive to the initial 

conditions and computational errors, and can lead to complex phenomena such 

as chaos, bifurcation, harmonics and inter-modulation [27-30]. Conventional 

linear systems’ analysis and design approaches in the time and frequency 

domains cannot be directly extended to nonlinear systems. In order to describe 

and analyze nonlinear systems, many studies have been conducted in the time 

domain with results relating to the Volterra series, NARMAX (Nonlinear 

AutoRegressive Moving Average with eXogenous input) models, neural 

networks and fuzzy systems. Many typical nonlinear system equations, such as 

Duffing equation and Van Der Pol equation, etc. [31, 32], have been studied. 

The transient and steady-state characteristics of nonlinear systems have been 

discussed by the time domain analysis approaches in many literatures [5, 28, 

33-35] and significant progress towards understanding nonlinear systems’ 

characteristics has been made. 

 

The frequency domain characteristics of different nonlinear system 

mathematical models and function descriptions have also been widely studied, 

which involve NDE (Nonlinear Differential Equations), NARX (Nonlinear 

Auto-Regressive model with eXogenous input), TDDE (Time Delayed 

Differential Equations) and so on. In order to study the relationship between 

nonlinear systems’ input spectrum and output frequency response [36], many 

nonlinear frequency domain analysis approaches have been proposed, such as 

describing function [3], perturbation and averaging methods [37], Ritz-Galerkin 

method [38], harmonic balance method [39] and GFRF  (Generalized 

Frequency Response Function) concept [40]. The results provided important 

guidelines in the analysis and design of practical engineering systems. Recently, 

based on the Volterra series expression and GFRF concept of nonlinear systems, 

some researchers [41-43] focused on the study to extend the well known linear 

systems’ frequency domain relationship to nonlinear systems [44]. By using 
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GFRF concept, the behaviours of a nonlinear system subjected to a general input 

can be studied through its GFRF expressions and output spectrum [16]. Many 

literatures have focused on the estimation and computation of the GFRFs of 

nonlinear systems from the system model parameters or input-output data. These 

results provide an important foundation for the frequency domain analysis and 

design of nonlinear systems. 

 

Conventional nonlinear frequency domain analysis approaches involve a large 

amount of algebra and symbolic computations and are often difficult to be 

applied in practice. In order to tackle this problem, the OFRF (Output Frequency 

Response Function) concept was proposed in [24]. Focusing on the effects of the 

system’s nonlinear characteristic parameters on the output frequency response, 

the OFRF concept extends the well known frequency domain input-output 

relationship of linear systems to nonlinear systems and provides an explicit 

analytical description for the relationship between the output frequency response 

and parameters that define system nonlinearity. The application of the OFRF 

concept can considerably facilitate the frequency domain analysis and design of 

nonlinear systems in engineering practice. 

 

Although the studies on nonlinear systems have been carried out by researchers 

for several decades, many significant problems still remain unsolved, such as the 

stability analysis, parameters optimal design and sensitivity analysis. Nonlinear 

system analysis and design approaches are far from being fully developed in 

both theoretical studies and practical applications. 

 

1.2 Research achievements 

 

The main achievements of this thesis are to investigate the important issue of the 

application of nonlinear damping for the vibration control of mechanical and 
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civil engineering structural systems and to develop effective frequency domain 

analysis and design approaches for nonlinear damping devices. The studies 

focus on the analysis of the effects of nonlinear viscous damping on the system 

vibration response under both harmonic and general excitations and the design 

of damping characteristic parameters to achieve a desired system performance. 

 

Although nonlinear fluid viscous dampers have been considered as a better 

solution for the vibration control purpose and some practical applications have 

been studied [11, 45, 46], the effects of fluid viscous dampers on the system 

frequency domain responses under different loading excitations have not 

received enough attention. The main issues involve how to evaluate the effects 

of fluid viscous dampers on the system output frequency response and how to 

design the damping characteristic parameters for a specific vibration control 

purpose. In order to answer these questions, the vibration transmissibility of 

SDOF nonlinear structural systems are theoretically evaluated for different fluid 

viscous dampers and under more general harmonic excitations. Based on the 

results, a nonlinear damping system design procedure is proposed to facilitate 

the design of nonlinear damping characteristic parameters for a desired vibration 

control performance. These studies further confirm the advantages of nonlinear 

fluid viscous dampers in vibration control and provide useful guidelines for the 

design of nonlinear fluid viscous dampers in practical engineering applications. 

 

Obviously, the link between the output frequency response of a vibrating system 

and the characteristic parameters of dampers fitted in the system is important for 

the system analysis and design. Due to a lack of this link, conventional damping 

analysis and design approaches involve a large amount of complicated 

computations and are, therefore, difficult to be used in practice [5, 9, 47]. The 

OFRF concept was recently proposed in [24] to provide an analytical 

relationship between the system output frequency response and parameters 

which define the system nonlinearity. Motivated by this progress, the OFRF 
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expressions of viscously damped vibration systems are derived in the present 

study to represent the relationship between the system output frequency 

response and nonlinear viscous damping parameters. The results reveal, for the 

first time, an explicit analytical relationship between the system output 

frequency response and nonlinear damping characteristic parameters. This 

provides a really significant foundation for nonlinear damping system designs, 

which has never been available before. 

 

Based on the OFRF concept, the analysis and design of nonlinear damping 

devices for structural systems subjected to harmonic or general loading 

excitations can be performed in the frequency domain. In practice, loading 

excitations can be classified into harmonic loadings such as those induced by 

rotary machines and general excitations such as wind loadings. Motivated by the 

need to deal with different loading excitations in different practical applications, 

the criteria and procedures for the design of nonlinear damping devices for 

structural systems subject to harmonic and general excitations are developed, 

respectively, where the OFRF concept is applied in the design to achieve a 

desired vibration control performance. In order to further verify the 

effectiveness of the new nonlinear damping analysis and design approaches, the 

studies are also extended to more complicated situations where the Finite 

Element (FE) models are used to represent the structural systems under different 

loading excitations, such as earthquake and wind loading. These results have 

significant implications for the analysis and design of nonlinear damping 

devices for the vibration control of structural systems in a wide range of 

practical applications. 

 

1.3 Layout of this thesis 

 

This thesis consists of eight chapters. Chapter 1 is the introductory chapter 
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which shows the background, research achievements and layout of this thesis. 

Chapter 2 introduces the commonly used vibration control approaches and 

typical damping devices in mechanical and civil engineering systems. Chapter 3 

introduces the time and frequency domain representations of linear and 

nonlinear systems and reviews the development of the nonlinear system analysis 

in the frequency domain. The OFRF concept is also introduced in detail in 

Chapter 3 as the theoretical foundation of the studies in this thesis. Chapters 4-7 

describe the main work of the present studies on the damping system design 

using nonlinear frequency analysis approach. Finally in Chapter 8, the results 

introduced in previous chapters are summarized and suggestions for the further 

research studies are proposed. In the following, a more detailed introduction of 

what is presented in Chapters 2-7 of this thesis is provided. 

 

Chapter 2 introduces the commonly used vibration control approaches, which 

include active and passive damping devices. The advantages and disadvantages 

of typical damping devices in vibration control of mechanical and civil 

engineering systems are discussed. As the most cost-effective and least 

space-intensive vibration control devices, fluid viscous dampers have significant 

advantages in vibration control and energy dissipation. Moreover, compared 

with linear fluid viscous damper, nonlinear fluid viscous damper has been 

considered as a better solution in the vibration control of practical engineering 

systems. 

 

Chapter 3 firstly introduces the time and frequency domain representations of 

linear and nonlinear systems. Then the commonly used nonlinear system 

frequency domain analysis approaches are reviewed and the GFRF concept is 

discussed in details. Finally, the important OFRF concept, which reveals an 

explicit analytical relationship between the nonlinear system characteristic 

parameters and the system output frequency response is introduced as the 

theoretical foundation of many studies in this thesis. 
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In Chapter 4, focusing on different types of viscous damping and loading 

conditions, a general mathematical model is firstly derived for SDOF viscously 

damped vibration isolation systems subject to a harmonic excitation with 

amplitude proportional to the driving frequency raised to an arbitrary power. 

Then the Ritz-Galerkin method is applied to theoretically evaluate the system 

displacement and force transmissibility and determine the effects of nonlinear 

viscous damping on the system vibration isolation. The results reveal that the 

Ritz-Galerkin method based solutions have an excellent agreement with 

numerical integration solutions using Runge-Kutta method. After that, a 

three-step design procedure is proposed to facilitate the design of nonlinear 

damping characteristic parameters for a desired system vibration isolation 

performance. Two case studies are finally given to demonstrate how to 

implement the proposed design procedure in practical applications. 

 

Chapter 5 extends the OFRF concept to the cases of nonlinearly damped 

vibration systems described by an antisymmetric differential equation model, 

and reveals an explicit polynomial relationship between the system output 

frequency response and the nonlinear damping coefficient and exponent. The 

transmissibility of the SDOF and MDOF displacement vibration isolation 

system (DVIS) and force vibration isolation system (FVIS) with fitted nonlinear 

fluid viscous dampers are analyzed, respectively, to show the effects of 

nonlinear fluid viscous dampers on the system vibration isolation under 

harmonic loading conditions. The comparisons between numerical simulation 

results and the OFRF based estimates show that the OFRF concept can be used 

as a powerful frequency analysis approach to significantly facilitate the design 

of damping parameters of additional nonlinear fluid viscous dampers to achieve 

a desired vibration performance. A case study is provided to demonstrate how to 

apply an OFRF based four-step procedure to conduct nonlinear fluid viscous 

damper designs in practice. 
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Chapter 6 first proposes a concept called Vibration Power Loss Factor (VPLF) 

to evaluate the vibration control effects of additionally fitted fluid viscous 

dampers on civil structures subject to seismic and wind loading excitations. 

Based on the OFRF concept, an explicit polynomial relationship between the 

VPLF of civil structural systems and the damping coefficient of additionally 

fitted nonlinear fluid viscous dampers is then derived to facilitate the damper 

design. After that, the design idea is applied to the design of additional damping 

devices for a 7-Storey civil building structure subject to seismic and wind 

loading excitations respectively. The structural vibration responses under 

different loading excitations are then investigated to show the advantages and 

disadvantages of the application of different types of fluid viscous dampers in 

improving the structural vibration performance. 

 

In Chapter 7, the OFRF concept is firstly applied to estimate the displacement 

and force vibration transmissibility of the FE models of multi-storey civil 

structures under harmonic excitations. The results demonstrate the effectiveness 

of the use of the OFRF based approach in the analysis of more complicated 

engineering structural systems. Then the OFRF approach and the VPLF concept 

are used for the design of additional viscous damping devices for a German 

offshore wind energy research platform based on the platform’s FE model. Wind 

loading excitations are considered in the design to determine the damping 

coefficient of additional nonlinear viscous damping devices and their installation 

locations along the structure for vibration control purpose. The results 

demonstrate the effectiveness of the proposed design approaches and reveal that, 

compared with linear viscous damping devices, equivalent nonlinear viscous 

damping devices can achieve the same vibration control under the loading 

condition considered in the design but much better vibration control under the 

loading conditions which are either milder or severer than the considered design 

condition. 
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Finally, in Chapter 8, main conclusions reached and contributions achieved by 

the studies in this thesis are summarized. Suggestions for the further research 

work and potential application areas are also proposed. 
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Chapter 2 
 

Damping Systems Design 
 

2.1 Vibration control using damping devices 

 

Vibration, which refers to the system oscillations about an equilibrium point, is a 

common physical phenomenon in practical mechanical and civil engineering 

systems. Sometimes, vibration is useful and some vibration related industrial 

productions have been designed, which include, for example, vibratory plate 

compactors and vibrating griddles. But sometimes, vibration is harmful and 

even dangerous for the safety of engineering systems and structures. These cases 

include, for example, the motions of bridges and buildings in earthquakes or 

strong winds, and the shaking of washing machines [48]. 

 

With the development of modern mechanical and civil engineering systems, the 

safety and reliability related issues have become more and more important, 

especially when engineering systems and structures are working in some 

extreme loading conditions such as in offshore wind farms and high-speed 

rotating machineries. Vibrations caused by internal or external excitations have a 

potential threat on not only engineering systems’ normal operations but also on 

human lives. The tragic consequences of recent earthquakes in China (2008), 

Haiti (2010), Chile (2010) and New Zealand (2011) have shown the tremendous 

importance of vibration control for the protection of infrastructures, such as 

buildings and bridges etc.. 

 

In order to suppress unwanted vibrations to an acceptable level, many traditional 

vibration control methods have been studied and applied in engineering system 
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designs. The structural engineers often focus their efforts on the designs of 

structural stiffness and mass to suppress vibrations and protect structural 

systems [49]. But these methods can increase the construction cost and change 

the frequency domain characteristics of the original structural systems, so that, 

in some special cases, the vibration may even become worse [5]. Recently, there 

has been a trend towards utilizing supplemental control algorithms and vibration 

isolators to improve the structural systems’ safety and reliability against strong 

loading excitations [6]. This method inserts vibration control devices having 

suitable dynamic characteristics into the structural systems requiring protection 

[50]. Compared with the traditional stiffness-and-mass design methodology, the 

application of additional vibration isolators has been considered to be a more 

effective method for the vibration control purpose. The effects of this method on 

the vibration energy dissipation and vibration control have been verified by 

many theoretical analyses and experimental tests [5]. 

 

Damping is a phenomenon by which mechanical energy is dissipated from 

system dynamic actions [51]. It is a typical vibration control method, which 

enables practical vibration systems to achieve optimal dynamic performance 

when subjected to seismic, wind, blast or other types of transient shocks and 

disturbances [10]. Damping devices are a kind of energy dissipation equipments, 

which are often installed inside mechanical and civil engineering structural 

systems such as buildings, towers and bridges etc. for vibration control purpose. 

They are often used as replaceable/disposable components, which are added to 

engineering systems to damp out the mechanical energy induced by loading 

excitations [12]. In modern structural system designs, damping devices have 

played an important role in mechanical and civil engineering applications [52]. 

The knowledge about damping and damping devices is very important in the 

analysis and design of complex structural systems [51]. 

 

The damping devices design has received special attentions [5, 10, 46, 53] 
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because of the great performance that damping devices can achieve in vibration 

control and energy dissipation. The issue of vibration control using damping 

devices has become one of the most challenging problems faced by technical 

analysts and engineering designers [49], and has significant implications for the 

engineering design of vibration systems in a wide range of practical 

applications. 

 

2.2 Damping based vibration control approaches 

 

In order to maximize energy dissipative properties and vibration control effects 

of damping devices in vibration systems, many different kinds of damping 

devices have been studied and applied in practical engineering applications to 

improve systems’ dynamic performance. The corresponding optimal design 

approaches for these damping systems have also be proposed [5]. The adoption 

of supplemental damping devices offers an important way to improve systems’ 

dynamic performance against unacceptable vibrations. The commonly used 

damping devices can be classified into two categories of active and passive 

damping devices. 

 

2.2.1 Active damping devices 

 

Based on the feedback control theory, active damping devices dissipate the 

vibration energy of systems using additional actuators [54], which act based on 

the displacements, velocities, or accelerations, etc. measured by corresponding 

sensors from the vibrating systems. Based on the sensor measurements, a closed 

loop feedback control approach is applied to drive the actuators to reduce the 

system vibration as required [54, 55]. An active damping device requires fast 

sensing equipment, stable control algorithm and responsive actuator technology 

[56]. According to whether the damping devices provide additional energy into 



CHAPTER 2. Damping Systems Design                                                                16 

systems, practical active damping devices can be classified as fully active and 

semi-active damping devices. Fully active damping devices exert an 

independent force to improve the system characteristics and semi-active 

damping devices only change the damping characteristic parameters of the 

devices. Typical fully active damping devices include Active Mass Damper 

(AMD) [56], parts of Active Viscous Dampers (AVD) [57] and so on; Typical 

semi-active damping devices include parts of Active Viscous Dampers (AVD) 

[57], Magnetorheological (MR) Damper [6] and so on. 

 

AMD is a typical active mass damper containing a lumped mass, a spring, and a 

feedback control circuit which usually consists of a piezoelectric accelerometer, 

a controller, and an electromagnetic transducer as the actuator. The accelerations 

of the system vibrations are measured by additional piezoelectric accelerometer; 

the controller uses a control algorithm to generate a feedback control force to 

counter the system vibrations. The advantage of AMD is that it just needs an 

appropriate additional actuator and, apart from the weight of the actuator, 

doesn’t induce any major intrusion into the controlled structural system. 

 

Different from AMD, AVD generates the feedback force in the form of damping 

force, which means that it depends on the relative velocity of vibrating systems 

and it can be used as either the fully active or semi-active damping devices. The 

active viscous dampers usually generate the damping force by utilizing the 

viscous effect of viscous fluids to dissipate the vibration energy. This method 

has little effect on the system mass and stiffness, but needs complicated control 

algorithms and accurate measurements in practical applications. 

 

MR damper is a damper filled with MR fluid, which is usually controlled by an 

electromagnet field. MR damper has many attractive features, including high 

yield strength, low viscosity and stable hysteretic behaviour over a broad 

temperature range. Compared with other kinds of active damping devices, MR 
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damper provides a convenient and effective method to generate the desired 

resisting force by a magnetic control. Moreover, MR damper can become a 

passive damping device and still dissipate vibration energy even when the 

control hardware is broken down. 

 

Although many active damping devices and corresponding control theories have 

been successfully applied in practical engineering systems to suppress vibrations, 

many significant challenges have to be addressed before active damping controls 

can gain general acceptance in industry. The main challenges include the costs, 

system maintenance, power consumption, and reliability and robustness in 

different loading conditions [6]. 

 

2.2.2 Passive damping devices 

 

Different from active damping devices, passive damping devices dissipate the 

vibration energy by their inherent damping characteristics without needing 

sensors, external power sources or actuators. So they need less construction and 

maintenance cost and are easier to operate in the mechanical and civil 

engineering systems. Some typical passive damping devices include Base 

Isolation [58, 59], Tuned Mass Damper (TMD) [60, 61], Tuned Liquid Column 

Damper (TLCD) [62, 63], Viscous Damper [64-66], Viscoelastic Damper [67], 

Metallic Damper [68] and so on. 

 

2.2.2.1 Base Isolation 

 

Base isolation is one of the most powerful approaches in the earthquake 

engineering pertaining to the passive structural vibration control technologies. It 

is usually used to reinforce structural systems to survive from the seismic 

destruction. Proper initial designs and subsequent modifications are needed to 
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achieve this objective. In the design for base isolation, additional devices are 

often fitted between a structural system to be protected, and the shaking 

foundation. The objective is to reduce the system fundamental frequency and 

absorb the vibration energy to protect the structural integrity [69]. Most base 

isolation devices utilize the friction effect and deformation of rubber or metal 

materials to isolate the protected structural systems from vibration sources. 

Because this technique is usually applied in civil engineering systems such as 

civil buildings and bridges to improve these systems’ dynamic performance 

under seismic excitations, it is also known as seismic isolation. The design of 

base isolation, including various types of energy absorbing materials to achieve 

energy dissipation, has been the main subject of many studies [5]. With the 

development of the base isolation technologies, many different types of base 

isolation devices have been studied and applied in practical applications, such as 

the lead rubber bearing, high damping rubber bearing and friction pendulum 

bearing as shown in Fig.2.1(a)-(c). However, some inherent problems in the base 

isolation methods limit their wide applications in practical engineering systems. 

For examples, the lead core in the bearing is toxic for the environment; the 

material ageing and abrasion of the rubber and metal in the bearing make the 

maintenance of these base isolation devices important; base isolation method 

should be considered in the system design stage and the construction cost is 

significantly high when this technology is applied in existing mechanical or civil 

engineering systems. 

  
(a) Lead rubber bearing   (b) High damping rubber bearing 
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(c) Friction pendulum bearing 

Fig.2.1 Base isolation devices [59] 

The applications of base isolation devices in the foundation of mechanical and 

civil engineering systems as a mean of seismic design have attracted 

considerable attentions in recent years [58]. Many numerical and experimental 

simulations and theoretical studies have been reported in literatures [58, 59]. In 

order to study the effectiveness of different base isolation devices on a 

simplified SDOF vibration system, Su et al. [58] evaluated the system vibration 

induced by two  earthquake records and compared the peak displacement in a 

variety of loading conditions. Their results revealed that, under appropriate 

design, most base isolation devices can significantly reduce the effects of the 

earthquake excitations on the system vibration. Moreover, a new design 

procedure for a friction base isolator was developed and its effectiveness in 

practical applications was also studied; Abrishambaf and Ozay [59] assessed the 

effects of several types of bases isolation devices on the seismic protection of 3, 

6 and 9-storey buildings. Through comparing the transmitted acceleration and 

horizontal displacement of the vibration systems, the optimal designs of 

different base isolators were studied in order to reduce the construction cost of 

civil buildings; Kelly [70] reviewed the development history of base isolation 

approaches and summarized their applications in practical engineering systems. 

Focusing on the vibration isolation of civil buildings and bridges subjected to 

earthquakes, several system vibration simulations were provided to show the 

advantages and disadvantages of these base isolation devices in the vibration 

control and energy dissipation. 
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2.2.2.2 Tuned Mass Damper (TMD) 

 

TMD is a passive vibration control approach which attaches an additional mass 

dm  to a practical vibration system via spring and damping devices as shown in 

Fig.2.2. The vibration energy of the original system is absorbed and dissipated 

by the attached mass, spring and damper. By tuning the natural frequency of the 

additional mass-spring-damper system to close to that of the original vibration 

system, the frequency domain characteristic of the improved vibration system 

will be obviously changed: the single peak of the original vibration system 

without TMD at the resonant frequency divides into two peaks at two nearby 

frequencies and the original peak is tuned approximately to near zero as shown 

in Fig.2.3, where the parameters ξ  are in direct proportion to the damping 

coefficient dc  in TMD. TMD can provide good vibration control effect when 

the motion of the vibration system is governed by the fundamental mode to 

which the TMD is tuned [71]. A typical practical example is the TMD system 

applied in the Taipei Financial Centre to reduce the motions of the building 

induced by wind loadings as shown in Fig. 2.4. The main design problem of 

TMD is to optimize the parameters of the mass, spring and damper for the 

vibration system in different loading conditions. Although TMD has been widely 

applied in many practical engineering branches, such as seismic protection of 

civil buildings, offshore industry and railway projects, the adoption of TMD in 

the structures will obviously increase these systems’ mass [72] and the two 

peaks phenomenon indicates that TMD becomes not effective in reducing the 

vibration in non-resonant frequency regions and, on the contrary, it may enhance 

the vibration over these frequency ranges [71]. Compared with other passive 

vibration control methods, TMD requires more physical installation space and is 

more expensive to operate. 
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Fig.2.2 SDOF vibration system          Fig.2.3 Peak displacement induced by 

and the additional TMD [73]                 unit sinusoidal base excitation 

with and without TMD [71] 

 
Fig.2.4 Schematic of the TMD system in Taipei Financial Centre [74] 

 

After the pioneering work on the optimal design of TMD for a SDOF 

mass-spring-damper system by Den Hartog in 1956 [75], there has been a lot of 

subsequent theoretical studies and practical applications in the system vibration 

control using TMD approach. Kitamura et al. [76] reviewed the design and 

vibration analysis of a steel tower with TMD and studied the effects of the 

additional TMD on the structure vibration in earthquakes; Rana and Soong [77] 

summarized the effects of TMD parameters on the performance of vibration 

control and studied the vibration control of a general MDOF system with TMD 

using steady-state and time-history analysis methods; Lin et al. [78] proposed a 

new TMD model to suppress both the vertical and torsional vibration responses 

of long-span bridges and to enhance the structures’ stability under wind loadings. 

Based on their parametric analysis, the design procedure of the new TMD for 

wind-excited bridges was also proposed; Lee et al. [79] developed an optimal 
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design theory for the additional TMD in a MDOF vibration system. The optimal 

design parameters of TMD were systematically determined by an efficient 

numerical procedure which minimizes the mean square value of the structural 

responses in the frequency domain; Using the numerical searching technique, 

Bakre and Jangid [73] proposed an explicit formula to optimize the TMD 

parameters to suppress the system vibration under various combinations of 

loadings, which can be readily used in the practical applications. 

 

2.2.2.3 Tuned Liquid Column Damper (TLCD) 

 

TLCD replaces the attached lumped mass in TMD by water or other liquids in a 

tube-like container tank which is specifically designed and tuned to the natural 

frequency of a vibration system [80] as shown in Fig.2.5. The vibration energy 

of the structural system with a fitted TLCD device is dissipated by the moving 

liquids and the turbulent damping force induced by the built-in orifice plate in 

TLCD. The geometry of the liquid container is determined by theoretical 

analysis to give a desired natural frequency of oscillation of the liquid in TLCD. 

A sluice gate or other similar device is often used to dissipate the energy in the 

moving liquid. The frequency domain characteristic of vibration systems with a 

fitted TLCD, which is shown in Fig.2.6, is similar to what can be achieved by 

using TMD approach, which is shown in Fig.2.3. Fig.2.7 shows the 3D 

rendering of the Comcast Centre’s TLCD tank, which is the largest TLCD in the 

world with 1300 tons water. Compared with TMD approach, TLCD method 

increases less additional mass and is more efficient in heavy loading conditions 

[80]. Moreover, TLCD approach is easy to accommodate in practical structures 

even in retrofit of existing buildings and needs little maintenance. Therefore, It’s 

a preferable energy absorbing method for the low frequency vibration control of 

high-rise buildings, long span bridges and offshore structures subjected to 

earthquakes, wind and waves [81]. 
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Fig.2.5 Model of SDOF vibration system   Fig.2.6 Dynamic magnification factor 

and the additional TLCD [82]      under harmonic excitations [81] 

 
Fig.2.7 3D rendering of the Comcast Centre’s TLCD tank 

 

TLCD was firstly proposed by Sakai et al. [1] as a means of suppressing 

vibrations within structures. Up to now, it has been implemented in many civil 

buildings such as Hotel Cosima [83], Hyatt Hotel and Ichida Building in Osaka 

[84]. Its effectiveness on the vibration control of practical engineering structures 

has been studied by many researchers [81, 85, 86]. Vandiver and Mitome [85] 

investigated the effects of liquid storage tanks containing glycol on the vibration 

of offshore structures and concluded that the appropriate selection of the 

geometry of storage tanks would result in obvious suppression of dynamic 

response at the fundamental flexural natural frequency of structures; Xu and 

Kwok [86] studied the applications of TLCD in reducing the along-wind 

response of tall structures. By numerical examples, the effectiveness of TLCD 

on the vibration control was compared with the traditional TMD approach and 

the advantages of TLCD were also summarized; Reiterer and Ziegler [81] 
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investigated the vibration control effects of different parameters of TLCD on a 

SDOF shear frame under combined horizontal and vertical excitations and 

studied the stability of TLCD’s dynamic performance; Colwell and Basu [80] 

simulated the structural responses of an offshore wind turbine with a TLCD 

under wind and wave loading excitations. The fatigue analysis was also carried 

out to show the effect of TLCD on enhancing the fatigue life and reducing 

bending moments of offshore structures. 

 

2.2.2.4 Viscous Damper 

 

Viscous damping devices having appropriate dynamic characteristics are usually 

installed in vibration systems to dissipate the energy and protect the system 

safety under different loading conditions. Their applications in the mechanical 

and civil engineering systems have a long history and they have been widely 

recognized as an effective means of reducing the effects of wind, earthquakes 

and other loadings on the system vibration. As one of the most commonly used 

viscous damping devices, a typical viscous damper is shown in Fig.2.8. Fig.2.9 

shows a practical application of viscous dampers installed in a parking garage in 

USA to protect the structure as a seismic strengthening method. Viscous damper 

suppresses the system vibration by its damping force resisting on the relative 

motion between different components of the system where the damper is 

installed. The system’s vibration kinetic energy is dissipated by transforming to 

thermal energy inside the damper. Compared with other passive vibration 

control approaches, viscous dampers in vibration systems are easier to install 

and have almost no effect on the system mass and stiffness [87]. Moreover, the 

construction cost for structural vibration control can be significantly reduced by 

applying reasonably designed viscous dampers. 
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Fig.2.8 A typical viscous damper [88]     Fig.2.9 Viscous dampers in a parking garage [89] 

 

Originated from military and aerospace applications, viscous dampers have been 

widely used in a lot of practical vibration systems to protect structures against 

wind, blast and earthquakes excitations [9]. The adoption of supplemental 

viscous dampers offers an important way to upgrade structures’ dynamic 

characteristic and suppress the vibration. Many theoretical and experimental 

studies have been performed to show the contribution of viscous dampers on the 

system vibration control. Symans and Constantinou [65] discussed the practical 

applications of several kinds of viscous dampers in seismic protections of civil 

buildings and bridges. They demonstrated the effectiveness of viscous dampers 

in absorbing seismic energy through experimental simulations of a 3-storey 

building frame; Ravindra and Mallik [90-92] studied the effects of different 

kinds of viscous dampers on the performance of vibration systems under 

harmonic loadings. They observed bifurcations, chaos and strange attractors due 

to the presence of nonlinearity in springs and dampers in vibration isolators. 

Their results concluded that suitable designs of nonlinear viscous dampers could 

entirely eliminate the sub-harmonics and chaotic motions and thus provided an 

effective passive control method to suppress various instabilities occurring in 

nonlinear vibration systems; In order to evaluate the damping effect achieved by 

additional viscous dampers on the vibration of civil structures, Occhiuzzi [12] 

proposed a numerical methodology to calculate modal damping ratios of 

vibration structures with viscous dampers and applied it to analyze many 

practical engineering applications of supplemental viscous dampers in the 

protection of civil buildings. 
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2.2.2.5 Viscoelastic Damper 

 

Similar to viscous dampers, viscoelastic dampers utilize both viscous and elastic 

behaviours of viscoelastic materials such as rubber to suppress the system 

vibration and dissipate the energy. Fig.2.10 shows the diagram of a typical 

viscoelastic damper. In this damper, the viscoelastic material is filled between 

layers of steel to reduce the vibration between two ends of the damper. A 

practical viscoelastic damper installed in a civil building for the seismic 

protection is shown in Fig.2.11. Different from viscous dampers, viscoelastic 

dampers’ dynamic characteristics are influenced by many parameters such as 

temperature, dynamic strain rate, static pre-load and so on. Although viscoelastic 

dampers have been installed in some civil buildings to reduce the drifts between 

floors induced by wind or earthquakes, their vibration control effects on the 

mechanical and civil engineering systems are still not satisfactory because of 

their sensitiveness to the environment and strict dependence on the viscoelastic 

materials. 

  
Fig.2.10Diagram of viscoelastic damper[93] Fig.2.11Viscoelastic damper in a civil building [94] 

 

Since the first installation in World Trade Centre in USA in 1969, viscoelastic 

dampers have been successfully incorporated in a number of tall buildings as 

viable energy dissipating devices to suppress wind- and earthquake-induced 

motion of building structures [95]. With the development of material science, 

viscoelastic dampers have received more and more attentions and their 

effectiveness on vibration control have been demonstrated by both analytical 
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and experimental studies. Tsai and Lee [96] considered the effect of 

environment temperature on viscoelastic dampers’ dynamic characteristic. They 

investigated the energy absorbing capacities of different viscoelastic dampers 

and their vibration control effects on the structures during earthquakes. Focusing 

on the vibration behaviour of a 10-storey building equipped with viscoelastic 

dampers under seismic excitations, both analytical and experimental studies 

were performed to show the effectiveness of viscoelastic dampers in high-rise 

buildings on improving their seismic resistance; Samali and Kwok [95] 

reviewed the successful applications of viscoelastic dampers in a number of 

major tall buildings in USA and Japan and summarized the research results. 

Some guidelines for the optimal design of viscoelastic dampers in the practical 

engineering applications were also provided; Chang et al. [97] studied the 

seismic behaviour of a viscoelastically damped structure under mild and strong 

earthquake excitations at room temperature. Analytical studies were carried out 

to predict the equivalent damping ratios and the seismic response of the 

structure. Numerical and experimental results revealed that viscoelastic dampers 

were effective in attenuating structural seismic response. 

 

2.2.2.6 Metallic Damper 

 

Metallic damper utilizes the inelastic bending or torsion deformation of metal 

material to absorb mechanical energy as shown in Fig.2.12. Fig.2.13 shows a 

experimental test for investigating the vibration control effects of metallic 

dampers on a two-storey platform. The adoption of metallic dampers can also 

help to increase the stiffness of structures to reduce the vibration. It’s usually 

applied in the seismic retrofit and reinforce of structures which are found to be 

deficient. Metallic dampers are easy to manufacture and integrate into practical 

structures. They have shown stable energy absorbing property in earthquakes 

and other loading excitations, moreover almost no environmental factors can 
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affect their performance [98]. Because metallic dampers can not repeatedly 

perform their effects on system vibration control in heavy loading conditions, 

they should be replaced after earthquake or according to the maintenance plan. 

 

        
Fig.2.12 X-shaped Metallic damper [99]     Fig.2.13 Metallic damper in an 

experimental platform [68] 

 

Using steel plates for absorbing and dissipating vibration energy was first used 

exclusively in nuclear installation [100]. Because of its effectiveness on the 

energy dissipation in vibration systems, it has been more and more widely used 

in the vibration control designs of new generation of mechanical and civil 

engineering systems. Many experimental tests and analytical analysis have been 

conducted by researchers to study the energy absorbing capabilities of different 

shapes of metallic dampers. Stiemer et al. [101] tested the vibration control 

effect of X-shaped metallic dampers on a 3-storey building under seismic 

excitations. Their test results confirmed that the metallic dampers were 

extremely effective in reducing pipe stresses in regions of ductile support; Li et 

al. [68] performed the quasi-static and shaking-table tests for the single 

round-hole metallic damper and double X-shape metallic damper. Their results 

revealed that these metallic dampers not only provided additional structural 

stiffness, but also had good seismic energy dissipation capabilities; Chen and 

Eads [102] summarized the commonly used metallic dampers and tested their 

fatigue properties under irregular loading and earthquake loading. Based on 

these results, the seismic retrofit and reinforce design procedure with metallic 
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dampers was outlined and applied into the seismic protection of an existing 

highway bridge. 

 

2.3 Fluid viscous damper for vibration systems 

 

As one of the most commonly used passive damping devices, fluid viscous 

damper was firstly utilized to attenuate the recoil of 75mm French artillery rifle 

in 1897 [11]. It became widespread within armies and navies of most countries 

in the 1900-1945 periods, however it was not widely publicized because of its 

secretive nature [87]. At that time, most fluid viscous dampers operated by the 

viscous effect between metal plates immerged in the fluid inside the damper as 

shown in Fig.2.14. Because the damping effects depended on the viscosity of the 

fluid, which changed significantly with temperature, these early fluid viscous 

dampers were sensitive to the working environment and temperature. With the 

end of the Cold War in the late 1980’s, the fully developed viscous damping 

technology was declassified and became available for the general public [10]. 

The high capacity fluid viscous dampers found a lot of commercial applications 

in civil buildings and bridges subjected to seismic and wind excitations [11]. In 

1994, a modern fluid viscous damper was proposed by Soong and Constantinou 

[103] and widely applied in the protection of mechanical and civil engineering 

structures as shown in Fig.2.15. This kind of fluid viscous dampers dissipated 

the vibration energy by forcing the compressible silicone fluid to flow through 

orifices and causing a pressure difference to produce the resistance force. This 

change of the damping principle of modern fluid viscous dampers significantly 

reduced the damping devices’ volume and improved their stability in complex 

working environment, which accelerated the development and applications of 

fluid viscous dampers in practical mechanical and civil engineering systems. 
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Fig.2.14 Early fluid viscous damper [103]   Fig.2.15 Modern fluid viscous damper [103] 

 

Up to now, through a lot of theoretical and experimental studies, fluid viscous 

dampers have been proved to be the most cost-effective and least 

space-intensive in the system vibration control design [10]. Compared with 

other types of vibration control devices, fluid viscous dampers have several 

inherent and significant advantages [87]: 

 

1. The damping force is essentially out of phase with primary bending and 

shear stresses in a structure, which implies that a fluid viscous damper 

can be used to reduce both internal shear forces and deflections in the 

structure. 

2. Fluid viscous dampers are self-contained, no auxiliary equipment or 

power is required. 

3. Modern fluid viscous dampers operate at a fluid pressure level of 

significant magnitude, which makes the dampers small, compact and 

easy to install. 

4. Fluid viscous dampers are generally less expensive, easier to install and 

less maintain than other passive damping devices, which are helpful to 

reduce the overall cost of a practical structure. 

5. The effectiveness of passive fluid viscous dampers has been proved by 

the test of time, with over 100 years of large scale successful use, in the 

most severe environments by the military and aerospace industries. 

 

Fluid viscous dampers for the protection of commercial and public structures 
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under seismic and wind loadings were widely used since 1990s and witnessed 

significant developments due to pressing demands for the protection of 

structural installations, nuclear reactors, mechanical components, and sensitive 

instruments from earthquake ground motion, shocks and impact loads [5]. The 

engineers and physicists have also developed many different types of installation 

modes for fluid viscous damping devices to satisfy these demands as shown in 

Fig.2.16. 

 
(a) Diagonal installation       (b) Chevron installation    (c) Scissor Jack installation 

   
           (d) Upper toggle installation        (e) Reverse toggle installation 

Fig.2.16 Typical installation modes of fluid viscous damping devices [104] 

 

In practical engineering applications, the Arrowhead Regional Medical Centre in 

USA was the first application of fluid viscous dampers in the seismic protection 

field. The five buildings of this complex used a total of 186 dampers, which 

were installed in systems parallel with rubber base isolation bearings to dissipate 

the seismic energy [10]. After the Loma Prieta earthquake, the California 

department of transportation used considerable full scale nonlinear fluid viscous 

dampers to control the deformation of the suspended trusses on Vincent Thomas 

Bridge [105]. In the Rion-Antirion Bridge project in Greece, nonlinear fluid 

viscous dampers with lower-than-one power damping characteristic parameter 

were installed to reduce the deformation induced by the seismic ground motion 

[106]. Many researchers and engineers have also done a lot of studies and 
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presented many results. McNamara et al. [107] focused on the vibration 

isolation of a 39-storey office building subjected to wind loadings and compared 

the effectiveness of different vibration isolation devices. Finally, the fluid 

viscous dampers were proved to be the most cost-effective and least 

space-intensive on the office building and were installed in the form of diagonal 

and toggle braces in several floors. Their results revealed that the fluid viscous 

dampers could give the building additional inherent damping and improve the 

building’s dynamic behaviours from 20% to 30%. Hwang and Tseng [14] 

proposed a new design procedure for supplemental fluid viscous dampers in 

practical bridge structures and applied it to the vibration control design of a 

three-span bridge under seismic excitations. In 2008, LORD Corporation 

adopted several fluid viscous dampers in a typical wind turbine to reduce the 

structure vibration, the results revealed that these additional fluid viscous 

dampers can bleed off more than 50% of the wind and wave loadings [108]. 

 

In theoretical analysis, the resistive damping force DF  produced by a pure fluid 

viscous damper can be described by D sign( )a
a r rF C u u=   , where aC  and a  

are the damping coefficient and exponent, ru  is the relative velocity between 

the two ends of the damper [46, 65, 103]. The relationship between the damping 

force and the relative velocity of typical fluid viscous dampers under different 

values of a  is shown in Fig.2.17. When the damping exponent 1a = , the 

damper’s dynamic characteristic is linear, otherwise the damper’s dynamic 

characteristic is nonlinear. Because a fluid viscous damper’s damping force acts 

in the opposite direction to that of the relative velocity between two ends of the 

damper itself, it is an ideal energy dissipation device in the structural vibration 

control [46]. 
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Fig.2.17 Damping characteristic of fluid viscous dampers 

under different values of exponent a  [46] 

 

The viscous damping coefficient and exponent can be modified by filling with 

different viscous fluids and modifying the configuration of the chambers inside 

the damper. So the practical fluid viscous dampers’ dynamic characteristic can 

be either linear or nonlinear according to the design requirement. The 

conventional designs of viscously damped vibration isolators are often 

concerned with the determination of the stiffness and damping characteristic 

parameters in a linear SDOF vibration isolator model. Linear fluid viscous 

dampers’ dynamic characteristics have been widely studied and many methods 

and techniques [53, 60-62] have been developed to cope with the analysis and 

design of linear viscously damped systems in practice, where the design criteria 

and indices can explicitly be related to the design parameters [17, 20, 25]. But 

it’s well known that there are still some unsolved problems in the vibration 

control design of the systems with linear fluid viscous dampers. For example, 

there is a dilemma for the frequency domain analysis of SDOF viscously 

damped vibration system as shown in Fig.2.18. In this typical SDOF vibration 

system, a harmonic force )sin( tF ω⋅  is imposed on the lumped mass M  and 

the movement of the lumped mass is isolated by a spring with stiffness k  and a 

linear damping with the coefficient c  associated with the spring. outF  is the 

resulting force transmitted to the foundation by the spring and damping. Tao and 

Mak [52] reviewed the effects of linear fluid viscous damping on the force 



CHAPTER 2. Damping Systems Design                                                                34 

transmissibility in order to isolate the force transmitted to the ground. The 

important result as shown in Fig.2.19 revealed that the increase of damping ratio, 

which is directly proportional to the damping coefficient c , not only reduces 

the peak transmissibility at resonance frequency 0Ω  where the frequency ratio 

is equal to 1, but also increases the force transmissibility over the frequency 

ratio region 20 ≥ΩΩ  which was commonly called “isolation region”. 

Therefore, the operating frequency range of linear fluid viscous damper based 

vibration isolation systems was limited [5], it was beneficial at resonance and 

non-beneficial in higher frequency region. 

   
Fig.2.18 SDOF viscously       Fig.2.19 Force transmissibility for SDOF 

damped system [52]        viscously damped system [52] 

 

In order to overcome the limitations with using linear fluid viscous dampers in 

vibration system design, many techniques and devices, such as fully active and 

semi-active vibration isolators [109, 110] and “skyhook” dampers etc., have 

been studied and developed, although these isolation devices implies higher 

costs and more system maintenance. 

 

Up to now, nonlinear passive fluid viscous dampers have been considered as a 

better solution in practical applications and many researchers have conducted 

studies applying nonlinear fluid viscous dampers in the vibration control of 

structural systems [33, 48, 111, 112]. Earlier activities include the work of 

Ruzicka and Derby [48] who applied the equivalent linear damping concept to 
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SDOF vibration systems with a velocity-pth power damper and showed the effect 

of nonlinear damping on suppressing the system force and displacement 

transmissibility. Ravindra and Mallik [33] used the harmonic balance method to 

examine the response of nonlinear vibration system subjected to force and 

displacement excitations, respectively. They studied the effects of nonlinear 

damping and stiffness on the system transmissibility. Recently, Yang [111] 

developed a mathematical model for a complex nonlinear coupling SDOF 

isolator for attenuating vibration which coupled quadratic, linear viscous, 

Coulomb dampers and nonlinear springs. The absolute acceleration 

transmissibility was evaluated by combining Fourier transforms and the 

harmonic balance method to illustrate the dynamic performance of the isolator. 

Mario [112] proposed a statistical linearization technique to evaluate the 

equivalent damping ratios of nonlinear fluid viscous dampers and applied a 

nonlinear fluid viscous damper with a lower-than-one exponent in a one-story 

shear-type building to reduce the structural vibration response caused by the 

seismic excitation. In 2008, Ibrahim [5] made a comprehensive assessment of 

recent developments of nonlinear vibration isolators which covered the 

traditional and non-traditional systems and proposed the recommendations for 

future research directions of the nonlinear vibration system design. Focusing on 

the dilemma revealed in frequency domain analysis of linear viscously damped 

vibration systems, Lang et al. [43, 47, 113] studied the potential of the 

application of cubic nonlinear fluid viscous dampers to improve the structural 

systems’ vibration performance. Fig.2.20 shows the cubic nonlinearly damped 

system considered in the studies. Compared with the SDOF vibration system in 

Fig.2.18, this improved system introduced a cubic nonlinear fluid viscous 

damper between the lumped mass and foundation to suppress the system 

vibration. Fig 2.21 shows the force transmissibility of this system under 

different values of the cubic nonlinear damping characteristic parameter 3ξ . 

Clearly, compared with the case of the SDOF vibrating system with a fitted 
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linear fluid viscous damper in Fig.2.9, a much better vibration control 

performance can be achieved by introducing a cubic nonlinear fluid viscous 

damper. The nonlinear damping produces a significant vibration isolation over 

resonant frequencies but doesn’t have the same detrimental effects in the 

isolation region as what can be observed in the linear damping case as shown in 

Fig.2.19. 

         
Fig.2.20 SDOF vibration with a       Fig.2.21 Force transmissibility for 

fitted cubic nonlinear damper [47]          SDOF vibration system with a fitted 

cubic nonlinear damper [47] 

 

2.4 Conclusions 

 

In this chapter, the commonly used vibration control approaches in mechanical 

and civil engineering systems are introduced. The vibration control effects of 

typical damping devices on mechanical and civil engineering systems are 

discussed. 

 

Fully active and semi-active damping devices, such as AMD, AVD and MR 

damper, suppress the system vibration by additional actuators. The automatic 

control theory and technology are often needed to design and implement an 

active control for the system; Passive damping devices, such as base isolation 

devices, TMD, TLCD, viscous damper, viscoelastic damper and metallic damper, 

reduce the system vibration and dissipate the energy by inherent damping 
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characteristics and need relatively less additional equipments and maintenance. 

 

As one of the most commonly used passive damping devices, fluid viscous 

dampers have been introduced in detail. Compared with other damping devices, 

fluid viscous damper has been proved to be the most cost-effective and least 

space-intensive vibration control device. It has almost no effect on the original 

system’s mass and stiffness and has significant advantages in vibration control 

and energy dissipation. In practice, the available range of the damping exponent 

of fluid viscous dampers is subject to the constraints determined by the devices' 

manufacturing process [9]. In such cases, fully active or semi-active damping 

devices such as those implemented using MR dampers can be used as solutions 

[114]. 

 

In order to overcome the limitations of linear fluid viscous dampers in vibration 

system designs, nonlinear fluid viscous dampers have been considered as a 

better solution in practical applications and many studies have demonstrated the 

effectiveness of nonlinear damping on vibration control and energy dissipation. 

However, nonlinear systems are generally complicated and there are no adequate 

generic techniques for nonlinear system analysis and design. In the next chapter, 

currently available theories and methods for the analysis and design of nonlinear 

damping in engineering systems will be discussed. These will be the basis of a 

series of new nonlinear damping research studies that will be reported in the 

later chapters of the thesis.
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Chapter 3 
 

Analysis and Design of Linear and Nonlinear 

Systems 
 

3.1 Time and frequency domain representations of linear 

and nonlinear systems 

 

3.1.1 Linear systems 

 

In automatic control theory [19, 21], signal processing [115-117] and 

telecommunications [118], etc., the physical relationship between signals can 

usually be considered as systems and described by different mathematical 

models. A general deterministic system can be described by a mathematical 

operator H  that maps an input signal )(tu  to an output signal )(ty  in the 

time domain as 

( ))()( tuHty =           (3.1) 

 

As the most basic systems, linear systems’ performance characteristics can be 

simply described by mathematical models using linear operators [16] and they 

satisfy the properties of superposition and scaling [21] as follows: 

 

Given two valid time domain inputs )(1 tu , )(2 tu  and the corresponding 

outputs )(1 ty , )(2 ty  of a linear system, which can be described by 

( )
( )




=
=

)()(
)()(

22

11

tuHty
tuHty

       (3.2) 

for any scalar values α  and β , the system satisfies the following relationship 
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( ))()()()( 2121 tutuHtyty βαβα +=+      (3.3) 

 

This means that if a complicated input of a linear system can be represented by a 

sum of simpler inputs, then this linear system’s output response to these simpler 

inputs can be calculated separately and then added to obtain the system output 

response to the complicated input [115]. 

 

Considering a linear, stable, causal and single-input-single-output (SISO) system 

in the time domain, the system output )(ty  subjected to a general input )(tu  

can be represented by the convolution integral as [119] 

∫
∞

∞−
−= σσσ dtuhty )()()(        (3.4) 

where )(σh  is the impulse response of the system, which is called “kernel”. 

The physical meaning of )(σh  is the output response of the system, initially at 

rest, to a unitary impulse applied at time 0=t . 

 

In the frequency domain, when a stable time-invariant linear system is subject to 

an input whose the Fourier Transform (FT) exists, the output frequency response 

of this linear system can be expressed by [21] 

)()()( ωωω jUjHjY =        (3.5) 

where )( ωjU  and )( ωjY  are the system input and output spectrum which are 

the Fourier transforms of the system’s time domain input )(tu  and output )(ty , 

respectively. )( ωjH  is the linear system’s Frequency Response Function 

(FRF). This simple linear frequency domain relationship explicitly shows how 

the linear system affects on the input spectrum to produce the output frequency 

response at any frequency ω  of interest. Eq.(3.5) has been widely applied in 

control engineering for the system analysis and controller design, in electronics 

and communications for the synthesis of analogue and digital filters, and in 

mechanical and civil engineering systems for the analysis of vibrations [24]. 



CHAPTER 3. Analysis and Design of Linear and Nonlinear Systems                                        40 

For linear systems, the steady-state output response to a periodic input excitation 

is periodic with the same frequency, but not necessarily in phase due to, for 

example, the energy dissipation by the damping term which causes the output to 

lag the input [120]. The proportional change in the amplitude of a vibration 

signal )()()()( ωωωω jHjUjYT ==  as it passes through a structural 

system from the input to the output is the system gain at frequency ω , which is 

also called “system transmissibility” [121]. For different system inputs and 

outputs, the system transmissibility can be defined by displacement 

transmissibility, force transmissibility, etc. [121, 122]. The phase delay 

)()()()( ωωωωϕ jHjUjY ∠=∠−∠=  represents the degree by which the 

output lags the input as a consequence of passage through the system in the 

frequency domain. The plots of the system transmissibility )(ωT  and the phase 

delay )(ωϕ  are usually given together as they specify all properties of the 

system output response to a harmonic input at different frequencies, which is 

called “Bode plot”. Another commonly used plot to present the information is 

“Nyquist plot” [123], which shows both system transmissibility )(ωT  and 

phase delay )(ωϕ  on a single plot using frequency ω  as a parameter in the 

complex plane. 

 

3.1.2 Nonlinear systems 

 

Compared with linear systems, nonlinear systems don’t satisfy the properties of 

superposition and scaling in Eq.(3.3). They usually have complicated output 

characteristics and dynamic behaviours in both the time and frequency domains, 

such as chaos [27], bifurcation [28], fraction frequency and double frequency 

[34], etc.. These phenomena complicate the study on nonlinear systems. 

Although some nonlinear systems can be approximated by equivalent linear 

systems under certain conditions which is known as linearization [22, 26], there 

are no adequate generic techniques for the nonlinear system analysis and design 
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[15]. 

 

Nonlinear system studies have significance in engineering design [124], signal 

processing [4, 125], system identification [126] and so on, because most 

practical systems are inherently nonlinear. The most common types of 

nonlinearity encountered in practical systems are due to nonlinear stiffness and 

damping, clearances, impacts, friction and saturation effects, etc., whose 

dynamic characteristics are usually amplitude, velocity and frequency dependent 

[120]. 

 

Practical nonlinear systems are extremely diverse, and the analysis and design 

methods are problem dependent. There are no generic methods to deal with the 

problems with nonlinearity by either theoretical analysis or experimental 

simulation. The time and frequency domain relationships between linear 

systems’ input-output and system characteristic parameters in Eqs.(3.4) and (3.5) 

can not be easily extended to nonlinear cases. 

 

Recently, many studies [24, 44, 119, 127-129] have focused on the nonlinear 

systems which can be described by the Volterra series. Volterra series is a widely 

used mathematical description of the input-output relationship for nonlinear 

systems [127]. It is based on a functional power series expansion and derived by 

Volterra in 1900s for general functional relationships [128]. It is a generalization 

of power series and is ideal for representing frequency-dependent small 

nonlinearities [130]. Many literatures [44, 127, 130] have conducted the 

applications of the Volterra series in practical mechanical and civil engineering 

systems. For a nonlinear system which is stable at zero equilibrium point, the 

input-output relationship under certain conditions can be approximated by a 

truncated Volterra series [24, 44] as 
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where ),,( 1 nnh ττ  , Nn ≤≤1  is known as the nth order Volterra kernel [124], 

which is the extension of the linear impulse response function )(σh  in Eq.(3.4) 

to the nonlinear case, and N denotes the maximum order of the system 

nonlinearity. The Volterra series representation of nonlinear systems can also be 

expressed as 
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n
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is the contribution of the nth order system nonlinearity to the output response 

)(ty . It’s simply an extension of the linear convolution integral to the higher 

order cases. The multidimensional Fourier transform of the Volterra kernel 

),,( 1 nnh ττ   yields nth order frequency response function (FRF) or Generalised 

Frequency Response Functions (GFRFs) [120] 
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Based on the GFRF, Eq. (3.8) can be written as [129] 
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The GFRF concept provides useful insights into the harmonic and 

inter-modulation effects commonly associated with nonlinear system behaviours 

and Eqs.(3.7-3.10) can be used to show how the output frequency response of 

nonlinear systems are generated by a combination of these effects [131]. 

 

Volterra series provides an important theoretical foundation for the nonlinear 

system analysis and design. It is a powerful tool that can deal with a wide class 

of nonlinear systems [124, 132] and can provide a straightforward theoretical 
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explanation to the appearance of many nonlinear phenomena including the 

generation of super-harmonics and the appearance of sub-harmonic resonances 

[133]. The Volterra series has been widely studied and applied in modeling [119, 

134], identification [135], control [136] and signal processing [137] for different 

deterministic and stochastic nonlinear systems [138]. 

 

3.2 Nonlinear system analysis in the frequency domain 

 

Frequency domain analysis converts system signals from the time to the 

frequency domain using the Fourier transform [16]. Compared with the time 

domain analysis, the frequency domain analysis can provide more physically 

meaningful insights into the system dynamic behaviours [139], such as the 

stability [140] and resonance [17], which are easier for engineers to understand 

in most cases [41]. Consequently, the frequency domain approaches have been 

extensively applied in the analysis and design of practical engineering systems. 

 

One of the main objectives of the system frequency domain analysis is to study 

the relationship between the system input spectrum and output frequency 

response [36]. The linear system’s FRF in Eq.(3.5) has been widely used in 

many engineering fields to investigate linear systems’ characteristics in the 

frequency domain [17, 20-22], where the output frequency response can be 

explicitly related to the input spectrum and system characteristic parameters in 

the time domain model. For example, Fridman and Gil [141] analysed the 

stability of linear systems with uncertain time-varying delays and studied the 

relationship between the system stability and the constant values of the delays. 

Soliman and Ismailzadeh [20] presented theoretical expressions for the system 

transmissibility, the optimum values of mass, stiffness and damping ratios of 

linear vibration systems, and consequently related these parameters to the 

systems’ resonant characteristics. 
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However, nonlinear system analysis and design in the frequency domain are far 

more complicated. It’s well known that nonlinear systems are often observed to 

have harmonics and complex inter-modulation phenomena [29, 30], which can 

transfer the signal energy from the frequency components of input to produce 

outputs at quite different frequency components. Moreover, the chaos and 

bifurcation [27] phenomena are also encountered in nonlinear systems. All of 

these complicate the study on nonlinear systems’ behaviors. According to the 

Volterra series theory of nonlinear systems, the relationship between the 

nonlinear system’s input and output spectrum involves complex 

multi-dimensional integration known as the association of variables and a 

summation with a possibly infinite number of terms [124]. An explicit analytical 

description for the relationship between the system characteristics and output 

frequency response can not be obtained easily as in the linear system case. 

Therefore, the analysis and design theories and methods of nonlinear systems in 

the frequency domain are far from being fully developed [41]. 

 

Although nonlinear systems are much complicated than linear systems, many 

kinds of nonlinear systems have been investigated in the literatures [27, 28, 34, 

119, 120] using different analysis and design methods and applied in a lot of 

branches of science and practical engineering [16, 41]. The results have 

provided important theoretical foundations for nonlinear systems modelling, 

identification, analysis and design. In order to describe nonlinear systems, many 

mathematical models have been used, including Nonlinear AutoRegresive 

Moving Average with eXogenous input (NARMAX) models [142], Nonlinear 

Differential Equations (NDE) model [129], Nonlinear Auto-Regressive model 

with eXogenous input (NARX), Time Delayed Differential Equations (TDDE) 

model [143] and so on. Many typical nonlinear system equations, such as 

Duffing equation [31], Van Der Pol equation [32] and Lorenz equation [13], etc., 

have been studied. Some nonlinear system frequency analysis approaches and 

technologies, such as describing function, averaging method and harmonic 
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balance method, etc., have also been developed. For the nonlinear system 

analysis and design in the frequency domain, the describing function [3], 

perturbation and averaging methods [37] have ever taken an important role. The 

describing function method is an approximate procedure for analyzing certain 

nonlinear control problems based on the quasi-linearization concept [144]. It 

provides a powerful mathematical approach for the design of systems with a 

single nonlinear component [3]. Perturbation and averaging methods [145, 146] 

are always used to obtain an approximate solution such that the approximation 

error is small and the approximate solution is expressed in terms of equations 

simpler than the original equation. Although these methods have their 

limitations, errors or assumptions, some effective practical applications have 

been extensively reported [145, 147, 148]. In addition to perturbation and 

averaging methods, other approximate solution methods for the nonlinear 

system analysis were established and developed, including Ritz-Galerkin 

method and harmonic balance method [39]. Ritz-Galerkin method [38] transfers 

the problem of solving nonlinear differential equations into the solution of a 

group of new equations. Compared with describing function and perturbation 

methods, Ritz-Galerkin method follows a different idea, which is to find a 

solution that can minimize the error energy so that a higher accuracy can be 

achieved by taking the effect of higher order harmonics into account in the 

solution. The harmonic balance method is also a well established method. This 

method assumes that a Fourier series can represent a nonlinear system’s steady 

state solution and can be used to deal with complicated problems in nonlinear 

systems such as sub-harmonics and jump behaviors [149, 150]. 

 

Based on the nonlinear system analysis methods and techniques, significant 

progresses towards understanding nonlinear systems have been achieved [103, 

151-155]. Suzuki and Hedrick [156] developed an Interactive Inverse Random 

Input Describing Function method to find an approximate nonlinear function 

from the given data and applied it to the analysis and design of a second order 



CHAPTER 3. Analysis and Design of Linear and Nonlinear Systems                                        46 

servo system with actuator saturation. Their results showed the advantages of 

nonlinear controllers and were verified by the Monte-Carlo simulations. Based 

on the describing function method, Aracil and Gordillo [157] analyzed the 

stability of nonlinear PD and PI fuzzy controllers and provided the formulation 

for a simplified version of these controllers. Chandra et al. [158] combined the 

straightforward perturbation method with Laplace transform to determine the 

transient response of a SDOF nonlinear vibration system and proposed an 

approximated solution, which can be used to directly evaluate the nonlinear 

system’s transient response. Emadi [159] proposed a generalized state-space 

averaging method to investigate the negative impedance instability in hybrid ac 

and dc distribution systems and presented the stable region for these typical 

nonlinear systems. Based on the harmonic balance method, Braindra and Mallik 

[90] studied the effects of nonlinear damping on the steady-state, harmonic 

response and the transmissibility of a vibration system with combined Coulomb 

damper, viscous damper and a cubic nonlinear spring. They also presented the 

stability analysis of these solutions with a parametric study on the effects of 

different types of damping [160]. 

 

Recently, more and more studies have focused on the nonlinear system analysis 

and design in the frequency domain using the GFRF concept [40]. Based on the 

theory of Volterra series expansion, the study of nonlinear system frequency 

domain characteristics was initiated by the introduction of the GFRF concept by 

George in 1959 [40]. GFRF concept extends the linear FRF in Eq.(3.5) to 

nonlinear cases for a wide class of nonlinear systems that can be described by 

Volterra series [44, 119] in Eq.(3.6). The GFRF concept provides an important 

theoretical basis for the frequency domain analysis of nonlinear systems. For 

nonlinear systems, based on the GFRF concept, Lang and Billings [36] derived 

an analytical expression for the system output frequency response to a general 

input in 1996. The result is given by 
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where )( ωjYn  represents the nth order output frequency response of the 

nonlinear system. The term  ∫ ∏=++ =ωωω ωσωωω
n

n

i inn jUjjH




1 11 d)(),,(  denotes the 

integration of ∏ =

n

i inn jUjjH
11 )(),,( ωωω   over the n-dimensional hyper-plane 

ωωω =++ n1  [24] and ωσd  is the integral factor in this hyper-plane. 

Eq.(3.11) is a natural extension of the well known relationship Eq.(3.5) of linear 

systems to nonlinear systems and reveals how the nonlinear mechanisms operate 

on the input spectrum to produce the output frequency response [24]. 

 

In linear systems, the FRF concept shows that the possible output frequencies 

are the same as the input frequencies. But in nonlinear systems, which can be 

described by the Volterra series in Eq.(3.6), the possible output frequencies at 

the steady state are generally given by 



N

n
YY n

ff
1=

=         (3.12) 

where Yf  is the non-negative frequency range of the nonlinear system output 

and 
nYf  represents the non-negative frequency range produced by the nth order 

system nonlinearity. In 1997, Lang and Billings [42] derived an explicit 

expression of the output frequency range Yf  for nonlinear systems subjected to 

a general input with a spectrum given by 
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where 0≥> ab . The result is given by 
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where 1
)(

* +







+

=
ba

nai , the operator [ ].  means to take the integer part, *p  

could be taken as ]2[,,2,1 N . Eq.(3.14) is a significant analytical description 

for the output frequencies of nonlinear systems and a natural extension for the 

well known concept about the linear system’s output frequency range to the 

nonlinear case. 

 

Up to now, many nonlinear system studies in the frequency domain have 

focused on the determination of the GFRFs [16, 131, 161, 162] and significant 

results relating to the estimation and computation of the GFRF expressions for 

practical nonlinear systems have been achieved [18, 35, 163]. Initially, the 

GFRFs of nonlinear systems were estimated from measured signals by 

extending the classical Fast Fourier Transform (FFT), windowing and 

smoothing techniques to many dimensions [164, 165]. Then, Bendat [166] 

developed a least square routine to estimate the GFRFs of nonlinear systems 

from the random data. Later on, Bedrosian and Rice [167] proposed the 

harmonic probing method to derive higher order GFRFs of nonlinear systems 

from the system differential equation representations. After that, Billings and 

Tsang [168] extended the harmonic probing approach to the discrete time 

nonlinear systems. Based on the recursive expressions of GFRF for the 

nonlinear systems which can be described by Nonlinear Differential Equations 

(NDE), Nonlinear Auto-Regressive model with eXogenous input (NARX) or 

Time Delayed Differential Equations (TDDE) [143], a more effective and 
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straightforward algorithm for computing the higher order GFRF of NDE, NARX 

and TDDE models was developed by Peyton-Jones [129] to simplify the 

involved computations. All of these provide important theoretical foundations 

for the study on nonlinear systems in the frequency domain. 

 

Consider continuous time nonlinear systems which can be described by a 

Nonlinear Differential Equation (NDE) 

∑ ∑ ∑ ∏ ∏
=

=+
= = =

+

+=
+

+

=×
M

m

m

mqp
p

L

ll

p

i

qp

pi

ll
qppq

qp

ii tuDtyDllc
1 0 0,, 1 1

1
1

0)()(),,(


    (3.15) 

where the operator D  is defined by lll ttxtxD d)(d)( = , M  and L  are the 

maximum degree of nonlinearity in terms of )(ty  and )(tu , and the maximum 

order of derivative, respectively, ),,( 1 qppq llc +  represent the system model 

coefficients. If a nonlinear system described by the NDE model (3.15) satisfies 

the following assumptions: 

(i) The system is stable at zero equilibrium. 

(ii) The system can equivalently be described by the Volterra series model 

with MN ≥  over a regime around the equilibrium. 

 

It was shown in [169] that the GFRFs of nonlinear systems can be determined 

from the model parameters as follows 
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and ),,( 1 nnp jjH ωω   can be determined by the recursive expressions as 

follows [169] 
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with 
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The results in Eqs.(3.16)-(3.21) can considerably facilitate the numerical 

evaluation of the GFRFs of nonlinear systems described by Eq.(3.15) and can 

determine the GFRF expression up to any order of interest [169]. 

 

In 2001, Swain and Billings [170] extended the above recursive results to the 

Multi-Input-Multi-Output (MIMO) nonlinear systems. However, the recursive 

expressions in Eqs.(3.20-3.21) for the determination of GFRFs in Eq.(3.16) 

can’t readily be used to explicitly show how the coefficients in the NDE model 

affect the system GFRFs. The evaluation of higher order GFRFs becomes more 

difficult [41]. In order to solve this problem, Peyton Jones [129] developed a 

simplified expression of ),,( 1 nnp jjH ωω   as 
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where )(⋅yf  represents the remaining terms as 
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Based on the GFRF concept and the above results for the determination of 

GFRF expressions, further studies on the frequency domain behaviors of 

nonlinear systems have been carried out and many important results have been 

achieved. Billings and Lang [171] studied the energy transfer characteristics of 

nonlinear systems, which had been observed in many practical systems in 

electronic, mechanical, civil and materials engineering. Swain et al. [172] used 

the nth order GFRF expression and proposed a new approach to identify the 

parameters of both continuous and discrete nonlinear systems in the frequency 

domain. Boaghe et al. [173] combined time and frequency domain identification 

approaches to analyse the dynamic characteristics of a NARMAX model, which 

represented a gas turbine engine. In their studies, the GFRFs revealed the 

nonlinear couplings between the input harmonic components taking place at low 

frequencies and having much richer frequency components in the output. Energy 

release and energy storage phenomena were also detected from the GFRF plots. 

 

Although many important progresses towards understanding nonlinear systems 

in the frequency domain have been made by using the GFRF concept, the 

limitation of the GFRF based approach is also obvious. This is because the 

GFRFs are a sequence of multivariable functions defined in a high dimensional 

frequency space. The evaluation of the values of higher order GFRFs is difficult 

due to the large amount of algebra and symbolic computations that are involved. 

The GFRF concept itself can’t provide an explicit analytical relationship 

between the system time domain model parameters and the system output 

frequency response function to reveal how the system output frequency response 

depends on the system parameters. 
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3.3 Output Frequency Response Function (OFRF) 

 

Because of the lack of an explicit analytical description for the relationship 

between nonlinear system parameters and the system output frequency response, 

the nonlinear system analysis and design in the frequency domain are much 

more complicated than that in the linear case. In order to circumvent 

complicated algebra and symbolic computations involved in the GFRF based 

nonlinear system analysis and design, Lang and Billings et al [24, 42, 139, 171] 

have conducted a series of research studies and derived an explicit analytical 

relationship between the output frequency response and the time domain model 

coefficients for a wide class of nonlinear systems that can be described by NDE 

models. The result is referred to the OFRF concept. 

 

Consider a nonlinear system which can be described by the NDE model 

Eq.(3.15) and satisfies the assumptions (i) and (ii). Based on the Volterra series 

theory of nonlinear systems and the GFRF concept, the system output frequency 

response under a general input can be given by Eq.(3.11), and the possible 

output frequencies can be described by Eq.(3.14). However, because of the 

complicated integration computations involved in the multi-dimensional 

hyper-plane,  Eq.(3.11) is difficult to be used in the nonlinear system analysis 

and design. In order to solve this problem, using the recursive nth order GFRF 

expressions for the NDE model in Eqs.(3.16-3.21), Lang and Billings et al [24] 

proved, for the first time, that when the parameters in the 1st order GFRF (.)1H  

of the nonlinear system and frequency variables nωω ,,1   are given, the nth 

order GFRF ),,( 1 nn jjH ωω   of nonlinear systems can be expressed as 

follows 
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which is a polynomial function of the system parameters in a set given by 
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where nC , 2≥n , is composed of the parameters of the NDE model in Eq.(3.15) 

as follows 
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nsλλ ,,1   are the elements in nC2 ; ),,( 1
):( 1

1 n
jjn jjns

ns
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Θ  represents a 

function of nωω ,,1   and the parameters in (.)1H , and nJ  is a set of ns  

dimensional non-negative integer vectors which contain the exponents of those 

monomials ns

n

j
s

j λλ 

1
1 . 

 

For example, consider the differential equation model of a well-known 

mechanical system, described by [174] 

)()()()()()( 3
3

2
21 tutyatyatyatkytym =++++      (3.29) 

 

The 1st to 3rd order GFRFs of this mechanical system can be determined 

recursively from Eqs.(3.16-3.21) to produce the results below 
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where kjajmj ++= )()()( 1
2 ωωωβ , kjjajjmjj ++++=+ )()()( 211

2
2121 ωωωωωωβ  

and kjjjajjjmjjj ++++++=++ )()()( 3211
2

321321 ωωωωωωωωωβ .  

Obviously, these are polynomial functions of system parameters 2a  and 3a . 

 

When a nonlinear system can be approximated by a Volterra series with order 

N  in the neighbour of its zero equilibrium, substituting the GFRF expressions 

in Eq.(3.26) into the description for the system output frequency response 

Eq.(3.11) yields 

∑
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j
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xxjY
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1
)()(


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ωγω      (3.33) 

where 
Nsxx ,,1   are the elements in NC2 , J  is a set of Ns  dimensional 

non-negative integer vectors which contain the exponents of those monomials 

Ns

N

j
s

j xx 

1
1 . )(

1
ωγ

Nsjj   represents the coefficient of the term Ns

N

j
s

j xx 

1
1 , which 

is a function of the frequency variable ω  and also depends on the parameters 

in the 1st order GFRF (.)1H  of the nonlinear system. Eq.(3.33) was defined by 

Lang et al in [24] as the Output Frequency Response Function (OFRF) of 

nonlinear systems. 

 

For example, consider the mechanical system described by Eq.(3.29) again. The 

OFRF of this nonlinear system can be obtained as [24] 

)()()()()()()( 32
2
3413242

2
231321211 ωωωωωωω jPajPaajPajPajPajPjY +++++=  (3.34) 

when the system nonlinearity up to 4th order is taken into account. In (3.34), 

)(
21

ωjP ii , 4,3,2,11 =i , 2,12 =i , are the functions of the frequency variable ω  

and the system parameters m , 1a  and k . The values of )(
21

ωjP ii  can be 
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determined directly from the simulation or experimental test data as introduced 

as follows. 

 

Consider the general nonlinear system OFRF representation 
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where im  are the maximum power of ix , Nsi ,,2,1 = , in the OFRF 

expression. It was shown in [24] that the functions )(
1

ωγ
Nsjj  , ii mj ,,0= , 

can be determined from the system simulation or experimental data by the least 

square method as 
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and )( ωjY w  is the system output spectrum when system parameters are taken 

as wsw N
xx ,,1   with Mw ,,1=  and )}1(,),1({ +∈ iiiiw mxxx  . 

),,(),,( 11 qsqrsr NN
xxxx  ≠  when qr ≠ . )1(,),1( +iii mxx   are 1+im  

different values that can be taken by the system parameter ix . For the practical 

applications of OFRF concept in the analysis and design of nonlinear systems, 

the system output spectrum )( ωjY w  can be evaluated from the system output 

responses obtained from the simulation analysis or experimental tests. 

 

In Peng et al. [175], the OFRF concept and the above least square method were 
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applied to the analysis of nonlinearly damped MDOF structural systems. The 

results have significant implication for the design of additional nonlinear 

damping devices in MDOF systems for vibration control purpose. 

 

In [24], simulation studies were conducted to verify the theoretical derivations 

of the OFRF, and to demonstrate the effectiveness of the method proposed for 

the determination of the OFRF from simulation or experimental data. A 

comparison between the output spectrum obtained via performing the FFT 

analysis of the simulated system output data and the results evaluated using the 

OFRF expression was also made. The result indicates that a very good match 

can be achieved. 

 

The OFRF concept extends the well-known linear system relationship in Eq.(3.5) 

to the nonlinear case and reveals a link between the system time domain model 

parameters and the system output frequency response. This can be used to 

considerably facilitate the nonlinear system analysis and design in the frequency 

domain [24]. Although nonlinear systems which exhibit sub-harmonics and 

chaos can not be analyzed using the OFRF based approach, because the basis of 

the OFRF concept is the Volterra series theory of nonlinear systems which 

occupies the middle ground in generality and applicability of the theories of 

nonlinear systems, the OFRF concept has considerable significance for the 

systematic applications of the nonlinear system analysis and design in 

engineering practice [24].  

 

For the practical analysis and design of nonlinear systems, Lang et al [2, 24, 36, 

43, 47, 113, 114, 139]  have conducted considerable studies and made 

significant progress. For example, in [139], a general procedure was proposed to 

determinate the OFRF for a given NDE or NARX model and the potential 

practical applications of the OFRF-based analysis were discussed. The analysis 

of a nonlinear spring-damping system was used to illustrate the effectiveness of 
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the OFRF based approach in the study of nonlinear vibration control systems; In 

[2], the OFRF expression of a closed-loop nonlinear system was derived, which 

shows the relationship between the system output frequency response and 

controller parameters and provides an important basis for the nonlinear feedback 

controller analysis and design. The results revealed that, compared with a linear 

damping based control, the performance of a vibration system can be improved 

by properly introducing a simple nonlinear damping device; In [47], the study 

focused on the applications of the OFRF concept in the analysis of SDOF 

vibration systems and the effects of nonlinear viscous damping parameters on 

the vibration control were analysed. The results revealed that the OFRF concept 

is helpful for the analysis and exploitation of the potential advantages of 

nonlinear fluid viscous dampers in vibration control. In [43], an effective 

algorithm was proposed to determine the monomials in the OFRF representation 

of nonlinear systems, the effects of the characteristic parameters of a nonlinear 

engine mount on the system output frequency behaviours were studied to 

facilitate the nonlinear vibration system design. In [113], the OFRF concept was 

applied to theoretically investigate the force transmissibility of SDOF passive 

vibration isolators, the results indicated that nonlinear vibration isolators with an 

antisymmetric damping characteristic have great potential to overcome the 

problems encountered in the linear passive vibration isolators design. The results 

were also verified by simulation studies. In [114], the OFRF concept was 

applied to analyze the effects of the damping characteristics parameters and the 

current in an MR damper on the output frequency response of SDOF vibration 

system subject to a harmonic excitation. The results allow engineers to directly 

control the current of a commercially available MR damper to achieve a desired 

system response without a feedback control system. 

 

3.4 Conclusions 
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In this chapter, the time and frequency domain representations of linear and 

nonlinear systems are introduced and the commonly used frequency domain 

approaches for nonlinear system analysis and design are reviewed. 

Compared with linear systems, the characteristics of nonlinear systems are much 

more complicated. The conventional nonlinear frequency domain analysis 

approaches and design technologies, such as describing function, perturbation 

and averaging methods, Ritz-Galerkin method, harmonic balance method and 

GFRF concept, can not provide an explicit analytical description for the 

relationship between the system characteristic parameters and output frequency 

response. 

 

In order to circumvent complicated mathematical computations and facilitate the 

nonlinear system analysis and design in the frequency domain, the OFRF 

concept of nonlinear systems was introduced based on the Volterra series theory 

and the GFRF concept of nonlinear systems. The OFRF concept extends the 

well known frequency domain input-output relationship of linear systems to 

nonlinear systems and reveals the significant link between the system output 

frequency response and parameters that define system nonlinearity. It provides 

important foundation for the nonlinear system analysis and design in the 

frequency domain and is also the basis of most results that will be presented in 

later chapters.
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Chapter 4 

 

Analysis and Design of the Transmissibility of 

SDOF Viscously Damped Vibration Systems 
 

For the purpose of nonlinear damping designs, the evaluation of transmissibility 

of SDOF viscously damped vibration systems is studied in this chapter. A 

general mathematical model is firstly derived for the cases where the systems 

are subject to harmonic loadings. Then the Ritz-Galerkin method is applied to 

theoretically evaluate the system displacement and force vibration 

transmissibility. The effects of nonlinear viscous damping parameters on the 

system vibration control at different frequencies are discussed. A three-step 

procedure for the nonlinear damping system design is finally proposed to 

facilitate the design of nonlinear viscous damping parameters for a desired 

steady-state vibration performance. Two case studies are also provided to 

demonstrate how to implement the proposed nonlinear damping design 

procedure in practical applications. 

 

4.1 Introduction 

 

Transmissibility is a commonly used concept in the field of shock and vibration 

control [17] to describe the transmission of unwanted force and motion from the 

excitation source to a mechanical or civil engineering system [176]. It’s defined 

in the frequency domain as the ratio of the steady-state output amplitude to the 

harmonic input amplitude in a vibration system. Two major types of system 

transmissibility are force transmissibility and displacement transmissibility. As 

an important evaluation criterion for the effectiveness of vibration control 
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devices, system transmissibility has been widely studied and applied in the 

analysis and design of practical engineering systems. Many important results 

have been reported in literatures [52, 113, 176, 177]. 

 

As introduced in Chapter 2, there is a dilemma associated with the design of 

linear fluid viscous dampers, that is, introducing a considerable linear viscous 

damping in a vibration system to reduce the force transmissibility at the resonant 

frequency could lead to deterioration to the force transmissibility over higher 

frequency region [113]. In order to tackle this problem, nonlinear fluid viscous 

dampers were initially studied and their potential to achieve better vibration 

control was demonstrated in 1971 [50]. Milovanovic et al. [177] investigated the 

influence of system characteristic parameters on the relative and absolute 

displacement transmissibility of a SDOF viscously damped vibration system. 

The effects of linear and nonlinear fluid viscous dampers on the system 

vibration control were evaluated and compared to highlight the beneficial effects 

of nonlinear fluid viscous dampers; Lang et al. [47] and Peng et al. [113] applied 

the frequency domain analysis approach to theoretically investigate the force 

transmissibility of SDOF vibration isolators with nonlinear damping 

characteristics. Their results rigorously proved that nonlinear isolators can be 

applied to overcome the dilemma encountered in the design of linear fluid 

viscous dampers. 

 

This chapter is concerned with the analysis and design of the force and 

displacement transmissibility of nonlinear fluid viscous dampers based vibration 

systems. The objectives are to extend nonlinear damping study to more general 

harmonic loading conditions, and to propose an effective procedure to facilitate 

the design of nonlinear viscous damping in practical applications. For these 

purposes, a general mathematical model is first derived for SDOF viscously 

damped vibration system subject to a harmonic input with amplitude 

proportional to the driving frequency raised to an arbitrary power. Then the 
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Ritz-Galerkin method is applied to theoretically evaluate and analyse the system 

displacement and/or force transmissibility. After that, a three-step procedure for 

the nonlinear damping system design is proposed using the Ritz-Galerkin 

method based analysis to facilitate the design of nonlinear damping parameters 

for a desired vibration performance. The results reveal that, if appropriately 

designed, nonlinear fluid viscous dampers are more effective than linear fluid 

viscous dampers in vibration control at both the resonant and higher frequencies 

and can significantly improve the system vibration performance in different 

loading conditions. These provide important guidelines for the nonlinear fluid 

viscous damper design and have implications for the engineering designs of 

vibration systems for a wide range of practical applications. 

 

4.2 SDOF vibration isolators with a nonlinear viscous 

damping device 

        
Fig.4.1 Displacement Vibration Isolation      Fig.4.2 Force Vibration Isolation  

System (DVIS)             System (FVIS) 

 

Consider the SDOF displacement and force vibration isolation systems shown in 

Figs.4.1 and 4.2, respectively, where a nonlinear fluid viscous damper is used as 

the energy dissipation device. In the case of DVIS, the foundation moves due to 

a general harmonic displacement excitation 

)sin()(in tHtx n ΩΩ=        (4.1) 

where n  denotes the exponent of the input excitation. The movement of the 
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lumped mass M  is isolated by a spring with stiffness K  and a fluid viscous 

damper with power damping characteristic parameter a  and damping 

coefficient aC ; 1C  is the linear damping coefficient associated with the spring. 

In the case of FVIS, a general harmonic force 

)sin()(in tHtf n ΩΩ=        (4.2) 

is imposed on the lumped mass and the same spring-damper mechanism is used 

between the lumped mass and foundation. 

 

The fluid viscous damper in DVIS and FVIS is a typical damping device as 

introduced in Chapter 2. The damping force is described by 

D sign( )a
a r rF C u u=                         (4.3) 

where ru  is the relative velocity between the two ends of the damper [33, 46, 

50]. 

 

For DVIS and FVIS, the system equations can be described by: 
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and 
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

= + + ⋅ = −

   

   

 for FVIS (4.5) 

respectively. 

 

The SDOF DVIS and FVIS with a fluid viscous damper subject to the general 

harmonic input )(in tx  or )(in tf  represent a range of practical vibration control 

systems. For example, when 0=n , the model of DVIS can represent the 

building’s displacement vibrations in earthquake; When 0=n , the model of 

FVIS can be used to evaluate the force transmission in structures subject to 

loads from wind or water wave; When 2=n  for FVIS, the input can represent 
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the force excitation from a rotating machine with an eccentric mass such as 

washing machine and automobile engine, and the model can describe the effects 

of the eccentric mass on the system’s vibrating behaviors. 

 

The study on the effects of nonlinear damping characteristic parameters aC  

and a  on the system vibration transmissibility is significant for achieving 

desired vibration performance. The results can also provide important guidelines 

for the future research on the analysis and design of vibration isolators for more 

complicated structures such as civil buildings, towers and bridges. 

 

4.3 Evaluation of the force and displacement 

transmissibility of the SDOF DVIS and FVIS with a 

nonlinear viscous damping device 

 

4.3.1 The force and displacement transmissibility 

 

The objective of the adoption of a nonlinear viscous damping device in a 

vibration system is to isolate unwanted vibrations so that the adverse effects of 

vibrations can be kept within an acceptable level. Specifically speaking, for a 

DVIS, the displacement of the lumped mass )(out tx  is to be reduced; while for 

FVIS, either the force transmitted to the foundation )(out tf  or the displacement 

of the lumped mass )(out tx  is to be suppressed according to the design 

requirement. According to the pioneering studies on the effects of nonlinear 

damping devices on the vibration system behaviours [50, 178], the system 

vibrations at the excitation frequency have the most significant effect and the 

higher harmonics can be neglected. Consequently, the force and displacement 

transmissibility of the SDOF DVIS and FVIS subject to the harmonic inputs in 

Eq.(4.1) and Eq.(4.2), respectively can be defined as 
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respectively. In Eqs.(4.6) to (4.8), )(in ΩjX , )(in ΩjF , )(out ΩjX , and )(out ΩjF  

are the Fourier Transforms of )(in tx , )(in tf , )(out tx  and )(out tf  respectively. 

)(ΩDD  denotes the displacement-displacement transmissibility of DVIS; 

)(ΩFD  and )(ΩFF  represent the force-displacement transmissibility and 

force-force transmissibility of FVIS, respectively. 

 

4.3.2 The Ritz-Galerkin method 

 

As introduced in Chapter 2, the Ritz-Galerkin method [38] is a powerful 

technique for solving nonlinear differential equations. Consider a nonlinear 

differential equation with the general form: 

0),,( =txDF                         (4.9) 

where tD dd=  is the differential operator, ),,( txDF  is a nonlinear function 

of D , x  and t . 

 

Obviously, for the exact solution )(tx  of Eq.(4.9), 0)),(,( =ttxDF . Assume 

that )(tX  is an approximate solution to the differential equation, then 

)),(,()( ttXDFt =ε       (4.10) 

is the approximating error due to )()( txtX ≠ , and )(tX  can be described as 

the sum of a finite number *n  of harmonics, i.e., 

∑
=

−=
*

1
)sin()(

n

i
ii atictX ω            (4.11) 
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The basic idea of the Ritz-Galerkin method is to find an approximate solution 

)(tX  to Eq.(4.9) such that the integrated error over a variation scope ],[ bat ∈  

as defined by 

∫=
b

a
ttJ d)(2ε    (4.12) 

reaches a minimum value. The solution can then be obtained by solving the 

group equation 
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4.3.3 Evaluation of the transmissibility 

 

Rewrite Eqs.(4.4) and (4.5) in a dimensionless format as follows: 

( ) )sin()(sign)()()()( 2
1 τττξτξττ ΩΩ=⋅+++ +na

a fffff   for DVIS (4.14) 

( ) )sin()(sign)()()()( 1 τττξτξττ ΩΩ=⋅+++ na
a ggggg     for FVIS (4.15) 

where t0Ω=τ , MK=Ω0 , 0ΩΩ=Ω , )()()( τττ xyf −= , 
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00in

+ΩΩ= nMHKxx ττ , )()()( 2
00out

+ΩΩ= nMHKxy ττ , 

)()()( 00
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For the convenience of analysis, rewrite Eqs.(4.14) and (4.15) uniformly as 

follows 

( ) )sin()(sign)()()()( 1 τττξτξττ ΩΩ=⋅+++ ma
a eeeee         (4.16) 

where )()( ττ fe = , 2+= nm  for DVIS,  and )()( ττ ge = , nm =  for FVIS. 

 

A Ritz-Galerkin method based procedure for determining the transmissibility of 

nonlinear vibration systems can be summarized as follows: 

(i) Choose an approximate solution to the system nonlinear differential 

equation description as given in Eq.(4.11). 

(ii) Substitute the approximate solution into Eq.(4.10) to obtain an explicit 

analytical expression for the approximating error. 

(iii) Determine the parameters ic  and ia , ni ,,1= , in the approximate 

solution by solving group Eq.(4.13). 

(iv) Evaluate the transmissibility of the nonlinear vibration system using the 

obtained approximate solution. 

 

The transmissibility of the SDOF DVIS and FIVS that can be determined using 

the above procedure for systems (4.16) is summarized in the following 

proposition: 

 

Proposition 1.  For the SDOF DVIS and FVIS with a nonlinear viscous 

damping device which can uniformly be described by the dimensionless 

Eq.(4.16), the force and displacement transmissibility as defined in Section 4.3.1 

can be evaluated as 

mmm xyxDD ΩΩ+Ω+Ω=Ω +2422 2)(  for DVIS        (4.17) 

( )mKxFD Ω=Ω)(                    for FVIS        (4.18) 

mmm xyxFF ΩΩ+Ω+Ω=Ω +2422 2)(   for FVIS        (4.19) 

where x  and y  are the solutions to the following equations: 
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when 1≥a  or 
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when 10 <≤ a  where ∫⋅=
2

0
cos4)(

π

π
xdxaJ a . 

 

Proof of Proposition 1: 

For Eq.(4.16), define the approximate solution as: 

)sin()(ˆ βττ +Ω= Ae , 0>A                                     (4.22) 

to describe the transmissibility of the dimensionless system as 
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( )mKAFD Ω=Ω)(                                             (4.24) 
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where the sign  represents the vibration amplitude. 

 

Consequently, the approximating error due to )()(ˆ ττ ee ≠  can be obtained as 
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Define an auxiliary function 

( ))cos(sign)cos(),,( βτβτβτ +Ω⋅+Ω=Ω
a

aE         (4.27) 

to rewrite Eq.(4.26) as 
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        (4.28) 

 

The integral error of the approximating solution over an interval ],[ ba  is given 

by  

∫=
b

a
dJ ττε )(2     (4.29) 

 

Then A  and β  in Eq.(4.22) can be determined from the following equations 
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Because a harmonic excitation is considered, choose 0=a  and π2=b , and 

rewrite Eq.(4.30) as 
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After some simplifying manipulations, Eq.(4.31) can further be written as 
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which can be further reduced to 
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where ∫⋅=
2

0
cos4)(

π

π
xdxaJ a . 

 

Define 0>= Ax , βcos=y  and βsin=z . Substituting xA = , y=βcos  

and z=βsin  into Eq.(4.34) yields 
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When 1≥a , Eq.(4.35) becomes 
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When 10 <≤ a , because +∞→⋅=− ∫ −
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aJ a ,  Eq.(4.35) can 

be written as 
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Therefore,  

mmmmmm xyxAADD ΩΩ+Ω+Ω=ΩΩ+Ω+Ω=Ω ++ 24222422 2cos2)( β (4.38) 

( ) ( )mm KxKAFD Ω=Ω=Ω)(                                   (4.39) 

mmmmmm xyxAAFF ΩΩ+Ω+Ω=ΩΩ+Ω+Ω=Ω ++ 24222422 2cos2)( β (4.40) 

where x  and y  can be determined from Eq.(4.36) or Eq.(4.37). Thus 

Proposition 1 is proved. 
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From Proposition 1, the transmissibility of the SDOF vibration systems at any 

frequency of concern can be determined from system time domain model 

parameters. Eqs.(4.20) and (4.21) are both typical transcendental equations 

whose solutions can be found using graphical or numerical methods such as 

Bisection, Newton-Raphson, and Regula Falsi methods. In the present study, the 

“solve” command in the Matlab software is used to find x  and y  from 

Eqs.(4.20) and (4.21). Obviously, the Ritz-Galerkin method based procedure can 

readily be applied to evaluate the system force and/or displacement 

transmissibility so as to facilitate the analysis and design of the effects of 

nonlinear damping characteristic parameters on the performance of the vibration 

systems. 

 

4.3.4 Verification of the transmissibility evaluation 

 

In order to verify the effectiveness of the Ritz-Galerkin based transmissibility 

evaluation method for the DVIS and FVIS given by Proposition 1, comparisons 

were made between the numerically evaluated DVIS and FVIS transmissibility 

and the results analytically determined from Proposition 1 for the cases where 

kg10=M , N/m4000=K , 0=n , linear damping coefficient Ns/m201 =C  

( 1.01 =ξ ) and the viscous damping characteristic parameters a  and aC  are 

chosen over a range of values. The results are shown in Figs.4.3 and 4.4, for the 

transmissibility of DVIS and FVIS, respectively. 
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Fig.4.3 Comparisons between the numerically and analytically evaluated 

displacement transmissibility of a DVIS with a fluid viscous damper 
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Fig.4.4 Comparisons between the numerically and analytically evaluated 

force transmissibility of a FVIS with a fluid viscous damper 
 

These results clearly indicate an excellent agreement between the results 

obtained by the two different techniques, and therefore demonstrate the 

effectiveness of the Ritz-Galerkin method based analytical solutions in 

Proposition 1. 

 

4.3.5 The effects of nonlinear viscous damping on the force and 

displacement transmissibility 

 

In order to study the effects of different linear and nonlinear viscous damping 

characteristic parameters on the force and displacement transmissibility of 

SDOF vibration isolation systems that can be uniformly described by Eq.(4.16), 

the displacement-displacement transmissibility )(ΩDD  in DVIS and 

force-force transmissibility )(ΩFF  in FVIS in the case of 0=n  are 

evaluated using Proposition 1 for different types of fluid viscous dampers over 

the frequency region from 05.0=Ω  to 50=Ω . The results are shown in 

Figs.4.5-4.8. Figs.4.5 and 4.6 show the effects of linear viscous damping 

characteristics on the system displacement and force transmissibility. Figs.4.7 

and 4.8 show the effects of different nonlinear viscous damping characteristics 

on the system transmissibility. In addition, for the harmonic excitations at the 

frequencies of 1=Ω  (the resonance frequency) and 50=Ω  (a higher 
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frequency), the displacement and/or force transmissibility in DVIS and FVIS are 

evaluated under different system damping characteristic parameters and loading 

conditions. These results are shown in Figs.4.9-4.17. 
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Fig.4.5 Effects of linear viscous damping     Fig.4.6 Effects of linear viscous damping 

characteristics on )(ΩDD  in DVIS           characteristics on )(ΩFF  in FVIS 

when 0=n                                when 0=n  

 

The results in Figs.4.5 and 4.6 reveal a dilemma associated with the design of 

linear viscously damped vibration systems: the increase of linear viscous 

damping reduces the system transmissibility at the resonance frequency 1=Ω , 

but increases the system transmissibility over the high frequency region, which 

is detrimental for the system vibration performance. 
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Fig.4.7 Effects of nonlinear viscous damping Fig.4.8 Effects of nonlinear viscous damping 

characteristics on )(ΩDD  in DVIS         characteristics on )(ΩFF  in FVIS 

when 0=n                            when 0=n  

 

It can be observed from Figs.4.7 and 4.8 that the effects of the damping 

coefficient aξ  of different types of nonlinear fluid viscous dampers on the 
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displacement-displacement transmissibility )(ΩDD  in DVIS and force-force 

transmissibility )(ΩFF  in FVIS are different. Comparing with the linear fluid 

viscous damper case, for the displacement vibration isolation in DVIS, a more 

ideal damping effect can be achieved when 1<a , that is, when a 

lower-than-one power damping parameter is used. But, in this case, a viscous 

damping device with its power damping characteristic parameter 1>a  is 

detrimental over higher frequency ranges. However the situations are completely 

different for the force vibration isolation in FVIS. In the FVIS case, a more ideal 

damping effect can be achieved when 1>a , that is, when a higher-than-one 

power damping parameter is used, but a viscous damping device with power 

damping characteristic parameter 1<a  is detrimental over higher frequency 

ranges. By an ideal damping effect performance, we mean in here that the 

damping only reduces the system transmissibility over the range of the system 

resonance frequency without a detrimental effect over other frequencies. 
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Fig.4.9 Effects of nonlinear damping       Fig.4.10 Effects of nonlinear damping 

parameters a  and aξ  on )(ΩDD  in          parameters a  and aξ  on )(ΩFD  in  

       DVIS at 1=Ω  when 0=n           FVIS at 1=Ω  when 0=n  
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Fig.4.11 Effects of nonlinear damping parameters a  and aξ  

on )(ΩFF  in FVIS at 1=Ω  when 0=n  
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Fig.4.12 Effects of nonlinear damping     Fig.4.13 Effects of nonlinear damping  

parameters a  and aξ  on )(ΩFD  in     parameters a  and aξ  on )(ΩFF  in 

FVIS at 1=Ω  when 2=n          FVIS at 1=Ω  when 2=n  

 

From the results in Figs.4.9-4.13, the effects of different types of fluid viscous 

dampers ( 1<a , 1=a  and 1>a ) on the system vibration performance can 

further be observed. Basically, at the system resonance frequency ( 1=Ω ), the 

displacement-displacement transmissibility in DVIS, and the force-force and 

force-displacement transmissibility in FVIS can significantly be reduced by an 

increase in the viscous damping coefficient aξ . The transmissibility can also be 

reduced by an increase in the power damping characteristic parameter a  

provided that 65.0≤aξ . However, over the region of higher frequencies 

(around 50=Ω ), the effects of  aξ  and a  on the system transmissibility are 

much more complicated. These can be observed from Figs.4.14-4.17. It is worth 

pointing out that the effects of additional fluid viscous dampers on the system 

transmissibility between the resonant and higher frequencies are much more 

complicated and not considered in this thesis. Although these analysis results 

depend on the amplitude of the excitation, which is due to the nonlinear system 

characteristics, these results and conclusions have considerable significance and 

provide important guidelines for the analysis and design of nonlinear fluid 

viscous dampers to achieve a desired system vibration performance. 
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Fig.4.14 Effects of nonlinear damping parameters ]1,0(∈a  

and aξ  on )(ΩDD  in DVIS at 50=Ω  when 0=n  

 
Fig.4.15 Effects of nonlinear damping parameters ]3,1[∈a  and aξ  on 

)(ΩDD  in DVIS at 50=Ω  when 0=n  

  
(a) when ]1,0(∈a  and 0=n      (b) when ]3,1[∈a  and 0=n  

  
(c) when ]1,0(∈a  and 2=n      (d) when ]3,1[∈a  and 2=n  

Fig.4.16 Effects of nonlinear damping parameters a  and aξ  on )(ΩFD  in FVIS at 50=Ω  
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(a) when ]1,0(∈a  and 0=n      (b) when ]3,1[∈a  and 0=n  

  
(c) when ]1,0(∈a  and 2=n      (d) when ]3,1[∈a  and 2=n  

Fig.4.17 Effects of nonlinear damping parameters a  and aξ  on )(ΩFF  in FVIS at 50=Ω  

 

The results in Figs.4.14, 4.15, 4.16(a,b) and 4.17(a,b) indicate that: 

• In the case of 0=n , for DVIS, when 1<a , an increase in the viscous 

damping coefficient aξ  almost doesn’t affect the system 

displacement-displacement transmissibility )(ΩDD  at a higher 

frequency ( 50=Ω ).  

• In the case of 0=n , for FVIS, when 1>a , an increase in aξ  has 

almost no effect on the system force-displacement transmissibility 

)(ΩFD  and force-force transmissibility )(ΩFF  at a higher frequency 

( 50=Ω ).  

• In the case of 0=n , for FVIS, a nonlinear fluid viscous damper with 

the power damping characteristic parameter 3.0≤a  can reduce the 

system force-displacement transmissibility )(ΩFD  at a higher 

frequency ( 50=Ω ) but will increase the force-force transmissibility 

)(ΩFF  at the same frequency. 
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Figs.4.18-4.20 provide a much clearer 2-d illustration of these observations. 

From these results, it can be concluded that, over the whole frequency range, a 

nonlinear fluid viscous damper with 3.0≤a  is ideal for both the 

displacement-displacement transmissibility )(ΩDD  of DVIS and the 

force-displacement )(ΩFD  of FVIS in the case of 0=n ; and a nonlinear 

fluid viscous damper with 1>a  is ideal for the force-force transmissibility 

)(ΩFF  of FVIS in the case of 0=n  These results are all consistent with the 

conclusions achieved previously in [43, 47, 50, 177]. 
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Fig.4.18 2-d illustration of effects of nonlinear   Fig.4.19 2-d illustration of effects of nonlinear 

damping parameters a  and aξ  on   damping parameters a  and aξ  on 

)(ΩDD  in DVIS at 50=Ω  when 0=n      )(ΩFD  in FVIS at 50=Ω  when 0=n  
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Fig.4.20 2-d illustration of effects of nonlinear damping parameters 

a  and aξ  on )(ΩFF  in FVIS at 50=Ω  when 0=n  

 

For the case of 2=n  in FVIS, Figs.4.16(c,d) and 4.17(c,d) indicate that: 

• When 3.0≤a , an increase in the viscous damping coefficient aξ  has 

almost no effect on the force-displacement transmissibility )(ΩFD  
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and force-force transmissibility )(ΩFF  at a higher frequency 

( 50=Ω ). 

• When 1>a , an increase in the viscous damping coefficient aξ  will 

reduce the force-displacement transmissibility )(ΩFD  but increase the 

force-force transmissibility )(ΩFF  at a higher frequency ( 50=Ω ). 

Much clearer 2-d illustrations of these observations are shown in Figs.4.21 and 

4.22. These results indicate that the power damping characteristic parameter a  

needs to be properly designed for the case of 2=n  in FVIS to achieve desired 

vibration isolation. This is important for the reduction of vibrations induced by 

high-speed rotating machines such as washing machines and automobile engines 

etc.. 

0.0 0.2 0.4 0.6 0.8 1.0
3.0

3.2

3.4

3.6

3.8

4.0

4.2

 a=0.2
 a=1
 a=2

Fo
rce

-D
isp

lac
em

en
t

Tr
an

sm
iss

ibi
lity

ξa

x10-4/K

 
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 a=0.2
 a=1
 a=2

Fo
rce

-F
or

ce
 Tr

an
sm

iss
ibi

lity

ξa  
Fig.4.21 2-d illustration of effects of nonlinear   Fig.4.22 2-d illustration of effects of nonlinear 

damping parameters a  and aξ  on )(ΩFD   damping parameters a  and aξ  on )(ΩFF  

in FVIS at 50=Ω  when 2=n    in FVIS at 50=Ω  when 2=n  

 

4.4 Design of nonlinear viscous damping parameters 

 

Based on Proposition 1, a design procedure for nonlinear damping 

characteristic parameters in the SDOF DVIS and FVIS can be proposed as 

follows. 

(i)  Choose the range of the power damping characteristic parameter a  to 

avoid obvious force or displacement transmissibility change over the 

range of higher frequencies according to the analysis in Section 4.3.5. 
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(ii)  Rewrite the system equation in the dimensionless format as given in 

Eq.(4.16) and evaluate the effects of the damping characteristic 

parameters a  and aξ  on the system force and/or displacement 

transmissibility over the resonant and higher frequency regions using 

Proposition 1. 

(iii) Find the appropriate values for the damping characteristic parameters 

a  and aξ  from the results in Step (ii) such that a design requirement 

for the system performance over both resonant and higher frequency 

regions can be met. 

 

Two examples are provided below to demonstrate the practical applications and 

effectiveness of the above design procedure. 

 

Example 1: 

Consider a SDOF DVIS as shown in Fig.4.1, where kg10=M , 

N/m4000=K , 1.01 =ξ , the system resonant frequency 

rad/s200 == MKω . Without a nonlinear viscous damping device in the 

system, the displacement-displacement transmissibility at the resonant 

frequency ( 1=Ω ) and a higher frequency ( 50=Ω ) can be evaluated as 

05.10)1( =DD  and 31004.2)50( −×=DD , respectively. Consider the vibration 

isolation effects that can be achieved by additional fluid viscous dampers by 

numerical simulations, the design objective is defined as 3)1()1( * ≤= DDDD  

and 3* 104)50()50( −×≤= DDDD . This design objective can reduce the 

displacement-displacement transmissibility at the resonant frequency without 

significant increase at the higher frequency. Then a nonlinear fluid viscous 

damper can be designed as follows. 

 

Following the design procedure, first, determine the range of the power damping 
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characteristic parameter a  as 1<a  because the displacement-displacement 

transmissibility of DVIS is to be suppressed in this case. Second, solve Eq.(4.21) 

to evaluate the system displacement-displacement transmissibility at 1=Ω  and 

50=Ω  over a range of the damping characteristic parameters a  and aξ  

such that [ ]1,1.0∈a  and [ ]1,0∈aξ  with 1.01 =ξ . The results are shown in 

Figs.4.23 and 4.24. 

  
Fig.4.23 The effects of damping characteristic  Fig.4.24 The effects of damping characteristic 

parameters a  and aξ  on )(ΩDD  at the      parameters a  and aξ  on )(ΩDD  at a 

resonance frequency 1Ω =  in Example 1       higher frequency 50Ω =  in Example 1 

 

From the results in Figs.4.23 and 4.24, the appropriate values of a  and aξ  

which satisfy the design requirements 3)1(* ≤DD  and 3* 104)50( −×≤DD  

can be found. The results are shown in Fig.4.25. Consequently, 4.0=a  and 

5.0=aξ  are determined as the final design. The system transmissibility under 

this design is 3.2)1( =DD  and 3101.3)50( −×=DD , which clearly satisfies the 

design requirements. A comparison of the displacement-displacement 

transmissibility of the system with and without the designed nonlinear fluid 

viscous damper is shown in Fig.4.26. Notice that when a linear fluid viscous 

damper is used to achieve the same design requirement of 3.2)1( =DD , 1=a , 

the linear damping coefficient should be designed as 0.483=aξ  using 

Proposition 1. In this case, the system transmissibility at the higher frequency 

of 50Ω =  is 31067.9)50( −×=DD , which is clearly larger than the 

transmissibility value that can be achieved by the nonlinear fluid viscous damper 
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designed above. 

 
Fig.4.25 a  and aξ  which satisfy the design requirements in the case of Example 1 
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Fig.4.26 A comparison of )(ΩDD  of the systems with and without 

a designed nonlinear fluid viscous damper in the case of Example 1 

 

Example 2: 

Consider the SDOF engine vibration suspension system in [179] and replace the 

semi-active control device with a nonlinear fluid viscous damper in this case 

study. The engine vibration suspension system can obviously be described by 

the SDOF FVIS model in Fig.4.2. The system equation can be written as: 

( ) )sin()(sign)()()()( 2
e1 trmtxtxCtxCtKxtxM a

a ωω=⋅+++       (4.41) 

where kg50=M  is the mass of the engine and platform, N/m83300=K  is 

the equivalent spring stiffness, Ns/m2041 =C  ( 1.01 =ξ ) is the linear damping 

coefficient associated with the spring, kg1e =m  is the eccentric mass of the 

engine, m05.0=r  is the eccentric radius. Without a nonlinear viscous 

damping device, the force-displacement and force-force transmissibility of the 

system at the resonance frequency ( 1=Ω ) and a higher frequency ( 50=Ω ) are 

KFD /10)1( = , KFD /100016.4)50( 4−×= , 05.10)1( =FF  and 
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31004.2)50( −×=FF  respectively. A nonlinear fluid viscous damper is designed 

for the system in order to achieve a desired vibration performance in terms of 

the suppression of both displacement and force vibrations. Consider the 

vibration isolation effects that can be achieved by additional fluid viscous 

dampers by numerical simulations, the design objectives are specified as 

KFD /4)1(* ≤ , KFD /101.4)50( 4* −×≤ , 4)1(* ≤FF  and 3* 106.2)50( −×≤FF  

 

Firstly, from the analysis results for the case of 2=n  in FVIS, it is known that 

when both the force-displacement and force-force transmissibility is to be 

considered, the range of power damping characteristic parameter a  that should 

be used is 3.0≤a . This range of a  can avoid a significant increase of the 

displacement and force vibration amplitude over higher frequencies. Secondly, 

solve Eq.(4.21) to evaluate the force-displacement and force-force 

transmissibility at 1=Ω  and 50=Ω  over a range of the damping 

characteristic parameters a  and aξ  such that [ ]3.0,05.0∈a  and [ ]1,1.0∈aξ  

with 1.01 =ξ . The results are shown in Figs.4.27 to 4.30. 

  
Fig.4.27 The effects of damping characteristic   Fig.4.28 The effects of damping characteristic 

parameters a  and aξ  on )(ΩFD  at the  parameters a  and aξ  on )(ΩFD  at a higher 

resonance frequency 1=Ω  in Example 2    frequency 50=Ω  in Example 2 
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Fig.4.29 The effects of damping characteristic    Fig.4.30 The effects of damping characteristic 

parameters a  and aξ  on )(ΩFF  at the     parameters a  and aξ  on )(ΩFF  at a 

resonance frequency 1Ω =  in Example 2     higher frequency 50Ω =  in Example 2 

 

From the evaluation results, it can be found that a smaller a  makes less effect 

on the force-force transmissibility at the higher frequency 50=Ω . Consider to 

meet the design objectives for both the force-displacement and force-force 

transmissibility, 2.0=a  and 4.0=aξ  are eventually chosen as the final 

design. 

 

The system transmissibility under this design is KFD /6.3)1( = , 

KFD /104)50( 4−×= , 8.3)1( =FF  and 3105.2)50( −×=FF . A comparison of 

the force-displacement and force-force transmissibility of the systems with and 

without the designed nonlinear fluid viscous damper is shown in Figs.4.31 and 

4.32, respectively. 
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Fig.4.31 Comparison of )(ΩFD  of the      Fig.4.32 Comparison of )(ΩFF  of the 

systems with and without a designed nonlinear  systems with and without a designed nonlinear 

fluid viscous damper in Example 2      fluid viscous damper in Example 2 
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When a linear fluid viscous damper is used to achieve the same design 

requirement of 8.3)1( =FF . It is known that 1=a  and the linear damping 

coefficient can be determined as 0.173=aξ . In this case, the other system 

transmissibility results are KFD /66.3)1( = , KFD /104)50( 4−×= , 

31048.5)50( −×=FF  indicating that the overall performance of the system is 

obviously worse than what can be achieved by the above designed nonlinear 

fluid viscous damper. 

 

Figs.4.26, 4.31 and 4.32 and the comparisons between the overall performances 

that can be achieved by a nonlinear damper design and an equivalent linear 

damper design clearly show that an appropriately designed nonlinear fluid 

viscous damper can reduce the system transmissibility around the resonant 

frequency without a significant increase in the transmissibility over the higher 

frequency region. Therefore, the three step design procedure proposed in this 

chapter can be applied to effectively achieve such desired design objectives. 

 

4.5 Conclusions 

 

In this chapter, the force and displacement transmissibility of nonlinear fluid 

viscous damper based SDOF vibration systems have been studied using the 

Ritz-Galerkin method. General harmonic loading conditions have been 

considered such that the loading amplitude is proportional to the driving 

frequency raised to an arbitrary power. This covers a range of practical loading 

conditions. The results reveal that: 

• For SDOF DVIS, when the exponent parameter of the input excitation 

0=n , the power damping characteristic parameter 3.0≤a  is more 

effective for the suppression of the displacement transmissibility at both 

the resonant and higher frequencies; 

• For SDOF FVIS, when 0=n , an ideal damping effect in terms of 
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suppressing the system force transmissibility can be achieved when 

choosing 1>a ;  For the reduction of the displacement vibration, a 

fluid viscous damper with the parameter 3.0≤a  should be used; 

• For SDOF FVIS, when 2=n , 1>a  is more ideal to suppress the 

displacement vibration at both the resonant and higher frequencies; For 

the reduction of the force vibration transmitted to the foundation, a 

fluid viscous damper with the parameter 3.0≤a  should be used. 

 

These conclusions significantly extend the results in previous nonlinear damping 

studies as reported in [43, 47, 50]. Based on these new analyses, a design 

procedure for nonlinear damping characteristic parameters has been proposed, 

which provides an important guideline for the nonlinear fluid viscous damper 

type selection and parameters design in engineering practice. These results have 

significant implications for the analysis and design of vibration control systems 

in a wide range of practical applications. 

 

Although only the SDOF DVIS and FVIS with a viscous damping device are 

considered in this chapter, the principle of the Ritz-Galerkin method based 

evaluation and analysis approach can be applied to the analysis and design of 

more general nonlinearly damped structural systems including automotive 

engine suspension systems, washing machines, civil buildings, and tower 

structures. In order to extend the analysis and design principle to complicated 

structural systems, the issue of more involved computations has to be addressed. 

 

The results in this chapter reveal the potential of nonlinear fluid viscous 

dampers in the system vibration control and demonstrate that nonlinear fluid 

viscous dampers can perform better vibration control effects than linear fluid 

viscous dampers. However, nonlinear damping designs are much more difficult 

for more complicated structural systems in engineering practice where a large 

amount of complicated computations are involved if the technique proposed in 
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this chapter is directly applied. To solve this problem, the relationship between 

the structural system vibration response and characteristic parameters of 

additionally fitted nonlinear dampers will be studied in following chapters when 

the systems are in different loading conditions. Nonlinear frequency analysis 

and design approaches that have recently been developed at Sheffield [24, 43, 47] 

will be applied to conduct the analysis and design for the system vibration 

control purpose.
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Chapter 5 
 

Output Frequency Response Function (OFRF) of 

Viscously Damped Vibration Systems 
 

In this chapter, the Output Frequency Response Function (OFRF) concept is 

applied to the analysis and design of viscously damped vibration systems which 

can be described by an anti-symmetric nonlinear differential equation model. 

The explicit analytical OFRF expression for the relationship between the system 

output frequency response and nonlinear viscous damping parameters is derived. 

The effectiveness of the OFRF representation is verified by numerical 

simulations of a 2DOF force vibration system. Using the OFRF representation, 

the effects of damping characteristic parameters of fluid viscous dampers on the 

transmissibility of viscously damped vibration systems are discussed. Based on 

these results, an OFRF based approach for the fluid viscous dampers design is 

proposed to achieve desired system vibration control performance and the 

effectiveness of this approach is verified by a case study. 

 

5.1 Introduction 

 

The analysis and design of damping devices for linear vibration systems have 

been widely studied in literatures [17, 20, 25, 163] and the results reveal that the 

design criteria and indices can be explicitly related to the linear damping 

characteristic parameters [5]. However, because of the limitations of linear 

damping in the vibration control of engineering systems as introduced in 

Chapter 2, more and more researchers [5, 111, 150] have recognized the 

necessity and feasibility of using nonlinear damping in vibration systems as 

introduced in Chapter 3. These results have proved that properly designed 
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nonlinear damping devices can provide more ideal suppression effects on the 

system vibration responses. Therefore, the analysis and design of characteristic 

parameters of nonlinear damping devices have been a significant problem for 

the system vibration control purpose in recent years [5]. 

 

However, the analysis and design of nonlinearly damped systems are far more 

complicated than that in the linear systems. The frequency domain analysis and 

design approaches of linear systems cannot easily be extended to nonlinear cases 

[24]. Traditional analysis and design approaches for nonlinear systems involve 

complicated computations [103, 151-155]. In order to resolve these problems, 

many analysis and design approaches for nonlinear systems have been proposed 

as introduced in Chapter 3. As a recently proposed frequency analysis approach 

for nonlinear systems by Lang et al. [24, 42, 47, 113, 114], the OFRF concept 

provides an explicit analytical expression for the relationship between the 

system output frequency response and the parameters which define the system 

nonlinearity. Its effectiveness has been verified by both numerical simulations 

and experimental tests [114, 180]. Different from other nonlinear system 

analysis approaches, the OFRF concept shows how the system output frequency 

response can be analytically related to the nonlinear system parameters [24]. 

This can considerably facilitate the design of these parameters to achieve a 

desired system performance. 

 

This chapter focuses on the development of a new OFRF based nonlinear fluid 

viscous damper design approach. For this purpose, the OFRF representation of 

the output frequency response of a class of nonlinear viscously damped 

vibration systems is derived; both the viscous damping coefficient and exponent 

are considered as the system parameters to be designed. The effectiveness of the 

OFRF representation is then verified by numerical simulation studies on a 

SDOF force vibration system. After that, the effects of damping characteristic 

parameters of nonlinear fluid viscous dampers on the transmissibility of 
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nonlinearly damped MDOF Displacement Vibration Isolation System (DVIS) 

and Force Vibration Isolation System (FVIS) are investigated using the OFRF 

based method. Finally, a four-step procedure is proposed based on the OFRF 

concept to facilitate the design of nonlinear damping parameters for a desired 

system vibration performance. These results have significant implications and 

provide an important basis for the analysis and design of nonlinear damping 

characteristic parameters for a wide class of vibration control applications. 

 

5.2 The OFRF of viscously damped vibration systems 

 

5.2.1 Viscously damped vibration systems 

 

Consider the class of nonlinear systems which can be described by a polynomial 

form, anti-symmetric nonlinear differential equation such that 
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where the operator D  is defined by lll ttxtxD d)(d)( = ; M  and L  are the 

maximum degree of nonlinearity in terms of the system output )(ty  and input 

)(tu , and the maximum order of derivative, respectively; The coefficients 

),,;,,( ),,(),,(
1

),(),(
1

lqp
qp

lqpqp
qp

qp
pq ggllc ++  , where ),,( ),(),(

1
qp
qp

qp lll +=  , represents the parameters 

of the system, 0),,( ≥lqp
ig  and 0),,( ≥lqp

jg  are the exponents of )(
),(

tyD
qp

il  

and )(
),(

tuD
qp

jl , respectively. Note that an different ),( qp  and an associated 

),,( ),(),(
1

qp
qp

qp lll +=   identify a differential term in Eq.(5.1). When 

1,0,1 1 === lqp  or 1,1,0 )1,0(
1 === lqp , for example, the general term in 

Eq.(5.1) becomes 
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( ))(sign)();1( 11)1,0,1(
10,1

)1,0,1(
1 tyDtyDgc

g
⋅⋅         (5.2) 

or 

( ))(sign)();1( 11)1,1,0(
11,0

)1,1,0(
1 tuDtuDgc

g
⋅⋅                 (5.3) 

 

Clearly, Eqs.(5.2) or (5.3) can represent the damping force 

D sign( )a
a r rF C u u=          (5.4) 

produced by a viscous damping device, where aC  and a  are the viscous 

damping coefficient and exponent, respectively. ru  is the relative velocity 

between the two ends of the damping device [46, 65, 103]. In these cases, 

Eq.(5.1) can be used to represent vibration systems with nonlinear viscous 

damping devices that have been widely used in practical engineering systems [5, 

9, 12]. 

 

For example, two widely used mechanical systems with nonlinear fluid viscous 

dampers can be represented by 

)()()()()( 3
31 tutyctyctkytym =+++                      (5.5) 

and 

( ) )()(sign)()()()( 5.0
5.01 tutytyctyctkytym =⋅+++           (5.6) 

Obviously, Eq.(5.5) is a specific case of Eq.(5.1) where 1)1;0(1,0 −=c , 

mc =)1;2(0,1 , kc =)1;0(0,1 , 10,1 )1;1( cc = , 30,1 )3;1( cc = , else 0)( =⋅pqc . Eq.(5.6) is 

another specific case of (5.1) where 1)1;0(1,0 −=c , mc =)1;2(0,1 , kc =)1;0(0,1 , 

10,1 )1;1( cc = , 5.00,1 )5.0;1( cc = ,  else 0)( =⋅pqc . 

 

In the system presented by Eq.(5.5), the nonlinear fluid viscous damper has a 

higher-than-one exponent ( 13 >=a ) which can produce a larger damping force 

( )(3
3 tyc  ) to control the system vibration when )(ty  is significant (higher 

vibration velocity). This kind of viscous damping devices has been widely used 
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in high-speed rotating machines such as washing machines and automobile 

engines etc. [5, 178]. In the system presented by Eq.(5.6), the nonlinear fluid 

viscous damper has a lower-than-one exponent ( 15.0 <=a ) which can produce 

a larger damping force ( ( ))(sign)( 5.0
5.0 tytyc  ) to control the system vibration 

when )(ty  is less significant (lower vibration velocity). This kind of viscous 

damping devices has been widely used in the seismic protection of civil 

structures and in low-speed machines [46, 65, 87]. 

 

5.2.2 The OFRF representation of nonlinear viscously damped 

vibration systems 

 

In order to apply the OFRF concept to the analysis and design of nonlinear 

viscously damped vibration systems that can generally be described by Eq.(5.1), 

the OFRF expression for the relationship between the system output frequency 

response and nonlinear damping characteristic parameters should be firstly 

derived. 

 

When ),,( lqp
ig  and ),,( lqp

jg  in Eq.(5.1) are all fixed, the general term 
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where M̂  and L̂  are the maximum degree of nonlinearity in terms of )(ty  

and )(tu  (or the derivatives of )(ty  and )(tu ) and the maximum order of 

derivative in the Weierstrass approximation expression. ),,(ˆ ),(),(
1

qp
qp

qp
pq llc +  are 

the coefficients of the approximating polynomial. 

 

Therefore, the anti-symmetric differential equation (5.1) can be arbitrarily well 

approximated by a NDE model such that 
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where the parameter ),,(~ ),(),(
1

qp
qp

qp
pq llc +  is proportionally related to the 

coefficient ),,;,,( ),,(),,(
1

),(),(
1

lqp
qp

lqpqp
qp

qp
pq ggllc ++  . M~  and L~  are the maximum 

degree of nonlinearity in terms of )(ty  and )(tu  (or the derivatives of )(ty  

and )(tu ) and the maximum order of derivative in the NDE model. 

 

Based on the OFRF concept for NDE models as introduced in Chapter 3, when 

the coefficients in Eq.(5.1) are all fixed apart from 

),,;,,( *)*,*,(
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lqp
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qp ggllc ++= ξ  with 1** ≥+ qp  and 

),,( *)*,(
**

*)*,(
1

* qp
qp

qp lll +=  ,  the system output frequency response )( ωjY  to a 

general input can be expressed as 

)()()()()( ˆ
ˆ

2
2

10 ωξωξωξωω jPjPjPjPjY N
N++++=      (5.9) 
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where N̂  depends on the highest order used for the Volterra series 

representation of the system output. )( ωjPi , Ni ˆ,,1,0 = , are the functions 

of the system input spectrum, the frequency ω  of interest and depend on all the 

system parameters apart from ξ . 

 

Now consider the case where all system parameters in Eq (5.1) are fixed apart 

from  1* =p , 0* =q , 1)0,1(
1 =l  and sg =)1,0,1(

1 , 0);1( )1,0,1(
10,1 ≠gc . In this case, 

Eq.(5.1) can be rearranged as 
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Taking the absolute value and then logarithm on both sides of Eq.(5.11) yields 
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Because the terms on both sides of Eq (5.12) are continuous functions, they can 

both be approximated arbitrarily well by a finite order polynomial function with 

coefficients proportional to sg =)1,0,1(
1 . Therefore, based on the OFRF concept, 

the system output frequency response )( ωjY  to a general input can, in this 
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case, be expressed as 

)()()()()( **
2

2*
1

*
0 ωωωωω jPsjPsjsPjPjY N

N




++++=   (5.13) 

where N


 depends on the highest order used for the Volterra series 

representation of the system output. )(* ωjPj , Nj


,,1,0= , are the functions 

of the system input spectrum, the frequency ω  of interest and depend on all the 

system parameters apart from sg =)1,0,1(
1 . Similarly, the OFRF representation 

for the system output frequency response in terms of viscous damping exponent 

sg =)1,1,0(
1 , when 0* =p , 1* =q  and 1)1,0(

1 =l , can be derived. 

 

Consider a nonlinear viscously damped vibration system with the damping 

characteristic described by Eq.(5.4). Denote sa =  and  ξ=aC . Based on the 

OFRF representations of Eqs.(5.9) and (5.13), the system output frequency 

responses for Ns


,,1,0=  can be expressed as 
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Then Eq.(5.14) can be rewritten as 
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Note that )(, ωjP nm  in Eq.(5.16), where Nm


,,1,0=  and Nn ˆ,,1,0 = , 

are the functions of the system input spectrum, the frequency of interest ω  

and all the system parameters apart from the viscous damping coefficient ξ  

and exponent s . 

 

Substituting Eq.(5.16) into Eq.(5.13) yields 
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  (5.17) 

 

Eq (5.17) is the OFRF representation of nonlinear viscously damped vibration 

systems with both the nonlinear viscous damping coefficient and exponent 

being taken into account. The result reveals that there exists a simple 

polynomial relationship between the system output frequency response and 

nonlinear viscous damping coefficient ξ  and exponent s , which obviously 

has significant implication for the analysis and design of the effects of 

nonlinear damping characteristic parameters on the vibration system 

performance. 

 

5.2.3 Determination of the OFRF 

 

In order to apply the OFRF representation Eq.(5.17) in the system analysis and 
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design, )(, ωjP qp  in the equation has to be determined. Following the idea 

proposed in [24], this can be achieved using the system simulation or 

experimental data as follows. 

 

Denote 1NN =


 and 2
ˆ NN = , then Eq (5.17) can be written as  

∑∑
= =

=
1 2

0 0
, )()(

N

p

N

q

qp
qp sjPjY ξωω        (5.18) 

 

Denote )( ωψ ji , mi ,,2,1 = , as the output frequency responses of the 

system under m  different combinations of the viscous damping coefficient 

ξ  and exponent s  represented by misii ,...,1},,{ =ξ . 

 

It is known from Eq.(5.18) that given )( ωψ ji , iξ  and is , provided that 

)1)(1( 21 ++≥ NNm  and { } { }kkii ss ,, ξξ ≠  when ki ≠ , the coefficients 

)(, ωjP qp , 1,,1,0 Np =  and 2,,1,0 Nq = , can be determined by the least 

square method as 
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One issue that needs to be considered when using this method to determine the 

OFRF expression is how to determine 1N  and 2N . There is no general 

solution to this problem. Generally, larger values of 1N  and 2N  can produce 

more accurate results but the computation will be more complicated and more 

simulation or experimental data are needed. 
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5.2.4 Verification of the OFRF representation 

 

In order to verify the effectiveness of the OFRF representation derived in 

Section 5.2.3 above, consider the SDOF FVIS shown in Fig.5.1 

 
  Fig.5.1 SDOF FVIS 

 

In the SDOF FVIS, a general harmonic force 

)sin()(in tHtf n ΩΩ=   and 0=n      (5.20) 

is applied on the lumped mass. The movement of the lumped mass M  is 

isolated by a spring with stiffness K  and a fluid viscous damper with power 

damping characteristic parameter a  and damping coefficient aC ; 1C  is the 

linear damping coefficient associated with the spring. )(out tf  represents the 

force transmitted to the foundation, which is the system vibration output. The 

fluid viscous damper is a typical viscous damping device which can be 

described by Eq.(5.4). The system dynamic equation can be described by 

( )
( )

1 in

out 1 in

( ) ( ) ( ) ( ) sign ( ) ( )

( ) ( ) ( ) ( ) sign ( ) ( ) ( )

a
a

a
a

Mx t Kx t C x t C x t x t f t

f t Kx t C x t C x t x t f t Mx t

 + + + ⋅ =


= + + ⋅ = −

   

   

   (5.21) 

which can be described in a dimensionless form as 

( ) )sin()(sign)()()()( 1 τττξτξττ Ω=⋅+++ ggggg a
a        (5.22) 

where t0Ω=τ , MK=Ω0 , 0ΩΩ=Ω , )()()( 2
00in ΩΩ= MHKxx ττ , 

HKxg )()( 0Ω= ττ , )()sin()(out τττ gf −Ω=  

MK
C1

1 =ξ , 
( )a

a
a

a
MK

HC 1−

=ξ . 
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As introduced in Chapter 4, the force transmissibility )(ΩFF  of the SDOF 

FVIS under harmonic excitations is defined as the ratio between the amplitude 

of the system output frequency response and the input excitation at the 

frequency of interest Ω  

HjYFF )()( Ω=Ω        (5.23) 

where the system output frequency response )()( out Ω=Ω jFjY  can be 

calculated by the FFT of )(out tf  from the simulation or experimental data. 

Therefore the force transmissibility of the SDOF FVIS can be studied by 

investigating the system output frequency response )( ΩjY . 

 

When the system mass, stiffness, linear damping coefficient and the amplitude 

of harmonic force excitation are given as kg10=M , N/m4000=K , 

N/m501 =C  and N100=H , the force transmissibility of the SDOF FVIS at 

the system resonant frequency ( 1=Ω ) were first evaluated by numerical 

simulations using MATLAB. Then an OFRF based representation of the force 

transmissibility was determined. The OFRF takes the form of a 3rd order 

polynomial as follows 

∑∑
= =

Ω=
3

0

3

0
, )()(

m n

n
a

m
nm CajPjY ω      (5.24) 

where )(, ΩjP nm , 3,2,1,0, =nm , were obtained from 16)13()13( =+⋅+  

numerical simulation studies on the system. In the 16 simulation studies, the 

system was excited by the same harmonic excitation but the system parameters 

aC  and a  took 16 different sets of values as below. 

1,0 11
== aCa ; 4,0 22

== aCa ; 6.1,60 33
== aCa ; 2.3,60 44

== aCa ; 

2,100 55
== aCa ; 8.2,100 66

== aCa ; 1,140 77
== aCa ; 4.2,140 88

== aCa ; 

4,140 99
== aCa ; 2,180 1010

== aCa ; 8.2,180 1111
== aCa ; 6.1,220 1212

== aCa ; 

2.3,220 1313
== aCa ; 1,300 1414

== aCa ; 4.2,300 1515
== aCa ; 4,300 1616

== aCa . 
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The output frequency response )( ωjY  of the system were evaluated from the 

16 numerically simulated system outputs to yield the results )(,),( 161 ΩΩ jYjY   

99.4i400.04)(1 −−=ΩjY ; 99.4i400.04)(2 −−=ΩjY ; 

98.91i194.11)(3 −−=ΩjY ; 96.34i206.44)(4 −−=ΩjY ; 

97.97i166.19)(5 −−=ΩjY ; 96.39i178.48)(6 −−=ΩjY ; 

99.4i105.31)(7 −−=ΩjY ; 96.87i155.41)(8 −−=ΩjY ; 

93.63i176.08)(9 −−=ΩjY ; 97.62i132.58)(10 −−=ΩjY ; 

95.73i151.01)(11 −−=ΩjY ; 98.5i107.43)(12 −−=ΩjY ; 

94.63i149.47)(13 −−=ΩjY ; 99.4i57.19)(14 −−=ΩjY ; 

96.31i119.89)(15 −−=ΩjY ; 92.57i149.92)(16 −−=ΩjY . 

 

From these results, )(, ΩjP nm , 3,2,1,0, =nm  in Eq.(5.24) were obtained by 

the least square method in Eq.(5.19). After this, the force transmissibility of the 

SDOF FVIS in Fig.5.1 at the system resonant frequency ( 1=Ω ) was evaluated 

using the determined system OFRF as 

HCajPHjYFF
m n

n
a

m
nm∑∑

= =

Ω=Ω=Ω
3

0

3

0
, )()()(    (5.25) 

 

Figs 5.2 and 5.3 show the system force transmissibility evaluated from the 

OFRF representation Eq.(5.25) and numerical simulation studies, respectively, 

over the range of damping characteristic parameters [ ]320,0∈aC  and 

[ ]4.4,1∈a  to compare the results evaluated using both conventional numerical 

simulation and the new OFRF based approaches. Note that, in Figs 5.2 and 5.3, 

some values of the damping parameters aC  and a  are outside the range of 

[ ]300,0∈aC  and [ ]4,1∈a  where the OFRF representation Eq.(5.25) was 

determined. This is to demonstrate the performance of the OFRF over a wider 

range of values of the damping characteristic parameters. Fig.5.4 shows the 
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difference between the results that have been obtained by the two methods. 

.   

Fig.5.2 Force transmissibility at the resonant   Fig.5.3 Force transmissibility at the resonant 
frequency of the SDOF FVIS evaluated from   frequency of the SDOF FVIS obtained from 

the OFRF (5.25)                          numerical simulations 
 

 
Fig.5.4 Errors with the force transmissibility determined by the OFRF (5.25) 

 

Clearly, the data curves in Figs.5.2 to 5.4 reveal that the errors from the OFRF 

expression in Eq.(5.25) are less than %5 . These results demonstrate the 

effectiveness of the OFRF concept and its evaluation method described in 

Section 5.2.3. It is worth pointing out that the error with the OFFR 

representation is mainly due to the fact that the OFRF (5.24) only takes a 3rd 

order polynomial function of the nonlinear damping characteristic parameters a  

and aC  to approximate the system output frequency response. Basically, the 

lower order of the OFRF, the less accurate the OFRF representation will be. For 

example, if the OFRF takes a 2nd order polynomial function of a  and aC  to 

approximate the system output frequency response, 221 == NN  in Eq.(5.18). 

The system transmissibility evaluated by the corresponding OFRF and the errors 
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with the OFRF representation are shown in Figs. 5.5 and 5.6 respectively. 

Clearly, the errors with the 2nd order OFRF representation are more significant, 

which raise up to %8 . Generally, higher order polynomial function of OFRF 

can produce more accurate results but the computation will be more complicated 

and more simulation or experimental data are needed. 

  
Fig.5.5 Force transmissibility at the resonant Fig 5.6 Errors with the 2nd order OFRF 

frequency of the SDOF FVIS determined       representation 
by a 2nd order OFRF 

 

5.3 Effects of nonlinear damper location and 

characteristic parameters on the vibration 

transmissibility of MDOF systems 

 

In this section, the OFRF based method will be applied to the analysis of MDOF 

nonlinear viscously damped vibration systems. The objective is to study the 

effects of nonlinear damper location and damping characteristic parameters on 

the system vibration transmissibility under harmonic excitations. 

 

5.3.1 MDOF DVIS and FVIS 
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    Fig.5.7 MDOF DVIS   Fig.5.8 MDOF FVIS   

 

Consider the MDOF DVIS and FVIS as shown in Figs.5.7 and 5.8, respectively. 

The MODOF DVIS can be used to present the mechanical and civil engineering 

system subject to base excitation, such as the earthquake; The MDOF FVIS can 

be used to study the vibrations of civil buildings or towers subject to external 

loading excitations, such as the wind. In the case of MDOF DVIS, the 

foundation moves due to a harmonic displacement excitation 

)sin()()( in0 tHtxtx Ω==        (5.26) 

 

The movement ix  of the lumped mass im , ni ,,2,1 = , are isolated by the 

springs with stiffness ik  and fluid viscous dampers with damping coefficient 

iaiC ,  and exponent ia . 1,iC  are the linear damping coefficients associated with 

the springs. The displacement transmissibility )(ΩiDD  are defined as the 

amplitude ratio between the system displacement vibration frequency response 

)( ΩjYi  at the thi  storey ( )(txi ) and the input excitation amplitude H , that is, 

HjYDD ii )()( Ω=Ω        (5.27) 
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In the case of MDOF FVIS, a harmonic force excitation 

)sin()(in tHtf Ω=           (5.28) 

is imposed on the top lumped mass nm  and the same spring-damper 

mechanisms are used between each storey. The force transmissibility )(ΩFF  

is defined as the amplitude ratio between the frequency response )( ΩjY  of the 

force transmitted to the foundation ( )(out tf ) and the input excitation 

HjYFF )()( Ω=Ω                     (5.29) 

 

Nonlinear viscous damping devices whose damping force DF  can be described 

by 

D , sign( )i

i

a
i a r rF C u u=          (5.30) 

are fitted at each storey to reduce the vibration responses of MDOF DVIS and 

MDOF FVIS under harmonic excitations. In (5.30), 
iaiC ,  and ia  represent the 

viscous damping coefficients and exponent of the fluid viscous damper fitted at 

the thi  storey. 

 

The dynamic equations of MDOF DVIS and FVIS can be described by 

FFKXXCXM N =+++                     (5.31) 

where M , C  and K  are the system mass, linear damping, and stiffness 

matrices given by 
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( )T
21 ,,,X nxxx =  is the system displacement vector, 

( )T
0101,1 0,0,,0,F 

 xkxc +=   for MDOF DVIS         (5.32) 

and 

( )T
in )(,0,,0,0F tf−=       for MDOF FVIS           (5.33) 

NF  is the vector of damping force produced by fitted fluid viscous dampers 

given by 
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The force transmitted to the foundation in MDOF FVIS can be described by 

( ))(sign)()()()( 11,111,111out
1

1
txtxctxctxktf a

a  ⋅⋅++=        (5.34) 

 

When the fitted fluid viscous dampers in the MDOF DVIS and FVIS are all 

linear dampers, these systems are linear systems. The displacement 

transmissibility )(ΩiDD , ni ,,2,1 = , of linear MDOF DVIS can be 

evaluated from the system parameters as 

[ ] [ ]T
21

T
21 )()()()()()( ΩΩΩ=ΩΩΩ nn sssDDDDDD     (5.35) 

where 



CHAPTER 5. OFRF of Viscously Damped Vibration Systems                                              106 

( )
( )

( )
( )

( )




















 +Ω

⋅





























Ω++Ω−−Ω−
−Ω−

−Ω−

−Ω−








Ω++
++Ω−

−Ω−

−Ω−








Ω++
++Ω−

=



















Ω

Ω
Ω

−

0

0
0

0

0

0

00

)(

)(
)( 11

1

2

33

33
32

32
2

2
22

22
21

21
2

1

2

1















kjc

jckmkjc
kjc

kjc

kjc
jcc

kkm
kjc

kjc
jcc

kkm

s

s
s

nnnnn

nn
n

(5.36) 

Similarly, the force transmissibility )(ΩFF  of linear MDOF FVIS can be 

evaluated from the system parameters as 

( ) )()( 111 Ω⋅+Ω=Ω skjcFF        (5.37) 

where 
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(5.38) 

 

5.3.2 Effects of nonlinear damper location and damping 

characteristic parameters on the transmissibility of MDOF DVIS 

and FVIS 

 

Consider n-DOF DVIS and FVIS as shown in Figs.5.7 and 5.8 where 

kg10=im , N/m4000=ik , Ns/m501, =ic , ni ,,2,1 = , m10 3−=H  for 

the n-DOF DVIS and N100=H  for the n-DOF FVIS. Without additionally 

fitted fluid viscous dampers, the DVIS and FVIS systems’ natural frequencies 

can be evaluated [182] as rad/s]36,9.24,9.8[3,2,1 =ω  and the displacement 

transmissibility of n-DOF DVIS and force transmissibility of n-DOF FVIS can 

be evaluated by Eqs.(5.35)-(5.38). The results are shown in Figs.5.9 and 5.10 for 

the cases of 3,2,1=n . 
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  (a)1-DOF DVIS     (b) 2-DOF DVIS      (c) 3-DOF DVIS 

Fig.5.9 Displacement transmissibility of n-DOF DVIS 
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  (a)1-DOF FVIS     (b) 2-DOF FVIS      (c) 3-DOF FVIS 

Fig.5.10 Force transmissibility of n-DOF FVIS 
 

In order to suppress the vibration over a wide frequency region, additional fluid 

viscous dampers are often fitted into the structural systems to achieve a better 

system vibration control performance. 

 

Although the effects of linear fluid viscous dampers on the system 

transmissibility can be evaluated by Eqs.(5.35)-(5.38), the effects of nonlinear 

fluid viscous dampers on the system transmissibility can not be evaluated 

directly. Therefore, the OFRF concept is applied to evaluate the displacement 

transmissibility )(ΩiDD , ni ...,,1=  for the DVIS and the force 

transmissibility )(ΩFF  for the FVIS in the following. 

 

The OFRF representations are first determined for the system output frequency 

response )( ΩjYi  of the n-DOF DVIS, and )( ΩjY  of the n-DOF FVIS , 

respectively. This can be achieved in a way similar to what has been described in  

Section 5.2.4. 

 

To illustrate the process, consider a simple case where the effect of damping 
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characteristic parameters 
2,2 aC  and 2a  of a nonlinear fluid viscous damper on 

the displacement transmissibility )(1 ΩDD  of a 3-DOF DVIS is to be 

investigated. Because, in this case, HjYDD )()( 11 Ω=Ω  as defined in 

Eq.(5.27), the displacement transmissibility can be evaluated from the system 

output frequency response )(1 ΩjY . The OFRF expression of the system output 

frequency response )(1 ΩjY  used in this case takes the form of 

∑∑
= =

Ω=
2

0

2

0
,22,1 2

)()(
m n

n
a

m
nm CajPjY ω            (5.39) 

 

In order to work out )(, ΩjP nm , 3,2,1,0, =nm  to determine the OFRF 

representation (5.39). 9)12()12( =+⋅+  simulation studies were conducted 

where the system was excited by the same harmonic excitation with the 

damping characteristic parameters 
2,2 aC  and 2a  taking 9 different sets of 

values as follows 

5.0,5 1,21,,2 2
== aC a ; 5.0,10 2,22,,2 2

== aC a ; 8.0,50 3,23,,2 2
== aC a ; 

8.0,100 4,24,,2 2
== aC a ; 5.1,5 5,25,,2 2

== aC a ; 5.1,100 6,26,,2 2
== aC a ; 

5.2,3E1 7,27,,2 2
== aC a ; 5.2,3E3 8,28,,2 2

== aC a ; 5.24E1 9,29,,2 2
== aC a ; 

 

The output frequency response )(1 ΩjY  of the system were evaluated from the 

9 simulated system outputs to yield the results )(,),( 9,11,1 ΩΩ jYjY  . Then 

)(, ΩjP nm , 3,2,1,0, =nm  in Eq.(5.39) can be obtained by the least square 

method in Eq.(5.19). 

 

After an OFRF has been determined to represent the analytical relationship 

between the system output frequency response and the characteristic parameters 

of fitted additional dampers, the system displacement and force transmissibility 

)(ΩiDD  and )(ΩFF  can be evaluated using the determined OFRF 
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representations. Figs.5.11 to 5.19 show the results in different cases that were 

obtained using corresponding OFRF representations, where ia , 3,2,1=i , 

represents the damping exponent of additional fluid viscous damper on the thi  

storey and aiiC ,  represents the damping coefficient. From these results, it can 

be found that all types of fluid viscous dampers can suppress the system 

vibration at the system resonant frequencies. However, the effects of different 

types of fluid viscous dampers on the system transmissibility over the higher 

frequency region are more complicated. 
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(a) 12.0 <=ia      (b) 1=ia      (c) 13 >=ia  

Fig.5.11 Effects of damper location and damping characteristic parameters on )(1 ΩDD  of 
1DOF DVIS 
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Fig.5.12 Effects of damper location and damping characteristic parameters on )(ΩFF  of 
1DOF FVIS 

 
It can be observed from Fig.5.11 that, in the case of 1DOF DVIS, a nonlinear 

fluid viscous damper with damping exponent 11 ≥a  will increase the 

displacement transmissibility over the higher frequency region, which is harmful 

and even dangerous for the system safety. In contrast, a nonlinear fluid viscous 

damper with damping exponent 11 <a  can perform more ideal vibration effect 
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on the displacement transmissibility at both the resonant and higher frequencies. 

However, the effects of fluid viscous dampers on the force transmissibility are 

completely different in 1DOF FVIS as shown in Fig.5.12, where a nonlinear 

fluid viscous damper with damping exponent 11 >a  can perform more ideal 

vibration effect on the force transmissibility at both the resonant and higher 

frequencies. These OFRF based evaluation results confirm the conclusions of 

the SDOF DVIS and FVIS reached in the analysis in Chapter 4. 

 

1 10 100 100010-3

10-2

10-1

100

101

D
is

pl
ac

em
en

t
Tr

an
sm

is
si

bi
lit

y 
at

 S
to

re
y1

Ω

 C1,1=C2,1=50
 C1,1=C2,1=50, ai=0.2, C1,a1=5, C2,a2=0
 C1,1=C2,1=50, ai=0.2, C1,a1=0, C2,a2=5

1 10 100 100010-3

10-2

10-1

100

101

D
is

pl
ac

em
en

t
T
ra

ns
m

is
si

bi
lit

y 
at

 S
to

re
y1

Ω

 C1,1=C2,1=50
 C1,1=C2,1=50, ai=1, C1,a1=50, C2,a2=0
 C1,1=C2,1=50, ai=1, C1,a1=0, C2,a2=50

1 10 100 100010-3

10-2

10-1

100

101

D
is

pl
ac

em
en

t
T
ra

ns
m

is
si

bi
lit

y 
at

 S
to

re
y1

Ω

 C1,1=C2,1=50
 C1,1=C2,1=50, ai=3, C1,a1=1E3, C2,a2=0
 C1,1=C2,1=50, ai=3, C1,a1=0, C2,a2=1E6

 
(a) 12.0 <=ia      (b) 1=ia      (c) 13 >=ia  

Fig.5.13 Effects of damper location and damping characteristic parameters on )(1 ΩDD  of 
2DOF DVIS 
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Fig.5.14 Effects of damper location and damping characteristic parameters on )(2 ΩDD  of 
2DOF DVIS 
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(a) 12.0 <=ia      (b) 1=ia      (c) 13 >=ia  

Fig.5.15 Effects of damper location and damping characteristic parameters on )(ΩFF  of 
2DOF FVIS 
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In the case of 2DOF DVIS, the results in Figs. 5.13 and 5.14 reveal that linear 

fluid viscous dampers ( 121 == aa ) installed in Storey1 and Storey2 will 

increase the displacement transmissibility at Storey1 and Storey2 over the higher 

frequency region. Therefore, linear fluid viscous dampers should be avoided to 

use in the systems when the vibrations at higher frequency should be considered 

and isolated. From the results in Figs.5.13 and 5.14, it can be found that an ideal 

approach of fitting fluid viscous dampers in the MDOF system should be to fit a 

nonlinear fluid viscous damper with damping exponent 11 <a  at Storey1 and to 

fit a nonlinear fluid viscous damper with damping exponent 12 >a  at Storey2. 

Such fittings can reduce the displacement transmissibility at Storey 1 and Storey 

2 ( )(1 ΩDD  and )(2 ΩDD )  over the system 1st and 2nd resonant frequencies 

without detrimental effects on the transmissibility over the higher frequency 

region. 

 

1 10 100 100010-3

10-2

10-1

100

101

D
is

pl
ac

em
en

t
T
ra

ns
m

is
si

bi
lit

y 
at

 S
to

re
y1

Ω

 C1,1=C2,1=C3,1=50

 C1,1=C2,1=C3,1=50, ai=0.2, C1,a1=5, C2,a2=0, C3,a3=5

 C1,1=C2,1=C3,1=50, ai=0.2, C1,a1=0, C2,a2=5, C3,a3=0

 C1,1=C2,1=C3,1=50, ai=0.2, C1,a1=0, C2,a2=0, C3,a3=5

1 10 100 100010-3

10-2

10-1

100

101

D
is

pl
ac

em
en

t
T
ra

ns
m

is
si

bi
lit

y 
at

 S
to

re
y1

Ω

 C1,1=C2,1=C3,1=50

 C1,1=C2,1=C3,1=50, ai=1, C1,a1=100, C2,a2=0, C3,a3=0

 C1,1=C2,1=C3,1=50, ai=1, C1,a1=0, C2,a2=100, C3,a3=0

 C1,1=C2,1=C3,1=50, ai=1, C1,a1=0, C2,a2=0, C3,a3=100

1 10 100 100010-3

10-2

10-1

100

101

D
is

pl
ac

em
en

t
T
ra

ns
m

is
si

bi
lit

y 
at

 S
to

re
y1

Ω

 C1,1=C2,1=C3,1=50

 C1,1=C2,1=C3,1=50, ai=3, C1,a1=500, C2,a2=0, C3,a3=0

 C1,1=C2,1=C3,1=50, ai=3, C1,a1=0, C2,a2=5E4, C3,a3=0

 C1,1=C2,1=C3,1=50, ai=3, C1,a1=0, C2,a2=0, C3,a3=1E9

 
(a) 12.0 <=ia      (b) 1=ia      (c) 13 >=ia  

Fig.5.16 Effects of damper location and damping characteristic parameters on )(1 ΩDD  of 
3DOF DVIS 
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(a) 12.0 <=ia      (b) 1=ia      (c) 13 >=ia  

Fig.5.17 Effects of damper location and damping characteristic parameters on )(2 ΩDD  of 
3DOF DVIS 
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(a) 12.0 <=ia      (b) 1=ia      (c) 13 >=ia  

Fig.5.18 Effects of damper location and damping characteristic parameters on )(3 ΩDD  of 
3DOF DVIS 
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(a) 12.0 <=ia       (b) 1=ia      (c) 13 >=ia  

Fig.5.19 Effects of damper location and damping characteristic parameters on )(ΩFF  of 
3DOF FVIS 

 

In the case of 3DOF DVIS, Figs.5.16 to 5.18 show that, the ideal approach of 

fitting fluid viscous dampers in the system should be to fit a nonlinear fluid 

viscous damper with a lower-than-one damping exponent at Storey1 ( 11 <a ) and 

nonlinear fluid viscous dampers with higher-than-one damping exponents at 

Storey 2 and 3 ( 12 >a  and 13 >a  ). Otherwise, the fitted additional fluid 

viscous dampers will increase the system displacement transmissibility 

)(1 ΩDD , )(2 ΩDD  or )(3 ΩDD  over the higher frequency region. For 

examples, a linear fluid viscous damper with damping exponent 11 =a  in 

Storey1 will increase )(1 ΩDD , )(2 ΩDD  and )(3 ΩDD  over higher frequency 

region as shown in Figs. 5.16(b), 5.17(b) and 5.18(b); a nonlinear fluid viscous 

damper with damping exponent 2.02 =a  at Storey2 has little effect on 

)(1 ΩDD  but will obviously increase )(2 ΩDD  and )(3 ΩDD  over higher 

frequency region as shown in Figs. 5.16(a), 5.17(a) and 5.18(a). 
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In the cases of 2DOF and 3DOF FVIS, from the results in Figs.5.15 and 5.19, it 

can be observed that fluid viscous dampers in each storey should be designed as 

having the damping exponent 1>ia , 3,2,1=i . This kind of fluid viscous 

dampers design has ideal vibration control effects on the system force 

transmissibility at both the resonant and higher frequencies. More detailed 

effects of installation locations and damping characteristic parameters of fluid 

viscous dampers on the displacement and force transmissibility of 1, 2 and 

3DOF DVIS and FVIS over higher frequency region are listed in Tables.5.1 to 

5.6. 

Table.5.1 Effects of fluid viscous dampers on )(1 ΩDD  of 1DOF DVIS 

Transmissibility 1 0.2a =  1 1a =  1 3a =  

)(1 ΩDD  over higher frequency 0 + + 
 

Table.5.2 Effects of fluid viscous dampers on )(1 ΩDD  and )(2 ΩDD  of 2DOF DVIS 

Transmissibility 1 0.2a =  2 0.2a =  1 1a =  2 1a =  1 3a =  2 3a =  

)(1 ΩDD  over 
higher frequency 

0 0 + 0 + 0 

)(2 ΩDD  over 
higher frequency 

0 + + + + 0 

 
Table.5.3 Effects of fluid viscous dampers on 

)(1 ΩDD , )(2 ΩDD  and )(3 ΩDD  of 3DOF DVIS 

Transmissibility 1 0.2a =  2 0.2a =  3 0.2a =  1 1a =  2 1a =  3 1a =  1 3a =  2 3a =  3 3a =  

)(1 ΩDD  over 
higher frequency 

0 0 0 + 0 0 + 0 0 

)(2 ΩDD  over 
higher frequency 

0 + - + + 0 + 0 0 

)(3 ΩDD  over 
higher frequency 

0 + + + + + + 0 0 

Table.5.4 Effects of fluid viscous dampers on )(ΩFF  of 1DOF FVIS 

Transmissibility 1 0.2a =  1 1a =  1 3a =  

)(ΩFF  over higher frequency + + 0 
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Table.5.5 Effects of fluid viscous dampers on )(ΩFF  of 2DOF FVIS 

Transmissibility 1 0.2a =  2 0.2a =  1 1a =  2 1a =  1 3a =  2 3a =  

)(ΩFF  over 
higher frequency 

+ + + + 0 0 

 
Table.5.6 Effects of fluid viscous dampers on )(ΩFF  of 3DOF FVIS 

Transmissibility 1 0.2a =  2 0.2a =  3 0.2a =  1 1a =  2 1a =  3 1a =  1 3a =  2 3a =  3 3a =  

)(ΩFF  over 
higher frequency 

+ + + + + + 0 0 0 

 

In the tables, 1a , 2a  and 3a  represent the damping exponents of fluid viscous 

dampers installed at Storey1, 2 and 3, respectively. “0” means that the fluid 

viscous damper has little effect on the system transmissibility over the higher 

frequency region, “-” means that the fluid viscous damper will reduce the 

system transmissibility over the higher frequency region and “+” means that the 

fluid viscous damper will increase the system transmissibility over the higher 

frequency region. For example, when )(1 ΩDD , )(2 ΩDD  and )(3 ΩDD  of 

3DOF DVIS should be reduced at both the resonant and higher frequencies in 

the vibration isolation design, the type selection of additional fluid viscous 

dampers should be 1 0.2a = , 2 3a =  and 2 3a =  as shown in Table.5.3; When 

)(1 ΩDD  and )(2 ΩDD  of 2DOF DVIS should be reduced at both the resonant 

and higher frequencies, the type selection of additional fluid viscous dampers 

should be 1 0.2a =  and 2 3a =  as shown in Table.5.2. 

 

The above studies reveal how the nonlinear damping characteristic parameters 

affect the displacement and force transmissibility of MDOF systems over a wide 

frequency range. These results provide an important basis for the selection of the 

type of nonlinear dampers and the design of damping characteristic parameters 

in MDOF structural systems for different vibration control purposes. 
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5.4 Damping parameters design using the OFRF 

approach 

Using the OFRF based evaluation method described in Eqs.(5.18) and (5.19), a 

procedure for the fluid viscous dampers design for the MDOF DVIS and FVIS 

can be proposed as follows. 

(i)  Choose appropriate fluid viscous damper type (damping exponent a ) to 

avoid obvious change of the system displacement or force transmissibility 

over the higher frequency region according to the vibration control 

requirement and the analysis in Section 5.3. 

(ii) Define an OFRF expression Eq.(5.18) according to the damping 

characteristic parameters to be designed. 

(iii) Obtain the system output frequency responses by numerical simulations or 

experimental tests with different viscous damping parameters and determine 

the )(, ωjP qp  in Eq.(5.18) using the least square method in Eq.(5.19). 

(iv) Find the desired damping characteristic parameters from the determined 

OFRF expression (5.18) to achieve a desired system vibration control 

performance. 

 

An example is provided below to demonstrate the application and effectiveness 

of the above fluid viscous dampers design procedure. 

 
Fig.5.20 A 2DOF DVIS 

 

Consider a 2DOF DVIS as shown in Fig.5.20, where the lumped masses are 
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kg1021 == mm , linear springs’ stiffness coefficients are N/m400021 == kk , 

linear damping coefficients associated with the springs are Ns/m201,21,1 == cc , 

the amplitude of harmonic displacement excitation is m10 3−=H . Without 

additionally fitted viscous damping devices in this vibration system, the 

displacement transmissibility )(1 ΩDD  and )(2 ΩDD  at Storey1 and Storey2 

over the frequency region rad/s]1000,1[∈Ω  can be evaluated by Eqs.(5.35) 

and (5.36). The results are shown in Fig.5.21. 
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Fig.5.21 )(1 ΩDD  and )(2 ΩDD  of 2DOF without fluid viscous damper 

 

This system’s 1st and 2nd resonant frequencies are rad/s36.121 =Ω  and 

rad/s36.322 =Ω . The displacement transmissibility at these two resonant 

frequencies and a higher frequency rad/s10003 =Ω  are 11.7583)( 11 =ΩDD , 

1.7384)( 21 =ΩDD , 3-2.04E)( 31 =ΩDD , 18.967)( 12 =ΩDD , 

1.083)( 22 =ΩDD  and 6-4.165E)( 32 =ΩDD , respectively. In order to reduce 

the displacement transmissibility at the resonant frequencies 1Ω  and 2Ω  

without significant increase at the higher frequency 3Ω  and consider the 

vibration isolation effects that can be achieved by additional fluid viscous 

dampers by numerical simulations, the design objective is defined as 

7)( 1
*
1 ≤ΩDD , 3.1)( 2

*
1 ≤ΩDD , 3E5.2)( 3

*
1 −≤ΩDD , 12)( 1

*
2 ≤ΩDD ,

9.0)( 2
*
2 ≤ΩDD  and 6E5.5)( 3

*
2 −≤ΩDD , a nonlinear fluid viscous damper 

with the damping characteristic parameters 1a  and 
1,1 aC  at Storey1 can be 

designed as follows. 
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Following the design procedure, firstly, determine the range of the damping 

characteristic parameter 1a  as 11 <a  because the displacement 

transmissibility of 2DOF DVIS is to be suppressed and the nonlinear fluid 

viscous damper is fitted at Storey1 in this case. Second, define the OFRF 

expressions of the system output frequency responses )(1 ΩjY  and )(2 ΩjY  at 

Storey1 and Storey2 as 

∑∑
= =

⋅Ω=Ω
2

0

2

0
,11,1 1

)()(
p q

q
a

p
qp CajPjY         (5.40) 

and 

∑∑
= =

⋅Ω=Ω
2

0

2

0
,11,2 1

)()(
p q

q
a

p
qp CajQY        (5.41) 

respectively. The displacement transmissibility )(1 ΩDD  and )(2 ΩDD  at 

Storey1 and Storey2 can be described by 

HjYDD )()( 11 Ω=Ω       (5.42) 

and 

HjYDD )()( 22 Ω=Ω       (5.43) 

 

Using the Runge-Kutta integration method in MATLAB program, the system 

output frequency responses )(1 ΩjY  and )(2 ΩjY  and the corresponding 

displacement transmissibility )(1 ΩDD  and )(2 ΩDD  over the frequencies of 

1Ω , 2Ω , and 3Ω  were evaluated. The results are shown in Table.5.7 and 5.8, 

respectively. 

Table.5.7 Output frequency responses )(1 ΩjY  and )(2 ΩjY  of 2DOF DVIS under different 

damping characteristic parameters over three different frequencies 

 )( 11 ΩjY  )( 21 ΩjY  )( 31 ΩjY  )( 12 ΩjY  )( 22 ΩjY  )( 32 ΩjY  

2.01 =a  
1

1,1 =aC  
-0.0094- 
0.001i 

-0.0015- 
0.0003i 

-2.122E-6 
+3.881E-7i 

-0.0152
-0.001i 

8.452E-4 
+4.116E-4i 

1.663E-9 
+4.062E-9i 

2.01 =a  
3

1,1 =aC  
-0.0055- 
0.0008i 

-0.001- 
0.0005i 

-2.364E-6 
+3.883E-7i 

-0.009- 
0.001i 

5.338E-4 
+4.786E-4i 

1.743E-9 
+4.545E-9i 
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2.01 =a  
5

1,1 =aC  
-0.0028- 
0.0007i 

-6.486E-4
-6.94E-4i 

-2.604E-6 
+3.848E-7i 

-0.0046
-0.001i 

2.787E-4 
+5.211E-4i 

1.83E-9 
+5.025E-9i 

4.01 =a  
1

1,1 =aC  
-0.0102- 
0.001i 

-0.0016- 
0.0002i 

-2.117E-6 
+3.875E-7i 

-0.0166
-0.001i 

9.243E-4 
+3.922E-4i 

1.655E-9 
+4.051E-9i 

4.01 =a  
3

1,1 =aC  
-0.0078- 
0.0009i 

-0.0014- 
0.0004i 

-2.345E-6 
+3.837E-7i 

-0.0126
-0.001i 

7.544E-4 
+4.338E-4i 

1.736E-9 
+4.51E-9i 

4.01 =a  
5

1,1 =aC  
-0.0059- 
0.0009i 

-0.0011- 
0.0005i 

-2.574E-6 
+3.854E-7i 

-0.0095
-0.0011i 

6.075E-4 
+4.664E-4i 

1.824E-9 
+4.967E-9i 

6.01 =a  
1

1,1 =aC  
-0.0108- 
0.001i 

-0.0017- 
0.0002i 

-2.112E-6 
+3.894E-7i 

-0.0174
-0.001i 

9.666E-4 
+3.811E-4i 

1.652E-9 
+4.037E-9i 

6.01 =a  
3

1,1 =aC  
-0.0091- 
0.001i 

-0.0015- 
0.0003i 

-2.328E-6 
+3.835E-7i 

-0.0148
-0.001i 

8.71E-4 
+4.059E-4i 

1.728E-9 
+4.478E-9i 

6.01 =a  
5

1,1 =aC  
-0.0078- 
0.001i 

-0.0014- 
0.0003i 

-2.547E-6 
+3.856E-7i 

-0.0126
-0.0011i 

7.851E-4 
+4.27E-4i 

1.806E-9 
+4.911E-9i 

 

Table.5.8 Displacement transmissibility of 2DOF DVIS under different damping characteristic 
parameters over three different frequencies 

 )( 11 ΩDD  )( 21 ΩDD  )( 31 ΩDD  )( 12 ΩDD  )( 22 ΩDD  )( 32 ΩDD  

2.01 =a  
1

1,1 =aC  
9.47 1.5103 0.0022 15.275 0.9401 4.39E-6 

2.01 =a  
3

1,1 =aC  
5.602 1.1523 0.0024 9.0362 0.7169 4.868E-6 

2.01 =a  
5

1,1 =aC  
2.8999 0.9499 0.0026 4.6779 0.5909 5.348E-6 

4.01 =a  
1

1,1 =aC  
10.2972 1.6127 0.0022 16.6093 1.0041 4.376E-6 

4.01 =a  
3

1,1 =aC  
7.8382 1.3983 0.0024 12.6431 0.8703 4.832E-6 

4.01 =a  
5

1,1 =aC  
5.9343 1.2310 0.0026 9.5723 0.7659 5.291E-6 

6.01 =a  
1

1,1 =aC  
10.8090 1.6686 0.0021 17.4348 1.0390 4.362E-6 

6.01 =a  
3

1,1 =aC  
9.1809 1.5436 0.0024 14.8089 0.9609 4.8E-6 

6.01 =a  
5

1,1 =aC  
7.8539 1.4360 0.0026 12.6685 0.8937 5.232E-6 
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Using the method described in Section 5.2.3, )(, ΩjP qp  and )(, ΩjQ qp  in the 

OFRF expressions (5.40) and (5.41) at the frequencies of 1Ω , 2Ω  and 3Ω  

can be determined from the system output frequency responses )(1 ΩjY  and 

)(2 ΩjY  in Table.5.7. Consequently, the system displacement transmissibility 

)(1 ΩDD  and )(2 ΩDD  at 1Ω , 2Ω  and 3Ω  and over the range of the 

nonlinear damping parameters ]6.0,2.0[1 ∈a  and ]5,1[1 ∈aC  can be 

calculated by 

HCajPDD
p q

q
a

p
qp∑∑

= =

⋅Ω=Ω
2

0

2

0
,11,1 1

)()( , ]6.0,2.0[1 ∈a  and ]5,1[1 ∈aC  (5.44) 

and 

HCajQDD
p q

q
a

p
qp∑∑

= =

⋅Ω=Ω
2

0

2

0
,11,2 1

)()( , ]6.0,2.0[1 ∈a  and ]5,1[1 ∈aC  (5.45) 

 

Consider a design requirement in terms of the system displacement 

transmissibility )(1 ΩDD  and )(2 ΩDD  at frequencies of 1Ω , 2Ω  and 3Ω  

such that 

7)( 1
*
1 ≤ΩDD 3.1)( 2

*
1 ≤ΩDD  and 3E5.2)( 3

*
1 −≤ΩDD ; 

12)( 1
*
2 ≤ΩDD , 9.0)( 2

*
2 ≤ΩDD  and 6E5.5)( 3

*
2 −≤ΩDD . 

 

The values of the damping characteristic parameters 1a  and 
1,1 aC  that can 

achieve the design requirement were found out from the results of )(1 ΩDD  and 

)(2 ΩDD  evaluated using Eqs.(5.44) and (5.45) at 1Ω , 2Ω  and 3Ω  and over 

the range of the damping characteristic parameters 

]6.0,2.0[1 ∈a  and ]5,1[1 ∈aC  

The results, which synthetically consider the design requirements on the system 

displacement transmissibility at different frequencies, are as shown by the 

darker area in Fig.5.22. 
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Fig.5.22 Viscous damping parameters 1a  and 

1,1 aC  which satisfy the design requirements 

 

If, for example, 3.01 =a  and 5.3
1,1 =aC  are determined as the final design. 

The system displacement transmissibility )(1 ΩDD  and )(2 ΩDD  at 1Ω , 2Ω  

and 3Ω  under this design are 

6.234)( 11 =ΩDD , 1.2339)( 21 =ΩDD and 3-2.4436E)( 31 =ΩDD ; 

10.0556)( 12 =ΩDD , 7678.0)( 22 =ΩDD  and 6-4.9646E)( 32 =ΩDD  

which clearly satisfies the design requirement. 

 

However, if a nonlinear fluid viscous damper with the parameters outside the 

optimal range in Fig.5.22 is fitted at Storey1, for example, 3.01 =a  and 

5
1,1 =aC , the values of the system displacement transmissibility )(1 ΩDD  and 
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)(2 ΩDD  at the three frequencies become  

4.5937)( 11 =ΩDD , 1.0941)( 21 =ΩDD  and 3E2.6169)( 31 −=ΩDD ; 

7.4099)( 12 =ΩDD , 0.6806)( 22 =ΩDD  and 6E5.3122)( 32 −=ΩDD  

which doesn’t satisfy the requirement of 3E5.2)( 3
*
1 −≤ΩDD . 

 

The comparisons of the displacement transmissibility )(1 ΩDD  and )(2 ΩDD  

of the 2DOF DVIS with and without the designed nonlinear fluid viscous 

damper with 3.01 =a  and 5.3
1,1 =aC  fitted at Storey 1 are shown in Figs.5.23 

and 5.24, respectively. The results clearly indicate that an appropriately designed 

nonlinear fluid viscous damper can reduce the system transmissibility around 

the system resonant frequencies without a significant increase over the higher 

frequency region. 
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Fig.5.23 )(1 ΩDD  of 2DOF DVIS with and   Fig.5.24 )(2 ΩDD  of 2DOF DVIS with and 

without designed fluid viscous damper         without designed fluid viscous damper 
 

It is worth mentioning that, if needed, the slight increase of the system 

transmissibility over the higher frequency region in Figs.5.23 and 5.24 can be 

further reduced by taking a damping exponent less than 0.3. However, in 

practice, the available range of the damping exponent of passive damping 

devices is subject to the constraints determined by the devices' manufacturing 

process [9]. In such cases, semi-active damping devices such as those 

implemented using MR dampers can be used as solutions [114]. 
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5.5 Conclusions 

 

In this chapter, the OFRF concept is applied to the analysis and design of MDOF 

viscously damped vibration systems. The explicit polynomial OFRF expression 

for the relationship between the system output frequency response and nonlinear 

damping characteristic parameters is derived. It shows how the system output 

frequency response can be analytically related to the nonlinear damping 

characteristic parameters. A comparison between the results from the OFRF 

based evaluation and numerical simulation has verified the effectiveness of the 

application of the OFRF based approach in the analysis of nonlinear viscously 

damped vibration systems. Moreover, based on the OFRF representation, the 

effects of damping characteristic parameters of nonlinear fluid viscous dampers 

on the displacement and force transmissibility of MDOF DVIS and FVIS are 

studied. The results reveal that 

 For 1, 2 and 3DOF DVIS under harmonic displacement excitations, 

compared with other types of fluid viscous dampers, a nonlinear fluid 

viscous damper with damping exponent 11 <a  at Storey1 and nonlinear 

fluid viscous dampers with damping exponents 1>ia , 3,2=i , at the 

upper storeys (Storey2 and Storey3) can perform ideal control effect on the 

system displacement vibration. This approach of fitting additional fluid 

viscous dampers can reduce the displacement transmissibility around the 

system resonant frequencies but have less effect on the displacement 

transmissibility over higher frequency region. 

 

 For 1, 2 and 3DOF FVIS under harmonic force excitations, compared with 

other types of fluid viscous dampers, nonlinear fluid viscous dampers with 

damping exponent 1>ia , 3,2,1=i , at all storeys (Storey1 to Storey3) are 

more ideal for the suppression of the force transmissibility at both the 

resonant and higher frequencies. 
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Based on these analyses, an OFRF based design procedure for nonlinear 

viscously damped vibration systems is proposed to facilitate the design of 

nonlinear fluid viscous damper parameters for a desired system vibration 

suppression performance. 

 

The studies in this chapter have applied the OFRF concept to the analysis and 

design of nonlinear MDOF viscously damped vibration systems. The results 

show the advantage of nonlinear viscous damping in the vibration control of 

MDOF viscously damped structural systems, and provide important guidelines 

for the design of nonlinear fluid viscous damper parameters for a desired system 

performance. The results have considerable significance for the practical 

applications of nonlinear viscous damping devices in a wide class of engineering 

structural systems. 
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Chapter 6 
 

Design of Damping Devices for Structural 

Vibration Control 
 

In order to design the damping devices for structural system vibration control, 

the concept of Vibration Power Loss Factor (VPLF) is firstly proposed in this 

chapter to evaluate the vibration reduction effects of additional fluid viscous 

dampers in engineering structural systems. An explicit analytical relationship 

between the VPLF and the damping coefficient of fluid viscous dampers 

additionally fitted into a structural system is then derived using the Output 

Frequency Response Function (OFRF) concept. After that, a novel nonlinear 

damping design approach is proposed based on the OFRF representation of the 

VPLF of viscously damped structural systems to achieve a desired vibration 

performance. Numerical simulation studies on a typical 7-storey building 

structure subject to seismic and wind loading excitations demonstrate the 

effectiveness of the proposed design approach. The results reveal that, compared 

with linear fluid viscous dampers, equivalent nonlinear fluid viscous dampers 

can achieve overall better vibration effects. These results have significant 

implications for the design and fitting of additional fluid viscous dampers in 

practical structural systems for vibration control purpose. 

 

6.1 Introduction 

 

The safety issues of modern engineering structural systems have received more 

and more attention because of tragic consequences of earthquakes and strong 

wind, which have shown tremendous importance of vibration control in civil 

buildings and bridges etc. infrastructures. In order to suppress vibrations and 
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protect structural systems, traditional vibration control methods often increase 

the system stiffness. But these methods will lead to the increase of system modal 

frequencies and even increase vibrations when the system is subjected to the 

seismic and wind loading excitations over the frequency ranges higher than the 

original system modal frequencies. In order to resolve this problem, many 

vibration control approaches and vibration control devices have been proposed 

and applied to increase the system safety and reliability against strong 

earthquake and wind. Recently, nonlinear fluid viscous dampers have been 

considered to be a more effective vibration control approach for practical 

engineering system designs [5, 103]. Many researchers have conducted studies 

considering the applications of nonlinear fluid viscous dampers in the vibration 

control of practical engineering systems as introduced in Chapter 2. 

 

After nonlinear fluid viscous dampers have been introduced as additional 

devices into a vibration system, the most important issue to be addressed is how 

to design the dampers’ damping characteristic parameters to achieve a desired 

vibration control performance. The solution partly depends on how to evaluate 

the vibration control effects of the additional fluid viscous dampers on the 

system output response. Currently, the concepts of maximum vibration offset 

and modal damping ratio have been widely used for this purpose [12]. However, 

it is difficult to relate a structural system’s maximum vibration offset to the 

damping characteristic parameters so as to facilitate the system vibration control 

design. The equivalent modal damping ratio method was proposed by Soong and 

Constantinou [183] and Lee et al. [184] for the simple harmonic analyses. 

However the modal damping ratio is basically a linear system concept, which is 

difficult to be applied for the analysis and design of nonlinear vibration systems 

subject to complicated loadings such as earthquakes and winds [112]. 

 

This chapter is concerned with the development of a novel approach for the 

design of additional nonlinear fluid viscous dampers to achieve desired vibration 
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control in practical engineering systems. This new design will be based on the 

OFRF concept of nonlinear systems proposed by Lang et al. [24] and a new 

concept known as VPLF introduced in this study. By using the OFRF concept, 

an explicit analytical relationship between the system VPLF and damping 

coefficient of nonlinear fluid viscous dampers additionally fitted into a vibration 

system can be obtained. This explicit analytical relationship can significantly 

facilitate the parameter design of additional fluid viscous dampers so as to 

achieve a desired vibration performance in a wide range of loading conditions. 

Simulation studies are conducted to demonstrate the effectiveness of this new 

approach in the design of nonlinear fluid viscous dampers for the vibration 

control of a 7-storey building structure subject to seismic and wind loading 

excitations. These results have significant implications for the design and fitting 

of additional fluid viscous dampers in practical structural systems for vibration 

control purpose. 

  

6.2 The VPLF of nonlinear viscously damped vibration 

systems 

 

6.2.1 The Vibration Power Loss Factor (VPLF) 

 

The energy and power are two frequently used vibration system characteristics. 

The energy of a mechanical and civil engineering system’s vibration )(ty  can 

be determined as 

∫=
T

dttyE
0

2)(           (6.1) 

where T  is the total time period considered for the evaluation. The vibration 

power refers to the average of vibration energy over the time T  and is given by 

∫==
T

dtty
T

TEP
0

2)(1         (6.2) 
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The VPLF of a vibration system is defined by 

%100)1( 0 ×−= PPγ          (6.3) 

where 0P  denotes the power of the original structural system vibration 

response; P  represents the power of the structural system vibration response 

after a vibration control mechanism has been introduced. Therefore, the system 

VPLF indicates the reduction in the power of the system vibration response that 

can be achieved by the introduction of a vibration control mechanism. 

 

A larger value of VPLF γ  means that the vibration control mechanism can 

dissipate more significant vibration power, which should be the objective of the 

design of the vibration control mechanism. In the current study, different types 

of fluid viscous dampers refer to the dampers whose damping exponent 

parameters a  are different. In order to compare the vibration control effects of 

different types of fluid viscous dampers, it is defined that different types of fluid 

viscous dampers have an equivalent vibration control effect on a structural 

system if the VPLF values of the system with these different dampers are the 

same, that is, )()( ba CC γγ = , where aC  and bC  present the coefficients of 

two different types of fluid viscous dampers. 

 

6.2.2 The OFRF based representation of the system VPLF 

 

Consider a vibration system with a fitted nonlinear fluid viscous damper with 

the damping characteristic as introduced in chapter 2 

D sign( )a
a r rF C u u=           (6.4) 

where DF  is the damping force produced by the damper, ru  is the relative 

velocity between the two ends of the damper, aC  and a  are the damping 

coefficient and exponent, respectively. 
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Based on the OFRF concept, the relationship between the FT spectrum )( ωjY  

of the system vibration response )(ty  and the viscous damping coefficient aC  

can be described by the following polynomial function known as the system 

OFRF 

0
1

( ) ( ) ( )
N

i
a i

i
Y j P j C P jω ω ω

=

= + ∑         (6.5) 

where jjbjajP iii )()()(
111

ωωω += , Ni ,,1,01 = , are the functions of the 

system input spectrum and dependent on all the system parameters apart from 

aC , N  is determined by the highest order of system nonlinearity up to which 

the system output spectrum can be well represented by a Volterra series. 

 

From Eq.(6.5), it can be obtained that 

[ ] [ ]{ }

2
2

0
1

2

0 0
1

2

0

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

N
i
a i

i

N
i
a i i

i

N
i
a i

i

Y j P j C P j

a j b j j C a j b j j

C Q j

ω ω ω

ω ω ω ω

ω

=

=

=

= +

= + + +

=

∑

∑

∑

     (6.6) 

where )(
1

ωjQi , Ni 2...,,1,01 = , are the functions of the same nature as 

)(
1

ωjPi , Ni ,,1,01 = . 

 

For example, when the OFRF expression for a vibration system’s output 

spectrum )( ωjY  can be described by 

)()()()( 2
2

10 ωωωω jPCjPCjPjY aa ++=      (6.7) 

where jjbjajP iii )()()(
111

ωωω += , 2,1,01 =i , then 
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(6.8) 

where 

2 2
0 0 0( ) ( ) ( )Q j a j b jω ω ω= + , 

1 0 1 0 1( ) 2 ( ) ( ) 2 ( ) ( )Q j a j a j b j b jω ω ω ω ω= + , 

2 2
2 1 1 0 2 0 2( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )Q j a j b j a j a j b j b jω ω ω ω ω ω ω= + + + , 

3 1 2 1 2( ) 2 ( ) ( ) 2 ( ) ( )Q j a j a j b j b jω ω ω ω ω= + , 

2 2
4 2 2( ) ( ) ( )Q j a j b jω ω ω= + . 

 

According to the Parseval’s theorem [185], the vibration power P  of the 

system output response )(ty  can be determined as 

∫∫
∞

∞−
==

T
jYdtty

T
P

T

π
ωω

2
d)()(1 2

0

2       (6.9) 

 

Substituting the expression of 2)( ωjY  in Eq.(6.6) into Eq.(6.9) yields 

∑
=

+=
N

i
i

i
aPCPP

2

1
0           (6.10) 

where 0P  is the power of the system vibration response when no fluid viscous 

damper is fitted, and 

 
T

jQP ii π
ωω

2
d)(∫

∞

∞−
= , N,,,i 210 =      (6.11) 

 

Consequently, the system VPLF as defined in Eq.(6.3) can be described by a 

polynomial function of the viscous damping coefficient aC  as follows 
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( ) ∑
=

=−=
N

i
i

i
aa CPPPC

2

1
00)( ργ          (6.12) 

where 0PPii −=ρ , N,,,i 221 = . Eq.(6.12) is the OFRF based 

representation of the VPLF of nonlinear viscously damped vibration systems, 

which provides a significant analytical relationship between the system VPLF 

and the damping coefficient aC  of additionally fitted nonlinear fluid viscous 

dampers. 

 

6.2.3 Determination of the OFRF based representation of the 

system VPLF 

 

The OFRF based representation of the system VPLF in Eq.(6.12) involves a set 

of coefficients iρ , Ni 2,,2,1 = , which are constants depending on the 

system input spectrum and all the system parameters apart from aC . In order 

to apply Eq.(6.12) in the vibration system analysis and design, these 

coefficients have to be determined. 

 

Denote iγ , mi ,,2,1 = , as the VPLF values of a nonlinear viscously 

damped vibration system under m  different nonlinear damping coefficient 

iaC , , mi ,,2,1 = . It is known from Eq.(6.12) that given iγ  and iaC , , 

mi ,,2,1 = , provided that Nm 2≥ , the coefficients iρ , Ni 2,,2,1 = , 

can be determined by the following least square method 

[ ] [ ]( ) [ ] [ ]( )YxxxN ⋅⋅⋅=
− T1TT

2,1 ],[ ρρ        (6.13) 
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Because iγ  is the VPLF value of the system output response under an input 

excitation of interest when iaa CC ,= , iγ  can be determined from the 

simulated or experimentally measured output response of the system to this 

input excitation when the nonlinear damping coefficient aC  is taken as iaC , . 

Therefore, using Eq.(6.13), the OFRF based representation of the system VPLF 

can be determined directly from system simulation or experimental test data. 

 

One issue that needs to be considered when using this approach is how to 

determine N . There is no general theoretical solution to this problem. 

However, in practice, taking a value for N  within the range of 2, 3, 4, 5 is 

often sufficient. 

 

6.3 Nonlinear fluid viscous dampers design for vibration 

control of civil structures 

 

On the basis of the OFRF based representation for the VPLF of a nonlinear 

viscously damped vibration system, given the damping exponent parameter a , 

the design of the system nonlinear damping coefficient aC  can be conducted 

using the following procedure: 

 

(i) Conduct simulation study or experimental tests on the original vibration 

system where additional nonlinear fluid viscous damper/dampers are to be fitted 

for vibration control purpose. A specific input loading of concern for the design 

should be considered in the simulation or experimental tests. Evaluate the 

vibration power 0P  of the original system without additional fluid viscous 

damper/dampers from the simulated or experimentally measured system output 

responses. 
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(ii) Fit additional nonlinear fluid viscous damper/dampers in the vibration 

system and conduct the simulation studies or experimental tests again to 

evaluate the vibration power P  of the system output response under different 

values of damping coefficients aC . 

 

(iii) Evaluate the VPLF value iγ , mi ,,2,1 = , of the system output response 

under different values of the damping coefficient iaC ,  from Eq.(6.3) using the 

results obtained in step (ii). 

 

(iv) Determine the coefficients iρ , Ni 2,,2,1 = , to obtain the OFRF based 

representation of the system VPLF in Eq.(6.12) by substituting the results 

obtained in previous steps into Eq.(6.13). 

 

(v) Conduct the design to achieve a desired VPLF value *γ  for the vibration 

system by solving equation ∑
=

=
N

i
i

i
aC

2

1

* ργ  for aC . 

 

In the following section, numerical simulation studies on a 7-storey building 

structure subject to seismic and wind loading excitations will be conducted to 

show how to follow the above procedure to perform the design and to 

demonstrate the effectiveness of this new approach in nonlinear fluid viscous 

dampers design. 

 

6.4 Simulation study of additional fluid viscous dampers 

design for a 7-storey building structure 

 

6.4.1 7-storey building structure 
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Fig.6.1 7-storey building structure with fitted additional fluid viscous dampers 

 

Consider a 7-storey building structure as shown in Fig.6.1 where additional fluid 

viscous dampers are fitted in each floor to control the structure vibration induced 

by seismic or wind loading excitations. This structural system can be described 

by the following dynamic equilibrium equation 

)()()()()( tFtFtKXtXCtXM d+=++        (6.15) 

where M , C  and K  are the system mass, damping and stiffness matrices, 

respectively. )(tX , )(tX  and )(tX  are the system displacement, velocity and 

acceleration vectors, respectively. )(tF  is the force excitation on the structural 

system induced by seismic or wind loading excitations. )(tFd  is the damping 

force produced by additional fluid viscous dampers fitted in each floor of the 

structure. The following system parameter values [57] are used in the simulation 

studies 
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An inherent structural damping ratio %2=ξ  is assumed for this structural 

system, the system damping matrix C  can be described by [186] 

MC 12ξω=            (6.18) 

where 1ω  is the 1st natural frequency of the 7-storey building structure and the 

structural system’s 1st to 7th natural frequencies can be evaluated as [182] 

( )( ) rad/s]49.80,26.71,06.62,07.53,94.38,85.23,54.8[eigsqrt 1
7~1 == − KMω  (6.19) 

where sqrt(.)  denotes to evaluate the square root and eig(.)  represents to 

evaluate the eigen values of a matrix. 

 

6.4.2 Seismic and wind loading excitations 

 

6.4.2.1 Seismic excitations 

 

In the simulation studies, the seismic and wind loading excitations are 

considered respectively to examine the vibration response of the 7-storey 

building structure. 

 

EI-Centro S00E (1940) seismic excitation is a time history of acceleration 

recorded in EI Centro Terminal Substation Building in California. Because the 

qualitative aspects of the earthquake were well-recorded, it is often used in the 

design of earthquake-proof structures, particularly for the time history analysis. 

The time history data of the EI-Centro earthquake, including the acceleration, 

velocity and displacement, are shown in Fig.6.2 (a)-(c). 

0 20 40 60 80 100
-3

-2

-1

0

1

2

3

4

Ac
ce

le
ra

tio
n 

(m
/s

2 )

Time (s)

 Acceleration

0 20 40 60 80 100
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Ve
lo

ci
ty

 (m
/s

)

Time (s)

 Velocity

0 20 40 60 80 100
-0.2

-0.1

0.0

0.1

0.2

D
is

pl
ac

em
en

t (
m

)

Time (s)

 Displacement

 
(a) Acceleration     (b) Velocity     (c) Displacement 

Fig.6.2 EI-Centro seismic excitation 
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6.4.2.2 Wind loading excitations 

 

The real wind speed )(tv  can be decomposed into a constant mean wind speed 

mV  and a turbulent wind speed. The mean wind speeds at different locations of 

structural systems are different. The following exponential model is usually used 

to describe the shear effect on the mean wind speed at a certain elevation [187] 

shear

,)(
a

r
rmm z

zVzV 







⋅=       (6.20) 

where )(zVm  and rmV ,  are the mean wind speed at the height z  and 

reference height rz , respectively. 4.8/1=sheara  is the power law coefficient. 

The real wind’s turbulence has different forms and is usually represented in a 

Power Spectral Density (PSD) function. One typical PSD model is the Kaimal 

spectrum [188] 

352
Kaimal

)/61(
/4)(

mv

mv

VfL
VfLffS

+
=

σ
     (6.21) 

where vL  is the length scale: 




>
≤

=
m60m2.340
m6067.5

z
zz

Lv ; z  is the location 

height; f  is the wind frequency; σ  is the time varying wind speed standard 

deviation and a recommended value by an international standard [187] is 

[ ]m/s84.14)3m/s15(12.0 ++= mVσ     (6.22) 

 

Because wind speeds at different height z  are correlative in practical 

engineering systems, this relationship is usually described by a coherence 

function, which is given by Davenport [189] 









−=

m

kjd

V
fda

fkjcoh ,exp),,(     (6.23) 

where kjd ,  is the spatial separation between nodes j  and k . 10=da  is the 

decay factor. 
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Based on the coherence function in Eq.(6.23), the nn×  cross power spectra 

density (CPSD) matrix )( fS  can be obtained by 
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    (6.24) 

where the auto power spectra density )( fS jj  can be determined by the Kaimal 

spectrum function in Eq.(6.21) and the CPSD function term )( fS jk  is given as 

),,()()()( fkjcohfSfSfS kkjjjk ⋅=      (6.25) 

 

According to the Cholesky decomposition, the CPSD matrix )( fS  can be 

written as the product of a lower triangular matrix )( fH  and the transpose of 

its complex conjugate [ ]T* )( fH  as 

[ ]T* )()()( fHfHfS ⋅=       (6.26) 

 

Finally, the multi-point wind speed time histories )(tv j  can be calculated by 

the Shinozuka method [190] as 

∑∑
= =

+⋅∆+=
j

m

N

l
mllljmmj tffHfVtv

1 1
)2cos()(2)( φπ , pj ,,2,1 =  (6.27) 

where flfl ∆= , 
N
ff u=∆ . p  is the number of the wind speed to be 

numerically simulated at different locations. uf  is the considered maximum 

wind speed frequency, N  is the considered discrete frequency number, mV  is 

the mean wind speed. mlφ  is the random phase between ]2,0[ π . The time 

length of the simulated wind speed series fT ∆≤ 1  and the time interval 

( )uft 21≥∆ . 

 

The procedure to numerically simulate the wind speed time histories of 
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multi-point wind loading excitations can be summarized as: 

(i) Define the height rz  and mean wind speed rmV ,  at a reference 

location and the maximum frequency uf  and incremental frequency 

f∆  to be considered. 

(ii) Evaluate the mean wind speed at different locations )(zVm

 
to apply the 

wind loading excitations by Eq.(6.20). 

(iii) Calculate the Kaimal spectrum )(Kaimal fS  at different locations with 

the corresponding mean wind speed )(zVm  by Eqs.(6.21) and (6.22). 

(iv) Obtain the CPSD matrix )( fS  as shown in Eq.(6.24) by Eqs.(6.23) 

and (6.25). 

(v) Decompose the CPSD matrix )( fS  to find the lower triangular matrix 

)( fH  as shown in Eq.(6.26). 

(vi) Substitute the mean wind speed )(zVm

 
at different locations and the 

lower triangular matrix )( fH  into Eq.(6.27) to calculate the 

multi-point wind speed time histories )(tv j . 

 

In this study, the wind loading excitation with mean wind speed m/s20, =rmV  at 

Storey1, maximum frequency Hz10=uf  and incremental frequency 

Hz01.0=∆f , was considered and applied in the vibration response analysis of 

the 7-storey building structure. Following the above computational process, the 

along-wind speed time histories at each storey of the structure were calculated, 

one realization of the wind speed at Storey1 and its Power Spectral Density 

(PSD) are shown in Fig.6.3 as an example. The corresponding wind force 

excitation )(1storey tF  on the structure can be evaluated from the formula 

recommended by American Petroleum Institute (API RP 2A) as 

2
1storey )(

2
1)( tAvCtF sρ=        (6.28) 
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where 3kg/m2.1=ρ  is the density of the air flow, 2.1=sC  is the shape 

coefficient of the 7-storey building structure, 2m20=A  is the projected area of 

each storey, )(tv  is the time varying wind speed. 
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(a) Time varying wind speed at Storey1         (b) PSD of the simulated wind speed 

Fig.6.3 An example of wind speed at Storey1 under m/s20)(, =zV rm  

 

6.4.3 The effect of system stiffness on the vibration control 

 

Before the design of additional fluid viscous dampers for the 7-storey building 

structure, the effect of system stiffness on the vibration control is firstly studied. 

Because the increase of system stiffness will lead to the increase of system 

modal frequencies, according to the FRF concept introduced in Chapter 2, linear 

systems’ output frequency response can even increase when the main frequency 

region of input excitation is higher than the original system’s modal frequencies. 

 

For the 7-storey building structure subjected to seismic and wind excitations as 

introduced in Section 6.4.2, when the system stiffness matrix kKK =* , the 

effects of k  on the vibration power of the structural displacement at Storey7 

were studied by numerical simulations and the results are shown in Fig.6.4 for 

the EI-Centro earthquake excitation and in Fig.6.5 for m/s20  mean wind speed 

excitation. 
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  Fig.6.4 Displacement vibration power at Fig.6.5 Displacement vibration power at Storey7 

Storey7 under EI-Centro earthquake         under m/s20  mean wind speed excitation 

 

The time varying displacement vibration at Storey7 with two different system 

stiffness matrices *K  )( * kKK =  under seismic and wind loading excitations 

are shown in Fig.6.6 and Fig.6.7, respectively. 
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(a) Displacement at Storey7 with 1k =     (b) Displacement at Storey7 with 1.2k =  

Fig.6.6 Displacement at Storey7 with two different system stiffness under EI-Centro earthquake 
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(a) Displacement at Storey7 with 1k =    (b) Displacement at Storey7 with 1.2k =  

Fig.6.7 Displacement at Storey7 with two different system stiffness under m/s20  mean wind 

speed excitation 

 

As shown in Fig.6.4, the increase of system stiffness can lead to the increase of 

displacement vibration power, which should be avoided in the system vibration 
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control design. Moreover, by increasing the system stiffness, although the 

maximum displacements vibration offset can be decreased as indicated in 

Fig.6.6(b) and Fig.6.7(b), the displacement vibrations during 0-20s in Fig.6.6(b) 

and 30-60s in Fig.6.7(b) are more violent than the original system’s output 

vibration responses shown in Fig.6.6(a) and Fig.6.7(a), which is harmful and 

even dangerous for the building structure. These results also reveal the limitation 

of the maximum vibration offset method in the vibration control design of 

practical structural systems. 

 

6.4.4 Additional fluid viscous dampers design 

 

6.4.4.1 Determination of vibration power of the 7-storey building structure 

without fitted fluid viscous dampers 

 

Consider the seismic and wind loading excitations as introduced in Section 6.4.2 

as input excitations to the 7-storey building structure, respectively. The vibration 

response of the system without fitted fluid viscous dampers can be numerically 

simulated using the Runge-Kutta integration method. The system output 

displacement vibration at Storey 7 and its FT are shown in Fig.6.8 under 

EI-Centro earthquake excitation and in Fig.6.9 under m/s20  mean wind speed 

excitation. 
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(a) Displacement vibration at Storey7      (b) FT of displacement at Storey7 

Fig.6.8 Displacement vibration at Storey7 and its FT under EI-Centro earthquake 
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(a) Displacement vibration at Storey7     (b) FT of displacement at Storey7 

Fig.6.9 Displacement vibration at Storey7 and its FT under m/s20  mean wind speed excitation 

 

The vibration powers of the displacement at Storey7 of the 7-storey building 

structure without fitted fluid viscous dampers can be evaluated as 

2
EI 4m-3.4257E=P  under EI-Centro earthquake excitation and 

2
wind 8m-9.983E=P  under m/s20  mean wind speed excitation. 

 

6.4.4.2 Design of the damping coefficient of additional fluid viscous 

dampers 

 

From Section 6.4.4.1, it is known that when no additional fluid viscous dampers 

are fitted, the vibration powers of the system displacement at Storey7 are 

2
EI 4m-3.4257E=P  under EI-Centro earthquake and 2

wind 8m-9.983E=P  

under m/s20  mean wind speed excitation. Consider the cases of additional 

fluid viscous dampers fitted between each storey of the structure to dissipate the 

vibration energy. In order to simplify the dampers design, all the fitted fluid 

viscous dampers are defined to have the same damping characteristics 

parameters, and the OFRF based representation for the system VPLF γ  takes 

the following form 

4
4

3
3

2
21)( aaaaa CCCCC ρρρργ +++=       (6.29) 

 

In order to work out iρ , 4,3,2,1=i , to determine Eq.(6.29), 4 simulation 
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studies were conducted where the 7-storey building structure was excited by the 

same input excitation, and the damping coefficients aC  of additional fluid 

viscous dampers took 4 different values for each damping exponent a  as 

shown in Table.6.1 under EI-Centro earthquake excitation, and in Table.6.2 

under m/s20  mean wind speed excitation. 

 

Table.6.1 Damping characteristic parameters, vibration power and VPLF at Storey7 under 

EI-Centro earthquake 

Exponent a  Coefficient aC  )(m2
EIP  γ  

0.2 4E1  4-3.1345E  %5.8  

0.2 4E5  4-2.3935E  %1.30  

0.2 5E1  4-1.8728E  %3.45  

0.2 5E5  5-4.2469E  %6.87  

1 5E1  4-3.1334E  %5.8  

1 5E5  4-2.4552E  %28.3  

1 6E1  4-1.9402E  %43.4  

1 6E3  5-9.7836E  %71.4  

3 7E1  4-3.1701E  %5.7  

3 8E1  4-2.4323E  %0.29  

3 8E3  4-1.7569E  %7.48  

3 9E1  4-1.0693E  %8.68  

 

Table.6.2 Damping characteristic parameters, vibration power and VPLF at Storey7 under 

m/s20  mean wind speed excitation 

Exponent a  Coefficient aC  )(m2
windP  γ  

0.2 4E1  8-5.6077E  %8.43  

0.2 4E2  8-5.0687E  %2.49  

0.2 4E3  8-4.435E  %6.55  
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0.2 4E4  8-3.918E  %8.60  

1 6E5  8-5.9731E  %2.40  

1 7E1  8-5.6397E  %5.43  

1 7E4  8-5.0363E  %6.49  

1 7E7  8-4.6827E  %1.53  

3 14E1  8-5.962E  %3.40  

3 15E1  8-5.4633E  %3.45  

3 16E1  8-4.991E  %0.50  

3 16E5  8-4.5321E  %6.54  

 

Substituting the results in Tables.6.1 and 6.2 into Eq.(6.13), the OFRF based 

representation of the VPLF of the system displacement vibration at Storey 7 can 

be obtained for the cases where three different types of additional fluid viscous 

dampers ( 3 and ,1,2.0=a ) are fitted in the structural system, respectively. The 

results are: 

43
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When the desired system VPLF %50* =γ , the viscous damping coefficient 

aC  with the damping exponent 3,1,2.0=a  can be designed as 

5E1.142.0 =C , 6E1.171 =C , 8E02.33 =C  under EI-Centro earthquake, and 

4E2.22.0 =C , 7E2.41 =C , 16E13 =C  under m/s20  mean wind speed 

excitation. The corresponding displacement vibrations at Storey7 are shown in 

Fig.6.10 under EI-Centro earthquake and in Fig.6.11 under m/s20  mean wind 

speed excitation. The system VPLFs can be evaluated from these simulations 

and the results are all %50=γ , which verify the effectiveness of the proposed 

additional fluid viscous dampers design approach on the system vibration 

control. 
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(a) when 5E1.142.0 =C      (b) when 6E1.171 =C       (c) when 8E02.33 =C  

Fig.6.10 Displacement vibration at Storey7 with VPLF %50=γ  under EI-Centro earthquake 
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(a) when 4E2.22.0 =C     (b) when 7E2.41 =C        (c) when 16E13 =C  

Fig.6.11 Displacement vibration at Storey7 with VPLF %50=γ  under m/s20  mean wind 

speed excitation 

 

Compared with the displacement vibration at Storey7 of the structure without 

fitted fluid viscous dampers as shown in Fig.6.8(a) and Fig.6.9(a), three types of 

fluid viscous dampers ( 1<a , 1=a  and 1>a ) can all suppress the system 

displacement vibration at Storey7 with the same VPLF value %50=γ , that is, 

they have the same vibration control effects on the displacement at Storey7 

under the considered seismic and wind loading excitations. 

 

As introduced in Section 6.4.2.2, practical wind loading excitations on structural 

systems have turbulence. This implies that under the same mean wind speed 

)(, zV rm  but different random phases mlφ , the time histories of the wind force 

excitation are different. Six different time histories of the wind force excitations 

generated under the same m/s20  mean wind speed as shown in Fig.6.12 (a)-(f) 

were considered to investigate how this difference can affect the system 

vibration control performance with the same additional fluid viscous dampers 

design. For this purpose, the system VPLFs of the displacement at Storey7 under 

the six different time histories of wind force excitations were evaluated for all 

the designs that have been achieved above. The results are listed in Table.6.3, 
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indicating that very similar VPLF values can be achieved even the time histories 

of wind force excitations are different, the differences are mainly due to that the 

random phases mlφ  are changed in each time history of the wind force 

excitations. These analysis results imply that the proposed design procedure is 

able to cover different scenarios of input loading excitations and reveal that the 

vibration control effects are statistically the same, which is very important for 

practical applications. 
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(d) wind force excitation 4     (e) wind force excitation 5     (f) wind force excitation 6 

Fig.6.12 Wind force excitations at Storey1 under the same mean wind speed m/s20)(, =zV rm  

but different random phases mlφ  
 

Table.6.3 VPLFs of the displacement at Storey7 with different types of fluid viscous dampers 

under the same wind mean speed but six different wind force excitation time histories 

Wind force 

excitation Number 
7E2.41 =C  4E2.22.0 =C  16E13 =C  

1 %50=γ  %50=γ  %50=γ  

2 %9.56=γ  %7.59=γ  %6.56=γ  

3 %6.49=γ  %9.50=γ  %8.48=γ  

4 %5.53=γ  %7.53=γ  %3.54=γ  

5 %6.46=γ  %6.48=γ  %7.46=γ  

6 %6.47=γ  %6.48=γ  %2.48=γ  
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In engineering practice, designs are normally made under typical loading 

conditions. But a desired situation is that these designs should also work well in 

situations when loadings change. Therefore, the designs achieved above were 

evaluated in different loading conditions to investigate how this important 

requirement can be met by the designs. The results are shown in Figs.6.13-6.16 

and Table.6.4. Figs.6.13 and 6.14 show the displacement vibration responses at 

Storey7 of the 7-storey building structure with three different additional fluid 

viscous dampers designs when the structure is subjected to half and double of 

EI-Centro earthquake acceleration excitations, respectively. Figs.6.15 and 6.16 

show the system vibration responses in the situations when the structure is 

subjected to 10m/s mean wind speed excitation and 40m/s mean wind speed 

excitation, respectively. Table.6.4 shows the VPLF values of the system 

displacement vibration response at Storey7 under different loadings and 

additional fluid viscous dampers designs. 
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(a) when 5E1.142.0 =C      (b) when 6E1.171 =C      (c) when 8E02.33 =C  

Fig.6.13 Displacement vibration at Storey7 under half of the EI-Centro earthquake acceleration 
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(a) when 5E1.142.0 =C      (b) when 6E1.171 =C      (c) when 8E02.33 =C  

Fig.6.14 Displacement vibration at Storey7 under double of the EI-Centro earthquake 

acceleration 
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(a) when 4E2.22.0 =C    (b) when 7E2.41 =C      (c) when 16E13 =C  

Fig.6.15 Displacement vibration at Storey7 under m/s10  mean wind speed excitation 
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(a) when 4E2.22.0 =C        (b) when 7E2.41 =C        (c) when 16E13 =C  

Fig.6.16 Displacement vibration at Storey7 under m/s40  mean wind speed excitation 

 

Table.6.4 The VPLFs of the structural displacement response at Storey7 under different loadings 

and fluid viscous dampers designs 

Viscous damping 

parameters 

Half of EI-Centro 

earthquake Acceleration 

excitation 

Double of EI-Centro 

earthquake Acceleration 

excitation 

2.0=a , 

5E1.142.0 =C  
%8.63=γ  %8.35=γ  

1=a , 

6E1.171 =C  
%50=γ  %50=γ  

3=a , 

8E02.33 =C  
%8.24=γ  %3.71=γ  

 

Viscous damping 

parameters 

m/s10  mean wind speed 

excitation 

m/s40  mean wind speed 

excitation 

2.0=a , 

4E2.22.0 =C  
%7.65=γ  %8.41=γ  

1=a , 7E2.41 =C  %50=γ  %50=γ  

3=a , 16E13 =C  %8.44=γ  %9.58=γ  
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From the results in Figs.6.13-6.16 and Table.6.4, it can be observed that, in 

comparison with what can be achieved by the equivalent linear fluid viscous 

dampers design, additional nonlinear fluid viscous dampers with the damping 

exponent 1<a   can dissipate more vibration energy and power under milder 

loading excitations, while additional nonlinear fluid viscous dampers with the 

damping exponent 1>a  can dissipate more vibration energy and power under 

severer loading excitations. So, although nonlinear viscous damping devices 

with the damping exponent 1<a  have been widely used in modern 

engineering systems, such as civil buildings and bridges, the corresponding 

vibration control designs may not be appropriate in different loading conditions 

which are severer than the considered loading condition for the design. So, the 

above results not only demonstrate the effectiveness of the proposed additional 

fluid viscous dampers design principle but also reveal that different nonlinear 

fluid viscous dampers designs based on the proposed principle should be used in 

different loading conditions so as to ensure the desired vibration control 

performance can always be achieved. 

 

6.5 Conclusions 

 

In this chapter, the VPLF concept is proposed to evaluate the effects of 

additional nonlinear fluid viscous dampers on the vibration control of 

engineering structural systems subjected to general excitations. The OFRF 

concept and associated techniques are applied to derive an OFRF based 

representation of the system VPLF, which reveals an explicit analytical 

relationship between a vibration system’s VPLF and the parameter of nonlinear 

fluid viscous dampers fitted in the system. The result is then used to conduct 

nonlinear fluid viscous dampers design to achieve desired vibration control 

performance in different loading conditions. Simulation studies on a 7-storey 

building structure subject to seismic and wind loading excitations demonstrate 
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the effectiveness of the proposed nonlinear dampers design approach and reveal 

that 

 

1) The increase of system stiffness as often used in practice may lead to the 

increase of the system output vibration response. 

 

2) The VPLF provides a useful criterion for the system vibration control design 

and the OFRF based representation of the system VPLF can significantly 

facilitate the design to achieve a desired VPLF result. 

 

3) Different types of additional fluid viscous dampers ( 1<a , 1=a  and 1>a ) 

can achieve equivalent vibration control effects on a structural system in a 

considered loading condition but perform differently under milder and severer 

loading excitations. Therefore, different nonlinear fluid viscous dampers designs 

based on the proposed principle should be used in different loading conditions 

so as to ensure the desired vibration control performance can always be 

achieved. 

 

These results significantly extend the OFRF concept based design to the design 

of additional nonlinear fluid viscous dampers for the vibration control of 

structural systems and provide a new fluid viscous dampers design methodology. 

These results have significant implications for the analysis and design of 

vibration systems in a wide range of practical applications. 
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Chapter 7 
 

Additional Nonlinear Damping Device Designs for 

Structural Systems Described by Finite Element 

Model 
 

In this chapter, the Output Frequency Response Function (OFRF) and Vibration 

Power Loss Factor (VPLF) concepts are applied for the design of additional 

nonlinear damping devices for the vibration control of structural systems, which 

are so complicated that Finite Element (FE) models have to be used for the 

system descriptions. The designs of additional fluid viscous dampers are 

conducted for the vibration control of multi-storey building structures under 

harmonic excitations and an offshore pylon structure under wind loading 

excitations. The results demonstrate the effectiveness of the OFRF and VPLF 

based design techniques. Moreover, the advantages of different types of fluid 

viscous dampers for the vibration control of structural systems in different 

loading conditions are discussed. 

 

7.1 Introduction 

 

In modern system designs, the Finite Element Method (FEM) has become an 

important tool for predicting and simulating the physical behaviors of complex 

engineering systems. Commercial Finite Element Analysis (FEA) programs 

have gained common acceptance among the engineers in industry, researchers at 

universities and government laboratories [191]. Especially for the dynamic 

analysis of nonlinear vibration systems, modern FEA programs have provided a 

variety of modeling and solving methods to consider the system nonlinearity in 

loading, geometric, material, contact and so on. The convenient and quick FE 
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simulation analysis has received more and more attentions from the engineers 

and designers and played an important role in the analysis and design of 

practical engineering systems. 

 

Compared with practical engineering systems, the SDOD and MDOF vibration 

system equations used in previous chapters are the mathematical abstracts with 

simple dynamic expressions. Practical engineering systems always involve 

complex characteristics and the system behaviors are much more complicated. 

Traditional lumped parameter model descriptions [192] are difficult to be used 

to represent these complicated systems. However, with the rapid development of 

modern computation techniques and the widespread applications of flexible 

components, structural system analysis using FE models has received more and 

more attentions. The FE model analysis based structural system designs have 

achieved significant progresses towards improving system performance [45, 191, 

193, 194]. 

 

In the areas of FE model analysis based designs for damping devices, Wang et al. 

[193] applied a FE model to analyze the vibration response of the Donghai 

Bridge in China under seismic excitations and studied the influences of 

additional fluid viscous dampers on the system vibration response. Their results 

revealed that, if appropriately designed, additional fluid viscous dampers can 

significantly improve the vibration performance of the civil bridge under seismic 

excitations. Shen et al. [45] established the 3D FE model for a high-rise steel 

structure and studied the effects of additional fluid viscous dampers on the 

structural vibration response under seismic and wind loading excitations. Their 

results showed that the vibration response of the structural system could be 

reduced by 10% under seismic excitations and 50% under wind loading 

excitations after introducing appropriately designed fluid viscous dampers. 

 

This chapter is dedicated to the applications of the OFRF and VPLF concepts 
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based nonlinear system analysis and design approaches to study the effects and 

design the parameters of additional fluid viscous dampers for the vibration 

control of complicated structural systems described by FE model. Firstly, the 

displacement and force transmissibility of multi-storey building structures under 

harmonic excitations are evaluated using the OFRF based description. The 

results are compared with the FE simulations to verify the effectiveness of the 

application of the OFRF concept to describe the vibration transmissibility of 

more complicated engineering structural systems. Then, the displacement 

vibration responses of an offshore pylon structure under wind loading 

excitations are evaluated using the FE simulation analysis. The effects of 

different types of additional fluid viscous dampers on the vibration control of the 

structural system are studied. After that, the OFRF and VPLF concepts are 

applied to design the damping characteristic parameters of additional fluid 

viscous dampers in the offshore structure to achieve desired structural vibration 

response. The advantages of different types of fluid viscous dampers for the 

structural system vibration control in different loading conditions are also 

discussed. These results demonstrate that the OFRF and VPLF concepts based 

approaches have considerable significance in the analysis and design of 

additional damping devices for the vibration control of more complicated 

structural systems. 

 

7.2 Finite Element Analysis 

 

FE analysis was originally introduced by Turner in 1956 [195] for the analysis 

of aircraft structural systems. It’s a powerful computation technique for 

approximate solutions to a variety of practical engineering problems which have 

complex domains subjected to general boundary conditions [191]. FE models 

describe the practical systems by elements and specific points along the element 

boundaries, which are called “nodes”. FE analysis is an extension of derivative 
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and integral calculus and uses very large matrix arrays and mesh diagrams to 

calculate the stress, movement and forces on the nodes in the FE models, and to 

simulate the physical behaviors of practical systems. 

 

With the development of modern computation techniques, the FE models have 

become more and more popular in the system analysis and design because of 

their simplicity and feasibility in practical applications. Many commercial FE 

analysis programs have been issued for different application fields, such as 

FLUENT for computational fluid dynamic analysis, ABAQUS for structural 

analysis, ADINA for solid-fluid interaction analysis, ANSYS for general 

engineering system analysis, and so on. 

 

Up to now, many FE simulations have been studied and applied in the analysis 

and design of practical engineering structural systems, such as civil buildings, 

bridges, vehicle engines and so on, demonstrating good performance in 

engineering optimal analysis, vibration control design, structural safety 

protection and others [191, 196, 197]. Choi et al. [196] proposed an effective 

nonlinear analysis method for the earthquake response of soil-structure 

interaction systems based on the FE simulations. In their studies, the ANAYS 

program was used to obtain the nonlinear dynamic responses of complex 

structural systems in the time domain. Based on the FE simulation results, the 

effects of material nonlinearity and interface conditions on the system response 

to earthquake were discussed. Karagulle [197] applied the FE model in the 

active vibration control of smart structures, the results obtained by the Laplace 

transform and by the FE simulations were compared to verify the effectiveness 

of the FE model in the analysis and design of active control systems. Khot [198] 

studied the vibration responses of a two-degree-of-freedom spring-mass-damper 

system. The transfer function and state space model in physical coordinates of 

the same system were obtained by using the ANSYS program and the MATLAB 

program. The system output frequency responses obtained from the FE 
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simulations and the numerical simulations were compared and found to be in 

good agreement. In order to study the frequency domain characteristics of 

flexible systems, Kokkinos and Spyrakos [199] combined the Boundary 

Element Method (BEM) and the FE model to study the dynamic behaviors of 

flexible massive strip-foundations. Their results revealed that the new frequency 

domain BEM-FEM approach is more efficient and considerably faster than the 

traditional time domain methods in analyzing soil-structure interaction systems. 

Lee and Kim [200] applied the Signal Anomaly Index (SAI) to express the 

amount of changes in the shape of the system Frequency Response Functions 

(FRFs) and proposed a new structural damage identification and location 

technique based on the FE simulations. In their studies, a series of FE 

simulations of a civil bridge were performed to verify the effectiveness of the 

proposed approach in the analysis and design of nonlinear structural systems. 

 

In this chapter, the ANSYS program is used to perform the FE simulations for 

nonlinearly damped structural systems. The ANSYS program has powerful 

solving capability in the system simulation and provides a variety of modeling 

and solving methods to consider the system nonlinearity in loading, geometric, 

material, contact and so on. A typical FE simulation analysis using the ANSYS 

program usually includes three main steps: model generation, solution and 

results review. In the model generation step, the geometric model of a practical 

system is created and the material properties are defined. Then the geometric 

model is meshed to generate the FE model of the practical system. In the 

solution step, the system boundary and loading conditions are specified in the 

FE model and the simulation study is conducted. In the results review step, the 

main works are to check the validity of the FE simulation and plot or list the 

simulation results. 

 

According to the dynamic characteristics of practical engineering systems to be 

studied, three FE analysis methods are mainly used in the ANSYS program to 
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simulate the dynamic responses of structural systems under different loading 

excitations. These are harmonic response analysis, transient dynamic analysis 

and LS-DYNA explicit analysis. 

 

Harmonic response analysis [191] is a technique used to determine the 

steady-state response of a system subjected to harmonic excitations. This FE 

analysis method calculates the system steady-state response at different 

frequencies and obtains a graph of the response quantity (such as displacement) 

versus frequency. Harmonic response analysis only considers the steady-state, 

forced vibrations of structural systems. It's a linear analysis approach, so the 

system nonlinearities, such as plasticity, is ignored [201] in the simulation. 

 

Transient dynamic analysis (sometimes called “time-history analysis”) is a 

technique used to determine the dynamic response of a structural system 

subjected to non-cyclic transient excitations. The structural system’s inertial and 

damping effects are considered to be important in the simulation. This FE 

analysis method is often used to determine the time history of displacements, 

strains, stresses, and forces in a structural system induced by any combination of 

the static, transient, and harmonic excitations. 

 

Different from the above two implicit FE analysis methods, LS-DYNA explicit 

analysis uses the explicit FE program and is designed for the transient dynamic 

analysis of highly nonlinear systems [202]. This FE analysis method is based on 

the explicit time integration and therefore it can greatly improve the simulation 

speed for complex systems with large deformation and nonlinearity [201]. 

LS-DYNA explicit analysis is originated from a "public domain" code named 

DYNA3D, which was developed at the Lawrence Livermore National 

Laboratory around the year 1976 [191]. It is a general purpose FE code 

particularly suitable to analyze the nonlinear responses of practical systems. 

With long time development, LS-DYNA explicit analysis has become a 
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powerful analysis and design tool for nonlinear systems in many different 

research fields and provided fast solutions for many practical problems, such as 

contact, large deformations, nonlinear materials, high frequency response 

phenomena and so on. 

 

7.3 The OFRF based analysis of the vibration control 

effects of additional fluid viscous dampers on 

multi-storey building structures described by FE model 

 

In order to confirm the effectiveness of the application of the OFRF concept in 

the analysis of structural systems described by FE model, the displacement 

vibration isolation and force vibration isolation of multi-storey building 

structures under harmonic excitations are analyzed using the ANSYS program. 

The OFRF based representations of the system transmissibility are evaluated 

and compared with the results from the FE model simulations. The effects of 

damping characteristic parameters and installation locations of additional fluid 

viscous dampers on the system transmissibility are investigated using the 

OFRF based approach. 

 

7.3.1 FE models of multi-storey building structures 

          
 (a) 1-storey building  (b) 2-storey building  (c) 3-storey building 

Fig. 7.1 FE models of multi-storey buildings for displacement vibration isolation analysis 
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(a) 1-storey building  (b) 2-storey building  (c) 3-storey building 

Fig. 7.2 FE models of multi-storey buildings for force vibration isolation analysis 

 

Consider the FE models of 1, 2 and 3-storey building structures for displacement 

vibration isolation (DVI) analysis and force vibration isolation (FVI) analysis, 

respectively. The FE models of these structural systems are created using the 

ANSYS/LS-DYNA module as shown in Figs.7.1 and 7.2. Each support pillar of 

these models consists of 1250 flexible elements and the dimension is 

mm4004040 ×× . The flexible elements’ material density 3
1 kg/m2000=ρ  

and elasticity modulus a
6 P10=EX . The Poisson’s ratios of all flexible 

materials are ignored in the FE simulations. The ceiling of each storey in these 

FE models is defined as a rigid board with the dimension mm40400400 ××  

and material density 3
2 kg/m2400=ρ . 

 

In the FE models for DVI analysis as shown in Fig.7.1, the foundation moves 

due to the harmonic displacement excitation 

)sin()(in tHtx Ω=         (7.1) 

in the vertical direction, where H  represents the harmonic amplitude of the 

excitation; In the FE models for FVI analysis as shown in Fig.7.2, the harmonic 

force excitation 

)sin()(in tHtf Ω=         (7.2) 

is imposed on the top storey in the vertical direction. Eight identical additional 

fluid viscous dampers are cross-inserted on each floor to suppress the vibration 
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responses of structural systems. The damping force of these dampers is 

described by 

)sign(,D r
a

ran uuCF n

n
=       (7.3) 

where 
nanC ,  and na , 3,2,1=n , represent the damping coefficient and 

exponent of the additional fluid viscous dampers on the nth floor. ru  is the 

relative velocity between the two ends of the damper [33, 46, 50]. 

 

The element model of additional fluid viscous dampers is Combi165 explicit 

spring-damper element as shown in Fig.7.3, and the element model of the 

support pillars and ceilings of the structural systems is SOLID164 explicit 3D 

structural solid element as shown in Fig 7.4. 

  
Fig.7.3 COMBI165 element in ANSYS program Fig.7.4 SOLID164 element in ANSYS program 

 

COMBI165 [201] is a two-node, 1D explicit element and is only used in the 

explicit dynamic analyses. It’s always used to model simple springs or dampers 

to simulate the vibration responses of complicated mechanisms. This element 

provides a variety of discrete element formulations that can be used to model 

complicated force-displacement relations. 

 

SOLID164 element [201] is defined by eight nodes having the following DOF at 

each node: translations, velocities, and accelerations in the nodal x, y, and z 

directions. It’s always used for the 3D modeling of solid structures [201]. 
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7.3.2 Confirmation of the OFRF based representation of the 

structural vibration responses 

 

In order to confirm the effectiveness of the application of the OFRF concept to 

represent the output frequency responses of multi-storey building structures 

described by FE models, the displacement transmissibility of the 1-storey and 

2-storey building structures with additional fluid viscous dampers are evaluated 

using both the FE simulations and OFRF based evaluation method. The applied 

OFRF based representations for the displacement transmissibility of multi-story 

buildings take the following forms 

)()()()()()( 3
3
vs2

2
vs1vs0 ωωωωωω RCRCRCRHjYDD +++==  

for 1-storey building for DVI analysis   (7.4) 

)()()()()()( 3
3
vs2

2
vs1vs011 ωωωωωω RCRCRCRHjYDD +++==  

for Floor1 of 2-storey building for DVI analysis   (7.5) 

)(~~)(~~)(~~)(~)()( 3
3
vs2

2
vs1vs022 ωωωωωω RCRCRCRHjYDD +++==  

for Floor2 of 2-storey building for DVI analysis   (7.6) 

where )(ωDD , )(1 ωDD  and )(2 ωDD  are the system displacement 

transmissibility as introduced in Chapter 5; )( ωjY , )(1 ωjY  and )(2 ωjY  are 

the output frequency responses of the structural systems; vsC , vsC  and vs
~C  

are the damping coefficients of additional fluid viscous dampers; )(ωiR  

( )(ωiR  or )(~ ωiR ), 3,2,1,0=i , are the functions of the system input spectrum, 

the frequency of interested ω  and depend on all the system parameters apart 

from the damping coefficient vsC  ( vsC  or vs
~C ). In order to determine the 

OFRF based representations for the system transmissibility, the FE simulation 

studies are conducted with the damping coefficient 
nanC ,  taking different 

4≥m  sets of non zero values for each given damping exponent na . For 

example, in order to determine the OFRF based representations of the 
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displacement transmissibility of 2-storey building for DVI analysis where the 

damping exponent of additional fluid viscous dampers 2.0=na , 1=n  or 2, 

the FE model of the structure is simulated with the same input excitations for all 

the cases where the damping coefficients of additional fluid viscous dampers are 

taken as 8.0,6.0,4.0,2.0, =
nanC . 

 

For the situations that the amplitude of harmonic input excitation m10 4−=H  

in Eq.(7.1), the comparisons between the displacement transmissibility obtained 

from the FE simulations and the OFRF based evaluation method are shown in 

Figs.7.5 to 7.10, where matC  is the material damping coefficient defined in FE 

models of multi-storey building structures, 
nanC ,  represents the damping 

coefficient of additional fluid viscous dampers fitted on the nth floor )2,1( =n  

and the damping exponent is taken as 2.0=na  or 3. For example, the 

displacement transmissibility )(1 ωDD  and )(2 ωDD  obtained from the FE 

simulations and from the OFRF based evaluation method are compared in 

Figs.7.7 and 7.9 in the case of 5.0, =
nanC . 

100 101 102 10310-2

10-1

100

101

D
is

pl
ac

em
en

t T
ra

ns
m

is
si

bi
lit

y
in

 F
lo

or
1

Ω

      FE, Cmat=2%, a1=0.2, C1,a1=0.7
 OFRF, Cmat=2%, a1=0.2, C1,a1=0.7

 100 101 102 10310-2

10-1

100

101

Di
sp

la
ce

m
en

t T
ra

ns
m

iss
ib

ilit
y

in
 F

lo
or

1

Ω

      FE, Cmat=2%, a1=3, C1,a1=8x105

 OFRF, Cmat=2%, a1=3, C1,a1=8x105

 
Fig.7.5 Displacement transmissibility on  Fig.7.6 Displacement transmissibility on 

Floor1 of 1-storey building for DVI analysis   Floor1 of 1-storey building for DVI analysis 

when the damping exponent 2.0=a     when the damping exponent 3=a  
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Fig.7.7 Displacement transmissibility on    Fig.7.8 Displacement transmissibility on 

Floor1 of 2-storey building for DVI analysis  Floor1 of 2-storey building for DVI analysis 

 when the damping exponent 2.0=a    when the damping exponent 3=a  

100 101 102 10310-4

10-3

10-2

10-1

100

101

Di
sp

la
ce

m
en

t T
ra

ns
m

iss
ib

ilit
y

in
 F

lo
or

2

Ω

      FE, Cmat=2%, a1=0.2, C1,a1=0.5, C2,a2=0

 OFRF, Cmat=2%, a1=0.2, C1,a1=0.5, C2,a2=0

      FE, Cmat=2%, a2=0.2, C1,a1=0, C2,a2=0.5

 OFRF, Cmat=2%, a2=0.2, C1,a1=0, C2,a2=0.5

 100 101 102 10310-4

10-3

10-2

10-1

100

101

Di
sp

la
ce

m
en

t T
ra

ns
m

iss
ib

ilit
y

in
 F

lo
or

2

Ω

      FE, Cmat=2%, a1=3, C1,a1=1x105, C2,a2=0

 OFRF, Cmat=2%, a1=3, C1,a1=1x105, C2,a2=0

      FE, Cmat=2%, a2=3, C1,a1=0, C2,a2=1x107

 OFRF, Cmat=2%, a2=3, C1,a1=0, C2,a2=1x107

 
Fig.7.9 Displacement transmissibility on   Fig.7.10 Displacement transmissibility on 

Floor2 of 2-storey building for DVI analysis  Floor2 of 2-storey building for DVI analysis 

when the damping exponent 2.0=a    when the damping exponent 3=a  

 

In addition, in order to confirm the effectiveness of the OFRF based 

representation for both the damping coefficient and exponent to represent the 

system transmissibility, the force transmissibility )(ωFF  of 1-storey building 

structure in Fig.7.2(a) are evaluated from both the FE simulations and OFRF 

based evaluation method at the system 1st resonant frequency. The results are 

shown in Figs.7.11 and 7.12 and the evaluation errors of the OFRF based 

approach is calculated in Fig.7.13. The OFRF representation for the system 

force transmissibility takes the following form 

∑∑
= =

==
1 2

0 0
, )()()(

N

m

N

n
nm

n
vs

m
vsforce SCaHjYFF ωωω     (7.7) 

where the maximum powers of the damping exponent and coefficient 
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321 == NN ; )( ωjYforce  is the force output frequency response of the 1-storey 

building structure for FVI analysis; vsC  and vsa  are the damping coefficient 

and exponent of additional fluid viscous dampers; )(, ωnmS , 2,1,0, =nm , are 

the functions of the system input spectrum, the frequency of interest ω  and 

depend on all the system parameters apart from the viscous damping coefficient 

vsC  and exponent vsa . 

  
Fig.7.11 Force transmissibility at 1st resonant    Fig.7.12 Force transmissibility at 1st resonant 

frequency of the FE model of 1-storey building  frequency of the FE model of 1-storey building 

for FVI analysis by the OFRF based method        for FVI analysis by FE simulations 

 
Fig.7.13 Errors of the force transmissibility by the OFRF based evaluation method 

 

Because of the wave effects of flexible material elements in the FE model 

simulations, some peak values of the displacement transmissibility occur at the 

wave resonant frequencies in higher frequency region as shown in Figs.7.5 to 

7.10. These have been theoretically confirmed by the “Long” –Rod and “Love” 

theories [178]. The displacement transmissibility of 1 and 2-storey buildings are 

more complicated than the displacement transmissibility of simplified MDOF 

systems discussed in Chapter 5. However, the results shown in Figs.7.5 to 7.13 
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clearly indicate an excellent agreement between the displacement and force 

transmissibility obtained from the FE simulations and the OFRF based 

evaluation method. These results confirm the effectiveness of the application of 

the OFRF concept in the analysis of more complicated structural systems. The 

small difference that can be observed are mainly due to the truncation error in 

the OFRF based evaluation method, which only considers up to power 3 of 

nonlinear damping parameters in the OFRF representations in Eqs.(7.4)-(7.7). 

The lower power of the nonlinear damping parameters will produce less 

accurate evaluation results. For example, when the maximum powers of the 

viscous damping exponent and coefficient 221 == NN  in Eq.(7.7) are 

considered, the force transmissibility of 1-storey building structure for FVI 

analysis in Fig.7.2(a) can be evaluated by the OFRF based method and the 

results are shown in Fig.7.14. The evaluation errors of the OFRF based approach 

in this case are shown in Fig.7.15. 

  
Fig.7.14 Force transmissibility at 1st resonant   Fig.7.15 Errors of the force transmissibility by 

frequency of the FE model of 1-storey building     the OFRF based evaluation method with 

for FVI analysis by the OFRF based method        the maximum powers 221 == NN  

with the maximum powers 221 == NN  

 

Compared with traditional system design methods, the OFRF concept focuses 

on the relationship between the system output frequency response and the 

nonlinear system parameters. Even for the FE models of more complicated 

structural systems, the OFRF concept has shown its effectiveness when applied 

to represent the system output frequency response and to evaluate the system 
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transmissibility from the simulation data. By using the OFRF concept, the 

studies on the effects of nonlinear system parameters on the output frequency 

responses of complicated structural systems do not need to focus on the system 

structure and can be directly performed in an analytical representation. 

Therefore, the optimal design of nonlinear system parameters can be facilitated 

to achieve a desired output frequency response. 

 

7.3.3 Effects of additional fluid viscous dampers on the system 

transmissibility 

 

Using the OFRF based evaluation method, the effects of damping characteristic 

parameters and fitting locations of additional fluid viscous dampers on the 

system transmissibility of the multi-storey building structures described by FE 

models are studied and the results are provided in Figs.7.16 to 7.24, where the 

amplitudes of harmonic loading excitations are m10 4−=H  for DVI analysis 

and N100=H  for FVI analysis. ia , 3,2,1=i , represents the damping 

exponent of additional fluid viscous damper on the thi  storey and aiiC ,  

represents the damping coefficient. 
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(a) 12.01 <=a     (b) 11 =a       (c) 131 >=a  

Fig.7.16 Effects of fluid viscous dampers on )(ΩDD  of 1-storey building for DVI analysis 
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(a) 12.01 <=a      (b) 11 =a      (c) 131 >=a  

Fig.7.17 Effects of fluid viscous dampers on )(ΩFF  of 1-storey building for FVI analysis 
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(a) 12.0 <=ia , 2or1=i    (b) 1=ia , 2or1=i    (c) 13 >=ia , 2or1=i  

Fig.7.18 Effects of fluid viscous dampers on )(1 ΩDD  of 2-storey building for DVI analysis 
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(a) 12.0 <=ia , 2or1=i    (b) 1=ia , 2or1=i    (c) 13 >=ia , 2or1=i  

Fig.7.19 Effects of fluid viscous dampers on )(2 ΩDD  of 2-storey building for DVI analysis 
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(a) 12.0 <=ia , 2or1=i    (b) 1=ia , 2or1=i    (c) 13 >=ia , 2or1=i  

Fig.7.20 Effects of fluid viscous dampers on )(ΩFF  of 2-storey building for FVI analysis 
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(a) 12.0 <=ia ， 3or2,1=i   (b) 1=ia ， 3or2,1=i     (c) 13 >=ia ， 3or2,1=i  

Fig.7.21 Effects of fluid viscous dampers on )(1 ΩDD  of 3-storey building for DVI analysis 
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(a) 12.0 <=ia ， 3or2,1=i   (b) 1=ia ， 3or2,1=i      (c) 13 >=ia ， 3or2,1=i  

Fig.7.22 Effects of fluid viscous dampers on )(2 ΩDD  of 3-storey building for DVI analysis 
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(a) 12.0 <=ia ， 3or2,1=i   (b) 1=ia ， 3or2,1=i    (c) 13 >=ia ， 3or2,1=i  

Fig.7.23 Effects of fluid viscous dampers on )(3 ΩDD  of 3-storey building for DVI analysis 
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Fig.7.24 Effects of different types of fluid viscous dampers on )(ΩFF  of 3-storey 

building for FVI analysis 

 

Compare the results in Figs.7.16 to 7.24 with the corresponding results in 
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Chapter 5 where MDOF models were used to describe the building structures, it 

can be found that, apart from the peak values of the system transmissibility at 

the wave resonant frequencies over the higher frequency region, the effects of 

additional fluid viscous dampers on the displacement and force transmissibility 

revealed in here are all consistent with the conclusions achieved previously in 

Chapter 5. These results, therefore, further confirm the beneficial effects of 

additional nonlinear fluid viscous dampers on the vibration control of practical 

engineering structural systems. 

 

7.4 Additional fluid viscous dampers design for an 

offshore pylon structure 

 

7.4.1 Offshore pylon structure: FINO3 research platform 

 

In order to satisfy the increasing demands for energy and at the same time 

minimize negative effects on global environment, more and more 

next-generation energy technologies have focused on the renewable energy 

source, such as wind energy, ocean energy, solar energy and so on [203]. 

 

As one of the widely used energy, wind energy provides an environmental 

friendly renewable option for the energy generation [204] and is expected to 

play an increasingly important role in the future global energy supply [205]. 

Because of the good wind farm circumstance in the offshore environment, the 

renewable and pollution-free offshore wind energy industry has been considered 

as an important part of the next generation energy supply. However, compared 

with the well-developed industry on land, many new demands have occurred in 

the construction and operation of these offshore industries. Traditional wind 

power stations and wind turbine technologies need to be further developed and 

even completely redesigned for use in offshore areas. 
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Europe is the global leader in the wind energy [204]. In the Renewable Energy 

Sources Act (Erneuerbare-Energien-Gesetz, EEG), the German Federal 

Government specified that the share of renewable energy in gross electricity 

consumption is to be increased to at least 30% by 2020. In 2030 around half of 

Germany's electricity consumption should be covered by renewable energy. In 

order to achieve these targets, the potential of offshore wind energy generation 

should be utilized. 

 

In order to maximize the wind energy utilization in the offshore environment, 

German Federal Government has built three offshore research platforms in the 

North Sea and Baltic Sea. The latest one is the FINO3 (Forschungsplattformen in 

Nord und Ostsee – Nr.3), which is directly related to the FINO1 (45km north of 

the island Borkum) and FINO2 (40km northwest of the island Rügen) [206]. 

FINO3 is located at 55011.7’N/00709.5’E, approximately 80km west of the 

island of Sylt in the North Sea. 

   
Fig.7.25 FINO3 research platform        Fig.7.26 Locations of FINO1-3 

 

The objective of the FINO3 project is to investigate boundary conditions for the 

realization of offshore wind farms at extreme distances from the coast. FINO3 

research platform will play a significant role in the development and expansion 

of offshore wind power generation. 



CHAPTER 7. Additional Nonlinear Damping Device Designs for Structural Systems Described by FE Model       171 

In the present study, the vibration responses of the offshore pylon structure 

under wind loading excitations are simulated using the ANSYS program. In 

order to suppress the structural vibrations, additional fluid viscous dampers 

having the following characteristic 

D sign( )a
a r rF C u u=         (7.8) 

are installed inside the structure to dissipate the vibration energy. In Eq.(7.8), 

DF  is the damping force, ru  is the relative velocity between the two ends of 

the damper, aC  and a  are the damping coefficient and exponent, 

respectively. Moreover, the design of additional fluid viscous dampers for the 

offshore pylon structure is conducted by using the OFRF approach and VPLF 

concept. The objective is to apply the OFRF based design approach to address 

the important offshore structure vibration control problems in order to provide a 

better solution to the challenging engineering problems in the offshore wind 

industry. 

 

7.4.2 FE model of the FINO3 pylon structure 

        
Fig.7.27 FE model of the pylon structure     Fig.7.28 Top view of the pylon structure 

 

Using the ANSYS program and the parameters of the offshore pylon structure 

provided by FINO3 operator, the FE model of the pylon structure of FINO3 is 

created as shown in Figs.7.27 and 7.28. The element model of steel pipes in the 
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pylon structure is PIPE16 as shown in Fig.7.29 and the element model of 

additional fluid viscous dampers fitted inside the structure is COMBIN37 as 

shown in Fig.7.30. 

   
          Fig.7.29 PIPE16 element        Fig.7.30 COMBIN37 element 

 

PIPE16 [201] is a uni-axial element with tension-compression, torsion, and 

bending capabilities. This element has 6-DOF at two nodes: translations in the 

nodal x, y, and z directions and rotations about the nodal x, y, and z axes. 

PIPE16 element is usually used to model the pipes in practical engineering 

systems. 

 

COMBIN37 [201] is a unidirectional element with the capability of turning on 

and off during an analysis. This element has 1-DOF at each node, either a 

translation in a nodal coordinate direction, rotation about a nodal coordinate axis, 

pressure, or temperature. This element has many applications in practical 

engineering systems, such as controlling heat flow as a function of temperature, 

controlling damping as a function of velocity, controlling flow resistance as a 

function of pressure, controlling friction as a function of displacement, etc.. 

 

Based on the FE simulation, the first modal frequency of the offshore pylon 

structure can be obtained as (Hz)1.07941 =f . The system damping ratio is 

chosen as %3=ζ  and defined in the form of Rayleigh damping in the ANSYS 

program. Because this FINO3 pylon structure is located in the offshore 

environment, the wind loading excitation is the most significant impact factor 
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for the safety and protection of this pylon structure. In order to study the effects 

of additional fluid viscous dampers on the system vibration response under wind 

loading excitations, the displacement vibration relative to the balance position 

under the mean wind speed loading at the top of the offshore pylon structure is 

defined as the system vibration response to be reduced. The wind loading 

excitations with m/s20  meaning wind speed at the foundation are imposed 

along the pylon structure in the form of pressure loading. Additional fluid 

viscous dampers are installed inside the offshore pylon structure as shown in 

Fig.7.31, where the structure is divided to 17 floors and 6 identical fluid viscous 

dampers are installed on each floor as shown in Fig.7.32. 
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Fig.7.31 The offshore pylon structure of FINO3 with fitted additional fluid viscous dampers 

 

 
Fig.7.32 Additional fluid viscous dampers on one floor of the offshore pylon structure 
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7.4.3 Additional fluid viscous dampers design of the pylon 

structure 

 

7.4.3.1 Determination of vibration power of the offshore pylon structure 

without fitted fluid viscous dampers 

 

Following the computational process of the wind speed introduced in Section 

6.4.2.2, the time history of m/s20  mean wind speed at the foundation of the 

offshore pylon structure is calculated and shown in Fig.7.33. The Power Spectral 

Density (PSD) of this time history is evaluated as shown in Fig.7.34 to verify 

the validity of the computation. 
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Fig.7.33 Time history of wind speed at foundation   Fig.7.34 PSD of the simulated wind speed 

 

Substituting the above time history of the wind speed into the FE model of the 

offshore pylon structure, the displacement vibration response of the structural 

system without fitted fluid viscous dampers can be simulated using the ANSYS 

program. Fig.7.35 shows the displacement vibration response of the offshore 

pylon structure under m/s20  mean wind speed excitation and the FT of the 

result. 
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(a) Vibration response    (b) FT of the vibration response of the offshore pylon structure 

Fig.7.35 Vibration response of the pylon structure and its FT under m/s20  mean wind speed 

 

The power of this vibration response can be evaluated as 

)4(m-1.8529E 2
wind =P . 

 

7.4.3.2 Effects of the locations of additional fluid viscous dampers on the 

system VPLFs 

 

In order to study the effects of additional fluid viscous dampers on the vibration 

control of the offshore pylon structure, the system displacement vibration 

responses under wind loading excitations are simulated using the transient 

dynamic analysis method in the ANSYS program. The effects of different 

locations of the fitted fluid viscous dampers on the structural vibration response 

are investigated by the FE model simulation analysis in the cases listed in 

Table.7.1. 

 

Table 7.1 Cases for the locations and types of fitted fluid viscous dampers 

 Types of fitted viscous dampers Locations of dampers 

Case1 
Damping exponent 3.0=a , 

coefficient ]5E1,0[3.0 ∈C  
On all floors 

Case2 
Damping exponent 1=a , 

coefficient ]8E1,0[1 ∈C  
On all floors 
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Case3 
Damping exponent 5.1=a , 

coefficient ]10E1,0[5.1 ∈C  
On all floors 

Case4 
Damping exponent 3.0=a , 

coefficient 5E13.0 =C  
On a single floor 

Case5 
Damping exponent 1=a , 

coefficient 8E11 =C  
On a single floor 

Case6 
Damping exponent 5.1=a , 

coefficient 10E15.1 =C  
On a single floor 

 

In order to simplify the damping design, all fitted fluid viscous dampers are 

defined to have the same damping characteristics parameters. The system 

VPLFs with different fluid viscous dampers are calculated from the FE 

simulation results as shown in Fig.7.36 for Cases 1-3 and in Fig.7.37 for Cases 

4-6. 
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Fig.7.36 VPLFs under different damping coefficients of additional dampers for Cases 1-3 
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Fig.7.37 VPLFs under different installation locations of additional dampers for Cases 4-6 

 

From the VPLFs results in Figs.7.36 and 7.37, it can be found that the fitted 
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linear and nonlinear fluid viscous dampers can both suppress the displacement 

vibration response of the offshore pylon structure and the fluid viscous dampers 

with a larger value of the damping coefficient can produce better vibration 

control effect on the structural displacement vibration response. Especially, 

compared with fitted fluid viscous dampers on other floors, fitted fluid viscous 

dampers on Floor 1, 2, 5, 6, 7, 8 and 17 can obviously achieve better vibration 

control effects. 

 

7.4.3.3 Design of the coefficient of additional fluid viscous dampers 

 

Based on the above results, additional fluid viscous dampers are fitted on Floor 

1, 2, 5, 6, 7, 8 and 17 for vibration control. According to the VPLF concept 

proposed in Chapter 6, the OFRF based representation for the system VPLF γ  

has the form 

∑
=

=
N

i
i

i
aa CC

2

1
)( ργ         (7.9) 

where aC  is the damping coefficient of additional fluid viscous dampers with a 

certain damping exponent a  and N  is the order of the OFRF representation. 

A higher order OFRF representation (a bigger value of N ) can achieve more 

accurate results but the computation will be more complicated and more 

simulation results are needed. The following system VPLF expression is used in 

the designs 

4
4

3
3

2
21)( aaaaa CCCCC ρρρργ +++=      (7.10) 

 

In order to work out the coefficients iρ , 4,3,2,1=i , to determine the system 

VPLF expression in Eq.(7.10), 10=m  FE simulation studies are conducted 

where the offshore pylon structure is excited by the same wind loading 

excitation and the damping coefficients aC  of additional fluid viscous dampers 

take m  different sets of non zero values with a certain damping exponents a . 
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The FE models of the offshore pylon structure with these dampers are simulated 

and the system VPLFs under these designs are evaluated from the FE simulation 

results as shown in Fig.7.38. 
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(a) 13.0 <=a      (b) 1=a      (c) 15.1 >=a  

Fig.7.38 VPLFs with different damping coefficients of additional fluid viscous dampers 

 

Using the system VPLFs obtained from the FE simulations in Fig.7.38, where 

three different types of fluid viscous dampers ( 2.0=a , 1 and 1.5) are fitted in 

the structural system, the OFRF based representations for the VPLF of the pylon 

structure with different types of fluid viscous dampers can be respectively 

calculated as 

4
2.0

3
2.0

2
2.02.02.0

)21--2.994E()16-9.0707E(

)10--1.1239E()6-7.1234E()(
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++

+=γ
   (7.11) 

4
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2
111

)32--2.2634E()24-5.0942E(

)16--4.0591E()8-1.4331E()(

CC
CCC

++

+=γ
    (7.12) 
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++

+=γ
   (7.13) 

 

Based on the system VPLF representations in Eqs.(7.11) to (7.13), when the 

system VPLF %15=γ  is to be achieved, 4E8.33.0 =C , 7E8.11 =C , 

9E4.15.1 =C  should be designed as the corresponding damping coefficients of 

different types of fluid viscous dampers. By FE simulations, the displacement 

vibration responses of the offshore pylon structure with these designed fitted 

fluid viscous dampers and their FT can be shown in Figs.7.39 and 7.40. 
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Fig.7.39 Vibration response of the offshore pylon structure with different types of fluid viscous 

dampers under m/s20  mean wind speed excitation 
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Fig.7.40 FT of the vibration response of the offshore pylon structure with different types of fluid 

viscous dampers under m/s20  mean wind speed excitation 

 

However, in the real offshore environment, the wind loading excitations on the 

structural systems change all the time. The system vibration control designs 

made in some typical loading conditions should also provide essential safety 

protection for the systems under some extreme loading excitations. In order to 

study the effects of different types of fluid viscous dampers on the vibration 

response of the pylon structure in different mean wind speed conditions, the 

system displacement vibration responses with the above additional fluid viscous 

dampers designs are evaluated from the FE simulation results in m/s10 , 

m/s20  and m/s40  mean wind speed conditions. The results are listed in 

Table.7.2. 

 

Table.7.2 VPLFs of the offshore pylon structure with different types of fluid viscous 

dampers under different mean wind speed conditions 

Damping parameters 
m/s10  mean 

wind speed 

m/s20  mean 

wind speed 

m/s40  mean 

wind speed 

3.0=a , 4E8.3=aC  %04.20  %15  %16.8  
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1=a , 7E8.1=aC  %15.15  %15  %07.15  

5.1=a , 9E4.1=aC  %23.11  %15  %14.18  

 

The results in Table.7.2 show that, in comparison with what can be achieved by 

the equivalent linear fluid viscous dampers design, nonlinear fluid viscous 

dampers with the damping exponent 13.0 <=a  ( 15.1 >=a ) can dissipate 

more vibration energy to protect the structural systems under milder (severer) 

loading exercitations. 

 

The above results confirm the effectiveness of the application of the OFRF and 

VPLF concept in additional fluid viscous dampers design of more complicated 

offshore engineering systems described by FE models under general loading 

excitations. These results extend the application of the OFRF and VPLF concept 

to more complicated structural systems, and have significance for the practical 

engineering system design in a wide range of applications. 

 

7.5 Conclusions 

 

In this chapter, using the FE models of multi-storey building structures under 

harmonic excitations and the FE model of an offshore pylon structure under 

wind loading excitations, the effects of additional fluid viscous dampers on the 

suppression of vibration responses of complicated structural systems are studied. 

The additional fluid viscous dampers designs are achieved based on the OFRF 

and VPLF concepts. These results reveal that 

 

1) The OFRF and VPLF concepts are confirmed to be effective for the analysis 

and design of more complicated engineering systems described by FE models. 

The OFRF concept can be used to directly evaluate the vibration transmissibility 

of these structural systems under harmonic excitations, and the VPLF concept 
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can be used to evaluate and design the vibration control effects of additional 

fluid viscous dampers on the vibration responses of complicated structural 

systems under general loading excitations. 

 

2) In the vibration control design for complicated engineering systems, the 

additional fluid viscous dampers should be installed at proper locations in the 

structural systems and the damping characteristic parameters should be properly 

designed based on the considered loading conditions. 

 

These results extend the applications of OFRF and VPLF concepts to more 

complicated structural systems and have significant implications for the analysis 

and design of vibration systems in a wide range of practical applications. 
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Chapter 8 
 

Conclusions 
 

Vibration control has significant implications for the safety and reliability of 

modern mechanical and civil engineering structural systems, especially in 

extreme loading conditions. In order to achieve desired structural vibration 

control performance, the linear frequency domain analysis and design methods 

have been widely studied and applied in engineering practice. The frequency 

domain approaches have provided intuitive and physically meaningful insights 

into the structural systems’ dynamic behaviors and provided important 

theoretical foundation for the linear system design for vibration control purpose. 

However, these effective analysis and design approaches can not be easily 

extended to the nonlinear case. Conventional nonlinear system frequency 

analysis and design approaches often involve complicated mathematical 

computations and symbolic operations, and are therefore difficult to be applied 

in engineering practice. 

 

This thesis has provided a comprehensive review of typical damping devices 

that have been widely applied in engineering practice, and introduced 

conventional nonlinear frequency domain analysis and design approaches. Then 

new analysis method and design procedure have been proposed to facilitate the 

study and design of SDOF viscously damped vibration systems subject to 

harmonic excitations. After that, based on the OFRF concept proposed at 

Sheffield, a frequency domain analysis and design approach has been developed 

to investigate the effects of nonlinear damping characteristic parameters on the 

transmissibility of MDOF viscously damped vibration systems subject to 

harmonic loading excitations and to design the parameters for a desired system 

vibration performance. Moreover, the new concept of VPLF has been proposed 
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to evaluate the vibration performance of MDOF systems subject to general 

loading excitations. This enables the derivation of the OFRF representation of 

the VPLF, which allows the design of the characteristic parameters of additional 

nonlinear viscous damping devices in MDOF structural systems to be readily 

achieved in general loading conditions. Finally, the proposed OFRF and VPLF 

based approaches have been applied to the analysis and design of additional 

viscous damping devices in more complex structural systems which are 

described by FE models to verify the performance of the analysis and design in 

more complicated situations. 

 

The results in this thesis have demonstrated that appropriately designed 

nonlinear damping devices can achieve better vibration performance than linear 

damping devices. The proposed nonlinear frequency domain analysis and design 

approaches can be used to significantly facilitate the analysis of the behaviours 

of nonlinear viscously damped structural systems and the design of damping 

characteristic parameters in a wide range of practical applications. 

 

8.1 Main Contributions of this thesis 

 

The work in this thesis involves the development of significant nonlinear 

frequency domain analysis and design approaches for nonlinear viscously 

damped structural systems that can be represented by SDOF, MDOF and FE 

models and are subject to either harmonic or general loading excitations. The 

studies reveal the potential and demonstrate the significance of the application 

nonlinear damping devices in the vibration control of engineering structural 

systems. The main contributions of this thesis can be summarized as follows. 

 

(1) Analysis and design of SDOF viscously damped vibration systems subject to 

harmonic excitations 
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Based on the Ritz-Galerkin method, a new method for the evaluation of the 

transmissibility of nonlinear SDOF viscously damped vibration systems under 

general harmonic excitations has been derived. The effects of damping 

characteristic parameters on the system transmissibility have been investigated. 

A three-step nonlinear damping system design procedure has been proposed to 

facilitate the viscous damping parameters design for a desired system vibration 

performance. The results reveal the potential of nonlinear viscous damping in 

the vibration control of SDOF viscously damped vibration systems subject to 

harmonic excitations, and provide important guidelines for the selection of the 

types and the design of the parameters of viscous damping devices in 

engineering practice. 

 

(2) The OFRF based analysis and design of MDOF viscously damped vibration 

systems subject to harmonic excitations 

 

The OFRF concept recently proposed at Sheffield has been applied to the 

analysis and design of viscously damped vibration systems which can be 

described by the anti-symmetric nonlinear differential equation model. The 

explicit analytical OFRF expression for the relationship between the system 

output frequency response and both the nonlinear viscous damping coefficient 

and exponent has been derived. Based on the OFRF representation, a frequency 

domain analysis and design approach has been developed to study the impact of 

additional nonlinear viscous damping devices on the vibration behaviours of 

MDOF viscously damped vibration systems subject to harmonic excitations.  A 

four-step procedure is then proposed to facilitate the damping characteristic 

parameters design for a desired system vibration performance. The results have 

considerable significance for the analysis and design of nonlinear damping 

devices in a wide class of structural systems. 

 

(3) Design of nonlinear damping devices for MDOF structural systems subject 
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to general loading excitations 

 

In order to evaluate the effects of additional viscous damping devices on the 

vibration control of structural systems subjected to general loading excitations, a 

new concept called VPLF has been proposed. A novel OFRF and VPLF based 

approach for additional viscous damping design has then been proposed to 

achieve desired vibration performance in MDOF structural systems subject to 

general loading excitations. Numerical simulation studies on a MDOF civil 

building structure subject to seismic and wind loading excitations have 

demonstrated the effectiveness of the OFRF and VPLF based approach for 

nonlinear damping devices design. The results reveal the advantages of different 

types of viscous damping devices in the vibration control of structural systems 

and have significant implications for the design of the damping devices for the 

vibration control of MDOF structural systems under different loading 

excitations. 

 

(4) Design of nonlinear damping devices for structural systems described by FE 

models and subject to harmonic and general loading excitations 

 

The OFRF and VPLF based design approach has been applied to the design of 

additional viscous damping devices for the vibration control of structural 

systems, which are so complicated that FE models are used for the system 

description. The effects of damping characteristic parameters on the output 

frequency responses of these structural systems under harmonic and general 

loading excitations have been investigated. The results verify the effectiveness 

of the application of the proposed approaches to the design of additional fluid 

viscous dampers for the vibration control in more complicated structural 

systems. 
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8.2 Suggestions for further research 

 

Although, in the present study, significant work has been done and many results 

have been achieved in the analysis of nonlinearly damped structural systems and 

in the design of the nonlinear damping devices, there are still many further 

issues yet to be addressed. These issues mainly involve the extension of the 

SODF system based evaluation approach to the MDOF systems, dealing with 

more complicated loading conditions, and experimental studies, which are 

discussed in more detail as follows. 

 

(1) Although only the theoretical evaluation and design methods of SDOF 

viscously damped vibration systems subject to harmonic excitations are 

considered in Chapter 4, the principle of the Ritz-Galerkin method based 

evaluation and analysis approach can be applied to the analysis and design of 

MDOF and more complicated engineering systems. The related results can 

provide important guidelines and significant theoretical foundations for the 

analysis and design of the vibration control of MDOF structural systems. In 

order to extend the Ritz-Galerkin method based analysis and design approach to 

complicated structural systems, the issue of more involved mathematical 

computations needs be addressed. 

 

(2) As mentioned in Chapter 5, one important issue with the OFRF concept is 

still to be further studied about how to determine the highest order used for the 

Volterra series representation of a nonlinear system’s output. Larger values of 

the order can produce more accurate results but the involved computation will 

be more complicated and more simulation or experimental data are needed. 

Moreover, for wider practical applications, the OFRF concept should be applied 

to more complicated nonlinear systems. In these cases, following the ideas in 

[114], different OFRF based representations need to be derived to reveal the link 
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between the system vibration responses and design parameters. 

 

(3) By using the OFRF and VPLF based approach, the design of additional 

viscous damping devices can be achieved based on a considered loading 

excitation. But the real loading excitations are more complicated and may be 

stronger or weaker than the considered loading or even changing with time. A 

more comprehensive additional damping devices design methodology is still to 

be developed to address these challenges. Potential solutions to this issue could 

be to use the fully active damping devices, semi-active damping devices or 

combine the strengths of different types of nonlinear damping devices in the 

design to achieve an overall satisfactory vibration performance. 

 

(4) Experimental tests need to be conducted to physically verify the 

effectiveness of the OFRF and VPLF based nonlinear frequency domain 

analysis and design approaches in the applications to practical mechanical and 

civil engineering systems. 

 

The future work involves the further development of the nonlinear damping 

design methodologies. Different loading excitations will need to be collected 

from practical engineering systems and considered in the designs. Theoretical 

analysis, numerical simulation studies, and experimental tests will be conducted 

for the investigations. The final objective is to provide a more comprehensive 

nonlinear damping design approach for the vibration control of practical 

mechanical and civil engineering systems.
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