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Thesis abstract 
 
Triple negative breast cancer (TNBC) accounts for 10-15% of breast cancers 

and is associated with relatively poor prognosis. TNBC is characterised by lack 

of ER, PR and Her2 expression, and consequently does not respond to the 

targeted treatments routinely used to treat other breast cancers. Therefore, 

cytotoxic chemotherapy is the only systemic treatment for primary TNBC in 

routine use. Resistance to chemotherapy in TNBC is a major clinical issue and 

is reflected in the relatively high rate of early recurrences. Cancer associated 

fibroblasts (CAFs) are the most abundant cell type in the tumour stroma and 

have been shown to influence behaviour of the tumour cells. My aims were to 

determine whether CAFs modify responses of TNBC cells to chemotherapy, to 

identify molecular pathways responsible for this cross-talk, and to develop these 

pathways as potential therapeutic targets to enhance chemotherapy responses.    

 

I have shown that breast CAFs, but not normal fibroblasts, dose-dependently 

protect the claudin-low TNBC cell lines MDA-MB-231 and MDA-MB-157 from 

the chemotherapeutic epirubicin.  By contrast, the basal claudin-high TNBC line 

MDA-MB-468 was not protected, demonstrating that the CAFs’ influence is 

specific to certain TNBC characteristics. Transcriptome profiling demonstrated 

that CAF-induced protection of MDA-MB-231 cells was associated with 

deregulation of specific genes and pathways, including activation of the 

interferon-signaling pathway. Recombinant interferons were sufficient to protect 

MDA-MB-231 and MDA-MB-157 cells, implicating IFN as the key mediator of 

CAF-induced protection. Inhibition of the activation of interferon signaling using 

blocking antibodies, JAK/STAT inhibitors or under-/over-expression of specific 

signaling intermediates (miR-155) reduced CAF-dependent protection of MDA-

MB-231 and MDA-MB-157 cells, suggesting that CAF-induced up-regulation of 

interferon signaling is necessary for CAF-induced protection.  

 

I concluded that CAF-induced activation of interferon signaling in certain TNBCs 

is a potential mechanism of chemoresistance, and therefore that addition of 

inhibitors of interferon signaling to chemotherapy regimens in patients with 

stromal-rich TNBCs may improve chemotherapy responses.  
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Chapter 1– Introduction 
 

1.1 Breast cancer epidemiology and development 
 

Breast cancer is the most common cancer in the UK, with around 54,900 cases 

a year accounting for 15% of all new cancer cases in 2015; this means there 

are approximately 150 new breast cancer diagnoses every day (Cancer 

Research UK). Breast cancer is very prevalent in females, but also presents, 

rarely, in males amounting to approximately 380 new cases of male breast 

cancer each year (Cancer Research UK). Breast cancer is responsible for the 

4th highest mortality of all cancer types and accounts for 7% of all cancer 

related deaths. In females, it is the 2nd highest cause of cancer related deaths, 

accounting for 15% of female cancer mortalities with 11,563 deaths associated 

with breast cancer in 2016 (Cancer Resarch UK).  Breast cancer survival rates 

have almost doubled in the last 40 years. In the 1970s, 40% of women 

diagnosed with breast cancer survived longer than 10 years, however now this 

figure is now 78%. Currently 95% of women diagnosed with breast cancer 

survive a year, with 65% surviving 20 years or more (Cancer Research UK). 

 

Cancers, including breast cancer, are formed from the poorly controlled division 

of cells, which is driven by an accumulation of genetic and epigenetic changes. 

Mammary epithelial cells that have acquired mutations over time divide rapidly 

and have the ability to sustain proliferation, evade growth suppression signals 

and resist cell death (Hanahan et al, 2000).  

 

Breast cancers are initially confined to epithelial-lined compartments of the 

breast termed the lobules and ducts and in most cases are believed to arise in 

the Terminal Duct Lobular Unit (TDLU) (Wellings et al,1973) (Figure 1.1). Whilst 

confined to epithelial-lined compartments, the cancer is known as in-situ breast 

cancer and is non-invasive (Cowell et al, 2013). Further proliferation of the 

breast cancer cells, confined in the lobules and ducts, leads to the integrity of 

the basement membrane of these breast structures being lost or fragmented, 

and it is at this stage that the cancer becomes invasive (Duffy et al, 2000). 

Cancer cells are then able to infiltrate into the surrounding breast tissue and 
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can continue to grow as well as migrate throughout the breast tissue (Weigelt et 

al, 2005). It is in the surrounding breast tissue where the tumour will create its 

own niche and microenvironment, which in turn will aid the tumour’s growth and 

spread into lymph and blood vessels (Wiseman et al, 2002). Infiltration into 

blood and lymph vessels and circulatory systems can enable tumour cells to 

travel to secondary sites such as the brain, lung and bone (Lacroix et al, 2006). 

Here, the tumour cells can begin to grow and form metastases, which impair the 

normal functions of distant organs. It is commonly the formation of secondary 

breast cancers that is responsible for the death of breast cancer patients (Hart 

et al, 1980).  

  

Figure 1.1: Breast cancer development from normal breast structures to 
invasive carcinoma 
Normal breast tissues include normal epithelial cells (pink) surrounding open 
lumens. Breast cancer cells (purple) are initially confined to within the lumen of 
the breast ducts and lobules, and are referred to as carcinoma in situ. Breast 
carcinomas become invasive when they break down the basement membrane 
of the ducts/lobules, and invade into the surrounding tissue. 
 

1.2 Breast cancer classification  

 

Breast cancer is not one homogenous cancer type, and it is now commonly 

recognized that there are multiple different classes of breast cancer (Perou et 

al, 2000), which can be defined both histologically and molecularly. Both 

classifications are discussed in this section.  
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1.2.1 Histological classification of breast cancers 

 

One major classification system for breast cancer is based on their microscopic 

appearance, as determined by histopathologists (Rosai, 2011). Importantly, 

histological classification is not just taxonomical, but the different subtypes it 

defines correlate with prognosis, and patients with these different disease 

subtypes are recommended for different treatment strategies (Makki et al, 

2015).  

 

Initially, malignant lesions are split into 2 groups: in situ carcinomas and 

invasive carcinomas (see Figure 1.1) (Burstein et al, 2004). This distinction is 

not one of type but how far the disease has progressed. In situ disease occurs 

prior to invasive carcinomas (Hu et al, 2008). 

 

1.2.1.1 Classification of in situ disease 

 

Whilst it was historically believed that in situ carcinomas originated from ductal 

(confined to breast ducts) or lobular (confined to breast lobules) compartments, 

this is not the case (Wellings et al, 1973). The difference between what is called 

lobular and ductal is merely derived from different molecular repertoires 

governing the morphology of lobular neoplasia in particular, where inactivation 

of the adhesion complex, normally via malfunction of E-cadherin, occurs 

(Mastracci et al, 2005). Nearly all breast cancer derives from the TDLU 

(Wellings et al, 1973). 

 

At a practical/clinical level the most important determinant in ductal carcinoma 

in situ (DCIS) is nuclear grade (Lagios et al, 1989).  DCIS also can grow in a 

variety of morphologies; according to Makki et al (Makki et al, 2015), DCIS can 

be further classified as: 

• Comedo or solid (cancer cells have completely filled the duct) 

• Cribform (gaps between cancer cells within the duct) 

• Micropapillary (dilated ducts lined by stratified population of monotonous 

cells) 

• Papillary (asymmetrical fern like pattern within the duct) 
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However, mixed patterns often occur making the usefulness of the architectural 

classifications minimal (Vinay et al, 2010).  Modern practice would be to record 

the nuclear grade of the DCIS, which is generally mandatory in minimum data 

sets. The pattern is generally not mandatory data (Pinder et al, 2010). 

 

1.2.1.2 Classification of invasive disease 

 

Invasive carcinomas are also highly heterogenous and can be further classified 

into tumours with very distinct morphological features known as ‘specical type’. 

(Shi et al, 2017).  These ‘special type’ tumours include tubular, ductal lobular, 

invasive lobular, mucinous (colloid) and medullary. They all contain some 

reproducible characteristics that can be recognized down the microscope with 

varying degrees of agreement (Page, 2003). 

 

The remainder of invasive carcinomas (70-80%) are put in the category of 

invasive ductal (infiltrating ductal) of no special type (NST) (Lakhani et al, 2012). 

It is important to recognize that invasive ductal carcinoma NST is not a specific 

type of invasive carcinoma but any carcinoma for which no specific 

morphological profile has yet been determined (Malhotra et al, 2010). 

 

To attempt to predict better the behavior of breast cancers, histological grading 

was divised by Bloom and Richardson (Bloom et al, 1957) and later modified by 

Elston and Ellis (Elston et al, 1991). This grading system gives some guide to 

the biological aggression of the tumour. Grade is determined by a combined 

score derived from the degree of tubule formation, the number of mitotic figures 

in the tumour site, and the nuclear pleomorphism. Each are scored 1-3. Tumour 

grading is determined from the additive score from each of the components; 3-5 

is assigned grade I, 6-7 grade II and 8-9 Grade III (Bloom et al, 1957, Elston et 

al, 1991).  

 

As described by Bloom and Richarson, and Elston and Ellis, grade 1 breast 

cancer cells are normally well differentiated with a high proportion of the tumour 

(above 75%) showing normal breast tissue structures. Grade 1 tumours have a 

low number of mitotic cells and the cells are small and uniform with minimal 
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variation in size and shape. Grade 2 tumours are moderately differentiated, 

where the tumour has between 10%-75% of normal breast structures and a 

moderate mitotic rate. The tumour cells have moderate nuclear variation so are 

slightly bigger than normal cells and display some variation in shape. Grade 3 

tumours are poorly differentiated with less than 10% of the tumour displaying 

normal breast structures. Grade 3 tumours have a high mitotic rate and the 

tumours cells look markedly different to normal cells with varied size and shape. 

Histological grading can be a strong predictor of patient outcome; for example, 

a study of 2219 breast cancer cases demonstrated that histological grade was 

strongly associated with both breast cancer specific survival and disease-free 

survival (Rakha et al, 2008).  

 

The stage of the cancer is an assessment of the size of the tumour, lymph node 

involvement and spread of the cancer beyond the breast. The staging has been 

classified by the tumour, node, metastasis (TNM) system, which has been 

characterized by the American joint committee of cancer (American Cancer 

Society). Stage 1 breast cancer tumours are classically no larger than 2cm and 

in some cases there are also small clusters of cancer cells in the lymph node. 

Stage 2 breast tumours are typically between 2-5cm in size normally with 

axillary lymph node involvement. Stage 3 tumours are progressively larger than 

Stage 2 tumours and are more likely to have spread to multiple lymph nodes. 

Finally stage 4 breast cancers are commonly referred to as metastatic or 

advanced breast cancer. The breast cancer in stage 4 has spread beyond the 

breast tissue into secondary sites such as the brain, bone and lungs (American 

Cancer Society). 

 

1.2.2 Clinical molecular classification of breast cancers 

 

In seminal work by Perou, it was shown that molecular profiles could also be 

used to separate subtypes of breast cancer (Perou et al, 1999). Four subtypes 

of breast cancer are the mainstay of the current molecular classification used in 

clinical practice; these are Luminal A and B, HER2 subtype and triple negative 

breast cancers (Perou et al, 2000).  Breast cancer subtypes were originally 

defined based on microarray-based mRNA expression profiles, but are 
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classically defined clinically using the surrogate markers oestrogen receptor 

(ER), progesterone receptor (PR), HER2 and Ki67 (Perou et al, 2000). The 

characteristics of all these subtypes, and their standard treatment regimens, are 

summarized in Table 1.1. 

 

1.2.2.1 Luminal A and B breast cancer 

 

ER positive breast cancers account for around 70% of all invasive breast 

cancers and can be further divided in to Luminal A and Luminal B breast 

cancers.  Luminal A and B cancers can also have progesterone receptor (PR) 

expression (Vallejos et al, 2010). Luminal A and B cancers are distinguished 

between using Ki67 expression, which is a proliferation marker. Luminal B 

breast cancers have higher levels of Ki67 and can also express high levels of 

HER2 (Inic et al, 2014). Both Luminal A and B breast cancer patients tend to 

have a relatively good prognosis, however Luminal B tends to have slightly 

worse prognosis than Luminal A, which is presumably related to the higher 

proliferation rate (Parise et al, 2014).  

 

1.2.2.2 HER2 positive breast cancer.  

 

HER2 invasive breast cancer accounts for 15% of all breast cancers and, 

likened to its name, is characterised by high gene and protein expression of 

HER2 and most, but not all, are ER negative. (Cooke et al, 2001).  

 

1.2.2.3 Triple negative breast cancer 

 

Another classified group of invasive breast cancer is triple negative breast 

cancer (TNBC); these will be discussed in more detail further on in section 1.4. 

TNBCs are ER and PR negative, and are also HER2 negative. Many TNBC 

have basal characteristics and as such express high molecular weight 

cytokeratins CK 5 and 14 and also EGFR1 (Sørlie et al, 2001). However, 25% 

of TNBC do not fall into the basal-subtype despite a substantial overlap of 

characteristics (Rakha et al, 2008). As I discuss later, the taxonomy of these 

tumours is quite complex with a great deal of hidden diversity. 
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1.2.2.4 Basal-like cancer 

 

As indicated above, basal-like cancers express genes that are commonly 

associated with normal breast epithelial cells. In order for identification of basal 

like breast cancer, expression of growth factors and growth factor receptors 

(EGFR1, VEGF and IGFR) are determined as well as having a specific 

cytokeratin profile (Nielsen et al, 2004).  

 

Table 1.1: Characteristics of the main clinical subtypes of invasive breast 
cancer 
The main clinical molecular subtypes of invasive breast cancer are shown 
highlighting their occurrence, classification, treatment options and prognosis.  
 
 
 
 
 

 Luminal A 
and B breast 
cancer 

HER2 breast 
cancer 

Triple 
negative 
breast 
cancer 

Occurrence 70% of all 
invasive 
breast cancers 

15% of all 
invasive 
breast cancers 

10-15% of all 
invasive 
breast cancers 

Classification Presence of 
Oestrogen 
(ERα) and 
Progesterone 
(PR) receptors 

No ER/PR 
 
HER2 genomic 
amplification, 
and high 
expression of 
Her2 protein 

Lack of ER, PR 
and Her2 

Systemic 
Treatment 

Endocrine 
therapy 
(tamoxifen or 
aromatase 
inhibitors) 
 
Chemotherapy 
(mainly high 
grade or stage 
tumours)  

Targeted Her2 
treatment, 
such as 
trastuzumab 
 
Chemotherapy 

No targeted 
treatment 
 
 
Chemotherapy 

Typical 
Prognosis 

Good Poor Poor 
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1.3 Breast cancer treatment 
 

A diverse range of treatments are recommended for primary breast cancer 

patients, with the treatment plan dependent substantially on the breast cancer 

subtype as well as the patient’s choice, age and overall health. The various 

treatment options available to patients will be covered in 3 different subsections 

below.  

 

1.3.1 Local therapy   

 

Most breast cancer patients will be treated surgically by either a mastectomy or 

breast conserving surgery (BCS). Mastectomies remove all breast tissue 

including the nipple and most of the skin that covers the breast (Sarrazin et al, 

1989). In breast conserving resections, the surgery is not as drastic as a 

mastectomy. The cancerous cells are removed as well as a margin of normal 

tissue surrounding the cancer, but the whole breast is not removed (Chen et al, 

2016). The recommendation to either undergo breast conserving surgery or 

breast mastectomy is determined by clinicopathological findings and radiology. 

Patient choice is equally as important with the patients’ quality of life also taken 

into account regarding which surgery suits their needs best (Morrow et al, 

2009). For larger tumours, patients could be advised to have a mastectomy, 

although in some cases shinking the tumour with neoadjuvant chemotherapy 

(NAC) can allow for more conservative surgery if the lesion shrinks sufficiently 

(Trimble et al, 1993). 

 

Smaller tumours are more likely to be treated with BCS. In BCS, adjuvant (after 

surgery) radiotherapy is recommended for BCS patients to provide a localized 

therapy to target any remaining tumour cells within the breast tissue (Dean et 

al, 2009). Trials have shown that this combination of BCS and radiotherapy has 

a local recurrence rate that is not different from mastectomy (Chen et al, 2017), 

demonstrating that the approach is safe. Mastectomy patients may also receive 

radiotherapy if they show factors that are indicative of poor prognosis such as 

positive lymph nodes (Tsoutsou et al, 2013).  

 

 



	 27	

1.3.2 Cytotoxic chemotherapy 

 

Despite targeted treatments being available for specific breast cancer subtypes, 

some breast cancer patients also receive traditional cytotoxic chemotherapy in 

addition to targeted treatments (Slamon et al, 2001). Around 34% of breast 

cancer patients receive chemotherapy for treatment of primary breast cancer 

(National Cancer Registration & Analysis Service and Cancer Research UK, 

2017). The decision to undergo chemotherapy treatment is strongly influenced 

by stage, grade and size at diagnosis. For example, only 17% of stage I breast 

cancer patients will receive chemotherapy in comparison to 70.5% of stage III 

breast cancer patients (National Cancer Registration & Analysis Service and 

Cancer Research UK, 2017). 

 

Breast cancer patients can either receive systemic treatment prior to surgery 

(neoadjuvant) or after surgery (adjuvant); in both cases, the primary aim is to 

reduce the chances of metastatic recurrences by targeting sub-clinical 

micrometastases (EBCTCG, 2018). In addition, neoadjuvant chemotherapy 

(NAC) aims to reduce the primary tumour size to enable the option of breast 

conserving surgery instead of mastectomy. NAC can also be used to gauge 

drug response of the tumour (Thompson et al, 2012). An advantage of NAC is 

the monitoring of the primary tumour response to chemotherapy as a different 

chemotherapy drug could be used if the response in the primary tumour is 

minimal; the assumption being that the response of micrometastases will mirror 

the primary tumour (Buchholz et al, 2003).  

 

Response rates can be determined through non-invasive imaging (MRI or 

ultrasound), to determine if the primary tumour has changed in size (Chen et al, 

2007). In the metastatic setting, response can also be determined by imaging of 

overall tumour burden using scintigraphy (bone scan), MRI and CT scans as 

well as assessing circulating tumour markers (Woolf et al, 2015).  In the case of 

adjuvant chemotherapy it is not possible to monitor response as the primary 

tumour has been removed and any sub-clinical micrometastases are, by 

definition, not detectable (Chew et al, 2001). Effectiveness of adjuvant 
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treatment can only be assessed from subsequent frequency and time post 

treatment of any recurrences (Isakoff et al, 2010). 

 

Luminal A and B patients receive chemotherapy as well as endocrine therapy if 

there are indications of poor prognosis such as involved lymph nodes, which 

are indicative of likely cancer metastasis (NCCN guidelines, 2016). HER2 

positive patients are given chemotherapy in combination with targeted 

Herceptin treatment (Piccart-Gebhart et al, 2005). However, because of the lack 

of molecular targets for precision therapy in TNBC patients, chemotherapy is 

the only systemic therapy routinely available to them. TNBC patients will 

therefore receive chemotherapy, while chemotherapy is only given to a minority 

of patients with other subtypes of primary breast cancer (Yershal et al, 2014).  

 

1.3.3 Targeted systemic treatments 

 

Molecularly-targeted treatments are also available to breast cancer patients but 

they are dependent on the subtype of breast cancer. Two classes of targeted 

agent are commonly used: endocrine agents, or HER2-targeted agents 

(Masoud et al, 2017).  

 

Luminal A and B breast cancer patients can receive targeted endocrine therapy 

because Luminal A and B breast cancers express the ER, which is the target of 

endocrine agents. An example of endocrine therapy is tamoxifen, which is a 

selective ER modulator (Nolvadex Adjuvant Trial Organisation, 1998). 

Tamoxifen recognizes and competitively binds to the ER thereby reducing ER 

driven proliferation of the cancer cells (McDonnell et al, 2010).   

 

HER2 expression, in Luminal B and HER2 subtypes of breast cancer, also 

provides a route for targeted therapy. Herceptin (trastuzumab) targets HER2 

positive cells and binds to the extracellular domain of HER2 on the membrane 

of the cell (Baselga et al, 1998). Upon binding to HER2, Herceptin prevents 

receptor dimerization and therefore prevents the activation of the HER2 

signaling pathway (Clarke et al, 2015).  Consequently, inhibition of HER2 

dimerization prevents activation of the MAPK and PI3K/Akt pathway leading to 
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an increase in cell cycle arrest and suppression of tumour growth and survival 

(Vu et al, 2012). Herceptin also has the ability to attract immune cells to HER2 

positive cancer cells, such as natural killer cells, which leads to antibody 

dependent cellular cytotoxicity and lysis of HER2 positive breast cancer cells 

(Park et al, 2010). Herceptin can be given alongside chemotherapy (Baselga et 

al, 2001) and can also be used in combination with another agent, pertuzumab 

(Harbeck et al, 2013). Pertuzumab is a targeted therapy that binds specifically 

to HER2 to prevent HER2 dimerisation. Pertuzumab, therefore, prevents 

activation of signaling pathways that normally stimulate cell proliferation and 

tumour growth (Baselga et al, 2012). The use of Herceptin and pertuzumab 

when combined with chemotherapy in both the neoadjuvant and adjuvant 

setting have been shown to increase cell death in early HER2 positive breast 

cancer patients (Gianni et al, 2016, von Minckwitz et al, 2017).   

 

1.4 Triple negative breast cancer 

 

TNBC epidemiology, classification, treatment and prognosis will be discussed in 

the next sections to highlight the importance of further investigation into 

treatment options for TNBC patients. 

 

1.4.1 Triple negative breast cancer epidemiology and clinical characteristics 

 

TNBC accounts for 10-15% of all breast cancers in caucasians (Badve et al, 

2011), and commonly affects a younger population of women who are often 

pre-menopausal. The mean diagnosis age of TNBC is 46 years (±12.2 years) in 

comparison to other breast cancer patients for whom the mean diagnosis age is 

53 years (±9.78 years) (Sajid et al, 2014). In the TNBC group, 65.9% were 

younger than 50 years old with 34.1% older than 50 years old (Sajid et al, 

2014).  

 

Studies have also shown a higher proportion of TNBC cases in African-

American who are pre-menopausal. 39% of pre-menopausal breast cancer 

cases in African-American women are TNBC. This is compared to 14% in post-
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menopausal African-American women and 16% any aged non-African-

American women (Carey et al, 2006).  

 

BRCA1/2 mutation carriers have also shown to have a link to TNBC with a 

lifetime risk of developing TNBC at 50%-80%. From a recent study analyzing 

3,791 BRCA1/2 mutation carriers diagnosed with invasive breast cancer, 68% 

were TNBC and 32% non-TNBC (Mavaddat et al, 2012). However, it is 

important to note that not all TNBCs are derived from BRCA1/2 mutations 

(Young et al, 2009, Peshkin et al, 2010). In addition, somatic mutations of TP53 

(82%) frequently occur in TNBC cancers in comparison to Luminal A, Luminal B 

and HER2 cancers (12%, 29% and 72%) (Cancer Genome Altas Network, 

2012). 

 

TNBCs are highly aggressive with high proliferation and migratory properties. 

Because of their high proliferation rate, TNBCs grow quickly in comparison to 

other breast cancer subtypes (Matos et al, 2005). TNBC patients commonly 

present with metastatic recurrences, with secondary tumours presenting 

themselves in common breast metastases sites such as the brain, bone and 

lungs (Fulford et al, 2007). 5-year disease free survival of TNBC is the worst for 

all breast cancer subtypes, at 69.1% in comparison to the highest 5-year 

disease free survival of Luminal A cancers at 92.1%. At 5 years, overall survival 

of TNBC is 78.5% in comparison to Luminal A 95.1% (Hennigs et al, 2016, 

Zhang et al, 2013).  

 

1.4.2 Triple negative breast cancer classification 

 

As previously described, TNBCs lack expression of ER, PR and HER2 but even 

with these characteristics in common, TNBCs define a very diverse group of 

tumours, which are heterogenous in morphological and molecular terms (Perou 

et al, 2000). In previous years, there has been large debate over the subclasses 

within TNBC even now there is still some dispute between scientists on the 

classifications.  
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For example, using gene expression profiles and clustering analysis, Lehmann 

et al (Lehman et al, 2011) determined there are 6 TNBC subtypes: luminal 

androgen receptor (LAR), basal-like 1 (BL1), basal-like 2(BL2), 

immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), and 

unclassified (UNC). However, using RNA and DNA profiling analysis, Burstein 

et al (Burstein et al, 2015) distinguished 4 groups; LAR, M, basal-like immune-

suppressed (BLIS) and basal-like immune-activated (BLIA) (see Table 1.2).  

 

The LAR subtype (in both papers) is the most distinct and abundant subtype In 

TNBC, with estrogen/androgen pathways up-regulated compared to other 

TNBC subtypes. It is characterized by luminal gene expression and is driven by 

the androgen receptor.  

 

M (in both papers) and MSL (Lehman et al, 2011) tumours have high levels of 

certain epithelial genes, particularly those involved in epithelial mesenchymal 

transition (EMT) and signaling pathways involved in cell motility, growth and 

differentiation. For example, increased levels of genes involved in the TGF-β 

pathway, growth factor pathways (FGF, IGF and PDGF) and Wnt pathway.  A 

further subtype, “claudin-low”, has also been identified within the M and MSL 

subtypes (Dias et al, 2017). The claudin-low subtype is characterized by a lack 

of cell-cell junction proteins and has high expression of EMT, immune response 

(interferon pathway) and cancer stem-like genes (Dias et al, 2017). The M and 

MSL groups were distinguished by the MSL group showing decreased 

expression of genes required for cell proliferation and increased expression of 

genes associated with stem cells (eg ABC genes (A8 and B1) and PROCR).  

 

The BL1 subtype (Lehmann et al, 2011) has increased cell cycle and DNA 

damage response gene expression, which differs from BL2 (Lehmann et al, 

2011), which has high expression of growth factor signaling components and 

myoepithelial genes. IM (Lehmann et al, 2011) mainly has genes involved in 

immune and cytokine signaling pathways as well as immune antigens. The 

basal like groups, defined by Lehmann et al, are comparable to the BLIS (BL1 

and M) and BLIA (BL2 and IM) groups identified by Burstein et al (see Table 2).  
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Lehmann et al recently redefined their 6 groups to take into account transcripts 

from normal stromal cells and immune cells in the tumour microenvironment, 

thereby creating a reduced number of only 4 distinct groups (BL1, BL2, LAR 

and M), with cases from the previous IM and MSL groups being re-assigned 

between these 4 groups (Lehmann et al, 2016). 
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TNBC subtype Classified by Description 
Luminal androgen 
receptor (LAR) 

Lehman et al (2011)  

Burstein et al (2015) 

Hormone receptor 

pathway expression 

Mesenchymal (M) Lehman et al (2011) 

Burstein et al (2015) 

High level of epithelial 

genes and growth factor 

pathways 

 

Mesenchymal 
stem-like (MSL) 

Lehman et al (2011) Similar to M subtype with 

high level of epithelial 

genes  

 

Decreased expression of 

genes required for cell 

proliferation compared to 

other TNBC subtypes 

Basal-like 1 (BL-1) Lehman et al (2011);  

Comparable to Basal-like 

immune suppressed (BLIS) 

in Burstein et al (2015) 

Increased cell cycle and 

DNA damage response 

gene expression 

Basal-like 2 (BL-2) Lehman et al (2011); 

Comparable to some 

features of Basal-like 

immune-activated (BLIA) in 

Burstein et al (2015) 

High growth factor 

signaling and 

myoepithelial genes. 

Immunomodulatory 
(IM) 

Lehman et al (2011);  

Comparable to some 

features of BLIA in Burstein 

et al (2015) 

Immune and cytokine 

signaling as well as 

immune antigen 

presence 

Unclassified (UNC) Lehman et al (2011) The miscellaneous 

TNBCs that do not fit into 

the other subtypes 

Table 1.2: Triple negative breast cancer subtypes 
A comparison of the different TNBC subtypes, according to Lehmann et al 
(2011) and Burstein et al (2015) classifications.   
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1.5 Triple negative breast cancer treatment 
 

Unlike other breast cancer subtypes that have targeted treatments, there are 

currently no effective targeted treatments routinely available for primary TNBCs, 

and the targeted therapies used for other breast cancers are ineffective in this 

context because of the lack of ER and HER2 expression (Chittaranjan et al, 

2014). Along with radiotherapy and the surgical options available to them, 

TNBC patients will therefore receive cytotoxic chemotherapy (Wahba et al, 

2015).  

 

1.5.1 Triple negative breast cancer responses to treatment and prognosis 

 

Chemotherapy treatment can be very effective in reducing the size of the 

primary tumours when given in the neoadjuvant context, presumably because 

of the relatively high proliferation rate of TNBC (Carey et al, 2007). In the 

context of primary disease treated with NAC, either a decrease in tumour size 

(partial response) or in some cases a pathological complete response (pCR) 

can be seen (Rouzier et al, 2005). A pCR is determined by a lack of all 

morphological evidence of residual cancer. pCRs are important as patients who 

have achieved a pCR are more likely to have a better long-term prognosis 

(Cortazar et al, 2014). NAC is more effective in TNBC than any other subtype of 

breast cancer as TNBC cancers showed a pCR of 45% when treated with NAC 

in comparison to a pCR of 6% for luminal tumours (Rouzier et al, 2005). In 

another study carried out, TNBC patients again showed higher pCR rates (22%) 

compared to non-TNBC patients (11%). If pCR was achieved, TNBC patients, in 

this study, had similar survival to non-TNBC patients (Liedtke et al, 2008).  

 

However, although patients may have a decrease in tumour size and partial 

response, more than 50% of patients will not achieve a pCR (Cortazar et al, 

2014). Patients who have residual disease have worse overall survival if they 

had TNBC compared to non-TNBC (68% vs 88%) (Liedtke et al, 2008), which is 

likely due to chemoresistance in TNBC. Unfortunately, if only a partial response 

is seen, it is these patients who are more likely to relapse within 3 years of 

completion of their chemotherapy (Cortazar et al, 2014), as TNBC patients have 
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significantly decreased 3-year progression free survival rates when compared 

to non-TNBC patients (63% vs 76%) (Liedtke et al, 2008). The prognosis is also 

normally poor with 3-year overall survival lower than non-TNBC patients (74% 

vs 89%) (Liedtke et al, 2008). Treatment of the metastatic secondary tumour is 

always incomplete and TNBC patients can expect less than 14 months median 

survival (Kassam et al, 2009).  

 

Therefore, an aim in development of neoadjuvant therapy currently is to 

improve pCRs of TNBC, and thereby kill any distant metastatic cells to prevent 

metastatic recurrences. Once a clinical metastatic reoccurrence is present, 

regardless of the primary response of the cancer, the prognosis is poor.  

 

1.5.2 Current therapies for triple negative breast cancer 

 

Chemotherapy commonly comprises of a combination of cytotoxic drugs that 

target proliferating cells. There are different families of chemotherapeutic 

agents, for example the anthracyclines, the taxanes and the alkylating agents 

(Isakoff et al, 2010). As determined by MRI, clinical response to neoadjuvant 

anthracycline treatment in TNBC cancer was 85%, compared to 70% in HER+ 

ER-, and 47% in luminal subtypes (Carey et al, 2007).  

 

1.5.2.1 Mechanism of action of breast cancer cytotoxics 

 

The anthracycline drugs that are commonly used for breast cancer treatment 

are doxorubicin and epirubicin (Kaklamani et al, 2003). Both doxorubicin and 

epirubicin target the cancer cells, along with any other actively proliferating 

cells, by inhibiting DNA synthesis and thereby replication, by intercalating 

between the base pairs in cellular DNA (Reinert, 1983). Anthracyclines can also 

inhibit topoisomerase activity. Topoisomerase enzymes are required for DNA 

strand cleavage and unwinding for efficient DNA replication to take place 

(Osheroff, 1989). Anthracyclines intercalate into the DNA and inhibit the DNA-

topoisomerase complex after the nicking phase, and prevent the resealing 

stage in DNA synthesis (Han et al, 2015).  
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Taxanes are also commonly used in breast cancer chemotherapy, with the two 

specific agents being paclitaxel or docetaxel (Nabholtz et al, 2005). Taxanes 

have an effect on the microtubules required for cell division by stabilizing GDP-

tubulin, which prevents microtubule depolymerisation and subsequent 

chromosome separation in mitosis (Sachdev et al, 2016).  

 

Alkylating agents, such as cyclophosphamide, are also used in breast cancer 

therapy and are commonly given with anthracyclines and taxanes (Fisher et al, 

1990). Alkylating agents function by addition of an alkyl group to nitrogen in the 

purine ring of the guanine base of the DNA, forming intra-molecular DNA strand 

crosslinks between guanine bases to prevent the unwinding of DNA during DNA 

replication (Hall et al, 1992).  

 

Multiple combinations of these drugs are commonly used for TNBC treatment. 

Treatment options are largely based on the NICE guidelines, the practice within 

the NHS trust where treatment is occurring, and the preference of individual 

oncologists in consultation with the patient (NICE, 2009, NICE, 2018). Drug 

classes anthracyclines (doxorubicin and epirubucin) and taxanes (docetaxel 

and paclitaxel) can be used separately or in combination with one another. In 

addition, cyclophosphamide can also be given in combination with either 

anthracyclines or taxanes. All 3 drug classes can also be combined for TNBC 

patients (Cleator et al, 2009).  

 

1.5.3 Therapies under investigation for triple negative breast cancer 

 

Because of the relatively high recurrence rate and poor prognosis, there is still 

an unmet clinical need for new and targeted therapies for TNBC. Poly-ADP 

ribose polymerase (PARP) inhibitors are one of the emerging therapies and are 

currently undergoing clinical trials in TNBC (Pettitt et al, 2018). PARP proteins 

play an important role in the repair of DNA strand breaks by being responsible 

for the recruitment of DNA repair enzymes (Chambon et al, 1963). The 

inhibitors of PARP work as cytotoxics by inhibiting the recruitment of DNA repair 

enzymes, leading to an accumulation of further double-stranded breaks 

resulting in apoptosis and cell death (Carey, 2011). PARP inhibitors look to be 
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promising drugs in TNBC with BRCA1 or BRCA2 mutations (Bryant et al, 2005). 

BRCA1/2 mutated cells are unable to form the BRCA1-associated genome 

surveillance complex (BASC) which therefore prevents the interaction of the 

BASC complex with RNA polymerase II (Wang et al, 2000, Scully et al, 1997). 

Subsequently, DNA strand breaks are therefore not fixed through homology 

directed repair. PARP inhibitors are effective in BRCA1/2 mututated tumours as 

the BRCA1/2 mutations render the cells uniquely dependent on DNA repair 

pathways that require PARP (Silver et al, 2012).  PARP inhibitor, olaparib has 

been used in the treatment of metastatic breast cancer patients with BRCA1/2 

mutations. Patients, who received olaparib, response rate was 59.9% when 

compared to 28.8% response rate in patients who received standard therapy. 

Additionally, patient progression free survival increased from 4.2 months to 7 

months (Robson et al, 2017).  Therefore, olaparib has recently been FDA 

approved for treatment of BRCA1/2 mutated metastatic breast cancers (FDA, 

2018). However there does not appear to be any benefit of PARP inhibitors to 

other TNBC patients who do not have BRCA1/2 mutated TNBC (Tutt et al, 

2010).  

 

The addition of platinum salts to adjuvant chemotherapy has also been 

explored. Platinum based drugs such as cisplatin and carboplatin have shown 

promising responses. In primary TNBCs, cisplatin addition to docetaxel, 

following prior epirubicin/cyclophosphamide treatment, produced overall 

response rate of 77% compared to overall response rate without the addition of 

cisplatin to docetaxel of 70% (Alba et al, 2012). For metastatic TNBC, cisplatin 

addition to chemotherapy improved overall survival by 4 months (Bhattacharyya 

et al, 2009) and carboplatin has increased patients response rate by 11% in 

advanced TNBC patients and improved overall survival by 3 months (Carey et 

al, 2012).  

 

PIK3CA mutations are present in 10% of TNBC and are attributed to the LAR 

and M subtype as described by Lehmann et al (Lehmann et al, 2011) (section 

1.4.2). PIK3CA mutations lead to activation of the PI3K/Akt pathways, which 

can mediate many of the hallmarks of cancer (Fruman et al, 2014). In addition, 

expression of the tumour suppressors inositol polyphosphate 4-phosphotase 
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type II (INPP4B) and phosphatase and tensin homolog (PTEN) are frequently 

lost in TNBC, also contributing to activation of the PI3K/Akt pathway (Li et al, 

2017). PIK3CA mutations and loss of INPP4B and PTEN provided the impetus 

for the development of ipataserib, which is an ATP competitive small molecule 

inhibitor of Akt (Saura et al, 2017). Ipataserib is currently being used in clinical 

trials to determine efficacy in combination with other chemotherapeutic agents. 

Ipataserib clinical trials are in the early stages at phase Ib and II in patients with 

TNBC (Lehmann et al, 2015).  

  

Multiple other therapeutic strategies are being explored, such as blockade of 

the androgen receptor in LAR TNBC (Lehmann et al, 2015), histone deactylase 

(HDAC) inhibitors (Uehara et al, 2012), mammalian targets of rapamycin 

(mTOR) inhibitors (Basho et al, 2017) and the development of immunotherapies 

(Stagg et al, 2013). It is hoped that blockade of AR, HDAC and mTOR inhibitors 

will increase the options and effectiveness of treatments available to TNBC 

patients.  

  

With a lack of well-established targeted treatment available to TNBC patients, 

chemotherapy remains the predominant treatment for TNBC patients. Although 

response to chemotherapy can be promising, chemoresistance is a real clinical 

problem in TNBC so there is a need to understand chemoresistance pathways. 

Targeting cancer specific chemoresistance pathways in combination with 

traditional chemotherapy, could be a viable clinical route to improve survival of 

TNBC patients. One particular opportunity for such a combination therapy is 

explored in Chapter 5.  

 

1.6 Mechanisms of chemoresistance in breast cancer 

 

Chemotherapy remains the predominant treatment for TNBC patients and 

chemoresistance in TNBC, reflected in cancer recurrences and deaths, is a 

major clinical problem. Identification of chemoresistance pathways, and 

potentially inhibition of these pathways in combination with chemotherapy could 

represent a treatment option for TNBC patients and forms the basis of research 

in this thesis.   



	 39	

 

1.6.1 Physical mechanisms of chemoresistance 

 

Extracellular matrix (ECM) proteins, particularly collagens, have been implicated 

in chemoresistance. Increased levels of collagen have been implicated in 

limited delivery and diffusion of chemotherapeutic into cancer tissues 

(Senthebane et al, 2017). In breast cancer cells, high levels of expression of 

collagen genes is associated with increased drug resistance (Iseri et al, 2010). 

Collagen type I has also recently shown to promote survival of breast cancer 

cells in vitro as well as enhancing metastasis (Badaoui et al, 2018). Increased 

levels of collagen and expression of lysyl oxidase (LOX), a protein involved in 

collagen cross-linking (Herchenhan et al, 2015), can increase ECM stiffness in 

breast cancer.  It is thought that ECM stiffness can induce chemoresistance and 

increase cell survival through activation of PI3K and adhesion signaling 

(Levental et al, 2009).  

 

Cytoskeletal proteins have also been implicated in chemoresistance, in 

particular β tubulin. β tubulin III subunit overexpression has correlated with 

increased resistance to taxane-based chemotherapy (paclitaxel and docetaxel) 

in advanced breast cancer (Paradiso et al, 2005).  

 

1.6.2 Drug inactivation mechanisms of chemoresistance 

 

Chemoresistance can occur in epithelial cells through drug 

inactivation/detoxification or through increased expression of drug pumps. ABC 

transporters such as the P-glycoprotein pump MDR1 and breast cancer 

resistant protein (BCRP/ABCG2) have been shown to play a role in 

chemoresistance in TNBC by increasing the efflux of chemotherapeutics 

(Zheng, 2017). MDR1 has the ability to pump out multiple different types of 

chemotherapeutics in breast cancer, including paclitaxel and docetaxel 

(Mechetner et al, 1998). In addition, chemotherapy induced activation of Notch 

leads to the up-regulation of multi-drug resistance protein-1 (MRP1), with 

inhibition of Notch-dependent MRP1 sensitizing cells to chemotherapy (Kim et 

al, 2015).  
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BCRP/ABCG2 can also pump out chemotherapeutics including anthracyclines 

such as doxorubicin (Doyle et al, 1998). More recently, NAC has been shown to 

increase expression of BCRP and has been implicated in determining disease-

free survival (Kim et al, 2013). Patients displaying low expression of BCRP, 

following chemotherapy, had significantly longer disease free survival in 

comparison to patients with high expression of BCRP (Kim et al, 2013).  

 

Drug inactivation or detoxification is also a mechanism employed by breast 

cancer cells to enable chemoresistance. ALDH1A1 and ALDH3A1 have been 

shown to lead to inactivation of cyclophosphamide, which is commonly used in 

combination with anthracyclines (Sladek et al, 2002). Drug inactivation has also 

been attributed to altered metabolism of drugs by cytochrome P450s (CYPs). 

CYP2D6 is responsible for the metabolism of tamoxifen in breast cancer and 

therefore reduced the efficacy of tamoxifen (Ali et al, 2016). CYP3A/5 has been 

shown to metabolize docetaxel into less effective compounds for the treatment 

of breast cancer (Bedard et al 2010). 

 

1.6.3 Cellular mechanisms of chemoresistance 

 

Alterations in genes involved in apoptosis have been implicated in 

chemoresistance. In TNBC, mutations in p53 are often present and over-

expression of anti-apoptotic proteins Bcl-2 is also observed (Vegran et al, 2006, 

Aas et al, 1996). Loss of p53 and up-regulation of Bcl-2 have been linked to 

chemoresistance in breast cancer cells following anthracycline chemotherapy 

(p53) or cyclophosphamide, epirubicin and 5-fluorouracil (Bcl-2) respectively 

(Vegran et al, 2006, Aas et al, 1996). Loss of the mismatch repair proteins 

MSH2 and MLH1 has also been linked to resistance to epirubicin and 

doxorubicin (Fedier et al, 2001).   
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1.7 Tumour stroma 

 

The role of the tumour stroma, in particular of cancer-associated fibroblasts, in 

chemoresistance in TNBC is a key focus throughout this thesis. I will, therefore, 

provide background on what is already known about the tumour stroma and 

cancer-assocoiated fibroblasts as well as their role in cancer progression. 

 

For a cancer to survive, grow and thrive it requires the right environment. The 

tumour stroma is responsible for this as the tumour stroma infiltrates in and 

around the tumour mass and provides an environmental niche for the tumour 

cells (Egebald et al, 2008). Tumour stroma consists of a large number of 

different types of stromal cells, including fibroblasts, pericytes, adipocytes and 

immune cells. In addition, to deliver the nutrients that the tumour requires, the 

tumour stroma contains blood vessels and also contains extracellular matrix 

proteins such as collagen, fibronectin and laminin (Kharaishvili et al, 2014). In 

the presence of tumour cells, components of the stroma undergo complex 

alterations, which alter the characteristics of the stroma. The altered 

characteristics of the tumour stroma are exploited by tumours to aid in cancer 

progression (Lu et al, 2012).  

 

The ratio of tumour stroma to tumour cells in TNBC has been investigated to 

see if it correlates with prognosis of TNBC patients. TNBC patients with cancers 

containing greater than 50% stroma, as determined by point-counting, had 

greater chances of recurrences within 5 years in comparison to those with 

tumours that had less than 50% tumour stroma (85% vs 45%) (Moorman et al, 

2012). High tumour stroma content in TNBC was also associated with poorer 

overall survival (89% vs 65%), however in ER positive disease, the influence on 

overall survival was reversed, with prolonged survival associated with stromal 

rich tumours (Downey et al, 2015).  

 

The most abundant cell type within the tumour stroma is the stromal fibroblasts 

(Bussard et al, 2016), and fibroblasts are a key focus of my work. Fibroblasts 

are present normally within the body, however fibroblasts in tumour stroma 

show an altered phenotype and are referred to as cancer-associated fibroblasts 
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(CAFs) (Sadlonova et al, 2009). Investigation into the role of CAFs has 

increased understanding of the role that CAFs play in	the progression of breast 

and other carcinomas. CAFs can enhance cell proliferation, angiogenesis, 

invasion and cancer metastasis to secondary sites (Orimo et al, 2005, Dumont 

et al, 2013).  

 

1.8 Fibroblasts 

 

Fibroblasts are non-vascular, non-epithelial and non-inflammatory cells that are 

commonly found with the fibrillar matrix of the connective tissue (Tarin et al, 

1970). Fibroblasts remain quiescent until they are required for their functions, 

which include deposition of the ECM, control of epithelial cell differentiation, 

regulation of inflammation, and most commonly wound healing (Parsonage et 

al, 2005).  Fibroblasts also have the ability to produce multiple types of collagen 

(I, III, IV and V) as well as fibronectin and laminin (Qureshi et al, 2017). Matrix 

metalloproteinases (MMPs) are another product that fibroblasts secrete to 

enable ECM degradation and cell movement through the extracellular matrix 

(Tomasek et al, 2002).  

 

A key role of fibroblasts in normal physiology is in wound healing. When a 

wound occurs, fibroblasts are responsible for invading into the wound, 

producing ECM components such as collagen, fibronectin and laminin to 

provide a scaffold for epithelial cells to move onto and grow (Darby et al, 2014). 

Fibroblasts are also responsible for producing cytoskeletal components to 

enable contraction to pull the wound together (Gabbiani et al, 1971). As 

previously mentioned, fibroblasts remain quiescent until they are activated and 

required for their function (Gabbiani et al, 1971). When fibroblasts are in this 

quiescent state, they are spindle-shaped and metabolically relatively inactive, 

with little active secretome (Tarin et al, 1970). Fibroblasts also do not actively 

divide to any great extent, being commonly in G0/G1 arrest, although there is a 

slow rate of self-renewal (Marthandan et al, 2014). In addition, fibroblasts are 

non-migratory, and are unable to produce components of the ECM (Kalluri, 

2016). Fibroblasts are activated in order to carry out their cellular function from 

multiple stimuli such as growth factors, chemokines, cytokines as well as 
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physical stress and hypoxic conditions (Bainbridge et al, 2013). Transforming 

growth factor- β (TGF-β) is well established as an activator of fibroblasts, 

particularly for fibroblast involvement in wound healing (Montesano et al, 1998). 

Platelet-derived growth factors are also important for both fibroblast activation 

and the wound healing process. Release of platelet-derived growth factor 

(PDGF), recruits and activates fibroblasts at the wound site for effective wound 

healing (Rajkumar et al, 2006).  When activated, the morphology of fibroblasts 

changes as well as the secretory phenotype. Fibroblasts become cruciform or 

steallate in shape as well as becoming metabolically active, proliferative, and 

motile (Ravikanth et al, 2011). Once activated, fibroblasts have a dynamic 

secretome that includes growth factors (eg EGF, FGF, HGF) as well as the 

ECM components previously described. Fibroblasts may go through several 

cycles of active remodelling, healing or inflammatory functions, followed by 

successive periods of quiescence and activation depending on external stimuli 

(Kalluri and Zeisberg, 2006). 

 

By contrast, CAFs are constantly active and never revert back to the quiescent 

inactive fibroblast state. CAFs are thought to have undergone irreversible 

epigenetic modifications from the normal activated fibroblast phenotype where 

they have acquired a higher proliferation rate and enhanced secretory 

phenotype (Littlepage et al, 2005). CAFs also have the ability to self-renew in 

comparison to the activated fibroblast phenotype as well as producing a greater 

amount of growth factors, cytokines and chemokines. CAFs also produce more 

ECM proteins, such as tenascin C (Hanamura et al, 1997), periostin (Kikuchi et 

al, 2008) and SPARC (Gao et al, 2017) as well as collagen (Pankova et al, 

2016). Both activated fibroblasts and CAFs express enhanced levels of 

vimentin and α-SMA (Shiga et al, 2015). However, CAFs produce fibroblast-

activated protein (FAP) (Park et al, 1999), which is not present in activated 

fibroblasts.  
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1.9 Origins of cancer-associated fibroblasts 

 

The origins of CAFs have been debated with multiple different suggestions as 

to where they arise from and how they become activated.  

 

Firstly, it is thought that the majority of CAFs are derived from the conversion of 

normal activated fibroblasts into CAFs, potentially driven by cancer cell secreted 

cytokines (Kojima et al, 2010). The mechanisms by which this conversion is 

induced are thought to be similar to activation of normal fibroblasts in wound 

healing as well as some epigenetic changes occurring (Qiu et al, 2008). TGF-β 

is responsible for activation of fibroblasts in wound healing but is also 

commonly secreted by cancer cells (Knabbe et al, 1987). Cancer cell secretion 

of TGF-β activates TGF-β signaling in CAFs, which in turn leads to an activated 

CAF phenotype (Kojima et al, 2010). Epigenetic changes are also required for 

CAF activation, with loss of p53 and PTEN required. Interestingly, loss of p53 

and PTEN occurred in CAFs in close proximity to tumour cells indicating the 

potential cancer cell driven activation of CAFs (Mao et al, 2013). Direct cell 

contact between cancer cells and fibroblast can also lead to the activation of 

CAFs through adhesion molecules such as intra-cellular adhesion molecule I 

(ICAM1) and vascular adhesion molecule I (VCAM1) (Clayton et al, 1998). 

CAFs have a different miRNA expression profile in comparison to normal 

fibroblasts, which can also play a regulatory role in transformation of normal 

activated fibroblasts to CAFs. Recent studies have implicated miR-31, miR-214 

and miR-155 in the transition from normal fibroblasts to CAFs (Mitra et al, 

2012).  

 

There is also evidence that bone marrow derived mesenchymal stem cells 

(MSCs) can differentiate into CAFs. It is thought that this differentiation could 

also be TGF-β driven. Characteristic CAF markers like α-SMA, FAP and 

tenascin-C are expressed in these MSC derived differentiated CAFs (Spaeth et 

al, 2009).  

 

Finally, another mechanism by which fibroblast-like cells are produced is when 

malignant epithelial cells undergo epithelial mesenchymal transition (EMT). 
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EMT is commonly triggered by the expression of TGF-β, EGF, PDGF, FGF2 

and CXC-motif chemokine ligand (CXCL) (Spaeth et al, 2009). Not only can 

epithelial cells transition into CAF-like cells but endothelial cells have also 

undergone endothelial to mesenchymal transition to produce a CAF phenotype, 

which has been confirmed by the expression of CAF markers (Zeisberg et al, 

2007).  

 

Despite all these potential origins of CAFs, the precise origin of CAFs in breast 

cancer is not fully understood and it is plausible that it is a combination of CAFs 

from multiple origins that comprise the tumour mass.  

 

1.10 Cancer associated fibroblasts in breast cancer progression 

 

CAFs have been implicated in multiple aspects of cancer progression including 

tumour growth, angiogenesis and metastasis.  

 

In terms of tumour growth, CAFs can secrete the growth factors EGF, HGF and 

FGF, which can activate growth factor signaling in the cancer cells and thereby 

enhance tumour growth (Matsumoto et al, 2006). Other novel secretory factors 

from CAFs have been implicated in tumour growth and survival. Secreted 

frizzled related protein 1 and IGF like family member (IGF) have also been 

shown to directly or indirectly enhance tumour growth (Ostman et al, 2009). 

Stromal derived factor-1 (SDF-1) can also contribute to tumour growth and can 

also have an impact on migration and invasion to secondary sites (Orimo et al, 

2005). SDF-1 binds to its receptor CXCR4 on the surface of breast cancer cells 

to activate signaling pathways to enhance proliferation of the breast cancer 

cells (Orimo et al, 2005).  

 

CAFs can also aid in migration, invasion and metastasis (Verghese et al, 2013). 

Interleukin-6 (IL-6) has been shown to promote migration in ER positive breast 

cancer and IL-6 also has the ability to induce EMT in ER positive breast cancer 

cells (Hugo et al, 2012). One of the main classes of secretory factors that CAFs 

release that aid in migration, invasion and metastasis are MMPs (Singer et al, 

2002). MMPs degrade ECM proteins such as collagen and laminin and remodel 
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the ECM to allow cancer cells to migrate through the stroma and surrounding 

tissue to aid cells in reaching the lymph vessel and blood vessels to travel to 

secondary sites (Gianneli et al, 1997). MMP2, MMP9 and MMP14 have been 

shown to have increase migration and invasion in breast cancer (Kessenbrock 

et al, 2010, Rothschild et al, 2015).  

 

Another area CAFs can aid in is angiogenesis. CAFs can secrete VEGF, which 

upon binding to its receptor, activates VEGF signaling in endothelial cells, which 

in turn promotes the formation of new blood vessels to deliver oxygen and 

nutrients to the tumour to aid in its growth and survival (Bachelder et al, 2002).  

 

The roles of CAFs, in breast cancer, are best understood in growth, migration, 

invasion and angiogenesis, however there is still a lack of understanding of how 

CAFs contribute to other hallmarks of cancer such as evading growth 

suppression, immune destruction and resisting cell death. In addition, there are 

large gaps in knowledge of whether and how CAFs contribute to 

chemoresistance.  

 

1.11 The interferon family  

 

Interferons, their signaling pathways, and their roles in cancer progression will 

be highlighted as it became evident in my results that interferon signaling could 

play a role in chemoresistance. The interferon (IFN) family is a group of 

secreted cytokines that are widely expressed, predominantly by immune cells, 

and are typically produced in response to viral infection to induce potent 

antiviral and anti-proliferative effects (Le Page et al, 2000).  

 

There are multiple different interferon paralogues, each expressed from its own 

gene. These can be categorised into 3 different classes:  Type I, Type II and 

Type III (Pestka et al, 1987) (summarized in Table 1.3). Within Type I, there are 

nine different paralogues including IFN-α (13 known isoforms), IFN-β, IFN-ε, 

IFN-κ, IFN-ω, IFN-δ, IFN-τ, IFN-ν and IFN-ζ (Pestka et al, 2004). Interestingly, 

the genes for Type I interferons are found within a single cluster on one 

chromosome (9p21) (Diaz et al, 1994). IFN-γ is the only representative of Type 
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II interferon (Pestka et al, 1987). IFN-λ1, IFN-λ2 and IFN-λ3 form the Type III 

paralogues (Ank et al, 2006). Each class of interferon binds to its own subset of 

receptors. Type I interferons bind to the heterodimeric receptor complex of IFN-

α receptor 1 (IFNAR1) and IFNAR2 subunits (Mogensen et al, 1999). Type II 

interferons bind to the IFN-γ receptor IFNGR1 and IFNGR2 complex, which is a 

tetramer of 2 molecules of each of the two subunits (Pestka et al, 1997). Finally, 

the Type III class binds to the IFN- λ receptor 1 (IFNLR1) (Kotenko et al, 2003)  

 

1.12 Interferon biogenesis 

 

Type I IFNs are produced by a number of cell types in response to various 

stimuli (Gibbert et al, 2013), whereas expression of Type II and III IFNs are far 

more limited and only commonly expressed in immune cells, normally T cells 

and NK cells (Samuel et al, 2001).  

 

Pattern-associated molecular patterns (PAMP), from viruses or other foreign 

bodies, are recognized by cells, which leads to interferon production (Baig et al, 

2008). PAMPs then activate pattern recognition receptors (PRRs) (Medzhitov et 

al, 1997). The most predominant PRR are the Toll-like receptors (TLR). TLR1, 

TLR2, TLR4, TLR5 and TLR6 can react to bacterial lipopolysaccharides, 

whereas TLR3, TLR7, TLR8 and TLR9 have the ability to react to nucleic acids 

(Uematsu et al, 2007). MYD88, MAL, TRIF and TRAM are adaptors of response 

and are recruited to the TLRs when TLRs become activated (O’Neill et al, 

2007). Recruitment of adaptors to the TLRs leads to the activation of TANK-

binding kinase 1 (TBK) and IKKε and IκB (Ma et al, 2012), which then bind and 

activate transcription factors; IFN response factors (IRFs) and nuclear factor-κB 

(NF-κB) (Ma et al, 2012, Pomerantz et al,1999). IRFs and NF-κB transcription 

factors upregulate the expression of IFNs (Randall and Goodbourn, 2008).  

 

1.13 Interferon signaling  

 

Following interferon production, interferons carry out the late phase viral 

response through activation of the interferon signaling pathway using the 

classical JAK-STAT pathway (Silvennoinen et al, 1993). The different interferon 
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/interferon receptor pathways also lead to varying activation of the classical 

JAK-STAT pathway (summarized in Table 1.3). Activation of the JAK-STAT 

pathway occurs relatively quickly as there is no need to synthesize new protein 

for the signaling cascade to proceed (Pestka, 2007). 

 

  Type I 
Interferon  

 Type II 
Interferon  

 Type III  
Interferon  

Interferons IFN-α (13 

subtypes), IFN-

β, IFN-ε, IFN-κ, 

IFN-ω, IFN-δ, 

IFN-τ, IFN-ν 

and IFN-ζ 

IFN-γ IFN-λ1, IFN-λ2, IFN-

λ3 

Receptor IFNAR1 and 

IFNAR2 

IFNGR1 and 

IFNGR2 

IFNLR1 and IL10R2 

STATs STAT1, STAT2, 

STAT3 and 

STAT5 

 

STAT4 and 

STAT6 - IFN-α 

only 

 

Must form 

ISGF3 complex 

with IRF9 for 

signaling 

STAT1 STAT1, STAT2, 

STAT3, STAT4 and 

STAT5 

Promoter 
element 

ISRE and GAS GAS ISRE and GAS 

Table 1.3: Classes of interferons 
A comparison of the 3 different types of interferon, their receptors, the STATS 
used for signal transduction and the promoter elements (IFN-stimulated 
response element (ISRE) and IFN-γ- activated site (GAS)) the STATs are able 
to bind to for transcription of interferon-stimulated genes (ISGs) 



	 49	

1.13.1 Type I interferon signaling 

 

Upon binding of the Type I IFNs to the IFNAR1 and IFNAR2 receptor complex, 

ligand-dependent rearrangement and dimerization of the receptor occurs 

(Pattyn et al, 1999). Receptor dimerization leads to trans-phosphorylation 

events of the receptor associated JAK kinases, TYK2 and JAK. Activation of 

TYK2 and JAK enables further phosphorylation events and phosphorylation of 

STATs (Darnell et al, 1994) (Figure 1.2). There are multiple forms of STATs that 

can be phosphorylated in the Type I signaling pathway which include STAT1, 

STAT2, STAT3 and STAT5. In addition, IFN-α can also activate STAT4 and 

STAT6. All of these STAT subunits are able to form homodimers and 

heterodimers with one another upon phosphorylation by TYK2 and JAK (Darnell 

et al, 1997). STAT1 and STAT3 are known to be phosphorylated on serine 727 

(Wen et al, 1995), however the location of phosphorylation of the other STATs 

has not been explored. STAT homo or heterodimers can translocate to the 

nucleus and act as transcription factors, binding at specific binding sites in 

target promoters (Meinke et al, 1996). There are 2 distinct canonical promoter 

elements that STAT dimers bind to: either the IFN-stimulated response element 

(ISRE) or IFN-γ- activated site (GAS) element (Yang et al, 2005). Most of the 

STAT homo and heterodimers have the ability to bind to the GAS element and 

enable transcription. However, only STAT1-STAT2 heterodimers have the 

ability to bind to ISREs in combination with IRF9, as the ISG Factor 3 (ISGF3) 

complex (Fu et al, 1992). IRF9 does not require phosphorylation to bind to the 

STAT1-STAT2 heterodimer. The ISGF3 complex then translocates to the 

nucleus to bind to the ISRE and enable transcription of interferon stimulated 

genes (ISGs) (Tsuno et al, 2009).  

 

1.13.2 Type II interferon signaling 

 

IFN-γ is the only Type II interferon and upon binding to its receptors, IFNGR1 

and IFNGR2, IFN-γ also activates the JAK-STAT pathway shown in Figure 1.2. 

However, in this case the 2 receptor subunits, IFNGR1 and IFNGR2, are each 

constitutively associated with JAK1 and JAK2 respectively (Bach et al, 1997). 

Activation of JAK1 and JAK2 leads to the phosphorylation of STAT1 on tyrosine 
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701, which enables the formation of a STAT1 homodimer. The STAT1 

homodimer then translocates to the nucleus and binds to the GAS elements 

within target promoters to permit transcription of ISGs (de Weerd and Nguyen, 

2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Type I and II Interferon signaling 
The interferon signaling pathway is represented schematically from extracellular 
at the top, down to intra-nuclear at the bottom, with the plasma membrane (blue 
double-barrier) and nuclear membrane (non-continuous blue line). Purple 
elements are specific to Type II with red components specific with Type I, 
although cross-talk with Type II should be noted. 
 

1.13.3 Regulation of interferon signaling 

 

Interferon signaling is tightly regulated, which may be important for overall 

organism homeostasis since, for example, prolonged signaling has been 

associated with autoimmune diseases (Feng et al, 2012). Part of interferon 

regulation involves negative feedback, as some ISGs that are up-regulated by 

interferon signaling act to inhibit the JAK-STAT pathway. The 2 main examples 

Plasma membrane  

Nuclear envelope  



	 51	

of this are USP18 and SOCS (Ivashkiv et al, 2014). USP18 is an isopeptidase 

that is normally responsible for the degradation of proteins (Honke et al, 2016). 

However, this role of USP18 is not responsible for the inhibition of the interferon 

signaling pathway. USP18 specifically binds to the IFNAR2 subunit, thereby 

preventing the binding of JAK1 to IFNAR2 and subsequently inhibiting JAK-

STAT activation and downstream interferon signaling (Sarasin-Filipowicz et al, 

2009). The family of SOCS proteins are also inhibitors of the JAK-STAT 

pathway, particularly SOCS1 and 3. SOCS proteins bind to phosphorylated 

residues on the IFN receptors or on JAK components, and prevent subsequent 

binding of STATs and thereby inhibit activation of the signaling pathway 

(Yoshimura et al, 2007).  

 

1.13.4 Interferon stimulated genes 

 

Transcription of many different genes is stimulated upon binding of STATs to 

either the ISRE or GAS elements of their promoters, which are known as 

interferon stimaulted genes (ISGs).  

 

One family of genes that is up-regulated by IFN signaling is the oligoadenylate 

synthase (OAS) family. This comprises OAS1, OAS2 and OAS3 (Rebouillat et 

al, 1999). The OAS family stimulates cleavage of double stranded RNA 

structures. OAS enzymes convert adenosine triphosphate (ATP) into 2’-5’-

linked oligoadenylate (2-5A) (Kerr et al, 1978). 2-5A in turn promotes 

dimerization and activation of the latent endoribonuclease, RNaseL (Zhou et al, 

1993). Activated RNaseL is then responsible for degradation of double-stranded 

viral and cellular RNA, as well as promoting apoptosis, attenuating proliferation 

and inhibiting protein synthesis (Sadler et al, 2008).  

 

Another family of proteins that are prominent ISGs is the myxovirus resistance 

(MX) family (Horisberger et al, 1991). MX family is made up of MX1 and MX2, 

and the proteins are responsible for the inhibition of virus entry into cells. MX1 

and MX2 are structurally similar to dynamin-like large guanosine triphosphatase 

(GTPases) (Haller et al, 2007). MX1 and MX2 have N-terminal GTPase 

domains, bundle signaling elements and C-terminal stalk domains. Both N-
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terminal and C-terminal domains are critical for the function of MX1 and MX2 as 

they enable self-oligomerisation for the formation of multiple ring like structures 

(Gao et al, 2011). It is thought that these ring like structures interact with and 

surround viral nucleocaspids, which activates the GTPase activity of the MX 

proteins. Activation of GTPase activity leads to the degradation of the viral 

nucleocaspids, however this mechanism has yet to be fully determined (Haller 

et al, 2011).  

 

Both the OAS and MX family of proteins are classical ISGs that are activated 

upon interferon signaling and are involved in viral response. OAS1 and MX1 

have been used in my work to confirm interferon signaling activation. 

 

1.14 Interferons in cancer 

 

In addition to interferons role in anti-viral response, interferons have also been 

implicated in cancer. It is thought that they can play a role in extrinsic and 

intrinsic mechanisms of cancer cells. Extrinsic mechanisms have an impact on 

other cell types that are not directly the tumour cell (section 1.14.1 and Figure 

1.3), whereas intrinsic mechanisms impact the tumour cells directly (section 

1.14.2 and Figure 1.4) (Platanais et al, 2013). 

 

1.14.1 Extrinsic roles of interferons in cancer 

 

Interferons can modulate immunoregulatory effects. Interferons have been 

shown to regulate the activity of a number of different classes of immune cells 

and can potentially activate anti-tumour immunity. Activation of natural killer 

cells (NK) cells and CD8-positive cytotoxic T cells by interferons can reduce 

tumour burden and enable anti-metastatic effects to prevent cancer spread 

(Swann et al, 2007).  

 

Interferons can also suppress proliferation of effector T cells preventing immune 

response against cancer cells. The presence of interferons inhibits the ability of 

T-regulatory cells (Tregs) to divide, thereby reducing their suppression of 

cytotoxic T cell activity (Pace et al, 2010). Interferons can also have an impact 
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on myeloid-derived suppressor cells (MDSC) by reducing their local levels, and 

therefore reducing MDSC subsequent suppressive function on immune 

responses (Zoglmeier et al, 2011). Production of interferons can also influence 

the production of further chemokines required for immune responses against 

cancer cells, such as IL-15. IL-15 is responsible for activation and proliferation 

of T and NK cells as well as providing survival signals for memory T cells to 

maintain the lymphocyte population (Munger et al, 1995).  

 

Interferon driven activation of dendritic cells (DC) can also increase 

presentation of tumour antigens to T cells as well as enhancing the expression 

of tumour antigens on the surface of cells (Schiavoni et al, 2013). Interferons 

can also increase the expression of programmed cell death protein 1 (PD1) and 

its ligand PD-L1 on immune cells and tumour cells respectively. Upon binding of 

PD1 to its ligand PD-L1, T-cell receptor signaling is inhibited and subsequently 

T cell proliferation is stalled. It is currently thought that up-regulation of PD-L1 

and PD1 enable evasion of immune responses (Parker et al, 2016). 
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Figure 1.3: Extrinsic roles of interferons on immune-regulation in cancer 
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1.14.2 Intrinsic roles of interferons in cancer 

 

Interferons can also have an impact on the tumour cells themselves (Figure 1.4) 

and have been implicated in many core biological functions. Interferons have 

the ability to prolong and stall the cell cycle. Interferons have been shown to 

delay entry into S phase and G2/mitosis by lengthening the time cells spend in 

G1, S and G2./M, therefore inhibiting proliferative ability of tumour cells. In 

addition, quiescent cells in G0/G1 were delayed entry into the cell cycle in the 

presence of interferons (Balkwill et al, 1978). Interferons have also been shown 

to activate another pathway by activating CRK proteins. The CRK protein CRKL 

interacts with RAP1A, which has previously been shown to be a tumour 

suppressor of RAS GTPases, which are predominantly activated in cancer and 

activate multiple signaling pathways (Fathers et al, 2012).  Presence of both 

Type I and Type II interferons has been shown to block cell cycle progression 

through up-regulation of the cyclin-dependent kinase inhibitor (CDK1) p21. p21 

is able to block cell cycle progression by binding directly to cyclin-dependent 

kinase 2-cyclin complexes (cyclin A and E), which are required for passage 

through G1 and the S phase to G2/M transition (Hobeika et al, 1997).  

 

Interferons can also have an impact on apoptosis of tumour cells. IFN-α has 

been shown to induce apoptosis of cells. In order to do this, IFN-α activated 

multiple different caspases (-1,-2,-3, -8 and -9). Caspases are required for 

apoptosis, with caspase-8 and -9 being the major initiator caspases (McIlwain et 

al, 2013). Normally caspase-8 is activated by death ligands binding to their 

receptors and caspase-9 is activated by mitochondrial cytochrome c. However, 

IFN-α has been shown to activate casapase-8 and -9 in the absence of death 

ligands and thereby induce apoptosis (Thyrell et al, 2002).  
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Figure 1.4: Intrinsic roles of interferons on tumour cells 
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1.15 MiRNAs 

 

In my results, I have attempted to identify miRNAs with potential roles in 

chemoresistance, therefore, here I describe miRNA biogenesis, the function of 

miRNA in gene silencing and the relevance of their expression in cancer.  

 

MiRNAs (miRNAs) are a subset of the transcriptome, being short non-coding 

RNAs of approximately 20-22 nucleotides in length, with 5’- phosphate and 3’ 

hydroxyl ends (Krol et al, 2004). MiRNA genes are found in multiple different 

regions of the genome, including in the introns of coding genes as well as in 

inter-genic regions. MiRNA genes are also commonly found in clusters within 

both these regions (Lagos-Quintana et al, 2001). It is thought that transcription 

of miRNAs within a gene is driven by the same promoter that is responsible for 

the transcription of the host gene. However, transcription of miRNAs present in 

inter-genic regions is driven by their own promoters (Bartel et al, 2004).  

 

1.16 MiRNA biogenesis 

 

A number of modification and processing stages are required to convert the 

initial transcript of a miRNA into a mature miRNA (summarized in Figure 1.5). 

Transcription of miRNAs normally occurs using RNA polymerase II (Lee at al, 

2004).  

 

Initial miRNA transcripts that are produced following gene transcription are 

referred to as primary miRNAs, or pri-miRNAs. Pri-miRNAs have a specific 

structure as they have 2 segments of single stranded RNA, that are 

complimentary to one another, which link together by a hairpin loop and 3 spiral 

turns (Cai et al, 2004). In addition, the pri-miRNA must contain a 5’ end cap and 

a poly A tail (Cai et al, 2004). If the pri-miRNA does not contain the hairpin loop 

and 5’ and 3’ modifications, the RNA will not be processed correctly for the 

formation of mature functional miRNA (MacFarlane and Murphy, 2010).  

 

Nuclear processing of the pri-miRNA is then undertaken. Nuclear protein 

DiGeorge syndrome critical region gene 8 (DGSCR8) recognizes the double 
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stranded hairpin loops in the pri-miRNA and binds to the double-stranded RNA 

(Han et al, 2004). DGSCR8 associates with the RNA III endonuclease Drosha 

to form the microprocessor complex (Denli et al, 2004). Drosha then cuts 

around 11 nucleotides from the pri-miRNA to produce an isolated hairpin 

species, referred to as the pre-miRNA (Lee et al, 2003).  

 

MiRNA transcripts can also be produced from an intron in a host-coding gene. 

The production of these miRNAs is initially different from the transcripts 

described above. Intronic miRNAs are again transcribed by RNA polymerase II 

when the host-coding gene is transcribed (Kim et al, 2007). This therefore 

produces precursor mRNA (pre-mRNA). Pre-mRNA contains the 5’ UTR, the 

host gene protein-coding region, non-coding introns (in which the intronic 

miRNA is present) and the 3’UTR (Lin et al, 2006). The pre-mRNA then must 

undergo splicing by the spliceosome to remove the intron region from the host 

gene-coding region to produce the intron containing miRNA transcript and the 

mRNA for protein translation (Ruby et al, 2007). Further splicing and processing 

enables the spliced intron to function as the pri-miRNA. Following production of 

the pri-miRNA, the processing of the intronic and inter-genic miRNA is exactly 

the same (Shomron et al, 2009).  

 

For further processing, the pre-miRNA hairpins must be exported to the 

cytoplasm (Lund et al, 2004). For this to occur the pre-miRNA assembles into a 

complex with the nucleo-cytoplasmic transporter factor exportin-5. Exportin-5 

recognises a 2 nucleotide overhang on the 3’ end of the hairpin (Bohnsack et al, 

2004). For exportin-5 mediated transport across the nuclear barrier, GTP is 

required, which is bound to a Ran protein. The Ran-GTP is converted to Ran-

GDP to actively transport the pre-miRNA to the cytoplasm (Yi et al, 2003).  

 

For the production of mature miRNA, the pre-miRNA is cleaved by the RNase III 

endonuclease, Dicer (Bernstein et al, 2001). Dicer forms a complex with 

argonaute 2 protein (Ago2) and trans-activating response RNA binding protein 

(TRBP) (Chendrimada et al, 2005). Dicer interacts with the 5’ and 3’ ends of the 

pre-miRNA hairpin and cuts the long flexible loop that joins the 5’ and 3’ arms of 

the hairpin to create an imperfect miRNA: miRNA* duplex (Zhang et al, 2002). 
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Unwinding of the miRNA: miRNA* duplex is then required, which is performed 

by the Dicer, TRBP and Ago2 complex, to produce mature miRNA (Kawamata 

et al, 2009). The single-stranded mature miRNA that is bound to the Dicer, 

TRBP and Ago2 complex is then incorporated into the RNA-induced silencing 

complex (RISC) for miRNA silencing (Provost et al, 2002).  

 
Figure 1.5: MiRNA biogenesis 
A schematic flow chart of miRNA biogenesis starting from miRNA transcribed 
from within its own miRNA gene or intronic miRNA gene, and the processing 
and export steps until the miRNA binds to its target for gene silencing.  
 
 
1.17 MiRNA silencing of RNA 
 

The major role of miRNAs is in RNA silencing and post-transcriptional 

regulation of gene expression. MiRNAs have the ability to impair the production 

of proteins from target mRNAs and thereby reduce expression of particular 

mRNA targets (Figure 1.6) (Shivdasani et al, 2006). It is thought that 60% of all 

mRNAs are targets for regulation by miRNAs (Friedman et al, 2009). For RNA 

silencing to occur, the formation of the RISC complex is vital as the RISC 

complex guides the miRNA towards its correct target mRNA (Pratt et al, 2009). 
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The core components of the RISC complex are Dicer, Ago2, TRBP and protein 

kinase R-activating protein (PACT) (Lee et al, 2006). Once the mature miRNA 

has been formed, the mature miRNA is loaded into the RISC complex that then 

guides the miRNA to target sequences in mRNAs, normally in the 3’ UTRs 

(Chendrimada et al, 2005).  

 

MiRNA driven mRNA silencing can occur in different ways. Firstly, miRNA can 

be responsible for the cleavage of the mRNA strand and subsequent 

degradation (MacFarlane et al, 2010). Here the miRNA, that has been guided to 

the target mRNA by the RISC complex, is usually – but not always - fully 

complimentary and base pairs with the mRNA (Meister et al, 2004). Cleavage of 

the mRNA strand is then catalyzed by Ago2 in the RISC complex leading to 

degradation of the RNA (Liu et al, 2004)  

 

Secondly, miRNAs can be responsible for inhibition of mRNA translation 

(Valencia-Sanchez et al, 2006). Inhibition of mRNA translation can occur when 

nucleotides 2-7 of the miRNA, which is known as the seed region, are 

complementary to the mRNA while the remainder of the miRNA is only partially 

complementary and the base pairing is mismatched (Meister et al, 2004). It is 

thought that complimentary and mismatched base pairing creates bulges in the 

miRNA and mRNA pairing to prevent translation occurring. However, further 

understanding is required (Bartel et al, 2004). Complimentary and mismatched 

base pairing between the miRNA and mRNA can also lead to an increase in the 

speed of deadenylation and removal of the mRNA poly A tail leading to more 

rapid mRNA degradation (Pillai, 2005).  

 

1.18 MiRNAs in cancer 

 

Cancer is driven by mutations and dysregulation of genes, so, given the roles 

miRNAs play in gene regulation in normal cells, the roles miRNAs have in gene 

dysregulation in cancer have been studied intensively (Peng et al, 2016).  

 

Firstly, expression profiles of miRNAs have been assessed to identify any 

increased or decreased expression of miRNAs in cancers (Espinosa et al, 
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2006). MiRNA expression profiles are commonly carried out using sequencing 

platforms (miRNA-SEQ) to screen a large number of miRNAs, with a large 

number of changes seen in miRNA expression in many different tumour types 

(Zhu et al, 2014). For example, miR-155 has been shown to overexpressed in 

many types of cancer such as haematopoietic cancers, breast, lung and colon 

(Faraoni et al, 2009). In addition, miR-21 has been found to be overexpressed 

in almost all cancers studied such as breast, colon, liver, brain, pancreas and 

prostate (Volinia et al., 2006). The miR-17-92 cluster, which encodes 6 different 

miRNAs, is overexpressed in multiple cancers such as lung, colon and gastric 

cancers (Concepcion et al, 2012).  

 

It is evident that the expression of miRNAs change during malignant 

transformation and further work has been carried out to identify what role 

miRNAs have in cancer progression (Adams et al, 2014). Because of miRNAs 

role in dysregulation of gene expression, miRNAs can act as either oncomiRs or 

tumour suppressor miRs. MiRNAs act as oncomiRs when they aid in cancer 

progression and promote tumor development, normally by targeting inhibitory 

regulators of cancer as well as genes that stimulate cell differentiation and 

apoptosis (Jansson et al, 2012). On the other hand, tumour suppressor miRs 

prevent cancer progression by reducing expression of oncogenes (Price et al, 

2014).  

 

There are a large number of examples of oncomiRs in a variety of different 

cancers that can play a role in different hallmarks of cancer. miR-21 is 

responsible for the down-regulation of four tumour suppressor genes: mapsin, 

programmed cell death 4 (PDCD4), tropomyosin1 (TPM1) and phosphatase 

and tensin homolog (PTEN) (Volinia et al., 2006). Additionally, it is thought that 

PTEN is also a target of the miR-17-92 cluster (Zhu et al, 2014). 

 

The miR-17-92 cluster contains the genes for the following six miRNAs: miR-17, 

miR-18a, miR-19a, miR-19b-1, miR-20a and miR-92-1. The miR-17-92 cluster 

has also been shown to be an oncomiR (Mendell, 2008). The miR-17-92 cluster 

has been linked to the expression of c-myc, which is required for proliferation. 

Both c-myc and the miR-17-92 cluster regulate the expression of the 
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transcription factor E2F1 leading to increased cell survival (O’Donnell et al, 

2005). There are also numerous examples of miRNAs acting as tumour 

suppressors. For example, let-7, which is one of the first-identified members of 

the miRNA family, has been shown to negatively regulate the oncogene RAS 

(Johnson et al, 2005).  

 

1.19 Hypothesis and aims 

 

Having reviewed the current literature, my hypothesis was that CAFs enable 

chemoresistance in TNBC through the release of specific mediators that act on 

epithelial cancer cells.  

 

I aimed to: 

• Identify whether CAFs enable chemoresistance in TNBC cells; 

• Characterize potential mediators (miRNA) and signaling pathways 

responsible for CAF-induced chemoresistance; 

• Determine if the CAF-induced chemoresistance pathways could be 

inhibited to improve TNBC response to chemotherapy; 

• Highlight any potential cellular mechanisms responsible for CAF-induced 

chemoresistance. 
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Chapter 2: Methods and materials 
 

2.1 Cell lines and tissue culture  

 

Triple negative (ER, PR and HER2 negative) breast epithelial cancer cell lines 

MDA-MB-231 (wild-type [without either luciferase or GFP expression]), MDA-

MB-468 and MDA-MB-157 cells were acquired from American Type Culture 

Collection (ATCC HTB-26, HTB-132 and HTB-24, Manassas, USA). MDA-MB-

231 cells that stably express firefly luciferase (MDA-MB-231-luc) were 

purchased (Cat# AKR-231, Cell Biolabs, San Diego, USA), and MDA-MB-231 

cells that stably express GFP and firefly luciferase (MDA-MB-231-GFP/luc) 

were developed in-house by transduction with lentiviruses coding for over-

expression of the appropriate reading frames (Lorger et al, 2010). MDA-MB-468 

that stably express firefly luciferase (MDA-MB-468-luc) or GFP (MDA-MB-468-

GFP) were also developed in house following transduction with lentiviruses 

(Lorger et al, 2010). Normal breast fibroblasts (NFs) or breast cancer-

associated fibroblasts (CAFs) were extracted from breast cancer patient 

samples by the Hughes group and immortalised by viral transduction to allow 

stable over-expression of hTERT (Verghese et al, 2013) to create the lines NF1 

and NF2 (normal fibroblasts) or CAF1 (cancer-associated fibroblasts). CAF1-

GFP cells were also developed by transduction with lentiviruses coding for over-

expression of the appropriate reading frame (Verghese et al, 2013). Primary NF 

(pNF) and CAF (pCAF) were also extracted from breast cancer patient samples 

and were used at relatively early passage (between 5 and 10 passages). Both 

the pNFs and pCAFs were taken from a TNBC patient with the pCAFs being 

taken from within the tumour mass, and the pNFs being extracted from at least 

1cm outside the tumour margin. Fibroblasts were extracted from samples 

provided by breast cancer patients undergoing treatment within the Leeds 

Teaching Hospitals NHS Trust; patients were recruited and informed consent 

was taken under ethical permission from the Leeds (East) Research Ethics 

Committee reference 09/H1326/108.   

 

MDA-MB-231 (all derivatives), MDA-MB-468 (all derivatives), NF1, NF2, CAF1 

and CAF1-GFP cells were all grown in the same media: DMEM (Cat# 31966-
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021, Thermofisher Scientific, Waltham, USA), 10% FCS (Cat# F7524, Sigma, St 

Louis, USA) and 1% penicillin/streptomycin at final concentrations of 100 U/ml 

penicillin and 100µg/ml Streptomycin (Cat# 15070-063, Thermofisher Scientific, 

Waltham, USA). Cells were cultured at 370C in 5% CO2/air and were kept sub-

confluent by sub-culturing every 2-4 days as appropriate. MDA-MB-157 cells 

were grown in Leibovitz L-15 media (Cat# 11415-049, Thermofisher Scientific, 

Waltham, USA) with 10% FCS and 1% penicillin/streptomycin as above, and 

were cultured at 370C in sealed flasks or plates in 100% air. MDA-MB-157 cells 

were kept sub-confluent by sub-culturing every 7 days, with 2 media changes 

during this period. pNFs and pCAFs were cultured in DMEM F12 media (Cat# 

31331-028, Thermofisher Scientific, Waltham, USA) supplemented with 10% 

FBS, 1% penicillin/streptomycin as above, and 1% Fungizone at a final 

concentration of 5µg/ml (Cat# A2942, Sigma, St Louis, USA). Cells were 

cultured at 370C in 5% CO2/air and were kept sub-confluent by sub-culturing 

every 2-4 days as appropriate. All cells were maintained routinely in 150cm2 

tissue culture flasks (Cat# CLS430825, Corning, Sigma, St Louis, USA). 

 

For the passaging of cells, medium was removed and cells were washed with 

10ml Dulbecco’s phosphate-buffered saline (DPBS, Cat# 14190-094, 

Thermofisher Scientific, Waltham, USA). 2ml of 0.05% trypsin (Cat#1540054, 

Thermofisher Scientific, Waltham, USA) was added and incubated for 5min at 

370C, or until all the cells had dissociated from the plastic. To inactivate the 

trypsin, 10ml of the correct culture media was added to the cells. 2-10ml of the 

cell suspension was then added to 20ml of fresh culture media in a new 150cm2 

tissue culture flask. The volume of cell suspension varied dependent on the cell 

line used, with – for example - MDA-MB-157 cells and primary fibroblasts 

requiring higher seeding densities, therefore 10ml of cell suspension was added 

to the 20ml fresh culture media. 

 

To remove cells from plastic mid-experiment for replating or for further down-

stream analysis, cells were trypsinised using 2ml of 0.05% trypsin and 

resuspended in 10ml cell culture media. Cells were then centrifuged at 400g for 

5 min to pellet the cells. Cells were then resuspended in a further 10ml of 
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culture media ready for replating. For down-stream analysis, following pelleting, 

cells were resuspend in 10ml PBS instead.  

 

2.2 Transfection of cell lines 

 

ISRE/GAS reporter plasmids and renilla plasmid (pRL-TK using HSV thymidine 

kinase promoter (Mankouri et al, 2010)) were kind gifts from Dr Andrew 

Macdonald (University of Leeds). MiRNA mimics and inhibitors and appropriate 

controls were purchased from Dharmacon (Lafayette, USA), and are listed in 

Table 2.1. 

 

MDA-MB-231 cells (all derivatives) were seeded for transfection in 24 well 

plates (Cat# CLS3527, Corning Costar, Sigma, St Louis, USA) at 50,000 cells 

per well, or in 96-well plates (Cat# CLS9102, Corning Costar, Sigma, St Louis, 

USA) at 20,000 cells per well and were incubated in standard culture for 24h 

before transfection. MDA-MB-157 cells were seeded for transfection in 96-well 

plates at 40,000 cells per well 24h prior to transfection. Cells were then 

transfected in OPTI-MEM (Cat# 31985-070, Thermofisher Scientific, Waltham, 

USA) without serum, with varying concentrations of miRNA inhibitors/mimics or 

plasmids as appropriate, using Lipofectamine 2000 (Cat#11668019, 

Thermofisher Scientific, Waltham, USA). Prior to addition to wells, miRNA 

mimics or inhibitors, or plasmids, were combined with OPTI-MEM and 

Lipofectamine 2000 for 20min at room temperature; 2µl of Lipofectamine 2000 

was used per 24-well in 100µl of OPTI-MEM or 0.5µl of Lipofectamine 2000 was 

used per 96-well in 50µl of OPTI-MEM. Transfection mixtures were added to 

cells, with medium already on the cells, for 6h and cells were incubated under 

standard culture conditions. After this 6h, medium was then replaced with full 

fresh medium and cells were incubated in standard culture conditions at least 

overnight before further manipulation (for example, trypsinisation for re-plating 

in co-culture experiments). MiRNA mimics or inhibitors and their associated 

controls were used at concentrations of between 500pM to 500nM in the 

transfection mix (mimics/inhibitors and controls at the same concentration in 

each individual experiment), while ISRE/GAS reporter plasmids were used at 

1µg/ml. 
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Table 2.1: MiRNA mimics and inhibitors used for transfection 
 
 

2.3 Chemotherapy agents, chemical inhibitors, recombinant interferons, 

blocking antibodies 

 

Epirubicin hydrochloride (Cat# E9406, Sigma, St Louis, USA) was dissolved in 

DMSO at a stock concentration of 100mM, and was used at a wide range of 

doses, depending on cell line and end-point assay, (short-term survival or 

colony forming assays) of 10nM to 79µM. Docetaxel (Cat#01885-5MG-F, 

Sigma, St Louia, USA) was dissolved in DMSO at a stock concentration of 

10mM, and was used at 350pM for colony forming assays. Ruxolitinib 

(Cat#S1378, Selleckchem, Munich, Germany) was dissolved in DMSO at a 

stock of 10mM and was used at 10nM for colony forming assays. Recombinant 

IFN-α and IFN-γ were kind gifts from Matthew Holmes and Fiona Errington-Mais 

(University of Leeds) and were manufactured by Peprotech (Cat # 300-02A and 

300-02 respectively, Rocky Hill, USA). Anti-Human Interferon Alpha/Beta 

receptor chain 2 (clone MMHAR-2, Cat# 21385-1, PBL Assay Science, 

Piscataway, USA) or anti-human Interferon gamma R1 neutralising antibodies 

(CD119, Cat# AF673, R&D Systems, Minneapolis, USA) were added to cultures 

with a final concentration of 1µg/ml or 5µg/ml respectively. Appropriate isotype 

controls for both the IFN-α and IFN-γ blocking antibodies were used 

respectively: mouse IgG2A isotype control (Cat#MAB003, R&D Systems, 

Minneapolis, USA) and goat IgG control (Cat# AB-108-C, R&D Systems, 

Minneapolis, USA) at the same concentrations.  

Target Dharmacon catalogue number 

Control mimic 
Control inhibitor 

CN-001000-01-05 

IN-001005-01-05 

miR 27a-3p mimic 
miR 27a-3p inhibitor 

C-300502-03-0002 

 IH-300502-05-0002 

miR 155-5p mimic 
miR 155-5p inhibitor 

C-300647-05-0002 

IH-300647-06-0002 
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2.4 Dual luciferase reporter assays 

 

MDA-MB-231 cells that had been transfected with the ISRE or GAS reporter 

plasmids were then trypsinised and re-plated in culture/co-culture with varying 

proportions of NF1 or CAF1 cells at 0, 8, 20 or 55% fibroblasts within a total of 

20,000 cells per well in 96-well plates. Cultures were incubated with or without 

epirubicin as described in the appropriate figure legend. Cells were then 

washed twice with PBS and lysed using 50µl of 1x passive lysis buffer per well 

(Cat# E194A, Promega, Madison, USA) and left on a rocker for 15min at room 

temp. Analysis of luciferase activity followed the protocol in section 2.5.1, 

however renilla activity was also measured with 20µl Stop and Glo reagent 

(Cat#E640A and E641A, Promega, Madison, USA) added to each well after the 

LARII (Cat# E151A and E195A, Promega, Madison, USA) reading was taken. 

The plate was shaken for 2s, delay 2s and read for 5s. 

 

2.5 Luciferase-based chemo-survival assays  

 

2.5.1 Dose determination  

 

For simple mono-culture experiments, MDA-MB-231-luc or MDA-MB-468-luc 

were plated in 96-well plates at 20,000 cells per well and were cultured for 24h 

as normal. Cells were then treated in triplicate with epirubicin hydrochloride at 

doses ranging from 1pM to 500µM, or without epirubicin treatment (control), by 

replacing the media with 50µl of dosed media. Following culture for 24h, cells 

were washed twice with PBS and lysed using 100µl of 1x passive lysis buffer 

(Cat# E194A, Promega, Madison USA). Plates were left on a rocker for 15min 

at room temperature for the cells to lyse. 10µl of lysate was added in triplicate to 

wells of a new 96-well opaque wall plate, and were analysed for luciferase 

activity using the Berthold technologies Mithras LB 940 (Bad Wildbad, 

Germany) 96-well plate reader. The following luminescence protocol was used: 

20µl LARII (Cat# E151A and E195A, Promega, Madison, USA) was added to 

each well, shaken for 2s, delay 2s and read for 5s. For calculating cell survival, 
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mean treated readings were expressed relative to the no treatment (control) 

average. IC25, 50 and IC75 doses were estimated from dose response curves. 

 

2.5.2 Co-culture assays  

 

For co-culture experiments, MDA-MB-231-luc or MDA-MB-468-luc cells were 

plated in 96-well plates in triplicate with varying proportions of NF1, NF2, or 

CAF1 cells (from 0% fibroblasts to 55% fibroblasts) within a total of 20,000 cells 

per well. After 24h of culture, cells were treated with approximate IC10, 50 or 75 

concentrations of epirubicin hydrochloride (as determined by mono-culture 

dose-response assays (see section 2.5.1), or with vehicle only, for a further 

24h. For 24h treatments only, medium was then removed and cells washed 

twice with PBS and lysed in 1x passive lysis buffer (Cat# E194A, Promega, 

Madison, USA) as above. For 72h incubations, after 24h of drug treatment, 

medium was replaced with drug-free medium for a further 48h before washing 

and lysis as above. Luciferase activity within lysates was assessed using the 

Berthold plate reader as above. Readings from epirubicin-treated cultures were 

normalised to readings from matched cultures with the same fibroblast 

proportion and treated with vehicle control. Normalisation this way allowed 

focus on differences in response to epirubicin, and to avoid the confounding 

factors of differences in the total numbers of epithelial cells seeded and the 

potential influences of fibroblasts on epithelial growth.  

 

2.6 MTT assays 

 

Cells were seeded/transfected in 96-well plates as appropriate for individual 

experiments. 25µl of 5mg/ml MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (Cat# M6494, Thermofisher Scientific, Waltham, 

USA) was added to each well for 4h in the dark at 370C in 5% CO2/air, and then 

removed. 50µl of propan-1-ol (Cat# 6775-25, Macron fine chemicals, Center 

Valley, USA) was added to each well and plates were rocked until all the 

precipitate had dissolved. Absorbances were then measured at 570nm using 

the Berthold 96-well plate reader. 
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2.7 Mono-culture colony forming assays 

 

For initial chemotherapy dose-finding experiments and for recombinant 

interferon colony formation experiments, mono-culture colony forming assays 

were performed. Cells (MDA-MB-231-GFP/luc, MDA-MB-468-GFP, or MDA-

MB-157) were seeded in 6-well plates at 200,000 cells per well and allowed to 

adhere overnight. Cells were treated with chemotherapy agents (see section 

2.3) or recombinant interferons as appropriate for up to 48h. The final 

concentrations of IFN-α ranged from 500-5000pg/ml and IFN-γ ranged from 

500-3000pg/ml. Cells were then trypsinised, counted using a haemocytometer 

and plated in duplicate 10cm tissue culture dishes (Cat# CLS430167, Corning, 

Sigma, St Louis, USA) at 500 cells per plate in fresh medium lacking 

chemotherapeutics or recombinant interferons. Plates were incubated for 14 

days undisturbed (in an isolated incubator dedicated to these assays with 

minimal opening/closing – critical to minimise cells from individual colonies 

becoming dispersed into multiple colonies). For MDA-MB-231-GFP/luc and 

MDA-MB-468-GFP cells, cells were then fixed/stained using 1ml of 5mg/ml 

Crystal Violet (Cat# V5265, Sigma, St Louis, USA) in 50% methanol, 20% 

ethanol and 30% water for 30s, followed by 3 washes in distilled water. For 

MDA-MB-157 cells, cells were fixed/stained twice in succession by two full 

repeats of 2ml of 12.5mg/ml Crystal Violet in 50% methanol, 20% ethanol and 

30% water, for 5min and followed by 3 washes in distilled water. Isolated 

colonies estimated to be of more than 40 cells were counted manually.  

 

The reproducibility and objectivity of these manual colony counts was confirmed 

as follows. The author and a fellow researcher (Melina Teske, University of 

Leeds) independently counted colonies on 16 plates, representing a range of 

different number of colonies. The two independent values for the number of 

colonies on each plate were compared, and the correlation between the sets of 

data was calculated (Figure 2.1). The correlation coefficient of 0.949 indicates 

near perfect agreement between the independent scores, demonstrating 

excellent reproducibility of these data. 
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Figure 2.1: Comparison of 2 independent counts of colony forming assay plates 
of MDA-MB-468 cells 
Colonies on 16 separate plates of MDA-MB-468 cells with differing numbers of 
colonies following recombinant interferon and/or epirubicin treatments were 
counted independently by the author, RB (count 1) or a colleague, Melina 
Teske (count 2). Counts for each plate were plotted independently (left panel) 
or relative to each other (right panel).  
 
2.8 Co-culture colony forming assays 

 

For co-culture experiments, MDA-MB-231-GFP/luc, MDA-MB-468-GFP, or 

MDA-MB-157 cells were seeded with varying proportions of NF1, CAF1, CAF1-

GFP, pNF or pCAF cells at 0, 8, 20 or 55% fibroblasts within the same total 

number of cells (1x106 cells in a T25 flask [Cat# CLS430639, Corning, Sigma, 

St Louis, USA] or 400,000 in each well for 6-well plates). MDA-MB-231-GFP/luc 

and MDA-MB-468-GFP were co-cultured with NF1 or CAF1 cells (which are 

GFP negative), but the GFP negative MDA-MB-157 cells were cultured with 

CAF1-GFP (GFP positive). Epithelial cells may have previously been transiently 

transfected immediately prior to seeding for these co-cultures, as previously 

described in section 2.2. Cultures were treated with a variety of chemotherapy 

agents, chemical inhibitors, or antibodies as appropriate (see section 2.3).  After 

up to 48h, cultures (including the 0% fibroblast culture, which is an epithelial 

mono-culture) were treated for fluorescence-activated cell sorting (FACS), and 

epithelial cells were re-plated to form colonies as described for section 2.7.  

 

FACS was used to separate components of cultures for subsequent down-

stream analyses of the separate cell types (by colony forming assay, or qPCR 
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for example). Importantly, mono-cultures were also sorted in experiments where 

mono-cultures were compared with co-cultures, to ensure that the cells were 

treated similarly in both cases. Cultures were trypsinised and washed twice with 

PBS on ice, and resuspended in 1ml RPMI phenol red free media (Cat# 11835-

030, Gibco, Thermofisher Scientific, Waltham USA). Cells were then strained 

using a 70µM nylon cell strainer (Cat#352350, Corning, Sigma, St Louis, USA) 

before sorting. The BD Influx 6-way cell sorter was used, identifying GFP 

positive cells using the 488nm blue laser, and gating on live cells using 

FSC/SSC. Only single cells were collected. Representative flow plots are shown 

for the cell combinations separated: MDA-MB-231-GFP/luc cells combined with 

fibroblasts (GFP negative), MDA-MB-468-GFP combined with fibroblasts (GFP 

negative), and CAF1-GFP cells combined with MDA-MB-157 cells (Figures 2.2, 

2.3 and 2.4 respectively). Up to 100,000 cells of the desired population were 

collected on ice for re-plating (section 2.7) or other down-stream analysis 

(section 2.12).  

 

 

Figure 2.2: FACS cell sorting plots for MDA-MB-231 GFP/luc cells co-cultured 
with 20% CAF1 cells 
Viable cells were first gated (FSC vs SSC left panel) followed by gating on GFP 
expression: GFP negative CAF1 cells (red peak in right panel) and GFP positive 
MDA-MB-231 cells (green peak in right panel). Cells were sorted from the 
appropriate peaks on the right plot. 	
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Figure 2.3: FACS cell sorting plots for MDA-MB-468 GFP cells co-cultured with 
20% CAF1 cells 
Viable cells were first gated (FSC vs SSC left panel) followed by gating on GFP 
expression: GFP negative CAF1 cells (red peak in right panel) and GFP positive 
MDA-MB-231 cells (green peak in right panel). Cells were sorted from the 
appropriate gated peak on the right plot.  
 
 
 

 
 
Figure 2.4: FACS cell sorting plots for MDA-MB-157 cells co-cultured with 20% 
CAF1-GFP cells  
Viable cells were first gated (FSC vs SSC left panel) followed by gating on GFP 
expression: GFP negative MDA-MB-157 cells (red peak in right panel) and GFP 
positive CAF1-GFP (green peak in right panel). Cells were sorted from the 
appropriate gated peak on the right plot.  
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2.9 Preparation of fibroblast conditioned media, and use in colony forming 
chemo-survival assays 
 
 
In order to prepare fibroblast-conditioned media (with and without epirubicin), 

T150 tissue culture flasks of NF1 and CAF1 cells were seeded so as to be just 

sub-confluent. Flask were treated with 10nM epirubucin hydrochloride for 24h 

(induced conditioned media) or left without drug (conditioned media). Medium 

was collected from these flasks, centrifuged at 400g for 5min, and the 

supernatent was used on epithelial cells immediately without storage, meaning 

that multiple flasks of fibroblasts had to be established and treated at different 

times in order to supply fresh conditioned media when required. Epithelial cells 

(MDA-MB-231-GFP/luc, MDA-MB-157 or MDA-MB-468-GFP) were seeded for 

8h in standard culture conditions at 1x106 cells in T25 tissue culture flasks in 

either normal fresh medium or a mix of 50% conditioned medium/50% normal 

fresh medium using conditioned medium from either NF1 or CAF1 cells. 

Medium was then replaced with fresh medium or 50% conditioned medium as 

appropriate and cells were cultured for a further 16h.  Cells were then treated 

with 10nM epirubicin hydrochloride in either 0% or 50% conditioned media from 

NF1 or CAF1 cells or 50% induced conditioned media from NF1 or CAF1 cells. 

Cells were left for 8h at 370C 5% CO2 with media again replaced for a further 

16h. Cells were then trypsinised, counted and re-plated to allow colonies to 

form exactly as described in section 2.7.  

 

2.10 Anoikis assays 

 

MDA-MB-231-GFP/luc were seeded with NF1 or CAF1 cells in T75 flasks (Cat# 

CLS430641, Corning, Sigma, St Louis, USA) with varying proportions of 

fibroblasts, including 0, 8, 20 or 55% fibroblasts at a total cell number per flask 

of 2x106. Cultures were incubated for 24h, followed by a media change and a 

further incubation for 24h. Cultures were then trypsinised, washed twice with ice 

cold PBS and GFP-positive MDA-MB-231-GFP/luc cells were collected by 

FACS exactly as described in section 2.8; 1.5x105 MDA-MB-231-GFP/luc cells 

were collected. The remainder of the protocol followed the CytoSelect 96-well 

anoikis assay manufacturer’s protocol (Cat#CBA-081, Cell Biolabs, San Diego, 

USA). All MDA-MB-231-GFP/luc cells collected from FACS were spun at 400g 



	 74	

for 5min in a centrifuge and resuspended in 100µl of media and added to 96-

well anchorage resistant plates (part 108101 from kit named above). Cells were 

incubated for 36h under normal culture conditions. In order to quantify surviving 

cells, 10µl of the MTT reagent (part 113502), was added to each well for 3h, 

and the plate was incubated as for normal culture. Following this incubation, 

100µl of detergent solution (part 108004) was added to each well and plates 

were incubated for 3h at room temperature in the dark. The 150µl of solution in 

the wells was transferred to a 96-well tissue culture plate and the absorbance of 

each well was measured at 570nm on the Mithras LB 940 96-well plate reader 

(Berthold Technologies).  

 

2.11 Analysis of transcriptomes for MDA-MB-231 cells cultured with and without 

CAF1 cells  

 

MDA-MB-231-GFP/luc cells were seeded alone (0% fibroblasts) or with 20% 

CAF1 cells in T75 tissue culture flasks, giving a total cell number of 2x106 in 

both cases. Cultures were incubated (24h), treated with 10nM epirubicin (24h), 

and then treated for FACS to purify GFP-positive MDA-MB-231-GFP/luc cells 

as described above (section 2.8). 900,000 MDA-MB-231-GFP/luc cells were 

collected. Sorted MDA-MB-231-GFP/luc cells were then collected by 

centrifugation at 400g for 5min, washed with PBS and collected again by 

centrifugation at 400g for 5min. RNA was extracted using the ReliaPrep RNA 

miniprep system (Cat#Z6012, Promega, Madison, USA) following the 

manufacturer’s protocol, and suspended in 30µl of nuclease free water 

(part#P119E). RNA concentrations were measured using the Nanodrop (ND-

1000 spectrophotometer). Three separate biological repeats of this experiment 

were completed in a three week period to provide robust biological replicates. 

The same RNA samples were used for transcriptome analyses of both miRNAs 

and mRNAs (section 2.11.1 and 2.11.2). 

 

2.11.1 mRNA transcriptome analyses 

 

Samples were sent to the Sheffield Microarray/Genomics core facility at the 

University of Sheffield to be analysed on Affymetrix Clariom D microarrays 
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(Santa Clara, USA) by Dr Paul Heath (University of Sheffield). Initial data quality 

examination was then performed using Affymetrix Expression Console software 

and probe level summarisation files were then used for further analysis using 

the Affymetrix transcriptome analysis console v3.0. Using the transcriptome 

analysis console, the three biological repeats were grouped into 0% CAF and 

20% CAF samples and a paired ANOVA was performed for each individual 

mRNA probe. Thresholds were put in place where fold changes between the 

0% and 20% groups were greater than +/- 2 with p value from the ANOVA less 

than 0.05. The list of genes that fit these criteria were then analysed in 

ToppGene (https://toppgene.cchmc.org, Chen et al, 2009) to identify pathways 

of interest. For ToppGene software, the ToppFun programme was used and the 

full gene list was added with the entry type Ensembl ID.   

 

2.11.2 miRNA analyses 

 

The three separate samples representing independent biological replicates for 

0% CAF or 20% CAF were pooled for each group. These pools were diluted to 

equal RNA concentrations (as determined by Nanodrop) of 136ng/µl. 

Expression of 377 miRNAs was determined using TaqMan low-density arrays: 

human miRNA array A (Thermofisher Scientific, Waltham, USA). RNA was 

reverse transcribed using MegaPlex RT pool A primers using the TaqMan 

miRNA reverse transcription kit (Cat# 4366597, Thermofisher Scientific, 

Waltham, USA): the RT reaction mix was made up of 0.8µl of MegaPlex RT 

pool A primer, 0.2µl of 100mM dNTPs, 1.5µl of 50U/µl Multiscribe Reverse 

transcriptase, 0.8µl 10X RT buffer, 0.9µl of 25nM MgCl2, 0.1µl of 20U/µl RNase 

Inhibitor, 0.2µl of nuclease free water per sample. 4.5µl of the RT reaction mix 

was mixed with 3µl of RNA per sample and incubated on ice for 5min. The 

tubes were then placed on the Dyad Peltier Thermocycler (Bio-rad, Hercules, 

USA) following the thermal-cycling conditions shown in Table 2.2. 
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Stage Temp Time 

Cycle 
(40 Cycles) 

16°C 2min 

42°C 1min 

50°C 1sec 

Hold 85°C 5min 

Hold 4°C ∞ 

Table 2.2: Thermal cycling protocol required for Taqman MegaPlex miRNA 
cards reverse transcription 
 
 

Following the RT, 6µl of the RT product was combined with 450µl of Taqman 

Universal PCR master mix (Cat# 4304437, Thermofisher Sceintific, Waltham, 

USA) and 444µl of nuclease free water per sample. 100µl of PCR reaction Mix 

was added into each port of a Taqman human miRNA array A plate and 

reactions were performed on the 7900 HT real time PCR machine using a 

standard curve (AQ) and 384 well TaqMan Low density array. These data were 

normalised in two alternative ways: to RNU48, a snoRNA commonly used as an 

invariant normaliser (Gee et al, 2011), or to the array mean including every CT 

value less than 40 (Park et al, 2003). Undetermined CTs were set to 40 to allow 

an estimation of minimum fold change when compared to the detected values. 

Fold changes were determined using δδct method (Livak et al, 2001). 

 

2.12 RNA extractions and qPCR 

 

RNA was extracted using the ReliaPrep RNA miniprep kit (Promega, Madison, 

USA) following the manufacturer’s protocol. 

 

2.12.1 miRNA qPCR 

 

TaqMan miRNA assays were used. A minimum of 50ng of RNA was used per 

sample, with equal amounts of RNA used for all samples in the same analysis. 

RNA volumes were made up to 10µl using nuclease free water (giving 5µl each 

for detection of target and normaliser). Reverse transcription reactions were 

carried out in a total volume of 15µl per sample comprising of 5µl RNA, 3µl 

target or control primer and 7µl RT master mix. The RT master mix, using the 
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TaqMan miRNA reverse transcription kit (Cat#4366596, Thermofisher Scientific, 

Waltham, USA), was comprised of 0.15µl of 100mM dNTPs with dTTP, 1µl of 

50U/µl Multiscribe Reverse transcriptase, 1.5µl 10X RT buffer, 0.19µl of 20U/µl 

RNase Inhibitor, 4.16µl of nuclease free water per sample. Samples were 

incubated on ice for 5min and the tubes were placed on the Dyad peltier 

thermocycler using the thermal-cycling conditions shown in Table 2.3. 

 

 

Table 2.3: Thermal cycling protocol required for TaqMan miRNA assays reverse 
transcription 
 
For real-time PCRs, total reaction volumes were 10µl. This was made up of 

0.5µl target or control primer, 0.67µl RT product (which had been diluted 1:3 

with nuclease free water), 5µl TaqMan 2x Universal PCR master mix (Cat# 

4304437, Thermofisher Scientific, Waltham, USA) and 3.83µl of nuclease free 

water. This was added to a microAmp optical 96 well reaction plates (Cat # 

4316813, Thermofisher Scientific, Waltham, USA) and qPCR analysis was 

performed using the QuantStudio 5 system on the TaqMan chemistry setting. 

Target primers included miR-27a-5p (Cat# 4427975 ID 002445, Thermofisher 

Scientific, Waltham, USA), miR-27a-3p (Cat# 4427975 ID 000408, 

Thermofisher Scientific, Waltham, USA), miR-32-5p (Cat# 4427975 ID 002109, 

Thermofisher Scientific, Waltham, USA), miR-155-5p (Cat# 4427975 ID 

002623, Thermofisher Scientific, Waltham, USA), miR-422a (Cat# 4427975 ID 

002297, Thermofisher Scientific, Waltham, USA) and miR-454-3p (Cat# 

4427975 ID 002323, Thermofisher Scientific, Waltham, USA). For each 

individual analysis, RNU48 (Cat# 4427975 ID 001006, Thermofisher Scientific, 

Waltham, USA) was performed in parallel and was used as the normaliser; 

relative expression levels of target miRNAs were calculated by the δδct method 

(Livak et al, 2001). 

Stage Temp Time 

Hold 16°C 30min 

Hold 42°C 30min 

Hold 85°C 5min 

Hold 4°C ∞ 
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2.12.2 mRNA qPCR 

 

The Promega GoTaq 2-Step RT-qPCR system (Cat# A5000, Promega, 

Madison, USA) was used. A minimum of 50ng in 4µl per sample was used. 1µl 

of random primers was added. The RNA/primer mix was preheated to 70°C for 

5min then immediately chilled to 4°C for at least 5min. The reverse transcription 

reaction mix (Promega, Madison, USA) was then added to the RNA primer mix, 

with the following volumes per sample; 5µl nuclease free water, 4µl GoScript 5x 

reaction buffer, 4µl of 25M MgCl2, 1µl PCR nucleotide mix for final 

concentration of 0.5mM and 1µl GoScript reverse transcriptase. The tubes were 

then placed on the Dyad peltier thermocycler and incubated at the thermal 

cycling temperatures shown in Table 2.4.  

Stage Temp Time 

Hold 25°C 5min 

Hold 42°C 1hr 

Hold 70°C 15min 

Hold 4°C ∞ 

Table 2.4: Thermal cycling protocol required for SYBR green mRNA assays 
reverse transcription 	
 

The resulting cDNA was diluted with 40µl nuclease free water prior to real-time 

PCR. For the real-time PCR, 5µl of the GoTaq qPCR master mix was used per 

sample with 0.2µl of 40X target primer and 0.05µl CXR reference dye used per 

sample. Target primers used were OAS1 (Cat# 74007036, IDT, Coralville, 

USA), MX1 (Cat# 74007039, IDT, Coralville, USA), IFNA2 (Cat# 74849839, 

IDT, Coralville, USA), IFNB1 (Cat# 74849836, IDT, Coralville, USA), and IFNG 

(Cat#74849833, IDT, Coralville, USA), with ACTB (Cat# 74007033, IDT, 

Coralville, USA) used as a control normaliser (see Table 2.5 for primer 

sequences). Master mix and primer solution were combined with 5µl of cDNA 

per well in a microAmp optical 96 well reaction plate. qPCR was performed 

using the QuantStudio 5 system using the pre-programmed SYBR chemistry 

setting. Expression was determined relative to ACTB using the δδct method 

(Livak et al, 2001).   
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Table 2.5: Primer sequences of target and control mRNA qPCR primers 
 

 

2.13 Flow cytometric assessment of epirubicin loading or cell cycle  
 
To assess epirubicin loading, cells (mono-cultures or co-cultures) were 

prepared for flow-cytometry by being removed from the plastic by trypsin, and 

being resuspended in PBS (see section 2.1). The Attune flow cytometer 

(Thermofisher, Waltham, USA) was used. The BL-1 channel was used to detect 

GFP expression, while the BL-3 channel was used to detect epirubicin. Analysis 

was gated on live cells on the basis of FSC/SSC, and then on either the GFP-

positive MDA-MB-231-GFP/luc cells or the GFP-negative fibroblasts 

(representative flow-cytomtery dot plots are shown in Figure 2.5). Epirubicin 

loading was quantified as BL-3 median level from a minimum of 10,000 events. 

The specific cell populations are in the following sections; R2- GFP negative 

fibroblasts loaded with epirubicin, R3- GFP positive MDA-MB-231 cells loaded 

with epirubcin, R4- GFP negative fibroblasts not loaded with epirubicin, R5- 

GFP positive MDA-MB-231 cells not loaded with epirubicin. The following 

voltages for each channel and compensation matrix were used (Table 2.6).	

Target Primer 

OAS1 
5’-GATGAGCTTGACATAGATTTGGG-3’ 

5’-GGTGGAGTTCGATGTGCTG-3’ 

MX1 
5’-CGAAACATCTGTGAAAGCAAGC-3’ 

5’-CAGGCTTTGTGAATTACAGGAC-3’ 

IFNA2 
5’-TTGACTTGCAGCTGAGCA-3’ 

5’-CCCATTTCAACCAGTCTAGCA-3’ 

IFNB1 
5’-GCCATCAGTCACTTAAACAGC-3’ 

5’-GAAACTGAAGATCTCCTAGCCT-3’ 

IFNG 
5’-CGACAGTTCAGCCATCACTT-3’ 

5’-GCAACAAAAAGAAACGAGATGAC-3’ 

ACTB 
5’-CCTTGCACATGCCGGAG-3’ 

5’-ACAGAGCCTCGCCTTTG-3’ 
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 FSC SSC BL1 BL3 

Voltage 2700 3400 1200 1400 

 

 

 

 

 

 

Table 2.6: Voltages for channels and compensation matrix used for drug 

loading 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Flow cytometry gating strategy for epirubicin loading assessments  
MDA-MB-231-GFP/luc were co-cultured with CAF1 cells and treated with 
epirubicin. First, a gate was determined to select viable cells using FSC vs SSC 
(top left panel). Then cells were analysed based on BL-1 (GFP positive, x-axis) 
and BL-3 (epirubicin, y-axis) with the dot plot (top right panel) split into quarters. 
R2 represents GFP negative epirubicin loaded cells and R3 represents GFP 
positive epirubicin loaded cells. The median absorbance for BL-3 (epirubicin) in 
the separate quadrants was determined as shown in the table.   

Compensation 
matrix 

BL1 BL3 

BL1 100 -1.5 

BL3 -3 100 
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For cell cycle analysis, cells (mono-cultures or co-cultures) were prepared for 

flow-cytometry by being removed from the plastic by trypsin, and being 

resuspended in 1ml complete medium with 1µl of Dye Cycle violet (Cat# 

V35003, Thermofisher Scientific, Waltham, USA). Samples were incubated for 

at least 30min at 370C in the dark. Samples were then analysed on the Attune 

flow cytometer. Analysis was gated on Dye cycle violet viable cells, on the basis 

of FSC/VL1 and single cells, on the basis of VL1-H vs VL1-A. GFP positive 

(MDA-MB-231-GFP/luc) or negative (CAF1 cells) were gated separately using 

VL1 channel vs BL1 channel. Finally, cell cycle profiles from the Dye cycle 

violet were extracted using VL1-H. For the analysis, the following compensation 

and settings were used.   

 FSC SSC BL1 VL1 

Voltage 2700 3600 1200 1300 

 

 

 

 

 

 

Table 2.7: Voltages for channels and compensation matrix used for cell cycle 

analysis 

 

Following the formation of the cell cycle profile, these data were analysed using 

ModFit LT (Verity Software) to determine the percentage of cells that were in 

each stage of the cell cycle (G1, S, or G2/M). 

 

 

 

 

 

 

 

 

Compensation 
matrix 

BL1 VL1 

BL1 100 -0.1 

VL1 -0.6 100 
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Figure 2.6: Flow cytometry gating strategy for cell cycle assessments  
MDA-MB-231-GFP/luc were co-cultured with CAF1 cells and treated with 
epirubicin. DyeCycle Violet dye was added to all cultures. Cells were analysed 
based DyeCycle violet loading VL1 (y-axis) in all viable cells vs FSC (x-axis top 
middle plot). Violet loaded cells (R1) were then analysed based on singlet cells 
(top right panel). BL-1 (GFP positive, y-axis) was then plotted against VL1 
(DyeCycle violet x-axis) to determine GFP positive cells loaded with DyeCycle 
Violet (bottom left panel, labeled R3). DyeCycle violet count of R3 was 
produced to create cell cycle profile required for analysis (bottom right panel).   
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Chapter 3- Cancer-associated fibroblasts 

protect some triple negative breast cancer 

cell types from chemotherapeutics 
 

3.1 Abstract 

 

Cytotoxic chemotherapy is the only routine systemic treatment for primary triple 

negative breast cancer (TNBC). Resistance to chemotherapy in TNBC is a 

clinical problem reflected in the relatively high rate of early recurrences. Cancer-

associated fibroblasts (CAFs) are the most abundant cell type in breast tumour 

stroma, and have been shown to influence behaviour of tumour cells. My aims 

were to determine whether the presence or amount of CAFs or normal 

fibroblasts (NFs) modifies responses of TNBC cells to chemotherapy. 

 

I have shown that the short-term survival of MDA-MB-231 cells after treatment 

with the anthracycline chemotherapeutic epirubicin was significantly enhanced 

by the presence of immortalized human breast CAFs, and that this protection 

was dose-dependent in terms of the proportion of CAFs in the culture. This 

survival advantage was not observed in MDA-MB-468 cells, which represent a 

different sub-class of TNBC – the claudin-high cancers. Using clonogenic 

survival as the end point, claudin-low TNBC cell lines MDA-MB-231 or MDA-

MB-157 cells were both significantly protected from epirubicin-induced death by 

immortalized CAFs, while claudin-high MDA-MB-468 cells were again not 

protected. Immortalised breast NFs did not protect any cell lines from the effects 

of epirubicin in this assay. Clonogenic assays were also performed using MDA-

MB-231 cells in combination with a matched pair of primary breast CAFs or 

NFs. As previously, CAFs protected the cancer cells from epirubicin, while NFs 

did not. Immortalised CAFs also protected MDA-MB-231 cells from the taxane 

chemotherapeutic docetaxel. Interestingly, conditioned media from CAFs did 

not offer significant protection from epirubicin in MDA-MB-231, MDA-MB-157 or 

MDA-MB-468 cells, suggesting that physical contact or bi-directional signaling 

between the CAFs and epithelial cells is required to induce protection. 
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I concluded that CAFs, but not NFs, were capable of protecting some types of 

TNBC cells from chemotherapy, and that the mechanisms involved were worthy 

of further study.   

 

3.2 Introduction 

 

For TNBC patients, there are no routinely used targeted treatments currently 

available, so chemotherapy is the only systemic therapeutic option (Chittaranjan 

et al, 2014). Chemotherapy can be given prior to surgery (neoadjuvant) or post-

surgery (adjuvant), with TNBC patients showing relatively good responses in 

comparison to other breast cancer groups in the neoadjuvant setting (Rouzier et 

al, 2005). Up to 50% of TNBC patients can achieve pCR, however, responses 

in the remainder of patients are highly variable. Some patients’ tumours will 

decrease in size but will not achieve a pathological complete response, while 

others may even continue to grow. It is these patients, those that do not 

respond to chemotherapy, that are more likely to have a poorer prognosis, with 

relapses common within 1-3 years post-treatment (Cortazar et al, 2014). 

Therefore, chemoresistance in these patients is a clinical problem and an 

understanding of chemoresistance would be useful in order to design improved 

therapies, as there are currently limited alternative treatment options available.  

 

Tumour stroma is usually defined as comprising the non-cancer cell 

components of tumours, such as pericytes, adipocytes, immune cells, blood 

and lymph vessel cells, and fibroblasts, along with the extracellular matrix. 

Typically, the most abundant cell type present in the tumour stroma is the 

cancer-associated fibroblasts (CAFs) (Madar et al, 2013). However, the number 

of fibroblasts present can vary greatly from patient to patient. Although studies 

focusing solely on fibroblasts are lacking, it has previously been shown that 

TNBC patients with a higher proportion of stroma (>50%) have a poorer 

prognosis than patients with a lower proportion of stroma (<50%) (Moorman et 

al, 2012), with – surprisingly - opposite results reported in ER positive breast 

cancers (Downey et al, 2014). This suggests that stromal elements may have 

roles to play in defining treatment responses.  
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CAFs have been shown to have influences on tumour progression, including at 

the specific levels of tumour growth, angiogenesis and metastasis (Gascard et 

al, 2016). In addition, it has been reported that CAFs may have a protective role 

for the epithelial cancer cells that enables drug resistance, through remodeling 

of collagen I within the extra-cellular matrix thereby providing a physical barrier 

for chemotherapeutic perfusion of the cancer cells (Netti et al, 2000). In addition 

to structural changes, secretory factors released by CAFs to induce drug 

resistance in breast cancer have also been explored. For example, CAFs have 

been shown to be responsible for de-sensitization of ER positive breast cancer 

to the anti-estrogen fulvestrant (Leyh et al, 2015). In TNBC, CAFs have been 

shown to release to HGF, which activates Met signaling and can induce 

resistance to EGFR inhibitors (Mueller et al, 2012). However, there is no firm 

consensus concerning the main pathways by which CAFs influence therapy-

response of breast cancer cells, particularly within the TNBC subtype and with 

respect to cytotoxic chemotherapeutics. 

 

In this chapter, I have explored whether the presence and differing amounts of 

breast fibroblasts (NFs or CAFs) have an impact on chemoresistance in TNBC 

cells. The chemotherapeutic agent that I have used mainly is the anthracycline 

epirubicin. Epirubicin is routinely used in treatment of TNBC, usually in 

combination with other chemotherapeutic agents, such as cyclophosphamide, 

and sometimes in sequence with taxanes. My aim was to provide insights into 

whether different fibroblast proportions confer changes in chemo-response and 

therefore, potentially, outcomes after chemotherapy. 
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3.3 Results 

 

3.3.1 Breast fibroblasts can protect TNBC cell lines from the chemotherapeutic 

epirubicin 

 

My first aim was to determine whether the presence of normal breast 

fibroblasts, or breast CAFs was able to influence the immediate sensitivity of 

TNBC epithelial cells to cytotoxic chemotherapy. Therefore, I developed a short-

term, co-culture survival assay where luciferase expressing TNBC cells (MDA-

MB-231-GFP/luc or MDA-MB-468-luc cells) were co-cultured with either 

immortalised breast NFs or CAFs in varying proportions, ranging from a majority 

of fibroblasts in the culture (seeded as 55% fibroblasts: 45% epithelial cells) 

through to a small minority of fibroblasts (seeded as 8% fibroblasts) or only 

epithelial cells (0% fibroblasts), with the same total cell number seeded in each 

case in order to achieve comparable overall confluencies. Two different breast 

NF lines were used (NF1 and NF2), while only one CAF line was used (CAF1). 

Cultures were treated for 24h with the chemotherapeutic epirubicin at 3 different 

doses approximating to the IC10, IC50 and IC75 doses, which had previously 

been estimated for each epithelial cell line when treated alone, or were treated 

with vehicle control (Appendix Figure 1). Survival of epithelial cells only was 

assessed using luciferase assays and is expressed relative to the untreated 

cultures of the same fibroblast: epithelial ratio (Figure 3.1). This normalisation 

method enabled a comparison of epithelial survival following treatment in the 

cultures of differing ratios of cells, and excluded the differences in actual 

numbers of epithelial cells plated to create these differing ratios. 

 

Epirubicin dose-dependently reduced survival of the epithelial cells, which was 

evident at the higher doses of epirubicin, although less consistently for the 

lower doses. In the case of MDA-MB-231 cells and MDA-MB-468 (Figure 3.1A 

and 3.1B), the introduction of increasing proportions of breast NFs (NF1 or NF2) 

or CAFs did not have any signifcant impact on the survival of the epithelial cells, 

with no significant differences observed between the 0% fibroblast cultures and 

any other proportion. Although not significant (p values 0.571, 0.881 and 0.956), 

CAF1 cells appeared to provide some protection to MDA-MB-231 against all 
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epirubicin doses at the lower proportions of CAF1 cells (4%,8% and 20%). It is 

also interesting to note that at some doses, the ability of the epithelial cells to 

survive in the presence of CAF1 cells increased above the level of the matched 

untreated culture (ie above 1 on the y-axis). Therefore, CAF1 cells appeared to 

enable an epirubicin-dependent growth stimulatory effect.  

 

Next, I modified this assay to be more sensitive to the toxic effects of epirubicin 

that might not be evident immediately after such a short treatment with the drug. 

In this modified assay, following the 24h treatment with epirubicin, drug was 

removed and cells were cultured for an additional 48h before luciferase 

measurement (Figure 3.2). My hypothesis was that this extended culture time 

might allow cells that were severely damaged but still assessed as alive after 

24h to break-down fully, and also might allow more time for fibroblast-

dependent protection.   

 

As expected, the same doses of epirubicin proved to be more toxic to both 

epithelial cell lines after this extended incubation (compare the positions on the 

y-axis in Figure 3.2 to Figure 3.1). More interestingly, significant fibroblast-

dependent protection of epithelial cells was seen. This was most striking for 

MDA-MB-231 cells with CAF1 cells (Figure 3.2A, p<0.01), and from CAF1s with 

MDA-MD-468 cells (Figure 3.2B, p<0.01). In the case of CAF1 cells and MDA-

MB-231 cells, 55% fibroblasts provided complete protection from the effects of 

the lowest dose of epirubicin.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 88	

 
 
Figure 3.1: CAF1s enhance chemo-survival in MDA-MB-231 cells with various 
proportions of fibroblasts after 24h epirubicin treatment 
MDA-MB-231-GFP/luc (A) or MDA-MB-468-luc (B) luciferase-positive cells were 
plated in mono-culture, or in co-culture with two alternative immortalised normal 
breast fibroblast lines (NF1 or NF2) or the immortalised breast CAF line (CAF1) 
in the proportions shown. Cultures were treated with their respective estimated 
IC10, 50 and 75 epirubicin doses for 24h. Cells were lysed, and luciferase 
assays were performed. Values were normalised to untreated cultures of the 
same fibroblast proportion. Data represent the means (+/- SE) of 3 independent 
experimental repeats except for MDA-MB-468 with NF (2 replicates only), while 
each independent repeat itself comprised 3 replicate wells. Linear regression 
analysis was carried out with significant differences in the overall trend across 
the fibroblast proportions for the appropriate doses calculated. No significant 
differences were observed.  
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Figure 3.2: CAF1s enhance chemo-survival in MDA-MB-231 cells with various 
proportions of fibroblasts after 72h epirubicin treatment 
MDA-MB-231-GFP/luc (A) or MDA-MB-468-luc (B) luciferase-positive cells were 
plated in mono-culture, or in co-culture with two alternative immortalised normal 
breast fibroblast lines (NF1 or NF2) or the immortalised breast CAF line (CAF1) 
in the proportions shown. Cultures were treated with their respective estimated 
IC10, 50 and 75 epirubicin doses for 24h. Drug media was then removed and 
replaced with drug free media and left for a further 48h. Cells were lysed, and 
luciferase assays were performed. Values were normalised to untreated 
cultures of the same fibroblast proportion. Data represent the means (+/- SE) of 
3 independent experimental repeats except for MDA-MB-468 with NF (2 
replicates only), while each independent repeat itself comprised 3 replicate 
wells. Linear regression analysis was carried out with significant differences in 
the overall trend across the fibroblast proportions for the appropriate doses 
calculated. P values ** <0.01. 
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3.3.2 Immortalised CAF1s protect claudin-low TNBC cells (MDA-MB-157 and 

MDA-MB-231), but not claudin-high MDA-MB-468 cells from epirubicin 

 

Having identified that breast fibroblasts can enhance the survival of TNBC cells 

using a short-term assay, my next aim was to extend this observation to 

examine the influence of fibroblasts on epithelial survival using an alternative 

assay. This was done using clonogenic survival assays, which are more 

sensitive to lesser degrees of chemotherapy-induced damage, as for cells to 

count as “having survived” they must be capable of repeated cell divisions. 

 

A similar principle was used as previously for the short-term chemo-survival 

assays, whereby triple negative cancer cell lines (MDA-MB-231-GFP/luc or 

MDA-MB-468-GFP) were cultured alone or with increasing proportions of NF1 

or CAF1 cells. Cultures were established, and epirubicin or vehicle control was 

added. GFP-positive epithelial cells were separated from fibroblasts using 

fluorescence activated cell sorting (FACS) and re-plated to assess clonogenic 

potential. Cultures without fibroblasts (i.e. 0% fibroblast / 100% epithelial) were 

also sorted to control for any FACS-induced technical artifacts and to allow 

accurate comparisons. 500 cells were plated, cultured for 2 weeks, fixed and 

stained before individual colonies were counted (Figure 3.3). Data are 

expressed as numbers of colonies (Figure 3.3A and B “Colony counts”), and as 

colony numbers after epirubicin treatment relative to matched cultures that were 

not treated with epirubicin (Figure 3.3 A and B “Relative to no chemo”), to allow 

focus on the influence of fibroblasts on epithelial survival after chemotherapy 

treatment.  

 

Firstly, an unexpected observation was noted in the colony number data in the 

absence of epirubicin treatment, which was not the initial aim of this set of 

experiments. Although not significant (p value 0.087), clonogenic plating 

efficiency of MDA-MB-231 cells was improved as the proportion of CAF1 cells 

increased, while -  interestingly - NF1 cells significantly decreased clonogenicity 

of MDA-MB-231 cells (Fig 3.3A; ‘colony counts’ compare pink and orange bars 

p<0.05). CAF1 cells did not confer this increased clonogenic ability on MDA-

MB-468 cells (Figure 3.3B ‘colony counts’).  
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Next, as expected, epirubicin reduced clonogenic survival by between 48 and 

52% in both MDA-MB-231 and MDA-MB-468 cells in the absence of fibroblasts 

(Fig 3.3A and 3.3B ‘relative to no chemo’, 0% bars: note position on y axis). 

CAF1 cells, but not NF1 cells, protected MDA-MB-231s from this epirubicin-

mediated impairment to colony formation in a dose-dependent manner (Fig 

3.3A purple bars; p<0.05). However, CAFs did not exert protection on MDA-MB-

468 cells (Figure 3.3B, dark blue bars). At the highest proportion of CAF1s 

(55%), MDA-MB-231 cells were very substantially protected from epirubicin; 

survival was 83% relative to the MDA-MB-231 cells cultured with 55% CAF1s 

that were not treated with epirubicin. 

  

It is important to note that although the MDA-MB-231 and MDA-MB-468 cell 

lines are both classed as triple negative cell lines, they can be sub-classified 

into claudin-low (MDA-MB-231) and claudin high (MDA-MB-468) (Ricardo et al, 

2012, Dias et al, 2017), and these sub-classes may respond and act differently 

(see section 1.4.2 for an introduction to sub-classes of TNBCs). In order to 

examine whether the effect of CAF1s on the MDA-MB-231 cells was potentially 

related to the claudin-low phenotype, the experiment was repeated with a 

second claudin-low TNBC cell line, MDA-MB-157. Some methodological 

changes were required as GFP-positive MDA-MB-157 cells were not available. 

Therefore, GFP-negative MDA-MB-157 cells were used with GFP-positive 

fibroblasts, with FACS again used to separate the cell types. GFP-positive 

CAF1s, but not NFs, were available therefore this experiment was performed 

only with GFP-CAF1. Otherwise, the experiment was performed and data were 

expressed as previously (Figure 3.4A).  

 

As previously, increasing proportions of CAF1s enhanced the clonogenic 

plating efficiency of the cancer cells in the absence of epirubicin, however this 

was not found to be statistically significant (compare light green bars in Figure 

3.4 A “Colony counts”, p value 0.337). The findings in MDA-MB-157 cells with 

respect to chemotherapy response mirrored those found with MDA-MB-231 

cells. Epirubicin treatment reduced clonogenic survival in the purely epithelial 

culture, 0% fibroblasts, to 32% compared to untreated. As CAF1s were 
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introduced, MDA-MB-157 survival increased but the overall trend in survival 

was deemed not significant by linear regression (p value 0.242). However 

comparison of survival of 0% vs 55% cultures, using Mann-Whitney, was 

significant in isolation (p<0.05) (Figure 3.4 A “Relative to no chemo”, compare 

across the dark green bars).  

 
Figure 3.3: CAF1s, but not NF1s, protect MDA-MB-231 cells, but not MDA-MB-
468 cells, from epirubicin    
Cultures of MDA-MB-231-GFP/luc or -468-GFP cells were established with 
various proportions of either immortalised normal breast fibroblasts (NF1) or 
immortalised breast CAFs (CAF1). Epithelial cells had been labelled with GFP, 
so the cell types could be differentiated by flow-cytometry. Cultures were 
treated with 10nM epirubicin or untreated for 24h. Cultures were then treated by 
FACS to prepare pure epithelial populations. 500 epithelial cells were seeded at 
low density and left for 14 days for colonies to form. Plates were then stained 
with crystal violet and individual colonies were counted. Data are normalised to 
the no treatment value for each individual fibroblast proportion and represent 
the means (+/- SD) of 3 independent experimental repeats. Linear regression 
analysis was carried out on no treatment for colony counts and normalised 
treated data with significant differences in the overall trend across the fibroblast 
proportions calculated. P values * <0.05 
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Figure 3.4: CAF1s protect MDA-MB-157 cells from epirubicin    
Cultures of MDA-MB-157 cells were established with various proportions of 
GFP positive immortalised breast CAFs (CAF1-GFP). Fibroblasts had been 
labelled with GFP, so the cell types could be differentiated by flow-cytometry. 
Cultures were treated with 25nM epirubicin or untreated for 24h. Cultures were 
then treated by FACS to prepare pure epithelial populations. 500 epithelial cells 
were seeded at low density and left for 14 days for colonies to form. Plates 
were then stained with crystal violet and individual colonies were counted. Data 
are normalised to the no treatment value for each individual fibroblast 
proportion and represent the means (+/- SD) of 3 independent experimental 
repeats. Linear regression analysis was carried out on no treatment for colony 
counts and normalised treated data with significant differences in the overall 
trend across the fibroblast proportions calculated. No significant differences 
were observed. 
 

 

3.3.3 Primary breast CAFs, but not primary NFs, protect the claudin-low TNBC 

cell line MDA-MB-231 from epirubicin  

 

To assess further whether CAF-induced protection from epirubicin was 

generalizable, I next tested whether primary breast fibroblasts could enable 

protection from epirubicin. A matched pair of primary NFs (pNF) and primary 

breast CAF (pCAF) cultures was obtained: NFs were extracted from a breast 

cancer resection specimen at least 1cm outside the tumour margin, and CAFs 

were taken from within the tumour mass itself. The influence of this matched 

pair of primary fibroblasts on clonogenic survival after epirubicin treatment was 

assessed in MDA-MB-231 cells exactly as previously. MDA-MB-231-GFP/luc 

cells were used, to allow fluorescent cell sorting, while the experiment was not 

performed with MDA-MB-157 cells as neither GFP-positive primary fibroblasts, 

nor GFP-positive MDA-MB-157 cells were available.  
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In the absence of epirubicin treatment, fibroblasts again induced a dose-

dependent increase in clonogenic plating efficiency (Figure 3.5A ‘colony 

counts’, bright orange and pink bars). This was evident both with pNFs and with 

pCAFs, although the pCAFs achieved near maximal increases in survival at a 

lower percentage (compare 8% bars), suggesting their influence was stronger. 

After normalization to allow focus on responses to epirubicin, all proportions of 

pCAFs increased protection of MDA-MB-231 cells, but pNFs did not (Figure 3.5 

‘relative to no chemo’).  

 

Figure 3.5: pCAFs, but not matched pNFs, protect MDA-MB-231 cells from 
epirubicin    
Cultures of MDA-MB-231-GFP/luc cells were established with various 
proportions of either primary normal breast fibroblasts (pNF) or primary breast 
CAFs (pCAF). Epithelial cells had been labelled with GFP, so the cell types 
could be differentiated by flow-cytometry. Cultures were treated with 10nM 
epirubicin or untreated for 24h. Cultures were then treated by FACS to prepare 
pure epithelial populations. 500 epithelial cells were seeded at low density and 
left for 14 days for colonies to form. Plates were then stained with crystal violet 
and individual colonies were counted. Data are normalised to the no treatment 
value for each individual fibroblast proportion and represent the means (+/- SD) 
of 1 independent experimental repeat.  
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3.3.4 Immortalised CAF1 cells protect MDA-MB-231s from an alternative 

chemotherapeutic, docetaxel 

 

Next, I wanted to investigate if CAFs could also confer protection from another, 

functionally-unrelated, chemotherapeutic. I chose to examine the taxane, 

docetaxel, which is – like epirubicin – routinely used in treatment of TNBC. The 

same clonogenic survival methodology was used as above, with only MDA-MB-

231 and immortalized CAF1s as the cells under test (Figure 3.6), since these 

had previously demonstrated strong CAF-dependent protection from epirubicin.  

 

Docetaxel treatment reduced clonogenic survival to 22% in the 0% fibroblasts 

MDA-MB-231 cultures (“Relative to no chemo” plot, Figure 3.6), while the 

presence of CAF1 cells dose-dependently increased survival (p<0.05) after 

docetaxel treatment to a maximum of 61% survival with the highest proportion 

of CAF1 cells relative to the untreated.  

Figure 3.6 CAF1s protect MDA-MB-231 cells from docetaxel    
Cultures of MDA-MB-231-GFP/luc cells were established with various 
proportions of immortalised breast CAFs (CAF1). Epithelial cells had been 
labelled with GFP, so the cell types could be differentiated by flow-cytometry. 
Cultures were treated with 350pM docetaxel or untreated for 24h. Cultures were 
then treated by FACS to prepare pure epithelial populations. 500 epithelial cells 
were seeded at low density and left for 14 days for colonies to form. Plates 
were then stained with crystal violet and individual colonies were counted. Data 
are normalised to the no treatment value for each individual fibroblast 
proportion and represent the means (+/- SD) of 3 independent experimental 
repeats. Linear regression analysis was carried out on no treatment for colony 
counts and normalised treated data with significant differences in the overall 
trend across the fibroblast proportions calculated. P values * <0.05 
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3.3.5 Fibroblast-dependent protection of claudin-low TNBC cell lines MDA-MB-
157 and MDA-MB-231 is not reproduced by fibroblast conditioned medium   
 

Next, I wanted to investigate mechanisms by which CAFs were able to protect 

selected epithelial breast cancer lines from chemotherapy. My first hypothesis 

was that the fibroblasts release a specific secreted factor(s) from CAFs, but not 

from NFs, that acts on the target epithelial cells. In order to test this, I collected 

conditioned medium from fibroblast mono-cultures (either NFs, NF1, or CAFs, 

CAF1) and assessed its ability to stimulate chemoresistance in epithelial 

cultures. 

 

Clonogenic survival assays were again performed using either MDA-MB-231, 

MDA-MB-157 or MDA-MB-468 cells. In these experiments, mono-cultures of 

these epithelial cells were treated with conditioned media taken from fibroblast 

cultures to simulate the presence of fibroblasts (labelled “M” on the Figures), or 

were left untreated to simulate the 0% fibroblast cultures. A further layer of 

complexity was also added to the experiment to take account of the fact that it 

was possible that fibroblasts were only induced to release the relevant secreted 

factor(s) by epirubicin treatment itself. Therefore, conditioned medium was also 

collected from fibroblast mono-cultures that had been pre-treated with epirubicin 

for 24h, and had then been swapped into epirubicin-free medium for 

conditioning of this fresh medium to take place; I have referred to this as 

“induced” conditioned medium (“iM").  

 

In all cell lines used, MDA-MB-231, MDA-MB-157 and MDA-MB-468 no 

significant differences were observed on treatment with either NF1 or CAF1 

conditioned media in either clonogenic plating efficiency (Figure 3.7 A, B, C left 

panel) or survival after epirubicin treatment (Figure 3.7 A, B, C right panel).  
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Figure 3.7 Fibroblast conditioned media does not protect MDA-MB-231, -468 
and -157 cells when treated with epirubicin  
Cultures of MDA-MB-231-GFP/luc, 468-GFP and -157 cells were established in 
media containing 50% fibroblast conditioned medium that had been taken from 
NF1 or CAF1 after 24h of culture (either without, “M”, or after pre-treatment of 
fibroblasts with epirubicin, “iM”). Epithelial cultures were then treated with 10nM 
epirubicin, with conditioned media replenished for 24h. 500 epithelial cells were 
then seeded at low density and left for 14 days for colonies to form. Plates were 
then stained with crystal violet and individual colonies were counted (left panel). 
Data were also normalised to the no epirubicin treatment values for each 
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conditioned medium treatment. Data represent the means (+/- SE) of 3 (-231) or 
2 (-468 and -157) independent experimental repeat. Two-tailed Mann-Whitney 
U tests were carried out to no conditioned with no significant differences 
observed. 
 
 
3.4 Discussion  
 

The aim of the work in this chapter was to identify whether the presence of 

fibroblasts (NFs or CAFs) had an impact on chemo-response of TNBC cells, 

and to determine if any impact was mediated by a secreted factor potentially 

contained within conditioned medium. 

 

3.4.1 Methodology for assessing chemo-response    

 

In order to study chemo-response in vitro, the ability to measure cancer cell 

survival following chemotherapeutic treatment was required. Over the years, 

various techniques to determine cell survival have been developed to assess 

not only chemotherapy response but also targeted drug and radiation 

responses (Menyhart et al, 2016). However, the particular circumstances of the 

research question I aimed to answer – ie the influence of one cell type on 

another in co-culture, defined that I needed to use slightly adapted assays. 

 

The most common and well-established assay for assessing chemo-response 

in vitro are MTT assays. Importantly, MTTs can measure drug sensitivity in 

multiple different cancer cell lines (Alley et al, 1988). MTT assays are commonly 

used as they are cheap, convenient, quick and reliable at assessing survival 

(Kratze et al, 1996). Although use of MTT assays would enable assessment of 

chemo-response, MTT assays could not be used in the work described here for 

this purpose as co-culture experiments were carried out and the aim was to 

assess response of only the breast cancer cell lines through the background of 

differing amounts of fibroblasts.  

 

Therefore, in order to assess survival of purely the epithelial cells in co-culture 

instead of the MTT readout, stable luciferase expression in the epithelial cells 

was exploited as a readout method. While uncommon in vitro, this methodology 

is commonly used for assessment of cell numbers, or cell survival after 
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treatments using in vivo models. Luciferase positive human breast cells have 

frequently been used in monitoring tumour development in localised and 

disseminated disease through bioluminescent imaging using IVIS imaging 

systems (Kalra et al, 2011). Cellular luciferase expression has also been used 

to quantify total cell numbers in novel in vitro 3D tissue engineered breast 

cancer models (Goliwas et al, 2017). Therefore, the use of luciferase as a read 

out was a viable option for assessment of purely epithelial cells in a mixed co-

culture of cells. 

 

However, short-term assays commonly only last a few days due to cultures 

becoming confluent, therefore the use of a longer-term assay was also 

appropriate to determine the cellular fate of the cells in terms of potentially 

continuing to proliferate; therefore, I also used colony formation/clonogenic 

assays. Clonogenic assays are based on the ability of single cells to divide and 

continue to grow into individual colonies. Clonogenic assay show the 

reproductive ability following cytotoxic treatment and, therefore, the 

effectiveness of the treatment (Crowley et al, 2016). Clonogenic assays are 

deemed more representative of what occurs clinically; firstly, the ability of a 

tumour to respond to treatment and secondly the potential of relapse and 

formation distant metastases from the primary tumour (Franken et al, 2006).  

 

Interestingly, and in support of my preferred use of clonogenic assays here, 

responses of breast tumours to chemotherapy have been successfully 

determined from patient samples using clonogenic assays (Jones et al, 1985). 

Among breast cancer patients who were deemed in vitro sensitive to treatment, 

59% of patients responded clinically to chemotherapeutics, with resistance 

correctly predicted in 100% patients who were in vitro resistant to treatment. 

Thus clonogenic assays were found to reproduce clinical findings with respect 

to chemo-response impressively effectively (Jones et al, 1985). The clinical 

relevance of the long-term clonogenic assays in addition to the ability to assess 

response, cellular fate and cell regrowth following treatment were key features 

in choosing clonogenic assays for use in this chapter to assess 

chemoresistance.  
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For my clonogenic experiments, I needed to sort the epithelial cancer cells, the 

cells of interest in terms of chemo-response, away from the co-cultured 

fibroblasts, which I achieved using FACS. As far as I am aware, this 

combination of co-cultures, FACS, and clonogenic assays have not previously 

been published. The only related assay I have found is where breast cancer 

cells were seeded for clonogenic assays onto monolayers of fibroblasts 

(Samoszuk et al, 2005), which support their subsequent proliferation, but their 

initial response to chemotherapeutics was not assessed.    

 

One of the difficulties for both of the assays I performed was deciding how best 

to show the treatment effects. In particular, since different numbers of epithelial 

cells were used in each condition under test, it was necessary to avoid this 

confounding experimental artifact to allow focus on the influence of the CAFs on 

epithelial survival. In many cases, in both short-term assays and long-term 

clonogenic assays, data are routinely normalised to the no treatment sample 

rather than using absolute values (Maycotte et al, 2012). In the case of my 

experiments, separate no treatment data were available for each individual 

fibroblast proportion under test, which led to more complex normalisation of 

each individual experimental value to its matched no treatment sample. The 

value of this method of normalisation was particularly evident in the clonogenic 

assays, where the increasing proportions of CAFs had an impact on the 

clonogenic plating efficiency of the cells in the absence of chemotherapy agents 

(visible in the colony counts), but also additionally on chemo-response (visible 

in the colony counts, but more clearly in data that were normalised relative to 

untreated samples).   

 

3.4.2 Conditioned media clonogenic assays – a soluble mediator of cross-talk 

between CAFs and cancer cells? 

 

Conditioned medium has frequently been used experimentally to show how 

secretory factors can impact on growth (Cullen et al, 1989), migration and 

invasion (Walter et al, 2009) of breast cancer cells.  Therefore, I attempted to 

use the same approach to identify if CAFs were secreting a soluble factor that 

was driving the chemoresistance I had seen in the TNBC cells (section 3.2.5). 
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Previously, conditioned media from CAFs has been shown to increase 

migration and invasion of MDA-MB-231 cells significantly, through the 

chemokine CXCL12 (Dvorak et al, 2018). CAFs have also been shown to 

induce phenotypic transformation of breast cancer cells through use of CAF 

conditioned media on MCF-7 cells (Wang et al, 2018). Conditioned media from 

NFs and CAFs have also been shown to increase growth in SKBR-3, T47D and 

MDA-MB-468 cells using MTT assays (Merlino et al, 2017). It is therefore 

evident that CAFs could impact on breast cancer progression through 

conditioned media. However, here in this chapter CAF conditioned media had 

no significant impact on chemoresistance in MDA-MB-231, -157 or -468 TNBC 

cells (Figure 3.7).  

 

The simplest interpretation of these results is that a secreted factor is not 

responsible for the CAF-induced chemoresistance in section 3.3.2, however 

there is a risk that the result is a false negative. It is possible that the secretory 

factor is a labile factor that is not well maintained within the conditioned 

medium, or that the concentration of the secretory factor in the conditioned 

media is at a low concentration. In order to minimise the risk of these false 

negatives, I ensured that my conditioned medium was prepared fresh for every 

experiment (rather than being stored), and I reduced the medium volume on the 

conditioning cells in an effort to concentrate any secreted factors. A further 

possibility is that the CAFs may need to be induced to produce the proposed 

secretory factor, perhaps by the epirubicin treatment itself, or by the epithelial 

cells, representing bi-directional cross-talk. With respect to the hypothesis that 

the epirubicin treatment could induce the CAFs to start secreting the relevant 

factor(s), there are published precedents for this. Treatment induced changes in 

CAF secretory molecules and subsequent effects on cancer cells have been 

shown in colorectal cancer, where chemotherapy activated CAFs to increase 

secretion of IL-17A that in turn led to remodelling of the tumour 

microenvironment to self-renew colorectal cancer-initiating cells (Lotti et al., 

2013). In breast cancer, chemotherapy has been shown to induce CAFs to 

secrete IL-6 inducing a pro-inflammatory microenvironment, which 

subsequently activated interferon-mediated signaling as well as stemness 
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pathways (Sonic Hedgehog signaling) in breast cancer cells (Peiris-Pagès et al, 

2015). In addition, chemotherapy induced damage of the microenvironment and 

CAFs in breast cancer led to increased levels of WNT16B, which drove breast 

cancer resistance to docetaxel / mitoxantrone combination therapy (Sun et al, 

2012). To take into account the potential influence of epirubicin directly on the 

CAFs themselves, in my experiments (section 3.2.5) I also pre-incubated CAFs 

with epirubicin and collected “induced” conditioned medium following this 

treatment. Interestingly induced CAF induced conditioned media didn’t behave 

significantly differently from the non-induced conditioned media, suggesting that 

epirubicin treatment alone did not induce CAFs to secrete a relevant factor. 

However, making induced conditioned media was slightly problematic as it was 

essential to pre-treat CAFs with epirubicin, then wash out epirubicin and collect 

induced conditioned media following this treatment, not during the treatment. If 

media was collected during epirubicin treatment, induced conditioned media 

could have added an additional substantial dose of epirubicin to cells and led to 

further cell death. However, it is possible sustained chemotherapy treatment is 

required to induce CAFs correctly but by collecting media following treatment, 

this could have been missed.  

 

Therefore, because of these unavoidable experimental weaknesses with the 

design of the conditioned medium experiments undertaken, it is not possible to 

rule out a role for a simple secreted factor. Nevetheless, conditioned media 

data also supports the model of a more complex interaction between the CAFs 

and epithelial cells, where bi-directional signaling or physical contact between 

the cell types is required.   

 

3.4.3 CAFs induce enhanced clonogenicity 

 

One unexpected finding, which was not an initial aim of my experiments, was 

the discovery that CAFs, but not NFs, induced increased clonogenic survival in 

cancer cells in the absence of chemotherapy treatment. This effect was often 

normalised away to allow focus on chemo-response (for example, in Figure 3.3 

compare the “Relative to no chemo” and the “Colony counts” plots). However, it 

is worthy of consideration in its own right. During these clonogenic assays, the 
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cells are detached from their substrate and are “rounded up”; cells remain 

suspended in solution until they are re-plated and are able to reattach. This can 

be a traumatic insult to many cell types – particularly epithelial cells – and can 

induce apoptotic cell death, termed anoikis in this context (Ishikawa et al, 2015). 

One interpretation of my observation regarding CAF-induced increased 

clonogenicity is that CAFs had induced anoikis-resistance in the co-cultured 

epithelial cancer cells. In terms of cancer biology, resistance to this type of 

induced apoptosis is of great interest, as some resistance is required to survive 

metastatic dissemination via blood or lymph (Cao et al, 2017). Therefore, an 

interesting hypothesis that could follow on would be that epithelial cancer cells 

from fibroblast-rich tumours might survive longer in the blood and could 

therefore be more metastatic. The potential role of CAFs in modifying anoikis in 

epithelial cells is explored experimentally in Chapter 6.  

 

3.5 Conclusions and aspects of future work  

 

I have demonstrated that CAFs, but not NFs, are capable of inducing enhanced 

clonogenic survival, and relative chemoresistance in selected TNBC cell lines. 

The protection from chemotherapy is not reproduced by conditioned medium 

taken from fibroblasts, indicating that either the relevant secreted factors are too 

labile or low in concentration to be transferred in this context, or that physical 

contact or bi-directional signaling is required between the two cell types. In the 

next chapter, I have aimed to explore the potential mechanisms of increased 

chemoresistance in CAF-protected epithelial cells, using transcriptomic 

approaches, with a view to identifying the signaling mechanism between the cell 

types and/or the effectors of the resistance itself. 
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Chapter 4- Cancer-associated fibroblasts 

induce up-regulation of interferon signaling 

in breast epithelial cancer cells, leading to 

chemoresistance 

 
4.1 Abstract 
 
CAF-dependent mechanisms of chemoresistance are poorly understood, with 

no firm consensus on the signaling pathways involved. Identifying potential 

signaling pathways driving chemoresistance in TNBC could pave the way for 

exploitation of these pathways to improve chemotherapy responses. In the 

previous chapter, I demonstrated that breast CAFs, but not NFs, can induce 

chemoresistrance in the TNBC cell lines MDA-MB-231 and MDA-MB-157. 

  

I next used array technologies to investigate the changes in the transcriptome 

of MDA-MB-231 cells induced by the presence of CAFs during treatment with 

the chemotherapeutic epirubicin. A signature of up-regulation of interferon 

signaling was observed, as reflected in the up-regulation of multiple 

components and targets of the pathway, including MX1, OAS1 and miR-155. 

CAFs, but not NFs, were capable of inducing interferon signaling in MDA-MB-

231 cells. Also, CAF-induced up-regulation of interferon signaling in breast 

cancer epithelial cells only occurred in the cell lines that were protected from 

chemotherapy by CAFs (MDA-MB-231 and MDA-MB-157 cells), but not in a line 

in which protection was not induced (MDA-MB-468 cells). In the absence of 

fibroblasts, recombinant interferons were sufficient to induce chemoresistance 

in MDA-MB-231 and MDA-MB-157 cells, but not in MDA-MB-468 cells. The 

expression profile of CAFs when co-cultured with breast cancer epithelial cells 

and treated with epirubicin implicated interferon-β as the activator of the 

pathway.  
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I concluded that identification of interferon signaling, as a key driver of CAF-

induced chemoresistance in TNBC, could provide future scope for development 

of treatments to improve patient responses to chemotherapy.  

 

4.2 Introduction 

 

In Chapter 3, I showed that CAFs can stimulate chemoresistance in MDA-MB-

231 and MDA-MB-157 TNBC cells, but not in the MDA-MB-468 TNBC cell line. 

My next interest was to try to understand how CAFs enable this 

chemoresistance.  

 

Various potential mechanisms of chemoresistance have been identified. Of 

particular interests is the fact that stromal components have previously been 

implicated in chemoresistance, since this is similar to my observation of stromal 

fibroblasts inducing chemoresistance. The published data, however, appear to 

support chemoresistance through a physical barrier to chemotherapy 

penetration of the tumour that is enabled by production of collagen and 

increased interstitial pressure as well as increased ECM stiffness (Netti et al, 

2000). Type I collagen production, that is commonly produced by fibroblasts, 

can also directly induce chemoresistance in cancer cells through integrin 

signaling (Armstrong et al, 2004). It is not obvious that these could be the 

mechanisms occurring in the context of my experiments, as it seems unlikely 

that CAFs could provide a physical barrier to drug delivery, or secrete 

substantial ECM proteins in standard two-dimentional co-culture on plastic. 

 

It is also possible to speculate about other potential mechanisms by which 

CAFs could directly impact on the chemotherapy dose reaching the epithelial 

cells. For example, it is plausible that fibroblasts themselves could be 

responsible for inactivation of the chemotherapy agents. The majority of drug 

inactivation is driven by phase I and/or phase II enzymes, which are present in 

the liver, intestines and tumour cells (Pan et al, 2015). An important phase I 

group of enzymes is the human cytochrome P450s (CYPs), and these have 

been seen to detoxify anticancer drugs (Fujita, 2006). CYP3A4 is responsible 

for metabolizing targeted breast cancer treatments such as tamoxifen as well as 
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chemotherapeutic agents like taxanes (Miyoshi et al, 2002). Mutations in CYPs 

have also been shown to be associated with poor responses to treatment in 

breast cancer. Changes in CYP2B6 and CYP2D6 have lead to poor responses 

to cyclophosphamide chemotherapy and tamoxifen respectively (Patel, 2015). A 

phase II set of enzymes, glutathione s-transferases (GSTs) are responsible for 

metabolizing a large number of chemotherapeutic drugs including cisplatin and 

cyclophosphamide, which can be used in breast cancer treatment (Sau et al, 

2010, Allocati et al, 2018). However, data implicating CAFs in direct inactivation 

of chemotherapy agents are lacking.    

 

I have taken the view that it may be more likely that CAFs induce changes in 

gene expression within the epithelial cells, perhaps by paracrine signaling, that 

allow the epithelial cells themselves to become more resistant. A number of 

activated signaling pathways within epithelial cells have been associated with 

chemoresistance, such as the EGFR pathway (Kuroda et al, 2010), which in 

turn can activate the MAPK (Zhang et al, 2014) and PI3K/AKT pathways (Page 

et al, 2000), or the NF-κB signaling pathway (Weldon et al, 2001). However, 

activation of these in breast cancer cells has not been attributed to the 

presence of CAFs, therefore these do not appear to present likely candidate 

pathways in the context of my findings. Various effectors of chemoresistance, 

such as xenobiotic drug pumps or enzymes capable of inactivating 

chemotherapy agents (Zheng et al, 2017), are relatively well established within 

the literature, but there is little evidence that the presence of CAFs can lead to 

up-regulation of their expression or activity leading to chemoresistance.   

 

In the absence of clear and definitive candidate pathways that have been 

shown to enable CAFs to induce chemoresistance, I chose to examine changes 

in the gene expression profile that CAFs induce in co-cultured breast epithelial 

cells in the hope that these would provide clues about the key mechanisms of 

CAF-induced chemoresistance in this system. I focused on both mRNA and 

miRNA expression changes in order to gain a comprehensive insight, and have 

tested the functional role in chemoresistance of candidates identified from these 

screens. 
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4.3 Results 

 

4.3.1 CAF1s induce changes to the mRNA transcriptome of MDA-MB-231 cells 

during epirubicin treatment  

 

My first aim was to identify the gene expression changes in TNBC cells induced 

by the presence of CAFs that could be responsible for CAF-induced 

chemoresistance. 

 

To achieve this, MDA-MB-231-GFP/luc breast cancer cells were cultured on 

their own (0% fibroblasts) or were co-cultured with CAF1 cells (seeding the 

fibroblasts as 20% of the initial culture) exactly as previously described (section 

3.3.2). The 20% CAF proportion was chosen, as opposed to 8% or 55%, as this 

induced strong and reproducible chemoresistance in the epithelial cells and was 

most representative of the proportion of CAFs commonly seen in breast 

tumours (unpublished data from the Hughes group). Cultures were treated with 

epirubicin for 24h, and the epithelial cancer cells were isolated by FACS (on the 

basis that MDA-MB-231-GFP/luc cells expressed GFP) from both the epithelial 

alone (0% fibroblasts) and 20% fibroblast cultures as previously. RNA was then 

extracted from the MDA-MB-231-GFP/luc cells. This entire experiment was 

performed three times over three separate weeks (importantly, not simply using 

three separate concurrent parallel cultures) to provide robust biologically 

separate repeats. Expression profiling was performed on the three pairs of 

samples using Affymetrix Clariom D microarrays, and data were normalized to 

array medians. 

 

Following successful completion of the Affymetrix clariom D microarray 

analyses, supervised hierarchical clustering was performed to determine what 

differences there were between epithelial expression in the 0% and the 20% 

cultures (Figure 4.1). It was clear that between the 0% and 20% groups there 

were differing expression levels for many genes with triplicates within each 

group also similar, thereby allowing robust comparison between the groups.  
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Expression data from the 3 samples for 0% or 20% cultures were grouped and 

paired ANOVA tests were performed to identify significant changes in gene 

expression of either up- or down-regulation by at least 2-fold. The numbers of 

genes showing such changes are summarized in Table 4.1, and their names 

and fold-changes are listed in appendix Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.1: Supervised hierarchical clustering of expression profiles from 
biological triplicate samples of MDA-MB-231 cells when in culture alone (0%) or 
with CAF1 cells (20%) following epirubicin treatment 
MDA-MB-231-GFP/luc cells were cultured alone (0%) or with CAF1 cells (20%) 
and were treated with 10nM epirubicin. MDA-MB-231-GFP/luc cells were 
purified by FACS on the basis of positive GFP expression and RNA was 
prepared. Three separate biological repeats were performed giving three pairs 
of samples. Gene expression was assessed using Affymetrix Clariom D 
microarrays, and comparisons were made between the 0% and 20% using the 
Affymetrix transcriptome analysis console (paired ANOVA tests with fold 
changes greater than +/- 2; supervised hierarchical clustering analyses). 
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Table 4.1: Summary of gene expression changes in MDA-MB-231 cells 
between the 0% fibroblast and 20% fibroblast cultures  
MDA-MB-231-GFP/luc cells were cultured alone (0%) or with CAF1 cells (20%) 
and were treated with 10nM epirubicin. MDA-MB-231-GFP/luc cells were 
purified by FACS on the basis of positive GFP expression and RNA was 
prepared. Three separate biological repeats were performed giving three pairs 
of samples. Gene expression was assessed using Affymetrix Clariom D 
microarrays, and comparisons were made between the 0% and 20% samples 
(paired ANOVA tests with fold changes greater than +/- 2).   
 

 

 

4.3.2 CAF1s induce changes to the miRNA transcriptome of MDA-MB-231 cells 

during epirubicin treatment 

 

The same RNA samples as described above (section 4.3.1) were also used for 

analysis of miRNA expression profiles in order to identify miRNAs that were 

differentially expressed in the presence of CAFs. For this analysis, the three 

separate biological replicates for the two groups were pooled into single 

samples representing MDA-MB-231 cells with 0% fibroblasts or with 20% CAF1 

cells. Expression was assessed using Taqman miRNA array cards, testing 

levels of 377 individual RNA species. Expression levels were normalized to 

expression of the	small nucleolar RNA, RNU48, which is commonly used as an 

appropriate normalizer (Gee et al, 2011), and were compared between the 0% 

and 20% cultures. Differences in miRNA expression were categorised into four 

groups: present in the 0% culture but not in the 20% culture, present in the 20% 

culture but not the 0% culture, and increased or decreased relative expression 

from 0% to 20%. The numbers of miRNAs in each of these categories are 

shown in Table 4.2 (“Number of differentially expressed miRNAs” column), the 

total being 145.  

Total number of gene probes 135750 

Differentially expressed genes 184 

Genes expressed more highly in 
20% compared to 0% 

127 

Genes expressed at lower levels in 
20% compared to 0% 

57 
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In order to reduce the number of candidate miRNAs of interest to a number that 

was experimentally tractable, thresholds were incorporated to define minimum 

fold-changes and maximum cT values. For all four groups categorised, I 

imposed a maximum threshold for qPCR cT values of 35, thereby reducing the 

chances of including miRNAs detected in error or expressed at very low levels.  

For miRNAs in the increased (from 0% to 20%) or decreased (from 0% to 20%) 

expression groups, I set a further arbitrary threshold of requiring a minimum of 

2-fold change to remain of interest. The numbers of miRNAs remaining of 

interest after incorporating these thresholds are shown in Table 4.2 (“…after 

thresholds” column), with the total being 45; their identities are listed in 

appendix Tables 2 and 3.  

 

Table 4.2: Numbers of miRNAs differentially expressed between MDA-MB-231 
cells cultured alone (0%) or with CAF1 cells (20%) during epirubicin treatment  
RNA was prepared, as described for Figure 4.1, from triplicate cultures of MDA-
MB-231-GFP/luc cells alone or co-cultures with CAF1 cells. Triplicate samples 
were combined, and miRNA expression was profiled using TaqMan qPCR 
arrays. The numbers of miRNAs showing differential expression in the 
categories described are listed, either including all data and any degree of 
differential expression, or setting thresholds for detection level (maximum cT of 
35 for all four groups) and fold difference (2-fold for increase and decrease 
groups).   
 

 

 

 

 

 

Category 
Number of 

differentially 
expressed miRNAs 

Number of 
differentially 

expressed miRNAs 
after thresholds 

Present in 0% but not 20% 14 3 

Present in 20% but not 0% 45 18 

Increase from 0% to 20% 54 13 

Decrease from 0% to 20% 32 11 
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Following the thresholds that had been put in place to reduce the number of 

differentially expressed miRNAs, literature searching was also carried out. For 

literature searching, each miRNAs expression in breast cancer was searched in 

addition to whether the miRNA had been previously been implicated in cancer 

progression or chemoresistance. This resulted in 5 miRNAs for further study 

(see Table 4.3, which names the miRNAs, categorises them, and gives a fold-

change where appropriate). 

 

 

 

 

 

 

 
 

 
Table 4.3: Five miRNAs that were differentially expressed between MDA-MB-
231 cells cultured alone (0%) or with CAF1s (20%) were selected for further 
study 
5 miRNAs were selected for further study as described in the main text. For 
miRNAs expression in only one sample, the sample in which the miRNA was 
present is stated. For miRNAs expressed in both samples, the extent and 
direction of differential expression is stated.  
 

These final 5 miRNAs were then validated using qPCR to support the up- or 

down-regulation observed in the microarray experiments. The same pooled 

RNA from the 3 individual biological repeats (as previously) was used (Figure 

4.2). Data for miR-27a, miR-155 and miR-422a broadly reproduced the findings 

from the microarray – with the microRNAs up-regulated in the presence of 

CAF1s. MiR-32 expression was not reliably detected by qPCR, and these data 

are excluded from the figure. For miR-454, down-regulation in the presence of 

CAF1s was seen in the qPCR data, which did not match the microarray 

observations. After these analyses, I concluded that miR-27a and miR-155 

were the strongest candidates as regulators of chemoresistance, as they were 

dysregulated in the presence of CAFs during epirubicin treatment to the 

greatest extent and were consistent between the microarray and validation 

qPCR. 

MiRNA and group Fold change 

miR-32 (present in 0% not 20%) - 

miR-27a (present in 20% not 0%) - 

miR-155 (increase from 0% to 20%) Fold change 108.93 

miR-422a (increase from 0% to 20%) Fold change 51.52 

miR-454 (increase from 0% to 20%) Fold change 2.63 
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Figure 4.2: MiR-155 and miR-27a are up-regulated in MDA-MB-231 cells in the 
presence of CAF1s during epirubicin treatment 
RNA was prepared, as described for Figure 4.1, from triplicate cultures of MDA-
MB-231-GFP/luc cells alone or from co-cultures with CAF1 cells. Triplicate RNA 
samples were combined, and miRNA expression was assessed using TaqMan 
qPCR assays (normalised to RNU48). Data represent mean fold changes (+/- 
SD for technical triplicate analysis of one biological replicate). 
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4.3.3 MiR-155 and miR-27a do not have consistent, significant influences on 

survival of MDA-MB-231 cells in the absence or presence of epirubicin 

treatment, although miR-155 demonstrated a potentially relevant trend 

 

Having identified miRNAs that were differentially expressed in cancer cells in 

the presence of CAFs (section 4.3.2), I was next interested to test whether the 

dysregulation of these miRNAs potentially contributed to the CAF-dependent 

chemo-protection of epithelial cells observed. 

 

MiRNA mimics or inhibitors for miR-27a and miR-155 were transfected into 

MDA-MB-231-GFP/luc cells in mono-culture to allow manipulation of their 

expression levels and therefore testing of whether changes in the levels of 

these miRNAs were sufficient to alter chemo-response. After optimisation of 

transfections, appropriate dose of miRNA mimics and inhibitors for each of miR-

27a and miR-155 were identified, and their abilities to cause successful over-

expression or knockdown of miRNA expression respectively were validated by 

qPCR (Figure 4.3). 

Figure 4.3: MiR-155 and miR-27a mimics and inhibitors successfully over-
express or knockdown appropriate miRNA  
MDA-MB-231-GFP/luc cells were transfected in triplicate with different doses of 
miR-27a and miR-155 mimics or inhibitors as well as control mimic or inhibitor 
and left for 24h. miR2-27a mimics and inhibitors concentrations were 500nM 
and 50nM respectiviely with miR-155 mimics and inhibitors 500pM and 10nM 
RNA was then extracted from triplicate wells and combined. MiRNA levels were 
assessed using TaqMan qPCR assays (normalized to RNU48). Data represent 
mean fold change (+/- SD for technical triplicates, with biological n=1). 
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To investigate chemo-responses, cells were transfected with targeted or control 

mimics or inhibitors, and then incubated without a chemotherapy agent, or with 

10µM or 50µM epirubicin for 24h. Cells were then cultured for a further 24h in 

fresh medium without drug, before MTT assays were performed to quantify 

viable cells remaining in the culture (Figure 4.4).  

 

To determine the influence of these miRNAs on survival and proliferation in the 

absence of chemotherapy, raw MTT assay values from the untreated 

transfections were plotted (Figure 4.4, left panel). The mimics and inhibitors, for 

both miR-27a and miR-155 had only very small, and non-significant, influences 

on survival/proliferation. In the context of epirubicin treatment, miR-27a mimics 

or inhibitors (Figure 4.4A and B right panel) showed no significant effects on 

chemotherapy-response. Similarly, miR-155 mimics and inhibitors showed no 

significant effects (Figure 4.4C and D right panel).  

 

However, these data were worthy of closer inspection. Cells transfected with 

miR-155 mimics showed a marginal increase in relative cell survival at both 

doses of epirubicin (Figure 4.4C right panel, p values 0.310 and 0.093), while 

those transfected with the miR-155 inhibitor showed a marginal decrease in 

relative cell survival at least at one dose (Figure 4.4D right panel, p values 

0.937 and 0.132). These marginal changes were consistent with the hypothesis 

that increased miR-155 expression, as seen in the CAF-induced chemo-

protected cancer cells, could contribute to chemo-resistance. Therefore, miR-

155 remained of interest as a potential mediator of CAF-induced 

chemoresistance, even though the results from these assays were not 

significant.  
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Figure 4.4: MiR-155 and miR-27a do not have consistent, significant influences 
on survival of MDA-MB-231 cells in the absence or presence of epirubicin 
treatment using short-term assays 
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MDA-MB-231-GFP/luc cells were transfected with miR-27a mimics (500nM, A), 
miR-27a inhibitors (50nM, B), miR-155 mimics (500pM, C), miR-155 inhibitors 
(10nM, D) or matched mimic/inhibitor controls (concentrations matched to 
targeted mimics/inhibitors, A-D). 24h later, transfected cells were treated with 10 
or 50µM epirubicin or were untreated for 24h. MTT assays were performed. 
Plots on the left show raw absorbance values for cells transfected with targeted 
mimics/inhibitors or matched controls in the absence of epirubicin. Plots on the 
right show data relative to samples without epirubicin treatment. Data represent 
means (+/- SE) for three independent biological repeats. Two-tailed Mann-
Whitney U tests were carried out with no significant differences observed 
between control or mimic/inhibitor transfected.  
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4.3.4. MiR-155 may have a role in chemo-response in MDA-MB-157 cells 

 

Having shown that miR-155 was a potential interest in MDA-MB-231 cells, the 

assay was repeated in MDA-MB-157 cells. In the absence of epirubicin 

treatment, miR-155 mimics or inhibitors had no impact on cell survival (Figure 

4.5A and B left panels). However, as for MDA-MB-231 cells, the miR-155 mimic 

and inhibitors had marginal, but non-significant, influences on chemo-response 

(Figure 4.5 A and B right panel). Consistently with data in MDA-MB-231 cells, 

miR-155 mimic increased chemoresistance (p values 0.818) and miR-155 

inhibitors significantly sensitized the cells to chemotherapy (Figure 4.5B right 

panel p<0.01) therefore miR-155 remained potentially of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: MiR-155 did not have significant influences on survival of MDA-MB-
157 cells in the absence or presence of epirubicin treatment using short-term 
assays 
MDA-MB-157 cells were transfected with miR-155 mimics (A), miR-155 
inhibitors (B) or matched mimic/inhibitor controls (A-B). 24h later, transfected 
cells were treated with 10µM epirubicin or were untreated for 24h, followed by a 
further 24h culture in drug free media.  MTT assays were performed. Plots on 
the left show raw absorbance values for cells transfected with targeted 
mimics/inhibitors or matched controls in the absence of epirubicin. Plots on the 
right show data relative to samples without epirubicin treatment. Data represent 
means (+/- SE) for n=3. Two-tailed Mann-Whitney U tests were carried out with 
no significant differences observed between control or mimic/inhibitor 
transfected. 

* 
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4.3.5 Co-culture with CAF1s during epirubicin treatment induces dysregulation 
of two major biological pathways in MDA-MB-231 cells  
 

Returning to the mRNA analyses using Affymetrix arrays, one way of gaining 

biological insights from large lists of differentially expressed genes is to analyse 

these genes for any changes (up-regulation or down-regulation) within specific 

pathways, thereby potentially defining dysregulated pathways. In my case, I 

was interested to identify pathways that could potentially play roles in the CAF-

induced chemoresistance of MDA-MB-231 cells. Therefore, all the genes that 

were defined as differentially expressed between the 0% fibroblast MDA-MB-

231 cultures and the 20% CAF1 MDA-MB-231 cultures (184 genes, Table 4.1) 

by the Affymetrix expression arrays, were analysed using a pathway enrichment 

platform, ToppGene (Chen et al, 2009). Analysis identified two notable and 

significantly dysregulated pathways (Table 4.4): interferon signaling and genes 

responsible for encoding components of the extracellular matrix. Differentially 

expressed genes from within these pathways are listed in Table 4.5 (interferon 

signaling) and Appendix Table 4 (extracellular matrix) with a full list of 

dysregulated pathways in Appendix table 5. For both pathways, all the identified 

pathway components were up-regulated in the co-culture with CAF1s (20%), as 

compared to the mono-culture (0%), suggesting that CAFs induce 

comprehensive up-regulation of these pathways.  
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Table 4.4: Molecular pathways enriched in the differentially expressed genes in 
MDA-MB-231 cells after co-culture with CAF1s, as identified using the 
ToppGene portal 
Genes showing significant differential expression of greater than 2-fold between 
a mono-culture of MDA-MB-231-GFP/luc cells (0% fibroblasts) and the MDA-
MB-231-GFP/luc cells within a co-culture with 20% CAF1 cells were analysed 
using ToppGene gene enrichment analysis. The top two significant pathways 
identified are listed, with the number of genes from the inputted list within that 
pathway, and the total number of genes identified as part of the specified 
pathway. All other dysregulated pathways from ToppGene analysis are listed in 
appendix table 5. The individual genes from the interferon signaling pathway 
are listed in Table 4.5.  
 

 

 

 

 

 

 

 

 

 

 

 

Pathway P Value 
Number of genes 

from 184 input 
Number of genes 

in pathway 

Interferon 

alpha/beta 
signaling 

5.127x10-13 12 

 

69 

 

Ensemble of 
genes encoding 

extracellular 
matrix and 

extracellular 
matrix proteins 

3.676x10-12 28 1028 
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Table 4.5: Genes in the interferon signaling pathway that were significantly up-
regulated in MDA-MB-231 cells by co-culture with CAF1s during epirubicin 
treatment 
See Table 4.4 legend for experimental details. Genes are listed with the fold 
changes associated with each of the three biological replicate analyses.   
 

 

As discussed in section 4.2, it has already been reported that CAF-induced 

changes in the ECM may have roles in chemoresistance, therefore I chose to 

look further into the potential role of the interferon signaling pathway in 

chemoresistance as this appeared to have more novelty. In addition, in vitro 

work investigating the interferon signaling pathway would potentially be 

experimentally easier to manipulate and analyse since a range of chemical 

inhibitors are available and the pathway is comparatively simple compared to 

the very diverse signaling induced by the ECM and complexity involved in using 

3D ECM scaffolds. In addition, the interferon pathway was chosen given that 

miR-155 (from the miRNA screen in section 4.3.2 and 4.3.3/4) has been 

reported as a positive regulator of the interferon pathway (Forster et al, 2015).  

 

 

 

Target Fold change 1 Fold change 2 Fold change 3 

IRF9 8.41 5.17 3.42 

STAT2 4.3 4.6 2.06 

OAS1 36.36 21.93 37.03 

OAS2 15.52 4.71 5.95 

MX1 46.38 32.23 15.66 

MX2 18.43 13.66 10.79 

IFI6 11.91 13.35 3.25 

IFI44L 12.04 8.37 11.83 

IFI27 12.92 7.87 6.2 

IFITM1 5.56 4.71 3.09 

USP18 7.13 9.15 5.15 

XAF1 7.83 3.93 3.74 
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4.3.6 Interferon signaling is stimulated by CAF1s in epithelial cell types that are 

protected from epirubicin treatment by CAF1s, but not in cells that are not 

 

To confirm my proposed CAF-dependent up-regulation of interferon signaling, I 

selected key genes from those identified as up-regulated to act as endogenous 

“reporter genes” for the pathway. OAS1 and MX1 were selected as these are 

very well-established interferon-responsive genes (Schoggins et al, 2011), and 

they had very high fold-changes (means >25) in the microarray data (Table 

4.5). I also selected miR-155 that I demonstrated to be deregulated previously 

(section 4.3.2 and Figure 4.2), since it is both a positive regulator of the 

interferon pathway and is itself up-regulated by the pathway (Forster et al, 

2015).  

 

Next, I repeated the experiment where MDA-MB-231-GFP/luc cells were grown 

in mono-culture (0%) or in co-culture with 20% CAF1 for 24h. However, in this 

repeat, I treated cultures either with or without epirubicin to allow assessment of 

whether epirubicin impacts on the CAF-induced interferon signaling stimulation. 

As before, epithelial cells were purified by FACS, and RNA was extracted for 

qPCR expression analysis of OAS1, MX1 and miR-155 (Figure 4.6 top row).  

Furthermore, the same experiment was performed using two further cell lines: 

MDA-MB-157 cells (Figure 4.6 middle row), which had also demonstrated CAF-

dependent chemoresistance (see Fig 3.4), and MDA-MB-468 cells (Figure 4.6 

bottom row), which had not shown chemoprotection from CAFs (see Figure 

3.3). 

 

All 3 reporter genes (OAS1, MX1 and miR-155) demonstrated CAF-induced up-

regulation in the two cell lines that were previously protected from 

chemotherapy by CAF1s (MDA-MB-231 and MDA-MB-157) (Figure 4.6 top and 

middle row), with expression of these endogenous reporter genes further 

increased by epirubicin treatment. However, epirubicin treatment was not itself 

sufficient to induce interferon signaling in the absence of CAFs. In contrast, 

MDA-MB-468 showed no sign of CAF-dependent activation of interferon 

signaling (Figure 4.6 bottow row), which can be observed by the much lower 
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levels of expression compared to MDA-MB-231 and MDA-MB-157 cells under 

all conditions (note the very different y-axis scales between Figure 4.6 top row 

and bottom row). To conclude, CAF-dependent protection from epirubicin 

appeared to correlate with CAF-dependent up-regulation of the interferon 

pathway.  

 

Figure 4.6: Interferon response genes are up-regulated in MDA-MB-231 and 
MDA-MB-157 cells by CAF1s, but not in MDA-MB-468 cells 
MDA-MB-231-GFP/luc, -468-GFP and -157 cells were cultured on their own or 
in combination with 20% CAF1s with and without 10nM epirubicin treatment. 
Cultures were then sorted by FACS to give pure epithelial populations. RNA 
was then extracted from the epithelial cells and qPCR used to determine 
relative expression of interferon response genes OAS1, MX1 and miR-155. 
mRNA qPCRs were normalised to ACTB and miR-155 to RNU48. Data 
represent the mean of technical triplicates (+/- SD) from one biological 
experiment apart from miR-155 analysis in MDA-MB-231 cells, which is from 3 
biological experiments (+/- SE). Two tailed Mann-Whitney U tests were carried 
out and significant differences shown. P value ***<0.001. 
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4.3.7 Recombinant IFNs are sufficient to induce chemoresistance in MDA-MB-

231 and MDA-MB-157 cells, but not MDA-MB-468s 

 

Having demonstrated that interferon activation correlated with CAF-induced 

chemoprotection, my next aim was to identify if an interferon signal was 

sufficient to induce this chemoresistance in TNBC cell lines in the absence of 

CAFs. In order to do this, recombinant IFN-α and IFN-γ, representing 

interferons that signal through the Type I or Type II receptors respectively, were 

added in a range of concentrations to mono-cultures of, initially, only MDA-MB-

231-GFP/luc cells for 24h. Cells were then treated with 10nM epirubicin for 24h 

in the continued presence of recombinant IFNs. Clonogenic survival was 

assessed (Figure 4.7).  

 

The first finding to note was that recombinant IFN-α or recombinant IFN-γ 

increased the plating efficiency of the cells in a dose-dependent manner in the 

absence of epirubicin, which was significant for IFN-γ (Figure 4.7 “Colony 

counts” data, p<0.01).  This observation was similar to the co-culture 

experiments, where the presence of CAFs in cultures enhanced the 

clonogenicity of these cells (for example, see Figure 3.3). As previously, in 

order to determine effects on chemoresistance, colony counts after epirubicin 

treatment were normalized to their respective untreated values (Figure 4.7 

“Relative to no chemo” data). This revealed a significant dose-dependent 

increase (p<0.0001) in survival after epirubicin treatment in MDA-MB-231 cells 

resulting from treatment with either recombinant IFN-α or IFN-γ.  

 

Having determined that recombinant IFN-α and IFN-γ separately were sufficient 

to induce chemoresistance in MDA-MB-231 cells, I next investigated whether 

IFN-α and IFN-γ in combination would have an additive effect. In addition, I 

expanded the experiment into MDA-MB-157 and MDA-MB-468 cells (Figure 

4.8). Again IFN-α or IFN-γ significantly increased clonogenic plating efficiency in 

both MDA-MB-231 and MDA-MB-157 (Figure 4.8 “Colony counts” data, 

p<0.05), which was further increased by the combination of IFN-α and IFN-γ.  

However, IFNs had no significant influence on MDA-MB-468 cells in this assay 

(Figure 4.8). It should be noted that MDA-MB-468 cells are the cell line that was 
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previously found to be un-responsive to the presence of CAFs in this assay in 

terms of chemo-response (see Figure 3.3) and to CAFs in terms of up-

regulation of IFN-signaling (Figure 4.6) 

 

As previously, chemotherapy-specific effects were determined by normalization. 

Introduction of IFN-α or IFN-γ on their own provided significant protection for 

MDA-MB-231 and MDA-MB-157 cells from epirubicin, which was further 

increased by the combination of IFN-α and IFN-γ (Figure 4.8 “Relative to no 

chemo, p<0.0001, p<0.01). However, there was no significant change in 

chemo-response in MDA-MB-468 cells (Figure 4.8 “Relative to no chemo”). 
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Figure 4.7: Recombinant IFNs are sufficient to stimulate chemoresistance in 
MDA-MB-231 
MDA-MB-231-GFP/luc cells were cultured with IFN-𝛼 or IFN-𝛾 separately at 3 
different doses for 24h (500, 2500, 5000pg/ml and 500, 1500, 3000pg/ml 
respectively). Cells were then treated with 10nM epirubicin hydrochloride for 
24h along with re-addition of fresh IFNs. Cells were then treated to determine 
clongenic survival as previously. Data are normalised to the no treatment value 
for each IFN condition and represent the means (+/- SE) of 3 independent 
experiments. One-way ANOVA was performed on no treatment data from 
colony counts and normalised treated data with significant differences between 
no IFN and doses of IFN calculated. P value ** <0.01 and **** <0.0001   
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Figure 4.8: Recombinant IFNs are sufficient to stimulate chemoresistance in 
MDA-MB-231 and MDA-MB-157 cells but not MDA-MB-468 cells  
MDA-MB-231-GFP/luc, -468-GFP and -157 cells were cultured with IFN-𝛼 or 
IFN-𝛾 separately or combination for 24h (2500pg/ml and 1500pg/ml 
resepectively). Cells were then treated with 10nM or 25nM epirubicin 
hydrochloride for 24h with IFNs re-added. Cells were then treated to determine 
clongenic survival as previously. Data are normalised to the no treatment value 
for each IFN condition and represent the means (+/- SE) of 2 independent 
experiments. One-way ANOVA was performed on no treatment data from 
colony counts and normalised treated data with significant differences between 
no IFN and doses of IFN calculated. P value * <0.05, ** <0.01 and **** <0.0001 
.  
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In an effort to understand why MDA-MB-468 cells failed to be protected by 

either CAF1 cells or recombinant IFNs, I used qPCR for the interferon reporter 

genes OAS1 and MX1 to assess whether the MDA-MB-468 cell line was 

capable of activating the interferon signaling pathway in response to an 

appropriate signal. MDA-MB-468 cells were treated with recombinant IFN-α or 

IFN-γ, or both, with or without epirubicin exactly as previously. RNA was then 

extracted and qPCR was performed (Figure 4.9). OAS1 and MX1 expression 

levels were not stimulated by treatment with recombinant IFNs suggesting that 

this cell line is simply unable to respond to an IFN stimulus.  

 

 
Figure 4.9: MDA-MB-468 are unable to activate interferon signaling in the 
presence of recombinant IFNs 
MDA-MB-468-GFP cells were cultured IFN-𝛼 or IFN-𝛾 separately or 
combination for 24h (2500pg/ml and 1500pg/ml resepectively) with and without 
10nM epirubicin treatment for 24h. RNA was then extracted from the epithelial 
cells and equal amounts of RNA were used for qPCR to determine relative 
expression of IFN-target genes OAS1 (left plot) and MX1 (right plot) that were 
normalised to ACTB. Data represent the mean (+/- SD) for n=1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 128	

4.3.8 CAF1s, but not NF1s, activate interferon signaling in co-culture with MDA-
MB-231 cells 
 

Both NFs and CAFs have vast secretomes, so I next wanted to identify whether 

activation of interferon signaling in co-cultured epithelial cells was a generic 

fibroblast function or if this attribute was specific to CAFs. In order to test this, I 

transfected interferon signaling luciferase reporter constructs into MDA-MB-231 

cells and co-cultured these cells with either NF1 or CAF1 cells. As previously 

mentioned in the introduction (section 1.13.1 and 1.13.2), the interferon 

signaling pathway acts through two different transcription factor binding sites - 

the ISRE (Type I signaling) or the GAS element (Type I and II signaling) – and 

separate reporters for each were used. Following transfection with the 

reporters, MDA-MB-231 cells were either cultured alone, or in co-culture with 

increasing proportions of NF1s or CAF1s for 24h and 48h without treatment or 

with 10nM epirubicin treatment for 24h. Luciferase assays were performed to 

assess ISRE or GAS activity within the epithelial cells (Figure 4.10).  

 

Interferon signaling activity at the ISRE and GAS elements was relatively low in 

MDA-MB-231 cells cultured alone at all timepoints, either without or with 

epirubicin treatment. Co-culture with normal fibroblasts had no significant 

influence on these basal levels. However, co-culture with CAFs produced a 

dramatic activation of both reporters, which increased with increasing proportion 

of CAFs.  
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Figure 4.10: CAF1s activate ISRE and GAS activity in co-cultured MDA-MB-231 
cells 
MDA-MB-231 cells were transfected with ISRE or GAS reporter plasmids 
driving firefly luciferase expression, and a control plasmid (pRL-TK) with the 
HSV thymidine kinase promoter driving renilla luciferase expression. 
Transfected MDA-MB-231 cells were then cultured on their own or with different 
proportions of immortalised NF1s or CAF1s for 24h and 48h without treatment 
or with 10nM epirubicin treatment for 24h. Dual luciferase assays were 
performed, with firelfy readings normalised to renilla readings. Data represent 
the mean (+/- SD) for triplicate wells, for 1 biological replicate. 
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4.3.9 IFN-β is secreted by CAF1s, and not NFs, following co-culture with MDA-

MB-231 cells, but not in CAF1 mono-cultures 

 

Based on data in this chapter so far, my hypothesis was that CAFs, but not 

NFs, release interferon(s) as a paracrine signal, which stimulates interferon 

signaling in co-cultured breast cancer cells that are capable of responding to 

this signal (ie MDA-MB-231 and MDA-MB-157 cells, but not MDA-MB-468 

cells). My next aim was to identify which interferon, of the many different 

subtypes (see section 1.11), might be responsible for this signaling and, 

therefore, for the subsequent chemoprotection observed in MDA-MB-231 and 

MDA-MB-157 cells.  

 

Initially, ELISAs were used to attempt to quantify the levels of IFN-α or IFN-β. 

Media was taken from NF1s and CAF1s alone, MDA-MB-231 cells alone, and 

from 20% co-cultures of MDA-MB-231 with NF1 or CAF1s. All these cultures 

were treated with or without epirubicin. However, following analysis, levels of 

both IFN-α and IFN-β proved to be below the levels of accurate detection for 

this assay. 

 

As an alternative, expression of IFN-α2, IFN-β1 and IFN-γ was assessed by 

qPCR in mono-cultures of immortalized NF1s, CAF1s and MDA-MB-231-

GFP/luc cells as well as CAF1s and MDA-MB-231-GFP/luc cells isolated from 

20% CAF1 co-cultures by FACS. In each case, these mono- or co-cultures were 

also treated with or without epirubicin.  

 

Levels of IFN-α2 and IFN-γ were below the level of reliable detection and 

therefore expression data were not available for these interferons. However, 

data for IFN-β1 were more informative. There was little expression of IFN-β in 

NF1 mono-cultures with or without epirubicin treatment (Figure 4.11A left 

panel). IFN-β expression was similarly low in mono-cultures of CAF1s with and 

without epirubicin, However, when CAF1s were cultured with MDA-MB-231 

cells, the expression of IFN-β in the CAF1s increased slightly without epirubicin, 

but very substantially with epirubicin treatment (Figure 4.11A, left panel). IFN-β1 

was consistently not detected in mono-cultures of MDA-MB-231 cells or in 
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MDA-MB-231 cells sorted from the co-cultures with CAF1s (Figure 4.11A, right 

panel).  

 

The same experiment described above was also carried out using a matched 

pair of primary NFs and CAFs taken from a TNBC patient (pNF and pCAF). 

Similarly to the result using the immortalised fibroblasts, IFN-β1 expression was 

only detected in the pCAFs after they were co-cultured with MDA-MB-231 cells 

(Figure 4.11B, left panel), and was not detected in the MDA-MB-231 cells 

(Figure 4.11B, right panel).  
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Figure 4.11: IFN-β1 expression in CAF1s is up-regulated in the presence of 
MDA-MB-231 cells 
Immortalised CAF1 (A left), or primary CAF (B left) were cultured on their own 
or with MDA-MB-231-GFP/luc cells (20% fibroblasts; 80% epithelial cells; 
“20%”) for 24h. MDA-MB-231-GFP/luc cells (A and B right) were also cultured 
alone for 24h. Cultures were then either untreated (No T) or were treated with 
10nM epirubicin (T). All cultures were treated for fluorescence-activated cell 
sorting, allowing separation of fibroblasts and MDA-MB-231-GFP/luc cells from 
the co-cultures on the basis of GFP expression. RNA was then extracted from 
mono- and co-cultured cells, and qPCR used to determine expression of IFN-β1 
relative to ACTB. Left plots represent expression in fibroblast populations from 
mono-cultures or co-cultures (denoted “20%”), while right plots represent 
expression in the MDA-MB-231 cells (mono-culture or “20%” co-culture). Data 
represent the mean of duplicate culture wells (+/- SD) for 1 biological replicate. 
ND denotes non detected values.  
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4.4 Discussion 

 

The main aim in this chapter was to determine the potential molecular 

mechanisms responsible for the CAF-induced chemo-protection of TNBC cells 

that were observed in chapter 3. In order to achieve this, differences in 

expression profiles for both mRNAs and miRNAs were identified between MDA-

MB-231-GFP/luc cells treated with epirubicin alone, or MDA-MB-231-GFP/luc 

cells treated in the presence of CAFs.  

 

4.4.1 The choice of expression profiling methodology 

 

A key consideration for expression profiling work, was the choice of expression 

profiling technology to be used, with the basic choice being between RNA 

sequencing (Stadler et al, 2009) or expression microarrays (Ness, 2007).   

 

RNA sequencing is a relatively recent advance in gene expression profiling 

technology (Wang et al, 2009). At a very basic level, RNA is fragmented and 

each individual fragment is then sequenced. Sequence reads are then aligned 

to a reference genome, and expression of individual genes is estimated from 

the number of reads aligning to the gene (Kukurba and Montgomery, 2015). 

RNA sequencing can therefore provide analysis that is high coverage in terms 

of proportion of the transcriptome detected, high sensitivity (if sufficient read 

depth is available to detect rare transcripts) and high resolution in terms of 

splicing level information, in comparison to other gene expression profiling 

technologies (Hrdlickova et al, 2017). However, analysis of RNA-sequencing is 

known to involve complex bioinformatics and as yet standardized and generally 

accepted protocols for analysis have not been developed. In addition, RNA-

sequencing can also be extremely expensive (Nagalakshmi et al, 2010). It was 

for these reasons that RNA sequencing was not used in this chapter for gene 

expression analysis. 
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Expression microarrays, on the other hand, are a well-established technology 

with reliable and relatively easy experimental and analysis pipelines. The 

technology enables the analysis of the RNA levels of thousands of genes 

simultaneously (Li et al, 2002), although a key point is that targets are pre-

defined and limited, while RNA-sequencing has the potential to identify 

transcripts that were not previously known. The basic technology is that arrays 

contain single-stranded nucleic-acid probes that hybridise to target gene 

products and allow fluorescent detection proportional to expression (Kumar et 

al, 2012). Analysis of microarray data is relatively simple and user friendly with 

compatible software available for analysis with data exported into excel for 

further analysis (Cooper, 2001).  

 

Microarrays have a long successful history of use in breast cancer research as 

demonstrated by their use in identifying differentially expressed genes between 

normal breast tissue and breast cancer (Perou et al, 1999) as well as identifying 

particular genes that predict pathological complete response and disease free 

survival in breast cancer patients who have different subtypes and stages of 

cancer (Perou et al, 2000, Okuma et al, 2016). In addition, gene expression 

analysis has also been undertaken in stromal cells, as opposed to the breast 

cancer cells. One study used microarrays to identify stromal gene expression 

changes in breast cancer progression, which could separate breast cancer 

patients into distinct groups displaying different clinical outcomes (Planche et al, 

2011), with another study highlighting that molecular composition of tumour 

stroma in breast cancer was important for breast cancer prognosis (Winslow et 

al, 2016). Therefore, I was confident that the use of microarray technology 

would be suitable for identification of CAF-induced expression changes in my 

experiments.  

 

In addition, analysis of miRNA expression levels was a further aim of this 

chapter. This can also be achieved using a wide-range of technologies, 

including RNA-sequencing, hybridization arrays, and qPCR arrays. qPCR 

arrays were chosen to determine miRNA expression as qPCR arrays are 

reliable with high sensitivity as well as being relatively easy experimentally. In 

addition, qPCR arrays could be carried out within the institute rather than being 
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outsourced. Use of qPCR arrays, again, had a successful relevant history in 

previous literature. MiRNA expression profiling identified up-regulated miRNAs 

in breast cancer patients by isolating circulating miRNAs. MiRNA expression 

was found to be higher in early stages of breast cancer, which could be useful 

for early detection of breast cancer. In addition, miRNA expression was slightly 

higher in TNBC and HER2 patients compared to ER positive patients (Hamam 

et al, 2016). The use of qPCR array was therefore a viable option for miRNA 

screening in this chapter. 

 

4.4.2 miR-155: an oncomiR, as well as potential role in chemoresistance? 

 

CAF-induced up-regulation of miR-155 in epithelial cancer cells was highlighted 

in this chapter, with the up-regulation implicated as an interferon-related 

mediator of chemoresistance.  

 

The role of miR-155 in the CAF compartment has been explored previously. 

Expression in CAFs is of clear relevance to my findings, as it has been reported 

that miR-155 can be transfered between cell types in exosomes (Santos et al, 

2018), and therefore the CAFs could be the source of the up-regulated 

expression of miR-155 in breast cancer cells. MiR-155 has been shown to be 

up-regulated in ovarian CAFs when compared to matched NFs (Mitra et al, 

2012). Furthermore, miR-155 was required for the conversion of NFs to CAFs in 

the presence of ovarian tumour cells (Mitra et al, 2012). However, up-regulation 

of miR-155 has not been observed in breast cancer CAFs when compared to 

NFs (Schoepp et al, 2017). The cell-to-cell transfer of miR-155 was actually 

reported in the context of breast cancer cells, with miR-155 apparently 

transferred from cancer stem-like cells and treatment resistant MCF-7 cells to 

treatment sensitive MCF-7 breast cancer cells in culture (Santos et al, 2018) via 

exosomes. However, transfer of miR-155 from CAFs has not been reported.  

 

In the context of clinical breast cancer samples, miR-155 has been shown to be 

significantly up-regulated in breast cancer and is associated with tumour 

subtype (Mattiske et al, 2012). When comparing 76 breast cancer samples to 

10 normal breast samples, miR-155 was one of the most consistently up-
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regulated miRNAs in the cancer samples (Iorio et al, 2005). Another study 

identifying differential expression of miRNAs in specific tumour subtypes, 

identified up-regulation of miR-155 in only HER2+ breast cancer in comparison 

to other breast cancer subtypes (Tsai et al, 2018). Although these are excellent 

examples of miR-155 up-regulation, it is important to note that these studies 

used tumour samples comprising both cancer cells, and cancer stroma, 

therefore miR-155 expression could be present in either the CAFs or breast 

cancer cells or both. 

 

In my experiments (section 4.3.6), three TNBC cell lines were cultured on their 

own as well as in co-culture with CAFs. When grown on their own, relative 

expression levels of miR-155 were low (figure 4.6), however in this instance 

there is no comparison to any normal breast line to assess whether this level is 

“up-regulated” as would be compatible with the studies using cancer samples 

containing mixed cell types. Up-regulation is clearly observed in the presence of 

CAFs for two breast cancer cell lines (MDA-MB-231 and MDA-MB-157) but, 

again, miR-155 levels were not compared to levels of miR-155 in normal breast 

cancer cells with CAFs, so it is difficult to conclude where CAF induced up-

regulation of miR-155 fits in with what is already known. Expression of miR-155 

was determined in cell lines, in this chapter, instead of breast samples. 

Expression of miRNAs has also been studied in multiple breast cancer cell 

lines. One study has shown molecular subtype specific differential expression of 

miR-155, with relatively high expression of miR-155-3p in the normal-

like/claudin-low cell lines (MDA-MB-231 and -157) that were estrogen receptor 

negative. More interestingly, miR-155-5p expression was high in basal-like 

estrogen receptor negative (MDA-MB-468) cell lines (Riaz et al, 2013), High 

expression levels of miR-155-5p in basal cell lines contradicts with my 

observations in section 4.3.6 and figure 4.6, in which I show higher expression 

levels of miR-155-5p in MDA-MB-231 and MDA-MB-157 cells in comparison to 

MDA-MB-468 cells. The changes in miR-155 expression observed in section 

4.3.6 and figure 4.6, clearly highlight the importance of CAFs in inducing 

expression of miR-155-5p.  
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The functional role of miR-155 has previously been explored and interestingly 

miR-155 plays a role in interferon signaling. Not only is miR-155-5p transcription 

increased by interferon signaling, but miR-155-5p also plays an important role 

in the signaling cascade of Type I interferon signaling (Forster et al, 2015). 

Normally SOCS1 prevents the formation of the ISGF3 complex containing the 

STAT1/STAT2 heterodimer and IRF9, leading to inhibition of interferon 

signaling (Piganis et al, 2011). However, miR-155-5p has been shown to bind to 

the 3’UTR of SOCS1 and therefore enables the formation of the ISGF3 complex 

of STAT1/2 and IRF9 (Jiang et al, 2010). The identification of CAF-induced 

miR-155-5p up-regulation as well as up-regulation of interferon signaling (Table 

4.3) fits with the known role of miR-155-5p in the interferon signaling pathway. 

Increased levels of miR-155-5p will therefore drive increased interferon 

signaling. Additionally, the activation of interferon signaling could be the 

stimulus that leads to CAF-induced enhanced expression of miR-155-5p, a 

hypothesis supported by the observation that miR-155-5p was not induced by 

CAFs in the one cell line that also did not activate interferon signaling (MDA-

MB-468 cells; Figure 4.6).  

 

In this chapter, the function of miR-155 was studied in terms of miR-155 effect 

on survival and growth of cells (sections 4.3.3 and 4.3.4) in order to identify the 

functional importance of increased miR-155 expression. It has already been 

shown that miR-155 is involved in many key cellular pathways that potentially 

promote cancer development or progression, including apoptosis, proliferation 

and epithelial-mesenchymal transition (Liu et al, 2015). MiR-155 also been 

linked to cellular functions in MCF-7 cells, with miR-155 promoting proliferation 

(Martin et al, 2014). MAPK signaling is also a target of miR-155. MiR-155 up-

regulates p38 and enhances MAPK signaling to promote phosphorylation of 

ERK1/2 and cell proliferation (Martin et al, 2014). My data do not support a role 

for miR-155 in proliferation in the cell lines tested (MDA-MB-231 and MDA-MB-

157; Figure 4.4 and 4.5), although it is important to note that the experiments 

were not designed to test this hypothesis, rather to investigate any potential role 

in chemo-response.  
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Importantly, miR-155’s role in chemoresistance was investigated, because of 

the CAF-induced increase of miR-155 expression (section 4.3.2) in TNBC cells 

following epirubicin treatment. Interestingly miR-155 has previously been 

implicated as a potential marker of chemoresistance in TNBC (Ouyang et al, 

2014). It is thought that miR-155 can lead to drug resistance in multiple different 

ways. MiR-155 has been shown to bind directly to and repress the function of 

FOXO3a, which is involved in processes such as cell death and cell cycle arrest 

(Dijkers et al, 2000). p27, an inhibitor of cell cycle progression, is a downstream 

target of FOXO3a and the presence of miR-155 therefore prevents activation 

and function of p27. p27 normally leads to the arrest of cells in G0/G1 (Chiarle et 

al, 2001). Presence of miR-155 and inhibition of FOXO3a and subsequently 

decreased levels p27 have been shown to be associated with docetaxel 

resistance in breast cancer cell lines (Brown et al, 2004). Here, miR-155 

demonstrated a trend towards contributing to chemoresistance, although the 

findings were formally not statistically significant. MiR-155 mimics increased 

chemoresistance and miR-155 inhibitors decreased chemoresistance in both 

MDA-MB-231 and MDA-MB-157 cells (Figure 4.4 and 4.5). This trend was both 

consistent with the published literature above, and with my hypothesis that miR-

155 would provide chemo-protection, based on its CAF-induced up-regulation in 

the context of CAF-induced chemo-protection. The function of miR-155 in 

chemoresistance is studied further in chapter 5.   

 

4.4.3 miR-27a 

 

The second miRNA that was identified as up-regulated in breast cancer cells by 

the presence of CAFs was miR-27a (section 4.3.2). CAF-induced up-regulation 

of miR-27a in epithelial cells has not previously been reported, however, the 

roles of miR-27a in CAFs themselves have been investigated. MiR-27a has 

previously been shown to induce the transition of NFs to the CAF phenotype, 

which in turn induced chemoresistance in esophageal cancer cells (Tanaka et 

al, 2015). However, up-regulation of miR-27a was not observed in the 

esophageal cancer cells nor did transfection with miR-27a confer 

chemoresistance in these cells, therefore this observation may be unrelated to 

my findings.  
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The functional role of miR-27a has been studied in TNBC. MiR-27a has been 

shown to have prognostic value in breast cancer patients, with high expression 

of miR-27a associated with poorer survival (Tang et al., 2012) and has been 

shown to part of a four miRNA signature specific to TNBC (Gasparini et al, 

2014). However, my aim was to identify potential mediators of chemoresistance, 

and in this regard miR-27a was not promising since it was up-regulated in 

chemoresistant cancer cells (those co-cultured with CAFs, section 4.3.2), yet 

miR-27a over-expression or knock-down was not associated with significant or 

consistent changes in survival after chemotherapy treatment (Figure 4.4). By 

contrast, miR-27a inhibition in ER+ breast cancer cells has previously been 

shown to increase the sensitivity of the cells to cisplatin treatment (Zhou et al, 

2016). MiR-27a is a positive regulator of multidrug resistance 1 (MDR1) / P-

glycoprotein drug pump and has been shown to increase expression of MDR1 

(Zhu et al, 2008). Both of these studies highlight that miR-27a can impact on 

chemoresistance, although this does not appear to be the case in my assays.  

 

 

4.5 Conclusions and aspects of future work 

 

It is evident from data presented in this chapter, that the presence of CAFs can 

up-regulate activity of the interferon signaling pathway and, related to this, 

expression of miR-155. It is also clear that interferons alone are sufficient to 

induce chemoresistance in representative cell lines of the claudin-low TNBC 

subtype. In my next chapter, I explore whether it is possible to block this 

influence of CAFs in order to inhibit the chemoprotective effect of CAFs.  
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Chapter 5 – Inhibition of interferon 

signaling reduces fibroblast-induced 

chemoresistance in triple negative breast 

cancer  
 

5.1 Abstract 

 

In chapter 4, I showed that interferon signaling was activated in selected TNBC 

cell lines by the presence of CAFs, and that activation was sufficient to induce 

relative chemoresistance. My next hypothesis was that inhibition of interferon 

signaling would improve the efficacy of the chemotherapy agent epirubicin in 

TNBC cell lines co-cultured with CAFs. This could raise the possibility that this 

combination treatment could be effective in patients with tumours containing 

high proportions of CAFs. Antibodies directed against interferon receptors that 

inhibit their activation, a JAK/STAT small molecule inhibitor, or miR-155 

inhibitors were used to inhibit CAF-induced interferon activation. 

 

CAF-induced chemoresistance in MDA-MB-231 and/or MDA-MB-157 was 

significantly reduced by the addition of interferon blocking antibodies directed 

against Type I or Type II receptors. qPCR was used to confirm that interferon 

signaling was indeed down-regulated. Similarly, the use of the JAK/STAT 

inhibitor ruxolitinib reduced CAF-induced chemoresistance in MDA-MB-231 and 

MDA-MB-157 cells. Chemoresistance induced by both immortalized and 

primary CAFs was sensitive to these inhibitions. MiR-155 inhibition also 

reduced CAF-induced chemoresistance in MDA-MB-231 cells.  

 

I concluded that the use of interferon blocking antibodies, a JAK/STAT inhibitor, 

or miR-155 inhibitors can all synergise with epirubicin treatment by inhibiting 

CAF-induced chemoresistance.  
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5.2 Introduction 

 

Interferon activation in TNBC cells is sufficient to drive increased resistance to 

the chemotherapeutic epirubicin (Chapter 4). My next interest was to examine 

whether inhibition of this activation could reduce CAF-induced protection from 

chemotherapy and could therefore present a potential therapeutic approach to 

sensitize cells to chemotherapy.  

 

Interferon signaling is classically known to be involved in antiviral responses, 

however more recently roles of interferons in cancer have been studied. An 

example is the observation that activation of the interferon signaling pathway is 

associated with myeloproliferative disorders and hematological cancers. 

Enhanced JAK-STAT activities, down-stream mediators of interferon signals, 

have been identified in acute T-cell lymphocytic leukemia, acute B-cell 

lymphocytic leukemia and acute myeloid leukemia (Furumoto and Gadina, 

2013). Therefore, inhibitors of these signaling intermediates have been 

developed as potential cancer therapeutics. Ruxolitinib is a leading JAK-STAT 

inhibitor and inhibitor of interferon signaling (Harrison et al, 2012). Ruxolitinib is 

a targeted therapy that selectively binds to non-receptor janus kinases (JAK), 

therefore inhibiting JAK1 and JAK2 activation and signaling. Ruxolitinib is 

currently FDA approved for treatment of myelofibrosis and polycythaemia vera 

(Yi et al, 2015). As ruxolitinib is already in clinical use, it could potentially be 

used in breast cancer patients in the near term. Ruxolitnib is therefore an ideal 

inhibitor for me to use in combination with chemotherapy to assess whether 

inhibition of interferon signaling improves chemotherapy response.  

   

I also identified miR-155 as a potential regulator of chemoresistance, through 

the screen of changes in miRNA expression completed in Chapter 4. MiR-155 

has previously been found to be over-expressed in a large number of solid 

cancers, including colon, breast, pancreatic, thyroid, cervical and lung cancers 

(Faraoni et al, 2009). MiR-155 has an established role as a positive regulator of 

interferon signaling, through targeting the protein SOCS, which normally 

functions to down-regulate interferon signaling (Forster et al, 2012). MiR-155 is 

itself also a down-stream target of interferon signaling, with activation of the 
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pathway leading to the transcription of further miR-155; this represents a 

positive feedback loop (Jiang et al, 2010). Inhibition of miR-155 function 

therefore provides a further strategy to inhibit interferon signaling. 

 

An interesting aspect of the CAF-induced chemoprotection I have observed is 

that this may be a paracrine activity, with CAFs releasing signals (presumably 

interferons themselves) that are received by the epithelial cancer cells. This 

means that use of antibodies that block the ability of interferons to act on their 

receptors provides another strategy to inhibit activation of the pathway. Different 

blocking antibody strategies are available: those that bind to interferons 

themselves or those that bind to the receptors to prevent interferon binding. 

One study has shown successful blocking of IFN-α and IFN-β by targeting them 

directly using monoclonal antibodies and by targeting the IFNAR2 receptor 

chain. Blocking of IFN-γ directly and the IFNGR receptor chain also successfully 

neutralized IFN-γ activity (Moll et al, 2008).  

 

In this chapter, I aimed to inhibit interferon signaling in breast cancer epithelial 

cells, using multiple different strategies as outlined above, and determine 

whether this reduced CAF-induced chemoresistance.  
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5.3 Results 

 

5.3.1 Type I and/or Type II interferon blocking antibodies individually block 

CAF1-induced chemoresistance in TNBC cells but the combination of both 

antibodies has no increased effect 

 

My first aim was to assess whether antibodies capable of blocking activation of 

interferon receptors would inhibit CAF-induced chemoresistance.  

 

To achieve this, I adapted my standard colony formation assay protocol and 

introduced Type I and Type II receptor blocking antibodies. MDA-MB-231-

GFP/luc cells were cultured either on their own or with 20% CAF1 cells with 

either an isotype control antibody or blocking antibody added. Blocking 

antibodies for either Type I or Type II signaling were used either individually or 

in combination. Cultures were incubated for 24h and then treated with 10nM 

epirubicin for 24h, with the antibodies re-added to ensure inhibition of the 

pathway was maintained. As before, the cultures were then sorted to purify the 

GFP-expressing epithelial cells with equal numbers of cells plated at a low 

seeding density and cultured to allow individual colonies to be counted (Figure 

5.1).  

 

As seen previously and as expected, the results in Figure 5.1 consistently 

demonstrate that epirubicin treatment significantly reduced cell survival, and 

that co-culture with CAF1s both significantly increased seeding efficiency and 

induced significant chemoresistance (p<0.05). However, the key results in this 

experiment are the comparison of survival after epirubicin treatment in cells 

treated with either control or IFN-blocking antibodies. In CAF1 co-cultures both 

the Type I blocking antibody (Figure 5.1A, right plot) and the Type II blocking 

antibody (Figure 5.1B, right plot) caused significant reductions in survival after 

epirubicin treatment (p<0.05), meaning that the CAF-dependent protection was 

completely inhibited. Surprisingly, however, the combination of the two blocking 

antibodies did not significantly inhibit the CAF-dependent protection (Figure 

5.1C, right plot, p value 0.486). 
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It was also evident from these data that each of the Type I and Type II blocking 

antibodies also inhibited the CAF-dependent increase in seeding density 

(Figure 5.1, compare control with blocking antibody for epithelial + CAFs without 

epirubicin in the colony count data set [left plot]), indicating that interferon 

signaling is also required for this effect of CAFs that is unrelated to chemo-

response.  

 

It was also important to confirm that the blocking antibodies were indeed 

inhibiting interferon signaling as expected. Therefore, in addition to the colony 

forming assays, qPCR analysis was performed on the remaining cells that had 

been sorted but were not required for colony plating to assess levels of 

interferon pathway activity using the interferon stimulated genes OAS1 and 

MX1 as indicators of activity (Figure 5.2). As previously seen and expected, co-

culture with CAFs led to activation of interferon signaling with epirubicin 

treatment enhancing this activation (p<0.05). The blocking antibodies, either 

individually (Figure 5.2A and B) or in combination (Figure 5.2C), consistently 

and significantly reduced (p<0.05) this activation, although levels were not 

reduced to basal.  
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Figure 5.1: Blocking Type I and Type II interferon signaling prevents CAF1-
induced chemoresistance in MDA-MB-231 cells 
Cultures of MDA-MB-231-GFP/luc cells were established in mono-culture or co-
culture with 20% immortalised breast CAF1s.  Type I interferon signaling 
(1µg/ml) or Type II interferon signaling (5µg/ml) blocking antibodies were either 
added separately (A and B) or in combination (C) or appropriate isotype 
controls were added. Cultures were treated with 10nM epirubicin or untreated 
for 24h with antibodies re-added. Cultures were then separated into pure 
epithelial populations by FACS. 500 epithelial cells were then seeded at low 
density and left for 14 days for colonies to form. Plates were then stained with 
crystal violet and individual colonies were counted. Data are shown as numbers 
of colonies (left plots), or as counts normalised to the no treatment value for 
each individual fibroblast proportion (right plots), and represent the means (+/- 
SE) of 3 independent experimental repeats. Two-tailed Mann-Whitney U tests 
were carried out and selected significant differences are shown. P values * 
<0.05. 
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Figure 5.2: Interferon neutralizing antibodies successfully blocked CAF1-
dependent interferon activation in MDA-MB-231 cells when treated with 
epirubicin  
Cultures of MDA-MB-231-GFP/luc cells were established in mono-culture or co-
culture with 20% immortalised breast CAF1s. Type I interferon signaling 
(1µg/ml) or Type II interferon signaling (5µg/ml) blocking antibodies were either 
added separately (A and B) or in combination (C) or appropriate isotype 
controls were added. Cultures were treated with 10nM epirubicin or untreated 
for 24h with antibodies readded. Cultures were then separated into pure 
epithelial populations by FACS. RNA was extracted from the epithelial cells and 
equal amounts of RNA were used for qPCR to determine relative expression of 
IFN-target genes OAS1 (left plots) and MX1 (right plots). qPCRs were 
normalised to ACTB. Data represent the mean(+/- SE) for n=3. Two tailed 
Mann-Whitney U tests were carried out and significant differences shown. P 
value *<0.05. 
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5.3.2 Type I, but not Type II, interferon blocking antibodies block CAF1-induced 

chemoresistance in MDA-MB-157 cells 

 

Next, the same entire experimental approach of clonogenic assays and qPCR 

pathway activity assessment was repeated using the alternative TNBC cells line 

MDA-MB-157, in which I had also observed CAF-induced chemoprotection 

(Chapter 3). Clonogenic survival data are presented in Figure 5.3, while 

matched qPCR data to assess interferon pathway activity are presented in 

Figure 5.4. 

 

As previously, epirubicin treatment reduced survival, while co-culture with CAFs 

afforded chemoprotection in the absence of blocking antibodies (p<0.05 and 

p<0.01). In accordance with the findings in MDA-MB-231 cells, the Type I 

blocking antibody significantly (p<0.01) and completely inhibited this protection 

in MDA-MB-157 (Figure 5.3A, right panel). However, in contrast to findings in 

MDA-MB-231 cells, the Type II blocking antibody had no effect on CAF-

dependent protection (Figure 5.3B, right panel, p value 0.486). Analysis of 

interferon pathway activity by qPCR confirmed that the Type I blocking antibody 

inhibited interferon signaling (Figure 5.4A, p<0.01), as expected. However, it 

was evident that in this cell line the Type II blocking antibody failed to inhibit the 

CAF-dependent activation of the interferon pathway (Fig 5.4B, p values 0.486 

and >1), which provided an explanation for why this antibody had also had no 

functional effect on the CAF-dependent chemoprotection (Figure 5.3B, right 

panel).  
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Figure 5.3: Type I but not Type II interferon neutralization blocks immortalised 
CAF1 induced chemoresistance in MDA-MB-157 cells 
Cultures of MDA-MB-157 cells were established in mono-culture or co-culture 
with 20% immortalised breast GFP-CAF1s.  Type I interferon signaling (1µg/ml) 
or Type II interferon signaling (5µg/ml) neutralising antibodies were added 
separately (A and B) or appropriate isotype controls were added. Cultures were 
treated with 10nM epirubicin or untreated for 24h with antibodies readded. 
Cultures were then separated into pure epithelial populations by FACS. 500 
epithelial cells were then seeded at low density and left for 14 days for colonies 
to form. Plates were then stained with crystal violet and individual colonies were 
counted. Data are shown as numbers of colonies (left plots), or as counts 
normalised to the no treatment value for each individual fibroblast proportion 
(right plots), and represent the means (+/- SE) of 3 independent experimental 
repeats. Two-tailed Mann-Whitney U tests were carried out and selected 
significant differences are shown. P values * <0.05. 
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Figure 5.4:  Type I but not Type II interferon neutralizing antibodies block CAF1-
dependent interferon activation in MDA-MB-157 cells 
Cultures of MDA-MB-157 cells were established in mono-culture or co-culture 
with 20% immortalised breast GFP-CAFs.  Type I interferon signaling (1µg/ml) 
or Type II interferon signaling (5µg/ml) blocking antibodies were either added 
separately (A and B) or appropriate isotype controls were added. Cultures were 
treated with 10nM epirubicin or untreated for 24h with antibodies readded. 
Cultures were then separated into pure epithelial populations by FACS. RNA 
was extracted from the epithelial cells and equal amounts of RNA were used for 
qPCR to determine relative expression of IFN-target genes OAS1 (left plots) 
and MX1 (right plots). qPCRs were normalised to ACTB. Data represent the 
mean(+/- SE) for n=3. Two tailed Mann-Whitney U tests were carried out and 
significant differences shown. P value *<0.05. 
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5.3.3 Type I interferon blocking antibodies block pCAF-induced 

chemoresistance in MDA-MB-231 cells 

 

The same approach was then taken to examine whether interferon blocking 

antibodies could block chemoresistance induced by primary CAFs (pCAFs) 

derived from a TNBC patient. These pCAFs have already been shown to induce 

chemoprotection of MDA-MB-231-GFP/luc cells (Figure 3.5). Clonogenic 

assays and qPCR assessment were performed as above in section 5.3.1 and 

5.3.2, in this case with the Type I interferon blocking antibody, pCAFs and 

MDA-MB-231 cells (Figure 5.5). 

 

As previously, epirubicin treatment reduced survival, while co-culture with 

pCAFs afforded chemoprotection in MDA-MB-231 cells in the absence of 

blocking antibody (p<0.05). In accordance with the findings in MDA-MB-231 and 

MDA-MB-157 cells using immortalized CAF1s, the Type I blocking antibody 

significantly (p<0.05) and completely inhibited pCAF-induced protection in 

MDA-MB-231 (Figure 5.5A, right panel). Analysis of interferon pathway activity 

by qPCR confirmed that the Type I blocking antibody inhibited the CAF-induced 

interferon signaling as expected, with reduced induction of OAS1 and MX1 

(Figure 5.5B, p values 0.029 and 0.343 respectively).  
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Figure 5.5: Type I interferon neutralization blocks pCAF-induced 
chemoresistance, and pCAF-induced interferon activation in MDA-MB-231 cells 
Cultures of MDA-MB-231-GFP/luc cells were established in mono-culture or co-
culture with 20% pCAFs. Type I interferon signaling (1µg/ml) blocking antibody 
was added or appropriate isotype controls were added (A). Cultures were 
treated with 10nM epirubicin or untreated for 24h with antibodies readded. 
Cultures were then separated into pure epithelial populations by FACS. 500 
epithelial cells were then seeded at low density and left for 14 days for colonies 
to form. Plates were then stained with crystal violet and individual colonies were 
counted. Data are shown as numbers of colonies (left plots), or as counts 
normalised to the no treatment value for each individual fibroblast proportion 
(right plots), RNA was also extracted from the epithelial cells and equal amounts 
of RNA were used for qPCR (B) to determine relative expression of IFN-target 
genes OAS1 (left plot) and MX1 (right plot). qPCRs were normalised to ACTB. 
Data represent the mean(+/- SE) for n=3. Two tailed Mann-Whitney U tests 
were carried out and significant differences shown. P value *<0.05. 
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5.3.4 The JAK-STAT inhibitor ruxolitinib reduces CAF1-induced 

chemoresistance in MDA-MB-231 and MDA-MB-157 cells  

 

Blocking antibodies successfully inhibited CAF-dependent protection above, 

however, the process for moving these blocking antibodies forward towards 

assessing their effect in cancer patients is likely to be prohibitively slow and 

expensive. Therefore, I searched for an alternative that might potentially make it 

into clinic more quickly if appropriate. A JAK-STAT inhibitor, ruxolitinib, was 

chosen as it has been shown to have high efficacy for inhibiting interferon 

signaling via binding to JAK2 (Thomas et al, 2015). Ruxolitinib is already 

available within the NHS and is used for treatment of myelofibrosis.  

 

Experiments were performed broadly as above to assess colony formation in 

MDA-MB-231 or MDA-MB-157 cells after mono-culture or co-culture with 

CAF1s, and after treatment with epirubcin and/or ruxolitinib. qPCR was again 

used to assess interferon pathway activity. In this case, mono-cultures or co-

cultures with CAF1s were pre-treated for 24h with either vehicle control or 10nM 

ruxolitinib and new vehicle or ruxolitinib was added with epirubicin treatment for 

24h. Colony forming potential of the epithelial cells was then determined as 

previously (Figures 5.6, MDA-MB-231 cells, and 5.7, MDA-MB-157 cells). 

 

As previously, epirubicin reduced survival in both MDA-MB-231 and MDA-MB-

157 cells, and the presence of CAF1 cells induced relative chemoresistance (p 

values 0.067 and p<0.01 respectively).  More interestingly, ruxolitinib 

significantly inhibited CAF-induced protection in MDA-MB-157 (Figure 5.7A, 

right panel, p<0.01), and a trend towards the same result was seen in MDA-MB-

231 cells, although this inhibition was not significant (Figure 5.6A, right panel, p 

value 0.114). Analysis of interferon pathway activity by qPCR highlighted a 

trend that ruxolitinib inhibited CAF-induced interferon signaling in both MDA-

MB-231 and MDA-MB-157 cells, as indicated by reduced levels of OAS1 and 

MX1, although this was not significant (Figure 5.6B and 5.7B, 231 p values 

0.132 and 0.240 respectively, 157 p values 0.589 and 0.394 respectively). 
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It was also evident from these data that inhibition of interferon signaling, in this 

case with ruxolitnib, inhibited the ability of CAF1 cells to enhance the 

clonogenic plating efficiency of MDA-MB-231 and MDA-MB-157 cells in the 

absence of epirubicin (Figure 5.6A and 5.7A).  

 
 

Figure 5.6: Ruxolitinib reduces, although not significantly, CAF1-induced 
chemoresistance in MDA-MB-231 cells    
Cultures of MDA-MB-231-GFP/luc cells were established in mono-culture or co-
culture with 20% immortalised breast CAF1s. Ruxolitinib was added to cultures 
at 10nM or vehicle control (A). Cultures were treated with 10nM epirubicin or 
untreated for 24h with ruxolitinib/vehicle readded. Cultures were then separated 
into pure epithelial populations by FACS. 500 epithelial cells were then seeded 
at low density and left for 14 days for colonies to form. Plates were then stained 
with crystal violet and individual colonies were counted. Data are shown as 
numbers of colonies (left plots), or as counts normalised to the no treatment 
value for each individual fibroblast proportion (right plots), RNA was also 
extracted from the epithelial cells and equal amounts of RNA were used for 
qPCR (B) to determine relative expression of IFN-target genes OAS1 (left plot) 
and MX1 (right plot). qPCRs were normalised to ACTB. Data represent the 
mean(+/- SE) for n=3. Two tailed Mann-Whitney U tests were carried out and 
significant differences shown. P value *<0.05. 
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Figure 5.7: Ruxolitinib significantly reduces CAF1-induced chemoresistance in 
MDA-MB-157 cells    
Cultures of MDA-MB-157 cells were established in mono-culture or co-culture 
with 20% immortalised breast GFP-CAF1s. Ruxolitinib was added to cultures at 
10nM or vehicle control (A). Cultures were treated with 10nM epirubicin or 
untreated for 24h with ruxolitinib/vehicle readded. Cultures were then separated 
into pure epithelial populations by FACS. 500 epithelial cells were then seeded 
at low density and left for 14 days for colonies to form. Plates were then stained 
with crystal violet and individual colonies were counted. Data are shown as 
numbers of colonies (left plots), or as counts normalised to the no treatment 
value for each individual fibroblast proportion (right plots), RNA was also 
extracted from the epithelial cells and equal amounts of RNA were used for 
qPCR (B) to determine relative expression of IFN-target genes OAS1 (left plot) 
and MX1 (right plot). qPCRs were normalised to ACTB. Data represent the 
mean(+/- SE) for n=3. Two tailed Mann-Whitney U tests were carried out and 
significant differences shown. P value *<0.05. 
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5.3.5 Ruxolitinib inhibits pCAF-induced chemoresistance in MDA-MB-231 cells  

  

The same experiment as in section 5.3.4 was also performed using pCAFs 

derived from a TNBC, and MDA-MB-231-GFP/luc cells (Figure 5.8). Ruxolitinib 

significantly inhibited pCAF-induced chemoresistance in MDA-MB-231 cells 

(Figure 5.8A, right panel, p<0.05), and also inhibited pCAF-induced interferon 

signaling, although this was not significant (Figure 5.8B, p values 0.200 and 

0.200 respectively). 

Figure 5.8: Ruxolitinib significantly inhibits pCAF-induced chemoresistance in 
MDA-MB-231   
Cultures of MDA-MB-231-GFP/luc cells were established in mono-culture or co-
culture with 20% primary breast CAFs. Ruxolitinib was added to cultures at 
10nM or vehicle control (A). Cultures were treated with 10nM epirubicin or 
untreated for 24h with ruxolitinib/vehicle readded. Cultures were then separated 
into pure epithelial populations by FACS. 500 epithelial cells were then seeded 
at low density and left for 14 days for colonies to form. Plates were then stained 
with crystal violet and individual colonies were counted. Data are shown as 
numbers of colonies (left plots), or as counts normalised to the no treatment 
value for each individual fibroblast proportion (right plots), RNA was also 
extracted from the epithelial cells and equal amounts of RNA were used for 
qPCR (B) to determine relative expression of IFN-target genes OAS1 (left plot) 
and MX1 (right plot). qPCRs were normalised to ACTB. Data represent the 
mean(+/- SE) for n=3. Two tailed Mann-Whitney U tests were carried out and 
significant differences shown. P value *<0.05. 
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5.3.6 MiR-155 inhibition reduces CAF1-induced chemoresistance of MDA-MB-

231 cells  

 

Inhibition of miR-155 is another potential mechanism of inhibiting CAF-induced 

interferon activity and thereby CAF-induced chemoresistance, based on its 

known role as a positive regulator of interferon signaling, and my previous 

observations that miR-155 was up-regulated by CAFs (section 4.3.2). 

Furthermore, I previously demonstrated that manipulation of miR-155 levels 

showed a trend to alter sensitivity of MDA-MB-231 and MDA-MB-157 cells to 

epirubicin treatment in the absence of CAFs (section 4.3.3/4).  

 

A slightly adapted version of the clonogenic assay that has previously been 

used was carried out to determine whether inhibiting miR-155 in epithelial cells 

could inhibit CAF1-induced effects. Prior to seeding MDA-MB-231-GFP/luc cells 

in mono-culture or co-culture with CAF1 cells, MDA-MB-231-GFP/luc cells were 

transfected with either control inhibitor miRNAs or targeted miR-155 inhibitors. 

The protocol for the previous experiments was then followed for both 

assessment of clonogenic potential, and use of qPCR to monitor interferon 

pathway activity.  In this case, additionally, qPCR was also used to monitor 

miR-155 expression.  

 

Inhibition of miR-155 in the MDA-MB-231 cells significantly inhibited CAF1-

induced chemoresistance in the MDA-MB-231 cells when compared to control 

transfected cells (Figure 5.9A, right panel, p<0.05).  qPCR analysis confirmed 

the expected CAF-induced up-regulation of miR-155, particularly when treated 

with epirubicin (p<0.0001), and the successful inhibition of miR-155 expression 

by the specific miR inhibitor (Figure 5.9B, p<0.05). Although not significant, 

qPCR also suggested that miR-155 inhibition in epirubicin-treated cultures 

reduced CAF-induced interferon signaling activation, as demonstrated by 

reduced levels of OAS1 and MX1 (Figure 5.9C p values 0.393 and 0.588 

respectively). 
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Figure 5.9: MiR-155 inhibition significantly inhibits CAF1-induced 
chemoresistance in MDA-MB-231 cells 
MDA-MB-231-GFP/luc were transfected with control or miR155 inhibitor. 
Transfected MDA-MB-231-GFP/luc cells were plated in mono-culture or co-
culture with 20% immortalised breast CAF1s. MDA-MB-231-GFP/luc had been 
labelled with GFP, so the cell types could be differentiated by flow-cytometry. 
Co-cultures were treated with 10nM epirubicin or untreated for 24h. Co-cultures 
were then separated into pure epithelial populations by FACS. 500 epithelial 
cells were then seeded at low density and left for 14 days for colonies to form. 
RNA was extracted from remaining cells. Plates were then stained with crystal 
violet and individual colonies were counted. Data are normalised to the no 
treatment value for each individual fibroblast proportion and represent the 
means (+/- SE) of 3 independent experimental repeats (A). RNA was extracted 
from the MDA-MB-231 cells and relative expression of miR-155 (B) or OAS1 
and MX1 (C) determined by qPCRs. Data represent means (+/- SE) of 3 
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independent experimental repeats. Two-tailed Mann-Whitney U tests were 
carried out with any significant differences shown between no treatment 0% to 
20% fibroblasts, treated 0% to 20% fibroblasts and treated control 20% to 
miR155 20%. P values * <0.05, **<0.01 and ****<0.0001. 
 

 

5.4 Discussion 

 

The aims of the work in this chapter were to identify potential mechanisms to 

inhibit CAF-induced interferon signaling and to determine if this would reduce 

CAF-induced chemoresistance in TNBC cells.   

 

5.4.1 Use of antibodies for inhibition of interferon signaling 

 

Antibodies provide successful current, and promising future therapeutic 

possibilities through their ability to bind selectively to cancer cells or to soluble 

targets, and thereby influence cancer cell function. Use of blocking antibodies to 

inhibit the interferon signaling pathway could therefore be a viable option in 

preventing interferon activation and chemoresistance. This could be done by 

either blocking soluble interferon ligands or by blocking interferon receptors.  

The use of blocking antibodies to block soluble ligands represents a viable 

option as evidenced by the fact that an antibody drug has been successful in 

sequestering VEGF-A. Bevacizumab, which binds and sequesters VEGF-A, 

inhibits angiogenesis, which in turn inhibits tumour growth and proliferation 

(Ferrara et al, 2004). In vitro, blocking of soluble interferons has also been 

successful in targeting soluble IFN-β (Hosein et al, 2015). Although soluble 

ligand blocking can be extremely effective and could have been used to block 

soluble interferons, this approach was not used because of the diversity of the 

interferon ligands, which might require multiple different antibodies.  

 

Antibodies that bind to and block surface receptors have proved succesful in 

the treatment of cancer, and this was the approach I chose to use in this 

chapter. Blocking antibodies act by neutralizing the effects of oncogenic 

pathways and are extremely effective treatment options in breast cancer with 

various monoclonal antibodies currently being used in the clinic (Simpson and 

Caballero, 2014). Cetuximab is used in breast cancer treatment to reduce 
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activation of the EGFR pathway by binding to the extracellular domain of EGFR. 

Binding of cetuximab therefore prevents EGF binding to its receptor and 

transduction of the signaling cascade. In addition, cetuximab can lead to 

receptor internalization and degradation of EGFR and down-regulation of EGFR 

expression (Herbst et al, 2002). Both trastuzumab and pertuzumab are targeted 

treatments available for HER positive breast cancer patients. Trastuzumab acts 

by binding to the extracellular domain of HER2 receptors with high affinity (Vu 

et al, 2012). Pertuzumab binds to the extracellular dimerization domain II of 

HER2 receptors with pertuzumab and trastuzumab able to work in syngery with 

one another as they bind to different epitopes (Franklin et al, 2004). In addition, 

pertuzumab and trastuzumab can be given in combination with docetaxel 

(Baselga et al, 2010). The current use of blocking antibodies targeting cell 

surface receptors as effective breast cancer therapeutics was a determining 

factor for their use in this chapter to block interferon signaling. 

 

A survey of relevant literature identified 2 previously published studies in which 

IFN blocking antibodies were used in the context of breast cancer, one of which 

even involved the presence of CAFs in co-culture with breast cancer cells. 

Therefore, these studies are highly-related to work covered within this chapter. 

Blocking antibodies have been used to bind to the Type I interferon receptor 

(IFNAR1, clone MMHAR2) to prevent activation of the intra-cellular signaling 

cascade in ER-positive aromatase inhibitor resistant breast cancer cells (Choi et 

al, 2015). The Type I blocking antibody clone used in this study is the same 

clone that I have used this chapter, although it is interesting to note that these 

authors used western blot analysis of expression of the ISG IFITM1 (the protein 

on which their study was focused) to confirm interferon signaling blockade, 

rather than my qPCR analysis of OAS1 and MX1. In their study, the Type I 

blocking antibody or IFITM1 knockdown both separately reduced cell 

proliferation and sensitized the resistant cells to estrogen deprivation (Choi et 

al, 2015). Type I blocking antibodies targeted to soluble IFN-β have also been 

used in the context of CAFs and breast cancer. Using gene expression profiling, 

a subgroup of interferon positive CAFs, which expressed ISGs and released 

IFN-β, were identified. Indirect co-culture of the interferon positive CAFs with 

MCF-7 cells promoted MCF-7 cell growth, with the blocking antibody inhibiting 
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this effect. However, confirmation of decreased interferon signaling in the target 

MCF-7 cells was not performed (Hosein et al, 2015). Targetting of soluble IFN-β 

differs from targeting the Type I receptor, as above and in my work, and – 

critically - does not target potential roles of other Type I interferons.  

 

In the studies highlighted above by Choi et al and Hosein et al, the authors did 

not attempt to block both Type I and Type II signaling in combination, and 

therefore my work with combining antibodies to block both pathways appears to 

be unique in the context of breast cancer assays in tissue culture. Interestingly, 

the combination of both Type I and II did not have additive effects in terms of 

inhibiting chemoresistance (Figure 5.1), and curiously appeared to work less 

well in combination than individually. It is plausible that the addition of both 

antibodies caused some steric hindrance of the binding of each antibody to its 

target receptor. Therefore, this combination was not explored further. 

Furthermore, CAF-induced activation of interferon signaling and CAF-induced 

chemo-protection in MDA-MB-157 was not inhibited by Type II blocking 

approaches (Figure 5.4) suggesting that Type I signaling may be the dominant 

influence.  However, it is possible that the dose of the Type II neutralization 

antibody was not enough in this cell line, although it proved sufficient in MDA-

MB-231 cells, or it may be that the Type I activation is so dominant in the MDA-

MB-157 cell line that the contribution of Type II is relatively unimportant. It is 

worth highlighting that MDA-MB-157 cells certainly can respond to Type II 

interferons, as the presence of recombinant IFN-γ in section 4.3.5 and Figure 

4.5 caused a (slight) increase in chemoresistance when used on its own and 

significantly increased chemoresistance in combination with IFN-α.  

 

Based on in vitro data from this chapter, use of Type I neutralizing antibodies in 

combination with epirubicin has potential as a treatment option for TNBC 

patients with high proportions of CAFs within their tumours, as a method for 

reducing CAF-induced chemoresistance and therefore making chemotherapy 

more effective. However, a concern would be that use of IFN blocking 

antibodies could potentially inhibit tumour suppressing immune cell responses, 

given the immune cell roles of interferons previously highlighted in section 

1.14.1. Nevertheless, interferon blockade during chemotherapy, when the 
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immune system is suppressed in any event, remains worthy of further 

exploration.   

 

5.4.2 Use of small molecules for inhibition of interferon signaling 

 

As well as the use of antibodies to inhibit interferon function at the level of 

ligand or receptor, small molecule inhibitors of the intra-cellular JAK/STAT 

cascade have also been developed. The main mechanism that these drugs 

employ is inhibition of the JAKs; some JAK inhibitors have selective potency for 

both the predominant JAKs (JAK1 and JAK2), whereas other drugs only target 

one particular JAK (JAK1, 2 or 3). One JAK inhibitor, Tofacitinib, can target all 3 

JAKs (JAK1, 2 and 3) (Thomas et al, 2015).  

 

JAK inhibitors are undergoing clinical trials to treat a variety of different 

diseases, with some inhibitors approved for clinical use in selected diseases. 

Tofacitinib, a JAK1, 2 and 3 inhibitor, is used to treat patients with rheumatoid 

arthritis, skin conditions including psoriasis, and irritable bowel syndrome 

(Miklossy et al, 2013). A further JAK inhibitor, ruxolitinib, has been approved for 

use myelofibrosis, but of more relevance to my work, ruxolitinib is also being 

trialled for use in treatment of different forms of leukemia: acute myeloid, 

chronic myeloid and acute lymphocytic leukemia (Furumoto et al, 2013). 

However, the use of JAK inhibitors in solid tumours is less advanced. Different 

tumours have been implicated as potential targets of JAK inhibitors, as a result 

of STAT up-regulation being associated with recurrences and reduced overall 

survival in NSCLC, prostate cancer and melanoma (Xu et al, 2014, Messina et 

al, 2008, Mirtti et al, 2013), but JAK inhibitors have not yet been used in these 

solid tumours.  

 

Clinical trials have been carried out using JAK inhibitors in patients with 

metastatic breast cancer. Patients, in this clinical trial, had been heavily pre-

treated with up to 48% having received 3 or more regimens of chemotherapy in 

the metastatic setting (Stover et al, 2018). The use of Ruxolitinib, a JAK1/2 

selective inhibitor, is currently being explored as a potential treatment option for 

these patients due to high expression levels of STAT3 in metastatic disease. 
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Although up-regulation of STAT3 was observed in metastatic TNBC patients, no 

responses were observed in 21 out of 23 patients following ruxolitinib treatment 

despite on-target activity. The use of ruxolitinib as a single agent to improve 

treatment options for metastatic TNBC patients, therefore, did not meet the 

primary efficacy endpoint in this study (Stover et al, 2018).  

 

Interestingly, ruxolitinib showed potential in my experiments, which are also in 

the context of TNBC, albeit with major differences in essentially all other ways. 

In section 5.3.4 and 5.3.5, ruxolitinib reduced CAF-induced chemoresistance in 

both MDA-MB-231 and MDA-MB-157 cells. These data support the idea that 

ruxolitinib may have some efficacy in combination with epirubicin, by reducing 

CAF-induced chemoresistance. The clinical trial carried out in metastatic breast 

cancer highlighted above used ruxolitinb as a single agent and it seems until 

only recently that studies have been reported regarding clinical use in 

combination with cytotoxic chemotherapy. Ruxolitinib has been used in 

combination with capecitabine in HER2 negative breast cancer, with an overall 

response rate of 28.9% for the combination in comparison to 13.7% in the 

capecitabine alone group (O'Shaughnessy et al, 2018); this appears to support 

the combination of ruxolitinib and traditional cytotoxics. Clinical trials of 

ruxolitinib in breast cancer are ongoing with ruxolitinib used in combination with 

trastuzumab in metastatic HER2 positive breast cancer, without the use of 

cytoxic chemotherapy (Cigler et al, 2018), and in stage III triple negative 

inflammatory breast cancer in combination with paclitaxel followed by 

doxorubicin/cyclophosphamide. The results of these studies are still being 

collated (Overmoyer et al, 2018). 

 

5.4.3 MiRNAs or miRNA inhibitors (specifically miR-155 inhibitor) as viable 

therapeutic options. 

 

In recent years, work has been carried out to develop RNAs, and particularly 

miRNAs, as potential cancer therapeutics (Mehrgou and Akouchekian, 2017). 

The advantages of this approach are the low cost of synthesis of miRNAs as 

well as their small molecular size and the ease of design. MiRNA therapeutics 

act by either mimicking tumour suppressor miRNAs or by inhibiting oncogenic 
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miRNAs. Due to the ease of production of miRNA therapeutics, the use of 

miRNAs and miRNA inhibitors are a potential therapeutic option (Yeung and 

Jeang, 2011), although they have not yet reached routine clinical practice. This 

is of potential interest here, since I have identified inhibitors of miR-155 as a 

potential therapeutic in combination with epirubicin (Figure 5.9).   

 

Various different miRNAs are being tested in vitro and in vivo for their potential 

for clinical use. For example in breast cancer, both miR-132 and miR-10b have 

oncogenic properties aiding in cancer progression, therefore inhibitors of 

miRNAs have been tested in vivo to try to target these miRNAs and prevent 

their function (Anand et al, 2010). Anti-miR-21 has also been investigated as a 

potential treatment option in human breast cancer. Anti-miR-21 in MCF-7 and 

MDA-MB-231 cells in vitro and in vivo inhibited growth as well as migration of 

breast cancer cell (Yan et al, 2011). I investigated the results of inhibiting miR-

155 (section 4.3.3/4 and 5.3.6), and inhibition of this specific miRNA has been 

previously investigated in the context of breast cancer. MiR-155 antisense 

oligonucleotides (mechanistically the same as the miR-155 inhibitor used in this 

thesis) were shown to reduce the viability of MDA-MB-157 cells in vitro, and to 

reduce cell growth of xenograft tumours (Zheng et al, 2013), although this 

function was not linked to interferon activity, as in my work. This study, and my 

own, do support the concept that inhibition of miR-155 could have therapeutic 

value in the context of breast cancer. 

 

Due to the ease of production of miRNA therapeutics, the main area for work 

and a key difficulty with miR-based therapeutics is the delivery method. In vitro 

use of miRNA therapeutics is relatively simple with the ease of transfection into 

cells. However, the ability to target miRNA therapeutic entry into only cancer 

cells in cancer patients (without targeting normal cells) is problematic. 

Neverthesless, one miRNA-based therapeutic, miravirsen - an inhibitor of miR-

122, is currently in clinical trials (van der Rhee et al, 2016). Miravirsen is 

designed to work without specific targeting in the belief that it will be taken up 

sufficiently by cancer cells for efficacy when delivered systemically, without 

excess toxicity from non-target tissues. While miRNA therapeutics clearly have 
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potential - and specifically targeting miR-155 in the context of this work - 

efficient delivery remains a barrier to future development. 

 

5.5 Conclusion and aspects of future work 

 

It is clear that interferon signaling can be inhibited in multiple different ways, 

from targeting the receptor to prevent interferon binding and activating 

signaling, to targeting the JAK/STAT pathway to inhibit the intra-cellular 

signaling cascade, or inhibiting formation of the correct transcriptional complex 

by inhibiting miR-155. Inhibition of interferon signaling using any of these 

mechanisms can reduce CAF-induced chemoresistance in TNBC cells, at least 

in vitro. To identify if these inhibitory mechanisms could be used in combination 

with chemotherapeutic agents as a possible treatment option for patients, in 

vivo studies will be required.  
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Chapter 6 - What are the cellular 

mechanisms of cancer-associated 

fibroblast-induced chemoresistance in 

breast cancer cells? 
 

6.1 Abstract 

 

CAF-induced chemoresistance in TNBC was identified in previous chapters. In 

this chapter, I have attempted to investigate the direct effectors that drive this 

chemoresistance down-stream of interferon signaling. I have also explored the 

nature of the CAF-induced increase in clonogenicity observed in the absence of 

chemotherapy.  

 

The first potential mechanism of CAF-induced chemoresistance to be tested 

was altered drug loading in the epithelial cells. Using fluorescent-assessment of 

epirubicin loading, it was shown – surprisingly – that CAFs-induced increased 

drug uptake in MDA-MB-231 cells, rather the decrease that would be expected 

if this were the mechanism of protection. The second potential mechanism of 

CAF-induced chemoresistance to be tested was alteration of the cell cycle in 

the epithelial cells. CAFs did not induce significant changes in the proportions of 

MDA-MB-231 cells in each phase of the cell cycle, although there was a trend 

for CAFs to induce reduced S-phase representation, which is potentially 

compatible with this as a resistance mechanism. Finally, the CAF-induced 

increase in clonogenicity was assessed; this was shown to be associated with 

an increase in anoikis resistance in both MDA-MB-231 and MDA-MB-157 cells. 

 

I concluded that CAF-induced changes in epithelial cell cycle profiles, or in 

sensitivity to apoptotic stimuli remain plausible potential mechanisms by which 

CAFs induce chemoresistance in epithelial breast cancer cells.    
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6.2 Introduction 

 

I have shown in previous chapters that CAFs induce chemoresistance in TNBC 

cells, probably through paracrine signaling, leading to up-regulation of the 

interferon signaling pathway. However, the molecular mechanisms that allow 

activated interferon signaling to result in chemoresistance are not understood. 

 

Interferon signaling results in activation of the JAK/STAT signaling cascade as 

highlighted in section 1.12.1 and 1.12.2. It seems reasonable to assume that 

the mediators of the chemoresistance seen in my experiments must be down-

stream of JAK activation. A number of studies have investigated the down-

stream targets of interferon and JAK activation in various cell types. One of the 

major sets of kinases that have been shown to induce IFN stimulated 

responses are the MAP kinases. p38 MAP kinases have been shown to be 

activated by the Type I IFN receptor (Uddin,1999). ERK is another MAP kinase 

family member activated by IFNs, although ERK appears to be activated by 

both Type I and Type II IFN receptors. MEK/ERK activation is driven by JAK1 

activation in response to IFNs. JAK1 can activate Raf1 to enable downstream 

effectors of the MEK/ERK pathway (Platanias, 2005). Jnk kinase, a further 

member of the MAP kinase family, has also been reportedly activated by both 

Type I and Type II IFNs to mediate IFN responses (Zhao et al, 2011). Another 

alternative downstream effector of IFN signaling is the mTOR pathway. 

Activation of both Type I and II receptors led to activation of upstream effectors 

of mTOR, which have been identified as PI3K and Akt (Kaur et al, 2008, Kaur et 

al, 2008).  

 

All of these potentially activated signaling pathways remain substantially up-

stream of the actual effector molecules or functions that could directly lead to 

chemoresistance. Multiple different direct chemoresistance mechanisms have 

been explored previously to gain increased mechanistic understanding, and in 

efforts to use these insights to bypass their potential influences to make 

chemotherapy treatment more effective (O'Reilly et al, 2015). One such 

mechanism that has been explored is the role of the xenobiotic membrane 

transporters of the ATP-binding cassette (ABC) transporter family. The main 
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ABC transporters that have been investigated in TNBC are multi-drug resistant 

protein 1 (MRP1, ABCC1), breast cancer resistance protein (BCRP, ABCG2) 

and P-glycoprotein (MDR1, ABCB1) (Kovalev et al, 2013). High expression and 

activity of these transporters has been shown to contribute to chemoresistance 

in TNBC by reducing intra-cellular levels of the chemotherapeutic agents. 

BCRP, in particular, has been shown to reduce intra-cellular levels of 

doxorubicin in TNBC cells (Chen et al, 2014), while MDR1 acts on various 

different classes of chemotherapeutics, including paclitaxel, doxorubicin and 

epirubicin (Wind et al, 2011). 

 

Another direct effector mechanism of chemoresistance in cancers is increased 

resistance to apoptosis. In a large number of cancers, apoptosis signaling is 

dysregulated leading to evasion of cell death and enhanced survival of cancer 

cells. It has been shown in multiple different types of cancer such as pancreatic, 

ovarian and lung that there is up-regulation of anti-apoptotic factors 

(Mohammed et al, 2015). For example, over-expression of Bcl-2, or other family 

members such as Bcl-xl or Mcl-1 has been shown to be associated with 

chemoresistance in cancers (Azmi et al, 2009, Quin et al, 2011).  

 

Finally, another potential mechanism of chemoresistance is the induction of 

changes to cell cycle. A large number of chemotherapeutic drugs’ main 

mechanism of action occurs during specific phases of the cell cycle, for 

example at mitosis (taxanes) or during S phase (anthracyclines) (Hassan et al, 

2010). Therefore, the proportion of cells in each cell cycle phase, and the 

overall proliferation rate of cells, can be key factors in determining 

chemotherapeutic function. Studies in early breast cancer have shown patients 

with high proliferation rates (determined by high Ki67 expression) responded 

better to NAC and achieved a pCR of 40% in comparison to lower proliferation 

rates (determined by low Ki67 expression), where pCR was 19% with patients 

more resistant to chemotherapy (Alba et al, 2015).  

 

Therefore, based on some of the acknowledged chemoresistance mechanisms, 

in this chapter I have investigated potential mechanisms that could be directly 
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responsible for the CAF-induced chemoresistance I have seen in selected 

TNBC cell lines.  

 

6.3 Results 

 

6.3.1 CAF1 cells increase intra-cellular epirubicin levels in co-cultured MDA-

MB-231 cells  

 

A possible mechanism of CAF-induced chemoresistance is reduced drug 

uptake by the epithelial cells, perhaps mediated by enhanced expression or 

activity of xenobiotic transporters such as the ABC transporters. In order to 

examine this, drug loading assays were performed taking advantage of the fact 

that epirubicin is itself fluorescent.  

 

MDA-MB-231-GFP/luc cells were either mono-cultured or co-cultured with 20% 

CAF1 cells for 24h as previously. As a further control CAF1 cells were also 

mono-cultured. Cultures were treated with epirubicin for 24h and then analysed 

by flow cytometry to quantify intra-cellular epirubicin loading (Figure 6.1).  

 

Surprisingly, CAF1s induced MDA-MB-231 cells to contain significantly more 

epirubicin compared to the levels in MDA-MB-231 mono-culture (compare dark 

blue bars in Figure 6.1, p<0.01). Conversely, uptake of epirubicin appeared to 

decrease in the CAF1s from the co-culture with MDA-MB-231 cells, compared 

to CAF mono-cultures (compare light blue bars in Figure 6.1), although this 

difference was not significant (p value 0.224). I concluded that CAFs were not 

protecting TNBC cells from epirubicin by reducing the loading of the drug into 

the cells. In fact, quite the reverse appeared to be happening – CAFs induced 

additional drug loading in the cancer cells. 
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Figure 6.1: CAF1s enhance intra-cellular epirubicin levels in MDA-MB-231 
Mono-cultures of MDA-MB-231-GFP/luc cells or CAF1 cells, and co-cultures of 
MDA-MB-231-GFP/luc cells and 20% CAF1 cells were established. Cultures 
were treated with 1µM epirubicin for 24h. Cells were then analysed by flow 
cytometry, gating on viable cells (using FSC v SSC) and on MDA-MB-231-
GFP/luc cells or CAF1 cells separately (on the basis of GFP expression). 
Epirubicin loading was determined by red fluorescence as the median of BL-3 
fluorescence. Co-culture values (denoted “20%”) were normalised to the 
matched mono-cultures values. Data represent the means (+/- SE) of 3 
independent biological replicates. Two-tailed Mann-Whitney U tests were 
carried out and significant differences to corresponding cell type are shown. P 
values **<0.01. 
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6.3.2 CAF1s may induce changes in cell cycle progression 

 

CAFs are known to influence growth and metastatic properties of cancer cells 

(see section 1.9). Therefore, it was possible that the presence of CAFs was 

having an impact on the cell cycle of the co-cultured TNBC epithelial cells. A 

decrease in epithelial proliferation might provide protection from chemotherapy, 

since cytotoxic chemotherapy agents target proliferating cells. It should, 

however, be noted that the reported influence of CAFs on epithelial proliferation 

is generally that CAFs stimulate increases in proliferation rather than the 

reverse (Verghese et al, 2013). In order to examine this, cell cycle profiling of 

mono- or co-cultures of MDA-MB-231 and CAF1 cells was undertaken.  

 

MDA-MB-231-GFP/luc cells were either mono-cultured or again co-cultured with 

CAF1 cells, as usual, and treated with epirubicin.  After 24h, cells were treated 

with a fluorescent dye to allow quantification of cellular DNA and therefore 

measurement of the proportion of cells in G1, S or G2 phase of the cell cycle.  

Cell cycle profiles were determined by flow-cytometry in the GFP positive MDA-

MB-231 cells. Following the production of the cell cycle profile, the proportion of 

cells in each stage of the cell cycle was determined using ModFit cell cycle 

software, and proportions of cells in each stage were determined (Figure 6.2).  

 

MDA-MB-231 in co-culture with 20% CAF1 cells were compared with those in 

mono-culture; there was an increase in the co-culture of the proportion of cells 

in G0/G1 and in G2, and a corresponding decrease in the proportion of cells in 

S phase (compare the red bars to the matched purple bars in Figure 6.2), 

although none of these differences were statistically significant (p values 0.400, 

0.200 and 0.200 respectively). I concluded that although CAF1 cells did not 

induce significant changes in epithelial cell cycle profiles, a potential trend for 

cell cycle changes was apparent. 
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Figure 6.2: CAF1s do not induce significant differences in epithelial cell cycle 
profile  
Mono-cultures of MDA-MB-231-GFP/luc cells and co-cultures of MDA-MB-231-
GFP/luc cells and 20% CAF1 cells were established. Cultures were treated with 
10nM epirubicin for 24h. Dye cycle violet was then added to cultures for 30 min 
prior to flow cytometry. Cells were then analysed by flow cytometry gating on 
viable cells (using FSC v SSC) followed by gating on dyecycle loaded viable 
cells (VL1 vs FSC). Singlet Dyecycle violet postive cells were then gated (VL1-
H vs VL1-A) followed by identification of Dyecycle violet MDA-MB-231-GFP/luc 
cells in a population with CAF1 (VL1 vs BL1). VL1 was then counted to produce 
a cell cycle profile. Using ModFit software the percentage of cells in the different 
stages of the cell cycle was determined. Data represent the means (+/- SE) of 3 
independent experimental repeats. Two-tailed Mann-Whitney U tests were 
carried out with no significant differences observed between 0% and 20% 
cultures 
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6.3.3 CAF1s significantly increase anoikis resistance in MDA-MB-231 and 

MDA-MB-157 

 

In Chapter 3, I found that co-culture of the TNBC cell lines MDA-MB-231 or 

MDA-MB-157 with CAFs enhanced their replating efficiency after cell sorting 

(and in the absence of chemotherapy agents) (section 3.2.2; Figure 3.3 and 

3.4). One hypothesis based on this observation was that the CAFs may induce 

resistance to the pro-apoptotic effects of detachment from the substrate. 

Apoptosis induced by detachment from the substrate – something to which 

most epithelial cells are susceptible – is referred to as anoikis (Chiarugi et al, 

2008). CAF-induced anoikis resistance would be of interest since it would 

explain the enhanced plating efficiency mentioned above, but it could also 

potentially explain the chemoresistance if anoikis resistance were a reflection of 

a more general resistance to apoptosis, since it is well known that 

chemotherapeutics kill cells in part by inducing apoptosis (Kaufmann et al, 

2000). Therefore, I carried out assays to test whether CAFs were indeed 

inducing anoikis-resistance in co-cultured TNBC cancer cells, using an 

established anoikis assay.  

 

MDA-MB-231-GFP/luc or MDA-MB-157 cells were cultured alone or with 

increasing proportions of breast fibroblasts. In the case of MDA-MB-231-

GFP/luc cells, either NF1s or CAF1s were used, while for MDA-MB-157 only 

GFP-CAF1s were used. Cultures were incubated for 48h. Epithelial cells were 

then purified by FACS on the basis of GFP expression. As previously, even 

cultures without fibroblasts (ie epithelial cells only) were sorted, in order to allow 

for properly-controlled comparisons to be made with epithelial cells sorted from 

the co-cultures. Standard numbers of collected epithelial cells were then 

suspended in medium in non-adherent plates for 36h. MTT assays were 

performed to quantify cells remaining viable under these conditions (Figure 6.3).  

 

Co-culture with CAF1s induced dose-dependent and significant increases in 

survival in both MDA-MB-231 (p<0.05) and MDA-MB-157 (p<0.05) cells (Figure 

6.3 B and C). By contrast, when MDA-MB-231 cells were co-cultured with NF1s, 
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there was no increase in survival. I concluded that CAFs, but not NFs, can 

induce anoikis-resistance in TNBC cell lines.  

 
 

Figure 6.3: CAF1s enhance anoikis resistance in MDA-MB-231 and -157 cells   
Co-cultures of MDA-MB-231-GFP/luc (A and B) or -157 (C) cells were 
established with various proportions of either immortalised normal breast 
fibroblasts (NF1) or immortalised breast CAFs (CAF1). Either fibroblasts or 
epithelial cells had been labelled with GFP, so the cell types could be 
differentiated by flow-cytometry. Co-cultures were cultured for 48h with a media 
change after 24h. Co-cultures were then separated into pure epithelial 
populations by FACS. 150,000 epithelial cells were then seeded on a low 
attachment plates for 36h and cells remaining viable after this were quantified 
using MTT assays. Survival is expressed relative to the epithelial mono-culture 
(0%) from each experimental repeat. Data represent the means (+/- SE) of 3 
independent biological repeats. Linear regression analysis was carried out on 
no treatment for colony counts and normalised treated data with significant 
differences in the overall trend across the fibroblast proportions calculated. P 
values * <0.05 
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6.4 Discussion  

 

The aims of the work in this chapter were to identify potential effector 

mechanisms of CAF-induced chemoresistance. 

 

6.4.1 Anoikis resistance 

 

In chapter 3 (section 3.3.2), I identified that co-culture with CAFs induced 

increases in epithelial plating efficiency. During this experiment, the cells remain 

in suspension for an extended period of time prior to replating for the clonogenic 

assays. Epithelial cells in suspension can respond by undergoing programmed 

cell death, which is termed anoikis in this context.  

 

Anoikis occurs when epithelial cells become detached from the extracellular 

matrix (ECM), and it acts as a defense system to prevent any aberrant growth 

of cells in the absence of adhesion as well as preventing detached cells from 

colonizing inappropriate sites (Frisch and Francis, 1994). Commonly, when cells 

remain attached to the ECM, they are protected from anoikis, which is driven by 

anti-apoptotic and pro-survival signals from integrin signaling (Frisch and 

Ruoslahti, 1997). Even during migration of cells, integrin attachment to focal 

contacts can again activate signaling to produce pro-survival signals to prevent 

anoikis (Baum et al, 2008). Anoikis resistance is thought to be an essential pre-

requisite for cancer progression and metastasis to distant organs for the 

formation of secondary tumours (Kim et al, 2011). It is thought that anoikis 

resistance in cancer cells can be achieved through a number of different 

mechanisms. Integrins can be dysregulated by expression changes occurring in 

cancer cells, for example more metastatic breast cancer cell lines (MDA-MB-

435 and MDA-MB-231) expressed higher levels of integrin β5 or integrin β3 

(Taherian et al, 2011).  Increased expression of α6 integrin is also related to 

poorer survival of breast cancer patients (Friedrichs et al, 1995). Increased 

expression of integrins is functionally important to enable enhanced integrin 

signaling and activation of MEK and FAK for survival. Increased expression of 

integrins can also enable breast cancers to adapt to their metastatic site and 

enable colonization of secondary tumours (Guo et al, 2004). Another potential 
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mechanism that cancer cells have exploited to gain anoikis resistance is EMT, 

as it is thought that anoikis resistance is associated with cancer cells gaining a 

mesenchymal phenotype (Cao et al, 2016). A stimulus such as the presence of 

stromal cells, oncogene activation through epigenetic changes, or hypoxia can 

trigger EMT induction. Stromal cells, in particular CAFs, can induce EMT in 

breast cancer cells. Breast cancer MCF-7 cells cultured with CAFs showed 

increased expression of vimentin and lower expression of E-cadherin, which are 

known expression changes that occur in EMT (Soon et al, 2013). CAF-

conditioned media can also transform breast cancer cell lines (MCF-7, T47D 

and MDA-MB-231) into a more aggressive and invasive phenotype through 

secretion of TGF-β from the CAFs, something that can be reversed by blocking 

TGF-β signaling (Yu et al, 2014). EMT induction in cancer cells leads to 

expression of pro-survival and anti-apoptotic genes to enable anoikis resistance 

(Chiarugi et el, 2008). 

 

Finally, another mechanism involved in anoikis resistance is constitutive 

activation of signaling pathways involved in anti-apoptotic pathways, particularly 

the PI3K/Akt pathway (Davies et al, 1999). Constitutive activation of the 

PI3K/Akt pathway can occur in multiple different ways, such as overexpression 

of receptor tyrosine kinase receptors, constitutive activation of Ras (which is 

common in many cancers), or loss of PTEN expression (which is common in 

TNBC) (Tokunaga et al, 2008). Activation of PI3K and the conversion of PIP2 to 

PIP3 enables activation of Akt, which is enhanced by the loss of PTEN (which 

would otherwise convert PIP3 back to PIP2) (Vitolo et al, 2009). Activation of Akt 

leads to decreases in expression of pro-apoptotic Bid, Bim, Bad and Bax, and 

increases in expression of anti-apoptotic genes Bcl-2 and IKK. Src kinases 

have also been implicated in anoikis resistance. Sustained activation of Src 

kinases has been shown to phosphorylate focal adhesion kinase (FAK), which 

recruits and activates PI3K and thereby the anti-apoptotic pathway described 

above leading to inhibition of Bad and reduced caspase-2, -3, -8 and -9 function 

(Bouchard et al., 2007). Finally, growth factor signaling and activation of MAPK 

signaling leads to enhancement of cell survival as MAPK signaling induces 

degradation of the pro-apoptotic protein Bim (Reginato et al, 2003). Importantly, 

CAFs have also been shown to be involved in anoikis resistance. One study 
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has shown that CAFs can secrete elevated levels of insulin-like growth factor 

binding proteins (IGFBP) that are necessary for inhibition of anoikis in breast 

cancer cells, through stabilization of the anti-apoptotic protein Mcl-1 (Weigel et 

al, 2014), although in my experiments this may not be relevant since the anoikis 

resistance I see appears to be dependent on interferon signaling. 

 

Interestingly, miRNAs have also been implicated in anoikis resistance as they 

have been shown to control expression of pro-apoptotic genes in breast cancer. 

For example miR-19, miR-21, miR-27, miR-29, miR-155, miR-181, miR-206, 

miR-221/222 and miR-375 can target and inhibit the function of pro-apoptotic 

genes such as Bim, Bax and Puma (Halytskiy, 2017).  

 

From experiments carried out in Chapter 6, there was no direct data concerning 

whether CAFs led to expression/activity changes in any of these anoikis 

resistant pathways highlighted above. However, from gene level microarray 

data produced in Chapter 4, pathways known to be involved in anoikis 

resistance were not identified as significantly altered by CAFs in the presence of 

epirubicin. The use of IFN blocking antibodies in Chapter 5 reduced interferon-

induction and halted the anoikis phenotype observed in colony count data sets 

(change in plating efficiency). Therefore, it is likely that interferons are up 

stream of CAF-induced anoikis resistance rather than other secretory molecules 

such as IGFBP. Interestingly from the miRNA screen in chapter 4, miR-155 was 

upregulated in the presence of CAFs. MiR-155 has already been implicated as 

a mediator of anoikis resistance by inhibiting the function of pro-apoptotic genes 

(Bim, Bax, Puma and caspase-3) discussed previously, and could therefore 

play a role in the CAF-induced anoikis resistance in TNBC observed in this 

chapter. In addition, given miR-155’s role in enhancing interferon signaling, it is 

plausible that interferon signaling and its downstream targets (PI3K pathway), 

as well as the direct targets of miR-155, could therefore be the best candidate 

mediators of anoikis resistance. 

 

From this chapter, it is clear that CAF-induced activation of interferon signaling 

can induce anoikis resistance in TNBC cells. It is plausible that clinically, if 

patients present with a higher proportion of CAFs in the primary tumour, cells 
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could become anoikis resistant and therefore more likely to survive in the 

circulation and metastasize to form secondary tumours. 

 

6.4.2 Cell cycle changes and chemoresistance 

 

My data suggest that CAFs do not induce significant changes in epithelial cell 

cycle profiles (section 6.3.2). However, these data contain some variance 

between individual repeats (n=3) and it is tempting to speculate that if the 

experiment could be made more reproducible, then significant findings may be 

revealed. The reason to discuss cell cycle arrest and chemoresistance in detail 

is that the results displayed a trend for reduced proliferation as a potential 

mechanism for chemoresistance. 

 

Interestingly, the role of CAFs on the cell cycle has been investigated in cancer 

cells previously. As highlighted in section 1.10, CAFs can enhance the growth 

of breast cancer cells. The opposite influence has, however, been seen in other 

contexts. For examples, dermal fibroblasts have been shown to induce cell 

cycle arrest (in G0/G1), and block epithelial-mesenchymal transition in 

melanoma (Zhou et al, 2016) while CAFs in pancreatic cancer repressed cell 

growth in clonogenic assays and reduced the malignancy of pancreatic cells 

(Ding et al, 2018). However, CAF-induced cell cycle arrest has not directly been 

implied in breast cancer cells.  

 

In cell cycle analysis performed in section 6.3.2, the cells were also treated with 

epirubicin, as has been standard in my chemoresistance studies. Previous 

studies have shown epirubicin itself induced cell cycle arrest occurring in 

G0/G1. Surprisingly, cell cycle arrest resulting from treatment with a number of 

agents all of which act in totally different ways, namely - quercetin, tamoxifen 

and epirubicin, has been attributed to changes in the expression levels of the 

same single molecule - p21. p21 is a CDK-inhibitor and can inhibit all stages of 

the cell cycle from inhibiting cyclin E–CDK2 and cyclin D-CDK4/6 activation in 

G1 to inhibiting Cdc2 activation in G2 (Karimian et al, 2016). Increased p21 

levels have been shown to inhibit proliferation of breast cancer cells (Xiong et 

al, 2016), with down-regulation of p21 shown to remove tamoxifen induced cell 
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cycle arrest (Cariou et al, 2000). Critically, Type I and Type II interferons have 

been shown to regulate expression of p21 (Sangfelt et al, 2000).  Type I 

interferons have been shown to induce cell cycle arrest in G0/G1. Increased 

levels of p21 were identified following IFN treatment (Subramaniam et al, 1997). 

More recently, Type I IFNs have been found to activate the p21 gene promoter 

and subsequent expression of p21. Both IFN-α2b and IFN-β were able to 

enable p21 expression, with p21 down-regulation reversing cell cycle arrest 

(Katayama et al, 2007).  Type II IFN-γ can also induce p21 expression in MCF-

7, however in this study p21 expression was apparently not detectable in MDA-

MB-231 cells (Gooch et al, 2000).  

 

Therefore, three observations can be brought together to suggest a mechanistic 

model. Firstly, interferons have previously been shown to induce cell cycle 

arrest, as described above. Secondly, I have shown CAFs to induce interferon-

dependent chemoresistance in co-cultured epithelial cells (Chapter 5). Thirdly, 

my data suggest that CAFs may induce reduced proliferation in these co-

cultured epithelial cells (albeit this was not significant; Figure 6.2), which would 

– if true – potentially lead to chemoresistance.  Thus, a plausible mechanistic 

pathway would be that CAFs induce chemo-protective cell cycle changes in co-

cultured epithelial cells, via interferon signaling.   
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Chapter 7- Discussion 
 
The aims of the work in this thesis were to identify if CAFs play a role in 

chemoresistance in TNBC, to determine the pathways responsible for CAF-

mediated chemoresistance and inhibit these as potential therapeutic options to 

improve chemotherapy response, and finally to investigate the effector 

mechanisms that enable CAF-induced chemoresistance. 

 

7.1 CAF-induced therapy resistance in breast cancer 

 

CAFs are known to enhance breast cancer progression, as highlighted in 

section 1.10. However, here, the primary goal was understanding whether 

CAFs are also involved in chemoresistance in breast cancer, focusing in 

particular on TNBC. 

 

CAFs have previously been implicated in chemoresistance pathways in cancer, 

however in breast cancer, CAFs’ role in chemoresistance is still poorly 

understood, with only a few mediators of chemoresistance identified. Breast 

CAFs have previously been shown to modulate tamoxifen resistance in ER-

positive breast cancers, through activation of the PI3K and MAPK pathways 

(Shekhar et al, 2007). Co-culture experiments involving human skin fibroblasts 

and the ER-positive breast cancer line MCF-7 cells led to the identification of 

fibroblast-induced resistance to tamoxifen and fulvestrant in the MCF-7 cells 

(Martinez-Outschoorn et al, 2011). Although co-culture of fibroblasts and ER-

positive breast cancer cells induced therapy resistance, the use of human skin 

fibroblast and not breast CAFs is a weakness in this work, whereas in this 

thesis both normal breast fibroblasts and breast CAFs are used.  

 

CAF-secreted soluble factors have also been implicated in therapy-resistance in 

TNBC, the subtype on which I have focused. HGF, present in conditioned 

media from reduction mammoplasty fibroblasts, activated Met signaling to 

promote resistance in SUM102 and SUM149 TNBC cells to the EGFR inhibitor 

gefitinib (Mueller et al, 2012). Although this is a prime example of fibroblast 

driven resistance in TNBC, both the cell lines used and the class of drug are 
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dissimilar to my work, therefore there is no reason to expect the resistance 

pathways to be similar.  

 

However, two studies have been published that are similar to my work in some 

main respects, in that they have used similar techniques (cell lines, in vitro, in 

co-culture), cell lines (MDA-MB-231, MDA-MB-468 and MDA-MB-157 cells) and 

therapeutic agents (use of cytotoxic chemotherapy, albeit not the same drug) as 

in my investigations. Importantly, they have also made highly-related findings 

about the role of CAFs in therapy resistance. Therefore, I have described below 

their findings in some detail, and have then compared these systematically with 

my own (below, and Table 7.1). 

 

One study showed that CXCL12, a chemokine often regarded as a hallmark of 

the CAF phenotype, can enable paclitaxel resistance in MDA-MB-231/CAF co-

culture spheroids in comparison to MDA-MB-231/normal human mammary 

fibroblasts. The resistance involved activation of MAPK and PI3K pathways, 

down-stream of the CXCR4 receptor (Ham et al, 2018). Only one TNBC cell line 

was used in this study (MDA-MB-231), but the normal breast fibroblasts and 

CAFs used were extracted from breast cancer patients, representing an 

advance on studies using unrelated sources of fibroblasts. In order to inhibit 

CXCR4 receptor signaling and remove chemoresistance, an inhibitor of CXRC4 

was used. In the second study, MRC5 normal human fibroblasts (isolated from 

lung tissue) were grown in co-culture with TNBC cell lines MDA-MB-231, MDA-

MB-468 and MDA-MB-157 and cells were treated with radiation and the 

gamma-secretase inhibitor DAPT, or cisplatin chemotherapy. This showed that 

cell death from these therapies was significantly reduced in co-cultures with 

MRC5 in comparison to mono-cultures of TNBC cell lines (Boelens et al, 2014). 

Critically, this study also found interferon signaling to be involved in therapy 

resistance – this is discussed in detail in section 7.2. In addition, this study 

highlighted that MDA-MB-468 cells were not protected by MRC5 fibroblasts, as I 

found in my own work. However, clinically practicable methods of inhibiting the 

protection were not used, with only siRNA used to confirm dependence on the 

relevant pathways.  
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The similarities and differences between these two studies and my own work 

are summarised in Table 7.1. Some comparative strengths of my work are that 

are I used a range of TNBC cell lines (unlike Ham et al) paired with both primary 

and immortalised breast NFs and CAFs (unlike Boelens et al), a range of 

therapies (different chemotherapeutic drug classes) that are relevant to current 

chemotherapy treatments for primary breast cancer (unlike either study).  I also 

investigated the potential for blocking the influence of fibroblasts using a range 

of approaches (blocking antibodies, JAK/STAT inhibitor and miR-155 inhibitor), 

some of which could potentially be used in patients (unlike either study to an 

extent, and certainly unlike Boelens et al). Work covered in this thesis therefore 

provides a comprehensive analsysis of the role of CAFs in TNBC in 

chemoresistance and approaches to block CAF-induced chemoresistance.  

   

A further point for comparison is the assays used to assess chemo-response. I 

measured the ability of fibroblasts to impact on chemoresistance in both short-

term chemo-survival assays and long-term clonogenic assays (section 3.3.1 

and 3.3.2). Ham et al assessed chemoresistance by quantifying GFP 

expression levels in TNBC cells 6 days following treatment, representing a 

measure between the time-scale of my two assays. By contrast, Boelens et al 

analysed cell death in the short-term rather than cell survival. The clonogenic 

assay I have used in particular may be more relevant than other assays in a 

cancer setting, as this may reflect the ability of the surviving cancer cells 

following treatment, to regrow and form clinical recurrences. In any event, these 

studies used a single assay, while my use of two independent assays may 

provide a more in depth profile of CAFs’ role in TNBC chemoresistance.   
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 Ham et al (2018) Boelens et al (2014) Thesis 

1. Cell lines 
used 

Triple negative 

cell line - MDA-

MB-231 

 

 

Fibroblasts- 

Normal breast 

fibroblasts and 

breast CAFs 

extracted from 

patients 

Triple negative cell 

lines - MDA-MB-

231, -468 and -157 

 

 

Fibroblasts-  

MRC5 normal 

human fibroblasts 

isolated from lung 

Triple negative 

cell lines - 

MDA-MB-231, -

468 and -157 

 

Fibroblasts- 

Immortalised 

and primary 

breast normal 

fibroblasts and 

breast CAFs 

2. Therapies 
investigated 

Paclitaxel 

chemotherapy 

Radiation and 

cisplatin 

chemotherapy 

Epirubin and 

docetaxel 

chemotherapy 

3. Techniques 
used 

Co-culture 

spheroids 

quantifying GFP 

expression after 

6 days 

Co-culture cell 

death quantified 

Co-culture 

short-term 

survival assay 

and clonogenic 

assay 

4. Pathway 
responsible 

CXCL12 and 

CXCR4 signaling 

Exosomal transfer 

of RIG-1 to induce 

interferon stimulated 

genes 

Interferon 

signaling 

5. Inhibition of 
pathway leads 
to 
sensitization 

YES- inhibitor of 

CXCR4 signaling 

YES- siRNA YES- interferon 

blocking 

antibodies, 

JAK/STAT 

inhibitor and 

miR-155 

inhibitor 

Table 7.1: Key features of Ham et al (2018) and Boelens et al (2014) compared 
to work carried out in this thesis 
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In the clinical setting, the evidence for CAFs having these roles in therapy 

resistance is disappointingly poor – since very few studies have quantified 

CAFs in clinical samples. There has been no published data identifying that an 

increase in chemoresistance in breast cancer is attributed to increasing 

numbers of CAFs. A large number of studies identify simply the presence of 

CAFs but not whether a difference in the number of CAFs has an impact. In 

most cases, this is ascertained by using tumour stroma ratio as tumour stroma 

contains CAFs. Comparisons have been made in 10-year disease-free survival 

between patients with invasive breast tumours with higher than 50% tumour 

stroma ratio, or lower; the former group had much worse outcomes (17% 10-

year disease-free survival) in comparison to the latter (87%) (Vangangelt et al, 

2018). However, in inflammatory breast cancer, the tumour stroma ratio has no 

impact on prognosis for patients (Downey et al, 2015). Therefore, tumour 

stroma ratio can play different roles in different breast cancer subtypes. 

Importantly, in TNBC, patients displaying higher than 50% tumour stroma had a 

poorer prognosis when compared to patients with less than 50% tumour stroma 

(Moorman et al, 2012). Therefore, this evidence could be extrapolated to 

support the idea that the presence of large numbers of CAFs correlates with 

relative chemoresistance, in agreement with my in vitro study.  

  

7.2 Interferons as mediators of chemoresistance in TNBC 

 

The interferon signaling pathway was identified as up-regulated in TNBC cells 

by the presence of CAFs during chemotherapy treatment, with up-regulation of 

various components of the signaling pathway itself (for example, STAT2 and 

IFR9) as well as of multiple interferon stimulated genes (ISGs), such as OAS1/2 

and MX1/2 (section 4.3.5). The prototypical role for activation of the interferon 

pathway is in immune responses. Viral induction of interferon release enables 

interferon to bind to their respective Type I or Type II receptors and activation 

JAK/STAT signaling. Activation of JAK/STAT signaling and binding of 

respective STAT complexes to either ISRE (Type I) or GAS (Type II) elements, 

enables transcription of multiple ISGs that have antiviral, anti-proliferative and 

immune-modulatory functions as highlighted in section 1.13 (Tsuno et al, 2009).  
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A number of related studies have been published that implicate interferon 

signaling as a factor in chemoresistance in breast cancer. Of most relevance, is 

work from the Minn group, as already cited above, which identified fibroblasts 

as an activator of interferon signaling in some TNBC cell lines, leading to 

therapy resistance (Weichselbaum et al, 2008, Boelens et al, 2014, Benci et al, 

2016). However, these papers define that this is a result of exosomal transfer of 

RNA (largely non-coding RNA), which activates the latter stages of the 

interferon signaling pathway. From the genes that were up-regulated in the data 

set in section 4.3.5, there were increased levels of ISGs but also components of 

the signaling pathway itself which indicates that the resistance seen is 

potentially driven by interferon release from CAFs driving the very start of the 

pathway. Furthermore, up-regulation of IFN-β in CAFs in the presence of TNBC 

cells and chemotherapy was observed (Figure 4.11). The difference between 

IFN-driven activation or exosomal RNA-driven activation is critical, as only the 

first method of activation could be blocked therapeutically using antibodies 

targeting the IFN receptors. In my work, the activation of interferon signaling 

was blocked by inhibition of receptor activation (Figure 5.2 and 5.4). This 

suggest that in this thesis, in which I have used breast CAFs rather than the 

unrelated lung fibroblast line MRC5, paracrine secretion of interferons and 

activation via classical receptor-mediated pathways predominate, rather than 

exosomal transfer of RNA.  

 

In addition, 2 further studies have been carried out that implicate interferon 

activation in chemo-response. Firstly, an interferon-related gene signature has 

been predictive for chemotherapy response in breast cancer. Using 34 cancer 

cell lines from the NCI60 panel, an IFN-related DNA damage resistance 

signature (IRDS) was associated with resistance to chemotherapy and/or 

radiation. The IRDS signature was then analysed in clinical samples following 

adjuvant therapy in a range of tumours. In breast cancer, a seven gene-pair 

classifier successfully predicted efficacy of adjuvant chemotherapy. The IRDS 

included the interferon-related genes ISG15, STAT1 and IFITM1 

(Weichselbaum et al, 2008).  A further paper has highlighted that activation of 

STAT1 predicts poor response to chemotherapy in breast cancer. This was 

determined by analyzing expression profiles in residual tumour cells in chemo-
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responder patient derived xenografts following antracycline and 

cyclophosphamide treatment (Legrier et al, 2015). Both of these studies 

implicate IFN-γ as the main pathway involved in chemoresistance in breast 

cancer given the dependence of up-regulation of STAT1. However, work in this 

thesis points more towards activation of the Type I interferon pathway as up-

regulation of STAT2 and IRF9 in section 4.3.5 was observed, which is specific 

to the Type I interferon pathway, as well as the fact that IFN-β was up-regulated 

when CAFs and MDA-MB-231 cells were combined (Figure 4.11) and blocking 

antibodies against Type I signaling worked more consistently in both MDA-MB-

231 and -157 TNBC cells (Figures 5.1 and 5.3).  

 

There are also other data in the literature that provide support for the idea that 

stromal fibroblasts can produce interferons, and that epithelial cells can 

potentially respond to such signals. Both murine and human normal fibroblasts 

have been shown to produce IFN-β when cultured with the bacterial species 

Shigella flexneri or Escherichia coli (Hess et al, 1987). Secretion of IFN-β has 

also been observed previously in CAFs (Slaney et al, 2013). In addition, studies 

have shown that normal human skin fibroblasts produce IFN-β when grown on 

collagen membranes blended with fibronectin and vitronectin, indictating 

fibroblast attachment to the ECM can enable secretion of IFN-β (Higuchi et al, 

2002). The identification of the specific interferon responsible for CAF-induced 

chemoresistance was required and therefore investigated as there is no 

literature determining a direct role for a particular CAF-secreted interferon in 

chemoresistance. Interestingly, in section 4.3.9, interferons were not normally 

produced in either the fibroblasts or epithelial cells. Basal levels of IFN-α and 

IFN-γ were undetermined in both CAFs and MDA-MB-231 cells, with basal 

levels of IFN-β in both NFs and CAFs undetectable or low and basal levels 

undetermined in MDA-MB-231. Surprisingly, IFN-β levels only increased in 

CAFs when co-cultured with MDA-MB-231 cells, with IFN-β expression 

remaining undetermined in MDA-MB-231 component. Induction of expression of 

IFN-β in CAFs only in the presence of TNBC cells is a key finding that has not 

previously been observed, and represents complex cross-talk between the two 

cell types, where the TNBC cells induce IFN-β expression in the CAFs in order 

for the TNBC cells then to respond to this paracrine signal.  
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In addition, there has been increasing evidence that epithelial cells can respond 

to interferons. IFN-γ has been shown to increase MUC1 expression in 

haematopoietic and epithelial cancer cells (Reddy et al, 2003) and breast 

cancer cells also have the ability to secrete interferons (Wan et al, 2012). The 

ability of breast cancer epithelial cells to respond to interferons is evident 

throughout much of my data set, with CAFs inducing interferon signaling 

activation (Figure 4.6), and breast cancer cells responding to recombinant 

interferons in terms of both activation of the interferon signaling pathway, and 

induction of chemoresistance (Figure 4.7 and 4.8). 

 

Interestingly, IFN driven chemoresistance contradicts some of the previous 

literature cited. IFN-β has been shown to repress cancer stem cell properties in 

TNBC and can also reduce the aggressive nature of breast cancers by reducing 

migration and metastasis (Doherty et al, 2017). However, data in this thesis 

suggests that activation of the interferon signaling occurs through secretion of 

IFN-β from CAFs (Figure 4.11) with both Type I and Type II interferons 

sufficient for enhancing tumorigenesis and protecting TNBC cells from 

chemotherapy (Figure 4.7 and 4.8). 

 

It is also worth commenting on the studies using fibroblast conditioned medium 

in section 3.3.5, which has been previously discussed in detail in section 3.4.2. 

However, this requires further discussion here, given results in the following 

chapters. Conditioned media from CAFs did not confer chemoresistance on 

TNBC cells (section 3.3.5) casting doubt that a secreted factor was responsible 

for chemoresistance. Another plausible explanation for this was the requirement 

of cross-talk between TNBC cells and CAFs. From section 4.3.9 and figure 

4.11, it is clear that cross-talk between breast cancer cells and CAFs is required 

for chemoresistance to occur given CAF secretion of IFN-β was only up-

regulated in the presence MDA-MB-231 cells. This finding explains why 

conditioned media experiments did not enable protection in TNBC cells. To 

further improve the conditioned media experiment, cross-talk between the 2 cell 

lines could be taken into account by using conditioned media from CAF/TNBC 

co-cultures, or by using transwell approaches.  
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7.3 Claudin-low TNBC phenotypes in CAF-induced chemoresistance 

 

As described in section 1.4.2, there are multiple different TNBC subtypes. In 

order to cover some of this diversity, three different TNBC cell lines were used 

in my experiments. Both MDA-MB-231 and MDA-MB-157 are characterized as 

claudin-low with negative ER, PR and HER2 status, high Ki67 and low 

expression of claudin-3, -4 and -7. MDA-MB-468 are classified as ER, PR and 

HER2 negative, but EGFR positive, high Ki67 and with cytokeratin 5/6 

expression, thereby defining a basal subtype (Grigoriadias et al, 2012, Neve et 

al, 2006).  

 

Interestingly, in section 3.3.1 and 3.3.2, differing responses could be observed 

between the claudin-low cell lines (MDA-MB-231 and MDA-MB-157) and the 

basal cell line (MDA-MB-468). CAFs induced consistent chemoresistance in the 

claudin-low triple negative phenotype but not in the basal triple negative 

phenotype. Here, I therefore highlight a novel role of CAF-induced 

chemoresistance in claudin-low TNBC to epirubicin and docetaxel, which is 

extremely relevant in the treatment of primary TNBC. In addition, up-regulation 

of ISGs OAS1 and MX1 (section 4.3.6) and the ability to respond to 

recombinant interferons and confer chemoresistance (section 4.3.7) were 

attributed only to the claudin-low TNBC subtype, and not the basal subtype 

(Figures 4.7, 4.9 and 4.10). ISG expression analysis has previously been 

carried in all 3 cell lines used here (MDA-MB-231, -157 and -468) when either in 

mono-culture or when cultured with MRC5 fibroblasts in the absence of 

treatment (Boelens et al, 2014). Work in this thesis is therefore further 

confirmation of the ability of the claudin-low TNBC subtype to be able to 

respond to and activate interferon signaling, while the single representative of 

the basal TNBC subtype was not able to.  

 

Although CAF induced chemoresistance to epirubicin and docetaxel in the 

claudin-low subtype in comparison to the basal subtype is a novel finding, the 

two subtypes have been compared in many other respects previously, including 

clinical response to treatments, disease free survival and overall survival. In one 
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study, when comparing pCR of claudin-low and basal subtypes, claudin-low 

tumours had a 39% pCR whereas basal had a higher pCR 73%, which was not 

deemed significant (p value=0.08) (Prat et al, 2010). However, another study 

showed the pCR of claudin-low and basal at 32% and 33% respectively 

(Sabatier et al, 2014), therefore a firm conclusion as to whether the pCR rates 

differ remains impossible. When looking at 5-year disease free survival, claudin-

low TNBC has higher disease free survival at 79.3% with basal TNBC at 73.1%, 

which was, again, not significantly different (p=0.40) (Dias et al, 2017). Another 

study had similar findings with disease free survival of 67% and 60% 

respectively, which was not significant (Sabatier et al, 2014). 5-year overall 

survival of claudin-low TNBC patients was also higher in at 89.7% compared to 

basal TNBC at 82.6% (Dias et al, 2017). Curiously, some of these differences in 

survival – if they are to be believed - are not what one would predict when 

extrapolating from my data that suggest that the claudin-low cancers may have 

an extra chemoresistance mechanism not available for the basal cancers. 

Based on data in section 3.3.1 and 3.3.2, predictions could be made that 

claudin-low breast cancer patients would have worse overall survival when 

compared to basal breast cancer patients as a result of this extra 

chemoresistance, while the reverse is actually seen clinically. It is also 

important to remember that this extra chemoresistance mechanism in claudin-

low TNBC is CAF dependent (section 3.3.1 and 3.3.2), therefore will not be 

relevant to all claudin-low TNBCs. 

 

7.2 Limitations 

 

Although this work is promising, there is further scope to build on these data 

sets. A major limitation is the lack of translation of these findings into in vivo 

models. 2 key findings need to be tested - to back up these findings: firstly, a 

demonstration that CAFs induce chemoresistance in TNBC tumours; secondly, 

a demonstration that blocking CAF-induced interferon activation, using 

interferon blocking antibodies or small molecules, halts CAF-induced 

chemoresistance and thereby increases chemotherapy responses without 

major side-effects.  
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In addition, it is necessary to support the pathways proposed here using 

evidence from clinical breast cancer samples. Assessments could be made of 

whether tumours with higher proportions of CAFs show evidence of activation of 

interferon signaling in the cancer cells, and whether this correlates with 

relatively poor responses to chemotherapy or cancer survival.   

 

7.3 Final conclusions 

 

A novel role for CAFs has been identified in some TNBC cell lines. CAFs, but 

not NFs, induce chemoresistance in claudin-low TNBC lines. This appears to be 

through the paracrine release of IFN-β from the CAFs, which drives interferon 

signaling in the epithelial cells and chemoresistance, perhaps associated with 

reduced proliferation of the epithelial cells. In addition, CAFs can also induce 

anoikis resistance in claudin-low TNBC cells, likely through the interferon 

signaling pathway also. Both observations have potential clinical implications. 

First, CAF-induced chemoresistance could be reversed through blocking the 

interferon signaling pathway during chemotherapy, thereby improving 

chemotherapy responses. Secondly, CAF-induced anoikis-resistance could be 

targeted similarly to reduce the chances of metastasis, by reducing the survival 

of the cancer cells in the circulation. Further work is required to take advantage 

of these potential therapeutic directions. 
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Appendix 
Target	 Average	Fold	Change	 Target	 Average	Fold	Change	
OAS1	 30.21	 VCAN	 3.99	
MX1	 28.32	 USP41	 3.86	
SPARC	 26.53	 XAF1	 3.83	
GREM1	 25.35	 BGN	 3.65	
GREM1	 23.75	 CXCL12	 3.65	
GREM1	 23.26	 ANPEP	 3.61	
POSTN	 22.29	 IFITM1	 3.56	
MX2	 14.19	 LDB2	 3.49	

COL1A2	 13.88	 CDH13	 3.41	
NID1	 13.27	 STAT2	 3.4	
MMP2	 12.83	 DPYSL3	 3.36	
IFI6	 10.29	 HIST1H4E	 3.31	
IFI44L	 9.22	 EPB41L3	 3.31	
IFI27	 8.73	 THBS2	 3.26	

COL1A1	 8.73	 MYH10	 3.19	
CLDN11	 7.93	 LYPD1	 2.99	
THY1	 7.69	 KIAA1549L	 2.95	
OAS2	 7.66	 EHD3	 2.9	
RAB3B	 7.54	 TAGLN	 2.87	
MFAP5	 7.52	 DPT	 2.79	
COL6A3	 7.49	 CCBE1	 2.74	
USP18	 7.01	 C19orf66	 2.73	
SPOCK1	 6.89	 WNT5A	 2.7	
RGS4	 6.5	 ASIC1	 2.69	
ITGA11	 6.44	 XIST	 2.67	
IRF9	 6.16	 PARP9	 2.64	
TERT	 5.59	 GPNMB	 2.59	
CCL2	 5.59	 AEBP1	 2.58	
TCF4	 5.14	 COL5A2	 2.55	
FGF2	 5.11	 TAP1	 2.52	
CDH6	 5.06	 PLAGL1	 2.5	
DCN	 4.97	 LOC353194	 2.5	

GREM1	 4.75	 SLC16A1	 2.41	
ADAM12	 4.72	 TRANK1	 2.41	
TLE4	 4.71	 LBH	 2.41	
SULF1	 4.7	 MSC	 2.41	
LGALS9	 4.68	 TGFBI	 2.35	
SEMA5A	 4.65	 FKBP10	 2.35	
TBX3	 4.63	 PTGFRN	 2.3	
CDH2	 4.45	 SYT11	 2.29	
KRT14	 4.4	 FYCO1	 2.28	
TRIM22	 4.3	 C16orf45	 2.28	
TMEM47	 4.29	 NUAK1	 2.26	
PRRX1	 4.25	 SYNC	 2.22	
COL3A1	 4.15	 PARP12	 2.21	
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Target	 Average	Fold	Change	
RTBDN	 2.2	
OLFML3	 2.19	
BVES	 2.19	
MTA3	 2.19	
PTGS2	 2.17	
SNX33	 2.17	
MYH16	 2.15	
FLI1	 2.08	

SIGLEC14	 2.08	
TNFRSF9	 2.06	
BNC2	 2.06	
MRC2	 2.06	
NLRC5	 2.05	

SHROOM2	 2.05	
RSAD2	 2.04	
APOL1	 2.03	

ARHGAP30	 2.02	
ASPHD2	 2.02	

AL445199.1	 -2.07	
RP11-252K23.2	 -2.08	
MTND4P32	 -2.1	
AC107218.3	 -2.17	

U3	 -2.22	
RNA5SP405	 -2.41	
AC093642.4	 -2.57	

 

Appendix Table 1: Full list of gene expression changes between 0% and 20% 

cultures following Affymetrix analysis 
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MiRNAs	present	in	0%	but	not	in	20%	
miR-let-7f	
miR-32	
miR-452	

 

 

 

 

 

 

 

 

 

 

 

 Appendix table 2: List of miRNAs differentially expressed that are present in 

0% cultures but not 20% and miRNAs present in 20% cultures but not 0%.  

 

 

 

 

 

 

 

 

 

 

 

 

Appendix table 3: List of miRNAs differentially expressed that are decreased 

from 0% to 20% and miRNAs that are increased from 0% to 20%  

 

 

 

MiRNAs	present	in	20%	but	not	in	0%	
miR-27a	
miR-31	

miR-130b	
miR-145	
miR-146b	
miR-152	
miR-185	
miR-196b	

miR-199a-3p	
miR-424	
miR-433	

miR-485-3p	
miR-483	
miR-510	
miR-539	
miR-551b	
miR-674	
miR-708	

MiRNAs	increase	from	0	to	20%	
miR-34a	
miR-98	
miR-132	

miR-139-5p	
miR-200c	
miR-324-3p	
miR-324-5p	
miR-155	
miR-411	
miR-422a	
miR-454	

miR-455-3p	
miR-489	

MiRNAs	decrease	from	0	to	20%	
miR-22	
miR-25	

miR-106b	
miR-125a-3p	
miR-193b	
miR-210	
miR-218	
miR-365	
miR-532	
miR-652-	

miR-671-3p	
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Target Average Fold Change 

COL3A1 4.15 

COL5A2 2.55 

COL6A3 7.49 

DPT 2.79 

SPARC 26.53 

SPOCK1 6.89 

WNT5A 2.7 

SEMA5A 4.65 

DCN 4.97 

ADAM12 4.72 

BGN 3.65 

LGALS9 4.68 

TGFBI 2.35 

POSTN 22.29 

MFAP5 7.52 

THBS2 3.26 

AEBP1 2.58 

SULF1 4.7 

CCBE1 2.74 

VCAN 3.99 

FGF2 5.11 

NID1 13.27 

CCL2 5.59 

GREM1 25.53 

MMP2 12.83 

CXCL12 3.65 

COL1A1 8.73 

COL1A2 13.88 

 

Appendix table 4: List of extracellular matrix genes up-regulated from 0% to 

20% cultures from Affymetrix analysis 
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Pathway	 P	Value	 Genes	from	
input	

Genes	from	
annotation	

Interferon	alpha/beta	
signaling	

1.38E-14	 12	 69	

Ensemble	of	genes	encoding	
core	ECM	

1.26E-12	 17	 275	

Ensemble	of	genes	encoding	
ECM	and	ECM	associated	
proteins	

1.45E-11	 28	 1028	

Interferon	signaling		 3.29E-11	 14	 202	
ECM	organisation	 5.45E-09	 14	 298	
Cytokine	signaling	in	immune	
system	

8.42E-09	 21	 763	

Genes	encoding	collagen	
proteins	

8.62E-06	 5	 44	

Defective	CHST14	causes	ED,	
musculocontractual	type	

8.77E-07	 3	 7	

Defective	CHST3	causes	
SEDCJD	

8.77E-07	 3	 7	

Defective	CHSY1	causes	TPBS	 8.77E-07	 3	 7	
Collagen	chain	trimerization		 1.20E-05	 5	 47	
Binding	and	uptake	of	ligands	
by	scavenger	receptors	

1.48E-05	 5	 49	

Genes	encoding	structural	
ECM	glycoproteins	

3.60E-05	 8	 196	

Assembly	of	collagen	fibrils	
and	other	multimeric	
structures	

4.00E-05	 5	 60	

Dermatan	sulphate	
biosynthesis	

4.06E-05	 3	 11	

Validated	transcriptional	
targets	of	AP1	family	
members	Fra1	and	Fra2	

6.33E-05	 4	 34	

Genes	encoding	
proteoglycans	

7.11E-05	 4	 35	

Collagen	biosynthesis	and	
modifying	enzymes	

8.43E-05	 5	 70	

CS/DS	degradation	 8.84E-05	 3	 14	
Influenza	A	 1.99E-04	 7	 173	
Regulation	of	Wnt-mediated	
beta	catenin	signaling	and	
target	gene	transcription	

1.50E-04	 5	 79	

ECM-receptor	interaction	 1.79E-04	 5	 82	
Diseases	of	glycosylation	 2.24E-04	 5	 86	
Defective	B3GAT3	causes	
JDSSDHD	

2.29E-04	 3	 19	
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Defective	B4GALT7	causes	
EDS,	progeroid	type	

2.29E-04	 3	 19	

Defective	B3GALT6	causes	
EDSP2	and	SEMDJL1	

2.29E-04	 3	 19	

Protein	digestion	and	
absorption	

2.77E-04	 5	 90	

Scavenging	by	class	A	
receptors	

3.13E-04	 3	 21	

Collagen	formation	 3.23E-04	 5	 93	
Chondroitin	sulphate	
biogenesis	

3.60E-04	 3	 22	

AGE-RAGE	signaling	pathway	
in	diabetic	complications	

4.31E-04	 5	 99	

ECM	proteoglycans		 4.82E-04	 4	 57	
Diseases	associated	with	
glycosaminoglycan	
metabolism	

5.97E-04	 3	 26	

A	tetrasaccharide	linker	
sequence	is	required	for	GAG	
synthesis	

5.97E-04	 3	 26	

Cell-cell	junction	organisation		 6.65E-04	 4	 62	
Integrin	signaling	pathway	 7.05E-04	 6	 167	
Interleukin-4	and	13	signaling	 8.21E-04	 5	 114	
Adherens	junction	
interactions	

1.01E-03	 3	 31	

Syndecan-4	mediated	
signaling	events	

1.01E-03	 3	 31	

Herpes	simplex	infection	 1.20E-03	 6	 185	
Type	I	(alpha/beta	IFN)	
pathway	

1.43E-03	 2	 9	

ISG15	antiviral	mechanism	 1.50E-03	 4	 77	
Antiviral	mechanism	by	IFN-
stimulated	genes	

1.50E-03	 4	 77	

Hepatitis	C	 1.53E-03	 5	 131	
Measles		 1.69E-03	 5	 134	
Cell	junction	organisation	 2.55E-03	 4	 89	
Interferon	gamma	signaling	 3.11E-03	 4	 94	
 

 

Appendix Table 5: List of dysregulated pathways taken from ToppGene 

pathway analysis. Top hits were then used to create Table 4.4. 
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Appendix Figure 1: Dose response curves used to calculate IC10, IC50 and 

IC75 epirubicin values for MDA-MB-231 and -468 cells 
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