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Abstract 

 

Phosphonates are compounds characterised by a direct C-P bond and are environmentally 

abundant, thought to comprise around 4% of the total phosphorus in some soils. This class of 

compounds contains abundant naturally occurring chemicals like 2-aminoethylphosphonate 

(2-AEP), and the important synthetic herbicide glyphosate. Bacteria have evolved systems to 

scavenge the phosphorus from these compounds to use as a nutrient. Transport of 2-AEP in 

most Gram-negative bacteria is mediated by an ABC transporter encoded by the phnCDE 

genes. The aim of this work was to discover and characterise phosphonate transporters 

present in bacteria, particularly ones that have been shown to uptake and catabolise 

glyphosate in the environment. A biochemical approach studying the substrate binding 

protein (SBP) component of ABC transporters revealed a number of proteins that can bind 

natural phosphonate with low µM affinity. Significantly, some of these appear also to 

recognise glyphosate and have been rationally engineered as potential scaffolds for a 

glyphosate biosensor. In parallel, a series of strains of the rhizosphere bacterium 

Sinorhizobium meliloti were tested for their ability to use different phosphonates as the sole 

phosphorus source. Deletion of the genes encoding the PhnCDE transporter limits the range 

of phosphonates that S. meliloti can grow on, but does not abolish growth on phosphonates 

altogether, and a further transporter deletion mutant revealed a 2-AEP specific ABC 

transporter in this organism. This work has expanded the knowledge of the transport of 

phosphonates in biology.   
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1.1 Phosphonates 

 

Phosphorus plays an essential role in all forms of life. In the form of phosphate, it contributes 

to at least the following: the structural backbone of DNA and RNA; the phospholipid 

components of cellular membranes; adenosine triphosphate (ATP), the universal energy 

currency of cells; (de)phosphorylation of proteins as a key element of regulation of their 

activity (Johnson, 2009); and a wealth of other key components in cell metabolism. In many 

ecosystems, phosphorus is the limiting nutrient (Hudson et al., 2000; Correll, 1999; Elser et 

al., 2007), meaning that the effective acquisition of phosphorus is essential for an organism’s 

survival. The most biologically available and abundant forms of phosphorus are organic 

compounds containing phosphate, comprised of C-O-P ester bonds. In contrast to organic 

phosphates, phosphonates are defined as having a direct C-P bond, which is more resistant to 

chemical hydrolysis than the phosphate ester bond. Phosphonates exist both in nature and as 

synthetically-derived compounds. They are relatively abundant in the environment, 

particularly in the ocean where 25% of the total organic phosphorus takes the form of 

phosphonate compounds (Kolowith et al., 2001). Phosphonates can also comprise up to 4% 

of the total phosphorus in wetland soils (Cheesman et al., 2014). 

 

Naturally occurring phosphonates may be incorporated into glycans and lipids, which have 

been observed in a range of species, although the biological functions of many of these 

compounds is yet to be fully elucidated; these include the antimicrobial fosfomycin 

(Christensen et al., 1969) and the herbicide bialaphos (Schwartz et al., 2004). Synthetic 

phosphonates have a wide range of functions, from antiviral drugs (Clercq and Holý, 2005), to 

laundry detergents (Comber et al., 2013), chemical weapons (Raushel, 2002) and herbicides 

(Duke and Powles, 2008). 

 

Many naturally occurring phosphonates are of biogenic origin; however, some are also 

formed from UV photolysis in the presence of phosphite. Using this process, 

1-hydroxymethylphosphonic acid can be formed from formaldehyde, and methylphosphonic 

acid, discussed in section 1.1.3, can be formed from acetone (de Graaf et al., 1995). Horsman 

& Zechel (2016) identified 8 key phosphonate building blocks of biogenic origin in their 

review of phosphonate biochemistry (Fig. 1.1). These compounds are phosphonopyruvate, 

phosphonoacetaldehyde, 2-aminoethylphosphonic acid, 2-hydroxyethylphosphonic acid, 

1-hydroxy-2-aminoethylphosphonic acid, phosphonoalanine, phosphonoacetate, and 

methylphosphonic acid. These eight compounds are then used to synthesise an array of 

naturally occurring phosphonates. 
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Figure 1.1. Biogenic synthesis of phosphonate building blocks. 

Key phosphonate building blocks were identified by Horsman & Zechel (2016). Abbreviations: PLP, 

pyridoxal phosphate. PEP, phosphoenolpyruvate.  2-AEP, 2-aminoethylphosphonic acid. A) 

Phosphoenolpyruvate. B) Phosphonopyruvate is synthesised via a PEP mutase enzyme. C) 

Phosphonoacetaldehyde is synthesised via a phosphonopyruvate decarboxylase enzyme. D) 2-AEP 

is synthesised via a PLP dependent transaminase. E) 1-hydroxy-2-AEP is synthesised from 2-AEP by 

enzyme PhnY*. F) Phosphonoalanine is synthesised from phosphonopyruvate using a 

transaminase enzyme. G) Phosphonoacetate is synthesised from phosphonoacetaldehyde by a 

dehydrogenase enzyme. H) 2-hydroxyethylphosphonic acid is synthesised from 

phosphonoacetaldehyde using different alcohol dehydrogenases. I) Methylphosphonic acid is 

synthesised from 2-hydroxyethylphosphonic acid using enzyme MpnS. 
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1.1.1 PEP mutase catalyses the formation of the C-P bond to form phosphonopyruvate 

 

Phosphonopyruvate (Fig 1.1B) is the initial phosphonate building block of biogenic origin 

into which the C-P bond is incorporated. Phosphonopyruvate is synthesised from 

phosphoenolpyruvate (Fig. 1.1A) using the phosphoenolpyruvate mutase enzyme. 

Homologues of PEP mutase have been identified in both eukaryotic and prokaryotic 

organisms. This enzyme was initially characterised from the ciliate Tetrahymena pyriformis 

(Seidel et al., 1988,), although further homologues have been identified from Streptomyces 

hygroscopicus (Hidaka et al., 1989) and structurally characterised from the blue mussel 

Mytilus edulis (Liu et al., 2002). It is from phosphonopyruvate that further biogenic 

phosphonates are synthesised. 

 

1.1.2 2-Aminoethylphosphonic acid, the most abundant natural phosphonate 

 
2-Aminoethylphosphonic acid (2-AEP, Fig. 1D), also known as ciliatine, was the first 

phosphonate of biogenic origin to be identified, isolated from rumen protozoa by Horiguchi & 

Kandatsu in 1959. 2-AEP has since been observed in a number of species, including humans 

(Tan and Tan, 1989). 2-AEP is often found as a phosphonolipid in the membranes of 

eukaryotes, where it replaces ethanolamine phosphate and increases membrane stability as it 

is not degraded by phosphatases (McGrath et al., 2013). It is thought to be the most 

environmentally abundant phosphonate (Cheesman et al., 2014). 

 

2-AEP is synthesised from phosphonoacetaldehyde (Fig 1.1C). Phosphonoacetaldehyde is 

made from the decarboxylation of the initial biogenic phosphonate compound, 

phosphonopyruvate. This reaction is catalysed by a phosphonopyruvate decarboxylase 

enzyme, characterised from Streptomyces hygroscopicus (Nakashita et al., 1997). 2-AEP is 

synthesised using a pyridoxal phosphate dependent aminotransferase, characterised from T. 

pyriformis, which is also able to catalyse the reverse reaction, meaning this enzyme is also 

implicated in 2-AEP degradation (Barry et al., 1988). 2-AEP can also be further modified to 

form 1-hydroxy-2-aminoethylphosphonic acid (Fig. 1.1 E) by enzyme PhnY* (McSorley et al., 

2012), which is further discussed in its catabolic capacity in Section 1.2. An asterisk is used by 

Villarreal-Chiu et al. (2012), to distinguish this enzyme from the NAD+ dependent 

dehydrogenase PhnY, discussed later in this chapter. 1-hydroxy-2-aminoethylphosphonic 

acid has been found as a polar head group in cell membranes (Korn et al., 1973). 
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1.1.3 Phosphonoalanine and phosphonoacetate 

 

Phosphonoacetate (Fig. 1.1G) and phosphonoalanine (Fig. 1.1F) are two further key 

phosphonate building blocks. Phosphonoalanine is widely found in the environment and is 

synthesised using a reversible reaction catalysed by the enzyme PalB (Kulakova et al., 2009). 

Phosphonoalanine, like 2-AEP, is found within membranes as a phosphonolipid (McGrath et 

al., 2013). Phosphonoacetate is synthesised in Sinorhizobium meliloti by the action of 

phosphonoacetaldehyde dehydrogenase (Borisova et al., 2011). 

 

1.1.3 Methylphosphonic acid and marine methane production 

 

Methylphosphonic acid (Fig. 1.1I) is the smallest phosphonate compound. In addition to the 

abiotic mechanism of methylphosphonic acid synthesis,  there is also a biogenic pathway for 

the production of this molecule (Metcalf et al., 2012). Methylphosphonic acid is of particular 

importance in the marine environment, where it has been recently proposed as the solution 

to the marine methane paradox (Karl et al., 2008). The marine methane paradox is based on 

the assumption that the majority of oceanic methane is produced anaerobically by archaea. 

This process should be inhibited by oxygen and sulphate, however large concentrations of 

methane have been found in areas where these are present (Schimel, 1993). It has been 

shown that Pseudomonas stutzeri is able to degrade methylphosphonate under aerobic 

conditions accounting for the extra production of methane (Repeta et al., 2016).  

 

Synthesis of 2-hydroxyethylphosphonic acid (Fig. 1.1H) from phosphonoacetaldehyde is a 

key step in biogenic synthesis of methylphosphonic acid, as well as being critical to the 

synthesis of the phosphonate antibiotic fosfomycin. This reaction is catalysed by several 

metal dependent alcohol dehydrogenase enzymes with overlapping functions. These 

enzymes are FomC, PhpC, and DhpG from Streptomyces species (Shao et al., 2008). The 

enzyme MpnS converts 2-hydroxyethylphosphonic acid into methylphosphonic acid  (Metcalf 

et al., 2012). 

 

1.1.4 Glyphosate: the world’s most widely used herbicide 

 

The synthetic phosphonate glyphosate (N-phosphonomethyl-glycine, Fig. 1.2A) was 

introduced commercially in 1974 (Duke and Powles, 2008) and has since become the most 

widely used herbicide in agriculture with an annual global usage of 750,000 tons (Benbrook, 

2016). Glyphosate is available as the active ingredient of the commercial “Roundup” 

formulation, marketed by Monsanto. Glyphosate is a non-selective herbicide, meaning it kills  
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Figure 1.2. Glyphosate structure and mechanism of action. 

A) The chemical structure of glyphosate is shown. B) Structure of glyphosate (purple) and 

shikimate-3-phosphate (red) co-bound to 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase 

enzyme (turquoise). Hydrogen bonds are shown in grey. PDB ID 1G6S (Schönbrunn et al., 2001).  
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any plant that has not been engineered to confer resistance. Glyphosate based herbicides, 

usually formulated with surfactants to enable better penetration into the plant, are spread 

onto plant surfaces from where they are taken up into the plant and inhibit growth. This is 

achieved through competitive inhibition of the enzyme 5-enolpyruvylshikimate 3-phosphate 

(EPSP) synthase of the shikimate pathway of aromatic amino acid synthesis (Steinrücken and 

Amrhein, 1980). Glyphosate mimics an intermediate state of the substrate to bind with the 

EPSP synthase enzyme (Schönbrunn et al., 2001, Fig. 1.2B).  It is likely that plant death is 

either caused by aromatic amino acid deficiency or a lack of carbon for other essential 

pathways (Gomes et al., 2014). 

 

Glyphosate has become ubiquitous in agriculture and is used in particularly high levels on 

crops which have been engineered to confer glyphosate resistance. This began in 1996, when 

the first so-called “Roundup Ready” strain of soybeans were introduced (patent submitted  by 

Barry et al., 1994). This was achieved by giving the plants a transgenic bacterial version of the 

EPSP synthase enzyme from Agrobacterium sp. CP4, which retains good catalytic activity in 

the presence of glyphosate. Glyphosate resistant crops are widely used in the United States, 

but are not permitted in EU countries. 

 

Glyphosate is difficult to detect because it is not amenable to the multi-residue approach that 

is commonly used to detect many pesticides using the same screen (Raina-Fulton, 2014). The 

cost of testing for over 350 chemicals using a multi-residue analysis is £170 (Fera Science 

Ltd, 2019a), whereas testing for glyphosate alone costs £185 (Fera Science Ltd, 2019b). The 

main reasons why glyphosate is so difficult to detect are because it is a small polar molecule 

with high water solubility, low organic solvent solubility and a tendency to form complexes 

(Raina-Fulton, 2014). The multi-residue approach to screening relies on extraction with ethyl 

acetate, acetonitrile or methanol in which glyphosate is poorly soluble. In addition to this, a 

reverse phase column is used for the multi-residue analysis, and glyphosate, being highly 

polar has a very low retention time on a reverse phase column. 

 

There are many methods used to detect glyphosate, reviewed by Raina-Fulton (2014) and 

Stalikas & Konidari (2001). These include approaches which use derivatisation and gas 

chromatography; however, the key method currently used involves liquid chromatography 

(LC) coupled to tandem mass spectrometry (MS/MS). This is expensive and time consuming, 

meaning that a biosensor approach for glyphosate detection could be incredibly useful, 

especially in places that don’t have the resources routinely to screen samples using this 

method. 
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An enzyme-linked immunosorbent assay based test has been developed to test for glyphosate 

(Byer et al., 2008), with a reported detection limit of 0.1 µg/L (591 pM); however, this relies 

on raising antibodies which is time consuming, expensive and sensitive to batch variation. An 

oligopeptide assay with an affinity of 8.6 µM has also been developed (Ding and Yang, 2013); 

however this relies on using surface plasmon resonance (SPR) to measure binding, which is 

also an expensive technique. 

 

Current permitted levels for glyphosate in drinking water are 0.1 µg/L (0.6 nM) in the EU and 

700 µg/L (4.2 µM) in the USA. The EU targets for freshwater are 2.4 µM short term and 1.2 

µM longer term (UK Technical Advisory Group on the Water Framework Directive, 2012). 

Any detection method developed would have to be sensitive to at least these levels. 

 

Glyphosate has been described as the “perfect herbicide” (Duke and Powles, 2008) because of 

low human toxicity and high efficacy; however, public opinion has turned against glyphosate 

such that the EU has considered banning it (Casassus, 2017). As modern agriculture is heavily 

dependent on glyphosate (Garvert et al., 2013), it is highly likely that prohibiting its use could 

lead to use of other herbicides with less well characterised safety profiles. 

 

The challenging nature of accurate and easy glyphosate detection has meant that studies on 

the environmental fate of glyphosate have been limited. Glyphosate has been shown under 

lab conditions to have a short half-life upon application to soil (Andréa et al., 2003). 

Glyphosate is broken down by soil organisms either to inorganic phosphate or to 

aminomethylphosphonic acid (AMPA). The mechanisms of this breakdown are discussed in 

Section 1.2. AMPA has a similar toxicological profile to glyphosate (Williams et al., 2000). 

 

Glyphosate has been increasingly shown to pose environmental risks (reviewed by Helander 

et al., 2012). Examples of these include glyphosate having been shown to alter the behaviour 

of honeybees (Herbert et al., 2014; Balbuena et al., 2015) and earthworms (Gaupp-

Berghausen et al., 2015) at levels similar to those used in agriculture. Overuse of glyphosate 

on weeds can cause downstream effects on the ecosystem such as in the American Midwest 

where the decline in milkweed has depleted the monarch butterfly population (Pleasants et 

al., 2013). Although glyphosate binds tightly to soil, there is still risk of leaching. Glyphosate 

competes with phosphate for soil binding sites and so can lead to increased phosphate and 

nitrate concentrations in soil run-off (Gaupp-Berghausen et al., 2015) which can cause 

eutrophication. Until recently, glyphosate had been thought to be relatively safe to humans 

(Williams et al., 2000); however, its recent classification as “probably carcinogenic to 

humans” by the WHO (Guyton et al., 2015) brings this into question. 
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1.2. Microbial utilisation of phosphonates 

 

Genes for utilisation of phosphonates are widespread compared to those for phosphonate 

synthesis. Metagenomic data shows that 10% of marine bacteria contain genes for 

phosphonate synthesis and 40% contain genes for phosphonate catabolism (Villarreal-Chiu 

et al., 2012). These phosphonate degradation genes are likely to have evolved because of the 

relative abundance of phosphonate under phosphorus limiting conditions. Phosphonates are 

utilised as a phosphorus source by many organisms. There are 5 known pathways for 

glyphosate degradation (Fig 1.3), 3 of which are specific for 2-AEP, suggesting that this 

abundant molecule has had different mechanisms convergently evolve for its breakdown. 

Several of these pathways have associated transporters for phosphonate import, which are 

discussed in Section 1.3. 

 

1.2.1 The C-P lyase complex 

 

The phosphonate degradation pathway with the widest substrate specificity is the C-P lyase 

pathway. The C-P lyase enzymes cleave the carbon phosphorus bond of a very wide range of 

substrates (Fig. 1.3A, Fig. 1.4). In their review, Horsman & Zechel (2016), identified at least 

25 phosphonate compounds that can be degraded by this mechanism. C-P lyase substrates 

include all the natural and synthetic phosphonates reviewed in this chapter, including 

glyphosate and its breakdown product AMPA. The C-P lyase pathway usually forms 

phosphate in the form of phosphoribosyl pyrophosphate (PRPP, Hove-Jensen et al., 2003). 

This leaves the phosphate accessible for further uses in the cell. 

 

The C-P lyase pathway is encoded by genes PhnC-P (Metcalf & Wanner, 1993). Only PhnG, H, 

I, J, K, L and M are essential for the enzymatic function (Yakovleva et al., 1998). The genes 

encoding these proteins are conserved in all organisms that use this pathway, but not 

necessarily in the same order or location as each other (Huang et al., 2005). PhnCDE is an 

ABC transporter that is used to transport phosphonate into the cell. This transporter is 

discussed in more detail later in this chapter. The gene product of phnF serves a regulatory 

function, the operation of which is not fully known. C-P lyase expression is under the control 

of the Pho regulon, meaning it is expressed under phosphorus limiting conditions. It is 

possible that the function of PhnF is to add an additional level of regulatory control (Gebhard 

and Cook, 2008). 
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A) Simplified overview of the C-P lyase pathway. B) The phosphonoacetaldehyde hydrolase pathway. C) The phosphonoacetate pathway. D) The phosphonopyruvate 

hydrolase pathway. E) The PhnY*/Z pathway.

Figure 1.3. Pathways of phosphonate degradation. 
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Figure 1.4. Mechanism of glyphosate breakdown by C-P lyase enzymes. 

A) The pathway of phosphonate degradation using C-P lyase enzymes, with glyphosate as an 

example substrate. Adapted from Hove-Jensen et al. (2014) The glyphosate molecule is shown in 

green. B) The C-P lyase core complex. PDB ID: 4XB6 (Seweryn et al., 2015). PhnG is shown in 

green, PhnH in blue, PhnI in dark and light red and PhnJ in purple. C) Operon organisation of C-P 

lyase genes in E. coli. The C-P lyase core complex genes phnG-phnJ are coloured to match the 

structure in part B. Otherwise, transport genes are shown in grey, enzymes in yellow, regulatory 

proteins in orange, and accessory proteins in white. 
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The C-P lyase enzymes act in a complex, structurally characterised by Seweryn et al., (2015, 

Fig. 1.4B). This complex has a stoichiometry of PhnG2H2I2J2K, with PhnL weakly associated. 

Within this complex, PhnI and PhnJ are enzymes and PhnGHLK are accessory proteins of 

unknown function, although PhnL and PhnK have sequence identity with nucleotide binding 

domains of ABC transporters. PhnI is responsible for substrate ribosylation and PhnJ cleaves 

the C-P bond (Fig. 1.4A). PhnM is a 5’-triphosphoribosyl 1’-phosphonate diphosphohydrolase, 

and is not associated with the C-P lyase protein complex, despite being essential for this 

pathway (Kamat et al., 2011). 

 

PhnN, PhnO and PhnP are accessory enzymes to the C-P lyase pathway. PhnN catalyses the 

synthesis of PRPP (Hove-Jensen et al., 2003).  PhnO is responsible for the N-acetylation of 

aminoalkylphosphonate compounds (Hove-Jensen et al., 2012) and is essential for the 

utilisation of the glyphosate breakdown product AMPA. PhnP is a phosphoribosyl cyclic 

phosphodiesterase (Hove-Jensen et al., 2011, Fig. 1.4). 

 

1.2.3 Additional routes of phosphonate catabolism 

 

In addition to the C-P lyase pathway, 2-AEP is also degraded by the phosphonoacetaldehyde 

hydrolase pathway (fig. 1.3B). This pathway, also known as the phosphonatase pathway, has 

an enzyme which catalyses the hydrolysis of phosphonoacetaldehyde to acetaldehyde and 

inorganic phosphate. This is encoded by the phnX gene and has been characterised in both 

Bacillus cereus and Salmonella typhimurium LT2. S. typhimurium LT2 has no C-P lyase genes, 

suggesting that the phosphonoacetaldehyde hydrolase pathway is the main route of 2-AEP 

degradation (Jiang et al., 1995). This enzyme is part of a pathway with the phnW specified 2-

AEP transaminase, which produces phosphonoacetaldehyde (Jiang et al., 1995). 

 

In addition to having genes encoding the C-P lyase machinery, the nitrogen fixing soil 

bacterium Sinorhizobium meliloti has the PhnWAY pathway of phosphonate degradation, 

which is specific for 2-AEP (Borisova et al., 2011, Agarwal et al., 2011). This is distinct from 

the PhnWX phosphonoacetaldehyde system, although both have the PhnW transaminase 

enzymes for the initial step where 2-AEP is converted to phosphonoacetaldehyde (Fig. 1.3C). 

 

As mentioned in the discussion of phosphonate synthesis, phosphonoalanine is formed 

reversibly from phosphonopyruvate using a phosphonoalanine aminotransferase, encoded by 

palB in Variovorax sp. Pal2. Phosphonopyruvate may then be degraded using the 

phosphonopyruvate hydrolase enzyme encoded by palA in the same species (Fig. 1.3D). The 

palA and palB genes are expressed even when there is an abundance of phosphate, and 
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phosphonopyruvate can be used as a carbon source; they are regulated by PalR, a LysR-type 

regulator (Kulakova et al., 2009). PalB has been structurally characterised (Chen et al., 2006). 

 

An additional pathway for 2-AEP degradation is encoded by phnY* and phnZ (Fig. 1.3E). This 

pathway has two enzymes, the first of which is PhnY*, an alpha-ketoglutarate and iron-

dependent dioxygenase that catalyses the conversion of 2-AEP to 1-hydroxy-2-AEP. PhnZ, an 

iron-dependent enzyme of the histidine-aspartate motif hydrolase family is responsible for 

cleavage of the carbon-phosphorus bond (McSorley et al., 2012) to form phosphate and 

glycine. These enzymes were discovered from marine metagenomic DNA screened for 

complementation of 2-AEP utilisation in a knockout E. coli (Martinez et al., 2010). 

 

1.2.3 Glyphosate utilisation via the C-P lyase pathway 

 

There are many bacteria that are able to use glyphosate as a sole phosphorus source (Table 

1.1). The use of the C-P lyase complex for degrading glyphosate is reviewed by Hove-Jensen et 

al. (2014), (Fig. 1.4) and C-P lyase encoding genes are ubiquitous in glyphosate utilising 

species. Many of these are soil organisms, in particular the nitrogen fixing Rhizobia. In order 

to utilise glyphosate, an organism must be able to both transport and catabolise it. E. coli is 

unable to utilise glyphosate as a phosphorus source, despite having C-P lyase genes and being 

able to catabolise 2-AEP. It is not fully understood to what extent the specificity of the 

phosphonate ABC transporter and the C-P lyase complex have roles in determining which 

phosphonates an organism is able to grow on. 

 

In addition to the C-P lyase pathway of glyphosate degradation, glyphosate may also be 

converted to AMPA using an oxidase enzyme, producing glyoxylate (Sviridov et al., 2015). 

This mechanism of degradation does not act on the C-P bond or allow utilisation of 

glyphosate as a phosphorus source. The precise mechanisms of AMPA production have not 

been fully elucidated. PhnO is required for AMPA degradation for its utilisation as a 

phosphorus source. 

 

1.3 Bacterial import of phosphorus sources 

 

All living cells have a membrane to separate their inside from the outer environment. Cell 

membranes are composed of a phospholipid bilayer, with hydrophilic head groups facing 

towards the outside of the membrane and hydrophobic tail groups facing inwards (Wilkins et 

al., 1971). Bacteria are separated into gram-negative and gram-positive species, which 
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Table 1.1. Bacterial species with the ability to utilise glyphosate as a nutrient. 

Species Strain Bacterial class Citation 

Agrobacterium 

radiobacter 
Unknown Alphaproteobacteria Wackett et al., 1987 

(Sino)rhizobium meliloti RM1021 Alphaproteobacteria 

Liu et al., 1991 

 ATCC 4399  

 ATCC 4400  

 ATCC 7022  

 ATCC 9930  

 ATCC 10310  

 ATCC 35176  

Rhizobium leguminosarum 300 Alphaproteobacteria 

(Neo)rhizobium galegae HAMBI 540  

Rhizobium trifolii ANU843 Alphaproteobacteria 

Agrobacterium rhizogenes A4 Alphaproteobacteria 

Agrobacterium 

fabrum(tumefaciens) 

B6 

C58 
Alphaproteobacteria 

Ochrobactrum anthropi GPK 3 Alphaproteobacteria 

Sviridov et al., 2012 Achromobacter sp. MPS 12A Betaproteobacteria 

   

Burkholderia pseudomallei 

sp. 
22 Betaproteobacteria 

Peñaloza-Vazquez et 

al., 1995 

Bacillus cereus CB4 Gram-positive Fan et al., 2012 

Anabaena (Nostoc) sp. PCC 7120 

Cyanobacteria Forlani et al., 2008 

Arthrospira fusiformis CCALA 023 

Leptolyngbya boryana PCC 6306 

Microcystis aeruginosa PCC 7914 

Nostoc punctiforme PCC 73102 
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possess different cell envelope architecture. In Gram-negative bacteria, there are two 

membranes surrounding the cell, separated by the periplasm. Gram-positive bacteria, 

however, only possess one membrane, surrounded by a thick peptidoglycan layer (Fig. 1.5). 

 

Phospholipid membranes are impermeable to most substances, particularly those that are 

hydrophilic, such as inorganic phosphate and phosphonic acids. This means that organisms 

must have transporters within the membrane to allow the influx of nutrients such as 

phosphorus and the efflux of waste products and toxins. Transporters are formed by proteins 

that span the phospholipid membrane, selectively allowing molecules to pass through. A 

range of different transporters are present in all living organisms, and these transporters are 

divided into classes using the transport classification system devised by Saier et al. (2006). 

This section reviews these transporters with a focus on those that are relevant to phosphorus 

import. 

 

As phosphorus is an essential nutrient for growth, microorganisms need to be able to 

transport phosphorus into the cell against the phosphorus concentration gradient in order to 

survive in low phosphorus conditions. There have not been extensive studies into the 

concentrations of phosphonate compounds in the environment, although in the marine 

environment they are estimated to comprise 25% of the total organic phosphorus, with the 

other 75% existing as phosphate esters (Kolowith et al., 2001). The estimated organic 

phosphorus concentrations in seawater are as low as 0.16 µM in seawater collected from 100 

m deep (Kolowith et al., 2001). Inorganic phosphate (PO43-) levels can be as low as 500 pM in 

some lake environments (Hudson et al., 2000). 

 

1.3.1 Passive transporters 

 

Passive transporters form Class 1 of the transport classification system (Saier et al., 2006). 

These are channels or pores which allow diffusion across a membrane. Passive transporters 

do not use an external energy source to move their substrates, instead allowing substrates to 

move from areas of high concentration to areas of lower concentration. Passive transporters 

are present in the outer membranes of Gram-negative bacteria where they are formed of β-

barrels and allow diffusion of a broad range of substrates into the periplasm based on their 

size (Schulz, 2002). It is worth noting that passive transporters are also present in 

cytoplasmic membranes, where they are formed of α-helices, and facilitate the diffusion of a 

specific substrate. A well characterised example of facilitated diffusion is the glycerol channel 

GlpF (Tajkhorshid et al., 2002). 
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The cell envelope is shown for A) Gram-positive and B) Gram-negative bacteria. 

  

Figure 1.5. Simplified schematic of the bacterial cell envelope. 
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In Gram-negative bacteria, prior to entry into the cytoplasm, phosphorus containing 

molecules must first traverse the outer membrane to enter the periplasm. The import of 

phosphonate compounds into the periplasm has not been studied. However, as outer 

membrane porins have low specificity, it is likely that they enter the cell through using the 

same porins as phosphate compounds. The cation selective porin PhoE allows a range of 

phosphorus containing molecules to diffuse into the periplasm (Bauer et al., 1989, Cowan et 

al., 1992), meaning it is possible that PhoE is also a route of entry for phosphonates. A crystal 

structure of PhoE has been elucidated (Cowan et al., 1992, Fig. 1.6A) showing PhoE as a 

homotrimeric protein, each subunit consisting of a β-barrel pore. PhoE is under the control of 

the Pho regulon, meaning it is expressed when environmental phosphorus levels are low. An 

additional outer membrane porin for transport of phosphorus containing molecules has also 

been identified: OprO is a polyphosphate-selective porin from Pseudomonas aeruginosa 

(Siehnel et al., 1992). 

 

1.3.2 Secondary transporters 

 

Secondary transporters are categorised into Class 2 of the transport classification system 

(Saier et al., 2006). Secondary transporters utilise an ion gradient as a secondary energy 

source and broadly fall into three types. Symporters transport a single specific substrate 

(usually a cation), powered by the cell’s ion gradient (usually H+ or Na+). Antiporters 

transport two substrates in opposite directions and symporters transport two substrates in 

the same direction. Uniporters are not energy-linked and transport one substrate in one 

direction. 

 

One of the two key routes of inorganic phosphate entry into the cytoplasm is a secondary 

transporter called the Pit transporter, encoded by pitA and pitB in E. coli (Rosenberg et al., 

1977). This transporter is constitutively expressed, and is the main route of phosphate 

uptake when extracellular phosphate levels are high. The Pit transporter is a symporter, 

relying on divalent cations to form soluble, neutral metal phosphate complexes to import the 

phosphate, driven by the proton motive force (van Veen et al., 1994). There has been no 

crystal structure solved for any Pit transporter, and performing a BLAST search of E. coli PitA 

against the Protein Data Bank returns no results. 

 

There are many examples of secondary transporters that have been structurally 

characterised. One example of a secondary transporter involved in the transport of 

phosphorus containing molecules is the E. coli glycerol-3-phosphate transporter GlpT (Fig. 

1.6B). GlpT is an antiporter, bringing glycerol-3-phosphate into the cytoplasm in exchange for  
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Figure 1.6. Examples of structurally characterised transporters from different classes. 

A) Outer membrane protein PhoE is a trimeric phosphoporin. PDB ID: 1PHO (Cowan et al., 1992). B) Glycerol-3-phosphate secondary transporter, GlpT is an antiporter. 

PDB ID: 1PW4 (Huang et al., 2003). C) Maltose ABC transporter. SBP MalE shown in purple, transmembrane domains MalF in blue and MalG in yellow, nucleotide binding 

domains, MalK in green. PDB ID: 2R6G (Oldham et al., 2007). OM is outer membrane, IM is inner membrane. 
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the export of a phosphate ion into the periplasm. GlpT is from the expansive major facilitator 

superfamily of secondary transporters, which are responsible for the transport of a vast 

range of compounds including nutrients, drugs and waste products (reviewed by Quistgaard 

et al., 2016). 

 

1.3.3 ATP-binding cassette (ABC) transporter 

 

ATP binding cassette (ABC) transporters are primary active transporters, which hydrolyse 

ATP directly to power the transport of a substrate against its concentration gradient. ABC 

transporters fall into Class 3 of the transport classification system (Saier et al., 2006). ABC 

transporters are widely distributed across all domains of life, including eukaryotic organisms. 

Bacterial ABC transporters are extensively reviewed by Davidson et al. (2008). ABC 

transporters are widespread within the bacterial genomes, with 50 ABC importers encoded 

within the genome of E. coli K-12 (Moussatova et al., 2008). ABC transporters generally have 

two transmembrane domains, which allow the substrate to cross the membrane, and two 

nucleotide binding domains which together bind and hydrolyse ATP to ADP and inorganic 

phosphate. Bacterial ABC importers also have a substrate binding protein (SBP). SBPs are 

described in detail in Section 1.4. The E. coli maltose ABC transporter was the first uptake 

ABC transporter to be structurally characterised in its entirety (Fig. 1.6C, Oldham et al., 

2007), and is the best characterised bacterial ABC transporter, providing a model for the 

mechanisms of ABC importers. 

 

The mechanisms of the maltose ABC transporter, reviewed by Chen (2013), were elucidated 

based upon structures of this transporter in the different conformations it adopts during the 

transport cycle. When no substrate is present, the periplasmic SBP is not associated with the 

transporter, and the channel adopts an inwards resting state with the two nucleotide 

domains not in contact with each other (Fig. 1.7A, Khare et al., 2009). When the SBP 

recognises a substrate, it undergoes a large conformational change to close around the 

substrate. This conformational change enables the SBP to associate with the transmembrane 

domains, which begin to move towards the outwards facing conformation, although the 

channel remains closed. The nucleotide binding domains move towards each other to form a 

dimer (Fig. 1.7B, Oldham & Chen, 2011). ATP binds to each subunit in the nucleotide binding 

domain dimer, and the channel moves to an outwards facing conformation, forcing open the 

SBP to allow the substrate to enter the channel (Fig. 1.7C, Oldham et al., 2007). A “scoop loop” 

from the transmembrane domain prevents diffusion of the substrate (Cui et al., 2010) back to 

the SBP, to which the substrate binds with high affinity. ATP is hydrolysed to ADP and the 

channel moves to an inwards facing conformation, releasing the substrate to the cytoplasm   
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A) When the ligand is not present, the SBP is not associated with the transporter. B) When a 

substrate binds, the transmembrane domains move towards outwards conformation, and 

nucleotide binding domains move towards each other. C) ATP binds the transmembrane domains 

and the channel moves to an outward conformation, allowing substrate to enter. D) ATP is 

hydrolysed and the channel is in inwards conformation, allowing the substrate into the cytoplasm. 

SBP is shown in orange, transmembrane domains in green and nucleotide binding domains in 

blue. ATP is shown in yellow, ADP in grey and substrate in purple.

Figure 1.7. Stages of transport by the ABC transporter in gram-negative bacteria. 
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(Fig. 1.7D). The post hydrolysis state is a high-energy intermediate, the crystal structure of 

which has not been elucidated. 

 

The second transporter for inorganic phosphate is the ABC transporter PstSCAB. PstS is an 

SBP, PstC and PstA are transmembrane proteins and PstB is a nucleotide binding protein. The 

full structure of this transporter has not been determined; however, the SBP has been 

characterised (see Section 1.4.2). The PstSCAB transporter is a high affinity transporter, 

whose expression is induced when phosphate levels drop below 20 µM (Rao and Torriani, 

1990). Below these concentrations, the low affinity Pit transporter cannot provide sufficient 

phosphorus to meet the cell’s requirements. 

 

There are at least four known or putative ABC importers encoded in the same operon as 

genes of phosphonate degradation (Fig. 1.8). The most extensively studied and widely 

occurring bacterial phosphonate transporter is the PhnCDE transporter (Fig. 1.8), which in 

many bacteria is encoded within the same operon as the broad substrate specificity C-P lyase 

enzymes (Hove-Jensen et al., 2014).  This transporter has transmembrane protein PhnE, 

nucleotide binding protein PhnC and SBP PhnD. PhnE is cryptic in several E. coli strains, 

including K-12 strains, which are unable to grow on phosphonates (Makino et al., 1991). 

 

In the nitrogen fixing bacterium S. meliloti 1021, there is a mutation in the genes encoding the 

PstSCAB transporter (Yuan et al., 2006), which has led to a transporter homologous to the 

PhnCDE transporter also functioning as a high affinity transporter for inorganic phosphate. 

This is called the PhoCDET transporter in the S. meliloti literature (Voegele et al., 1997), and 

contains two copies of the nucleotide binding protein, homologous to PhnE. The regulatory 

protein PhoB was shown not to be essential for 2-AEP transport in this organism, despite 

PhoB being essential for transport of a range of other phosphonates (Voegele et al., 1997). 

 

Salmonella typhimurium and Bacillus cereus have the phnWX-specified 

phosphonoacetaldehyde hydrolase pathway of 2-AEP degradation (Baker et al., 1998), which 

is associated with PhnSTUV transporter (Fig. 1.8B). A plasmid containing a homologous 

transporter to PhnSTUV from Enterobacter aerogenes is able to complement a phosphonate 

transport (ΔphnCDE) deletion mutant of E. coli with a 2-AEP specific growth phenotype (Lee 

et al., 1992). 

 

In S. meliloti 1021, within the same operon as the phnWAY genes encoding the 2-AEP specific 

phosphonoacetate hydrolase pathway (Borisova et al., 2011), there are genes encoding a 

putative sodium dependent co-transporter (NCBI locus: SMb21536) and a putative ABC
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Figure 1.8.  Known and putative bacterial phosphonate transporters and their degradation pathways. 

Putative and characterised ABC transporters are shown with their genomic context and associated degradation pathways. A) C-P lyase pathway, PhnD structure PDB ID: 
3P7I. B) Phosphonoacetaldehyde hydrolase pathway, PhnS PDB ID: 4R6Y. C) Phosphonoacetate hydrolase pathway. D) Phosphonopyruvate hydrolase pathway. Genes 
encoding putative enzymes are shown in blue, regulatory proteins in green and transport proteins in red. 
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transporter (NCBI locus: SMb21540-215420) (Fig. 1.8C). The predicted substrate binding 

protein from the transporter associated with this pathway (NCBI locus: SMb21540) has 17% 

sequence identity with PhnS, the substrate binding protein from the putative 2-AEP ABC 

transporter from S. typhimurium LT2 (Fig 1.8B). Although this putative transporter is 

sometimes labelled as an iron uptake transporter, whose substrate binding proteins fall into 

Cluster D of the Berntsson classification (Scheepers et al., 2016), the evidence from the solved 

structure for PhnS, combined with its genomic context, and the Pho regulon not being 

essential for 2-AEP transport in S. meliloti 1021 (Voegele et al., 1997), suggests that this 

transporter is involved in 2-AEP uptake. 

 

Variovorax sp. Pal2 has the phosphonopyruvate hydrolase pathway of phosphonoalanine 

degradation. Within the same operon as the phosphonoalanine transaminase encoding palB 

and phosphonopyruvate hydrolase-encoding palA (Kulakova et al., 2001, Kulakova et al., 

2003) genes is a putative ABC-transporter encoded by palCDE (Fig 1.8D). Based on the 

genomic context, it is likely that PalCDE is a phosphonoalanine specific ABC transporter, 

although this has not been characterised. 

 

1.4 High affinity substrate binding proteins associated with bacterial transporters 

 

Substrate binding proteins (SBPs) are proteins that recognise and bind a specific substrate, 

such as ions, peptides or sugars, and can be associated with a range of systems including 

transporters and signal transduction mechanisms. SBPs usually undergo a large 

conformational change upon binding their ligand, and have been likened to a “Venus fly trap” 

(Mao et al, 1982). SBPs are associated with bacterial ABC importers and with a family of 

secondary transporters called tripartite ATP-independent periplasmic (TRAP) transporters 

(Forward et al., 1997). In Gram-negative bacteria, SBPs are located in the periplasm, whereas 

in Gram-positive species they may be tethered to the membrane. The binding pockets of SBPs 

are responsible for their specificities and swapping few key residues are all that is required to 

swap the binding affinities of  SBPs for spermidine and putrescine (Scheib et al., 2014). SBPs 

often have low sequence identity, despite being structurally similar. In order to classify SBPs, 

7 clusters of SBPs of structural similarity designated A-G were identified from the available 

SBP structures in the Protein Data Bank (Berntsson et al., 2010, Scheepers et al., 2016, Fig. 

1.9). The distinguishing features often lie within the hinge region of the SBP. Whilst most 

SBPs function as monomers, they can also be dimeric, although the physiological reason for 

this is unknown. Some examples of physiological dimers include alpha-keto acid binding 

protein TakP (Gonin et al., 2007), and FitE, an iron binding protein (Shi et al., 2009). 
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Figure 1.9. Structural classification of SBPs that bind phosphorus containing molecules. 

A) Inorganic phosphate binding protein PstS is a Cluster D binding protein with two short hinges. 

B) Phosphonate binding protein PhnD is a Cluster F binding protein. Cluster F proteins, like cluster 

D, have two hinges, but in Cluster F the hinges are much longer. PDB ID: 3P7I (Alicea at al., 2011) 

C) TRAP binding protein Desal_0342 from Desulfovibrio salexigens is a Cluster E binding protein. 

Desal_0342 was crystallised with a diglycerol phosphate ligand. Cluster E have a large helix as 

their hinge, and are only associated with TRAP transporters. PDB ID: 4N6K (Vetting et al., 2015). 
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1.4.1 SBPs for phosphorus containing molecules 

 

The SBP from the phosphate ABC transporter PstS in E. coli has been structurally 

characterised (Yao et al., 1996, Fig 1.9A). PstS falls within cluster D of the Berntsson 

classification of SBPs, having two short hinges connecting its domains. PstS forms 12 

hydrogen bonds with phosphate, which also forms a salt bridge with an arginine residue. PstS 

has an SGTS sequence starting at residue 139, which forms a key part of the binding site, and 

is similar to motifs found in other SBPs for phosphorus containing molecules. PstS binds 

phosphate with high affinity; the interaction has a Kd of 0.3 µM at pH 8.5. 

 

PhnD, the periplasmic binding protein from the broad specificity phosphonate transporter, 

unlike inorganic phosphate binding protein PstS, falls within cluster F of the Berntsson SBP 

classification as it has two longer, more flexible hinges. The E. coli homologue of the 

periplasmic binding component of this transporter, PhnD, has been functionally 

characterised (Rizk et al., 2006; Alicea et al., 2011), and has been shown to bind 2-AEP with 

very high affinity, with a dissociation constant in the low nanomolar range. It binds 

methylphosphonic acid and ethylphosphonic acid with sub-micromolar affinity and a range of 

other phosphonates and phosphates with lower affinity, including very weakly binding 

glyphosate (Table 1.2). 

 

Alicea et al. (2011) structurally characterised E. coli PhnD, both in an apo conformation and 

with 2-AEP bound (Fig. 1.9B, Fig. 1.10). In order to obtain protein in an open conformation, a 

H157A binding site mutant had to be produced to avoid crystallising the protein with a pre-

bound ligand. PhnD undergoes an approximately 70° conformational change as it binds its 

ligand (Fig. 1.10A). E. coli PhnD forms contacts with the ligand using residues Y47, Y93, S127, 

T128, S129, and H157 to form hydrogen bonds with the phosphonate oxygen atoms (Fig. 

1.10B). Similar to PstS, there is an STSG motif in the binding site, starting at residue 127. The 

positively charged amine group of 2-AEP is co-ordinated by E177 and D205. This is the 

variable region of the phosphonate ligand and these residues are probably therefore involved 

in substrate specificity. E. coli PhnD was also shown to form a dimer using an unstructured 

region of its C-terminal alpha helix. This helix is unusual in the structures of SBPs and it is 

unknown what the physiological function of a dimeric SBP might be for this transporter. 

 

Additional homologues of PhnD have also been characterised that are specific for phosphite 

and hypophosphite; these homologues have no detectable binding with 2-AEP (Bisson et al., 

2017). These proteins demonstrate the diversity of the PhnCDE transporter to transport 

available phosphorus containing compounds. Genes encoding PhnD are present at higher  
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Table 1.2. Binding affinities of PhnD with phosphorus containing ligands (Alicea et al., 2011). 

  
Ligand Kd 

2-AEP  0.005 µM 
Aminomethylphosphonic acid 5 µM 
Methylphosphonic acid 1 µM 
Ethylphosphonic acid 0.3  µM 
Glyphosate 650 µM 
K2HPO4 50 µM 
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A) PhnD undergoes a 70° conformational change upon binding 2-AEP (red). The H157A apo form is 

shown in green (PDB ID: 3S4U) and the 2-AEP bound form is shown in blue (PDB ID: 3P7I). B) 

Binding site residues of PhnD are shown in red, and 2-AEP is coloured by atom. Dashed grey lines 

indicate hydrogen bonds. Structures solved by Alicea et al. (2011). 

 

 

 

 

 

Figure 1.10. PhnD structure and binding site. 
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levels in marine bacteria. 35% of marine strains vs 21% of all sequenced strains contain phnD 

(Villarreal-Chiu et al., 2012). This is consistent with high levels of phosphate or phosphite 

molecules that could be transported by the PhnCDE transporter in the marine environment. 

PhnD has also been shown to have a potential role in bacterial biofilms, as antibodies to PhnD 

inhibit formation of staphylococcal biofilms, although the  mechanisms of this are unknown 

(Lam et al., 2014). 

 

It is not known to what extent PhnD determines substrate specificity and to what extent this 

is determined by the C-P lyase complex, although Horsman and Zechel (2016) propose PhnD 

as the “gatekeeper” protein of this system in their review of phosphonate biochemistry. 

 

A structure for the S. typhimurium LT2 homologue of PhnS, the periplasmic binding protein 

from the 2-AEP transporter associated with the phosphonoacetaldehyde hydrolase pathway, 

has been deposited in the PDB (Patskovsky et al., 2014, PDB ID: 4R6Y); however, it is not 

bound to phosphonate and there is no accompanying paper. This protein, unlike PhnD which 

is a cluster F SBP, falls into cluster D along with PstS (Scheepers et al., 2016). 

 

Vetting et al. (2015) solved the structures of 46 novel TRAP SBP structures, three of which 

were bound to glycerol phosphate compounds. All TRAP transporter SBPs, including these, 

are categorised into cluster E of the Berntsson classification (Fig. 1.9C), with long α-helices 

functioning as their hinges between domains. TRAP transporter SBPs use highly conserved 

arginine residues for co-ordinating their ligands (Fischer et al., 2015), and the glycerol 

phosphate bound TRAP SBPs do not contain the serine and threonine binding loops of ABC 

transporter SBPs for phosphorus containing molecules. 

 

1.4.2 Use of SBPs as biosensors 

 

The combination of the large conformational change of SBPs with their high specificity and 

affinity for their substrates makes SBPs highly suitable for use as biosensors. There have been 

several approaches used to accomplish this (Fig. 1.11), many of which are based on 

fluorescence methods. Attaching fluorophores to SBPs either chemically or genetically allows 

a fluorescence signal to be titrated as a population of protein undergoes its conformational 

change and the environment of the fluorophore changes. 
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A) A fluorophore (green) is attached to the SBP (orange) and its fluorescence is quenched as the 
SBP closes around its substrate. B) In a FRET based biosensor, two fluorophores are attached to 
the SBP, with the donor fluorophore (blue) having a corresponding emission wavelength to the 
excitation wavelength of the acceptor fluorophore (yellow). As the two move closer together 
upon SBP substrate binding, emission from the acceptor increases. C) The SBP is attached to a 
quartz crystal microbalance, which measures a change as the SBP undergoes its conformational 
change. D) The SBP (orange) is attached to a liposome containing dye. A low affinity substrate 
(dark blue) is immobilised to a surface. In the absence of ligand, the SBP attached liposome 
attaches to the substrate via the low affinity ligand. In the presence of high affinity ligand, the 
liposome does not attach to the surface and can be washed away. 
  

Figure 1.11. Concepts for biosensors with SBP scaffolds. 
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One of the early examples of a fluorescence based biosensor is the maltose biosensor 

developed by Gilardi et al. (1994). One of the residues of the protein is mutated to a cysteine, 

allowing a fluorophore to be covalently conjugated to the protein. Fluorescence signals then 

decrease upon ligand binding, as the fluorophore is more buried within the protein as it 

moves into a closed conformation (Fig 1.11A). Phosphonate binding protein PhnD has been 

engineered as a fluorescence based biosensor for 2-AEP (Alicea et al., 2011, Rizk et al., 2006) 

using either a fluorophore conjugated to engineered cysteine residues or a genetically 

encoded green fluorescent protein. 

 

More sophisticated methods of fluorescence based SBP biosensors involve the use of Förster 

resonance energy transfer (FRET, Fӧrster, 1946). These work using two fluorophores which 

come into close proximity to each other as the SBP closes. The first fluorophore has an 

emission wavelength at the excitation wavelength of the second, meaning emission from the 

second fluorophore is only detected when the protein is in a bound state (Fig. 1.11B). This is 

accomplished through a direct transfer of energy. A FRET based biosensor for maltose was 

developed by Fehr et al. (2002). FRET based SBP biosensors are now available for over 20 

compounds including sugars such as maltose, amino acids (Wada et al., 2003), and ions such 

as phosphate (Gu et al., 2006). Bourdès et al., 2012 mined the S. meliloti genome to expand 

the range of FRET biosensors to include 4 new classes of compounds: cyclic polyols, L-deoxy 

sugars, β-linked disaccharides and C4-dicarboxylates. 

 

In addition to fluorescence based methods, further methods have been developed for SBP 

biosensors. Carmon et al., (2004) immobilised an SBP for glucose to the surface of a quartz 

crystal microbalance (QCM) to allow glucose detection (Fig. 1.11C). The QCM is able to 

produce a signal in response to the conformational change of the immobilised protein.  

Edwards et al., (2016) adopted a different approach of using dye encapsulating liposomes for 

signal enhancement (Fig. 1.11D). In this method, the SBP was attached to a dye encapsulating 

liposome and a low affinity substrate was immobilised to a surface. In the presence of 

thiamine, the liposomes do not adhere to the surface and can be washed away. The 

concentration of dye following lysis of the liposomes is inversely proportional to the amount 

of thiamine present. 

 

1.5 Project aims 

 

The aim of this work was to characterise the microbial transport of phosphonate compounds, 

looking at both novel transporters and new orthologues of the PhnCDE transporter. This 

knowledge would then be used to inform the development of the scaffold for a biosensor for 

the herbicide glyphosate and its breakdown product AMPA. The start point for biosensor 
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development would be to investigate PhnD, the substrate binding component of PhnCDE, 

from organisms with the ability to use glyphosate as a sole phosphorus source. These PhnD 

homologues would be investigated for their binding affinity to phosphonate compounds 

including glyphosate and AMPA, and those with the highest affinity and suitability for 

biosensor use would then be optimised using a rational design approach. An ideal biosensor 

scaffold would be a stable and homogenous protein with high affinity and specificity for its 

ligand. In addition to designing a biosensor, this work would elucidate which PhnD residues 

are critical for substrate specificity and characterise the active transport of glyphosate by 

bacteria. 
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 Materials and Methods 
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2.1 Microbiology 

 

2.1.1 Lysogeny broth and agar 

 

Lysogeny broth (LB) was made in distilled water using 10 g/L tryptone, 5 g/L yeast extract 

and either 10 g/L NaCl for Miller LB, used primarily for culturing E. coli or 5 g/L NaCl for 

Lennox LB used for culturing S. meliloti. LB agar was made by adding 15 g/L agar to LB broth. 

Media components were sourced from Oxoid. 

 

2.1.2 Y minimal media 

 

 Y minimal medium was adapted from Sherwood (1970). It is comprised of 25 mM Tris-HCl, 

pH 6.8 (Invitrogen), 10 mM glutamic acid monosodium salt (Sigma-Aldrich), 0.4 mM MgSO4 

(Fisher), 1 mM CaCl2 (Fisher), 2.5 mM KCl (Fisher), 7.5 µg/L each of biotin, thiamine and 

pantothenic acid, 30 µM FeSO4 10 mM succinic acid monosodium salt (all from Sigma-

Aldrich) and the specified phosphorus source at 0.5 mM. Phosphonate compounds were 

purchased from Sigma-Aldrich, except glyphosate which was sourced from Chem Service. 

 

 2.1.3 MOPS minimal medium 

 

 MOPS buffered minimal media (Neidhardt et al., 1974) was made up to a final concentration 

of 9.52 mM NH4Cl, 0.523 mM MgCl2, 0.276 mM K2SO4, 0.01 mM FeSO4, 5 x 10-4 mM CaCl2 

(Fisher), 50 mM NaCl, 40 mM MOPS pH 7.4 (Acros), 4 mM tricine (Alfa Aesar), ammonium 

molybdate, 3 x 10-6 mM, boric acid 4 x 10-4 mM; cobalt chloride, 3 x 10-6 mM; cupric sulphate, 

10-5 mM; manganese chloride, 8 x 10-5 mM; zinc sulphate, 1 x 10-5 mM. Phosphorus sources 

were added at 0.5 mM. Chemicals were sourced from Sigma-Aldrich unless otherwise 

specified. 

 

 2.1.4 Antibiotics 

 

 Antibiotics were used at the concentrations specified in Table 2.1. 

 

2.1.5 Growth assays 

 

Growth assays were performed using either a BMG FLUOstar Omega, or Epoch 2 (BioTek) 

microplate reader. Bacteria were diluted to an initial OD600 of 0.01 prior to the start of growth 
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Table 2.1. Concentrations of antibiotics used in this work. 

 
  

  

Antibiotic E. coli 
Final µg/mL 

S. meliloti 
Final µg/mL 

Source 

Streptomycin 200 200 Sigma-Aldrich 
Kanamycin 50 - TCI Chemicals 
Ampicillin 100 100 Sigma-Aldrich 
Tetracycline 5 5 Sigma-Aldrich 
Chloramphenicol 30 30 Duchefa 
Gentamicin 20 60 Fluorochem 
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 assays. Starter cultures were grown from a single colony in enriched media, and washed 

twice with phosphate free minimal media before growth assays commenced. A volume of 200 

µL per well was used in a Nunc Edge plate. The outer wells were not used, and were filled 

with dH2O, as were the outer reservoirs of the plate, to minimise edge effects. Bacteria were 

incubated at a constant temperature with 200 rpm double orbital shaking, and 

measurements were taken at regular intervals. All replicates came from different starter 

cultures. 

 

2.1.6 Preparation of chemically competent E. coli 

 

Chemically competent E. coli was prepared by adding 500 µL of the desired strain to 50 mL of 

LB. The culture was grown until the OD650 reached approximately 0.4-0.5, the bacteria were 

harvested by centrifugation at 2600 RCF for 10 minutes. Supernatant was discarded and the 

cells were then suspended in 10 mL ice cold 0.1M CaCl2 and incubated for 20 minutes on ice. 

Cells were then centrifuged at 2600 RCF for 10 minutes, supernatant was discarded, and cells 

were resuspended in 2 mL of ice cold 0.1M CaCl2, 15% (v/v) glycerol. Competent cells were 

frozen at -80°C for long term storage. 

 

2.2 Recombinant DNA technology 

 

All reagents and enzymes used in Section 2.2 were purchased from New England Biolabs 

(NEB) unless otherwise stated. 

 

2.2.1 Strains and plasmids 

 

Strains used in this work are listed in Table 2.2 and plasmids are listed in Table 2.3. 

 

2.2.2 Agarose gels 

 

Agarose gel electrophoresis was performed using 1% (w/v) agarose in TBE buffer. TBE buffer 

was composed of 1.62 g/L Tris (Invitrogen), 2.75 g/L boric acid (Fisher Scientific) and 0.95 

g/L EDTA (Fisher Scientific), pH 8.3. Either 0.5 µg/mL ethidium bromide or 1 x SYBR Safe 

stain (Invitrogen) was added to molten gel before it set to enable visualisation of DNA bands. 

Gels were submerged in and TBE run at 75 volts for 45 minutes. Each gel contained DNA 

ladder  
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Table 2.2. Bacterial strains used in this work. 

Strain Genotype Source 

E. coli strains   

DH5α K-12 Φ 80dlacZΔM15 recA1 endA1 gyrA26 thi-1 supE44 

relA1 deoR Δ(lacZYA-argF)U169 

Invitrogen 

NEB5α fhuA2 (argF-lacZ)U169 phoA glnV44 80 (lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17 

NEB 

BL21 (DE3) F - ompT hsdSB (rB - , mB - ) gal dcm (DE3) Novagen 

BL21 (DE3) pLysS E. coli str. B F– ompT gal dcm lon hsdSB(rB
–mB

–) λ(DE3 

[lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS) 

pLysS[T7p20 orip15A](CmR) 

 

BL21 Star (DE3) ompT hsdSB (rB
-, mB

-) gal dcm rne131 (DE3) Invitrogen 

Rosetta (DE3) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE(CmR) Novagen 

Tuner (DE3) F– ompT hsdSB (rB
– mB

–) gal dcm lacY1(DE3) Novagen 

BW25113 lacI+rrnBT14 ΔlacZWJ16 hsdR514 

ΔaraBADAH33 ΔrhaBADLD78 rph-1  

Δ(araB–D)567 Δ(rhaD–B)568 ΔlacZ4787(::rrnB-

3) hsdR514 rph-1 

Datsenko & 

Wanner, 2000 

SoloPack Gold Tetr ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 

thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB lacIq Z∆M15 

Tn10 (Tetr ) Amy CamR] 

Agilent 

   

Other bacterial 

strains 

  

Sinorhizobium 

meliloti 1021 

SmR Meade et al., 

1982 

Sinorhizobium 

meliloti SJR1 

1021 ΔSMb21540 -SMb21542 This work 

Sinorhizobium 

meliloti SJR2 

1021 ΔSMb21173 - SMb21170 This work 

Sinorhizobium 

meliloti SJR3 

1021 ΔSMb21540 -SMb21542 ΔSMb21173 - SMb21170 This work 

Rhizobium 

leguminosarum 

3841 

 Glenn et al., 

1980 

Rhizobium 

leguminosarum 

VSX09 

 Kumar et al., 

2015 

Agrobacterium 

tumefaciens UBAPF2 

 Hynes et al., 

1985 

Pseudomonas 

aeruginosa PA01 

 Holloway, 

1955 
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Table 2.3. Plasmids used in this work. 

Name Description Resistance Source 

pET20b Vector for expressing hexa histidine-

tagged proteins in the periplasm 

Amp Novagen 

pET20b-RlPhnD pET20b containing rlPhnD Amp This work 

pET20b-VSXPhnD pET20b containing vsxPhnD Amp This work 

pET20b-SmPhnD pET20b containing smPhnD Amp This work 

pET20b-AtPhnD pET20b containing atPhnD Amp This work 

pET20b-EcPhnD pET20b containing ecPhnD Amp This work 

pET20b-OaPhnD pET20b containing oaPhnD Amp This work 

pET20b-RgPhnD pET20b containing rgPhnD Amp This work 

pET20b-NPhnDA pET20b containing nPhnDA Amp This work 

pET20b-NPhnDB pET20b containing nPhnDB Amp This work 

pET20b-

SMb21540 

pET20b containing gene encoding 

putative 2-AEP specific protein 

SMb21540 

Amp This work 

pETDuet Vector for co-expressing two proteins Amp Novagen 

pETDuet-

NphnDA+B 

pETDuet containing nPhnDA and 

nPhnDB 

Amp This work 

pMAL-p5X Vector for expressing MBP fusion 

proteins in the periplasm 

Amp NEB 

pMAL-SmPhnD pMAL-p5X with smPhnD Amp This work 

pJET High copy number vector for blunt 

ended cloning 

Amp ThermoFisher 

pJET-aepflanking pJET vector containing putative 2-AEP 

transporter flanking regions 

Amp This work 

pJQ200sk Suicide plasmid unable to replicate in S. 

meliloti 

Gen Flannagan et al., 2008 

pJQ-

phoCDETflanking 

pJQ200sk containing flanking regions 

for phoCDET transporter deletion and I-

SceI restriction site 

Gen This work 

pjq phn flanking pJQ200sk containing flanking regions 

for putative 2-AEP transporter deletion 

and I-SceI restriction site 

Gen This work 

pDAI Plasmid constuitively expressing I-SceI 

restriction endonuclease 

Tet Flannagan et al., 2008 

pRK600 Conjugation helper plasmid in strain 

MT616 

Cm Prof. Turlough Finan, 

McMaster University 

pETYSBLIC-3C LIC compatible vector for expressing 3C 

cleavable hexa histidine – tagged 

proteins 

Kan Fogg & Wilkinson, 

2008 
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pETYSBLIC-PaPhnD pETYSBLIC-3C containing paPhnD Kan This work 

A pETYSBLIC-3C containing paPhnD E201N G228N D229G Kan This work 

B pETYSBLIC-3C containing paPhnD E201N Kan This work 

C pETYSBLIC-3C containing paPhnD E201S G228N D229G Kan This work 

D pETYSBLIC-3C containing paPhnD G228N D229G Kan This work 

E pETYSBLIC-3C containing paPhnD E201S Kan This work 
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(Bioline Hyperladder 1kb+ or NEB 2-log ladder). Samples were prepared in 1x loading dye 

(Bioline) prior to being added to the wells of the gel. 

 

2.2.3 DNA preparation and extraction 

 

DNA from plasmids was prepared using various commercially available “mini prep” kits 

(Promega, Biobasic, Sigma) according to the manufacturers’ instructions and eluted using 

nuclease-free water. DNA from PCR reactions and agarose gels was extracted and cleaned up 

using various commercial kits (Promega, Biobasic, Sigma). Genomic DNA was prepared using 

a Wizard Genomic DNA Purification Kit from Promega. 

 

2.2.4 PCR conditions 

 

A list of the primers used for PCR, and the polymerases used for each is specified in Table 2.4. 

Where a PCR product was to be digested by a restriction endonuclease, several extra base 

pairs were added to enable effective cleavage. PCR primers were purchased from Sigma or 

Integrated DNA Technologies. PCR was performed according to the Manufacturers’ 

instructions for each polymerase, taking into account the Tm of the primers and the length of 

the sequence to be amplified. A typical 50 µL PCR reaction contained 1x Q5 reaction buffer, 

200 µM dNTPs, 0.5 µM each of forwards and reverse primers, 0.5 ng of DNA template and 

0.02 U/µL Q5 polymerase. An example of typical thermocycling parameters for amplifying a 1 

kbp amplicon is initial denaturation at 98°C for 30s, followed by 35 cycles of 10s at 98°C, 30s 

at 60°C and 30s at 70°C, followed by a final extension at 72°C for 2 minutes. 

 

2.2.5 Synthetic gene synthesis 

 

Where the source organism for a gene was not readily available, or codon optimisation was 

required, synthetic genes were purchased. Codon optimisation of sequences for expression in 

E. coli was performed using JCat (Grote et al., 2005). IDT gBlocks were used for oaPhnd, 

rgPhnD, nphnDA and nPhnDB, and were designed with compatible overhangs of 20-25 bp for 

Gibson assembly with the pET20b vector. The genes for the putative 2-AEP specific binding 

protein, SMb21540, and codon optimised smPhnD for cloning into the pMAL-P5x vector were 

purchased from GeneArt ThermoFisher Scientific, and were designed with restriction sites 

for conventional ligation based cloning into pET-20b. The sequences of these synthetic genes 

can be found in Appendix 1. 
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Table 2.4. Primers used in this work. 

   

Name Sequence Restriction 
site 

Polymerase 

RlPhnD FW CATGCCATGGCTCAGGACGTCAAGGTCCTCCGCA

TCG 
NcoI Phusion 

(NEB) 
RlPhnD RV TGGCGGCCGCGCCGCCGATAACGGCCTTACG NotI Phusion 

(NEB) 
VSXPhnD FW CATGCCATGGCAGACCTCAAGGAATTCCGCATCG NcoI Phusion 

(NEB) 
VSX PhnD RV TGGCGGCCGCGCCGCCGATGGCAGCTTTGC NotI Phusion 

(NEB) 
SmPhnD FW CATGCCATGGAAGACCTGAAGGAATTCCGCGTCG NcoI Phusion 

(NEB) 
SmPhnD RV TGGCGGCCGCGCCGCCGATCGTCGCCTTGC NotI Phusion 

(NEB) 
AtPhnD FW CATGACATGTCTCAGGACGTCAAGGTTCTGC PciI Phusion 

(NEB) 
AtPhnD RV CATGCCATGGCTCAGGACGTCAAGGTTCTGC NotI Phusion 

(NEB) 
EcPhnD FW CATGCCATGGAAGAGCAGGAAAAGGCGCTGAATT

TCG 
NcoI Phusion 

(NEB) 
EcPhnD RV TGGCGGCCGCCTGCACCGCTTTACTCACCGAACT

CATCG 
NotI Phusion 

(NEB) 
T7 Universal TAATACGACTCACTATAGGG  GoTaq 

(Promega) 
T7 Terminator GCTAGTTATTGCTCAGCGG  GoTaq 

(Promega) 
NphnDA Duet FW AGCCAGGATCCGAACGACTCTTCTGCTGC BamHI Phusion 

(NEB) 
NphnDA Duet RV ATCGCGTCGACTTACTGGATTTCTTTCAGCTGC SalI Phusion 

(NEB) 
NPhnDB Duet FW ATAAGATCTATGGCTCCTATCAAAGAACTGAACT

TCG 
BglII Phusion 

(NEB) 
NPhnDB Duet RV TATACTCGAGTTAACGACCCTGCAGAGCACGC SalII Phusion 

(NEB) 
Duet Down1 GATTATGCGGCCGTGTACAA  Phusion 

(NEB) 
Duet Up2 TTGTACACGGCCGCATAATC  Phusion 

(NEB) 
PhoCDET deletion 
upstream FW 

AGGTTCTCGAGTAGGGATAACAGGGTAATGTAAC

GGCGGGGCTCGG 
XhoI, I-SceI GoTaq 

(Promega) 
PhoCDET deletion 
upstream chimeric 

AAGAACGTAACCATTGGCCGTACACACTAGAGCG  GoTaq 
(Promega) 

PhoCDET deletion 
downstream chimeric 

TGTACGGCCAATGGTTACGTTCTTCAACTGAAAC

ATTGG 
 GoTaq 

(Promega) 
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PhoCDET deletion 
downstream RV 

ACCGGGGATCCTGCGGTCCAACTCGCTCGC BamHI GoTaq 
(Promega) 

PhoCDET deletion 
confirmation FW 

CGAAGGGTGCCTTCAGTGTCC  Q5 (NEB) 

PhoCDET deletion 
confirmation RV 

CCTTCGATATGCGCAGCATGC  Q5 (NEB) 

Putative AEP deletion 
upstream FW 

TAGGGATAACAGGGTAATCCGCCGCAGACGAATT

TGC 
I-SceI Q5 (NEB) 

Putative AEP deletion 
upstream chimeric 

CGGAACGGTAGCCTTTGAAAACGGCATGCTAATT

CCCC 
 Q5 (NEB) 

Putative AEP deletion 
downstream chimeric 

CCGTTTTCAAAGGCTACCGTTCCGCACTGACC  Q5 (NEB) 

Putative AEP deletion 
downstream RV 

CTGCCATCGTCCTCCTCGC  Q5 (NEB) 

Putative AEP deletion 
confirmation FW 

AACGCCAAACTCTGCAATGC  Q5 (NEB) 

Putative AEP deletion 
confirmation RV 

GACATAACGGTTGCTCGAATAGG  Q5 (NEB) 

M13 FW GTTTTCCCAGTCACGAC  GoTaq 
(Promega) 

M13 RV CAGGAAACAGCTATGAC  GoTaq 
(Promega) 

pETYSBLIC3C FW CGCGCCTTCTCCTCACATATGGGCTAGC  Q5 (NEB) 
pETYSBLIC3C RV 
 

TTGCTGGTCCCTGGAACAGAACTTCC  Q5 (NEB) 

PaPhnD FW CCAGGGACCAGCAGACCAGCCGGTGATCAATTTC

GGG 
 Phusion 

(NEB) 
PaPhnD RV GAGGAGAAGGCGCGTTATCAGCCGGCGTTGGCGG

CGG 
 Phusion 

(NEB) 
PaPhnD 
G228N,D229G FW 

AACGGCCCGCTGGTGTGGCGCAAC  Q5 (NEB) 

PaPhnD 
G228N,D229G RV 

CGGGATCAGCGGCGACTTCC  Q5 (NEB) 

PaPhnD E201N FW AACGGCATGGAGCGCCTGG  Q5 (NEB) 
PaPhnD E201S FW AGCGGCATGGAGCGCCTGG  Q5 (NEB) 
PaPhnD E201X RV GGTATTGAAGGTGGCGACGTCG  Q5 (NEB) 
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2.2.5 Conventional ligation based molecular cloning 

 

Conventional ligation cloning was used for vectors pET20b, pET-Duet and pMAL-p5X. Vector 

was linearised by double digestion with restriction endonucleases. PCR product was double 

digested with the same restriction endonucleases to generate compatible overhangs. 

Restriction endonucleases were used according to manufacturers’ instructions, with a 

compatible vector, and 1 µg of DNA was digested in a typical reaction. The vector was then 

dephosphorylated using shrimp alkaline phosphatase (NEB). Both vector and insert were 

cleaned up using a gel extraction kit. Ligation was performed with T4 DNA ligase (NEB). 

Insert was added to 50 ng of vector in an approximately 3:1 insert:vector molar ratio, and 

incubated for 3 hours at room temperature. The DNA ligase was then heat inactivated at 65°C 

for 10 minutes, and the mixture was transformed into competent DH5α E. coli. 

 

2.2.6 Gibson assembly 

 

Gibson assembly, a technique used to join DNA fragments (Gibson et al., 2008) was 

performed using a commercial kit (NEB). The pET20b vector was linearised using a double 

restriction endonuclease digest with NcoI and NotI enzymes. 40 ng per reaction of synthetic 

gene with 20-25 bp homologous overlaps to the pET20b vector were added to 50 ng of the 

linearised vector and incubated with Gibson assembly master mix (NEB) at 50°C for 1 hour. 

This mixture was then transformed into NEB5α. 

 

2.2.7 Ligation independent cloning 

 

Ligation independent cloning (LIC) was used to anneal paPhnD with the pETYSBLIC-3C 

vector (Fogg and Wilkinson, 2008). LIC uses the 3’ to 5’ exonuclease activity of the T4 

polymerase to create compatible overhangs between a vector and insert. Primers for paPhnD 

were designed with a LIC overhang compatible with the LIC cassette in the vector. The vector 

was linearised using inverse PCR, and the product was treated with DpnI restriction 

endonuclease to digest methylated template DNA. Vector and insert were treated with T4 

DNA polymerase and dNTP separately. 2.5 mM of dTTP was added to 200 ng of vector DNA 

and 2.5 mM of dATP was added to 200 ng of insert DNA in 20 µL reactions in the presence of 

5 mM dithiothreitol (DTT). Following heat inactivation, the vector and insert were added to 

each other in a 3:1 insert:vector molar ratio in the presence of 2.5 mM EDTA and incubated at 

room temperature for 15 minutes. The reaction mixture was then transformed into DH5α. 
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2.2.8 Site directed mutagenesis 

 

Site directed mutagenesis of paPhnD was performed using the methods of Hemsley et al., 

(1989). This method uses inverse PCR to amplify the entire plasmid with a primer containing 

a mismatched 5’ overhang with the sequence to be changed. The pETYSBLIC-PaPhnD plasmid 

was linearised by using mutagenic primers. The PCR product was then digested with DpnI 

restriction endonuclease to degrade methylated template DNA. 100 ng of PCR product was 

treated with T4 kinase followed by T4 DNA ligase. Ligation mix was transformed into 

SoloPack Gold. Checking for the correct mutants was performed using Sanger sequencing 

(GATC) with T7 universal and T7 terminator primers because this method doesn’t produce a 

change in DNA length detectable by agarose gel electrophoresis. 

 

2.2.9 Checking plasmids for insert following cloning 

 

Checking for the presence of insert following cloning was either performed using a colony 

PCR with T7 universal and T7 terminator primers, or a restriction endonuclease digest of 

plasmid DNA with the enzymes used to create the construct. Clones containing an insert were 

then sent to GATC for Sanger sequencing with an appropriate sequencing primer. Sequences 

were verified against the expected sequence using Benchling. 

 

2.2.10 Creating gene deletion mutants in S. meliloti 1021 

 

Phosphonate transporter deletion mutants were produced in collaboration with Prof. Ivan 

Oresnik and Dr. Justin Hawkins (University of Manitoba, Winnipeg, Canada). Methods 

adapted from (Flannagan et al., 2008) were used (Fig 2.1) to produce unmarked deletions of 

the PhoCDET transporter (SMb21173 to SMb21170) and the putative 2-AEP specific 

transporter (SMb21540 to SMb21542), leaving only a short scar peptide. 

 

The first stage of producing these mutants was to use PCR to amplify approximately 500 bp 

upstream and downstream of the area to be deleted. These flanking sequences were joined 

using a second PCR utilising the Splice Overlap Extension (SOEing) PCR technique (Horton, 

1995). Chimeric primers were designed with a 12 bp overlap. This process left a gene 

encoding a short scar peptide between the start codon of the first deleted gene and the stop 

codon of the final deleted gene. Primers were also designed to incorporate a cut site for the 

restriction endonuclease I-SceI, to enable DNA cleavage of  genomic DNA following 

integration of the final construct into the S. meliloti genome. 
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Figure 2.1.  Constructing I-SceI dependent gene deletions. 

Step 1: Flanking regions for the area to be deleted are cloned into the pJQ200sk plasmid with an I-

SceI restriction site. Step 2: the pJQ200sk construct is integrated into the S. meliloti genome by 

homologous recombination. Step 3: the pDAI1 plasmid expresses the I-SceI endonuclease creating 

a double stranded break in the genomic DNA. Step 4: The break in the DNA is repaired by 

homologous recombination resulting in reversion to wild-type or unmarked gene deletion. 

Adapted from Flannagan et al., (2008). 
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The PCR product from SOEing PCR was then cloned into the pJQ200sk suicide vector, which 

integrates into the S. meliloti genome in the correct location using homologous 

recombination, which is selected for because the plasmid is unable to replicate in this 

organism. The pJQ200sk vector was screened for insert using colony PCR with M13 primers. 

The flanking regions for the genes encoding the 2-AEP specific transporter were cloned into a 

pJET vector using a blunt ended ligation with a commercial kit (ThermoFisher). The construct 

was then sub-cloned into pJQ200sk using XbaI and NotI restriction endonucleases. The 

flanking regions for the genes encoding the PhoCDET transporter were ligated directly into 

pJQ200sk using BamHI and XHoI restriction endonucleases. 

 

The pJQ200sk based deletion constructs were conjugated into S. meliloti using triparental 

mating. Colonies of S. meliloti 1021, E. coli MT616 harbouring the pRK600 helper plasmid and 

E. coli DH5α containing the pDAI plasmid were mixed on a non-selective LB agar  plate 

overnight with 10 µL of 0.85% (w/v) NaCl solution. This was streaked onto agar plates 

containing streptomycin and gentamycin to select for S. meliloti containing the deletion 

construct. Colonies were streaked a second time onto LB agar plates containing streptomycin 

and gentamycin to ensure all parent strains were removed. 

 

An E. coli DH5α strain containing the plasmid pDAI which constitutively expresses the I-SceI 

restriction endonuclease was then conjugated into S. meliloti containing the deletion 

construct, using tri-parental mating as above. Strains were streaked twice onto agar plates 

containing tetracycline and streptomycin. Expression of I-SceI introduces a double stranded 

break where the plasmid integrates into the genome, and homologous recombination used to 

repair the break means the pJQ200sk construct is excised and the strain either reverts to wild 

type, or removes the genes producing an unmarked deletion. 

 

Colonies were patched onto a non-selective LB agar plate and an LB agar plate containing 

gentamycin to select for those that had lost the pJQ200sk construct. Colony PCR using 

primers that anneal outside the cloned flanking regions were then used to verify whether the 

genes encoding the transporter were present. Genomic DNA was prepared from each deletion 

strain and PCR was repeated to verify that the genes to be deleted were absent. For the 

double mutant with both phosphonate transporters deleted, the first deletion strain was re-

streaked multiple times and patched onto a tetracycline LB agar plate after each passage until 

tetracycline sensitivity was verified, meaning the pDAI plasmid had been cured. The process 

was then repeated with the second pJQ200sk deletion construct. 
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2.2.11 Bacterial transformation with recombinant plasmids 

 

Bacterial transformation was performed using the heat shock method. Approximately 1-5 ng 

of plasmid DNA or ligation mixture was added to either 100 µL of thawed competent cells, or 

an aliquot of commercial competent cells, on ice. This was incubated on ice for 25 minutes 

before a 1 minute heat shock at 42°C. Cells were subsequently returned to the ice for 5 

minutes. 900 µL of LB or 175 µL of SOC media (Agilent) for commercial competent cells was 

added and the cells were incubated at 37°C for 1 hour of outgrowth. Bacteria were then 

plated onto an appropriate antibiotic agar plate. 

 

2.3 Recombinant protein production and purification 

 

2.3.1 Polyacrylamide gel electrophoresis 

 

Polyacrylamide gel electrophoresis (PAGE) was performed with either sodium dodecyl 

sulphate (SDS-PAGE) or without protein denaturing agents to analyse native proteins (native 

PAGE).  Resolving SDS-PAGE gel was made from 12% acrylamide, 375 mM Tris-HCl pH 8.8, 

0.1% SDS, 0.1% APS and 0.01% TEMED. Stacking gel, forming the top 2 cm of a standard SDS-

PAGE mini gel was made from 4% acrylamide, 125 mM Tris-HCl pH 6.8, 0.1% SDS, 0.1% APS, 

0.01% TEMED. SDS-PAGE running buffer in the tank was made up of 3 g/L Tris, 14 g/L 

glycine and 1 g/L SDS and the pH was adjusted to 8.8 with HCl. Sample buffer for SDS-PAGE 

gels was made from 100 mM Tris-HCl pH 6.8, 5% SDS, 0.4% bromophenol blue, 20% glycerol 

and 30 μl/mL β-mercaptoethanol (Applichem). For native PAGE electrophoresis, all reagents 

were as above, but prepared without SDS. β-mercaptoethanol was absent from sample buffer. 

 

For SDS PAGE, samples were prepared by dilution in sample buffer. Whole cell lysates had a 

volume in µL of 25 times the OD650 of the harvested sample added to the pellet from 1 mL of 

culture. Sample buffer was diluted 1 in 4 into soluble protein samples. All protein samples 

were heated to 95 °C for 5 minutes. Soluble samples were then applied to the gel. Cell 

samples were vortexed vigorously for 1 minute to degrade genomic DNA for easier pipetting, 

then centrifuged for 5 minutes at 15000 RCF to remove cellular debris, before supernatant 

was applied to gels. Samples were not heated prior to native PAGE. PAGE gels were run at 

200 V for 50 minutes. 

 

Coomassie stain was prepared by mixing 2.5 g Coomassie Brilliant Blue (Sigma-Aldrich), 450 

mL of methanol (Sigma-Aldrich), 450 mL of dH2O and 100 mL acetic acid (Honeywell). Gels 
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were stained for 5 – 20 minutes in Coomassie, depending on the age of the stain, and then de-

stained in 10% (v/v) acetic acid, 1 % (v/v) ethanol. 

 

2.3.2 Small scale protein expression trials 

 

For small scale protein expression trials, plasmids were transformed into the desired 

expression strain. 25 mL of LB medium with appropriate antibiotics was inoculated to an 

OD650 of 0.1 from a 5 mL overnight culture grown at 37 °C in LB aerobically at 200 rpm in a 30 

mL plastic Sterilin tube (ThermoFisher), taken from a single colony. Cultures were grown 

aerobically at various temperatures to an OD650 0f 0.4-0.6, and induced with 1 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG). Samples were taken immediately before induction, at 1 

hour intervals, and following overnight growth for SDS-PAGE analysis to examine expression 

of recombinant protein. 

 

2.3.3 Large scale protein expression 

 

Large scale expression was conducted using the same conditions as small scale expression 

trials by growing 650 mL of bacterial culture in a 1L flask. Bacteria were grown aerobically 

with 120 rpm shaking at the determined optimal temperature for recombinant protein 

expression. Cells were harvested by centrifugation at 4430 RCF at the optimal time point 

determined by small scale expression trials. 

 

2.3.4 Periplasmic preparation 

 

Periplasmic fractions were isolated using one of two methods. The first periplasmic 

extraction method is the ice-cold osmotic shock method (Neu & Heppel, 1965). Cells were 

harvested by centrifugation at 4430 RCF, resuspended in 20 mM Tris, 25% w/v sucrose, 5 

mM EDTA pH 8 and incubated on ice for 15 min before further centrifugation at 38000 RCF. 

Cells were further resuspended in 5 mM MgCl2 with lysozyme and protease inhibitor and 

incubated on ice for 30 minutes before a final 38000 RCF centrifugation step. The second 

periplasmic extraction method is a one-step method. Harvested cells are suspended in 25 mL 

of ice-cold SET buffer (5 mM EDTA, 0.5 M sucrose and 50 mM Tris-HCl, pH 7.8) per litre of 

culture. Chicken egg white lysozyme (Sigma) was added to cells in SET buffer at a 

concentration of 1 mg/mL, and incubated at 30°C for 2 hours. A final 38000 RCF 

centrifugation step was performed to harvest the periplasmic contents. Supernatant 

containing periplasmic proteins was analysed by SDS-PAGE for presence of recombinant 

protein. 
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2.3.5 Cell lysis 

 

Cell lysates were prepared using  a sonicator. Harvested bacteria were suspended in 35 mL of 

the wash buffer used for the purification step, without imidazole. PMSF Protease inhibitors 

9Alpha Diagnostic) was added to 1x the manufacturer’s recommendation. Samples were 

sonicated for a total of 3 minutes on ice, with a power output of 60W. 3 second pulses of 

sonication were alternated with 7 seconds of off time to avoid heating the sample excessively. 

 

2.3.6 Protein purification using nickel affinity chromatography 

 

Nickel affinity chromatography was performed either using disposable gravity flow columns, 

each with 1 mL of Nickel-NTA resin (ThermoFisher), or on an ÄKTA prime or ÄKTA start 

FPLC machine with a 5 mL HisTrap column (GE). 

 

Buffer components were as follows. All buffers contained 20% (v/v) glycerol (Honeywell), 

200 mM NaCl and 50 mM Tris-HCl pH 7.8. Wash buffer contained 20 mM imidazole, and 

elution buffer contained 500 mM imidazole. Denaturing buffer contained 2 M guanidine-HCl 

and 20 mM imidazole. 

 

Columns were equilibrated with 20 column volumes (CV) of wash buffer. Samples of either 

lysate or periplasmic extract were loaded onto the column and flow through collected. For 

native protein preparation, the column was then washed with 10 CV of wash buffer. For 

refolded proteins, the column was washed with 30 CV of denaturing buffer. For gravity flow 

columns, the concentration of guanidine-HCl in the buffers was dropped stepwise by 0.5 M, 

with 4 CV of each intermediate concentration being added to the column. Where an FPLC 

system was used, a 12 CV gradient was used to decrease the concentration of guanidine-HCl. 

Refolded proteins were washed with 8 CV of wash buffer. Refolded and native proteins were 

eluted with 5 CV of elution buffer. 

 

2.3.7 Protein dialysis 

 

Protein dialysis was performed for buffer exchange, using Spectra/Por dialysis tubing 

(ThermoFisher) with a 12-14KDa molecular weight cut off. Dialysis was performed at 4°C 

using three steps of 1 L of buffer. Each step lasted at least an hour, and one dialysis step was 

overnight.  
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2.3.8 Protein quantification 

 

Protein quantification was performed using an A280 measurement in a quartz or UV 

compatible path length cuvette. Molecular extinction coefficients were calculated using 

Expasy ProtParam. Proteins were diluted so the absorbance value measured was below 1. 

 

2.4 Protein analysis 

 

2.4.1 Size exclusion chromatography 

 

Size exclusion chromatography of OaPhnD was performed on a HiLoad Superdex S200 

16/600 column with buffer, with thanks to Dr John Darby (University of York). Size exclusion 

chromatography of the putative 2-AEP specific binding protein was performed using a HiPrep 

Sephacryl S-100 HR column (GE) with a flow rate of 0.5 mL/minute with 50 mM NaCl, 20 mM 

Tris-HCl pH 7.8 buffer. 

 

2.4.2 Size exclusion chromatography multi-angle laser light scattering (SEC-MALLS) 

 

SEC-MALLS was performed by Dr. Andrew Leech, University of York. SEC-MALLS allows 

determination of the molecular weight of protein and protein complexes in solution using 

light scattering (Folta-Stogniew and Williams, 1999). A size exclusion column is used to 

separate proteins by size, meaning multimeric complexes are distinguished from each other 

and from the monomer. The molecular mass of each elution fraction is measured using the 

light scattering and refractive index. A Wyatt Dawn HELEOS-II 18-angle light scattering 

detector and Wyatt Optilab rEX refractive index monitor linked to a Shimadzu HPLC system 

with a Superdex 200 HR10/30 column (GE) were used to measure the molecular weight and 

stoichiometry of PaPhnD. 

 

2.4.3 Mass spectrometry 

 

Denaturing mass spectrometry of OaPhnD was performed with an ABI Qstar tandem mass 

spectrometer by Dr. Andrew Leech, University of York. The sample was dialysed into 25 mM 

ammonium acetate buffer prior to analysis. 
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2.4.4 Circular dichroism (CD) 

 

A J-810 spectropolarimeter (Jasco) was used to measure CD spectra. A temperature of 25°C 

was maintained throughout the experiment. Protein was dialysed into 20mM Tris-HCl pH7.8, 

5% glycerol buffer and diluted to a concentration of 0.2 mg/mL. Spectra were measured from 

197 to 260 nM in a 1 mm path length quartz cuvette (Starna) at 200 nm per minute with 0.5 

nm pitch. 

 

2.4.5 Differential scanning fluorimetry 

 

Differential scanning fluorimetry of PaPhnD was performed using a Prometheus instrument 

(NanoTemper). Protein at a concentration of 1 mg/mL was added to capillaries. Changes to 

fluorescence and scattering were measured in triplicate at temperatures between 20 and 

97°C at a rate of 1°C per minute with an excitation power of 25%. 

 

2.4.6 Intrinsic tryptophan fluorescence spectroscopy 

 

Tryptophan fluorescence spectroscopy was performed using a FluoroMax 4 fluorescence 

spectrometer (Horiba Jobin-Yvon). Fluorescence experiments were conducted in a 3 mL 

volume quartz cuvette with a path length of 10 mm. Stirring took place throughout the 

measurement. Slit widths were 5 nm for all experiments. For proteins used in Chapter 3, 20 

mM Tris buffer, pH 7.8 was used. Excitation wavelengths, emission wavelengths and protein 

and ligand concentrations are specified in each chapter. For chapter 4, measurements were 

made in 50 mM Tris-HCl, 200 mM NaCl, 5 % (v/v) glycerol. Binding curves to determine Kd 

were calculated in SigmaPlot using hyperbola, single rectangular, 2 parameter fitting. 

 

2.4.7 Isothermal titration calorimetry (ITC) 

 

For all ITC analysis, the ligand was titrated into the same batch of buffer that the protein was 

dialysed into, to avoid any noise due to buffer mismatch.  A MicroCal Auto-iTC200 instrument 

was used to obtain the results presented in Fig. 3.15. All other ITC was performed using a VP-

ITC instrument. For analysis performed using the VP-ITC instrument, the buffer, protein and 

ligand were degassed prior to the start of the experiment. Ligand concentration in the syringe 

was initially at 10x the concentration of protein in cell, however this was increased for lower 

affinity interactions and decreased for higher affinity interactions. All ITC was carried out at 

25°C. Data was analysed using Origin ITC software (OriginLab). This was used to calculate the 

KD, stoichiometry, and enthalpy change of the reaction. 
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2.4.8 Thermal shift analysis 

 

Thermal shift analysis was performed in a 96-well plate and measured using a StepOnePlus 

real time PCR system. Temperatures were ramped at 0.05°C/s between 25 and 99°C. Proteins 

were used at 1 µM and ligands at 100 µM unless otherwise stated in a 20 µL reaction. A 

Protein Thermal Shift Dye Kit (ThermoFisher) was used to measure protein unfolding; 

however, the buffer from this kit was replaced with 50 mM Tris-HCl pH 7.8, 20 mM NaCl, 5% 

(v/v) glycerol to avoid the addition of phosphate. Melting temperatures were calculated using 

StepOne software. 

 

2.4.9 Microscale thermophoresis 

 

Prior to microscale thermophoresis (MST) analysis, proteins were labelled with AlexaFluor 

647 NHS Ester (ThermoFisher). This label reacts with the primary amines of lysine residues 

to covalently attach to proteins. Proteins were dialysed into 20 mM HEPES, 50 mM NaCl, 5% 

(v/v) glycerol, pH 7.8, because the label reacts with the primary amine residues of Tris buffer. 

The label at a concentration of 15 µM was then incubated with the proteins at a concentration 

of 5 µM at room temperature for 1 h. Nickel affinity chromatography with a gravity flow 

column was used to remove excess dye, the ratio of dye to ligand was verified by A280 and A650 

measurements, and concentrations were calculated using the molecular extinction 

coefficients of the label and protein. Proteins were dialysed into 20 mm Tris-HCl, 200 mM 

NaCl, 5% (w/v) glycerol, pH 7.8, and 1% Tween-20 (Sigma Aldrich) was added to prevent 

aggregation. 

 

MST was conducted with a Monolith NT115 (NanoTemper). Microscale thermophoresis 

measures binding by detecting the movement of the fluorescently labelled protein against a 

small temperature gradient within a capillary. This movement changes as the protein binds a 

ligand and its charge, conformation or hydration state is altered (Jerabek-Willemsen et al., 

2014). Ligands were prepared in a 2-fold serial dilution across 16 tubes in Tris-HCl, 200 mM 

NaCl, 5% (w/v) glycerol pH 7.8. Diluted ligand at 16 concentrations and protein were mixed 

together in a 1:1 volume ratio before they were applied to the capillaries. Protein was used at 

a final concentration of 20 nM labelled protein. MST power was high for all measurements 

and excitation was at 20%. MST measurements were conducted in triplicate, and binding 

affinities were calculated using MO.Affinity analysis (NanoTemper). 
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2.4.10 Protein crystallography 

 

Purified proteins at concentrations from 7-15 mg/mL were screened using the sitting-drop 

vapour diffusion method in 96-well plates (with thanks to Shirley Roberts, University of York 

for help with the proteins discussed in Chapter 1). Various commercially available screens 

were used including Index, Hampton I and II, PDB Minimal set and PACT. Crystals of VSXPhnD 

were checked for diffraction at the YSBL X-ray source and taken to the DIAMOND light source, 

Didcot, for X-ray data collection (with thanks to Sam Hart, University of York). 

 

2.5 Bioinformatics 

 

Protein orthologues were identified using the Basic Local Alignment Search Tool (BLAST), 

with the default parameters (Benson et al., 2009). Protein alignments were produced using 

either CLUSTALX (Larkin et al., 2007) or MUSCLE (Edgar, 2004). Phylogenetic analysis was 

conducted in UGENE using the maximum likelihood method (Okonechnikov et al., 2012). 

Phylogenetic trees were displayed using the iTOL online tool (Letunic and Bork, 2016). Signal 

peptides were predicted using SignalP 4.0 (Petersen et al., 2011). Codon optimisation was 

performed using JCat (Grote et al., 2005). Structures were displayed and homology models 

for PhnD homologues were created using the Discovery Studio software (Accelerys). The 

homology model of OaPhnD was constructed by Paul Bond, University of York. The homology 

model of SMb21540 was created using the PHYRE2 server (Kelly et al., 2015). Genomic 

contexts were obtained using the Microbial Genomic Context Viewer (Overmars et al., 2013). 
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 Identification and characterisation 

of PhnD homologues from bacteria able to 

catabolise glyphosate  
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Designing a biosensor for the widely used herbicide glyphosate requires the development of a 

recognition component that can bind glyphosate with high affinity and specificity. Bacteria 

able to utilise glyphosate as a sole phosphorus source are described in Chapter 1. These 

bacteria catabolise glyphosate using the C-P lyase complex (Wackett et al., 1987). However, 

the mechanisms by which glyphosate utilising bacteria transport glyphosate into the cell have 

not been well characterised previously. Many glyphosate utilising organisms have genes 

encoding the PhnCDE ABC transporter for phosphonates within the same operon as genes 

encoding the C-P lyase complex. It was hypothesised that this ABC transporter was 

responsible for the transport of glyphosate in these organisms. If this was the case, 

homologues of the periplasmic binding protein component of the PhnCDE phosphonate 

transporter, PhnD, from glyphosate utilising bacteria would be able to bind glyphosate with 

high enough affinity for enough glyphosate to be transported into the cell to satisfy its 

phosphorus requirements. It was predicted that PhnD homologues from glyphosate utilising 

bacteria may therefore have the ability to bind glyphosate with high enough affinity to 

function as a recognition component for a glyphosate biosensor. This chapter describes the 

identification, production and biophysical characterisation of these candidate glyphosate 

binding proteins. 

 

3.1 Bacterial species able to utilise glyphosate as a P-source 

 

In order to confirm literature reports of bacteria that can utilise glyphosate as a sole 

phosphorus source, and to identify related glyphosate utilising bacteria, growth assays were 

performed with glyphosate as the sole phosphorus source (Fig. 3.1). The organisms tested 

were S. meliloti 1021 (Fig 3.1A), R. leguminosarum 3841 (Fig. 3.1B), and A. tumefaciens 

UBAPF2 (Fig. 3.1D), which had previously been shown to utilise glyphosate by Liu et al., 

(1991). The additional VSX09 strain of R. leguminosarum (isolated by Kumar et al., 2015), 

whose PhnD homologue only has 53% sequence identity with that of the 3841 strain, was 

also tested (Fig. 3.1C). These organisms were provided by Prof. Peter Young, University of 

York and were used because of their availability at the University and their well-established 

culture methods. 

 

Growth assays were performed in Y minimal medium with different phosphorus sources 

using a microplate reader. All four of the bacteria tested were able to utilise glyphosate as a 

sole phosphorus source to some extent (Fig 3.1). All of these organisms had an extended lag 

phase of growth when grown on glyphosate, compared to growth on Na2HPO4. R. 

leguminosarum 3841 and S. meliloti 1021 reached the highest OD600 yields when grown on 

glyphosate of approximately 0.6 (Fig 3.1A and Fig. 3.1 B). For R. leguminosarum this yield was  
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Figure 3.1. Analysis of growth of bacteria with glyphosate as the sole phosphorus source. 

Microplate growth assays were conducted using Y minimal medium with bacterial strains A) 

Sinorhizobium meliloti 1021, B) Rhizobium leguminosarum 3841, C) Rhizobium leguminosarum 

VSX09, and D) Agrobacterium tumefaciens UBAPF2. Growth is compared between 0.5 mM 

glyphosate (green) and 0.5 mM Na2HPO4 (red) as the sole source of phosphorus and negative 

controls containing no phosphorus (blue). Standard deviation across 3 replicates is shown.  
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similar to that achieved with Na2HPO4 (Fig. 3.1 B). R. leguminosarum VSX09 and A. 

tumefaciens UBAPF2 reached much lower yields when grown on glyphosate, each reaching a 

maximum OD600 of approximately 0.3 (Fig. 3.1C and Fig. 3.1D). For R. leguminosarum VSX09, 

the growth on Na2HPO4 is also relatively low compared to the other strains, only reaching a 

maximum OD600 of approximately 0.6 (Fig 3.1 C). A. tumefaciens, however reaches a much 

higher yield when grown on Na2HPO4 compared to glyphosate (Fig. 3.1D), suggesting 

glyphosate is either not transported or not metabolised as efficiently as orthophosphate in 

this organism. 

 

These results show that glyphosate is able to be transported and catabolised by all four of 

these organisms. This suggests that the phn specified ABC transporters from these species 

might be able to transport glyphosate, and that their PhnD homologues would therefore be 

able to bind glyphosate. This assumes that there are no additional glyphosate transporters 

encoded within the genomes of these species, which is examined in Chapter 4. 

 

3.2 Selection of candidate glyphosate binding proteins 

 

Candidate glyphosate binding proteins were selected from PhnD homologues of glyphosate 

utilising organisms studied in Section 3.1 and those described in Chapter 1. Eight candidate 

proteins were chosen, attempting to include those with good sequence information for the 

strain in which glyphosate utilisation was observed. It was important to have multiple 

candidates as many proteins are not able to be expressed heterologously in E. coli, or form a 

stable and correctly folded final protein. Proteins were selected to cover a range of sequence 

diversity within PhnD homologues from glyphosate utilising organisms. 

 

Reciprocal protein BLAST searches (Altschul et al., 1990) were used to confirm that each of 

these proteins was an orthologue of the previously characterised E. coli PhnD homologue, 

EcPhnD (Rizk et al., 2006; Alicea et al., 2011). Phylogenetic analysis shows that PhnD 

homologues are present across a range of bacteria, including Gram-positive species in 

addition to α-, β- and γ-proteobacteria and cyanobacteria (Fig. 3.2). Many of the bacterial 

strains which have been confirmed as glyphosate utilisers are phylogenetically related ɑ-

proteobacteria and have homologous PhnD proteins with close sequence identity. Analysis of 

the alignment of these proteins shows a highly conserved STSG motif starting at residue 123 

on the alignment (Fig. 3.3) which forms part of the region of the EcPhnD structure that binds 

the oxygens of the phosphonate group of 2-AEP. All of the candidate glyphosate binding 

proteins had truncations in the C-terminal alpha-helix, which is the dimer forming region of 

EcPhnD (Alicea et al., 2011), suggesting that these proteins are monomeric. Analysis of the  
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Figure 3.2. Maximum likelihood phylogenetic tree of PhnD homologues. 

Sequences were confirmed as orthologous to EcPhnD using a reciprocal BLAST search. Alignment 
was performed using MUSCLE, and the tree was constructed using UGENE. Figure was created 
using FigTree. Bootstrap values and NCBI locus tags are shown. Green circles indicate species is 
able to utilise glyphosate as a sole source of phosphorus. Red triangles indicate the orthologue 
was selected for characterisation in this work. 
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Figure 3.3.  Alignment of PhnD orthologues. 

 
A sequence alignment of EcPhnD and candidate glyphosate binding proteins was created using 

ClustalX and displayed using ESPript (Robert and Gouet, 2014). Secondary structure of EcPhnD is 

shown.   
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genomic context for the genes encoding PhnD orthologues from glyphosate utilising species 

shows that all of the PhnD homologues chosen have genes predicted to encode a C-P lyase 

complex within the same operon for that of except S. meliloti 1021 (Fig. 3.4). 

 

The final list of proteins selected for recombinant E. coli expression, purification and 

characterisation are shown in Table 3.1, including EcPhnD as a non-glyphosate binding 

control, so that the techniques used in this study could be validated against those used 

previously (Rizk et al., 2006; Alicea et al., 2011). PhnD orthologues were selected to cover the 

widest range of diversity possible. Several similar orthologues from the family Rhizobiaceae 

were selected because they were available at the University of York (with thanks to Prof. 

Peter Young). These were the orthologues from R. leguminosarum 3841, R. leguminosarum 

VSX09, S. meliloti 1021 and A. tumefaciens UBAPF2. The PhnD orthologue from N. galegae was 

selected as an additional member of the Rhizobiaceae family to be synthesised as a codon 

optimised gene. The orthologue from O. anthropi was selected, because it fell into a different 

cluster of the phylogenetic analysis than the other alpha-proteobacteria (Fig. 3.2). The two 

PhnD homologues from the cyanobacteria Nostoc sp. PCC7120 were selected as they were 

distant from the other selected organisms in the phylogenetic analysis. 

 

3.3 Cloning phnD genes into the pET20b vector for periplasmic expression 

 

To recombinantly express candidate proteins, an expression strategy was required. The same 

strategy was initially chosen for all proteins to optimise the efficiency of the work and to 

allow direct comparisons to be made between proteins produced using the same conditions. 

Candidate glyphosate binding proteins were analysed to predict whether they might contain 

disulphide bonds, which would require the protein be secreted to the periplasm to fold 

correctly. EcPhnD, whose structure has been solved (Alicea et al., 2011), OaPhnD and 

NPhnDB do not contain any cysteine residues and therefore cannot form disulphide bonds 

and would be suitable for cytoplasmic expression.  All other identified candidate glyphosate 

binding proteins, however, contain at least two cysteine residues. When the sequences for 

these proteins were aligned with EcPhnD and mapped to their corresponding residues on the 

structure, it was shown that in the majority of cases cysteine residues were in similar regions 

of the protein (example shown in Fig. 3.5 for SmPhnD). Due to low sequence identity with 

EcPhnD, it was not possible to make accurate predictions about the precise locations of these 

cysteine residues, and therefore all proteins were targeted to the periplasm for heterologous 

expression in E. coli. 
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Figure 3.4. Operon organisation of phn genes in bacterial strains whose PhnD proteins were 
used in this project. 

Regulatory genes are labelled in green, genes with known enzymatic activity are labelled in blue, 
genes for transport proteins are labelled in red and genes for auxiliary proteins of phosphonate 
catabolism are labelled in purple. 1045 indicates the domain of unknown function gene DUF1045 
and 2HP indicates a histidine kinase. Genes not involved in phosphonate catabolism are labelled 
white. Genomic context obtained from Microbial Genome Context Viewer (Overmars et al., 2013). 
Adapted from Hove-Jensen et al. (2014). 
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Table 3.1.  Candidate glyphosate binding proteins selected for expression, purification and 
characterisation. 

Names of each protein used in this work are indicated. *Indicates that the gene was purchased as 

a codon optimised synthetic gene. 

  

Source Organism NCBI Locus tag Gene 
name 
used in 
this work 

Protein name 
used in this 
work 

Escherichia coli K-12 
Sinorhizobium meliloti 1021 
*Neorhizobium galegae 
*Nostoc sp. PCC 7120 
*Nostoc sp. PCC 7120 

B4105 
SMb21176 
RG540_CH43270 
All2228 
All2229 

ecPhnD 
emPhnD 
rgPhnD 
nPhnDA 
nPhnDB 

EcPhnD 
SmPhnD 
RgPhnD 
NPhnDA 
NPhnDB 

*Ochrobactrum anthropi ATCC 49188 Oant_2186 oaPhnD OaPhnD 
Rhizobium leguminosarum bv. Viciae 3841 
Agrobacterium tumefaciens UBAPF2 
Rhizobium leguminosarum VSX09 

RL0168 
Atu0173 
Strain provided by 
Prof. Peter Young, 
University of York 
(Kumar et al., 2015) 

rlPhnD 
atPhnD 
vsxPhnD 

RlPhnD 
AtPhnD 
VSXPhnD 
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Figure 3.5. Predicted locations of cysteine residues of candidate glyphosate binding protein 
SmPhnD. 

Protein sequences were aligned using ClustalX. Locations where a cysteine residue from SmPhnD 
(blue) aligns with the EcPhnD structure (yellow) are mapped onto the structure of EcPhnD (PDB 
ID:3P7I, Alicea et al., 2011). 
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To express recombinant protein expression in E. coli, a suitable cloning vector must be 

chosen. The widely used pET vectors (Novagen) are based on an inducible T7 RNA 

polymerase and are designed to produce very high yields of protein. The pET vector pET20b 

is particularly suitable for expressing periplasmic proteins such as PhnD because it has a PelB 

leader sequence for targeting proteins to the periplasm and a C-terminal hexa histidine-tag 

for affinity purification. Disulphide bonds are formed in the oxidising environment of the 

periplasm, between two cysteine residues in close proximity. 

 

Genes were cloned into the pET20b vector (Novagen). Native signal peptides were identified 

using SignalP (Petersen et al., 2011) The pET20b vector was linearised using NcoI and NotI 

restriction endonuclease enzymes. Genes encoding EcPhnd, SmPhnD, VSXPhnD, and RlPhnD 

were amplified using colony PCR from their source strains, with primers designed to 

incorporate NcoI and NotI restriction sites. The atPhnD gene was amplified using primers 

with a PciI restriction site in the place of the NcoI site, as the NcoI site was already contained 

within the gene and PciI produces a compatible overhang. These amplified genes were ligated 

into the vector using T4 ligase (Promega). As source organisms were not readily available for 

NPhnDA, NPhnDB, OaPhnD and RgPhnD, these were ordered as codon optimised synthetic 

genes with 20-25 bp overlaps with the vector.  Gibson assembly was performed to assemble 

each of these genes into the vector. Following transformation into either NEB5α following 

Gibson assembly, or DH5α following ligation, colonies were screened for the presence of 

insert. This was performed using either colony PCR with T7 universal and T7 terminator 

primers or a restriction digest of the purified plasmid using NcoI and NotI restriction 

endonuclease. A PCR screen was conducted for all genes cloned into pET20b (Fig. 3.6). 

Plasmid DNA was then prepared from colonies with plasmid containing insert and sequences 

were verified as correct using sequencing (GATC) using T7 universal and T7 terminator 

primers. All constructs were sequence verified to ensure no mutations were present and that 

the genes were in-frame with an N-terminal PelB leader sequence and C-terminal hexa 

histidine-tag. 

 

3.4 Optimisation of the expression of PhnD homologues 

 

To determine the optimum expression conditions for each recombinant PhnD homologue, 

small scale protein expression trials were conducted at 19°C, 25°C, 30°C and 37°C. Many of 

the source organisms for these proteins are soil organisms which grow at lower 

temperatures than 37°C, which is the optimal temperature for E. coli growth. This meant that 

expression of these proteins may have been sensitive to higher temperatures. 
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Figure 3.6. Agarose gel analysis of PCR screen for phnD homologue inserts. 

A PCR screen for the presence of insert, following ligation of phnD genes into the pET20b vector 
(3.7 kbp) was analysed using an agarose gel. M indicates DNA ladder. Gene names are indicated 
above each lane. 
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Recombinant plasmids were transformed into BL21 (DE3) except plasmids containing 

rgPhnD and nPhnDA, which did not produce any colonies when transformed into this strain. 

These were instead transformed into a BL21 (DE3) strain containing a pLysS plasmid with a 

T7 lysozyme encoding plasmid to suppress leaky expression. This suggested that the gene 

products were toxic to the cells for these two constructs. 15 mL cultures were diluted to an 

initial A650 of 0.1 and induced with 1 mM IPTG once the A650 reached between approximately 

0.4 and 0.6. 1 mL of E. coli was harvested for analysis immediately before induction for all 

samples. At 37°C and 30°C, cells were harvested hourly for four hours post induction and at 

16 hours post induction. At 19°C and 25°C, 1 mL of sample was harvested at 16 hours post 

induction only, owing to slower growth the yield of protein harvested at these times would be 

unlikely to be enough for downstream testing due to low cell densities. Cell pellets were 

resuspended in sample buffer, lysed, and analysed by SDS-PAGE as described in Chapter 2 for 

total protein. These gels were assessed for accumulation of recombinant protein at the 

expected molecular weight (Fig. 3.7). 

 

Expression of recombinant PhnD homologues was initially tested at 25°C (Fig. 3.7). Protein 

expression levels were therefore compared to a negative control of BL21 (DE3) transformed 

with a pET20b vector containing no insert (Fig. 3.7). Of the 9 recombinant proteins tested, 

expression of 7 proteins was observed: AtPhnD, EcPhnD, VSXPhnD, RLPhnD, RgPhnD, 

OaPhnD and NphnDA (Fig. 3.7). Each of these samples had a densely stained protein band 

that was not present in the negative control. AtPhnD appeared to be present as two bands, 

suggesting that there may have been protein with uncleaved signal peptide present in the 

cytoplasm. Only SmPhnD and NPhnDB showed no evidence of expression at high enough 

levels to observe a protein band when analysed by Coomassie stained SDS-PAGE (Fig. 3.7). 

 

Additional temperatures were then tested to determine the optimum temperature for 

expression of each protein. Expression trials of SmPhnD and NPhnDB were also conducted at 

19°C, however there was also no evidence of expression of these proteins at this temperature. 

For all other recombinant PhnD homologues tested, expression at 19°C occurred at similar 

levels relative to the native E. coli proteins. None of the proteins tested expressed to high 

levels at 37°C. At 30°C, high levels of expression were detected for OaPhnD (Fig. 3.8A), 

AtPhnD (Fig. 3.8B), RgPhnD (Fig. 3.8C) and EcPhnD (Fig. 3.8D). RlPhnD, VSXPhnD, SmPhnD, 

NPhnDA and NPhnDB did not show evidence of high levels of expression at 30°C. For OaPhnD 

(Fig. 3.8A), AtPhnD (Fig. 3.8B), RgPhnD (Fig. 3.8C), the highest levels of protein relative to 

background accumulated overnight, which also corresponded to the highest cell density. 

EcPhnD expressed to high levels at 30°C up to 3h post induction but appeared at much lower 

levels compared to the background at 16 hours post induction, implying that it is degraded. 
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Figure 3.7. Analysis of expression of recombinant PhnD homologues at 25°C. 

The total protein from cell lysates was analysed using Coomassie stained SDS-PAGE gels. Samples 
were harvested immediately pre-induction (-) and 16h post induction (+). Control indicates BL21 
(DE3) transformed with pET20b plasmid containing no insert. * indicates lane with recombinant 
protein expression. Molecular weight markers ran aberrantly so were not included in this figure. 
Expected molecular weights are indicated. 
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Figure 3.8. Analysis of expression of recombinant PhnD homologues at 30°C. 

The total protein from cell lysates was analysed using Coomassie-stained SDS-PAGE gels. 
Expression trials were conducted for A) OaPhnD, B) AtPhnD, C) RgPhnD and D) EcPhnD. U is 
uninduced sample, and other lanes are labelled with time post induction in hours. An arrow 
indicates the position of the PhnD homologue on the gel. Expected molecular weights are 
indicated. 
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The homologues of PhnD from Nostoc sp. PCC 7120, NPhnDA and NPhnDB, were of particular 

interest to this project, as this organism is a cyanobacterium with two genes encoding PhnD 

homologues within the phn operon, and an aim was to study the most diverse range of PhnD 

homologues from glyphosate-utilising organisms as possible. It was hypothesised that these 

proteins were forming heterodimers and that this might be necessary for correct protein 

folding and stability. The genes encoding these homologues were sub-cloned into pET-Duet, a 

vector used for co-expressing two proteins. NPhnDA was sub-cloned with an N-terminal hexa 

histidine-tag. NPhnDB was not tagged, because if it forms a  heterodimer with NPhnDA, they 

should both be purified using the same tag. Proteins were targeted to the cytoplasm. 

Overexpression trials were conducted at 19°C using BL21 (DE3), and the expression strain 

was compared to a negative control using SDS-PAGE analysis of whole cell lysates (Fig. 3.9). 

There was no discernible difference between the expression strain and the negative control, 

and there were no additional bands present at the expected molecular weight of either 

protein. These proteins were therefore not suitable for recombinant expression using the 

conditions tested, and were not further studied in this project using co-expression. 

 

SmPhnD did not show any evidence of overexpression at any of the temperatures tested 

using the strain BL21 (DE3). Because S. meliloti  is a relatively well characterised organism 

compared to other glyphosate utilising bacteria, and this organism showed a high yield when 

grown with glyphosate as a sole phosphorus source, further conditions were tested to try and 

obtain this protein. A variety of E. coli strain backgrounds were used with this construct for 

overexpression at 25°C, including BL21 Star™ (DE3) which offers enhanced mRNA stability 

and Rosetta™ cells which have the pRARE plasmid, encoding tRNAs for rare codons, of which 

smPhnD has 2. Neither of these strains showed any additional bands at the expected 

molecular weight for SMb21177 (31 kDa) upon SDS-PAGE analysis compared to an empty 

vector control. When the Tuner™ (DE3) pLysS strain was used for an overexpression trial for 

SmPhnD, a band was seen at the expected molecular weight for the pre-induced sample that 

was not present in an empty vector control. Attempts to purify the observed protein band on 

a small scale from lysates using a HIS-select spin column showed no binding, meaning that 

this band did not correspond to a correctly tagged soluble version of the target protein. 

 

Maltose binding protein (MBP) fusions can be used to stabilise proteins which are not 

otherwise amenable to heterologous expression in E. coli (Riggs, 2001). A codon optimised 

gene encoding SmPhnD was sub-cloned into the pMAL-p5x vector (NEB), which fuses the 

target protein with a maltose binding protein with a signal peptide for periplasmic secretion, 

meaning disulphide bonds can form correctly in the protein of interest. SDS-PAGE analysis of  
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Figure 3.9. SDS PAGE analysis of expression trial of NPhnDA and NPhnDB from a pET-Duet co-
expression vector. 

The total protein from cell lysates was analysed using Coomassie stained SDS-PAGE gels. Cells 
were cultured at 19°C. Time post induction is indicated. Expression strain (+) was compared to a 
negative control of BL21 (DE3) transformed with empty pET-Duet vector (-). M is a pre-stained 
protein marker. Expected molecular weights: NPhnDA, 35.5 kDa; NPhnDB, 35.0 kDa. 
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whole cell lysates from small scale expression trials conducted at 30°C showed a densely 

stained band at approximately the expected molecular weight of the fusion protein at 

approximately 72.4 kDa (Fig 3.10). 

 

These protein expression trials have shown that 6 of the candidate glyphosate binding 

proteins and the EcPhnD control are capable of being recombinantly expressed in E. coli. The 

optimal conditions for this were overnight expression at 30°C for OaPhnD, RgPhnD and 

AtPhnD, incubation for 3 hours post induction for EcPhnD and overnight expression at 25°C 

for RlPhnD, VSXPhnD and NPhnDA. SmPhnD was expressed as an MBP fusion protein at 30°C 

overnight. NPhnDB did not express at any of the temperatures tested and therefore was not 

studied further in this project. Further testing needed to take place to determine whether the 

expressed proteins were exported to the periplasm as correctly tagged soluble protein. 

 

3.5 Periplasmic secretion of recombinant PhnD homologues 

 

As several of the recombinant PhnD homologues contained multiple cysteine residues 

predicted to be in close proximity to each other, it was important to ensure that these 

proteins had been exported to the periplasm. The oxidising environment of the periplasm 

enables disulphide bond formation, and periplasmic proteins expressed in the cytoplasm may 

be misfolded if they have disulphide bonds in their correctly folded form. Proteins with signal 

peptides for periplasmic targeting that are expressed in the periplasm may also have the 

signal peptide still attached which can interfere with downstream assays. Periplasmic 

extraction was performed using the ice-cold osmotic shock method described by Neu & 

Heppel (1965). This technique results in two fractions being extracted from the periplasm, an 

initial fraction extracted with sucrose and EDTA, and a second periplasmic fraction extracted 

with a low osmotic strength medium. 

 

Cultures of E. coli producing recombinant PhnD homologues were scaled up to 600 mL, and 

grown according to the determined optimum conditions (discussed in Section 3.5). Ice-cold 

osmotic shock was performed on the cultures once they were harvested to extract the 

contents of the periplasm (Fig. 3.11). 

 

SDS-PAGE analysis revealed bands at the expected molecular weight for EcPhnD, OaPhnD, 

RlPhnD and VSXPhnD in both the sucrose and periplasmic fractions (Fig. 3.11A, B and C), 

indicating that they had been exported to the periplasm. The overall amount of protein was 

higher in the low osmotic strength periplasmic fraction compared to the sucrose fraction,   
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Figure 3.10. SDS PAGE analysis of expression trial of SmPhnD as an MBP fusion. 

The total protein from cell lysates was analysed using Coomassie stained SDS-PAGE gels. Cells 
were cultured at 30°C. Time post induction is indicated. Expression strain (+) was compared to a 
negative control of BL21 (DE3) transformed with empty pMAL-p5X expressing maltose binding 
protein (-). M is a pre-stained protein marker. Arrow indicates the position of the fusion protein. 
Expected molecular weights: SmPhnD-MBP, 72.5 kDa; MBP control, 42.5 kDa. 
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Figure 3.11. Analysis of periplasmic targeting of recombinant PhnD homologues. 

Periplasmic extraction of A) OaPhnD and RlPhnD, B) EcPhnD and NPhnDA, C) VSXPhnD, D) AtPhnD 

and EcPhnD and E) SmPhnD-MBP fusion. Protein samples were analysed using Coomassie stained 

SDS-PAGE gels. M is a pre-stained marker, WC is a whole cell lysate, SP is the spheroplast, Suc is 

the sucrose fraction and Per is the periplasmic fraction. Markers ran aberrantly on gel D so were 

not included. Expected molecular weights are indicated. 
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however, for all of these proteins, the relative amounts of the recombinant proteins 

compared to the endogenous E. coli periplasmic proteins appear similar. Bands 

corresponding to the expected molecular weights of VSXPhnD, RlPhnD and OaPhnD were also 

present in the spheroplast fractions, albeit at lower amounts relative to the native E. coli 

proteins compared to the sucrose and periplasmic fractions, which could suggest the amount 

of protein produced had exceeded the capacity of the cell’s secretion machinery. 

 

SmPhnD-MBP fusion was extracted from the periplasm using a one-step extraction method 

with sucrose, EDTA and lysozyme (described in chapter 2) to maximise protein yield. SDS-

PAGE analysis revealed SmPhnD-MBP fusion present in the periplasm (Fig. 3.11E) at the 

expected molecular weight of approximately 72.4 kDa. 

 

The absence of markers on Fig. 3.10D for AtPhnD and NPhnDA means that conclusions 

cannot be drawn about the molecular weights of the proteins present, however comparisons 

can be made between samples. Densely stained bands corresponding to overexpressed 

NPhnDA, AtPhnD and RgPhnD were not present at high levels in the periplasmic fractions, 

suggesting they are not correctly targeted to the periplasm (Fig. 3.11B and D). There is a band 

present in the AtPhnD whole cell sample which is much more densely stained than others, 

and this band is greatly enhanced in the spheroplast and not present at high levels in the 

sucrose and periplasmic fractions, suggesting AtPhnD is not targeted to the periplasm. 

Sonication of the spheroplast and SDS-PAGE analysis of the soluble and insoluble fractions 

revealed this protein to be present only in the insoluble fraction. Samples for RgPhnD and 

NPhnDA also had a densely stained band in the whole cell and spheroplast fractions that was 

not present in the sucrose and periplasmic fractions, indicating these proteins were not 

correctly exported to the periplasm. 

 

The ice cold osmotic shock method was used to isolate periplasmic fractions containing 

EcPhnD, OaPhnD, RlPhnD and VSXPhnD. As RgPhnD did not express at high levels compared 

to OaPhnD, RlPhnD and VSXPhnD, and AtPhnD was not soluble, and NPhnD was not correctly 

exported to the periplasm, these proteins were not pursued further for this work. 

 

3.6 Purification of recombinant PhnD homologues 

 

In order to perform techniques such as binding assays or crystallography on a protein, it is 

important to remove as much contaminating material as possible to obtain a pure sample.  A 

nickel-NTA column was used for purification to selectively bind polyhistidine-tagged 

proteins, and to allow native E. coli proteins to be removed from the sample. This was 
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performed for the overexpressed proteins: OaPhnD, RlPhnD, EcPhnD, NphnDA, VSXPhnD, 

AtPhnD, RgPhnD and SmPhnD as an MBP fusion. 

 

Periplasmic fractions of 25 mL each were loaded onto a nickel-NTA column for purification 

(Fig. 3.12) and purified using a stepwise imidazole gradient. There is no evidence of OaPhnD 

(Fig. 3.12A), RlPhnD (Fig. 3.12B) or VSXPhnD (Fig. 3.12C) being present in the flow through 

from their respective columns, suggesting a large majority of the recombinant protein was 

bound to the resin. A small amount of each recombinant protein was present in the imidazole 

gradient wash, however the majority of each of these proteins were in elution fraction 2 (Fig. 

3.12). Elution fraction 2 for each of these proteins contained very small amounts of 

contaminating proteins, producing a sample pure enough for downstream analysis (Fig. 

3.12A-C). Absorbance at 280 nm was used to quantify each protein with a calculated molar 

extinction coefficient, ε, of 32523 M-1cm-1 for OaPhnD, 30495 M-1cm-1 for VSXPhnD, and 

33015 M-1cm-1 for RlPhnD. This revealed an overall yield of approximately 8 mg of 

recombinant OaPhnD per litre of bacterial culture and approximately 2.5 mg each of RlPhnD 

and VSXPhnD per litre of bacterial culture.  

 

For the periplasmic preparation of EcPhnD, a band at the appropriate molecular weight was 

present in the flow through when loaded onto the nickel-NTA column. There was no band at 

the correct molecular weight for EcPhnD in any of the elution fractions, however there were 

several lightly stained bands present in the second elution fraction. This suggested that 

EcPhnD was unable to bind the column. This was possibly due to EcPhnD forming a dimer 

with its N-terminal region (Alicea et al., 2011), causing the polyhistidine-tags to be hidden or 

unavailable for binding. Previous work on this protein had been performed in the cytoplasm 

using a C-terminal polyhistidine-tag (Alicea et al., 2011), possibly negating this problem by 

avoiding the dimer forming region. 

 

The SmPhnD-MBP fusion protein was purified using an MBP-trap column (GE, Fig. 3.13). SDS-

PAGE analysis revealed that in addition to the band corresponding to the molecular weight of 

the fusion protein, there were also two additional bands at lower molecular weights. It is 

likely that these bands correspond to the MBP (42.5 kDa) and SmPhnD (29.9 KDa). The final 

yield of the protein was calculated using an A280 measurement with a molar extinction 

coefficient, ε, of 86750 M-1cm-1, and was calculated to be approximately 1.6 mg of protein per 

litre of culture. In order to perform downstream analysis, the MBP would have to be cleaved 

from SmPhnD using Factor Xa, and then SmPhnD purified using size-exclusion 

chromatography. This process could possibly result in an even smaller yield of protein. 
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Figure 3.12. SDS-PAGE Analysis of nickel affinity purification of recombinant PhnD homologues. 

Coomassie stained SDS-PAGE analysis of nickel affinity chromatography of A) OaPhnD (32.5 kDa) 

B) RlPhnD (31.2 kDa), C) VSXPhnD (31.5 kDa) and D) EcPhnD (36.1 kDa). Protein samples were 

analysed using Coomassie stained SDS-PAGE gels. M is a pre-stained protein marker. FT indicates 

flow through fractions, W indicates wash fractions and E indicates elution fractions. An arrow 

indicates the position of the PhnD homologue on the gel. 
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Figure 3.13. SDS-PAGE analysis of purification of SmPhnD as an MBP fusion. 

Purification of SmPhnD-MBP fusion (72.4 kDa) from MBP-trap column. FT indicates flow through 

fractions and E indicates elution fractions. M is a pre-stained protein markers. An arrow indicates 

the position of the SmPhnD-MBP fusion on the gel. 
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Affinity chromatography using an MBP trap column was used to purify small quantities of 

SmPhnD as an MBP fusion. Nickel affinity chromatography was used to purify 3 candidate 

glyphosate binding proteins, OaPhnD, VSXPhnD and RlPhnD at high enough levels and with 

high enough sample purity to begin the first steps to test their binding affinities with 

phosphonate compounds. A summary of the results of protein expression trials, periplasmic 

preparation and purification is shown in Table 3.2. 

 

3.7 X-ray crystallography 

 

Determining a crystal structure of a candidate glyphosate binding protein would reveal 

insight into the relationship between the structure and function of homologues of PhnD. One 

of the goals of this project was to obtain a crystal structure of a PhnD homologue in complex 

with glyphosate to reveal which binding site residues might be critical for glyphosate binding. 

 

Purified OaPhnD, VSXPhnD and RlPhnD at concentrations from 7-15 mg/mL were screened 

using the sitting-drop vapour diffusion method in 96-well plates. Various commercially 

available screens were used including Index, Hampton 1 and 2, PDB Minimal set and PACT. 

Crystals were checked for diffraction at the YSBL X-ray source and taken to the DIAMOND 

light source, Didcot, for X-ray data collection. 

 

OaPhnD and RlPhnD did not form crystals in any of the conditions tested. VSXPhnD formed 

small crystals (Fig. 3.14) that were approximately 50-75 µm in the longest dimension in 30% 

PEG, 1M MME 5000, 0.1M MES pH 6.5. These diffracted to 2 Å using the DIAMOND light 

source, Didcot, however it has not been possible to solve the phases of the structure. 

Molecular replacement was not possible due to low sequence identity (<30%) with existing 

structures. Selenomethionine preparation could not be used due to the protein only 

containing one methionine residue other than the initiator. Soaking with 0.5 M NaI and NH4I 

solutions was attempted; however, this appeared to react with the solution from the 

crystallisation screen, producing bubbles which damaged the crystals before they could be 

frozen. 

 

Using these methods, it was not possible to obtain a crystal structure for a PhnD homologue. 

Ligand binding assays were used to characterise the PhnD homologues without having to 

crystallise them. 
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Table 3.2. Summary of protein overexpression and purification results. 

Protein Overexpression Present in periplasm Purified Crystallised 

EcPhnD ✓ ✓ x - 

SmPhnD ✓ (MBP fusion) ✓ (MBP fusion) Low levels (MBP 
fusion) 

- 

AtPhnD ✓ x - - 

RlPhnD ✓ ✓ ✓ x 

VSXPhnD ✓ ✓ ✓ ✓ 
NPhnDA Low level x - - 
NPhnDB x - - - 
RgPhnD Low level x - - 
OaPhnD ✓ ✓ ✓ x 
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Figure 3.14. VSXPhnD protein crystals. 

Image taken of crystals of VSXPhnD growing in well E8 of a 96-well plate containing Hampton 1 
and 2 crystal screen. Well contained 30 % PEG, 1M MME 5000 and 0.1 M MES, pH 6.5. 
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3.8 Binding of phosphonates to PhnD homologues 

 

In order to determine whether the 3 purified PhnD homologues were able to bind 

phosphonates, and to understand their relative binding affinities to the abundant 

phosphonate 2-AEP compared to glyphosate, ligand binding assays were performed on these 

proteins. One aim of these experiments was to determine whether any of the purified 

homologues had high enough affinity to be suitable for use as a biosensor. Various 

biophysical methods are available for ligand binding assays, including isothermal titration 

calorimetry and intrinsic tryptophan fluorescence spectroscopy. Isothermal titration 

calorimetry (ITC) is a highly sensitive technique and can also provide information about the 

stoichiometry of the binding reaction; however, it requires very large amounts of protein and 

ligand and so is not always suitable. Tryptophan fluorescence spectroscopy measures the 

changes in fluorescence upon ligand binding caused by the movement of tryptophan residues 

during the protein’s conformational change. Unlike ITC, this method does not directly 

measure the heat released upon binding so signal to noise ratios can vary depending on the 

locations of fluorescent residues in the protein to be studied. Tryptophan fluorescence 

spectroscopy, however, has far lower requirements for the amount of protein, and can be 

performed with a higher throughput. 

 

Initially, tryptophan fluorescence spectroscopy was used to attempt to determine whether 

the OaPhnD, RlPhnD and VSXPhnD were able to bind 2-AEP and glyphosate (Fig. 3.15). Native 

versions of the proteins did not reproducibly show any change in fluorescence upon addition 

of 2-AEP (Fig. 3.15 A, D and G), possibly due to the protein being pre-bound to phosphate in 

the buffer, which the E. coli PhnD homologue binds with 50 µM affinity (Rizk et al., 2006). As 

phosphorus is essential for bacterial growth, it is not possible to produce recombinant PhnD 

in a culture without phosphate compounds. As a result of this, all proteins were subsequently 

denatured and refolded using Guanidine-HCl when being purified to remove any pre-bound 

ligands that may have been present. 

 

The refolded versions of all 3 proteins showed a decrease in fluorescence at 297 nm 

excitation upon addition of 2-AEP (Fig. 3.15 B, E, and F). This decrease occured upon multiple 

additions of ligand. This suggested that all 3 proteins were able to bind 2-AEP; however, the 

decrease was less than 5% overall, meaning the signal to noise ratio was too low to perform a 

titration to calculate Kd. OaPhnD also showed a similar quenchable decrease in fluorescence 

upon addition of glyphosate (Fig. 3.15 C), which was not observed for the R. leguminosarum  
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Figure 3.15 (Part 1). Fluorescence emission spectra of PhnD homologues with phosphonates 
added. 

Fluorescence emission spectra were measured for A-C) OaPhnD, D-E) VSXPhnD, Proteins were 

excited at 297 nm. Buffer without protein is shown in green, protein without ligand is shown in 

dark blue and protein with a saturating concentration of phosphonate ligand is shown in red. A) 

and D) show native protein with 2-AEP added, B) and E) show refolded protein with 2-AEP added 

and C) shows refolded protein with glyphosate added. Ligand was added at concentrations 

between 0.2 and 1.2 µM for A; 0.25 and 1 µM for B-E). Continued overleaf. 
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Figure 3.16 (Part 2). Fluorescence emission spectra of PhnD homologues with phosphonates 
added. 

Fluorescence emission spectra were measured for F) VSXPhnD, G-I) RlPhnD, and J) SmPhnD-MBP 

fusion. Proteins were excited at 297 nm. Buffer without protein is shown in green, protein 

without ligand is shown in dark blue and protein with a saturating concentration of phosphonate 

ligand is shown in red. G) and J) show native protein with 2-AEP added, H) shows refolded protein 

with 2-AEP added and F) and I) show refolded protein with glyphosate added. Ligand was added 

at concentrations between 0.25 and 1 µM for F-I) and 5 and 55 µM for J). 
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PhnD homologues (Fig. 3.15 F and I). This preliminary result suggested that OaPhnD may also 

be able to bind glyphosate. 

 

SmPhnD-MBP fusion was also analysed using fluorescence spectroscopy for binding to 2-AEP. 

Emission spectra were taken at 295 nm, 297 nm (Fig. 3.15J), and 281 nm excitation before 

and after the addition of 5 and 55 µM 2-AEP. 5 µM 2-AEP did not produce a large change in 

fluorescence emission at any wavelength. This was possibly due to the protein still being 

fused to a maltose binding protein causing it to be inactive. At 55 µM 2-AEP there was a small 

decrease in fluorescence; however, this could have been caused by dilution, photobleaching 

or a pH effect, and doesn’t necessarily indicate binding.  There was not enough material 

purified to perform any further binding assays with this protein. 

 

ITC was used as a non-optical method to try and determine Kd values for the phosphonate 

binding observed from tryptophan fluorescence. When measured in a 20 mM Tris buffer 

containing 50 mM NaCl using Auto-ITC 200, with 30 µM of protein and 300 µM 2-AEP, both 

OaPhnD (Fig. 3.16B) and VSXPhnD (not shown) showed biphasic binding isotherms with an 

initial endothermic phase, followed by an exothermic phase, which meant that it was not 

possible to fit the data to calculate Kd. This suggests that two separate reactions are taking 

place when the ligand is added. RlPhnD did not display this biphasic binding and bound 

2-AEP with an estimated Kd of 4.2 µM (Fig. 3.16A). None of the 3 proteins showed binding 

upon the addition of glyphosate at the concentrations and conditions used (OaPhnD shown in 

Fig. 3.16C). 

 

Further investigation was conducted into the binding of OaPhnD using VP-ITC, because this 

protein expressed at the highest levels and because it had shown the strongest evidence of 

glyphosate binding with the preliminary tryptophan fluorescence. 

 

Binding between refolded OaPhnD and 2-AEP (VP-ITC, Fig. 3.17A) at 10 µM and 100 µM 

respectively resulted in an exothermic reaction with an estimated Kd of 170 nM. This was 

conducted in 20 mM Tris, pH 7.8 without NaCl. The absence of NaCl from the buffer may have 

caused the calculated Kd to be lower than the actual value due to an exaggeration of 

electrostatic effects. When 50 mM NaCl was added to the buffer, a similar biphasic curve to 

that shown in Fig. 3.16A was observed, with both 20 and 50 mM Tris buffer. Binding between 

OaPhnD and glyphosate was also observed when the glyphosate concentration in the syringe 

was increased to a higher concentration (3.17B). The average Kd for this interaction was 32± 

10 µM, from two repeats, however the error on the calculated values for ΔH and the 

stoichiometry were very high suggesting a poor fit of data. The binding curve for glyphosate  
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Figure 3.17.  Auto-ITC 200 analysis of phosphonate binding of PhnD homologues. 

Binding isotherms were measured using Auto-ITC 200 with 20 mM Tris buffer containing 50 mM 
NaCl. A) RlPhnD with 2-AEP ligand. B) OaPhnD with 2-AEP ligand. C) OaPhnD with glyphosate 
ligand. The upper panels show heat differences upon ligand injection, and the lower panels show 
integrated heats of injection (■). The best fit (solid line) to a single site binding model (Microcal 
Origin software) was plotted where the data fit a single site binding model. 
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Figure 3.18. VP-ITC analysis of phosphonate binding of OaPhnD. 

Binding isotherms were measured using VP-ITC. A) OaPhnD with 2-AEP ligand in 20mM Tris 
buffer. B) OaPhnD with glyphosate in 50 mM Tris buffer with 50 mM NaCl. The upper panels show 
heat differences upon ligand injection, and the lower panels show integrated heats of injection 
(■). The best fit (solid line) to a single site binding model (Microcal Origin software) was plotted 
where the data fit a single site binding model.  
  

N = 0.733 ±0.0419 
K = 5.86 X 106 ±3.21 X 106 

ΔH = 1124 ±67.66 
ΔS  = 34.7 

N = 0.0506 ±0.269 
K = 2.37 X 104 ±5.70 X 103 

ΔH = 4.177 X 104  ±2.246 X 105 
ΔS  = 160 
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was exothermic and did not follow the biphasic trend shown for 2-AEP binding in the same 

conditions. 

 

These data suggest that all 3 proteins are able to bind 2-AEP with high affinity, and that 

OaPhnD is also able to bind glyphosate with low affinity. The unusual biphasic binding 

isotherms between the proteins and 2-AEP suggest that the OaPhnD and VSXPhnD do not 

exist as homogenous solutions and that more than one reaction is occurring. 

 

3.9 Quality control of OaPhnD  

 

In order to further probe the status of OaPhnD to determine which populations of protein 

could be causing the biphasic ITC binding, denaturing mass spec and size exclusion 

chromatography were used on the refolded protein. Denaturing ES-MS (Fig. 3.18A) revealed 

two peaks, with a main peak corresponding to a molecular weight of 32.52 kDa and a minor 

peak at 34.74 KDa (ES-MS performed by Dr Andrew Leech, University of York). These 

corresponded to the expected molecular weights of the mature protein sequence, and the 

uncleaved version of the protein with the PelB leader sequence still attached. Size exclusion 

chromatography (Fig. 3.18B) also revealed two peaks, showing a non-homogenous 

population of protein. This technique could not be used to calculate the molecular weight of 

these peaks accurately, so it was not determined whether or not these corresponded to the 

two peaks observed by ES-MS. Native-PAGE analysis revealed multiple bands for both 

refolded and native OaPhnD (Fig. 3.18C); however there were more bands present in the 

refolded protein, suggesting that it was more heterogeneous than the native version of the 

protein. 

 

3.10 Summary 

 

Three candidate glyphosate binding proteins have been purified, and ITC experiments 

suggest they are able to bind 2-AEP. It is likely that the biphasic binding isotherms that were 

obtained for OaPhnD and RlPhnD when titrated against 2-AEP were caused by two separate 

reactions occurring, such as those observed by Berg & Sambasivarao (2013), although this 

does not explain why this biphasic pattern was not seen when OaPhnD was titrated against 2-

AEP without NaCl, or when OaPhnD was titrated against glyphosate. One possibility is that 

the protein may not be correctly refolded following denaturation with Guanidine-HCl. 

Circular dichroism could be used to establish whether the protein folding is consistent before 

and after refolding; however, the combination of techniques already used have established  
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A) ES-MS spectrum of refolded OaPhnD under denaturing conditions. B) Size exclusion 

chromatogram of refolded OaPhnD. C) Coomassie stained native PAGE analysis of refolded 

OaPhnD and native OaPhnD. 

Figure 3.19. Analysis of heterogeneity of OaPhnD. 
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that OaPhnD is not homogenous in solution. ES-MS has also revealed that a proportion of the 

protein has uncleaved signal peptide. This might be eliminated by using an alternative 

method for periplasmic extraction with lower yield but less cytoplasmic contamination (Quan 

et al., 2013). The two distinct peaks shown by size exclusion chromatography are unlikely to 

correspond to the two peaks identified by mass spectrometry as the distance between them 

is more suggestive of dimer formation. Coupling the size exclusion chromatography to multi 

angle light scattering could be used to accurately determine the molecular masses of these 

two peaks. 

 

It has not been possible to solve the phases for the crystal structure of the R. leguminosarum 

VSX9 PhnD homologue. As there is no biophysical evidence to suggest that this protein is able 

to bind glyphosate with high affinity, solving this structure was not prioritised. It is possible 

that if the structure of another PhnD homologue with more sequence similarity with R. 

leguminosarum VSX9 PhnD is solved as part of this project, it may then be possible to also 

solve a crystal structure for R. leguminosarum VSX9 PhnD by molecular replacement. One 

objective of this work is to obtain a structure of a glyphosate bound protein in order to 

determine a structure-function relationship. 

 

Preliminary results have suggested that the 3 PhnD homologues examined are able to bind 

phosphonates, and one homologue has shown evidence of glyphosate binding, supporting the 

predictions made in silico. These results, however, suggest these proteins have higher affinity 

for 2-AEP than for glyphosate. This is problematic for a biosensor scaffold, as 2-AEP is highly 

abundant in the environment and therefore could cause false positives in an assay for 

glyphosate. It will therefore be necessary to develop a protein scaffold with specificity for 

glyphosate binding over 2-AEP binding. Many of the bacterial strains used in this study were 

isolated prior to the beginning of very heavy use of glyphosate with the introduction of 

genetically resistant crops in 1996 (Pollegioni et al., 2011). By isolating further glyphosate 

degrading bacteria from a soil sample that has seen long term glyphosate exposure, it could 

be possible to identify organisms that have evolved more efficient glyphosate transport 

systems. This has not been possible within the scope of this work because the use of 

glyphosate is limited within the UK and importing soil is strictly controlled for biosecurity 

reasons. Another strategy for obtaining a homologue of PhnD able to bind glyphosate is 

directed evolution (reviewed by Packer & Liu, 2015). It may, however, be difficult to improve 

specificity and affinity for glyphosate, as PhnD might not be the rate limiting step for growth 

with glyphosate as the sole P-source. It is also possible that the velocity of the transporter 

would be improved rather than the affinity or specificity for glyphosate. Rational design 

(reviewed by Lutz, 2011) will also be used to optimise the binding of glyphosate to PhnD. 
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This will start with identifying a PhnD homologue that is stable and homogenous rather than 

focussing on glyphosate binding of the wild-type protein (discussed in Chapter 5).  
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 Phosphonate transport in 

Sinorhizobium meliloti 1021 requires two 

separate ABC transporters with overlapping 

but specific functions 
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Sinorhizobium meliloti is a well characterised Gram-negative soil bacterium with nitrogen 

fixing capabilities. S. meliloti 1021 has been shown by Liu et al. (1991) and confirmed in 

Chapter 3 to utilise glyphosate as a sole phosphorus source. S. meliloti is able to degrade a 

wide range of phosphonates in addition to glyphosate using the C-P lyase complex (Parker et 

al., 1999). An ABC transporter homologous to the PhnCDE transporter usually associated 

with the C-P lyase phosphonate catabolism pathway is responsible for the transport of many 

phosphonate compounds (Voegele et al., 1997, Fig. 4.1A). The transporter responsible for the 

uptake of glyphosate has not been identified in S. meliloti or any other bacterial species. An 

additional pathway to C-P lyase for the catabolism of 2-AEP has been identified (Borisova et 

al., 2011). However, the putative ABC transporter encoded within the same operon as the 

genes for this pathway has not been characterised (Fig. 4.1B). The aim of the work in this 

Chapter is to use a combination of biophysical and genetic techniques to characterise how S. 

meliloti transports glyphosate and other phosphonates into the cell. 

 

4.1 Construction of phosphonate transport deletion mutants in S. meliloti 

 

To identify the major routes by which phosphonates enter the cell for the provisioning of 

phosphate, a series of strains of S. meliloti 1021 with deletions of the known and putative 

phosphonate transporters were created. The PhoCDET transporter is homologous to PhnCDE 

and functions as a transporter for many phosphonate compounds (Voegele et al., 1997). 

PhoCDET is also responsible for high affinity uptake of inorganic phosphate in S. meliloti 

1021, as this strain has a loss of function mutation in the genes encoding the PstSCAB ABC 

transporter usually responsible for high affinity inorganic phosphate transport (Yuan et al., 

2006). In addition to the PhoCDET transporter, there is a putative ABC transporter encoded 

within the same operon as the genes encoding a 2-AEP specific catabolism pathway (Borisova 

et al., 2011). Borisova et al. (2011) predicted that this putative transporter functions as an 

additional phosphonate transporter specific for 2-AEP. 

 

Phosphonate transporter deletion mutants of S. meliloti 1021 were created using the 

methods set out by Flannagan et al. (2008), as described in Chapter 2, in collaboration with 

Prof. Ivan J. Oresnik and Dr Justin P. Hawkins (University of Manitoba). Unmarked deletions 

of the genes encoding the PhoCDET transporter, SMb21173 to SMb21170 (S. meliloti SJR2, Fig. 

4.2A) and the putative 2-AEP specific transporter encoded by SMb21540 to SMb21542 (S. 

meliloti SJR1, Fig 4.2A) were constructed. A double mutant with genes encoding both the 

putative 2-AEP specific transporter and PhoCDET deleted (S. meliloti SJR3) was also 

constructed. Each deletion was designed to leave a short scar peptide in order to ensure
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Figure 4.1. Bacterial phosphonate transport and degradation in S. meliloti 1021. 

A) The phn specified C-P lyase genes and their products. The PhoCDET transporter is an ABC transporter homologous to the PhnCDE transporter and can transport a 

range of phosphates and inorganic phosphate. The C-P lyase genes are split into two genomic locations in this organism. B)  The phosphonoacetate hydrolase pathway, 

distinct from C-P lyase. A putative ABC transporter is encoded within the same operon as the genes encoding the enzymes of this pathway. Genes encoding putative 

enzymes are shown in blue, regulatory proteins in green and transport proteins in red. 1-3 indicate the putative 2-AEP specific ABC transporter. Genes of unknown 

function are shown in white.



 
 

 

 

Figure 4.2. Genomic locations and PCR analysis of phosphonate transporter deletions in S. 
meliloti 1021. 

 
 
A) The locations of phosphonate transporter deletions within genes predicted to be involved in 

phosphonate catabolism and transport in S. meliloti 1021 are indicated. Regulatory genes are 

labelled in green, genes with known enzymatic activity are labelled in blue, genes for transport 

proteins are labelled in red and genes for auxiliary proteins of phosphonate catabolism are 

labelled in purple. 1045 indicates the domain of unknown function gene DUF1045. Genes not 

involved in phosphonate catabolism are labelled white. 1 (black text) indicates a putative 

regulatory protein, 2 (black text) indicates a putative sodium dependent transporter, and 3 (black 

text) indicates a putative outer membrane secretion protein. Genomic context obtained from 

Microbial Genome Context Viewer (Overmars et al., 2013). Adapted from Hove-Jensen et al. 

(2014) and Borisova et al. (2011). B) Agarose gel analysis of PCR products to confirm deletions of 

phosphonate transporters. Phn indicates primers annealed outside flanking regions of phoCDET 

genes and Aep indicates primers annealed outside the flanking regions for the SMb21540-

SMb21542 genes (1-3, white text). WT indicates S. meliloti 1021 and SJR1, SJR2 and SJR3 indicate 

S. meliloti 1021 derived phosphonate transporter deletion strains. M indicates DNA ladder. 
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that adjacent genes in the operon were not affected. In order to produce transporter 

deletions at two separate sites in the genome, a method for creating an unmarked deletion 

was required. Flanking regions of approximately 500 bp upstream and downstream of the 

coding regions for each phosphonate transporter were amplified using PCR. Splice overlap 

extension (SOEing) PCR (Horton, 1995) was used to join these flanking regions, leaving a 

gene encoding a short scar peptide. An I-SceI restriction site was introduced at the end of the 

flanking DNA. These constructs were ligated into the pJQ200sk vector, a plasmid unable to 

replicate in S. meliloti, meaning that following conjugation, its incorporation into the genome 

using homologous recombination can be selected for. Upon the introduction of a plasmid 

constitutively expressing the I-SceI restriction enzyme, a double stranded break was created 

in the genomic DNA which was subsequently repaired through homologous recombination. 

Colonies were screened for gentamycin sensitivity suggesting that the incorporated plasmid 

is absent, leaving either a transporter deletion or a reversion to wild type. Approximately 

80% of patched colonies had developed gentamycin sensitivity following tripartental mating. 

Colonies were screened for the absence of the phosphonate transporter encoding genes using 

PCR with primers that anneal outside the flanking regions used for making the deletion 

constructs. Approximately 50% of colonies screened by PCR had a band corresponding to a 

transporter deletion, and 50% had a band corresponding to reversion to the wild-type. A final 

PCR screen was conducted using genomic DNA from one colony of each deletion strain (Fig. 

4.2B), and the bacteria from these colonies were grown for use in further work. 

 

4.2 S. meliloti 1021 can utilise a range of phosphonates including glyphosate 

 

To establish the range of phosphonates that can be utilised by S. meliloti 1021, experiments 

were conducted to confirm the results of Parker et al. (1999) and Liu et al., (1991). S. meliloti 

1021 was grown in Y minimal succinate medium with a range of phosphorus sources present 

at 0.5 mM to assess their ability to support growth (Fig. 4.3A). These phosphonates were 

expanded from the 2-AEP and glyphosate used in Chapter 3 to also include methylphosphonic 

acid, ethylphosphonic acid and AMPA. Each experiment had a similar 0.5 mM of phosphonate 

provided, or 0.4 mM inorganic phosphate added as a positive control. 
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Figure 4.3.  Analysis of growth of S. meliloti phosphonate transporter deletion mutants. 

Growth was measured for S. meliloti strains A) 1021, B) SJR2 (ΔphoCDET), C) SJR 1 (ΔSMb21540-

SMb21542) and D) SJR3 (ΔphoCDETΔSMb21540-SMb21542) in Y minimal succinate medium with 

0.5 mM of the specified substrate as the sole phosphorus source. Assays were conducted using a 

96 well plate, read by an Epoch 2 microplate reader. Assays were conducted at 30°C with shaking. 

An average of three biological replicates is shown, with standard deviation error bars. Readings 

were corrected to a blank containing Y media. Abbreviations: EP, ethylphosphonic acid. MP, 

methylphosphonic acid. 
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The wild-type strain grows best with K2HPO4 and AMPA, and after a slightly longer lag, with 

methylphosphonic acid. After a further lag of about 10 hours, the bacteria then grow on both 

2-AEP and ethylphosphonic acid. Growth on glyphosate occurs from early in the experiment 

and increases slowly during the first 50 hours of the experiment. In contrast, in the absence 

of any added phosphorus there is no growth of the organism. By 48 hours, growth on 

methylphosphonic acid had reached a similar final OD600 to that of K2HPO4; however, growth 

on glyphosate resulted in a reduced yield, reaching the stationary phase of growth by 50 

hours and only reaching a final OD600 of 0.3. Growth on 2-AEP or ethylphosphonic acid had 

the longest lag phases of 30 hours each; however, they reached a similar final OD600 to that of 

growth on K2HPO4 by 70 hours (fig. 4.3A). 

 

4.3  The PhoCDET transporter is responsible for the transport of a range of 

phosphonates including glyphosate 

 

To determine the range of phosphonates for which PhoCDET is required for transport, 

bacteria were similarly grown in Y minimal succinate medium with a range of phosphorus 

sources present at 0.5 mM to assess the importance of this transporter in the uptake and 

subsequent growth of the bacteria (Fig. 4.3B). In S. meliloti SJR2, the ΔphoCDET mutant, 

growth on many of the phosphorus sources is totally abolished up to 70 hours of growth, 

including aminomethylphosphonic acid, glyphosate, methylphosphonic acid and 

ethylphosphonic acid. Growth on K2HPO4 is also slightly delayed and slower than in the wild-

type, although it does reach a similar final OD600 as the wild-type strain, consistent with this 

transporter having a role in inorganic phosphate transport (Voegele et al., 1997). In stark 

contrast, growth on 2-AEP appeared only slightly affected, with a small increase in the lag 

phase, but then essentially similar growth kinetics to the wild-type strain, reaching a similar 

OD600 of about 0.6 as the wild-type strain (Fig. 4.3B). These data suggest that PhoCDET is the 

major transporter for phosphonates, but that 2-AEP, the most abundant of the environmental 

phosphonate, appears to have additional routes to enter the cell. This is the first molecular 

identification of a transporter for glyphosate, demonstrating that it is transported solely by 

PhoCDET and that no alternative transporter for glyphosate exists in S. meliloti. 

 

4.4 A second transporter for 2-AEP in S. meliloti 1021 

 

To investigate the additional transporter responsible for 2-AEP uptake, growth assays were 

conducted in Y minimal succinate medium using the S. meliloti SJR1 strain with a deletion of 
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the genes encoding the putative 2-AEP specific transporter. S. meliloti SJR1 showed a similar 

phenotype to the wild-type strain for growth on all of the compounds tested except 2-AEP 

(Fig. 4.3C). Small differences in the stationary phase OD600 between this mutant and the wild 

type are likely to be accounted for in variation between microplate reader replicates rather 

than biological differences. The lag phase for growth on 2-AEP was extended from 

approximately 30 hours in the wild-type strain to approximately 45 hours in the ΔSMb21540-

SMb21542 mutant. These results show that PhoCDET is capable of transporting 2-AEP and 

that the putative 2-AEP specific transporter is not essential in the transport of any of the 

compounds tested, but suggests it has a possible contribution to 2-AEP transport. 

 

Finally, the strain in which both transporters were disrupted was investigated for growth on 

phosphonates (Fig. 4.3D). The ΔphoCDETΔSMb21540-SMb21542 mutant, S. meliloti SJR3 (Fig. 

4.3D) was unable to grow on all of the phosphonates tested, suggesting that the putative 2-

AEP transporter is responsible for 2-AEP transport in the absence of the PhoCDET 

transporter, and that no further high affinity transporters able to transport these 

phosphonates from this medium to produce detectable growth within 70 hours are encoded 

within the S. meliloti genome. This mutant had a similar growth phenotype on K2HPO4 to that 

of the ΔphoCDET mutant, suggesting that the putative 2-AEP specific transporter is also not 

involved in transport of inorganic phosphate. 

 

4.5 The putative 2-AEP specific SBP is distinct from PhnS and is present in many 

bacterial phyla 

 

In addition to the genetic approaches used to demonstrate that SMb21540 to SMb21542 

encode an additional phosphonate transporter specific for 2-AEP, examination of the 

substrate binding protein of this transporter from S. meliloti, SMb21540, was undertaken. 

The aims of this work were to provide biophysical evidence for this being a 2-AEP specific 

binding protein and to elucidate how periplasmic phosphonate binding protein sequence 

relates to substrate specificity. Initially, bioinformatics was used to predict the structure of 

the protein and learn about the conserved residues which may be important for 2-AEP 

affinity and specificity. 

 

An alignment was constructed of orthologous proteins to SMb21540, selected using 

reciprocal BLAST searches (Fig. 4.4). Each protein added to the alignment was encoded 

within the same pathway as at least one putative gene encoding a phosphonate degradation  
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Figure 4.4. Alignment of selected SMb21540 orthologues. 

Alignment of examples of SMb21540 orthologues confirmed by reciprocal BLAST searches. A 

selection of different bacterial classes are shown. Residues are coloured by sequence identity. 

Visualised using ESPript (Robert and Gouet, 2014).  
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Figure 4.5. Maximum-likelihood phylogenetic analysis of SMb21540. 

Orthologues of SMb21540 were selected based on a reciprocal BLAST search (Altschul et al., 1990) 

with SmAepA. All orthologues were encoded within the same operon as at least one putative 

gene of phosphonate degradation. Colours indicate bacterial class: fusobacteria, orange; gram-

positive species, red; gamma-proteobacteria green; alpha-proteobacteria pink; beta-

proteobacteria, blue; spirochaetes, yellow; epsilon and delta-proteobacteria, purple. An arrow 

indicates the position of SMb21540. Alignment was performed using MUSCLE (Edgar, 2004), tree 

was produced using UGENE (Okonechnikov et al., 2012), and the figure was created using iTOL 

(Letunic and Bork, 2016). 
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enzyme. The alignment shows several highly conserved regions including an SSGTG motif 

starting at residue 168. Phylogenetic analysis (Fig. 4.5) shows that SMb21540 is present 

across a range of bacteria, including alpha, beta and gamma proteobacteria and several gram-

positive species. The homology model predicts the conserved SSGTG motif to be between the 

two domains of the protein, in a location likely to serve as a phosphonate binding site (Fig. 

4.6). The putative phosphonate binding protein from the phosphonatase pathway (Jiang et al., 

1995, Errey and Blanchard, 2006), PhnS is not an orthologue of SMb21540, despite having 

the same predicted function. PhnS does not have the same conserved putative phosphonate 

binding residues as SMb21540. 

 

4.6 Cloning, expression and purification of the putative 2-AEP specific SBP 

 

In order to examine whether SMb21540 is able to bind 2-AEP and other phosphonates, a 

strategy was needed to purify enough protein to conduct biochemical and structural analysis 

trials. SMb21540 was therefore expressed using a recombinant E. coli system. A homology 

model was constructed for SMb21540 using the AfuA sugar phosphate SBP from 

Actinobacillus pleuropneumoniae with which SMb21540 shares 35% sequence identity. This 

model predicted that the two cysteine residues present could be in close enough proximity to 

form a disulphide bond (Fig. 4.6), so the protein was expressed from the pET20b vector 

(Novagen) with a pelB leader sequence for periplasmic targeting and an C-terminal hexa 

histidine-tag for nickel affinity chromatography. A codon optimised synthetic gene was 

purchased (ThermoFisher Scientific), due to the high frequency of codons in the native 

sequence which are rare in E. coli. The sequence of the native signal peptide of SMb21540 

was predicted using SignalP (Petersen et al., 2011) and the coding region for this was 

removed. The synthetic gene encoding SMb21540 was sub-cloned into the pET20b vector 

using XhoI and NcoI restriction endonucleases and a T4 DNA ligase. 

 

The plasmid containing SMb21540 was transformed into BL21 (DE3) for overexpression. 

Small scale expression trials were conducted at 30°C and analysed by Coomassie stained SDS-

PAGE for accumulation of protein at the expected molecular weight of 35.9 kDa (Fig. 4.7A). 

This analysis revealed a densely stained protein band at the expected molecular weight 

compared to the uninduced sample, at both 3 hours and 16 hours post induction. This 

overexpression was not consistent in BL21 (DE3), so the construct was subsequently 

transformed into BL21 (DE3) pLysS, a strain which expresses a T7 lysozyme to suppresses  
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Figure 4.6. Structural model of SMb21540. 

A homology model of the predicted structure of SMb21540 was created using the PHYRE2 protein 

fold recognition server (Kelly et al., 2015). Conserved residues between all orthologues of 

SMb21540 are shown in yellow and cysteine residues of SMb21540 are shown in blue. Predicted 

binding site residues displayed as sticks. Figure produced using Discovery Studio (Accelrys). 
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Figure 4.7. SDS PAGE analysis of overexpression and periplasmic extraction of SMb21540. 

 
A) Expression trials were conducted for SMb21540. The total protein from cell lysates was 
analysed using Coomassie stained SDS-PAGE gels. U is uninduced sample, and other lanes are 
labelled with time post induction in hours. B) Periplasmic extraction of SMb21540. Protein 
samples were analysed using Coomassie stained SDS-PAGE gels. M is a pre-stained marker, WC is 
the whole cell lysate SP is the spheroplast and Per is the periplasmic fraction. An arrow indicates 
the position of SMb21540 on the gel. 
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leaky expression. This lead to the expression levels of SMb21540 being consistently high 

when the same conditions were used. SMb21540 was extracted from the periplasm using the 

one-step extraction method with sucrose, EDTA and lysozyme (Fig. 4.7B). A densely stained 

band was present at the expected molecular weight for SMb21540 in both the spheroplast 

and periplasmic fractions, suggesting that the protein was correctly targeted to the 

periplasm; however, the high expression levels may have exceeded the cell’s periplasmic 

secretion capacity, meaning that some of the protein remained in the cytoplasm. 

 

In order to remove contaminating material, SMb21540 was purified using a His-trap column 

and an AKTA Start (Fig. 4.8). A guanidine-HCl gradient method was used to unfold the protein 

on the column to remove any rebound ligand. SDS-PAGE analysis of the elution fractions (Fig. 

4.8B) revealed a densely stained band at the expected molecular weight for SMb21540 in 

elution fractions 3 and 4. The purification resulted in an overall yield of approximately 8.5 mg 

of protein per litre of culture, calculated using an A280 measurement with a molecular 

extinction coefficient, ε, of 71390 M-1cm-1. There were low levels of contaminating proteins, 

meaning that the sample was suitable for crystallisation trials and ligand binding assays. 

 

4.7 CD spectroscopy reveals that secondary structure of SMb21540 is not altered by 

refolding 

 

Circular dichroism (CD) spectroscopy was used to determine whether the guanidine-HCl 

refolding had altered the secondary structure of the SMb21540. CD uses polarised light to 

examine the features of chiral molecules. Native and refolded samples of SMb21540 were 

examined between wavelengths of 198 and 260 nm (Fig. 4.9). The native protein was scaled 

by a factor of 0.24, suggesting an error determining its concentration. Curves for both the 

native and refolded protein followed the same shape, suggesting refolding caused no 

alteration to the secondary structure. This meant that the refolded SMb21540 was suitable 

for use in ligand binding assays. At the wavelengths used, it is difficult to draw any 

conclusions about the secondary structure composition of this protein, particularly as 

structural modelling predicts it to contain a mixture of alpha-helices and beta-sheets (Fig. 

4.6). 
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Figure 4.8. Analysis of nickel affinity chromatography of SMb21540. 

A) UV absorbance was measured using an AKTA Start as SmAepA was eluted from a 5 mL His-trap 

column (GE). B) Coomassie stained SDS-PAGE analysis of corresponding elution fractions of 

SmAepA. Protein samples were analysed using Coomassie stained SDS-PAGE gels. M is a pre-

stained protein marker. E indicates elution fraction. The arrow indicates the position of SmAepA 

on the gel. 

A) 
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Figure 4.9. CD spectra of native and refolded SMb21540. 

CD spectroscopy was used to examine the secondary structure of native (blue solid line) and 

refolded (red dashed line) SMb21540.  
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4.8 Further purification of the putative 2-AEP specific SBP using SEC 

 

Size-exclusion chromatography (SEC) was used to establish whether the purified SMb21540 

was homogenous in solution, and to obtain a sample of higher purity for further 

crystallisation trials. SEC separates molecules by size, with larger proteins eluting more 

quickly. UV absorbance readings as SMb21540 was eluted from the size exclusion column 

showed three distinct peaks, suggesting that it had formed oligomers (Fig. 4.10A). SDS-PAGE 

analysis showed a lightly stained second band at a higher molecular weight in addition to 

SMb21540 in fraction 11 from the first elution peak (Fig. 4.10B). This suggests a small 

amount of a contaminating protein co-purified with a proportion of SMb21540. This peak 

was not present in the analysis of the affinity chromatography used to purify SMb21540 (Fig. 

4.8); however, this could be because the 55kDa protein was concentrated in the SEC elution 

fraction, and it was too lightly stained to be visible in the affinity chromatography sample. 

The remaining elution fractions only had protein bands visible at the expected molecular 

weight of SMb21540 (Fig. 4.10B), further suggesting that the second elution peak was a 

heterooligomer. 

 

4.9 Crystallisation trials of the putative 2-AEP specific SBP 

 

One aim of this work was to determine the structure of SMb21540, in order to understand the 

mechanism of substrate binding. Crystallisation trials were therefore conducted for this 

protein. Crystallisation trials were initially set up using refolded SMb21540 purified only 

using nickel chromatography. SMb21540 was concentrated to approximately 200 µM (7.2 

mg/mL). 2-AEP was added at a final concentration of 100 µM. Crystallisation trials were 

conducted using the sitting drop methods with the JCSG screen (Molecular Dimensions) and 

the PEG/Ion screen (Hampton research). A possible crystal was identified in well F6 of the 

PEG/ION screen containing 8% Tacsimate pH 8 solution (Hampton Research) and 20% PEG 

3350 (Fig. 4.11A). A larger scale hanging drop crystal tray was set up to optimise crystal 

formation using SMb21540, both with and without the addition of 100 µM 2-AEP. 

Concentrations of PEG 3350 and Tacsimate solution were varied between wells; however, no 

suitable protein crystals formed under these conditions. Further crystallisation trials were 

conducted using SMb21540 after SEC purification from fractions 14 and 15 (Fig. 4.10), most 

likely to be the monomeric form of SMb21540. Crystal screen HT (Hampton Research) was 

used, using the sitting drop method. Protein was concentrated to approximately 420 µM (15 

mg/mL) and wells were set up both with and without the addition of 2.5 mM 2-AEP. This 

resulted in needle clusters forming in the absence of ligand in wells A10 (Fig. 4.11B, 0.2 M 
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Figure 4.10. Size exclusion chromatography analysis of SMb21540. 

A) UV absorbance was measured using an AKTA Start (GE) as fractions of SmAepA were eluted 

from a HiPrep Sephacryl S100 column (GE). B) Coomassie stained SDS-PAGE analysis of 

corresponding elution fractions of SMb21540. Protein samples were analysed using Coomassie 

stained SDS-PAGE gels. M is a pre-stained protein marker. T indicates elution fractions. The arrow 

indicates the position of SMb21540 on the gel. 

A) 
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Figure 4.11. Images of SMb21540 protein crystal trials. 

  
Image taken of crystals of SMb21540 growing in A) well F6 of the PEG/ION screen (Hampton 
Research); B) well A10, C) well C4, D) well F1 of Crystal Screen HT (Hampton Research). 
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ammonium citrate, 0.1 M sodium acetate trihydrate pH 4.6, 30% PEG 4000), C4 (Fig. 4.11C, 

0.2 M sodium acetate trihydrate, 0.1 M sodium cacodylate trihydrate pH 6.5, 30% PEG 8000) 

and F1 (Fig. 4.11D, 0.2 M ammonium sulphate, 0.1 M sodium acetate trihydrate pH 4.6, 0.1 M 

sodium citrate tribasic dihydrate pH 4.6, 30% PEG monomethyl ether 2000). None of these 

crystals were suitable for analysis by X-ray diffraction; therefore, the interaction between 

SMb21540 and 2-AEP would have to be determined using other biophysical techniques to 

measure binding affinity. 

 

4.10 The putative 2-AEP specific SBP binds 2-AEP specifically, with high affinity 

 

In order to determine whether SMb21540 bound 2-AEP as predicted, to determine its 

specificity for 2-AEP over other phosphonates, and to determine the Kd for this interaction, 

various biophysical techniques were used to measure ligand binding. The thermal shift assay 

utilises a fluorescent dye whose fluorescence increases when bound to the hydrophobic 

regions of an unfolded protein. Ligand binding often increases the thermal stability of a 

protein (Huynh and Partch, 2016), and therefore this assay can be used to indirectly screen 

for compounds that are able to bind a protein. 

 

Phosphonate ligands were added to 1 µM SMb21540 and 1x protein thermal shift dye 

(ThermoFisher Scientific) at concentrations of 1, 10 and 100 µM (Fig. 4.12, Table 4.1). Melt 

curve analysis was performed by measuring the fluorescence at temperatures between 25°C 

and 98°C. 2-AEP increased the Tm of SmSMb21540 at all of the concentrations tested (Table 

4.1), suggesting it had a strong stabilising effect on SMb21540. This change did not saturate 

between 10 and 100 µM, which was not consistent with our predictions of a high affinity 

interaction, where an expected Kd would be below 1 µM (Fig. 4.12). This is likely to be 

because thermal shift analysis does not directly measure binding. Although thermal shift can 

be used to determine Kd (Kranz and Schalk-Hihi, 2011), for the purposes of this work it was 

only used qualitatively. For AMPA the change in Tm was only 1°C at the highest concentration 

tested, 100 µM, suggesting only a very weak interaction. Methylphosphonic acid, 

ethylphosphonic acid and glyphosate did not produce any change in Tm, suggesting that 

SMb21540 is specific for 2-AEP over other phosphonate ligands. 

 

The interaction between SMb21540 and phosphonates was further probed by intrinsic 

tryptophan fluorescence spectroscopy to measure phosphonate binding to SMb21540. 

Adding 2-AEP to SMb21540 resulted in a decrease in fluorescence with 297 nm excitation  
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Figure 4.12. Thermal shift analysis of SMb21540 specificity for 2-AEP. 

 

Average derivative melt curves from three replicates are shown for SMb21540 at a concentration 

of 1 µM. Phosphonate ligands were added at a concentration of A) 1 µM, B) 10 µM and C) 10 µM. 

Analysis performed with StepOne software. Ligand free control is shown in blue, 2-AEP in red, 

AMPA in green, ethylphosphonic acid in purple, methylphosphonic acid in pink and glyphosate in 

orange. 
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Table 4.1.  Changes in melting temperature of SMb21540 determined using thermal shift 
analysis. 

Ligand 1 µM 10 µM 100 µM 
  ΔTm (°C)  

2-AEP 3.8 7.4 10.5 
AMPA - - 1 
MP - - - 
EP - - - 
Glyphosate - - - 
K2HPO4 - - - 

 

Change in melting temperature for phosphonates added to SMb21540 protein determined from 

thermal shift assay. Tm with no ligand present was 55.5 °C. 
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Figure 4.13. Intrinsic tryptophan fluorescence spectroscopy analysis of SMb21540. 

A) Representative fluorescence emission spectra at 297 nm excitation for buffer only (blue), 0.05 

µM Smb21540 (green) and 0.05 µM SMb21540 with a saturating concentration of 2-AEP added 

(orange). B) Representative trace for a titration with excitation at 295 nm and emission at 340 

nm. Arrows indicate an increase of 0.05 µM 2-AEP concentration. C) Example of a curve with tight 

binding showing 0.1 µM additions of 2-AEP into 0.05 µM SMb21540. 
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which saturated at approximately 15%, with the maximum difference at approximately 340 

nm emission (Fig. 4.13A). When this was titrated, it produced tight binding that did not fit 

well to the hyperbolic curve (Fig. 4.13B). This suggested that the Kd of this interaction was 

below the concentration of protein added, 50 nM. AMPA, methylphosphonic acid, 

ethylphosphonic acid, glyphosate and K2HPO4 added to SMb21540 up to concentrations of 30 

µM did not reproducibly result in a change in the fluorescence measured, suggesting that 

there was not a high affinity interaction between these compounds and SMb21540 that 

resulted in a movement of tryptophan residues within the protein. 

 

Finally, ITC was used as a non-optical method to confirm the affinity of the interaction 

between SMb21540 and 2-AEP, and predict the stoichiometry of the interaction. ITC was run 

with 4 replicates (Fig. 4.14) and showed an interaction with an average affinity of 17.8 ± 3.75 

nM. This confirmed the results of the fluorescence spectroscopy, of a high affinity interaction 

with a Kd of less than 50 nM. The mean calculated stoichiometry for this interaction was 0.40 

± 0.075, suggesting that not all of the protein was capable of binding 2-AEP. This is possibly 

due to the protein not being homogenous, as shown by SEC (Fig. 4.10). There is a possibility 

that the protein from at least one of the elution peaks from the size exclusion column is 

incapable of binding 2-AEP. This ITC result confirmed the prediction of a high affinity 

interaction between SMb21540 and 2-AEP. 

 

4.11 Summary 

 

The first evidence for the herbicide glyphosate being transported by a homologous system to 

the PhnCDE transporter in the rhizosphere bacterium Sinorhizobium meliloti has been shown 

in this work. An additional transporter has been identified that is specific for 2-AEP and 

whose binding protein, SMb21540, is able to bind 2-AEP with high affinity. Binding assays 

have not shown SMb21540 to be able to bind other phosphonate compounds with high 

affinity. This system is distinct from the previously studied 2-AEP specific transporter 

associated with the phosphonoacetaldehyde pathway. This transporter was therefore named 

AepABC, with AepA as the SBP, AepB as the nucleotide binding domain and AepC as the 

transmembrane domain. 
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Figure 4.14. ITC analysis of the interaction between SMb21540 and 2-AEP. 

Representative binding isotherm of 20 µM SMb21540 upon the addition of 2-AEP. Calculated 

binding parameters are displayed. 
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 Rational design of a protein with 

enhanced selectivity for glyphosate 
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In Chapter 3, candidate glyphosate binding proteins were identified and characterised. These 

included OaPhnD for which there was biophysical evidence of glyphosate binding, and in 

Chapter 4 the PhnCDE transporter, which was shown through genetic studies to be essential 

for glyphosate utilisation in S. meliloti. Because of low expression levels and protein 

heterogeneity, neither of these proteins were suitable for biosensor use. Due to this, a 

rational design approach was adopted with the aim of engineering a glyphosate binding 

protein from a stable protein scaffold. 

 

5.1 Selection of a scaffold for rational design towards glyphosate binding 

 

In order to perform rational engineering of the binding site of a PhnD homologue, a scaffold 

for rational engineering needed to be identified. This scaffold would be a PhnD homologue 

which was stable, monomeric, expressed at high levels in E. coli and was amenable to ligand 

binding assays. EcPhnD had been purified using an N-terminal hexa histidine-tag and well 

characterised biophysically and structurally (Rizk et al., 2006; Alicea et al., 2011). EcPhnD, 

however, forms a dimer using a C-terminal alpha helix (Alicea et al., 2011, Fig 5.1A), which 

means the stoichiometry of ligand binding assays would not be a simple 1:1 interaction and 

could cause problems with immobilisation. Whilst it had been shown to be possible to 

produce monomeric EcPhnD by truncating the C-terminus (Alicea et al., 2011), there was also 

a structure for an additional SBP for the Pseudomonas aeruginosa homologue of PhnD, 

PaPhnD (PDB ID: 3N5L). This had relatively high sequence identity of 64% with EcPhnD (Fig. 

5.1B). PaPhnD also lacks the unstructured region at the C-terminus responsible in EcPhnD for 

dimerisation (Alicea et al., 2011), and has lower sequence identity with EcPhnD in the C-

terminal alpha helix than other regions (Fig. 5.1). This suggests that PaPhnD would not form 

a physiological dimer in the same manner as EcPhnD. The crystal structure of PaPhnD shows 

it to be monomeric. PaPhnD also has no cysteine residues, meaning it does not require the 

formation of disulphide bonds for correct folding. PaPhnD is therefore suitable for expression 

in the E. coli cytoplasm, which can result in much higher yields than the periplasmic 

expression strategy used for the proteins expressed in Chapters 3 and 4. Before rational 

design could be performed, PaPhnD would need to be tested for expression levels, oligomeric 

state and relative phosphonate binding affinities using the wild-type protein. 
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Figure 5.1.  Comparisons between the sequences and structures of PaPhnD and EcPhnD. 

A) Protein structures of PaPhnD (PDB ID: 3N5L) and EcPhnD (Alicea et al., 2011, PDB ID: 3P7I). 
Structures were aligned and figure was created using Discovery Studio (Accelrys). Structures were 
coloured according to secondary structure. The dimer forming region of EcPhnD is indicated with 
a box. B) A sequence alignment of EcPhnD and PaPhnD was created using MUSCLE and displayed 
using ESPript (Robert and Gouet, 2014). Secondary structure of EcPhnD is shown. 
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5.2 Establishing the ability of P. aeruginosa PAO1 to utilise phosphonates 

 

In order to establish which phosphonate compounds P. aeruginosa was able to utilise, and 

therefore able to transport, a growth assay was conducted in minimal media using different 

phosphonate compounds as the sole phosphorus source (Fig. 5.2). Growth on Na2HPO4 

started after approximately 5 hours lag phase and reached and OD650 of approximately 0.5 by 

14 hours. Growth on 2-AEP followed a similar growth kinetic and similar yield to 

orthophosphate, showing that this compound is able to be transported and catabolised by P. 

aeruginosa PAO1. Growth on methylphosphonate was also observed following a slightly 

longer lag phase of approximately 6 hours. The overall yield for growth on methylphosphonic 

acid was slightly lower than 2-AEP and orthophosphate, reaching a slightly lower OD650 of 

approximately 0.4 after 20 hours. There was no growth up to 24 hours on AMPA, glyphosate, 

or ethylphosphonic acid. This suggested that the organism lacked the ability to either 

transport or catabolise these compounds. 

 

These results suggested that if the PhnCDE transporter was the sole phosphonate transporter 

in this organism, that it would be able to bind and transport 2-AEP and methylphosphonate 

well enough to satisfy the cell’s phosphorus requirements. 

 

5.3 Cloning paPhnD into pETYSBLIC-3C using LIC 

 

Because PaPhnD has no cysteine residues, it does not require the oxidising environment of 

the periplasm to form disulphide bonds for correct folding. It is therefore possible to obtain 

correct folding when recombinantly expressing this protein in the cytoplasm, which can 

result in a much higher protein yield than periplasmic expression. The vector pETYSBLIC-3C, 

a derivative of pET28a (Fogg and Wilkinson, 2008), was selected for this purpose, due to its 

compatibility with ligation independent cloning (LIC), a technique which removes the 

requirement for restriction endonuclease digest and DNA ligation by using a T4 polymerase 

to create complementary overhangs in the plasmid DNA. The native signal peptide was 

predicted using SignalP (Petersen et al., 2011), and paPhnD was cloned without this 

sequence. Primers for colony PCR to amplify paPhnD from P. aeruginosa PAO1 were designed 

to contain the LIC overlap regions  for cloning. The PCR product from this reaction was 

incubated with T4 polymerase and PCR linearised pETYSBLIC-3C vector. When transformed 

into chemically competent E. coli BL21 (DE3) cells prepared using the method described in  
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Figure 5.2. Analysis of growth of P. aeruginosa PA01 with different phosphonates as the sole 
phosphorus source. 

Microplate growth assays were conducted with P. aeruginosa PA01 grown in MOPS buffered 

minimal medium with specified compounds at 0.5 mM as the sole phosphorus source. Growth is 

compared glyphosate (orange) Na2HPO4 (red), AMPA (cyan), 2-AEP (green), methylphosphonic 

acid (purple), ethylphosphonic acid (magenta) and a negative control with no phosphorus source 

(dark blue). Standard deviation error across 3 biological replicates is shown. 
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Chapter 2, only 3 colonies were observed. 2 of these 3 colonies were correct when screened 

for insert using colony PCR (Fig. 5.3). This suggested that the efficiency of the DNA annealing 

was low. One of the plasmids identified as containing insert was verified using Sanger DNA 

sequencing (GATC Biotech) to ensure no sequence mutations were present and that the gene 

was cloned in-frame to the N-terminal hexa histidine-tag. This sequence-verified construct 

was then used for overexpression trials of PaPhnD. 

 

5.4 Expression and purification of PaPhnD using nickel affinity chromatography 

 

To determine the optimum expression conditions for PaPhnD, a small-scale expression trial 

was initially conducted at 30°C (Fig. 5.4A). The pETYSBLIC-3C construct containing the gene 

encoding PaPhnD was transformed into BL21 (DE3) for overexpression. The culture was 

grown to an OD650 of approximately 0.4-0.6 before induction with 1 mM IPTG. Samples were 

then harvested and analysed at 4 and 16 hours post induction. SDS-PAGE analysis of 

harvested samples showed a very densely stained band slightly lower than the expected 

molecular weight for PaPhnD without signal peptide, 36.9 KDa at both 4 and 16 hours. This 

band was much denser compared to the uninduced control at 4h and 16 h post induction (Fig. 

5.4A). This suggested expression of a protein suitable for purification, although the molecular 

weight would need to be verified before analysis of protein-ligand interactions could proceed. 

 

In order to characterise PaPhnD, a sufficient quantity needed to be purified for further 

characterisation. Expression of PaPhnD was scaled up to 1 L using the optimised conditions, 

and harvested at 16 hours post induction. The protein was analysed for solubility following 

lysis using sonication (Fig. 5.4B). SDS-PAGE analysis of the soluble fraction revealed a band in 

the same position relative to the molecular weight markers as the band identified during 

overexpression trials. This band was very densely stained compared to other proteins 

present in the sample (Fig. 5.4B). PaPhnD was then purified from filtered bacterial lysate 

using a His-trap column with an AKTA Prime. Because the solved structure of PaPhnD (JCSG, 

2010) showed a pre-bound ligand, glycerol-3-phosphate, a Guanidine-HCl refolding protocol 

was used to try and remove this. A native version of PaPhnD was also purified without using 

refolding. SDS-PAGE analysis reveals elution of the refolded protein across 4 fractions as one 

band running at the same molecular weight as the densely stained band in the lysate and 

overexpression trial. A280 measurements using an extinction coefficient, ε, of 44920 M-1cm-1  

were used to determine the final yield of PaPhnD. The calculated yield of PaPhnD was 

approximately 119 mg of protein per litre of culture.   
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Figure 5.3.  Agarose gel analysis of PCR screen for paPhnD. 

 
A colony PCR screen for the presence of insert, following ligation independent cloning of paPhnD 
(850 bp) into the pETYSBLIC-3C vector (4.1 kbp) was analysed using agarose gel electrophoresis. 
Lanes 1, 2 and 3 contain PCR product from three clones. 
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Figure 5.4. Analysis of the overexpression and purification of PaPhnD. 

 
A) The total protein from lysates of cells grown at 30°C was analysed using a Coomassie stained 
SDS-PAGE gel. Samples were harvested immediately pre-induction (-) and at 4h and 16h post 
induction (+). M indicates molecular weight markers. Lanes marked X are not relevant to this 
work. B) Protein samples from the whole cell before lysis (WC), lysate following sonication (L), 
column flow through (FT) and elution fractions following nickel affinity chromatography (E) were 
analysed using a Coomassie stained SDS-PAGE gel. 
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Dialysing PaPhnD from elution buffer into 50 mM Tris-HCl, pH 7.8, 200 mM NaCl following 

purification caused precipitation of the protein. The addition of 5% glycerol to this buffer 

prevented precipitation from occurring, and therefore glycerol was added to all buffers used 

with this protein to maintain solubility. More testing was needed to determine whether the 

refolding the protein had altered the secondary structure of PaPhnD and to determine if it 

was the expected molecular weight. 

 

5.5 Examining the effects of refolding PaPhnD 

 

Refolding with guanidine-HCl has the potential to interfere with the protein structure if the 

protein does not refold correctly. Circular dichroism (CD) spectroscopy is a technique that 

uses circularly polarised light and can be used to investigate the secondary structure of chiral 

molecules. CD spectroscopy was used to determine whether the secondary structure of 

PaPhnD remains the same after refolding (Fig. 5.5). This revealed two largely similarly 

shaped curves, that did not overlay entirely, suggesting either a small difference in secondary 

structure or a small fraction of the protein is entirely misfolded. It is difficult to draw 

conclusions about the overall secondary structure compositions of this protein at the 

wavelengths used, particularly as PaPhnD has a mixture of alpha-helices and beta sheets 

(JCSG, 2010). 

 

In addition to examining the secondary structure of PaPhnD, thermal stability of the protein 

before and after refolding was also measured. The Prometheus NanoDSF (NanoTemper) was 

used to detect differences in melting temperature of native and refolded PaPhnD (Fig. 5.6). 

Analysis of protein scattering showed a decrease in Tm of 0.7 °C between the refolded protein 

of and native protein. This is a fairly small change; however, it suggests some decrease in 

stability has occurred. There is not, however, a large change in Tm when measured using the 

absorbance ratio. These results could suggest that a proportion of refolded PaPhnD is 

aggregated or misfolded; however, it is also possible that the reduced Tm could be a result of 

removing a pre-bound ligand reducing the thermal stability of the protein. Guanidine-Hcl 

refolding was still used preceding analysis of protein-ligand interactions because the 

structure of PaPhnD deposited in the PDB (JCSG, 2010)  had a ligand of glycerol-3-phosphate 

which was probably pre-bound, and any such ligand may interfere with binding assays. 
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Figure 5.5.  Circular dichroism spectrum of PaPhnD secondary structure before and after 
refolding. 

 
Circular dichroism spectroscopy was used to examine the secondary structure of native (blue) and 
refolded (red) PaPhnD. 
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Figure 5.6. Analysis of the thermal stability of PaPhnD. 

Native PaPhnD (blue) and refolded PaPhnD (orange) were analysed for thermal stability using the 

Prometheus NanoDSF (NanoTemper). First derivatives of A) the scattering and B) the ratio of 

tryptophan emission at 330 and 350 nm were measured. Data was analysed using 

PR.ThermControl (NanoTemper).  
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5.6 SEC-MALLS reveals PaPhnD to be a monomer of the expected molecular weight 

 

To determine the stoichiometry of PaPhnD and verify the molecular weight of PaPhnD, SEC-

MALLS was used (Fig. 5.7). The density for PaPhnD did not correspond to the expected 

molecular weight compared to the markers when analysed by SDS-PAGE, so it was important 

to verify that this was correct using a more accurate technique. The largest peak was between 

30 and 35 minutes corresponding to the expected mass of 35.9 KDa, confirming it is not a 

truncated version of the protein, and that the majority of the sample is a monomer. There is 

an additional elution peak at 27-30 minutes with a higher MW of approximately 90 KDa (Fig. 

5.7). This might correspond to an oligomer of PaPhnD or a larger contaminating protein, 

however it is much smaller than the largest elution peak, suggesting only a small amount of 

this species is present. There is also an absorbance peak at 15 minutes suggesting some of the 

protein has aggregated. As the majority of PaPhnD was shown to be a monomer at the 

expected molecular weight, it was suitable for characterisation using biophysical ligand 

binding assays. 

 

5.7 Characterising phosphonate binding of PaPhnD 

 

PaPhnD had been shown to be monomeric and expressed to high levels, fulfilling some of the 

criteria decided upon for the scaffold for rational engineering of a glyphosate binding protein. 

The next step was to determine the affinity of PaPhnD for phosphonate ligands. 

 

Thermal shift assays were used as an initial method to examine the interaction of 1 µM 

PaPhnD against a range of phosphonate ligands at 100 µM (Fig. 5.8, Table 5.1). 2-AEP has the 

largest change in Tm of 7.2 °C, implying this ligand has the highest affinity binding of all 

compounds tested. This is consistent with P. aeruginosa having the highest growth yield 

when utilising 2-AEP as a sole phosphorus source compared to other phosphonates. 

Ethylphosphonic acid also produced a change in Tm of 2.5 °C (Fig 5.8, Table 5.1), the second 

largest shift after 2-AEP. This was surprising as P. aeruginosa was not capable of growth on 

ethylphosphonic acid, suggesting that this growth limitation was caused by the specificity of 

the C-P lyase enzymes or transmembrane domains of the transporter, rather than the 

periplasmic binding protein. Methylphosphonic acid, AMPA and glyphosate all produced 

small changes in Tm of less than 1°C, suggesting a very weak interaction could be occurring.  

There was no thermal shift produced by K2HPO4, suggesting any interaction between PaPhnD 

and this compound was very weak.  
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Figure 5.7.  SEC-MALLS analysis of refolded PaPhnD. 

SEC-MALLS was used to analyses the molecular mass and stoichiometry of refolded PaPhnD. The 
determined molar mass is in red, and the UV absorbance is shown in blue. 
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Figure 5.8. Thermal shift analysis of PaPhnD interactions with phosphonate ligands. 

 
Average derivative melt curves from three replicates are shown for PaPhnD at a concentration of 
1 µM. Phosphonate ligands were added at a concentration of 100 µM. Analysis performed with 
StepOne software. Ligand free control is shown with a light blue dashed line, 2-AEP with a  
magenta dashed line, AMPA with a dark blue dashed line, ethylphosphonic acid with a green 
dashed line, methylphosphonic acid in purple, potassium phosphate in orange and glyphosate in 
red. 
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Table 5.1. Changes in Tm upon addition of ligands to PaPhnD and binding affinities of PaPhnD 
with phosphonate ligands. 

 

Ligand ΔTm (°C) Kd (µM) 

2-AEP 7.2 0.0262±0.0028 

Glyphosate 0.1 293±73 

Ethylphosphonic acid 2.5 2.07±0.25 

Methylphosphonic acid 0.7 29.8±5.8 

Aminomethylphosphonic acid 0.4 47.4±5.6 

Potassium phosphate 0 401±153 

 

Tm values were determined by thermal shift analysis. Kd values for binding affinities of PaPhnD for 
phosphonate ligands were determined by MST. Three replicates were analysed for each 
condition. MST data was analysed using Mo.affinity analysis (NanoTemper). 
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The Kd of the binding affinities of wild-type PaPhnD with different phosphonates were 

determined using Microscale Thermophoresis (MST, Fig. 5.9, Table 5.1), a technique which 

measures the changes in movement of a fluorescently labelled protein across a temperature 

gradient (Jerabek-Willemsen et al., 2014). MST was used because it has a lower requirement 

for protein than ITC, but is able to produce Kd values over a range of affinities unlike 

tryptophan fluorescence spectroscopy and thermal shift assays. PaPhnD was labelled using 

Alexa Fluor™ 647 NHS Ester, which covalently attaches to the primary amines of lysine 

residues. 0.5% Tween-20 was used in binding assays to prevent the aggregation of PaPhnD. 

Of all the phosphonate compounds tested (Fig 5.9, Table 5.1), PaPhnD was shown to bind 2-

AEP with the highest affinity of 26 ± 2.8 nM, and binds glyphosate much more weakly with a 

Kd of only 293 ±73 µM. This is similar to the glyphosate binding affinity of EcPhnD, which was 

determined to bind glyphosate with an affinity of 260-650 µM (Rizk et al., 2006; Alicea et al., 

2011). The hierarchy of binding affinities matches the hierarchy of changes in Tm determined 

by thermal shift, validating the results by measuring using two independent methods. 

 

Isothermal titration calorimetry (ITC) was used as a non-optical technique to validate the 

results obtained using MST. MST results for 2-AEP and aminomethylphosphonic acid (AMPA) 

were validated using duplicate ITC runs (examples shown in Fig. 5.10). The affinities 

determined by ITC were 27 ± 2.0 nM for 2-AEP and 20 ± 0.25 µM for AMPA, which were 

similar to the values obtained by MST, 26.2 ± 2.8 nM for 2-AEP and 47.4 ± 5.6 µM for AMPA. 

This shows that the two methods produce comparable results when used with this protein. 

 

5.8 Designing PaPhnD binding site mutants to engineer improved glyphosate affinity 

 

In order to design binding site mutants, comparisons needed to be drawn between PaPhnD 

and EcPhnD binding site residues and the binding site residues from candidate glyphosate 

binding proteins. The two PhnD homologues identified with the most evidence for being 

glyphosate binding proteins were OaPhnD, and SmPhnD. In Chapter 3, OaPhnD was shown 

using ITC to bind glyphosate with 32 ± 10 µM affinity, 9-fold higher affinity than PaPhnD. 

Genetic studies in S. meliloti with the PhoCDET transporter containing a PhnD homologue 

reveals that this transporter is essential for glyphosate transport, suggesting SmPhnD was 

also able to bind glyphosate. 

 

As no structural information was available for SmPhnD and OaPhnD, homology models were 

constructed using Discovery studio (Figs. 5.11 and 5.12), based on the published structures  
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Figure 5.9. MST analysis of the binding of PaPhnD to phosphonate ligands. 

 
Phosphonate ligands were added to 20 nM Alexafluor-647 labelled PaPhnD, and binding was 
measured using MST. 2-AEP is shown in magenta, AMPA in dark blue, ethylphosphonic acid in 
green, methylphosphonic acid in purple, potassium phosphate in orange and glyphosate in red. 
Data analysed using MO.affinity (NanoTemper). 
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Figure 5.10. VP-ITC validation of phosphonate binding of PaPhnD. 

 
Binding isotherms were measured using VP-ITC. A) PaPhnD with 2-AEP B) PaPhnD with AMPA. The 

upper panels show heat differences upon ligand injection, and the lower panels show integrated 

heats of injection (■).The best fit (solid line) to a single site binding model (Microcal Origin 

software) was plotted where the data fit a single site binding model.  
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Figure 5.11.  Structures and homology models of PhnD homologues. 

 
Homology models of PhnD homologues were made using Discovery Studio (Accelrys). A) PaPhnD 
structure (JCSG, 2010) with glycerol-3-phosphate in the binding site. B) EcPhnD structure bound 
to 2-AEP (Alicea et al., 2011) C) OaPhnD model (Paul Bond, University of York) D) SmPhnD model. 
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Figure 5.12. Homology modelling of PhnD homologue binding sites. 

Homology models of PhnD homologues were made using Discovery Studio (Accelrys). Binding site 
residues are shown.  A) PaPhnD structure (JCSG, 2010) with glycerol-3-phosphate in the binding 
site. B) EcPhnD structure bound to 2-AEP (Alicea et al., 2011) C) OaPhnD model (Paul Bond, Paul 
Bond, University of York D) SmPhnD model). Models are shown with 2-AEP in the binding site. 
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of EcPhnD (Alicea et al., 2011) and PaPhnD (JSCG, 2010). The model of OaPhnD was 

constructed by Paul Bond (University of York). There is a low sequence identity between 

candidate glyphosate binding PhnD homologues and those that are characterised of 26-33% 

(Fig. 5.13), meaning that the models may not be highly accurate in regions with low or no 

sequence identity. There is a region in OaPhnD and SmPhnD of 13 amino acid residues which 

is shown as a gap between residues 183 and 184 of PaPhnD. These have been modelled as an 

unstructured region on the domains of the SmPhnD and OaPhnD shown on the right (Fig. 

5.12C and D). This does not necessarily reflect the actual structure of these proteins. The 

sequence identity is higher close to binding site residues (Fig. 5.13), so the models should be 

more accurate in the areas of interest. 

 

PaPhnD has a conserved STS binding loop starting at residue 125 (Fig. 5.13). This loop, along 

with Y45, Y91 and H181 make contacts with the phosphorus containing group of the ligand. 

The other end of the binding site is more variable. EcPhnD and PaPhnD have glutamic acid 

and aspartic acid residues on the opposite side. It was hypothesised that this was the reason 

for glyphosate binding being low affinity in these homologues as glyphosate has an acidic 

carboxyl group. The OaPhnD model has an asparagine instead of a glutamic acid, and glutamic 

acid in place of aspartic acid.  The SmPhnD model has serine instead of glutamic acid and 

asparagine instead of aspartic acid.  PaPhnD binding pocket mutants were designed to have 

enhanced selectivity for glyphosate. PaPhnD E201 was mutated to both asparagine and serine 

to mimic the binding sites of OaPhnD and SmPhnD. G228 and D229 were mutated to 

asparagine and glycine to maintain the order of amino acid residues at this site for SmPhnD 

and to maintain the conserved PXXP sequence in this region. D229 was not mutated to 

glutamic acid to mimic the binding site of OaPhnD, as it was not predicted that another acidic 

amino acid residue would favour enhanced glyphosate binding. Five mutants were designed 

to combine the mutations at each of these binding site locations (Table 5.2). 

  

5.9 Construction and purification of PaPhnD binding site mutants 

 

PaPhnD binding site mutants were constructed using the methods set out by Hemsley et al. 

(1989). Briefly, this method uses inverse PCR to amplify the entire plasmid with a 

mismatched 5’ overhang containing the sequence to be changed. The plasmid is then treated 

with DpnI to degrade any remaining methylated circular plasmid, phosphorylated, and re-

circularised using a blunt ended ligation. Mutants were constructed in the pETYSBLIC-3C vect
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or and mutants were checked using Sanger DNA sequencing (GATC). Mutant E (E201S)  

Figure 5.13. Protein sequence alignment used to create homology models. 

Homology models were built for OaPhnD (Paul Bond, University of York) and SmPhnD using 

Discovery Studio (Accelyerys). The alignment used for this modelling is shown. Blue box above 

indicates binding site residue. Residues indicated with a green arrow were selected for mutation. 
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Table 5.2. Binding site mutants of PaPhnD engineered for improved glyphosate binding. 

PaPhnD mutant Amino acid mutations 

A E201N G228N D229G 

B E201N 

C E201S G228N D229G 

D G228N D229G 

E* E201S 

*Purified by Ilya Hanaffee, University of York. 
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vector and mutants were checked using Sanger DNA sequencing (GATC). Mutant E (E201S) 

was constructed by Ilya Hanaffee, University of York. Less than 50% of clones screened were 

correct, with many containing deletions where the 5’ end of the primers had annealed. This 

was a particular problem when DNA was stored at -20°C for periods of time exceeding a few 

days. A PAGE purified primer was purchased for the E201X reverse primer after the first 10 

mutants screened contained unwanted base pair deletions. Each of the 5 PaPhnD constructs 

were successfully mutated using this method. 

 

Mutant PaPhnD proteins were overexpressed and purified with Guanidine-HCl refolding 

using the same conditions optimised for the wild type version of the protein. This resulted in 

similar yields to that of the wild type protein, except for mutant A (E201N, G228N D229G), 

which produced a 10-fold lower yield, probably due to induction at a higher than optimum 

OD600 of 0.9. Elution fractions were pooled and analysed for purity using SDS PAGE (Fig. 

5.14). There was a densely stained band at the same molecular weight as the wild-type 

protein, which had been verified as having the expected molecular mass using SEC-MALLS. 

 

5.10 MST analysis of phosphonate binding of PaPhnD mutants shows altered substrate 

specificity 

 
MST analysis was conducted on all 5 PaPhnD mutants to determine the Kd of their interaction 

with phosphonate ligands (Fig. 5.15, Table 5.3). Each mutant was labelled using the same 

method as that used for the wild type protein. As with the wild type protein, the fit of the data 

becomes less good when lower affinity interactions are measured, because the acidic ligands 

exceed the buffering capacity of the assay buffer at high concentrations. 

 

Affinity for 2-AEP was decreased in all mutants (Fig. 5.15A, Table 5.3), however, the B and E 

mutants with E201N and E201S mutations respectively still had affinities for 2-AEP below 

100 nM, indicating that they were still binding 2-AEP with very high affinity. Mutants A, C and 

D with the G228N, D229G mutation had much lower affinities for 2-AEP, ranging from 400 

fold decrease in 2-AEP affinity for mutant A (E201N, G228N, D229G) to a 3000 fold decrease 

in affinity for mutant D (G228N, D229G). These results suggest that this binding site residue 

is critical for high affinity 2-AEP binding. 

 

One of the key aims of this work was to engineer a protein with increased affinity for 

glyphosate. MST analysis revealed each of the 5 binding site mutants tested has increased 

affinity for glyphosate compared to wild-type PaPhnD. Mutant B (E201N) had the highest  
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Figure 5.14.  SDS-PAGE analysis of purification of PaPhnD mutants. 

Elution fractions of each mutant were pooled and analysed by SDS-PAGE (mutant E with thanks to 
Ilya Hanaffee). 
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Figure 5.15 (Part 1). MST analysis of the binding of PaPhnD binding site mutants to phosphonate 
ligands. 

Phosphonate ligands A) 2-AEP, B) AMPA and C) glyphosate were added to 20 nM AlexaFluor-647 
labelled PaPhnD mutants, and binding was measured using MST. Data analysed using MO.affinity 
(NanoTemper). Wild-type protein shown in green, E201N G228N D229G in brown, E201N in light 
blue, E201S G228N D229G  in magenta, G228N D229G  in orange and E201S in dark blue. 
Continued overleaf. 
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Figure 5.15 (Part 2). MST analysis of the binding of PaPhnD binding site mutants to phosphonate 
ligands. 
 
Phosphonate ligands D) methylphosphonic acid, E) ethylphosphonic acid and F) K2HPO4 were 
added to 20 nM Alexafluor-647 labelled PaPhnD mutants, and binding was measured using MST. 
Data analysed using MO.affinity (NanoTemper). Wild-type protein shown in green, E201N G228N 
D229G in brown, E201N in light blue, E201S G228N D229G  in magenta, G228N D229G  in orange 
and E201S in dark blue. 



 
 

 
 
Table 5.3. Binding affinities of PaPhnD mutants for phosphonate ligands. 

PaPhnD mutant 
Kd (µM) 

2-AEP Glyphosate AMPA Methylphosphonic acid Ethylphosphonic acid K2HPO4 

Wild type 0.0262±0.0028 293±73 47.4±5.6 29.8±5.8 2.07±0.25 401±153 

A: E201N, G228N, D229G 9.82±2.63 76.1±23.1 129±44 0.539±0.283 0.00805±0.00347 6.48±3.61 

B: E201N 0.0539±0.0127 4.24±0.59 5.29±1.43 1.84±0.64 0.0230±0.0095 60.6±24.4 

C: E201S, G228N, D229G 35.5±5.61 137±44 413±84 1.29±0.41 0.0638±0.0218 31.5±8.5 

D: G228N, D229G 83±20 113±78 7580±45500 7.41±1.54 0.282±0.071 109±41 

E: E201S 0.0473±0.0185 64.2±14.2 22.7±5.6 1.03±0.32 0.165±0.036 201±91 

 
Kd values for binding affinities of PaPhnD mutants for phosphonate ligands were determined by MST. Three replicates were analysed for each condition. Data was 
analysed using MO.affinity analysis (NanoTemper). 
 



 
 

affinity for glyphosate, 4.24 ± 0.59 µM, approximately a 70-fold increase in affinity over wild-

type PaPhnD (Fig. 5.15C, Table 5.3). Significantly, this mutant also had approximately ten-fold 

higher affinity for glyphosate than OaPhnD tested in Chapter 3, making it the PhnD protein 

with the highest known affinity for glyphosate. PaPhnD mutant E (E201S) bound glyphosate 

with 64.2 ± 4.2 µM affinity. Mutants A, B and D, which all have the G228N, D229G binding site 

mutation, have lower affinity than E, but higher affinity than wild-type. Like 2-AEP, 

glyphosate has an amine group. These results suggest that the acidic E201 group inhibits 

glyphosate binding, whereas the D229 residue may be important for binding amine groups in 

both glyphosate and 2-AEP. 

 

When tested for binding affinity to glyphosate breakdown product AMPA, mutants B and E 

had higher affinity than the wild-type protein. These were also the proteins that had the 

highest affinity for glyphosate, those with the D229 amino acid residue unaltered. Mutants A, 

C, and D which all had a mutation of D229 had decreased affinity for AMPA compared to the 

wild-type. This gave further evidence that D229 is important for binding amine containing 

phosphonates. 

 

The binding affinity of PaPhnD binding site mutants to phosphonate compounds without 

amine groups, methylphosphonic acid and ethylphosphonic acid was increased in all 

constructed PaPhnD mutants (Fig. 5.15D and E). Mutant A (E201N, G228N, D229G) had 

highest affinity for both methylphosphonic acid and ethylphosphonic compared to the other 

binding site mutants. The interaction between this PaPhnD mutant and ethylphosphonic acid 

was the highest affinity interaction of all those characterised, with a Kd of 8.05 ± 3.47 nM, 

including that of the wild-type protein and its endogenous ligand 2-AEP.  Other PaPhnD 

mutants varied from 165nM to 8 nM affinities for ethylphosphonic acid and 0.5 – 7 µM for 

methylphosphonic acid. All of the mutants tested also had increased affinity for potassium 

phosphate, with the highest being 6.48 µM, mutant A and the lowest being mutant E (E201S 

mutant) which only had a 2-fold improvement. Some of these were lower affinity and 

therefore poorer fit. 

 

5.11 Thermal shift verification of altered substrate specificity of PaPhnD mutants 

 

Thermal shift analysis was used as an alternative method to validate the results obtained 

using MST (Fig. 5.16). Although the error on the Tm values was quite high, and the Kd can’t be 

quantified using this technique, the results are broadly in agreement with those obtained 

using MST. For 2-AEP, the largest increase in Tm was for the wild type protein, mutant B and 

E. Mutants C and D had much smaller increases in Tm with this ligand than the wild type.  
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Figure 5.16. Thermal shift analysis of phosphonate binding of PaPhnD mutants. 

 
Changes in Tm for PaPhnD mutants are shown. Each ligand was added at a final concentration of 
100 µM. Averages of replicates were calculated. For wild type PaPhnD N=6 and for PaPhnD 
mutants n=3. Standard error of the mean error bars are displayed. 
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Mutant A had a similar change in Tm to wild type PaPhnD with 2-AEP, whereas MST indicated 

that the affinity for 2-AEP was much higher for mutant A than for the wild-type. Similarly to 

MST, which showed higher affinity for all mutants with ethylphosphonic acid and 

methylphosphonic acid as the ligand, there was an increase in Tm for all mutants with 

ethylphosphonic acid and methylphosphonic acid. Mutant A produced the largest shift with 

both of these ligands, and was also the highest affinity binder. 

 

For glyphosate, mutant B, which was found by MST to be the highest affinity binder of all the 

mutants, also produced the largest change in Tm. Unlike with MST, mutant A had the second 

highest increase in Tm, whereas mutant E was the second highest affinity glyphosate binder. 

The error bars on these thermal shift measurements, however, are fairly large. For AMPA, the 

largest shift in Tm was for mutant B, the same as identified by MST. The other mutants had 

differing results when MST and thermal shift were compared, probably because they were 

low affinity interactions with large errors associated with the measurement. Thermal shift 

found an increase in Tm for all mutants compared to wild type for K2HPO4, and all mutants 

were found to have increased affinity when measured by MST. 

 

These thermal shift results validate the results determined by MST, despite some differences 

at lower binding affinities. They show that all mutants tend to have increased promiscuity for 

different ligands, including an increased affinity for glyphosate. 

 

5.12 Summary 

 

The PhnD homologue from P. aeruginosa, PaPhnD, has been characterised using biophysical 

techniques. These reveal it to be a monomeric protein, with high affinity and specificity for 2-

AEP. Site directed mutagenesis of the binding site residue E201N yielded a protein with a 70-

fold increase in glyphosate binding affinity over the wild type, the highest affinity for 

glyphosate seen in a periplasmic binding protein. Significantly, this was also a 10-fold higher 

affinity than the PhnD homologue from the glyphosate utilising bacterium O. anthropi, 

characterised in Chapter 3. Mutation of amino acid residue D229 resulted in decreased 

affinity for 2-AEP and AMPA which have an amine group, and increased affinity for 

methylphosphonic acid and ethylphosphonic acid, a new insight into the residues which are 

critical for PhnD specificity. This mutagenesis has resulted in a protein which has high 

enough affinity for glyphosate to be used in a biosensor for glyphosate, although the protein 

is still not specific for glyphosate over other phosphonate compounds.  
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In this work, a range of SBPs that bind phosphonate have been purified and characterised, 

with the aim of developing a scaffold for a glyphosate biosensor. In Chapter 3, orthologues of 

PhnD with predicted glyphosate binding capabilities were identified, purified and studied. 

Chapter 4 confirmed a homologous transporter to PhnCDE was the route of glyphosate entry 

into the S. meliloti 1021 cell and identified an additional ABC transporter specific for 2-AEP in 

this organism. In Chapter 5, rational design was used to engineer the P. aeruginosa PhnD 

homologue to have enhanced affinity for glyphosate. This chapter begins by discussing the 

possible causes of the heterogeneity that was present in several of the proteins studied. The 

methodology used to evaluate the binding of phosphonate ligands to SBPs is compared. The 

final sections of this chapter discuss the affinity of the PhnD proteins studied within this work 

for glyphosate, and the possible routes through which a biosensor for glyphosate could be 

engineered. 

 

6.1 Heterogeneity and low expression of PhnD homologues 

 

SBPs, as soluble domains of the gram-negative bacterial ABC importer, are considered easy to 

work with in solution compared to the hydrophobic transmembrane component of 

transporters. Despite this, some of the proteins characterised in this work have proven 

difficult to obtain from a recombinant expression system and to work with in solution. From 

the eight candidate glyphosate binding proteins tested in Chapter 3, only three of them; 

OaPhnD, RlPhnD and VSXPhnD, were shown to be expressed, correctly targeted to the 

periplasm, and purified to sufficient levels to conduct ligand binding experiments. Several of 

the PhnD homologues that were not able to be heterologously expressed in E. coli were codon 

optimised; therefore, it is not the presence of rare codons in the genes that are the cause of 

the problem. SmPhnD was only able to be expressed in E. coli as an MBP fusion, which 

demonstrates that recombinant expression of this protein is possible; however, the reasons 

why this protein required an MBP to stabilise it when two closely related proteins, VSXPhnD 

and RlPhnD, with which SmPhnD has over 70% sequence identity were able to be expressed 

without the MBP fusion, are not clear. There could be protein degradation occurring; 

however, this is unlikely, as there is no protein band present when analysed by SDS-PAGE, 

even at early time points. Western blotting could be used as a more sensitive method to 

detect the presence of a polyhistidine-tagged protein at lower levels than those that can be 

detected by Coomassie stained SDS-PAGE alone. It is also possible that the mRNA is degraded, 

or some secondary structure in the mRNA inhibits protein translation (Hannig and Makrides, 

1998). 
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OaPhnD was shown in Chapter 5 to be heterogeneous in solution, with SEC results suggesting 

the possibility of the protein existing as both a monomer and a dimer. Richarme (1983) 

discovered that the galactose SBP of E. coli formed a monomer-dimer equilibrium. This 

equilibrium was shifted towards the monomeric form upon the addition of high ligand 

concentrations, and the monomeric form had a higher ligand binding affinity than the dimer. 

It is possible that OaPhnD has a similar monomer-dimer equilibrium and that the biphasic 

ITC isotherms obtained from this protein are caused by both forms being bound, or dimeric 

protein shifting to monomeric protein as the ligand is injected. OaPhnD does not have the C-

terminal alpha helix that is the dimer forming region in EcPhnD. The heterogeneity of 

OaPhnD in solution is likely to be the reason why this protein did not crystallise under any of 

the conditions tested. 

 

PaPhnD, despite being revealed by SEC-MALLS to be monomeric, also precipitated when 

there was no glycerol present in its buffer. Further buffer screening using a technique such as 

the thermal shift assay across a range of pH values and buffer components could reveal 

further conditions in which PaPhnD is stable. Additionally, in order to get a high enough 

signal to noise ratio to obtain binding curves using MST, 0.5% (v/v) Tween-20 had to be 

added. This is 10 times more than is recommended by the manufacturer and suggests a 

propensity of PaPhnD to aggregate. 

 

Surface hydrophobicity mapping of the monomeric PaPhnD structure compared to the model 

of OaPhnD (Fig. 6.1) predicts more hydrophobic patches on the surface of the modelled 

OaPhnD compared to PaPhnD. This could explain why OaPhnD may be more prone to forming 

probable non-physiological homooligomers than PaPhnD. The extra hydrophobicity on the 

surfaces of the OaPhnD model, could, however, be because the sequence identity with the 

structures on which it is based is not very high and the additional surface hydrophobicity 

could be caused by the incorrect modelling of more hydrophobic residues towards the 

surface. 

 

6.2 Evaluation of the methods used in this work to measure binding affinity 

 

Throughout this work, four different methods were used to evaluate the binding between 

phosphonate binding proteins and their ligands. Of these methods, MST, intrinsic tryptophan 

fluorescence spectroscopy and thermal shift assays all relied on the use of a fluorescent  
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Surface representations and hydrophobicity were mapped for A) the structure of PaPhnD (PDB ID: 
3N5L) and B) the homology model of OaPhnD. Hydrophilic residues are shown in blue and 
hydrophobic residues in brown. Ribbon representations of the structure and model are shown 
above for reference. Figure created using Discovery Studio. 
  

Figure 6.1. Hydrophobicity maps of the surface of PaPhnD and the homology model of OaPhnD. 
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molecule to examine binding. Thermal shift analysis does not measure binding affinity, but 

rather the stabilising effect that ligand binding has on the protein. Throughout this work, 

where thermal shift assays have been used and compared to another technique, for example, 

MST used in Chapter 5 with PaPhnD mutants, the two methods have produced largely 

concordant results. Generally speaking, where a protein binds a ligand with higher affinity, 

that ligand produces a larger shift in Tm at the same concentration as measured by thermal 

shift. There are some limitations of this at lower binding affinities where the changes in Tm 

are very small and therefore more prone to error. Thermal shift analysis is often used as a 

high throughput method to screen many interactions, for example Vetting et al. (2015) used 

the technique to test 304 SBPs from TRAP transporters against a library of 189 ligands. This 

means that changes in Tm are not often directly compared to Kd values in the context of SBPs. 

Redhead et al. (2015) propose an equation to calculate Kd using thermal shift assays and 

compare the values obtained to surface plasmon resonance results. In the context of this 

thesis, thermal shift was used as a qualitative screen to measure interactions relevant to each 

other and other techniques were used to quantify Kd. 

  

Intrinsic fluorescence spectroscopy can be a powerful technique to measure binding, and was 

used by Fischer et al. (2015) to measure the binding affinity of the SiaP SBP from the sialic 

acid TRAP transporter. One of the main limitations of this technique is that it requires 

fluorescent tyrosine or tryptophan amino acid residues to be present in locations of the 

protein that undergo conformational change upon binding. In the cases here, only a small 

change was observed in the fluorescence of proteins upon addition of ligand; however, the 

concentration of protein that needed to be used to gain a high enough signal to noise ratio to 

observe a change was higher than the expected Kd of the interaction being observed. This 

meant that whilst a change in fluorescence corresponding to binding could be observed, it 

was not possible to measure the affinity for this interaction because of tight binding. In order 

to be able to use this technique to measure phosphonate binding of PhnD homologues, either 

tryptophan or an exogenous fluorophore would have to be engineered into the protein in an 

area that undergoes a large conformational change upon binding. The disadvantage of this is 

that adding such a fluorophore may alter the binding properties of the protein to be tested. 8-

anilino-1-naphthalene-sulphonate (ANS) can also be used as a fluorescent probe for protein 

conformational changes, as it binds hydrophobic regions on the surface of a protein 

(Walmsley et al., 1994). 
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The relatively recent technique of MST was used in this study to determine the binding 

affinity of PaPhnD mutants to phosphonate ligands. MST is well suited to studying SBP 

interactions with small ligands, because SBPs undergo a large conformational change, which 

means there is a large enough change in signal to produce a good binding curve. MST was 

used by Bisson et al. (2017) to characterise the binding affinity of phosphite and 

hypophosphite binding by PhnD homologues. Some of the key interactions of the wild-type 

PaPhnD, studied by MST in this work, were validated using ITC, showing similar calculated Kd 

values to each other. ITC has the advantage of directly measuring the heat released or 

absorbed upon binding, rather than relying on observing the movement of a fluorophore. ITC 

was also used by Ilya Hanaffee, University of York (unpublished work) to measure the 

binding affinity of PaPhnD mutant E, E201S with a glyphosate ligand. The Kd value calculated 

from this interaction was 43 µM, which is similar to the 47.3 ± 18.5 µM Kd value determined 

by MST. 

 

With all assays to determine protein ligand interactions, there are limitations on the 

measurement of low affinity binding as a result of solubility imposing a limit on the maximum 

ligand concentration. In the cases here, all phosphonic acid ligands have low pKa values, 

which exceeded buffering capacity at concentrations above approximately 1 mM. This made it 

difficult to accurately quantify binding affinities in the mM range. Changes to the pH of the 

solution that a protein of interest is in can cause aggregation, especially if they are close to the 

isoelectric point of the protein (Shaw et al., 2001). Even if the protein remains in solution, 

changes in pH can cause changes to the protein that mimic or interfere with the changes 

observed in binding assays. Rizk et al., (2006) were able to detect phosphonate binding 

affinities as high as 7 mM with a fluorescently labelled EcPhnD using fluorescence 

spectroscopy. 

 

6.3 Phosphonate transport in S. meliloti 1021 

  

The results described in this thesis have demonstrated that S. meliloti 1021 has two 

phosphonate transporters, with overlapping, but distinct functions. The PhoCDET 

transporter, homologous to PhnCDE, is a broad substrate specificity transporter. Using 

genetic methods, it has been deduced that this transporter is responsible for importing a 

range of phosphonate compounds including glyphosate, 2-AEP, methylphosphonic acid, 

ethylphosphonic acid and AMPA. In addition to the PhoCDET transporter, there is another 

ABC transporter encoded within the same operon as the phosphonoacetate hydrolase 
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pathway of 2-AEP degradation. Borisova et al. (2011) identified this as a putative 2-AEP 

transporter in S. meliloti 1021, and this work has confirmed this to be the case. A combination 

of genetic and biochemical approaches have been used to show that this ABC transporter is 

specific for 2-AEP, and its SBP is able to bind 2-AEP with 17.8 ± 3.75 nM affinity. 

 

S. meliloti 1021 was first isolated in 1982 by Meade et al. only 8 years after glyphosate 

became commercially available and before the use of glyphosate increased when genetically 

engineered glyphosate resistant crops became available in 1996. It is therefore possible that 

glyphosate utilisation in this organism has arisen as result of the promiscuity of the C-P lyase 

pathway rather than this ability having evolved due to repeated glyphosate exposure. 

 

Further work to verify the results of the genetic experiments in Chapter 4 should involve 

complementing S. meliloti SJR3, which is deficient in both phosphonate ABC transporters with 

each individual transporter using a plasmid for constitutive expression. 

 

Voegele et al. (1997) observed the growth of a PhoC mutant of S. meliloti 1021 utilising AMPA 

and methylphosphonate in addition to phosphate and 2-AEP; however, this mutant 

experienced an extended lag phase and reduced yield compared to the wild-type. This mutant 

only reached an OD600 of more than 0.1 after approximately 80 hours of growth, whereas 

growth was only measured up to 70 hours in this study. This suggests the presence of an 

additional transporter with lower affinity or velocity. Within the same operon as the 

phosphonoacetate hydrolase pathway and the AepABC transporter is a putative sodium 

dependent co-transporter which could potentially be responsible for low affinity import of 2-

AEP. This putative transporter has homology with NptA, a sodium dependent phosphate co-

transporter characterised from Vibrio cholerae (Lebens et al., 2002). These proteins also have 

sequence similarities with eukaryotic type II sodium dependent co-transporters. This 

transporter is unlikely to be responsible for the import of phosphonates other than 2-AEP 

creating the phenotype observed by Voegele et al., (1997), as this additional growth was 

dependent on an element under the control of the pho regulon. 

 

Within SmApeA, there is a conserved SSGTG sequence, mapped using homology modelling to 

the likely binding pocket. This sequence is similar to the conserved SGST motif in PhnD and 

the SGTS sequence found in PstS. This is particularly interesting as these proteins are not 

homologous to each other and PhnD is even in a Cluster F of the Berntsson classification of 

binding proteins whereas AepA and PstS are in Cluster D. This suggests a convergent 



165 
 
 

 

evolution of the phosphonate and phosphate binding sites. PhnS, the SBP associated with the 

phosphonoacetaldehyde pathway of 2-AEP catabolism, does not appear to have a similar 

motif in its binding site; however, the binding of this protein to 2-AEP has not been 

characterised, and it is not co-crystallised with a phosphorus-containing ligand, so precisely 

how PhnS would co-ordinate a 2-AEP ligand is unknown. 

 

The next steps of this work could involve further screening to crystallise AepA and PhnS, each 

bound to 2-AEP. This could be used to show how these two distinct proteins perform the 

same function. 

 

6.4 Can PhnD be engineered to have higher affinity glyphosate binding? 

 

Naturally occurring PhnD homologues which interact with glyphosate were used to inspire 

the rational design of a glyphosate binding PhnD protein. In Chapter 3, it was hypothesised 

that PhnD homologues from glyphosate utilising bacteria should have the ability to bind 

glyphosate with high enough affinity to import sufficient levels of glyphosate to satisfy the 

organism’s phosphorus requirements. The homologue of PhnD from the glyphosate-utilising 

bacterium O. anthropi was shown to bind glyphosate with a Kd of 32 ± 10 µM. The affinity of 

this interaction, despite being low for an SBP, suggests that PhnD is responsible for 

glyphosate transport in this organism. Using a genetic approach, it was shown in Chapter 4 

that a system homologous to the PhnCDE transporter is essential for the utilisation of 

glyphosate by the glyphosate utilising bacterium S. meliloti. These results are the first 

evidence of an active transporter for glyphosate in biology. 

 

Rationally designed binding site mutants of the P. aeruginosa homologue of PhnD were used 

to probe the amino acid residues that determine specificity of PhnD for different compounds. 

Variable amino acids which aligned with the E177 and D205 residues of EcPhnD and the 

E201 and D229 residues of PaPhnD, which interact with the amine group of 2-AEP (Alicea et 

al., 2011), were identified as having the potential to be involved in PhnD specificity. These 

amino acids were mutated using PaPhnD as a scaffold, to mimic the binding site residues of 

OaPhnD, for which there was biochemical evidence of binding glyphosate; and SmPhnD, for 

which there was genetic evidence of it being a glyphosate binding protein. Using and 

combining these mutations revealed a range of PhnD proteins with different specificities for 

the phosphonate compounds tested. All of the constructed mutants had increased affinity for 

glyphosate; however, the highest affinity glyphosate binding mutants maintained the aspartic 
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acid residue involved in co-ordination of the amino group of 2-AEP. Each binding site mutant 

tested also had increased affinity for inorganic phosphate in the form of K2HPO4, although the 

affinity for PaPhnD mutant A, with residues mutated to mimic the OaPhnD binding site, had a 

higher affinity for this ligand than PaPhnD mutant C whose residues were mutated to mimic 

SmPhnD. This is surprising, as the PhoCDET transporter in S. meliloti functions as a high 

affinity phosphate transporter in addition to transporting phosphonates (Voegele et al., 

1997), and suggests that the cause of the additional specificity for inorganic phosphate relies 

on other residues in addition to the ones mutated. All of the engineered binding site mutants 

had increased affinity for ethylphosphonic acid and methylphosphonic acid, which lack the 

amine group that is present in 2-AEP, AMPA and glyphosate. PaPhnD mutant A, with E201N, 

G228N, D229G (which align with E177, G204 and D205 in EcPhnD) had a binding affinity of 

8.05 ± 3.47 nM for the synthetic phosphonate ethylphosphonic acid, a more than 250-fold 

increase over the wild type. These results show that by changing these two key residues, 

phosphonate specificity can be substantially altered, and confirm their role in PhnD substrate 

recognition (Fig. 6.2). 

 

It would be interesting to gain structural information about how PhnD residues are involved 

in specificity for different phosphonate compounds. During this work, X-ray diffraction data 

were collected for the candidate glyphosate binding protein VSXPhnD, although glyphosate 

was not added to the protein for crystallisation. If the structure of another PhnD homologue 

with higher sequence identity to VSXPhnD than the currently available EcPhnD and PaPhnD 

structures is deposited in the PDB, it should be possible to also solve the structure of 

VSXPhnD by molecular replacement. As PaPhnD has previously been structurally 

characterised, obtaining a structure of a PaPhnD mutant bound to ethylphosphonic acid or 

glyphosate should be possible using highly pure protein by screening a range of 

crystallisation conditions. 

 

Bisson et al. (2017) characterised homologues of PhnD with specificity for phosphite 

([H2PO3]2-) and hypophosphite (H2PO2
-) ions. Many of these homologues, like phosphonate 

binding homologues of PhnD, contain the conserved STSG sequence, similar to the SGTS 

sequence of the high affinity phosphate binding SBP PstS. The phosphite and hypophosphite 

binding PhnD homologues tested by Bisson et al. (2017) did not bind 2-AEP with high affinity, 

although some are able to bind methylphosphonic acid with Kd values ranging from 30-110 

µM. This is likely to be because methylphosphonic acid is the shortest phosphonate, and so 

most closely resembles phosphite and hypophosphite ions. Phosphite and hypophosphite  
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The binding site of EcPhnD (PDB ID: 3P7I) is shown with ligand 2-AEP (blue). The conserved 

residues that bind the phosphonate oxygens are shown in grey, and the amino acids E177 and 

D205 that are varied between PhnD homologues and are involved in determining the specificity of 

PhnD for different phosphonates are shown in red. Dashed lines indicate putative hydrogen 

bonds. 

  

Figure 6.2. Residues involved in determining the phosphonate specificity of PhnD. 
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binding proteins have a smaller binding pocket than EcPhnD; in these proteins the D205 

residue found in this work to be critical for phosphonate specificity is replaced by a tyrosine 

residue. 

 

Horsman & Zechel (2016) proposed that PhnD was the “gatekeeper” of the specificity of the 

C-P lyase pathway. Further work could be done to test the extent to which this is true. In 

P. aeruginosa, PaPhnD binds ethylphosphonic acid with higher affinity than 

methylphosphonic acid; however, it is able to utilise methylphosphonic acid as a phosphorus 

source, but not ethylphosphonic acid. This suggests that the substrate specificity of C-P lyase 

is determined by a combination of PhnD specificity and the specificity of the C-P lyase 

enzymes. This is particularly true for AMPA, which requires PhnO to be present for C-P lyase 

catabolism, which is not a necessity for all phosphonate compounds. Further experiments to 

determine to what extent specificity is determined by enzymes or by transport could involve 

expressing the PhoCDET transporter from S. meliloti in P. aeruginosa and observing whether 

it gains the ability to grow on glyphosate or ethylphosphonic acid. The mutated PhnD 

homologues could also be studied in vivo to determine to what extent these mutations effect 

phosphonate utilisation. 

 

6.5 Can a glyphosate biosensor with a PhnD scaffold be engineered? 

 

During the course of this work, the public perception of glyphosate has changed, with 

increased media reports about this herbicide starting in 2015 when the International Agency 

for Research on Cancer (IARC) classified glyphosate as “probably carcinogenic” (Guyton et al., 

2015). It is important to note that these ratings relate to hazard (the potential for something 

to cause harm) rather than risk (the likelihood of a hazard to cause harm), and that other 

probable carcinogens in this category include red meat, hot drinks and being a hairdresser, 

none of which invoke such widespread campaigns against them. Much of the literature 

surrounding glyphosate is of varying quality and is highly controversial. Examples of this 

include the work of Samsel & Seneff (2013), who claim glyphosate to be the cause of many 

diseases including cancer, autism, depression and obesity with seemingly no experimental 

evidence to support their claims. The work of Séralini et al. (2012) on the effects of 

glyphosate on rats was retracted due to small sample sizes and the use of a breed of rat that 

was particularly prone to tumours. This work was subsequently republished without any 

improvement to the methodology (Séralini et al., 2014). 
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It is important to conduct unbiased scientific experiments, and the widespread use of 

glyphosate means that further work understanding its environmental fate and impact in the 

long term and in field relevant conditions would be beneficial. The difficulties in detecting 

glyphosate have slowed the acquisition of such data. This means that it is important that 

improved methods of glyphosate detection, such as a biosensor, are developed. Using a 

biosensor to monitor glyphosate could allow better data to be gained about its distribution in 

the environment, which could inform better evidence-based policy-making about this 

herbicide. 

 

PhnD was selected as a potential biosensor scaffold because of its ability to bind phosphonate 

ligands with high affinity and specificity (Alicea et al., 2011), and because the large 

conformational change that PhnD undergoes upon binding makes it amenable to various 

signal transduction mechanisms and detector workflows. Glyphosate also binds to the EPSP 

synthase enzyme with high affinity, but this enzyme would not be suitable for use as a 

biosensor scaffold as the co-binding of the expensive shikimate-3-phosphate is required for 

the interaction with glyphosate (Schönbrunn et al., 2001). Whole cell biosensors have also 

been used for various molecules, for example, arsenic; however, these rely on a regulatory 

system that is activated in response to the presence of an analyte as the inducer (Belkin, 

2003). As the C-P lyase operon is induced by low phosphorus levels rather than the presence 

of a phosphonate, glyphosate is unlikely to be amenable to this technique. 

 

All of the PhnD proteins tested in this work have higher affinity interactions with 2-AEP than 

with glyphosate, which is problematic for a potential biosensor as 2-AEP is present at high 

levels in the environment. PaPhnD binding site mutants with G228N and D229G mutations 

had lower affinity for 2-AEP than phosphonates without an amine group, which suggests 

there is scope to further improve binding affinity. All of the PhnD proteins tested also had low 

but detectable affinity for inorganic phosphate. As phosphorus levels in the environment can 

be as high as 250 mM in runoff following fertiliser application (Zhang et al., 2003), a 

biosensor scaffold protein would also have to be engineered to remove inorganic phosphate 

binding. 

 

Microbial life has been exposed to naturally occurring phosphonates throughout its evolution 

(McGrath et al., 2013), and it is therefore understandable that microbes are able to catabolise 

a range of naturally occurring phosphonates as phosphorus sources, particularly under 

phosphate limiting conditions. As 2-AEP is such an abundant molecule, it makes sense that a 
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range of pathways have evolved, and that many systems have specificity for it. Engineering a 

glyphosate biosensor using PhnD as a scaffold is dependent on identifying or engineering a 

version of PhnD with high affinity for glyphosate, and specificity for glyphosate over other 

phosphonate ligands, particularly those that are common in the environment such as 

inorganic phosphate or 2-AEP. It is possible that a glyphosate biosensor could be designed to 

incorporate two versions of PhnD. The first would have high affinity for 2-AEP and very low 

or no affinity for glyphosate, such as EcPhnD, and could be used to remove any 2-AEP from a 

sample. A second PhnD protein, such as as the PaPhnD E201N mutant, could then be used to 

test the 2-AEP-free sample for glyphosate. Similarly, PstS could be used to selectively remove 

inorganic phosphate from the sample. 

 

Having identified two PhnD binding site residues involved in its substrate specificity (Fig. 

6.1), further mutations at this site could be investigated to enhance its specificity for 

glyphosate. Further rational design could also try and incorporate a positively charged 

residue to co-ordinate the carboxyl group of glyphosate. As positively charged amino acid 

residues have long R-group chain lengths, it is possible that this could cause a steric clash and 

impair the ability of PhnD to bind any ligand. Selecting a different location within the protein 

to engineer a positive residue is difficult without structural information about how 

glyphosate-binding PhnD proteins co-ordinate their ligands. The homology models created in 

this work only have high sequence similarity with the structures upon which they are based 

around the binding site residues, and drawing conclusions about the structure of the other 

regions is difficult. It is possible that departing from the “nature inspired” rational design 

approach could have unintended consequences that diminish the ability of PhnD to bind 

glyphosate. 

 

Taylor et al., (2016) were able to design mutants of the lac repressor that responded to each 

of four different inducers: fucose, gentobiose, lactitol and sucralose. This was achieved by 

single-residue saturation mutagenesis, random mutagenesis and rational design. Because the 

lac repressor is a regulatory protein, it was possible to conduct in vivo screening. To apply 

these protein engineering techniques to PhnD would be more challenging as binding assays 

would have to be conducted on purified protein. A thermal shift assay would be well suited 

for this purpose; however, purifying large numbers of proteins, even on a small scale, could 

be difficult to achieve in a high throughput manner. 
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Another possible route to identifying a PhnD homologue with glyphosate binding affinity 

could be a to perform an in vivo directed evolution experiment (Badran and Liu, 2015). This 

could involve repeated sub-culturing of a glyphosate-utilising organism in a minimal medium 

with glyphosate as the sole phosphorus source, and sequencing its PhnD homologue.  Using 

low levels of glyphosate could select for mutants with improved glyphosate affinity. Another 

possibility would be to examine the PhnD sequences of organisms from highly glyphosate-

contaminated soils. Samples could be streaked onto minimal media plates with glyphosate as 

a sole phosphorus source. 

 

If a suitable PhnD protein were developed to be used as a glyphosate biosensor, one signal 

transduction method that could be used is genetically encoding a green fluorescent protein 

and using fluorescence spectroscopy to measure binding, as Alicea et al. (2011) did for their 

2-AEP biosensor. A FRET-based approach with two fluorophores, such as that used by 

Bourdès et al. (2012), could also be adopted. The disadvantage of these methods is that they 

require the use of a fluorimeter, which is an expensive piece of equipment and not easily 

amenable to in field use. 

 

A lateral flow device (LFD) for glyphosate (Fig. 6.3) using PhnD, based on the concept for a 

sialic acid binding protein biosensor proposed by Hopkins (2010) could be an effective 

glyphosate biosensor because of the portability and low cost of such devices. An LFD 

biosensor using PhnD could contain a dye conjugated glyphosate-specific PhnD protein. An 

immobilised, low affinity ligand would form the test line, and an antibody to PhnD would 

form the positive control. In the absence of glyphosate, PhnD would bind the test line and the 

positive control forming two lines (Fig. 6.3B). In the presence of glyphosate, PhnD would bind 

glyphosate and be inhibited from binding the low affinity immobilised ligand. The glyphosate 

bound PhnD would bind to the antibody, forming a line on the positive control. Because an 

LFD biosensor requires binding to a low affinity immobilised ligand, it is also essential that 

whatever method used to immobilise the ligand did not interfere with the closing of the SBP, 

inhibiting binding. An LFD could enable the widespread detection of glyphosate, particularly 

in areas where access to expensive analytical equipment might be limited. The main 

disadvantage of an LFD biosensor is that it would not be quantitative and thus would only 

show the presence or absence of the herbicide. The limitations on sensitivity and specificity 

would depend on the affinity and specificity of the PhnD protein scaffold used. 
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Figure 6.3. Concept of a lateral flow device using PhnD as a glyphosate biosensor. 

 

 

 

Simplified schematic of how a lateral flow device for glyphosate might work. A) An environmental 

sample is applied to a lateral flow device. A dye-conjugated PhnD homologue which binds 

glyphosate with very high affinity and a second substrate with lower affinity is used. This 

conjugated PhnD then flows past an immobilised low affinity substrate. Finally, an antibody which 

binds PhnD in both its open and closed conformations is used as a positive control to show the 

test has worked. B) When glyphosate is not present, the PhnD binds the low affinity substrate, 

and the conjugated dye produces a line on the test strip. A second line then appears as PhnD is 

bound by the antibody. C) When glyphosate is present in the sample, glyphosate bound PhnD 

cannot bind its lower affinity substrate, so no line appears in this position on the test strip. A line 

appears for the control as glyphosate bound PhnD binds to the antibody.  
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Appendix 1. Synthetic gene sequences. 

 

Synthetic codon optimised gene encoding OaPhnD: 
 

GCTGCCCAGCCGGCGATGGCCATGGCTGACTGGTCTAAAGACTACCCGGAAATCGTTCTGGGTGTT

ATCCCGGCTGAAAACGCTTCTACCACCTCTGACCGTTACGCTCCGCTGGCTGCTTACCTGGGTAAA

GAACTGGGTACCAAAGTTACCCTGCGTGTTGCTAACGACTACGCTGCTGTTATCGAAGGTCAGCGT

GCTGGTAACATCCAGATCGCTTTCTACGGTCCGGCTTCTTACGCTCGTGCTGTTATGACCGGTGTT

GAAACCACCCCGCTGGTTAACCAGCGTCACGACACCGGTGTTAACGGTTACTACTCTGTTGTTTAC

GTTCGTGCTGACTCTCCGTACCAGAAAATGGACGACCTGAAAGGTAAAACCATCGCTCTGGTTGAC

CCGAACTCTACCTCTGGTAACAACGCTCCGCGTTTCTTCCTGAACCGTGAAGGTTACTCTGTTGAC

ACCTTCTTCGGTAAAAACTTCTTCGCTGGTTCTCACGAAAACGCTGTTCTGGCTCTGGCTCAGGGT

ACCGCTGACGCTGCTGCTAACTCTTGGAACTCTGAAAACGACTCTAACCTGACCCGTATGGTTTCT

CGTGGTGTTCTGAAAGACGCTAACGGTAAAGCTATGACCAAAGACGACTTCCGTGTTATCTTCAAA

TCTGACTTCCTGCCGGAAGGTCCGTTCGCTGTTCTGTCTACCCTGCCGGACCAGCTGAAAGCTGAC

ATCAAACAGGCTTTCCTGGACATGCCGACCAAAGACAAAGCTGGTTTCGACGCTCTGTCTGACGGT

AAAGACCAGGAATTCGTTGCTACCGAAGCTAAAGACTTCGAACCGATCATCGAAATGCTGAAATTC

AACGACAAAGCTCGTAAATCTGCGGCCGCACTCGAGCACCA 

 
Synthetic codon optimised gene encoding RgPhnD: 
 
GCTGCCCAGCCGGCGATGGCCATGGCTCAGTCTGCTCCGGTTCTGCGTATCGGTCTGGACGGTGGT

GAAAACGAAGCTGACCAGGTTCGTCGTACCGAATGCGTTAAACCGGGTCTGATCGCTGCTACCGGT

GCTTCTGACGTTAAACTGTTCCCGTCTCCGAACTACAACGGTGTTATCCAGGGTCTGCTGGGTGGT

ACCATCGACCTGGCTGTTATGGGTGCTGCTTCTTACGCTGCTATCTACATCAAAGACCCGAACGCT

GTTACCCCGGTTCTGACCACCAAACAGGCTGACGGTTCTACCGGTTACTACTCTATCATGGTTGCT

CGTAAAGACTCTGGTATCAAAACCCTGGCTGACGCTAAAGGTAAAAAAATCGGTTTCGCTGACCCG

GACTCTACCTCTGGTTACCTGGTTCCGAACGTTGCTCTGCCGAAAGACGTTGGTATGCCGGTTAAA

CAGTACTTCTCTGAAACCGGTTTCGGTGGTGGTCACGAAAACCTGGTTCTGGGTATCCTGGACAAA

AAATTCGACGTTGGTACCACCTTCGGTTCTGCTGTTGGTGACTGGGCTCAGGGTTACTCTTCTGGT

AACCTGCACATCATGGTTACCAAAGGTCTGCTGGACATGGACGACATAGTTCAGGTGTGGAAAAGC

CCGCTGATCCCGAACGGTCCGCTGATGGTTTCTAACAAACTGTCTGACGACATGAAAAAAAAAGTT

ACCGCTTACTTCGCTGAACTGCCGAAAAAAGACAAAGCTTGCTTCGAATCTTTCACCGGTGGTGGT

TACGTTGACTGGTCTCCGGTTGACCAGAAATTCTACCAGACCATCATCGACGCTCGTAAAGCTGTT

ATCGGTGGTGCGGCCGCACTCGAGCACCA 
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Synthetic codon optimised gene encoding NPhnDA: 
 
GCTGCCCAGCCGGCGATGGCCATGGCTAACGACTCTTCTGCTGCTCTGAAAGAAATCAACTTCGGT

GTTCTGTCTACCGAATCTCAGGACAACCAGAAACCGATCTGGGAACCGTTCGCTGCTGCTATGTCT

CAGGAAGTTGGTATCCCGATCAAACCGTTCTACGTTACCCAGTACGCTGCTGTTATCGAAGCTATG

CGTTTCGGTAAAGTTCAGGCTGCTTGGCTGGGTGGTAAATCTTACATCGAAGCTGCTCGTGTTGCT

AACGCTGAAGCTTTTGCGCAGGTTGTAAGCGCTGACGGTACCCGTGGTTACTACTCTCACCTGATC

GCTAACAAAGACAACCCGATCACCGCTGAAGCTAAAGCTGTTGGTGGTGACAAATACGTTATCCAG

AACGCTGCTAAACTGACCTTCGCTTTCAACGAACCGAACTCTACCTCTGGTTTCCTGGTTCCGTCT

TACTACATCTTCACCAAAAACAACATCGAACCGAAAAAAGCTTTCAAACGTCTGATCTTCGCTGGT

AACCACGAAGCTTGCGCTCTGGCTGTTGCTAACAAACAGGTTGACGTTGCTACCGTTTCTAACGAA

GCTCTGTCTCGTCTGGAACGTACCAACCCGACCGCTCGTCAGAAAATCGAAATCATCTGGCAGTCT

CCGCTGATCCCGTCTGACCCGATCGTTTACCGTCAGGACCTGCCGGCTGACATCAAAAACCGTCTG

CAGAAATTCTTCTACAACTACAAAGACGCTAAAGTTCTGACCCCGTTCGAAATCTCTGGTTTCGTT

CAGGCTGAAGACAAAAACTGGCACACCATCCGTGAACTGGAAATCGCTAAAAAAATCCAGGAAACC

CAGGCTAAAGAAAACCTGTCTGCTCAGGAAAAACAGCAGAAAATCGCTGAACTGAACCAGCAGCTG

AAAGAAATCCAGGCGGCCGCACTCGAGCACCA 

 
Synthetic codon optimised gene encoding NPhnDB: 
 
GCTGCCCAGCCGGCGATGGCCATGGCTCCTATCAAAGAACTGAACTTCGGTATCATCTCTACCGAA

TCTCAGTCTAACCAGCGTCCGCTGTGGGAACCGTTCATCGCTGCTCTGTCTAAATCTCTGGGTATC

CCAGTTCGTGCGTTCTACGCTACCCAGTACTCTGGTGTTATCGAAGCTATGCGTTTCGGTCAGGTT

CACATCGCTTGGTACGGTGGTAAATCTTACATCGAAGCTGCTCGTATCGCTAACGCTGAAGCTTTC

GCTCAGACCGTTGCTACCGACGGTAAAAAAGGTTACTACTCTCACCTGATCGCTAACAAAAACAAC

CCGATCACCGCTGCTGCTAAACGTCAGGGTGGTGACAAATACGTTCTGCAGAACGCTGCTAAACTG

ACCTTCGCTTTCAACGAACCGAACTCTACCTCTGGTTTCCTGGTTCCGTCTTACTACGTTTTCGCT

AAAAACAAAGTTGACCCGAAAAAAGTTTTCAAACGTCTGATCTTCTCTGGTTCTCACGAAGCTACC

GCTCTGGCTGTTGCTAACAACCAGGTTGACGTTGCTACCAACAACAACGAATCTCTGGAACGTCTG

GAAAAAACCAACCCGTCTGCTCGTAAAAAAATCGAAATCATCTGGACCTCTCCGATCATCCCGTCT

GACCCGATCGCTTACCGTAAAGACCTGCCGGAAGACGTTAAAAAAAAACTGCGTAACTTCTTCTAC

AACTTCAAAGACCGTAAAATCCTGGAACCGCTGCAGTGGTCTGCTCTGGTTCCGGCTAACGACAAA

ACCTGGAACCCGATCCGTGAACTGGACATCGCTAAACAGGTTCTGGAACTGCAGTCTAAAACCGGT

CTGTCTGACGCTGACAAAAAAAAACTGAACAACCTGAACTCTCAGCTGCGTGCTCTGCAGGGTCGT

GCGGCCGCACTCGAGCACCA 

 
Synthetic codon optimised gene encoding SmPhnD: 
 
CGTGTCTTGTCCAGAGCTCGAGTCCTGTAGAGGATCTGAAAGAATTTCGCGTTGGTATTATTGGTG

GTGAAAATGAAGCAGATCGTCTGCGTAATTATCAGTGTCTGGTTGATCAGCTGCCTGCAGCAATTG

GTGTTGAAAAAGTTAGCCTGTTTCCGGCAGCAGATTATGATGGTGTTATTCAGGGTCTGCTGGGTG

GCACCCTGGATTATGCAGAACTGGGTGCAAGCGGTTATGCAAAAATCTATCTGGCAAAAGCAGATG

CCGTTGAACCGATTCTGACCACCGTTCAGACCGATGGTAGCACCGGTTATCATTCAATTATGGTTG

CACGTAAAGATAGCGGCATTACCAAACTGGAAGATCTGAAAGGTAAAAAACTGGGTTTTGCAGATC

CGGATAGCACCAGCGGTTATCTGGTTCCGCTGGTTACCCTGCCGGAAGCAATTGGTGCACCGGTTA

AAGAATATTTTGGTGAAACCGGTTTTGGTGGTGGTCATGAAAATCTGGTTCTGGAAGTTGTTAAAG

GCACCTTTGATGCAGGCACCACCTTTGGTAGCGGTGTTGGTGAATTCAAAGATGGTTATACCAGCG

GTAATCTGCGTAAAATGGTGGATAAAGGTATCGTGGATATGAACGATCTGGTTGAACTGTGGAAAA

GTCCGCTGATTCCGAATGGTCCGATTGTTGTTCGTACCGCACTGAATGATGATATGAAAGCCAAAT

TCAAACAGTTTATGATGGACCTGCCGAAAACCGATGCAGCATGTTTTAGCGCAATTCAGGGTGGTG

ATTTCACCGGTTTTGTTGAAGTTAACAGCGATTTCTACAAACCGATTATCGATGCACGTAAAGCAA

CCATTGGTGGCTAATAACCTGCAGGGGTAC 
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Synthetic codon optimised gene encoding SMb1540: 
 
GGTAGCCATGGCCGAAACCGAACTGACCGTTTACACCTCTATCGAAGCTGTTGACCTGGACCGTTA

CAAAGAAACCTTCGAAAAAGCTCACCCGGACATCAAAATCAACTGGGTTCGTGACTCTACCGGTGT

TATGACCGCTAAACTGCTGGCTGAAAAAGACAACCCGCAGGCTGACGTTGTTTGGGGTGTTGCTGC

TACCTCTCTGCTGCTGCTGAAATCTGAAGGTATGCTGGAACCGTACTCTCCGAAAAACGTTGAAGC

TCTGGACCCGCGTTTCGTTGACGGTGACAAACCGCCGTCTTGGGTTGGTATGGACGCTTACGTTGC

TGCTCTGTGCTACAACACCGTTGAAGCTGGTAAACTGGGTCTGACCCCGCCGACCTCTTGGAAAGA

CCTGACCAAACCGGAATACAAAGGTCACGTTGTTATGCCGAACCCGAACTCTTCTGGCACTGGCTT

TCTGGACGTAAGCGCTTGGCTGCAGACCTTCGGTGAAGAAGAAGCTTGGTCTTTCATGGACGCTCT

GCACGAAAACATCGCTGCTTACACCCACTCTGGTTCTAAACCGTGCAAAATGGCTGCTTCTGGTGA

AACCGTTATCGGTGTTTCTTTCGAATTCCCGGGTGCTAAAGCTAAAACCTCTGGTGCTCCGATCGA

CATCATCTTCCCGTCTGAAGGTTCTGGTTGGGAAGCTGAAGCTACCGCTATCATCGCTGGTACCGC

TAACCTGGAAGCTGCTAAAACCCTGGTTGACTGGTCTATCTCTAAAGAAGCTAACGAAATGTACAA

CGTTGGTTACGCTGTTGTTGCTTACCCGGGTGTTGCTAAACCGATCGAAAACCTGCCGGACGACGT

TGCTGACAAAATGATCAAAAACGACTTCGAATGGGCTGCTAACAACCGTGCTCGTATCCTGAAAGA

ATGGCAGAAACGTTACGACGCTAAATCTGAACCGAAATCTCTCGAGACACG 
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Abbreviations 

 
α-KG - α-ketoglutarate 

2-AEP – 2-aminoethylphosphonic acid 

ABC – ATP binding cassette 

AMPA – Aminomethylphosphonic acid 

bp – base pairs 

CD – circular dichroism 

CV – column volume 

Da - Dalton 

dATP - deoxyadenosine triphosphate 

dNTPs - deoxyribonucleotide triphosphates 

dTTP - deoxythymidine triphosphate 

EDTA - ethylenediaminetetraacetic acid 

EPSP - 5-enolpyruvylshikimate-3-phosphate 

ES-MS - electrospray ionization mass spectrometry 

FRET - Förster resonance energy transfer 

IARC - International Agency for Research on Cancer 

IPTG - Isopropyl β-D-1-thiogalactopyranoside 

ITC – isothermal titration calorimetry 

JCSG – Joint Center for Structural Genomics 

LC – liquid chromatography 

LIC – ligation independent cloning 

MALLS - multiple angle laser light scattering 
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MBP- maltose binding protein 

MOPS - 3-(N-morpholino)propanesulfonic acid 

MP – methylphosphonic acid 

MS – mass spectrometry 

MST – microscale thermophoresis 

NAD - nicotinamide adenine dinucleotide 

PAGE – polyacrylamide gel electrophoresis 

PCR – polymerase chain reaction 

PEG - polyethylene glycol 

PEP - phosphoenolpyruvate 

PLP - pyridoxal phosphate 

PRPP - phosphoribosyl pyrophosphate 

QCM – quartz crystal microbalance 

RNA – ribonucleic acid 

SDS – sodium dodecyl sulphate 

TRAP - tripartite ATP-independent periplasmic transporter 

UV - ultraviolet 

WC – whole cell 

YSBL – York Structural Biology Laboratory 
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