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Abstract

Abstract

Cold-formed steel sections offer many benefits to construction, such as a high strength-to-
weight ratio, an ease of handling, transportation and stacking, and important sustainability
credentials. For these reasons their range of application has rapidly expanded from being mainly
used as secondary members in steel structures to an increasing use as primary members. This
trend in construction is exerting an increased demand on cold-formed steel structural members
in terms of the span length and the load carrying capacity they need to provide. A common and
practical solution to address these new demands consists of creating built-up sections by
connecting two or more individual sections together using fasteners or spot welds. However, a
lack of understanding of the way these sections behave and a gap in specific design provisions
has prevented the exploitation of the real potential which these types of sections can offer.

This research aims to develop an improved understanding of the behaviour, stability and
capacity of built-up cold-formed steel members in compression and bending, paying special
attention to the various interactions resulting from cross-sectional instabilities, buckling of the
individual components in between connector points and global buckling of the built-up member,
as well as the role played by the connector spacing in these interactions.

To this end, a series of experiments on built-up beams and columns was carried out. A total of
20 stub column tests were completed with four different built-up geometries, each constructed
from four individual components assembled with either bolts or self-drilling screws at varying
spacings. The columns were tested between fixed end conditions and were designed to exclude
global instabilities of the built-up specimens. In addition, 24 long column tests with almost
identical built-up cross-sectional geometries, assembled with the same types of connectors, were
also conducted. The columns were compressed between pin-ended boundary conditions and the
load was applied with eccentricities of L/1000 or L/1500. Each built-up geometry was tested
with three different connector spacings, and this time the columns were designed to exhibit
global buckling of the whole column in addition to cross-sectional buckling of the components
and possible buckling of the components in between connector points. A series of 12 beam tests
was also carried out for two different cross-sectional geometries, constructed from multiple
channel sections and connected with bolts at varying spacing. The built-up beams were tested in
four-point bending, with lateral restraint provided at the locations where the concentrated loads
were applied in order to avoid global instability. All tests on columns and beams showed that
the different components of the built-up geometry mutually restrained each other while
buckling, relative to their individually preferred buckled shapes, and that while the connector
spacing may significantly affect the amount of restraint they exert on each other, its effect on
the ultimate capacity is considerably less. The material properties of all tested specimens were
determined by means of coupon tests taken from the corners and flat portions of the constituent
sections, while detailed measurements of the geometric imperfections of each specimen were
carried out using a laser displacement sensor mounted on a specially designed measuring rig. In
addition, the mechanical behaviour of the connectors used to assemble the built-up specimens
was determined by means of single lap shear tests.

Detailed finite element models were created of the built-up beams and columns, which included
the material non-linearity obtained from the tensile coupons, the geometric imperfections
recorded on the actual specimens and the connector behaviour obtained from the single lap
shear tests. The models were first validated against the data gathered from the experimental
programmes and were further used in parametric studies, in which the sensitivity of the ultimate
capacity to contact between the components and to the connector spacing was investigated. The
numerical studies revealed that the effects of both contact between the components and the
connector spacing on the ultimate capacity was most pronounced when the connector spacing
was shorter than the natural local buckle half-wave length of the components. However, this
range of connector spacings may prove impractical in construction due to the large amount of
labour it requires.
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Chapter 1

Introduction

1.1. Background

Cold-formed steel (CFS) sections with thicknesses ranging between 0.5 mm to 6 mm have
traditionally been used as secondary steelwork in buildings. Common examples include roof
purlins and wall girts consisting of lipped channels, sigma or zed sections, as well as wall and
roof cladding made of profiled sheets with thicknesses of up to 1.5 mm (see Figure 1.1). CFS
sections have also been used in mezzanine floors and as steel framing in light industrial and

commercial buildings (Dubina et al., 2012).

Depending on the gquantity, length and complexity of the sections, they can be produced by roll
forming or brake-pressing. In roll forming, a continuous strip of steel is passed through a series
of rolls which progressively deform it until the desired shape is achieved. This technique is
preferred when large quantities of a given shape have to be fabricated. In contrast, in the press-
braking procedure each bend of the cross-section is produced by folding the sheet along its full
length when it is pressed against a shaped die. This technique is used for low volume
productions and for lengths of up to 8 m. Improvements in manufacturing technology have
allowed increasing production speeds and have enabled steel strips of up to 25 mm thickness to
be roll formed, while sheets of up to 12.5 mm thickness can be brake-pressed. Also,
improvements in the application of zinc coatings to CFS sections have improved their corrosion

resistance.

These improvements, together with the advantages originating from the slender nature of these
sections have significantly widened their range of applications. Due to their shape, they can
often be nested when stored, allowing for compact packing and reducing the cost of
transportation. They are also easily handled, with single members and sub-frames easily put in
place by operators, facilitating rapid construction. In addition, CFS sections are sustainable as

they have a long service life and can be easily re-used or recycled, minimising waste generation.
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Figure 1.1: CFS used as secondary steelwork: a) roof purilns in a steel structure (http://www.rki-
bg.com [accessed on August 2018]); b) beams in a mezzanine floor; c¢) wall cladding
(http://www.bw-industries.co.uk [accessed on August 2018])

The efficient use of the material in CFS sections also leads to a high strength-to-weight ratio,
offering on the one hand a reduced carbon footprint, while on the other hand providing a more
economical solution by reducing the self-weight of the structure. This issue is not just important
for reducing the total cost of a building, but can also be essential in cases where it is necessary
to add a new storey to a building, minimising the added load on the existing structure and its

foundations.

CFS sections also provide a great flexibility of cross-sectional profiles and sizes, which means
that their geometry can easily be tailored to satisfy specific demands.

The above reasons are leading to an increasing use of thin-walled structural steel, not just as
secondary members, but also as primary load-bearing members, with the CFS industry

consequently experiencing a drive towards producing sections that can provide larger spans and
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resist higher loads. Examples of this evolution are multi-storey buildings and portal frames
constructed entirely out of CFS (Schafer, 2011; Zhang and Rasmussen, 2014).

On the other hand, the reduced wall thickness of CFS sections makes them more prone to being
affected by cross-sectional instabilities such as local and distortional buckling. These cross-
sectional instabilities originate in addition to the global instabilities which are common to the
traditionally used hot-rolled sections. The various instabilities can interact with each other,
further reducing the ultimate capacity of CFS sections. Moreover, due to the nature of the
fabrication process, the cross-sectional shapes that can be cold-formed are commonly mono-

symmetric or point-symmetric, with double symmetry difficult to obtain.

A logical solution to increase the load carrying capacity of CFS members is joining two or more
sections together by means of welding or fasteners, such as bolts, rivets or screws to form a
built-up section. A wider range of cross-sectional shapes can thus be obtained using the
currently available single shapes and be tailored to meet specific requirements. In addition,
doubly symmetric cross sections can easily be constructed by joining single sections together,
suppressing certain buckling modes which tend to occur in members with singly symmetric
cross-sections, such as flexural-torsional buckling. Double symmetry also eliminates the shift of
the effective centroid which single sections may experience when local or distortional buckling
takes place. Additionally, closed sections can be constructed with increased torsional resistance.
Since built-up sections can in principle be assembled on site, the advantages of ease of

transportation and handling largely remain.

Despite the potential benefits built-up sections offer, the current major design codes (AlSI,
2016a; CEN, 2006) provide at best only limited provisions for certain specific types of built-up
sections, with Europe lagging behind in this area. Both the Eurocode (EC3) and the North
American Specification (NAS)