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Abstract 

Community cohesion generally acts to increase the safety of communities by increasing informal 

guardianship, and enhancing the work of formal crime prevention organisations. Understanding 

the dynamics of local social interactions is essential for community building. However, 

community cohesion is difficult to empirically quantify, because there are no obvious and direct 

indicators of community cohesion collected at population levels within official datasets. A 

potentially more promising alternative for estimating community cohesion is through the use of 

data from social media. Social media offers an opportunity for exploring networks of social 

interactions in a local community. 

This research will use social media data to explore the impact of community cohesion on crime. 

Sentiment analysis of tweets can help to uncover patterns of community mood in different areas. 

Modelling of community engagement on Facebook is useful for understanding patterns of social 

interactions and the strength of social networks in local communities. 

The central contribution of this thesis is the use of new metrics that estimate popularity, 

commitment and virality known as the PCV indicators for quantifying community cohesion on 

social media. These metrics, combined with diversity statistics constructed from “traditional” 

Census data, provide a better correlate of community cohesion and crime. To demonstrate the 

viability of this novel method for estimating the impact of community cohesion, a model of 

community engagement and burglary rates is constructed using Leeds community areas as an 

example. By examining the diversity of different community areas and strength of their social 

networks, from traditional and new data sources; it was found that stability and strong social 

media engagement in a local area are associated with lower burglary rates. The proposed new 

method can provide a better alternative for estimating community cohesion and its impact on 

crime. It is recommended that policy planning for resource allocation and community building 

needs to consider social structure and social networks in different communities. 
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Chapter 1  

Introduction 

 

1.1 Background of the Study 

Community crime prevention through the role of neighbourhood cohesion has been recognised in 

policing strategies (Skogan, 1989). Crime reduction strategies are perceived to a large extent to 

depend on the levels of social ties (cohesion) and informal social control that exist in a 

neighbourhood. For example, neighbourhood social networks have been found to have a 

mediating effects on crime (Kubrin and Weitzer, 2003). The ability of residents to protect their 

neighbourhoods against crime, as well as their courage to confront and question any suspicious 

character is a manifestation of cohesive communities (Kelling and Stewart, 1990; Sampson et al., 

1997; Kubrin and Weitzer, 2003). In the UK, for example, crime prevention as provided by the 

state puts an emphasis on political approaches through partnership (such as the Neighbourhood 

Watch) with the police, local government and local communities (Hope, 2001). This policy was 

underpinned by the Crime and Disorder Act of 1998 which has provided impetus to the 

establishment of such partnerships. Consequently, reduction of crime should be seen as a 

collective responsibility of law enforcement agencies with the participation of community 

members (such as the Neighbourhood Watch) (Hope, 1988). The community has a great role to 

play in crime prevention by ensuring the establishment of informal social control in their 

respective neighbourhoods. Social cohesion and trust arise in response to socially unacceptable 

activities within the neighbourhood; this has developed into social processes where people 

interact meaningfully to find  solutions to their problems, especially related to crime (Pauwels 

and Hardyns, 2009). 

However, though qualitative approaches could be used to explore the complexities of social 

relationships understanding social cohesion, especially in relation to crime, can be better 

explored using a quantitative approach. The emergence and availability of new administrative 

and commercial data sources, coupled with uncertainties surrounding traditional small-scale 

surveys relied upon in empirical sociology, has resulted in researchers engaging with new crowd 

sourced data to gain insights into social processes (Savage and Burrows, 2007, p.113). The role 
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of social media in society is now a matter  of interest in everyday debate not only in the 

neighbourhood context but also in many academic fields (Adolf and Deicke, 2014). The last 

decade has witnessed a tremendous increase in both number of online social networking services 

such as Twitter and Facebook as well as the users of such services (Labatut et al., 2014). For 

example, the number of Twitter users increased from 200 million in 2011 to about 500 million in 

2012 (Richard, 2013). These statistics of Twitter users further increases to over one billion 

subscribers at the end of 2014, about 78% of whom are on mobiles with over 500 million tweets 

sent on a daily basis (Bennet, 2014).  

This research uses a quantitative approach to explore the impact of social cohesion in mediating 

crime through spatial analysis and social media data applications. The contention is that the use 

of social media data might offer an opportunity to gain new insights into the relationship 

between community cohesion and crime. Similarly, the use of social media data may offer new 

opportunities in the field of academic research, especially in community cohesion studies which 

are hitherto carried out using traditional survey data. 

1.1.1 Problem Statement 

The crime reduction effort is a collective responsibility of all citizens and not that of authorities 

alone. Recent figures (released April, 2018) from Crime Statistics for England and Wales 

(CSEW) have shown a decrease in some crimes. For example, a total of 10.7 million incidents of 

crime against households were recorded in 2017 compared to 11.5 million recorded in the 

previous year (2016) (representing 3.6% decrease). While theft of personal property,  household 

theft, violence and criminal damage decreased by 10%, 9%, 7% and 5%; robbery, vehicle 

offences and violence increased by 33%, 17% and 9% from the previous year respectively (ONS, 

2017a). Despite this development, the rates of crime in Leeds which ranks 16.6 crimes/1000 

poulation, is still high compared to other UK cities (such as Birmingham 16.0/1000, Bradford 

15.6/1000 and Sheffield 13.8/1000) (Home Office, 2017). Community/police crime prevention 

partnership approaches are largely based on the premise that no single agency can deal with, or 

be responsible for, dealing with complex community safety and crime problems (Berry et al., 

2011b). Therefore, crime reduction is perceived to rely, to a large extent, on the levels of social 

ties and collective action of the members of the community (Kubrin and Weitzer, 2003). 

Additionally, neighbourhood social networks have been found to have mediating effects on 
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crime (Kubrin and Weitzer, 2003) and hence recognised in policing strategies (Skogan, 1989). 

Furthermore, previous researchers investigating the impact of social cohesion on crime have 

used various traditional surveys, undertaken periodically which make the information they 

provide rather lacking value (Traunmueller et al., 2014). Additionally, predictive analysis based 

on past crime events, as characterised by traditional methods, may be erroneous (Bowers et al., 

2004). 

The technological developments which have culminated in the emergence of social media are 

changing the way social capital (a factor of social cohesion) is perceived, especially relating to 

life-styles and crime prevention. For example, the availability of the internet has enabled 

maintenance of social networks especially on social media (Facebook, Twitter, LinkedIn, 

Myspace etc.) (Debenham, 2002; Babb, 2005). Facebook and Twitter provides one of the 

important channels among all social media networks for the exchange of information and 

strengthening of social ties across different communities (Gorman, 2013).  The new data sets 

being produced from social media networks could contribute to understanding what the role of 

social cohesion is and the metrics to quantify it, especially, in relation to crime. Moreover, 

researchers, especially those concerned with social capital, have argued that quantitative 

approaches provide a better understanding of social capital (Walford et al., 2010). Therefore, the 

present research aims to explore new quantitative data sources such as social media in order to 

gain new insights into the relationship between community cohesion and crime. 

1.2 Aim and Objectives 

The main aim of this research project is to explore the impact of social cohesion in crime 

prevention through spatial analysis and use of social media data. 

 The following specific objectives have been outlined:- 

1. To critically review the literature on the concept of community cohesion and its impacts 

on crime.  

2. To use a range of spatial analysis methods to perform a detailed analysis of the 

relationship between crime and urban community form. 

3. To critically review the literature on the feasibility of using new ‘big’ data sources (such 

as social media) to explore crime and community cohesion. 
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4. To develop a neighbourhood area classification profile based on community cohesion in a 

range of geographical locations of the study area at community area level. 

5. To extend understanding of the relationship between crime and community cohesion, 

based on insights from traditional and new data sources. 

1.2.1 Justification for the Study 

Partnership between the police and communities is believed to have a positive effect in 

mediating crime and therefore in maintaining order and increasing the safety of neighbourhoods 

(Anderson, 2008). Participation and collaboration with the local communities is not only 

required but necessary in order to effectively deal with the issues of crime. In England and 

Wales, the establishment of Crime and Disorder Act of 1998 has formalised Crime Reduction 

Partnerships. This has paved the way for the establishment of community driven programmes 

such as Neighbourhood Watch which encourages community members to exercise informal 

social control with a view of reducing crime rates and promoting safety in their respective 

neighbourhoods. 

Similarly, in the US, the Weed and Seed Initiative was established in 1991, which sought to 

develop a multi-agency approach to controlling and preventing violent crime and drug trafficking 

in high crime areas (Berry et al., 2011a). More recently, Safer Neighbourhoods involving 

interventions targeted at crime reduction with a partnership approach were also established 

(Berry et al., 2011a).  

In the context of social science and crime in particular,  the importance of maintaining social 

cohesion is paramount (Pauwels and Hardyns, 2009). Nowadays, addressing neighbourhood 

crime and disorder has become the collective responsibility of the law enforcement agencies and 

the citizens at both individual and community levels (Roehl et al., 2006; Jim et al., 2006; 

McGarrell et al., 2010). Additionally, a number of studies have also stressed the role of social 

cohesion in mediating neighbourhood crimes especially burglary and violence (Sampson et al., 

1997; Morenoff et al., 2001; Silver and Miller, 2004). However, the major limitations of most of 

these studies was small sample size and heavy reliance on data obtained from traditional surveys 

prone to bias (Fanelli, 2009). The present study hopes to address this limitation by using social 

media data that provides opportunity for assembling and analysing large amounts of information, 

a factor lacking in traditional methods (Malleson and Andresen, 2015). It was argued that the use 
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of social media data may be a more accurate representation of true opinion or behaviour (Japec et 

al., 2015), than the traditional methods such as the surveys and opinion polls (Asur and 

Huberman, 2010) and may likely replace traditional and more expensive surveys (Stieglitz et al., 

2018), though some studies suggested the combination of both methods (DWP, 2014; Felt, 

2016). Additionally, Asur and Huberman (2010) emphasised that social media data can be used 

to make quantitative predictions, build models to aggregate the opinions of the collective 

population and gain useful insights into their behaviour. Furthermore, previous research has 

shown that crime flourishes in disadvantaged areas, more so than in affluent areas (Skogan, 

1989; Gartner, 2013; Thompson and Gartner, 2014), because most persistent offenders come 

from disadvantaged backgrounds (Wikström and Treiber, 2016). Here again, this proposal needs 

to be re-investigated, especially as neighbourhood characteristics are not static.  

1.2.2 Significance of the Study 

This research work was motivated by the emphasis on community participation in crime 

prevention and the paucity of data to quantify the concept of community cohesion, especially 

through social media. It is anticipated that the findings of this study will benefit society, 

especially the law enforcement agencies since social media plays an important role in crime 

prevention today (Ronoh et al., 2017).  

The research could also provide better understanding of the relationship between community 

cohesion and crime through the application of new “non-traditional” social media data sources. 

Hence the study would also extend empirical discussion in the context of criminology by 

proposing a new empirical approach for quantifying community cohesion and crime. 

Furthermore, this study will be beneficial to policy makers as it will provide insight for re-

evaluating the role of community cohesion on crime control. Similarly, the research could also 

assist future researchers to uncover the potentialities offered new data sources for exploring the 

impact of community cohesion on crime. 

1.2.3 Defining Community in the Context of Crime 

Defining the term ‘community’ is very complex as different people have different views about 

their communities (MacQueen et al., 2001). The concept of community, although disputed, also 

posits the notion of collectivity and commonality (Haq, 2006).  However, MacQueen et al. 
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(2001) defines community as  “group of people with diverse characteristics who are linked by 

social ties, share common perceptions and engaged in joint action in geographical locations or 

settings” (MacQueen et al., 2001 p.1929). Similarly, Lee (1992) also defined community as a 

group of people who have shared common thoughts.  

Therefore, in the context of crime, ‘community’ may be defined in terms of  participation and 

involvement of members in collective action to prevent crimes in their neighbourhoods (Stenson, 

1993). However, this does not suggest a fixed definition of community but rather a community in 

crime prevention and practice (Crawford, 1994).  With the advent of the internet, the concept of 

community potentially transcends the geographical boundary as people can now gather virtually 

through social media platforms such as Twitter and Facebook and share common interests 

regardless of physical location (Ting, 2011). For example in the UK, social media platforms, 

particularly Facebook and Twitter are increasingly being used by law enforcement agencies to 

engage the public in crime prevention activities (Crump, 2011). Social media channels can be 

used to communicate to people quickly about locations of criminal events. For example, tweets 

can help the police to immediately alert the community and to request the general public for 

assistance with useful information that may lead to the arrest of the offenders (Glodava, 2015). 

Therefore, for the purpose of this research project, the term ‘community’ is defined as one where 

people collectively come together (virtual and physical cohesion) to improve the security of their 

geographical areas with a view to reducing crime. Additionally, throughout this thesis the terms 

community cohesion and social cohesion may be used interchangeably. 

1.3 Thesis Structure 

This thesis will comprise nine chapters organised sequentially to reflect the development of the 

research bearing in mind the stated objectives outlined above. Table 1.1 outlines the chapter 

structure of the thesis in relation to the research objectives.  

Chapter 2 is a critical review of literature on the concept of community cohesion and crime. 

Social capital and its importance in crime including its determinants are outlined. The effects of 

collective efficacy on social cohesion and by extension crime are discussed here. To ground the 

research into context, crime theories related to the research are discussed. This chapter aims to 

achieve objective 1 of the thesis. 
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Chapter 3 proceeds to describe and discuss quantitative methods of modelling urban social 

systems and data sources employed for analysis. Relevant datasets such as police recorded crime 

and census statistics required for the analyses and their sources are also highlighted. A range of 

spatial and statistical techniques, their relative merits, as well as application in community and 

crime research is examined. This chapter is designed to achieve objective 2 outlined in the thesis. 

 

Table 1.1: Thesis outline in relation to research objectives 

Chapter Objective 

Chapter 2: Concept of Community Cohesion and Crime: A Literature Review 1 

Chapter 3: Traditional methods of Modelling Urban Social Systems and Crime 2 

Chapter 4: Non-Traditional methods: Social Media for Community Cohesion and 

Crime 

3 

Chapter 5: Traditional Modelling of Crime and Community Cohesion 2 & 3 

Chapter 6: Social Media Analysis for Understanding Community Cohesion 3 

Chapter 7: New Social Media Metrics for Quantifying Community cohesion and 

Crime 

4 

Chapter 8: Community Cohesion and Crime: A New Leeds Community Areas 

Classification Profile 

5 

 

Chapter 4 reviews literature on social media, community cohesion and crime as it relates to 

action in communities and for understanding communities. The importance of social media in 

law enforcement activities is also discussed. Social media channels relevant to this research and 

the procedures used to access social media data: from Facebook and Twitter specifically are 

presented. Different methods and algorithms used for social media data analysis, such as to 

quantify sentiment and engagement are described. This chapter is set to achieve objective 3 of 

the thesis.  
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Having identified determinants of social capital and crime in chapter 2, and described the 

statistical methods in chapter 3, chapter 5 moves on to develop metrics of diversity of urban 

community form and apply them in a multiple regression model to explore the relationship with 

burglary crime rates. Procedure and justification for variable selection into the model are 

described. This chapter relates to objectives 2 and 3 of the thesis. 

Early in the research (chapter 4), the relationships between social media and community 

cohesion are examined. Building on insights from the regression model in chapter 5, chapter 6 

proceeds to use Twitter data to quantify public sentiment (mood) to explore relationships 

between of social cohesion and burglary crime rates using Leeds community areas as a spatial 

framework. This chapter aims to achieve objective 3 of the thesis. 

Drawing on new insights about the relationship between community cohesion and crime based 

on analyses carried out in chapters 5, and 6 using traditional and new social media data sources, 

Chapter 7 presents a set of new Facebook metrics (popularity, commitment and virality) for 

quantifying the relationship between engagement (community cohesion) and burglary crime rates 

in different local community areas. This chapter is designed to achieve objective 5 of the thesis. 

Chapter 8 combines insights derived from chapters 5, 6 and 7 based on a new perception of 

community cohesion to classify a range of community areas in Leeds. This chapter is designed to 

achieve objective 4. 

Finally, Chapter 9 concludes the thesis by presenting a summary of the findings, limitations and 

recommendations for the future studies. 
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Chapter 2  

Concept of Community Cohesion and Crime: A Literature 

Review 

2.1 Introduction 

The Cantle report highlighted that lack of mutual interactions (social cohesion) between groups 

in the same community as well as deprivation were the major issues limiting collective efficacy 

(informal social control) in a community; in such a situation, the community becomes less 

cohesive (Cantle, 2001). A decline in social cohesion in a community is often linked to increases 

in crime rates (Hirschfield and Bowers, 1997; Kawachi and Berkman, 2000; Forrest and Kearns, 

2001; Goudriaan et al., 2006). A literature review is usually meant to contextualise a field of 

study, to provide direction and support for new data gathering.  In this chapter, we survey 

important literature on the concept of community cohesion and crime. The chapter begins with 

the definition of the concept (Section 2.2) and outlines the context of community cohesion and 

crime (Section 2.3); it then proceeds to describe the importance of social capital in crime 

(Section 2.4). Determinants of social capital in relation to crime are described in Section 2.5. The 

relationship between collective efficacy and crime is described in Section 2.6. The weaknesses of 

previous studies are outlined in Section 2.7 and a review of theoretical framework is presented in 

Section 2.8 while concluding remarks are presented in Section 2.9. 

2.2 Defining the Concept of Community Cohesion 

The concept of community cohesion and the issue of integration have been a matter of public 

discourse with a long history dating back to the 20th century when rapid urbanisation produced a 

strong social order alongside religious and diverse ethnic lines (Forrest and Kearns, 2001). In the 

UK, however, the concept of community cohesion came into the limelight in 2001 as a result of 

the disturbances that occurred in Bradford, Oldham and Burnley, where aggrieved ethnic 

minority groups protested against perceived marginalisation by the White majority populations.  
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The then British Home Secretary, David Blunkett, in a lecture delivered in New York 2003, 

argued that: 

“True freedom enables individuals to participate actively in creating 

their own solutions to community problems; consciously engage in 

political discourse and influence its outcome; and become flourishing 

contributors to their own society " (Blunkett, 2003 in Burnett, 2004, 

p.1). 

Defining the concept of community cohesion is difficult as there is no universal definition for it 

(Hardyns and Pauwels, 2009). However, various authors and government agencies have made 

different attempts to define the concept. According to Cantle (2001), the focus of community 

cohesion is integration, distribution of wealth and social well-being of the people. The term 

community cohesion has been defined as interaction between different groups of people 

accepting one another with a view to living harmoniously together (Cooper and Innes, 2009). 

Socially cohesive areas according to Hirschfield and Bowers (1997) are communities where a 

sense of interaction and a sense of belonging exist. Forrest and Kearns (2001) have viewed 

community cohesion in communities in terms of common values, social order and social 

solidarity, integration and strong attachment.  

Despite the lack of consensus on the appropriate definition of community cohesion, a broader 

working definition has been adopted for the UK. The Local Government Association (2002) 

defined cohesive communities as “where there is a common vision, sense of belonging, respect 

for diversity and similar life opportunities for all members of communities irrespective of their 

backgrounds” (Local Government Association, 2002, p.6). 

2.3 Community Cohesion and Crime 

Community crime prevention refers to actions intended to change the social conditions that are 

believed to sustain crime in a given residential community (Hope, 1995). This approach 

emphasises community involvement in crime prevention efforts in contrast to formal crime 

preventions by law enforcement agencies (Gill et al., 2014). Crime does not only inflict fear on 

its victims but also impedes a community’s potential for establishing social ties among its 

members (Hartnagel, 1979; Taylor, 1995; Zani et al., 2001; Garcia et al., 2007). Other  authors, 
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for example, Brantingham and Brantingham (1991) and Woldoff (2002), argued that deviant 

behaviour from within or outside the community encourages human interaction. Despite a wide 

range of strategies aimed at crime reduction, the effectiveness of the judicial system was argued 

to have limited impact in preventing crime (Rosenbaum, 1988; Sherman et al., 1997; Homel, 

2006). Therefore, as formal means of fighting crime become less effective, community crime 

prevention have emerged as an alternative way for reducing crime in neighbourhoods 

(Rosenbaum, 1988). However, reducing crime in urban neighbourhoods is linked to levels of 

informal social control defined as willingness of residents to intervene in local problems 

(Sampson and Groves, 1989; Bursik Jr and Grasmick, 1993; Sampson et al., 1997; Sampson et 

al., 2002; Silver and Miller, 2004; Burchfield, 2009; Warner et al., 2010).  

Gendrot (2001), in a comparative study of policies about crime and fear of crime in urban areas 

of France, USA and UK, noted that local authorities, police, educators and citizen participation 

are necessary for effective local crime prevention activities. He also stressed that the social 

capital of a neighbourhood can help to reduce social disorder in urban areas, indicating the place 

of collaboration for effective crime prevention efforts. 

Previous researchers have used different traditional datasets to explore relationships between 

urban structural characteristics and neighbourhood crime. For example, Sampson and Groves 

(1989) used the British Crime Survey of 1982 and 1984. Employing socio-economic status, 

ethnic heterogeneity and residential mobility and family disruptions as dependent variables, they 

empirically tested the role of community structures, especially local social ties and participation, 

in reducing crime. They found that strong correlations exist between community structural 

characteristics and levels of crime rates and especially burglary and street crimes are directly 

reduced in cohesive communities. Building on Sampson and Groves (1989), Markowitz et al. 

(2001) also used the British Crime Survey of 1984, 1988 and 1992 to investigate the relationship 

between cohesion and disorder. As with the previous study, they found that low socio-economic 

status, ethnic heterogeneity, family disruptions, and residential instability are associated with 

increase in disorder, while cohesion reduces disorder in neighbourhoods.   

Furthermore, Lee (2000) used cross-national and city level surveys from 27 countries to study 

the relationship between community cohesion and violent crime victimisation. He found that 

people who live in cohesive communities are less likely to experience violent crime. 
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Additionally, a community that has a higher level of informal social control is where members of 

such a community are more likely to intervene in public deviant activities. This concept is 

described as ‘collective efficacy’ (see Sampson et al., 1997).  He also noted that socio-economic, 

demographic, neighbourhood characteristics, life-styles and community cohesion reduce the 

likelihood of robbery and assault, suggesting that community cohesion may be important 

determinant of victimisation risk. 

Wedlock (2006) used the Local Areas Boost to the 2003 Citizenship Survey to investigate the 

relationship between community cohesion and reported level of crime. She found that sense of 

community (a factor of community cohesion) and levels of multiple deprivation of an area are 

the key predictors of violent crime.  

Cooper and Innes (2009) employed the British Crime Survey of 2007 and the Community Life 

Survey of Wales to examine the relationship between community cohesion and crime, looking at 

the variables of age and socio-economic status of the people and how these variables influence 

crime. They found that the community’s level of cohesion depends to a large extent on its level 

of ties and that diversity and deprivation compromise cohesion. They also emphasised that 

community cohesion is important for understanding public perceptions of crime and that 

different area levels of community cohesion are linked to their social and economic context. 

There has been a growing debate on the impact of community cohesion on crime. For example, 

Farkas and Jones (2007) argued that the greater the levels of community cohesion in an area, the 

greater the levels of social control which in effect check criminal activity. Similarly, Rosenbaum 

(1987) further observed that high levels of crimes are associated with social disorganisation in 

communities. Consequently, communities with strong network ties and social interactions are 

likely to have lower crime rates (Sampson and Groves, 1989). Kawachi and Berkman (2000) 

explained that the relationship between crime and community characteristics is better understood 

when viewed in terms of social capital as a factor of community cohesion.  

Community cohesion generally acts to increase the safety of communities by reducing the socio-

economic drivers of crime, through maintaining oversight of those potentially moving into 

criminal lifestyles (Lee, 2000), to increasing the oversight of potential sites of crime, and by 

reporting crimes when they occur. However, cohesion is a nuanced concept (there is 

considerable cohesion in communities ruled by criminal gangs) and cohesion is ill-represented 
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by standard socio-demographic variables (both middle and working class communities can 

experience a wide range of levels of cohesion). As such, cohesion is poorly captured in standard 

regression models of crime. In this research, the adjustment of standard regression variables is 

suggested. A set of ‘adjusted’ variables can better capture the range of loci in which social 

cohesion plays a part across the crime system. In addition, when these adjustments are made, 

these variables become more strongly predictive of crime than standard variables, suggesting the 

significant role social cohesion plays in the crime system and the significant role it plays as the 

link between standard regression variables and burglary crime rates. 

2.4 Importance of Social Capital on Crime 

The concept of social capital was pioneered by Durkheim (1893) who advocated the impact of 

social capital especially in addressing social problems (such as crime) in societies. The concept 

of social capital has no universal consensus definition. However, researchers (Coleman, 1990; 

Putnam, 1995) have attempted to define social capital as those features of the social 

organisations such as networks, trust and reciprocity, that facilitate mutual coexistence among 

the community. Social capital has also been defined as the chain of cooperative relationships 

between citizens that facilitate collective action towards the resolution of problems (Brehm and 

Rahn, 1997), the ability for people to work together for common purposes in groups and 

organisations (Fukuyama, 1996). Therefore, quality of life and the performance of social 

institutions are influenced by norms of networks and civic engagement between residents of  

working together to improve the conditions of their community (Putnam, 1995).   

Social capital reflects the relationship between people and the outcomes of their relationships. 

Therefore, social capital is part of the daily social life and behaviour of people in the society 

(Sander and Teh, 2014). Social scientists have emphasised two main dimensions of social 

capital: social glue and social bridges. While social glue refers to the degree to which people take 

part in group life, social bridges on the other hand are the links between groups (Briggs and 

Wilson, 2005,  p.152). Additionally, a reflection of high social capital can be seen in societies 

where people are committed, tolerant and help each other for their common good (ONS, 2015a). 

Therefore, Dodge and Kitchin (2007) argued that the overall importance of examining social 

capital rests in the belief that social networks have influence, especially in mediating crime and 

creating safer neighbourhoods.  
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Furthermore, Dodge and Kitchin (2007) suggest that the potential for social capital to make a 

positive contribution to outcomes in areas of social concern such as community safety has 

attracted the attention of policy makers and researchers. Studies have demonstrated that crime 

rates are closely linked to levels of social capital (Sampson and Raudenbush, 1999; Healy and 

Côté, 2001; Harper, 2001; Haezewindt, 2003; Akçomak and Ter Weel, 2012; Moore and Recker, 

2013; Turcotte, 2015). Akçomak and Ter Weel (2012) maintain that social capital increases the 

risk and probability that the potential offenders might be caught in the process, which in turn 

reduces the crime rates in the neighbourhoods. For example, in societies where the levels of 

social capital and social bonds are strong, offenders are less likely to victimise people because 

they (offenders) tend to risk being apprehended as residents tend to look out for each other 

(Buonanno et al., 2009). This notion was earlier highlighted by Putnam (1995) who stressed that 

levels of crime in a given society are related to the levels and strength of social connectedness 

and civic engagement which is a product of social capital existing in such societies. Additionally, 

Putnam (2000) also stressed that absence of social capital in the community may promote youths 

to engage in criminal activities (Putnam, 2000). Temkin and Rohe (1998) also argued that social 

capital can be used to predict neighbourhood stability.  

There are a number of studies which seek to explore the relationship between social capital and 

crime. For example, Kennedy et al. (1998) explore the effect of social capital on fire arms 

violence using the US General Social Survey. They found that a decrease in social capital is 

associated with an increase in fire-arms violence. They suggested that increasing social capital 

and reduction of wealth disparity among people can have significant effect on crime, especially 

fire-arms and violence.  

Additionally, Carcach and Huntley (2002) used Local Government areas data in mainland 

Australia to study the relationship between social capital and crime. They found that crime rates 

tend to be lower in local areas with high levels of participation (a factor of social capital) in local 

community oriented activities. Participation increases opportunities for social interaction, 

encouraging collective action towards local problems and enhancing public safety. 

Kruger et al. (2007) attempted to explore the effect of social capital on assault using random 

sample of Census data of Genesee County in Michigan, USA. They found that neighbourhood 

social capital moderates the impact of assault injury rates on fear of crime. Deller and Deller 
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(2010), using Metropolitan US county data, maintain the influence of social capital in 

understanding patterns of rural crime pressures and that social capital can help mediate such 

pressures.  

Additionally, Deller and Deller (2012) also emphasised  that social capital has more significant 

impacts on property crime such as burglary and theft than on other crimes. Property crime takes 

place in public arenas where others may view the offence and hence the potential effect of social 

capital (Moore and Recker, 2013). Burglary, specifically, is an opportunity crime that flourishes 

in socially disorganised and less cohesive communities (Weisburd and Piquero, 2008). 

Disorganised neighbourhoods are more likely to be affected, because of weak social capital 

(Dunaway et al., 2000). However, Moore and Recker (2013) argued that violent crimes often 

operate behind closed doors, where expected neighbourhood social capital may not be effective. 

Akçomak and Ter Weel (2012) explore the effect of social capital in the Netherlands using data 

from 140 Dutch municipalities. They found out that variation in crime rate is associated with 

variation in social capital across cities. While the importance of social capital in mediating 

different types crime has been established, an effective way of measuring it still remains a 

challenging task among researchers (Harper, 2001; Babb, 2005). 

Additionally, a wide range of literature has demonstrated the impact of social capital in 

mediating crime in society, however the data used are mostly US based (Sampson et al., 1997; 

Kennedy et al., 1998; Kruger et al., 2007; Deller and Deller, 2010; 2012). Therefore the 

application of the findings needs to be validated in a UK situation. In this research, we used data 

from the UK in order to examine the importance of social capital sub-component of community 

cohesion, especially in mediating crime.  

2.5 Determinants of Social Capital in Relation to Crime    

Social capital is important for crime prevention but we do not know what it really is because of 

the paucity of appropriate data to empirically measure it (Kanazawa and Savage, 2009). Dodge 

and Kitchin (2007) emphasised that social capital data may help to give a better understanding of 

crime and community safety issues which may provide information that may enhance operational 

policing strategies (Dodge and Kitchin, 2007). 
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There has been much debate in the academic field, both within the UK and internationally, as to 

what social capital means and how best to measure it (Babb, 2005). The difficulty associated 

with defining social capital and its measurement has continued to make its quantification rather 

complex (Harper, 2001). Researchers have stressed that social capital is difficult to quantify, 

because no single indicator exists to measure it (Haezewindt, 2003; Plotkowiak, 2014; Appel et 

al., 2014).  

Measurement of social capital appears to be a problematic and complex task. However, Van Der 

Gaag and Snijders (2005) suggest that attempts to measure social capital should consider a range 

of indicators rather than focusing on a single variable. Therefore, to measure social capital, 

Woolcock and Narayan (2000) explained that contemporary researchers  have to compile 

variables from a range of different sources.  

Previous researchers (Coleman, 1988; Hall, 1999; Putnam, 2000) have used different indicators 

in attempting to measure social capital in relation to crime but the social capital indicators they 

have used merely focused on voluntary and civic participation which belong to a unique set of 

social constructs (Appel et al., 2014). Because of this limitation, Moore and Recker (2013) 

argued that social capital has not been effectively defined or measured across previous studies 

especially with regards to crime.  

Additionally, previous studies that have attempted to quantify the relationship between social 

capital and crime relied heavily on data from traditional sources, such as community surveys, to 

measure social capital where questions can easily be crafted and prone to bias; hence the 

reliability of those measures may be questioned (Deller and Deller, 2010). This shortcoming, 

coupled with validity issues, has remained a point of criticism (Appel et al., 2014). To address 

this limitation, Appel et al. (2014) maintain that one measure that combines a number of 

constructs into a new measure of social capital is particularly internet social capital.  

Technological developments such as the social media are changing the way social capital is 

perceived, especially relating to life-styles and crime prevention. For example, social networks 

are now being maintained through the internet, especially through social media such as Twitter 

and Facebook (Babb, 2005). This trend suggests that social media are potentially important for 

explaining social capital and metrics to quantify it specifically in relation to crime. Hence, 

Putnam (2000) argued that social capital is often better understood using quantitative 
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approaches. Therefore, social cohesion is only understandable when the context in which it is 

being assessed is determined; studying crime in this research is considered appropriate. 

While it is apparent that social media enhances the formation of social capital (Ahn, 2012), it 

also helps in mediating crime (Akçomak and Ter Weel, 2012). However, researchers such as 

Moore and Recker (2013) have stressed the inadequacy of previous studies to effectively 

measure social capital. To address the limitations highlighted, this research uses sets of new 

metrics of social media, especially Facebook and Twitter, to construct a new meaning to social 

capital (a factor of community cohesion) through quantifying its importance in the crime system.  

Previous studies have demonstrated that social capital is measured differently and that certain 

measures tend to have larger effects on crime than others (Deller and Deller, 2010; Moore and 

Recker, 2013). Therefore, in order to quantitatively measure the impact of social capital 

especially on crime and for the purpose of robustness, this research examines a range of variables 

(datasets) drawn and compiled from different data sources such as big data (social media) and 

UK Census data (socio-economic and demographic) to explore the effect of each variable on 

crime. For example, variables such as age, gender, ethnic diversity, length of residence, 

educational qualifications and deprivation, as well as social media usage (social networking), 

may have different effects on social capital and crime (Moore and Recker, 2013).  

Table 2.1 shows social capital indicators used in previous studies. 

Table 2.1: Social capital indicators 

Social Capital (Variables) Description Reference 

Age Census 2011 KS102EW 

(ONS) Leeds LSOA 

Levitt (1999), Johnston and 

Matthews (2004), Ponce et 

al. (2014), ONS (2015a) 

Gender Census 2011 QS104EW 

(ONS) Leeds LSOA 

Tittle et al. (2003), Ponce et 

al. (2014), ONS (2015a) 

Participation in clubs and 

associations 

Lifestyle and social 

participation ST41 2012 

(ONS) National 

Putnam (1995), Wollebæk 

and Selle (2003), Johnston 

and Matthews (2004), 

Mandarano et al. (2010), 

Caruso (2011), Sagar et al. 

(2011), Ponce et al. (2014), 

ONS (2015a)  
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Social Capital (Variables) Description Reference 

Internet usage (social 

networking) 

e-society ST41 2014 (ONS) 

National 

Wellman et al. (2001), ONS 

(2015a) 

Online membership (Social 

media) 

e-society ST41 2014 (ONS) 

National 

Sajuria et al. (2014), Burke 

et al. (2011), Plotkowiak 

(2014), (Sander and Teh, 

2014) 

Heterogeneity Census 2011 KS201EW 

(ONS) Leeds LSOA 

Gilchrist and Kyprianou 

(2011), Birani and Lehmann 

(2013), Kindler et al. (2014) 

Educational qualification Census 2011 KS501EW 

(ONS) Leeds LSOA 

Moretti (2005), Helliwell 

and Putnam (1999), Deller 

and Deller (2010), Machin 

et al. (2011), Caruso (2011) 

Election turnout Electoral Commission 2010 

ST41 (ONS) National 

Putnam (1995), Akçomak 

and Ter Weel (2012), 

Johnston and Matthews 

(2004), ONS (2015a) 

Length of residence Census 2011 QS803EW 

(ONS) Leeds LSOA 

Yamamura (2011), Keene et 

al. (2013) 

Deprivation Index of Multiple 

Deprivation (IMD) 

DCLG (2015), (Drukker et 

al., 2003) 

    

2.5.1 Age, Social Capital and Crime  

People of different ages might have different levels of social capital. The levels of social 

interaction might also differ among different age groups since younger people are less likely to 

build social capital (particularly face-to-face) than older people (Johnston and Matthews, 2004). 

This is because young people (16-24) are less likely to participate in local community activities 

(Whiting and Harper, 2003). Ponce et al. (2014) argued that social capital increases with 

advancing age. Interaction and participation are important in social capital; in the UK, recent 

research has shown that elderly people have more interaction with neighbours than young 

persons (ONS, 2015a). This trend may be attributed to the fact the younger people tend to have 

more social capital through social media and interact more via the Internet, especially through 
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social media platforms. On the other hand, Tittle et al. (2003) argued that the age crime curve 

tends to increase from the adolescent years reaching maximum at adulthood and then sharply 

declines. This however depends on the type of crime. 

Furthermore, Levitt (1999) stressed that population groups aged 16-24 and 25-39 are more 

heavily involved in criminal activities than those 65 and over (Figure 2.1). Similarly, Kanazawa 

(2003) maintains that, just as productivity declines with age, so also crime tends to reduce with 

growing age. However, Blonigen (2010) also argued that the links between crime and age is very 

difficult one but he agrees with Tittle et al. (2003) on the age-crime curve concept. 

Therefore, given the limitation of previous studies that examine the relationship between age and 

crime as a result of normative changes (Blonigen, 2010) and as an outcome of self-control (Tittle 

et al., 2003), the present study intends to explore other possibilities of link between age and 

crime. 

 

Figure 2.1: Crimes by age group. Source: Criminal Justice Statistics, 2014 (ONS, 2014c) 

2.5.2 Gender, Social Capital and Crime 

Social capital accumulation and its utilisation are related to and segmented along gender lines. 

Men are less likely to regularly and socially interact with neighbours than women across all ages 

(Ponce et al., 2014; ONS, 2015a). However, in terms of social capital, Timberlake (2005) argued 

that women lag behind men due to their limited access to education, resources and networks 

which are essential for establishing social capital. Similarly, Migheli (2007) emphasised that 

women tend to have less trust than men therefore are less likely to invest in social capital. Van 
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(2006)  also maintains that men are more effective in establishing social ties which is essential 

for creating social capital than women. On the other hand, Westermann et al. (2005) argued that 

the discrimination between men and women in terms of their involvement in social capital 

requires further investigation and empirical testing. 

In terms of crime, differences exist between men and women. For example, research has shown 

that except for minor offences, males have a higher probability to commit crimes than females 

(Tittle et al., 2003). Heidensohn and Gelsthorpe (2012) stressed that men tend to commit more 

crime than women. Statistics in England generally have indicated that males consistently 

constitute the vast the majority of offenders (about 77%) with females undertaking only 23% 

(ONS, 2014d). However, ONS (2014d) explains that the type of offences committed by females 

tends to be different and less serious compared to males. Figure 2.2 shows the comparison of 

interaction between men and women across different age groups. As noted earlier, social 

interactions increase with age and women tend to have more social interactions across the range 

of age groups. Figure 2.3 comparises crime by gender. It was earlier noted that men tend to have 

a higher probability to commit crime than women.    

 

 

Figure 2.2: Social interaction between men and women. Source: ONS (2014e) 

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

18 to 24 25 to 34 35 to 44 45 to 54 55 to 64 65 to 74 75 and
over

P
e

rc
e

n
ta

ge
 

 

Age Group 

Men

Women



21 

 

 

Figure 2.3: Crime by gender. Source: Criminal Justice Statistics, 2014 (ONS, 2014c) 

2.5.3 Internet Usage and Social Capital 

The internet provides a new means of interaction and socialisation that can enhance face-to-face 

relations. The use of the internet is more linked and associated with certain age groups than 

others. For example, younger people use the internet more frequently than older people for social 

networking, especially through social media platforms (Twitter and Facebook) to share 

information and common interest (ONS, 2015a). Johnston and Matthews (2004) argued that 

young people are less likely to have face-to-face social interactions than older people. Figure 2.4 

describes the levels of internet usage by different categories of people. 

Resnick (2001) and Wellman (2006) have maintained that internet use, especially through social 

media, greatly influences people’s ability to form and maintain social capital, given that it 

provides the opportunity for interaction and information sharing in a variety of ways. Similarly, 

Ahn (2012) argues that social media network platforms may assist in cultivating social capital in 

both online and offline relationships.  

Furthermore, Wellman et al. (2001) emphasised  that rapidly expanding internet access has been 

a big hope in stimulating positive change by creating new online interaction and enhancing 
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While previous studies have emphasised the possibility of the using internet as a platform 

especially through social media for creation of social capital (Resnick, 2001; Wellman, 2006), 

they fail to provide adequate explanation as to how these medium can be applied to quantify 

social capital and by extension its mediating effects on crime.   

 

Figure 2.4: Internet usage by age group in 2014. Source: ONS (2014d) 
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However, Ellison et al. (2007) argued that the internet has been linked to both increases and 

decreases of social capital. Nie (2001) stressed that online membership (internet use) might 

reduce face-to-face social interaction and inturn reduce social capital. On the other hand, Bargh 

and McKenna (2004) emphasised that online interactions enhance social capital and therefore 

has significant impact in social life. Additionally, Katz and Rice (2002) highlighted that online 

interactions through social network sites may be used to form social capital and that the internet 

has a positive impact on social interaction both online and offline. Similarly, Sander and Teh 

(2014) also explained that social networking creates social capital because, by belonging to 

online networks, the distance between people is diminished by sharing information in real time. 

Recently, Sajuria et al. (2014) used Twitter data from three events: the US Occupy movement in 

2011, UK based IF Campaign of 2013 and the Chilean Presidential Elections 2013 to empirically 

test Putnam’s social capital theory. They found that online social interactions promote social 

capital; Twitter specifically has the potential for creating two forms of social capital: bonding 

and bridging beyond what the theory predicts. Bonding social capital refers to consolidation of 

existing ties within homogenous groups while bridging social capital relates to linking otherwise 

separate heterogeneous groups (Sajuria et al., 2014). Figure 2.5 shows the growth in household’s 

access to internet in the UK. A steady increase in online activities by individuals indicates the 

potential of maintaining social capital through online interactions. 

 

 

Figure 2.5: Percentage of UK households with internet. Source: ONS (2017b) 
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2.5.5 Participation in Community Activities, Social Capital and Crime 

Participation in community activities such as clubs and associations and voluntary work has been 

recognised as a factor contributing to social capital. For example, Delaney and Keaney (2005) 

stressed that participation in sporting activities such as a local football or amateur dramatics can 

enhance creation of social capital in a society. In terms of participation in sports clubs and 

voluntary associations, research has demonstrated that men are more likely to be actively 

involved than women across all age groups (Wollebæk and Selle, 2003; Johnston and Matthews, 

2004; Mandarano et al., 2010; Ponce et al., 2014; ONS, 2015a).  

Furthermore, studies have indicated a relationship between participation in sports and crime 

control. Okayasu et al. (2010) have argued that social capital has been emphasised as a means of 

reducing community social problems such as crime, and participation in sports is considered as 

one of the catalysts in achieving that objective. For example, Caruso (2011) explores the impact 

of sports participation on crime in Italy using OLS regression. He found that an increase of 1% in 

sports participation significantly reduces the level of property crime by 0.3% and juvenile crime 

by 0.8% respectively. However, violent crime was found to be positively associated with sports 

participation, where an increase of 1% in sports participation increases the rate of violence by 

0.4% (Caruso, 2011).  

Sagar et al. (2011) examined the relationship between sports participation and crime in Britain 

using the participation of university students in sports. They found out that participation in sports 

negatively effects antisocial behaviour. However, Hastad et al. (1984) argued that there is no 

relationship between sports participation and deviant behaviour. Their findings indicated 

negative association between youth sports participation and deviant activities. Figure 2.6 

indicates the levels of participation in clubs and associations for men and women cutting across 

different age groups. Therefore, sports participation may have an important role to play in both 

building social capital as well as addressing crime. 

Additionally, Kang (2015) emphasised that participation in voluntary work such as 

neighbourhood watch scheme can promote a sense of community, social interaction, as well as 

safety in neighbourhoods.  
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Figure 2.6: Participation in community activities by gender and age. Source: DCMS (2010) 

2.5.6 Participation in Election, Social Capital and Crime 

Participation in elections (voter turnout) is one of the important aspects of social capital in 

society. Research has shown that older people tend to participate more actively in political 

processes such as voting in an election than the younger ones (Johnston and Matthews, 2004; 

ONS, 2015a). In the UK, for example, statistics have shown that trends in voting has been 

consistent over the years (TEC, 2010). Figure 2.7 shows the percentage of turnout in the general 

elections by year and age group. This trend might be because younger people and (of both sexes) 

are less interested in politics than older people. 

Coleman (2002) and Santangelo (2011) have all highlighted that voter turnout is associated with 

lower crime rates. Santangelo (2011) also stressed that the more people are connected with 

society, the less likely they are to commit crimes that affect other members of society as they feel 

greater responsibility for upholding common values.   
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Figure 2.7: Participation in election by age groups. Source: TEC (2010) 

2.5.7 Heterogeneity, Social Capital and Crime 
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capital by both academics and policy makers. Researchers have expressed different views about 

the impact of heterogeneity on social capital. For example, Birani and Lehmann (2013) 

emphasised that ethnicity is important in binding individuals together known as ethnic social 

capital, especially with regards to employment, guidance and safety. Identity plays an important 

role in the likelihood of people connecting and forming social relationships (Gilchrist and 

Kyprianou, 2011) and the integration of migrants into local neighbourhoods (Kindler et al., 

2014). However, Goulbourne and Solomos (2003) argued that understanding the relationship 

between ethnicity and social capital is complex especially in the UK context. On the other hand, 

Vermeulen et al. (2012) have argued that negative effects of diversity would probably be 
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On the other hand, Gilchrist and Kyprianou (2011) argued that ethnic heterogeneity has less 

bearing on how people interact (social capital) virtually through the internet as facilitated by 

development in technologies such as social media.  In this research, in order to address the 

controversy associated with social capital and diversity, we propose that social capital can be 

enhanced through social networks. 
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Ethnicity has a notorious relationship with crime, principally acting through socio-economic 

exclusion and disadvantage, but also acting through biases in reporting, the justice system and 

policing, the latter including complex relationships between race and prejudice, but most clearly 

expressed in the findings of the Stephen Lawrence Inquiry in the UK (Macpherson, 1999). 

Ethnicity might be important especially when considering victimisation and hate crime 

(Shepherd, 2006). In terms of victimisation, in the UK, statistics have indicated that minority 

groups tend to have higher risks of crime victimisation than Whites. While the White population 

has 6.8% of crime victimisation risk, minority groups have 11.1% (ONS, 2013).  

Previous studies report that increases in proportion of immigrants positively correlates with the 

incidence of property crime. For example, Bianchi et al. (2012) explained that an increase of 1% 

in the immigrant population is associated with 0.1% increase in the total number of criminal 

offences. Previous studies in the UK have yet to empirically establish the link between increases 

in the number of immigrants in an area with incidence of property crime specifically. However, 

empirical evidence exists in the US on links between the number of immigrants and the 

occurrence of other types of crime such as motor vehicle theft and robbery (Bholowalia and 

Kumar, 2014). The divergent opinions expressed by different studies necessitate the need for re-

examination of the relationship between social capital and diversity, especially as it affects 

crime.     

2.5.8 Education, Social Capital and Crime  

Education is one of the most important predictors of social engagement. The importance of 

education in social capital has been stressed by a number of scholars and policy makers. For 

example, while policy makers emphasise the importance of social capital as a medium that may 

help to reduce social exclusion (Catts and Ozga, 2005),  Helliwell and Putnam (1999) argued that 

education can influence the behaviour of individuals and those around them to participate 

politically and socially. Additionally, Imandoust (2011) emphasised that the availability of more 

educational institutions can potentially boost the quality and quantity of social capital in a 

country. Therefore, people who are educated are more likely to socially connect than uneducated 

people.  

In terms of crime, Moretti (2005) argued that educated people are less expected to commit 

crimes even though it is difficult to quantify. The theory of human capital suggests that skills and 
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qualifications determine wages, and the wider the distribution of qualifications, the wider the 

distribution of wages (Green et al., 2006). Reynolds et al. (2001) stressed that the propensity of 

individuals to commit a crime is associated with their level of educational attainment. 

Furthermore, Stephen et al. (2010) also emphasised that increasing school leaving age can have 

significant effects on property crime by reducing the proportion of uneducated people in the 

society. Brilli and Tonello (2014) maintain that compulsory policy on education can reduce the 

rates of juvenile crimes especially in areas characterised by higher levels of social capital, than in 

areas with lower levels of social capital. 

Therefore, the effect of education on crime has received the attention of researchers in the 

quantitative literature, arguing that less educated people are more likely to engage in criminal 

activities as compared to educated persons (Machin et al., 2011). However, previous studies (e.g. 

Moretti, 2005; Brilli and Tonello, 2014) have used data outside the UK. To empirically validate 

the effects of education on social capital as well as crime, UK based data are required. Therefore 

this research employs UK data on educational attainment to explore the effects of education on 

social capital as well as crime. 

2.5.9 Length of Residence, Social Capital and Crime  

Residential stability in a neighbourhood is an important factor for the generation of social capital 

and place-based attachment. It is therefore expected that duration of residence is one determinant 

factor in this direction (Hooghe and De Vroome, 2016). Studies have demonstrated that the 

creation of social capital is associated with length of residence in an area. For example,  

Yamamura (2011) argued that personal interactions are built over time and tend to be more solid 

when people reside in a particular neighbourhood and are influenced by length of residence and 

home ownership. Similarly, Keene et al. (2013) also stressed that it takes time to create 

supportive social ties; therefore length of neighbourhood residency may be an important 

determinant of social integration. 

 Additionally, Oh (2003) emphasised that length of residence has a positive effect on friendships, 

social cohesion and trust. Therefore, people who reside in a particular area for a long time are 

more likely to have close friends and tend to interact more with people (Turcotte, 2015). On the 

other hand, Nisic and Petermann (2013) argued that length of residence only affects social 

capital in the early stage before it begins to consolidate after that phase and then tends to grow at 
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a slower rate thereafter. In contrast, residential instability in a neighbourhood is associated with 

weak social ties and low probability that residents connect with one another (Sampson et al., 

1997). 

Furthermore, residents who have lived in an area for a long time have more opportunity for 

frequent contact and interactions with neighbours which helps in reducing local problems (such 

as crime) (Oh, 2003). Crime is also more likely to occur in transient neighbourhoods. For 

example, in the UK, the tendency to commit crime is related to length of residence; in other 

words, crime reduces as length of residence increases (Bell and Machin, 2011). Specifically, 

research has established the relationship between residential instability and violent crime (e.g. 

Boggess and Hipp, 2010). However, the relationship between residential instability and burglary 

is complex. Wisnieski et al. (2013) maintain that length of residence, age or gender has no effect 

on crime reporting.  

Although a wide range of studies have attempted to explain the relationship between length of 

residence and social capital, only a few attempts have been made to relate length of residence to 

neighbourhood social problems such as crime. This research will explore the relationships 

between length of residence and crime.  

2.5.10 Deprivation, Social Capital and Crime  

Deprivation is considered to be a multi-dimensional problem embedded in range of domains 

such as income, health, education, housing, employment, disability and crime (DCLG, 2015). 

Furthermore, deprivation increases distance for social inclusion among neighbourhood residents 

and also decreases interactions (cohesion) among community members (Morenoff et al., 2001; 

Takagi and Kawachi, 2014). Social capital within a community might be affected by income 

inequality. Pickett (2013) emphasised that income inequality undermines social capital and 

retards growth in the community. Cooper and Innes (2009) argued that diversity and deprivation 

tend to compromise a community’s level of cohesion, while equality of income reduces divisions 

in a community which enhances social capital. Generally speaking, more deprived communities 

may also be lower in social capital (Drukker et al., 2003)  

The deprivation hypothesis suggests that deprived communities tend to have more crimes than 

affluent communities (Sampson and Wooldredge, 1987; Malczewski and Poetz, 2005). Disparity 
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of wealth can influence social capital (cohesion) and crime in a community. The feeling of 

wealth disparity between wealthy and poor people might lead some poor people within the 

communities to commit crimes against both poor and rich (Fajnzlber et al., 2002; Rufrancos et 

al., 2013). Additionally, researchers have found support for the relationship between property 

crime and income inequality (Witt et al., 1998; Kelly, 2000; Demombynes and Özler, 2005; 

Reilly and Witt, 2008). However, little consensus exists across disciplines for the explanation of 

the relationship between income inequality and other types of crime (Rufrancos et al., 2013).  

2.6 Collective Efficacy and Crime 

Collective efficacy is a neighbourhood concept referring to networks of informal social control 

necessary for establishing value systems reflective of prevailing social norms (Swatt et al., 

2013). Collective efficacy includes trust among residents and their willingness to intervene to 

achieve social control (Sampson, 2012; Swatt et al., 2013). Similarly, Sampson et al. (1997) 

described collective efficacy as the ability of members of the community to work together  to 

reduce delinquent behaviour of individual residents, as well as their desire to achieve safety in 

neighbourhoods (Bandura, 1997).  

Furthermore, it has been stressed that  collective efficacy of the residents has significant impact 

in mediating levels of crime in neighbourhoods (Browning, 2002; Gerell, 2014). Therefore the 

nature of interactions and trust among members of the community with a view to achieving 

common goals and values can be associated with their levels of crime (Swatt et al., 2013). 

Residents of neighbourhoods where collective efficacy exists tend to watch out for each other, 

for example, monitoring of children’s activities and youths in order to provide a sense of safety 

in the neighbourhood (Swatt et al., 2013). However, it was argued that collective efficacy of a 

neighbourhood may develop through the capacity of residents to promote social ties and trust 

among themselves (Sampson et al., 1997). 

2.6.1 Measurement of Collective Efficacy on Crime 

A number of studies have explained the effect of collective efficacy on different community 

processes, including neighbourhood crime rates (Sampson et al., 1997; Browning et al., 2004; 

Bruinsma et al., 2013; Armstrong et al., 2015; Yuan and McNeeley, 2017b). However, 

measuring informal social control is difficult, especially, because it is only displayed in specific 
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situations relating to violation of social order (Hipp and Wo, 2015) such as, youths hanging 

around on a street corner (Hipp, 2016). Researchers have used different statistical methods such 

as multilevel item response theory (IRT) to measure collective efficacy (Swatt et al., 2013). IRT 

provides a technique for modelling multiple test scores and is widely used in social sciences 

(Loken and Rulison, 2010).  Multilevel IRT was proposed by Kamata (1998) and is useful for 

data collected in hierarchical settings. Multilevel IRT modelling  is advantageous in that more 

accurate results can be obtained from the relationship between predictor variables and parameters 

that affect it (Kamata, 1998). 

Rukus and Warner (2013) have employed binomial regression to evaluate the impact of 

collective efficacy in property and violent crime in Florida using a nationwide survey. They 

found out that the collective efficacy of neighbourhoods has significantly reduced violent crimes. 

Browning (2002) applied a hierarchical linear model to explore the effect of collective efficacy 

on homicide in Chicago using census data, homicide data, and health and social life survey data. 

He found out that collective efficacy of the neighbourhoods regulates homicide rates. 

On the other hand, Sutherland et al. (2013) have also used multilevel regression to examine the 

impact of collective efficacy on disadvantage and crime in London using a police public attitude 

survey and face-to-face interviews across 60,000 individuals. Their findings show a negative 

relationship between police-recorded violent crime and collective efficacy, but they found no 

statistical significant relationship between collective efficacy, neighbourhood structural 

characteristics and violence.  

Recently, Hipp (2016) has used combined household data from three counties: North Carolina, 

Vance and Person, collected at three one-year time points, to explore the effect of collective 

efficacy on disorder in households. He used factor analysis and hierarchical linear modelling. He 

found that neighbourhood collective efficacy on perceived crime in a particular year has a 

negative effect on informal social control in the following year by increasing crime. He also 

found that efficacy against disorder can change over time. However, his study could not provide 

an explanation of possible reasons behind such occurrence. Furthermore, Gerell and Kronkvist 

(2016) attempted to measure collective efficacy using a community survey of residents in 2012 

for the city of Malmo in Sweden (N=4,051), Census data and police reported data of violent 

crimes. They found a negative relationship between collective efficacy and violent crime, but 
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association between neighbourhood structural characteristics such as ethnic heterogeneity, 

disadvantage, residential instability and violent crime.   

2.7 Weaknesses of Previous Studies 

Limited empirical research on community cohesion and its impact on crime exists (Goodchild, 

2013). Table 2.2 presents the gaps established from the review of previous studies.  

 

Table 2.2: Limitations of previous studies 

Limitation Reference 

Lack of consensus on universal 

definition of community cohesion and 

hence on the use of appropriate 

predictors of measurement 

Pauwels and Hardyns (2009) 

Lack of adequate sources of data to 

quantify social cohesion especially for 

small areas 

Parker et al. (2007); Goodchild (2013) 

Most of the research conducted is 

America based and application to UK 

situation has not been fully explored   

Phillips and Lee (2011) 

Previous researchers largely emphasise 

the effects of residential mobility on 

community, influence of subculture 

(diversity) on social cohesion and by 

extension on crime has largely been 

ignored.  

Porter (1996); (Barnes, 2013); 

Openshaw (1991); Sampson and 

Groves (1989); Sheppard (1995); 

Schuurman (2000); Goss (1995); Curry 

(1997) 

Over reliance on small sample data 

from traditional surveys 

Bowers et al. (2004); Traunmueller et 

al. (2014) 

No previous studies employ social 

media data to study community 

cohesion and crime 
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2.8 Theoretical Framework 

Knowledge of appropriate crime theories is vital in crime analysis (Eck et al., 2005). Many 

theories have emerged over the years and they continue to be explored individually and in 

combination as researchers seek to find the best solutions to reduce the types and levels of crime 

in a society. Therefore, most crime prevention strategies are based on implicit knowledge of one 

or more theoretical understandings of crime. In this research, the criminological theories used as 

a framework include social disorganisation and routine activity. These theories are discussed in 

more detail in the next section. 

2.8.1 Social Disorganisation Theory 

 Social disorganisation theory emerged from the ‘Chicago School’ in the 1920s. However the 

very first ecological study was believed to have emanated from the Cartographic School of 

Guerry (1833) in France and Quetelet (1835) in Belgium. Guerry’s work was fascinating because 

he used statistical tables and figures to analyse his data on crime and suicide in different areas of 

France. The results of his study revealed that crimes and suicide are characterised by different 

variations across space, but remained stable when broken down into age, sex, seasonal and 

regional categories (Friendly, 2007). The last century however, witnessed new theoretical 

innovations, with advent the of Shaw and McKay’s (1942) theory of social disorganisation 

(Chainey and Ratcliffe, 2013). Shaw and McKay (1942) applied Moriarty and Williams (1996) 

Concentric Zone Model to divide the city of Chicago into different zones (neighbourhoods) 

based on crime activities. They were able to map incidence of juvenile crime events in Chicago 

city based on the neighbourhood characteristics. The results of their study indicated that crimes 

(delinquent) were not evenly distributed in the city, and that socio-economic, residential 

instability and heterogeneity factors associated with different areas of the city tend to weaken 

neighbourhoods ability to institute social control, allowing delinquency to flourish  (Shaw and 

McKay, 1942). Attempting to explain the influence of the variables used, Shaw and McKay 

(1942) suggested that the economic status of areas has an indirect influence on delinquency; 

while affluent areas provide an atmosphere for social control, deprived areas offer a conducive 

environment for delinquent behaviours of the diversity of the residents. They also argued that 

areas with large proportions of transient population tend to have higher rates of delinquency. 
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Furthermore, Shaw and McKay (1969) stressed that delinquency is linked to neighbourhood 

characteristics and absence of social control within the community resulting to social 

disorganisation. The work of Shaw and McKay continued to be relevant and forms the basis for 

criminological studies for many decades (Brantinham and Brantingham, 1981; Chainey and 

Ratcliffe, 2005). However, there have been criticisms of the work of Shaw and McKay, 

important among which  is the application of their ideas especially to the UK context, especially 

when the ecological fallacy attributing characteristics to individuals based upon the 

characteristics of areas in which they reside (Shepherd, 2006).  

Contemporary studies applying the social disorganisation theory of Shaw and McKay argued that 

economic disadvantage, ethnic differences and residential movements reduce informal social 

control and increases the probability of crime (Tewksbury and Mustaine, 2006; Sampson and 

Groves, 1989; Bursik Jr and Grasmick, 1993; Warner and Rountree, 1997; Markowitz et al., 

2001; Kubrin and Weitzer, 2003). Therefore, the underlying role of community ties (cohesion) 

and their subsequent effects on neighbourhood crime remain under tested (Warner and Rountree, 

1997). 

Researchers including Martin (2002) and Paulsen and Robinson (2004) also stressed that the 

spatial distribution of poverty, unemployment, ethnic diversity and neighbourhood  social 

organisation are the major foci of social disorganisation theory. The effect of social 

disorganisation according to Paulsen and Robinson (2004) is the reduction of cohesion within the 

community which in turn increases crime rates and anti-social behaviour in those communities. 

However, more recently, studies have suggested a more complex relationship between poverty, 

residential stability, informal social control and crime rates and have advocated for measurement 

of social capital and collective efficacy in neighbourhood as indicators of informal social control 

(Martin, 2002).  

While social disorganisation theory provides the basis upon which ecological factors can be 

related to crime (Sun et al., 2004), ethnic diversity, family disharmony and economic deprivation 

tend to create disorganisation in neighbourhoods and increases in crime rates (Sampson and 

Groves, 1989). Therefore, Bursik Jr and Grasmick (1993) have argued that neighbourhoods are 

expected to share norms for collective efficacy in line with their neighbourhood expectations. 

However, the availability of data on such important variables of an organised society, which 
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include collective efficacy and cohesion, can be difficulty to acquire (Paulsen and Robinson, 

2004).  

The focus of contemporary studies employing social disorganisation theory was 

multidimensional, examining the detailed inter-relationships between community cohesion, 

informal social control and collective efficacy, coupled with population characteristics linking 

the effects of these variables on overall crimes in a given area (Bellair, 1997; Rountree and 

Warner, 1999; Sampson and Groves, 1989; Markowitz et al., 2001). However, the systemic 

model  of community structures is very complex since the possibility of achieving formal and 

informal social interactions relates to the level of socialisation and family background (Bursik, 

1986). The systemic model views the community system of friendship and kinship networks and 

informal interactions which are family based in the continued socialization processes. Modern 

social disorganisation theorists have attempted to explain the effect of community structural 

variables on crime through examining the community level of cohesion (Bursik Jr and Grasmick, 

1993). Therefore, linking a community’s ecological characteristics such as socioeconomic to 

crime has become a common design among researchers (Bursik, 1986; Sampson and Groves, 

1989; Bellair, 1997).  

Despite growing interest in criminology research and theoretical discussions related to the 

community approach to crime prevention, limited empirical test exist to adequately explain the 

relationship between community cohesion and crime prevention especially in the UK context. 

The present study seeks to contribute to advance research in this area by using new social media 

data, especially Facebook and Twitter, to explore relationships between social cohesion and 

crime. 

2.8.2 Routine Activity Theory 

Routine Activity Theory (RAT) emanates from the work of Cohen and Felson (1979). The 

theory seeks to explain the context of crime in a broader perspective not just the behaviour of the 

offender. The theory examined criminal opportunity as a factor with three components: the 

offender himself, the target or prospective victim of the crime as well as the guardian who may 

watch or witness the crime. These three components must be there for any crime opportunity to 

take place, although convergence of these factors depends on the daily lifestyle (Felson, 1995; 

Chainey and Ratcliffe, 2005).  
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 The theory further stresses that not all offenders have the technical experience to commit a 

crime and those targets are not always suitable as they may be well guarded in terms of their 

design. However, some guardians may not be capable (Short and Ditton, 1998). For example 

where CCTV cameras are installed, the offender may tend to avoid them unless under the 

influence of an intoxicant. The focus of researchers on crime prevention has shifted with the 

target and guardian being the main focus as the offender is seen as a constant or rather a 

dependable variable (Chainey and Ratcliffe, 2005). The target is the place or neighbourhood 

where the crime is committed and guardianship refers to informal social control.  

Recent approaches to routine activity however, consider that informal social control of the 

offenders could be linked to the control theory  (Hirschi and Stark, 1969). In this context, the 

social and moral upbringing received by children from their parents serves as an instrument of 

social control with parents becoming effective handlers for reshaping the perception of their 

children (Felson, 1995). Furthermore, Felson (1995) stressed that where there is an effective 

supervision by the guardian against suitable targets, then an offender may be discouraged to 

commit crime. Eck (1995) also emphasised that unlike the handler, a guardian can be a law 

enforcement officer such as a police man, a landlord or even a passer-by. Figure 2.8 shows the 

routine activity theory triangle known as Eck crime triangle. Similar to social disorganisation, in 

the routine activity perspective, place is the most important factor which determine a decrease or 

increase in the potential occurrence of crime. Therefore, these theories tend to overlap and 

complement one another in their attempt to provide an explanation of the occurrence of crime 

(Moriarty and Williams, 1996; Tewksbury and Mustaine, 2006; Gorman et al., 2013).  

The present research will employ social disorganisation theory and routine activity theory as 

underpinning theories to contextualise relationships between community cohesion and crime.  
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Figure 2.8: Eck crime triangle. Source: Eck and Weisburd (1995) 

2.9 Concluding Remarks 

The preceding sections have discussed the relationships between community cohesion and crime. 

The objective is to highlight the place of cohesion on crime and to set the context on which the 

thesis will be based. Section 2.1 has provided a brief introduction to the chapter. Section 2.2 

followed with a discussion on different definitions of the concept of community cohesion, 

beginning with its historical evolution in the UK (Cantle, 2001). Section 2.3 explored the 

relationship between community cohesion and crime, referring to data and methods employed in 

previous studies to model relationships between community structures and crime. The major 

limitation of previous studies is that by using traditional data, cohesion is poorly captured by 

traditional regression models of crime, largely because cohesion is ill represented by standard 

socio-demographic variables. The importance of social capital is demonstrated in Section 2.4. 

Crime rates are closely linked to levels of social capital, though it is difficult to quantify (Harper, 

2001) because of the paucity of data to measure it properly (Kanazawa and Savage, 2009; Appel 

et al., 2014). Section 2.5 explores in detail the determinants of social capital in relation to crime. 

To set the ground for the research, Section 2.6 provides discussion on two underpinning theories: 

social disorganisations (Shaw and McKay, 1942) and routine activity (Cohen and Felson, 1979) 

which are used to provide context in building a model of community variables and crime 

(especially burglary). Chapter 3 follows with a discussion of traditional data sources and new 

data sources as well as approaches for modelling the urban social system.  
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Chapter 3  

Traditional Methods of Modelling Urban Social Systems and 

Crime 

 

3.1 Introduction 

The concept of community cohesion in relation to crime and factors determining cohesion in a 

community as well as underpinning theories of crime were reviewed in chapter 2. This forms the 

basis for understanding the relationships between social cohesion and crime. This chapter 

proceeds to extend our understanding of these relationships through examining “traditional” 

methods used for modelling urban social systems and the data sources available. The chapter 

begins by describing the research methodology in Section 3.2, and then the geography of the 

study area is presented in Section 3.3. Section 3.4 examines the data sources used whilst Section 

3.5 provides a description of Leeds community areas. Section 3.6 explores statistical methods of 

modelling the relationships between urban community structures and crime. Section 3.7 then 

describes the spatial data analysis methods while Section 3.8 provides a discussion on spatial 

statistical methods and Section 3.9 contains a discussion about diversity indices. Finally, Section 

3.10 examines the computational model and Section 3.11 presents concluding remarks for the 

chapter.   

3.2 Research Methodology  

Research methods in social science can be divided broadly into qualitative and quantitative 

methods (Alasuutari et al., 2008). Quantitative research is typically associated with positivist and 

objectivist principles, while qualitative research, on the other hand, is associated with 

interpretivist and constructionist principles (Bryman, 2008, p.13). While objectivism holds that 

research is about discovering objective truth, independent of the researchers own feelings, 

positivism view is also closely related to objectivism; it argues that social reality exists 

independent of the researcher and must be investigated through the scientific processes of 

inquiry (Gray, 2013). In contrast, constructivism views that truth exists through subjects 

(people’s) interactions with the world. In such a process, subjects construct their own meaning in 
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different ways even in relation to the same phenomena; constructivism is closely linked to 

interpretivist which asserts that social reality is different and therefore requires different kinds of 

method (Gray, 2013).  

In social science, researchers often use quantitative methods to measure concepts such as crime 

and demographics (Neuman and Robson, 2004). Furthermore, Todorova (2013) stressed that the 

choice of the research method depends on the objectives, research questions and author’s best 

judgement. This research will therefore employ a quantitative approach in line with the outlined 

objectives. 

3.3 Study Area 

3.3.1 Geography 

The city of Leeds in West Yorkshire England is located at latitude 53
0
 57' 59"N and longitude 1

0
 

33' 57"W about 190 miles (310 km) north of London. The city contains 33 wards, which are 

divided into 482 lower super output areas (LSOAs). The LSOAs have a minimum population of 

1,000 (an average of 1,500) and a minimum resident household number of 400 (an average of 

630)  (ONS, 2011). According to the 2011 Census, Leeds’ population was estimated at 751,485 

(ONS, 2011), the third largest local authority in the UK after Greater London and Birmingham. 

Additionally, it contains some of the poorest wards in England (DCLG, 2015), but equally has 

wards containing some of the most affluent individuals in the country (BBC, 2003). The city also 

has relatively large number of crimes and characteristically different types of neighbourhood 

which makes it suitable for examining relationships between socio-economic and demographic 

diversity and burglary (Hirschfield et al., 2013).  Figure 3.1 shows the location map of Leeds. 
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Figure 3.1: Location map of Leeds LSOA boundaries. Source: Edina (2011) 

3.3.2 People     

Leeds is a diverse city with over 75 ethnic groups with the minority ethnic population making 

about 11.6% of the total population according to the 2011 Census. About 85.1% of the 

population is comprised of Whites and the majority (81.1%) are of British origin. There are also 

141,771 people that comprise the Black and Minority Ethnic (BME) communities (ONS, 2011). 

The ethnic diversity of people in Leeds is increasing, in the same manner as other European 

countries (Putnam, 2007). In 2001, the population of BME groups was 77,530 (about 10.8% of 

the resident population) and increased to 141,771 (representing 18.9% of the resident population) 

by 2011 (ONS, 2011). The majority of those who identified themselves as BME belong to the 

Pakistani, Indian, Chinese, Bangladeshi and African population. Figure 3.2 shows the ethnic 

diversity of Leeds. Areas including the City Centre, Hyde Park, Harehills, Chapeltown and 

Beeston are the most ethnically diverse places in Leeds. 
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Figure 3.2: Ethnic diversity of Leeds. Source: ONS (2011) 

 

Diversity has a complex relationship with social cohesion, and social cohesion has a complex 

relationship with crime. High diversity in the communities is acting to reduce social cohesion 

consequently increasing neighbourhood crime. There is certainly some evidence that diversity 

reduces social cohesion (Meer and Tolsma, 2014) and this seems especially true where diversity 

is found in conjunction with deprivation (Cooper and Innes, 2009).  However, it is nevertheless 

important to note that diversity and cohesion levels are not always related in a simple manner 

and that cohesion has the opportunity to be affected both positively and negatively, and by more 

than just ethnic or economic diversity. It is also true that, overall, potential high diversity may 

have net positive impacts, in terms of multiculturalism and the disruption of embedded cultural 

processes, despite negative impacts in other areas. Data on standard Census variables are 

required to calculate diversity.   

3.4 Data Sources 

There are very few data sources available and used for community cohesion and crime research, 

most of which are national surveys carried out by the Home Office of the British Government. 

Researchers have used independent surveys and ethnography (Sampson and Groves, 1989; 
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Sampson and Raudenbush, 1999) but such instances are very few and constrained by resources. 

The following are datasets used most extensively by researchers. 

3.4.1 Census Data 

The Census of 2011 marks 210 years since the census first began in the UK. A census is a  count 

of people and households and is used to set policies and estimate resources required to provide 

services such as education, housing, healthcare and transports (ONS, 2011). Census data are the 

most comprehensive and dependable socio-economic and demographic data available in the UK 

(Vickers and Rees, 2007). Typically, the Census involves counting people and their 

characteristics (Rees et al., 2002). Every 10 years since 1801, a day is set aside to conduct a 

census and every effort is made to ensure that everyone is included. Censuses are the only 

surveys that provide a detailed picture of the entire population and are unique as everyone is 

included and the same questions asked across the entire country (ONS, 2011).  

Between 1971 and 1991 digital Census data have been made available for research at different 

geographical scales (such as enumeration district). Output areas (OAs) began from 2001, making 

comparisons easier between different areas (Shepherd, 2006). In this research, aggregated data 

used were derived from UK 2011 Census, supplied by the UK Data Service
1
 (Infuse) at lower 

super output area (LSOA) level. 

3.4.1.1 Census Variables 

As highlighted in Section 3.4.1, all variables used were derived from UK Census 2011. Although 

the relationship between community composition and crime is complex and multi-faceted, there 

are some core factors that regularly emerge as important determinants of crime rates. This 

section outlines the variables and justification for their inclusion in the later modelling work. 

Table 3.1 provides details of the Census variables used.  

Age Distribution 

Offenders are commonly drawn from younger age groups than the elderly people (Kongmuang, 

2006). The age-crime curve tends to increase from the adolescent years reaching a maximum at 

adulthood and then sharply declining (Farrington, 1986; Gottfredson and Hirschi, 1990; 

                                            
1
 infusecp.mimas.ac.uk 
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Sampson and Laub, 2003; McVie, 2005; Blonigen, 2010; McCall et al., 2013; Sweeten et al., 

2013), although this varies by the type of crime (Tittle et al., 2003). Crime, especially burglary is 

therefore likely to be affected by absolute numbers of young (aged 16-24) people. For example, 

according to Fagan et al. (2014), the incidence of crimes related to vehicles and drugs tends to be 

higher in early adulthood than in adolescence. While homicides tend to be committed by adults, 

theft-related offences, including burglaries, are more prevalent in the younger age groups than 

the elderly (Loeber et al., 2012). Variables used in this category are from QS103EW 17-26 

(Table 3.1).      

However, crime may also be affected by age distributions. Younger people are less likely to 

build social cohesion (especially face-to-face) than older people (Johnston and Matthews, 2004; 

Takagi and Kawachi, 2014), but equally, different age distributions may have very different 

strengths of social control.  

 

Table 3.1: Census variables and codes 

Datasets Variables description Variable code 

Age structure 

(QS103EW) 

10-14 

15-19 

20-24 

25-29 

30-44 

45-59  

60-64  

65-74 

QS103EW0012-16 

QS103EW0017-21 

QS103EW0022-26 

QS103EW0027-31 

QS103EW0032-46 

QS103EW0047-61 

QS103EW0062-66 

QS103EW0067-76 

Household 

composition 

(QS112EW) 

Lone parent no dependent 

Lone parent 1 dependent child 

Lone parent 2 or more dependents 

Married couple no children 

Married couple 1 dependent child  

Married couple 2 or more children 

QS112EW0018 

QS112EW0023 

QS112EW0024 

QS112EW0008 

QS112EW0009 

QS112EW0010 
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Datasets Variables description Variable code 

Ethnic groups 

(QS201EW) 

White 

Mixed 

Asian 

Black 

Other 

QS201EW0002-0005 

QS201EW0005-0009 

QS201EW0010-0014 

QS201EW0015-0017 

QS201EW0018-0019 

Occupation 

(QS606EW001) 

 

16-64 Managers/Directors 

16-64 Professionals 

16-64 Associate Professionals 

16-64 Administration and Secretariat 

16-64 Skilled Trades 

16-64 Caring Leisure and Services 

16-64 Customer Services 

16-64 Process Plants and Machines 

16-64 Elementary Occupation 

QS606EW0002 

QS606EW0017 

QS606EW0038 

QS606EW0059 

QS606EW0068 

QS606EW0086 

QS606EW0096 

QS606EW0104 

QS606EW0114 

 16-64 Economically inactive retired QS602EW0012 

 16-64 Economically inactive students QS602EW0013 

Economic activity 

(QS602EW0011) 

16-64 Economically inactive looking 

after family 

QS602EW0014 

 16-64 Economically inactive long term 

sick or disabled 

QS602EW0015 

Qualification 

(QS501EW0001) 

16-over no qualification  

16-over qualification level 1 

16-over qualification level 2 

16-over qualification level 3 

16-over qualification level 4 

QS501EW0002 

QS501EW0003 

QS501EW0004 

QS501EW0005 

QS501EW0006 

Length of 

residence 

(QS803EW) 

Less than 2 years 

Less than 5 years 

More than 5 years 

10 years above 

Born in the UK 

QS803EW0003 

QS803EW0004 

QS803EW0005 

QS803EW0006 

QS803EW0002 

Source: ONS (2011) 
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Family Structure 

Maginnis (1997) has argued that the children of some single parent families are more likely to 

have behavioural problems because they tend to lack economic resources and have lower 

parental input. In the UK, lone parents continue to suffer from inequalities of employment and 

housing, creating a gap between other household structure and lone parents (Berrington, 2014). 

Additionally, single parents are also most likely to be victims of crime due to social 

marginalization in terms of living conditions (Wikström and Wikström, 2001). Variables used in 

this category are from QS112EW23-24 (Table 3.1). 

Identity 

Identity (ethnicity) plays an important role in the likelihood that people will connect and form 

social relationships (Gilchrist and Kyprianou, 2011) and plays an important part in the 

integration of migrants into local neighbourhoods (Kindler et al., 2014).  Migrants especially 

from the black and minority ethnic populations (BME) often lack the wealth, social integration, 

or formal crime prevention connections to protect themselves (Sharp and Atherton, 2007). 

Because of these factors, the size of an immigrant population in an area positively correlates with 

the incidence of property crime (Bell and Machin, 2011). The ethnic minority variable is 

constructed from QS201EW0014-19 (see Table 3.1). 

Affluence and Wealth 

While there is a wide range of criminality across the socio-economic spectrum, for burglary 

specifically, the offenders in the vast majority are drawn from the poor and unemployed (Bursik 

Jr and Grasmick, 1993; Sariaslan et al., 2013). Disparities of wealth within short distances 

encourage burglary and, in addition, disparity of wealth within a community can influence crime 

by weakening social cohesion (Fajnzlber et al., 2002; Rufrancos et al., 2013). Variables included 

in this category are from QS602EW0012-15 (Table 3.1). 

Educational Attainment 

Educational attainment has a great influence on individuals’ social behaviour as well as on 

participation in community activities. The theory of human capital suggests that skills and 

qualifications determine wages, and the wider the distribution of qualifications the wider the 

distribution of wages (Green et al., 2006). Reynolds et al. (2001) stressed that the propensity of 
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individuals to commit a crime is associated with their level of educational attainment and so we 

include lack of qualifications (QS501EW0002) as a standard variable (see Table 3.1).  

Residential Instability 

Residential stability in a neighbourhood is an important factor for generation of social capital and 

place-based attachment. It is therefore expected that duration of residence is one determinant 

factor in this direction (Thomas et al., 2016). Studies have demonstrated that the creation of 

social ties is associated with the length of residence in an area. For example,  Yamamura (2011) 

argued that personal interactions are built over time and tend to be more solid when people reside 

in a particular neighbourhood and are influenced by the length of residence and home ownership. 

The tendency to commit a crime is related to the length of residence. The variable included in 

this category is the proportion of those who reside in an area for lees than two years 

(QS803EW0003, Table 3.1). 

Housing Tenure 

The housing tenure and characteristics of place are related to social connectedness. Tenure 

diversification can improve social interactions between renters and owner-occupiers (Wood, 

2003; Caesar and Kopsch, 2018) generation of social capital by stimulating neighbourhood 

involvement, mutual trust and reciprocity between residents (Leviten-Reid and Matthew, 2018). 

Although policies on housing tenure are important for reducing social exclusions, in the UK, 

there has been little support of the policy for improving the social wellbeing (Graham et al., 

2009). Wood (2003) argued that in the UK context, housing diversification has merely 

segmented neighbourhoods, rather than tenure integration. Additionally, the residents of social 

housing tenure are isolated from the community, hence fewer opportunities for education and 

employment (Wood, 2003). Furthermore, areas of social isolation are likely to be higher in the 

rented sector with lower engagement between residents compared to areas of home ownership 

(Forrest and Kearns, 2001; Tersteeg and Pinkster, 2016) which undermines sense of community 

cohesion (Cooper and Innes, 2009). 

In terms of crime, Bottoms and Wiles (1986) stressed that housing tenure is also related to 

offending and victimisation. Areas especially of social housing tenure, are more likely to have 

behavioural problems or to suffer victimisation (Wood, 2003) especially property crime (Farrall 

et al., 2015). In a recent study, Hegerty (2017) found that the share of renters in an area 
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correlates with increases in thefts related offences in low income areas, but not high income 

areas.  

In this research, housing tenure variable is not included in the model because it correlates with 

the variables of ethnicity, residential instability and family structure as in previous studies (e.g 

Cooper and Innes, 2009; Tersteeg and Pinkster, 2016).  

Index of Multiple Deprivation 

The deprivation hypothesis suggests that deprived communities tend to have more crimes than 

affluent communities (Sampson and Wooldredge, 1987; Malczewski and Poetz, 2005). 

Furthermore, deprivation widens the gap between the rich and poor which can reduce social 

cohesion (Morenoff et al., 2001; Takagi and Kawachi, 2014). The Index of Multiple Deprivation 

(IMD) is a multi-dimensional metric that is measured, in England, through a combination of 

seven distinct domains: income; employment; education; health; crime; barriers to housing & 

services; and living environment (DCLG, 2015). Although, deprivation is often seen as a key 

indicator of social cohesion, as well as propensity to commit a crime such as burglary, UK 

deprivation statistics include crime and therefore it is inappropriate to use them in this research.  

3.4.2 Police Recorded Crime Data  

The police records of crimes are statistics that cover selected offences which have been reported 

to and recorded by the police. These records originate from police territorial offices across 

England and Wales and are then passed to the Office for National Statistics through the Home 

Office (ONS, 2014a). The police records provide the primary source of sub-national crime 

statistics and some of which are not covered by the crime Survey. While the police recorded 

crime figures cover a wider population and a broader set of offences than the Crime Survey of 

England and Wales (CSEW), crimes that are not brought to the attention of the police are not 

included. Hence police statistics based on recorded crime data have not met the required standard 

for designation as national statistics (ONS, 2014a). It is important to note that police recorded 

crime is driven by the trends in reporting. For instance, burglary crimes are on the increase in 

recent statistics, due to changes in reporting incidences (ONS, 2017a). Police records of crime 

have been employed, for example, to investigate public disorder in urban areas of Chicago 

(Sampson and Raudenbush, 1999), to explore the effects of community cohesion on levels of 
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recorded crimes in Merseyside (Hirschfield and Bowers, 1997) and to examine property and 

violent crimes in England and Wales (Han et al., 2013). A typical UK police data website is 

shown in Figure 3.3. 

 

 

Figure 3.3: Typical UK Police data download website 

Since 2011, data regarding individual police recorded crimes have been made public for 

research. However, to comply with UK Data Protection Act, 1998, which stipulates that victims 

of crime should be anonymised, geo-masking techniques have been introduced to reduce their 

spatial accuracy (Tompson et al., 2015). Geo-masking is a technique used to provide privacy 

protection for individual address and information (Allshouse et al., 2010). This should not be a 

problem as this research is concerned with the analysis of crime at neighbourhood levels. The 

crime data used in this research were obtained from the ‘Police open public monthly data of 

reported crimes’ provided by West Yorkshire Police at LSOA level. 
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3.5 Leeds Community Areas 

Although, LSOA geography will be used for the initial traditional modelling, later in the rest of 

the thesis (chapters 6, 7 and 8), the LSOAs are aggregated into 106 Leeds community areas. 

Community areas are large enough and recognised by Leeds residents for meaningful social 

cohesion (Stillwell and Phillips, 2006) which is the focus of the present research. The exercise of 

neighbourhood mapping was initiated by Leeds City Council staff involving Leeds residents who 

helped to identify place-based communities. This exercise resulted in demarcating 100 

community area boundaries, although this has been contested in some places (Shepherd, 2006). 

Nevertheless, the major problem with Leeds City Council boundaries is that they do not share a 

common boundary with small administrative boundaries such as Output Areas (OAs). To address 

this problem, new community boundaries were re-drawn by aggregating or splitting OA 

boundaries, so that OA is assigned to a community when 50% of its area fell within the 

community boundary. At the end of this exercise, an additional 6 community areas were added, 

bringing the number to 106 (Unsworth and Stillwell, 2004).  

Ashby (2005) argued that communities tend to differ not only in socio-economic and 

demographic terms, but also in terms of their crime rates and victimisation. Since the importance 

of community cohesion is of increasing interest for neighbourhood safety, there is the need for 

detailed analysis of the socio-economic and demographic composition of different community 

areas of Leeds, with a view gaining insights into their perceived social cohesion especially 

relating to crime (Ashby, 2005). Additionally, Leeds’ communities are changing 

demographically being the second most diverse city outside London, and crime, especially 

residential burglary, has been a particular problem, it is important to have a clear understanding 

of diversity of different areas (Leeds City Council, 2014). Figure 3.4 shows the 106 Leeds 

community area boundaries. 



50 

 

 

 

Figure 3.4: Leeds 106 community area 2001 boundaries. Source: Stillwell and Phillips (2006) 
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3.6 Statistical Methods of Modelling Crime 

The analysis of data in order to model relationships between variables is practically impossible 

without analytical tools. Therefore, modelling crime and its associated determinants requires 

statistical techniques such as regression models in order to analyse data (O'Brien, 1992). 

Regression models are the most commonly applied statistical tools in criminal justice and 

empirical research for building models of crime and society (Kraak, 1999). The basis of 

regression analysis is not simply to understand relationships between variables, but also to 

understand the most important factors responsible for effecting changes (Weisburd and Britt, 

2007). The following sections discuss regression models in more detail.  

3.6.1 Regression Models 

Regression models are statistical tools used for quantifying the relationships between variables. 

The researcher usually seeks to find the causal effect of one variable upon another (Sykes, 1993). 

Regression analysis is used to explain the relationship between the dependent variable (response 

or outcome) and independent variable (predictor or explanatory). When there is only one 

predictor variable it is called simple bivariate regression, but when there are more than one 

predictor it is referred to as multiple regression (Faraway, 2002). The goal of regression analysis 

is to estimate the association between one or more explanatory variables and a single outcome 

variable (Hoffmann, 2010). Weisberg (2005) has emphasised that predicting values of a response 

variable depends on which predictors are important. 

Conceptually, the most efficient way of ensuring that the best model is achieved is by computing 

all the possible subsets of variables (Rawlings et al., 1998). This is possible with a small number 

of variables but it becomes a major computing problem when there are many independent 

variables from which to choose. 

Regression modelling has been employed in a number of studies especially for building models 

of the crime system. The most commonly used regression techniques include; multiple variate 

regressions (LaGrange, 1999; Markson et al., 2010; Lane and Meeker, 2000; McGarrell et al., 

1997; Mukherjee et al., 2014; Nathans et al., 2012; Livingston et al., 2014; Armstrong et al., 

2015), Poisson and negative binomial regression (Osgood, 2000; Campbell and Campbell; 

Poulsen and Kennedy, 2004; Efroymson, 1960), logistic regression (Goudriaan et al., 2006; Kim 
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et al., 2013; Kleck et al., 2006) and multilevel regression models (Sampson et al., 1997; Foster et 

al., 2014; Sutherland et al., 2013; Jennings et al., 2014). This research develops a multiple 

regression model to quantify the relationship between crime and its related correlates because 

crime can be as a result of a combination of a number of factors not just a single factor 

(Weatherburn, 2001). Section 3.6.1.1 describes multiple regression modelling in more detail.   

3.6.1.1 Multiple Regression Model 

A multiple regression model is a technique for quantifying the relationship between a dependent 

variable and two or more independent variables (Ackerman and Rossmo, 2015). The assumption 

is that the simultaneous effects of explanatory variables added into the model will produce more 

variation in the dependent variable (Mennis, 2003). Multiple regression models are widely used 

in the field of social science (Peterson and Robbins, 2008), especially for building models of the 

urban social system (Ajimotokin et al., 2015). The general specification of a multiple regression 

model takes the form: 

Y = βo + β1X1 + β2X2 + β3X3 + β nXn+ ε                                                   (3.1) 

 

where Y is the value of the dependent variable, βo is the constant intercept, β1, β2, β3, βn are the 

slope coefficients of the independent variables X1, X2, X3, Xn,, while ε is a standard error of 

component. 

Stepwise Multiple Regression Model 

More recently, attention has focussed on identifying the suitable subsets of variables without 

computing all possible subsets. Conceptually, the most efficient way of ensuring that the best 

model is achieved is by computing all the possible subsets of variables (Rawlings et al., 1998). 

This is possible with a small number of variables however, it became a major computing 

problem when there are many independent variables from which to choose. However, finding the 

best subset model is not always a straight-forward procedure, as most statistical packages, such 

as Statistical Package for Social Science (SPSS), provide a collection of algorithms for this 

procedure referred to as stepwise multiple regression (Pitner et al., 2012). These methods 

proposed by Whittingham et al. (2006) utilise the Ordinary Least Square (OLS) approach that 

the residual sums of squares cannot decrease when a variable is dropped from a model. Least 
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squares is a fitting technique applied to linear regression that provides a solution to finding the 

best fitting straight line through a set of points. Rawlings et al. (1998) stressed that stepwise 

regression reduces the amount of computing than is required by identifying and selecting subset 

models (not necessarily the best) and essentially stepwise regression is for variable selection 

(James et al., 2013). The stepwise regression method involves two approaches: forward selection 

and backward elimination. Whereas forward selection adds variables one at a time in the model 

based on correlation with the dependent variable, the backward elimination starts with a full 

model and drops one variable at a time until the model contains only one variable (Rawlings et 

al., 1998; James et al., 2013). In both methods, the explanatory power of the variables 

determines their retention or removal from the regression model.  Stepwise multiple regression 

procedure is given in  Equations 3.2 , 3.3 and 3.4 based on Zhou and Jiang (2016): 

Y = βo + β1X1 + ε                                                   (3.2) 

If X1 is significant it is retained, otherwise dropped 

Y = βo + ε                                                   (3.3) 

 

In the next iteration variables with a higher correlation with Y are added  

Y = βo + β1X1+ β2X2+ ε                                                   (3.4) 

The procedure stops when all the variables have been checked for their significance and a final 

model is then identified.   

However, the process of adding and dropping variables associated with stepwise regression has 

been criticised as it is possible to miss the optimal model, removing less significant predictors 

might increase the significance of other variables which may lead researchers to overstate the 

importance of the remaining variables (Rawlings et al., 1998). Despite the limitations of stepwise 

multiple regression method, it is widely used in ecological studies (Pitner et al., 2012) and it 

remains especially useful for model building with several potential variables (Wooldridge, 

2012).  

The stepwise regression method has been used in a number of studies to build models of crime 

correlates. For example, Piza (2012) employed the stepwise multiple regression technique using 

1985 Japan population Census data, 1987 Employment Status Survey data and 1987 Japan 
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Statistical Yearbook data to explore the relationship between economic structure and crime. He 

found a significant positive relationship between unemployment rates and homicides and 

robberies. 

Tseloni (2006) used the 1995 Survey of Orange County residents, California, to quantify the 

relationship between subcultural diversity and fear of crime and gangs. She included age, gender, 

ethnicity, education, income, home ownership and residential location as variables in a stepwise 

regression model. She found that the variables used have different explanatory power for 

predicting crime and fear of gangs. She also found that subcultural diversity (measured by age, 

education, race, income and home ownership) more strongly predict fear of crime. In a related 

study, Tsushima (1996) also employed stepwise regression method to examine the relationship 

between fear of crime and socio-demographic characteristics (age, gender, education and 

income, fear of victimisation (criminal threat), disorder (noise), satisfaction with law 

enforcement and neighbourhood safety (walking alone at night). Tsatsuma found that increased 

age lowered the level of fear of crime for women but not for men and that victimisation was 

more pronounced for women than men. She also found that higher educational attainment 

decreases fear of crime for urban dwellers but not rural residents. The limitations of this study is 

the use of cross-sectional data and non-control for neighbourhood differences which lead to a 

weaker relationship between fear of crime and associated independent variables. This research 

will address this limitation by controlling for neighbourhood differences using diversity 

statistics. 

Wooldridge (2012) employed data from the Program Development and Evaluation System 

(ProsDES) on juvenile delinquency 1996-2003, 2000 US Census data, collective efficacy data 

from Philadelphia Health Management Corporation (PHMC) and crime data for the city of 

Philadelphia to quantify the effects of neighbourhood characteristics and spatial distribution of 

urban delinquency. Wooldridge used the stepwise regression method with variables as follows: 

participation, neighbourliness, improvement, belonging, renters, receiving benefits, and Hispanic 

and African-Americans. It was found that delinquency-related crimes such as violence (drugs, 

weapons and homicides) were concentrated in disadvantaged areas after controlling for poverty, 

an area with a high concentration of minority ethnic groups tended to exhibit high delinquency 

rates. The major limitation of this study was that no neighbourhood level factors were included 

to better understand the effects of interactions among individuals. 
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A common factor in these studies was the use of global OLS methods. OLS  linear regression 

provides a global model to generate predictions or to model a dependent variable in terms of its 

relationships with a set of explanatory variables (Walker and Maddan, 2013). The global model 

parameters derived from the OLS method assumed that variables are constant over space 

(Charlton et al., 2009). However, this assumption is invalid in most cases as spatial variation in 

relationships is not stationary (Erdogan et al., 2013) and tend to vary across space known as 

spatial heterogeneity, hence the need for a localised approach such as Geographically Weighted 

Regression (GWR)  (Charlton et al., 2009). 

Geographically Weighted Regression 

Geographically Weighted Regression (GWR) is a (local) modelling technique to estimate 

regression models with spatially varying relationships. The GWR model provides a useful 

method for addressing non-stationarity associated with variation in neighbourhood 

characteristics (Arnio and Baumer, 2012), especially where spatial heterogeneity is not 

adequately described by the stationary OLS models (Lu et al., 2014). The basic idea of spatial 

regression modelling is provided by Tobler’s First Law of Geography which states that 

“everything is related to everything else, but near things are more related than distant things” 

(Tobler, 1970, p.236). Additionally, spatial dependency in the data means that the value of the 

dependent variable in one spatial unit (community area in this context) is affected by the 

independent variables in nearby areas (Charlton et al., 2009). Spatial dependence refers to the 

propensity in characteristics of nearby locations to have influence on each other (Anselin, 1989). 

However, the GWR approach employs a moving window weighting technique where local 

characteristics of the area are used for modelling (Charlton et al., 2009). In other words, nearer 

observations have more influence in estimating the set of local parameters than observations 

further away (Fotheringham et al., 1998). GWR method is fully described by Fotheringham et al. 

(2003). The typical GWR version of OLS is given as: 

                   yi (u) = βoi (u) + β1i (u) X1i + β2i (u) X2i + β3i (u) X3i…..+ βni (u) Xni + ε            (3.5) 

yi (u) is independent variable at location i, (u) is a vector of two dimensional coordinates 

describing location i, βoi (u) is the intercept parameter at location i specific to that location, βni (u) 

Xni is the local regression coefficient for nth explanatory variable at location i. 
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In this research the GWR model will also be employed to explore spatial variation relationships. 

3.7 Spatial Analyses 

Spatial analysis has been defined by Bailey and Gatrell (1995) as the quantitative study of 

phenomena that are located in space. Fotheringham and Rogerson (2013) also defined spatial 

analysis as the general ability to manipulate spatial data into different forms and extract 

additional meaning as a result. The advent of Geographical Information Systems (GIS) in the 

recent past brought about the opportunity for handling spatial data (O'Sullivan and Unwin, 

2010). Researchers are not only interested in the distribution of values observed in data but also 

in the spatial distribution of those entities over space. Since spatial data analysis is descriptive 

and exploratory, this is an important first step in all spatial analysis which is suitable for large 

and datasets (O'Sullivan and Unwin, 2010). GIS and spatial analysis, in particular, have proved 

to be important tools for studying criminal activity (Murray et al., 2001). Additionally, crime 

analysis enables researchers to have a greater understanding of the complexities associated with 

criminal activities and factors contributing to their occurrence in different areas (Savage and 

Burrows, 2009). Spatial analysis methods commonly used by researchers are discussed in detail 

in the following sections. 

3.7.1 Choropleth Mapping 

Choropleth maps also called ‘area symbol maps’ are maps showing polygons for political or 

administrative convenience and extensively used for data presentation and visualisation 

(Schabenberger and Gotway, 2004). Choropleth maps are used to represent different events (e.g. 

crime and population) aggregating them according to geographical areas by assigning graduated 

shades and symbols (Poulsen and Kennedy, 2004). The density of colour shades in choropleth 

maps indicates increases in the associated events. For example, darker colours are used to show 

larger data values and lighter colours to show smaller values (Brewer, 1997). Choropleth 

mapping is one of the common techniques employed by researchers to represent aggregated 

events such as crime information (Savage and Burrows, 2009). Figure 3.5 shows an aggregated 

choropleth map of burglary crime rates in Leeds, 2011-2015. 

Additionally, choropleth maps are useful for spatial data visualisation making it easier to 

describe spatial patterns and relationships (Kraak, 1999), and for making comparison across time 
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and space (Paynich and Hill, 2010). However, choropleth maps have their own shortcomings. 

For example, small incidences of crimes are likely to be overshadowed by a higher category such 

that areas with lower values are subsumed by areas with higher values (Chainey et al., 2002). 

Furthermore, Harries (1999) also argued that areas or polygons are not the same in size, 

therefore, it would not be correct to say that areas with the same number of crime incidents are 

the same. Inconsistency in results can also arise from the use of different use geographical units 

termed the modifiable areal unit problem (MAUP) (Openshaw, 1979). For example, 

geographical boundaries such as census enumeration areas, administrative boundaries and 

political districts are all subject to modification resulting in different values of regression 

parameters being calibrated for different apatial systems (Wong, 2004)  Despite their limitations, 

choropleth maps are widely used for spatial data exploration (Eck et al., 2005).  

 

Figure 3.5: Burglary crime rates in Leeds (2011-2015) 

A number of researchers have used choropleth maps in different studies including, for example, 

in the area of health to analyse the incidence of mortality (Brewer and Pickle, 2002) and to 

compare disparity in community health (Cromley and Cromley, 2009). Similarly, choropleth 

maps are employed in population studies (Mennis, 2003). A more common application of 

choropleth maps is in crime studies. For example, Murray et al. (2001) employed choropleth 
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maps to highlight the incidence of crimes in Brisbane, Australia. The results indicate the 

capabilities of the method for illustrating urban crimes. 

Ackerman and Murray (2004) employ the choropleth mapping technique to examine the spatial 

patterns of neighbourhood crime in Lima Ohio, USA. They found that many smaller 

communities have above average crime rates for their sizes. Their study demonstrates the 

capability of choropleth mapping for spatial data exploration and visualisation.  

 Additionally, Brunsdon et al. (2007) also used choropleth maps when comparing different crime 

visualisation methods. Their conclusion was that each method has its merit for the crime analyst. 

Building on previous studies, in this research, choropleth maps will be used to visualise patterns 

and spatial distribution of different phenomena such as diversity and crime. 

3.7.2 Hotspot Mapping 

Chainey and Ratcliffe (2005) emphasised that crime does not occur at random but has an 

inherent geographical quality and therefore takes place at certain locations. There is no common 

definition of a crime hotspot. However, Eck et al. (2005) have stressed that areas of high clusters 

of crime are commonly referred to as hotspots. Therefore, hotspots can be referred to as areas 

that have above average number of criminal or disorder events. They can also be areas where 

people have a higher than average risk of victimisation (Eck et al., 2005). Hotspot mapping is a 

popular analytical technique that enables visualisation of clusters of events such as crime, 

knowing which can help in the appropriate allocation of resources (Chainey et al., 2008). There 

are different techniques such as spatial ellipses, grid thematic mapping and kernel density 

estimation used for identifying hotspots of crime (Van Patten et al., 2009) depending on different 

types of crimes (Eck et al., 2005). However, kernel density estimation (KDE) is one of the most 

widely used methods (Chainey et al., 2008; O’Brien et al., 2016). The KDE method takes into 

account incremental values of the mean in the statistical and spatial distribution of crime 

incidence (Barrantes and Sandoval, 2009). The concentration of certain crimes at some places 

could be attributed to the interaction between the victim and offender as well as the opportunity 

that avails itself (Brantingham and Brantingham, 1984; Cornish and Clarke, 1987; Chainey et al., 

2008). Figure 3.6 shows the hotspot of burglaries in Leeds using KDE. 
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Researchers have used hotspot maps to analyse crime events. For example, Bowers et al. (2004) 

used 1997 burglary data for south Liverpool to predict locations of burglary crime. They 

employed hotspot mapping techniques and moving averages in their analysis. The moving 

average is atime series calculation that takes the averages of subset data points of the full dataset. 

They found that the method is useful for a shift-by-shift deployment of police personnel but the 

limitation of their work is that they only used two months historical data which could affect the 

accuracy of their predictions. 

 

Figure 3.6: Kernel density estimation of burglary crime (2011-15) in Leeds 

 

Piekut et al. (2012) employed KDE hotspot mapping techniques and scan statistics to visualise 

crime clusters in the city of Kyoto, Japan, using snatch-and-run offences data for 2003 and 2004. 

They found that the combined use of two statistical techniques revealed temporal inter-cluster 

associations, highlighting the importance of the combined approach for spatiotemporal 

exploratory data analysis of crime clusters.  

Simpson (2004) used a hotspots optimisation tool, an application for spatial data mining for 

hotspots mapping. Simpson used historical data for 2004 to 2007 from a north-eastern city of 
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USA and found that the hotspot optimisation approach is capable of accurately mapping crime 

hotspots.        

More recently, Malleson and Andresen (2015), used crowd-sourced data and local spatial 

statistics (Getis Ord and Geographical Analysis Machine) to explore the shift in crime hotspots 

in Leeds, UK. They found that the population-weighted hotspot of crime is different from when 

the population is estimated from social media data, as opposed to standard information on 

people’s home locations. The main criticism of their work is that while hotspot maps might be 

used to show patterns, they are less likely to provide an explanation for the occurrence of crime, 

especially when the analysis is founded on the basis of noisy (ustructured) data; Eck et al. (2005) 

stressed that factors that give rise to the hotspots differ from place to place. The present research 

will address this problem by relating the diversity of different areas to hotspots of crimes in order 

to gain insights into possible links between them. Figure 3.7 shows KDE of burglaries for 

different spatial catchment range (10%, 25%, 50% and 75%) in Leeds. 

 

 

Figure 3.7: Kernel density estimation of burglSary ranges (10%, 25%, 50% and 75%) in Leeds 

10% 

25% 

50% 

75% 



61 

 

3.8 Spatial Statistical Methods 

Spatial statistical analysis is the application of statistical methods to query spatial data with a 

view to finding its suitability for using a statistical model to represent it (O'Sullivan and Unwin, 

2010). Spatial techniques have been recognised as important tools used by researchers for 

analysing the occurrence events such as crime (Murray et al., 2001) and widely used in social 

science for the analysis of spatial data  (Schabenberger and Gotway, 2004). Several spatial 

statistical methods have been used to analyse spatial data, for example, spatial autocorrelation, 

OLS and GWR. 

3.8.1 Spatial Association 

The spatial association and spatial dependency of geographic patterns are indicated by spatial 

autocorrelation. In modelling spatial data, when measurement at one location is influenced by the 

measurement at neighbouring locations then spatial autocorrelation is said to be present (Collins 

et al., 2006). For example, the distribution of crime in city neighbourhoods can be affected by 

the factors of location and by social interaction (Collins et al., 2006). The measurement of spatial 

autocorrelation enables examination of how social events such as crime occurred at different 

locations (Kubrin and Weitzer, 2003). Homogeneity of spatial patterns is an indication of a 

positive relationship while heterogeneity of spatial patterns indicates a negative relationship.  

3.8.1.1 Modelling Spatial Processes  

Anselin et al. (2000) stressed that modelling spatial processes are most appropriately examined 

by spatial autocorrelation. The most widely used global method of analysing clusters (spatial 

autocorrelation) is Moran’s I (Levine, 2004; Eck et al., 2005; O'Sullivan and Unwin, 2010; 

Ibrahim et al., 2015) and to a lesser extent Geary’s C (Getis and Ord, 1992). Moran’s I is based 

on the covariance among the designated locations, while Geary’s C takes into account numerical 

differences between associated locations (Getis, 1999; Eck et al., 2005). Figure 3.8 shows the 

result for Moran’s I spatial autocorrelation for burglary crimes in Leeds. 

The common feature between Moran’s I and Geary’s C is that both of them are applied globally 

within the area under study. Therefore it is appropriate to use Geary’s C (General G) in 

conjunction with  Moran’s I in order to reveal patterns not revealed by the use of Moran’s I alone 

(Getis and Ord, 1992). Moran’s I tends to provide some insights regarding the global level of 



62 

 

spatial autocorrelation in the occurrence of events (Murray et al., 2001) but is not practicable in 

identifying local clusters with heterogeneous areas (Ord and Getis, 1995). However, despite its 

limitation, Moran’s I is still to date the most widely used global method for investigating spatial 

autocorrelation (Ibrahim et al., 2015).  

 

Figure 3.8: Spatial autocorrelation statistics for burglary crime in Leeds 

3.8.1.2 Global Moran’s I 

The Spatial Autocorrelation (Global Moran's I) tool is an inferential statistic, which means that 

the results of the analysis are always interpreted within the context of its null hypothesis. For the 

Global Moran's I statistic, the null hypothesis states that the attribute being analysed is randomly 

distributed among the features in the study area or in other words, the spatial processes 

promoting the observed pattern of values is a factor of random chance. The Moran’s I statistic 

for spatial autocorrelation based on Tłuczak (2013) is: 
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where x  is the mean of the x   variable, ijw  are the elements of the weight matrix, 

0S  is the sum of the elements of the weight matrix: 
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where i and j are features being weighted  

A number of researchers have used spatial autocorrelation in their analyses such as epidemiology 

and crime. For example, Cracolici and Uberti (2009) used spatial autocorrelation to investigate 

the spatial distribution of crime in Italy. Their findings highlighted that certain socio-economic 

variables have positive impacts on criminal activities. Andresen (2006) also used spatial 

autocorrelation to explore spatial aspects of crime activities in Vancouver, Canada employing 

social disorganisation theory and routine activity theory. His results show a positive effect of 

using the spatial autocorrelation technique over space. This research will also apply spatial 

autocorrelation technique in order to better understand patterns in the datasets. 

3.9 Diversity Indices 

A diversity index is a mathematical measure of the distribution of ethnic group diversity in an 

area (McIntosh, 1967). Therefore, diversity indices provide more insights about community 

composition than a simple analysis of data (numbers and percentages) (Bains, 2005). Although 

diversity is difficult to quantify, there is no consensus about which indices are more appropriate, 

partly because of the multitude of indices proposed (Morris et al., 2014). A number of indices of 

diversity including Berger Parker, McIntosh, Camargo’s, Smith and Wilson, Clarke and 

Warwick are used in different disciplines (see Magurran, 2004). However, the most widely used 

indices to quantify diversity are the Shannon (H) and Simpson (D) indices (Bains, 2005). While 

the Shannon (1948) index seeks to measure the proportion (dominance) of individuals from a 

group, the Simpson (1949) index represents the probability that two randomly chosen individuals 

belong to different ethnic groups.  

Furthermore, when measuring diversity, richness (abundance) and evenness (distribution) are the 

paramount considerations. Richness is the number of different groups represented in the 
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community where each person of the population can be allocated to one group and each group is 

distinct. On the other hand, evenness refers to the equitable distribution of individuals among the 

different groups. While the Simpson’s index has taken into account both considerations (richness 

and evenness) (Bains, 2005), the Shannon index only takes into account the richness (abundance) 

(Bains, 2005). This tends to make comparison across different communities nearly impossible 

(Barrantes and Sandoval, 2009) and introduces classification problems such that an individual 

can belong to any group (Hill et al., 2003). Additionally, while the range in values of D 

irrespective of the number of groups is between 1 and 0, the bigger the value of D the more the 

diversity and does not take sample size into account, the range in value of H depends on the 

number of sample groups under consideration. This tends to make interpretation difficult 

(Magurran, 2004). Because of the limitation of the Shannon index, the Simpson index is more 

widely preferred (Bains, 2005) and is written as:  

𝐷𝑖  =  1 −  
∑ 𝑛𝑖(𝑛𝑖 − 1) 𝑖

𝑁(𝑁 − 1)
 

(3.7) 

 

Several researchers have used Simpson’s diversity index in their analyses. For example, Rees 

and Butt (2004) used the Simpson index to measure diversity in England between 1981-2001. 

They found a rapid growth in the population of minority ethnic groups. Bains (2005) used UK 

Census data 2001 to quantify diversity in London using the Simpson index finding high 

concentrations of non-Whites in most London boroughs relative to the England and Wales 

average. Stillwell and Phillips (2006) examined the diversity of ethnic populations of Leeds 

(Asians specifically) using the Simpson index and data from 1991-2001 UK Census. They found 

evidence for the concentration of Asian population in inner Leeds, indicating greater potential for 

residential mobility from the heterogeneous multi-ethnic inner city areas.  

Though the concept of diversity is multi-dimensional which includes demographic, socio-

economic, health and physical disabilities, religion among others (Zanoni and Janssens, 2004; 

Jonsen et al., 2011). Previous studies (Alesina and Ferrara, 2005; Stillwell and Phillips, 2006; 

Habyarimana et al., 2007; Gijsberts et al., 2012; Sturgis et al., 2014; Jivraj and Simpson, 2015; 

Alesina et al., 2016) have concentrated on ethnic diversity in their analysis. One study that 

attempted to include other variables beyond ethnicity is that by Piekut et al. (2012) which 



65 

 

employed Census data to quantify diversity of two cities Leeds in the UK and Warsaw, in 

Poland. They used clustering and Simpson’s index of diversity as methods in their analysis. They 

found a little overlap in community types across the two cities. In this research, the Simpson 

index will be used for constructing diversity statistics using different components representing 

crime and community cohesion (Table 3.2). Additionally, diversity statistics will be used for 

later regression modelling of crime and community cohesion. 

Table 3.2: Components used to measure different diversity metrics 

Diversity Components included 

Age 10-14, 15-19, 20-24, 25-29, 30-44, 45-59, 60-64, 65-74 

Family structure Lone parent no dependent, Lone parent one dependent child, 

Lone parent two or more dependent children, Married couple no 

children, Married couple one dependent child, Married couple 

two or more children 

Ethnicity All 18 ethnic groups included 

Employment 16-64 Managers/Directors, 16-64 Professionals, 16-64 Associate 

Professionals, 16-64 Administration and Secretariat, 16-64 

Skilled Trade, 16-64 Caring Leisure and Services, 16-64 Sales 

and Customer Services, 16-64 Process Plants and Machines, 16-

64 Elementary Occupation 

Education 16-over qualification level 1, 16-over qualification level 2, 16-

over qualification level 3, 16-over qualification level 4 

Residence length Length of residence: Less than two years, Less than five years, 

More than five years, Ten years above, Born in the UK 

 

3.10 Computational Models 

Computational models are mathematical algorithms used to simulate a set of processes observed 

in the real world in order to gain an understanding and to predict the outcome of these processes 

(Hill et al., 2001; Calder et al., 2018). Computational models are increasingly used for research 

in different disciplines including social sciences (Poile and Safayeni, 2016). Brantingham and 

Brantingham (2004) argued that conventional statistical methods used in empirical crime 

research rely on extrapolation of past data. The central drawback of statistical crime models is 

that they are not able to capture the underlying processes that drive crime system (Malleson and 
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Birkin, 2012).  However, due to the increasing complexity and dynamics underlying sociological 

systems, computational models are needed to overcome the limitations of conventional statistical 

methods (Brantingham et al., 2005). Within the social sciences, two broad computational models 

including microsimulation and agent-based models are widely used for simulating geographical 

systems (Heppenstall et al., 2011) and criminal justice systems (Stewart, 2014).     

Microsimulation Models 

Microsimulation modelling (MSM) is a micro-based methodology that uses micro units of 

analysis such as individuals and households and firms using surveys or administrative datasets 

(e.g census and survey data) (O'Donoghue, 2014). The idea behind MSM is to represent the 

constituent units with individual characteristics which comes from real data rather than average 

values (Bae et al., 2016) and the use of these attributes for policy analysis at micro-level (Ballas 

et al., 2005). MSM is widely applied within the social sciences to better understand how 

components of a dynamic system within a society are related (Groff and Birks, 2008). Previous 

researchers have experimented with MSM to explore crime (Kongmuang, 2006; Auerhahn, 

2008; Hussain et al., 2012; Stewart, 2014; Bailey, 2015). However, MSM has a number of issues 

related capture spatial variations in a range of variables; the matching processes in the estimation 

techniques; variations in household types in the surveys being reweighted and issues with similar 

household types showing different behaviours (Birkin and Clarke, 2012).  

Agent-based Models 

Agent-based models (ABM) are methods one approach for modelling complex social systems in 

which agents interact based on specified rules (Malleson et al., 2014) to better understand and 

explore social phenomena (Eberlen et al., 2017). Agents are entities that are capable of 

interacting with each other and with their environment (Malleson et al., 2014). The interaction 

among agents and their environment often aggregate to create unexpected patterns, it is such 

emergent patterns (such as residential segregation and inequality) that are of interest to 

sociologists and policymakers (Bruch and Atwell, 2015). ABM has been used in the study of 

urban social systems, especially crime modelling (Malleson et al., 2010; Malleson and Birkin, 

2012; Gerritsen, 2015; Weisburd et al., 2017; Groff et al., 2018). Despite the increasing 

popularity of ABM in simulating complex social systems, there are drawbacks associated with 

ABMs. Modelling human social behaviour is complex (Malleson, 2010) and selecting adequate 
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number of parameters, features and behaviours to include in the model can be challenging 

(Eberlen et al., 2017). Additionally, unlike conventional statistical models, ABM is 

computationally expensive technique (Malleson et al., 2014).   

The major difference between MSM and ABM is that MSM data-driven one directional 

interaction models that attempt to simulate the impact of the policy on individuals rather than 

policy on individuals; while ABM are theory-based dynamic interaction models between 

individual (agents) that decide within their environment (Crooks and Heppenstall, 2012; Bae et 

al., 2016). However, of MSM and ABM techniques are conceptually linked, they create models 

based on bottom-up approach (Ballas et al., 2019). These methods will not be used in the 

remainder of the thesis. 

3.11 Concluding Remarks 

This chapter has reviewed traditional methods of modelling spatial relationships in urban social 

systems. Different data sources to be used in regression modelling were also reviewed. As can be 

seen though, the relationship between community composition and crime is complex and multi-

facetted; there are some core factors that regularly emerge as important determinants of crime 

rates. Here we justify the inclusion of variables that represent crime and community cohesion. 

These variables will be used in chapter 5 to calibrate models of crime and community cohesion 

so as to explore their significance. 

As the data to be used for this research has spatial attributes, we reviewed spatial and statistical 

methods available for analysing spatial data. It has been suggested that standard regression 

variables can be adjusted to capture a range of places in which social cohesion plays a part across 

the crime system. To quantify this, we reviewed different indices used to measure diversity 

within a population, and have decided to adopt Simpson’s diversity index in this research. This 

will provide justification for the inclusion of diversity statistics in “advanced” social media 

modelling to explore community cohesion and crime. 
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Chapter 4  

Non-Traditional Methods: Social Media for Community 

Cohesion and Crime 

4.1 Introduction 

In chapter 3, “traditional” methods and data for modelling urban social systems and crime were 

reviewed. Chapter 4 proceeds to discuss “non-traditional” methods for modelling community 

cohesion and crime with new forms of social media. One of the objectives of this research is to 

investigate the feasibility of using new data sources to explore crime and community cohesion, 

especially because the limitations surrounding traditional data relied upon by social scientists 

have resulted in researchers seeking alternative data sources (Danneman and Heimann, 2014). 

Engaging with new forms of social media data can help provide insights into social processes 

such as social interactions (Savage and Burrows, 2007). Section 4.2 reviews relationships 

between social media and social cohesion with specific emphasis on Facebook and Twitter. 

Sources of social media data and methods of collection are also described. Section 4.3 will 

explain the relationship between social media and community cohesion with reference to action 

in communities. Section 4.4 will then move on to describe how the social media and community 

cohesion can be applied for understanding communities. Application of social media data by law 

enforcement will be described in Section 4.5 and 4.6 discuss social media and social capital in 

relation to crime. Section 4.7 will discuss methods of social media analysis and different 

algorithms used. Section 4.8 presents concluding remarks.     

4.2 Social Media and Social Cohesion 

Social interactions and social networks are now easier to capture through the social media, 

although the data, like any, has biases. Social media refers to networked communication 

platforms (e.g. Facebook and Twitter) that allow users to connect with other people and share 

user-generated content (Ellison and Boyd, 2013). Social media provides an enabling platform for 

the formation of social bonds (cohesion) among people as well as the exchange of information 

and creation of social networks (Cornelius et al., 2009; Gorman, 2013; Wakamiya et al., 2013; 

Angus et al., 2015). Public participation in social media (Facebook and Twitter) has recently 

increased. The increase could be attributed to the internet becoming more accessible to people, 
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especially on mobile phones. The increasing use of the internet is changing the way communities 

are engaging and interacting in the public sphere (Bonsón et al., 2015). For example, in the UK, 

the number of people using Twitter and Facebook for social networking on a daily basis has 

increased from 45% in 2011 and 61% in 2015 to 63% in 2016 across all age groups. Although, 

there is a strong bias towards the young (16-24 (93%) social networking; 25-34 (85%); 35-44 

(72%)) but older generations are also engaging in social networking (45-54 (55%); 55-64 (44%), 

65 and over (15%)) (ONS, 2015b; ONS, 2016b). Additionally, while SM is often viewed as 

biased towards the young, Facebook is of particular interest because it is increasingly becoming 

important for older people (Miller, 2016). Recent statistics on SM usage in the UK, show that 

older adults are closing the gap with those aged 45-54 (68%), 55-64 (51%) and 65 and over 

(27%)  using SM on a daily basis, though the younger adults 16-24, 25-34 and 35-44 maintained 

their lead with 96%, 88% and 83% respectively (ONS, 2017d). The major reason for using social 

media was to find out what is happening in the local area (ONS, 2016c).   

In terms of the relationship with off-line, Williams (2010) stressed that internet access can 

promote community building by providing an enabling environment for communication within 

and between communities. Furthermore, Sawyer and Chen (2012) emphasised that increasing 

access to the internet promotes interconnectedness and interdependence in a culturally diverse 

society. Steinfield et al. (2008) explain the increase in social media engagement by emphasising 

that social media networks are increasingly being used as part of an individual daily routine 

where people stay connected with the events in their communities. As a result,  Hariche et al. 

(2011) emphasised that web resources can be used to foster social cohesion by creating a 

network of relationships between communities in a society. It is apparent that social media can 

strengthen local links within neighbourhoods, intertwining online and offline relationships 

(Harris and McCabe, 2017) and enhancing local social capital generation (Matthews, 2016). For 

example, a study of the relationship between frequent social media usage and overall social ties 

(Hampton et al., 2011) suggests that social media offers opportunities for social networking for 

communities (Harris and McCabe, 2017).   

 In general, when some people think of social media like Facebook, Twitter, Myspace or 

YouTube, they think of specific enabling technologies especially for marketing and political 

activities (Baruah, 2012; Gao and Liu, 2015). However, the importance of social media has gone 

beyond simply a platform for promotion and marketing of products (Paquette, 2013) or even 
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eliciting individual votes in political campaigns (Jungherr, 2016). Today the emphasis is also 

beyond the individual, and their buying/voting power, with an emphasis on social interactions, 

local community support and participation, including in the area of crime reduction activities 

(Denef et al., 2013), especially in the UK (Malleson and Andresen, 2015). Social media tools 

such as Twitter and Facebook have a great potential for community-based crime reduction 

efforts (Featherstone, 2013). Social media tools are useful for mobilising community support and 

encouraging community action, especially in solving local problems such as crime (Humphreys, 

2010; Baruah, 2012). Table 4.1 shows the most popular social media platforms the date they 

were established and their key purpose. 

Table 4.1: Popular social media networking platforms 

Social media Year established Purpose 

LinkedIn 2003 Professional networking 

Myspace 2003 Music sharing 

Skype 2003 Video call/messaging 

Facebook 2004 Social connections/messaging/chat/business 

Flicker 2004 Embed photo sharing 

YouTube 2005 Video sharing 

Reddit 2005 Social news/networking  

Twitter 2006 Messaging (tweets) 

Tumblr 2007 Video/audio/photo sharing 

WhatsApp 2009 Messaging/video/audio/documents 

Foursquare 2009 Local and discovery service 

Pinterest 2010 Small businesses 

Instagram 2010 Video/photo sharing 

Snapchat 2011 Image messaging 

Google+ 2011 Small businesses 

Source: Anthony (2016) 

The emergence and use of social media channels such as Facebook and Twitter generate large-

scale databases of human spatial activities, creating wide research interests (Tufekci, 2014). One 

of the ramifications of using social media platforms, especially Twitter and Facebook is their 
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potential for exploring the dynamics of human collective behaviours to uncover patterns and 

phenomena (Bentley et al., 2014). Additionally, these data can be analysed to gain insights into 

human social behaviours (Tufekci, 2014). For example, analyses of Twitter data through text 

mining (sentiment) can be important in revealing patterns of public emotions. Facebook data 

analyses (engagement) are important in understanding patterns of social interactions in different 

areas which can help especially in planning for community building (Williams et al., 2013), 

albeit with ethical issues around the reuse of public and private data. Figure 4.1 shows the 

number of global social media active users. However, the two most popular social media 

platforms (Facebook and Twitter) used for research are discussed in more detailed below 

(Section 4.2.1 and Section 4.2.2). 

The relationship between social cohesion and crime is well researched (see section 2.3). Previous 

research has established the mediating effect of social cohesion on crime (Sampson et al., 1997; 

Hirschfield and Bowers, 1997; Markowitz et al., 2001; Forrest and Kearns, 2001; Wedlock, 

2006; Uchida et al., 2013). Gao and Liu (2015) emphasised that social media tools especially 

Facebook and Twitter, provide a useful medium for understanding dynamics of social 

interactions and exploring social problems such as crime. Hence in this research, analysis of 

social media data (Facebook and Twitter) might provide useful insights into the relationship 

between community cohesion and crime. 

 

 

Figure 4.1: Global social media active users. Source: Statistica.com (2016) 
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4.2.1 Facebook 

Established in 2004, Facebook is the fastest growing social media platform (Sachs et al., 2011; 

Tess, 2013; Chaffey, 2017) and undoubtedly the most popular social networking site (Junco, 

2015). The number of Facebook active users has grown from about 400 million users in 2009 to 

1.23 billion in 2014 (Ryan et al., 2014). As of March 2016, Facebook has 1.6 billion active users, 

82.2% of them outside America and Canada (Facebook, 2016). To establish a connection, users 

are required to create a profile describing their activities, interests and values though not all these 

are always essential (Toma and Hancock, 2013); a friend request is then sent to other parties 

which must be accepted in order to establish links (Dwyer et al., 2007).  

Facebook groups allow users to connect based on common interest such as neighbourhood, 

school clubs, families, etc. Facebook groups are not public by default, meaning that only 

members can receive updates from them. A Facebook page is a public profile created for 

organisations, businesses or a community. Unlike a personal profile page, public Facebook pages 

do not have friends but “fans” which are people who have chosen to engage with the page. 

Facebook pages have functionalities that allow users to engage them, generating important data 

as a result that can facilitate quantifying the rate of public engagement on any post. A post is a 

message (user-generated content) in a form of a comment, picture or other media appearing on a 

user’s page. Facebook metrics are available as soon as the post is published to the public 

including; post clicks, reach, likes, comments and shares. The clicks can be described as “all in 

one” metrics that refer to the total number of clicks anywhere in a page post such as likes, 

comments, shares and views. The reach metrics refers the number of people who receive 

impressions (number of times a content is displayed on your News Feed) on a page post. News 

Feed is the constantly updating list of stories, status updates including stories, videos and links 

from people, pages and groups that you follow. The like functionality allows users to express 

their support about the preferred content, while the comment tool allows users to add voice to the 

content of a post, and the share function allows users to extend the content to others on their 

network (Facebook, 2017a). 

In terms of access to data, unlike Twitter, Facebook does not allow automated access to data 

without consent, and most of the information is private by default unless otherwise set as public 

(Bechmann, 2014). Despite this limitation, considering its popularity, in this research Facebook 
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data will be used to explore social media engagement in different community areas of Leeds and 

the extent at which engagement on Facebook is related to demographics of areas. Figure 4.2 

shows a typical Facebook profile. 

 

 

Figure 4.2: Typical Facebook account profile 

Developers API
2
 

In order to obtain public Facebook data, users are required to create an app via Facebook 

application programme interface (API) available from the Facebook developers’ website  

(www.developers.facebook.com) and obtain the necessary credentials such as an App ID and 

App Secret (Lanfear, 2016). Figure 4.3 shows a typical Facebook App that has been created. 

Having set up an App, users can start collecting data from public Facebook pages using page 

names or alternatively page IDs can be used. To ensure that data is collected from the correct 

pages, the name of the page can further be authenticated by checking its ID from the Facebook 

website
3
. In the R environment, a common method for collecting Facebook page data are uses an 

                                            
2
 https://developers.facebook.com 

3
 httpd://findmyfbid.com 
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algorithm developed by Barbera et al. (2017). Typically, the Facebook metrics of engagement 

available for a particular Facebook page include “Likes”, “Comments” and “Shares” (Magno, 

2016). 

 

 

Figure 4.3: Typical Facebook API development app 

 

4.2.2 Twitter 

Twitter is a free social networking service created in 2006 that allows registered users to send 

short update messages called tweets over the web or on mobile devices (Vanam and Reznik, 

2013). According to recent statistics, Twitter has 310 million active users with one billion tweets 

sent every month (Twitter, 2016). In contrast to Facebook, Twitter limits user-generated content 

(tweets) to 140 characters, allow users to follow whomever they wish, but those they follow do 

not have to follow them back (Procter et al., 2013). Figure 4.4 shows a typical Twitter account 

profile. 

Social media data are often difficult to obtain, with most of the social media sites restricting their 

data (Morstatter et al., 2013; Sloan and Quan-Haase, 2017). However, Twitter is different in this 

respect as researchers can access Twitter data through two APIs, the REST API and the 

Streaming API (Figure 4.5), differing in the design and access method (Kumar et al., 2014). This 

availability and ease of use makes Twitter the most popular information source for social 
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networks and opinion studies, and is widely used for research (O'Connor et al., 2010), especially 

in social sciences (Tuomisto, 2010). Although studies have been carried out using other social 

media data, from sites such as Snapchat and YouTube, these works have not led to new insights 

or novel contributions to the extent that has occurred with Twitter (Aarts et al., 2012). Table 4.2 

shows details of the Twitter public APIs. 

 

 

Figure 4.4: Twitter account profile 

The APIs can be accessed only via an authenticated request with valid credentials (a consumer 

key, consumer secret, access token and access secret) provided by Twitter. Furthermore, access 

to the Twitter APIs is also limited to a specific number of requests within a time window, called 

the rate limit. These limits apply both at the individual user level and the application level 

(accessing tweets from multiple users). The Twitter APIs are discussed in more detail below 

based on Kumar et al. (2014). For example, Twitter restriction applies to requests within a rate 

limit of 15 individual user requests at 15 minutes per rate limit window  (Twitter, 2017b).   

Twitter offers relatively easy access to a 1% global random sample of tweet data via its 

Streaming API website
4
. Although users can overcome this limitation by accessing 100% of all 

public tweets through its “Firehose” data providers (e.g. GNIP and DataSift), the cost is 

prohibitive (Kumar et al., 2014). 

                                            
4
 https://dev.twitter.com/streaming/public 
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Table 4.2: Twitter public APIs 

API URL Data type Public data 

Allowance 

Search 

parameters 

REST https://dev.twitter.com/rest Archive  1% 400 key words, 

25 bounding 

boxes, 5,000 

user IDs 

Streaming https://dev.twitter.com/streaming Continuous 

 

Rest API
5
 

The REST API can be used to retrieve archive data which are not more than 7 days old. 

However, in this research, the Streaming API will be used, so we focus on this here. 

 

 

 

Figure 4.5: Typical Twitter developments API 

                                            
5
 https://dev.twitter.com/rest 
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Streaming API
6
   

The Streaming API provides access to a continuous stream of public information from Twitter. 

Once a request is made, the Streaming API provides a stream of updates based on the search 

request. The Streaming API limits the number of parameters which can be supplied in a request. 

Up to 400 keywords, 25 geographic bounding boxes and 5,000 user IDs can be provided in one 

request. This returns up to 1% of the total current volume of tweets published by Twitter that 

match the request at a given time. This research will therefore make use of Twitter’s free 1% 

random sample data. Table 4.3 describes the metrics available from social media data. The 

Streaming API has three end points: public streams, user streams and site streams. Public streams 

contain public tweets on Twitter, while user streams provide streams from a single user; the site 

streams access tweets from multiple users. However, the public streams API is the most versatile 

streaming API (Kumar et al., 2014). Therefore, in this research, the public stream API will be 

used for data scraping. 

Table 4.3: Social media metrics 

Facebook  

Metrics Description 

Likes Measures of popularity of a Facebook page 

posts. The function allows users to create and 

give feedback about a preferred content. 

Comments Measures of commitment on a particular 

post. It allows users to add their voice to the 

content of a post. 

Shares Measures the number of times a post is 

shared by other people to their own network. 

It is a measure of virality received by a 

particular content.  

Clicks Measures the number of times a particular 

content (likes, comments, shares, and video) 

is clicked. 

Reach Measures the number of users who saw a 

particular post on their newsfeed. It does not 

necessarily mean interacting with content. 

                                            
6
 https://dev.twitter.com/streaming 
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Twitter  

Metrics Description 

Tweets Measures the number of times user generated 

content are posted on Twitter. 

Retweets Measures the number of times a content is 

shared by other users 

Favourites/likes Represents the number of most popular 

tweets. They are subjective, usually measures 

a positive sentiment. 

Followers Measures the number of people that 

subscribed to a particular updates from a 

particular user. 

Mention Measures the number of times a particular 

user name is mentioned in a content 

Replies Measures the number of times users respond 

directly to content. 

Source: Jackson (2014) 

4.3 Social Media Community Cohesion and Crime: Action in Communities 

The flow of information about local community wellbeing is essential for neighbourliness, social 

cohesion and collective efficacy (willingness to intervene for the common good). Sampson et al. 

(1997) stressed that collective community action is linked to lower levels of crime (especially 

violent crime). One such way to achieve this process is through social media networks (Harris 

and Flouch, 2010). In many communities, social media platforms have emerged to play a central 

role in local community engagement (Harris and Flouch, 2010). Social media is changing the 

way we interact as individuals as well as a community, allowing people to organise and take 

action (Kawash, 2014). For example, in Brockley in south east London, the community members 

are using social media (Twitter specifically) for information sharing about local community 

events such as meetings, requests for help as well as for interactions between local residents, 

establishing ties with one another (Bingham-Hall and Law, 2015). In this way, community web 

resources can serve as a means of communication, supporting one another and improving local 

community participation. 
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Social cohesion literature emphasises the mobilisation of community support for solving local 

problems such as crime. Until recently, emphasis has been on collective efficacy (informal social 

control) Sampson et al. (1997) and partnerships between the police, local authority and the 

community (such as Neighbourhood Watch) (Hope, 2001) as provided by the Crime and 

Disorder Act of 1998. The Neighbourhood Watch program is a self-help community crime 

prevention initiative aimed at reducing crime and opportunities for crime.  However, the recent 

social media revolution has enabled this partnership to be facilitated across the web. Laney 

(2013) argued that social media platforms are gradually changing the way people interact among 

themselves and even open more opportunities for people to express their views on government 

activities. Furthermore, online social media sources like Twitter and Facebook stimulate face-to-

face connections which lead to other neighbourhood actions (Hugh and Kevin, 2011). Social 

science researchers have been exploring geo-located social media data (especially Twitter) to 

examine social interactions of people and to attempt an explanation on social dynamics within 

neighbourhood boundaries (Prasetyo et al., 2013; Wakamiya et al., 2013). The contention is that 

the use of social media data might offer a better opportunity to gain new insights into the 

relationship between community cohesion and crime. 

Local authorities have also recognised the importance of social media for communication. For 

example, in the UK, a  recent survey of social media usage by local councils indicates that 97% 

of the councils were using Twitter, 95%  were using Facebook and 83% were using YouTube to 

communicate with the local community (James, 2017). Leeds City Council is using social media 

channels such as Twitter for community engagement. For example, the Twitter account 

(@YourCommunity) with 1,495 followers as at June, 2016, is one of the accounts used for 

communicating with different communities within the district so as to encourage local 

community participation, as well seeking their opinions on different issues affecting the city. 

However, because the adoption of social media as a means of communication by these 

organisations is a recent event, it is difficult to quantify its impacts.  

One example of social media usage for community engagement is in Brisbane in Australia, 

where the city council has an official Twitter account (@brisbanecityqld). The city council is 

using social media to communicate with communities as well as responding to their enquiries by 

providing accurate information, building trust and encouraging community participation 



80 

 

(Howard, 2012). For example, during the Brisbane flood crises in 2011, the city council used its 

social media account to update people with accurate information on the situation.   

On the other hand, West Yorkshire Police are also using social media channels like Twitter (e.g. 

@WYP_LeedsCity) to communicate with different neighbourhoods about safety issues. Through 

these channels, the police engage different neighbourhoods seeking help and encouraging local 

community participation, especially in crime prevention activities. Local community problems 

especially relating to neighbourhood safety, can be discussed directly (though publicly) with the 

relevant agencies for prompt action. Although using social media as a new form of community 

engagement is just beginning to develop, people are gradually starting to use them as media for 

discussing local activities as well as neighbourhood problems (such as crime), as well as 

responding to police appeals for assistance. For example, recently (21 July, 2016) the police 

posted an appeal for help about a missing teenager (Kerry Lund), and many people responded 

promptly by sharing the information across different neighbourhoods. As a result of this 

collective action the boy was found within a short time.  

While organisations are using social media tools for communicating with communities, the 

communities themselves are also making use of social media channels to foster social cohesion. 

For example, Brockley in South London has a local community Twitter account 

(@BrockleyCentral) with 7,240 followers, a significant figure relative to a population of 17,000 

(Bingham-Hall and Law, 2015). Using this channel, promotional events and requests for help are 

posted, allowing local residents to interact and establish social ties with one another (Bingham-

Hall and Law, 2015).  

4.4 Social Media Community Cohesion and Crime: Understanding Communities 

Researchers have used social media data (Twitter in this context) to study crime in a 

geographical space (Malleson and Andresen, 2015; Corso, 2015; Luini et al., 2015), disasters 

(Tapia et al., 2013; Simon et al., 2015) and to explore the social interactions of people 

(Huberman et al., 2008; Macskassy, 2012; Wakamiya et al., 2013). Additionally, social media 

tools have been employed to study humanitarian crises (Goldfine, 2011; Skuse and Brimacombe, 

2014; Simon et al., 2015). For example, Cooley and Jones (2013) attempted to employ Twitter 

data to study the humanitarian crisis resulting from the famine in Somalia using content analysis. 

They found that Twitter is increasingly used by aid agencies in relief efforts. The major 
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limitation of their study is the small sample size, limited in this case by the low levels of internet 

availability and accessibility. Internet failure is commonly experienced especially in developing 

countries, during crisis periods, making it difficult to employ such tools for communication 

(Mullaney, 2012). Small samples are difficult to use quantitatively, making interpretation of 

results difficult (Button et al., 2013). 

While studies using social media in humanitarian crises are common (Goldfine, 2011; Skuse and 

Brimacombe, 2014; Simon et al., 2015), the application of social media to the study of social 

cohesion (especially crime) is limited (Aarts et al., 2012). This research seeks to address this 

limitation through the application of social media in order to gain new insight into the 

relationship between community cohesion and crime. In this research Twitter data will be 

employed to analyse public sentiments with a view to establishing the link between social 

cohesion and crime. 

The geolocation of tweets is important for understanding the role of geography in explaining or 

predicting different themes of interest. Approximately only 1% percent of tweets published by 

Twitter are geo-located (Kumar et al., 2014) because only about 1.6% of Twitter users have 

global positioning system (GPS) functionality enabled on their device, chiefly for privacy 

reasons (Tuomisto, 2010). Swier et al. (2015) stressed that although the small proportion of geo-

located tweets might not provide useful insights into the routine activity of people, a 1% sample 

can still be sizable compared to traditional surveys. 

In terms of the use of Twitter data in the study of crime, Gerber (2014) used geotagged Twitter 

data and kernel density estimation to quantify and predict crime in Chicago, USA. He compared 

historical crime records with Twitter data within geographical areas of interest using hotspot 

maps and topic modelling. He found that Twitter data improves crime prediction, potentially 

enabling resource allocation, especially police personnel. The main limitation of his analysis was 

that he focussed on topic modelling of tweets and failed to address the issue of content analysis 

(contextual interpretation of document) of tweets. Sentiment analysis of tweets content, as in the 

present research, might provide better insights for planning, especially for crime reduction 

activities. The present research would address this problem by analysing the content of social 

media data (tweets) in order to gain more insights into the relationship between public emotion 

and demographic characteristics of different areas, and how they relate to crime. 
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In another study, Chaudhry (2015) employed geotagged Twitter data to examine hate crime 

using content analysis in six Canadian cities (Vancouver, Toronto, Winnipeg, Calgary, Edmond 

and Montreal). He argued that social media such as Twitter provides an opportunity to openly 

discuss issues relating to race discrimination in Canada which might be difficult in an offline 

situation. Therefore the contents of tweets (text) provide a rich data source for researchers to 

mine. He found that Twitter data can be used to explore racially motivated crime. The major 

limitation of his study is small sample size (he collected only 776 tweets). As mentioned 

previously, interpretation and generalisation of results based on small sample data can be 

difficult (Hackshaw, 2008; Button et al., 2013).  

Previous studies have concentrated on using geolocation of tweets published by Twitter to 

predict the occurrence of crime (Featherstone, 2013; Malleson and Andresen, 2015; Corso, 2015; 

Luini et al., 2015). However, they have not analysed the textual content of tweets. Analysing the 

content of tweets might allow for better estimation of crime patterns (Williams et al., 2016). For 

example, Sandhana and Sangareddy (2015) used Twitter data combined with climate data in the 

Karnataka district of India to quantify and predict the temporal variation in crime using 

sentiment analysis (opinion mining). They found a correlation between Twitter sentiment and 

seasonal changes in the occurrence of violent crime. The major shortcoming of their study is the 

absence of sentiment classification of text (tweets) content in terms of polarity (e.g. negative vs 

positive terms as in Jong, 2011; Rajan and Victor, 2014) or lexical or affinity classification (sad, 

happy, afraid, bored as in Cambria, 2013).  

Most recently, Williams et al. (2016)  used Twitter data, police recorded crime data and UK 

2011 Census data to study crime and social disorder in London boroughs using linear random 

and fixed effects regression models. They argued that the analysis of tweet content might provide 

a better insight into crime patterns than simple geo-located data, which has limited explanatory 

power beyond routine activities. They also found that social disorder related tweets specifically 

correlate with actual police crime data. The major issue with their study is the use of randomised 

regression models, which, although useful for analysing large data sets (Clark and Linzer, 2015), 

are also prone to severe bias in estimating the effects of variables that are included (Allison, 

2005). Instead, opinion mining (sentiment analysis) of tweet contents might provide more useful 

insights for exploring the dynamics of human collective behaviours (Gao et al., 2013). Table 4.4 

provides a summary of previous studies. 
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Table 4.4: Summary of studies using social media (Twitter) for social interactions and crime 

Authors Data used Methods Pros Cons 

Gerber (2014) Geotagged Twitter 

data combined with 

historical crime 

data 

Kernel density 

estimation 

(KDE) and 

Topic 

Modelling 

• Twitter data   

improves 

crime 

prediction. 

• Can enhance 

planning for 

resource 

allocation. 

• Only focussed on 

topic modelling of 

tweets. 

• Failed to address 

issue of content of 

tweets. 

• Sentiment 

analysis might 

provide better 

insights especially 

for planning crime 

reduction 

activities. 

 

Malleson and 

Andresen 

(2015) 

Geotagged Twitter 

data 

Geographical 

analysis 

techniques 

• Describe 

shift in hotspot 

of crime from 

the city centre 

compared with 

police 

recorded crime 

data. 

• Hotspot 

maps are 

useful in 

describing 

patterns. 

• Hotspot maps 

might not provide 

insights for the 

factors responsible 

for the occurrence 

of crime clusters. 

• Factors that give 

rise to crime 

hotspots differ 

from place to place 

(Eck et al., 2005) 

Chaudhry 

(2015) 

Geotagged Twitter 

data 

Content 

analysis 

• Twitter 

provides 

opportunity 

for open 

discussions 

relating to race 

discrimination. 

• Twitter data 

can be used to 

explore racially 

recorded crime. 

 

• Small sample 

size. 

• Interpretation and 

generalisation of 

results based on 

small sample can 

be difficult 

(Hackshaw, 2008; 

Button et al., 2013) 
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Authors Data used Methods Pros Cons 

Sandhana and 

Sangareddy 

(2015) 

Twitter data 

combined with 

climate data 

Sentiment 

analysis 

• Describes 

correlation 

between 

tweets content, 

temporal 

changes and 

occurrence of 

violent crime. 

• Disregard 

sentiment 

classification of 

tweets e.g. 

(Cambria, 2013). 

• Archive weather 

data might not be 

valid beyond 2 

weeks, making 

quantitative 

predictions 

unreliable (Epstein, 

1988; Higgins, 

2015).  

Williams et al. 

(2016) 

Twitter data police 

recorded crime data 

UK Census (2011) 

Linear random 

and fixed 

efforts 

regression 

models 

• Describes 

correlation 

between social 

disorder 

tweets and 

actual police 

crime data. 

• Twitter data 

might be use 

as alternative 

information 

source 

planning crime 

reduction 

activities. 

• Randomised 

regression 

models are 

useful for 

analysing 

large data set 

(Clark and 

Linzer, 2015). 

 

• Randomised 

models are prone 

to severe bias in 

estimating efforts 

of variables 

(Allison, 2005). 
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As can be seen from the literature reviewed, there is a growing body of research that leverages 

social media to study human social interactions and community cohesion, especially with regards 

to crime. Building on these previous studies, this research will also employ social media data 

(Facebook and Twitter in this context) in order to explore the relationship between community 

cohesion and crime. 

4.5 Social Media and Law Enforcement  

Social media tools such as Facebook and Twitter have been found to be useful in disseminating 

information about crime safety awareness and as a medium of interaction between the police and 

the public (Heverin and Zach, 2010; Vanam and Reznik, 2013; Trottier, 2015). The police use 

social media as an outreach platform to inform the general public about crime and safety. Figure 

4.6 shows social media accounts used by West Yorkshire police. The number of people 

subscribing to these media is low but increasing across neighbourhoods. Furthermore, social 

media platforms enable real-time communication and reporting of events, and this information 

flow is relevant to law enforcement (Corso, 2015). For example, any member of a community 

with such facilities can use social media to send critical information about a crime or potential 

crime for timely action (Corso, 2015), albeit in a very public manner. Information collected from 

social media can be used to help identify criminals or criminal groups, and potentially to 

discover patterns and anticipate crime, as well as for resource allocation to combat crime (Hartle 

et al., 2014; Trottier, 2015). For example, social media analyses (text mining and social network 

elucidations) are important in revealing patterns about public opinions and activities on social 

media which can help in planning police operations (Williams et al., 2013).  
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Figure 4.6: West Yorkshire Police social media channels 

However, while social media sites have become useful tools for the public and law enforcement 

agencies, criminals are also using those sites to coordinate criminal activity (USDOJ, 2013). 

Despite its potential for law enforcement and crime control, researchers have paid little attention 

to this area (Prichard et al., 2015). 

One particular example of social media (especially Twitter) engagement between the police and 

public is the UK 2011 riots. During the period of the riots, while the police saw a tremendous 

increase in followers, and they also engaged the public on a large scale (Denef et al., 2013; 

Procter et al., 2013). It has become important for the police to seek the cooperation of the public 

in order to successfully discharge their responsibility of maintaining peace and reducing crime in 

communities (Denef et al., 2013).  

 

4.6 Social Media, Social Capital and Crime 

The evolution of technological developments such as the SM channels are changing the way 

social capital is perceived, especially relating to community life-styles and safety. There is a 

growing evidence suggesting that social network sites (e.g. Facebook) have the potential to 

generate social capital (see Section 2.4) (Gainous and Wagner, 2014). SM networks are 
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potentially useful for the generation and maintenance of social capital, facilitating public 

interactions and promoting face-to-face social bonds  (Ellison et al., 2007) which is essential for 

maintaining neighbourliness (Sampson et al., 1997). Social capital reflects the relationship 

between people and the outcomes of their relationships (Coleman, 1990; Putnam, 1995). Social 

capital has been defined as the sum of resources, actual or virtual, that an individual or group 

benefits from belonging to a social network (Bourdieu and Wacquant, 1992). Social capital 

exists if people share resources and exchange information (Sander and Teh, 2014). Based on 

their study, Ellison et al. (2007) emphasised that when social capital declines, a community 

experiences increased social disorder, reduced participation in civic activities and more distrust 

among community members. Babb (2005) argued that face-to-face social capital is now being 

maintained through the Internet especially through the SM such as Facebook. In contrast to the 

advent of SM networks, social connections and communications were only maintained at the 

local level, or through telephone and postal services (Matthews, 2016). For example, Phulari et 

al. (2010) stressed that bridging and bonding social capital is built when communities of like-

minded people increasingly converge online. The concept of bonding social capital takes place 

between socially homogeneous groups while bridging exists between socially heterogeneous 

groups (Putnam, 2000). However, researchers have stressed that social capital is difficult to 

quantify because it is a multidimensional perspective and no single indicator exists to measure it 

(see Section 2.5) (Haezewindt, 2003; Plotkowiak, 2014; Appel et al., 2014). Previous studies that 

attempted to quantify social capital relied heavily on traditional data sources (e.g. surveys) which 

are limited by cost, sampling and  questions can easily be manipulated and prone to bias, hence 

the reliability of those measures may be questioned (Deller and Deller, 2010; Szolnoki and 

Hoffmann, 2013). For example, the variables of trust, reciprocity and civic participation obtained 

from surveys were used as indicators of social capital in previous studies (Kawachi and 

Berkman, 2000; Healy, 2002).   

Nevertheless, the advent of social network sites enabled the establishment and maintenance of 

social capital online. In recognition of the importance of social network sites for generation of 

social capital in the UK, Office for National Statistics has now recognised belonging to a social 

network site as one of the important variables for measuring social capital in a community 

(Veronique, 2014). An important component of belonging to a social media network site for 

social capital is that people can use the networks for accessing information or conveying social 
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support for the members of the community; and the more people are connected to the network 

the more social capital is increased (Ellison et al., 2014). Social support can be in the form of 

goodwill messages like birthday wishes, encouragement, commiserating with the bereaved, 

advice and suggestions on how to deal with local community problems and an invitation for a 

community meeting. These are described as online reciprocity (Sander and Teh, 2014). 

Similarly, the exchange of information and resources requires trus;,  on social networks people 

do not discuss or share content with other people if they do not trust each other (Sander and Teh, 

2014). Reciprocity and trust are essential components of social capital that facilitate interaction 

in the community (Vilares et al., 2011) and Facebook specifically provides a good platform for 

enhancing those elements of social capital (Valenzuela et al., 2009). Although Facebook as a 

medium for social capital depends on how users interacted with the content by liking, 

commenting and sharing; contents without interactions indicate lack of interest by the network 

(Ellison et al., 2014). Putnam (2000) argued that social capital is often better understood using 

quantitative approaches and when the context in which it is being assessed is determined. In this 

research, Facebook is used for a number of reasons. Facebook is the most widely used SM 

network across all ages in the UK (Statistica.com, 2017), widely used in social science for 

understanding patterns of online social relationships (Wilson et al., 2012; Kosinski et al., 2015). 

Blank (2017) argued that the unlike Facebook, the unrepresentative characteristic of Twitter 

users suggests that Twitter data are not suitable for social science research. Facebook also 

enables creation and maintenance of social interaction quickly, enhance information 

dissemination with a wider number of users and enabling interactive feedbacks at low transaction 

cost (Ellison et al., 2014). Facebook offers a guided interactions of messages via liking, 

commenting and sharing either of these actions strengthens social relations (Naseri, 2017), 

allowing people to create pages and groups for the purpose of social relationships (making new 

friends and maintaining existing relations with families and neighbours) (Ramadan, 2017). This 

active engagement is greater on Facebook than other SM platforms such as Instagram and 

Twitter (McClain, 2017). Although, other SM networks like Twitter also provide opportunity for 

social interaction by merely publishing text and links to stored media, Facebook offers full 

functionality for posting different multimedia messages (videos and photos) which makes it more 

versatile for local social interaction (Kwon et al., 2014). 
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Furthermore, the exchange of information about local community wellbeing can also facilitate 

collective efficacy (a willingness to intervene for the common good). Sampson et al. (1997) 

stressed that collective community action is linked to lower levels of crime (especially violent 

crime). One such way to achieve this process is through SM networks (Harris and Flouch, 2010). 

SM channels also allow people to organise and make collective decisions (Kawash, 2014), share 

information on neighbourhood safety and allow residents to request for help when in need 

(Bingham-Hall and Law, 2015). Facebook specifically has been found to be an important 

channel for information sharing relating to community building and creating awareness 

neighbourhood crime (Hattingh, 2015; Sachdeva and Kumaraguru, 2015).  

 

4.7 Methods 

Previous sections have highlighted the importance of social media, especially Facebook and 

Twitter, as a media for social interaction and collaboration between the law enforcement and the 

public. As discussed, social media can have a useful impact on law enforcement, through both 

information dissemination and community cohesion building. 

The review highlighted the limitations of previous studies, as well as loss of opportunities for 

more sophisticated use of text content of geo-located tweets. The next sections concentrate on 

specific techniques of analysis that have been used and may provide insights into social media 

data.  

4.7.1 Sentiment 

Sentiment is an expression of opinion or views about a particular event or situation as either 

positive or negative. For example, “good”, “wonderful” and “amazing” are positive sentiment 

words; “bad”, “poor” and “terrible” are negative sentiment words (Liu, 2012). Sentiment can be 

assessed based on polarity (e.g neutral, negative or positive), as well as on the basis of its 

strength positively or negatively (eg +1 to +5 or -1 to -5) (Thelwall et al., 2012). Until recently, 

research on sentiment focussed on discussions linked with stock market reviews by investors 

(Bormann, 2013). However, with the growing interest in social media text mining, studies 

relating to sentiment detection using public posts for crime prediction are increasing (Wang et 

al., 2012; Bolla, 2014; Jurek et al., 2015). This shift provides new challenges as well as 
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opportunities for social scientists wanting to better understand the relationships between public 

social media interactions and their impacts on social behaviour especially with regards to crime 

(Felt, 2016). The opportunities arise as social scientists can now use social media channels to 

seek out and find public opinion about a particular event, which can enhance effective planning 

and decision making (Pang and Lee, 2008). However, the challenges relate to techniques used to 

accurately analyse large amounts of data being generated through social media in order to better 

make sense out of them (Liu, 2010b).   

4.7.2 Sentiment Analysis 

Sentiment analysis (SA) or opinion mining is a technique that uses Natural Language Processing 

(NLP) to extract mood from public messages posted on social media about particular issues, 

topics and events (Liu, 2012; Medhat et al., 2014; Prichard et al., 2015; Wilson et al., 2016). 

Sentiment analysis is concerned with automatic extraction of sentiment related information from 

text (Thelwall et al., 2012). It may also involve clustering techniques for the visualisation of 

sentiment clusters within a corpus (collection of text document) (Layton et al., 2013). Social 

media, especially Twitter, provides rich textual data about public opinions, thoughts and 

behaviours. Twitter is particularly preferred because tweets are primarily public, and therefore 

broadly available for analysis, unlike Facebook posts that are restricted to friends (Deitrick et al., 

2013). Extracting public opinion from social media texts provides a challenging but yet a rich 

context for exploring computational models of natural language (O'Connor et al., 2010). This 

analysis necessitates automated methods for the summary of opinions expressed in text 

documents such as social media, and SA emerged in response to this need (Liu, 2010a). The 

ability to extract, analyse and gain new insights from social media data is a practice that is 

widely adopted especially in social science (Smith et al., 2009; Liu, 2012; Xiaojun et al., 2015).  

Furthermore, Tonidandel et al. (2015) has emphasised that SA is becoming an integral part of 

social listening completed by different organisations to understand public opinion on new 

products, as well as issues relating to the social well-being of groups. Nevertheless, despite its 

popularity, there is still plenty of potential for the technique. Bolla (2014) has stressed that SA of 

social media data, especially Twitter, might provide useful insights into crime for particular 

areas; for example, areas having more negative sentiments expressed on Twitter about a 

particular topic tend to correlate with the occurrence of high crimes, whereas areas having more 
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positive sentiments might experience low crimes (Bolla, 2014). Consequently, the SA analysis of 

social media content is potentially important especially for law enforcement agencies (Jurek et 

al., 2015).   

Recently, there has been growing interest in mining social media data such as Twitter in order to 

detect public sentiments (Singh and Kaur, 2015). Opinion mining is one way that ‘big data’ 

generated through communication tools such as social media can be utilised (Prichard et al., 

2015). However, analysing human language is a difficult process owing to various grammatical 

nuances, cultural variation, slang and misspellings common in social media posts (Tan et al., 

2014). NLP as a subject detection system for individual messages produces results that might not 

be without errors (O'Connor et al., 2010). On the other hand, when SA is applied on aggregated 

data the margin of error is significantly reduced, hence increasing the reliability of results for 

decision making (Tan et al., 2014).  Additionally, Prichard et al. (2015) argue that as social 

media usage is heavily dominated by younger people, it is likely that their views might be over-

represented such that the voices of other segments of the population might not be heard. This 

notwithstanding, results obtained from the SA of large amounts of social media data are 

extremely useful and unlikely to be as biased as suspected by Prichard and others (Mostafa, 

2013). Arribas-Bel (2014) emphasised that the sample captured represents the population of 

interest who wish to volunteer information for quantitive analysis, hence dispelling the 

possibility of bias.  Figure 4.7 shows a summary of sentiment classification techniques.  

Despite its associated challenges, SA provides a promising method for measuring public 

opinions (Prichard et al., 2015). SA converts unstructured text (tweets) into meaningful 

information so that the interpretation of text is simpler (Alessia et al., 2015), making it a useful 

basis for decision making regarding marketing research as well as crime prediction and 

monitoring (Mostafa, 2013). Furthermore, unlike traditional methods for studying public opinion 

that require the recruitment of participants with an associated cost (Mathers et al., 1998), bias 

and measurement errors (Roberts, 2007), SA  allows the analysis of public opinions expressed on 

social media across geographical areas, which mitigates some of the spatial biases at least 

(Prichard et al., 2015).  
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Given these advantages, the present research will employ sentiment analysis on social media data 

(Twitter specifically) to better understand the relationships between social cohesion and crime as 

expressed in public posts on social media.   

 

 

Figure 4.7: Sentiment classification techniques. Source (Medhat et al., 2014) 

 

Sentiment Classification Techniques 

Sentiment classification algorithms are used for the classification of text materials as containing 

either negative sentiments or positive sentiments (Yazidi et al., 2015). The process of sentiment 

classification can be at document, sentence or entity levels (Medhat et al., 2014). Document-

level SA aims to classify opinions in a document expressed as positive, negative or neutral. 

Sentence level SA aims to classify sentiment expressed in each sentence.  A number of methods 

are used for measuring sentiments including lexicon based approaches and supervised machine 

learning methods (Gonçalves et al., 2013; Medhat et al., 2014).  

Machine Learning Approach 

Machine learning methods are based on supervised classification, which often relies on labelled 

data to train classifiers. There is a wide variety of machine learning algorithms, including support 
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vector machines, neural networks, maximum entropy methods and the Naïve Bayes algorithm. 

For detailed discussions on machine learning algorithms refer to Medhat et al. (2014). Naïve 

Bayes is an especially common framework used for the classification of textual data specifically 

(Go et al., 2009). 

Naïve Bayes Algorithm 

The Naïve Bayes algorithm gives a sentiment score based on the number of times a positive or 

negative word occurs in a given text document (tweets in this case) (Ravindran and Garg, 2015). 

The algorithm allows the capture of uncertainty about a model by determining probabilities for 

the outcomes from the text document (Medhat et al., 2014). It is also robust to noise input 

common in social media data such as Twitter (Hemalatha et al., 2013). The main drawback of 

machine learning methods is their conditional reliance on labelled data; hence it is difficult to 

apply them to new data. Manual labelling of large datasets such as social media could be a 

daunting task or even prohibitive in terms of cost (Gonçalves et al., 2013). Instead, researchers 

tend to employ a lexicon based approach.  

Lexicon Based Approach 

The lexicon based approaches (unsupervised) make use of a predefined list of words, each word 

being associated with a specific sentiment such as positive or negative (Taboada et al., 2011). 

With this approach, a dictionary of positive and negative words is required, each with a positive 

or negative sentiment value assigned to it (Jurek et al., 2015)  For example, Hu and Liu (2004) 

and Liu (2010a) proposed a collection of 6,800 English words meant for sentiment orientation in 

textual data (positive, negative or neutral). These methods do not rely on labelled data (Dang et 

al., 2010), so can be employed to analyse text at the document, sentence or entity levels without 

training (Zhang et al., 2011). Additionally, lexicon methods are cost-effective (Korhonen, 2009); 

they can predict numerous words with high accuracy (Duygulu et al., 2002). However, analysing 

human language expressed in social media posts (such as tweets) is a challenging process, owing 

to various grammatical nuances, cultural variation, sacarsm, slang and misspellings that are 

common in Twitter data (Tan et al., 2014).  

Despite its flaws, the lexicon approach is widely prefered for analysing social media content 

(Khan et al., 2015). Researchers are increasingly using lexicon methods for SA of social media 

content (Berker, 2011; Palanisamy et al., 2013; Jurek et al., 2015; Asghar et al., 2016). Building 
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on previous studies, the present research will also use a lexicon-based approach for sentiment 

analysis. There are two types of techniques used to classify sentiment orientation based on the 

lexicon approach: dictionary based and corpus-based techniques (Dang et al., 2010).  

Dictionary Based Technique 

The dictionary-based technique uses lexical resources (e.g WordNet, Sentistrength, 

SentiWordNet) to determine the sentiment in words (Dang et al., 2010). In this technique, the 

classifier iteratively adds newly found words to the seed list (collection of positive or negative 

words) and the process stops when no new words are found (Medhat et al., 2014) The major 

limitation of the dictionary based approach is the inability to find opinion words with domain 

and context specific orientations (Medhat et al., 2014)  

Corpus Based Technique 

The corpus-based technique aims to find the co-occurrence of patterns of words to determine 

their sentiments. For example, Breen’s (2011) SA algorithm estimates sentiment by assigning an 

integer score (positive or negative) by subtracting the number of co-occurrences of negative 

words from that of positive words. However, if sentiment scores are the same for both sentiment 

classes or no matches were found from the sentiment word list, the text is classified as neutral 

(Wan and Gao, 2015). 

4.7.3 Social Cohesion and Public Sentiment on Social Media 

Social interactions and social networks, as well as the outcome of such connections are now 

easier to capture through social media. Social media provides an enabling platform for the 

formation of social bonds (cohesion) among people as well as the exchange of information and 

creation of new social networks among communities (Cornelius et al., 2009; Gorman, 2013; 

Wakamiya et al., 2013; Angus et al., 2015; Mukaka, 2012). Laney (2013) argued that social 

media platforms are gradually changing the way people interact with one another and offering 

more opportunities for people to express their views, for example on government or local 

community activities or seeking for the like-minded. 

While social media sites such as Facebook and Twitter reflect a number of social trends relating 

to communities, they can also highlight impacts of a diversity in social relationships between 

different groups of people; especially as these new forms of communication are increasingly 
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adopted by a number of culturally diverse users  (Adolf and Deicke, 2014). The term diversity 

describes the level of variation in racial or ethnic composition, age, gender, religion, philosophy, 

physical abilities, socio-economic background and sexual orientation among a group (Goodin, 

2014 p.7). Such diversity may hinder informal communication within neighbourhoods and affect 

the establishment of social interaction across groups (Browning et al., 2008; Letki, 2008; 

Laurence, 2011). Younger people, for example, are less likely to build social cohesion 

(especially face-to-face) than older people (Johnston and Matthews, 2004; Takagi and Kawachi, 

2014); identity plays an important role in the likelihood that people will connect and form social 

relationships (Gilchrist and Kyprianou, 2011); and social interactions are built over time and tend 

to be more solid when people reside in a particular neighbourhood and are influenced by length 

of residence (Yamamura, 2011; Keene et al., 2013).   

Hollander et al. (2016) stressed that social media data (Twitter in this context) provide rich 

textual information about public opinions, thoughts and behaviours and can be used for 

understanding social relationships in local communities. Although the concept of community is 

complex and multi-dimensional, the traditional view of a community is perceived to be a set of 

people with similar social relationships living within a geographic boundary (Gruzd et al., 2011). 

However, the rise in social media, especially Facebook and Twitter in particular, has enabled the 

formation of social ties and building a sense of community beyond geographic boundaries 

(Gruzd et al., 2011). Furthermore, previous studies have highlighted the relationships between 

the sense of community and social media usage (e.g Java et al., 2007; Crowe, 2010; Poblete et 

al., 2011; Scheepers et al., 2014). The sense of community refers to an individual feeling of 

belonging, emotional connection, interaction and identification with groups of people (McMillan 

and Chavis, 1986).  

4.7.4 Twitter Sentiment and Community Structural Characteristics 

The basis for Twitter sentiment analysis is for classifying tweets based on their orientation as 

positive, negative and neutral (Syaifudin and Puspitasari, 2017; Ponnuru et al., 2017). Sentiment 

analysis on Twitter data can help to uncover public opinions relating to topics of interest 

(Lansley and Longley, 2016; Wang et al., 2017). Sentiment analysis is concerned with the 

automatic extraction of sentiment related information from text (Thelwall et al., 2012); it may 

also involve clustering techniques for visualisation of sentiment clusters within a corpus 
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(collection of text documents) (Layton et al., 2013). Wang et al. (2014) emphasised that the 

automated text analysis of social media (such as sentiment analysis) can be used to estimate 

community mood. This process can facilitate calls for collective community action especially 

relating to social behaviour in the community (Liu, 2012; Harris and McCabe, 2017).  

In terms of the influence of different community structural characteristics on Twitter sentiment,  

Quercia et al. (2012) stressed that relationships exist between sentiment expressed on tweets and 

socio-economic well-being of communities. This factor was also found in previous studies, that 

differences in socio-economic and demographic factors of areas are related to people’s emotions 

expressed on social media (Turney and Harknett, 2010; Moorhead et al., 2013). However, the 

propensity of people to use social media (Twitter in this case) also varies by socio-demographic 

factors of different community areas (Williams et al., 2016). Recent studies have found 

relationships between geographic locations (communities) where people live and sentiments 

expressed on social media (Gallegos et al., 2016), and this relationship can be linked to different 

demographic and socio-economic characteristics of users as well as place-based influence 

(Venerandi et al., 2015; Lansley and Longley, 2016). However, while Twitter sentiment analysis 

has been broadly studied in the social sciences, the focus has not been generally on the diversity 

of different communities. The present research will address this limitation by analysing Twitter 

data to quantify sentiments and linking them to diversity of different communities with a view 

highlighting their relationships.  

4.7.5 Understanding Social Cohesion through Sentiment Analysis 

As noted in Section 4.7.1.1, a number of algorithms have been proposed for sentiment 

classifications such as lexicon and machine learning (Medhat et al., 2014; Ribeiro et al., 2016). 

However, one of the simplest and widely used sentiment analysis methods is by classifying 

words as positive, negative or neutral using a lexicon based approach (Taboada et al., 2011). 

Lexicon based approaches make use of predefined lists of words, each word being associated 

with a specific sentiment such as positive or negative feelings (Taboada et al., 2011). Although, 

not all opinion expressed in a message (tweet) contains a negative or positive sentiment, owing 

to various grammatical nuances, cultural variation, slang and misspellings common in social 

media posts; people might simply be talking neutrally (Tan et al., 2014). To provide a better 

understanding of different sentiment classifications, Koppel and Schler (2006) suggested the 
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inclusion of a neutral class, arguing that a neutral class provides a distinction between negative 

and positive sentiments as well as enhancing the accuracy of sentiment classification polarity. 

This does not mean the results obtained from sentiment analysis of Twitter data are free from 

bias. In this research, Twitter data are used for sentiment analysis because Twitter provides 

access to large amounts of public data free of charge. Bollen et al. (2011) argued that analysing a 

large Twitter dataset can potentially provide insights with respect to modelling social emotions 

(Bollen et al., 2011). 

Previous studies that apply sentiment analysis of social media data have concentrated on 

quantifying moods including those of customer satisfaction about particular brands and products 

(Agarwal et al., 2011; Bormann, 2013; Fang and Zhan, 2015); predicting political elections 

(Tumasjan et al., 2010; Chung and Mustafaraj, 2011; Bakliwal et al., 2013) and estimating 

moods of people during disaster and crisis periods (Nagy and Stamberger, 2012; Schulz et al., 

2013; Caragea et al., 2014). However, studies using sentiment analysis to quantify the 

relationships between social media and demographics to predict the outcomes of local social 

issues, such as those around community cohesion, which is of particular interest to policymakers, 

are limited (Hollander et al., 2016). To address this limitation, in this research we use social 

media data (Twitter) to analyse public sentiment using Leeds community areas of 2001 as a 

spatial framework (Section 3.5). The objective is to uncover and predict the relationships 

between public sentiments on Twitter and diversity of local community areas, so as to potentially 

gain insights with regards to community cohesion. The 106 community areas (CAs) were created 

by aggregating 2,439 Census output areas (OAs) 2001 comprising Leeds district so as to 

represent places that have some meaning to residents of the city as distinctive communities  (see 

Stillwell and Phillips (2006) for detailed description). Although Leeds district has grown by 

5.1% in terms of population size between the 2001 and 2011 Censuses (Leeds City Council, 

2013), the structure of the community areas has not changed significantly. Therefore, the use of 

2001 community areas in this research is considered to be appropriate.  

4.7.6 Social Media Engagement 

The advent of social media has opened up unprecedented new opportunities for public 

engagement (Lee and Kwak, 2012), enabling generation of social capital in the process (Ellison 

et al., 2007; Gil de Zúñiga et al., 2012). There is strong recognition that Twitter can be a 
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powerful tool to engage the public (Honey and Herring, 2009). However, Facebook is one social 

media platform that can enhance local community engagement and is widely used for facilitating 

offline participation (Park et al., 2009). Facebook engagement refers to the percentage of people 

that interacted with a post by liking, commenting or sharing (Facebook, 2017a). Table 4.5 shows 

Facebook metrics for quantifying engagement. 

Public quantitative data provided on Facebook pages can be used to quantify community 

engagement (Bonsón and Ratkai, 2013). For example, Park et al. (2009)  argued that for 

members to engage with a local community Facebook page they must have strong community 

attachment. Community attachment refers to extent and pattern of social participation and 

integration into the community (McCool and Martin, 1994).  

Different Facebook metrics have been used in previous studies to estimate public engagement on 

social media. For example, Kaigo and Okura (2016) attempted to use metrics of followers to 

estimate the citizen engagement on a local government Facebook page in Tsukuba city of Japan. 

They found the relationship between the umber of followers on a Facebook page and citizen 

engagement. However, the limitation of their study is that they use only one Facebook page 

which significantly affects generalisation of their findings. Additionally, the metrics of followers 

can no longer be used because of criticisms surrounding how the numbers were calculated and 

has since been phased out by Facebook (Agostino and Arnaboldi, 2016). Alternatively, 

Spiliopoulou et al. (2014) proposed the metrics of average reach to estimate public engagement 

with the British Museums Facebook page. They found that the metrics of reach are useful for 

measuring public interaction with the British museum. The limitation of their study is the use of 

a single metric to quantify user engagement. Peters et al. (2013) argued that the use of a single 

metric such as reach can rarely describe aspects of SM engagement; therefore a collection of 

metrics is required in order to adequately estimate engagement. Additionally, average post reach 

does not necessarily mean engagement. Engagement metrics indicate interaction beyond just 

simple views (Bendror, 2013). In contrast to Spiliopoulou et al. (2014), in this research, we will 

suggest the use of combined publicly available Facebook metrics of interaction to quantify 

engagement. The hypothesis is that the suggested metrics of engagement on Facebook can 

potentially be used to estimate levels of social cohesion of different community areas of Leeds.  
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Table 4.5: Facebook page metrics used for quantifying engagement 

Metrics Engagement 

Posts 

E= P + C + V/ Fans  
Likes (P) 

Comments (C) 

Shares (V) 

                                                          P-popularity, C-commitment, V-virality 

 

In this research, to quantify social media engagement of a community Facebook page the 

following equation is used:  

𝐸𝑖 =
𝑛𝑝𝑐𝑣

𝐹𝑖
                                                                   (4.1) 

where npcv is the total number of likes, comments and shares, and Fi is number of fans following 

Facebook page in a community. 

4.7.7 New Metrics of Community Engagement 

Community engagement on social media (Facebook in this context) can potentially be quantified 

by a set of metrics that show popularity, commitment and virality. While popularity (P) is 

measured by the “likes”, commitment (C) refers to the number of “comments” and virality (V) is 

measured by the “shares” (Bonsón and Ratkai, 2013; Haro-de-Rosario et al., 2016). Collectively 

these metrics are known as the PCV indicators. The extent of engagement and participation of 

community members on Facebook posts can potentially help to estimate the strength of social 

activity of a community (Agostino and Arnaboldi, 2016) and is potentially an indication of social 

cohesion among members (Ellison and Boyd, 2013). Despite the importance of Facebook metrics 

for quantifying levels of community activity and engagement, previous studies that attempted to 

use Facebook metrics to explore public engagements mainly concentrated on specific areas such 

as marketing (Coulter et al., 2012; Tsimonis and Dimitriadis, 2014), local government (Bonsón 

et al., 2015; Sivarajah et al., 2015; Gandía et al., 2016), predicting political elections (Kristensen 

et al., 2017) and education (Roblyer et al., 2010; Wise et al., 2011; Junco, 2015). Additionally, 

little evidence exist on the adoption of Facebook metrics to quantify community engagement 



100 

 

(Agostino and Arnaboldi, 2016). This work is the first academic attempt using Facebook metrics 

of engagement to quantify community cohesion.  

It might be thought that a new Facebook account will have less activity than a well-established 

one. Bendror (2013) emphasised that a large number of posts on a Facebook page does not 

necessarily imply engagement but really depends on how compelling a post is to the intended 

users. However, the proposed new PCV metrics are independent of the number of posts and 

length of establishment of a particular profile but how fans interact with such posts, therefore 

appropriate for measuring community engagement (Bonsón et al., 2014). There has been some 

criticism of the metrics of engagement in terms how they are weighted. For example, Ernest and 

Bernad (2015) argued that the metrics of popularity (i.e. ‘likes’) are likely to be higher than those 

measuring commitment (‘comments’) and virality (‘shares’) because it takes less effort for the 

users to click the like button than by sharing a post or putting their thoughts in writing by using 

the comment button. Stockley et al. (2013) have also emphasised that the metrics of likes are the 

shallowest indicators of engagement because the users are merely expressing agreement on the 

content of a post, while comments show a greater degree of engagement because the users want 

their voice to be heard. Overall, the metrics of shares demonstrate the greatest degree of 

engagement because users are expressing a desire for others on their networks to see posts and 

interact with them (Stockley et al., 2013). Facebook places different weights on engagement 

metrics giving shares the most weight and likes the least but it is unknown how the Facebook 

algorithm computes these weights (Kim and Yang, 2017). However, engagement on Facebook is 

driven by the combination of all metrics such as likes, comments and shares (Lev-On and 

Steinfeld, 2015). In this research, these metrics will be used based on literature. 

Despite the criticisms of PCV metrics of engagement, they are widely used as indicators of the 

degree of interaction on a community Facebook page (Boldt et al., 2016; Bhattacharya et al., 

2017). However, the drawback of these measures of interaction is the assumption that all the 

metrics contribute equally to engagement. Additionally, there is lack of an appropriate method 

for normalizing them in the literature.  

In this research, therefore, the new metrics based on PCV are proposed to potentially quantify 

social cohesion and crime in different local community areas of Leeds, UK. Agostino and 

Arnaboldi (2016) argued that the PCV metrics can be used as a proxy for measuring public 
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engagement with a Facebook page posts. The advantages of the suggested new metrics data 

derived from Facebook are that the proposed metrics of post interaction such as likes, comments 

and shares are publicly available as soon as posts are published. Additionally, the new metrics 

might potentially provide an alternative to traditional survey data (such as the Community Life 

Survey of England) for estimating social cohesion in a community. Facebook is used because it 

is the fastest growing social media platform (Sachs et al., 2011; Tess, 2013; Chaffey, 2017) and 

undoubtedly the most widely used social networking site used for social interaction in different 

communities and is also popular across all categories of users both young and old (Junco, 2012). 

Although, Facebook does not allow automated access to data without consent where an account 

is set as private by default (Bechmann, 2014). Nevertheless, community Facebook pages are 

usually public; therefore accessing basic data (likes, comments and shares) does not require 

consent (Facebook, 2017b).  

4.8 Concluding Remarks 

This chapter discussed “non-traditional” social media approaches for modelling social cohesion 

in relation to crime. Section 4.2 reviewed relationships between social media and social 

cohesion. It was shown that social media platforms especially Facebook and Twitter, can be used 

for building and maintaining social cohesion, and increasing access to the Internet makes this 

processes easier. Section 4.3 explained how relationships between social media and community 

cohesion can be used to mobilise for action in communities. Furthermore, as shown in Section 

4.4, social media channels can potentially be used for understanding communities, while Section 

4.5 described how law enforcement agencies are using social media channels for crime 

preventions. Different analyses methods of social media data such as sentiment and engagement 

were discussed in Section 4.6. These techniques will be used later in chapters 6 and 7 for social 

media modelling in relation to community cohesion and crime. 
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Chapter 5   

Traditional Modelling of Crime and Community Cohesion 

5.1 Introduction 

This chapter employs 2011 Census variables identified as important indicators of crime and 

community cohesion (in chapter 3) along with aggregated police recorded crime data (burglary) 

for a 5 year period (2011- 2015), for modelling the relationships between burglary rate and 

neighbourhoods structural characteristics. Section 3.4 provided a review of Census variables 

used and police crime data were described in Section 3.4.2. In this research, burglary rate is 

calculated per 1,000 population in order to reduce the biases created by using areas with 

differences in population size.  

The chapter begins with a review of the importance of quantifying urban crime in Section 5.2 

and proceeds to describe the correlates of crime in urban communities (Section 5.3). Section 5.4 

explores the impact of social cohesion and diversity on crime. The theoretical justification for the 

explanatory variables used is provided in Section 5.5 while Section 5.6 describes the method and 

data used for the analysis. The results are discussed in Section 5.7 and concluding remarks are 

given in Section 5.8.  

5.2 The Importance of Quantifying Urban Crime 

Measurement of crime is necessary for any quantitative assessment of crime policy change 

(Ludwig and Marshall, 2015). Knowledge about how the incidence of crime is distributed over 

space can also enhance the effectiveness of police operations and collective community 

programmes such as Neighbourhood Watch (Brunsdon et al., 2007). For example, local 

knowledge of where crime is clustered will increase the capacity of the police to employ 

prevention measures, thereby improving the safety of communities (Moore and Trojanowicz, 

1988; Bruce and Santos, 2011). Therefore, urban and regional planners, policy makers and 

policing agencies have all recognised the importance of better understanding the patterns and 

dynamics of crime (Murray et al., 2001). 
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5.3 Understanding Correlates of Crime in Urban Communities  

A common method of understanding crime is through correlation with socioeconomic factors in 

the areas where it occurs, and this is an important component of so-called environmental 

criminology (Meera and Jayakumar, 1995; Alves et al., 2013). Socioeconomic factors such as 

wealth disparity, educational attainment, proportion of young people and deprivation are 

commonly found to correlate with crime rates in urban areas (Bandyopadhyay et al., 2010). Such 

variables act as proxies for, or direct measures of, the underlying causes of crime in a system that 

relate to the offender drivers, victim lifestyles and environment-related opportunities. However, 

the accuracy and representativeness of variables that act as proxies vary considerably and many 

variables, such as metrics of multiple deprivations, are widely regarded as ‘catch-all’ variables 

that encompass a wide variety of underlying factors. 

Despite these complexities, many of the crime theories used to predict the locations of crimes are 

much simpler. Researchers employ the social disorganisation theory of Shaw and McKay (1942) 

to explain variation in crime rate in different neighbourhoods. This theory posits that high levels 

of ethnic heterogeneity, residential instability and socio-economic disadvantage undermine social 

cohesion, which in turn, increase delinquency and crime rates (Shaw and McKay, 1942). 

Sampson and Groves (1989), in their empirical extension of Shaw and McKay’s theory, argued 

that disorganisation in a community lowers the ability of residents to work together towards 

problem-solving, while collective efficacy among neighbourhood residents mitigates crime rates 

(Sampson et al., 1997). Additionally, Kristjánsson (2007) emphasised that weak networks of 

social ties decreases informal social control in the community, which increases deviant 

behaviour. Crime theories used in this research have been described in Section 2.9. 

This research focuses on residential burglary for a number of reasons. Firstly, burglary is an 

opportunity crime that flourishes in socially disorganised and less cohesive communities 

(Weisburd and Piquero, 2008; Chamberlain and Boggess, 2016; Roth, 2018) and can be 

traumatising to victims (Wollinger, 2017). It is likely that disorganised neighbourhoods might 

have higher burglary crime rates because of weak social cohesion than affluent areas where 

strong social connectedness facilitates the ability of residents to be on the lookout for criminal 

behaviour (Dunaway et al., 2000). Additionally, previous research has demonstrated that social 

capital (participation in community-oriented policing in this context) in a community is linked to 



104 

 

lower levels of residential burglary (Martin, 2002).  Routine Activities Theory (RAT)  (Cohen 

and Felson, 1979) is regularly used by scholars to explain the occurrence of opportunity crimes 

such as burglary. This is based on the premise that a crime requires the simultaneous presence of 

three elements: motivated offenders, suitable targets and absence of capable guardians. 

Secondly, Crime Statistics for England and Wales (CSEW) have shown a reduction in theft 

offences from person and property (Flatley, 2015; ONS, 2016a). Despite this development, 

Leeds city ranks third in burglary after London and Birmingham (Yorkshire Evening Post, 

2018). Additionally, recent statistics from CSEW have indicated a rise in recorded burglary 

offences by 438,971 (9% increase) between 2016 and 2017 (ONS, 2017a). These developments 

necessitate further investigation of the relationships between rates of burglary and community 

characteristics in Leeds. 

5.3.1 Standard versus Adjusted Variables of Crime and Community Cohesion 

Of particular interest in this research is the role of community cohesion in the crime system. 

Community cohesion generally acts to increase the safety of communities: by reducing the socio-

economic drivers of crime; through maintaining oversight of those potentially moving into 

criminal lifestyles (Lee, 2000); by increasing the oversight of potential sites of crime; and by 

reporting crimes when they occur. However, cohesion is a nuanced concept (there is 

considerable cohesion in communities ruled by criminal gangs) and cohesion is ill-represented 

by standard socio-demographic variables (both middle and working class communities can 

experience a wide range of levels of cohesion). As such, cohesion is poorly captured in standard 

regression models of crime. Section 2.3 reviewed the importance of community cohesion on 

crime. 

This research suggests that standard regression variables can be adjusted to better capture a range 

of loci in which social cohesion plays a part across the crime system. When these adjustments 

are made, these variables become more strongly predictive of crime than standard treatments, 

suggesting the significant role social cohesion plays in the crime system and the significant part 

it plays as the link between standard regression variables and crime rates. The relationship 

between burglary and a series of standard socioeconomic variables will be examined. It is argued 

that such variables, while acting to represent components of the crime system, capture the effects 

of social cohesion acting within those components in a weak manner. In contrast, a new set of 
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alternative representations of these variables, centred on diversity statistics are generated. For 

example, rather than looking at the percentage of a specific age group, the diversity of ages 

within a community is considered. These variables are included within a stepwise regression 

model, along with the more standard variables, to empirically investigate their worth.  

5.4 Exploring the Impact of Social Cohesion and Diversity on Crime   

Social cohesion is a nuanced property of communities and best examined with a particular 

viewpoint in mind. In the case of crime, we are interested in those elements of cohesion which 

reduce offender drivers towards crime and decrease the opportunities for crime, not least by 

increasing informal guardianship and enhancing the work of the police and other formal crime 

prevention organisations. Although it is largely not the focus of the present research dealing with 

crime prevention, we might also include the effect of cohesion on the recovery after crime; often 

the most important part of the crime event for victims. 

In terms of crime, we know that an important role of social cohesion is social interaction 

between community members which increases familiarity and promotes the exchange of 

information (Pearson et al., 2015). This can be achieved, for example, by encouraging 

community-based ties and participation in communal activities (Forrest and Kearns, 2001). One 

result of improved communication is that social norms can be more easily and accurately 

promulgated, while familiarity allows social control to be more easily enacted by a community  

(Blau and Blau, 1982). As noted by Lee (2000), children brought up in cohesive communities are 

less likely to be involved in offending because of higher levels of informal guardianship. In 

addition, informal social control in cohesive communities helps to reduce more general 

delinquent behaviour which could lead to offending (Ross et al., 2011), not least through the 

construction of a generally weakened social coherence in an area and a decay in environmental 

quality (Hovel, 2014; Berkhin, 2006; Mohit et al., 2016). A second result of enhanced 

information and familiarity is that they also increase the likelihood that offenders will be 

observed as unusual, and that people observing such offenders will either disturb them or engage 

with formal crime prevention organisations such as the police or informally through local 

neighbourhood voluntary crime prevention schemes such as the Neighbourhood Watch. Overall, 

cohesive communities are likely to have enhanced collective efficacy with regards to crime 

(Sampson et al., 1997; Browning, 2002; Browning et al., 2008), and, for example, burglary and 
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street crimes are directly reduced in more cohesive communities (Sampson and Groves, 1989; 

Wedlock, 2006; Clarke and Hope, 2012). 

5.4.1 Social Capital as an Element of Social Cohesion 

One potential element of cohesion is social capital. Social capital reflects the relationship 

between people and the outcomes of their relationships (Coleman, 1990; Putnam, 1995). Social 

capital is part of the daily social life of a community and a key element of the behaviour of its 

people (Sander and Teh, 2014). Akçomak and Ter Weel (2012) also maintain that social capital 

decreases the risk of victimisation and increases the probability that potential offenders might be 

caught or deterred, which in turn reduces the crime rate. The importance of social capital on 

crime has been discussed in Section 2.4. 

Unfortunately, social capital is notoriously difficult to quantify, and, while social media, 

communications and transport data go some way to allowing for the study of social networks and 

their strengths, elements of social interconnection are not directly represented in traditional 

datasets collected at the population level by governments. 

5.4.2 Diversity as an Element for Understanding Social Cohesion  

Given the difficulty in measuring social capital, within a diverse urban community such as 

Leeds, the lack of direct measures of cohesion within government datasets, and the wide range of 

manners in which cohesion acts, an alternative is to examine the diversity of communities as a 

proxy for these relationships (or their absence). Overall then, although it is likely that social 

cohesion and capital are indicators of a number of components of crime and crime prevention 

systems, it seems clear that diversity is likely to be a higher-level indicator and a driver that is 

not only relatively simple to quantify but which also influences a wide variety of social elements 

that play out in the crime propensity in both areas of cohesion and day to day social interactions. 

Diversity has the advantage that it can be assessed using standard population-level government 

datasets, but the disadvantage is that it is only a loose proxy for (weak) social coherence. The 

term diversity describes the level of variation in racial or ethnic composition, age, gender, 

religion, philosophy, physical abilities, socioeconomic background and sexual orientation among 

a group (Goodin, 2014 p.7). In the context of the UK and US, socio-economic and demographic 

diversity has been linked to decreased social cohesion and the variation of crime in 
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neighbourhoods (Sampson and Groves, 1989; Bursik Jr and Grasmick, 1993). Diversity may 

hinder informal communication within neighbourhoods and tends to affect the establishment of 

social interaction across groups (Browning et al., 2008; Letki, 2008; Laurence, 2011). In The 

Netherlands for example, Meer and Tolsma (2014) argued that heterogeneity in a community, 

low levels of trust and meaningful interactions tend to undermine intra-neighbourhood social 

cohesion. Employing the Metropolitan Police Public Attitude Survey (METPAS) of London, it 

has been argued that ethnically diverse communities especially with large proportion of transient 

populations  are often characterised by distrust, low levels of social cohesion and disputes 

(Sturgis et al., 2014) which negatively affect individual behaviours (Mellgren, 2011). 

Furthermore, recent research into the spatial distribution of neighbourhood crime in Japan, 

consistently shows that areas characterised by ethnic diversity, wealth diversity and age diversity 

(calculated at individual level with surveys) have high rates of crime (Takagi and Kawachi, 

2014).  

In a study of community integration in Berlin neighbourhoods, Gruner (2010) employs 

Bourdieu’s concept of ‘habitus’ (socialised norms that guide behaviour) to explain the 

distribution pattern of neighbourhoods in terms of socioeconomic and demographic structure. 

She found that the patterns and distribution of neighbourhoods is associated with different 

cultural norms and unwillingness of minority groups to integrate, describing it as self-

segregation. Bourdieu’s theory of habitus postulates the effects of physical embodiment of 

cultural capital; individuals’ who grow up in similar conditions develop similar habitus 

(Bourdieu, 1989). People with similar habitus feel attracted by and are more comfortable with 

each other (Bourdieu, 1989). The theory is extended to the study of social problems such as 

crime and perceived problems associated with migration flows in urban neighbourhoods (e.g. 

Shammas and Sandberg, 2015). For example, growing up in a socially disorganised and crime-

ridden neighbourhood might greatly influence the behaviour of people especially the young 

(O'Connor, 2004), thereby facilitating delinquency (Johnston, 2016). This is especially pertinent 

to the local context within which this research is set. In Leeds, the Family First initiative under 

the Trouble Families Programme (TFP) is working in partnership with local communities, West 

Yorkshire Police and Jobcentre Plus, helping families (especially the less privileged) to address 

multiple problems such as crime and unemployment (Leeds City Council, 2016). The TFP is a 

national programme in England established in 2011 and funded by the Department for 



108 

 

Communities and Local Government (DCLG) to provide opportunities and support towards 

helping families with multiple problems including youth offending, antisocial behaviour, 

domestic abuse and joblessness (Fletcher et al., 2012; Hayden and Jenkins, 2014; Bate, 2017). 

The intuitive conclusion from this set of studies is that high diversity in the communities is 

acting to reduce social cohesion consequently increasing neighbourhood crime. There is certainly 

some evidence that diversity reduces social cohesion (Meer and Tolsma, 2014) and this seems 

especially true where diversity is found in conjunction with deprivation (Cooper and Innes, 

2009).  However, it is nevertheless important to note that diversity and cohesion levels are not 

always related in a simple manner and that cohesion has the opportunity to be affected both 

positively and negatively, and by more than just ethnic or economic diversity. It is also true that, 

overall, potential high diversity may have net positive impacts in terms of multiculturalism and 

the disruption of embedded cultural processes, despite negative impacts in other areas.   

To better understand these relationships, this research, will model a number of socio-

demographic factors and compare the impacts of standard variables representing those factors 

directly (for example, the number of young people) with variables representing their diversity 

(for example, age diversity). Table 5.1 shows the variables that are ultimately used in the model. 

Theoretical justification for their inclusion is provided in Section 3.4.1.1 while Census variables 

provided in Table 3.1 are used to investigate the possible relationship between burglary and other 

variables (standard and diverse). 

Table 5.1: The core components of crime and community cohesion, and the variables used to 

represent them in the model. 

Component Standard Variable (%) Diversity Variable 

Age distribution Young persons (Age 16-24) Age diversity 

Family structure Lone parents Diversity of family structure 

Identity Ethnic minority population Ethnic diversity 

Affluence / wealth Age 16-64 economically inactive Diversity of employment 

type 

Educational 

attainment 

Age 16 over no qualification Diversity of educational 

attainment 

Residential  

instability 

Resident less than 2 years Length of residence diversity 
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 Source: ONS (2011) 

5.5 Data and Method 

5.5.1 Data 

The crime data used for this research were obtained from the ‘police open public monthly data of 

reported crimes’ https://data.police.uk, a portal that provides for a customised crime data 

downloads for all police force in England and Wales. In this case West Yorkshire Police for the 

period 2011-2015 aggregated (N = 51,800) using burglary rate per 1000 population for the city 

of Leeds. Burglary is chosen because it is relatively well reported by the public and relatively 

well recorded (ONS, 2017a). The geographical neighbourhoods of analysis used in this research 

are the 482 lower super output areas (LSOAs) of Leeds (see Section 3.4.1). The spatial 

distributions of independent variables (standard and diversity) are shown in Figure 5.1 to Figure 

5.6 respectively.  

5.5.2 Method 

In this research, a new approach is proposed to explore the impact of diversity/social cohesion on 

burglary crime in neighbourhoods of the Leeds district using regression techniques. Diversity 

statistics were compared with non-diversity (standard) variables to examine which one of them 

performs better when regressed against burglary crime rates. Although, as discussed (Section 

5.4), diversity has a complex relationship with social cohesion, this approach has the potential to 

better represent the influence of social cohesion in the crime system, and to reveal those social 

themes where cohesion plays out most significantly against burglary crime.  

Researchers have used a number of methods to measure diversity (Morris et al., 2014), and it is 

likely that different diversity metrics will reveal different elements of community cohesion (see 

Section 5.3.1). Nevertheless, this initial study concentrates on diversity indices which report the 

probability that two individuals taken at random are different (described in Section 3.9). Such 

diversity indices therefore uses equivalent classes weighted on the same scale  irrespective of the 

total community size, with each class within the community having members that share common 

attributes (Jost, 2006).  
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In this research, the categories used to measure diversity were determined by census data 

availability and were computed using Equation 3.7. The variables included and their categories 

are provided in Table 3.2. Utilising the variables in Table 5.1, a selected set of correlates with 

crime was constructed. Identifying the best model fit requires an iterative process that examines 

different combinations of explanatory variables. Exploratory regression analysis is important for 

selecting the best explanatory variables for a given model (Braun and Oswald, 2011). 

Exploratory regression builds ordinary least square (OLS) models using all possible 

combinations of explanatory variables and assesses which models pass the OLS checks 

(Rosenshein et al., 2011). This process is useful for ensuring that only variables with highest 

significance are retained. Here, to test the strength of the relationship between the variables and 

crime, we utilise stepwise linear regression. Stepwise methods are commonly used to select the 

best variables in a regression model, especially multiple regression with many predictors such in 

this study (Wooldridge, 2012; Sinha et al., 2015). However, the process of adding and dropping 

variables associated with stepwise regression has been criticised given that it is possible to miss 

the optimal model, removing less significant predictors increases the significance of others 

which may lead researchers to overstate the importance of the remaining variables (Rawlings et 

al., 1998). Despite the limitations of stepwise multiple regression method, it is widely used  in 

different ecological studies (Meera and Jayakumar, 1995; Raftery et al., 1997; Collins et al., 

2007; Pitner et al., 2012; Caplan et al., 2015). 

Optimal models are a balance of correlation against parsimony. Although such balances are 

largely subjective and centred around use-cases, traditionally scree graphs have been used to help 

in the decision making as there is often a natural kink in the graph of, for example, R-squared 

versus numbers of model components, which indicates considerable decreasing explanatory 

power being provided by additional components (Culotta, 2014; Mahmud et al., 2012). 

Prior to building the model, the dependent variable (burglary rate) and independent variables 

(standard and diverse) were correlated to investigate their relationship; and to test for possible 

multicollinearity (Table 5.2). Multicollinearity is present when there is a high degree of 

correlation among the independent variables. This can significantly affect model performance 

and reliability (Wang, 1996). There is no standard rule for filtering out variables based on the 

issue. However, we can make a judgement by checking metrics such as the variance inflation 

factor (VIF). VIF is used to describe how much multicollinearity exists in regression analysis 
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which is an indication of variable redundancy. Any variable with VIF value greater than 7.5 is 

considered as redundant and is usually dropped from the analysis (Charlton et al., 2009). In this 

research, correlation between the independent variables above Pearson’s r .80 is regarded as very 

significant. Economically inactive population correlates with percentage young persons aged 16-

24 (.88); age diversity correlates with percentage of young persons aged 16-24 (.89); ethnic 

minority correlates with ethnic diversity (.94) and length of residence diversity (.93); and ethnic 

diversity correlates with length of residence diversity (.97). Therefore, the following variables 

were removed to avoid redundancy: length of residence diversity, ethnic minority and percentage 

of young persons aged 16-24. Additionally, the retained variables were found to have a stronger 

correlation with the dependent variable which is preferable in a linear regression model (see 

Table 5.2).  

5.6 Theoretical Justification for the Explanatory Variables 

Although the relationship between community composition and burglary crime is complex and 

multi-faceted, there are some core factors that regularly emerge as important determinants of 

crime rates. Section 3.4.1 described the most common factors; it is from these that the variables 

used in the traditional modelling work are derived. In each case, the standard variable is 

represented and then the diversity variable. 

5.6.1 Age Distribution 

Offenders are commonly drawn from younger age groups (Kongmuang, 2006). The age-crime 

curve tends to increase from the adolescent years reaching a maximum at adulthood and then 

sharply declining (Farrington, 1986; Gottfredson and Hirschi, 1990; Sampson and Laub, 2003; 

McVie, 2005; Blonigen, 2010; McCall et al., 2013; Sweeten et al., 2013), although this varies by 

the type of crime (Tittle et al., 2003). Burglary is therefore likely to be affected by absolute 

numbers of young (aged 16-24) people. For example, according to Fagan et al. (2014), the 

incidence of crimes related to vehicles and drugs tend to be higher in early adulthood than in 

adolescence. While homicides tend to be committed by adults, theft-related offences including 

burglaries are more prevalent in the younger age groups than the elderly (Palguna et al., 2015).     

However, crime may also be affected by age distributions. A mixed population may put more or 

fewer offenders near more or fewer victims, but will also affect social cohesion. Younger people 
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are less likely to build social cohesion (especially face-to-face) than older people (Johnston and 

Matthews, 2004; Takagi and Kawachi, 2014), but equally, different age distributions may have 

very different strengths of social control. We therefore include age diversity within population 

(calculated using equation 3.8 and the age components in Table 3.2), but with an acceptance that 

different measures of diversity may draw out very different relationships. Figure 5.1 shows age 

distribution and standard and diversity variables in Leeds.  

 

(a) Young persons aged 16-24 (percentage), LSOA 

 

(b) Age diversity by LSOA 

Figure 5.1: Age distribution variables (standard (a) and diversity (b)) in Leeds by LSOA 
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It can be seen from Figure 5.1 (a) that the city centre has the highest concentration of the young 

population (up to 85.05%); it also has the highest diversity (0.93) of age in Leeds (Figure 5.1b). 

These areas have a higher proportion of students notably in Headingley, Hyde Park and Burley & 

Little Woodhouse respectively and burglary rates of 241.2 per 1000 population (Figure 3.5) are 

the highest in the city and present suitable targets for burglary victimisation. In affluent areas 

such as Otley, Methley, East Keswick, Collingham and Linton the rates are between 10.9 and 

65.2 per 1000 population. These areas also tend to have a lower percentage (5.2 to 12.09) of 

young population and lower age diversity (0.05 to 0.13) respectively.  In terms of correlation 

with burglary rates (Table 5.2), the age diversity variable has a relatively stronger correlation (r = 

0.36, p<0.01) with burglary rates than the percentage of young population variable (r = 0.27, 

p<0.01) both appeared to be strongly correlated (r = 0.89).  

5.6.2 Family Structure 

Maginnis (1997) has argued that the children of some single-parent families are more likely to 

have behavioural problems, because they tend to lack economic resources and have lower 

parental input. In the UK, lone parents continue to suffer from inequalities of employment and 

housing,  creating a gap between couples and lone parents (Berrington, 2014). Additionally, 

single parents are also most likely to be victims of crime due to social marginalization in terms 

of living conditions (Wikström and Wikström, 2001). Given this, we include lone parents as an 

indicator from the traditional literature. 

In terms of diversity, it seems likely that the distribution of family structures constitutes an 

important determining factor in social cohesion among community residents. However, this is 

likely to revolve around households with or without children. For example,  two-parent families 

with children tend to form social groups within the community that are distinct from single- 

parent families (Sampson and Wooldredge, 1987; Kanazawa, 2003).  Community support within 

lone parenting groups is undoubtedly strong in some areas, but is likely to be more 

geographically variable. Given that the determinants are largely the presence or absence of 

children, and the presence or absence of lone parents bearing in mind that the number of children 

is largely random in most populations, and ethnically controlled otherwise, and that not having 

children encompasses populations that are both very young and very old, and little else (Rees and 

Butt, 2004), we offer diversity of family structure (calculated using equation 3.8 and the family 
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structure components in Table 3.2) as a variable in the model based on these factors. The spatial 

distribution of family structure variable in Leeds is presented in Figure 5.2. 

 

 

(a) Lone parent households (percentage), LSOA 

 

(b) Family structure diversity by LSOA 

Figure 5.2: Family variables (standard (a) and diversity (b)) in Leeds by LSOA 
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The distributions of family variables (Figure 5.2 (a and b)) exhibit less obvious spatial patterns 

but it can be seen that a relatively higher percentage (11.74) of lone parent families concentrate 

in areas like Cross Green and Burmantofts, while areas such as Wetherby and Holbeck have a 

relatively higher family structure diversity (0.19). Both areas are associated with higher burglary 

rates of between 109.9 and 143.3 per 1000 population (Figure 3.5). The relationship between 

burglary rate and family variables is weak but significant. For example, the correlation between 

family structure diversity and burglary is 0.26 while for the percentage of lone parent variable 

the correlation is 0.16; the two family variables are not correlated (0.12) (Table 5.2). 

5.6.3 Identity 

Identity plays an important role in the likelihood that people will connect and form social 

relationships (Gilchrist and Kyprianou, 2011) and plays an important part in the integration of 

migrants into local neighbourhoods (Kindler et al., 2014).  Migrants especially from the black 

and minority ethnic (BME) populations often lack the wealth, social integration, or formal crime 

prevention connections to protect themselves (Sharp and Atherton, 2007). Because of these 

factors, the size of an immigrant population in an area positively correlates with the incidence of 

property crime (Bell and Machin, 2011). In a study of the relationship between immigrants and 

crime across Italian provinces, Bianchi et al. (2012)  found an increase of 1% immigrant 

population to be associated with 0.1% increase in the total number of criminal offences. 

Empirical evidence from the US also demonstrates  links between size of an immigrant 

population and occurrence of other types such as motor vehicle theft and robbery (Bholowalia 

and Kumar, 2014). However, previous studies in the UK have yet to empirically establish the 

link between increases in the size of immigrants in an area with incidence of property crime 

specifically.  

Ethnicity has a notorious relationship with crime, principally acting through socio-economic 

exclusion and disadvantage. For example, figures from the police stop and search by ethnicity 

has shown an increase of arrest by 7% (68% to 75%) on White suspects compared to BME that 

has reduced by 5% (17% to 12%) between 2009 and 2014 (ONS, 2015c). However, in terms of 

convictions for criminal offences based on recorded ethnic backgrounds (by the police), the ONS 

study has found that defendants being from a BME background are more likely to be sent to 

prison compared to those from the White background (Kathryn, 2016). There are biases in 
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reporting, the justice system, and policing, the latter including complex relationships between 

race and prejudice, most clearly expressed in the findings of the Stephen Lawrence Inquiry in the 

UK (Macpherson, 1999). Here we deal with the relationship between residential ethnicity and 

reported crime, ignoring, unfortunately, these complex and important nuances, the statistical 

treatments for which are largely unresolved.   

Additionally, in Leeds the number of students is important because of the presence of large 

residential educational institutions (especially the two universities). Students are more likely to 

fall victims of crime especially burglary, because multiple occupancy homes are attractive to 

burglars, and because students are less likely to be at home (Shepherd, 2006; Kongmuang, 2006). 

Furthermore, student residences are attractive to burglars because students are more likely to 

possess valuable items especially electronic gadgets (e.g. DVDs, laptops, Ipads and mobile 

phones) and be less careful about security of their personal belongings (Barberet and Fisher, 

2009). Additionally, some students reside in poor accommodation that lacks security surveillance 

devices such as closed circuit television (CCTV) and may not be adequately patrolled (Masike 

and Mofokeng, 2014). There is no equivalent diversity statistic for student population. 

In terms of diversity, ethnic diversity might be important in negative ways across broad types of 

the crime system including offending and victimisation, the latter including, obviously, hate 

crime (Shepherd, 2006).  Moreover, Vermeulen et al. (2012) have argued that the negative 

effects of ethnic diversity on social networks would probably be stronger in heterogeneous 

communities than in more homogenous neighbourhoods, because in a more diverse society lack 

of interpersonal trust, as well as differences in interests and needs between groups weakens 

networks of social interaction, therefore limiting chances for social integration. Though counter-

arguments can be made in areas where everyone is essentially part of a minority population, the 

nuances of tension and disadvantage in communities of multiple ethnicities and country of origin 

are likely to be complex. We therefore include diversity of ethnicity (calculated using equation 

3.8 and the ethnicity components in Table 3.2) to capture the complex elements of offending and 

victimhood associated with ethnicity in mixed communities. Figure 5.3 shows the distribution of 

ethnicity variable in Leeds.  

 



117 

 

 

(a) Ethnic minority (percentage), by LSOA 

 

(b) Ethnic diversity by LSOA 

Figure 5.3: Ethnicity variables (standard (a) and diversity (b)) in Leeds by LSOA 

It is clear from Figure 5.3 (a) that higher concentration of the ethnic minority population (90.21 

%) is located around inner city suburbs especially, Harehills, Chapeltown and Gipton. The ethnic 

diversity (0.89) of these areas is also the highest in Leeds (Figure 5.3b), meaning that there is a 

likelihood that two individuals chosen at random to be of different ethnic groups; and tend to 
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have higher burglary rates of 109.9 per 1000 population (Figure 3.5). However, areas with a 

lower percentage of minority population (0.66 to 11) and lower ethnic diversity (0.03 to 018) 

such as Methley, Ardsley East & West are characterised with a lower burglary rates of 10.9 to 

44.6 per 1000 population. The correlation between ethnic diversity and burglary rate (r = 0.32, 

p<0.01) is relatively stronger than the percentage of ethnic minority population (r = 0.19, 

p<0.01) and both variables are strongly correlated (.94) (Table 5.2). 

5.6.4 Affluence and Wealth 

While there is a wide range of criminality across the socio-economic spectrum, for burglary, the 

offenders in the vast majority are drawn from the poor and unemployed (Bursik Jr and Grasmick, 

1993; Sariaslan et al., 2013). Given this relationship, the level of economic status in those age 

categories could be used as a key indicator.   

Wealth diversity within a community may act to increase crime. Given that most burglars only 

travel a short distance to commit crimes (Ashby, 2005), there is some evidence that disparities of 

wealth within short distances encourage burglary, and in addition, disparity of wealth within a 

community can influence crime by weakening social cohesion (Fajnzlber et al., 2002; Rufrancos 

et al., 2013). Equally, low wealth diversity can enhance social cohesion (Cooper and Innes 

(2009). Although the picture is complicated across other types of crime (Rufrancos et al., 2013), 

researchers have found support for the relationship between property crime and income 

inequality (Witt et al., 1998; Kelly, 2000; Demombynes and Özler, 2005; Reilly and Witt, 2008). 

We therefore include (in the absence of income data in the UK census) diversity of employment 

(calculated using equation 3.8 and different employment components in Table 3.2) type in our 

assessment. The spatial distribution of the affluence variables in Leeds is shown in Figure 5.4. 
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(a) Economically inactive population (percentage), LSOA 

 

(a) Distribution of employment diversity by LSOA 

Figure 5.4: Distributions of affluence variables (standard (a) and diversity (b)) in Leeds by 

LSOA 

The City Centre and West Park have the highest percentage of economically inactive population 

(up to 58.61) and Boston Spa (up to 41.99) and the lowest percentage is found in areas like 

Harewood and Bramhope (7.37 to 12.90) (Figure 5.4 (a)). The distribution of employment 
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diversity (Figure 5.4 (b)) is complex and does not exhibit clear pattern, but the City Centre has 

the highest values of between 0.44 and 0.71; however, the general pattern tends to reflect higher 

values of employment diversity to the affluent areas. Correlation between the variables of 

affluence/wealth and burglary rate (Table 5.2) shows that diversity of employment has a non-

significant negative correlation (r = -0.03) while the percentage of economically inactive 

population has a significant positive correlation with burglary (r = 0.28, p<0.01), correlation 

between the two variables of affluence is weak (-.51). 

5.6.5 Educational Attainment 

Educational attainment has a great influence on individuals’ social behaviour as well as on 

participation in community activities.  The theory of human capital suggests that skills and 

qualification determine wages, and the wider the distribution of qualifications, the wider the 

distribution of wages (Green et al., 2006). Reynolds et al. (2001) stressed that the propensity of 

individuals to commit a crime is associated with their level of educational attainment and so we 

include lack of qualifications as a standard variable.  

However, there is also likely to be an indirect relationship between social cohesion, educational 

inequality and crime. Sabates et al. (2008) stressed that educational inequality is associated with 

violent crime. While it is unclear whether such a relationship acts at the intra-area scale 

independent of any effect on wealth, we include a diversity statistic centred on education 

(calculated using equation 3.8 and different components of educational attainment in Table 3.2) 

to test the potential relationship. Figure 5.5 shows the spatial distribution of educational 

attainment in Leeds. 
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(a) Percentage of people with no qualification by LSOA 

 

(b) Educational attainment by LSOA 

Figure 5.5: Educational attainment variables (standard (a) and diversity (b)) in Leeds by LSOA 

As clearly seen from the distribution of population aged 16-64 with no educational qualification 

(Figure 5.5 (a)), a higher percentage (28.39 to 44.37) of this category of people concentrate in 

areas such as Hunslet/Stourton and a relatively lower percentage (8.02 to 15.15) are found in 
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areas such as Thorner. The spatial distribution of educational attainment (Figure 5.5 (b)) shows a 

higher diversity values (0.86 to 0.91) in areas like Drighlington and Gildersome and a lower 

diversity values (0.49 to 0.62) in areas such as Hyde Park and Burley Lodge. The correlation 

between the percentage of population without educational qualification and burglary rate (Table 

5.2) is not significant (r 0.08); however, a relatively significant but weak relationship is found 

between diversity of educational attainment and rate of burglary (r = -0.24, p<0.01) and both 

variables are weakly correlated (.57).    

5.6.6 Residential Instability 

Residential stability in a neighbourhood is an important factor for generation of social capital and 

place-based attachment. It is therefore expected that duration of residence is one determinant 

factor in this direction (Thomas et al., 2016). Studies have demonstrated that the creation of 

social ties is associated with the length of residence in an area. For example,  Yamamura (2011), 

argued that personal interactions are built over time and tend to be more solid when people reside 

in a particular neighbourhood and are influenced by length of residence and home ownership. 

Similarly, Keene et al. (2013) also stressed that it takes time to create supportive social ties, 

therefore length of neighbourhood residency may be an important determinant of social 

integration. Additionally, Oh (2003) also emphasised that length of residence has a positive 

effect on friendships, social cohesion and trust which also enhances the probability of working 

together to solve local problems. In contrast, residential instability in a neighbourhood is 

associated with weak social ties and a low probability of residents connecting (Sampson et al., 

1997). These communities include large proportions of students and other migrants on a short 

stay. 

Crime is also more likely to occur in transient neighbourhoods. For example, in the UK, the 

tendency to commit crime is related to length of residence, in other words, crime reduces as 

length of residence increases (Bell and Machin, 2011). Specifically, research has established the 

relationship between residential instability and violent crime (e.g. Boggess and Hipp, 2010). 

However, the relationship between residential instability and burglary is likely to be complex 

(Markowitz et al., 2001; Martin, 2002). Given this, we include length of residence less than two 

years as a standard variable and diversity of length of residence (calculated using equation 3.8 
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and different components of length of residence in Table 3.2) as proxy for residential instability 

(Figure 5.6). 

 

(a) Population resident less than 2 years (percentage), by LSOA 

 

(b) Length of residence diversity by LSOA 

Figure 5.6: Length of residence variables (standard (a) and diversity (b)) in Leeds by LSOA 
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For the percentage of length of residence less than 2 years variable, highest values (13.98 to 

25.65) are mainly located in the City Centre (Figure 5.6 (a)). Similarly, the diversity equivalent 

variable also indicates a higher diversity value (0.47 to 0.7) in the City Centre (Figure 5.6 (b)); 

burglary rate in these areas is between 143.3 and 241.2 per 1000 population the highest in Leeds. 

Correlation between burglary rate and these variables is relatively strong, for length of residence 

diversity (r = 0.31, p<0.01) and the percentage of population resident less than 2 years (r = 0.30, 

p<0.01) while correlation between the stability variables is relatively strong (.74) (Table 5.2).   

Index of Multiple Deprivation 

Finally, the deprivation hypothesis suggests that deprived communities tend to have more crimes 

than affluent communities (Sampson and Wooldredge, 1987; Malczewski and Poetz, 2005). 

Furthermore, deprivation widens the gap between the rich and poor which can reduce social 

cohesion (Morenoff et al., 2001; Takagi and Kawachi, 2014). The Index of Multiple Deprivation 

(IMD) is a multi-dimensional metric that is measured, in England, through a combination of 

seven distinct domains: income; employment; education; health; crime; barriers to housing & 

services; and living environment (DCLG, 2015). Although, deprivation is often seen as a key 

indicator of social cohesion as well as propensity to commit a crime such as burglary, the UK 

deprivation statistics include crime and therefore it is inappropriate to use them in this analysis. 

Figure 5.7 shows the distribution of IMD in Leeds. 

 

Figure 5.7: Index of Multiple Deprivation in Leeds by LSOA 
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From Figure 5.7, the most deprived areas of Leeds appear to be concentrated around the City 

Centre, notably areas with a higher concentration of minority populations. For example, 

Harehills and Burley lodge have a multiple deprivation index of between 64.7 and 81.6 

compared to less deprived areas such as Yeadon with a multiple deprivation index of between 

1.9 and 12.9.     
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Table 5.2: Pearson’s correlation coefficient for burglary and other dependent variables (standard and diversity)

Variables Burglary 

rate 

Eth 

div 

Age 

div 

Empl 

div 

Edu 

div 

Res 

div 

Familystr  

div 

Age16-24% Age16-64 

EcoInactive% 

Lone 

parent% 

Ethnic 

minority% 

Lres2yrs% 

Eth div 0.32
** 

           

Age div 0.36
** 

0.39           

Empl div -0.03 -0.26 0.14          

Edu div -0.24
** 

-0.12 -0.75 -0.27         

Res div 0.31
** 

0.97 0.44 -0.23 -0.15        

Familystr div 0.26
** 

0.23 0.16 0.21 -0.16 0.3       

Age16-24 % 0.27
** 

0.27 0.89 -0.16 -0.7 0.3 -0.11      

Age16-64Eco 

Inactive % 

0.28
** 

0.43 0.73 -0.51 -0.49 0.46 -0.09 0.88     

Loneparent % 0.16
** 

0.24 -0.2 -0.5 0.47 0.2 0.12 -0.21 0.05    

Ethnic 

Minority % 

0.19
** 

0.94 0.27 -0.32 0.01 0.93 0.14 0.19 0.38 0.23   

Lres2yrs % 0.30
** 

0.63 0.68 -0.07 -0.37 0.74 0.29 0.54 0.58 -0.06 0.58  

Age16over 

Noqual % 

0.08 -0.02 -0.45 -0.52 0.57 -0.03 0.23 -0.4 -0.13 0.71 0.03 -0.22 
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5.7 Results of the Traditional Multiple Regression Models  

The results of the analyses (Table 5.3) summarise the stepwise regression models used to 

assess the relative importance of each variable in the model. The statistics reported are 

Pearson’s product moment correlation (R), which shows the correlation with the dependent 

variable for each model. R-squared reports the percentage of variation in rate of burglary 

crime explained by the variables used in the model. Adjusted R-squared is the fraction by 

which the square of the standard error of the regression is less than the variance of the 

dependent variable. It increases only if the variables improve the model. It is  usually used to 

evaluate which model performs better, where a model with a smaller standard error of 

estimate is likely to produce a higher adjusted R-squared (Kongmuang, 2006).  

Table 5.3: Model summary of stepwise regression 

 Model R R Square 

Adjusted 

R Square 

Std. Error of the 

Estimate 

1 .358 .128 .126 32.061 

2 .447 .200 .196 30.746 

3 .469 .220 .215 30.384 

4 .481 .232 .225 30.191 

5 .492 .242 .234 30.010 

 

Table 5.4 presents the coefficients of the model. The elements reported are standardized and 

unstandardized coefficients, standard error, t-statistics, significance and collinearity (VIF) 

tests. In regression analysis, standardized coefficients are estimates standardized so that the 

variance of the dependent variable produced by the change in the independent is between -1 

and 1; while unstandardized coefficients expressed values of the relationship in raw values 

(Landis, 2014). The standard error is a measure of the accuracy of predictions obtained from 

difference between the observed and predicted values, smaller values better indicate how 

closer observations are to the fitted regression line (Bakliwal et al., 2013). The stepwise 

regression results indicate that the parameters are within acceptable standards for regression 

modelling. An important guide  for understanding this are the t-statistics (Dunn, 1989). The t-

statistic is the estimated coefficient divided by its own standard error. Significant t-statistics 

should be approximately 1.96 in magnitude, corresponding to a p-value less than 0.05 or  

95% confidence level (Coe, 2002b). The result obtained from the stepwise regression in this 

analysis indicates that the values of the t-statistics for all variables in the models were greater 
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than 1.96, meaning that all variables are statistically significant. In stepwise regression 

models, variables that are not statistically significant are iteratively dropped and model 

variables that are statistically significant are retained. Additionally, the variables show no 

multicollinearity problem with VIF values less than 5. In this analysis, model 5 has been 

identified as the most reliable and is given in a regression Equation (5.3) by computing the 

values of unstandardized coefficients (B):  

 

Table 5.4: Coefficients and tests of model performance 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity 

statistics 

B Std. Error Beta VIF 

1 (Constant) 53.775 2.336  23.018 .000  

Age_div 74.289 8.851 .358 8.393 .000 1.000 

2 (Constant) 23.531 5.130  4.587 .000  

Age_div 102.110 9.490 .492 10.759 .000 1.250 

Age16overNoqual% 1.273 .194 .300 6.554 .000 1.250 

3 (Constant) 22.092 5.086  4.344 .000  

Age_div 86.719 10.341 .418 8.386 .000 1.520 

Age16overNoqual% 1.145 .195 .270 5.867 .000 1.294 

Eth_div 24.609 6.964 .157 3.534 .000 1.216 

4 (Constant) 101.265 30.075  3.367 .001  

Age_div 60.622 14.180 .292 4.275 .000 2.894 

Age16overNoqual% 1.344 .208 .316 6.469 .000 1.483 

Eth_div 28.885 7.102 .185 4.067 .000 1.281 

Edu_div -93.151 34.882 -.181 -2.670 .008 2.850 

5 (Constant) 106.442 29.962  3.553 .000  

Age_div 85.607 17.060 .412 5.018 .000 4.240 

Age16overNoqual% 1.509 .216 .355 6.985 .000 1.625 

Eth_div 32.582 7.202 .208 4.524 .000 1.333 

Edu_div -97.983 34.723 -.190 -2.822 .005 2.858 

Age16-

64EcoInactive% 
-.675 .260 -.163 -2.600 .010 2.482 

          Dependent variable: Burglary rate 

The most notable result of this analysis is the almost complete exclusion of standard variables 

in preference for diversity statistics. This not only highlights the importance of diversity in 

the crime system, with a concomitant suspicion that this acts through community cohesion, 
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but also highlights that standard statistics are probably, in part, representing community 

cohesion, and are being excluded here simply because the new metrics  are more stronger 

correlates of community cohesion. In short, this analysis is likely to highlight the importance 

of community cohesion within the crime system. 

It is a common practice to assess the appropriateness of a model using the coefficient of 

determination,  although it is not an absolute indicator of goodness of fit (Reisinger, 1997), 

and a low effect size does not mean the model is inefficient (Weisburd and Piquero, 2008; 

Martin, 2014). Although the analysis explained approximately 23% of the variation of 

burglary rate, this is good compared to other studies: Zhao et al. (2015), Karyda (2015), Hino 

et al. (2016), Lai et al. (2016) and Boateng (2016) having their models explaining 21%, 10%, 

14%, 25% and 12% only. Crime (especially burglary), is difficult to understand, predict and 

model (Malleson and Birkin, 2012). The percentage of variation of the dependent variable 

explained in a model can sometimes be misleading, as small effect size can produce a better 

and more meaningful outcomes than larger ones  (Lieberson, 1985). However, this depends 

on the unit of analysis, type of crime and underpinning theory (Weisburd and Piquero, 2008). 

The following is the optimal model of burglary rate using LSOAs in Leeds. 

Burglary rate=106.442+85.606*Agediv+1.509*%16overNoqual+ 

32.582*Ethdiv+-97.983*Edudiv+-.675*%Age16-64EcoInactive 

 

(5.3) 
 

 

  

The model development process identified age diversity, percentage of population with no 

educational qualification, ethnic diversity, diversity of educational attainment and percentage 

of economically inactive population as the most important correlates of crime from those 

input. Educational diversity and economically inactive population and diversity of 

employment negatively correlated with burglary rates.  

In this research, diversity of age is the most important variable when regressed against 

burglary rate and this remains consistent throughout the models (see model coefficients in 

Table 5.4). Age diversity plays to studies that have shown that offenders are commonly 

drawn from younger age groups than  elderly people (Farrington, 1986; Gottfredson and 

Hirschi, 1990; Sampson and Laub, 2003; McVie, 2005; Blonigen, 2010; McCall et al., 2013; 

Sweeten et al., 2013) but that it is likely that a wide age range puts young offenders in close 

proximity with older victims with, potentially, more to steal. Equally, however, we know that 

the young are also targets for crime (Mahmud et al., 2014), and it makes some sense that the 
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broader the range of population characteristics in an area the more likely that there will be 

suitable target criteria for burglars making decisions about risk (Bernasco and Nieuwbeerta, 

2005).  

Educational attainment has great influence on individuals’ social behaviour as well as 

income. Education attainment determines wages (Green et al., 2006) as well as the propensity 

of individuals to commit a crime (Reynolds et al., 2001). Educational attainment increases 

returns through legitimate means; it also raises the opportunity cost of illegal behaviour 

(Machin et al., 2011). In this study, however, diversity of educational attainment negatively 

correlates with burglary crime, meaning that the smaller the diversity of educational 

attainment, the more propensity there is to commit crime in an area. This requires further 

research, but immediate hypotheses are that low diversity of educational attainment is 

correlated with deprivation, and/or that low diversity areas including student residential areas, 

which in Leeds are very homogeneous communities with a high level of victimisation.  

Research has shown that ethnically heterogeneous communities are often characterised by 

distrust, low levels of social cohesion and disputes (Sturgis et al., 2014) which negatively 

affect individual behaviours (Mellgren, 2011). Recent studies into the spatial distribution of 

neighbourhood crime consistently show that areas which are characterised by ethnic diversity 

have high rates of crime (Gartner, 2013; Takagi and Kawachi, 2014; Hooghe and De 

Vroome, 2016). In this study, we have also found strong support for this relationship between 

ethnic diversity and rates of burglary crime.  

In this research, we found a significant negative correlation between economically inactive 

population and burglary crime which might be seen as counterintuitive. Previous studies have 

found support for relationships between income inequality and property crime (Witt et al., 

1998; Kelly, 2000; Demombynes and Özler, 2005; Reilly and Witt, 2008). However, 

correlation between economic inactivity with burglary crime does not necessarily imply 

causation as this relationship might only suggest that unemployment might contribute to 

offending elsewhere. Recent statistics in the UK show that economically inactive people are 

twice as likely to be victims of burglary crime than those who are economically active, 

considering this category of population comprise of students, those who are retired and 

people with long-term health challenges (ONS, 2014b), so clearly the relationship for Leeds 

needs further investigation.  
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5.8 Concluding Remarks      

This chapter employed traditional regression modelling (stepwise) to explore the impact of 

diversity and community cohesion on burglary rate in the Leeds district, UK using the 

standard and diversity indices. The analysis demonstrates that diversity based statistics are a 

better correlate with burglary than most standard metrics, highlighting the importance of 

diversity in the crime system, and suggesting the importance of social cohesion in preventing 

crime. This suggest that standard statistics go some way, normally, to capture the influence of 

social cohesion, but that this is better captured through diversity statistics.  

The variables used in this study have provided useful insights into the relationship between 

neighbourhood social context (diversity) and the spatial variability of burglary crime in 

Leeds. The most important predictor for modelling burglary crime rates in this analysis is age 

diversity. However, other predictors such as ethnic diversity, distribution of educational 

attainment, proportion of those with no qualification and economically inactive population 

also made a valuable contribution to the models. Notably, economically inactive population 

had a slight negative relationship with crime, and this needs further investigation.  

It seems likely that community cohesion is an important factor in establishing social control 

and collective efficacy in the neighbourhoods with regards to crime. In this analysis a simple 

diversity statistic is used to highlight the possibilities for investigating this relationship. The 

insights gained from the analysis in this chapter especially using the adjusted (diversity) and 

the standard variables will be employed in chapter 6 to explore with new forms of data 

sources such as social media (Twitter) the relationship between sentiments and community 

cohesion. 
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Chapter 6   

Social Media Analysis for Understanding Community 

Cohesion 

6.1 Introduction 

“Non-traditional” social media methods for quantifying community cohesion were reviewed 

in chapter 4. As highlighted, social media data, especially Facebook and Twitter, have a wide 

range of potential applications, one of which is for understanding social cohesion in different 

communities. The sentiment of Tweet content and posts from Facebook pages can be 

analysed to gain insights into the dynamics of human collective social behaviour and to 

uncover patterns of social relationship. This chapter will extend our understanding of these 

relationships through social media data analysis, especially sentiment, with a view of 

highlighting the potential relevance of these new forms of data to explore social phenomena, 

which is one of the objectives of the present research. Section 6.2 begins by discussing the 

importance of social cohesion and public sentiment on social media. Section 6.3 describes the 

Twitter data collection procedure, while Census variables included are highlighted in Section 

6.4. Sentiment Analysis is described in Section 6.5 while results of the analysis are presented 

in Section 6.6. Section 6.7 follows with a discussion of findings from the analysis and finally, 

concluding remarks are given in Section 6.8. Chapter 7 will further extend our understanding 

of the relationships between community cohesion and social media through engagement 

analysis of posts from the community Facebook pages.  

6.3 Twitter Data 

Twitter APIs used for data scraping is described in Section 4.2.2. The streaming API used in 

this research provides two different methods of data collection from Twitter: keywords and 

geographical bounding box. These methods are described in Sections 6.3.1 and 6.3.2. 

6.3.1 Keywords Method 

 Keywords search method is commonly used for data scraping on Twitter (Lewis et al., 2013; 

Gerlitz and Rieder, 2013). Keywords search refers to a method for extracting tweets that 

match specific terms or criteria on Twitter (Marujo et al., 2015). For example, a query #leeds 

will find tweets containing the hashtag “leeds”; while a query @saferleeds will search for 

tweets mentioning Twitter account @saferleeds; and a query “community cohesion” will 
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return tweets containing the exact phrase “community cohesion” (Twitter, 2017c).  However, 

the criticism of the keywords search method is that the terms requested are already pre-

determined by the researcher, hence introducing elements of bias in data collection 

(González-Bailón et al., 2012) and therefore not considered as representative of a random 

sample of events (Zhang et al., 2016). Instead, in this research, data were collected within the 

bounding box of Leeds (the smallest square encompassing Leeds Metropolitan District) 

avoiding any specific search terms.  

6.3.2 Geographical Bounding Box Method 

The geographical bounding box method is used for requesting a sample of tweets as allowed 

by Twitter posted within a specifically delineated boundary (defined set of coordinates). This 

type of query method will typically return tweets with a geolocation (Culotta, 2014). 

However, data collected using this method may also include tweets without geolocations 

because while the original tweet may have a geolocation, the retweet may not (Twitter, 

2017d). The benefit of this method is that it can potentially increase the proportion of 

geolocated tweets captured from within an area of interest, reducing bias and increasing the 

value of the data. Although this method of data collection might capture tweets from both 

usually resident inhabitants and temporary communities (those commuting to Leeds from 

elsewhere for work) (Mahmud et al., 2012; 2014). According to Malleson and Andresen 

(2016), cities (Leeds included) attract large numbers of people during the day who return to 

their homes at night. The ambient population is the average number of the expected 

population present at some point in time at a particular spatial scale (Andresen, 2011). Such 

populations are highly dynamic and tend to exhibit strong spatial fluctuations (Malleson and 

Andresen, 2015). Additionally, data collected in this way can potentially produce more 

reliable results.  Based on this method, tweets data published in the English language 

(N=5,000,000) were collected over a period of nine months (December 2015 to September 

2016) at a different time, this is to ensure that data collected reflects different moods. 

Moreover, the advantage of collecting data at different points is to increase the generality, 

minimising the tendency of data exhibiting a similar general mood when collected all in one 

go (Sampson et al., 2002). For example, tweets collected during a festive period like 

Christmas might have significant portion referring to positive sentiments.  

However, because we are interested in tweets with a geolocation, we apply a filtering method 

to remove duplicates and extract geolocated tweets from unique users that fall within the 
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geographical boundaries of Leeds community areas (N=63,375). This sample is large enough 

as it accounts for about 9% of Leeds population as is in 2011, and is therefore used in this 

research.  

6.3.4. Twitter Metadata 

Twitter data has associated metadata including the tweet text itself, the username and 

numerical ID of the sender, the geo-location of the sender at the time of tweeting (where this 

functionality is enabled on a device), timestamps (digital record of time when the tweet is 

posted) retweets, mentions and replies (Bruns and Stieglitz, 2014). Retweets preceded by RT 

refer to the number of times a user retweeted the tweet; mentions refer to tweets that mention 

your handle (e.g. @handle) and replies are the number of times a user replied to the tweet 

(Twitter, 2017a).   

Of all the metadata provided by Twitter, geolocation is the most unpredictable because it has 

to do with the privacy of the user. The geolocation metadata became available on Twitter in 

2009, allowing users to willingly provide location information of where each tweet is 

published (Leetaru et al., 2013). There are two geolocation options provided by Twitter: 

place-based and exact location. Place-based location allows users to manually specify a city 

or neighbourhood from a predefined list supported from the Twitter menu; regular updating 

may be required depending on user movement from one country to another. This type of 

geolocation is primarily used while tweeting from a fixed location device (e.g. desktop). On 

the other hand, the exact location provides a set of geographic coordinates for the user at the 

time of tweeting and no action is required by the user provided that GPS functionality is 

enabled on the mobile device (Twitter, 2017a). 

6.3.5 Twitter Data Pre-processing 

Detecting sentiment is difficult as tweets are unstructured and contain colloquial language 

(Schulz et al., 2013). Data collected from social media sources, especially Twitter, contained 

unwanted noises, such as, web links (e.g http://twitter.com);  stop words (e.g “to”, “is”, “are” 

“we”, “this”, “that”); symbols (“@”, “#”); and non English letters (“Ã”, “Ì”,“Õ”, “Ù”,“É”), 

as well as numbers and blank spaces. When sentiment analysis (SA) is applied on raw tweets 

it may result in poor performance because it is difficult for the algorithm to analyse all noises 

contained in tweets. Therefore, preprocessing involving data cleaning is needed in order to 

achieve a satisfactory outcome from the analysis of public tweets (Sahayak et al., 2015; 

Kharde and Sonawane, 2016). Table 6.1 shows an example of raw tweets and processed 
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tweets. The text mining (TM) package, a natural language processing package for the English 

language developed by Feinerer and Hornik (2015), is used for data preprocessing and 

cleaning. The TM package algorithm is useful for converting tweets into a vector corpus (a 

collection of text documents), removal of stopwords and blank spaces and punctuation as 

well as word stemming. Stemming is a standardisation technique for reducing a word down 

to its roots in order to avoid multiple words referring to the same concept but in different 

grammatical contexts being identified as referring to different things. For example, the words 

“trust”, “trusting”, “trusted” may be stemmed to “trus”. The purpose is to make stem words 

as one when counting frequency. All words were also converted into lower case. We used a 

modified code developed by Zhao (2015) widely used for data mining using R, a language 

and environment for statistical computing (version 3.2.5; (R Core Team, 2013)). Prior to 

conducting SA on the Twitter data, it is a common practice to explore the corpus in order to 

visualise frequently occurring terms contained in the corpus. One method of visualizing 

tweets data is by using wordcloud and bar plots. To construct a wordcloud in R, we used a 

Wordcloud package developed by Fellows et al. (2015). 

Table 6.1: Tweets before and after processing 

Raw Tweets Processed Tweets 

Getting into my stouts now. Strong chocolate 

taste with a good kick... (Naughty &amp; 

Nice) https://t.co/qdFEqqAsK0 #photo 

getting stouts now strong chocolate taste   

good kick naughty amp nice  photo 

@GillianA We Love you over here you know 

xxx 

gilliana  love know xxx 

Hometime :) (@ Leeds Bradford International 

Airport (LBA) - @lbiairport in 

Leeds_WestYorkshire)https://t.co/6c5WBIk1jd 

hometime leeds bradford international 

airport lba lbiairport  leeds west yorkshire 

Just posted a photo @ Otley Town Centre 

https://t.co/4spvt3AQlc 

just posted  photo  otley town centre 

Really looking forward to the second part of 

my #90daychallenge. It's all about muscle gain 

https://t.co/9VEUBAPyw5 

Really looking forward second part   day 

challenge    muscle gain 

 

6.3.6 Twitter Data Cleaning 

Before SA is conducted, it is important to ensure that the data to be used meet the required 

quality in line with the set-out objective. Data pre-processing is used for reducing the 

complexity of data by transforming them into a more readable format in order to adapt the 
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data to the requirement of different algorithms (García et al., 2016). Furthermore, cleaning is 

necessary to ensure that the data are free from elements that can cause bias in the results. 

Data cleaning is a process for detecting and removing errors and inconsistencies from the 

data in order to improve the data quality (Rahm and Do, 2000). However, identifying relevant 

tweets from a large dataset is a challenging process (Ghosh and Guha, 2013). For example, 

the presence of “bots” is common in tweets. A bot is internet software that can perform 

automated repetitive tasks such as tweeting and retweeting multiple times from the same user 

(Morstatter et al., 2016). We included tweets with a social context in the analysis. Social 

context in tweets refers to the Twitter messages that have a likelihood of being retweeted 

because their content is engaging (Tao et al., 2012). In this research, data cleaning was 

performed in the following steps: 

 The first step in data cleaning was to query the dataset in order to identify and collect 

tweets from unique users with geolocation. Where a tweet falls within the bounding 

box of Leeds community area it is retained, otherwise they are removed from this 

step. Tweet geolocation is important in order to study patterns of human activities in 

different places (Holbrook et al., 2016). 

 The second step involves removal of duplicate tweets. Duplicate tweets are identical 

content sent from an identical user account (Tao et al., 2013). Duplication increases 

the chances for the data to skew which can adversely affects the reliability of results 

(Gao et al., 2017). In this research, we used an R code to scan and remove duplicate 

tweets that contained exactly similar words from the dataset.  

 The third step was to identify the presence of bots. These are unwanted tweets 

contained in the data that have no relevance in the analysis. Bot detection is an 

important task in social media data cleaning, as their presence can lead to false 

conclusions about the populations under study (Morstatter et al., 2016). In general, 

there is no simple set of rules for assessing whether an account is human or bot; 

however, a high volume of activity, especially in the same location, indicates a 

likelihood that the account is a bot (Varol et al., 2017). It is therefore expected that 

bots will post tweet or retweet more frequently than humans, bots heavily retweeting 

existing content rather than posting new tweets (Gilani et al., 2017). In this context, 

for example, bot tweets from a meteorological station, traffic and those with 

pornographic contents were detected in the dataset by calculating frequencies of 

tweets from each twitter user. We then manually checked the frequency of tweeting 
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from each user account. In this way, we set a threshold of 25 posts from any single 

user account, beyond which the account is regarded as suspicious bots and they are 

removed in order not to bias the analysis. These were then aggregated into groups. 

Figure 6.1 shows the histogram distribution of the first 100 accounts from the data 

and Figure 6.2 shows the aggregated distribution of tweets in the community areas.  

 Step four checked for multiple tweets from the same user within the same location as 

they may tend to dominate the analysis and those with ambiguous coordinates. 

Ambiguity of geographical coordinates can affect accurate location of users (Huck et 

al., 2015). Multiple tweets within the same location from the same user are removed, 

unless if they have different texts content.  

 The cleaning process ends when irrelevant contents are removed from the dataset; 

otherwise, the process is then repeated. 

 

 

Figure 6.1: Histogram of the distribution of tweets in the community areas 

 

 

Figure 6.2: Aggregated distribution of tweets 
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6.4 Census Variables 

Socio-demographic variables used in this research were mainly derived from the UK Census 

2011. Variables selected for this analysis are age distribution, ethnicity, employment, 

educational attainment and length of residence as in chapter 5. These variables were chosen 

because of their potential as important indicators of social cohesion in the literature (e.g. 

Leventhal and Brooks-Gunn, 2000; Sampson et al., 2002) as well as their influence on social 

media usage (Mitchell et al., 2013; Lerman et al., 2016; Lansley and Longley, 2016; Murthy 

et al., 2016). Section 3.4.1 provides a detailed description of the variables while Table 3.2 

provide the components included to measure diversity. Vargo and Hopp (2017) emphasised 

that census datasets can be combined with social media data to explain a social phenomenon. 

All variables were collected at lower super output area (LSOA) level and aggregated into 106 

Leeds community areas (CAs).  

In this research, in order to explore the relationships between Twitter sentiments and the 

demographic characteristics of areas, we compare SA results with the diversity (ethnic, age, 

employment, education and length of residence) of different areas. Equation 3.8 is used to 

construct diversity indices. Section 3.9 discussed diversity indices in more detail.  

6.5 Sentiment Analysis Procedure 

The SA algorithm used in this study is based on an unsupervised lexicon approach (see 

Section 4.7.1.1), typically used for classifying polarity in a collection of text documents as 

positive or negative (Taboada et al., 2011). Lexicon methods, unlike human annotation, are 

cost effective and fast  (Korhonen, 2009); they can also predict sentiment orientation of 

numerous words with high accuracy compared to a supervised approach (Duygulu et al., 

2002; Yang et al., 2016) and are widely used for sentiment classifications (Kiritchenko et al., 

2014). This approach requires a dictionary of positive and negative words, each with a 

positive or negative sentiment value assigned to it (Jurek et al., 2015). Although lexicon 

methods are sensitive to a domain-specific context, where a single word could have different 

meanings depending on where it is used (Hamilton et al., 2016), they are sometimes difficult 

to deal with sarcastic sentences (Liu, 2012) but are widely used in SA research (Medhat et 

al., 2014).  In this research, a collection of 6,800 English words based on Hu and Liu (2004) 

were used for analysing sentiment orientation (positive and negative) in textual data. These 

methods do not rely on labelled data (Dang et al., 2010), so can be employed to analyse text 

at the document, sentence or entity levels (Zhang et al., 2011). When SA is applied on 
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aggregated data, the margin of error is significantly reduced, hence increasing reliability of 

results for decision making (Tan et al., 2014).  

In this analysis, we used aggregated Twitter data (document level) using the Breen (2011) 

sentiment analysis algorithm for classifying public sentiment. The algorithm scans the 

document and assigns an integer score (positive or negative) to each word. Then the 

sentiment value for each tweet is obtained by subtracting the number of occurrences of 

negative words from that of positive words in a text (Figure 6.3). In addition, superlatives are 

taken into account. For example, a tweet containing the word “good” would be assigned a 

positive score, “very good” would be assigned a high positive score, while a tweet containing 

the word “bad” would be assigned a negative score and so on (Hollander et al., 2016). A 

neutral class provides a distinction between negative and positive sentiments as well as 

enhancing the accuracy of SA polarity (Koppel and Schler, 2006).  

 If the score is greater than 0, this means the sentence has an overall positive opinion. 

 If the score is less than 0, this means the sentence has an overall negative opinion. 

 If the score is equal to 0, this means the sentence is considered as neutral. 

 

# The first step is to scan positive and negative words into R environment 

# The second step is to install the required packages (plyr and stringr) to manipulate text strings  

score.sentiment = function(sentences, pos.words, neg.words, .progress='none') 

{ 

 require(plyr) 

# plyr package will handle a list or a vector as an "l"  

# here we want a simple array of scores back,  

# so we use "l" + "a" + "ply" = laply: 

 require(stringr) 

# stringr package provides a function to manipulate characters inside a vector  

 scores = laply(sentences, function(sentence, pos.words, neg.words) {  

# The third step is to clean up sentences with gsub() function to remove punctuation, symbols  and character: 

  sentence = gsub('[[:punct:]]', '', sentence) 

  sentence = gsub('[[:cntrl:]]', '', sentence) 
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  sentence = gsub('\\d+', '', sentence) 

# The forth step is to convert text to lower case: 

  sentence = tolower(sentence) 

# split into words. str_split is in the stringr package 

  word.list = str_split(sentence, '\\s+') 

# sometimes a list() is one level of hierarchy too much 

  words = unlist(word.list) 

# The fifth step is to compare our words to the dictionaries of positive and negative words 

  pos.matches = match(words, pos.words) 

  neg.matches = match(words, neg.words) 

# match() returns the position of the matched term or NA, we just want a TRUE/FALSE: 

  pos.matches = !is.na(pos.matches) 

  neg.matches = !is.na(neg.matches) 

# True/False is treated as 1/0 by using the sum() function 

  score = sum(pos.matches) - sum(neg.matches) 

  return(score) 

# The sixth step is to return a data frame of text containing sentiment scores  

 scores.df = data.frame(score=scores, text=sentences) 

 return(scores.df) 

} 

Figure 6.3: Sentiment analysis code. Source Breen (2011) 

 

In order to provide a better understanding of the potential relationships between Twitter 

sentiments and diversity variables, we used correlation analysis. Pearson’s correlation 

coefficient is the most popular measure (Jinyuan et al., 2016). Pearson’s correlation is a 

statistical measure used to assess the strength of association between two variables (Mukaka, 

2012). However, Pearson’s correlation is appropriate when both variables being studied are 

normally distributed (linear); when one or both variables are skewed (non-linear), 

Spearman’s correlation is used instead (Mukaka, 2012). Spearman’s correlation is a statistical 

measure of a non-linear relationship that addresses the limitation associated with Pearson’s 
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correlation (as the case with Twitter in this research) (Jinyuan et al., 2016). Table 6.2 shows 

the correlations between Twitter sentiment scores, socio-economic and demographic 

variables (diversity and standard).  

Table 6.2: Correlations between Twitter sentiments, diversity and standard variables 

Variables Twitter 

sentiment 

Ethnic 

diversity 

Age 

diversity 

Educational 

diversity 

Length of 

residence 

diversity 

Employment 

diversity 

Twitter 

sentiment 

 .066 .341** -.296** .080 .228* 

Significance  .500 .000 .002 .415 .019 

 

 Ethnic 

minority 

Age   

16-24 

16 over no 

qualification 

Length of 

residence 

less < 2yrs 

Age 16-64 

economically 

inactive 

Twitter 

sentiment 

Significance 

 

 

 

 

 

.110 

 

.263 

 

-.052 

 

.599 

 

.049 

 

.621 

 

.111 

 

.259 

 

-.017 

 

.861 

*correlation significant at 0.05 level (95% confidence) 

**correlation significant at 0.01 level (99% confidence) 

 

As can be seen in Table 6.2, there is a significant but moderate correlation between sentiment 

expressed in Twitter and diversity of age and education. A weak but significant correlation 

was also observed between ethnic diversity and length of residence in an area with Twitter 

sentiment. However, correlation between Twitter sentiment and standard variables were not 

significant. 

6.5.1 Sentiment Classification, Accuracy and Validation 

The performance or accuracy of sentiment classification is important for the reliability of the 

overall SA results. One way of evaluating the accuracy of the SA algorithm is to compare it 

with two or more different algorithms (Pang and Lee, 2004; Sokolova and Lapalme, 2009). 

Alternatively, we can employ a group of human annotators to manually check a sample of 

text documents previously classified using an algorithm (Taboada et al., 2011); if more 

people give the same response on a given text, the probability of accuracy rises (Augustyniak 

et al., 2015). Although algorithms can achieve some level of accuracy depending on the 

datasets, validation using human annotation, although sometimes expensive and slow, is 
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considered to be more accurate and hence more reliable (Rao, 2016). In this research, we 

employ Amazon Mechanical Turk (AMT), a commercial Human Intelligence Task (HTI) 

platform that employs 5 different human annotators to validate each tweet. ATM is widely 

used by researchers for natural language annotation and validation  (Snow et al., 2008; 

Akkaya et al., 2010; Taboada et al., 2011; Botchan, 2012; Shashidhar et al., 2015; Burmania 

et al., 2016). Overall the results obtained from AMT have been recognised to be of high 

quality, accurate and reliable (Buhrmester et al., 2011).  

6.5.2 Analysis of AMT Validation Results 

Section 6.3.2 described Twitter data used in this research. To validate the results of the 

sentiment algorithm classification, a sample data (about 10%) representing 5,209 tweets were 

submitted to AMT. There is no acceptable standard sample size for data validation. However, 

adequate sample size is needed for validation to ensure that the research results are to the 

acceptable standard as smaller sample size can produce imprecise estimates (Malhotra and 

Indrayan, 2010), and as the sample size increases prediction improves (Figueroa et al., 2012). 

The task workers were requested to judge sentiment orientation of tweets from positive to 

strongly positive and from negative to strongly negative and neutral. The AMT online system 

has sentiment ratings of +2 to -2 based on which five judgements were given on each tweet.  

Manual sentiment annotation has its own challenges, especially where sentences are 

expressing sarcasm or where sentences are expressing differing sentiment towards multiple 

entities; such that workers are unsure of how to label them and thus produce inconsistent 

classifications (Mohammad and Turney, 2013; Mohammad, 2016). Additionally, individual 

task workers often exhibit high variance in annotation accuracy (Tang and Lease, 2011). To 

address this problem, researchers have suggested detailed analysis of manual annotation in 

order to ensure that random and erroneous classifications do not affect the quality of the 

results being validated, since the workers are not necessarily experts in natural language 

processing (Callison-Burch, 2009). Moreover, workers had no knowledge of the domain 

context other than the text content; and that human annotaters are also not absolutely perfect 

in their judgements which can result in different scores (Marge et al., 2010). 

6.5.2.1 Analysis of Scores Variability 

Accuracy measurement is an important aspect of data validation. Similar to  Snow et al. 

(2008), in this research, the quality and reliability of human annotations were assessed using 

variance analysis. Variance analysis is a measure of the distribution of the extent to a set of 
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values in the data are spread from the mean (Kruskal and Wallis, 1952). A variance of 0 

indicates that all the values are identical, the smaller the variance the closer the results are 

from the mean and from one another. A higher variance score (>50%) is usually problematic 

and is an indication of how widespread the annotator’s scores are from one another. Though 

variance analysis has no specific unit of measurement, in this research we used percentages 

for easy interpretation such that smaller values indicate closer agreement in the judgements 

produced by the task workers and larger values indicate poor agreement. Table 6.3 

summarises the variance analysis between human annotations. 

Table 6.3: Variance analysis between human annotations 

Workers 

variance %  

Frequency Percentage Interpretation Cumulative % 

0 626 12.03 Perfect agreement  

69.74 

(3634 tweets) 

10-20 1315 25.24 Good agreement 

21-30 1240 23.80 Moderate agreement 

31-40 452 8.67 Moderate agreement 

41-50 0 0 Nil 

51-60 506 9.71 Slight agreement 30.26 

(1575 tweets) 

 

61-70 494 9.48 Slight agreement 

71-80 73 1.40 Poor agreement 

81-90 0 0 Nil 

91-100 150 2.87 Poor agreement 

>100 352 6.75 Poor agreement 

 

Table 6.3 shows that the task workers have a perfect agreement at 0 percent variance (ratio, 

5:0) and a good agreement (ratio, 4:1) with variance range between 10 to 20 percent. 

Similarly, the results show a moderate agreement (ratio, 3:2) at variance range between 21 to 

40 percent and a slight agreement (ratio, 2:3) between 51 to 70 percent variance. However, at 

higher variance ranges (ratio, 2:1:1:1 to 1:1:1:1:1) 71 and over the agreement was poor. 

Cumulatively, the workers tend to largely agree on 3,632 tweets (about 69.74%) and disagree 

in their classifications on 1,575 tweets (about 30.26%). Agreement here refers to cases where 

3 or more annotators gave a similar judgement while disagreement refers to where only 2 

annotators gave a similar judgement and where they gave different judgements on tweets.  
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6.5.2.2 Human Annotation Ranking 

In order to make comparisons simpler, the average scores of AMT workers were ranked. 

Ranking enables data sorting into ordered form so as to make interpretation easier (Coe, 

2002a). In this analysis, human average annotation scores greater than 0.449 were classified 

as positive and scores more negative than -0.499 negative; scores between -0.499 and 0.499 

were categorised as neutral. Figure 6.4 shows the distribution of AMT classification on 

positive, negative and neutral ranking.  

 

 

Figure 6.4: Distribution of ranked AMT classification 

As seen in Figure 6.4, the majority of tweets 2648 (50.84%) have been classified as neutral 

sentiments, 705 (13.53%) were negative and 1856 (35.63%) were judged as positive based on 

rankings of AMT average scores. The process of determining sentiment expressed in a tweet 

is not an easy task and depends on the subjective judgement of human annotators; often the 

annotators disagree among themselves (Mozetič et al., 2016).  

6.5.2.3 Correlation Analysis 

Pearson’s correlation analysis was performed to measure the relationship between human 

annotations and the algorithm classification. Table 6.4 presents Pearson’s correlation analysis 

of the relationships between the AMT validation results and sentiment algorithm results. 

Table 6.4: Pearson’s correlation analysis of the relationships between the AMT validation 

results and sentiment algorithm results. 
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 Algorithm Human avg. Answer1 Answer2 Answer3 Answer4 

Algorithm 

Human avg. 

Answer1 

Answer2 

Answer3 

Answer4 

Answer5 

      

.629
**

      

.464
**

 .740
**

     

.415
**

 .703
**

 .384
**

    

.452
**

 .720
**

 .399
**

 .370
**

   

.477
**

 .733
**

 .430
**

 .381
**

 .405
**

  

.484
**

 .741
**

 .455
**

 .400
**

 .426
**

 .467
**

 

           **correlation significant at 0.01 level (99% confidence) 

 

Correlation analysis (Table 6.4) shows a strong significant relationship between human 

average sentiment classification and algorithm classification (r = .629, p<001). A fairly 

strong significant correlation also exists between the five individual workers annotations and 

the algorithm scores. For example, the scores of the fifth and fourth annotators show a 

stronger correlation with the algorithm score (r = .484, p<001 and r = .477, p<001) 

respectively. However, a higher correlation between the individual workers and human 

average score is as a result of multicollinearity (see Section 5.6.2). 

6.5.2.4 Intraclass Correlation Coefficient 

In the sentiment analysis literature, estimating reliability and accuracy of human annotation is 

implemented by quantifying the degree of agreement that exists between the majority of 

annotators called inter-rater reliability (IRR) (Remus et al., 2010; Neviarouskaya et al., 

2011; Sameki et al., 2016; Benoit et al., 2016; Tosti-Kharas and Conley, 2016). IRR is a 

measure of consistency among observation ratings provided by multiple annotators widely 

evaluated using intraclass correlation coefficient (ICC) (Hallgren, 2012). ICC is a method 

used to measure the degree of correlation and agreement between raters (Koo and Li, 2016). 

The range of ICC is between 0 and 1. ICC is usually expressed as Cronbach’s alpha , the 

value of 0 indicating random agreement and 1 indicating perfect agreement while negative 

ICC indicates disagreement between raters’ scores (Hallgren, 2012). Cronbach’s alpha () 

provides a measure of the internal consistency of annotation scores (Cronbach, 1951) as 

follows:  
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𝑎 =  
𝑛

𝑛 − 1 
(1 − 

∑ 𝑉𝑖𝑖

𝑉𝑡
) 

 

(6.2) 

whereis a measure of consistency in agreement, 𝑉𝑖 is the variance of scores in item i, 𝑉𝑡 is 

the variance of test scores and n is the number of items.   

The acceptable values of alpha should be .7 and above (Santos, 1999; Tavakol and Dennick, 

2011; Kehm et al., 2015). However, alpha values less than .5 are indicating poor agreement, 

alpha values between .5 and .69 are indicating moderate agreement and alpha values .9 and 

above are indicating excellent agreement (Koo and Li, 2016).  

Kappa Index 

Cohen’s (1960) Kappa () index is also widely used statistical measure for assessing IRR for 

categorical values. However, Cohen’s  is appropriate where reliability measurement is 

applied between two annotators (Fleiss, 1971). Additionally, it is difficult to compare  

values with values from other reliability indices such as the Cronbach’s alpha (Perreault and 

Leigh, 1989). To address the limitation of Cohen’s , Fleiss’s  was proposed. Fleiss (1971) 

provides an extension to Cohen’s  to that can be used to quantify the degree of reliability 

between multiple number of annotators, which is appropriate in this research. Fleiss’s is 

define as  

Pe

PePo
k






1
         (6.2) 

where is the chance-corrected agreement, Po is the observed proportion of rater agreement, 

Pe is the proportion of rater agreement expected by chance and 1 is the maximum value of 

rater agreement. 

Therefore, in this research both Cronbach’s  and Fleiss’s  are used to measure the degree 

of IRR. Landis and Koch (1977) provide a useful benchmark for interpreting Fleiss  and is 

adopted in this research (Table 6.5). 

 

 

 



147 

 

Table 6.5: Interpretation of Fleiss’s . Source: Landis and Koch (1977) 

Fleiss  Interpretation 

< 0 Poor agreement 

0.01 – 0.2 Slight agreement 

0.21 – 0.4 Fair agreement 

0.41 – 0.6 Moderate agreement 

0.61 – 0.8 Substantial agreement 

0.81 – 1.0 Almost perfect agreement 

 

6.5.2.5 Exclusion Criteria 

As in Tosti-Kharas and Conley (2016), in this analysis exclusion criteria were used such that 

tweets labelled as neutral by the workers were excluded from the analysis. This is because 

our data are binary (i.e positive and negative) and did not include a neutral class. Neutral 

tweets do not contain any sentiment polarity (positive or negative), and a neutral class is 

considered to be objective and less informative so they can be filtered out in order to improve 

the performance of subjective binary classification (Pang and Lee, 2004) although this has 

been criticised by Koppel and Schler (2006). Therefore including them to measure the 

performance of the algorithm classification against human annotation is not appropriate. 

Additionally, the inclusion of a neutral class could also potentially bias the accuracy and 

reliability of the results. Furthermore, a recent study has found that the accuracy of binary 

classification increases when a neutral class is removed from the analysis and decreases 

otherwise (Bouazizi and Ohtsuki, 2017). 

6.5.2.6 Inter-rater Reliability Results 

IRR results based on workers scores are presented in Table 6.6. These analyses were 

performed before and after exclusion criteria were applied to the distribution of the data in 

order to measure the quality of inter-annotator results and to make comparisons between 

human annotations and algorithm classification simpler. One of the aims of this research is to 

explore how social media can be used to explore community cohesion. Therefore the 

objective of sentiment analysis is to use tweets classified as positive and negative so that we 

can potentially use them to quantify social cohesion in the communities. Prior to applying 

exclusion criteria, accuracy and reliability was assessed between the manually classified data 
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and algorithm classification in order to evaluate the extent to which the results will differ 

after the exclusion criteria is applied. 

Table 6.6: Inter-rater reliabilty test between human annotators 

Inter-annotator 

Fleiss ( Interpretation Cronbach’s ( Interpretation 

.236 Fair agreement .775 Good agreement 

 

Table 6.7 show IRR results to quantify the average scores of human annotators and algorithm 

classification as ternary (positive, negative and neutral) and binary  (positive and negative). 

This is done in order to quantify the performance of automated classification against human 

ratings. Figure 6.5 shows comparative distribution between the two measurement 

classifications (binary and ternary). 

Table 6.7: Ternary and binary comparisons between human average and algorithm scores 

ICC human average vs algorithm 

Cronbach’s ( Interpretation 

.645 (ternary) Moderate agreement 

.769 (binary) Good agreement 

    

 

Figure 6.5 Distribution of the IRR analysis between binary and ternary classifications 
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As seen in Figure 6.5, IRR analysis between ternary and binary classifications indicates that 

if sentiment scores are classified into binary (positive and negative), the accuracy of 

validation increases compared to where scores are classified into ternary (positive, negative 

and neutral). This suggests that excluding the neutral class for IIR assessment can potentially 

improve the overall accuracy of measurement (see Bouazizi and Ohtsuki, 2017). 

In this analysis we used different measures of IRR to assess the accuracy between human 

sentiment annotation and algorithm classification widely used in sentiment analysis research 

(Remus et al., 2010; Neviarouskaya et al., 2011; Sameki et al., 2016; Benoit et al., 2016; 

Tosti-Kharas and Conley, 2016). Specifically, when variance analysis was performed to 

explore the distribution of human annotation, then the following indices were computed: 

Pearson’s correlation coefficient (r), a measure of linear relationship between two sets of 

data; Fleiss’s a measure of reliability; and intraclass coefficient; and Cronbach’s  a 

measure of degree of internal consistency between multiple raters. Overall, the accuracy of 

our algorithm compared to human annotation indicates good agreement for binary analysis 

(= .769) and moderate agreement for ternary analysis (= .645) slightly below the 

benchmark of .7. Nevertheless, the validation analysis indicates that the results of our 

sentiment algorithm is good and is potentially useful for further analysis. 

However, while different measures of reliability analysis can be used to assess the accuracy 

of sentiment including human and automated classifications, they have some limitations. 

Similar to challenges associated with sentiment classifications as highlighted in previous 

studies (e.g Marge et al., 2010; Mohammad and Turney, 2013; Mohammad, 2016; Mozetič et 

al., 2016), so also do the quantitative measures such as ICC used to assess their accuracy and 

reliability (Shrout and Fleiss, 1979). For example, one limitation of ICC as a measure of 

reliability is that it is dependent on the context in which it is being assessed (Shrout and 

Fleiss, 1979). Additionally, the degree of heterogeneity of the samples can also affect the 

accuracy of ICC such that a higher ICC value does not necessarily mean high reliability of 

results based on some analytical goals (Atkinson and Nevill, 1998; Weir, 2005; Vaz et al., 

2013). 

Furthermore, ICC is a ratio index of within and between subject variability, where agreement 

between group of subjects is being assessed in repeated iterations; however, information 

about individual change or error in scores are not reported (Šerbetar, 2015). Moreover, 

different types of ICC’s absolute agreement and consistency can produce different results 

when applied to the same data; therefore ICC values should be interpreted with caution (Koo 
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and Li, 2016). Despite this limitation ICC is widely used in the social sciences (Vaz et al., 

2013).    

6.5.3 Twitter Sentiment and its Related Determinants 

A number of studies have found relationships between public sentiment on Twitter, socio-

economic and demographic factors of different places such as age, ethnicity, employment and 

education (Mitchell et al., 2013; Bertrand et al., 2013). Gallegos et al. (2016) also stressed 

that geographic locations (places) where people live tend to correlate with sentiments 

expressed on Twitter. Additionally, where people are happier tend to show more positive 

tweets, an indication of how places influence human emotions (Gallegos et al., 2016). 

Furthermore, places where people are more affluent and educated can influence positive 

sentiments (Volkova and Bachrach, 2015; Lerman et al., 2016); and that areas with high 

proportions of older people are less likely to share negative emotions than areas with high 

proportions of younger people (Jalonen, 2017).  

One study that used the reported last name of social media users in the US to estimate 

ethnicity found that 75% users are from the White ethnicity (Sadah et al., 2016). The 

perception of ethnic diversity is that areas with a higher concentration of immigrants are less 

likely to have a lower Twitter sentiment score (Hooghe and De Vroome, 2015). In a recent 

study,  Guimarães et al. (2017) found that the age distribution of users can influence the way 

a person expresses sentiment on Twitter. Another study found that users with higher income 

are less likely to post emotional (negative) content on Twitter (Preoţiuc-Pietro et al., 2015), 

therefore, lower socio-economic neighbourhoods are more likely to use informal language in 

their conversations on Twitter (Lansley and Longley, 2016). Following previous studies, this 

research will be testing the following hypotheses that: 

 The perception that ethnic diversity in different community areas is related to 

sentiment expressed on Twitter. 

 The age distribution of different communities is related to Twitter sentiment. 

 The educational attainment of people has an influence on Twitter sentiment. 

 Residential stability in different communities is related in some way with sentiment 

expressed on Twitter. 

 Affluence/wealth of different community areas to has an influence on Twitter 

sentiment.   
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To further explore the nature of sentiment classifications (positive and negative) expressed in 

different community areas, positive and negative sentiment shares in each area is calculated 

as: 

𝑆𝑝𝑖
=

𝑝𝑠𝑖

𝑁𝑖
∗ 100 

 

(6.4) 

 

𝑆𝑛𝑖
=

𝑛𝑠𝑖

𝑁𝑖
∗ 100 (6.5) 

where 𝑝𝑠𝑖   and 𝑛𝑠𝑖 are the proportions of positive and negative sentiments in an area i, and 𝑁𝑖 

is the total sentiment scores for area i. 

6.6 Sentiment Analysis Results 

The result of exploratory analysis (Figure 6.6) shows the word cloud of most mentioned 

terms contained in the tweets. For example, the mention of places such Leeds, Kirkstall, 

Otley and Pudsey is an indication of a sense of belonging, that people are identifying with 

their communities while tweeting. Similarly, words like amazing, happy, love and great are 

positive words frequently mentioned. Visualisation of tweets provides an exploratory analysis 

of the content of the tweets in order to explore what people are talking about (Jussila et al., 

2013). This can be achieved using visually attractive options such as word clouds 

(Stojanovski et al., 2014). Font size is used to indicate the frequency, the larger the font size 

the more frequently the word is used in the collection of document tweets (Miley and Read, 

2012).  

 

Figure 6.6: Word cloud of frequent terms 
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Figure 6.7 shows a histogram of the distribution of the the SA score. The number of tweets 

and their corresponding sentiment score relating to the whole document are all given. The 

sentiment scores range from -1 to -7 (negative), 0 (neutral) and 1 to 7 (positive). The length 

of a sentence (tweet) is important in assigning a sentiment score when it contains words that 

can increase the orientation to change negatively or positively.  Below is an example of some 

tweets and how the sentiment score is assigned to them: 

 Huge[0] thanks[1] to[0] the[0] crews[0] who[0] work[0] across[0] the[0] Kippax[0] 

amp[0] Methley[0] Ward[0] You[0] keep[0] our[0] villages[0] looking[0] fantastic[2] 

all[0] year[0] round[0] in[0] all[0] weathers[0] We[0] really[0] do[0] appreciate[1] 

it[0] (+4, positive). 

 Stolen[-1] in[0] a[0] farm[0] burglary[-1] in[0] the[0] Otley[0] area[0] Stihl[0] 

chainsaw[0] Honda[0] TRX[0] quad[0] Suzuki[0] Picture[0] of[0] the[0] quad[0] 

attached[0] is[0] of[0] a[0] similar[0] quad[0] Crime[-1] number[0] Anyone[0] 

with[0] any[0] information[0] please[1] call[0] or[0] Crimestoppers[-1] (-3, negative). 

 Photos[0] from[0] our[0] community[0] engagement[0] day[0] at[0] Kippax[0] 

yesterday[0] (0, neutral) 

 

If a document has a more positive sentiment score than negative sentiment score, it is 

regarded as having positive content, and negative otherwise (Alistair and Diana, 2005). The 

results of this analysis indicate that 13.25 % of the tweets are classified as having negative 

sentiments, 27.36 % as positive and 59.38 % as neutral Figure 6.7. 

 

Figure 6.7: Histogram of sentiment analysis score 
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Figure 6.8 and Figure 6.9 shows the spatial distribution of Twitter sentiment orientation 

(positive and negative) share in different community areas in Leeds. Holt Park and 

Hawksworth community areas have higher positive sentiments of 100% and 94%; while 

Cottingley and Gipton South community areas have higher negative sentiments 83% and 80% 

respectively. The higher positive sentiment expressed on Twitter in different places is likely 

because places, where people are happy with their local community, are more likely to 

comment positively through tweets.  The result also indicates that the spatial distribution of 

Twitter sentiments is mixed and complex.  

 

Figure 6.8: Spatial distribution of positive Twitter sentiments in community areas 
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Figure 6.9: Spatial distribution of negative Twitter sentiments in community areas 

As seen in Figure 6.8, Holt Park, Bramham, Cookridge, Bramham, New Farnley, Shadwell 

and Halton & Whitkirk community areas have high numbers of positive sentiments. On the 

other hand, as can be see in Figure 6.9, Cottingley, Little London, Scarcroft, Scott Hall & 

Miles Hill, Drighlington and Gipton South community areas have high numbers of negative 

sentiments. However, despite the complex nature of sentiment expressions, there is an 

indication of the relationships between demographic attributes of different locations and 

Twitter sentiment orientation. Similar to the work of Gallegos et al. (2016) and Yang et al. 

(2016) that found relationships between Twitter sentiment and demographic areas, in this 

research we also found a relationship between sentiments expressed on Twitter and different 

community areas.  

Figure 6.10 shows a graph of the percentage share of positive and negative sentiments across 

Leeds community areas. Holt Park community area has the highest (100%) positive 

sentiments and lowest negative sentiments, while Cottingley community area has the highest 

negative (82.8 %) sentiments and lowest positive sentiments respectively. 
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Figure 6.10: Percentage shares of positive and negative sentiments in community areas 

6.7 Twitter Sentiment and Diversity Characteristics of Communities 

On the scatterplots of the relationships between Twitter sentiment and socio-economic and 

demographic factors are shown in Sections 6.7.1 to 6.7.5 respectively. Comparisons were 

made between the standard and diversity variables to examine how each of them is related to 

sentiment expressed on Twitter.  

6.7.1 Twitter Sentiment and Ethnicity 

Previous studies have emphasised that socio-demographic composition of different 

community areas is an important determinant of Twitter sentiments (Turney and Harknett, 

2010; Moorhead et al., 2013). The correlations (Figure 6.11 and Figure 6.12) show no 

relationships between Twitter sentiments and ethnicity variables (standard and diversity). The 

relationship is weak and not significant, for ethnic diversity r = .066 and ethnic minority 

population r = -.110 respectively. On social cohesion, previous studies have demonstrated 

that ethnic diversity is potentially an important factor in the likelihood that people will 

connect and form social relationships in different communities (Forrest and Kearns, 2001; 

Easterly et al., 2006; Letki, 2008; Saggar et al., 2012); therefore it is unlikely that ethnically 

heterogeneous communities will establish meaningful social ties because members do not 

trust each other (Gijsberts et al., 2012; Dinesen and Sønderskov, 2015; Tselios et al., 2016). 
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Social media can potentially reflect this social trend relating to communities (Adolf and 

Deicke, 2014). Gilchrist and Kyprianou (2011) argued that ethnic heterogeneity has less 

bearing on how people interact through the internet as facilitated by development in 

technologies such as social media. 

 

 

Figure 6.11: Scatterplot of sentiment scores and ethnic minority population 

 

Figure 6.12: Scatterplot of sentiment scores and ethnic diversity 

The results obtained in this research are consistent with previous studies that found 

relationships between the nature of sentiment orientation on Twitter and demographic 

attributes of different areas (e.g Mitchell et al., 2013; Bertrand et al., 2013). For example, in 
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indices such as Allerton Bywater & Great and Little Preston (0.03), Kippax (0.05), Bramham 

(0.06), Ledston & Ledsham (0.07), Halton/Whitkirk (0.08) and Otley (0.09) were found to 
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and 68% respectively; a likely indication of strong social networks in those local community 

areas. Previous studies have found that ethnically homogeneous communities tend to have 

more trust with each other and are more likely to have strong social interactions and build 

cohesion (Laurence and Bentley, 2016). In contrast, it was also found that more ethnically 

heterogeneous community areas like Scott Hall & Miles Hills (0.6), Gipton South (0.33) and 

Cottingley (0.40) with higher diversity indices tend to have a higher negative share of Twitter 

sentiments 73%, 83% and 80% respectively; implying that people are commenting more 

negatively on Twitter, a likelihood for weak social networks in  those areas (Figure 6.13). 

Previous studies have demonstrated that it is less likely for ethnically heterogeneous 

communities to trust each other and to establish social ties (Putnam, 2007; Gijsberts et al., 

2012; Dinesen and Sønderskov, 2015; Tselios et al., 2016), because community integration is 

difficult as a result of differences in norms (Laurence and Bentley, 2016). Consistent with 

previous literature, in this research, we also found support for the relationship between ethnic 

diversity and Twitter sentiment orientation (Lathia et al., 2012; Quercia et al., 2012; 

Venerandi et al., 2015; Lerman et al., 2016; Gallegos et al., 2016), though correlation 

analysis between overall sentiment scores and variables of ethnicity indicate no relationship.  

 

Figure 6.13: Distribution of Twitter sentiments and ethnic diversity in community areas 
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However, while social media can reflect a number of social trends such as social networks 

(Adolf and Deicke, 2014), this relationship can also be complex in some instances. For 

example, in some community areas including Swillington (0.06), Aberford (0.08), 

Collingham and Linton (0.09) as well as Drighlington (0.09) with low ethnic diversity tend to 

show higher negative sentiments on Twitter of about 57%, 68%, 53% and 71% respectively, 

indicating a complex relationship between Twitter sentiment and ethnicity.  

6.7.2 Twitter Sentiment and Age Distribution 

The correlation between sentiments expressed on Twitter and age diversity is shown in 

Figure 6.14 and Figure 6.15. The analysis indicates different relationships in the age 

component. While age diversity shows a significant relationship with Twitter sentiment (r = 

.341, p-value < .001), there was no relationship with the number of young people (aged16-

24) (r = -.052) indicating that this relationship is not significant. Previous studies have 

demonstrated that different age distributions may have very different strengths of social 

relationships, younger people are less likely to build social cohesion (especially face-to-face) 

than older people (Johnston and Matthews, 2004; Takagi and Kawachi, 2014).  

 

 

Figure 6.14: Scatterplot of sentiment scores and number of young persons (16-24) 
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Figure 6.15: Scatterplot of sentiment scores and age diversity 

Social media was primarily thought to be the domain of the young (aged 16-24) because they 

are brought up in the digital era and are considered the first adopters (Bolton et al., 2013). It 

is more likely that their voices might be over-represented on these channels (Prichard et al., 

2015). However, recent statistics in the UK show an increase in adoption of social media by 

users over 65 years from 15% in 2015 to 23% in 2016 (ONS, 2016b). One reason for this 

increase is the potential rise in the use of social media channels especially, Twitter and 

Facebook for social networking among communities (Steinfield et al., 2008; Teng and Joo, 

2017). In this research, we found support for the relationship between age diversity and 

distribution of sentiment on Twitter (Figure 6.16) but not with the young age group (16-24). 

For example, community areas with a lower age diversity such as Bramhope (0.06), 

Cookridge (0.08) and Bramham tend to have a higher positive share of sentiments on Twitter 

about 83% 84% and 88% respectively; compared to community areas with relatively higher 

age diversity such as Burley (0.51) and Holbeck (0.41) that have 56% and 57% positive 

sentiments. The finding suggests that social media is increasingly used in areas with a 

relatively higher proportion of older people and that their voices are also represented on 

social media, a factor that recent studies also found (ONS, 2016b; Teng and Joo, 2017). The 

results also indicate that areas with a higher proportion of older people are more likely to 

express positive emotions on Twitter than areas with a higher proportion of younger 

populations (Jalonen, 2017). However, this study also contradicts the findings of Bolton et al. 

(2013) that social media is primarily a domain of the young. It is more likely that the 

distribution of age within a population is an important factor for social networking and 

sentiment expression on Twitter as well as maintaining social cohesion. As Hudson et al. 
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(2007) pointed out, age-related division is one factor working against social cohesion in 

communities. 

 

Figure 6.16: Distribution of positive and negative Twitter sentiments and age diversity 

6.7.3 Twitter Sentiment and Education 

Educational attainment has a great influence on individuals’ social behaviour as well as on 

participation in community activities and has a wider impact on social cohesion (Green et al., 

2006; McNab, 2009; Greaves et al., 2013; Gamache-OLeary and Grant, 2017). Additionally, 

higher educational attainment can influence social media usage (De la Torre-Díez et al., 

2012). Therefore, educated people are more likely to express different sentiments on Twitter 

(Greene et al., 2011; Park et al., 2011). Figure 6.17 shows the scatterplots of the relationship 

between Twitter sentiment and diversity of educational attainment; while the relationship 

between Twitter sentiment and proportion of those with no educational qualification 

(standard variable) is shown in Figure 6.18 respectively. Correlation analysis shows no 

relationship between Twitter sentiment and population of those with no educational 

qualification (r = .049); while correlation between Twitter sentiment and diversity of 

educational attainment is weak but significant (r = -.296, p< .002). 
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Figure 6.17: Scatterplot of sentiment scores and persons with no educational qualification 

 

Figure 6.18: Scatterplot of sentiment scores and education diversity 

With regard to the relationship between educational attainment and Twitter sentiments, the 
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share of about 100%, 95% and 83% respectively; while areas with relatively lower education 

diversity such as Burley Lodge and Little Woodhouse (0.72), Far Headingley (0.70) and 

Hyde Park (0.57) tend to have lower positive Twitter sentiment share of 62%, 55% and 68% 
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McNab, 2009; Greaves et al., 2013; Gamache-OLeary and Grant, 2017). However, we also 

found that Little London community area with higher education diversity (0.89) has a lower 

positive Twitter sentiment. It is likely that the heterogeneous nature of this community area to 

influence emotion expressed on Twitter.   

 

Figure 6.19: Distribution of positive and negative Twitter sentiments and education diversity 

6.7.4 Twitter Sentiment and Length of Residence 

Figure 6.20 and Figure 6.21 shows the correlation between length of residence variables 

(standard and diversity) and Twitter sentiment. Spearman’s correlation shows weak 

relationships between Twitter sentiment and duration of residence. The results of this analysis 

reveal that diversity of length of residence is not significant (r = .080). The correlation is also 

not significant with the population of those that lived for less than two years in an area (r = -

.111). Studies on social cohesion demonstrate that social bonds are built over time especially 

when people reside in a particular neighbourhood for a longer period of time (Yamamura, 

2011; Keene et al., 2013). Residential stability is important for building social cohesion in 

communities (Thomas et al., 2016). It is likely that Twitter sentiments do not reflect this 

connection.  
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Figure 6.20: Scatterplot of sentiment scores and length of residence less than 2 years 

 

 

Figure 6.21: Scatterplot of sentiment scores and length of residence diversity 

In this research, no statistically significant relationship was found between Twitter sentiment 

and diversity of length of residence (Figure 6.22). Nevertheless, interestingly it was also 

found that some community areas with lower diversity of length of residence such as New 

Farnley (0.07) and Halton/Whitkirk (0.06) tend to have a higher positive Twitter sentiments 

about 83% and 82%; however, in residentially less stable community areas like Scott Hall & 

Miles Hill (0.36) and Chapeltown (0.53) tend to show slightly lower positive Twitter 

sentiments of 27% and 52% respectively; suggesting that residential stability is likely to be 

important for social media interactions in some way. A number of studies have demonstrated 

the importance of residential stability for the creation of social ties in different communities 
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(e.g. Yamamura, 2011; Keene et al., 2013). Migrant neighbourhoods are considered to be less 

committed to local neighbourhood activities because of their social mobility characteristics 

(Wu and Logan, 2016).  Therefore, it is more likely that residentially stable areas to have a 

better established bonds of social relationships than residentially unstable areas  (Sampson, 

1988; Turney and Harknett, 2010), because length of residence in an area increases the 

potential for creating friendships and strengthens social ties with neighbours (Anton and 

Lawrence, 2014). online social media networking can also support the maintenance of 

existing social ties (Ellison et al., 2007). In the context of social media and Twitter 

specifically, Gallegos et al. (2016) stressed that correlations exist between geographic 

locations (places) where people live and sentiments expressed on social media. However, this 

does not mean that the residential status of people can influence the nature of sentiments 

expressed on Twitter. 

 

Figure 6.22: Distribution of Twitter sentiments and length of residence diversity 

6.7.5 Twitter Sentiment and Employment 

In terms of social cohesion, studies have demonstrated that more affluent communities tend 

to be happier and are likely to be more cohesive than less affluent communities (Delhey and 
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Dragolov, 2016; Ejrnæs and Greve, 2017). While the nature of our jobs determines who we 

are in society, unemployment can cause depression with profound effects on the social 

stability of families as well as decreasing potential for participation in communal activities 

(Norton and de Haan, 2012). Income deprivation tends to widen the gap between the rich and 

poor which can reduce social cohesion (Morenoff et al., 2001). Social media can also reflect 

this relationship, as highlighted in recent studies (e.g. Lerman et al., 2016; Greenwood et al., 

2016) that have shown that relationships exist between Twitter sentiment and affluence. 

Figure 6.23 and Figure 6.24 show correlations for this relationship. For the economically 

inactive population, the relationship is not significant (r = -.017) while correlation between 

Twitter sentiment and diversity of employment is significant r = .228, p-value< .019. 

According to Volkova and Bachrach (2015), affluence/wealth can influence Twitter 

sentiment, it is likely that diversity of employment in an area is important for this 

relationship. 

 

 

Figure 6.23: Scatterplot of sentiment scores and employment diversity 
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Figure 6.24: Scatterplot of sentiment scores and employment diversity 

 

In this research, diversity of employment types is used as a proxy for affluence/wealth in the 

absence of income data in the UK Census. The result of this analysis indicates a relationship 

between diversity of employment and Twitter sentiment, but not with the economically 

inactive population. For example, while community areas with relatively high employment 

diversity such as East Bank (0.44) and Churwell (0.32) has about 83% and 74% positive 

sentiments; some areas of lower employment diversity like Woodhouse (0.1) and Upper 

Wortley (0.1) also tend to have higher positive 75% and 90% respectively; this suggests a 

complex relationship between Twitter sentiment and affluence (Figure 6.25). Our findings, 

however, are in contrast to that of Lerman et al. (2016) who used US Census data where 

mean household income is available as a variable to quantify relationships between Twitter 

emotion and socio-economic factors of places. Although the results of this research support 

the findings of  Greenwood et al. (2016) who indicated that those who are employed are more 

likely to use social media, especially Twitter, than the unemployed. Recent studies have 

demonstrated that more affluent communities tend to be socially more cohesive than the less 

affluent communities (Delhey and Dragolov, 2016; Ejrnæs and Greve, 2017). It is more likely 

that affluence can influence sentiments on Twitter.  
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Figure 6.25: Distributions of Twitter sentiments and employment diversity 

6.8 Concluding Remarks 

This chapter has explored with new social media data (Twitter specifically) how public 

sentiments on Twitter along with socio-demographic attributes of different community areas 

derived from Census datasets can be used  for understanding community social ties 

(cohesion). As indicated in the results, Twitter sentiment analysis is potentially useful  for 

understanding the relationships between socio-economic and demographic characteristics of 

different areas and how they can potentially influence Twitter emotions. Section 6.7 

discussed in detail the relationships between Twitter sentiments and diversity of areas and 

highlighted the important role social media networking especially Twitter can play to better 

understand social cohesion in different areas. The findings of this research demonstrate that 

new social media data are potentially useful for uncovering underlying patterns of social 

relationships in local communities, especially when they are used in conjuction with more 

trusted “traditional” Census data. However, with the acceptance that social media data 

obtained from Twitter users may not be a strong representation of the general population. 

This notwithstanding, however, innovating with new forms of social media data through 
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sentiment analysis of public comments on Twitter can potentially be useful for exploring 

community cohesion which is one of the objectives of this research. Chapter 7 will further 

extend our understanding of how we can leverage social media using Facebook data to 

quantify local community engagements. Finally, insights gained from the social media 

analyses in chapters 6 and 7 will be combined in later regression modelling work in chapter 8 

with a view of  quantifying their relationship with community cohesion and crime. 
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Chapter 7  

New Social Media Metrics for Quantifying Community 

Cohesion and Crime 

7.1 Introduction 

From the outset, an objective of this research has been to investigate the feasibility of the new 

social media data sources, especially Facebook and Twitter, to explore degrees of community 

cohesion. Chapter 6 has provided insight on how sentiment analysis of Twitter data can be 

used to explore social cohesion in relation to the diversity of different community areas. This 

chapter will build on the previous chapter using publicly available Facebook metrics in order 

to extend our understanding of community cohesion and crime. Section 7.2 describes the 

importance of social media for community engagement; Section 7.3 describes Facebook 

pages and groups. Section 7.4 describes Facebook data collection procedures and Section 7.5 

will explore how community engagement can be quantified on Facebook. In Section 7.6 

multiple regression models of community engagement on Facebook and crime will be 

explored using the new metrics of interaction and, finally, concluding remarks are given in 

Section 7.7. 

7.2 Understanding Community Engagement on Social Media 

The emergence and development of information and communication technologies (ICTs) and 

the increasing and diverse uses of the internet are changing the way communities are 

engaging and interacting in the public sphere (Bonsón et al., 2015). This can be particularly 

seen with the evolution of social media platforms (Agostino and Arnaboldi, 2016). Social 

media (SM) refers to networked communication platforms (e.g. Facebook and Twitter) that 

allow users to connect with other people and share user-generated content (Ellison and Boyd, 

2013). The term “engagement” refers to the participation of community members in social 

activities aimed at community building on SM channels, especially Facebook (Gil de Zúñiga 

et al., 2012). One common feature of SM engagement is that it is an important source of 

community information and education (Bonsón et al., 2014). It can also facilitate real-time 

public interactions making collective decisions faster and easier (Agostino and Arnaboldi, 

2016), as well as promoting community building and encouraging off-line social relationships 

(Williams, 2010). Facebook in particular can be a potentially powerful tool in this regard 

(Warner et al., 2010).  
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Furthermore, SM tools such as Facebook and Twitter also have a great potential for 

community-based crime reduction efforts (Featherstone, 2013). For example, SM can be 

useful for mobilising community support and encouraging community action, especially in 

solving local problems such as crime (Humphreys, 2010; Baruah, 2012; Kawash, 2014). In 

this way, social media channels, especially Facebook and Twitter, can serve as a means of 

communication, supporting one another and improving local community participation 

(Maurer and Wiegmann, 2011). However, Harris and Flouch (2012) argued that establishing 

well-developed social media networks in disadvantaged areas is difficult, because residents of 

some disadvantaged areas face challenges with inadequate internet access which can 

sometimes be related to the economic status of the people which in turn affect the 

development of neighbourhood social media networks (McCabe et al., 2013; Townsend et 

al., 2015). 

Government agencies such as the police and local councils have also recognised the 

importance of SM engagement with the community so as to better understand their needs as 

well as promoting public safety (Zavattaro and Sementelli, 2014). Additionally, SM provides 

a new way of interacting between the police and public, building confidence and relationships 

as well gathering information and intelligence from local communities (Foundation, 2014). A 

study on the police use of SM has shown an increasing adoption of these channels, especially 

Facebook and Twitter, by the police in the UK for engaging with communities (Fernandez et 

al., 2017). While SM is widely accepted by communities and organisations for enhancing 

engagement, its application to the study of community cohesion (especially on crime) is 

limited (Aarts et al., 2012; Wallace et al., 2017). This research has employed Facebook 

metrics to quantify community engagement in order to gain insight into community cohesion 

and to explore crime. Detailed reviews of SM, community cohesion and crime are provided 

in Sections 4.3 and 4.4. 

7.3 Facebook Pages and Groups 

7.3.1 Facebook Pages 

A Facebook page is a public profile created for the purpose of interacting with the public 

(e.g. community, business and organisation). Unlike a personal profile, a page does not have 

“friends” but “fans” usually displayed on a page profile. Fans are people who choose to 

follow or like a particular Facebook page and receive updates from them (Hicks, 2010). 

There are six categories of Facebook pages: Local Business (e.g. bar, hotel, museum, book 
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store and banks) or Place refers to Facebook pages used for promoting business for 

customers to make a physical visit; Company (e.g. travel and insurance company) or 

Organisation or Institution (e.g. publishing and Church) refers to Facebook pages used where 

an organisation has multiple locations; Brand or Product (e.g. electronics, clothing and 

furniture) are Facebook pages  intended for products selling through multiple outlets; Artist, 

Band or Public Figure are Facebook pages used for promoting specific persons, musical 

bands or political figures; Facebook pages commonly used for sports, movies and radio 

stations are categorized as Entertainment pages; and Cause or Community pages (e.g. 

community or neighbourhood, education and religious organisation) are particularly for non-

profit outfits (Harry, 2016). Furthermore, a community Facebook page enables users to 

connect and share content dedicated to a topic of interest and enhancing social interactions 

and collective community actions (Smith, 2010). Figure 7.1 shows different categories of 

pages available on FB website. 

 

Figure 7.1: Typical Facebook pages related to the word ‘Otley’ (Otley is a town in West 

Yorkshire) 

7.3.2 Facebook Groups 

Different from Facebook pages, the Groups option is also available to users. Groups allow 

Facebook users to organise around a common cause, discuss and share content based on 

different interests (Parsons, 2013). Unlike Facebook pages, Groups can be public or closed 

and vary across different categories such as neighbourhood, community, friends, buying and 



172 

 

selling and sports club supporters (Hicks, 2010). Figure 7.2 shows the type of Facebook 

groups. 

 

Figure 7.2: Typical types of Facebook groups in ‘Horsforth’ (a neighbourhood in Leeds) 

In this research, community Facebook pages will be used to explore social media engagement 

as a proxy for community cohesion. Pages are chosen because they are widely used in 

different community areas (Parsons, 2013) and have a greater potential of reaching many 

people than Groups established for specific interests (Bonnand, 2015). However, some 

communities do not maintain Pages, and in such situations, Groups will be used instead. 

Choosing a Facebook Group that represents a community interest is a difficult task because a 

particular community can have different Facebook Groups. For example, since the last search 

(20/09/2017) on community Facebook Groups in Horsforth (Figure 7.2), there is now a ‘New 

Horsforth Community Group’. Therefore, Horsforth residents could use either or both. 

Additionally, privacy concerns sometimes make access difficult as most of them are “closed” 

and yet the few “public” ones are used for buying and selling of items or connecting with 

school mates (Section 7.5 provides statistics on groups).  

In this research, a number of criteria were employed for selecting Facebook Groups. The first 

criterion for selecting a community group is to check whether it is public, meaning that data 

for that particular group is publicly accessible by default. Facebook has made it easier to find 

public groups by allowing users to filter these groups in searching for results on Leeds 

Community Areas. Once privacy level has been established, the second criterion is to check 

the name of the group. For example, ‘Mickelfield community’, ‘Crossgates yesterday, today 
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and tomorrow’, ‘Moortown memories’ and ‘Thorner community’ are all groups that attempt 

to represent the community as a whole rather than those formed for a specific interest. The 

third criterion involves the number of members. In this regard, a community group with the 

largest numbers of members is usually preferred but where this is not the case, because of 

privacy issues the second largest group is selected. The community area group with the 

minimum number of members is Halton Moor (144), while Crossgates community group has 

the maximum membership (6,018) respectively.  

7.4 Facebook Data Collections 

Facebook allows anonymous access to publicly available data on public pages and groups by 

obtaining the necessary authorisation via the Application Programming Interface (API) from 

the Developers website
7
. The first procedure involves searching for the names of 106 

different community areas in Leeds on Facebook search facility via an existing account. The 

search returns about 15,000 pages and further refinement was conducted to retain only geo-

located pages (n = 8,122) and groups (n = 973) that are within community boundaries. The 

majority of the group accounts 595 (61.2%) assessed were found to be closed, while the 

remaining 378 (38.8%) were public. In all, 67 community areas were found using Pages 

while 27 are using Groups for community interaction and 12 community areas do not have 

either a page or group. Figure 7.3 shows the distribution of Facebook pages and groups in 

different communities (Figure 3.4 provides interpretation for the community codes). A total 

of 94 community areas representing 89% of the total community areas in Leeds are using 

Facebook for community engagement. The sample is considered to be large enough for 

analyses in the present research. A sample size of about 69% is recommended in social 

science because the larger the sample size, the lower the error margin expected and the more 

the accuracy of the results (Tomczak et al., 2014). The error margin is a statistical term used 

to express the confidence interval in a research project (Gilliland and Melfi, 2010). 

Furthermore, because the number of the community areas covered cut across every part of 

Leeds District spatially, it is believed that there could be potentially similar patterns in 

characteristics as a result of socio-demographic similarities of areas (from the perspective 

view of the First Law of Geography, near things are more related than distant things (Tobler, 

1970). Therefore, they can potentially be used as a representation of the entire community 

areas (those community areas with no Facebook presence). 

                                            
7
 https://developers.facebook.com/  

https://developers.facebook.com/
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Figure 7.3: Distribution of Facebook pages and groups in different communities 

In order to ensure that all pages used are under the appropriate category, we used the filter 

tool from the search facility to select public Facebook pages that fall under the category of 

“community”; and then obtain an identification (ID) number for each page using an online 

facility for checking ID numbers of Facebook pages and groups
8
. An ID is a unique number 

assigned to every Facebook user account which is used to identify it. A similar procedure was 

also used to obtain the group’s user IDs. Having obtained the ID numbers for each 

community page and group, we then proceed to collect their timeline data using the 

Rfacebook package, an algorithm based on Barbera et al. (2017), typically used for scraping 

data from Facebook in R environment version 3.2.5 (R Core Team, 2016). Table 7.1 shows 

the metrics available on a typical Facebook page.  

 

 

 

                                            
8
 https://findmyfbid.com/ 
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Table 7.1 Typical metrics available on a Facebook page 

Message Type Likes 

count 

Comments 

count 

Shares 

count 

If anyone knows the Clown with the exploding 

car thats driving  round whinmoor to nt  , please 

send him my way so i can stick his head up his 

own arse , you’re  not big and defo not clever . 

we have your number . 

status 23 23 1 

Hello all. 

I'm at the end of my tether, and I'm after some 

help please! My property has a Pulsacoil 2000 

thermal store (boiler) and it constantly is 

breaking. My landlord is struggling to fix it as 

it's such a specialist piece of equipment. Would 

anyone be able to recommend an 

electrician/plumber that might have experience 

of these systems, that I could contact please? 

Thankyou in advance. 

status 2 4 0 

Thursday 21st September 2017 marks the 50th 

anniversary of the Crossgates Arndale 

Shopping Centre. ???? 

https://www.facebook.com/yourcrossgates/post

s/1443772859025858 

photo 13 4 3 

Please come and support our sister units in the 

Caribbean rebuild their lives...Four of 

Girlguiding’s five branches in the Caribbean 

have been hit by Hurricane Irma, three of them 

directly. The levels of damage and the loss of 

life across the islands are unprecedented. 

photo 7 0 0 

A trip down memory lane. I've been scanning a 

lot of negatives recently (that have revealed 

some forgotten gems) and this is one of them. 

Taken circa May 1983 at Crossgates station. 

Almost everything has changed here - how 

many can you spot? :-) 

photo 29 13 0 
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Hi! I'm wondering if anyone can help? My son 

has broken his iPad tonight and is devastated! 

He uses it a lot for studying and this year is his 

gcse year. Does anyone have one they no longer 

want or need? If so, please let me know how 

much! Thanks in advance!! Xxx 

status 4 12 2 

Looking for a cheap but reliable electrician in 

or around Crossgates to fit a new light switch in 

a bedroom (old dimmer switch broken - just 

need replacing with new normal switch) and a 

new double plug socket in a kitchen (one side 

doesn't work) tia. 

status 1 4 0 

Does anyone know of any child minders that 

can do morning school run in the wykebeck 

area any info would be hugely appreciated 

status 3 6 1 

In Crossgates:  link 5 9 17 

If this is your skill and attitude to 

driving/parking then you shouldn't have a 

licence !! Seen 2 people do this today in 

crossgates.... Your putting other people in 

danger by parking half way across the road!! 

photo 13 32 0 

 

The UK template for SM suggests a minimum of 2 and a maximum of 10 posts per day for 

each official account which gives a total of 3,600 posts per account per year (Williams, 

2009). Though not all pages return such a number of posts, some communities tend to exceed 

that total. Facebook timeline posts data were collected for different community areas between 

28
th

 August to 14
th

 November 2017 (N = 85,000). Additionally, total number of posts 

activities were 988,965 comprising of total likes 557,148 (56.33%); total comments 311,054 

(31.45%) and total shares 120,763 (12.21%) respectively.  Furthermore, a total number of 

individual users (N=87,737) interacted with various posts from different community pages. 

Figure 7.4 shows the stacked graph of the PCV metrics of engagement in different 

community areas. Table 7.2 shows descriptive statistics of posts by interaction and type of 

posts. 
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Table 7.2: Descriptive statistics of posts interaction and types of posts 

Type Count Percentage Description 

Post likes 59,688 49.16 Number of posts liked 

Post 

comments 

39,974 32.92 Number of posts with 

comments 

Post shares 21,738 17.90 Number of posts shared 

Events 2,734 3.21 Posts related to community 

events  

Links 12,831 15.09 Posts containing web links 

Photo 35,638 41.92 Posts with images 

Status 29,928 35.21 Text related information 

Video 2,028 2.38 Motion picture related posts 

Others 1,841 2.16 Any other posts 
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Figure 7.4 Stacked graphs of the PCV metrics of engagement in different community areas
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7.5 Quantifying Community Engagement on Facebook 

In this research,  publicly available data provided on Facebook pages (e.g. PCV metrics) were 

used to quantify community engagement rate similar to previous studies (e.g. Bonsón and 

Ratkai, 2013). Facebook engagement rate is a measure of how users (fans) interact with 

Facebook posts by liking, commenting and sharing (Hoffelmeyer, 2016; Facebook, 2017a). 

The engagement rate on a Facebook page is related to the number of fans and posts. 

Facebook pages and groups with a larger number of fans are likely to have more interactions 

with posts producing a higher engagement rate. On the other hand, where a larger number of 

fans exhibit lower post interaction, the engagement rate also declines. In this research, the 

number of fans on a community Facebook account is used to measure engagement rate 

because they determine the level of interaction on posts as used in previous studies (e.g. 

Cvijikj and Michahelles, 2013; Schultz, 2017; Dolan et al., 2017).  Equation 7.1 is used to 

quantify the engagement rate on a community Facebook page which is employed as a proxy 

for social cohesion. Engagement rate E (as measured on Facebook), in the community area, i, 

can be written follows: 

𝐸𝑖 =
𝑛𝑝𝑐𝑣

𝐹𝑖
                                                                   (7.1) 

where npcv is the total number of likes, comments and shares, and Fi is total number fans in 

that community. A frequency distribution for the engagement rate in different community 

areas is presented in Figure 7.5 
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Figure 7.5: Frequency distribution of community areas engagement rate
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7.5.1 Grouping Community Engagement Rates 

In order to group different community areas based on their social interaction on Facebook 

pages, the range of engagement rates were categorised into quartiles. A quartile is a  

statistical method for categorising quantitative data for easy description (Whitley and Ball, 

2001). Though there are different ways of grouping numerical data, quartiles were used to 

simplify the classification of different community areas into a more manageable size and to 

make referencing easier. In this research, the data were first grouped into quartiles with each 

quartile representing 25% in data distribution and the results were ranked using Excel. Table 

7.3 shows how community areas were categorised into different groups. The spatial 

distribution of engagement rates in different community areas is presented in Figure 7.6. 

Table 7.3: Community areas engagement rate categories 

Engagement rate Community Areas Percentage Description Group 

0.06 – 1.08 24 25.53 Low 4 

1.11 - 3.03 23 24.47 Moderate 3 

3.29 – 7.18 23 24.47 High 2 

7.93 – 51.27 24 25.53 Very high 1 

 

Table 7.3 shows that group 1 which comprises of 24 community areas accounted for very 

high engagement rate (between 7.93 to 51.27), group 2 with 23 community areas have high 

engagement rate (between 3.29 and 7.18); while group 23 comprising of community areas 

tend to have moderate engagement rate (between 1.11 to 3.03) and group 4 with low 

engagement rate (between 1.08 and 0.06) comprises of 24 community areas.  
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Figure 7.6: Spatial distributions of engagement rates in community areas 

A seen in Figure 7.6 there is a considerable difference in average engagement rates between 

different community groups (the darker the colour, the higher the engagement rates). A 

higher engagement rate is found in communities in group 1 including Thorner, Crossgates 

and Mickelfield; having 51.2, 46.5 and 44.0 engagement rates respectively. These areas tend 

to have lower diversity indices. For example, residential, ethnic and age diversity is less than 

0.2, while employment diversity about 0.3 suggesting that communities in this group tend to 

be more stable and are likely to have a high level of social interaction. Community areas in 

group 2 which include Boston Spa, Drightlington, Manston, Horsforth Newlaithes and 

Allerton Bywater & Great and Little Preston have engagement rates of 19.7, 19.0, 13.4, 12.7 

and 10.3 respectively. This group tend to have similar diversity characteristics as in group 1, 

except that in group 2, employment diversity is slightly higher (0.4) than group 1 Similarly, 

group 3 which comprises of community areas including Tinshill that has a 9.8 engagement 

rate, while Collingham, Bramham and Otley have engagement rates of 8.7, 8.6 and 8.1 

respectively. Community areas in this group have lower engagement rates compared to group 

1 and 2. While the age and residential diversity are characteristically similar as in the 

previous groups, ethnic diversity is slightly higher (about 0.3) than in those groups. 
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Additionally, employment diversity in this group is also lower than that of group 3. However, 

community areas belonging to group 4 including Chapel Allerton, Burley Lodge and Little 

Woodhouse have 0.98 engagement rates each, while Little London and Chapeltown also have 

0.8 engagement rates respectively. Except for Yeadon community area, group 4 community 

areas which have the lowest engagement rate and highest diversity indices in Leeds. For 

example, residential diversity is between 0.3 and 0.8, ethnic diversity is between 0.5 and 0.8 

and age diversity is between 0.2 and 0.6 respectively (Full list of the community areas 

Facebook engagement metrics can be found in the Appendix B). Previous studies have 

established that diversity within a community can affect the establishment of social 

interactions between residents (Browning et al., 2008; Letki, 2008; Laurence, 2011). Section 

5.4.2 provides detailed discussions on the effects of diversity on social cohesion. 

7.5.2 Factors Affecting Community Engagement Rate 

Variation in the engagement rates between different community areas can be attributed to a 

number of socio-economic and demographic factors. Firstly, residential stability enables 

residents to know themselves better and easily organise themselves to establish a common 

social media platform like a Facebook page or group; to exchange information, discuss local 

problems affecting them and maintain local social relationships. In contrast to residentially 

less stable areas where people are transient, organising people to have a common focus 

especially on a social media channel is difficult. Secondly, ethnic diversity in a community 

area can affect the way people relate and trust each other because of difference in norms 

(Sturgis et al., 2014). Therefore, it is less likely for heterogeneous and disadvantaged areas to 

establish a common presence on social media (McCabe et al., 2013; Park, 2017). 

Nevertheless, some areas where a community social media profile such as Facebook is 

available residents do not show much concern to interact with it. On the other hand, in 

homogeneous communities trust and belonging enhances local social interaction between 

residents which can enable the establishment of social media presence relatively easier.  

Thirdly, some residents of deprived areas continue to face challenges with access to the 

internet which can greatly affect the way they create and interact with social media channels 

such as Facebook. Different from deprived communities, in affluent areas, internet 

availability and accessibility promotes the creation of social media presence and potentially 

encouraging interaction on those channels. Fourthly, educational attainment also can be 

potentially an important factor affecting community engagement on Facebook. Community 
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areas where residents are more educated are likely to maintain social media interaction to 

keep in touch with local community activities (Perrin, 2015). Whereas, areas with less 

educated residents are less likely to value the importance of having a community social media 

presence let alone engaging with them. Figure 7.7 shows comparisons between engagement 

rate and social cohesion factors in different community groups highlighted in Section 7.6.1. 

 

Figure 7.7 Comparison between engagement rate and factors of social cohesion in selected 

community groups 

As shown in Figure 7.7 it is clear that engagement rate has some potential relationship with 

diversity characteristics of different community areas. In general, engagement rate reduces as 

the diversity increases and vice versa. 

7.5.3 The Concept of Digital Divide 

The concept of digital divide and digital inequality has attracted the attention of policy 

makers and academics in different disciplines including social science (Philip et al., 2017). 

Digital divide has been defined as a gap between people, households, social groups and 

geographic areas in their Internet access and utilisation (Philip et al., 2017; Pearce and Rice, 

2017). DiMaggio et al. (2004) described the concept of digital divide as inequalities in access 

to Internet, quality of technical connections and diversity of users. The Internet was initially 

perceived to provide a virtual space where inequalities could dissolve and individuals could 

interact with others across social, temporal and spatial boundaries (Pearce and Rice, 2017). 
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Digital divide is a complex and multidimensional issue which requires taking into account 

different economic, social and technological factors. The economic factors might be because 

individuals and communities do not have access to computers or an up-to-date internet 

service due to income challenges; social factors were originally attributed to internet 

accessibility though nowadays people have access but lack the skills necessary to utilise ICT; 

and geographical factors exist between rural-urban or between developed and developing 

countries (Várallyai et al., 2015). Geographic disparities in access can exist due to physical 

distance from network suppliers (broadband speed); large disparities exist between urban and 

rural areas. Within the UK context, there are urban areas with populations that are digitally 

engaged yet materially deprived, or inversely, urban areas with low digital engagement but 

also low levels of material deprivation. These are part of the wider complex relationships that 

influences digital divide (Riddlesden and Singleton, 2014). Recent statistics in the UK show 

that households access to the internet is increasing from 9% in 1998 to 90% in 2017 and 

social networking is the second most important Internet activity performed after email (ONS, 

2017c). Additionally, of the 10% households without the internet access, 64% reported 

internet is not useful to them while 20% felt that they lack skills and 12% reported that they 

access the internet elsewhere (ONS, 2017c). The internet can now be accessed using different 

devices (smart phones, tablets and computers) either via the public or private connections 

(broadband and Wi-Fi) and 3G and 4G networks are all available (Philip et al., 2017). There 

are differences of access between geographic locations (rural/urban) (Haight et al., 2014). 

Furthermore, the overall broadband speeds in rural areas are consistently slower and erratic 

than those in the urban areas (Philip et al., 2017).  

Digital inequality has continued to elude the economically disadvantaged segment of the 

population. Lack of access to the internet can significantly undermine efforts to obtain current 

news. Understanding individual’s online engagement and the range of activities that users 

perform is important for assessing how those who are connected are taking the advantage 

provided by the internet (Haight et al., 2014). Consistently, studies have linked internet 

access to the factors of education, income and age (Haight et al., 2014; Estacio et al., 2017; 

Dutton and Reisdorf, 2017). Race and ethnicity are also important determinants of digital 

divide (Robinson et al., 2015). However there is a gradual shift to the notion of digital skills 

with individuals having the required skills potentially benefiting more than those who do not 

have the skills and knowledge (Van Deursen and Mossberger, 2018). Therefore social 

support in the form of digital literacy to assist those who face challenges of learning new 
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technologies, especially the older adults, could potentially reduce the digital divide gap and 

increases participation in social networking among people (Tsai et al., 2017).    

7.5.4 Influence of Facebook Interaction Metrics on Community Engagement    

To evaluate how each of the new PCV metrics contributes to engagement in different 

community areas, we divide the sum of each metric by the number of communities in those 

categories to obtain the mean contribution of the metrics. Figure 7.8 shows how different 

metrics contributed to engagement rates in different community groups. 

 

Figure 7.8: Metrics of engagement in different community areas 

Figure 7.8 shows the proportion of the contributions of PCV metrics to engagement rates in 

different community area groups. It is clear that the metric of popularity (P) contributed more 

to engagement (between 0.46 and 0.77) across different community areas; followed by the 

metrics of commitment (C) (between 0.19% and 0.53%) and metrics of virality (V) (between 

0.14% and 0.32%) respectively. Communities with higher engagement rates also tend to have 

higher percentages of popularity and commitment compared to areas with moderate and low 

engagement, indicating the importance of the metrics for engagement in those areas. Previous 

studies (see above) also found that the metrics of popularity (i.e. ‘likes’) are likely to be 

higher than those measuring commitment (‘comments’) and virality (‘shares’). However, that 

does not mean the metric of popularity is the highest indicator of engagement. 
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7.5.5 Engagement and Action in the Community Areas 

Engagement on a community Facebook channel can be related to crime rates of different 

community areas. The ability of cohesive communities to employ online social networks such 

as Facebook can potentially support efforts in crime reduction in the neighbourhoods, as 

information about residents concern about safety is being discussed online for collective 

action (Hattingh, 2015). Furthermore, social ties in a community have been found to be 

associated with lower levels of neighbourhood crime especially burglary and violence (Yuan 

and McNeeley, 2017a). Previous studies have attempted to use SM to study crime patterns at 

different spatial scales albeit using Twitter data (Gerber, 2014; Malleson and Andresen, 2015; 

Williams et al., 2016). For example, Bendler et al. (2014) emphasised that online social 

networks such as Twitter and Facebook can be used for facilitating a virtual neighbourhood 

watch and supporting the police in crime prevention (see Section 4.3 for detailed discussion). 

Figure 7.9 shows Facebook engagement rate in relation to crime rates in Leeds community 

areas. 

 

 

Figure 7.9: Engagement rate in relation to crime rates in the community areas 
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As seen in Figure 7.9, the engagement rate tends to decrease with increasing crime rates in 

most community areas. Recent police statistics
9
 as of December 2017 shows that crime rates 

per 1000 population in Leeds for burglary (12.83), vehicle crime (11.23), violence and sexual 

offences (34.95) and ASB (25.56) respectively. In group 1 community areas (very high 

engagement rate) tend to have the lowest crime rates. For example, Thorner community area 

has the lowest rates of anti-social behaviour (ASB) and sexual and violence crimes (3.52 and 

4.58) in Leeds. Though ASB rate is slightly higher than the city average in areas like 

Mickelfield (29.58) and Crossgates (31.68), this is likely because of the proximity to less 

privileged areas like Gipton South and Harehills. Previous studies have found a positive 

relationship between ASB and children raised in deprived areas which is likely to affect more 

affluent surrounding neighbourhoods (Odgers et al., 2015). Overall burglary crime rates are 

between 47.64 in Mickelfield and 94.08 in Crossgates which is higher than the city average. 

Routine activities of residents combined with interconnectivity, mobility and interaction have 

significant implications for crime victimisation especially burglary (Cohen and Felson, 1979). 

Additionally, the cost of crime profitability increases the likelihood of burglars to target 

affluent areas than their deprived counterparts (Ward et al., 2014) and the risk of burglary 

victimisation is more likely to be higher where affluent neighbourhoods are surrounded by 

deprived neighbourhoods (Mburu and Bakillah, 2016). 

Crime rates in group 2 community areas with high engagement are not far from being similar 

to those in group 1 except that vehicle crime rates were relatively higher in group 2 than in 

group 1. For example, vehicle crime rates were between 26.66 in Boston Spa and 55.56 in 

Drighlington; compared to 14.79 in Thorner and 33.81 in Mickelfield community areas from 

group 1.  

Community areas comprising group 3 with moderate engagement tend to have the lowest 

crime rates compared with the community areas in group 1 and group 2. In this group, ASB 

rates were between 4.60 in Bramham and 19.59 in Tinshill community areas; violence and 

sexual related offences were between 5.23 in Collingham and 30.26 in Tinshill community 

areas; while vehicle rates were between 12.60 in Collingham and 26.10 in Bramham 

community areas respectively. All these crime rates are lower the than the city averages. 

However, as in group 1 and 2, burglary crime rates were relatively higher than the city 

average but slightly lower than those in group 1 and 2. 

                                            
9
 https://www.police.uk/west-yorkshire/LDT_W/performance/compare-your-area/ 

https://www.police.uk/west-yorkshire/LDT_W/performance/compare-your-area/
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Crime rates are distinctively different in group 4 community areas with low engagement. In 

this group except for ASB rates in Burley Lodge and Little Woodhouse community area that 

were slightly below the city average, all the other crime rates were higher than the city 

averages. Specifically, burglary crime rates were between 52.88 in Chapeltown and 137.45 in 

Little London community areas; violence and sexual offence crime rates were between 55.51 

in Burley Lodge and Little Woodhouse and 134.20 in Little London community areas; while 

vehicle crime rates were between 61.09 in Chapeltown to 140.72 in Little London community 

areas respectively. These relationships will be quantified further in the following sections 

using regression models so as to explore more insights.  

7.6 Multiple Regression Models of Community Engagement and Burglary 

Crime Rates  

In this research, multiple regression models (global and local) were employed to quantify the 

relationship between community engagement and recorded burglary crime rates (dependent 

variable). The purpose of the model calibration is to explore whether the inclusion of SM 

variable (virality) can potentially improve the traditional regression models of burglary crime 

and community cohesion performed in chapter 5. The model uses the combination of 

standard and adjusted (diversity indices) variables constructed from the Census statistics, and 

PCV indicators generated from Facebook. Diversity statistics and their standard equivalent 

are used to control for socio-economic and demographic effects in different community areas 

(Section 5.6 provides detailed description of the variables).  

The spatial distribution of burglary rates in Leeds (Figure 7.10) shows that community areas 

in the city centre tend to have a higher burglary rate compared to the community areas further 

away from the city centre. The spatial distributions of the independent variables are mapped 

in Figure 7.11 to Figure 7.14. 
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Figure 7.10: Map of the distributions of burglary rates in Leeds community areas 

 

For the distribution of the age diversity variable (Figure 7.11), higher values can be seen in 

the City Centre, Hyde Park, Woodhouse, Headingley, Hunselet & Stourton and surrounding 

areas. The distributions of residential diversity variable (Figure 7.12) indicate higher values 

in the city centre and towards the north, with relatively lower values around community areas 

on the fringes of the district reflecting the degree of residential stability. The distribution of 

the economically inactive variable (Figure 7.13) reflects the pattern of the population that 

makes up the variable (i.e. students, retired and people living with long-term illness).  The 

spatial distributions of the virality variable (Figure 7.14) tend to show patterns that indicate 

the degree of virality of information across different community areas. 
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Figure 7.11: Map of the distribution of age diversity in Leeds community areas 

 

Figure 7.12: Map of the distribution of residential diversity in Leeds community areas 
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Figure 7.13: Map of the distribution of economically inactive population in Leeds community 

areas 

 

Figure 7.14: Map of the distribution of virality in Leeds community areas 
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In this research, the PCV indicators are used as a proxy for the strength of social networks in 

different community areas. Additionally, the metrics are widely used in previous studies to 

quantify engagement on Facebook pages (e.g Cvijikj and Michahelles, 2013; Theiss et al., 

2016). For example, Hattingh (2015) attempted to use Facebook data to explore the impact of 

community watch on crime in Gauteng, South Africa. He found that information sharing 

related to community building and awareness on neighbourhood safety on a Facebook page 

can significantly help in reducing neighbourhood crime especially burglary. The major 

limitation of his study is that he analysed only 247 posts from a single community Facebook 

group which affected generalisation of the findings. To address this limitation in this 

research, PVC interaction metrics on 85,000 posts generated from 94 community Facebook 

accounts are used in the analysis. 

Prior to model construction, an exploratory analysis was performed using Pearson’s 

correlation coefficient (r) to assess the relationship between the dependent (burglary crime 

rates) and independent variables (PCV indicators, standard and diversity statistics) to be used 

in the model. Variables were also checked for possible presence of multicollinearity. 

Multicollinearity is present when there is a high degree of correlation between independent 

variables leading to redundancy. High degree of correlation between independent variables is 

not desirable because it can significantly affect model performance and reliability (Wang, 

1996). There is no standard rule for filtering out variables based on the issue. In this research, 

correlations greater than r = .80 between independent variables are regarded as very 

significant; therefore one such correlated variable will be dropped from the analysis. On the 

other hand, variables that have a higher correlation with the dependent are usually preferred 

for inclusion in the model. Table 7.4 presents Pearson’s correlation coefficient between 

burglary crime rates, PCV indicators and standard and diversity indices. 
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Table 7.4: Pearson’s correlation coefficient between burglary crime rates, PCV indicators and diversity and standard variables 
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P -.157             

C -.171 .639**            

V -.249* .610** .255*           

Ethnic div .544** -.192 -.287** -.131          

Age div -.507** -.043 -.298** -.031 .480**         

Employment div -.216* .063 .175 .031 -.388** -.112        

Education div -.227* .018 -.210* .027 -.235* -.761** -.087       

Residential div .569** -.182 -.301** -.133 .981** -.534** -.360** -.263*      

Ethnic minority .288* -.252* -.335** -.149 .682** .485** -.465** -.276** .679**     

Age16-24 .250* -.037 -.263* .001 .267** .792** -.662** -.662** .308** .583**    

Age16-64Inactive .266* -.093 -.300** -.033 .343** .721** -.155 -.561** .387** .726** .954**   

Age16-64Noqual -.013 -.248* -.180 -.149 .050 -.073 -.072 .272** .057 .497** .166 .386**  

ResidenceLess2yrs .339** -.030 -.210* -.037 .487** .682** -.037 -.465** .579** .569** .669** .733** .094 

** Correlation is significant at the 0.01 level (2-tailed), * Correlation is significant at the 0.05 level (2-tailed). 
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Table 7.4 shows Pearson’s correlation coefficient between burglary crime rates (dependent) 

and the independent variables (PCV indicators, standard and diversity statistics). 

Multicollinearity was detected between ethnic diversity and residential diversity (r = .981, p-

value < 0.01) variables; and between young population (16-24) and proportion of those aged 

16-64 who are economically inactive (r = .954, p-value < 0.01) meaning that in each case one 

of the variables will not be included in the model. In order to decide on which of the variables 

will be dropped from the model, their correlations with the dependent (burglary crime rates) 

were assessed. Residential diversity and proportion of economically inactive population 

variables were found to have a higher correlation with burglary crime rates (r = .569, p-value 

< 0.01 and r = .266, p-value < 0.05) respectively. Consequently, ethnic diversity and age 16-

24 variables were dropped from the analysis. Table 7.5 presents independent variables 

included in the model based on their correlations with the dependent variable.  

Table 7.5: Independent variables included in the model 

Variables Description 

Post likes (P) Percentage of the total post that have been liked 

(number of post with likes in an area/total 

number of post in that area *100) 

Post comments (C) Percentage of the total post that have been 

commented on (number of post with comments 

in an area/total number of post in that area 

*100) 

Post shares (V) Percentage of the total post that have been 

shared (number of post shared in an area/total 

number of post in that area *100) 

Standard Ethnic minority, Length of residence less  than 

2 years, Age 16-64 economically inactive and 

Age 16-64 no qualification   

Diversity Age, Employment, Education and Length of 

residence  

                        P - popularity, C - commitment, V- virality  

 

Global Regression Model  

In this research, global Ordinary Least Square (OLS) multiple regression models (stepwise) 

were employed to model the relationships between burglary and community structural 

variables. The OLS  linear regression provides a global model to generate predictions or to 

model a dependent variable in terms of its relationships to a set of explanatory variables and 



196 

 

is probably the most popular procedure used in criminal justice and criminal research 

(Walker and Maddan, 2013). Though the global model parameters derived from the OLS 

assumed that variables are constant over space (Charlton et al., 2009) this assumption does 

not always hold as spatial variations in relationships is not stationary (Erdogan et al., 2013). 

They tend to vary across space known as spatial heterogeneity, hence the need for a localised 

model such as Geographically Weighted Regression (GWR)  (Charlton et al., 2009). GWR is 

a more robust alternative in exploring the spatial variation of relationships across space 

(Arnio and Baumer, 2012). A typical global OLS is provided in Equation written in the form 

of Equation 3.1. 

Local Regression Model 

A detailed discussion on GWR modelling technique is provided in Section 3.6.1.1. In this 

analysis, the Gwmodel package based on Lu et al. (2014) was employed in R statistical 

environment (R Core Team, 2017). The package provides functions for bandwidth selection 

(bw.gwr), GWR model calibration (gwr.basic) with different statistical outputs (such as 

coefficients, local R
2
, and standard error) and tests for model significance (gwr.t.adjust) 

including p-values, adjusted p-values and t-statistics. The outputs from the package also 

include the global regression results which make comparison between the global OLS and 

local GWR models much simpler. To calibrate the GWR model, the same parameters used in 

the global model were used (Equation 3.5).  

For model calibration in GWR, the choice of bandwidth is an important step. A bandwidth is 

a distance search window over which a localised model is controlled (Lu et al., 2014). 

Bandwidths are locally chosen by a data-driven method based on minimization of a local 

cross-validation (CV) criterion (Vieu, 1991; Arlot and Celisse, 2010). A CV score is 

essentially the estimated squared production errors (Fotheringham et al., 1998). There are 

different types of kernel which can be used to estimate a bandwidth in a local regression such 

as Gaussian, Exponential, Tri- cube, Bi-square and Box-car functions. Gaussian and 

exponential kernels are continuous (uses all data); weight of points is between 0 and 1 which 

decreases according to the shape of kernel. The Tri-cube, Box-car and Bi-square kernels are 

discontinuous (uses nearest neighbour or a fixed distance). The main difference between 

them is that the continuous kernels uses a fixed bandwidth approach, while the discontinuous 

kernels uses an adaptive bandwidth approach which can be specified beforehand (Lu et al., 

2014). 
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In this research, the adaptive bandwidth approach based on a bi-square kernel function was 

used. The adaptive bandwidth is widely preferred because it allows the same number of 

sample points to be used on each estimation (Charlton et al., 2009). It also provides an 

intermediate weighting between the box-car and Gaussian functions. The approach can be 

affected by discontinuity where fewer data points are considered other than the one specified. 

On the other hand, the advantage of using the bi-square kernel function is that it gives a 

fractional decaying weight according to the proximity of the data to each point for a fixed or 

specified nearest neighbour (Lu et al., 2014). Here, an optimum bandwidth was obtained 

using 8 nearest neighbours (about 8% of data points) as illustrated by Figure 7.15.  

 

Figure 7.15: Plot of cross-validation (CV) score as a function of bandwidth 

Furthermore, the outputs of a GWR model can be mapped for exploratory purposes and to 

guide decision making. These outputs include local R
2
 and standard error. Local R

2 
shows 

how well GWR performed in modelling the relationships between the dependent and 

independent variables across different locations; while the standard error is used to determine 

the accuracy of predictions. A smaller standard error value is preferred because it indicates a 

better model fit. Additionally, Fotheringham et al. (1998) suggested mapping of t-values 

statistics for each parameter in order to assess the strength of the relationships across space. 

In this analysis, the main outputs from GWR such as the coefficients of the parameters, local 

R
2
, standard errors and local t-values for each were all mapped in order to examine local 

variations across Leeds community areas.  
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7.6.1 Model Interpretation of Community Engagement and Burglary 

Global Model 

A Global OLS and local GWR models were employed to quantify the relationship between 

community engagement (used as a proxy of community cohesion) and burglary crime rates in 

Leeds. Table 7.6 presents a summary of the global regression model that can be used to 

assess the contribution of each variable based on its relative importance. The statistics 

reported are the standard error, t-value and p-value respectively. One of the important guides 

for evaluating the explanatory power of the global model is significant t-statistics (Dunn, 

1989). The t-statistic is the estimated coefficient divided by its own standard error. 

Significant t-statistics should be greater than 1.96 in magnitude, corresponding to a p-value of 

less than 0.05. The standard error of estimate is a measure of the accuracy of prediction in 

regression modelling (McDonald, 2009). 

Additionally, for a conventional global model, the goodness of fit can be assessed using the 

adjusted r-squared (AR
2
) (Hurvich et al., 1998; Kongmuang, 2006). AR

2
 is the fraction by 

which the square of the standard error of the regression is less than the variance of the 

dependent variable (Faraway, 2002). It increases only if the variables are contributing to the 

model. Overall, the AR
2
 value for the global OLS model is 43%; an improvement of about 

20% compared to the traditional model of burglary (in chapter 5) where only 23% of the 

variation in the dependent was explained by the model. This suggests that the inclusion of an 

additional variable from the PCV indicators has significantly contributed to improving the 

performance of the previous model.  

Table 7.6: Summary of global OLS regression model 

 
 

 

Estimate  

 

Std.Error 
 
 

t value 

 

Sig. 

 (Intercept) 52.148 5.470 9.534 .000 

ResDiv 80.353 19.388 4.144 .000 

AgeDiv 100.489 24.422 4.115 .000 

Age 16-64 EconInactive -0.007 .003 -2.612 .011 

Virality (V) -0.325 .134 -2.431 .017 

 

As shown Table 7.6, length of residence diversity and age diversity were very positively 

correlated with burglary and statistically significant (p-value <0.001); economically inactive 
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population and the variable post sharing (V) were negatively correlated with burglary and 

statistically significant (p-value <0.05) respectively. The values of t-statistics were all greater 

than 2 indicating stronger relationships between the dependent and independent variables. 

Residential instability reduces the potential for social interaction in a community (Thomas et 

al., 2016) and increases the tendency for crime victimisation (Bell and Machin, 2011). It is 

likely that the residential stability increases community building and collective action 

especially for reducing crime.  

In terms of relationships between age diversity and crime, previous studies have 

demonstrated that offenders are commonly drawn from younger age groups than  elderly 

people (Farrington, 1986; Gottfredson and Hirschi, 1990; Sampson and Laub, 2003; McVie, 

2005; Blonigen, 2010; McCall et al., 2013; Sweeten et al., 2013). Equally, however, we 

know that young are also targets for crime (Mahmud et al., 2014). 

Significant negative correlation found in this research between economically inactive 

population and burglary crime which might be seen as counterintuitive. Previous studies have 

found support for relationships between income inequality and property crime (Witt et al., 

1998; Kelly, 2000; Demombynes and Özler, 2005; Reilly and Witt, 2008). However, 

correlation between economic inactivity with burglary crime does not necessarily imply 

causation as this relationship might only suggest that unemployment might contribute to 

offending elsewhere. Recent statistics in the UK show that economically inactive people are 

likely to be twice as likely to be victims of burglary crime than those who are economically 

active, considering this category of population comprise of students, those who are retired 

and people with long-term health challenges (ONS, 2014c; ONS, 2016a), so clearly the 

relationship for Leeds needs further investigation.  

A negative correlation between the virality (V) indicator of engagement and burglary 

indicates that information sharing about community building and community safety is 

associated with a decrease in burglary victimisation. and information sharing relating to 

community building can create awareness about neighbourhood crime which can lead to 

community action (Hattingh, 2015; Sachdeva and Kumaraguru, 2015). Previous studies have 

found that the metric of virality (shares) shows the greatest degree of engagement because 

users are expressing a desire to circulate the information on their networks to increase 

interaction (Stockley et al., 2013).  
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Local Model 

Table 7.7 presents the results of the local GWR model. Unlike the global model that uses the 

AR
2
 to evaluate the goodness of fit, the GWR model uses the Akaike Information Criteria 

Corrected (AICc) to assess the goodness of fit. AICc provides a measure of information 

distance between the model which has actually been fitted and the unknown ‘true’ model 

(Charlton et al., 2009). An AICc value of less than 3 means that the models being compared 

are equivalent. Though this measure is relative (values can be large or small), it is the 

difference in the values between the models being compared that is important. In this 

research, the global model produced an AICc value of 846.367 compared to the GWR model 

with 838.512, indicating an improvement to the local model.  Additionally, the AR
2
 value 

increases to 0.63 (63%) in the GWR model compared with 0.43 (43%); an improvement of 

20% further suggests that GWR model performs better than the OLS model. 

Table 7.7: Summary of local GWR model 

 

 

Min. 

 

1st Qu. Median 

 

3rd Qu. 

 

Max. 

(Intercept) 43.143 54.372 59.708 71.884 87.909 

ResDiv 14.506 43.732 59.734 88.517 117.903 

AgeDiv 33.012 72.674 84.231 96.411 136.719 

Age 16-64 EconInactive -0.010 -0.007 -0.006 -0.005 -0.002 

Virality (V) -0.667 -0.524 -0.386 -0.151 -0.012 

 

From Table 7.7 it is clear that variation in the parameter estimates exists in Leeds community 

areas. For example, the coefficients of age diversity range between a minimum value of 33.01 

and a maximum value of 136.72 meaning that one unit change in age diversity (index) is 

associated with an increase in burglary rates between 33.01/1000 population in some areas 

and 136.72/1000 population in the other areas respectively. The inter-quartile range for age 

diversity is between 72.67 (1st quartile) and 88.51 (3rd quartile) respectively. Compared to 

the age diversity, the coefficient of virality (sharing) of information about crime and 

neighbourhood safety is associated with decreases in burglary rates across contrasting 

community areas in Leeds. The interquartile coefficients range of between -0.52 and -0.15 

(1st quartile and 3rd quartile), indicate that 1 unit change in virality (percentage) resulting in 

a decrease in burglary rates by the corresponding values. Additionally, the global model 
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(Table 7.6) coefficients lie between the interquartile ranges of the GWR model. Charlton et 

al. (2009) emphasised that mapping such spatial variations can provide a better understanding 

of the relationships being quantified (community cohesion and burglary crime rates in this 

context). In this analysis, the GWR model local R
2 

values and intercept coefficients showing 

spatial variations across Leeds are shown in Figure 7.16 and Figure 7.17 respectively.   

 

Figure 7.16: Map of the distribution of the local R
2 

values of the GWR model 

 

It can be seen from the map of the local R
2 

values (Figure 7.16) that the GWR model 

performed best in the northeast and southern parts of Leeds. These community areas include 

Wetherby, Boston Spa, Bramham and Collingham & Linton in the northeast; Methley, 

Lofthouse & Robin Hood, Allerton Bywater & Little Preston and Swillington in the south 

with local R
2 

values between 63% and 66% respectively. In the central parts of Leeds 

community areas (including City Centre, New Wortley, Burley Lodge & Little Woodhouse, 

Hyde Park, Woodhouse, Little London and Chapeltown) the model performs relatively lower 

compared to other areas (local R
2 

values between 31% and 45%) respectively. It is likey that 

Wetherby 

Boston Spa 

Bramham 

Collingham & 

Linton 

Methley 

City Centre 

Chapeltown 
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certain key indicators relating to community engagement necessary for mediating burglary 

might be missing in those areas. 

The intercept coefficients of the GWR model (Figure 7.17), show a clear variation in the 

distribution of burglary rates in different community areas of Leeds. Higher values are found 

in community areas around the city centre decreasing outwards. The community areas in this 

category mainly constitute areas with a higher proportion of student residences, including 

Little London, Hyde Park and Headingley (79.68 to 83.44); Burley Lodge & Little 

Woodhouse (74.28 to 79.68) respectively. Student areas are more likely to be victimised 

because of their routine activity (Barberet and Fisher, 2009) and possession of attractive 

valuable items such as electronics and mobile phones (Shepherd, 2006; Kongmuang, 2006). 

However, higher rates of burglary in disadvantaged community areas such as Chapeltown, 

Harehills and Burley might be associated with lower levels of community engagement 

characterised by socially disorganised areas. Crime (burglary in particular) thrives in 

disadvantaged areas especially with lower levels of social capital, because residents are likely 

not look out for each other (see Section 2.4). Different from the city centre scenario, in the 

affluent areas especially in the northwest (such as Arthington & Pool, Yeadon, Bramhope, 

Otley and Guiseley) and towards the south community areas including Gildersome, Morley 

North and Middleton the rates of burglary crime decreases to between 43.52 and 52.85. 

Similarly, a relatively lower burglary rates (52.85 to 59.71) were also found in the northeast 

and southwest areas respectively. It is likely that stronger community engagements in those 

areas are acting to mediate the levels of victimisation in those areas. In general, burglary rates 

vary across contrasting community areas in Leeds as evident from the spatial distribution of 

the intercept coefficient (Figure 7.17). Variation in the rates of burglary is characterised by 

community differences between the student areas, city centre, affluent and deprived areas in 

Leeds; suggesting differences in the degree of community engagement, a factor found by 

previous studies (e.g. Sampson and Groves, 1989). 



203 

 

 

Figure 7.17 Distributions of the intercept coefficients 

The variation in the coefficients of the parameter estimates, for virality (V), age diversity, 

residential diversity and economically inactive population; along with corresponding standard 

error of estimates and p-values in different community areas are mapped in Figure 7.18 to 

Figure 7.29 respectively.  

The distribution of the virality parameter (Figure 7.18) shows clearly that in the northwest 

and southwest community areas the relationship is less negative than areas around the city 

centre. Additionally, there is indication from the patterns of the coefficient of the parameter 

that the effect of virality of information is associated with reduced rates of burglaries across 

different community areas. A possible explanation for this occurrence might be because 

networks of social engagement on SM especially Facebook are contributing to creation of 

awareness about crime through information sharing and allowing people to organise and take 

collective action (see above). However, it is also likely that the greater effect of virality of 

information in reducing burglary rates to be higher in areas with a higher burglary rates than 

areas with a lower rates of burglary, suggesting a greater need for enhancing community 

engagement. The lower standard error values (Figure 7.19) in those areas also suggest that the 

results can be reliable. The p-values range between 0.002 and 0.014 of the parameter (Figure 

7.20) further indicate a significant relationship across many community areas of Leeds.  
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Figure 7.18: Map of coefficient of virality 

 

Figure 7.19: Map of standard error of the virality parameter 
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Figure 7.20: Map of p-values of the virality parameter 

 

In terms of the effect of the coefficient of age diversity (Figure 7.21), it is clear that the 

communities in the northwest (such as Guiseley, Yeadon, Rawdon and Otley) tend to have 

larger effect (109.0 to 136.7). A potential explanation to this relationship might be that the 

effect of differences in age on burglary is more likely to be higher in areas with lower age 

diversity. It is also likely that a wide age range puts young offenders in close proximity with 

older victims with, potentially, more to steal. Additionally, it makes some sense that the 

broader the range of population characteristics in an area the more likely that there will be 

suitable target criteria for burglars making decisions about risk (Bernasco and Nieuwbeerta, 

2005). The coefficient of age diversity has the largest variability in both global and local 

models (Table 7.6 and Table 7.7) respectively; suggesting the importance of age distributions 

in crime especially burglary. The spatial patterns of the parameter also indicate a higher 

likelihood that affluent areas might be victimised more than deprived areas. The relationship 

between age and burglary is described in Section 5.5.1. 
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Figure 7.21: Map of age diversity coefficient 

Furthermore, lower values indicated by the map of the standard error of the age diversity 

parameter (Figure 7.22) provides more confidence in the GWR model results, although, 

relatively higher standard error values were observed in areas like Yeadon and Rawdon 

indicating that the model might be missing some key parameters in those locations. 

Nevertheless, the distributions of the local p-value statistics (Figure 7.23) show significant 

relationships in the northeast community areas, indicating reliability of the model 

performance.  
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Figure 7.22 Map of the standard error of age diversity parameter 

 

Figure 7.23 Map of p-values of the age diversity parameter 

Yeadon 

Rawdon 
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From the coefficient of residential diversity shown in Figure 7.24, it can be seen that the 

parameter has a larger effect in community areas in the southern edge of Leeds. These areas 

(including Methley, Rothwell and Ardsley East & West) are largely homogeneous and 

residentially stable. The interpretation of the relationship between residential instability and 

burglary is rather a complex one (Markowitz et al., 2001; Martin, 2002). It is likely that the 

cost of crime profitability increases the likelihood of burglars to target residentially stable 

communities than their unstable counterparts (Ward et al., 2014) and the risk of burglary 

victimisation is more likely to be higher where affluent neighbourhoods were surrounded by 

deprived neighbourhoods (Mburu and Bakillah, 2016). On the other hand, it is more likely 

that an increase in the residential diversity in an area to disrupt the bonds of social networks 

thereby increasing the risk of victimisation. Residential instability in a neighbourhood is 

associated with weak social ties and a low probability of residents  connecting (Sampson et 

al., 1997). 

 

Figure 7.24: Map of residential diversity coefficient 

It is reasonable to suggest that local variations in the relationship between community 

cohesion and burglary can be attributed to contextual variations in different areas 

(Malczewski and Poetz, 2005), though this relationship might not necessarily be picked up by 

the GWR model. In order to assess the performance of the model, the standard error statistics 

were all mapped (Figure 7.25); lower standard error values can be seen clearly in the north 

Methley Rothwell 

Ardsley East & West 



209 

 

and the south of Leeds. However, the distribution of the local p-values (Figure 7.26) shows 

those communities in the south were more significant, indicating the reliability of the model 

in those areas.  

 

Figure 7.25: Standard error of residential diversity 

 

Figure 7.26: p-values of residential diversity 
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In terms of the spatial variation in the coefficient of the economically inactive population 

(Figure 7.27), shows more influence on community areas in the south (such as Belle Isle, 

Lofthouse & Robin Hood and Rothwell) and northeast including Guiseley, Otley and Yeado, 

though the variability in the coefficient of the parameter is not large across Leeds. However, 

in the UK, statistics have consistently shows that economically inactive population are more 

likely to be victims of burglary crime than those who are economically active (ONS, 2014b; 

ONS, 2016a). The standard error statistics for this relationship shown in Figure 7.28 indicate 

that the values are relatively small across Leeds. Additionally, the local p-values were more 

significant in the south and northeast communities, suggesting reliability in the model results 

in those locations. The map of local p-values of the economically inactive variable shown in 

Figure 7.29 also indicates a statistically significant (p-values) relationship towards areas to 

the northeast (p-values <0.05) and southern (p-values <0.01) parts of Leeds respectively. This 

further provides confidence in the results of the local GWR model in these areas. 

 

Figure 7.27: Coefficient of economically inactive population 
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Figure 7.28 Standard error of economically inactive population 

 

Figure 7.29 p-values of economically inactive population 
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7.7 Concluding Remarks 

This chapter has extended the findings from chapter 6 on investigating the feasibility of using 

new data sources such as social media to explore community cohesion and crime which 

forms an important part of this research. Consequently, the chapter has employed data from 

94 Leeds community areas Facebook pages and groups to quantify engagement rates. The 

chapter began by describing the importance of social media engagement on social media 

especially Facebook; then proceeds to explain how Facebook can be used for the generation 

of social capital in the community areas. It was also highlighted that post content can 

influence interaction on Facebook and potentially increases engagement rate on a community 

page. It can be assumed that higher engagement rate on a community Facebook page is 

potentially a strong indication of social cohesion in the local area, which could potentially be 

useful for predicting off-line community cohesion. Although the engagement rate is limited 

to the number of fans who choose to follow updates on community Facebook pages and 

groups, sampling bias is likely. Additionally, like any social media, the numbers of fans are 

subject to change over time which can affect the post interaction metrics. Meaning that 

engagement rate is also subject to change as the interaction behaviour of users changes. 

 However, the new metrics are potentially useful for highlighting insights into social 

engagement in different community areas, therefore appropriate for adoption as a proxy for 

exploring community cohesion. This is especially important owing to lack of data to quantify 

community cohesion from the official government data. Additionally, the new metrics are 

potentially useful alongside the traditional variables of regression for modelling crime 

(burglary specifically), as demonstrated in this research. 

An intuitive finding from the regression models (global OLS and local GWR) indicates the 

virality of information about community safety is associated with decreases in burglary rates 

across Leeds community areas, highlighting the key contribution of the new metric of post 

share (V) in quantifying community cohesion and burglary rates. Additionally, the inclusion 

of the metric of engagement has greatly improved the performance of the traditional 

regression model in chapter 5. Although the PCV indicators are collectively useful for 

measuring community engagement, it can be argued that the metric of virality is the most 

important variable contributing in modelling burglary rates. The findings also suggest the 

need for an increasing SM network engagement in the community areas especially, where 

higher crime rates are prevalent. While facilitating collective community building, SM 

networks can also enhance community action by creating awareness about community safety, 
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therefore complimenting the law enforcement efforts in crime reduction. Finally, the insights 

derived from the analysis in this chapter and previous chapters (5 and 6) will be used in 

chapter 8 for constructing a new Leeds community areas classification profile, so as to 

advance understanding of the relationship between community cohesion and crime. 
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Chapter 8   

Community Cohesion and Crime: A New Leeds Community 

Areas Classification Profile 

8.1 Introduction 

The main aim of this research is to explore the relationship between  community cohesion 

and crime through the use of new social media data sources. In the previous chapters (6 and 

7), social media data were used to explore community cohesion and crime in contrasting  

community areas of Leeds. Specifically, chapter 6 employed a sentiment analysis method on 

Twitter data to quantify community cohesion in different areas. Chapter 7 involved 

engagement analysis using Facebook data for modelling community cohesion and burglary 

rates. Earlier in chapter 5, diversity statistics were constructed and used in a traditional 

regression model of community cohesion and crime (burglary) in Leeds. This chapter brings 

together insights derived from the analyses of traditional and social media data used in the 

previous chapters to develop a new understanding of the relationship between community 

cohesion and crime for Leeds community areas. The objective of any classification is to 

group together areas with similar characteristics as much as possible (Kaufman and 

Rousseeuw, 1990). Section 8.2 explains the importance of community classification. The 

cluster analysis approach taken, as well as the methods employed for the clustering, are 

described in Section 8.3. An interpretation of the classification is presented in Section 8.4, 

with Section 8.5 providing concluding remarks. 

8.2 Importance of Community Classification 

Spatial classification of neighbourhoods has long been an area of interest in geography and 

urban sociology (Singleton and Longley, 2009). Social scientists have developed a tradition 

of mapping variations in urban neighbourhoods in order to better understand patterns and 

characteristics (Spielman and Thill, 2008). The spatial location and composition of different 

areas is an integral part that characterises urban community form. Urban community form 

refers to the different characteristics of neighbourhoods in terms of their socio-economic and 

demographic structure (Arundel and Ronald, 2017). The structure and composition of urban 

community is an important factor determining the potential for social interactions between 

residents (Delmelle et al., 2013), generation of social capital (Putnam, 1995), greater chances 

of building a cohesive community (Cabrera et al., 2017) and has been shown to influence the 
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social behaviour of members, especially the young (Leventhal and Brooks-Gunn, 2000; 

Maiese, 2003). While the concept of classification also includes the environmental 

characteristics of a given area and its land uses (Dempsey et al., 2010), this aspect of 

classification is beyond the scope of this research. Environmental characteristics include 

soils, climate and vegetation; while land use includes the transportsation network, residential 

and commercial activities.  

A better understanding of urban community setting is important for policy planning, 

especially with regards to community building and increasing neighbourhood safety and 

well-being of society (Power, 2004; Amin, 2008). Local community classifications can also 

provide an opportunity for a detailed analysis of their characteristics and enhance better 

understanding of the dynamics of their social relationships (Clark, 2007). For example, 

Warner and Rountree (1997) argued that community structural characteristics such as 

residential instability, heterogeneity and socio-economic disadvantage limit the ability of 

residents to establish meaningful social ties. In such situations, collective community action, 

especially for controlling delinquent behaviour, is difficult (Sampson and Groves, 1989; 

Bursik Jr and Grasmick, 1993). Consequently, a change in demographic settings of a 

community is likely to have implications for social composition (Rees et al., 2012) and the 

extent of social relationships that determine cohesion, especially in areas with a large diverse 

population (Nandi and Platt, 2014).     

Previous classifications have concentrated on grouping neighbourhoods together with a view 

to identifying areas for the marketing of products/services and such attempts have given rise 

to commercial geodemographic classifications like A Classification of Residential 

Neighbourhoods (ACORN), MOSAIC from Experian and CAMEO from CallCredit 

(Brunsdon et al., 2016). More recently, an open source geodemographic classification has 

been developed entirely from 2001 Census statistics (Vickers and Rees, 2007) and another 

based on 2011 Census data (Gale et al., 2018). Unlike earlier classifications, more recent 

studies have attempted to classify the spatial pattern of urban community areas towards social 

applications (Brunsdon et al., 2016). For example, in Leeds, Stillwell and Phillips (2006) 

employed geodemographic classification of ethnic compositions. A similar classification was 

also implemented based on profiling neighbourhoods for community safety, albeit to identify 

areas based on similarity of crime (Shepherd, 2006). However, research into the geography of 

community groups, especially relating to their social cohesion, is limited (Smith et al., 2011). 

This research provided the first academic attempt to classify Leeds’ community areas based 
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on community cohesion and crime. This new classification will have policy implications for 

resource allocation and community building.   

8.2.1 Communities and Crime  

Studies into community structures and their effects on crime originate from social 

disorganisation theory, Shaw and McKay (1942) argued that communities characterised by 

deprivation, residential instability and ethnic heterogeneity are prone to crime due to lack of 

social control; these communities are regarded as disorganised communities.  The concept of 

the theory has been extensively used in a number of studies (e.g. Sampson and Groves, 1989; 

Sampson et al., 1997; Veysey and Messner, 1999; Choi and Choi, 2012; Teasdale et al., 

2012; Livingston et al., 2014; Armstrong et al., 2015). In these socially disorganised 

communities characterised by weak social ties, realisation of common goals especially to 

solve local problems (such as crime) is difficult (Kubrin and Weitzer, 2003; Saggar et al., 

2012), and the capacity of members to entrench social control  (ability to constrain violation 

of norms) in their communities decreases (Pickett, 2013), meaning crime is likely to flourish 

(Bellair, 1997; Markowitz et al., 2001; Kubrin and Weitzer, 2003).  Studies have found 

support for the relationship between social disorganisation and crime (e.g. Sampson and 

Groves, 1989; Takagi and Kawachi, 2014). It was argued that communities having a wider 

interaction are likely to establish stronger social ties and to have a greater potential of being 

cohesive, with the ability for informal social control (Warner and Rountree, 1997). 

However, understanding the complexities of different features existing in the community 

areas, especially with regard to the degree of social cohesion, is a difficult process (Hickman 

et al., 2008). Piekut et al. (2012) stressed that communities could have differing qualities 

identified in two ways: from one viewpoint, a spatial region could be made of smaller groups 

which are heterogeneous both internally (referring to ethnic differences) and externally 

(referring to socio-economic differences); in contrast, groups could be homogeneous inside, 

yet unique from each other (Piekut et al., 2012). Additionally, Ashby (2005) argued that 

communities tend to differ not only socio-economic and demographic terms but also in terms 

of their crime rates and victimisation. As the importance of understanding community 

cohesion is of increasing interest for neighbourhood safety (Ashby, 2005), coupled with 

recent increases in crime rates in West Yorkshire (Flatley, 2017), there is the need for a 

detailed analysis of the socio-economic and demographic composition of different 

community areas of Leeds, with a view of gaining insight into their perceived social cohesion 
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especially relating to crime. Leeds urban communities are changing demographically; Leeds 

is currently the home to over 140 ethnic groups, making it  the second most diverse city 

outside London (Leeds City Council, 2017). Crime has been a particular problem  (Leeds 

City Council, 2014); it is important to have a clear understanding of the populations in 

different areas in order to guide policies appropriate for community building (Leeds City 

Council, 2014). For example, Leeds Metropolitan District comprises of 106 community areas 

(Stillwell and Phillips, 2006), therefore, when areas are clustered into few groups based on 

similarity of their properties, can enhance our understanding of the dynamics in the areas that 

contribute towards crime  (Vickers and Rees, 2007). 

8.2.2 Issues with Previous Classification Attempts 

The underpinning principle of neighbourhood classification is to group areas that are most 

likely to contain similar structural characteristics, even though they may be geographically 

distinct (Leventhal, 2016). Additionally, the classification of an area into a given group may 

be used to describe the likely characteristics and behaviour patterns of its residents 

(Leventhal, 2016). Previous attempts to classify areas used data mainly from Census statistics 

(Vickers and Rees, 2007; Lansley et al., 2015). Census data are the most comprehensive and 

dependable socio-economic and demographic data available in the UK and commonly 

employed for area classification (Vickers and Rees, 2007). Although useful, however, the 

analysis of Census data collected on a decennial basis alone rarely provides measures of the 

relationship between urban community form and crime (Sampson and Groves, 1989). 

Additionally, the use of standard socio-demographic variables (e.g. age, ethnicity, 

employment and education) as associated with previous attempts rarely captures the nuanced 

concept of community cohesion; this might limit better understanding of the dynamic 

composition of spatial urban communities (Piekut et al., 2012). Furthermore, the advent of 

new data sources (‘big data’) from social media has profound implications on our 

understanding of the dynamics of urban neighbourhoods (see Section 4.4) (Adnan et al., 

2013). In order to better understand the socio-demographic diversity of urban communities, 

especially in the context of community cohesion and crime, the combination of 

multidimensional variables such as those from social media (i.e. Facebook and Twitter) and 

crime need to be included in the analysis (Piekut et al., 2012). The combination of new social 

media sources with contextual variables from Census statistics can lead to the generation of 

new community typologies (Leventhal, 2016). However, classification is criticised  due to the 

ecological fallacies (Openshaw, 1984) which arises when results of an analysis based on areal 



218 

 

level aggregate statistics (such as output areas) are assumed to apply at the individual level 

(Tranmer and Steel, 1998). However, in this research, classification is performed at 

community area level so as to simplify description of different areas based on their 

characteristics.   

In this research, in order to create a new typology for Leeds’ community areas, a range of  

multidimensional variables will be employed in the clustering analysis in order to classify 

areas into groups based on the similarity of their characteristics, so as to explore the 

relationship between social cohesion and crime in different community areas of Leeds.  

8.3 Cluster Analysis 

Cluster analysis is the process of classifying objects into homogeneous groups (clusters) from 

datasets in which the number of groups and characteristics are unknown (Kaufman and 

Rousseeuw, 1990; Mirkin, 2012). Clustering is a common technique for statistical data 

analysis used in different fields including social sciences (Bijuraj, 2013). As classification is 

aimed at grouping objects with similar characteristics which are distinct from objects in 

different groups, it is important as it reveals new insights about an area (Kaufman and 

Rousseeuw, 1990). The multifaceted nature of classification building means that no solution 

can be regarded as perfect, especially with different choices of variables, and the clustering 

algorithm or number of clusters is liable to produce a different solution each time (Dennett 

and Stillwell, 2011 p165). A number of criteria have been proposed for cluster analysis by 

different authors. For example, Halkidi et al. (2001) suggested four steps for clustering 

including future selection, the clustering algorithm, validation and interpretation. Future 

selection involves more accurate selection of features (data pre-processing) on which 

clustering is to be performed; the clustering algorithm refers to the choice of an algorithm and 

number of clusters expected from the data should be decided by the researcher; while 

validation refers to the evaluation of cluster results using appropriate techniques; and 

interpretation is necessary in order to draw the right conclusion.  However, a more 

comprehensive approach to cluster analysis for area classification is provided by Milligan 

(1996), extended by Everitt et al. (2001) and used by Vickers and Rees (2007) and is 

considered more appropriate in this research. The seven steps are outlined in Section 8.3.1 to 

Section 8.3.7 .  
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8.3.1 Clustering Elements (Objects to Cluster)  

Clustering elements refer to geographic (neighbourhoods) coverage where the cluster analysis 

will be based. For example, in this research, Leeds’ community areas will be used as 

neighbourhoods for the cluster analysis. Community areas are chosen because they are 

recognised by Leeds residents as representing areas large enough for meaningful social 

cohesion (Stillwell and Phillips, 2006). A detailed description of Leeds community areas is 

provided in Section 3.5. 

8.3.2 Clustering Variables  

These refer to attributes representing areas to be clustered. Variable selection is an important 

process in clustering and classification, however, determining which variables are ‘important’ 

can be difficult (Andrews and McNicholas, 2014). There should be a good reason for a 

variable to be included in the analysis and noisy variables that are likely to distort significant 

patterns should be dropped from the analysis. In clustering, noisy variables are strongly 

correlated with each other and their distribution is almost similar in every cluster (Fraiman et 

al., 2008). In this study, combinations of multidimensional variables from a range of data 

sources are used for the cluster analysis. Table 8.1 presents the datasets used and their 

sources. The variables were chosen based on literature that highlights their significance as 

indicators of community cohesion. A detailed theoretical discussion on Census and crime 

variables is provided in Section 5.5 while Section 4.2  has presented a review on social media 

and community cohesion. 

 

Table 8.1: Variables used in the cluster analysis of Leeds community areas. 

Variables                                                                        Components included                                                                           

Census 

Age diversity Age groups:10-14, 15, 16-17, 18-19, 20-20, 

25-29, 30-44, 45-59, 60-64, 65-74 

Ethnic diversity All 18 ethnic groups identified in the 2011 

Census. 

Education diversity Age:16-over qualification level 1, 16-over 

qualification level 2, 16-over qualification 

level 3, 16-over qualification level 4  

Employment diversity Age:16-64 Managers/Directors, 16-64 

Professionals, 16-64 Associate Professionals, 

16-64 Administration and Secretariat, 16-64 
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Variables                                                                        Components included                                                                           

Skilled Trade, 16-64 Caring Leisure and 

Services, 16-64 Customer Services, 16-64 

Process Plants and Machines, 16-64 

Elementary Occupation  

Residential length diversity Length of residence: Less than two years, 

Less than five years, More than five years, 

Ten years above, Born in the UK 

Crime 

Burglary Rate per 1000 population 

Vehicle Rate per 1000 population 

ASB Rate per 1000 population 

Violence and sexual Rate per 1000 population 

Social media 

Positive sentiment Percentage of positive tweets in an area 

Negative sentiment Percentage of negative tweets in an area 

Engagement rate  Total likes + Total comments + Total 

shares/number of Fans on a community 

Facebook profile. 

 

Correlation diagnostics performed on the variables indicates that some variables were highly 

correlated (Table 8.2). A strong correlation between variables is undesirable because this can 

result in data redundancy (Vickers and Rees, 2007). In this analysis, consideration is given to 

ensure that variables are not highly correlated such that each variable contributes a unique 

dimension to the classification. For example, a strong correlation was found between ethnic 

diversity and length of residence diversity (r = 0.98); between positive sentiment and 

negative sentiment (r = -1); and between antisocial behaviour (ASB) and violent offences (r = 

0.95) respectively. However, a higher positive or negative correlation between variables may 

not necessarily justify their removal (Shepherd, 2006). Vickers and Rees (2007) suggested 

that variables that are likely to predict the value of other variables can be retained in the 

analysis because they are likely to predict the behaviour of the classification. In this research, 

the correlated variables are retained because both are important indicators of social cohesion 

in the community areas. Removing either of these may distort the behaviour of other 

variables in the analysis. 
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Table 8.2: Pearson’s correlation of the clustering variables 

 

Eng_rate BurgRate ASB Veh_Crime Viol_sexual EthDiv ResDiv AgeDiv EmplDiv EduDiv Psentiment 

Eng_rate 

           BurgRate -0.02 

          ASB -0.07 0.56
** 

         Veh_Crime -0.15 0.61
** 

0.7 

        Viol_sexual -0.1 0.62
** 

0.95
** 

0.68
** 

       EthDiv -0.09 0.54
** 

0.45
** 

0.45
** 

0.57
** 

      ResDiv -0.09 0.57
** 

0.53
** 

0.52
** 

0.65
** 

0.98
** 

     AgeDiv -0.12 0.51
** 

0.45
** 

0.39
** 

0.46
** 

0.48
** 

0.53
** 

    EmplDiv -0.01 -0.22
* 

-0.33
* 

-0.08 -0.34
** 

-0.39
* 

-0.36
* 

-0.11 

   EduDiv 0.09 -0.23
* 

-0.07 -0.15 -0.07 -0.24
* 

-0.26
* 

-0.76
** 

-0.09 

  Psentiment -0.03 -0.01 -0.01 -0.09 -0.01 -0.05 -0.06 0.07 0.11 -0.15 

 Nsentiment 0.03 0.01 0.01 0.09 0.01 0.05 0.06 -0.07 -0.11 0.15 -1 

** Correlation is significant at the 0.01 level (2-tailed), * Correlation is significant at the 0.05 level (2-tailed). 
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8.3.3 Variable Standardisation 

Standardisation is a method for the adjustment of means of the data applied in order to 

control for extraneous variables commonly used in geodemographic research (Kalton, 1968; 

Lane and Nelder, 1982). Examples of variable standardisation methods include range 

standardisation (often referred to as min:max standardisation) and standardised z-scores. 

Standardisation is required in most clustering processes because of the variability of 

measurements used in different variables. The type of standardisation method to be employed 

should be decided by the type of data because, unlike regression analysis, cluster analysis has 

no mechanism for detecting relevant and irrelevant variables (Cornish, 2007). Additionally, it 

is necessary to ensure that each variable is equally represented in the cluster analysis. 

Variables with a wider range than others tend to dominate the analysis (Vickers and Rees, 

2007) and for this reason variable standardisation is recommended (Cornish, 2007). 

Furthermore, Milligan (1996) stressed that variable standardisation reduces the effect of 

outliers in the datasets. The most common data standardisation method used in the literature 

is the z-score (Yim and Ramdeen, 2015). A z-score is the statistical measurement of a score’s 

relationship (standard deviation) to the mean, having a mean of 0 and variance of -1 and +1 

(Abdi and Williams, 2010). In this research, z-score is used to standardise the variables prior 

to cluster analysis. z-scores are computed as:  

 

𝑍𝑖 =
𝑋𝑖 − 𝜇

𝜎
 

 

(8.1) 

where 𝑍𝑖 is the standardised value of the variable in area i,  𝑋𝑖 is the original value of the 

variable for area i, 𝜇 is the mean and 𝜎 is the standard deviation of the variable. 

Figure 8.1 shows the boxplots of standardised variables constructed in R environment.  
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Figure 8.1: Boxplots for standardised variables retained for clustering 

 

It can be seen from Figure 8.1 that except for the ethnic diversity and employment diversity 

variables, the rest of the variables were characterised by outliers that has been reduced by 

standardisation. Standardising enabled scaling of the variables so that equal weight is 

assigned to them with a median z-score between +1 and -1. 

8.3.4 Measure of Proximity 

Since the basis for clustering is grouping similar objects, a measure that can determine 

whether two objects are similar or dissimilar is required (Rokach and Maimon, 2005). 

Depending on the data type, different distance measures of similarity or dissimilarity such as 

Euclidean, Manhattan and Minkowski distances are commonly used (Irani et al., 2016). 

Euclidean is simply the ordinary distance from two points, considered a standard metric for 

geometrical problems; Manhattan distance is a metric that calculates the absolute difference 

between coordinates of a pair of data objects; and Minkowski distance is a generalised metric 

that can be used for ordinal variables (Irani et al., 2016). Many clustering algorithms such as 

partitioning (e.g., K-means) and divisive (e.g., hierarchical) use distance between points to 

cluster similar data points together, their efficiency influences the performance of clustering 

(Shirkhorshidi et al., 2015). Additionally, for continuous data (such as that used in this 

research), Euclidean distance is widely recommended (Shirkhorshidi et al., 2015). Euclidean 
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distance as a measure of dissimilarity reports larger values as less similar. It is computed by 

summing the square root of the differences between data points. Equation 8.2 for Euclidean 

distance is given based on Madhulatha (2012):
 

 

𝑑 = √∑(𝑥𝑗 −  𝑦𝑗)2

𝑛

𝑗=1

 

 

 

(8.2) 

where n is the number of variables, and xj and yj are variables respectively.   

8.3.5 Clustering Methods 

A number of clustering methods exist in the literature. The choice of clustering algorithms 

should be decided with knowledge of their robustness to different kinds of data and the type 

of clusters suspected to be present (Jain et al., 1999). The multifaceted and heuristic nature of 

different classification building algorithms means that no solution can be regarded as perfect 

(Dennett and Stillwell, 2011). Clustering algorithms can be broadly grouped into two types: 

partitional and hierarchical (Ng and Han, 1994; Kaufman and Rousseeuw, 2005). Partitional 

algorithms determine all clusters at a time, whereas hierarchical algorithms find successful 

clusters using previously established clusters (Madhulatha, 2012). 

8.3.5.1 Hierarchical Methods 

Hierarchical clustering is devoted to representing data in the form of hierarchy over the entity 

set (Mirkin, 2012). There are two approaches to building a hierarchical cluster namely 

agglomerative and divisive. The agglomerative approach builds a hierarchy of clusters in the 

bottom-up fashion, starting from the smaller clusters and sequentially merging according to 

similarity. The agglomerative clustering procedure is a widely used hierarchical method. 

Unlike agglomerative methods, the divisive approach builds a hierarchy of clusters in the 

bottom-top fashion by splitting larger clusters into smaller ones starting from the entire 

dataset (Sarstedt and Mooi, 2014).   

The advantage of hierarchical methods is that their output can be graphically displayed which 

is far more informative than the unstructured clusters produced by partitional methods (Rani 

and Rohil, 2013). However, the hierarchical algorithms suffer from the lack of back-tracking 
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capability; once clusters are formed they cannot be disbanded (Rokach and Maimon, 2005; 

Everitt et al., 2011). Similarly, once objects are separated they will never be re-grouped into 

the same cluster (Ng and Han, 1994). Additionally, hierarchical methods do not handle large 

datasets and are sensitive to outliers (Fahad et al., 2014). These set of drawbacks associated 

with hierarchical methods makes them unsuitable for this research. 

8.3.5.2 Partitional Methods 

Partitional methods relocate objects by moving them from one cluster to another starting by 

an initial partitioning (Rokach and Maimon, 2005). There are different types of partitional 

algorithms which include K-means, K-medoids: partition around medoids (PAM), clustering 

large applications (CLARA) and clustering large applications based on randomised search 

(CLARANS). The basic idea of partitioning algorithms is to find structures that minimise a 

certain error criterion which measures the distance of each object to its cluster centre value. 

This criterion is known as the sum of squared error (SSE), which measures the squared 

Euclidean distance of objects to other centres (Rokach and Maimon, 2005). The simplest and 

most widely used algorithm employing the SSE criterion is the K-means algorithm. 

K-means 

K-means is an iterative relocation algorithm, where objects are assigned and re-assigned to 

clusters which have less within-cluster variation (squared distance from each observation), 

preferred because this allows subjects to be moved from one cluster to another unlike in 

hierarchical cluster analysis  (Cornish, 2007). K-means clustering was first applied by 

MacQueen (1967), though originally proposed by Stuart Lloyd in 1957 as a clustering 

technique, but was only published in 1982 (Lloyd, 1982). K-means clustering is a technique 

within unsupervised learning that can be employed to better understand the structure of the 

underlying data (Beil et al., 2002), is relatively simple and fast, with the capability of 

handling large datasets (Zhang et al., 2008). However, it requires a researcher to determine 

the appropriate number of clusters (K) and the order in which they are stored can also affect 

the partition (Kaufman and Rousseeuw, 1990). Furthermore, K-means is sensitive to outliers 

(Rokach and Maimon, 2005) and each run produces different results (Pavan et al., 2012). The 

K-means clustering algorithm has been widely used in previous studies (Vickers and Rees, 

2007; Piekut et al., 2012; Lansley et al., 2015; Mohit et al., 2016). Equation 8.3 presents the 

K-means algorithm based on Faber (1994): 
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𝐸 =  ∑ ∑  ∥ 𝑋𝑖𝑗

𝑛𝑖

𝑗=1

𝑘

𝑖=1

−  𝑍𝑖  ∥2 

                                                                      

 

 

(8.3) 

where E is the sum of all the variances, xij is the jth
 
point in the ith cluster, zi is the reference 

point of the ith and ni is the number of points in that cluster. The notation ∥xij – zi ∥
2
 stands for 

the distance between xij and zi.  

In this research, an exploratory analysis of the datasets was experimented with using SPSS in 

order to guide the selection of the optimum number of clusters. Though there is an issue with 

conducting K-means in SPSS this is to do with randomisation of the initial seeds. One way 

around this is to specify the starting seeds so these do not change each time the algorithm is 

re-run. 

Partition Around Medoids (PAM) 

PAM is similar to the K-means algorithm; it differs from the latter mainly in its 

representation of different clusters (Kaufman and Rousseeuw, 1990). In the PAM algorithm, 

each cluster is represented by the most centric object (medoids) in the cluster rather than the 

cluster mean. It begins by selecting an object as the medoid of each cluster, then each of the 

non-selected objects is grouped with the medoid to which it is most similar; the algorithm 

then swaps medoids with other non-selected objects until all objects qualify as medoids 

(Halkidi et al., 2001) The K-medoid method is more robust than K-means in the handling of 

noise and presence of outliers (such as in this research), because a medoid is less influenced 

by outliers (Rokach and Maimon, 2005; Berkhin, 2006). However, PAM has a higher 

computational cost than the K-means method, with both methods requiring the researcher to 

specify the number of K clusters from the outset. PAM has been shown to perform well when 

used on datasets (few hundreds) in not more than 5 clusters (Ng and Han, 1994).  

Furthermore, visualisation of the cluster solution is crucial for verifying the goodness of any 

clustering algorithm (Halkidi et al., 2001). In this direction, the PAM algorithm has the 

advantage of graphical display known as silhouette plots. Silhouette plots show which object 

lies within their cluster, and which ones are merely somewhere in between clusters (Kaufman 

and Rousseeuw, 1990). They can also be used to aid selection of an appropriate number of 

clusters and validation of cluster analysis. Additionally, silhouettes offer the advantage that 
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they only depend on the actual partition of objects and not on the clustering algorithm that 

was used to obtain them; therefore, could be used to improve cluster analysis (e.g. move 

objects with a negative value to their nearest neighbour) (Rousseeuw, 1987: P59). Silhouette 

values close to 1 indicate that objects are well placed in their cluster and values closer to 0 

indicate that the fit was not good while negative values indicate that observations are 

probably placed in a wrong cluster. Equation 8.4 for computing silhouettes is given based on 

Rousseeuw (1987): 

 

s(i) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
 

 

 

(8.4) 

where a(i) is the average dissimilarity of (i) to all other objects in the same cluster, b(i) is the 

lowest average dissimilarity of (i) to the other objects in all other clusters in the whole 

solution. 

Clustering can be performed using different software and how the initial clusters are seeded 

differs between the algorithms (programs) used. For example, Vickers and Rees (2007) used 

SPSS to performed K-means clustering and Dennett and Stillwell (2011) used MATLAB in 

their clustering analysis. Dennett and Stillwell (2011) argued that SPSS is not flexible in the 

assignment of initial cluster centroids, such that different clusters solutions are produced 

using k-means algorithm in SPSS on the same dataset. While these programs are useful in 

different ways for clustering, they are limited in graphical output and diagnostic information 

that can guide the decision on the best possible cluster solutions. In this research, clustering 

was implemented using cluster and factoextra packages in R statistical environment (R Core 

Team, 2017). The cluster package Maechler et al. (2017) provides functions for the 

implementation of partitioning algorithms such as K-means and PAM clustering, while 

factoextra package of Kassambara and Mundt (2017) provides useful functions for an elegant 

visualisation of partitioning methods. Shepherd (2006) successfully implemented a similar 

approach in the R environment to create a neighbourhood area classification for community 

safety in Leeds. 

Clustering Large Application (CLARA) 

Similar to the PAM algorithm, clustering large applications (CLARA) was also developed by 

Kaufman and Rousseeuw (1990). Unlike PAM that finds representative objects (medoids) of 
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the entire dataset, CLARA draws multiple samples from the dataset then applies PAM on the 

samples and then outputs the best clustering groups from the sample. Therefore the algorithm 

minimises the computational cost associated with PAM which makes it suitable for clustering 

tasks on a large number of datasets (Kuang and Zhang, 2017). However, this method is 

constrained by a quality issue as using sampling techniques in clustering may not represent 

the initial dataset (Andritsos, 2002). Additionally, CLARA cannot find the best clustering 

especially where the sample drawn does not belong to the best medoids (Boomija and Phil, 

2008). These limitations make the application of CLARA unsuitable in the present research. 

Clustering Large Applications Based on Randomised Search (CLARANS) 

The CLARA algorithm was proposed by Ng and Han (1994). While CLARA compares 

samples in the dataset, CLARANS applies a random search to generate neighbours (Berkhin, 

2006). This has the advantage of not confining a search to a localised area (Ng and Han, 

1994). The complexity of CLARANS is in terms of the multiple numbers of points drawn 

while searching for the best medoids (Berkhin, 2006). Furthermore, both CLARA and 

CLARANS are based on the clustering criterion of PAM (i.e. distance from the medoids) 

(Andritsos, 2002). Consequently, after careful review different clustering methods available, 

in this research, a final decision was arrived to proceed with implementation of the PAM 

approach. This is because it was found to be the most appropriate method for the task ahead.   

8.3.6 Choosing Number of Clusters 

This is the most difficult decision to be made in cluster analysis. There are different 

procedures suggested for selecting the most appropriate number of clusters (K), however, no 

standard rules apply in the literature (Tibshirani et al., 2001).  A suitable number should be 

decided upon to reflect patterns within the dataset and research objective (Yim and Ramdeen, 

2015). However, a number of methods have been proposed such as the elbow method, 

Akaike information criteria (AIC), Gap statistics and average silhouette width (Chiang and 

Mirkin, 2010). The elbow method is based upon the idea that one should choose the number 

of clusters such that adding another cluster does not give a better modelling of the data 

(Bholowalia and Kumar, 2014); AIC is a model selection criteria that is applied in a 

multivariate analysis such as clustering to assess the relative quality of a model (Akaike, 

1981); Gap statistics is a measure of within cluster dispersion relative to the distribution of 

objects in the dataset (Tibshirani et al., 2001); and Silhouette width is a measure of similarity 

(cohesion) of objects in their cluster and dissimilarity (separation) between clusters (Kaufman 
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and Rousseeuw, 1990). In this research, all these methods have been experimented with and 

evaluated before deciding on the optimal number of clusters to be used in the final partition. 

The optimal value of k was evaluated within the range of 2 to 10 clusters. The idea behind the 

choice of 10 cluster range is that the optimum number of clusters is likely to fall between 

these ranges, considering the number of variables in the dataset.  

Elbow and Scree Plot Methods 

The elbow and scree plot are methods implemented to guide the selection of an optimal 

number of clusters. The agglomeration schedule in the hierarchical method can be a starting 

point to explore a possible number of clusters in a dataset. The agglomeration schedule 

displays how clusters are progressively formed and the coefficient at each stage represents 

the distance between the objects being combined which can be observed by a scree plot (Yim 

and Ramdeen, 2015). A larger increase in coefficient value indicates an increase in 

dissimilarity and at that stage, it would be ideal to stop the clustering process. A scree plot is 

simply a line graph (a visual representation of the agglomeration schedule) which can be 

plotted in Microsoft Excel because SPSS does not produce scree plot in its output (Yim and 

Ramdeen, 2015).  

Similarly, the rationale behind the elbow method is that increasing the number clusters at 

some point does not contribute to clustering; therefore at such point distortion begin to set in 

(Kodinariya and Makwana, 2013). However, the elbow method can also be ambiguous 

because sometimes there is no elbow or several elbows which makes it difficult to choose an 

optimal number of clusters (Kodinariya and Makwana, 2013). In this research, the K-means 

elbow plot was implemented in the R statistical environment. Figure 8.2 shows the scree plot 

of the coefficients of agglomeration performed using the hierarchical method (left) and elbow 

plot for the K-means clustering procedure (right).  

 



230 

 

 

Figure 8.2: Scree plot of the agglomeration schedule (left) and Elbow plot for K =10 cluster 

solutions (right) 

 

From Figure 8.2 (scree plot) it can be seen that the largest increase in dissimilarity occurred 

at stage 91 out of 94 stages (possible number of clusters are counted from right to left), while 

ths elbow plot shows a break at four cluster solution. Both figures suggest that a four cluster 

solution is likely to be the most appropriate for the dataset in this research.  

 

Akaike Information Criteria (AIC) 

As highlighted in Section 8.3.6, AIC is used in this research in order to guide the best number 

of clusters to be implemented. Although a number of information criteria are used in the 

literature for determining the number of clusters, such as Bayesian Information Criterion 

(BIC) and Kullback Information Criterion (KIC) (Akogul and Erisoglu, 2017), AIC is widely 

used method for determining the number of clusters in different disciplines including social 

sciences (Snipes and Taylor, 2014). BIC is less favourable because it tends to overestimate 

the number of clusters (Mirkin, 2011). These information criteria are likely to produce 

different results for estimating the number of clusters in a dataset (Akogul and Erisoglu, 

2017). In this research, AIC was assessed using SPSS within 10 different cluster options as 

shown in Table 8.3. The best clustering solution is one with the lowest AIC value. 

 

 

 

 



231 

 

Table 8.3: AIC for K=10 cluster solutions 

Auto-Clustering 

Number of Clusters 

Akaike's 
Information 
Criterion (AIC) AIC Change

a
 

Ratio of AIC 
Changes

b
 

Ratio of Distance 
Measures

c
 

1 686.545    

2 596.360 -90.185 1.000 1.879 

3 567.066 -29.294 .325 1.463 

4 559.707 -7.359 .082 1.367 

5 565.069 5.362 -.059 1.121 

6 574.179 9.109 -.101 1.176 

7 587.920 13.742 -.152 1.037 

8 602.591 14.670 -.163 1.299 

9 623.097 20.507 -.227 1.310 

10 648.220 25.123 -.279 1.001 

a. The changes are from the previous number of clusters in the table. 

b. The ratios of changes are relative to the change for the two cluster solution. 

c. The ratios of distance measures are based on the current number of clusters against the 

previous number of clusters. 

 

Table 8.3 shows the AIC values for 10 cluster solutions. From the results, it can be seen that 

the four cluster model has the lowest values. A model with lowest AIC value is usually 

considered as the best performing model (Snipes and Tailor, 2014). In this research, the AIC 

method suggests four clusters as the most appropriate for the dataset. 

Gap Statistics 

The Gap statistics is based on the idea that comparing the change in within cluster dispersion 

with that expected under appropriate reference null distribution (Tibshirani et al., 2001). The 

procedure starts by creating a reference data that represents the observed data; the reference 

data is then compared with observed data in order to identify the value of K from the 

observed data with least noise (Pedersen and Kulkarni, 2006). Gap methods can be applied to 

any clustering algorithm such as hierarchical or K-means. However, the gap method has been 

criticised for overestimating the number of clusters (Dudoit and Fridlyand, 2002). In this 

research, the Gap method was implemented in R environment using the K-means output. 

Figure 8.3 shows the plot of Gap statistics for 10 cluster solutions.  
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Figure 8.3: Gap statistics plot 

 

From Figure 8.3, the gap method estimate of the number of clusters is 2. The gap function 

starts to rise again after 4, 6, 8 clusters and 10, suggesting that there are other candidate 

clusters. Tibshirani et al. (2001) suggested examining the entire gap curve rather than simply 

the position of its maximum in order to explore other potential clustering options available.  

Average silhouette width 

The silhouette technique provides graphical output for visualising how well clustered objects 

lie in their clusters. The average silhouette plots are useful for assessing the potential number 

of clusters in a dataset. The silhouette procedure is well described in Kaufman and 

Rousseeuw (1990). Average silhouette approach is widely used in a number of studies to 

guide the selection of an optimal number of clusters (e.g. Shepherd, 2006; Dennett and 

Stillwell, 2011). Building on the previous studies, in this research, average silhouette width is 

used in order to determine the appropriate number of clusters for community classification in 

Leeds. Similar to previous methods, a range of partitions were evaluated in order to arrive at 

a decision on the optimal number of clusters as shown in Figure 8.4. 
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Figure 8.4: Average silhouette widths between 2 and 10 cluster solutions 

 

It can be seen from Figure 8.4 that the K = 2 cluster solution has the largest average 

silhouette width (2.0). There is an indication that as the number of clusters increases, the 

average silhouette widths decreases and then increases again. Following Shepherd (2006), in 

this research, consideration is given to the selection of clusters that will reflect true 

community differences in Leeds in terms of social cohesion and crime rates. In this regard, 

choosing few clusters (e.g. 2) is rather inappropriate considering the number of Leeds 

community areas and the complex nature of estimating the degree of community cohesion in 

different areas. Additionally, fewer groups are undesirable because they will represent 

broader generalisations (Dennett and Stillwell, 2011). Likewise, selecting many clusters 

would rather complicate interpretation. Therefore, considering the task at hand, the 4, 5, 6 

and 7 cluster solutions could be potential candidates for selection in this research. Although 

5, 6 and 7 cluster solutions have slightly higher average silhouette width values (0.17, 0.18 

and 0.16) than the four cluster solution (the difference is very negligible); they represent too 

many clusters that will be difficult to interpret in the context of the present research. 

Additionally, classifying the degree of community cohesion and crime of an area beyond the 

range of four groups might not be meaningful. In the light of the foregoing considerations, 

the four cluster solution with an average silhouette value of 0.15 could be a potential 

alternative. Figure 8.5 shows silhouette plots the candidate clusters. 
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Figure 8.5: Silhouette plots for candidate clusters (4, 5, 6 and 7) 

 

An average silhouette value of 0.15 in the four cluster solution (Figure 8.5) produced in this 

research is relatively good compared to previous studies. For example, Shepherd (2006) used 

the average silhouette method to evaluate cluster solutions and successfully implemented 

classification of Leeds neighbourhoods with an average silhouette value of 0.11. Similarly, 

Dennett and Stillwell (2011) also employed a similar method in their study to classify internal 

migration for Britain with an average silhouette width of 0.13. Therefore, increasing the 

number of clusters does not seem to make any significant improvement beyond four clusters, 

but rather creating subset partitions from the existing clusters. This is evident in 5, 6 and 7 

cluster solutions as seen in Figure 8.5. Rousseeuw (1987) stressed that when K is set too 

high, natural clusters will be artificially divided in order to conform to the specified number 

of groups. This has been demonstrated here, where the first three clusters seem to be retained 

and subsequent clusters appeared to be created from the fourth cluster. 

Furthermore, in order to assess whether to proceed with the four cluster solution for our 

classification, a comparison was made with the six cluster solution that has the largest 

average silhouette width (Figure 8.4). In both clustering solutions, the object with largest 

silhouette value (0.42) is Headingley community area. Additionally, examining the values of 

average silhouette widths for the two different clustering solutions shows that they both have 
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some similarities (Figure 8.6). Again this makes it more difficult to decide on which 

clustering solution to choose from the two. However, in a situation of this kind where 

similarities exist between two different cluster solutions, it was suggested that a better 

solution will likely be one with less negative values  (Dennett and Stillwell, 2011). In this 

research, the four cluster solution has slightly fewer communities (20) with negative 

silhouette values compared to the six cluster solution that has 22 communities with negative 

silhouette values. Negative values indicate that objects do not conform well in the assigned 

cluster. 

 

Figure 8.6: Silhouette information for K=4 and K=6 cluster solutions compared. 

Taking into consideration all evidence from different methods for the selection of the optimal 

number of clusters explored, therefore in this research, a four cluster solution is deemed more 

appropriate. Despite a slightly negligible differences in the average silhouette width between 

the cluster solutions. 

8.3.7 Clustering Validation  

Clustering validation is a process of evaluating the goodness of clustering results and is an 

essential step for the success of any clustering application (Liu et al., 2010). It is always a 

good practice in cluster analysis to re-run the analysis with different algorithms in order to 

see if similar solutions could be found. Charrad et al. (2014) stressed that cluster validation is 

necessary because different algorithms produce different clusters, even for the same 

algorithm selection of different parameters or order of data can greatly affect the clustering 

solutions. Also, the validity of the solution should be tested to ensure that clusters are 

representative of the variables included in the analysis. Generally, clustering validity can be 

evaluated in two ways; internal criteria and external criteria. The internal criteria are based on 
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the quantities and features inherent in the dataset; on the other hand, external criteria involve 

the structure of the resulting algorithm applied to the dataset (Halkidi et al., 2001).  

Internal Validation 

Linoff and Berry (2011) proposed two approaches to internal clustering evaluations namely 

compactness and separation. Compactness measures how closely related the objects in a 

cluster are, while separation measures how distinct or well separated a cluster is from other 

clusters (Liu et al., 2010). Clustering validation indices (CVIs) can be used to measure the 

quality of clustering based on compactness and separation of the clusters (Hämäläinen et al., 

2017). A number of CVI techniques have been proposed in the literature and a 

comprehensive review of the CVIs validation techniques was provided in (Arbelaitz et al., 

2013). For the internal clustering validation, the Dunn index (Dunn, 1974) and the Silhouette 

index (Kaufman and Rousseeuw, 1990) are commonly employed. However, the Dunn index 

is less preferred because it is computationally expensive and sensitive to noisy data (Saitta et 

al., 2007). Additionally, unlike the Silhouette index, the Dunn index has no graphical output 

for clustering solutions. Therefore, in this research, Silhouette index, a widely used internal 

validation technique was employed for assessing the quality of clusters (Liu et al., 2010; 

Thinsungnoena et al., 2015). 

External Validation 

The quality of the clustering solution can be evaluated externally by comparing similarities 

between two partitions (Desgraupes, 2013). External validation mainly quantifies how good a 

partitioning is obtained with respect to prior class labelled information available. The Rand 

index (RI), F-measure, normalised mutual information (NMI) and purity are some common 

examples of external validity indices used in the literature (Alok et al., 2014). However, RI is 

widely used measure for external cluster validation (Santos and Embrechts, 2009; Van 

Craenendonck and Blockeel, 2015). RI is a measure of similarity between two different 

clustering methods of the same set of datasets (Rand, 1971). The measure assesses how much 

each pair of data points is assigned in each clustering. RI values range between 0 and 1, with 

values closer to 1 indicating a perfect match and values towards 0 indicate no match. RI of 2 

partitions (x and y) is given as:  
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RI =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

 

 

(8.5) 

where a and c are the number of pairs of objects that are in the same cluster in x and in the 

same cluster in y; b and d are the number of pairs of objects that are in a different cluster in x 

and in a different cluster in y. 

In this research, the results from K-means and PAM algorithms were used for the clustering 

validation in order to compare their similarity using both measures of validity. The Fossil 

package by Vavrek (2011), a package for analysing geographical datasets in R, was 

employed for computing RI and ARI respectively. 

However, a problem with RI is that the expected value of random clustering does not take a 

constant value (such as 0). Therefore, to address this limitation, an Adjusted Rand Index 

(ARI) was proposed (Hubert and Arabie, 1985). ARI is a correction of the RI that measures 

the similarity between two classifications of the same objects by the proportion of agreements 

between the two partitions, taking account of random chance that will cause some objects to 

occupy the same cluster. The correction is obtained by subtracting from the RI its expected 

value. ARI can be written as:  
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(8.6) 

where nij is the number of objects common in the two partitions, a is the sum of values in row 

i and b is the sum of values in column j; and 

where ∑ (𝑛𝑖
2

)𝑖𝑗  = index, [ ∑ (𝑎𝑖
2

) ∑ (𝑏𝑗
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) = expected index and 

1

2
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2
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max index. 

The ARI equation can also be written in a simplified format as: 

ARI =
𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥 𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥
 

 

 

(8.7) 
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Table 8.4 presents the performance of measures of the validity indices of the clustering 

algorithms used in this research. 

Table 8.4: Performance of validity indices between K=2 and K=9 solutions 

K RI ARI 

2 0.67 0.34 

3 0.64 0.29 

4 0.78 0.44 

5 0.76 0.38 

6 0.77 0.38 

7 0.78 0.27 

8 0.84 0.41 

9 0.85 0.35 

 

Table 8.4 shows the comparison between RI and ARI external validity indices. As 

highlighted, the 4 cluster has the largest ARI (0.44), indicating a fairly strong agreement 

between the clustering algorithms. Additionally, the RI value of 0.78 obtained indicates a 

strong match between the two clustering solutions. RI is usually higher than the ARI, since 

RI lies between 0 and 1 the expected value of RI (though not a constant value) must be 

greater than or equals to 0; while the expected value of ARI has a value of 0 and a maximum 

value of 1 (Santos and Embrechts, 2009 p.2). Figure 8.7 shows the graph plot of the 

comparison between RI and ARI index values as a function of the number of clusters.  

 

 

Figure 8.7: Graph plot of the comparison between RI and ARI index values 
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8.4 Leeds Community Classification 

The final step in the classification involves an interpretation of the typology produced. This 

task, however, is sensitive and needs to be handled with caution, especially where names are 

assigned to groups. The process of creating a name that best describes a cluster can be 

difficult and using a contentious name can be offensive (Vickers and Rees, 2007). The name 

is expected to describe the general area/population but cannot be expected to describe each 

individual.  Additionally, the names assigned to clusters should as much as possible reflect 

the characteristics of the communities in that cluster. In this research, the typology of the 

clusters is intended to reflect the degree of community cohesion of different areas as they 

relate to crime. However, as highlighted by Vickers and Rees (2007) and for the avoidance of 

naming clusters that may not be overly well received within some community areas; clusters 

will simply be called groups (similar to Shepherd (2006)). 

Furthermore, the geography of different classifications can be mapped for visualisation. The 

influence of different variables in a particular cluster can also provide a useful guide for 

describing the characteristics of that cluster. One way of achieving that is by visualising the 

variables using a radar chart. Radar charts consist of spikes representing the different 

variables and how these compare to the global average. They have the advantage of 

displaying multidimensional data without truncating the data (Kalonia et al., 2013). Radar 

charts are widely used for visualising classifications (Vickers and Rees, 2007; Adnan, 2011; 

Alexiou et al., 2016). In this research, while clusters are mapped to explore their spatial 

distributions, radar charts are also used for visualising the influence of clustering variables in 

each group (Figure 8.8). Since the variables were transformed to z-scores, the mean of each 

variable is 0. Groups are defined by variables with the highest and lowest standardised 

variables. Additionally, boxplots are also provided to show the distribution of the data for 

each variable. 
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Figure 8.8: Combined radar charts for community groups 

 

8.4.1 Group 1 

Group 1 comprises of 24 community areas which are largely located around the fringes of 

Leeds district (Figure 8.9). The silhouette width value of most of the community areas is 

between 0.25 and 0.41, indicating a strong similarity of the members. Additionally, the 

average silhouette width value of 0.25 obtained for this group suggests that it is well defined, 

though, a few community areas like Pudsey, Morley North Rothwell tend to be weakly placed 

in the group. Similarly, Colton community area has a negative silhouette value (-0.02) 

suggesting non-conformity in the cluster which is likely due to random chance (see Section 

8.3.7). The boxplots of standardised (z-scores) variables of the cluster are shown in Figure 

8.10. The few outliers observed in some variables that defined the group in results from the 

areas that were not strongly placed.    

-3

-2

-1

0

1

2

3
EthDiv

AgeDiv

EmplDiv

EduDiv

ResDiv

Engagement

Psentiment

Nsentiment

Burglary

ASB

VehCrime

ViolSexCrime

Group 1 Group 2 Group 3 Group 4



241 

 

 

Figure 8.9: Silhouette width values of group 1 community areas 

 

The cluster is characteristically homogeneous as indicated by their lowest ethnic diversity and 

age diversity (Figure 8.11). The communities are likely to be affluent, owing to a higher 

proportion of educational attainment and employment status of the residents. Lower 

residential instability in the areas also suggests that most of the residents are likely to own 

their homes. The bond of social networks is relatively high, meaning that the people are 

likely to express relatively higher positive sentiments. A higher positive sentiment is likely 

because people are happier in their community areas (see Section 6.5.3). 

Crime rates are generally lower in this group compared to all other areas of the district. 

Burglary, ASB, vehicle crime and violence were below the mean suggesting a strong social 

capital of the residents.  
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Figure 8.10: Boxplot of standardised z-scores of the variables in group 1 

 

 

Figure 8.11: Radar charts profile of the variables defining group 1 

8.4.2 Group 2 

Group 2 is the largest cluster comprising of 34 community areas is mainly spread in the north 

including Otley, Wetherby and Boston Spa with a few community areas in the central, south-

east and south-west (Figure 8.12). According to the average silhouette width value (0.22), the 

cluster is also strongly defined. Shadwell community area has the largest silhouette width 
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value (0.41) in the group. Despite a strong definition of the cluster, six community areas 

including Kirkstall, Meanwood, Roundhay and Wortley have shown non-conformity with the 

cluster characteristics having a negative silhouette value respectively. 

 

Figure 8.12: Silhouette width values of group 2 community areas 

Figure 8.13 shows the boxplots of standardised (z-scores) of the variables that defined group 

2. The cluster is characteristically similar to group 1, except that the z-score values are 

slightly higher in this cluster area. Community areas in this group are relatively 

homogeneous, stable and are likely to be affluent (Figure 8.14). Additionally, the population 

is likely to comprise of educated people in the top level of employment, though slightly lower 

than those in group 1. Furthermore, the presence of high social networks (engagement) in the 

cluster suggests that the residents are likely to work together for their common good. This is 

evident by the higher proportion of positive emotions in the community areas. There is the 

likelihood that the people are happier in their interactions.  

Crime rates, especially, ASB, vehicle-related offences and violence are similar to those in 

group 1 (z-scores below the mean). Burglary is slightly higher in this group compared to 

group 1, especially, in areas with negative silhouette values in the cluster like Wortley and 

Kirkstall. 
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Figure 8.13: Boxplot of standardised z-scores of the variables in group 2 

 

 

Figure 8.14: Radar charts profile of the variables defining group 2 

8.4.3 Group 3 

Group 3 is the second largest with 25 community areas located on the east-central and west-

central parts of the district (Figure 8.15). Holt Park is the only community area located in the 

north. The largest silhouette width value (0.28) is Harehills. The mean silhouette width value 
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of -0.01 indicates a poorly defined cluster. Additionally, 10 community areas of the cluster 

have negative silhouette values, suggesting non-conformity with the cluster. One potential 

explanation of this occurrence might be the proximity of these areas to neighbouring 

community areas in group 1. Figure 8.16 shows the boxplots of the standardised variables in 

the cluster. The cluster is characteristically multicultural comprising of a higher proportion of 

ethnic minority, especially in areas like Chapeltown, Little London, Gipton North and 

Beeston (Figure 8.15). Additionally, the cluster is one characterised by relatively high 

proportion (around the city average) of young population who are likely to be in the lower 

cadre of employment. The educational attainment of the residents is slightly above the city 

likely in the range of level 3 and 4, depicting the socio-economic status of the areas. Higher 

residential instability in this cluster reflects the immigration status of the population 

(consisting of a higher proportion of renters). Social networks are lower than the city average, 

a likely indication of weak social interaction in most of the community areas. The higher 

proportion of negative emotion is potentially indicating lack of satisfaction in the areas.     

 

 

Figure 8.15: Silhouette width values of group 3 community areas 

Crime rates in this cluster are by far above the city average (Figure 8.17). Burglary, violence, 

ASB and vehicle-related crime rates are higher in New Wortley, Little London and Harehills 
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community areas, a likely indication of the difficulty of establishing social norms in these 

areas.  

 

Figure 8.16: Boxplot of standardised z-scores of the variables in group 3 

 

 

Figure 8.17: Radar charts profile of the variables defining group 3 
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8.4.4 Group 4  

Group 4 is the smallest with 11 community areas mainly concentrated at the city centre 

(Figure 8.18). The mean silhouette value of 0.21 indicates a reliably defined cluster. 

Headingley community area has the largest silhouette width (0.42) in this cluster. There are 

three community areas (West Park, Richmond Hill and Hunslet) with negative silhouette 

values, indicating non-conformity in the cluster. Boxplots of the standardised (z-scores) 

variables for this cluster is shown in Figure 8.19. 

 

 

Figure 8.18: Silhouette width values of group 4 community areas 

The cluster is characterised by heterogeneous community areas largely comprising of a 

higher proportion of the young population. The diversity of educational attainment in this 

cluster is the lowest in the city (Figure 8.20). This is likely because of the higher 

concentration of student population from the two universities, especially in Headingley, Hyde 

Park and Burley Lodge & Little Woodhouse community areas respectively. Employment is 

slightly above the city average in some areas like Hunslet/Stourton community areas. The 

cluster is also characterised by highest proportion of transient people, typical of a student 

community. Social networks are below the mean, a likely indication of weak bonds of social 



248 

 

interaction. Positive emotion is slightly above the mean in some areas such as Richmond Hill. 

The characteristics of this cluster are similar to those of group 3.  

Crime rates in this cluster are all above the city average very similar to those in group 3, 

except that ASB is relatively higher in group 3. Additionally, rates of burglary and vehicle- 

related theft are highest in this cluster compared to all other groups. A likely explanation to 

the higher rates of burglary and vehicle crime in this cluster might be as a result of the 

presence of student residences and commercial activities with large parking spaces, especially 

in the City Centre and Hunslet/Stourton community areas.  

 

 

Figure 8.19: Boxplot of standardised z-scores of the variables in group 4 
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Figure 8.20: Radar charts profile of the variables defining group 4 

8.5 Concluding Remarks 

This chapter has presented a new classification profile of Leeds community areas based on 

the degree of community cohesion and crime. At the beginning of the chapter, the importance 

of community classification was highlighted in Section 8.2. The relationship between 

communities and crime was described in Section 8.2.1, and issues with previous 

classifications were also discussed (in Section 8.2.2). The clustering procedure was reviewed 

and the method implemented based on the literature (Section 8.3). The results were also 

validated using the appropriate validation methods (Section 8.3.7). 

In this research, considerations were made in constructing a classification that will reflect true 

community differences in Leeds in terms of social cohesion and crime rates. In this regard, 

considering the number of Leeds community areas and the complex nature of estimating the 

degree of community cohesion in different areas, appropriate steps were taken in choosing an 

optimal number of clusters. The final classification profile (Figure 8.21) consists of four 

clusters (groups) that have distinctive characteristics, though with some similarities in other 

areas. This classification has highlighted the different characteristics that exist in different 

community areas, which also reflects the degree of their social relationships. Though 

classification of this is complex, no matter how well designed some issues might still arise. 

Interestingly, the new typology produced can potentially be useful for understanding the 

impact of community building on crime rates in Leeds. Additionally, the insight highlighted 
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from the classification profile also reflects the findings of regression models performed in 

chapter 5 and 7 of this thesis; demonstrating the relationship between community cohesion 

and burglary rates in Leeds. The next chapter (9) will conclude the thesis by providing a 

summary, limitations and recommendations for future research.     

 

 

Figure 8.21: Final cluster map 
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Chapter 9   

Conclusion 

 

9.1 Introduction 

The work within this thesis has successfully achieved the aim and objectives outlined in 

Section 1.2: to explore the relationship between community cohesion and crime. This chapter 

concludes the thesis by summarising the main research findings in Section 9.2, and assesses 

the extent to which the research objectives have been met. The limitations of the research are 

presented in Section 9.3. Recommendations for future research are given in Section 9.4. 

Concluding remarks are provided in Section 9.5. 

9.2 Summary of Research Findings 

This thesis presents a novel approach to using new ‘big’ data sources from social media 

(Facebook and Twitter) for exploring the relationship between community cohesion and 

crime.  This approach in particular is useful in highlighting new ways of quantifying the 

relationship between community cohesion and crime. Through this novel approach, the 

research has successfully explored the relation between community cohesion and crime based 

on insights from traditional and new data sources. In this section, the outlined objectives of 

the research (Section 1.2) will be evaluated to demonstrate how these objectives were met 

from within the body of the research presented within this thesis. 

Objective 1: to critically review the literature on the concept of community cohesion and its 

impact on crime. This objective was achieved through a critical review of literature related to 

the concept of community cohesion and crime in chapter 2. The chapter highlighted the 

relationship between community structural characteristics and crime. The chapter argued that 

although community cohesion generally acts to increase the safety of communities by 

reducing the socio-economic drivers of crime, cohesion is poorly captured by standard 

regression models of crime. Social capital and its importance in crime including its 

determinants were discussed. To set the context of the research landscape within this area, the 

effects of collective efficacy on social cohesion, and by extension crime, are discussed here. 

Additionally, the weaknesses of previous studies were highlighted in Table 2.2. To put the 

research in context, crime theories related to the research such as social disorganisation 

theory and routine activity theory were also reviewed. The main finding from the literature 
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review is that community cohesion generally acts to increase the safety of communities by 

reducing the socio-economic drivers of crime, and by reporting crimes when they occur. 

Consequently, cohesive communities are likely to have lower crime rates. Diversity and 

deprivation have been identified as the key factors that compromise a community’s level of 

cohesion. The literature review provides the frame of the research within the thesis. 

Objective 2: to use a range of spatial analysis methods to perform a detailed analysis of the 

relationship between crime and urban community form. The requirement of this objective 

was met in chapters 3 and 5 respectively. Chapter 3 reviewed and discussed a range of 

quantitative methods of modelling urban social systems, their relative merits and demerits as 

well as their application to community and crime research. Traditional data sources such as 

police crime records and Census statistics employed for the analysis were also reviewed. This 

was in order to identify and select the most appropriate variables that reflect aspects of 

community cohesion and crime. Regression models are the most widely used methods in 

social sciences for quantifying the relationship between urban social systems such as 

community cohesion and crime in the context of this research. Standard regression variables 

that were identified as potential determinants of community cohesion and crime and their 

adjusted equivalents (Table 3.2), were employed in traditional multiple regression models 

(chapter 5) to explore the influence that each variable has. The diversity statistics were found 

to be more statistically significant correlates of burglary; this is because these variables 

capture a range of loci in which social cohesion plays a part across the crime system more 

effectively than standard treatments. This indicates the important part that social cohesion 

plays in reducing crime in the local area. 

Objective 3: to critically review the literature on the feasibility of using new ‘big’ data 

sources from the social media to explore crime and community cohesion. Chapters 4 and 6 

fulfilled the requirements of this objective. In chapter 4, literature on how social media is 

being used for social interaction was reviewed. Specifically, an emphasis was given to the 

most popular social media platforms (Facebook and Twitter) which were used for exploring 

social cohesion and crime as they relate to action in communities and for understanding 

communities. The importance of social media in law enforcement activities was also 

discussed. Social media channels relevant to this research and the procedures used to access 

Facebook and Twitter data were presented. Additionally, methods and algorithms used for 

social media data analysis such as to quantify sentiment classification of tweets and explore 

engagement from Facebook posts were reviewed. The review of social media in this chapter 
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is about understanding the basis of how to use the data and getting around issues associated 

with these data. Using social media data for exploring community cohesion is an area of 

novelty for the thesis and presents the first academic attempt in this area.  

The findings from the literature review on social media usage for the creation and 

maintenance of social relationships in chapter 4 were extended in chapter 6. Methods used for 

Twitter data collection were critically reviewed. Selection of the bounding box method in this 

research, and avoidance of any specific search term is also novel approach to reducing 

sampling bias in data collection compared to the keyword search method commonly used in 

which the data collected are predetermined. However, data collected using this method will 

also include tweets without geolocations because although the original tweet may have a 

geolocation, the retweet may not (Twitter, 2017d). In this research, the attributes of location 

are important for understanding patterns of users. If tweets are not geolocated, they are 

considered not to be of value in the context of the task at hand. As sentiment analysis is prone 

to errors when applied on raw tweets, the rigorous process of Twitter data cleaning, 

especially for detecting and removing bots was described. The accuracy of the sentiment 

classification algorithm used in this thesis was validated at the Amazon Mechanical Turk 

(AMT) using manual human coding (see Section 6.5.2). Determining the sentiment expressed 

in a tweet is challenging and is reliant on the subjective judgement of human annotators, 

often the annotators disagree among themselves. However, a key finding from this validation 

indicates a strong correlation (r = .629) between human (manual coding) and algorithm 

classifications and the reliability scores were fair on the Fleiss’s scale of measurement (= 

.236) and good on the Cronbach’s scale (= .775). This indicates that the internal 

consistency between the human annotators and algorithm is up to a standard acceptable level 

alpha of .70 and above based on literature (e.g. Santos, 1999; Tavakol and Dennick, 2011). 

Uncovering the relationship between sentiment and diversity is proved to be more of a 

challenging task. This is an area that requires further investigation using additional variables. 

Similarly, sentiments in tweets were found to be related to some diversity variables (age, 

education and employment), though in a weak manner. Notwithstanding, the findings have 

highlighted new insights into the relationship between sentiments and demographic 

characteristics of different areas. 

Objective 4: to develop neighbourhood area classification profiles based on community 

cohesion in range of geographical locations of Leeds at community area level. This objective 

was attained in chapter 8. The chapter combines insights derived from chapters 5, 6 and 7 
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based on a new perception of community cohesion to classify a range of community areas 

within Leeds. The chapter critically reviewed issues with previous classification attempts, 

and identified several different clustering methods before adopting the partitional methods. 

The PAM (K-medoid) method is more robust in the handling of noise and presence of 

outliers associated with some variables used in this thesis. It is therefore most appropriate 

method for the types of data and the research questions. Additionally, the PAM algorithm has 

the advantage of a graphical display of silhouette plots which can be used for cluster 

evaluation (see Section 8.3.7). The final classification produced four community groups 

based on their potential degree of social interaction and crime and most of the community 

areas conform well to the clusters in which they are assigned. Group 1 community areas 

potentially have a stronger bond of social cohesion and the lowest crime rates below the city 

average, social networks of are also stronger and positive sentiment is above the city average. 

Community areas in Group 2 are potentially second in terms of social cohesion, crime rates 

are also below the city mean but slightly higher than those in group 1. Following the first two 

groups in terms of community integration is Group 3 with community areas that tend to have 

higher crime rates usually above the city average but slightly lower than those in Group 4; 

social cohesion is potentially weak in these areas and negative sentiment is relatively higher. 

Group 4 community areas are characteristically more diverse with the highest crime rates and 

are likely the least cohesive. Social networks are also below the city average. Overall, the 

classification indicates that different community settings are associated with different crime 

rates based on their potential levels of community cohesion.     

 Objective 5: to extend understanding of the relationship between crime and community 

cohesion based on insights from traditional and new data sources. The requirement of this 

objective was met by chapter 7. The chapter draws on the literature reviewed in chapters 3 

and 4, insights on the relationship between community cohesion and crime based on analyses 

carried out in chapters 5 and 6 using traditional and new social media data sources. It then 

employed the new metrics of engagement popularity, commitment and virality (PCV) 

generated from Facebook combined with traditional Census statistics (standard and diversity 

equivalent) variables in a multiple regression models (global and local) to explore the 

relationship between community cohesion and burglary in Leeds. The introduction of the V-

engagement indicator and the use of a more robust local regression model (GWR) contributed 

to an improvement in the model performance. For example, while the traditional OLS model 

(in chapter 5) explains only 23% in the variation of burglary rates, non-traditional global 
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OLS produced 43% compared to the local GWR which explains 63% in variation of burglary 

rates in Leeds (see Section 7.7.1). Generally, the model performs better with high local r-

squared values around community areas on the fringes of the district. Though there might be 

edge some effects in the northeast and southern community areas boardering with rural areas. 

GWR is more appropriate for spatial modelling and it captures the effects of spatial 

heterogeneity better. This is also novel as the model has accurately captured to a large extent 

the contrasting variations in community make-up in Leeds. 

The distribution of the coefficients also highlighted interesting patterns in the local variations 

in the relationship between community cohesion and rates of burglary in contrasting 

community areas of Leeds district. For example, the spatial distribution of the V coefficient 

shows that greater effect of virality of information in reducing burglary rates to be higher in 

areas with a higher burglary rates (such as city centre, student areas and disadvantaged 

neighbourhoods) than areas with a lower rates of burglary (such as affluent surburbs), 

suggesting a greater need for the creation of social networks of community engagement 

towards creating awareness on neighbourhood safety which can lead to community action. 

The effect of differences in age distribution on burglary is more likely to be higher in areas 

with lower age diversity, this suggests strengthening the collective efficacy of members in 

order to control the socially unacceptable (antisocial) behaviours amongst the community 

members especially, the young which could lead to offending.   

The relationship between residential diversity and burglary is complex because while 

residential instability is associated with increases in burglary rates which can cause people to 

move or change their residences. It can also disrupt existing bonds of social networks in 

otherwise more residentially stable communities. Consequently increasing the risk of 

victimisation which indicate the need for closer monitoring of increasing population churn in 

different areas.  

The economically inactive population are more likely to be victims of burglary crime than 

those who are economically active as UK statistics have consistently shown (ONS, 2014b; 

ONS, 2016a). The vulnerability situation of these segments of the population that include 

full-time students, retired and people living with long-term illness is a major constraint for 

them to establish meaningful community cohesion so as to reduce burglary rates in their 

areas. 
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9.3 Limitations of the Research 

This thesis is innovative in its use of new social media data sources that extend our 

understanding of the relationship between community cohesion and crime.  New data sources 

from social media such as Facebook have profound implications for community building 

(Ellison et al., 2007), understanding the dynamics of local community engagement 

(Matthews, 2015; Matthews, 2016) and collective community action (Harris and McCabe, 

2017). Data from these sources, combined with the traditional variables (diversity statistics) 

constructed from the Census 2011 data (chapter 5), has further advanced our understanding of 

the impact of community cohesion especially on rates of burglary in Leeds. The new metrics 

(PCV) of engagement proposed in chapter 7 are potentially useful for highlighting insights 

into social engagement in different community areas, therefore appropriate for adoption as a 

proxy for exploring community cohesion. This is especially important owing to lack of 

statistics to quantify community cohesion from the official government datasets. However, a 

major drawback of data obtained from social media (Facebook and Twitter) is that they may 

not be a strong representation of the general population and therefore sampling bias is likely. 

It is also likely that the problem of the digital divide (see Section 7.6.3) can also affect the 

data collection such that some community areas might not be well represented.The results 

involving the use of social media data needs to be interpreted with caution, as the science 

behind these methods is still evolving.  

Moreover, sentiment classification of tweets is a challenging task and sarcastic sentences are 

often difficult to analyse, which can affect the performance of sentiment algorithms. The 

algorithm used in this research is not an exception to this problem which resulted in large 

proportion of tweets classified as neutral sentiment. Additionally, like any social media, the 

number of fans on Facebook pages is subject to change which can affect the post interactions 

metrics over time in different areas, though changes in these metrics are not being considered 

over time. Thus, it is possible for the engagement rate to change as the interaction behaviour 

of users’ changes. Similarly, some community areas do not maintain a Facebook page, while 

some do not post regularly. These problems limit the measuring of engagement rate and by 

reducing the amount of data available across the entire district.  

Mapping the coefficients from the local modelling technique (GWR) used in chapter 7, has 

provided more insights into the spatial heterogeneity of the relationship between different 

parameters and burglary rates across contrasting community areas of Leeds. The GWR model 

has also provided a useful way of ameliorating the effect of the ecological fallacy that may 
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otherwise arise as a result of the modifiable areal unit problem (MAUP). The model results 

are important for policy planning aimed at community building and for increasing safety in 

different community areas. However, high standard error statistics and non-significant local 

p-values of the parameters in some areas indicate that the model might be missing some key 

variables. This is an area for future research. 

Furthermore, the partitioning clustering algorithms used in chapter 8 enabled a new 

classification of Leeds community areas to be successfully developed. Considerations were 

made in constructing a classification that will reflect true community differences in Leeds in 

terms of social cohesion and crime rates. The majority of the community areas conform well 

in the clusters in which they were assigned. However, the process of building a classification 

of this kind (using multidimensional variables) might not necessarily be appropriate for 

everyone. Despite this limitation, the new typology produced in this research has extended 

our understanding of the impact of community building on crime rates in different 

community areas in Leeds.   

9.4 Recommendations for Future Research 

Having summarised the research findings and achievements as well as highlighting the 

limitations of the research, there are several directions from which the work undertaken in 

this thesis can be extended. Firstly, the standard regression variables used in this thesis for 

constructing the diversity statistics to capture range loci in which social cohesion plays a part 

across burglary rates can be applied to model different crime types. 

Secondly, the algorithm used for sentiment analysis in this thesis employed a dictionary of 

6,800 positive and negative words Hu and Liu (2004), which in its simplest form is capable 

of analysing the sentiment polarity in tweets. There is the potential for extending the 

performance of sentiment classification through improving the algorithm, so as to capture the 

sarcastic nature of tweets, reducing the proportion of neutral (unclassified) tweets and 

increasing the accuracy of the prediction. Additionally, topic modelling can be made used to 

improve selection of tweets referring to localities. Topic modelling approach group document 

into topic and then associate words into topics which can then be used for identifying and 

filtering of tweets referring to community/place. 

Thirdly, the likely issues with sampling biases associated with social media data might be 

improved in the future by inferring the demographic characteristics of the users (such as 

ethnicity, age and gender) then comparing with conventional geodemographic data sources 
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such as Census statistics for each spatial unit (such as LSOA) (e.g Longley et al., 2015). 

Reweighting of the sample data can also be performed and necessary adjustment made to 

improve the accuracy of the model prediction (e.g Culotta, 2014). Although there is concern 

that confidentiality of the personal information of users can be compromised, these issues do 

not apply to this research. 

Finally, the predictive power of the new PCV metrics of engagement proposed in this thesis 

could be improved through normalisation. Facebook is used because, at the time of writing 

this thesis, it is the largest and most widely used social media channel for social engagement 

in different community areas. Similar metrics from new and emerging data sources (big data) 

that measure social engagement can also be explored. For example, Foursquare data is an 

emerging data source that captures elements of social networking that can potentially be used 

as a proxy to quantify the degree of social interaction in a community.  

 

9.5 Concluding Remarks 

This work is novel and exciting. The thesis has explored the use of new social media for 

quantifying the relationship between community cohesion and residential burglary in 

contrasting community areas of Leeds district. The research work has contributed in different 

ways in extending our understanding of the relationship between social cohesion and crime. 

The central contribution of this thesis is the use of new metrics that estimate popularity, 

commitment and virality known as the PCV indicators for quantifying community cohesion 

on social media. These metrics, combined with diversity statistics constructed from 

“traditional” Census data, provide a better correlate of community cohesion and crime. 

Variations in burglary rates are attributed to the differences in the structural characteristics of 

the local areas, which relates to the degree of their social interaction. Although the novel 

approaches employed in this research can be improved because social cohesion is a nuanced 

concept, it is hoped that the findings of the research will help in policy planning aimed at 

community building.  
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Appendix A 

Community Areas Facebook Engagement Metrics 

Code Community Year 

Estab 

FB 

Type 

Total 

post 

Post 

liked 

Post 

comnt 

Post 

shared 

Fans Total 

likes 

Total 

comments 

Total 

shares 

56 Drighlington 2016 P 511 510 440 308 889 12661 3319 939 

49 Boston Spa 2014 P 1220 1201 692 488 2023 34288 3298 2338 

55 Meanwood 2015 P 192 188 103 99 1074 1951 336 1251 

82 Arthington & Pool 2014 P 25 24 12 9 77 122 43 37 

64 Shadwell 2014 G 188 178 159 44 346 1446 1210 88 

42 Gildersome 2014 G 178 165 137 1 176 624 10 6 

32 Moortown 2014 G 7024 6480 4866 2051 5373 119070 37243 8795 

61 Bardsey and East 

Keswick 

2016 P 94 85 19 65 144 451 43 298 

38 Manston 2013 G 937 846 481 158 559 5320 1477 736 

85 Crossgates 2013 G 8924 8035 7470 2450 6018 127872 130456 21765 

88 Pudsey Lowtown 2012 P 26 23 8 9 1355 155 21 12 

75 Colton 2012 P 199 176 97 77 360 1639 294 278 

40 Belle Isle 2014 P 177 154 61 56 275 521 703 136 

91 Kippax 2014 P 135 117 59 77 972 814 373 443 

57 Barwick & Scholes  2011 P 907 778 388 558 1549 10351 1601 4152 

87 New Farnley 2014 P 42 36 28 26 331 266 69 75 

84 Scarcroft & Miles Hill 2015 P 21 18 10 10 79 151 21 22 

33 Bramham 2014 P 320 274 88 84 335 2487 214 213 

48 Hyde Park 2013 P 1101 939 263 416 1645 5646 467 1616 

59 Farnley 2015 P 322 274 75 86 154 1136 149 224 

50 Hawksworth 2012 P 113 94 29 60 272 529 44 132 

28 Cross Green 2010 G 1023 849 638 159 257 5614 2024 584 

73 Kirkstall 2015 G 1330 1101 855 324 1708 12135 4087 3345 

27 Cottingley 2015 P 304 251 79 97 343 978 169 207 

51 Richmond Hill 2012 P 2297 1839 840 875 2818 14824 2335 5202 

41 Far Headingley 2014 P 190 152 54 30 1854 710 98 45 

39 City Centre 2012 P 1882 1488 319 554 1453 6104 792 2405 

65 Aberford 2016 P 93 73 23 17 147 413 40 55 
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14 Woodhouse 2012 P 774 606 152 321 1111 2090 261 905 

60 Garforth East 2014 P 550 430 129 133 596 2051 425 404 

71 Gipton North 2014 p 136 106 43 81 349 707 119 449 

74 Holt Park 2012 P 570 439 168 342 1925 2415 780 1148 

63 Halton and Whitkirk 2015 G 1250 962 729 517 4033 6011 5316 7825 

10 Burmantofts 2013 P 335 257 69 56 112 882 124 94 

7 Methley 2012 P 646 484 191 209 966 3668 528 1433 

4 Farsley 2013 P 3246 2417 1101 1222 4763 16367 4283 6628 

83 Oulton and 

Woodlesford 

2014 P 96 70 16 27 347 334 70 476 

26 Sandford, Ganners & 

Moorside 

2015 G 438 318 155 51 185 1677 448 91 

36 Thorner 2013 G 4195 3038 3047 677 1044 31138 18786 3607 

89 Yeadon 2014 P 29 21 12 12 512 126 34 77 

23 Mickelfield 2014 G 4860 3500 3017 858 1138 22822 22703 4558 

77 Otley 2014 P 1804 1287 552 694 2511 13700 1583 5141 

45 Beeston Hill 2011 G 92 65 54 0 25 154 172 10 

92 Armley 2014 P 186 131 54 78 1181 723 346 445 

16 Moor Allerton 2010 P 44 30 6 13 33 123 7 18 

1 Burley Lodge & Little 

WH 

2013 P 326 214 30 99 772 546 43 174 

18 Osmondthorpe 2014 P 32 21 3 2 57 38 3 2 

15 Swarcliffe 2014 P 419 273 119 98 223 791 353 203 

30 Horsforth Newlaithe & 

Woodside 

2013 G 465 296 270 46 248 1809 1250 110 

25 Oakwood 2010 G 5024 3153 2607 648 1862 16060 13797 1686 

70 Collingham & Linton 2013 P 1295 810 570 327 1544 8606 2314 2520 

3 Headingley 2011 P 1617 1010 189 439 1864 2867 308 989 

62 Guiseley 2015 P 1901 1183 278 231 1940 5546 967 1304 

67 Ledston & Ledsham 2011 P 125 77 51 41 241 295 195 176 

21 Ireland Wood 2014 G 3367 2068 1916 732 3003 9865 13857 4357 

8 New Wortley 2009 G 792 484 193 148 438 1300 488 317 

35 Tinshill 2014 G 3905 2378 2166 886 3264 11029 15430 5850 

54 Rothwell 2015 P 776 467 155 165 1787 2356 776 786 
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81 Bramley 2016 P 98 57 28 26 707 295 121 120 

11 Swinnow & Fairfields 2012 P 1294 747 351 504 696 2069 1203 1728 

86 Pudsey 2012 P 1282 717 173 499 1379 2017 278 1284 

58 Swillington 2016 G 208 113 55 20 194 309 221 58 

53 Adel 2008 P 61 33 8 15 174 67 17 37 

17 Churwell 2012 P 93 50 23 16 227 89 40 26 

2 Chapel Allerton 2015 P 299 158 48 19 574 436 92 40 

46 Calverley 2015 P 196 103 24 25 457 302 45 89 

47 Harewood and District 2014 P 210 108 54 59 333 263 98 267 

93 Horsforth 2013 P 178 89 68 50 1813 596 208 468 

66 Beeston 2015 P 99 48 7 13 95 244 35 48 

90 Morley North 2011 G 387 186 143 80 1208 480 442 387 

94 Allerton Bywater 2013 G 3371 1617 1333 664 2055 7861 7804 5611 

52 Ardsley East/West  2010 P 63 30 22 4 249 58 51 19 

78 West Park 2012 P 139 64 12 29 208 147 21 44 

19 Rawdon 2016 G 1469 667 439 231 874 3032 1517 843 

22 Alwoodley 2011 G 244 110 67 72 312 331 147 216 

79 Whinmoor 2015 P 9 4 4 0 171 13 10 0 

68 Halton Moor 2011 G 32 14 12 0 144 24 56 0 

13 Wetherby 2014 P 676 289 95 222 647 936 269 393 

34 Little London 2014 P 12 5 0 0 15 6 4 2 

9 Scott Hall 2011 P 643 256 59 237 691 663 156 421 

29 Harehills 2013 P 24 9 4 2 62 14 4 2 

72 Cookridge 2015 G 717 258 207 96 615 480 664 301 

20 Roundhay 2012 P 411 137 14 56 262 151 13 25 

44 Burley 2015 P 37 11 4 4 84 18 5 8 

12 Middleton 2013 P 894 254 125 192 705 477 271 504 

6 Wortley 2015 G 1492 391 177 160 581 818 396 373 

24 Fearnville 2013 P 415 97 26 60 358 375 58 160 

80 Lofthouse & 

Robinhood 

2011 G 105 23 27 1 23 40 65 2 

69 Upper Wortley 2015 P 5 1 0 0 53 1 0 4 

31 Chapeltown 2011 P 137 25 8 16 110 32 12 44 
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37 Seacroft South 2011 P 211 29 7 3 17 48 10 6 

43 Hunslet/Stourton 2017 G 109 14 7 9 896 29 9 23 

76 Bramhope 2016 P 100 11 1 1 26 17 1 4 

5 Holbeck 2013 P 210 20 7 12 62 36 9 24 
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Appendix B 

The following peer-reviewed paper (Gulma et al., 2018), co-authored by the writer of this thesis has 

been published in Transaction in GIS journal DOI: 1111/tgis.12511. Part of the research has been 

adapted from chapter 5 of the thesis.  
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Abstract
Diversity within a population has been linked to levels of 
both social cohesion and crime. Neighborhood crimes are 
the result of a complex set of factors, one of which is weak 
community cohesion. This article seeks to explore the im‐
pacts of diversity on burglary crime in a range of neighbor‐
hoods, using Leeds, UK as a case study. We propose a new 
approach to quantifying the correlates of burglary in urban 
areas through the use of diversity metrics. This approach is 
useful in unveiling the relationship between burglary and 
diversity in urban communities. Specifically, we employ 
stepwise multiple regression models to quantify the rela‐
tionships between a number of neighborhood diversity vari‐
ables and burglary crime rates. The results of the analyses 
show that the variables that represent diversity were more 
significant when regressed against burglary crime rates than 
standard socio‐demographic data traditionally used in crime 
studies, which do not generally use diversity variables. The 
findings of this study highlight the importance of neighbor‐
hood cohesion in the crime system, and the key place for 
diversity statistics in quantifying the relationships between 
neighborhood diversities and burglary. The study highlights 
the importance of policy planning aimed at encouraging 
community building in promoting neighborhood safety.

1  | INTRODUC TION

The measurement of crime is necessary for any quantitative assessment of crime policy change (Ludwig & Marshall, 
2015). Knowledge of how crime patterns are distributed over space can also enhance the effectiveness of police 
operations and collective community programs such as Neighbourhood Watch in the UK (Brunsdon, Corcoran, 
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& Higgs, 2007). For example, local knowledge of where crime is clustered will increase the capacity of the po‐
lice to employ prevention measures, thereby improving the safety of communities (Bruce & Santos, 2011; Moore 
& Trojanowicz, 1988). Therefore, urban and regional planners, policy makers, and policing agencies have all rec‐
ognized the importance of better understanding the dynamics of crime (Murray, McGuffog, Western, & Mullins, 
2001). A common method of understanding both short‐term crime and its longer‐term drivers is through correlation 
with socio‐economic and demographic factors in the areas where it occurs, an important component of environ‐
mental criminology (Andresen, 2014). Socio‐economic and demographic factors such as wealth disparity, education 
attainment, proportion of young people, and deprivation are commonly found to correlate with crime rates in urban 
areas (Bandyopadhyay, Bhattacharya, & Han, 2010). Such variables act as proxies for, or direct measures of, the 
underlying causes of crime in a system that links offender drivers, victim lifestyles, and environment‐related oppor‐
tunities. However, the accuracy and representativeness of variables that act as proxies vary considerably, and many 
variables, such as metrics of multiple deprivation, could be seen as “catch‐all” variables that encompass a wide va‐
riety of underlying factors. Additionally, traditional operationalizations of socio‐demographic variables used when 
exploring explanations for neighborhood variation in crime rates do not measure diversity, and traditional measures 
of diversity in the crime context do not cover diversity across those various socio‐demographic dimensions. The 
term “diversity” describes the level of variety in racial or ethnic composition, age, gender, religion, philosophy, phys‐
ical abilities, socio‐economic background, and sexual orientation among a group (Goodin, 2014, p. 7).

In this article, we will suggest that the treatment of standard regression variables can be adjusted to better 
capture a range of loci in which diversity plays a part across the crime system. In addition, we show that when 
these adjustments are made, these variables become more strongly predictive of crime than standard treatments, 
suggesting the significant part diversity plays in the crime system and the significant part it plays as the link be‐
tween standard regression variables and crime rates. We will examine the relationship between crime and a series 
of standard socio‐economic and demographic variables. We argue that such variables, while acting to represent 
components of the crime system, capture the effects of social cohesion acting within those components in a weak 
manner. In contrast, we generate a new set of alternative representations of these variables, centered on diver‐
sity statistics. For example, rather than looking at the percentage of a specific age group, we look at the diversity 
of ages within a community. We then include these statistics within a stepwise regression, along with the more 
standard metrics, to show their worth. As with most statistical treatments, ours is only a proxy for the real factors 
in the system, which, as we shall see, is multifaceted and sometimes contradictory. Nevertheless, we see that, 
empirically, diversity statistics must capture some elements of these complex relationships better than standard 
treatments. We consider diversity in a more general sense of variation within a population (such as age, education, 
employment, and family) beyond ethnic diversity, as is commonly used in this sense.

The article is organized as follows: Section 2 draws out some of these complexities from the literature on the 
relationship between diversity and crime (Section 2.1) and discusses the theoretical justification for the explana‐
tory variables (Section 2.2); Section 3 describes the data, diversity statistics, and analysis approach; Section 4 pres‐
ents the results of the analysis; while Section 5 discusses the findings and Section 6 provides some conclusions.

2  | LITER ATURE RE VIE W AND E XPL ANATORY VARIABLES

2.1 | Exploring the relationship between diversity and crime

In the context of the UK and the USA, socio‐economic and demographic diversity has been linked to decreased so‐
cial cohesion and the variation of crime in neighborhoods (Sampson & Groves, 1989; Bursik Jr & Grasmick, 1993). 
Diversity may hinder informal communication within neighborhoods and tends to negatively affect the establish‐
ment of social interactions across groups (Browning, Burrington, Leventhal, & Brooks‐Gunn, 2008; Laurence, 
2011; Letki, 2008). In the Netherlands, for example, Meer and Tolsma (2014) have found that heterogeneity in a 
community leads to low levels of trust and meaningful interactions and tends to undermine intra‐neighborhood 
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social cohesion. Employing the Metropolitan Police Public Attitude Survey (METPAS) of London, studies have 
found that ethnically diverse communities—especially with large transient populations—are often characterized 
by distrust, low levels of social cohesion, and high levels of dispute (Sturgis, Brunton‐Smith, Kuha, & Jackson, 
2014), with potential negative consequences for the individual as well as the community at large (Mellgren, 2011). 
Recent research in Japan consistently shows that areas characterized by ethnic diversity, wealth diversity, and age 
diversity (calculated at individual level with surveys) have high rates of crime (Takagi & Kawachi, 2014). However, 
this relationship needs to be investigated in the UK context.

Researchers have employed the social disorganization theory of Shaw and McKay (1942) to explain the vari‐
ation in crime rate in different neighborhoods. Social disorganization theory posits that high levels of ethnic het‐
erogeneity, residential instability, and socio‐economic disadvantage undermine social networks, which in turn 
increases delinquency and crime rates (Shaw & McKay, 1942). Sampson and Groves (1989), in their empirical 
extension of Shaw and McKay’s theory, showed that disorganization in a community lowers the ability of residents 
to work together toward problem solving, while collective efficacy among neighborhood residents mitigates crime 
rates (Sampson, Raudenbush, & Earls, 1997). Additionally, Kristjánsson (2007) stressed that weak networks of 
social ties decrease informal social control in the community, which increases deviant behavior.

Burglary, specifically, is a crime that thrives in socially disorganized and less cohesive communities (Weisburd 
& Piquero, 2008). It is likely that disorganized neighborhoods tend to have higher burglary crime rates because of 
weaker social cohesion than affluent areas where strong social connectedness facilitates the ability of residents to 
be on the lookout for criminal behavior (Dunaway, Cullen, Burton, & Evans, 2000). Routine activities theory (RAT) 
(Cohen & Felson, 1979) is regularly used by scholars to explain the occurrence of crimes such as burglary. This is 
based on the premise that a crime requires the simultaneous presence of three elements: motivated offenders, 
suitable targets, and the absence of capable guardians. A recent study shows that neighborhoods with diverse 
characteristics (occupation, education, income, ethnic, and residential instability), with low social cohesion and ca‐
pable guardianship, may experience higher levels of burglary rates (Louderback & Sen Roy, 2018). Thus, social dis‐
organization theory and RAT may help to explain the occurrence of neighborhood crime (Eck & Weisburd, 1995).

In a study of community integration in Berlin neighborhoods, Gruner (2010) employs Bourdieu’s concept of 
“habitus” (socialized norms that guide behavior) to explain the distribution patterns of neighborhoods in terms of 
socio‐economic and demographic structure. He found that the patterns and distributions of neighborhoods are 
associated with different cultural norms and the unwillingness of minority groups to integrate, describing it as 
self‐segregation. Bourdieu’s theory of habitus postulates the effects of physical embodiment of cultural capital: 
individuals who grow up in similar conditions develop similar habitus (Bourdieu, 1989). People with similar habi‐
tus feel attracted by and are more comfortable with each other (Bourdieu, 1989). The theory is extended to the 
study of social problems such as crime and perceived problems associated with migration flows in urban neigh‐
borhoods (e.g. Shammas & Sandberg, 2015). For example, growing up in a socially disorganized and crime‐ridden 
neighborhood might greatly influence the behavior of people, especially the young (O’Connor, 2004), thereby 
facilitating delinquency (Tricia, 2016). This is especially pertinent to the local context in which this research is set. 
The conclusion from this set of studies is that high diversity in communities is acting to reduce social cohesion, 
consequently increasing neighborhood crime. There is some evidence that diversity reduces social cohesion (Meer 
& Tolsma, 2014) and this seems especially true where diversity is found in conjunction with deprivation (Cooper & 
Innes, 2009). However, it is important to note that diversity and cohesion levels are not always related in a simple 
manner, and that cohesion has the opportunity to be affected both positively and negatively, and by more than 
just ethnic or economic diversity (Ariely, 2014). Potentially, high diversity may have net positive impacts in terms 
of multiculturalism and the disruption of embedded cultural processes, despite negative impacts in other areas.

This article will model a number of socio‐demographic factors and compare the impacts of standard variables 
representing those factors directly (for example, the proportion of young people) with variables representing their 
diversity (for example, age diversity). As study site, we focus on Leeds, UK, a city of approximately 750,000 people 
situated in the north of England (ONS, 2011).
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2.2 | Theoretical justification for the explanatory variables

Although the relationship between community composition and crime is complex and multifaceted, there are 
some core factors that regularly emerge as important determinants of crime rates. This section will outline the 
most common factors used to explain variations in neighborhood crime rates; it is from these that the variables 
used in the later modeling work are derived. In each case, we will cover the more traditional variable, and then the 
diversity variable. The specific diversity equations used will be covered later.

2.2.1 | Age distribution

An age distribution is defined as the proportional numbers of persons in each age category in a given popula‐
tion. Previous studies have indicated that offenders are commonly drawn from younger age groups (Kongmuang, 
2006). The age–crime curve tends to increase from the adolescent years, reaching a maximum at adulthood and 
then sharply declining (Blonigen, 2010; Farrington, 1986; Gottfredson & Hirschi, 1990; McCall, Land, Dollar, & 
Parker, 2013; McVie, 2005; Sampson & Laub, 2003; Sweeten, Piquero, & Steinberg, 2013), although this varies by 
the type of crime (Tittle, Ward, & Grasmick, 2003). Burglary is therefore likely to be affected by the absolute pro‐
portion of young (age 16–24) people. For example, according to Fagan and Western (2005), the incidence of crimes 
related to vehicles and drugs tends to be higher in early adulthood than in adolescence. Further, while homicides 
tend to be committed by adults, theft‐related offences including burglaries are more prevalent in the younger age 
groups than the elderly (Loeber et al., 2012).

However, crime may also be affected by age distributions. A mixed population may put more or fewer of‐
fenders near more or fewer victims, but will also affect social cohesion. Younger people are less likely to build 
social cohesion (especially face to face) than older people (Johnston & Matthews, 2004; Takagi & Kawachi, 2014). 
Although offending is skewed toward the young because older adults have less opportunities for crime (Feldmeyer 
& Steffensmeier, 2007), the challenge is in accurately measuring the age effect on crime. Previous studies relied 
on raw numbers and proportions and did not use age standardization techniques (Hirschi & Gottfredson, 1983). 
Additionally, the tendency to commit crimes can change over time, regardless of age (Piquero, Farrington, & 
Blumstein, 2003). Recent comparative studies that used crime data from Taiwan and the USA found a considerable 
divergence from the age effect on crime (Steffensmeier, Zhong, & Lu, 2017). We therefore include population age 
diversity as a variable to investigate its relationship with crime, but with a prediction that different measures of 
diversity will identify different relationships. In this study, it is hypothesized that age diversity would be positively 
associated with burglary rates.

2.2.2 | Family structure

Family structure refers to whether the family unit includes children or not, both parents or a single parent. The 
family is generally regarded as an important social institution that shapes behavior, especially that of children 
(Nam, 2004). Maginnis (1997) has argued that the children of some single‐parent families are more likely to have 
behavioral problems, because they tend to lack economic support and have lower parental input (Cheung & Park, 
2016). In the UK, single parents continue to suffer from inequalities of employment and housing, creating a gap 
between couples and lone parents (Berrington, 2014). Additionally, single parents are also more likely to be victims 
of crime due to social marginalization in terms of living conditions (Wikström & Wikström, 2001). Given this, we 
include the proportion of single parents with children as an indicator from the traditional literature.

In terms of diversity, it seems likely that the distribution of family structures constitutes an important de‐
termining factor in social cohesion among community residents. For example, two‐parent families with children 
tend to form social groups within the community that are distinct from single‐parent families (Kanazawa, 2003; 
Sampson & Wooldredge, 1987). Community support within single‐parenting groups is undoubtedly strong in some 
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areas, but is likely to be more geographically variable. The determinants of community support are largely the 
presence or absence of children, and the presence or absence of single parents, bearing in mind that the number of 
children is largely random in most populations (Umberson, Pudrovska, & Reczek, 2010) and ethnically controlled 
otherwise (Lee & McLanahan, 2015). Not having children encompasses populations that are both very young and 
very old, and little else (Rees & Butt, 2004). According to Tasgin and Morash (2016), different family characteris‐
tics (e.g. economically disadvantaged families and families with parents who have limited education) can have a 
negative impact on children’s upbringing and behavior. Additionally, family indifference (lack of interest in a child’s 
behavior), as characterized especially in communities with a diverse family structure, has been found to be a major 
cause of delinquency (Baek, Roberts, & Higgins, 2018; Bobbio, Lorenzino, & Arbach, 2016). Furthermore, family 
diversity may have a differential impact on urban crime rates, which suggests the need for including measures 
of family structure beyond traditionally used variables (such as the percentage of single parents) in urban crime 
studies (Parker & Johns, 2002). We offer diversity of family structure as a variable in the model based on these 
factors, with the hypothesis that it would be positively correlated with burglary rates.

2.2.3 | Ethnic identity

Ethnic identity is defined as the extent to which an individual identifies with an ethnic category (Chandra, 
2006). Identity plays an important role in the likelihood that people will connect and form social relationships 
(Gilchrist & Kyprianou, 2011), and plays an important part in the integration of migrants into local neighborhoods 
(Kindler, Ratcheva, & Piechowska, 2014). Migrants—especially from black and minority ethnic (BME) popula‐
tions—often lack the wealth, social integration, or formal crime‐prevention connections to protect themselves 
(Sharp & Atherton, 2007). Because of these factors, the size of an immigrant population in an area positively 
correlates with the incidence of property crime (Bell & Machin, 2011). Empirical evidence from the US also dem‐
onstrates links between the size of an immigrant population and the occurrence of motor vehicle theft and rob‐
bery (Bholowalia & Kumar, 2014). However, previous studies in the UK have yet to empirically establish the link 
between increases in the size of the immigrant population in an area with the incidence of property crime specifi‐
cally (Papadopoulos, 2014).

Ethnicity has a well‐established relationship with crime (Tonry, 1997; Piquero & Brame, 2008; Unnever, 2018), 
principally acting through socio‐economic exclusion and disadvantage. There are also biases in reporting, the 
justice system, and policing, the latter including complex relationships between race and prejudice, most clearly 
expressed in the findings of the Stephen Lawrence Inquiry in the UK (Macpherson, 1999). These issues seem 
entrenched. For example, police figures show that stop and search of white suspects increased by seven per‐
centage points between 2009 and 2014 (from 68 to 75% of stops) and decreased by five percentage points for 
black suspects (from 17 to 12% of stops) (ONS, 2015). However, research has found that defendants from a BME 
background are more likely to be sent to prison compared to those from a white background (Kathryn, 2016). In 
this study we address the relationship between residential ethnicity and reported crime, ignoring the complex and 
important nuances of systemic biases, the statistical representations for which are largely unresolved.

In terms of diversity, ethnic diversity might relate to crime in different ways, including offending and victim‐
ization, including hate crime as a direct effect of ethnicity (Shepherd, 2006). Moreover, Vermeulen, Tillie, and 
van de Walle (2012) have argued that the negative effects of ethnic diversity on social networks would probably 
be stronger in terms of interpersonal trust, as well as differences in interests and needs between groups which 
weakens networks of social interaction. Though counter‐arguments can be made in areas where everyone is 
essentially in a minority population, the nuances of tension and disadvantage in communities of multiple ethnici‐
ties and country of origin are likely to be complex. We therefore include diversity of country of origin to capture 
elements of isolation and integration, and diversity of ethnicity to capture the complex elements of offending and 
victimhood associated with ethnicity in mixed communities. We hypothesized that these sets of diversities would 
be positively associated with burglary rates.
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2.2.4 | Employment and income

While there is a wide range of criminality across the socio‐economic spectrum, for burglary, offenders in the vast 
majority of cases are drawn from the poor and unemployed (Bursik Jr & Grasmick, 1993; Sariaslan et al., 2013). 
Given this relationship, we include the level of unemployment in those age categories that could be working as a 
key variable.

Additionally, in Leeds the number of students is important because of the presence of large residential edu‐
cational institutions (especially the two universities). Students are more likely to fall victims of crime, especially 
burglary, because multiple‐occupancy homes are attractive to burglars, and because students are less likely to be 
at home (Kongmuang, 2006; Shepherd, 2006).

Furthermore, students’ residences are attractive to burglars because students are more likely to possess valu‐
able items, especially electronic gadgets (e.g. DVDs, laptops, iPads, and mobile phones), and be less careful about 
the security of their personal belongings (Barberet & Fisher, 2009). Additionally, some students reside in poor 
accommodation that lacks security surveillance devices such as closed circuit television (CCTV) and may not be 
adequately patrolled (Masike & Mofokeng, 2014). Wealth diversity within a community may act to increase crime. 
Given that most burglars only travel a short distance to commit crimes (Ashby, 2005), there is some evidence 
that disparities of wealth within short distances encourage burglary (Chiu & Madden, 1998; Rufrancos, Power, 
Pickett, & Wilkinson, 2013; Tseloni, Osborn, Trickett, & Pease, 2002). In addition, disparity of wealth within a 
community can influence crime by weakening social cohesion (Fajnzlber, Lederman, & Loayza, 2002; Rufrancos et 
al., 2013). Equally, low wealth diversity can enhance social cohesion (Cooper & Innes, 2009). Although the picture 
is complicated across other types of crime (Rufrancos et al., 2013), researchers have found support for the rela‐
tionship between property crime and income inequality (Demombynes & Özler, 2005; Kelly, 2000; Reilly & Witt, 
2008; Witt, Clarke, & Fielding, 1998). We therefore include diversity of employment type in our assessment, as a 
proxy for wealth, in the absence of a household income variable not captured in the UK census statistics (House 
of Commons, 2011). We hypothesized a positive relationship between employment diversity and burglary rates.

2.2.5 | Deprivation

Deprivation has been defined as a lack of resources to meet the basic necessities of life (DCLG, 2015). Literature 
on the relationship between deprivation and crime suggests that deprived communities tend to have more crime 
than affluent communities (Sampson & Wooldredge, 1987; Bursik Jr & Grasmick, 1993; Krivo & Peterson, 1996; 
Malczewski & Poetz, 2005). Furthermore, deprivation widens the gap between rich and poor, which can reduce so‐
cial cohesion (Morenoff, Sampson, & Raudenbush, 2001; Takagi & Kawachi, 2014). The Index of Multiple Deprivation 
is a multidimensional metric that is measured, in England, through a combination of seven distinct domains: income, 
employment, education, health, crime, barriers to housing & services, and living environment (DCLG, 2015).

Although deprivation is often seen as a key indicator of social cohesion, as well as propensity to commit a 
crime such as burglary, UK deprivation statistics include crime and therefore it is inappropriate to use them in this 
analysis. Deprivation is covered by the other variables, as far as demographics are concerned.

2.2.6 | Educational attainment

Educational attainment has a great influence on individuals’ social behavior, as well as on participation in com‐
munity activities (Sabates, 2008). The theory of human capital suggests that skills and qualifications determine 
wages, and the wider the distribution of qualifications, the wider the distribution of wages (Green, Preston, & 
Janmaat, 2006). Reynolds, Temple, Robertson, and Mann (2001) found that the propensity of individuals to com‐
mit crime is associated with their level of educational attainment, and so we include lack of qualifications as a 
traditional variable.
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However, there is also a likely indirect relationship between educational inequality and crime. Sabates, 
Feinstein, and Shingal (2008) found that educational inequality is associated with violent crime. While it is unclear 
whether such a relationship acts at the intra‐area scale independent of any effect of wealth, we include a diversity 
statistic centered on education to test the potential relationship and hypothesized a positive association with 
burglary rates.

2.2.7 | Residential instability

Residential instability has been defined as two or more residential moves within the course of one year (Foulkes & 
Newbold, 2008). Residential stability in a neighborhood is an important factor for the generation of social capital 
and place‐based attachment, so it is expected that residential duration will affect crime via this effect on social 
cohesion (Thomas, Stillwell, & Gould, 2016). Studies have demonstrated that the creation of social ties is associ‐
ated with the length of residence in an area. For example, Yamamura (2011) argued that personal relationships 
are built over time, tend to be more solid when people reside in a particular neighborhood, and are influenced by 
length of residence and home ownership. Similarly, Keene, Bader, and Ailshire (2013) point out that it takes time 
to create supportive social ties, therefore length of neighborhood residency may be an important determinant 
of social integration. Additionally, Oh (2003) shows that length of residence has a positive effect on friendships, 
social cohesion, and trust, which also enhance the probability of working together to solve local problems. In con‐
trast, residential instability in a neighborhood is associated with weak social ties and a low probability of residents 
connecting (Sampson et al., 1997).

Crime is also more likely to occur in transient neighborhoods. For example, in the UK, the tendency to commit 
crime is related to length of residence, in other words, crime reduces as length of residence in a neighborhood 
increases (Bell & Machin, 2011). Residential instability also influences crime from the social disorganization per‐
spective (Shaw & McKay, 1942). Specifically, research has established the relationship between residential insta‐
bility and violent crime (e.g. Boggess & Hipp, 2010). However, the relationship between residential instability and 
burglary is likely to be complex (Markowitz, Bellair, Liska, & Liu, 2001; Martin, 2002). Given the complexity of the 
relationship, we include length of residence less than two years as a standard variable and diversity of length of 
residence as a proxy for residential instability. The hypothesis is that a positive association would be expected 
with burglary rates.

3  | DATA , METHODS, AND ANALYSIS

This section describes first the study area and the data used for the study. Measures of diversity statistics and the 
analysis approach for the study are then provided. Figure 1 shows our methodology workflow diagram.

3.1 | Study area

The city of Leeds in the north of England (UK) is a medium‐sized post‐industrial city of ~750,000 people. It com‐
prises 33 wards, which are divided into 482 lower super output areas (LSOAs). Figure 2 shows the location of Leeds. 
The LSOAs have a minimum population of 1,000 (with an average of 1,500) and a minimum resident household 
number of 400 (with an average of 630) (ONS, 2011). It contains some of the poorest wards in England (DCLG, 
2015), but equally has wards containing the homes of some of the most affluent individuals in the country (BBC, 
2003). Leeds is an area with an increasing number of BME groups. For example, in the 2001 population census 
the population of BME groups was 77,530 (about 10.8% of the resident population), and this increased to 141,771 
(representing 18.9% of the resident population) by 2011 (ONS, 2011). The city also has a relatively large number 
of burglaries (12.83/1,000 population) compared to the national average (7.5/1,000 population) (ONS, 2017) and 
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F I G U R E  1   Methodology workflow diagram

Measuring diversity

Data and methods

Analysis approach

Study area Data

F I G U R E  2   Location map of Leeds with LSOA boundaries

Source: Census Boundary Data (2011) 
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characteristically different types of neighborhood, which makes it suitable for examining relationships between 
socio‐economic and demographic diversity and burglary (Hirschfield, Birkin, Brunsdon, Malleson, & Newton, 
2013).

3.2 | Data

Burglaries reported between 2011 and 2015 in the city of Leeds were obtained from the “police open public 
monthly data of reported crimes” (https://data.police.uk/data/), a portal that provides customized crime data 
downloads for all police forces in England and Wales. In this case, West Yorkshire Police for the period 2011–2015 
(n = 51,800). Rates per 1,000 population were then calculated over the whole data for each of the 482 LSOAs of 
Leeds. LSOA geography has been chosen because it is small enough to capture neighborhood effects but large 
enough to represent coherent community groups. The remaining data (age distribution, family structure, identity, 
employment, educational attainment, and length of residence) were derived from UK 2011 census data, supplied 
by the UK Data Service (downloaded from http://infuse.ukdataservice.ac.uk/). Figures 3a and b show the spatial 
distribution of independent variables (standard and diversity) in the study area.

3.3 | Measuring diversity statistics

Researchers have used a number of methods to measure diversity (Morris et al., 2014). Nevertheless, in this initial 
study we concentrate on diversity indices, which report the probability that two individuals taken at random are 
different. Such diversity indices therefore use equivalent classes weighted on the same scale, irrespective of the 
total community size, with each class within the community having members that share common attributes (Jost, 
2006). The most widely used diversity index is Simpson’s (1949) diversity index (D) (Johnson & Lichter, 2010). The 
range of values of D is 0 to 1; values toward 0 indicate no diversity and values toward 1 indicate the presence of 
absolute diversity. Simpson’s diversity index for area i is written as:

where ni is the proportion of a population in an area falling into category i and N is the total population of that area.

3.4 | Analysis approach

In this analysis, the categories were determined by census data availability. Table 1 shows the core components of 
crime and community cohesion, and the variables used to represent them in the model. Table 2 shows the differ‐
ent categories included to measure diversity. Utilizing the variables in Table 1, we constructed a model of corre‐
lates with crime. Identifying the best model fit requires an iterative process that examines different combinations 
of explanatory variables. Exploratory regression analysis is important for selecting the best explanatory variables 
for a given model (Braun & Oswald, 2011). Exploratory regression builds ordinary least square (OLS) models using 
all possible combinations of explanatory variables and assesses which models pass the OLS checks (Rosenshein, 
Scott, & Pratt, 2011). This process is useful for ensuring that only variables with the highest significance are 
retained. Here, to test the strength of the relationship between the variables and crime, we utilize stepwise (a 
combination of forward and backward selection) linear regression. Stepwise methods are commonly used to select 
the best variables in a regression model, especially multiple regressions with many predictors such as in this study 
(Sinha, Malo, & Kuosmanen, 2015; Wooldridge, 2012). However, the process of adding and dropping variables as‐
sociated with stepwise regression has been criticized in that it is possible to miss the optimal model, as removing 
less significant predictors increases the significance of the others, which may lead researchers to overstate the 

(1)Di=1−

∑

i
ni(ni−1)

N(N−1)

https://data.police.uk/data/
http://infuse.ukdataservice.ac.uk/
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importance of the remaining variables (Rawlings, Pantula, & Dickey, 1998). Despite the limitations of the stepwise 
multiple regression method, it is widely used in different ecological studies (Caplan, Kennedy, Barnum, & Piza, 
2015; Collins, Babyak, & Moloney, 2007; Meera & Jayakumar, 1995; Pitner, Yu, & Brown, 2012; Raftery, Madigan, 
& Hoeting, 1997).

In this study, the model was built by sequentially adding significant (p ≤ 0.05) variables; the order of correla‐
tion between the dependent variables determines the order by which they are added to the model. The stopping 

F I G U R E  3   (a, b) Spatial distributions of standard and diversity metrics. Source: ONS (2011)
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criterion for the stepwise process is reached when none of the remaining variables are significant (p ≥ 0.1), then 
the process terminates. We first included a model using only standard variables and subsequently compared that 
to one including all variables (standard and diversity).

Equation (2) for linear multiple regression is given based on Charlton, Fotheringham, and Brunsdon (2009). The 
stepwise method adds variables (standard and diversity in this context) to the model through a series of iterations 
and ensures that the variables are still significant contributors to the model, removing those which are not:

Here, Y is the value of the dependent variable, β0 is the constant intercept, β1, β2, β3, …, βn are the slope coefficients 
of X1, X2, X3, …, Xn and X1, X2, X3, …, Xn are the independent variables, while ε is the standard error of coefficients. 
The standard error is calculated by summing the squared values of the residuals and dividing by the difference 
between the number of parameters subtracted from the total number of observations.

Optimal models are a balance of correlation against parsimony. Although such balances are largely subjective 
and centered around use cases, traditionally scree graphs have been used to help in the decision making as there 
is often a natural kink in the graph of, for example, R2 versus number of model components, which indicates con‐
siderably decreasing explanatory power being provided by additional components (Mehmood, Martens, Sæbø, 
Warringer, & Snipen, 2011; Preacher, 2006).

Prior to building the model, the independent variables were tested for multicollinearity. Multicollinearity is 
present when there is a high degree of correlation among independent variables. This can significantly affect 

(2)Y=�0+�1X1+�2X2+�3X3+…+�nXn+�

TA B L E  1   The core components of crime and community cohesion, and the variables used to represent them 
in the model

Component Standard variable Diversity variable

Age distribution Number of young persons (16–24) Age diversity

Family structure Lone parents Diversity of family structure

Identity Ethnic minority population Ethnic diversity

Employment/income Age 16–64, economically inactive Diversity of employment type

Educational attainment Age 16 over, no qualification Diversity of educational attainment

Residential instability Resident less than 2 years Length of residence diversity

TA B L E  2   Components used to measure different diversity metrics

Diversity Components included

Age 10–14, 15, 16–17, 18–19, 20–24, 25–29, 30–44, 45–59, 60–64, 65–74

Family structure Lone parent, no dependent; Lone parent, one dependent child; Lone parent, two or 
more dependent children; Married couple, no children; Married couple, one depend‐
ent child; Married couple, two or more children

Ethnicity All 18 ethnic groups included

Employment 16–64 Managers/Directors, 16–64 Professionals, 16–64 Associate Professionals, 
16–64 Administration and Secretariat, 16–64 Skilled Trade, 16–64 Caring, Leisure and 
Services, 16–64 Customer Services, 16–64 Process, Plants and Machines, 16–64 
Elementary Occupation

Education 16‐over qualification level 1, 16‐over qualification level 2, 16‐over qualification level 3, 
16‐over qualification level 3, 16‐over qualification level 4

Residence length Length of residence: Less than 2 years; Less than 5 years; More than 5 years; 10 years 
and above; Born in the UK
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model performance and reliability (Wang, 1996). There is no standard rule for filtering out variables based on the 
issue; here, correlations of r > 0.70 are regarded as very significant. The proportion of economically inactive popu‐
lation correlates with the proportion of young persons aged 16–24 (0.876); the proportion of single parents correlates 
with the proportion of persons with no qualification (0.709); and ethnic diversity correlates with length of residence 
diversity (0.971). Therefore, the following variables were removed to avoid redundancy and because of their rel‐
atively lower correlation with the dependent variable: young persons aged 16–24 (correlation with burglary rate: 
young persons (0.269) compared to economically inactive population (0.276)); single parents (constitutes a larger 
proportion of those with no/lower qualifications in the UK); and length of residence diversity (also a useful indicator 
of ethnicity and has weaker correlation with burglary (0.310) compared to ethnic diversity (0.313)). No significant 
correlation was found between the standard variables and their diversity equivalents.

4  | RESULTS

Tables 3a and b summarize the results of the standard and combined stepwise regression models used to assess 
the relative importance of each variable in the models. The statistics reported are Pearson’s product moment cor‐
relation (r), which shows the correlation with the dependent variable for each model. R2 reports the percentage 
of variation in rate of burglary crime explained by the variables used in the model. Adjusted R2 is the fraction by 
which the square of the standard error of the regression is less than the variance of the dependent variable. It in‐
creases only if the variables improve the model. It is usually used to evaluate which model performs better, where 
a model with a smaller standard error of estimate is likely to produce a higher adjusted R2 (Kongmuang, 2006). In 
the combined analysis, model 5 is the best‐performing model, represented in the form of Equation (3), while in the 
standard variables analysis, model 3 performed best, explaining 14% of the variation in burglary rates. Model 5 will 
be the subject of discussion in Section 6.

Tables 4a and b present the coefficients of the standard and combined models. The elements reported are 
standardized and unstandardized coefficients, standard error, t statistics and significance tests. In regression anal‐
ysis, standardized coefficients are estimates standardized so that the variance of the dependent variable pro‐
duced by changes in the independent variables is between −1 and 1; unstandardized coefficients express values 
of the relationship in raw values (Landis, 2005). The standard error is a measure of the accuracy of predictions 
obtained from the difference between the observed and predicted values; smaller values indicate that observa‐
tions are closer to the fitted regression line (Altman & Bland, 2005). The stepwise regression results indicate that 
the parameters are within acceptable standards for regression modeling. An important guide for understanding 
this are the t statistics (Dunn, 1989). A t statistic is the estimated coefficient divided by its own standard error. 

TA B L E  3   Model summary of stepwise regression

(a) Model R R2 Adjusted R2 Std. error of the estimate

1 0.302 0.091 0.089 32.729

2 0.337 0.114 0.110 32.357

3 0.359 0.129 0.123 32.115

(b) Model R R2 Adjusted R2 Std. error of the estimate

1 0.358 0.128 0.126 32.061

2 0.447 0.200 0.196 30.746

3 0.469 0.220 0.215 30.384

4 0.481 0.232 0.225 30.191

5 0.492 0.242 0.235 30.010
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Significant t statistics should be approximately 1.96 in magnitude, corresponding to a p value less than 0.05% or 
95% confidence level (Coe, 2002). The results obtained from the stepwise regression in this analysis indicate that 
the values of the t statistics for all variables in the models were greater than 1.96, meaning that all variables are 
statistically significant. At each iteration of the stepwise regression, variables that are not significant are dropped 
and model variables that are significant are retained.

It is common practice to assess the appropriateness of a model using the coefficient of determination, al‐
though this is not an absolute indicator of goodness of fit (Reisinger, 1997) and a low effect size does not mean 
that the model is inefficient (Martin, 2014; Weisburd & Piquero, 2008). Although the analysis explained approxi‐
mately 24% of the variation in burglary crime, that is good compared to other studies: Zhao, Lawton, and Longmire 
(2015), Karyda (2015), Hino, Uesugi, and Asami (2016), and Boateng (2016) have models explaining 21%, 10%, 
14%, and 12%, respectively. Crime, especially burglary, is difficult to understand, predict, and model (Malleson 
& Birkin, 2012). The percentage of variation of the dependent variable explained in a model can sometimes be 
misleading, as small effect sizes can produce better and more meaningful outcomes than larger ones (Lieberson, 
1985). However, this depends on the unit of analysis, the type of crime, and the underpinning theory (Weisburd 
& Piquero, 2008).

The final regression equation (model 5) is given here by computing the values of the unstandardized (B) 
coefficients:

5  | DISCUSSION

The most notable result of the above analysis is the almost complete exclusion of standard variables in preference 
for diversity statistics (Table 4a). As seen from the unstandardized (B) coefficients of the standard only (Table 4a) 
and combined variables (Table 4b) models, diversity variables have shown a higher relationship in explaining bur‐
glary rates than the standard variables. Additionally, the order of the variable correlation with the dependent 
variables (except for the proportion of those with no educational qualification, which is the second most impor‐
tant variable in both models) also indicated that the diversity variables are more important. The results highlight 
the importance of diversity in the crime system, with a concomitant suspicion that this acts through community 
cohesion, but also highlight that the standard statistics probably, in part, represent community cohesion, and are 
being excluded here simply because the new metrics are potentially stronger correlates of burglary rates. It could 
equally be that diversity indicates the proximity of “haves” and “have nots” and opportunity/targets within a com‐
munity, as mechanisms by which diversity impacts on crime.

In this study, diversity of age was the most important variable when regressed against the dependent vari‐
ables consistently throughout the models (see model coefficients in Table 4a). As hypothesized, age diversity was 
significant (p < 0.01) and positively associated with burglary rates. Age diversity has shown that offenders are 
commonly drawn from younger age groups rather than elderly people, and the findings in this study are consistent 
with previous literature which found a relationship between age and crime (e.g. Farrington, 1986; Gottfredson & 
Hirschi, 1990; Sampson & Laub, 2003; McVie, 2005; Blonigen, 2010; McCall et al., 2013; Sweeten et al., 2013). 
However, it is likely that a wide age range puts young offenders in close proximity with older victims with, po‐
tentially, more to steal. Equally, however, we know that the young are also targets for crime (Finkelhor, Ormrod, 
Turner, & Hamby, 2005), and it makes some sense that the broader the range of population characteristics in an 
area, the more likely that there will be suitable target criteria for burglars making decisions about risk (Bernasco 
& Nieuwbeerta, 2005).

(3)

Burglary rate = 106.442+85.606∗Agediversity+1.509∗

%Age16over, no qualification+32.582∗Ethnic diversity+−97.983∗

Educational diversity+−0.675∗%Age16 to 64, economically inactive
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In this study, unexpectedly, diversity of educational attainment was significant (p < 0.05) and negatively cor‐
related with burglary rates, meaning that the smaller the diversity of educational attainment, the more burglary 
occurs in an area. This finding should be interpreted with caution, as there are sophisticated crimes (such as cy‐
bercrimes) that are perpetrated by educated individuals. Although previous studies have found that educational 
attainment increases returns through legitimate means (Green et al., 2006), it also raises the opportunity cost 
of illegal behavior (Machin, Marie, & Vujić, 2011). Consistent with previous studies, we also found a significant 
(p < 0.01) positive relationship between the proportion of those with no educational qualification and burglary 
(Machin et al., 2011).

We also found strong support for a positive relationship between ethnic diversity and rates of burglary crime. 
This finding contradicts Papadopoulos (2014), who found no significant relationship between an increase in the 
size of the immigrant population and property crime. The findings of this study, however, are consistent with the 
findings of previous studies, which found a positive relationship between the size of the immigrant population in 
an area and the incidence of property crime (e.g. Bell & Machin, 2011). Previous research has shown that ethni‐
cally heterogeneous communities are often characterized by distrust, low levels of social cohesion, and disputes 
(Sturgis et al., 2014), which negatively affect individual behaviors (Mellgren, 2011). Recent studies into the spatial 
distribution of neighborhood crime consistently show that areas which are characterized by ethnic diversity have 
high rates of crime (Gartner, 2013; Takagi & Kawachi, 2014). However, the significant positive relationship found 
in this study could also be because migrants often lack formal crime prevention connections to protect themselves 
against crime victimization (Sharp & Atherton, 2007).

The feeling of disparity between wealthy and poor people increases antagonism, with a resultant increase in 
crime (Fajnzlber et al., 2002; Rufrancos et al., 2013). Disparity within an area also, however, implies a potential 
mix of richer targets and poorer offenders within the area. Given that burglars tend to be poor, and have a fairly 
short travel distance (see above), more diverse communities may have more targets (Demombynes & Özler, 2005; 
Kelly, 2000; Reilly & Witt, 2008; Witt et al., 1998). Nevertheless, in this study we found no statistically significant 
relationship between diversity of employment and burglary crime rate. Further study is needed to explore this 
relationship.

In this study, we found a significant negative correlation between the proportion of economically inactive 
population and burglary crime, which might be seen as counter‐intuitive. Previous studies have found support 
for relationships between income inequality and property crime (Demombynes & Özler, 2005; Kelly, 2000; Reilly 
& Witt, 2008; Witt et al., 1998). However, the difference between measuring offences committed by those 
residing in a community and measuring offences occurring in a community could be a reason for the following 
preposition; this relationship might only suggest that unemployment might contribute to offending elsewhere. 
Recent statistics in the UK show that economically inactive people are twice as likely to be victims of burglary 
crime as those who are economically active (ONS, 2014), considering that this category of population comprises 
students, those who are retired, and people with long‐term health challenges, the relationship for Leeds needs 
further investigation.

6  | CONCLUSIONS

This study explored the impact of diversity on burglary crime in the Leeds district, UK. We used stepwise regres‐
sion models to assess the relationships between both standard and diversity‐based socio‐demographic variables 
and burglary crime rate. We showed that diversity‐based statistics are a better correlate with crime than most 
standard metrics, highlighting the importance of diversity in the crime system, and suggesting the potential im‐
portance of social cohesion in preventing crime. It seems likely that standard statistics go some way, normally, to 
explaining neighborhood variations in burglary, but that this is better captured through diversity statistics.
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The variables used in this study have provided useful insights into the relationship between neighborhood 
social context (diversity) and the spatial variability of burglary rates in Leeds. The most important predictor for 
modeling burglary crime rates in this analysis was age diversity. However, other predictors—such as ethnic diver‐
sity, distribution of educational attainment, proportion of those with no educational qualifications, and proportion 
of economically inactive population—also made a valuable contribution to the models. Notably, economically inac‐
tive population had a slight negative relationship with crime, and this needs further investigation.

It seems likely that community cohesion is an important factor in establishing social control and collective effi‐
cacy in neighborhoods with regard to crime. Here we have used a simple set of diversity statistics to highlight the 
possibilities for investigating this. However, there is scope, having identified the importance of diversity statistics, 
to investigate alternative metrics in this area to reveal different aspects of community cohesion—for example, 
it may be that age distributions are better represented by statistics which utilize the frequency distribution of 
the population in a more nuanced fashion than the standard Simpson’s diversity index. As this study considered 
burglary crime rates, we also recommend future research to consider applying the present approach against other 
types of crime, in order to uncover relationships between crime and diversity metrics.

The results obtained in this study are potentially useful in prioritizing areas of policy planning for crime pre‐
vention. The study suggests that in terms of crime prevention alone, there is a need for extra support in areas 
dedicated to encouraging community building, rather than poverty specifically being the key, at least in Leeds1—
although clearly poverty is at the root of additional social issues.
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