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Cortical and subcortical somatosensory regulation of dopaminergic 

neurons: role of the superior colliculus 

Abstract 

Dopaminergic (DA) neurons exhibit a short-latency, phasic response to unexpected 

biologically salient stimuli, including rewards. Despite extensive research on this DA 

signal, very little is known about the sources of sensory information reaching DA 

neurons. Previous research has identified the superior colliculus (SC) as the primary, if 

not exclusive route of short latency visual input to DA neurons. However, more recent 

research has suggested that the phasic DA response comprises two components; a short 

latency (50-110 ms), stimulus insensitive component, and a longer latency component 

(110-260 ms) that can reflect complex stimulus characteristics including reward value – 

more complex than might arise from intrinsic collicular processing. A solution to this 

apparent paradox may be suggested by recent studies that have demonstrated longer 

latency colour related responses in SC neurons. As the SC does not receive direct retinal 

input from colour sensitive cells, but it does receive input from a wide range of cortical 

structures, it is possible that cortical activation might underlie longer latency responses 

in the SC, which may in turn underlie longer latency responses in DA neurons. The aim 

of the research presented in this thesis was to investigate whether the cortex was capable 

of modulating the activity of DA neurons, and whether the SC was the relay for this 

cortical influence. In the anaesthetised rat, single pulse electrical stimulation of the 

barrel field of the primary somatosensory cortex (S1Bf) produced a short latency, short 

duration response in the SC, but DA neurons were largely insensitive to the stimulus. 

After disinhibition of the SC with the GABAA antagonist bicuculline, responses in the 

SC to S1Bf stimulation were enhanced, and DA neurons became responsive to S1Bf 

stimulation, suggesting that the SC is the route of cortical input to DA neurons. This 

was confirmed in the subsequent experiment. Responses were produced in DA neurons 

without the need for SC disinhibition by stimulating S1Bf with a high frequency train of 

pulses. This response in DA neurons was suppressed or eliminated by suppressing SC 

activity. Finally, the contribution of cortical and subcortical input to DA neuron 

responses was examined by stimulating the trigeminal nucleus. Trigeminal stimulation 

produced responses in the SC comparable to multiwhisker deflection, and produced 

responses in almost all DA neurons. Disinhibition of the SC differentially modulated 

phases of the SC response previously demonstrated to be produced by trigeminal and 

cortical input, and differential changes were seen in initial and later components of DA 

neuron responses, which were often associated with changes in the SC response. The 

results of these studies suggest that cortical inputs to the SC could provide a mechanism 

through which responses are produced in DA neurons that can reflect complex stimulus 

attributes. However, research in this thesis and elsewhere suggests that the activity of 

DA neurons is insufficiently discriminatory to reflect the full range of potentially 

rewarding stimuli, and hence it is suggested that DA neurons provide a salience signal, 

which can be biased by a pre-saccadic estimate of previously established reward value, 

but which does not communicate reward value per se. 

 

Craig Alexander Bertram 

September 2011 
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1  Introduction 

1.1 Chapter Summary 

Dopaminergic (DA) neurons are undoubtedly involved in reinforcement 

learning, although their exact role is still unclear. The role of DA neurons in learning 

is often couched in terms of reward; however, the fact that DA neurons exhibit robust 

responses to a wider class of stimuli than those unambiguously related to reward 

suggests that the phasic DA signal may have a broader remit. The aim of this chapter 

is to provide the theoretical and experimental background to the work presented in 

this thesis.  Firstly, the nature and function of the phasic DA response is detailed, 

including recent research suggesting the possibility of multiple components to the 

response. This is followed by a description of the SC and research indicating its role 

as a relay of visual input. Finally, the case will be made that the somatosensory 

vibrissal system provides an ideal tool for investigating whether cortical and 

subcortical sensory input can modulate DA activity via the SC, a possibility that this 

thesis will demonstrate is likely to be the case.  

1.2 The midbrain dopaminergic systems 

The monoamine neurotransmitter DA is produced in several regions of the brain. 

Dahlström and Fuxe, (1964) divided DA neurons of the midbrain into three groups. 

These were designated A10 (approximately corresponding to ventral tegmental area, 

or VTA), A9 (DA neurons predominately within the substantia nigra pars compacta, 

or SNc), and A8 (a dorsal and caudal extension of A9). These populations of neurons 

and their projections form the DA neurotransmission system.  

Processes of the midbrain DA neurons form ascending projections, which target 

several forebrain structures. These projections can be broadly divided into three 

pathways based on their points of origin and targets. The nigrostriatal pathway 

comprises neurons from the SNc, projecting to the dorsal striatum. The mesolimbic 

pathway comprises neurons from the VTA, projecting to areas of the limbic system 

(nucleus accumbens, ventral striatum and the amygdala). The mesocortical pathway 

comprises neurons from the ventral tegmental area, projecting to cortical regions 

(medial, prefrontal, cingulate and entorhinal cortices) (Marsden, 2006). Figure 1-1 

shows an illustration of these projections in the rat brain. 
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Figure 1-1 The pathways of the ascending DA system and some of the target 

structures. Nigrostriatal (red) mesocortical (light blue), and mesolimbic (dark 

blue) 

While the distinction between pathways is not absolute, and there is overlap in 

the projection targets of each group of neurons, it is widely used and can be regarded 

as a “convenient heuristic when considering the DA system” (Björklund and Dunnett, 

2007). 

1.3 The function of dopamine 

The DA neurotransmission system has been implicated in a wide range of both 

normal cognitive and behavioural functions, including associative learning, action 

selection and movement coordination. The malfunction of DA systems have been 

suggested to be involved in conditions as diverse as schizophrenia (Snyder, 1972; 

Meltzer and Stahl, 1976), Parkinson‟s disease (Bernheimer et al., 1973; Lloyd et al., 

1975; Birkmayer and Hornykiewicz, 1998), Huntington‟s disease (Bernheimer et al., 

1973; Sourkes, 1981), Tourette‟s syndrome (Sweet et al., 1976; Ross and Moldofsky, 

1978; Cohen et al., 1979), and ADHD (Swanson et al., 2007). However, the precise 

role of DA in many conditions remains unclear (e.g. the mechanism underlying the 

effect of DA levels in Parkinson's disease; Grace, (1991)). Due to the apparently 

disparate conditions in which DA function is involved, it is difficult to infer a broad 

function of DA from examining its effects. Instead, a better approach may be to 

explore the sources of input to DA neurons. DA neurons can only communicate the 

input they receive, albeit in a processed form, therefore it follows that the function of 

DA will relate to the function of the structures that provide DA neurons with input. 

By identifying the structures that provide DA neurons with input, and considering 

what function they serve, the role of DA might be better understood. Before 
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considering their inputs, the activity of DA neurons will be described, and a 

distinction made between phasic and tonic DA release. 

1.3.1 Activity of DA neurons 

DA neurons typically exhibit resting activity of 1-9 spikes/s. As well as the 

baseline firing rate, DA neurons also exhibit bursts of typically 2-6 spikes – a burst 

being defined as starting when two spikes occur within 80 ms, and ending when two 

spikes occur more than 160 ms apart, with subsequent spikes in the burst decreasing 

in amplitude, increasing in duration and increasing in interspike interval (Grace and 

Bunney, 1983, 1984a, 1984b). Figure 1-2 shows an illustration of such a burst. 

Although the cause of spontaneous burst firing in DA neurons in anaesthetised 

animals is not readily apparent, some researchers (Overton and Clark, 1997) do not 

consider it to necessarily be acausal, and so refer to the bursts as „natural‟ rather than 

spontaneous. 

As well as natural bursting, DA neurons also show the same bursting activity in 

response to external sensory stimuli (Strecker and Jacobs, 1985; Schultz, 1986; 

Ljungberg et al., 1992; Horvitz et al., 1997; Dommett et al., 2005). The activity of DA 

neurons releases DA at terminals throughout the forebrain. While the level of 

extracellular DA is usually maintained at a fairly stable level, high frequency activity 

of DA neurons in a burst results in a release of DA that is greater than the release that 

would be expected from activity with the same mean frequency, but with the spikes 

evenly distributed (Gonon, 1988; Garris and Wightman, 1994). This evoked burst of 

action potentials and the resulting release of DA are known as the phasic DA response. 

 

Figure 1-2 Extracellular recording of a spontaneous burst of three spikes in a DA 

neuron (indicated by the arrow) during resting activity. 
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The phasic DA response typically occurs following unexpected presentation of 

a primary reward, such as food, as well as presentation of stimuli that are salient by 

virtue of their novelty or intensity, but not necessarily inherently rewarding (Chiodo 

et al., 1980; Romo and Schultz, 1990; Schultz and Romo, 1990; Ljungberg et al., 

1992; Horvitz et al., 1997). If a stimulus not associated with reward is presented 

repeatedly, the response habituates (Ljungberg et al., 1992). The DA response is 

largely stereotyped with regard to sensory modality or situation (Schultz et al., 1997), 

with DA neurons responding to visual, auditory and somatosensory stimuli (Strecker 

and Jacobs, 1985; Schultz, 1986; Ljungberg et al., 1992; Horvitz et al., 1997; 

Dommett et al., 2005), in both SNc and VTA (Dommett et al., 2005). 

It has been demonstrated that the phasic DA response can shift from a primary 

reinforcer to an arbitrary stimulus if the reward is reliably predicted by the stimulus 

(Schultz, 1986; Romo and Schultz, 1990; Ljungberg et al., 1992). If, under these 

circumstances, a predicted reward fails to materialise, there is a brief pause in the on-

going activity of DA neurons (Hollerman and Schultz, 1998). If a previously 

reinforced stimulus ceases to be reinforced, the response habituates rapidly 

(Ljungberg et al., 1992). 

1.4 Proposed functions of the phasic dopamine response 

The close association of the phasic DA response with biologically salient 

stimuli and its ability to respond to predictors of reward have led to suggestions of a 

role in associative learning. Several potential functions have been proposed, although 

a currently popular hypothesis is that the phasic DA signal constitutes a reward 

prediction error signal. 

1.4.1 Reward prediction error hypothesis 

Based on the ability of DA neurons to show a positive response to unpredicted 

reward, unpredicted neutral stimuli that reliably predict a reward, and a negative 

response in the absence of an expected reward, it has been suggested that the phasic 

DA signal forms a reward prediction error signal: a signal of the value of a stimulus 

compared to the value expected by the organism (Schultz, 1997; Schultz et al., 1997). 

If an event is more rewarding than expected, or if an unexpected reward occurs, there 

is a brief increase in the firing rate of the DA neuron. If the event is as rewarding as 

expected, the firing rate of the neuron does not change. If the event is less rewarding, 
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or there is an absence of an expected reward, then there is a brief decrease in firing 

rate, or a pause in the activity of the neuron.  

However, while this explanation is currently popular, it has been criticised on 

several points (Redgrave et al., 1999). Despite the characterisation of the phasic DA 

response as a reward related signal, DA neurons exhibit strong responses to a wider 

class of stimuli than those that could be considered rewarding, or reward related. DA 

neurons respond to unexpected sensory stimuli with no appetitive value (Horvitz et al., 

1997; Horvitz, 2000). There is also evidence that DA neurons respond with an 

excitation to aversive events (Kiyatkin and Zhukov, 1988; Brischoux et al., 2009). 

Responses to both novel stimuli without any knowledge of the reward value, as well 

as aversive stimuli, which presumably are not rewarding, suggest that the function of 

the phasic DA signal extends beyond communicating reward related information. 

Further, as previously mentioned, the DA response is largely stereotyped with regard 

to sensory modality or situation. A system that possesses little variation in the 

responses of the majority of its neurons in the majority of situations would not lend 

itself well to communicating information about a complex and unpredictable world. 

However, not only do DA neurons respond to non-rewarding stimuli, they also do not 

always respond to rewarding stimuli – a peculiar property for neurons in a „reward‟ 

system. The proportion of DA neurons reported as not responding to primary rewards 

is typically around 10-25% (Romo and Schultz, 1990; Mirenowicz and Schultz, 1994; 

Hollerman and Schultz, 1998; Kobayashi and Schultz, 2008), although it has been 

reported to be as high as 75% (Schultz et al., 1993).  

The reward prediction error hypothesis has also been criticised on the basis that 

the phasic response occurs at latencies too short to allow the reward value of an 

unexpected stimulus to be judged. The phasic response typically begins at around 70-

100 ms after stimulus presentation and is approximately 100 ms in duration (Schultz, 

1998). This precedes the gaze shift required to bring the stimulus onto the fovea 

(typically 150-200 ms) (Hikosaka and Wurtz, 1983; Jay and Sparks, 1987). Hence, the 

onset of the response precedes post-saccadic cortical analysis that would be able to 

identify and value the stimulus (Thorpe and Fabre-Thorpe, 2001; Rousselet et al., 

2004). However, although the response precedes post-saccadic cortical analysis, it 

does not necessarily precede all cortical activity. Eyes are not blind outside the fovea, 

and given that areas of the cortex are dedicated to extra-foveal input, albeit with less 
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detail than fovea related cortical processing, they may be able to contribute pre-

saccadically. 

1.4.2 Identifying the function of dopamine from its sensory inputs 

The answer to the question of the function of DA can be answered at least partly 

by examining the properties of structures providing input to the DA systems. For 

example, for DA neurons to respond to visual stimuli at short latencies, they would 

have to receive information from a structure that deals with visual information at 

similarly short timescales. Studies have discovered a projection from the SC to DA 

containing regions of the midbrain, the tectonigral pathway, and suggested that the SC 

is the primary, if not sole, source of short latency visual input to DA neurons (Coizet 

et al., 2003; Comoli et al., 2003; Dommett et al., 2005). 

The SC and the tectonigral pathway 

The superior colliculus („optic tectum‟ in non-mammalian vertebrates) is a 

subcortical structure located on the dorsal surface of the midbrain. Its function is to 

direct the sensory organs and the head toward objects of interest. In animals such as 

primates, who rely on a well-developed visual system to explore the world, the SC is 

dominated by visual input and its function is direct the eyes and head (May, 2006). 

The SC is also located early in the visual processing pathway, receiving direct input 

from the retina. A connection between the SC and midbrain DA neurons has been 

demonstrated both anatomically and functionally. A direct projection from the SC to 

VTA was demonstrated by Comoli et al. (2003), and also by Geisler et al. (2007), 

although the projection from the SC to SNc – the tectonigral pathway – is stronger 

(Comoli et al., 2003; May et al., 2009). The presence of the tectonigral pathway has 

been demonstrated in the rat, cat, and monkey (Comoli et al., 2003; McHaffie et al., 

2006; May et al., 2009). Further anatomical study showed that the majority of the 

synapses formed by the tectonigral pathway were on TH negative neurons, with 

approximately 13% of anterogradely labelled butons found on TH negative neurons 

(Comoli et al., 2003). Tectonigral neurons were found to form both asymmetric and 

symmetric synapses on both TH negative and TH positive neurons (Comoli et al., 

2003). This might suggest both an excitatory and inhibitory effect of the tectonigral 

projection, as asymmetric and symmetric synapses are often considered to correspond 

to excitatory and inhibitory synapses; however, this is not necessarily the case 

(Klemann and Roubos, 2011). Neither can the effect of the tectonigral pathway 
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presently be inferred from the neurotransmitters involved, which, according to 

Redgrave et al. (2010) “remain unknown”. Nevertheless, some reasonable suggestions 

can be made. If the TH negative neurons are inhibitory interneurons, the presence of 

projections directly onto TH positive neurons, and onto TH negative neurons suggest 

that the tectonigral projection might be able to produce opposing effects on nigral DA 

neurons. 

The SC as a relay for short latency visual input to DA neurons 

Combined with the demonstration of a direct tectonigral pathway, the functional 

properties of the SC made it an ideal candidate for providing the necessary short 

latency input to DA neurons to drive the phasic signal. The primate SC shows two 

bursts of activity in response to a visual stimulus. The first is a sensory response, 

typically ~50 ms after the onset of the stimulus, and a longer latency (<150 ms) 

presaccadic motor burst (Wurtz and Goldberg, 1972; Jay and Sparks, 1987). The 

sensory response is short enough to precede that of the DA neurons, and as such, it 

could be the source of input to trigger the phasic DA response. SC neurons respond to 

rapid changes in luminance; the appearance, disappearance or movement of an object 

in the visual field (Wurtz and Albano, 1980; Sparks, 1986), and so the SC is ideally 

suited to perform the role of signalling the unexpected occurrence of stimuli. 

The functional connectivity of the SC and midbrain DA neurons, and that the 

SC provides visual input to DA neurons were demonstrated by Coizet et al. (2003) 

and Dommett et al. (2005). Simultaneous recording of the deeper layers of the SC, 

and DA neurons in anaesthetised rats showed that both structures were initially 

unresponsive to visual stimuli. Following disinhibition of the deeper layers of the SC 

with an intracollicular injection of bicuculline methiodide (BMI), the deeper layers of 

the SC became responsive to visual stimuli. The responses of the SC were closely 

associated with responses in DA neurons of the VTA and SNc, and the onset latencies 

of responses in the SC were reliably shorter than those of DA neurons. Disinhibition 

of the primary visual cortex alone affected LFP responses, but produced no change in 

spiking activity. Although DA neurons responded to visual stimulation with both 

increases and decreases in activity, electrochemical recording confirmed that the 

visual stimulation produced a phasic increase in DA levels in the striatum. 

These results demonstrated that the SC was a relay for short latency visual 

information to midbrain DA neurons, which was not only capable of driving DA 
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neuron activity, but also produced phasic DA release in a target structure of the 

ascending DA systems. 

A nonvisual role of the SC 

Although the studies of Coizet et al. (2003) and Dommett et al. (2005) focussed 

on visual input, the role of the SC in relaying sensory input to DA neurons need not 

be similarly restricted. The SC can indeed be regarded as a visual midbrain structure, 

and it is referred to as the „optic‟ tectum in non-mammalian vertebrates, but it also 

receives input in other sensory modalities. Animals with different sensory priorities 

show different strengths of projections from other sensory structures, e.g. rodents 

have a stronger trigeminotectal projection than primates (May, 2006), whilst Huber 

and Crosby observe that it is “equally true that the tectum is a sensory correlation 

centre” (Huber and Crosby, 1933). As well as directing gaze shifts, the SC may also 

direct the mouth (Redgrave et al., 1996), pinnae (Stein and Clamann, 1981), or limbs 

(Werner et al., 1997). 

The SC responds strongly to the occurrence of sensory stimuli in multiple 

modalities. It is arranged in topographic maps of retinal space in the case of visual 

input, and local space in the case of somatosensory and auditory input, with the 

location of cells in SC responding to a stimulus corresponding to a spatial location. 

Neurons responding to auditory, somatosensory and/or visual stimuli  are located 

within the intermediate and deep layers of the SC (Gordon, 1973; Dräger and Hubel, 

1976; Stein et al., 1976; Chalupa and Rhoades, 1977; Harris et al., 1980; King and 

Palmer, 1985; Meredith and Stein, 1986). The sensory maps of each modality are in 

register with each other and with motor maps that direct the orienting behaviour 

(Stein et al., 1975).  Like the visual responses in the intermediate and deep SC and 

DA neuons demonstrated by Coizet et al. (2003) and Dommett et al. (2005), the 

neurons of the SC that respond to other sensory modalities could likewise relay 

sensory input to DA neurons at short latency.  

1.4.3 Determining action-outcome associations of unexpected events 

Although neurons of the SC are responsive to the appearance and movement of 

stimuli, they are thought to be largely insensitive to static contrast, velocity, 

wavelength and geometric configuration of visual stimuli due to them receiving little 

or no input from the division of the visual system that processes these details – the 

parvocellular system (Wurtz and Albano, 1980; Sparks, 1986; Sumner et al., 2002; 
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Vuilleumier et al., 2003). Consequently, DA neurons relying on this input would be 

unable to discriminate between static stimuli and their reward value, an ability fairly 

fundamental to a reward prediction error system. Thus, as an alternative to the reward 

prediction error hypothesis has been proposed. Namely, that the DA signal acts to bias 

the reselection of action immediately preceding an unexpected event to help 

determine action-outcome associations (Redgrave and Gurney, 2006; Redgrave et al., 

2008). 

One of the major projection targets of the DA system, particularly neurons of 

substantia nigra, is the dorsolateral striatum (Marsden, 2006). The dorsolateral 

striatum receives input for a wide variety of neural structures; however, the potential 

interaction of three of these inputs with the presence of DA means the striatum is 

ideally placed to control action selection. Many of the neurons of the tectonigral 

pathway have branching collateral projections to areas of the thalamus that project to 

the striatum (Coizet et al., 2007). This projection provides glutamatergic sensory input 

in response to an unexpected stimulus that would also produce a phasic release of DA 

to the striatum (McHaffie et al., 2005). Contextual information – the general sensory, 

metabolic and cognitive state of the animal – affects the activity of striatal neurons 

(Apicella et al., 1997; Nakahara et al., 2004; Samejima et al., 2005). This provides the 

animal with a record of the internal and external „state‟ it is in, and is likely to come 

from cortical, limbic and subcortical (thalamic) sources (Redgrave et al., 2008). 

Finally, both cortical and subcortical sensorimotor structures that provide input to the 

brainstem also provide input to the striatum via branching collaterals (Crutcher and 

DeLong, 1984; Bickford and Hall, 1989; Lévesque et al., 1996; Mink, 1996; 

McHaffie et al., 2005). 

If the DA signal biases the action selection of the striatum towards recent 

behaviour, the repetition of the behaviour leading up to the occurrence of an event 

would allow an organism to determine the precise sequence of actions that results in 

the occurrence of an event, and in what context. On occasions when an unexpected 

event is a consequence of actions by an agent, there would be a conjunction of the 

context and motor copy, the glutamatergic, and DA representations of the unexpected 

event. If the behaviour was not the cause of the unexpected event, its absence after the 

repetition of behaviour expected to trigger an event would cause a decrease in DA 

activity, biasing selection away from the behaviour.  
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One of the benefits of considering the role of the phasic signal from nigral DA 

neurons as a „timestamp‟ to be applied to the behaviour and contextual efference copy 

present in the striatum rather than signalling reward prediction error is that it only 

requires the detection of a stimulus, rather than identification. This function could be 

performed solely with the input of simpler sensory structures, such as the SC. 

1.5 Two components of the phasic DA signal 

Redgrave and Gurney (2006) suggested that DA neurons could not support the 

reward prediction error signal based on the capabilities of the structures providing 

sensory input at latencies short enough to trigger the phasic DA response.  However, 

the fact remains that some many studies have apparently demonstrated value related 

responses in DA neurons at such latencies.  

 

 

Although Schultz (2007) makes a distinction between different functions of DA 

on different timescales as phasic and tonic DA, he seems to make the implicit 

assumption that the phasic DA response was a homogeneous signal serving a single 

function. However, there is an increasing amount of evidence to challenge this 

position. Morris et al. (2004) presented stimuli that were associated with reward with 

different probabilities and found that responses in DA neurons were longer than 

expected, and differences in response in the DA neurons to different stimuli could 

only be detected by extending the period over which activity was measured to 400ms. 

The differences in magnitude associated with reward value were largely in the latter 

Figure 1-3 Responses of DA neurons to stimuli indicating different 

probabilities of reward delivery. The pink horizontal bar indicates the 

period used to quantify the responses – the first 400 ms after stimulus onset. 

From Morris et al. (2004). 
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portion of the response. Thus, while DA neurons showed a differential response 

“reflecting the mismatch between expectation and outcome in the positive domain”, a 

careful examination of the figure showing DA responses to stimuli associated with 

different reward probabilities (see Figure 1-3) appears to show that DA neurons 

responded similarly for the first ~150 ms. Only after this period does the magnitude of 

the DA response begin to differ.  

Although there were incidental indication in earlier research, the possibility of 

multiple components of the phasic DA response has only recently begun to be 

formally addressed. Recent evidence has emerged to suggest that DA neurons can 

respond differentially on different timescales. Hudgins et al. (2009) demonstrated that 

DA neurons respond differently to stimuli if they are associated with different reward 

probabilities. However, they also showed that the response of DA neurons consists of 

a short component, 50-110 ms after stimulus presentation, which does not 

discriminate between stimuli, and a longer latency component around 110-250 ms 

which can discriminate between stimuli, and reflects reward probability (see Figure 

1-4). This ability to discriminate beyond the capabilities of the SC may be the result 

of more information about the stimulus that triggered the DA response. 

 

Figure 1-4 Population spike density plot showing the responses of 84 DA neurons 

to stimuli in fixed locations associated with different reward probabilities. Blue 

line p=1.0, magenta line p=0.5, green line p=0.0. Shaded regions represent 

standard errors around the mean. From Hudgins, (2010). 
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1.5.1 Determining the source of longer latency input to the DA signal 

Assuming the DA response can be divided into a stimulus insensitive initial 

component and a later component that is sensitive to the reward probability associated 

with a particular stimulus, the possibility of different sources of input could be 

investigated. It is likely that the initial stimulus insensitive response is driven by SC 

input. As has been mentioned previously, it is likely to be the primary if not sole 

source of visual input at such latencies (Dommett et al., 2005). However, given the 

previously mentioned insensitivity of the SC to many stimulus features, the possibility 

that the SC relays the later, stimulus sensitive component has been, until recently, 

seen as less likely. 

It was previously thought that that SC and other visual orienting structures were 

insensitive to visual properties beyond low spatial frequency luminance changes 

(Schiller et al., 1979). Recently, however, it was demonstrated that neurons in the 

intermediate layers of the monkey superior colliculus were in fact responsive to 

colour stimuli that were isoluminant with the background. Response latencies were on 

average 30 ms greater than their response to stimuli based on monochromatic 

luminance (White et al., 2009). White et al. suggest that the latencies involved imply a 

transcortical pathway, as the SC receives input from cortical areas that respond to 

colour (e.g. V4). This cortical input to the SC may be the source of input underlying 

the longer latency stimulus sensitive component. The following sections address the 

SC, and its cortical input. 

1.6 The superior colliculus and its cortical afferent connections 

1.6.1 Anatomy of the superior colliculus 

Although the anatomy of the SC is broadly similar in most mammals, there are 

some differences between species. Detailed studies of collicular anatomy are available 

that focus on cat (Huerta and Harting, 1984), primate (Wurtz and Albano, 1980), and 

tree shrews (Hall and Lee, 1993, 1997; Lee and Hall, 1995). For comparisons between 

species, Lund (1972) focuses on the superficial layers, or see May (2006) for a 

comprehensive review of mammalian collicular anatomy. However, a full review of 

these differences in the anatomy of the SC is beyond the scope of this thesis. Instead, 

the following section will focus largely on rodent SC, and statements regarding SC 

will refer to the rat unless otherwise specified. Although effort will be made to 
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reference data from rodent species, more comprehensive work undertaken in other 

species will be referred to where little rodent work is available, or where comparisons 

to other species are particularly relevant. 

 

Figure 1-5 An illustration of the layers of the rodent SC, adapted from (Paxinos 

and Watson, 2004). Abbreviations as follows: Zo – zonal layer, SuG – superficial 

grey layer, Op – optic layer,  InG – intermediate grey layer, InW – intermediate 

white layer, DpG – deep grey layer, DpW – deep white layer, PAG – 

periaqueductal grey, MGN – medial geniculate nucleus. 

The mammalian superior colliculus is a layered structure on the dorsal surface 

of the midbrain, and is most clearly visible in coronal section. It is comprised of seven 

alternating cellular and fibrous layers that run broadly parallel to the dorsal surface of 

the brain. They are the stratum zonale („zonal layer‟, Zo), stratum griseum 

superficiale („superficial grey layer‟, SuG), stratum opticum („optic layer‟, Op), 

stratum griseum intermediale („intermediate grey layer‟, InG), stratum album 

intermediale („intermediate white layer‟, InW), stratum griseum profundum („deep 

grey layer‟, DpG), and stratum album profundum, („deep white layer‟, DpW) 

(Paxinos and Watson, 2004). SuG is often divided into an upper (uSuG) and lower 

(lSuG) sub layer. In some species, e.g. cats, it is divided into three numbered layers, 

with layers 1 and 2 corresponding to uSuG and layer 3 to lSuG (May, 2006). May 

reports an alternative nomenclature “primarily used by primate physiologists and by 

some investigators that use the rat model”, in which lSuG is considered to be InW, 

and InW and DpG of the first system constitute the DpG. Further, other researchers 

e.g. Helms et al. (2004) divide InG/InW into three sub layers designated SAIa, b and c, 

where SAIb contains rostrocaudally-running fibres. Given that the studies presented 

here focus on rats, the divisions of Paxinos and Watson (2004) will be used (see 

Figure 1-5 for an illustration). 
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1.6.2 Primacy of sensory corticotectal projections 

The presence of a substantial corticotectal projection with a parallel projection 

from ascending pathways provides a useful tool for exploring the effect of cortical 

and subcortical sensory input on the SC and DA neurons. Although there is a 

significant projection form visual cortex, there are complications, such as the 

proximity of secondary cortices, which make visual cortical stimulation less than ideal 

for investigating the role of the SC in relaying cortical input. Reports of projections of 

auditory cortex to the SC are likewise complicated by the proximity of primary and 

secondary cortices, but also by the poorly understood auditory corticotectal projection. 

In contrast, anatomical studies have also shown the rodent primary 

somatosensory cortex has a significant projection to the superior colliculus, and 

projections from regions of cortex corresponding to the whiskers and face cover an 

extensive anterolateral part of the colliculus (Wise and Jones, 1977; Kassel, 1982; 

Welker et al., 1988; Hoffer et al., 2005). This descending cortical projection is also in 

register with the ascending projection coming directly from sensory structures. Focal 

electrical stimulation of the primary somatosensory cortex produces responses in the 

SC, which are also responsive to peripheral tactile stimulation (Kassel, 1982). Thus, 

intracortical stimulation of the somatosensory cortex is likely to be the best choice for 

investigating the possible role of the SC in relaying cortical input to DA neurons.  

The present experimental design involves recording from, and modulating the 

activity of SC neurons responsive to cortical stimulation. To do this effectively, the 

distribution of corticotectal projections throughout the SC needs to be understood. 

The following sections provide a brief summary of the corticotectal projections of 

visual and auditory cortex and the issues that make them less suitable for investigating 

corticotectal input. It then focus in more depth on the somatosensory cortical 

projections. 

1.6.3 Visual cortex 

The SC is regarded as a primarily visual structure, and it receives significant 

input from cortical regions associated with visual processing. Broadly, the visual 

cortical areas of the rat can be divided into the primary (or striate visual cortex), and 

extrastriate areas (although the reference to striation is a misnomer, as rodent visual 

cortex lacks the striae of Gennari, which give visual striate cortex in primates its 
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name). These extrastriate areas consist of secondary and association cortices, and are 

spatial or functional transformations of primary visual cortex. Although several 

divisions and subdivisions of cortical regions have been suggested (e.g. Whitlock et 

al., 2008), a distinction will only be made here between primary visual cortex (Oc1, 

approximately area 17 in Krieg, 1946))  and the medial and lateral divisions of 

secondary visual cortex (Oc2M, Oc2L, areas 18a and 18 in Krieg, 1946).  

The corticotectal projection of Oc1 is highly focal, strongly topographic and 

“the densest of any visual corticotectal projection (Harvey and Worthington, 1990)”. 

Oc1 projects exclusively to superficial layers of the colliculus; layers Op and above 

(Harvey and Worthington, 1990; Coogan and Burkhalter, 1993). Projections from 

secondary visual areas terminate in deeper layers of the colliculus; layers SO and 

below. Projections from the medial subdivisions of Oc2 terminate primarily in two 

horizontal tiers, one in the middle of InG, and one on the border of InW and DpG 

(Harvey and Worthington, 1990; Coogan and Burkhalter, 1993). This pattern of 

projections raises problems for investigating the cortical input via SC by using 

disinhibition of the deeper layers. SuSC is responsive to visual stimuli in the 

anesthetised prep, and may also be responsive to V1 stimulation. Thus, the onset of 

sensitivity to stimulation with disinhibition of the SC cannot be used to establish the 

SC as a relay of distinct primary visual cortical input. The regions of primary and 

secondary visual cortex are very close, so even if secondary cortex is stimulated, this 

may activate primary cortex, which would make the respective contributions difficult 

to differentiate. 

1.6.4 Auditory cortex 

Division of the auditory cortex into primary and association areas, and 

delineation of association cortex into distinct regions, is the source of some dispute 

(Zilles et al., 1980; Romanski and LeDoux, 1993; Palomero-Gallagher and Zilles, 

2004), and perhaps as a result there has been less focus on the corticotectal 

projections of auditory areas. Roger and Arnault (1989) made no mention of labelling 

in SC, but did report labelling in IC as a result of injection of anterograde tracers in 

auditory cortex, however, subsequent studies focussing on non-primary auditory 

regions have reported projections in the deep layers of the SC (Arnault and Roger, 

1990; Kimura et al., 2004).  The lack of a firm map of auditory cortical regions, and 
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the potentially sparse projection of auditory cortex to the SC makes it a less practical 

option for investigating cortical input to DA neurons via the SC. 

1.6.5 Somatosensory cortex 

Topographic maps in somatosensory cortex 

The somatosensory cortex is dominated by a single somatotopic map in primary 

somatosensory cortex, although Brett-Green et al. (2004) describe several 

somatotopic representations within S2. The somatotopic map is likewise dominated 

by the representation of the head and whiskers to such an extent that Zilles et al. 

(1978) made a distinction between Pr1, and area of cortex that contains the 

representation of the head – which is dominated by the barrel field – HL (a hindlimb 

area), and FL (a forelimb area). However, the distinction was also functional, as Zilles 

et al. (1978) suggested that FL and HL exhibit characteristics of sensory and motor 

cortex. They also outlined an area designated Pr2, which lies ventral to Pr1, and 

corresponds to secondary somatosensory cortex.  

Projection to the SC 

Somatosensory cortex projects topographically to superior colliculus, primarily 

ipsilaterally. As with the somatotopic representation in the cortex, the somatosensory 

projection to the SC is dominated by projections from the barrel field. Wise and Jones 

(1977) demonstrated that the projection of somatosensory cortex extends to the lateral 

border of the superior colliculus. With the exception of the extreme anterior end of the 

colliculus, the projection does not extend to the medial extent of the SC. The 

projection is densest in the InG, but there was also lighter terminal labelling in InW. 

The distribution of the projection is topographic, with injections of the areas of 

somatosensory cortex corresponding to the face and head resulting in labelling in the 

anterior and lateral extent of SC, injections in the hindlimb areas resulting in labelling 

in posterolateral SC, and injections in the forelimb areas resulting in labelling in a 

small area of posterior SC. 

Killackey and Erzurumlu (1981), disputed the claims of Wise and Jones, 

however. Killackey and Erzurumlu claimed that injections of retrograde tracer into SC 

produced labelling in broadly similar regions to Wise and Jones (1977), but that that 

labelling excluded the barrel field. However, examination of the figures suggests their 

demonstration of an absence of projection from S1Bf to SC seems to be based on an 

injection into a more caudal (and possibly dorsal) location in SC than Wise and Jones, 
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which is less likely to include vibrissal regions. Further, the area Killackey and 

Erzurumlu indicate as the barrel field on coronal section, which lacks retrograde 

labelling, also seems to be inaccurate. Upon examination of the gross anatomy of 

Killackey and Erzurumlu‟s coronal slide demonstrating an absence of labelling in 

S1Bf their slide is, in my estimation, from a position more rostrally in the brain than 

they suggest. This would further reduce the likelihood of labelling from an injection 

into caudal SC. Thus, despite the observations of Killackey and Erzurumlu (1981), 

both their study and the slides from Wise and Jones (1977) do show significant 

retrograde labelling in the barrel field when compared against the atlas of Paxinos and 

Watson (2004).  

Several more recent studies into the precise connectivity of the barrels provide 

more evidence of a projection from the barrel field to SC. Injections of PHA-L (Mana 

and Chevalier, 2001) and fluorescent agents (Hoffer et al., 2005) demonstrated that 

projections from the barrel field terminate in small clusters in InG. An accidental 

injection in S1 by Harvey and Worthington (1990) when mapping visual cortex 

(presumably in the more caudal regions of S1) also revealed patchy labelling in 

ventral InG, with some labelling extending along the InG/DpW border. Studies in 

other rodent species provide further evidence of a projection from barrel field to SC. 

Aronoff et al. (2010) made injections that were largely contained within one barrel 

and the surrounding septa, which resulted in a few patches of labelling in intermediate 

layers of SC. 

Although studies always report at least a broad topographic projection from 

somatosensory cortex, the precise projection of the barrel field is not always reported. 

Welker et al. (1988) reported that injection of PHA-L into a single barrel resulted in 

labelling throughout the mediolateral extent of InG, but the labelling was limited in a 

rostrocaudal direction (corresponding to the SC receptive fields of an arc of vibrissae). 

Injections into barrels in the same arc resulted in the same extensive mediolateral 

labelling at the same rostrocaudal point in the SC. Injections into barrels in different 

arcs in the same row resulted in multiple mediolateral stripes of labelling at different 

rostrocaudal points in the SC, which when cut sagittally could be seen as patches 

corresponding a row of vibrissae. 

Although the above studies, which were investigating specific aspects of the 

barrel/septal corticotectal projection using modern techniques provide some 



18 

 

corroboration of the initial work of Wise and Jones (1977), the Wise and Jones paper 

is still the paper cited as evidence of a corticotectal projection of the barrel field, 

despite disagreements (e.g. Killackey and Erzurumlu (1981), Welker et al. (1988)). 

The absence of any full-scale systematic investigation of the projection of S1 and 

specifically the barrel field to SC using modern techniques is a source of potential 

investigation. A replication of Wise and Jones‟ work using modern anatomical 

methods is arguably overdue, although outside the scope of this project. 

1.7 Whisker pathway as a useful investigatory tool 

An investigation of the relative contributions of every region of sensory cortex 

is beyond the scope of this project. Instead, the contribution of sensory cortex in one 

modality will be examined. The comparatively weaker projection from auditory 

cortical regions to the SC suggests that this is probably the least viable option. There 

is a significant projection from visual cortical regions to the SC; however, the picture 

is complicated by different visual regions projecting to different regions of SC. In 

contrast, S1 provides a large area of cortex with a consistent projection to In/DpSC.  

Stimulation of S1 thus provides a more practical way of investigating whether cortical 

input can have an effect on DA neurons, and whether that route is via the same 

tectonigral projection from the intermediate and deep layers of the SC as visual 

sensory stimulation. The vibrissal system also has advantages in the form of its well 

defined, modular anatomy based around input from the whiskers, or vibrissae. The 

following section provides a brief description of the anatomy of the vibrissal system. 

1.7.1 Trigeminal connectivity and anatomy 

The trigeminal nerve, which carries vibrissal input, synapses onto neurons of the 

trigeminal nuclear complex (TNC). The TNC is a collection of nuclei that are the first 

processing stage for whisker input. The trigeminal nuclei are divided into several 

subnuclei. Although functional distinctions can be made between subnuclei and the 

neurons contained within them, the focus of this thesis is not to study the different 

effects of particular types of somatosensory stimuli, and so the trigeminal nuclei will 

be considered to be a homogeneous „somatosensory nucleus‟. 

The TNC projects to a range of non-thalamic subcortical structures (ventral 

zona incerta and the anterior pretectal area (Jacquin et al., 1989; Veinante et al., 2000), 

the cerebellum, and the anterior pretectal area (Jacquin et al., 1989; Hallas and 
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Jacquin, 1990)). Perhaps most significant for the present work is its projection to SC. 

Pr5, Sp5o, Sp5i and Sp5c all project to the SC (Hallas and Jacquin, 1990; Veinante 

and Deschênes, 1999; Veinante et al., 2000). The trigeminal nucleus also has a 

significant projection to several thalamic nuclei, and from there onto somatosensory 

cortex (see Deschênes (2009) for a review). It is important to note, however, a 

specific aspect of trigeminal anatomy: the neurons projecting to the SC from the 

trigeminal nuclei receive input from multiple whiskers. 

 At various points along the pathway of whisker input, discrete 

cytoarchitectonic units can be distinguished, with each unit relating to a single 

whisker. These are known as barrels in the primary somatosensory cortex (Woolsey 

and Van der Loos, 1970) barreloids in the ventral posterior medial nucleus of the 

thalamus (VMP) (Van Der Loos, 1976), and  barrelettes in the trigeminal nuclei (Ma 

and Woolsey, 1984; Ma, 1991). Barrelettes are not found throughout the trigeminal 

nuclei (Ma and Woolsey, 1984; Ma, 1991; Henderson and Jacquin, 1995; Deschênes, 

2009), and the majority of trigeminal efferents that project to the SC originate in the 

subnuclei that lack barrelettes. There is a population of neurons projecting from Pr5, 

where barrelettes are present, to the SC. However, these neurons span several barrels, 

and respond to the stimulation of several whiskers equally well (Veinante and 

Deschênes, 1999). This may mean that the somatosensory input being relayed to the 

SC is less fine grained than the information that passes to the cortex via the thalamus, 

which would have implications for the discriminatory capabilities of any DA response 

relying on trigeminotectal input. 

1.7.2 Differentiating direct and indirect somatosensory input 

The division of trigeminal input between cortical and subcortical targets may 

provide an opportunity to investigate the respective contributions of direct sensory 

input to the SC, as well as indirect input via the sensory cortex. A detailed analysis of 

the SC response was provided by Cohen et al. (2008), who showed that the response 

of individual SC neurons to vibrissal deflection was composed of two short latency 

components of approximately 2-8 ms (Peak 1 component) and 9-25 ms (Peak 2 

component) after deflection, then a longer period from 26-100 ms. More importantly, 

Cohen et al. (2008) demonstrated that the second component of the collicular 

response to vibrissal manipulation was the result of cortical input from the primary 

somatosensory cortex. Figure 1-6 shows a PSTH of a single SC neuron in response to 
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multiwhisker stimulation under control conditions (black), during application of a 

“small dose” of BMI (blue) and TTX (red) into the cortex. During BMI application, 

the response in the second component was enhanced, but suppressed by TTX 

application. 

 

Figure 1-6 Effect of barrel cortex response enhancement and suppression on SC 

responses. Example of  single neuron PSTH recorded in the SC during control 

conditions (black) BMI in the barrel cortex (blue) and TTX in the barrel cortex 

(red). From (Cohen et al., 2008). 

Although the primary focus of this thesis is the effect of sensory input on the 

activity of DA neurons, the distinction between direct trigeminotectal and indirect 

trigemino-thalamocorticotectal components of the SC response, and the effect of 

intracollicular injections of bicuculline would also be of interest. 

1.8 Rationale of identifying cortical input to DA neurons 

Much is known about many aspects of the ascending DA systems, and the 

origin of short latency sensory information is beginning to be examined. However, 

less is understood about how longer latency elaborative information, which reward 

prediction may rely on, reaches DA neurons. Recent work (Hudgins et al., 2009) has 

suggested that the phasic DA response to sensory stimuli is made up of two 

components, one that is short latency, and does not discriminate between stimuli, and 

a second component, which can discriminate between some aspects of stimuli and 

indicate associated reward values. 

Discrimination of complex stimulus properties requires the cortex, and it is 

possible that DA neurons receive cortical information at longer latencies. The superior 

colliculus is known to be a relay of direct sensory input to DA neurons, but it also 

receives input from a broad range of cortical areas, which may be the source of a 

presumed elaborative input to DA neurons. While it has been demonstrated that SC 
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can respond to more complex stimulus properties at a longer latency, it is not known 

whether the cortical information suggested to underlie this ability is able to influence 

DA neuron activity. If the SC is responsive to a greater range of sensory features after 

presumably cortically processed inputs, then this may provide a source of the 

information that allows DA neurons to discriminate between stimuli and signal 

presumed reward prediction at longer latencies. 

1.9 Overview of the thesis 

This thesis presents an investigation into whether, and by what route, cortical 

input affects the activity of DA neurons in SNc, and the interaction between cortical 

and subcortical input, using the vibrissal system as an investigatory tool. Chapter 3 

presents the initial investigation into the capability of stimulation of S1Bf to affect the 

activity of SNc DA neurons after disinhibition of the SC.  Chapter 4 confirms the SC 

as the route of S1Bf input to DA neurons by addressing questions raised by the 

previous research and the results of chapter 3. This is done by producing a response in 

DA neurons without disinhibiting the SC, then suppressing collicular activity with an 

intracollicular injection of muscimol. Chapter 5 uses stimulation of the trigeminal 

nucleus to investigate the relative contributions of direct subcortical and indirect 

cortical input to the SC, and consequently DA neuron response. Finally, the results are 

discussed in terms of the SC as a common relay for sensory and cortical input to SNc 

DA neurons, and the implications of these findings for our understanding the sensory 

capabilities and function of the phasic DA response are also discussed. 
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2 Materials and methods 

2.1 Chapter summary 

  This chapter summarises the materials and methods common to the 

experiments presented in this thesis. The experiments involved recording multiunit 

activity in the SC and the activity of single DA neurons in response to direct electrical 

stimulation of the brain. Stimulation was performed before and during chemical 

manipulation of SC by a local injection made with a specially constructed combined 

cannula/recording electrode described below. Further specific details on experimental 

and analytic processes used in each experiment are given in the relevant experimental 

chapters. 

2.2 Electrode and cannula construction 

2.2.1 Construction of glass microelectrode 

One to five glass fibres were inserted into a thick walled glass capillary tube (G-

2, Narishige Scientific Instrument Lab, Tokyo, Japan), which was pulled to a point 

using a puller (Narishige Scientific Instrument Lab, Tokyo, Japan) to produce a 

pipette. The tips were broken against a glass rod under a microscopic guidance to a tip 

width of approximately 1-2.5 µm. The pipettes were then filled with 2 M sodium 

chloride and 2% pontamine sky blue (BDH Chemicals Ltd, Poole, England). Pipettes 

were used as electrodes if their in vitro impedances measured between 6-10 MΩ in 

0.9 % saline at 10 kHz (Impedance tester: Winston Electronic Co. BL-100, San 

Francisco, USA). 

2.2.2 Construction of multiunit electrode-cannula assembly 

To inject chemical agents, a cannula was constructed by bevelling the tip of a 

short length of 30 ga stainless steel tubing, and soldering around it a sleeve of 23 ga 

tubing, leaving 2-3 mm of 23 ga exposed at the unbevelled end. A short sleeve of 30 

ga polyethylene tubing was put around the exposed tip which, when the cannula was 

inserted into a long length of 23 ga polyethylene tubing. When the 23 ga polyethylene 

tubing was pushed onto the cannula, the sleeve of 30 ga would stretch over the 23 ga 

metal tubing, forming a tight seal (all gauges are needle gauge, also known as Stubs 

Iron Wire Gauge, or Bristol Wire Gauge). Figure 2-1 illustrates how the cannula was 
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constructed. A parylene-C-insulated tungsten microelectrode, 250 µm in diameter 

with an impedance of 1-2 MΩ in 2M saline at 10 kHz (A-M Systems Omc. Carlsborg, 

USA), was coupled to the cannula with heat shrink. The cannula was then held to the 

electrode with a combination of quick dry epoxy, a suture, or a short section of heat 

shrink such that the tip separation of electrode and cannula was <0.5 mm, with the 

electrode slightly forward of the cannula. 

  

 

2.3 Experimental design 

This thesis presents an investigation into whether, and by what route, cortical 

and subcortical  somatosensory input affects the activity of DA neurons in SNc, and 

the interaction between cortical and subcortical input, using the vibrissal system as an 

investigatory tool. The studies presented here used electrophysiological recording 

techniques to record the effect of electrical stimulation of the barrel cortex or 

trigeminal nuclei on collicular (multiunit) activity and DA (single unit) activity in 

substantia nigra pars compacta (SNc), both before and during chemical manipulation 

of the SC. To ensure that only collicular neuronal elements were manipulated, local 

microinjections of an excitatory substance, the GABAA receptor antagonist BMI, or 

an inhibitory substance, the GABAA receptor agonist muscimol, were used. 

Figure 2-1 Figure 2-2 Diagram of cannula construction. 30 ga stainless steel 

tubing inside 23 ga tubing (both in black), soldered together (red). 30 ga 

polyethylene tubing (dark blue) 23 ga polyethylene tubing (connected to 

syringe pump) 

Figure 2-2 A simplified illustration 

of the structures involved in the 

investigation presented in this 

thesis: 5n – trigeminal nucleus, 

S1Bf – barrel field of the primary 

somatosensory cortex, SC – 

superior colliculus, SNc – 

substantia nigra pars compacta. 
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 A schematic of the experimental procedures is shown in Figure 2-2. Icons 

represent experimental procedures used: simultaneous electrophysiological recording 

in the SC and SNc, direct electrical stimulation in 5n and S1Bf, and injection of 

modulating substances (BMI or muscimol) into the SC.  

2.4 Subject preparation and surgical procedures 

All aspects of the studies were performed with prior approval of the University 

of Sheffield ethics committee and the Home Office [section 5(4) of the Animals 

(Scientific Procedures) Act of 1986]. 

Animals were housed together with free access to food and water, in a room 

with a maintained temperature of 20-22 °C on a 12-hour light/dark cycle. Animals 

were anaesthetised with an intraperitoneal injection of urethane (ethyl carbamate; 1.25 

g/kg as a 25 % aqueous solution). Supplemental doses of urethane (up to 10 %) were 

given on rare occasions when necessary. The depth of anaesthesia was assessed by a 

pinch to the toe of the hindpaw. When no leg retraction (pedal reflex) was observed, 

the animal‟s head was shaved and it was mounted into a stereotaxic frame (Kopf 

Instruments, Tujunga, USA), which held the skull level in the plane employed by the 

stereotaxic atlas of Paxinos and Watson (2004). The temperature of the rat was 

maintained at approximately 37 °C with a heating blanket. The animals were 

periodically surveyed for regular respiration and tested for areflexia. 

A midline incision was made in the head, and the skin was reflected back. 

Anterior-posterior measurements were taken from bregma, while medial-lateral 

measurements were taken from the midline. The skull was thinned with an electric 

drill over target recording sites at distances relevant to bregma/midline reference, then 

the thinned skull was broken and removed with a bent 35 ga needle and tweezers 

under a binocular microscope to form a burr hole approximately 3-4 mm in diameter. 

Table 1 shows the coordinates for burr holes for each recording and stimulation site 

(See Figure 2-3A for a graphical illustration). Somatosensory cortex projects to 

ipsilateral SC, which projects to ipsilateral SNc. Projections from the trigeminal 

nucleus to the SC cross the midline. Consequently, burr holes for cortical stimulation 

were made ipsilateral to burr holes for SC recording, while trigeminal stimulation burr 

holes were made contralateral to SC burr holes. Burr holes for SNc were also made 

contralateral to burr holes for collicular recording to allow an unimpeded contralateral 

approach (Figure 2-3B). After the skull was removed, the dura was carefully removed. 
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Site of Recording Anterior-posterior (mm) Medial-lateral (mm) 

Superior colliculus -6.0 2.0 

Substantia nigra pars 

compacta 

-5.3 -3.0 

Site of Stimulation   

Barrel cortex -2.5 5.0 

Trigeminal nucleus -12.7 -2.7 

Table 1 Coordinates of craniectomy. Anterior-posterior measurements relative 

to bregma, negative values posterior to bregma. Medial-lateral measurements 

relative to midline, negative values contralateral to SC site. 

2.5 Implantation of electrodes 

Incoming signals were amplified and band-pass filtered (3 dB points 200 Hz-4 kHz 

for single unit, 400 Hz-16 kHz for multiunit). Some multiunit recordings were band-

pass filtered at 1 Hz-16 kHz to allow low frequency EEG signals to be extracted by 

digital filters offline. Neuronal responses were displayed on an oscilloscope and 

played through an audio monitor. Recordings were digitised at 20 kHz and recorded 

direct to computer disc using a 1401+ data acquisition system (CED Systems, 

Cambridge, UK) connected to a PC running the CED Spike2 software. 

After preparation of the subject, the cannula was flushed through and filled with 

distilled water. A small amount of air was drawn into the cannula, and then the 

cannula was backfilled with the relevant agent (BMI or muscimol). The coupled 

electrode/cannula assembly was lowered into the deep layers of the SC. The final 

position of the probe was determined by using the responsiveness of the superficial 

layers to visual stimuli under urethane anaesthesia. The eye contralateral to the 

Figure 2-3 (A) Diagram of craniectomy sites. (B) Illustration of contralateral 

approach to SNc (B). (Abbreviations: A: SN entry point, B: SC entry point, C: 

barrel cortex stimulation entry point, D: trigeminal nuclei stimulation point, β: 

bregma, λ: lambda, a: anterior, p: posterior, d: dorsal, v: ventral. 
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collicular recording was sutured open and artificial gel tears (Ciba Vision Viscotears, 

Duluth, USA) were applied to prevent the eye drying out. The probe was lowered 

though the colliculus and a multiunit recording was obtained concurrent with a whole 

field contralateral light flash (0.5 Hz, 10 ms). The probe was considered to be 

sufficiently within the deep layers after moving a further 1 mm ventral after the visual 

response could no longer be detected 

Once the SC electrode/cannula had been positioned, the DA recording electrode 

was inserted. The recording coordinates given above were used to make a small mark 

on the cortical surface with a pipette filled with pontamine blue and broken to a tip 

size of approximately 3 µm. This point was used as the target entry point for the 

recording electrode. A micromanipulator was used to lower the electrode into SNc at 

a rate of 500 µm/s until approximately 2 mm above the area of interest, at which point 

the rate was reduced to 1.25 µm/sec until a DA neuron could be identified. To prevent 

the two electrodes coming into contact, and to avoid damaging SC, the DA recording 

electrode was inserted using a angle of 35° from vertical on the side contralateral to 

cortical stimulation, crossing the midline to record cells on the ipsilateral side. Finally, 

a stainless steel bipolar stimulating electrode (NEX-100, Rhodes Medical Instruments, 

Woodland Hills, CA) was placed vertically into S1Bf or into Sp5i. 

2.5.1 Stimulus generation 

For cortical and trigeminal stimulation, square wave pulses of 100 µs were 

produced using a Grass S48 Square Output Stimulator (Grass Technologies, West 

Warwick, RI, USA) and a stimulus isolation unit (PSIU6 Photoelectric Isolation Unit, 

Grass Technologies, RI, USA), or an in-house constructed stimulator. Whole field 

light flashes (0.5 Hz, 10 ms duration) were delivered from an orange LED positioned 

5 mm from the eye. 

2.6 Experimental procedures 

2.6.1 Identification of putative dopamine cells 

Single neurons recorded in the area of interest were detected by distinguishing 

the presence of spikes of electrophysiological activity above background noise, i.e. by 

discriminating action potentials. A threshold was selected on the amplifier‟s window 

discriminator such that spike activity triggered an event, and waveform averages of 
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the activity around the events were produced. Waveform averages were produced 

from the last 30-60 seconds of triggered activity to produce the action potential shape 

of the neuron. Putative DA neurons were identified primarily by showing a 

stereotypical biphasic or triphasic waveform, having baseline firing rate between 1 

and 10 Hz, and spike onset-trough lengths of >1.0 ms. Single units were recorded 

between 8.2 mm and 9.5 mm below the contralateral entry point of the 35º angled 

trajectory. Once a suitable putative DA neuron had been identified, recording began. 

2.6.2 Experimental procedure 

When both probes were suitably positioned, baseline activity was recorded from 

both the SC and the SNc for a period of at least 60 s. At least 150 sweeps of either 

single pulse or at least 450 sweeps of pulse train stimulation were then applied to 

quantify the response at baseline. While the electrophysiological recordings continued, 

a pressure injection of a neuromodulatory agent was made into the SC. Injections of 

either the GABAA antagonist BMI (100 µg/ml (196.3 µM) made in saline, Sigma, St 

Louis, USA) or the GABAA agonist muscimol (200 µg/ml (1.75 mM) made in saline, 

Sigma, St Louis, USA) were made into the SC using a syringe pump (World Precision 

Instruments Inc, Saratosa, FL, USA), injecting 0.5 µl at a rate of 0.5 µl/min. At least 

150 further stimulations were then applied to characterise the response over the time 

course of drug action, usually up to 450 stimulations for BMI injections, at least 450 

stimulations for muscimol injections. For experiments involving BMI, time was 

allowed to ensure metabolisation of the drug and a return to baseline state in SC after 

a successful recording, usually around 20 minutes. Additional DA neurons in the SNc 

were then identified, and the process was repeated. Due to the prolonged effect of 

muscimol, only one injection was made per animal. At the termination of the 

experiment, the last recording track in SC was marked with a small electrolytic lesion 

(150 s duration 10 μA cathodal DC). Ejection of pontamine sky blue from the glass 

pipette marked the recording sites in the ventral midbrain (900-1500 s duration 27.4 

µA cathodal DC).  

2.7 Histological techniques 

After the marking lesions, the animals were killed with a overdose of barbiturate 

and perfused transcardially with 400 ml of warmed saline (40 °C), followed by 500 

ml of 4 % formaldehyde in phosphate buffer (pH 7.4). Brains were removed and 
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postfixed in 4 % paraformaldehyde at 4 °C. Serial coronal sections (30 μm) of the SN, 

SC, S1Bf and the brainstem were cut on a cryostat and collected in 0.1 M phosphate 

buffer (pH 7.4). Sections were divided into two series and processed separately for 

Nissl (cresyl violet), and double processed for c-Fos and TH immunohistochemistry 

with procedures described previously (Shehab et al., 1992). To reveal Fos-like 

immunoreactivity (FLI), free floating sections were washed with 0.1 M phosphate 

buffered saline (PBS) followed by 0.1M PBS containing 0.3 % Triton-X100 (PBS-TX) 

for 20 min and then processed according to the procedures of (Hsu et al., 1981) 

overnight, with agitation at room temperature. The primary polyclonal antibody 

(Autogen Bioclear) was diluted 1:15,000 in the PBS-TX with 1 % bovine albumin in 

saline (BSA) and 2 % normal horse serum. The following day, sections were washed 

with PBS-TX and incubated for 2 h with biotinylated goat anti-rabbit IgG (1:100, 

Vector Laboratories Inc., in PBS-TX with 2 % normal horse serum). After washes, 

sections were exposed (2 h) to the Elite Vectastain ABC reagent (Vector Laboratories 

Inc., 1:100 in PBS-TX). Immunoreactivity was revealed by reacting the sections with 

nickel enhanced diaminobenzidine for ~1 min (Adams, 1992). Finally, sections were 

washed in distilled water, dehydrated in graded alcohols, cleared in xylene and 

coverslipped with DPX. Similar procedures were used to reveal tyrosine hydroxylase 

immunoreactivity in a second series of sections. Tissue was incubated with a primary 

mouse monoclonal antibody (1:500 dilution, Boehringer Mannheim UK), raised 

against TH. The secondary antibody was horse anti-mouse IgG (1:1000, Vector 

Laboratories Inc.) and exposed to the Elite Vectastain ABC reagent (1:200, Vector 

Laboratories Inc.). Immunoreactivity was revealed by incubation with VIP (Vector 

Laboratories Inc.). 

2.8 Data analysis 

A combination of built in functions of Spike2, the Spike2 script language, and 

the R analysis language were used to perform analyses. 

2.8.1 SC processing 

The raw recording was processed prior to analysis to enable better measurement 

of the multi-unit activity. First, a waveform average triggered by stimulus onset was 

calculated and subtracted from the data to reduce the effect of the stimulus on the 

signal (see Figure 2-4A-D). The SC trace was then high-pass filtered with an FIR 
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digital filter (Spike2 function) at 1.5 kHz (transition gap 1.2 kHz, -3 dB point 1.069 

kHz) to reduce the influence of LFP on the signal. A threshold was set at mean plus 

two standard deviations of the rectified waveform voltage. Data rising through this 

level was considered a spike, and was triggered as an event (Figure 2-5). 

 

 

 

 

Figure 2-4 An example of waveform average subtraction on a response 

to a train of 5 pulses of cortical stimulation. A: A short section of raw SC 

waveform, B: A waveform average triggered by stimulation onset (1500 

trials). C: Waveform from A with waveform average in C removed and 

filtered as described above. D: The same filter applied to the waveform 

in A.  Vertical cursors indicate the time of each pulse in the train. 
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2.8.2 SC analysis 

Defining measures of activity 

Following data collection and processing, the data were examined to see if the 

chemical manipulation had taken effect by comparing several measures of activity. 

The measures were defined as follows (letters correspond to Figure 2-6 An illustration 

of the measurements used to determine drug effects and response characteristics. A: A 

truncated series of events triggered from the beginning of a recording. Each short line 

represents an event, the two longer lines to the right indicate the onset of the first two 

stimulations of the file. B: An example rate histogram of the activity of the beginning 

of a recording (1 s bins) C: PSTH of stimulus related activity (1 ms bins) Black 

vertical dotted line indicates stimulus onset, white horizontal dotted line indicates 

mean background activity. Lighter blue portion of PSTH indicates post-stimulus 

activity above mean background firing used to calculate response magnitude. 

Lowercase letters on B and C correspond to measures of activity described above – (a) 

baseline activity, (b) background activity (c) response ): 

a) Baseline activity – a measure of the resting spontaneous activity. 

Calculated as the mean firing rate in the period at the start of the 

recording, preceding any stimulation or chemical manipulation 

b) Background activity – a measure of the spontaneous activity during 

periods of stimulation. Calculated from a PSTH as the mean firing rate 

in the period before stimulation onset 

c) Response magnitude – a measure of evoked activity. Calculated from the 

PSTH as the mean firing rate in the period following stimulation onset 

above background firing. The particular period is defined in each chapter. 

Note, that to produce a measure of evoked activity independent of 

changes in background activity, the mean background firing rate is 

subtracted from the mean firing rate in the period following stimulus 

onset.  

Figure 2-5 An example of event triggering in SC. A: A short section of processed SC 

waveform, fully rectified. The horizontal cursor is set at the mean plus two standard 

deviations. B: (Below) The threshold is applied to the unrectified waveform. Activity 

rising through the threshold was recorded as an event. Above: The event channel for 

the section of waveform. 
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PSTHs were constructed from pre-injection trials and post-injection trials to 

compare the effect of the injection, or from a series of blocks of trials to track the 

time-course of a measurement of activity. The pre-stimulation period used to calculate 

background activity was usually the 500 ms preceding stimulation. The post-

stimulation period used to calculate response is defined in the methods section of each 

chapter. Response onset and offset were defined by the activity in a PSTH crossing 

thresholds determined from background activity, typically mean±2SD. Response 

duration was defined as the time between response onset and offset. Response 

amplitude was also measured, and defined to be the value of the largest bin in the 

response period, minus the mean background firing rate. 

Defining effective injections and periods of effect – BMI 

For the following section, “electrical stimulation” refers to either cortical or 

trigeminal stimulation as appropriate. “Stimuli” refers to both light flash, and cortical 

or trigeminal stimulation. For chapters 3 and 5, and effective injection of BMI was 

defined using the light flash as a positive control. The average response magnitude for 

sets of 10 stimulations was plotted over time, and an effective injection was defined 

as when there was an increase in response magnitude to the light flash rising above 

mean+2SD of the pre-injection response magnitude. In both chapters 3 and 5, there 

were no cases in which the there was a significant change in the SC response to 

electrical stimulation after an injection of BMI, but no change in the SC response to 

the light flash. 

After determining whether the injection had been successful, the presence and 

duration of a period of significant change in SC response to electircal stimulation was 

determined in a similar way. The start of a period of significant increase was defined 

as two consecutive sets of 10 stimulations after BMI injection where the response 

magnitude exceeded a threshold of mean+2SD of the response magnitude of pre-BMI 

stimulations. The period of significant increase was defined as ending when two 

consecutive sets of 10 stimulations fell below the same threshold.  

Defining effective injections and periods of effect - muscimol 

In chapter 4, the background activity from 450 pre-injection trials and 450 post-

injection trials were compared, and a significant change in the background activity 

after injection of muscimol was taken as indication of a successful injection. If no 

significant change occurred, then the record was excluded from further analysis. The 
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response based approach for defining successful injections differs from that used in 

chapter 3 due to the absence of any previously established criteria related to stimulus-

evoked activity.  

The background activity from 450 pre-injection trials and 450 post-injection 

trials were compared, and a significant change in the background activity after 

injection of muscimol was taken as indication of a successful injection. If no 

significant change occurred, then the record was excluded from further analysis. The 

change from a response based approach for defining successful injections differs from 

that used in chapters 3 and 5 due to the absence of any previously established criteria 

for determining muscimol effect related to stimulus-evoked activity.  

Measuring activity 

The trials in the pre-injection and post-injection periods were used to create 

peri-stimulus-time-histograms (PSTHs) for responses to the stimuli. The onset latency 

and duration of the response were measured. The onset latency was defined as bin 

counts exceeding mean±1.96 SD of the background activity. The response ended 

when bin counts returned to within the thresholds. In cases where the response was 

multiphasic, the end of the first phase was deemed to be at the beginning of two 

consecutive increasing bin counts marking the beginning of a second phase. The 

second phase ended when bin counts returned to within thresholds. The onset latency, 

duration, and magnitude of the first phase of the response were measured (Spike2 

cursor functions). A bin size of 1 ms was used to achieve the fine time resolution 

needed to determine the precise latencies of SC response to stimuli. 
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Figure 2-6 An illustration of the measurements used to determine drug effects 

and response characteristics. A: A truncated series of events triggered from the 

beginning of a recording. Each short line represents an event, the two longer 

lines to the right indicate the onset of the first two stimulations of the file. B: An 

example rate histogram of the activity of the beginning of a recording (1 s bins) 

C: PSTH of stimulus related activity (1 ms bins) Black vertical dotted line 

indicates stimulus onset, white horizontal dotted line indicates mean background 

activity. Lighter blue portion of PSTH indicates post-stimulus activity above 

mean background firing used to calculate response magnitude. Lowercase letters 

on B and C correspond to measures of activity described above – (a) baseline 

activity, (b) background activity (c) response magnitude. 

2.8.3 DA processing 

Stimulus triggered waveform averages were calculated and subtracted from the 

recording in the same manner as for SC recording. DA neuron action potentials were 

isolated from the background noise by using the Spike2 WaveMark function so that 

each action potential was represented by a single event. Activity that had triggered an 

event was checked and any event triggered by non-DA neuron activity was removed. 
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Figure 2-7 An illustration of waveform average subtraction revealing a DA 

neuron spike, previously disguised by the stimulus artefact. Top: Raw waveform. 

Bottom: Waveform with stimulus triggered waveform average subtracted. 

2.8.4 DA neuron waveform measurement 

The waveforms of nigral DA neurons recorded in SNc were determined from 

offline averaged records of discriminated action potentials. Spike onset-trough lengths 

were obtained as described previously for on-line DA neuron identification. Total 

spike durations were obtained by reading the time difference between cursors placed 

at the points where the averaged spike waveform exceeded and returned below 5% of 

the spike height (Spike2 software function). 

2.8.5  DA analysis 

PTSHs were then created to assess responses in DA neurons to stimuli in pre-

injection and post-injection trials. In chapters 3 and 5, post-injection measures were 

taken from the trials where there was evidence of BMI induced change in activity in 

SC. In contrast to the BMI experiments, injections of muscimol had an immediate, but 

gradually increasing effect, rather than the comparatively transient onset and wash-out 

of BMI. Therefore, rather than attempting to define criteria for selecting trials with an 

effect of muscimol, the last 450 trials of each recording were used for post-injection 

measures. Raster plots of the DA response for the period of collicular activation were 

examined by eye to see if there was a period where the response was particularly clear. 

If this was the case, then the number of trials was reduced. Measures of baseline and 

background activity, and response magnitude were made as shown in Figure 2-6 An 

Figure 2-8 DA spike 

measurements. Spike onset 

(vertical cursor 1) to trough 

(vertical cursor 2) length, and 

total spike length (onset: 

vertical cursor 1, end: vertical 

cursor 3). Vertical cursors 1 

and 3 positioned where the 

waveform crosses 5% of the 

spike height (horizontal cursor 

2). Height is measured from 

mean pre-spike activity 

(horizontal cursor 1) to spike 

peak (horizontal cursor 3) 
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illustration of the measurements used to determine drug effects and response 

characteristics. A: A truncated series of events triggered from the beginning of a 

recording. Each short line represents an event, the two longer lines to the right 

indicate the onset of the first two stimulations of the file. B: An example rate 

histogram of the activity of the beginning of a recording (1 s bins) C: PSTH of 

stimulus related activity (1 ms bins) Black vertical dotted line indicates stimulus onset, 

white horizontal dotted line indicates mean background activity. Lighter blue portion 

of PSTH indicates post-stimulus activity above mean background firing used to 

calculate response magnitude. Lowercase letters on B and C correspond to measures 

of activity described above – (a) baseline activity, (b) background activity (c) 

response magnitude. The response period was defined as 20-260 ms after stimulation, 

to encompass the entirety of the DA response as described by Hudgins (2010). A 

neuron was defined as responsive if at least three consecutive bins within the response 

period exceeded mean±1.96SD thresholds. A 20 ms bin size was used to provide 

unambiguous onset and offset, and data were smoothed with a three period sliding 

average. The DA response was then characterised, measuring response latency, 

duration, amplitude and magnitude. Response onset was defined as the start of at least 

three consecutive bins within the response period. The response was considered to last 

until the start of two consecutive bins where activity returned to within the thresholds. 

The presence of a second phase was defined as at least three consecutive bins starting 

within 60 ms of the end of the response offset. Peak amplitude was also measured, 

and defined to be the value of the largest bin in the response period, minus the mean 

background firing rate. Peak latency was the start of the peak amplitude bin. 
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3 The effects of disinhibition of the superior colliculus on the 

responsiveness of dopaminergic neurons to stimulation of the 

barrel cortex 

3.1 Chapter summary 

It was suggested in the introduction of this thesis that cortical input may support 

the stimulus sensitive, longer latency phase of the DA response that has recently been 

demonstrated. As the SC has been established as a relay for early sensory input to DA 

neurons, and is also a target for extensive cortical projections, it may offer a route by 

which cortical input reaches DA neurons. The results of this study show that 

disinhibition of the SC is sufficient for intracortical stimulation of somatosensory 

barrel cortex to modulate DA neuron firing rates, which strongly suggests that the SC 

is a relay for cortical input to DA neurons. 

3.2 Introduction 

DA neurons typically exhibit spontaneous baseline activity of 1-9 spikes/s. As 

well as the baseline firing rate, DA neurons also exhibit bursts of typically 2-6 spikes 

with subsequent spikes in the burst decreasing in amplitude, increasing in duration 

and increasing in interspike interval (Grace and Bunney, 1983, 1984a). The effect of 

sensory stimuli on the activity of DA neurons can be measured as a tonic or phasic 

change (Schultz, 2007). Phasic changes in response to a single presentation of a 

stimulus are typically up to several hundred milliseconds in duration, and may be 

made up of a burst of spikes or a transient change in activity. Tonic changes, in 

contrast, are changes in activity measured on the scale of more than a few seconds, 

and may be associated with behavioural states. The following sections examine in 

more depth the responses of DA neurons to sensory stimuli in order to provide 

comparison for DA responses to cortical stimulation. 

3.2.1 Tonic changes in DA activity in response to stimuli 

Studies using awake behaving rats have demonstrated that DA neuron firing rate 

can be modulated by simple behavioural changes such as turning (Diana et al., 1989) 

and motivated behaviour such as lever pressing (Miller et al., 1981; Kosobud et al., 

1994; Hyland et al., 2002). Other studies, using awake, restrained rats found that 
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visual and auditory stimulation, as well as aversive stimuli affected the subsequent 

firing rate of presumed DA neurons (Kiyatkin, 1988; Kiyatkin and Zhukov, 1988). 

Initially the neurons showed rapid changes, but these lasted for several seconds and 

were typically associated with behavioural and physiological changes in alertness. 

The majority of responsive neurons showed excitatory responses, although both 

excitatory and inhibitory responses were seen. The direction of responses within a 

given neuron to different stimuli was not always consistent. DA neurons showed 

excitatory and inhibitory responses after both aversive and non-aversive stimuli. Not 

all neurons were responsive. It has also been reported that tonic changes in DA 

neuron occur in response to repeated phasic visual, somatosensory and olfactory 

stimulation in the anaesthetised rat (Chiodo et al., 1980). However, this apparent tonic 

change might be the result of repeated phasic changes, as peristimulus histograms 

were not constructed, and neither were changes in firing rate measured on sufficiently 

short timescales at which to detect phasic changes. A similar picture emerges from 

research involving cats and primates. DA neuron activity is modulated during 

behavioural tasks in primates before and during motivated arm movements, but not 

associated with particular changes in EMG (Schultz and Romo, 1987, 1990). 

Likewise, DA neurons in cats typically show an increase during active exploration, 

although the changes are not associated the onset of movement or EMG activity 

(Steinfels et al., 1983b). 

3.2.2 Phasic changes in DA activity in response non-noxious stimuli 

The responses of DA neurons to stimuli have been extensively studied, however 

the distinction between phasic and tonic changes in DA activity is often difficult to 

make in some studies. For example, Kiyatkin and Zhukov (1988) recorded on-going 

activity in response to stimuli lasting for 500-1000 ms, rather than examining the 

response profile of repeated shorter duration stimuli. Thus, the presence of a phasic 

burst is hard to distinguish from longer duration changes. However, examination of 

the language and figures presented in the study reveals an initial rapid onset of 

activity, which is likely to represent a phasic burst.  

Changes in DA neuron firing rate have been shown in response to external 

stimuli such as delivery or consumption of a reward (Miller et al., 1981; Kosobud et 

al., 1994; Hyland et al., 2002), but also non-rewarding sensory stimulation. In awake 

behaving rats, responses have been reported to visual (Miller et al., 1981; Freeman et 
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al., 1985; Kiyatkin and Zhukov, 1988; Hyland et al., 2002), somatosensory (Freeman 

and Bunney, 1987; Kiyatkin and Zhukov, 1988), auditory (Miller et al., 1981; 

Freeman et al., 1985; Freeman and Bunney, 1987; Kiyatkin and Zhukov, 1988; 

Kosobud et al., 1994), and olfactory stimulation (Roesch et al., 2007). However, 

although sensory stimuli commonly produce responses in DA neurons, the effect is 

neither consistent in terms of direction, nor ubiquitous. Although Freeman et al. 

(1985), Freeman and Bunney (1987) and Hyland et al. (2002) report increases in 

firing rate in response to sensory stimulation, Kosobud et al. (1994) reports a decrease, 

whilst Miller et al. (1981), Kiyatkin and Zhukov (1988), and Roesch et al. (2007) 

report both increases and decreases  in the firing rate of some, but not all DA neurons. 

The papers above found an effect of sensory stimuli on the activity of DA 

neurons in the awake rat. The firing properties of DA neurons under anaesthesia can 

be shown to be similar to those in awake rats; however, the phasic change in activity 

that characterises the DA neuron response to non-noxious sensory stimuli in awake 

rats is  typically absent in the anaesthetised animal (Dommett et al., 2005; Tsai et al., 

1980; Schultz and Romo, 1987).  

3.2.3 Changes in DA activity in response to aversive stimuli 

There has been comparatively little research into the effects of aversive stimuli 

on DA neuron responses in the awake rat.  Kiyatkin and Zhukov (1988) and Kiyatkin 

(1988) reported that neurons presumed to be DA responded to a noxious pin prick or 

electrical skin stimulation on the tail. Again, as with non-noxious stimuli, not all of 

these presumed DA neurons responded to the stimuli, and responding neurons showed 

both increases and decreases in firing in response to the stimulus. Matsumoto and 

Hikosaka (2009) demonstrated both positive and negative responses in the monkey to 

aversive stimulus of an air puff, and the conditioned stimuli that predicted it, as well 

as reporting unresponsive neurons.  

In contrast to study in the awake animal, there is more work on the effect of 

aversive stimuli on DA neuron in the anaesthetised rat. Tsai et al. (1980), which  used 

tail pinch  and immersion of the tail in hot (57°C) water as a noxious stimulus, and 

Ungless et al. (2004), which also used tail pinch, found that while not all DA neurons 

responded to noxious stimulation, all that did respond did so with an inhibition. 

However, studies by Maeda and Mogenson (1982), Mantz et al. (1989), Gao et al. 

(1990, 1996), and Brischoux et al. (2009) report both excitation and inhibition to 
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aversive stimuli of varying degrees. As with non-noxious sensory stimulation, not all 

cells are responsive. Schultz and Romo (1987) found intensely noxious stimuli to be 

the only effective stimulus for anaesthetised monkeys. Both excitatory and inhibitory 

responses were found, and the response in a given neuron was consistent for 

stimulation across the whole animal. Interestingly, given Schultz‟s current position on 

DA neuron function as indicating the value of a stimulus, he suggests that “the 

bilateral nontopographic nature of the responses does not support a role in precise 

stimulus recognition.” 

3.2.4 The SC as a blocked route of sensory input in the anaesthetised rat 

Given the apparent absence of a phasic response in DA neurons to non-noxious 

sensory stimuli in the anaesthetised animal, it might be of interest to ask what phasic 

sensory stimuli have in common that distinguishes them from noxious stimuli. The 

answer, perhaps, lies in the SC. Dommett et al. (2005) demonstrated the SC and DA 

neurons were insensitive to sensory stimuli in the anaesthetised rat without 

disinhibition of the SC. Noxious stimuli, in contrast, may avoid the SC, and so be able 

to modulate DA neuron firing rates without disinhibiton (Coizet et al., 2006). The 

phasic response in DA neurons has recently been shown to be composed of two 

components, the first of which is insensitive to stimulus identity, and the second 

component, which can discriminate between stimuli. It was suggested in the 

introduction of this thesis that the SC is potentially the route of cortical input to DA 

neurons. If this is the case, the SC and DA neurons may be insensitive to cortical 

stimulation without disinhibition in a similar manner to sensory stimuli. 

3.3 Experiment rationale 

It has not yet been investigated whether the cortex (which may underlie the 

second component of DA neuron responses) can modulate the activity of DA neurons, 

and whether this input acts via the SC. The purpose of this study is therefore to 

establish whether the SC could be a relay for cortical somatosensory input to DA 

neurons in substantia nigra. 

  Activity of the intermediate and deep layers of the SC in response to visual 

stimuli is suppressed under urethane anaesthesia by GABAA mediated inhibition 

(Katsuta and Isa, 2003), which in turn suppresses the responsiveness of midbrain DA 

neurons (Dommett et al., 2005). Disinhibition can be induced by local injections of 
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pharmacological agents such as the GABA antagonist BMI into the SC (Katsuta and 

Isa, 2003). The projection from primary somatosensory cortex barrel field (S1Bf) 

terminates largely within the intermediate and deeper layers of the SC. Thus in this 

experiment the responses of the SC and nigral DA neurons to stimuli will be assessed 

both before and during a pharmacological disinhibition of the deep layers of SC. 

The responses of DA neurons and multiunit activity of the SC were recorded 

throughout intracortical microstimulation of the primary sensory barrel field to 

determine the influence of cortical inputs on DA neurons, and whether that input 

operated via SC. Responses of both DA neurons and SC were recorded before, and in 

the presence of local disinhibition of SC by a pressure injection of BMI, to determine 

how the responsiveness of SC affects the influence of cortical input on DA firing rates. 

3.4 Method 

3.4.1 Experimental procedure 

The experimental design is summarised in graphical form in Figure 3-1. The 

present study used simultaneous electrophysiological recording of SC (multiunit) 

activity and DA (single unit) activity in SNC, in response to electrical stimulation of 

S1Bf, both before (Figure 3-1a) and during (Figure 3-1b) chemical disinhibition of SC. 

To ensure only neuronal elements in the SC were disinhibited, local injections of an 

excitatory substance, the GABAA receptor antagonist BMI (Figure 3-1b, green 

microsyringe), were used. 

 

Figure 3-1 Schematic of the experimental design for this experiment. 

The subject preparation, experimental procedure, histology, and statistical 

analysis have been previously described in the Methods chapter. Some sections have 

been repeated here, with further detail regarding this experiment where appropriate. 
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Data were obtained from 13 acutely prepared adult hooded Lister rats (325-515 

g). The stimulating electrode was placed vertically into S1Bf (AP 1.8-2.56 ML 4.2-

5.4) 1.5-1.8 mm below dura. The multiunit electrode/cannula (filled with BMI, 100 

ng/μl saline; Sigma) was introduced vertically into the lateral intermediate layers of 

SC (AP 6.04-6.8 mm caudal to bregma; lateral 1.8-2.4 mm; dorsoventral 4.7-5.4 mm 

below dura). DA neurons were recorded from SNc (AP 4.6-6.04 mm caudal to 

bregma, lateral point of surface entry 2.2-4.4 mm. Single units were recorded between 

8.3 mm and 9.7 mm below the contralateral entry point of the 35º angled trajectory. 

The experimental procedure is described in chapter 2. Electrical stimulation 

consisted of single pulses of current to the barrel cortex (1 mA, 100 µs). The 

responses to cortical stimulation and the effects of SC activation were tested on 1-3 

SNc neurons in a single subject. See chapter 2 for a description of the histological 

procedures used in the present chapter. Analyses were performed using the methods 

as described in chapter 2. 

3.4.2 Data analysis 

Differences between groups were assessed with Student‟s or Welch‟s t-tests for 

normally distributed data and Wilcox‟s tests for non-normal data. See the Methods 

chapter for more detail. For inferential tests, although the precise p values are given, 

the two-tailed significance threshold is taken as p<0.05, unless otherwise stated. 

Data were collected, processed and analysed as described in the Methods 

chapter. Also, see Methods chapter for definitions of “baseline” and “background” 

activity, and “response magnitude” as used here.  

Data were collected and processed as described in chapter 2. PTSHs were 

created for DA responses to the light flash and cortical stimulation for the block of 

pre-BMI trials, and for the trials where there was evidence of BMI induced change in 

activity in SC, as defined in chapter 2. In order for a DA neuron to be defined as 

responsive by the criteria described in chapter 2, there has to be a change in the firing 

rate that exceeds the natural variance in the firing rate of the cell. However, DA 

neurons may show reliable changes in firing rate in response to a stimulus that do not 

reach the thresholds described above. To test whether DA neurons showed responses 

that were not detected by the criteria described in chapter 2, a cumulative sum 

(CUSUM) method of analysing responses was used. The CUSUM has been “applied 

to peristimulus histograms to reveal small changes in the probability of spike 



42 

 

occurrences normally obscured by random fluctuations” (Ellaway, 1978). The precise 

application of CUSUM analysis used here is based on Tepper et al. (1995) and Ji and 

Shepard (2007). CUSUMs were generated from PSTHs of DA neuron responses with 

1 ms bin widths. A change in firing was defined as a greater than 30% change in the 

slope of a linear fit line of 30 ms blocks of data. Onset latency and duration of 

responses were defined using the points of intersection between the fit lines of 

adjacent blocks of activity. If no significant deflection was detected within 260 ms of 

stimulation, then the neuron was deemed non-responsive. The end of the response 

period was selected as 260 ms after stimulation to encompass the entirety of the DA 

response as described by Hudgins (2010). When response onsets and offsets were 

determined from the CUSUM, they were applied to a PSTH with 20 ms bins to 

calculate peak amplitude and latency. The process is illustrated in Figure 3-2. 

 

Figure 3-2 Illustration of the CUSUM method of determining response onset and 

duration. Top: A PSTH of the response is constructed using 1 ms bins. Bottom: 

A CUSUM plot is constructed by plotting a running total of the sum of the bins 

(black dots). Linear fits are plotted from the data (red lines), slopes exceeding 

±30% of the slope of the fit line of prestimulus data indicates a significant change 

in the activity, and the two lines are plotted. The points at which the lines 

intersect defines the response onset/offset (dashed lines). These times can then be 

transferred back to the PSTH. Although the method was used to detect 

subthreshold responses, the process is demonstrated here on a large response for 

clarity. 

3.4.3 Optical imaging spectroscopy procedure 

In order to examine whether the activation produced by direct stimulation of the 

cortex was contained within the barrel field, optical imaging spectroscopy (OIS) was 

used to measure the spread of activation produced by stimulation, and to compare the 
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haemodynamic response to direct cortical stimulation to the response to whisker pad 

stimulation. The methods used here for OIS are similar to those used in Boorman et al. 

(2010). 

Three Female Hooded Lister rats (230–330 g) were kept in a 12 h dark/light 

cycle at a temperature of 22°C, with food and water supplied ad libitum. Animals 

were anesthetized with an intra-peritoneal injection of urethane (1.25 g/kg), additional 

doses of 0.1 ml of urethane were administered if required. Atropine was also 

administered subcutaneously at 0.4 mg/kg to lessen mucous secretions during surgery. 

Temperature was maintained at 37°C using a homoeothermic blanket (Harvard 

Apparatus) through rectal temperature monitoring during surgery and experimental 

procedures. The animals were tracheotomized, allowing the animal to be artificially 

ventilated and end-tidal CO2 to be recorded. Blood gas measurements and end-tidal 

CO2 measurements were taken to allow correct adjustment of ventilator parameters to 

keep the animal within normal physiological limits. Both the left and right femoral 

arteries and veins were cannulated to allow the measurement of mean arterial blood 

pressure (MABP) and drug infusion. Phenylephrine was infused at 0.13– 0.26 mg/h to 

maintain MABP between 100 and 110 mmHg. Physiological parameters were 

continuously monitored and maintained within normal ranges [pO2 = 94.9 ± 2.9 (SE) 

mmHg; pCO2 = 32.1 ± 1.6 mmHg; arterial blood saturation = 97.8 ± 0.25% (mean ± 

SE)]. 

 Platinum stimulation electrodes insulated to within 2 mm of the tip were 

inserted into the whisker pad. To ensure the majority of the whisker pad was 

stimulated, electrodes were inserted in a posterior direction between rows A/B and 

C/D of the left whisker pad of the rat. The animals were placed in a stereotaxic frame 

(Kopf Instruments). The skull overlying somatosensory cortex was thinned to 

translucency with a dental drill. The skull surface was cooled with saline during 

drilling. A circular plastic „well‟ (20 mm diameter) was positioned over the thinned 

area of the skull and attached with dental cement. To reduce specularities reflecting 

from the skull surface the well was filled with saline. A small hole was punctured in 

the thinned skull and a bipolar stimulating electrode (NEX-100, Rhodes Instruments) 

was introduced perpendicular to the cortical surface and to a depth of 1500 µm. 

A Dalsa 1M30P camera operating in 4 × 4 binning mode recorded the images 

with each pixel representing 75 × 75 µm of the object. The camera‟s quantum 
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efficiency was 28% at 500 nm. To generate spatial maps of cortical hemodynamic 

responses, 2D-OIS was performed using a Lambda DG-4 high-speed filter changer 

(Sutter Instrument Company, Novato, CA). The 4 wavelengths were specifically 

chosen as 2 pairs (495 ± 31 nm FWHM and 559 ± 16 nm FWHM; 575 ± 14 nm 

FWHM, and 587 ± 9 nm FWHM) such that each pair had a similar total absorption 

coefficient (therefore sampled the same tissue volume) but had absorption coefficients 

for oxyhemoglobin (HbO2) and deoxyhemoglobin (Hbr) that were as different as 

possible to maximize signal-to-noise ratios. The frame rate of the camera was 32 Hz, 

which was synchronized to changes between the filters. This gave an effective frame 

rate of 8 Hz for each wavelength and corresponding frequency estimates of 

hemodynamic changes. Spectral analysis was based upon the path length scaling 

algorithm (PLSA) (Berwick et al., 2005, 2008). Briefly, the algorithm used modified 

Beer-Lambert Law with a path length correction factor. We estimated the 

concentration of haemoglobin in tissue at a concentration 104 µM based on previous 

measurements (Kennerley et al., 2005) and saturation was calculated on a pixel by 

pixel basis (Berwick et al., 2008). The spectral analysis produced 2D images over 

time, of HbO2, Hbr, and total blood volume (Hbt). The effects of electrical stimulation 

of the barrel cortex and whisker pad on intrinsic signal haemodynamics were 

measured with 2D-OIS. The electrical stimulation parameters used for whisker pad 

stimulation were 1.2 mA, frequency 5Hz for 2 s. A 5 Hz stimulation frequency is 

known to result in the greatest magnitude of hemodynamic responses in the 

somatosensory cortex of the anesthetized rat preparation (Martin et al., 2006), without 

producing a change in MABP, partial pressure of CO2 or heart rate. Each experiment 

consisted of 30 trials separated by an interval of 26 s. Electrical stimulation of the 

whisker pad was compared to 60 trials of direct intracortical stimulation with single 

pulses of 1 mA, separated by an interval of 26 s. 

3.4.4 OIS Data analysis 

Data analysis was performed using MATLAB (The Mathworks). The first stage 

of the statistical analysis was to determine the centre of an area of activation 

determined using the general liner model (GLM) SPM approach (Friston et al., 1991). 

The time series of each pixel was compared with a design matrix of a DC offset, and a 

square wave representing the hemodynamic response function. This allowed voxel-

by-voxel calculation of activation z-scores. The spatial distribution of activation was 
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determined by plotting the region of action exceeding a z-score threshold, and the 

centre point of this area was determined using a MATLAB script written by Dr Luke 

Boorman and Dr Samuel Harris (see Figure 3-4). 

 

Figure 3-4 An illustration of the output of the analysis script, which determined 

the centre of a z-score thresholded area of activation (red). The centre is 

indicated by the green star. Activation has been plotted on a reference 

photograph of the thinned cranium. The midline suture is visible at the left edge 

of the figure. Lambda is toward the bottom of the figure, and bregma towards 

the top. 

Figure 3-3 illustrates a typical time course of a haemodynamic response. It 

shows the haemodynamic activity of the region shown in Figure 3-4 over time, plotted 

as a fractional change of the mean pre-stimulus activity. The centre point of the 

Figure 3-3 An example 

mean haemodynamic 

response to 30 trials of 2 s, 5 

Hz, 1.2 mA electrical 

whisker pad stimulation for 

the z-score thresholded 

region indicated in Figure 

3-4 
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spatial distribution was used for the second stage in the analysis – determining the 

spatial extent of the haemodynamic response. The area around the centre of activation 

was divided into a series of concentric circular regions.  

Figure 3-5 shows an illustration of the concentric circular regions plotted on a 

heat plot where each voxel represents the change in haemodynamic activity over the 

course of the response (i.e. integration of the response such as illustrated in Figure 

3-3). The haemodynamic activity above pre-stimulus activity for each ring (activity 

by ring over time shown in Figure 3-6) was integrated, which provided a measure of 

the haemodynamic response at a given distance away from the centre of activation. 

Figure 3-5 An illustration of 

the concentric circular 

regions used to quantify the 

haemodynamic response at 

increasing distances away 

from the centre of the area of 

activation. The circular 

regions are plotted on a heat 

plot showing the increase 

above the mean pre-stimulus 

haemodynamic activity for 

the entirety of the 

haemodynamic response, 

normalised to central ring. 

 

Figure 3-6 Haemodynamic 

responses as fractional change 

of mean activity over time by 

ring. The responses over time 

are similar to Figure 3-3, 

although changes in 

haemodynamic activity are 

represented as colour. Each 

row of the figure represents 

one concentric ring from 

Figure 3-5, with higher ring 

numbers further away from 

the centre of the region of 

activation. 
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The haemodynamic response in each ring was averaged across animals, and the 

average response for each ring was plotted for electrical whisker pad stimulation and 

cortical stimulation to produce a distance-decay curve. 

3.5 Results 

3.5.1 Inclusion criteria 

To be included in the analysis, putative DA neurons had to meet the following 

criteria: DA neuron recordings made in TH+ regions of the ventral midbrain, SC 

recordings were confirmed to have been made in intermediate or deep layers of SC, 

and the stimulation electrode was confirmed to have been placed within S1Bf without 

impinging on the underlying fibre tracts.  A successful injection of BMI into the SC, 

as judged by the presence of a significant response to light flash stimulus in the SC 

(see chapter 2), was also required for inclusion of a neuron in the analysis. 24 DA 

neurons met these criteria. Out of those 24 DA neurons, 8 responded to cortical 

stimulation before the injection of BMI. These neurons were analysed separately. 

Recording sites were taken as the centre of electrolytic lesion or the centre of an 

iontophoretic injection of Potamine blue dye. Stimulation sites were taken as the 

ventral extent of the electrode track. Examples of cresyl stained sections showing 

recording and stimulation sites are shown in Figure 3-7, Figure 3-8 and Figure 3-9. 

Figure 3-7 Coronal section of the 

SC, processed for cresyl violet. 

Measurement relative to bregma 

indicates the location of the section. 

Arrow indicates electrolytic lesion 

at the recording/injection site. 

SuSC: superficial SC (zonal and 

superficial grey layers); Op: optic 

layer; InSC; intermediate layer 

(intermediate grey and white 

layers). 
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There was no evidence of stimulation related tissue damage around the stimulation 

sites in S1Bf.  

 

Figure 3-8 Coronal 

section of the SNc, 

processed for cresyl 

violet. Measurement 

relative to bregma 

indicates the location of 

the section. Arrow 

indicates ejection of 

pontamine blue dye at 

the recording site. SNc: 

substantia nigra pars 

compacta; SNr: 

substantia nigra pars 

reticulata; ml: medial 

lemniscus; VTA: ventral 

tegmental area; fr: 

fasciculus retroflexus. 

 

 

 

Figure 3-9 Coronal section of 

the somatosensory cortex, 

processed for cresyl violet. 

Measurement relative to 

bregma indicates the location 

of the section. Arrow 

indicates the approximate 

location of the tip of the 

stimulating electrode. S1: 

primary somatosensory 

cortex; S1Bf: primary 

somatosensory cortex – barrel 

field. 
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The recording location of the DA neurons included in the study, the recording 

and injection locations in the SC, and the stimulation sites in S1Bf are shown on 

modified diagrammatic sections from Paxinos and Watson (2004) in Figure 3-10 

Reconstructed plots of recording sites in the midbrain on diagrams of coronal sections. 

Points indicate the approximate location of the DA cell., Figure 3-11, and Figure 3-12. 

 
Figure 3-10 Reconstructed plots of recording sites in the midbrain on diagrams 

of coronal sections. Points indicate the approximate location of the DA cell. The 

point labelled 2 represents the location of two recorded DA neurons. SNc: 

substantia nigra pars compacta; SNcl: substantia nigra pars compacta, lateral 

part; SNcm: substantia nigra pars compacta, media part; SNr: substantia nigra 

pars reticulate; ml: medial lemniscus; cp: cerebral peduncle; MT: medial 

terminal nucleus of the accessory optic tract; PBP: parabrachial pigmented 

nucleus; ZI: zona incerta. 
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Figure 3-11 Reconstructed plots of recording sites in the midbrain on diagrams 

of coronal sections. Points indicate the tip position of the electrode-injector 

assembly. Measurements relative to bregma, and indicate the location of each 

section. Zo: zonal layer; SuG: superficial grey layer; Op: optic layer; InG: 

intermediate grey layer; InWh: intermediate white layer; DpG: deep grey layer; 

DpWh; deep white layer; PAG: periaqueductal grey. 

 
Figure 3-12 Reconstructed plots of stimulation sites in the cerebral cortex. Points 

indicate the tip position of the stimulation electrode. The exposed pole of the 

central electrode extends 500 um dorsally from the point indicated, followed by 

500 um of insulated electrode, followed by a 500 um exposed section forming the 

surround electrode. Measurements relative to bregma, and indicate the location 

of each section. S1: primary somatosensory cortex; S1Bf: primary 

somatosensory cortex, barrel field; S1DZ: primary somatosensory cortex, 
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dysgranular region; S1FL: primary somatosensory cortex, forelimb region; 

S1HL: primary somatosensory cortex, hindlimb region; S1Tr: primary 

somatosensory cortex, trunk region; S2: secondary somatosensory cortex; M1: 

primary motor cortex; M2: secondary motor cortex. 

Processing for c-fos and TH immunoreactivity was performed in all 13 animals. 

FLI indicates the expression of c-Fos a protein associated with neural activity 

(Herdegen and Leah, 1998), and would indicate the extent of the disinhibitory effect 

Figure 3-14 Coronal section 

of the SC processed for TH 

and c-fos. Section shows TH 

positive DA neurons (purple 

cells in SNc and VTA). 

 Measurement relative to 

bregma indicates the 

location of the section. 

Arrow indicates recording 

site.  

SNc: substantia nigra pars 

compacta; SNr: substantia 

nigra pars reticulata; VTA: 

ventral tegmental area; ml: 

media lemniscus; fr: 

fasciculus troflexus. 

 

Figure 3-13 Coronal section of 

the SC processed for TH and c-

fos. Section shows FLI (black 

dots) in SC as a result of neural 

activity induced by BMI 

injection. Measurement relative 

to bregma indicates the location 

of the section. Arrow indicates 

electrolytic lesion at the 

recording/injection site. SuSC: 

superficial layers of the SC 

(zonal layer and superficial 

grey layer); Op: optic layer; 

InSC: intermediate layers of 

the SC (intermediate grey and 

intermediate white layers); 

DpSC: deep layers of the SC 

(deep grey and deep white 

layers); PAG: periaqueductal 

grey. 
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of BMI. When injections were made within the intermediate and deep layers of the 

SC, FLI was largely contained within the SC (see Figure 3-13). This is supported by 

previous experiments using comparable protocols (Coizet et al., 2003). 

 Only recordings from putative DA neurons sited in TH+ regions of the 

midbrain were included for analysis. An example of TH immunoreactivity can be 

seen in Figure 3-14. The distribution of Fos-like immunoreactivity (FLI) was used as 

an indication of the spread of activation as a result of BMI injections. 

3.5.2 Activity in the superior colliculus 

To assess the effect of sensory stimulation on general SC activity without the 

presence of BMI, the mean background activity in the 500 ms before the light flashes 

in the block of pre-BMI stimulations was compared to the mean baseline activity in 

the 60-120 seconds before the start of any stimulation.  

There was no significant effect of the stimulation on spontaneous activity (Mbase 

= 227.9±11.4 Hz; Mprebkgd = 223.2±13.4 Hz; t = 1.23, df = 15, p > 0.05). Across all 16 

records, BMI had a significant positive effect on background collicular activity, 

(Mprebkgd = 223.2±13.4 Hz; Mpostbkgd = 349.9±42.1 Hz; t = -3.17 df = 15, p = 0.006). 

Examination of the records shows that following injection of BMI, most records 

(12/16) showed at least a 10% increase in background activity. Two out of the 

remaining four showed at least a 10% decrease. However, there was nothing to 

indicate any difference between BMI injections causing an increase in spontaneous 

activity and those showing a decrease, and both increases and decreases in activity 

were seen in different recordings in the same animal. 

Throughout the pre-BMI trials, there was no phasic response to the light in the 

intermediate and deep SC. There was, however, a short latency (onset latency: 

2.6±0.4 ms, peak latency: 6.4±0.6 ms) short duration (17.9±1.6 ms) response to 

cortical stimulation (an example is shown in Figure 3-15). Mean peak amplitude 

above background firing rate was 1256.7±144.7 Hz. 
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Figure 3-15 PSTH/raster plot of SC activity in response to a single 1 mA pulse 

stimulation to S1Bf. Stimulation occurs at 0.0 s. 

Following intracollicular injection of BMI, a phasic excitatory response to the 

light flash was seen in all 16 records (onset latency: M = 49.1±3.4 ms; duration: M = 

177.6±16.6 ms). Across all 16 records, BMI had a significant positive effect on the 

magnitude of collicular response in the 200 ms following cortical stimulation, (Mpremag 

= 25.0±9.9 Hz; Mpostmag = 122.9±41.7 Hz; t = -2.63, df = 15, p = 0.019) and response 

duration (Mpredur = 17.9±1.6 ms; Mpostdur = 64.1±16.0 ms; t = -3.06, df = 15, p = 0.009) 

but not peak amplitude (Mpreamp = 1256.7±144.7 Hz; Mpostamp = 1230.75±98.63 Hz; t = 

0.28, df = 15, p > 0.05). There was no significant change in onset latency (Mpreonset = 

2.6±0.4 ms; Mpostonset = 2.8±0.5 ms; t = -0.62, df = 15, p > 0.05) or peak latency 

(Mpreplat = 6.4±0.6 ms; Mpostplat = 8.3±0.7; t = -2.05, df = 15, p > 0.05) of the collicular 

response to cortical stimulation following injection of BMI. Post-BMI SC responses 

to a light flash had significantly longer durations (Mlightdur = 177.6±16.6; Mctxdur = 

64.1±16.0; t = 8.26, df = 15, p < 0.001) magnitudes (Mlightmag = 308.5±47.5 Hz; 

Mctxmag = 122.9±41.7; t = 7.85, df = 15, p < 0.001) onset latencies (Mlightonset = 

49.3±3.4 ms; Mctxonset = 2.8±0.5 ms; t = 14.83, df = 15, p < 0. 001) compared to post-

BMI responses to cortical stimulation. 



54 

 

 

Figure 3-16 shows a typical response of the SC to light flash and cortical 

stimulation before, and after injection of BMI.  
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Figure 3-16 PSTH/raster plots of SC MUA in response to light flash (A) and 

cortical stimulation (B) before (black) and in the presence of a local 

microinjection of BMI (red). Vertical cursor indicates stimulus onset at 0.0 s. 

3.5.3 Activity of DA cells unresponsive until BMI injection 

There was no significant difference in the DA neuron activity in the baseline 

period and the background activity in pre-BMI trials (Mbase = 3.4±0.5 Hz; Mprebkg = 

3.5±0.4 Hz; t = -0.36, df = 15, p > 0.05). Across all 16 records, there was an increase 

in background DA neuron firing rate with BMI injection, but this did not reach 

significance, (Mprebkg = 3.5±0.4 Hz; Mpostbkg = 3.8±0.5 Hz; t = -2.11, df = 15, p > 0.05).   

Overall, during periods of significant effect of BMI in SC, 14/16 (82.4%) DA 

neurons showed a significant response to the light flash. Of those 14, 9 also showed a 

response to cortical stimulation. On average, onset latencies of DA neuron responses 

reliably followed SC responses to both light flash (MSC = 49.3±3.4 ms, n = 16; MDA = 

84.8±6.2 ms, n = 14; t = -5.44, df = 18.90, p < 0.001) and cortical stimulation (MSC = 

2.8±0.5 ms, n = 16; MDA = 30.0±9.4 ms, n = 8; t = -2.89, df = 8.04, p = 0.020). Onset 

latencies of DA neuron responses to a light flash were significantly longer than those 

of DA neuron responses to cortical stimulation (Mlight = 84.8±6.2 ms, n = 14; Mctx = 

30.0±9.4 ms, n = 8; t = 5.12, df = 14.67, p < 0.001). As onset latencies of SC 

responses to cortical stimulation were much shorter than SC responses to light, this 

may have an effect on DA response latencies. Examination of the onset latency of DA 

responses to light flash and cortical stimulation, minus the latency of the SC response 

to the same stimulus, showed there was no significant difference between the two 

stimuli (Mlight = 40.3±7.2 ms, n = 14; Mctx = 27.2±9.4 ms, n = 8; t = 1.10, df = 16.35, 

p > 0.05) (see Figure 3-17A).  

Records were examined to see if there was any difference in duration between 

responses to the two modalities. There was no significant difference between the 

durations of DA neuron responses to each stimulus (Mlight = 168.9±20.5 ms, n = 14; 

Mctx = 148.8±25.6 ms, n = 8; t = 0.61, df = 15.45, p > 0.05). There were no significant 

differences between durations of DA neuron responses and the durations of the 

corresponding SC responses to light flash (MSC = 192.8±16.5 ms; MDA = 168.9±20.5 

ms; t = 1.03, df = 13, p > 0.05, n = 14), or cortical stimulation (MSC = 87.8±26.1 ms; 

MDA = 148.8±25.6 ms; t = -1.69, df = 7, p > 0.05, n = 8) (see Figure 3-17A). There 

was no significant difference between absolute magnitudes of responses of DA 

neurons to each stimulus (Mlight = 3.4±0.9 Hz, n = 14; Mctx = 3.2±1.0, n = 8; t = 0.21, 
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df = 19.57, p > 0.05) (see Figure 3-17C), although there was still a significant 

difference between the corresponding response magnitudes (Mlightmag = 339.1±48.5 Hz, 

n = 14; Mctxmag = 156.2± 57.7 Hz, n = 8; t = 2.43, df = 16.06, p = 0.027) (see Figure 

3-17B) and response durations (Mlightdur = 192.8±16.5 ms, n = 14; Mctxdur = 87.8±26.1, 

n = 8; t = 3.50, df = 11.51, p = 0.004) (see Figure 3-17A)  in the SC. 

 

Figure 3-17 Comparisons of collicular and DA neuron response onset latencies 

and durations (A), collicular response magnitudes (B) and DA response 

magnitudes (C) to a light flash (black) and cortical stimulation (white). 

3.5.4 Differentiating between inhibitory and excitatory responses 

Out of all sixteen DA neurons, 50% (8/16) showed responses with an excitatory 

first component to the light flash, four of which also responded to cortical stimulation, 

all in the same direction (Figure 3-18, bottom). Thirty-seven point five percent (6/16) 

showed responses with an inhibitory first component, four of which also responded to 

cortical stimulation, all in the same direction (Figure 3-18 top). The remaining 12.5% 

(2/16) showed no significant response to either stimulus. 
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Figure 3-18 Raster plots of raw data and line plots of smoothed data from two 

DA neurons demonstrating excitatory (top) and inhibitory (bottom) responses to 

interleaved light flash (onset 0.0 s) and cortical stimulation (onset 2.0 s) before 

(un highlighted raster and blue line) and in the presence of (red highlighted 

raster and red line) local microinjections of BMI. 

Records were examined to see if there were differences between DA neurons 

showing excitatory first phases and inhibitory first phases that might suggest the 

existence of separate sub-populations. Given that the first phase of responses to both 

stimuli in DA neurons that became responsive after BMI was in the same direction, 

DA neurons were categorised as excited and inhibited based on the first phase of their 

response to the light flash stimulus. Unpaired t-tests suggest that there is no 

significant difference between the baseline firing rates of cells which were excited or 

inhibited (Mex = 3.1±0.7 Hz, n = 8; Min = 3.6±0.7 Hz, n = 6; t = -0.48, df = 9.74, p > 
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0.05). There was a significant difference between action potential sizes as measured 

by the time from onset of the spike to the first trough (Mex = 1.3±0.04 ms, n = 8; Min = 

1.5±0.04 ms, n = 6; t = 4.458, df = 9.64, p < 0.001). All cells met the criteria proposed 

by Ungless et al. (2004) of onset-trough measurement greater than 1.1 ms to safely 

exclude non-DA neurons. There was a significant difference in measurements of total 

spike widths between DA neuron showing responses with excitatory first phases and 

those showing responses with inhibitory first phases (Mex = 4.0±0.08 ms, Min = 

4.9±0.1 ms, t = -5.46, df = 6.99 p < 0.01), although total spike widths were strongly 

associated with onset-trough measurements. Typical waveforms of excited, inhibited 

and unresponsive neurons are shown in Figure 3-19. Average spike shapes showed 

prominent initial segment spikes (Grace and Bunney, 1983) on 8/15 excited cells, but 

only 1/8 inhibited cells, and neither of the unresponsive cells.  

 

Figure 3-19 Waveform averages of typical spikes from DA neurons which 

showed excitatory (green) or inhibitory (red) responses to stimuli after injection 

of BMI, and a neuron which was unresponsive (black), aligned to spike onset. 

DA neuron response characteristics were also examined to see if responses with 

excitatory first phases and inhibitory first phases might be the product of different 

inputs. There were no significant differences between DA neuron response onset 

latency (Mexlight = 80.3±7.6 ms, n = 8; Minlight = 103.3±8.0 ms, n = 6; t = -2.08, df = 

11.45, p > 0.05; Mexctx = 22.5±12.5 ms, n = 4; Minctx = 40.0±17.8, n = 4; t = -0.80, df = 

5.38, p > 0.05) or duration (Mexlight = 136.8±19.6 ms, n = 8; Minlight = 221.7±34.5 ms, n 

= 6; t = -1.89, df = 8.14, p > 0.05; Mexctx = 150.0±37.2 ms, n = 4; Minctx = 147.5±40.9 

ms, n = 4; t = -0.05, df = 5.95, p > 0.05) to either stimulus. 

3.5.5 Coincident spontaneous bursting in SC and DA 

As well as stimulus evoked activity, injection of BMI could also produce 

spontaneous bursts of activity in the SC that were associated with increases in activity 
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in the DA neuron. Figure 3-20 shows an example of association between SC and DA 

neuron activity. Bursts of spikes in DA neurons (as defined by Grace and Bunney 

(1984a)) occurred alongside bursts of activity in the SC. Examination of the timing of 

bursts in a DA neuron (lower waveform, black arrows on Figure 3-20) showed that 

they followed an increase in the amplitude of SC activity (upper waveform), and a 

corresponding increase in SC firing rate (rate histogram). 

 

Figure 3-20 An example of spontaneous bursting in SC following intracollicular 

BMI injection, and associated activity in a DA neuron. From top to bottom: Rate 

histogram of SC activity (100 ms bins); SC electrophysiological recording; DA 

spike occurrence, with each vertical line representing one spike; DA neuron 

electrophysiological recording. Arrows indicate the onset of bursts in the DA 

neuron, as defined by (Grace and Bunney, 1984a), applied to both DA and SC 

traces. 

3.5.6 Dopaminergic response to non-reinforced, familiar stimuli 

A measure of phasic response magnitude was obtained by subtracting DA 

activity in the 500 ms before a stimulus from the activity in the period 20-260 ms after 

the stimulus. DA neurons typically habituate to repeated presentations of an 

unreinforced stimulus. If this response were to habituate, we would expect to see a 

decrease in the DA response as the stimuli become less effective at exciting or 

inhibiting the cell. 

Figure 3-21 shows a typical time course of the response of the SC and a DA 

neuron a cortical and light flash stimulation. Rather than habituating, response 

magnitude for the SC and DA neurons to both light flash and cortical stimulation 

throughout the course of an experiment increases then returns to baseline in line with 

the effect of BMI.  
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3.5.7 Activity of DA neurons responding before BMI injection 

DA neurons that responded to cortical stimulation before BMI injection were 

examined to see if they may represent a distinct subpopulation. There were no 

significant differences between pre-BMI responsive (n = 8) and pre-BMI 

unresponsive (n = 16) DA neurons on baseline firing rates (Mresp = 3.2±0.6; Munresp = 

3.4±0.5; t = -0.31, df = 14.18, p > 0.05), or onset-trough spike measurements (Mresp = 

1.3±0.05 ms; Munresp = 1.4±0.04 ms; t = -1.56, df = 17.08, p > 0.05). The 

characteristics of SC responses to cortical stimulation in pre-BMI responsive and pre-

BMI unresponsive DA neurons were then compared to see if the response was the 

result of differences in SC responsiveness. There were no significant differences 

between records of pre-BMI responsive and pre-BMI unresponsive DA neurons on 

SC response magnitude (Mresp = 30.9±14.2 ms, n = 8; Munresp = 25.0±9.9 ms, n = 16; t 

= 0.34, df = 13.92, p > 0.05), duration (Mresp = 18.6±3.8 ms, n = 8; Munresp = 17.9±1.6 

ms, n = 16; t = 0.17, df = 9.54, p > 0.05), or peak amplitude (Mresp = 1139.6±215.6 Hz, 

n = 8; Munresp = 1256.7±144.7 Hz, n = 16; t = -0.45, df = 17.08, p > 0.05). 

When compared to post-BMI DA neuron responses in neurons that did not 

respond before BMI (n = 10), pre-BMI DA neuron responses (n = 8) were 

Figure 3-21 Response measured by activity above baseline of a DA neuron and SC 

across the timecourse of BMI effect. 
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significantly shorter (Mresp = 78.8±11.7 ms; Munresp = 148.8±22.9 ms; t = -2.49, df = 

9.81, p = 0.033), but not significantly different in onset latency (Mresp = 56.9±14.8 ms; 

Munresp = 31.3±9.5 ms; t =  1.41, df = 12.69, p > 0.05) or response magnitude (Mresp = 

0.9±0.4 Hz; Munresp = 2.8±1.0 Hz; t = -1.89, df = 8.85, p > 0.05). 

3.5.8 Effect of interleaved stimulation on response 

Throughout the course of recording, it was noticed that after injection of BMI, 

the activity in the SC preceding the stimulation affected the response to the 

stimulation. Figure 3-22A shows an example of such activity, where oscillatory 

activity in the SC preceding cortical stimulation (t = 0) was associated with less 

activity after the stimulation. The interaction between the two stimuli was tested 

experimentally by temporarily disabling one stimulus (i.e. presenting one stimulus 

approximately every four seconds, rather than every two seconds). Figure 3-22 shows 

an example of this, where turning off the light flash stimulation produced an increased 

response to cortical stimulation in the SC (not shown) and a corresponding increase in 

the DA neuron response. 

 

Figure 3-22 Demonstration of the effect of oscillatory activity in the period 

preceding stimulation disrupting the response to that stimulus (A), and the effect 

of presenting only one stimulus (B). Vertical cursors indicate the onset of 

stimulation – cortical stimulation in A, light flash (left) and cortical stimulation 

(right) in B. Horizontal cursor in B represents the point at which the light flash 

was disabled. 
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3.5.9 Optical Imaging 

The change in haemodynamic response magnitude over distance was used to 

compare the effect of intracortical stimulation with electrical whisker pad stimulation. 

Figure 3-23 shows the haemodynamic response over distance for intracortical 

stimulation and electrical whisker pad stimulation. Intracortical stimulation resulted in 

a lower peak response, but a more steady decay with distance than the response 

produced by electrical whisker pad stimulation. Single pulse electrical stimulation of 

the cortex produced a haemodynamic response with a similar spread to the 

haemodynamic response produced by whisker pad stimulation. 

 

Figure 3-23 Mean haemodynamic response over distance from the centre of 

activation for intracortical stimulation (blue) and electrical whisker pad 

stimulation (green) (n=3), normalised to the peak response to whisker pad 

stimulation. 

3.6 Discussion 

3.6.1 Summary of findings 

The current study indicates that the SC plays a role in relaying somatosensory 

cortical input to DA neurons in SNc. The findings suggest that local activation of the 

SC has the ability to modulate the firing rate of presumed DA neurons in SNc. Under 

urethane anaesthesia, electrical stimulation of somatosensory cortex with a single 1 

mA 100 µs pulse produces a short latency, short duration response in the SC. A 10 ms 
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light flash produces no response. In the majority of DA cells, a response to cortical 

stimulation is usually absent; although in some cases a significant response can be 

seen. DA cells do not respond to the light flash. Removal of GABAA mediated 

inhibition by local microinjections of BIC in SC, as indicated by responsiveness to a 

whole field light flash, can increase the response to cortical stimulation. Light flash 

stimulation can then evoke a response in almost all DA neurons. The response of DA 

neurons is modulated in the same direction as the response to the light flash.  

3.6.2 Discussion of findings 

Responsiveness of SC and DA neurons to stimuli 

It has demonstrated that under anaesthesia, responses of the SC and DA neurons 

are suppressed, but return when the suppression is lifted by an injection of BMI into 

SC (Dommett et al., 2005). In the unanaesthetised animal, responses in the SC and 

DA neurons habituate if the stimulus is predictable, or it is not associated with 

reinforcement that maintains its salience (Chalupa and Rhoades, 1977; Ljungberg et 

al., 1992), although this has not been found to be the case with responses to stimuli 

during intracollicular injections of BMI (Dommett et al., 2005). 

 In the current study, SC response to a light flash stimulus was suppressed by 

the effects of anaesthesia. In response to cortical stimulation, the SC showed a short 

latency short duration phasic excitation. After a successful local injection of BMI into 

the SC, all records showed a phasic excitation to the light. In most records, injection 

of BMI also increased the magnitude of the phasic response to cortical stimulation in 

the SC. In SNc, all DA neurons were insensitive to the light flash before an injection 

of BMI. While most DA neurons were similarly unresponsive to a single 1 mA pulse 

of cortical stimulation, some did show a small response. Following successful BMI 

injections, many DA neurons became responsive to cortical stimulation. The 

percentage of DA neurons responsive to a visual stimulus in the present study 

compares broadly well to studies using a similar paradigm (92% vs 85.7%, Dommett 

et al., 2005) and to studies with awake animals (81%, Strecker and Jacobs (1985); 

75%, Horvitz et al. (1997); 75%, Schultz and Romo (1990). The response rate of DA 

neurons to cortical stimulation has not been established, and papers reporting the 

presence of responses in DA neurons to presentation of somatosensory stimuli (e.g. 

Freeman et al. (1985)) have not reported the proportion of responsive cells. However, 

the proportion of DA neurons that responds to auditory stimuli is similar to the 
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proportion that responds to visual stimulation (85%, Strecker and Jacobs (1985); 87% 

Horvitz et al. (1997)) suggesting that the proportion of responsive cells is consistent 

across modalities. Thus, it seems likely that a similar proportion of DA neurons will 

respond to somatosensory stimulation. In the present study, 63% of neurons 

responded to cortical stimulation, which is a similar, although slightly lower 

percentage than to sensory stimuli. 

Direction of DA neuron responses 

In the present study, DA neuron responses with both excitatory and inhibitory 

first phases were seen to both cortical stimulation and a light flash. The ratio of DA 

neurons showing excitatory first phases to those showing inhibitory first phases 

(slightly less than 2:1 for both cortical stimulation and light flash) is slightly higher 

than that found previously using a similar experimental paradigm (17:13 for visual 

stimulation, Dommett et al. (2005)), and slightly less than that found in some studies 

in awake animals (e.g. 16:7 for visual stimulation, 16:6 for Strecker and Jacobs (1985)) 

but notably lower than others (8:1 for visual stimulation, 11:2 for auditory stimulation, 

Horvitz et al. (1997); approximately 10:1 for combined visual/auditory stimulation, 

Schultz (1986)) The reason for this difference is not clear, although it should be noted 

that the lowest ratio of excited to inhibited cells was obtained in anaesthetised animals, 

while the highest ratio was obtained during a behaviourally motivated task, which 

may suggest some form of modulation of responsiveness related to behavioural state. 

Response direction does not indicate separate populations of neurons 

Previous investigation has suggested that a sub-population of VTA neurons 

exists, which responds with excitation to aversive stimuli. This group has been 

suggested to be a population of non-DA neurons, distinguishable by action potential 

width (Ungless et al., 2004), or a sub-population of DA neurons located in a restricted 

area of the VTA (Brischoux et al., 2009). The current study did not use an aversive 

stimulus, and both excitatory and inhibitory responses have been previously reported 

in VTA and SNc DA neurons to non-noxious sensory stimuli (Steinfels et al., 1983a, 

1983b; Strecker and Jacobs, 1985; Schultz, 1986; Horvitz et al., 1997; Dommett et al., 

2005). Nevertheless, the present data were examined to see if there were differences 

between DA neurons showing excitatory first phases and inhibitory first phases that 

might suggest the existence of sub-populations. A full consideration of the data from 

all chapters and their theoretical implications is given in the final chapter. All that will 
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be said here is that although the direction of the first phase of the responses of DA 

neurons after BMI was in the same direction to both cortical stimulation and light 

flash, DA neurons that were responsive before BMI occasionally showed responses to 

cortical stimulation in the opposite direction to the post-BMI response to light flash. 

The response to cortical stimulation either changed direction, or was absent after BMI. 

This alone suggests that a binary excited/inhibited distinction of SNc DA neurons is 

unwarranted. 

Variation in stimulus evoked activity between animals 

When comparing responses of SC and DA neurons across animals, differences 

could be seen in the magnitude and duration of responses to both cortical stimulation 

and whole field light flash. Whilst responses to visual and cortical stimuli both varied, 

responses to cortical stimulation varied more. This may be in part due to the nature of 

the stimulus. The light flash covered most of the contralateral visual field, and so is 

likely to have activated a large proportion of SC neurons fairly equally. The OIS data 

presented here suggest that electrical stimulation of barrel cortex produced a 

haemodynamic response across a most if not all of the barrel field. However, neural 

activation is likely to be restricted to a smaller area than haemodynamics suggest, and 

even if activation spread to the whole barrel field, it is possible that the region 

immediately around the electrode was excited to a greater extent than surrounding 

tissue. Thus peak cortical stimulation may have been focused on a more restricted 

region of SC, producing the variation in responses of neurons across the SC and SNc. 

Interaction between multimodal stimulation 

In a small number of experiments, only one stimulus was presented. The results 

showed that, on occasions where only one stimulus was presented at 0.25 Hz rather 

than the standard protocol of 0.5 Hz stimulation alternating between light flash and 

cortical stimulation, the SC phasic response to the stimulus increased. However, in 

several cases injections of BMI were made at a similar time. Thus, there were only a 

few cases in which the change in response as a result of less frequent unimodal 

stimulation could be dissociated from the course of effect of BMI. Figure 3-22 

provides an example.  

It has been reported by Rhoades (1980) that electrical stimulation of 

somatosensory cortex, which elicited a response in somatosensory neurons in deep SC, 

suppressed responses to stimulation of the cervical spinal cord, and to vibrissal 
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stimulation, in 30% of neurons. A similar pattern was found for a light flash and 

stimulation of the visual cortex and optic chiasm. The period of response suppression 

demonstrated by Rhoades only lasted for 50-200 ms after stimulation of 0.1-1.5 mA. 

While this might not immediately explain the interaction between stimuli 2 s apart in 

the present results, Rhoades (1980) showed that although stimulation at 0.8 mA 

produces outright suppression lasting 80 ms, there is attenuation for 200 ms. In this 

case, stimulation at higher current intensities, which produce longer periods of 

suppressions, might have attenuating effects at a much longer time scale. 

Absence of habituation to repeated stimuli  

In the awake animal, both SC and DA neurons habituate rapidly to unreinforced 

predictable stimuli (Wurtz and Albano, 1980; Schultz, 1998). The stimuli used here 

were spatially and largely temporally predictable. Both SC and DA neurons showed 

phasic responses to the light flash and cortical stimulation. This response did not 

habituate, but instead increased and decreased with the onset and offset of the effect 

of BMI on the SC. The absence of habituation supports the findings of previous 

electrophysiological studies with similar protocols (Dommett et al., 2005) and 

behavioural studies (Redgrave et al., 1981) which have shown that habituation can be 

blocked by disinhibition of the SC. It has been suggested that habituation in the SC to 

input from the optic nerve is the result of blocking of LTP induction in the superficial 

layers via a GABAergic mechanism (Hirai and Okada, 1993), which may explain the 

absence of habituation in the presence of the GABA antagonist BMI 

Methodological considerations 

Current spread from intracortical stimulation 

Although the results strongly suggest that the SC is a relay of cortical input 

from whisker barrel cortex to DA neurons, it is important to consider methodological 

and theoretical issues that could affect this conclusion.  

The intention of the intracortical stimulation was to activate the barrel field 

within primary somatosensory cortex. When using intracortical microstimulation of a 

restricted cortical area as a stimulus, it is important to determine the area of cortex the 

current pulse activates. The optical imaging data presented here show that the cortical 

haemodynamic response to 100 µs single pulse 1 mA stimulations is comparable in 

extent to electrical whisker pad stimulation. The electrical whisker pad stimulation 

parameters used here have been previously established to activate most, if not all of 



67 

 

the barrel field (Berwick et al., 2005), suggesting that cortical stimulation similarly 

activates a majority of the barrel field. The precise relationship of neurovascular 

coupling is still a source of investigation, and the extent haemodynamic response is 

not necessarily the same as current spread/extent of activated elements. Nevertheless, 

the results still support the assertion that the neuronal activation from the stimulation 

paradigm used here is contained within the barrel field. Using MRI Tolias et al. (2005) 

found that the haemodynamic response to cortical microstimulation measured by 

BOLD was larger than was expected by the figures for passive current diffusion given 

by Stoney Jr et al. (1968), suggesting that a haemodynamic response contained within 

the barrel field, as seen here, indicates that the activation was similarly constrained. 

Interpretation of DA neurons responding pre-BMI 

  The research presented here strongly suggests that the activation of SC by 

cortical stimulation is the result of orthodromic activation, rather than an artefact 

resulting from antidromic activation. Activation of collicular efferents is then 

presumed to modulate the firing of DA neurons in SNc. However, some DA neurons 

were seen to respond before application of BMI to the SC. One possible explanation 

of this phenomenon is input reaching SNc via routes not involving the SC. 

Somatosensory cortex projects broadly throughout the brain. However, there are 

few projections to structures with projections onwards to SNc that are likely 

candidates for alternate pathways. Somatosensory cortex projects extensively to 

ventral areas of the dorsolateral striatum (McGeorge and Faull, 1989; Alloway et al., 

1999). These projections are overwhelmingly excitatory (Bellomo et al., 1998) and 

synapse onto medium spiny neurons, which project on to SN. There is a direct cortical 

projection to SNc and SNr, however, it appears in the rat to be restricted to the 

prefrontal cortex, with no projection from sensorimotor, or any other more caudal 

cortical region (Naito and Kita, 1994). Pedunculopontine tegmental nucleus (PPTg) 

also projects to DA neurons, and can produce both excitatory an inhibitory responses 

(Lokwan et al., 1999). However, the cortical input to PPTg seems to be limited to 

prefrontal cortex (Steininger et al., 1992), suggesting it is not a relay of S1Bf cortical 

input. Consequently, only a cortico-striato-nigral pathway seems able to provide input 

from S1Bf to DA neurons. 

For the most part, the effect of cortical projections to the striatum is 

overwhelmingly excitatory (Bellomo et al., 1998). They typically synapse onto 
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GABAergic medium spiny neurons, which then project on to SN (Nitsch and 

Riesenberg, 1988), producing an inhibitory response. In the present study, DA cells 

could exhibit inhibitory or excitatory responses to somatosensory cortex stimulation. 

Cortico-striato-nigral projections could underlie both excitatory and inhibitory 

responses in DA neurons, as GABAergic MSNs project onto both DA neurons of SNc, 

and GABAergic neurons of SNr, which then project on in turn to DA neurons (Nitsch 

and Riesenberg, 1988). However, the absence of any significant difference in onset 

latency between excitatory and inhibitory responses, which might be expected with an 

extra synapse, and effect of disinhibiting the colliculus on DA responses suggests that 

this projection is also unlikely to be responsible for the present results. 

3.6.3 Remaining questions 

The current study suggests that the SC is a likely relay for cortical 

somatosensory input to DA neurons. However, its role is not confirmed by this study. 

Previous study has shown that stimulation of the SC, both electrical and chemical 

(including injections of BMI), can desynchronise cortical activity (Redgrave and 

Dean, 1985; Keay et al., 1988; Dean et al., 1991; Dringenberg et al., 2003). 

Desynchronisation may result in the cortex responding differently to stimulation, 

which might produce a different effect in DA neurons. Given this possibility, and the 

alternative pathways mentioned above, and the presence of responses in some neurons 

before injection of BMI in the SC, it is possible that the SC is not a relay of cortical 

input to DA neurons. This hypothesis could be tested by removing the input of the SC 

and examining its effect on the DA response. In some instances in this study, DA cells 

did respond to cortical stimulation before the injection of BMI into SC.  It is possible 

that other stimulation parameters will be able to reliably drive DA neurons at 

„baseline‟. Activity in the SC could then be „removed‟ by chemical suppression, and 

the effect on DA response to stimuli compared to baseline to confirm whether the SC 

is indeed a relay, and whether the sensitivity of DA neurons to stimulation is a 

specific effect of BMI injections in the SC. 
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4 The effects of collicular suppression by injection of muscimol on 

the responsiveness of dopaminergic neurons to stimulation of 

barrel cortex with pulse trains 

4.1 Chapter summary 

The previous chapter strongly suggested that DA neurons were responsive to 

cortical stimulation, and that this input was via the SC. The following chapter seeks to 

confirm these findings, and eliminate alternative explanations. Firstly, it describes 

how cortical stimulation could be adjusted to produce a response in DA neurons 

without disinhibition, and then discusses how this response might be supressed. The 

present study found that DA neurons respond to a lower intensity, high frequency 

pulse train in the naive animal, and that this response can be attenuated or eliminated 

by suppressing SC responses by injecting the GABAA antagonist muscimol. This adds 

additional supporting evidence to the assertion that the SC is a critical relay for 

cortical input to DA neurons. 

4.2 Introduction 

The work detailed in the previous chapter demonstrated that the majority of DA 

neurons were unresponsive to a single 1 mA, 100 µs pulse until the SC was 

disinhibited by injecting the GABAA antagonist BMI. The results suggest that the SC 

is a relay for cortical input to DA neurons. However, previous work has shown that 

injections of L-glutamate or BMI into the superior colliculus can cause cortical 

desynchronisation (Redgrave and Dean, 1985; Dean et al., 1991). Desynchronisation 

may change the response of the cortex to the direct electrical stimulation used in 

chapter 3. If cortical desynchronisation does have an effect on the cortical response to 

stimulation, then this may be the cause of the change in responses of DA neurons, 

rather than any specific effect of BMI on the SC. The possibility that the 

responsiveness of DA neurons to cortical stimulation is the result of cortical 

desynchronisation must be excluded in order to properly interpret the results. In the 

previous chapter, some DA neurons responded before BMI was injected. This 

strongly suggests that DA neuron responsiveness to cortical stimulation was not the 

result of BMI induced desynchronisation. The present experiment will develop this 

model further and establish whether responses can be reliably evoked in DA neurons 
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in the absence of BMI. The experiment will then go on to examine whether the SC is 

a critical relay for cortical input to DA neurons by examining whether the activity of 

SC affects the response in DA neurons. 

4.2.1 Stimulation of the SC can induce cortical desynchronisation 

Research into the role of the SC as a source of cortical arousal has suggested 

that intracollicular injections of L-glutamate or intracollicular stimulation can induce 

desynchronisation in urethane anaesthetised rats (Dean et al., 1991). Injection of BMI 

in sleeping rats also produces desynchronisation (Redgrave and Dean, 1985). There 

are several aspects of these studies by Redgrave, Dean and colleagues that make 

desynchronisation a less plausible explanation of the results of chapter 3 than 

collicular disinhibition. The present study uses injections of BMI into the deeper 

layers of the SC. Dean et al. (1991) found that injections of BMI were less likely to 

induce cortical desynchronisation than injections of L-glutamate. The injections of L-

glutamate were more likely to induce cortical desynchronisation in sleeping rats than 

in urethane anaesthetised rats in Redgrave and Dean (1985), suggesting that 

anaesthesia reduced the ability of collicular activation to induce cortical 

desynchronisation. The doses of urethane used in Redgrave and Dean (1985) were 

much lower than the ones used in the present study (0.75 g/kg vs 1.25 g/kg). The 

larger dose of anaesthetic used in the present study may further reduce the chance of 

an injection of BMI producing cortical desynchronisation. Nevertheless, to be fully 

confident in the results, the possibility of a non-specific effect of BMI in the SC 

should still be excluded. 

4.2.2 Producing a response in DA cells without BMI 

In the previous chapter, some records showed a response in DA neurons before 

an injection of BMI had been made in the SC. If a set of stimulation parameters could 

be established that reliably produce a response in DA neurons in the naive animal, 

then this would be strong evidence that the responsiveness of DA neurons after an 

injection of BMI into the SC is not due to non-specific effects on cortical synchrony. 

If the suppression of collicular activity blocked or attenuated those responses in DA 

neurons, this would be further evidence for collicular relay of cortical information 

bound for DA neurons. 

The parameters of the cortical stimulation that can be changed are: current 

intensity, pulse duration and number of pulses, and if a train of pulses is used, the 
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frequency of pulse. A full description of how changes to the configuration of 

electrical stimulation affect cortical neuronal activation is beyond the scope of this 

thesis, although see Tehovnik (1996) for a detailed review. Broadly, however, 

increasing the current intensity of a pulse increases the current density at a given 

distance from the electrode, which can also be seen as producing the same current 

density further from the electrode. Increasing the pulse duration increases the amount 

of charge transferred to the tissue. Alternatively, a train of pulses can be used to 

deliver the charge over a longer period of time, while allowing for the charge to 

dissipate between pulses.  

The aim was to develop a set of stimulation parameters that activated a greater 

number of cortical neurons, on the assumption that more activated neurons would 

mean a greater likelihood of a response in DA neurons. The response in the SC 

produced by cortical stimulation is the result of depolarising presumably direct 

corticotectal cells. Although a greater number of neurons could be activated with a 

greater current or longer pulse duration (Tehovnik, 1996) this needs to be balanced 

against the risk of activating regions outside the barrel field, which would confound 

the interpretation of the results. Also, excessive currents have been shown to cause 

damage to cortical tissue (Asanuma and Arnold, 1975). Therefore, the decision was 

made not to increase the current of the pulse, but to use a high frequency train of 

pulses instead.  

The particular train configuration was chosen to directly drive depolarisation of 

corticofugal neuron axons in a semi-naturalistic manner. A train of five pulses at 150 

Hz was chosen, as this is similar to the firing pattern of intrinsically bursting (IB) 

cortical pyramidal neurons. Cortical neurons showing this distinct bursting pattern 

have been identified as a distinct population of tectally projecting neurons in the 

visual cortex (Kasper et al., 1994; Rumberger et al., 1998; Tsiola et al., 2003), and 

given the repetitive structure of cortical circuitry,  this association between activity 

and anatomy may also apply in other sensory cortical areas. Before the study proper 

began, a pilot study was conducted to examine the stability of the response over time. 

4.2.3 Suppressing SC activity 

As well as choosing a set of stimulus parameters, a suitable method of 

suppressing SC activity is needed. Intracerebral injections of the GABAA receptor 

agonist muscimol are widely used in behavioural and electrophysiological studies to 
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examine the effect of reversibly inactivating a brain region (e.g. see Majchrzak and Di 

Scala (2000) for a review of the use of muscimol in studies of learning and memory). 

Muscimol is preferable to sodium channel blockers (e.g. tetrodotoxin) or local 

anaestheics (e.g. lidocaine) as they block electrical activity in both local neurons and 

fibres of passage (Hille, 1966, 1977; Ritchie, 1979). An injection of muscimol also 

provides rapid and long lasting effects, allowing for extensive investigation. 

 Muscimol also has particularly useful applications in the SC because of the 

extensive intrinsic and extrinsic GABAergic control of the SC: GABAergic neurons 

form up to fifty percent of the neurons in the superficial layers and one third of 

neurons in the deeper layers (Mize, 1992). Isa et al. (1998) demonstrated that tonic 

GABA suppresses glutamatergic connections between the optic tract and the 

superficial layers of the SC, as well as from the superficial to the intermediate layers. 

There are also similar local connections within deeper layers. This intrinsic circuitry 

is suggested to be a mechanism by which efferent cells of the deeper SC could 

associate, coordinate, or modulate their responses (Behan and Kime, 1996).  

In the superficial layers, two circuits involving GABA receptors have been 

described (Binns and Salt, 1997; Binns, 1999), which were suggested to produce 

inhibitory surround (through presynaptic GABAA receptors) and habituation (through 

pre- and/or postsynaptic GABAB receptors).  These circuits may provide a target for 

manipulation of activity in the SC. A disinhibitory circuit involving GABAA-ρ 

receptors  has been described (Pasternack et al., 1999; Lee et al., 2001; Schmidt et al., 

2001), which might have a counterproductive effect, as GABAA-ρ receptors are 

activated by low concentrations of muscimol (Schmidt et al., 2001). However, 

expression of the receptors within the SC is restricted to GABAergic interneurons in 

the SuG, so the likelihood of an effect is lessened. The SC also receives significant 

extrinsic GABAeric input from a variety of sources (Appell and Behan, 1990). The 

two most significant projections are the from SNr (Kaneda et al., 2008) and zona 

incerta, which contains “the largest number of non-nigral GABAergic afferents to the 

SC” (May et al., 1997). SNr and zona incerta GABAergic neurons from both SNr and 

zona incerta synapse onto cells in the InG layer, and exhibit high tonic firing rates that 

pause before the onset of saccades. (Chevalier et al., 1981a, 1981b; Hikosaka and 

Wurtz, 1985; Kim et al., 1992; Ma, 1996; Kaneda et al., 2008). 
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The evidence suggests that presumably GABAergic neurons form widespread 

networks within layers, and also between layers, particularly adjacent layers (Behan et 

al., 2002). Further, there are several extrinsic sources of GABAergic input that 

actively suppress the SC. The roles of GABAergic mechanisms in a range of 

inhibitory systems in SC make it an ideal target for suppressing the effect of cortical 

input to SC. Application of the GABAA agonist muscimol to SC should increase tonic 

inhibition in the intermediate and deep layers of SC through GABAA receptors, 

suppressing the activity of efferent cells. 

4.2.4 Experiment rationale 

In the previous study, disinhibition of the SC has been shown to be sufficient to 

produce a phasic response to cortical stimulation in DA neurons. However, the 

necessity of the SC in communication of cortical inputs to DA neurons is still unclear. 

The purpose of this study is to replicate the activation of DA neurons by cortical 

stimulation without disinhibition of the colliculus, and to establish whether 

responsiveness of the SC is a necessary condition for DA response to cortical 

stimulation by suppressing SC responses to cortical stimulation. Further, the 

manipulation of DA responses to cortical stimulation in the absence of disinhibition of 

the SC will allow alternative explanations of the results of chapter 3 to be ruled out.  

4.3 Method 

4.3.1 Experimental procedure 

The experimental design is summarised in graphical form in Figure 3-1. The 

present study used simultaneous electrophysiological recording of SC (multiunit) 

activity and DA (single unit) activity in SNC, in response to electrical stimulation of 

S1Bf, both before (Figure 3-1a) and during (Figure 3-1b) chemical suppression of SC. 

To ensure only neuronal elements in the SC were suppressed, local injections of an 

excitatory substance, the GABAA receptor agonist muscimol (Figure 3-1b, red 

microsyringe), were used. 
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Figure 4-1 Schematic of the experimental design for this experiment. 

The subject preparation, experimental procedure, histology, and statistical 

analysis have been previously described in the Methods chapter, and elaborated on in 

the previous experimental chapter. Some sections have been repeated here, with 

further detail regarding this experiment where appropriate. 

Data were obtained from a total of 12 acutely prepared adult hooded Lister rats 

(288-480 g). The stimulating electrode was placed vertically into S1Bf (AP 1.6-3.14, 

ML 4.8-5.4) 1.5-1.8 mm below dura. The multiunit electrode/cannula (filled with 

muscimol where necessary,100 ng/μl saline; Sigma), was introduced vertically into 

the lateral intermediate layers of SC (AP 6.04-6.72 mm caudal to bregma; Lateral 1.6-

2.6 mm; Dorsoventral 4.8-5.7 mm below dura). DA neurons were recorded from SNC 

(AP 4.8-5.3 mm caudal to bregma,lateral point of surface entry 2.5-4.0 mm). 

The first section of this study did not involve muscimol, but instead investigated 

whether the response of the SC and DA cells to pulse train stimulation remained 

broadly stable over time. When both probes were suitably positioned, baseline activity 

was recorded from both the SC and the SNc for a period of at least 60 s. A block of 

150 pulse train stimulations were then applied to establish the presence of a stable 

response. A single stimulation consisted of a train of 5 pulses of electrical stimulation 

of barrel cortex at 150 Hz (0.6-0.8 mA, 100 μs pulse width). Each train was separated 

by 2 s, jittered by 20 %. If the initial block showed a significant response in the DA 

neuron, then stimulation was continued for up to 45 minutes.  

The second section of this study investigated whether the response of the SC 

and DA cells to pulse train stimulation was affected by the injection of muscimol into 

the SC, and followed the experimental procedure defined in chapter 2. Initially cells 

were stimulated at 0.6 mA. If there was no visible response on a PSTH of 150 trials, 

currents of 0.8 and 1.0 mA were tested. If no response could be seen at 1.0 mA, the 
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neuron was discarded as not sufficiently responsive. See Methods chapter for a 

description of the histological procedures used. 

4.3.2 Data analysis 

Data were analysed using Spike2 in-built functions, Spike2 scripts, and the R 

language (R Foundation of Statistical Computing, Vienna, Austria). Unless otherwise 

stated, paired t-tests were used to compare groups. Where data were non-normal (p > 

0.05 for a Shapiro-Wilk normality test) they were transformed before analysis, 

typically log transformations. Summary statistics are reported as mean±SEM for 

normal data. For transformed non-normal data, mean and SEM are calculated using 

transformed data, then backtransformed for easier interpretation (i.e. e
mean(XT)±SEM(XT)

 

for loge transformed data, where mean(XT) and SEM(XT) are the mean and SEM of 

the transformed data). As e
mean(XT)+SEM(XT)

 and e
mean(XT)-SEM(XT) 

would not be equal 

distances from e
mean(XT)

, both backtransformed SEM limits are reported in the form 

mean, +SEM:-SEM. Where a single transformation cannot be applied to render data 

from both groups normal, then non-parametric tests are used. Summary statistics for 

groups analysed by non-parametric tests are reported as median, 1Q:3Q). 

ECoG was recorded via a tinned wire placed on the frontal cortex. EEG 

recording was obtained from a broadband recording of SC activity. Both signals were 

low-pass filtered (32 dB, -3 dB point: 40 dB) and the dominant frequency band was 

determined, which was defined as the largest bin in an FFT (fast Fourier transform) 

with bin sizes of approximately 0.5 Hz. The dominant frequency was compared to the 

frequency bands described in Friedberg et al. (1999) to determine the depth of 

anaesthesia. FFTs were produced from the first 15 minutes of recording, the first 

fifteen minutes after muscimol injection, and the last fifteen minutes of each 

recording. 

SC activity was recorded, processed and analysed as described in chapter 2. 

Following data collection and processing, the data were examined to see if muscimol 

had taken effect by comparing several measures of activity (see chapter 2 for 

definitions of baseline, background and response activity). PSTHs were constructed 

from pre-injection trials and post injection trials to compare the effect of the injection, 

or from a series of blocks of trials to track the time-course of a measurement of 

activity. The period used to calculate background activity was the 500 ms preceding 

the stimulus. The post-stimulation period was the 30 ms immediately following the 
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stimulus.  PSTHs of SC activity evoked by cortical stimulation showed a peak of 

excitation that was sometimes followed by a rebound inhibition, and often a second, 

longer duration increase in activity. As the first peak is most likely to be the result of 

direct projection, a response period was calculated to cover only the first peak. Pre-

muscimol trials on all records were examined, and a “first peak offset” was taken to 

be the point at which the activity fell below the background activity for two or more 1 

ms bins. The mean offset point was 30 ms, and so response magnitude was measured 

using the period 0-30 ms after stimulus onset.  

DA data were recorded and processed as described in chapter 2. Measures of 

baseline activity, background activity and response magnitude were taken to examine 

the effect of muscimol (see the methods chapter for a definition of these 

measurements). The response period was 20-260 ms after stimulus onset to 

encompass the entirety of the DA response as described by Hudgins (2010). 

To examine whether muscimol increased or decreased response magnitudes 

regardless of response direction, absolute measures of response magnitude for 450 

pre-injection trials and the last 450 post-injection trials were used. Five control 

experiments were also examined where no injection had taken place. The first 450 

trials were compared to the last 450 trials of each recording. To examine the effect of 

muscimol over the course of the experiment, the response magnitudes were plotted 

over time. Response magnitudes were measured for blocks of 150 trials. The response 

magnitudes were standardised to the mean response magnitude for pre-muscimol 

blocks. 

In the previous chapter, a response in a DA neuron to a single 1 mA current 

pulse was defined as deflections in the PSTH crossing a threshold of the mean pre-

stimulus activity ±1.96 SD. Even though several cells in the present study succeeded 

in reaching this threshold, changes in the activity of several cells were detectable by 

eye but did not meet this threshold. This failure to cross the threshold was a 

combination large variance of pre-stimulus activity, and the tendency of responses to 

be in the form of several bins of low amplitude, and thus non-significant deflection, 

rather than the larger amplitude responses seen in the previous chapter. Consequently, 

the cumulative sum (CUSUM) method, described in chapter 3, was applied across all 

cells in the present chapter. 
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4.3.3  Optical imaging spectroscopy 

In order to examine whether the activation produced by direct stimulation of the 

cortex was contained within the barrel field, optical imaging spectroscopy (OIS) was 

used to measure the spread of activation produced by our chosen stimulation 

parameters, and to compare the haemodynamic response to direct cortical stimulation 

to the response to whisker pad stimulation. Data were recorded from the same animals 

reported in the OIS experiments of chapter 3. The experimental methods are identical, 

except cortical stimulation consisted of 60 trials of direct intracortical stimulation 

with 150 Hz trains of five pulses at 0.6 mA, separated by an interval of 26 s. The 

analysis is also the same as that presented in chapter 3. 

4.4 Results 

4.4.1 Inclusion criteria 

To be included in the analysis, putative DA neurons had to meet the same 

histological criteria as those in chapter 4, and also have a successful injection of 

muscimol into the SC, as judged by the presence of a significant decrease in the mean 

activity of SC. Nine DA neurons met these criteria.  

Figure 4-2 Coronal 

section of the 

somatosensory cortex, 

processed for cresyl 

violet. Measurement 

relative to bregma 

indicates the location 

of the section. Arrow 

indicates the 

approximate location 

of the tip of the 

stimulating electrode. 

S1Bf: primary 

somatosensory cortex, 

barrel field. 

 

 

 

Recording sites were taken as the centre of electrolytic lesion or of the 

iontophoretic injection of Potamine Sky Blue dye. Examples can be seen in chapter 3. 
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Stimulation sites were taken as the ventral extent of the electrode track. An example is 

presented in Figure 4-2. There was no evidence of stimulation related tissue damage 

around the stimulation sites in S1Bf. 

The recording locations of the DA neurons included in the study, the recording 

and injection locations in SC, and the stimulation sites in S1Bf are shown on 

diagrammatic sections from Paxinos and Watson (2004) in Figure 4-3, Figure 4-4, and 

Figure 4-5. 

 

Figure 4-3 Reconstructed plots of recording sites in the midbrain on diagrams of 

coronal sections. Points indicate the approximate location of the DA cell. 

Measurements relative to bregma, and indicate the location of each section. 

Abbreviations as in chapter 3. 

 
Figure 4-4 Reconstructed plots of recording sites in the midbrain on diagrams of 

coronal sections. Points indicate the tip position of the electrode-injector 

assembly. Measurements relative to bregma, and indicate the location of each 

section. Abbreviations as in chapter 3 
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Figure 4-5 Reconstructed plots of stimulation sites in the cerebral cortex. Points 

indicate the tip position of the stimulation electrode. The exposed pole of the 

central electrode extends 500 um dorsally from the point indicated, followed by 

500 um of insulated electrode, followed by a 500 um exposed section forming the 

surround electrode. Measurements relative to bregma, and indicate the location 

of each section. Abbreviations as in chapter 3 

Processing for c-fos and TH immunoreactivity was performed in all 9 

animals.An example of TH immunoreactivity can be seen in chapter 3. C-fos 

processing showed an absence of FLI, except at greater distances from the injection 

site (Figure 4-6).  
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Figure 4-6 Coronal section of the SC processed for TH and c-fos. Section shows a 

lack of FLI (black dots) around the injection site. Measurement relative to 

bregma indicates the location of the section. Arrow indicates electrolytic lesion at 

the recording/injection site. SuSC: superficial layers of the SC (zonal layer and 

superficial grey layer); Op: optic layer; InSC: intermediate layers of the SC 

(intermediate grey and intermediate white layers); DpSC: deep layers of the SC 

(deep grey and deep white layers); PAG: periaqueductal grey. 

4.4.2 Eliminating habituation as an alternative explanation 

The effect of repeated stimulation on 5 DA neuron responses was tested without 

manipulation of the SC for between 750 and 1300 sweeps (approximately between 25 

and 45 minutes of recording). There was no significant difference between DA 

neurons response magnitudes in the first 450 sweeps (M = 0.7±0.1 Hz) and last 450 

(M = 0.7±0.1 Hz) sweeps of each recording (t = 1.624, df = 4 p > 0.05). An 

illustration of the consistent response of a neuron stimulated 1300 times is shown in 

Figure 4-7. 
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Figure 4-7 A raster plot of a DA neuron responding consistently to stimulation 

with 1300 pulse trains. Vertical cursor indicates stimulation onset. 

4.4.3 Eliminating EEG change as an alternative explanation 

A FFT was applied to all 9 records where muscimol was injected, the peak 

power frequency was determined as described in the methods section of this chapter, 

and the frequency was compared to the anaesthetic states of Friedberg et al. (1999). 

Throughout all 9 records where muscimol was injected, there was no change in the 

the dominant frequency band of EEG and ECoG recordings (mean peak power 

frequency across all 3 stages of recording (dominant frequency 1-1.5 Hz before 

stimulation, immediately after muscimol injection and at the end of recording – see 

Figure 4-8 for an example). Comparison of peak power frequency before and 

immediately after injection of muscimol, and at the end of the recording to the 

anaesthetic stages of Friedberg et al. (1999) suggested a stable anaesthetic state III-4 

at all points. 
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Figure 4-8 An example of EEG activity recorded before application of any 

stimulation (top) immediately following muscimol injection (middle) and 30 

minutes after muscimol injection (bottom). There was no shift in depth of 

anaesthesia as measured by the dominant frequency. 

4.4.4 Activity in the superior colliculus 

To assess the effect of sensory stimulation on SC activity without the presence 

of muscimol, the baseline firing rate was compared to the background firing rate 

during pre-muscimol stimulation. A paired Wilcoxon signed rank test showed no 

significant difference in firing rate of SC when comparing baseline firing (395.2 Hz, 

232.5:418.9 Hz) and background firing in pre-muscimol trials (367.9 Hz, 217.4:428.5 

Hz; V=25, p > 0.05). Across all 9 records there was a significant difference between 

background firing rate in pre-muscimol trials (338.2±33.4 Hz) and post-muscimol 

trials (140.4±44.1 Hz; t = 5.64, df = 8, p < 0.001). Examination of the records shows 

that all 9 records showed a decrease in activity. 

Throughout the pre-muscimol trials, there was a short latency (1.6±0.2 ms), 

short duration (34.0±2.5 ms) response to cortical stimulation. There was a significant 

difference in collicular response magnitude between pre-muscimol and post muscimol 

trials (prior to injection of muscimol: 870.2±220.2 Hz; after injection of muscimol: 

597.0±232.9 Hz, t = 4.68, df = 8, p = 0.001). Response onset did not significantly 

change with application of muscimol (pre-muscimol median = 2 ms, 1 ms:2 ms; post 

muscimol median = 1.5 ms, 1 ms:2 ms, V=1, p > 0.05). There was a significant 

difference between pre-muscimol response duration (34.4±2.5 ms) and post-muscimol 

response duration (28.6±3.6 ms; t = 2.34, df = 9, p = 0.052). An example response in 

the SC can be seen in Figure 4-9. 
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Figure 4-9 Graph of SC activity in response to a train of cortical pulse train 

stimulation before (black) and after (red) intracollicular injection of muscimol. 

Vertical cursor indicates the first pulse, black and red horizontal cursors 

indicate pre- and post-injection background firing rates. 

To assess the response of SC over the course of the pulse train, the mean firing 

rate in the 6.5 ms after each pulse was measured, before and after injection of 

muscimol. Figure 4-9 shows an example of the effect of muscimol on the collicular 

response to cortical pulse train stimulation. A two-way within subjects ANOVA (IV: 

mean firing rate, DV: pulse number (5 levels), injection (2 levels)) revealed a 

significant effect on activity of the injection of muscimol (F(1,8) = 43.54, p < 0.001; 

mean pre-injection firing rate: 870.2 Hz, post-injection: 451 Hz), pulse number 

(F(4,32) = 11.61, p < 0.001; mean firing rates after each pulse – 1: 721 Hz, 2: 816 Hz, 

3:614 Hz, 4:555 Hz, 5:524 Hz) and an interaction between muscimol and pulse 

number  (F(4,32) = 6.31, p < 0.001; see Figure 4-10). In both pre- and post- muscimol 

trials, the activity after each pulse peaked with the second pulse, and then declined 

with each subsequent pulse. The activity after each pulse during pre-muscimol 

stimulation was consistently higher than the activity after the corresponding pulse 

during post muscimol stimulation. The difference between activity following 

corresponding pulses in pre- and post-muscimol trials was greatest for the activity 

after the second pulse. The same pattern was observed when the effect was considered 

as a relative change (reduction in activity for each pulse – 1: 28%, 2: 37%, 3: 35%, 4: 

26%, 5: 24%). 
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Figure 4-10 A breakdown of the response magnitude of each of the five pulses in 

the train (pulse number) for pre- (blue line) and post-muscimol (red line) trials. 

Error bars represent 1SEM. 

4.4.5 Activity of DA cells 

A paired t-test showed no significant difference in firing rate of DA when 

comparing baseline firing (M = 3.0±0.8 Hz) and mean background firing in pre-

muscimol trials (M = 3.1±0.7 Hz; t = -0.51, df = 8, p > 0.05), nor between mean 

background firing in pre-muscimol trials (M = 3.1 ±0.7 Hz) and post-muscimol trials 

(M = 3.2±0.7 Hz; t = -0.41, df = 8, p > 0.05). 

4.4.5.1.1 Stimulus evoked responses  

In order to compare the change in response magnitude across both inhibited and 

excited cells, the absolute size of response magnitude was used. All 9 cells showed a 

significant response, as detected by the CUSUM method, starting in the response 

period (20-260 ms after stimulation) before an injection of muscimol (onset latency = 

42 ms, 18:100 ms; duration = 82 ms, 50:237 ms; response magnitude: 0.6 Hz 0.3:0.8 

Hz; response amplitude = 3.1 Hz, 1.4:3.6 Hz). Of these cells, 6 showed an excitatory 

response, two of which showed a second, inhibitory phase, and 3 showed an 

inhibitory response. There was no significant difference between excitatory and 

inhibitory DA neuron response onsets (Medex = 30 ms, 15:100 ms; Medin = 79 ms, 

48.5:160.0 ms; W = 12.5, p > 0.05), durations (Medex =  107 ms, 50:207 ms; Medin = 
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68.8 ms, 50.5 ms:171.5 ms; W = 7, p > 0.05) response amplitudes (Medex = 3.3 Hz, 

3.1:4.0 Hz; Medin =1.4 Hz, 1.1:2.5 Hz; W = 5, p > 0.05).  

Across all 9 cells, there was a significant difference between response 

magnitudes before (0.6 Hz, 0.3:0.8 Hz) and after (0.1 Hz, 0.1:1.1 Hz) muscimol 

injection (V = 41, p = 0.027). Absolute response magnitudes were plotted over blocks 

of 150 stimulations (each block lasting 5 minutes), with the response magnitude in 

each file standardised to its pre-muscimol mean response magnitude. The magnitude 

of DA neurons responses can be seen to decrease within the first few blocks, and 

continue to decrease over the course of the record (see Figure 4-11).  

 

Figure 4-11 Demonstration of the effect of muscimol on standardised absolute 

response magnitudes averaged across all animals. Absolute response magnitudes 

for each animal were standardised to the mean response magnitude in their pre-

muscimol trials. Error bars represent 1SEM. Numbers in brackets indicate 

number of animals contributing to each datapoint. Vertical cursor indicates 

muscimol injection. 

After an intracollicular injection of muscimol, five cells ceased to show a 

detectable response to cortical stimulation. All five cells where the response was 

abolished showed excitatory responses before muscimol. In the four cells that 

remained responsive, there was no significant difference between pre- and post- 

muscimol measures of response onset latency (Medpre = 48.5 ms, 15.5 ms:160.0 ms; 

Medpost = 119.0 ms, 57.0 ms:170.5 ms; V = 3, p > 0.05) duration (Medpre = 152.5 ms, 

50.5 ms:256.0 ms; Medpost = 138.0 ms, 80.0 ms:225.5 ms; V = 4, p > 0.05) or 

response magnitude (Medpre = 1.3 Hz, 0.6:1.9 ms; Medpost = 1.2 Hz, 0.6:1.5 Hz; V = 

10, p > 0.05).  
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Muscimol could have a differential effect on initial and second phases of DA 

responses. This was particularly prominent on one of the cells that showed an initial 

excitatory phase, which was followed by a second inhibitory phase. Although an 

injection of muscimol eradicated the initial phase, the second phase remained (see 

Figure 4-12). 

 

Figure 4-12 CUSUM showing the differential effect of intracollicular injection of 

muscimol on first and second phases of the response. Graph shows response 

before injection of muscimol (blue), immediately after injection of muscimol 

(dark red), and at by the end of the recording (light red). The initial excitatory 

response (indicated by a rising slope 100-150 ms after stimulus onset) is 

abolished after muscimol injection, while the inhibitory response (indicated by 

the prominent falling slope from 300 ms to approximately 500 ms after stimulus 

onset. 

4.4.6 Topographic distribution of response directions 

The nine DA neurons presented in this chapter show responses to cortical 

stimulation without any manipulation of the SC. Eight neurons in the previous chapter 

also showed responses in DA neurons before disinhibition of the SC. These neurons 

were all plotted together to see if there was any pattern of distribution of cells 

showing responses with excitatory and inhibitory first components. 
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Figure 4-13 Reconstructed plots of recording sites in the midbrain on diagrams 

of coronal sections. Points indicate the approximate location of DA neurons 

showing responses with excitatory (green) and inhibitory (red) first components. 

Measurements relative to bregma indicate the location of the section. 

Abbreviations as in chapter 3. 

Figure 4-13 Reconstructed plots of recording sites in the midbrain on diagrams 

of coronal sections. Points indicate the approximate location of DA neurons showing 

responses with excitatory (green) and inhibitory (red) first components. 

Measurements relative to bregma indicate the location of the section. Abbreviations as 

in chapter 3.shows the locations of DA neurons showing responses with excitatory 

(green) and inhibitory (red) first components. There was no clear relationship between 

recording location and response direction, with neurons showing inhibitory and 

excitatory phases being located at all rostro-caudal points, and toward the lateral 

extent of SNc, bordering on SNc lateralis. Although DA neurons were not recorded 

towards the border of SNc medial, DA neurons showing responses with excitatory 

first components were recorded as medially as those showing inhibitory first 

components. 

4.4.7 Optical Imaging 

The change in haemodynamic response with distance was used to compare the 

effect of intracortical stimulation with electrical whisker pad stimulation.   



88 

 

 

Figure 4-14 Mean haemodynamic response over distance from the centre of 

activation for intracortical stimulation (blue) and electrical whisker pad 

stimulation (green) (n=3) 

Figure 4-14 Mean haemodynamic response over distance from the centre of 

activation for intracortical stimulation (blue) and electrical whisker pad stimulation 

(green) (n=3)shows the haemodynamic response over distance for intracortical 

stimulation and electrical whisker pad stimulation. Intracortical stimulation resulted in 

a lower peak response, but a more steady decay with distance than the response 

produced by electrical whisker pad stimulation. Pulse train electrical stimulation of 

the cortex produced a haemodynamic response with a similar spread to the 

haemodynamic response produced by whisker pad stimulation.  

4.5 Discussion 

4.5.1 Summary of findings 

Under urethane anaesthesia, intracortical stimulation produces a short latency, 

short duration response in the SC, and a small response in the majority of DA cells. 

Local microinjections of muscimol into the SC decreased both the background and 

stimulus evoked activity of the SC. Injection of muscimol into the SC had no effect on 

the background firing rate of DA neurons, but the absolute magnitude of DA neuron 

responses to cortical stimulation significantly decreased after intracollicular injections 

of muscimol. These changes were neither the result of changes in cortical 

synchronisation, anaesthetic depth, or tissue damage. In conjunction with the findings 
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of the previous chapter, the current study confirmed the suggestion that the SC is a 

route for cortical input to DA neurons. 

4.5.2 Discussion of findings 

Averaging across all nine cells, muscimol significantly decreased the response 

magnitude of DA. There was an initial step change in the response, which strongly 

suggests that the change was due to the muscimol injection, and then the effect 

became progressively greater over the course of recording. After an injection of 

muscimol, five cells ceased to respond by the end of the recording. The remaining 

four cells continued to respond; however, three showed changes in their responses 

that could be considered a result of the suppressive effect of muscimol. The remaining 

DA neuron did not appear to be greatly affected; however, the sweeps used to 

determine the post-muscimol response of this neuron were comparatively soon after 

the muscimol injection, and so the muscimol may have had less time to diffuse 

throughout the SC to include the stimulated part of the SC (Edeline et al., 2002). 

Examining the effect of muscimol on the response profile also suggests that 

apparent „rebound‟ or „oscillation‟ responses might need to be reinterpreted. Although 

some cells in chapter three showed cleared autocorrelative features – peaks and 

troughs following a particularly large response at intervals around the interspike 

interval – some cells in the present chapter showed what appeared to be a longer 

latency features. These later phases were differentially affected by muscimol injection 

in a way that suggested they were not simple rebound events. For example, two cells 

continued to show a longer latency phase even after intracollicular muscimol 

abolished the shorter latency phase. The fact that longer latency components of the 

response can persist even after the abolition of earlier components, suggests that some 

apparently autocorrelative features may in fact be the product of separate influences 

on the cell. 

Comparison of the effects of pulse trains to single pulses on DA neurons 

DA neurons showed a response to lower intensity cortical pulse train 

stimulation as they did to higher intensity single pulse stimulation. Comparison of the 

responses reveals similarities and differences. Responses were often small in 

magnitude compared to some of the post-BMI responses in chapter 3 but similar to 

those seen in pre-BMI responses. However, the durations of responses of DA neurons 

to pulse train stimulation were similar to those to a single pulse after intracollicular 
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BMI seen in chapter 3, suggesting that lower current pulse train stimulation produced 

smaller but longer duration responses in DA neurons. Responses of DA neurons to 

pulse train stimulation are of notably longer latency than to post-BMI responses to a 

single pulse. Responses latencies were closer to pre-BMI responses, but still 

noticeably different on average. However, examination of the onset latencies of each 

neuron suggests that there were similarities between single pulse and pulse train 

response latencies: four out of the eight cells had response latencies of <20 ms, much 

closer to the typical post-BMI responses to a single pulse.  The remaining cells 

showing latencies of 79, 100, 194 and 241 ms. Although the former two onset 

latencies are within the range of what might be expected, the latter two latencies are 

substantially longer. Whether these responses represent a separate population of cells 

or a difference in some aspect of the stimulation is unclear.  

Elimination of alternate explanations of results 

At the beginning of this chapter, it was suggested that changes in responses 

throughout the course of the experiment might be an effect of a shift in anaesthetic 

depth on the responsiveness of neuronal populations. However, EEG and ECoG 

recording in the present study demonstrated that there was no shift in anaesthetic 

depth as a result of the injection of muscimol. Note that this was not due to a floor 

effect, as anaesthetic depth remained above stage IV. Further, given the dramatic shift 

in collicular activity and the step change in DA neuron responses following the 

injection, it seems unlikely there was a gradual drift of arousal level throughout the 

experiment. 

Although the stimulation parameters used were selected with the risk of tissue 

damage in mind, tissue damage from repeated cortical stimulation was also suggested 

as a potential confound of the results of the present study. The results suggest that 

gradual tissue damage is not the cause of the change in response magnitude of DA 

cells, as most recordings showed an initial step change in response magnitude 

between the end of the pre-muscimol block and the start of the post muscimol block, 

suggesting that the muscimol was the cause of the decrease. Further, examination of 

the cresyl violet processed sections of the cortical stimulation sites also showed no 

evidence of tissue damage around the cortical electrode (for example, see Figure 4-2 

Coronal section of the somatosensory cortex, processed for cresyl violet. 

Measurement relative to bregma indicates the location of the section. Arrow indicates 
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the approximate location of the tip of the stimulating electrode. S1Bf: primary 

somatosensory cortex, barrel field.).  Finally, the potential for habituation of either the 

SC or DA responses to repeated cortical stimulation was suggested as a possible 

confound. Again, this possibility is discounted by the data presented here. While the 

response magnitude of DA neurons had shifted significantly by the end of the period 

of recording after an injection of muscimol, there was no comparable change in 

recordings where no injections were made. DA neurons recorded for up to 45 minutes, 

with 1300 presentations of trains of cortical stimulation, continued to show robust 

responses, while the response magnitude of DA neurons following an injection of 

muscimol had decreased notably by this point. 

Effect of muscimol on SC activity 

Prior to any injection of muscimol, trains of cortical stimulation produced a 

short latency, short duration response in the SC. While the latency is comparable to 

that of the single pulse of cortical stimulation from chapter 3, the duration is much 

longer. This is perhaps trivial, as the response to a longer duration stimulus would be 

expected to be longer in duration than the response to a shorter stimulus. However, 

comparison of the total response duration with the duration of a train of five pulses at 

150 Hz shows that the response only lasted 9 ms after the end of the last pulse, much 

shorter than the response to a single pulse. As the interpulse interval for the pulse train 

used here (five pulses at 150 Hz) was 6.7 ms, the responses evoked by each pulse of 

the train likely overlapped. This suggestion is supported when the activity in SC 

between each pulse of the train is examined – the activity peaks after the second pulse, 

presumably representing the combination of the tail of the response to the first pulse 

and the beginning of the response of the second pulse. However, the activity after the 

third pulse, which occurs 13.3 ms after train onset, falls below that of even the first 

pulse, even though it might be assumed that the response to this pulse is combined 

with the tail of the response to the second pulse and the very tail of the response to the 

first pulse (if the duration of the response to each pulse is similar to that seen to a 

single pulse in chapter two). This may be the result of stimulus adaptation, a typical 

response to repeated high-frequency stimulation 

Muscimol caused a significant and immediate decrease in background activity 

in SC, which remained largely constant throughout the recording. This rapid and 

prolonged suppression of activity following intracollicular muscimol is in line with 
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previous studies, e.g. Edeline et al. (2002) who reported locally recorded activity in 

the cerebral cortex fell to approximately 20% of pre-injection activity, and did not 

recover in the 2 h of subsequent recording. The dramatic suppression of activity in the 

SC is to be expected, as there is significant intrinsic GABAergic circuitry and 

extrinsic input. Injection of a GABAA agonist such as muscimol would mimic this 

tonic inhibition, and broadly inhibit neurons that are the usual target of GABA release.  

As well as generally reducing the level of activity in the SC, intracollicular 

muscimol reduced the response evoked by cortical stimulation. There was a 

significant decrease in the response magnitude after injection of muscimol, over and 

above any change in background activity. When the activity following each pulse was 

considered separately, there was a significant difference in the effect of muscimol 

across pulse number. This further supports the interpretation that the measured 

decrease in evoked activity was due to a suppression of the evoked response, rather 

than a uniform decrease in activity. 

Response direction does not indicate separate populations of neurons 

As the DA neurons in the present study showed responses to cortical stimulation 

in the absence of injections of BMI in the SC, the responses of the DA neurons might 

be considered to be a solely a product of cortical stimulation, unconfounded by the 

effect of BMI, and so may provide a better idea of whether inhibited and excited DA 

neurons represent a topographically distinct subpopulation. The nine DA neurons in 

the present chapter were combined with the eight DA neurons from chapter 3 that 

showed responses to cortical stimulation in the absence of modulation of the activity 

of the SC to see if there was a difference in distribution between DA neurons showing 

responses with excitatory first components and those showing inhibitory first 

components. However, there was no clear difference in the distribution of response 

first component directions (see Figure 4-13 Reconstructed plots of recording sites in 

the midbrain on diagrams of coronal sections. Points indicate the approximate 

location of DA neurons showing responses with excitatory (green) and inhibitory (red) 

first components. Measurements relative to bregma indicate the location of the section. 

Abbreviations as in chapter 3.) suggesting that the difference in response was not the 

result of separate subpopulations. 

Consideration of current spread from intracortical stimulation 
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Although the results strongly suggest that the SC is involved in relaying cortical 

input to DA neurons, it is important to consider theoretical and methodological issues 

that could affect this conclusion. As with chapter 3, the intention of the current study 

was to investigate the effect of modulation of the SC on input from the barrel field of 

the primary somatosensory cortex, and so it is important to confirm the activation was 

restricted to the barrel field. The optical imaging data presented here show that the 

cortical haemodynamic response to 100 µs 150 Hz 0.6 mA stimulations is comparable 

in extent to electrical whisker pad stimulation, and is confined within the barrel field.  

4.5.3 Conclusion 

The present chapter confirms the hypothesis that input to DA neurons to 

produce the phasic response to cortical stimulation is relayed by the SC. The DA 

response to cortical stimulation shows an initial step change with muscimol injection, 

and then gradually decreases after an injection of muscimol at a timescale that 

suggests it is necessary for muscimol to diffuse through a considerable portion of the 

SC to suppress responses in a given DA neuron. Although the experiments of the 

current and previous chapters are convincing evidence in the argument that 

somatosensory cortical input reaches DA neurons via the SC, and direct vibrissal 

input from the trigeminal nucleus also reaches the SC, the question still remains as to 

whether this is the source of subcortical somatosensory input to DA neurons, and how 

this input interacts with corticotectal input. These questions will be addressed in the 

following chapter. 
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5 The effects of collicular disinhibition on the responsiveness of 

dopaminergic neurons to trigeminal nucleus stimulation 

5.1 Chapter summary 

Chapters 3 and 4 demonstrated that input from the primary somatosensory 

cortex can modulate the activity of DA neurons via the SC. However, the 

somatosensory cortex is part of the vibrissal system, which originates in the 

trigeminal nucleus, a structure that also projects directly to the SC. This provides an 

opportunity to examine whether direct input from the trigeminal nucleus can modulate 

the activity of DA neurons via the SC, and whether the direct subcortical and indirect 

cortical inputs can be distinguished. The present chapter details findings that show 

that DA neurons respond to stimulation of the trigeminal nucleus, and injection of 

BMI into the SC modulates this response. The results suggest that the SC may act as a 

relay of somatosensory vibrissal input to DA neurons both directly from the 

trigeminal nucleus, and indirectly via a trigemino-thalamocorticotectal pathway, 

although discriminating them may require further study. 

5.2 Introduction 

The possibility of identifying and separating direct subcortical and indirect 

cortical input to DA neurons has been mentioned in the introductory chapter, and will 

be discussed further here. Although the primary focus of this project is to investigate 

the effect and route of cortical and subcortical sensory input to DA neurons, 

comparison of the response of the SC to trigeminal stimulation to its response to 

whisker deflection may provide information about how the stimulus is interpreted, 

which may then inform interpretations of its effect on DA responses. 

5.2.1 Response characteristics of vibrissae sensitive SC neurons 

Cohen et al. (2008) identified three components in the response of individual SC 

neurons to vibrissal deflection. The first component lasted from approximately 2-8 ms 

after deflection, the second last from 9-25 ms and the third from 26-100 ms. As was 

mentioned in the introduction, the first component was driven by direct 

trigeminotectal input, while the second component was driven by cortical input. 
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Figure 5-1 The effect of single and multiwhisker stimulation on single units in the 

SC. A Population PSTHs of SC responses evoked by single whisker stimulation 

of the principal whisker (PW, and five alternate whiskers (AW1-5), or by 

multiwhisker stimulation of these six whiskers (ALL). B Population PSTHs of 

the same multiwhisker response in A (ALL) compared with the sum of the single 

whisker responses in A (SUM). X-axis is time from whisker deflection onset in 

ms. From (Cohen et al., 2008). 

SC neurons have broad receptive fields, responding most to deflection of a 

principle whisker, and also to deflection of 5 alternative whiskers with decreasing 

preference (Figure 5-1A, Cohen et al., 2008). Simultaneous deflection of all six 

whiskers of a neuron‟s receptive field produces a superadditive response in the first 

component, but not the second (see Figure 5-1B). Multiunit recording of SC activity 

in response to electrical whisker pad stimulation produces a response profile broadly 

similar to the response profile of single neuron responses to multiwhisker stimulation 

(Cohen and Castro-Alamancos, 2010). It is possible that direct electrical stimulation 

of the trigeminal nucleus may activate neurons related to multiple whiskers, and so 

the multiunit recording may show a similar response profile to the multiwhisker 

stimulation shown here, with similar numbers of events in first and second 

components, rather than the larger second components that characterise SC responses 

to single whisker stimulation. 

Although the vibrissal somatosensory system is complex in terms of anatomy 

and physiology, the trigeminal nucleus is, in the most general terms, a relay of contact 

related signals from the vibrissae. Consequently, direct stimulation of the trigeminal 

nucleus may provide stimulation analogous to vibrissal stimulation stimulus, albeit a 

coarse resolution, potentially simultaneous „whole field‟ stimulus. This stimulation, 

which is analogous to a whole field light flash, could be used to examine the response 

of DA neurons to somatosensory stimuli, and the route by which it arrives.  
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5.2.2 DA responses to trigeminal stimulation 

The previous chapters showed that it was possible to drive DA neurons by direct 

electrical stimulation of the somatosensory cortex without disinhibiting the SCGiven 

the small size of the trigeminal nucleus, it is possible that a greater proportion of the 

trigeminal nucleus, and consequently a greater proportion of the SC would be 

activated by direct stimulation compared to stimulation of the barrel field. This might 

result in a greater number of preBMI responses that were seen in chapter 3. 

As the trigeminal nucleus projects to the SC both directly and indirectly via the 

cortex, the effects of stimulating both pathways have to be considered. Given that 

direct cortical stimulation was not always successful in affecting DA neuron activity 

in the baseline state, activation of the indirect thalamocorticotectal projection by 

stimulating the trigeminal nucleus may be similarly ineffective. However, in a similar 

manner to which previously unresponsive DA neurons became sensitive to cortical 

stimulation after disinhibition of the SC, previously ineffective indirect cortical input 

may modulate the response of DA neurons to trigeminal stimulation after BMI 

injection. If the responses of the SC and DA neurons to trigeminal stimulation before 

and after BMI injection are examined, it might be possible to discriminate between 

the relative contributions of the direct trigeminotectal and indirect trigemino-

thalamocortical input to the response. 

 

  

As the thalamocortical projection is less direct than the trigeminal nucleus 

projection, we might expect to see different responses at different latencies if the 

pathways activate DA neurons separately or perhaps a longer response if the inputs 

Figure 5-2 An illustration of the potential relative contributions of cortex 

(dotted line) and trigeminal nucleus (solid line) to DA neuron responses 

to trigeminal stimulation. The dashed line indicates stimulus onset. The 

cortex may produce a second peak in the response (left) or increase its 

duration (right). 
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arrive more closely (see Figure 5-2). However, cortical response latencies to whisker 

deflection (~10 ms, Petersen (2007)), are not much longer than SC latencies (6-7 ms, 

Hemelt and Keller (2007), so the effect of indirect cortical input on the SC response to 

trigeminal stimulation might be difficult to distinguish. Instead, changes in peak 

latency or amplitude might be a better indication. 

5.2.3 Experiment rationale 

In chapter 3, disinhibition of the SC was shown to produce responsiveness of 

DA neurons to cortical stimulation, suggesting that cortical input reaches DA neurons 

via the SC. The following study will examine whether stimulation of the trigeminal 

nucleus produces responses in DA neurons, and as the trigeminal nucleus also 

projects to the SC, it will study whether the SC is involved in DA responses evoked 

by trigeminal stimulation by examining the effect of intracollicular injections of BMI. 

Further, if there are responses to trigeminal stimulation in DA neurons before any 

injection is made, then BMI may allow the respective contributions of direct and 

indirect (i.e. cortical) influences to be determined. 

5.3 Method 

5.3.1 Experimental procedure 

The experimental design is summarised in graphical form in Figure 3-1. The 

present study used simultaneous electrophysiological recording of SC (multiunit) 

activity and DA (single unit) activity in SNc, in response to electrical stimulation of 

trigeminal nucleus, both before (Figure 3-1a) and during (Figure 3-1b) chemical 

disinhibition of SC. To ensure only neuronal elements in the SC were disinhibited, 

local injections of an excitatory substance, the GABAA receptor antagonist BMI 

(Figure 3-1b, green microsyringe), were used. 

 

Figure 5-3 Schematic of the experimental design for this experiment. 
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The subject preparation, experimental procedure, histology, and statistical 

analysis have been previously described in the chapter 2, and elaborated on in 

chapters 3 and 4. Some sections have been repeated here, with further detail regarding 

this experiment where appropriate. 

Data were obtained from 13 acutely prepared adult hooded Lister rats (315-440 

g). To place the stimulating electrode in the trigeminal nucleus, the intra-aural line 

was used as a reference point for dorso-ventral and anterio-posterior coordinates, 

while the midline was used as the medio-lateral reference point. The stimulating 

electrode was placed at AP 2.6-3.3 mm caudal of inter-aural point, ML 2.2-3.0 mm 

from midline, 0.5-1.3 mm dorsal of inter-aural point. The multiunit electrode/cannula 

was introduced vertically into the lateral intermediate layers of SC (AP 6.04-7.64 mm 

caudal to bregma; lateral 1.5-2.2 mm; dorsoventral 3.9-5.2 mm below dura). The 

electrode/cannula tip separation was 0.2-0.5 mm. DA neurons were recorded from 

SNc (AP 5.3-6.04 mm caudal to bregma). 

The experimental procedure is described in chapter 2, electrical stimulation 

consisted of single pulses current to the trigeminal nucleus (0.5 mA, 100 µs). The 

responses to trigeminal stimulation and the effects of SC disinhibition were tested on 

1-2 SNc neurons in a single subject. See chapter 2 for a description of the histological 

procedures used in the present chapter. Analyses were performed using the methods 

as described in chapter 2. 

5.4 Results 

5.4.1 Inclusion criteria 

To be included in the analysis, putative DA neurons had to meet same 

histological criteria as chapters 3 and 4, except the stimulation electrode had to have 

been confirmed to be within the trigeminal nuclear complex.  At least 100 trials 

consisting of a light flash and trigeminal stimulation before and after a successful 

injection of BMI into SC were required for inclusion in the analysis. A successful 

injection of BMI into SC was judged by the presence of a significant response to light 

flash stimulus in SC. 17 DA neurons met these criteria 
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Recording sites were taken as the centre of electrolytic lesion or of the 

iontophoretic injection of Potamine Sky Blue dye. Examples can be seen in chapter 3. 

Stimulation sites were taken as the ventral extent of the electrode track. There was no 

evidence of stimulation related tissue damage around the stimulation sites in TNC 

(see Figure 5-4). 

Figure 5-4 Coronal section of the 

brainstem, processed for cresyl 

violet. Arrow indicates location 

of the tip of the stimulating 

electrode. Sp5i: spinal trigeminal 

nucleus, interpolar part; s5: 

sensory root of the trigeminal 

nerve, icp: inferior cerebellar 

peduncle 

 

 

 

The recording location of the DA neurons included in the study, the recording 

and injection locations in SC, and the stimulation sites in the TNC are shown in 

modified diagrammatic sections from Paxinos and Watson (2004) in Figure 5-5, 

Figure 5-6, and Figure 5-7. Recorded DA neurons (Figure 5-5) were located in a 

centrally located region of the SNc, which extended for approximately half of its 

rostro-caudal length. In terms of laterality, DA neurons were typically recorded 

towards the medial extent of SNc, bordering on the region designated SNcm (Paxinos 

and Watson, 2004). However, some DA neurons recorded rostrally extended towards 

the lateral extent of SNc. Recording and injection sites in the SC (Figure 5-6) 

extended over most of the rostro-caudal extent of the SC, although they avoided the 

extreme rostral and caudal poles. Sites were confined within the lateral intermediate 

and deep layers of the SC. Stimulation sites in the TNC (Figure 5-7) were found 

within the rostral half of Sp5i. Stimulation sites were typically in the ventral half of 

the subnucleus, but occasional sites were seen further dorsally. 



100 

 

 

Figure 5-5 Reconstructed plots of recording sites in the midbrain on diagrams of 

coronal sections. Points indicate the approximate location recorded DA neurons. 

Measurements relative to bregma, and indicate the location of each section. 

Abbreviations as in chapter 3 

 

 

Figure 5-6 Reconstructed plots of recording sites in the midbrain on diagrams of 

coronal sections. Points indicate the tip position of the electrode-injector 

assembly. Measurements relative to bregma, and indicate the location of each 

section. Abbreviations as in chapter 3 
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Figure 5-7 Reconstructed plots of stimulation sites in the trigeminal nucleus on 

diagrams of coronal sections. Points indicate the tip position of the stimulation 

electrode. The exposed pole of the central electrode extends 500 um dorsally 

from the point indicated, followed by 500 um of insulated electrode, followed by 

a 500 um exposed section forming the surround electrode. Measurements 

relative to bregma, and indicate the location of each section. Sp5: spinal 

trigeminal nucleus; s5t: sensory root of the trigeminal nerve; 7: facial nucleus, 8n: 

vestibulocochlear nerve; icp: inferior cerebellar peduncle. 

Processing for c-fos and TH immunoreactivity was performed in all 13 animals. 

Only recordings from putative DA neurons sited in TH positive regions of the 

midbrain were included for analysis. An example of TH immunoreactivity can be 

seen in chapter 3. The distribution of Fos-like immunoreactivity (FLI) was used as an 

indication of the spread of activation as a result of BMI injections. An example of FLI 

is shown in chapter 3. FLI indicates the expression of c-Fos a protein associated with 

neural activity (Herdegen and Leah, 1998), and would indicate the extent of the 

disinhibitory effect of BMI. When injections were made within the intermediate and 

deep layers of the SC, FLI was largely contained within the SC. This is supported by 

previous experiments using comparable protocols (Coizet et al., 2003), and the results 

of chapter 3. Injections of BMI in different animals were centred on different 

locations within SC. Injection sites were categorised as medial/lateral and 

rostral/caudal.  

5.4.2 Activity in the SC 

To assess the effect of sensory stimulation on general SC activity without the 

presence of BMI, the mean background activity in the 500 ms before the light flashes 

in the block of pre-BMI stimulations was compared to the mean baseline activity in 

the 60-120 seconds before the start of any stimulation.  
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There was a significant increase in spontaneous activity during periods of 

stimulation before BMI injection (Mbase = 207.0 Hz±8.1, Hz; Mpre = 232.1 Hz±11.8; t 

= -3.278, df = 16, p = 0.004). There was no significant difference between pre-BMI 

and postbicuculine background activity (Mpre = 231.1 Hz±11.8 Hz; Mpost = 267.1 

Hz±27.9 Hz; t = -1.316 df = 16, p > 0.05). Examination of the records shows that 

following injection of BMI, most records (11/17) showed an increase of at least 10% 

in the rate of triggered activity, while the other six showed at least a 10% decrease. 

However, there was nothing to indicate any difference between BMI injections 

causing an increase in spontaneous activity and those showing a decrease, and both 

increases and decreases in activity were seen in different recordings in the same 

animal. 

Throughout the pre-BMI trials, there was no phasic response to the light in the 

intermediate and deep SC. There was, however, a short latency (onset latency: 

Median = 1 ms, 1 ms:1 ms, peak latency: M = 6.3±0.9 ms) short duration (M = 

24.9±1.8 ms) response to trigeminal stimulation. Across the 200 ms response period, 

the mean amplitude above background activity of the peak of the response was 

1309.9±101.0 Hz. Figure 5-8 shows an example of the SC to single pulse stimulation.  

 

SC responses to trigeminal stimulation often showed two distinct peaks, the first 

Figure 5-8 PSTH/raster plot of SC activity in response to a single 0.5 mA 

pulse of stimulation to Sp5i before BMI. Vertical cursor at t = 0 indicates 

the timing of the pulse. Subsequent cursors indicate the start of each 

components 1, 2 and 3 (see text for details) Horizontal cursor indicates 

mean pre-stimulus firing rate. 
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starting in the first 2 ms after stimulus onset, the second usually starting around 8 ms. 

Two records did not show two clear peaks, although this was due to activity in the 

period usually covered by two separate peaks merging into one, rather than the 

absence of a response in one of the periods. As stated above, the mean duration of the 

response was 24.9 ms. This corresponds closely to the two largest components of the 

SC neuron responses to whisker manipulation reported by Cohen et al. (2008) and 

Cohen and Castro-Alamancos, (2010). They divided the responses into two short 

latency components, with the first covering 2-8 ms after stimulation, and the second 

9-25 ms, and a long latency component, covering 26-100 ms. Similar divisions were 

applied to the current data, although as the divisions were derived from whisker 

manipulation and the present data were derived from trigeminal nucleus stimulation, 

the responses presented here may be of shorter latency. Cohen et al. (2008) showed 

that cells in the spinal trigeminal nucleus responded to whisker manipulation at an 

average latency of 2 ms. Thus, the onset measurements of the components used here 

were shifted 2 ms – component 1 (C1) starting at 0 ms, component 2 (C2) starting at 7 

ms, and component 3 (C3) starting at 24 ms. The response magnitudes (mean firing 

rate in each component, minus the mean background firing rate) of each of these 

components were measured. The results are shown in Figure 5-9 (left). On average, 

the response magnitude of C1 was greater than C2 (MC1 = 682.9±77.4 Hz; MC2 = 

592.2±51.2 Hz), although five records showed the opposite pattern. There was little 

response in C3 (MC3 = 12.7±11.8 Hz). 

 

Figure 5-9 Response 

magnitudes of each 

component of the SC 

response to trigeminal 

stimulation, before (left) 

and after (right) 

intracollicular BMI 

injection. 

 

 

 

After BMI injection, a phasic excitatory response to the light flash was seen in 

all 17 records (onset latency: M = 51.9±3.3 ms; duration: M = 128.5±15.8 ms), which 
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was taken as indication of a successful injection. Across all 17 records, considering 

the whole 200 ms response period, there was a significant increase in the magnitude 

of response to trigeminal nucleus stimulation after injection of BMI, (activity above 

background: Mpre = 94.4±11.8 Hz; Mpost = 203.2±34.3 Hz; t = -3.308, df = 16, p = 

0.004; see Figure 5-10). Injection of BMI resulted in a significant increase in onset 

latency (medianpre = 1 ms, 1 ms:1 ms; medianpost = 1 ms, 1 ms:2 ms; V = 4, p = 0.042), 

peak latency (medianpre = 8 ms, 2 ms:9 ms; medianpost = 9 ms, 9 ms:11 ms; V = 10.5, 

p = 0.015), and duration of the response to trigeminal stimulation (medianpre = 26 ms, 

19 ms:29 ms; medianpost = 50 ms, 30 ms:126 ms, V = 3, p = 0.001), but there was no 

change in the peak amplitude (Mpre = 1309.9±101.0 Hz; Mpost = 1208.7±86.6 Hz; t = 

1.793, df = 16, p > 0.05). Post-BMI SC responses to a light flash had significantly 

longer durations (Mlightdur = 128.5±15.8; Mtrigdur = 77.9±14.4; t = 4.03, df = 16, p < 

0.001) and onset latencies (medianlightonset = 50 ms, 41 ms:59 ms; mediantrigonset = 1 

ms, 1 ms:2 ms; V = 153, p < 0. 001) compared to post-BMI responses to trigeminal 

stimulation, but not significantly different response magnitudes (Mlightmag = 

200.6±30.2 Hz; Mtrigmag = 203.2±34.3 Hz; t = -.09, df = 16, p > 0.05). Figure 5-10 

shows a typical response of the SC to light flash and cortical stimulation before, and 

after injection of BMI. 

 

Figure 5-10 Plots of SC MUA in response to light flash (A) and trigeminal 

stimulation (B) before (black) and in the presence of (red) local microinjections 

of BMI. Stimulus onset at 0.0 s. 

Although measuring across the whole 200 ms response period showed a 

consistent increase in response magnitude, there was a differential effect across the 

components of the SC response to trigeminal stimulation. To assess the response of 

SC over each component, the response magnitude of C1, C2 and C3 were measured, 

before and after injection of BMI. A two-way within subjects ANOVA (IV: response 

magnitude, DV: component number (3 levels), injection (2 levels)) revealed a 
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significant difference between response magnitudes in each component across both 

conditions (F(2,32) = 53.51, p < 0.001; response magnitudes in each component – C1: 

606.1 Hz, C2: 675.5 Hz, C3: 107.8 Hz) and an interaction between BMI and 

component  (F(2,32) = 15.26, p < 0.001; see Figure 5-9), but no main effect of BMI 

across all components (F(1,16) = 3.65, p > 0.05; response magnitudes in each 

condition – pre: 429.2 Hz, post: 497.0 Hz). When the components of the response 

were compared, the response magnitude of C2 on average was now greater than C1 

(MC1 = 529.3±65.0 Hz; MC2 = 758.9±77.5 Hz), and there had been an increase in C3 

(MC3pre = 12.7±11.8 Hz; MC3post = 202.9±53.3 Hz).  

5.4.2.1 Activity of DA neurons 

To assess the effect of sensory stimulation on general DA activity without the 

presence of BMI, the mean background activity of pre-BMI stimulations was 

compared to the level of baseline activity. There was no significant effect of 

stimulation on spontaneous firing rate (Mbase = 3.6 ±0.4 Hz; Mpre = 3.5±0.4 Hz; 

t=0.605, df=16, p > 0.05). Across all 17 records, there was no significant effect of 

BMI injection on spontaneous activity (Mpre = 3.5±0.4 Hz; Mpost = 3.4±0.4 Hz; 

t=0.411 df=16, p > 0.05). Examination of the records shows that following injection 

of BMI, 4/17 records showed an increase of at least 10% in the rate of triggered 

activity, while 6/17 showed at least a 10% decrease. 

Prior to BMI injection, all but one DA neuron (94.1%) showed a response to 

trigeminal stimulation (onset latency: 32.8±5.8 ms, duration: 205.9±41.2 ms, absolute 

response magnitude: 2.5±0.5 Hz). No DA neurons responded to the light flash. On 

average, onset latencies of DA neuron responses to trigeminal stimulation reliably 

followed SC responses (medianSC = 1 ms, 1 ms:1 ms, n = 17; medianDA = 20 ms, 20 

ms:40 ms, n = 16; W = 0, p < 0.001).  

During periods of significant effect of BMI in SC, all but one DA neuron 

(94.1%) showed a response to trigeminal stimulation, and 1/17 (64.7%) DA neurons 

showed a significant response to the light flash. The DA neuron that did not respond 

to trigeminal stimulation did respond to the light flash. On average, onset latencies of 

DA neuron responses reliably followed SC responses to both light flash (MSC = 

51.9±3.3 ms, n = 17; MDA = 89.1±14.0 ms, n = 11; t = -2.71, df = 11.24, p = 0.020) 

and trigeminal stimulation (MedianSC = 1 ms, 1 ms:2 ms; n = 17; MedianDA = 20 ms 

15 ms:40 ms, n = 16; W = 1, p < 0.001). Onset latencies of DA neuron responses to a 
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light flash were significantly longer than those of DA neuron responses to trigeminal 

stimulation (Mlight = 89.1±14.0 ms, n = 11; Mtrig = 30.6±7.5 ms, n = 16; t = 3.82, df = 

16.33, p = 0.001). As onset latencies of SC responses to trigeminal stimulation were 

much shorter than SC responses to light, this may have an effect on DA response 

latencies. Examination of the onset latency of DA neuron responses to light flash and 

trigeminal stimulation, minus the latency of the SC response to the same stimulus, 

showed there was no significant difference between the two stimuli (Mlight = 

41.1±13.6 ms, n = 11; Mtrig = 28.9±7.5 ms, n = 16; t = 0.81, df = 16.62, p > 0.05) (see 

Figure 5-10). 

Records were examined to see if there was any difference in duration between 

responses to the two modalities. There was no significant difference between the 

durations of DA neuron responses to each stimulus (Mlight = 196.4±46.3 ms, n = 11; 

Mtrig = 171.9±29.0 ms, n = 16; t = 0.46, df = 18.25, p > 0.05). There was no 

significant differences between durations of DA neuron responses and the durations 

of the corresponding SC responses to light flash (MSC = 142.9±18.8 ms; MDA = 

196.4±44.1 ms; t = -1.13, df = 10, p > 0.05, n = 11), however, there was a significant 

difference between the durations of DA neuron responses and the corresponding SC 

responses trigeminal stimulation (MSC = 68.0±11.2 ms; MDA = 171.9±29.0 ms; t = -

3.27, df = 15, p = 0.005, n = 16) (see Figure 5-11A). There was no significant 

difference between absolute magnitudes of responses of DA neurons to each stimulus 

(Mlight = 2.1±0.7 Hz, n = 11; Mtrig = 2.2±0.4, n = 6; t = -0.16, df = 18.17, p >0 .05) (see 

Figure 5-11C), corresponding response magnitudes (Mlightmag = 234.2±39.5 Hz, n = 10; 

Mctxmag = 184.8± 30.8 Hz, n = 8; t = 0.99, df = 20.76, p > 0.05) (see Figure 5-11B). 

There was a significant difference between the durations of responses in the SC 

corresponding to responsive DA neurons (Mlightdur = 142.9±18.8 ms, n = 10; Mtrigdur = 

68.0±11.2 ms, n = 16; t = 3.43, df = 16.92, p = 0.003) (see Figure 5-11A). 
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Figure 5-11 Comparisons of collicular and DA neuron response onset latencies 

and durations (A), collicular response magnitudes (B) and DA response 

magnitudes (C) to a light flash (blue) and trigeminal stimulation (red). 

Records were examined to see if there were differences between DA neurons 

showing excitatory first phases and inhibitory first phases that might suggest the 

existence of different inputs or separate sub-populations underlying inhibitory and 

excitatory responses. Chapter 3 found some inconsistency between the response 

direction of pre-BMI responding DA neurons and their post-BMI response. This was 

also seen in the present study, so pre- and post-BMI DA neuron responses to 

trigeminal stimulation were compared separately. Out of the 16/17 DA neurons that 

responded to trigeminal stimulation before BMI injection, 5/17 showed responses 

with excitatory first components, and 10 showed responses with inhibitory first 

components. There were no significant differences between the characteristics of DA 

neurons showing responses with excitatory first components and those showing 

inhibitory first components in baseline firing rate (Mex = 3.0±1.1, n = 5; Min = 4.1±0.4, 

n = 10; t = -0.09, = df = 6.05, p > 0.05) onset-trough action potential measurement 

(Mex = 1.5±0.1 ms, n = 5; Min = 1.5±0.07 ms, n = 10; t = 0.50, df = 8.45, p > 0.05), or 

on measures of onset latency (Mex = 35.8±15.4 ms, n = 5; Min = 31.0±4.8 ms, n = 10; t 
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= -0.32, df = 6.18, p > 0.05), response duration (Mex = 144.2±47.7 ms, n = 5; Min = 

243.0±58.0 ms, n = 10; t = -1.32, df = 13.87, p > 0.05) or absolute response 

magnitude (Mex = 2.9±1.1 Hz, n = 5; Min = 2.2±0.4, n = 10; t = -0.85, df = 5.82, p > 

0.05). Out of the 16/17 DA neurons responsive to trigeminal stimulation after BMI 

injection, 9/17 (52.9%) showed responses with initial excitatory components, while 

7/17 (41.2%) showed responses with initial inhibitory components. All DA neuron 

responses to the light flash showed initial excitatory components, so no comparison 

was made. There were no significant differences between DA neurons showing 

responses with excitatory first components and those showing inhibitory first 

components in baseline firing rate (Mex = 3.3±0.8, n = 9; Min = 3.9±0.4, n = 7; t = -

0.61, = df = 12.24, p > 0.05),  onset-trough action potential measurement (Mex = 

1.6±0.08 ms, n = 9; Min = 1.5±0.09 ms, n = 7; t = 0.67, df = 12.49, p > 0.05), or on 

measures of onset latency (Mex = 34.4±14.3 ms, n = 9; Min = 25.7±3.7 ms, n = 7; t = 

0.63, df = 9.02, p > 0.05), response duration (Mex = 207.8±47.3 ms, n = 9; Min = 

125.7±18.4 ms, n = 7; t = 1.61, df = 10.28, p > 0.05) or absolute response magnitude 

(Mex = 2.9±0.7 Hz, n = 9; Min = 1.4±0.4, n = 7; t = 2.06, df = 12.08, p > 0.05). 

5.4.3  BMI differentially modulates DA neuron multiphasic responses 

When the responses of DA neurons to trigeminal stimulation were examined, it 

was noticed that there was often a clear short latency (~20 ms), short duration (~60 

ms) response (Figure 5-12A-D, blue lines). In some cases, this short duration was 

particularly large in amplitude; either a total suppression (Figure 5-12A, D, blue 

lines), or a large amplitude peak (Figure 5-12B, C, blue lines). This could be followed 

by a longer latency (~80 ms), longer duration (~150 ms) response, either in the 

opposite direction (Figure 5-12A, B, blue lines), or the same direction, but usually 

distinguishable through its smaller amplitude (Figure 5-12C, blue line), although in 

some cases two separate phases were not visible (Figure 5-12D, blue line). The 

duration of these two phases closely matches the duration of the stimulus insensitive 

and stimulus sensitive components of the DA response described by (Hudgins, 2010). 

Thus, DA neurons were examined by separating the response into two components. 

The position of the components was shifted ±20 ms depending on the onset of the 

short latency phase of each DA neuron response. All 17 DA neurons showed a > 0.5 

Hz change from background firing rate in the short latency component of the 

response, and 15/17 also showed a > 0.5 Hz change in the later component. Six of the 
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short latency components were excitatory, four of which were followed by later 

components, three of which were in also excitatory. Out of the eleven DA neurons 

showing inhibitory first components in their response, all eleven were followed by 

later components, eight of which were also inhibitory. The absolute response 

magnitudes of the short latency and longer latency components of the DA response 

were 3.1±0.5 Hz and 3.0±0.6 Hz respectively. 

Following intracollicular injection of BMI, a differential effect on each of the 

components on some records made the presence of separate components in the DA 

response more obvious. 15/17 DA neurons continued to show > 0.5 Hz changes from 

background firing in the short latency component. Both of the DA neurons that ceased 

to respond showed inhibitory short latency components before BMI, one showed an 

inhibitory longer latency component, the other showed an excitatory longer latency 

component. Following BMI injection, the excitatory longer latency phase in on DA 

neuronwas largely unaffected, but the inhibitory longer latency component in the 

other was now a small (1.1 Hz) excitatory response. None of the shorter latency 

components of DA neurons that continued to respond after BMI changed direction. 

15/17 DA neurons also showed > 0.5 Hz changes from background firing in the 

longer latency component of their response, however, the two DA neurons without 

longer latency components post-BMI were not the same as those prior to BMI. The 

post-BMI longer latency components in 5 DA neurons were in the opposite direction 

to their pre-BMI longer latency components. The absolute response magnitudes of the 

short latency and longer latency components of the DA response were 2.9±0.6 Hz and 

2.4±0.5 Hz respectively. 
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Figure 5-12 Illustration of the differential effect of BMI on the DA response to 

trigeminal stimulation. Figures show the response of a DA neuron to trigeminal 

stimulation before (blue) and after (red) intracollicular BMI. Cursors on each 

figure indicate, from left to right, start of C1 (0-20 ms), start of C2 (60-80 ms), 

end of C2 (210-230 ms). See text for a description of the changes. C1 responses 

may remain unaffected (A) be suppressed (B,D) or enhanced (C). C2 responses 

could also be suppressed (A) enhanced (C) or even change direction (B, D). 

It was suggested that the stimulus insensitive component may be driven by 

purely subcortical sensory input from the SC, while the later phase may be cortically 

mediated. With this in mind, the two components of the responses of DA neurons 

were compared to the components of the SC response, which are also suggested to be 

separately subcortically and cortically mediated (Cohen et al., 2008). The 

combination of inhibitory and excitatory responses in short and longer latency 

components of the DA response, and the changes in magnitude and direction of each 

component make a numeric analysis too complex to draw any conclusions. However, 

although the complex combination of SC and DA response changes in the present 

data do not allow for a clear pattern of effect to be extracted, they do establish the 

existence of separate clear response components in both the SC and DA neuron 

response, and a differential effect of intracollicular BMI on each component. 
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5.4.4 Dopaminergic response to familiar, non-rewarded stimuli 

If the response to a non-reinforced stimulus were to habituate with familiarity, 

we would expect to see a decrease in the DA response as the stimuli become less 

effective at exciting or inhibiting the cell. Figure 5-13 shows an example experiment, 

where rather than habituating, response magnitude for DA cells to both light flash and 

trigeminal stimulation throughout the course of an experiment increases then returns 

to baseline in line with the effect of BMI on SC. 

 

Figure 5-13 Response measured by activity above baseline of a DA neuron and 

SC across the timecourse of BMI effect. 

5.4.5  Effect of interleaved stimulation on response 

In chapter 3, it was observed that that after injection of BMI, the activity in the 

SC preceding the stimulation affected the activity in response to the stimulation. Light 

responses in the SC in the present chapter were generally of smaller magnitude 

(200.6±30.2 Hz) than those in chapter 3 (339.1±49.5 Hz). Although records typically 

did not show oscillatory activity following each stimulation, the effect could still be 

seen on some records. There were no instances in the present chapter where one 

stimulus was presented alone, so a comparable effect to that seen in chapter 3 could 

not be observed. 

5.5 Discussion 

5.5.1 Summary of findings 
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The current study indicates that the SC plays a role in relaying somatosensory 

trigeminal input to DA neurons in SNc. The findings suggest that local activation of 

SC has the ability to modulate the firing rate of presumed DA neurons in SNc. Under 

urethane anaesthesia, electrical stimulation of the trigeminal nucleus with a single 0.5 

mA 100 µs pulse produces a short latency, short duration response in SC. A 10 ms 

light flash produces no response. Almost all DA cells showed significant responses to 

trigeminal nucleus stimulation before the disinhibition of SC. Both collicular and DA 

neuron responses were shown to be composed of multiple components. No DA cells 

responded to the light flash. Following removal of GABAA mediated inhibition by 

local microinjections of BIC in SC, light flash stimulation can evoke a response in the 

majority of DA neurons. When measured across the whole response period, the 

response to trigeminal stimulation in SC increases in magnitude, although closer 

examination reveals differential increase and decrease of the different components.  

Similarly, DA neuron responses can increase or decrease in size, or change direction 

(i.e. from inhibitory to excitatory), however, the response appears to be composed of 

several differentially affected components. 

5.5.2 Discussion of findings 

Responsiveness of SC and DA neurons to stimuli 

In the current study, SC responses to a light flash stimulus were suppressed by 

the effects of anaesthesia. In response to trigeminal stimulation, the SC showed a 

short latency short duration phasic excitation. After a local injection of BMI into the 

SC, all records showed a phasic excitation to the light, and in most records the 

magnitude of the phasic response in the SC to trigeminal stimulation increased. All 

DA neurons were unresponsive to the light flash before BMI. In contrast to chapter 3, 

where most DA neurons were similarly unresponsive to single pulse cortical 

stimulation, the majority of DA neurons showed a significant response to single pulse 

trigeminal nucleus stimulation before injection of BMI. The topographic alignment 

between stimulation site and DA neuron location was suggested as a potential factor 

in the results of chapter 3, but it is unlikely that the majority of neurons in this study 

received focal stimulation selectively in the area of trigeminal nucleus corresponding 

to their receptive field. What is more likely is that given the trigeminal nucleus is a 

much smaller structure than S1Bf, a greater proportion of the somatotopic map in the 

trigeminal nucleus was stimulated, or that the volume of tissue receiving sufficient 
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current density to drive the neurons covered a greater number of receptive fields. As 

with the results of the previous chapters, the direction of the first phase of DA neuron 

responses was not necessarily consistent before and after injection of BMI, suggesting 

that there is not a firm distinction to be made between two subpopulations of 

differently responding DA neurons. 

Contribution of the indirect, cortical input to the SC 

The studies presented in the previous chapter attempted to investigate the 

contribution of cortical input to the later, stimulus sensitive phase of DA neuron 

responses (Hudgins, 2010). As the trigeminal nucleus provides input directly to the 

SC (Killackey and Erzurumlu, 1981) as well as indirectly via the barrel cortex (Wise 

and Jones, 1977; Killackey and Erzurumlu, 1981), it was suggested that comparison 

of the pre-BMI and post-BMI responses in the SC and DA neurons could be 

compared to infer the contribution of indirect cortical input. However, trigeminal 

stimulation appeared to produce direct and indirect responses in both the SC and DA 

neurons prior to BMI injection. Pre-BMI responses in the SC were composed of two 

components, similar in duration and latency to those described by Cohen et al. (2008) 

in response to whisker deflection. The second phase of the responses described by 

Cohen et al. (2008) were shown to be cortically mediated, while the first component 

was the product of direct trigeminal input. Thus, it seems reasonable to conclude that 

the similar responses seen in the present study are also the product of separate direct 

trigeminal and indirect cortical inputs.  

DA neuron responses to trigeminal stimulation also showed two distinct phases 

(Figure 5-12). The latency and duration of these phases appeared to match the 

stimulus insensitive and stimulus sensitive components described by Hudgins (2010). 

It is suggested in this thesis that while the stimulus insensitive component could be 

the product of subcortical sensory input, the longer latency, stimulus sensitive 

component of the DA neuron response may be supported by cortical input via the SC. 

Following injection of BMI into the SC, the initial component of DA neuron 

responses to trigeminal stimulation was modulated in some cases, but remained 

largely unaffected. In contrast, the longer latency component showed substantial 

modification. In some cases, longer latency components of the DA neuron response 

after injection of BMI were in the opposite direction to the pre-BMI response. 
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That the initial component of the DA neuron response is largely robust in the 

face of BMI modulation of the SC response suggests that it is supported by direct 

trigeminotectal input. Given that the trigeminal nucleus is a small structure, it is 

possible that most, if not the entire vibrissal field was stimulated simultaneously, 

providing a simultaneous and consistent input across the SC. Thus, disinhibition via 

suppression of the GABAergic mechanisms of the SC (Binns and Salt, 1997) might be 

expected to have little effect. In contrast, trigeminothalamocortical input adds two 

levels at which the input from trigeminal stimulation could be modified 

(trigemonothalamic and thalamocortical synapses), which might affect the eventual 

input to the SC. Although the input to SC from the barrel cortex produced by 

trigeminal stimulation might not necessarily resemble normal vibrissal input, it is the 

result of normal synaptic processes, with their associated interneurons, rather than 

direct, simultaneous depolarisation. Therefore, it is not unreasonable to suggest that 

this input would be less robust to chemical manipulation. Although it was difficult to 

discern a clear pattern of association between collicular and DA neuron responses, 

and the effect of BMI, there did seem to be a broad effect by which changes in the 

later components of the SC responses were associated with changes in the later phase 

of the DA neuron response. 

Response rates to each stimulus 

Some neurons in the present study only responded to stimulation in one 

modality. In chapter 3, all unimodal responses were to the light flash; all DA neurons 

that responded to cortical stimulation also responded to light flash, but not vice versa. 

I suggested that this difference in responsiveness may be due to the more focal effect 

of cortical stimulation compared to whole field light flash – the locus of cortical 

stimulation might occasionally „miss‟ the area of effect of BMI, or the region of SC 

that projects to the DA neuron being recorded from. In the present study, all DA 

neurons that responded to light flash also responded to trigeminal stimulation, but not 

vice versa.  Given that all but one DA neurons responded to trigeminal stimulation 

before injection of BMI, the „focus‟ of the stimuli might explain these results: the 

stimulus electrode was inserted across whisker columns in the trigeminal nucleus – 

potentially delivering a stimulus more successfully whole field than the light flash.  

The current-distance relationships given by Tehovnik (1996) suggest that the 

current intensity and pulse duration used here would activate even the lowest 
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threshold neurons up to a maximum of 0.5 mm away from the electrode. Given that 

this would cover virtually all of the medio-lateral extent and a majority of the dorso-

ventral extent of Sp5i, it is very likely that trigeminal activation would activate a large 

proportion of the SC. Having said that, this explanation relies on a focal topographic 

projection from the SC to DA neurons to enable cortical stimulation to “miss” the 

relevant region of SC. Although there is some topography in the tectonigral projection, 

it is not very focal (Comoli et al., 2003). In fact, some studies (Schultz and Romo, 

1987) have commented on the consistency of response of DA neurons to stimulation 

of different somatotopic locations. The increased number of responsive cells could, 

however, be the result of activation of a greater proportion of trigeminal nucleus 

neurons, which produce a greater/broader activation in SC, which is more likely to 

result in modulation of DA neuron activity, without the need for any somatotopic map 

or alignment. 

Lack of discriminable subpopulations of inhibited and excited DA neurons 

As was mentioned in chapters 3 and 4, previous research has suggested the 

existence of two differentially responding sub-populations of VTA DA neurons, the 

presence of both inhibitory and excitatory DA responses to non-noxious stimuli 

(Steinfels et al., 1983a, 1983b; Strecker and Jacobs, 1985; Schultz, 1986; Horvitz et 

al., 1997; Dommett et al., 2005) and the existence of potentially inhibitory and 

excitatory tectonigral inputs (Comoli et al., 2003) indicating that the present results 

are unlikely to be explained by separate subpopulations. Examination of the data 

suggests that this is the likely to be the case. As with the DA neurons responding pre-

BMI in chapter 3, it was found that a single neuron could display both excitatory and 

inhibitory responses to the same stimulus; all of the DA neurons in the present chapter 

showed a response before an injection of BMI, which in some cases differed in 

direction to the post-injection response. Further, the differences in neuron properties 

found in chapter 3, such as larger action potential size for inhibited DA neurons, were 

not found in the present study. A full discussion of the results and their implications is 

made in the final chapter. 

In the awake animal, both SC and DA neurons habituate rapidly to unreinforced 

predictable stimuli (Wurtz and Albano, 1980; Schultz, 1998). The stimuli used here 

were spatially and largely temporally predictable. Both SC and DA neurons showed 

phasic responses to the light flash and trigeminal nucleus stimulation. However, the 
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response in SC and DA neurons did not habituate, but instead increased and decreased 

with the onset and offset of the effect of BMI on SC. The absence of habituation 

supports the findings of previous electrophysiological studies with similar paradigms 

(Dommett et al., 2005) and by behavioural studies (Redgrave et al., 1981) which have 

shown that habituation can be blocked by disinhibition of SC. 

5.5.3 Final conclusions 

While the results of the previous studies suggest a role of cortical input in the 

modulation of DA neuron activity, the present study attempts to extend the 

understanding of the source of subcortical sensory input. The results provide some 

indication of the route that information from the trigeminal nucleus nuclei take to DA 

neurons, however, the experiment is only preliminary. There are many different 

neuronal types in the trigeminal nucleus, which the present experiment did not 

discriminate between. Even if only vibrissal related cells are considered, the 

trigeminal nuclei contain neurons whose activity encodes different aspects of touch 

(contact, pressure, detach, contact-detach), phases of whisking, and combination 

whisking-touch neurons (Szwed et al., 2003). However, the intention of the present 

study was merely to activate trigeminal nucleus efferent pathways, rather than to 

provide naturalistic input. 

The effect of a disinhibitory injection of BMI into SC suggests that it plays a 

role in the communication of somatosensory input to DA neurons. However, its 

precise role is not yet determined. 
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6 Discussion 

6.1 Chapter summary 

The previous chapters presented the experimental and theoretical background 

behind the studies in this thesis, and described and discussed the results. The present 

chapter begins by addressing the major experimental assumptions and findings in 

relation to previous research, including disinhibition of the SC as a means of 

establishing functional connectivity, the possibility of a common pathway for sensory 

and cortical input to DA neurons, and the presence or lack of a fixed distinction 

between DA neurons showing inhibitory and excitatory responses to stimuli. The 

chapter continues by discussing the functional implications of the results for the 

phasic DA signal, and by proposing an extension of an existing theory as an 

explanation of the role of the DA signal in learning. It concludes by suggesting future 

research that could extend the breadth and depth of the current findings, including 

further electrophysiological study, anatomical research, and possibly applications of 

optogenetic techniques. 

6.2 Discussion of results 

Summary of results 

The aim of the work presented here was to investigate the origin of the afferent 

input to SNc DA neurons that might underlie the ability for DA neurons to show 

differential responses at longer latencies to stimuli associated with different reward 

probabilities. The results presented in chapter three demonstrated that in the 

anaesthetised rat, the majority of DA neurons are unresponsive to direct electrical 

stimulation of the somatosensory cortex. However, disinhibition of the SC with BMI 

increases its response to cortical stimulation, which in turn increases the likelihood 

that a previously unresponsive DA neuron will respond to cortical stimulation. This 

led to the conclusion that cortical information was capable of reaching DA neurons, 

and that the SC was likely to be a relay for this information. However, alternative 

explanations for the results remained a possibility. The results of the fourth chapter 

thus sought to confirm whether the SC was a relay for cortical information and 

eliminate these alternative explanations. It first showed that it is possible to reliably 

evoke responses in DA neurons with cortical stimulation without disinhibiting the SC, 
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and then it was demonstrated that an injection of the GABAA agonist muscimol in the 

SC can produce a dramatic change in collicular activity, and reduce or abolish the 

response of DA neurons to cortical stimulation, without changes in ECoG activity. 

This provided confirmatory evidence that the SC is a relay for information from 

somatosensory cortex to DA neurons. The results presented in the fifth chapter 

suggest that the SC is also involved in the direct transmission of trigeminal 

information to DA neurons. The differential effect of BMI on the different 

components of the SC and DA neuron response to trigeminal system reinforced the 

interpretation that these components represent the product of different inputs. 

Confirming functional connectivity via disinhibition of the SC 

The results presented here demonstrate that cortical and trigeminal activation is 

capable of phasically influencing the activity of DA neurons and that cortical 

information almost certainly reaches DA neurons via the SC. The effect of BMI on 

the SC could be tracked by plotting the activity over time. A clear onset and washout 

could often be seen, and the responses of DA neurons to cortical stimulation and a 

light flash often followed the same course as the responses in the SC. Bursts of 

activity in the SC after injections of BMI were sometimes associated with bursts of 

spikes in DA neurons (see chapter 3, and Coizet et al. (2003), suggesting that the 

activity of the two were linked. The effect of BMI is unlikely to be the result of 

diffusion to other structures. Previous studies using the expression of c-fos product 

(Dommett et al., 2005) have demonstrated that injections of BMI into the deeper 

layers of the SC using the same methods as the studies presented in this thesis remain 

largely within the confines of the SC. Immunohistochemical processing for FLI in the 

present studies confirmed that the effect of BMI was similarly contained. 

Chapters 3 and 4 strongly suggest that the SC is a relay of cortical input to DA 

neurons. Although a similarly strong case for the SC relaying direct trigeminal input 

to DA neurons cannot be made without further studies, a case can still be made. As 

with the cortical stimulation, the responses of DA neurons to trigeminal stimulation 

over the course of the effect of BMI often followed that of the SC. Like the barrel 

cortex, the trigeminal nucleus also has significant projections to the SC. As the SC 

responds to, and directs gaze-shifts to, non-visual stimuli, including somatosensory 

stimuli (Grobstein, 1988; Dean et al., 1989; King, 2004; Boehnke and Munoz, 2008; 

Felsen and Mainen, 2008), it is reasonable to suggest that it relays short latency 
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vibrissal input from the trigeminal nucleus in a similar manner to its role as a relay of 

direct visual input from the retinal ganglion. Trigeminal stimulation produced 

responses in the SC that resembled those produced by vibrissal deflection, which 

consist of a subcortical and a cortically mediated component (Cohen et al., 2008). 

There was often an association between changes in the early and later components of 

the SC response, and the early and later components of the DA response. However, as 

responses in the later component of the SC response and the DA response were 

present both before and after injection of BMI, the extent to which trigeminal and 

cortical input contributes to each component is difficult to judge. On the basis of the 

present experiments, it is safe to say that the SC has a role in trigeminal influence on 

DA neuron activity, and that a case can be made for it as a relay of trigeminal input, 

but confirmation of this, and a decomposition of the direct and indirect cortical 

contribution to the response requires further study. Some potential avenues of 

investigation are suggested toward the end of this chapter. 

The tectonigral pathway as a common route of input to DA neurons 

If visual (light flash) stimulation, cortical stimulation and trigeminal nucleus 

stimulation share the same pathway from the SC to DA neurons, it might be expected 

that the difference in onset latencies between SC and DA responses would be similar 

with all stimuli, the rationale being that the pathway would have a similar conduction 

velocity. This was borne out by the results, which showed that there was a small, but 

non-significant difference between DA neuron onset latencies minus SC response 

onset latencies to light flash stimulus (~40 ms), cortical stimulation, and trigeminal 

stimulation (~30 ms).  

The evidence that the response in DA neurons produced by cortical stimulation 

shares the tecto-nigral pathway by which visual information reaches DA neurons is 

stronger than for trigeminal stimulation. Firstly, the results presented in chapter 4 

suggest that cortical information to DA neurons is relayed by the SC, whereas this is 

presently just an assumption for trigeminal stimulation, albeit a well justified one 

given the functional anatomy involved. More importantly was evidence that collicular 

activity driven by one stimulus could interact with the other. As the activity recorded 

in the SC was multiunit, it cannot be directly confirmed that the same population of 

neurons was responding to both light flash stimulation and cortical stimulation. 

However, there is indirect evidence. When the SC was disinhibited, SC responses to 
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both light flash and cortical stimulation were typically characterised by an initial 

peak, then one or more peaks and troughs. When activity from a preceding  stimulus 

reached the period before the onset of the next stimulus, if could affect the size of the 

response to that stimulus; greater activity in the period before stimulus onset was 

associated with lower activity (i.e. a smaller response) in the post-stimulus period, 

while less pre-stimulus activity was associated with greater post-stimulus activity. 

Further, in some instances where cortical stimulation or the light flash was presented 

in isolation, the collicular response to the remaining stimulus, and the corresponding 

DA neuron response increased in magnitude. This interaction between collicular and 

DA responses to each stimulus suggests that visual input and cortical somatosensory 

input to the SC shares the same pathway onward to DA neurons. 

A cortical influence on collicular input to DA neurons 

Previous study has sought to rule out the cortex as being necessary (Comoli et 

al., 2003) or sufficient (Dommett et al., 2005) for sensory responses in DA neurons. 

Comoli et al. (2003) showed that local field potential (LFP) responses to a light flash 

were seen in the SC and SNc following visual cortex aspiration, demonstrating that 

the cortex was not necessary. However, aspiration of the visual cortex did affect LFP 

responses in the SC and SNc that were present even in the absence of disinhibition of 

the SC, suggesting that there was cortical influence. The present results demonstrate 

that disinhibition of the SC is usually necessary for cortical stimulation to activate DA 

neurons. Consequently, application of BMI to the cortical surface without concurrent 

„unblocking‟ of the SC by disinhibition (as in Dommett et al. (2005)) is unlikely to 

produce responses in DA neurons to a sensory stimulus. Application of BMI to the 

visual cortex and injection into the SC may well produce an effect of the DA response 

to light flash versus injection of BMI into the SC alone. 

Inhibited and excited DA neurons are not discriminable subpopulations 

Previous investigation has suggested that a sub-population of VTA neurons 

exists, which responds with excitation to aversive stimuli. This group has been 

suggested to be a population of non-DA neurons, distinguishable by action potential 

width (Ungless et al., 2004), or a sub-population of DA neurons located in a restricted 

area of the VTA (Brischoux et al., 2009). Although: 

 the current study did not use aversive stimulus 



121 

 

 the current study focused on SNc, so the VTA DA neurons of 

Brischoux et al. (2009) won‟t be considered 

 excitatory and inhibitory responses have been previously reported in 

VTA and SNc DA neurons to non-noxious sensory stimuli (Steinfels et 

al., 1983a, 1983b; Strecker and Jacobs, 1985; Schultz, 1986; Horvitz et 

al., 1997; Dommett et al., 2005), where no distinction was made, or 

where a distinction was tested, no was found 

 the tectonigral pathway may have excitatory and inhibitory effects on 

DA neurons, and so the differences in response direction may be the 

result of inputs rather than differences in the DA neurons 

the present data were examined to see if, on average, there were differences between 

DA neurons classified as excitatory and inhibitory first phases. 

First, it must be noted that a significant proportion of the earlier studies that 

looked for subgroups of DA neurons focused on VTA DA neurons. It might be harder 

to distinguish between subgroups of DA neurons in the SNc, if they exist. DA neurons 

in the SNc recorded here showed broad (range: 3.6-5.3 ms), triphasic spikes with 

positive going initial components, and low (<10 Hz) firing rates (see examples in 

chapter 3), and were clearly distinguishable from presumed GABAergic neurons, 

showing narrow, biphasic spikes with negative going initial components, and high 

(often >50 Hz) firing rates. In contrast, Dommett et al. (2005) presents an example 

DA neuron with a spike width close to the bottom end of the range seen in the present 

studies, but classifies VTA and SNc DA neurons as having spikes of >2.0 ms, 

suggesting the existence of DA neurons with narrower spikes. 

Both excitatory and inhibitory responses were seen in DA neurons to light flash, 

cortical stimulation and trigeminal nucleus stimulation. Examination of the response 

characteristics suggested that there was no difference between the DA neuron 

responses with an excitatory first component and those showing an inhibitory first 

phase to the light flash, cortical stimulation, or trigeminal stimulation. Examination of 

the baseline firing rates of the DA neurons also showed no differences, which is 

supported by the findings of previous research (Dommett et al., 2005). A significant 

difference was seen in chapter 4 in the onset-trough measurement of average DA 

neuron spikes, with DA neurons showing responses with inhibitory first components 

having broader spikes than those showing responses with excitatory first components. 
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Although the analysis of chapter 3 found that DA neurons showing inhibitory 

responses had larger action potentials, chapter 5 found no significant difference. 

Combined with the findings of Dommett et al. (2005), which found no difference 

between action potential sizes of excited and inhibited cells, the reliability of this 

distinction may be questionable. 

One of the arguments against the existence of separate populations put forward 

in chapter 3 was the presence of responses in one direction, which went on to respond 

in a different direction after BMI. This unusual response profile may not be merely an 

artefact of the effect of BMI – previous studies have reported occurrences of DA 

neurons changing response over a period of stimulation without any other 

manipulation (Tong et al., 1996). Although the nature of the change is not mentioned, 

the response is described as “labile” (p.198), suggesting a change more drastic than 

gradual habituation for example. Although it is not commonly reported, there are also 

reports of DA neurons that respond in opposite directions to stimuli of different 

modalities. Most dramatically, Strecker and Jacobs (1985) reported that out of 24 DA 

neurons that responded to a visual stimulus, an auditory stimulus, or both, 11 neurons 

responded with an excitation to one stimulus, but an inhibition to the other. This 

shows that at least some DA neurons cannot be classified as exclusively showing 

excitatory or inhibitory responses, nor is the direction of response to a stimulus 

necessarily fixed. 

6.3 Broader functional implications 

Conflicting findings about the DA response 

DA neurons typically respond to unexpected sensory stimuli with a short 

latency, short duration increase in firing rate (Schultz et al., 1997). The SC has been 

established as the source of input about unexpected visual stimuli to DA neurons 

(Dommett et al., 2005). Redgrave et al. (1999) pointed out that the sensory responses 

in DA neurons must be based on pre-gaze shift sensory processing. In mammals, an 

unexpected sensory stimulus typically elicits a saccade to bring the stimulus onto the 

fovea, which provides a broader and more detailed input to cortical systems (Thorpe 

and Fabre-Thorpe, 2001; Rousselet et al., 2004). Saccadic latency is usually in the 

range of 150-200 ms (Hikosaka and Wurtz, 1983; Jay and Sparks, 1987). As the 

latencies of phasic DA responses are typically around 100 ms (Schultz, 1998) such 

detailed input would not be available to DA neurons. Consequently, the precise 
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identity of a stimulus that triggered the DA response would not be available at the 

timescale of DA neuron responses. The possibility of evaluation of a stimulus post-

identification affecting DA neuron responses is even less likely given the duration of 

DA responses. Nevertheless, DA neurons can respond differentially to different 

stimuli, and signal aspects of their reward value (Fiorillo et al., 2003; Tobler et al., 

2005). Hopefully the present thesis goes some way to providing a way for these 

findings to be reconciled. 

A possible solution 

 It has been shown that the DA response comprises an initial short latency 

phase, followed by a second phase at a longer latency – around 150-200 ms (Hudgins 

et al., 2009; Joshua et al., 2009; Bromberg-Martin et al., 2010; Nomoto et al., 2010). 

The magnitude of the initial phase is apparently independent of the value associated 

with the stimulus, while stimuli associated with different reward probabilities appear 

to be able to produce different responses in the second phase. Cortical input is 

suitably placed to explain these differences. The projection of somatosensory cortex 

(and other areas of sensory cortex) to the SC is well known, and as a result the ability 

to evoke a response in the SC by stimulating the somatosensory cortex is not 

surprising. The ability of somatosensory cortex to evoke a response in DA neurons via 

the SC presents a mechanism through which DA neuron responses, driven by SC 

input, could be modified, and unites research indicating the SC as a relay for sensory 

input to DA neurons with evidence suggesting responses requiring perceptual 

capabilities in DA neurons previously thought to be beyond the SC (Boehnke and 

Munoz, 2008). Note that the second phase of the response would still be primarily, if 

not wholly presaccadic. This would necessarily limit the sensory capabilities of DA 

neurons to the capabilities of those structures that could provide presaccadic input. 

While this excludes the kind of high resolution and high level information provided 

by cortical processing of foveal input, it does not exclude all cortical input. The eye is 

not blind outside the fovea, and the cortex receives extrafoveal input. This extrafoveal 

input might support discrimination between stimuli at latencies that are longer than 

the onset of the initial phase of the DA response, but still are presaccadic. 

Limitations of the solution 

However, while this provides a potential explanation for studies showing that 

DA neurons can respond differentially to stimuli at presaccadic latencies, it still does 
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not completely rehabilitate the reward prediction error hypothesis. The presaccadic 

information provided to DA neurons about higher level sensory features, even if 

supplemented by cortical input, relies on the initial stages of processing of extrafoveal 

input, and is likely to be relatively coarse. It has recently been demonstrated that the 

SC is capable of responding differentially to, and driving saccades to, stimuli that are 

differently coloured but identical in luminance (White et al., 2009; White and Munoz, 

2011). As the SC does not receive input from the colour sensitive cells of the retina 

(Schiller and Malpeli, 1977), the authors suggested that these responses are likely to 

be driven by cortical input. This suggestion is supported by the delay between 

luminance related and chromatic related responses in the SC, which implies that 

chromatic responses traverse different pathways (White et al., 2009). However, this 

capability of the SC to respond to chromatic stimuli is limited. White et al. (2009) 

showed that SC neurons are very broadly tuned, and respond to a wide range of 

colours. This lack of selectivity of SC neurons supported by White and Munoz 

(2011), who showed that there was an increase in erroneous saccades (i.e. saccades to 

a distractor) when targets and distractors were similarly coloured. Given the lack of 

selectivity and potential for errors in presaccadic processing, it seems likely that any 

response in DA neurons driven by this input would be similarly unreliable. Such a 

system would not be suitable to reliably indicate stimulus identity and value at 

presaccadic latencies. 

Implications of a shared tectonigral pathway 

The possibility that cortical and subcortical inputs of different modalities share a 

common route to modulate the activity of DA neurons has implications for the 

interpretation of the function of the DA response. It was suggested earlier in this 

chapter that the pre-saccadic cortical input available to the SC and consequently DA 

neurons at the latencies of the DA response is limited, such that identification and 

valuation of a particular stimulus would be difficult. If DA neurons receive input from 

SC neurons that respond to multimodal cortical and subcortical input without 

discrimination, then the likelihood of the function of the DA response being one that 

involves the fine-grained discrimination of stimuli becomes even smaller.  
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Figure 6-1 From Schultz (1998): “Time courses of activations of DA neurons to 

novel, alerting, and conditioned stimuli. Activations after novel stimuli decrease 

with repeated exposure over consecutive trials. Their magnitude depends on the 

physical salience of stimuli as stronger stimuli induce higher activations that 

occasionally exceed those after conditioned stimuli. Particularly salient stimuli 

continue to activate DA neurons with limited magnitude even after losing their 

novelty without being paired with primary rewards.” 

If modulation of cortical input to the SC is the mechanism by which responses 

in DA neurons indicating value are produced, then the shared pathway to DA neurons 

means it is unlikely that the value related response is providing a reward signal. This 

point is illustrated particularly well by Schultz himself (see Figure 6-1). Intense, novel 

sensory stimuli can produce responses with magnitudes exceeding those of a response 

to a stimulus associated with reward, and can continue to activate DA neurons without 

being paired with primary rewards. If DA neurons cannot distinguish between intense, 

but unrewarded stimuli, and stimuli associated with a reward, or between intense, 

unrewarded stimuli that continue to produce a limited magnitude response after 

repeated presentation, and stimuli associated with smaller reward values, which would 

also produce smaller magnitude responses, then their responses cannot signal reward 

value distinct from unrewarded stimulation if they produce a similar magnitude 

response. 

The ability of the cortical input to modulate DA neuron activity through the SC 

provides a mechanism by which the responses of the SC and DA neurons to stimuli 

previously associated with rewards could be modified. However, given the lack of 

selectivity of cortically mediated collicular responses (White et al., 2009; White and 

Munoz, 2011), it seems unlikely cortical input could support precise stimulus 

identification and evaluation. Indeed, previous research has shown that DA neurons 

are largely insensitive to high spatial frequency stimuli associated with different 

reward probabilities presented at fixation point (Hudgins, 2010), where a stimulus 

could be precisely identified. Rather, it is suggested here that cortical information 
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might bias the response of the SC according to the presumed identity of the stimulus 

and its associated reward value. However, it is also suggested here that although DA 

neuron responses may be modulated by reward, they do not necessarily signal reward. 

Schultz (1998) noted that intense sensory stimuli may produce larger responses in DA 

neurons than stimuli associated with reward. Consequently, it seems unlikely that the 

DA response communicates intense sensory stimuli as distinct from stimuli evoking a 

large response due to association with reward. A theory of phasic DA neuron response 

function is proposed, where DA provides a „time stamp‟ to enable the animal to 

determine potential behavioural causes of an unexpected event, as suggested by 

Redgrave et al. (2008). However, in contrast to Redgrave et al. (2008), it is suggested 

that this time stamp signal is modulated in the natural environment according to a best 

guess of the identity of the stimulus and its salience. It is speculated that this may 

serve to form a stronger connection, or form a connection more quickly, between 

context and behaviour, and stimuli of particular interest. 

6.4 Alternative/further experiments 

The present results provide support for the suggestion that sensory cortex is a 

likely source of input to modulate the DA response, and establishes the SC as a 

common relay for direct visual input and cortical input. It also extends the role of the 

SC as a relay for sensory input from subcortical structures from just vision to include 

somatosensation. However, these results are by no means an end point, and several 

further directions of research could prove informative. 

It was mentioned earlier in this chapter that the precise role of the SC in 

trigeminal input to DA neurons could not be established in the same way as cortical 

input based on the experiments performed here. As trigeminal stimulation reliably 

evokes responses in DA neurons in the absence of BMI, as did the pulse train cortical 

stimulation used in chapter 4, it is ideally placed to use a similar method of 

suppressing collicular activity using muscimol, or a similar inhibitory agent. Further, 

once the role of the SC in trigeminal input to DA neurons is established, the 

respective putative contributions of direct trigemino-tectal input and trigemino-

thalamo-cortico-tectal input could be investigated further. In the introduction to 

chapter 5, it was suggested that intracollicular BMI might result in a second phases in 

the DA response as a cortical input comes into play. However, the responses of the 

SC to trigeminal stimulation showed both the first component, produced by direct 
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trigeminal input, and the second component, produced by cortical input, described by 

Cohen et al. (2008) prior to BMI injection. Separate components were also clearly 

visible in the responses of DA neurons, which were differentially modulated by BMI 

injection. The presence of both direct and indirect components in both collicular and 

DA neuron response provides an ideal opportunity to better understand the 

contribution of cortical input to collicular and DA responses to trigeminal stimulation. 

Further study might look at the responses before and in the presence of intracollicular 

BMI, both before and after manipulations that suppress or enhance the contribution of 

corticotectal input in a similar manner to Cohen et al. (2008). In this way, the relative 

impact of direct and indirect input to the SC on the DA response can be separated. 

The development of optogenetics (Deisseroth, 2011) allows for investigation 

into the problems examined here in finer detail, with more control, and potentially 

more validity. First, if neurons that project to the SC from the trigeminal nucleus 

(Killackey and Erzurumlu, 1981) and the barrel cortex (Wise and Jones, 1977) can be 

selectively targeted, then direct electrical stimulation of the barrel cortex and the 

trigeminal nucleus (which potentially depolarises several populations of neuron, 

which may have competing functions, Diamond et al., 2008), could be replaced with a 

stimulation more likely to activate select populations of neurons in a predictable 

manner. The risk of activation of the SC or other structures by alternate pathways or 

antidromic activation would be reduced if the fibre optic was located within the SC, 

thereby stimulating the terminal fibres of labelled neurons from the structure of 

interest. As optogenetics also allows for the same neurons to be both depolarised and 

hyperpolarised (Zhang et al., 2007), not only could muscimol be replaced as an 

inhibitory agent in the present studies, but the effect of inhibition and disinhibition of 

the SC could be investigated in the same animal at short timescales. 

The present study suggested that the interference between cortical and sensory 

stimuli on the activity of the SC indicated that at least some of the population of 

neurons being recorded from were responsive to both stimuli, whether or not this is 

the case could be examined by studying the effects of the stimuli used here on the 

activity of a single SC neuron. It has been previously demonstrated that single SC 

neurons receive both cortical and subcortical information about whisker deflection 

(Cohen et al., 2008), and that individual SC neurons can show multisensory responses 

(Meredith and Stein, 1986). Single unit recording would enable the respective inputs 
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of sensory cortex and subcortical inputs in the same modality and other modalities to 

be investigated. 

The results presented here (particularly the temporal consistency with which 

DA neuron responses follow responses in the SC for cortical and trigeminal 

stimulation, and in response to a light flash) were interpreted to suggest that the 

neurons in the SC which were directly activated by cortical and trigeminal stimulation 

formed part of the direct tecto-nigral pathway (Comoli et al., 2003). A combination of 

anatomical techniques could be used to confirm this hypothesis. Bearing in mind the 

caveats associated with direct electrical stimulation expressed in chapter 4, prolonged 

stimulation of the tectonigral pathway could be used to induce c-fos expression in 

neurons in the SC that receive projections from the barrel field (Dragunow and Faull, 

1989). An injection of a retrograde anatomical tracer in the SNc, such as cholera toxin 

subunit b (CTb), would label SC neurons that were part of the tecto-nigral pathway 

(Comoli et al., 2003). If these techniques were combined in the same animal, any 

incidence of double labelling of fos like immunoreactivity and CTb would suggest 

that corticotectal neurons synapse directly onto neurons of the tecto-nigral pathway.  

6.5 Final conclusions 

A better understanding of the function of the phasic response of DA is important 

for our understanding of the reward valuation and learning mechanisms of the brain. 

A deeper knowledge of the DA system in a broader sense might also help is better 

understand the causes behind pathologies such as Parkinson‟s disease, and perhaps 

help develop more selective treatment. The results presented in this thesis extend the 

role of the SC from the primary relay of visual input to DA neurons at short latency to 

include somatosensory input. Given its multimodal nature (Meredith and Stein, 1986), 

the SC may well yet prove to be a relay for input in other sensory modalities. More 

importantly however, this study unites the apparently contradictory data showing that 

DA neurons can respond differentially to different stimuli, and the lack of selectivity 

to visual stimuli provided by the SC. Cortical input to the SC offers an explanation for 

recent discoveries (Morris et al., 2004; Hudgins, 2010) suggesting that DA neurons 

can differentiate between some stimuli at longer latencies. However, although this 

may also explain the results of experiments supporting the reward prediction error 

hypothesis, it seems unlikely that the phasic DA response supports a solely reward 

based function. Instead, it is suggested that the DA response to sensory stimuli 
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represents a signal of the occurrence of salient stimuli, which, although it can be 

sensitised by reward, cannot discriminate input from the SC triggered by reward from 

that triggered by non-reward stimuli, and is thus unlikely to communicate a reward 

value signal based function. 



130 

 

References 

Adams, J.C. (1992). Biotin amplification of biotin and horseradish peroxidase signals 

in histochemical stains. Journal of Histochemistry and Cytochemistry 40, 1457–1463. 

Alloway, K.D., Crist, J., Mutic, J.J., and Roy, S.A. (1999). Corticostriatal projections 

from rat barrel cortex have an anisotropic organization that correlates with vibrissal 

whisking behavior. The Journal of Neuroscience 19, 10908–10922. 

Apicella, P., Legallet, E., and Trouche, E. (1997). Responses of tonically discharging 

neurons in the monkey striatum to primary rewards delivered during different 

behavioral states. Experimental Brain Research 116, 456–466. 

Appell, P.P., and Behan, M. (1990). Sources of subcortical GABAergic projections to 

the superior colliculus in the cat. The Journal of Comparative Neurology 302, 143–

158. 

Arnault, P., and Roger, M. (1990). Ventral temporal cortex in the rat: connections of 

secondary auditory areas Te2 and Te3. J. Comp. Neurol 302, 110–123. 

Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B., and Petersen, C.C.H. 

(2010). Long-range connectivity of mouse primary somatosensory barrel cortex. Eur. 

J. Neurosci 31, 2221–2233. 

Asanuma, H., and Arnold, A.P. (1975). Noxious effects of excessive currents used for 

intracortical microstimulation. Brain Res 96, 103–107. 

Behan, M., and Kime, N.M. (1996). Intrinsic Circuitry in the Deep Layers of the Cat 

Superior Colliculus. Visual Neuroscience 13, 1031–1042. 

Behan, M., Steinhacker, K., Jeffrey-Borger, S., and Meredith, M.A. (2002). 

Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. The 

Journal of Comparative Neurology 452, 334–359. 

Bellomo, M., Giuffrida, R., Palmeri, A., and Sapienza, S. (1998). Excitatory amino 

acids as neurotransmitters of corticostriatal projections: immunocytochemical 

evidence in the rat. Arch Ital Biol 136, 215–223. 

Berger, B., Gaspar, P., and Verney, C. (1991). Dopaminergic innervation of the 

cerebral cortex: unexpected differences between rodents and primates. Trends in 

Neurosciences 14, 21–27. 

Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. 

(1973). Brain dopamine and the syndromes of Parkinson and Huntington Clinical, 

morphological and neurochemical correlations. Journal of the Neurological Sciences 

20, 415–455. 

Berwick, J., Johnston, D., Jones, M., Martindale, J., Martin, C., Kennerley, A.J., 

Redgrave, P., and Mayhew, J.E.W. (2008). Fine detail of neurovascular coupling 



131 

 

revealed by spatiotemporal analysis of the hemodynamic response to single whisker 

stimulation in rat barrel cortex. J. Neurophysiol 99, 787–798. 

Berwick, J., Johnston, D., Jones, M., Martindale, J., Redgrave, P., McLoughlin, N., 

Schiessl, I., and Mayhew, J.E.W. (2005). Neurovascular coupling investigated with 

two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur. J. 

Neurosci 22, 1655–1666. 

Bickford, M.E., and Hall, W.C. (1989). Collateral projections of predorsal bundle 

cells of the superior colliculus in the rat. The Journal of Comparative Neurology 283, 

86–106. 

Binns, K.E. (1999). The synaptic pharmacology underlying sensory processing in the 

superior colliculus. Progress in Neurobiology 59, 129–159. 

Binns, K.E., and Salt, T.E. (1997). Different roles for GABAA and GABAB receptors 

in visual processing in the rat superior colliculus. The Journal of Physiology 504, 629. 

Birkmayer, W., and Hornykiewicz, O. (1998). The effect of L-3,4-

dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism & 

Related Disorders 4, 59–60. 

Björklund, A., and Dunnett, S.B. (2007). Dopamine neuron systems in the brain: an 

update. Trends in Neurosciences 30, 194–202. 

Boehnke, S.E., and Munoz, D.P. (2008). On the importance of the transient visual 

response in the superior colliculus. Curr. Opin. Neurobiol 18, 544–551. 

Boorman, L., Kennerley, A.J., Johnston, D., Jones, M., Zheng, Y., Redgrave, P., and 

Berwick, J. (2010). Negative Blood Oxygen Level Dependence in the Rat:A Model 

for Investigating the Role of Suppression in Neurovascular Coupling. The Journal of 

Neuroscience 30, 4285 –4294. 

Brett-Green, B., Paulsen, M., Staba, R.J., Fifkova, E., and Barth, D.S. (2004). Two 

distinct regions of secondary somatosensory cortex in the rat: topographical 

organization and multisensory responses. Journal of Neurophysiology 91, 1327. 

Brischoux, F., Chakraborty, S., Brierley, D.I., and Ungless, M.A. (2009). Phasic 

excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of 

the National Academy of Sciences 106, 4894. 

Bromberg-Martin, E.S., Matsumoto, M., and Hikosaka, O. (2010). Dopamine in 

motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834. 

Brown, M.T.C., Henny, P., Bolam, J.P., and Magill, P.J. (2009). Activity of 

Neurochemically Heterogeneous Dopaminergic Neurons in the Substantia Nigra 

during Spontaneous and Driven Changes in Brain State. The Journal of Neuroscience 

29, 2915 –2925. 



132 

 

Carr, D.B., and Sesack, S.R. (2000). Projections from the rat prefrontal cortex to the 

ventral tegmental area: target specificity in the synaptic associations with 

mesoaccumbens and mesocortical neurons. The Journal of Neuroscience 20, 3864. 

Carter, C.J. (1982). Topographical distribution of possible glutamatergic pathways 

from the frontal cortex to the striatum and substantia nigra in rats. 

Neuropharmacology 21, 379–383. 

Chalupa, L.M., and Rhoades, R.W. (1977). Responses of visual, somatosensory, and 

auditory neurones in the golden hamster‟s superior colliculus. The Journal of 

Physiology 270, 595. 

Chevalier, G., Deniau, J.M., Thierry, A.M., and Feger, J. (1981a). The nigro-tectal 

pathway. An electrophysiological reinvestigation in the rat. Brain Research 213, 253–

263. 

Chevalier, G., Thierry, A.M., Shibazaki, T., and Féger, J. (1981b). Evidence for a 

GABAergic inhibitory nigrotectal pathway in the rat. Neuroscience Letters 21, 67–70. 

Chiodo, L.A., Antelman, S.M., Caggiula, A.R., and Lineberry, C.G. (1980). Sensory 

stimuli alter the discharge rate of dopamine (DA) neurons: evidence for two 

functional types of DA cells in the substantia nigra. Brain Res 189, 544–549. 

Clemo, H.R., and Stein, B.E. (1984). Topographic organization of somatosensory 

corticotectal influences in cat. Journal of Neurophysiology 51, 843–858. 

Cohen, D.J., Shaywitz, B.A., Young, J.G., Carbonari, C.M., Nathanson, J.A., 

Lieberman, D., Bowers Jr, M.B., and Maas, J.W. (1979). Central biogenic amine 

metabolism in children with the syndrome of chronic multiple tics of Gilles de la 

Tourette: norepinephrine, serotonin, and dopamine. Journal of the American Academy 

of Child Psychiatry 18, 320–341. 

Cohen, J.D., and Castro-Alamancos, M.A. (2010). Behavioral state dependency of 

neural activity and sensory (whisker) responses in superior colliculus. J Neurophysiol 

104, 1661–1672. 

Cohen, J.D., Hirata, A., and Castro-Alamancos, M.A. (2008). Vibrissa Sensation in 

Superior Colliculus: Wide-Field Sensitivity and State-Dependent Cortical Feedback. 

The Journal of Neuroscience 28, 11205–11220. 

Coizet, V., Comoli, E., Westby, G.W.M., and Redgrave, P. (2003). Phasic activation 

of substantia nigra and the ventral tegmental area by chemical stimulation of the 

superior colliculus: an electrophysiological investigation in the rat. European Journal 

of Neuroscience 17, 28–40. 

Coizet, V., Dommett, E.J., Redgrave, P., and Overton, P.G. (2006). Nociceptive 

responses of midbrain dopaminergic neurones are modulated by the superior 

colliculus in the rat. Neuroscience 139, 1479–1493. 



133 

 

Coizet, V., Overton, P.G., and Redgrave, P. (2007). Collateralization of the 

tectonigral projection with other major output pathways of superior colliculus in the 

rat. J. Comp. Neurol 500, 1034–1049. 

Comoli, E., Coizet, V., Boyes, J., Bolam, J.P., Canteras, N.S., Quirk, R.H., Overton, 

P.G., and Redgrave, P. (2003). A direct projection from superior colliculus to 

substantia nigra for detecting salient visual events. Nat. Neurosci 6, 974–980. 

Coogan, T.A., and Burkhalter, A. (1993). Hierarchical organization of areas in rat 

visual cortex. The Journal of Neuroscience 13, 3749–3772. 

Crutcher, M.D., and DeLong, M.R. (1984). Single cell studies of the primate putamen. 

II. Relations to direction of movement and pattern of muscular activity. Experimental 

Brain Research 53, 244–258. 

Dahlström, A., and Fuxe, K. (1964). Evidence for the existence of monoamine-

containing neurons in the central nervous system. I. Demonstration of monoamines in 

the cell bodies of brain stem neurons. Acta Physiol Scand Suppl SUPPL 232:1–55. 

Dean, P., Redgrave, P., and Westby, G.W.M. (1989). Event or emergency? Two 

response systems in the mammalian superior colliculus. Trends in Neurosciences 12, 

137–147. 

Dean, P., Simkins, M., Hetherington, L., Mitchell, I.J., and Redgrave, P. (1991). 

Tectal induction of cortical arousal: Evidence implicating multiple output pathways. 

Brain Research Bulletin 26, 1–10. 

Deisseroth, K. (2011). Optogenetics. Nat Meth 8, 26–29. 

Van Der Loos, H. (1976). Barreloids in mouse somatosensory thalamus. Neuroscience 

Letters 2, 1–6. 

Deschênes, M. (2009). Vibrissal afferents from trigeminus to cortices. Scholarpedia 4, 

7454. 

Diamond, M.E., von Heimendahl, M., Knutsen, P.M., Kleinfeld, D., and Ahissar, E. 

(2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews 

Neuroscience 9, 601–612. 

Diana, M., Garcia-Munoz, M., Richards, J., and Freed, C.R. (1989). 

Electrophysiological analysis of dopamine cells from the substantia nigra pars 

compacta of circling rats. Experimental Brain Research 74, 625–630. 

Dommett, E., Coizet, V., Blaha, C.D., Martindale, J., Lefebvre, V., Walton, N., 

Mayhew, J.E., Overton, P.G., and Redgrave, P. (2005). How visual stimuli activate 

dopaminergic neurons at short latency. Science 307, 1476–1479. 

Dräger, U.C., and Hubel, D.H. (1976). Topography of visual and somatosensory 

projections to mouse superior colliculus. Journal of Neurophysiology 39, 91–101. 

Dragunow, M., and Faull, R. (1989). The use of c-fos as a metabolic marker in 

neuronal pathway tracing. The Journal of Neuroscience 29, 261–265. 



134 

 

Dringenberg, H.C., Vanderwolf, C.H., and Noseworthy, P.A. (2003). Superior 

colliculus stimulation enhances neocortical serotonin release and 

electrocorticographic activation in the urethane-anesthetized rat. Brain Research 964, 

31–41. 

Edeline, J.-M., Hars, B., Hennevin, E., and Cotillon, N. (2002). Muscimol diffusion 

after intracerebral microinjections: A reevaluation based on electrophysiological and 

autoradiographic quantifications. Neurobiology of Learning and Memory 78, 100–124. 

Ellaway, P.H. (1978). Cumulative sum technique and its application to the analysis of 

peristimulus time histograms. Electroencephalography and Clinical Neurophysiology 

45, 302–304. 

Felsen, G., and Mainen, Z.F. (2008). Neural substrates of sensory-guided locomotor 

decisions in the rat superior colliculus. Neuron 60, 137–148. 

Fiorillo, C.D., Tobler, P.N., and Schultz, W. (2003). Discrete coding of reward 

probability and uncertainty by dopamine neurons. Science 299, 1898. 

Freeman, A.S., and Bunney, B.S. (1987). Activity of A9 and A10 dopaminergic 

neurons in unrestrained rats: further characterisation and effects of apomorphine and 

cholecystokinin. Brain Research 405, 46–55. 

Freeman, A.S., Meltzer, L.T., and Bunney, B.S. (1985). Firing properties of substantia 

nigra dopaminergic neurons in freely moving rats. Life Sciences 36, 1983–1994. 

Friedberg, M.H., Lee, S.M., and Ebner, F.F. (1999). Modulation of receptive field 

properties of thalamic somatosensory neurons by the depth of anesthesia. J. 

Neurophysiol 81, 2243–2252. 

Friston, K.J., Frith, C., Liddle, P., and Frackowiak, R. (1991). Comparing functional 

(PET) images: the assessment of significant change. Journal of Cerebral Blood Flow 

& Metabolism 11, 690–699. 

Fuentes-Santamaria, V., Alvarado, J.C., McHaffie, J.G., and Stein, B.E. (2009). Axon 

morphologies and convergence patterns of projections from different sensory-specific 

cortices of the anterior ectosylvian sulcus onto multisensory neurons in the cat 

superior colliculus. Cereb. Cortex 19, 2902–2915. 

Gao, D.M., Hoffman, D., and Benabid, A.L. (1996). Simultaneous recording of 

spontaneous activities and nociceptive responses from neurons in the pars compacta 

of substantia nigra and in the lateral habenula. European Journal of Neuroscience 8, 

1474–1478. 

Gao, D.M., Jeaugey, L., Pollak, P., and Benabid, A.L. (1990). Intensity-dependent 

nociceptive responses from presumed dopaminergic neurons of the substantia nigra, 

pars compacta in the rat and their modification by lateral habenula inputs. Brain 

Research 529, 315–319. 



135 

 

Gariano, R.F., and Groves, P.M. (1988). Burst firing induced in midbrain dopamine 

neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain 

Research 462, 194–198. 

Garris, P.A., and Wightman, R.M. (1994). Different kinetics govern dopaminergic 

transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric 

study. The Journal of Neuroscience 14, 442–450. 

Geisler, S., Derst, C., Veh, R.W., and Zahm, D.S. (2007). Glutamatergic afferents of 

the ventral tegmental area in the rat. The Journal of Neuroscience 27, 5730–5743. 

Gonon, F.G. (1988). Nonlinear relationship between impulse flow and dopamine 

released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. 

Neuroscience 24, 19–28. 

Gonzalez, F., Perez, R., Acuña, C., Alonso, J.M., and Labandeira-Garcia, J.L. (1991). 

Contrast responses to bright slits of visual cells in the superior colliculus of the albino 

rat. Int. J. Neurosci. 58, 255–259. 

Gordon, B. (1973). Receptive fields in deep layers of cat superior colliculus. Journal 

of Neurophysiology 36, 157178. 

Grace, A.A. (1991). Phasic versus tonic dopamine release and the modulation of 

dopamine system responsivity: A hypothesis for the etiology of schizophrenia. 

Neuroscience 41, 1–24. 

Grace, A.A., and Bunney, B.S. (1983). Intracellular and extracellular 

electrophysiology of nigral dopaminergic neurons. I: Identification and 

characterization. Neuroscience. 10, 301–315. 

Grace, A.A., and Bunney, B.S. (1984a). The control of firing pattern in nigral 

dopamine neurons: burst firing. The Journal of Neuroscience 4, 2877–2890. 

Grace, A.A., and Bunney, B.S. (1984b). The control of firing pattern in nigral 

dopamine neurons: single spike firing. The Journal of Neuroscience 4, 2866–2876. 

Grobstein, P. (1988). Between the retinotectal projection and directed movement: 

topography of a sensorimotor interface. Brain Behav. Evol. 31, 34–48. 

Hall, W.C., and Lee, P. (1993). Interlaminar connections of the superior colliculus in 

the tree shrew. I. The superficial gray layer. The Journal of Comparative Neurology 

332, 213–223. 

Hall, W.C., and Lee, P. (1997). Interlaminar connections of the superior colliculus in 

the tree shrew. III: The optic layer. Visual Neuroscience 14, 647–661. 

Hallas, B.H., and Jacquin, M.F. (1990). Structure-function relationships in rat brain 

stem subnucleus interpolaris. IX. Inputs from subnucleus caudalis. J. Neurophysiol 64, 

28–45. 

Harris, L.R., Blakemore, C., and Donaghy, M. (1980). Integration of visual and 

auditory space in the mammalian superior colliculus. Nature 288, 56–59. 



136 

 

Harvey, A.R., and Worthington, D.R. (1990). The projection from different visual 

cortical areas to the rat superior colliculus. J. Comp. Neurol 298, 281–292. 

Helms, M.C., Ozen, G., and Hall, W.C. (2004). Organization of the Intermediate Gray 

Layer of the Superior Colliculus. I. Intrinsic Vertical Connections. Journal of 

Neurophysiology 91, 1706–1715. 

Hemelt, M.E., and Keller, A. (2007). Superior sensation: superior colliculus 

participation in rat vibrissa system. BMC Neurosci. 8, 12. 

Henderson, T.A., and Jacquin, M.F. (1995). What makes subcortical barrels? In The 

Barrel Cortex of Rodents, (New York, NY: Plenum Press), pp. 123–187. 

Herdegen, T., and Leah, J.D. (1998). Inducible and constitutive transcription factors 

in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, 

and CREB/ATF proteins. Brain Research Reviews 28, 370–490. 

Hikosaka, O., and Wurtz, R.H. (1983). Visual and oculomotor functions of monkey 

substantia nigra pars reticulata. I. Relation of visual and auditory responses to 

saccades. Journal of Neurophysiology 49, 1230–1253. 

Hikosaka, O., and Wurtz, R.H. (1985). Modification of saccadic eye movements by 

GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior 

colliculus. Journal of Neurophysiology 53, 266–291. 

Hille, B. (1966). Common mode of action of three agents that decrease the transient 

change in sodium permeability in nerves. Nature 210, 1220–1222. 

Hille, B. (1977). The pH-dependent rate of action of local anesthetics on the node of 

Ranvier. Journal of General Physiology 69, 475–496. 

Hirai, H., and Okada, Y. (1993). Ipsilateral corticotectal pathway inhibits the 

formation of long-term potentiation (LTP) in the rat superior colliculus through 

GABAergic mechanism. Brain Res 629, 23–30. 

Hoffer, Z.S., Arantes, H.B., Roth, R.L., and Alloway, K.D. (2005). Functional circuits 

mediating sensorimotor integration: Quantitative comparisons of projections from 

rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the 

pons. The Journal of Comparative Neurology 488, 82–100. 

Hollerman, J.R., and Schultz, W. (1998). Dopamine neurons report an error in the 

temporal prediction of reward during learning. Nature Neuroscience 1, 304–309. 

Horvitz, J.C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to 

salient non-reward events. Neuroscience 96, 651–656. 

Horvitz, J.C., Stewart, T., and Jacobs, B.L. (1997). Burst activity of ventral tegmental 

dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Research 759, 

251–258. 



137 

 

Hsu, S.M., Raine, L., and Fanger, H. (1981). The use of antiavidin antibody and 

avidin-biotin-peroxidase complex in immunoperoxidase techniques. American 

Journal of Clinical Pathology 75, 816–821. 

Huber, G.C., and Crosby, E.C. (1933). A phylogenetic consideration of the optic 

tectum. Proceedings of the National Academy of Sciences of the United States of 

America 19, 15–22. 

Hudgins, E.D. (2010). Functional roles of midbrain dopamine neurons in associative 

learning. Wake Forest University Graduate School Of Arts And Sciences. 

Hudgins, E.D., McHaffie, J.G., Redgrave, P., Salinas, E., and Stanford, T.R. (2009). 

Putative midbrain dopamine neurons encode sensory salience and reward prediction at 

different latencies. In Program No.661.1. 2009 Neuroscience Meeting Planner. 

Chicago, IL: Society for Neuroscience, 2009. Online., (Chicago, IL: Society for 

Neuroscience), p. 

Huerta, M.F., and Harting, J.K. (1984). Connectional organization of the superior 

colliculus. Trends in Neurosciences 7, 286–289. 

Hyland, B.I., Reynolds, J.N.J., Hay, J., Perk, C.G., and Miller, R. (2002). Firing 

modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114, 475–

492. 

Ikeda, T., and Hikosaka, O. (2003). Reward-dependent gain and bias of visual 

responses in primate superior colliculus. Neuron 39, 693–700. 

Isa, T., Endo, T., and Saito, Y. (1998). The visuo-motor pathway in the local circuit of 

the rat superior colliculus. J. Neurosci. 18, 8496–8504. 

Jackson, M.E., Frost, A.S., and Moghaddam, B. (2001). Stimulation of prefrontal 

cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus 

accumbens. Journal of Neurochemistry 78, 920–923. 

Jacquin, M.F., Barcia, M., and Rhoades, R.W. (1989). Structure-function relationships 

in rat brainstem subnucleus interpolaris: IV. Projection neurons. J. Comp. Neurol 282, 

45–62. 

Jay, M.F., and Sparks, D.L. (1987). Sensorimotor integration in the primate superior 

colliculus. I. Motor convergence. Journal of Neurophysiology 57, 22–34. 

Ji, H., and Shepard, P.D. (2007). Lateral Habenula Stimulation Inhibits Rat Midbrain 

Dopamine Neurons through a GABAA Receptor-Mediated Mechanism. The Journal 

of Neuroscience 27, 6923 –6930. 

Joshua, M., Adler, A., and Bergman, H. (2009). The dynamics of dopamine in control 

of motor behavior. Curr. Opin. Neurobiol 19, 615–620. 

Kaneda, K., Isa, K., Yanagawa, Y., and Isa, T. (2008). Nigral Inhibition of 

GABAergic Neurons in Mouse Superior Colliculus. The Journal of Neuroscience 28, 

11071 –11078. 



138 

 

Kasper, E.M., Larkman, A.U., Lübke, J., and Blakemore, C. (1994). Pyramidal 

neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, 

intrinsic electrophysiological properties, and axon targets. J. Comp. Neurol. 339, 459–

474. 

Kassel, J. (1982). Somatotopic organization of SI corticotectal projections in rats. 

Brain Research 231, 247–255. 

Katsuta, H., and Isa, T. (2003). Release from GABA(A) receptor-mediated inhibition 

unmasks interlaminar connection within superior colliculus in anesthetized adult rats. 

Neuroscience Research 46, 73–83. 

Keay, K.A., Redgrave, P., and Dean, P. (1988). Cardiovascular and respiratory 

changes elicited by stimulation of rat superior colliculus. Brain Research Bulletin 20, 

13–26. 

Kennerley, A.J., Berwick, J., Martindale, J., Johnston, D., Papadakis, N., and Mayhew, 

J.E. (2005). Concurrent fMRI and optical measures for the investigation of the 

hemodynamic response function. Magnetic Resonance in Medicine 54, 354–365. 

Killackey, H.P., and Erzurumlu, R.S. (1981). Trigeminal projections to the superior 

colliculus of the rat. The Journal of Comparative Neurology 201, 221–242. 

Killackey, H.P., Koralek, K.A., Chiaia, N.L., and Rhodes, R.W. (1989). Laminar and 

areal differences in the origin of the subcortical projection neurons of the rat 

somatosensory cortex. J. Comp. Neurol 282, 428–445. 

Kim, U., Gregory, E., and Hall, W.C. (1992). Pathway from the zona incerta to the 

superior colliculus in the rat. The Journal of Comparative Neurology 321, 555–575. 

Kimura, A., Donishi, T., Okamoto, K., and Tamai, Y. (2004). Efferent connections of 

“posterodorsal” auditory area in the rat cortex: implications for auditory spatial 

processing. Neuroscience 128, 399–419. 

King, A.J. (2004). The superior colliculus. Current Biology 14, R335–338. 

King, A.J., and Palmer, A.R. (1985). Integration of visual and auditory information in 

bimodal neurones in the guinea-pig superior colliculus. Experimental Brain Research 

60, 492–500. 

Kiyatkin, E.A. (1988). Functional Properties of Presumed Doparmine-Containing and 

Other Ventral Tegmental Area Neurons in Conscious Rats. International Journal of 

Neuroscience 42, 21–43. 

Kiyatkin, E.A., and Zhukov, V.N. (1988). Impulse activity of mesencephalic neurons 

on nociceptive stimulation in awake rats. Neurosci Behav Physiol 18, 393–400. 

Klemann, C.J.H.M., and Roubos, E.W. (2011). The gray area between synapse 

structure and function-Gray‟s synapse types I and II revisited. Synapse 65, 1222–1230. 

Kobayashi, S., and Schultz, W. (2008). Influence of reward delays on responses of 

dopamine neurons. J. Neurosci 28, 7837–7846. 



139 

 

Kosobud, A.E., Harris, G.C., and Chapin, J.K. (1994). Behavioral associations of 

neuronal activity in the ventral tegmental area of the rat. The Journal of Neuroscience 

14, 7117–7129. 

Krieg, W.J.S. (1946). Connections of the cerebral cortex. I. The albino rat. A. 

Topography of the cortical areas. The Journal of Comparative Neurology 84, 221–275. 

Lee, P., and Hall, W.C. (1995). Interlaminar connections of the superior colliculus in 

the tree shrew. II: Projections from the superficial gray to the optic layer. Visual 

Neuroscience 12, 573–588. 

Lee, P.H., Schmidt, M., and Hall, W.C. (2001). Excitatory and inhibitory circuitry in 

the superficial gray layer of the superior colliculus. Journal of Neuroscience 21, 

8145–8153. 

Lévesque, M., Charara, A., Gagnon, S., Parent, A., and Deschênes, M. (1996). 

Corticostriatal projections from layer V cells in rat are collaterals of long-range 

corticofugal axons. Brain Research 709, 311–315. 

Ljungberg, T., Apicella, P., and Schultz, W. (1992). Responses of monkey dopamine 

neurons during learning of behavioral reactions. Journal of Neurophysiology 67, 145–

163. 

Lloyd, K.G., Davidson, L., and Hornykiewicz, O. (1975). The neurochemistry of 

Parkinson‟s disease: effect of L-dopa therapy. Journal of Pharmacology and 

Experimental Therapeutics 195, 453–464. 

Lokwan, S.J.A., Overton, P.G., Berry, M.S., and Clark, D. (1999). Stimulation of the 

pedunculopontine tegmental nucleus in the rat produces burst firing in A9 

dopaminergic neurons. Neuroscience 92, 245–254. 

Lund, R.D. (1972). Anatomic Studies on the Superior Colliculus. Investigative 

Ophthalmology & Visual Science 11, 434–441. 

Ma, P.M. (1991). The barrelettes-architectonic vibrissal representations in the 

brainstem trigeminal complex of the mouse. Normal structural organization. The 

Journal of Comparative Neurology 309, 161–199. 

Ma, P.M., and Woolsey, T.A. (1984). Cytoarchitectonic correlates of the vibrissae in 

the medullary trigeminal complex of the mouse. Brain Research 306, 374–379. 

Ma, T.P. (1996). Saccade-related omnivectoral pause neurons in the primate zona 

incerta. Neuroreport 7, 2713–2716. 

Maeda, H., and Mogenson, G.J. (1982). Effects of peripheral stimulation on the 

activity of neurons in the ventral tegmental area, substantia nigra and midbrain 

reticular formation of rats. Brain Research Bulletin 8, 7–14. 

Majchrzak, M., and Di Scala, G. (2000). GABA and muscimol as reversible 

inactivation tools in learning and memory. Neural Plast 7, 19–29. 



140 

 

Mana, S., and Chevalier, G. (2001). Honeycomb-like structure of the intermediate 

layers of the rat superior colliculus: afferent and efferent connections. Neuroscience 

103, 673–693. 

Mantz, J., Thierry, A.M., and Glowinski, J. (1989). Effect of noxious tail pinch on the 

discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation 

of the mesocortical system. Brain Research 476, 377–381. 

Marsden, C.A. (2006). Dopamine: the rewarding years. British Journal of 

Pharmacology 147, S136–144. 

Martin, C., Jones, M., Martindale, J., and Mayhew, J. (2006). Haemodynamic and 

neural responses to hypercapnia in the awake rat. European Journal of Neuroscience 

24, 2601–2610. 

Matsumoto, M., and Hikosaka, O. (2009). Two types of dopamine neuron distinctly 

convey positive and negative motivational signals. Nature 459, 837–841. 

May, P.., Sun, W., and Hall, W.. (1997). Reciprocal connections between the zona 

incerta and the pretectum and superior colliculus of the cat. Neuroscience 77, 1091–

1114. 

May, P.J. (2006). The mammalian superior colliculus: laminar structure and 

connections. Progress in Brain Research 151, 321–378. 

May, P.J., McHaffie, J.G., Stanford, T.R., Jiang, H., Costello, M.G., Coizet, V., Hayes, 

L.M., Haber, S.N., and Redgrave, P. (2009). Tectonigral projections in the primate: a 

pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. 

Neurosci 29, 575–587. 

McGeorge, A.J., and Faull, R.L.M. (1989). The organization of the projection from 

the cerebral cortex to the striatum in the rat. Neuroscience 29, 503–537. 

McHaffie, J.G., Jiang, H., May, P.J., Coizet, V., Overton, P.G., Stein, B.E., and 

Redgrave, P. (2006). A direct projection from superior colliculus to substantia nigra 

pars compacta in the cat. Neuroscience 138, 221–234. 

McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V., and Redgrave, P. (2005). 

Subcortical loops through the basal ganglia. Trends Neurosci 28, 401–407. 

Meltzer, H.Y., and Stahl, S.M. (1976). The Dopamine Hypothesis of Schizophrenia: 

A Review. Schizophrenia Bulletin 2, 19–76. 

Meredith, M.A., and Stein, B.E. (1986). Visual, Auditory, And Somatosensory 

Convergence On Cells In Superior Colliculus Results In Multisensory Integration. 

Journal of Neurophysiology 56, 640–662. 

Miller, J.D., Sanghera, M.K., and German, D.C. (1981). Mesencephalic dopaminergic 

unit activity in the behaviorally conditioned rat. Life Sciences 29, 1255–1263. 

Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing 

motor programs. Progress in Neurobiology 50, 381–425. 



141 

 

Mirenowicz, J., and Schultz, W. (1994). Importance of unpredictability for reward 

responses in primate dopamine neurons. J. Neurophysiol 72, 1024–1027. 

Mize, R.R. (1992). The organization of GABAergic neurons in the mammalian 

superior colliculus. Prog. Brain Res. 90, 219–248. 

Morris, G., Arkadir, D., Nevet, A., Vaadia, E., and Bergman, H. (2004). Coincident 

but distinct messages of midbrain dopamine and striatal tonically active neurons. 

Neuron 43, 133–143. 

Murase, S., Grenhoff, J., Chouvet, G., Gonon, F.G., and Svensson, T.H. (1993). 

Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic 

dopamine neurons studied in vivo. Neuroscience Letters 157, 53–56. 

Naito, A., and Kita, H. (1994). The cortico-nigral projection in the rat: an anterograde 

tracing study with biotinylated dextran amine. Brain Res 637, 317–322. 

Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y., and Hikosaka, O. (2004). 

Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–

280. 

Nitsch, C., and Riesenberg, R. (1988). Immunocytochemical demonstration of 

GABAergic synaptic connections in rat substantia nigra after different lesions of the 

striatonigral projection. Brain Research 461, 127–142. 

Nomoto, K., Schultz, W., Watanabe, T., and Sakagami, M. (2010). Temporally 

extended dopamine responses to perceptually demanding reward-predictive stimuli. J. 

Neurosci 30, 10692–10702. 

Olavarria, J., and Van Sluyters, R.C. (1982). The projection from striate and 

extrastriate cortical areas to the superior colliculus in the rat. Brain Research 242, 

332–336. 

Overton, P.G., and Clark, D. (1997). Burst firing in midbrain dopaminergic neurons. 

Brain Research Reviews 25, 312–334. 

Palomero-Gallagher, N., and Zilles, K. (2004). Isocortex. In The Rat Nervous System, 

(Amsterdam: Elsevier), pp. 729–757. 

Pasternack, M., Boller, M., Pau, B., and Schmidt, M. (1999). GABA(A) and GABA(C) 

receptors have contrasting effects on excitability in superior colliculus. J. 

Neurophysiol 82, 2020–2023. 

Paxinos, G., and Watson, C. (2004). The Rat Brain in Stereotaxic Coordinates (New 

York: Elsevier). 

Petersen, C.C.H. (2007). The functional organization of the barrel cortex. Neuron 56, 

339–355. 

Redgrave, P., Coizet, V., Comoli, E., McHaffie, J.G., Leriche, M., Vautrelle, N., 

Hayes, L.M., and Overton, P. (2010). Interactions between the Midbrain Superior 

Colliculus and the Basal Ganglia. Front Neuroanat 4, 132. 



142 

 

Redgrave, P., and Dean, P. (1985). Tonic desynchronisation of cortical 

electroencephalogram by electrical and chemical stimulation of superior colliculus 

and surrounding structures in urethane-anaesthetised rats. Neuroscience 16, 659–671. 

Redgrave, P., Dean, P., Souki, W., and Lewis, G. (1981). Gnawing and changes in 

reactivity produced by microinjections of picrotoxin into the superior colliculus of 

rats. Psychopharmacology 75, 198–203. 

Redgrave, P., and Gurney, K. (2006). The short-latency dopamine signal: a role in 

discovering novel actions? Nat. Rev. Neurosci 7, 967–975. 

Redgrave, P., Gurney, K., and Reynolds, J. (2008). What is reinforced by phasic 

dopamine signals? Brain Res Rev 58, 322–339. 

Redgrave, P., McHaffie, J.G., and Stein, B.E. (1996). Nociceptive neurones in rat 

superior colliculus, I. Antidromic activation from the contralateral predorsal bundle. 

Experimental Brain Research 109, 185–196. 

Redgrave, P., Prescott, T.J., and Gurney, K. (1999). Is the short-latency dopamine 

response too short to signal reward error? Trends in Neurosciences 22, 146–151. 

Rhoades, R.W. (1980). Response suppression induced by afferent stimulation in the 

superficial and deep layers of the hamster‟s superior colliculus. Experimental Brain 

Research 40, 185–195. 

Ritchie, J.M. (1979). A pharmacological approach to the structure of sodium channels 

in myelinated axons. Annual Review of Neuroscience 2, 341–362. 

Roesch, M.R., Calu, D.J., and Schoenbaum, G. (2007). Dopamine neurons encode the 

better option in rats deciding between differently delayed or sized rewards. Nature 

Neuroscience 10, 1615–1624. 

Roger, M., and Arnault, P. (1989). Anatomical study of the connections of the 

primary auditory area in the rat. The Journal of Comparative Neurology 287, 339–356. 

Romanski, L.M., and LeDoux, J.E. (1993). Organization of rodent auditory cortex: 

anterograde transport of PHA-L from MGv to temporal neocortex. Cerebral Cortex 3, 

499–514. 

Romo, R., and Schultz, W. (1990). Dopamine neurons of the monkey midbrain: 

contingencies of responses to active touch during self-initiated arm movements. 

Journal of Neurophysiology 63, 592. 

Ross, M., and Moldofsky, H. (1978). A comparison of pimozide and haloperidol in 

the treatment of Gilles de la Tourette‟s syndrome. American Journal of Psychiatry 

135, 585–587. 

Rousselet, G.A., Thorpe, S.J., and Fabre-Thorpe, M. (2004). How parallel is visual 

processing in the ventral pathway? Trends in Cognitive Sciences 8, 363–370. 



143 

 

Rumberger, A., Schmidt, M., Lohmann, H., and Hoffmann, K.-P. (1998). Correlation 

of electrophysiology, morphology, and functions in corticotectal and corticopretectal 

projection neurons in rat visual cortex. Experimental Brain Research 119, 375–390. 

Samejima, K., Ueda, Y., Doya, K., and Kimura, M. (2005). Representation of action-

specific reward values in the striatum. Science 310, 1337–1340. 

Schiller, P.H., and Malpeli, J.G. (1977). Properties and tectal projections of monkey 

retinal ganglion cells. Journal of Neurophysiology 40, 428 –445. 

Schiller, P.H., Malpeli, J.G., and Schein, S.J. (1979). Composition of geniculostriate 

input ot superior colliculus of the rhesus monkey. Journal of Neurophysiology 42, 

1124–1133. 

Schmidt, M., Boller, M., Ozen, G., and Hall, W.C. (2001). Disinhibition in rat 

superior colliculus mediated by GABAc receptors. J. Neurosci 21, 691–699. 

Schultz, W. (1986). Responses of midbrain dopamine neurons to behavioral trigger 

stimuli in the monkey. Journal of Neurophysiology 56, 1439–1461. 

Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Current 

Opinion in Neurobiology 7, 191–197. 

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of 

Neurophysiology 80, 1–27. 

Schultz, W. (2007). Multiple dopamine functions at different time courses. Annu. Rev. 

Neurosci 30, 259–288. 

Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey dopamine 

neurons to reward and conditioned stimuli during successive steps of learning a 

delayed response task. J. Neurosci. 13, 900–913. 

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction 

and reward. Science 275, 1593–1599. 

Schultz, W., and Romo, R. (1987). Responses of nigrostriatal dopamine neurons to 

high-intensity somatosensory stimulation in the anesthetized monkey. J. Neurophysiol 

57, 201–217. 

Schultz, W., and Romo, R. (1990). Dopamine neurons of the monkey midbrain: 

contingencies of responses to stimuli eliciting immediate behavioral reactions. Journal 

of Neurophysiology 63, 607. 

Serizawa, M., McHaffie, J.G., Hoshino, K., and Norita, M. (1994). Corticostriatal and 

corticotectal projections from visual cortical areas 17, 18 and 18a in the pigmented rat. 

Arch. Histol. Cytol 57, 493–507. 

Sesack, S.R., and Pickel, V.M. (1992). Prefrontal cortical efferents in the rat synapse 

on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens 

septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol. 320, 

145–160. 



144 

 

Shehab, S., Coffey, P., Dean, P., and Redgrave, P. (1992). Regional expression of fos-

like immunoreactivity following seizures induced by pentylenetetrazole and maximal 

electroshock. Exp. Neurol. 118, 261–274. 

Snyder, S.H. (1972). Catecholamines in the brain as mediators of amphetamine 

psychosis. Archives of General Psychiatry 27, 169–179. 

Sourkes, T.L. (1981). Parkinson‟s disease and other disorders of the basal ganglia. In 

Basic Neurochemistry, (Boston, MA: Little, Brown & Co.), pp. 719–736. 

Sparks, D.L. (1986). Translation of sensory signals into commands for control of 

saccadic eye movements: role of primate superior colliculus. Physiological Reviews 

66, 118. 

Stein, B.E., and Clamann, H.P. (1981). Control of pinna movements and sensorimotor 

register in cat superior colliculus. Brain, Behavior and Evolution 19, 180–192. 

Stein, B.E., Magalhaes-Castro, B., and Kruger, L. (1975). Superior colliculus: 

visuotopic-somatotopic overlap. Science 189, 224–226. 

Stein, B.E., Magalhaes-Castro, B., and Kruger, L. (1976). Relationship between visual 

and tactile representations in cat superior colliculus. Journal of Neurophysiology 39, 

401. 

Steinfels, G.F., Heym, J., Strecker, R.E., and Jacobs, B.L. (1983a). Behavioral 

correlates of dopaminergic unit activity in freely moving cats. Brain Research 258, 

217–228. 

Steinfels, G.F., Heym, J., Strecker, R.E., and Jacobs, B.L. (1983b). Response of 

dopaminergic neurons in cat to auditory stimuli presented across the sleep-waking 

cycle. Brain Research 277, 150–154. 

Steininger, T.L., Rye, D.B., and Wainer, B.H. (1992). Afferent projections to the 

cholinergic pedunculopontine tegmental nucleus and adjacent midbrain 

extrapyramidal area in the albino rat. I. Retrograde tracing studies. J. Comp. Neurol. 

321, 515–543. 

Stoney Jr, S.D., Thompson, W.D., and Asanuma, H. (1968). Excitation of pyramidal 

tract cells by intracortical microstimulation: effective extent of stimulating current. 

Journal of Neurophysiology 31, 659–669. 

Strecker, R.E., and Jacobs, B.L. (1985). Substantia nigra dopaminergic unit activity in 

behaving cats: effect of arousal on spontaneous discharge and sensory evoked activity. 

Brain Research 361, 339–350. 

Sumner, P., Adamjee, T., and Mollon, J. (2002). Signals invisible to the collicular and 

magnocellular pathways can capture visual attention. Current Biology 12, 1312–1316. 

Swanson, J.M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G.A., Volkow, N., 

Taylor, E., Casey, B.J., Castellanos, F.X., and Wadhwa, P.D. (2007). Etiologic 

subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic 



145 

 

and environmental factors and the dopamine hypothesis. Neuropsychology Review 17, 

39–59. 

Sweet, R.D., Bruun, R.D., Shapiro, A.K., and Shapiro, E. (1976). The pharmacology 

of Gilles de la Tourette‟s syndrome (chronic multiple tic). Clinical 

Neuropharmacology 1, 81–106. 

Szwed, M., Bagdasarian, K., and Ahissar, E. (2003). Encoding of vibrissal active 

touch. Neuron 40, 621–630. 

Tehovnik, E.J. (1996). Electrical stimulation of neural tissue to evoke behavioral 

responses. Journal of Neuroscience Methods 65, 1–17. 

Tepper, J.M., Martin, L.P., and Anderson, D.R. (1995). GABAA receptor-mediated 

inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection 

neurons. The Journal of Neuroscience 15, 3092–3103. 

Thorpe, S.J., and Fabre-Thorpe, M. (2001). Seeking categories in the brain. Science 

291, 260–263. 

Tobler, P.N., Fiorillo, C.D., and Schultz, W. (2005). Adaptive coding of reward value 

by dopamine neurons. Science 307, 1642–1645. 

Tolias, A.S., Sultan, F., Augath, M., Oeltermann, A., Tehovnik, E.J., Schiller, P.H., 

and Logothetis, N.K. (2005). Mapping cortical activity elicited with electrical 

microstimulation using FMRI in the macaque. Neuron 48, 901–911. 

Tong, Z.Y., Overton, P.G., and Clark, D. (1996). Stimulation of the prefrontal cortex 

in the rat induces patterns of activity in midbrain dopaminergic neurons which 

resemble natural burst events. Synapse 22, 195–208. 

Tsai, C.-T., Nakamura, S., and Iwama, K. (1980). Inhibition of neuronal activity of 

the substantia nigra by noxious stimuli and its modification by the caudate nucleus. 

Brain Research 195, 299–311. 

Tsiola, A., Hamzei-Sichani, F., Peterlin, Z., and Yuste, R. (2003). Quantitative 

morphologic classification of layer 5 neurons from mouse primary visual cortex. J. 

Comp. Neurol 461, 415–428. 

Tsumori, T., Yokota, S., Ono, K., and Yasui, Y. (2001). Organization of projections 

from the medial agranular cortex to the superior colliculus in the rat: a study using 

anterograde and retrograde tracing methods. Brain Research 903, 168–176. 

Ungless, M.A., Magill, P.J., and Bolam, J.P. (2004). Uniform Inhibition of Dopamine 

Neurons in the Ventral Tegmental Area by Aversive Stimuli. Science 303, 2040–2042. 

Veinante, P., and Deschênes, M. (1999). Single- and Multi-Whisker Channels in the 

Ascending Projections from the Principal Trigeminal Nucleus in the Rat. The Journal 

of Neuroscience 19, 5085 –5095. 



146 

 

Veinante, P., Lavallée, P., and Deschênes, M. (2000). Corticothalamic projections 

from layer 5 of the vibrissal barrel cortex in the rat. The Journal of Comparative 

Neurology 424, 197–204. 

Vuilleumier, P., Armony, J.L., Driver, J., and Dolan, R.J. (2003). Distinct spatial 

frequency sensitivities for processing faces and emotional expressions. Nature 

Neuroscience 6, 624–631. 

Welker, E., Hoogland, P.V., and Loos, H. (1988). Organization of feedback and 

feedforward projections of the barrel cortex: a PHA-L study in the mouse. 

Experimental Brain Research 73, 411–435. 

Werner, W., Dannenberg, S., and Hoffmann, K.P. (1997). Arm-movement-related 

neurons in the primate superior colliculus and underlying reticular formation: 

comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk 

during reaching. Experimental Brain Research 115, 191–205. 

White, B.J., Boehnke, S.E., Marino, R.A., Itti, L., and Munoz, D.P. (2009). Color-

related signals in the primate superior colliculus. J. Neurosci 29, 12159–12166. 

White, B.J., and Munoz, D.P. (2011). Separate visual signals for saccade initiation 

during target selection in the primate superior colliculus. J. Neurosci 31, 1570–1578. 

Whitlock, J.R., Sutherland, R.J., Witter, M.P., Moser, M.-B., and Moser, E.I. (2008). 

Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci U S A 105, 

14755–14762. 

Wise, S.P., and Jones, E.G. (1977). Somatotopic and columnar organization in the 

corticotectal projection of the rat somatic sensory cortex. Brain Research 133, 223–

235. 

Woolsey, T.A., and Van der Loos, H. (1970). The structural organization of layer IV 

in the somatosensory region (SI) of mouse cerebral cortex. The description of a 

cortical field composed of discrete cytoarchitectonic units. Brain Research 17, 205. 

Wurtz, R.H., and Albano, J.E. (1980). Visual-Motor Function of the Primate Superior 

Colliculus. Annu. Rev. Neurosci. 3, 189–226. 

Wurtz, R.H., and Goldberg, M.E. (1972). Activity of superior colliculus in behaving 

monkey. 3. Cells discharging before eye movements. Journal of Neurophysiology 35, 

575–586. 

Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., 

Bamberg, E., Nagel, G., Gottschalk, A., et al. (2007). Multimodal fast optical 

interrogation of neural circuitry. Nature 446, 633–639. 

Zilles, K., Schleicher, A., and Kretschmann, H.J. (1978). A quantitative approach to 

cytoarchitectonics. Anatomy and Embryology 153, 195–212. 



147 

 

Zilles, K., Zilles, B., and Schleicher, A. (1980). A quantitative approach to 

cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anatomy and 

Embryology 159, 335. 

 


