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1.2 Abstract  

Natural Killer (NK) cell mediated immune surveillance is important in preventing and 

controlling malignancies. However, tumours ultimately evade NK cells, enhancing 

their survival and progression. The immunosuppressive cytokine TGF-β is an 

established, potent inhibitor of NK cell mediated anti-tumour immunity. Genetically 

manipulating NK cells to resist the actions of TGF-β is a potential route by which to 

enhance NK cell-mediated immunotherapy. However, NK cells are notoriously 

difficult to manipulate with conventional viral vectors or transfection techniques and 

alternative methodologies are required to achieve this. I have explored the ability of 

several virus vectors to transduce primary human NK cells, with a chimaeric 

adenovirus (Ad) vector proving the most promising. Replacing the Ad5 fibre with that 

from Ad35 (forming Ad5f35) generated a vector capable of efficient transduction of 

primary human NK cells and the NK cell lines, YT, NKL and NK92. Ad5F35 utilises 

CD46 as an entry receptor and NK cell transduction by Ad5f35 was CD46 dependent.  

The Ad5f35 vector provides a route to genetically manipulate NK cells. Transfection 

experiments in non-lymphoid cells showed that expression of a dominant negative 

TGF-β receptor II or inhibitory SMADs (SMAD7) inhibit the TGF-β signalling 

pathway. Using recombination-based methods in E.coli, an Ad5f35 vector was 

constructed to deliver the dominant negative TGF-β receptor II into mammalian cells. 

High expression and inhibitory activity was achieved in non-lymphoid cells, but 

expression in NK cells was low and activity reduced. Nevertheless, the Ad5f35 

system clearly has potential for future applications in NK cells, including the 

development of NK cell based cellular therapies.  
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2 Introduction 

 

2.1 Immunosurveillance of cancer 

The concept that the immune system can recognise and eradicate cancer cells was 

controversial for many years. This controversy stemmed largely from experiments 

performed using mouse strains defective in immune components (e.g. the reduced 

number of T cells in nude mice); these strains showed little difference to wild type 

mice in their responses to tumours. However, it was later realised that these mouse 

strains retained immune activity and were not as defective as originally believed. It 

was the development of mouse gene knock-out technology that provided the first clear 

evidence of the importance of the immune system in controlling tumours; targeted 

deletion of specific genes allowed the role of individual genes, cells and components 

of the immune system to be tested in an unequivocal manner (1). The role of the 

immune system in controlling cancer is now widely accepted (2–4) and the ability of 

a tumour to evade immunity is recognised as a hallmark of cancer (5).  

Generating an adaptive immune response toward tumours is largely dependent upon 

recognising cancers antigens, which first relies upon the innate immune activation that 

leads to the priming of the adaptive immune cells with cancer antigens (6). Natural 

killer (NK) cells, a member of the innate immune system, initially recognise and kill 

transformed cells, this leads to tumour cell death and subsequent processing of their 

cellular fragments by antigen presenting cells (7), such as dendritic cells. Activated 

dendritic cells present the cancer antigens to T and B cells. In turn, this leads to a 

tumour specific immune response from T and B cells, by secretion of cytokines to 

further promote activation of both innate and adaptive immunity, producing 

antibodies and cytotoxic T cells (7). Together, the response from both innate and 

adaptive elements of the immune system leads to the elimination of tumour cells. 

However, the immune system’s ability to eliminate emerging tumours can become 

compromised, with surviving tumours evolving with mutations that can evade an 

immune response, a process known as immunoediting (8). The current understanding 

of the immune system within the tumour microenvironment is now translating into 

new therapeutic strategies that exploit the immune system to eradicate cancer cells.    
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2.1.1 Immunogenicity of tumours 

Speculation that the immune system had a role in monitoring cells for tumorigenesis 

was outlined in 1957 by Burnet (9), and together with Lewis Thomas (10), 

immunosurveilance was first articulated. Although, the concept was initially 

controversial, it is now accepted that transformed cells are under constant control of 

the immune system. Congenital defects of the immune system or acquired 

immunodeficiency in humans are often implicated in higher risks of tumour 

development (11), highlighting the importance of the immune system in this context. 

In particular, mice with deficiencies of CD8 cytotoxic T cell or NK cell associated 

proteins are susceptible to the development of tumours (12–14), which supports the 

argument that both innate and adaptive elements of the immune system are important 

in tumour immunosurveillance. Furthermore, clinical studies found that tumour 

biopsies with infiltrated CD8 T and NK cells have a better prognosis in patients, for 

example in ovarian, colon and gastric cancers (15). This study identified the 

importance of the immune system in tumour immunosurveillance, and as such, the 

number of transformed cells that never form detectable tumour is unknown. 

Consequently, tumours that arise as a clinically detectable entity have evolved 

mechanisms to evade the immune system, which has recently been described as a 

hallmark in cancer development (5).  

The concept of immunosurveillance feeds into the notion of immunoediting, where 

emerging tumours that escape immunosurveillance control the characteristics and 

progression of cancer. It has been proposed that this process is composed of three 

phases: elimination, equilibrium and escape, which has recently been reviewed 

(16,17). The elimination phase is the initial phase in which tumour 

immunosurveillance is active and, if successful, the tumour cells are eliminated (4). 

The equilibrium stage is the phase where some tumour cells survive the elimination 

phase due to genetic variations that allow them to escape immune cell destruction, this 

is a sign of selection and tumour evolution. These surviving tumour cells may remain 

in a functional state of dormancy, in which the adaptive immune system prevents 

excessive tumour outgrowth, resulting in a stage of equilibrium. This phase was 

evident in one study where T cells primed with tumour antigen arrested pancreatic 

tumour growth in mice by inducing an interferon (IFN) and tumour necrosis factor 

(TNF) response (18). However, this stage allows the tumour cells to accumulate and 

shapes the immunogenicity of tumour cells. The final stage of immunoediting is 
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escape, this phase is an accumulation of genetic changes that results in an altered 

response in reducing immune recognition and cytotoxicity and/or increased 

immunosuppressive effects. For example, a well-established change in this phase is 

the loss of major histocompatibility complex (MHC) class I proteins, which prevents 

the presentation of tumour associated antigens to T cells (19). Tumours also establish 

an immunosuppressive microenvironment by producing cytokines, such as TGF-β 

(20) and enzymes such as indoleamine 2,3-dioxygenase (IDO) (21) which 

downregulate the immune response. Thus, the stages of immunoediting are critical in 

determining the course of tumour progression. Importantly, immune recognition does 

not necessarily result in tumour eradication. A major factor in determining the 

immune system response to a tumour is the accumulation of mutations over a period 

of time; this genetic instability underlies many of the hallmarks of cancer (22).  
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2.2 Natural killer cells 

Natural killer cells were discovered in 1975 by their innate ability to lyse tumour cells 

(23,24). They constitute ~10% of lymphocytes in human peripheral blood and are 

derived from CD34+ haematopoietic progenitor cells (HPCs). Human NK cells are 

characteristically defined as CD56+CD3- cells; CD56 is also expressed on NK-like T 

(NKT) cells but these cells are distinctively CD3+. The activating receptor NKp46 

(encoded by the NCR1 gene) is also used to discriminate NK cells. In both humans 

and mice, NK cells participate in the early control against viral infection and tumour 

immunosurveilance (25,26). Unlike T and B cells, NK cells do not express antigen 

specific receptors, but instead have innate reactivity determined by a combination of 

activating and inhibitory receptors (27). Their ability to distinguish tumour cells from 

healthy cells is regulated through the balance of signals transduced via this repertoire 

of receptors. These receptors engage with MHC Class I, MHC Class I-like molecules 

and many other ligands to determine the NK cell response (4). Critically, NK cell 

mediated killing of healthy cells is prevented through the engagement of inhibitory 

receptors, which include Killer Immunoglobulin-like Receptors (KIRs) in humans or 

Lectin-like Ly49 in mice that recognise ‘self’-MHC Class I molecules (28). The ‘loss 

of self’ MHC Class I molecules is observed in some virus-infected and transformed 

cells for the purpose of evading a response from CD8 T cells, therefore these MHC 

class I deficient targets become susceptible to NK cell killing. This process is known 

as the ‘missing self’ hypothesis (29). Thus, NK cells have been shown to kill pre-

malignant cells and contribute to cancer immunosurveillance (Figure 2-1). Tumours 

depleted of MHC Class I, or those which upregulate activating ligands are rejected by 

NK cells, and enhancing NK cell activity using cytokines result in tumour elimination 

in mice (30–32). Other studies have shown that NK cell depletion in mice lead to more 

aggressive and metastatic tumour growth (13,33). Similarly in humans, a study 

assessed NK cell activity over a 11 year period and found that low NK cell activity 

was associated with increased cancer risk (34). Collectively, these studies highlight 

the importance of NK cells in cancer immunosurveillance.  
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Figure 2-1 An overview of the mechanisms of target recognition by NK cells.  

NK cells are regulated by the balance of signals transduced through their activating 

and inhibitory receptors. In healthy cells, the transduction of inhibitory signals are 

induced by the expression of MHC Class I ligands. Upon transformation or infection 

by virus (e.g. Adenovirus serotype 12), the expression of MHC Class I ligands are 

lost, thereby evading a T cell response. Stress pathways in abnormal cells also 

upregulates the expression of activating ligands (e.g. DNA damage induces 

expression of NKG2D ligands). When MHC class I levels are low and activating 

ligands are high the balance of signals transduced in NK cells will shift towards NK 

cell activation. Importantly, cancer cells exploit mechanisms to evade NK cell 

activation, e.g. by secreting immunosuppressive cytokines, such as TGF-β. Cancer 

cells might also upregulate inhibitory ligands and down-regulate activatory ligands to 

evade NK cell detection.  
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2.2.1 Receptors controlling natural killer cell activation   

In humans, several NK cell receptors have been identified as important in tumour 

recognition; these include NKp46, NKp30, NKp44, DNAM1 and NKG2D (35), as 

well as others (Table 2-1). Upon activation, they trigger cytolytic activity, and the 

secretion of cytokines such as TNF-α and IFN-γ. Several NK cell activating receptors 

(except NKG2D and DNAM-1) signal through immunoreceptor tyrosine activating 

motifs (ITAMs) in the form of an associated molecule, such as disulphide linked 

homodimers of CD3ζ (36,37). These include the Natural Killer cytotoxicity receptors 

(NCRs): NKp30, NKp44 and NKp46 which have a key role in triggering activation 

through the binding of virus and tumour ligands. Upon activation, effector proteins 

are recruited to the phosphorylated tyrosine residue of the receptor to initiate the 

signalling cascade, this includes spleen tyrosine kinases (syk) and zeta chain 

associated protein kinase 70 (ZAP70) (Figure 2-2). The subsequent signalling 

pathways leads to NK cell cytotoxic granule exocytosis (degranulation) and the 

transcription of cytokine and chemokine genes. In contrast, the activating receptor, 

NKG2D, uses DAP-10 or -12, the former signals through an ITAM, whereas the latter 

binds to Grb2 and p85 and signals through phosphatidylinositol-3 kinase (PI3K) 

(38,39). The end result differs, with DAP-10 signalling resulting in cytotoxicity and 

DAP-12 signalling resulting in cytotoxicity and cytokine secretion (40,41). The 

receptor NKG2D plays a key role in recognising tumour cells as shown in a study in 

mice lacking NKG2D, which are more susceptible to tumours (12). The NKG2D 

molecule recognises multiple ligands that are induced on target cells by cell stress 

pathways, such as DNA damage or sustained proliferation (42). When tumour cells 

express the NKG2D ligands MICA and MICB and members of the ULBP family, they 

are recognised by NKG2D and favour NK cell activation. However, whether NK cell 

activating receptors trigger NK cell activity depends on the counter signals delivered 

by the inhibitory receptors (43).  

Other ligands that bind to activating receptors are described in Table 2-1. The potency 

of activation might also differ between receptors, for example CD16 signalling 

through FCγR will activate NK cells, however NKp30 and Nkp46 signalling via FcγR 

requires co-activation with other activating receptors (44,45). In contrast, inhibitory 

receptors possess an immunoreceptor tyrosine inhibitory motif (ITIM) domain in their 

cytoplasmic portion, that upon phosphorylation recruit and activate SHP-1 and -2, Src 

homology 2 domain containing phosphatases, to prevent NK cell activation (Figure 
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2-2). Receptors that possess an ITIM domain include inhibitory KIRs which recognise 

cells expressing MHC class I molecules (Table 2-1) (44). However, NK cell activation 

can still occur if there is a sufficient amount of stimuli from activating ligands. This 

is indicative of a threshold in NK activation for efficient detection of target cells, 

however it also provides an opportunity for tumours to develop cell surface 

phenotypes to evade NK cell activation (46). 
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Table 2-1 Major NK cell receptors and ligands 

Adapted from (47) 

Inhibitory Receptors Ligands 

 

KIR2DL1 (CD158a) Group 2 HLA-C 

KIR2DL2/3 

(CD158b1/2) 

Group 1 HLA-C (In addition to: HLA-C and some HLA-B 

from group 2) 

KIR3DL1 (CD158e1) HLA-Bw4 

NKG2A 

(CD159A)/CD94 

HLA-E  

ILT family HLA-G 

KLRG1 E and N-cadherin 

NKR-P1A (CD161) LLT1 

NKR-P1B, NKR-P1D Ocil/Clr-b 

PD-1 PD-L1/2 

Activating Receptors ITAM molecule Ligands 

NKp46 (NCR1; 

CD335) 

CD3ζ HSPG, heparin 

NKp30 (NCR3; 

CD337) 

CD3ζ B7-H6, BAT3, HSPG 

FcγRIIIA (CD16) CD3ζ/FcγR Fc of human IgG immune complexes 

NKG2D (CD314) DAP12/DAP10 Human: MICA/B, ULBP1/2/3/4/5/6  

KIR2DS1 (CD158h) DAP12 HLA-C2 

DNAM-1 (CD226) Unknown 

mechanism 

Nectin-2, PVR 

NKG2C (CD159C) DAP12/CD94 HLA-E 
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Figure 2-2 Regulation of NK cell response by activating and inhibitory 

receptors.  

Upon engagement of activating receptor, the tyrosine residue(s) in the adaptor protein 

ITAM motif are phosphorylated. Phosphorylated ITAMs recruit the kinase Syk, 

which leads to further downstream signals and subsequent NK cell activation and gene 

expression. The engagement of inhibitory receptors leads to the phosphorylation of 

their cytoplasmic ITIM tyrosine and the recruitment and activation of the phosphatase 

SHP-1. In a simple model, SHP-1 dephosphorylates signalling intermediates 

downstream of the activating receptors, thereby preventing activation. However, there 

is little consensus on the precise mechanism. 
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2.2.2 Natural killer cells and cytokines  

The balance of inhibitory and activating signals that are transduced in NK cells 

determines their response to target cells. In the event that activating signals are 

transduced, the signalling cascade results in degranulation of cytotoxic proteins and 

transcription of cytokine and chemokine genes. Hence, NK cells are major producers 

of pro-inflammatory cytokines such as IFN-γ, TNF-α and GM-CSF, as well as 

immunosuppressive cytokines such as IL-10 (35). Cytokines play a critical role in 

regulating an immune response in maintaining homeostasis, differentiation and 

tolerance. Principally, NK cells are potent producers of IFN-γ which directly 

modulates a response from the adaptive immune system and have anti-proliferative 

effects on transformed cells (48,49). Bystander cells are protected from NK cell 

mediated cytotoxicity due to IFN-γ mediated upregulation of MHC class I expression 

and antigen processing that protect healthy cells from immune cytotoxicity (50). NK 

cells also secrete TNF-α which also plays a role in the anti-tumour immune response, 

for example by allowing extravasation of immune cells into tissues and by driving 

dendritic cell maturation (51). As well as being regulated by their repertoire of 

activating and inhibitory receptors NK cells also are also regulated by many cytokines, 

including IL-2, IL-12, IL-15, IL-18, IL-21 and type I and type II IFN (52). Under 

physiological conditions, activated T cells produce IL-2 and this activates NK cells 

(53). The IL-2 signal cascade is mediated through Jak1/3 and STAT3/5 in NK cells, 

which results in increased IFN-γ secretion, cytotoxicity and promotes both survival 

and proliferation (54,55). Similar to IL-2, IL-15 signals through Jak1/3 and 

STAT1/3/5 to induce NK cell activation and proliferation (56). The metabolic 

regulator, mTOR has recently been identified as a participating component of IL-15 

signalling (57). The cytokine IL-15 is unusual in that it is presented to NK cells by 

other cells (rather than being secreted). Under physiological conditions, IL-15 is 

trans-presented by activated macrophages and dendritic cells to the IL-15 receptor on 

NK cells which activates mTOR and the tyrosine kinases JAK1/3 that co-activate the 

transcription factor STAT5; activated STAT5 induces expression of genes that 

regulate proliferation and cytotoxicity (53). A number of studies have been carried 

out to synthetically enhance NK cells in patients (and mice) using cytokine treatment, 

resulting in improved anti-tumour immunity (58,59). 
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2.2.3 Mechanism of natural killer induced cell death 

NK cells store cytotoxic proteins (granzymes and perforin) within acidic secretory 

lysosomes (60). These lytic granules are exocytosed upon triggering by target cells, 

this causes release of a group of proteases (granzymes) that induce apoptosis on target 

cells (61,62). This process is first initiated upon target cell recognition via NK cell 

receptors, NK cells form an immunological synapse that is catalysed by the 

interactions of their adhesion molecules, such as intracellular adhesion molecule 1 

(ICAM1). This synapse forms a point of contact of NK cell receptor signalling with 

the target cell which becomes the focal point of where the lytic granules are 

exocytosed (63). The polarisation of actin and cytoskeletal rearrangement to the lytic 

synapse site is also critical for exocytosis of the lytic proteins. Patients with the 

immune cell disorder Wiskott-Aldrich syndrome have a mutation in a gene encoding 

WASp which is fundamental for the rearrangement of actin around the lytic synapse, 

and these individuals have a reduced ability to kill target cells (64). Once the lytic 

synapse has formed the lytic granules polarise towards the site of exocytosis, which 

is co-ordinated by the arrangement of the actin cytoskeleton and proteins that facilitate 

its transport. Patients with mutations in the cargo adapter, AP-3, which has a role in 

protein sorting targeted to lysosomes and clathrin recruitment, correspond to reduced 

cytotoxicity, suggesting that transportation is also critical in the exocytosis of lytic 

granules (65). When the lytic granules have been transported to the lytic synapse site, 

the lysosome anchors and fuses to the plasma membrane. This process is catalysed by 

N-ethylmaleimide-sensitive factor protein receptors which are anchored to the 

membrane and form a helical bundle that initiates fusion (66). This fusion releases 

perforin and granzymes at a neutral pH that results in their activation upon the target 

cells that is within close proximity (Figure 2-3).  

The neutral pH environment and increase in calcium in the extracellular environment 

promotes perforin activation and binding to the membrane of target cells. Perforin 

forms a multimeric pore, which has been shown by electron microscopy (67). The 

assembly of the perforin pore facilitates the transport of granzymes into the target cells 

(67).  Granzymes are a family of serine proteases, 11 have been described in mice and 

five in humans (granzyme A, B, H, K and M).  The most abundant are granzymes A 

and B; granzymes A has trypsin-like activity and granzyme  B is an aspase with 

similar specificity to caspases. Upon cell entry, granzymes activate apoptosis 

associated substrates (including caspases) to initiate programmed cell death (68,69). 
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Granzyme B also plays a critical role in triggering apoptopic cell death and is known 

to cleave the Bcl-2 family member Bid, a pro-apoptopic protein, which leads to the 

permeabilisation of the mitochondrial membrane to allow the escape of cytochrome 

C for the assembly of the apoptosome and the subsequent initiation of apoptosis (70). 

Overexpression of Bcl-2 proteins has been shown to have a protective effect against 

granzyme B induced apoptosis (71), showing that cells can overcome the apoptotic 

induced signals. NK cells are also able to use death receptors such as Fas, TNF-related 

apoptosis induced ligand (TRAIL) and other related pathways that induce apoptosis 

in the target cell (72). They also have the ability to detect antibody-coated cells 

through their FcγRIIIA (CD16) cell surface receptor, which mediates antibody-

dependent cell cytotoxicity (ADCC) (28). Importantly, NK cell mediated ADCC is 

one mechanism by which therapeutic antibodies such as Herceptin (for breast cancer) 

exert their effects.  

2.2.3.1 Death receptor induced cell death 

The expression of TNF family molecules by NK cells plays an important role in 

mediating apoptosis, as well as regulating the immune system. TRAIL (also known 

as TNF-related apoptosis-inducing ligand) is a cytokine that belongs to the TNF 

family of cytokines and binds to TRAIL receptors (TRAIL-R and TRAIL-R2) to 

induce apoptotic signals (73). TRAIL is highly expressed on NK cells when 

stimulated with activating cytokines, such as IL-2, IL-15 and IFNs; NK cells mediate 

cell death on TRAIL sensitive tumour targets, one study demonstrating this in a 

metastatic liver model in mice (74). A number of TRAIL receptors do not transduce 

apoptotic signals and are considered to have a protective feedback role to regulate 

TRAIL mediated apoptosis (the so-called decoy receptors). In addition, NK cells can 

upregulate the expression of death receptors on targets and enhance their susceptibility 

to death ligands. For example, NK cells express FasL and can induce Fas expression 

on tumour targets via IFN-γ secretion, which leads to Fas induced cell death (75). This 

has been demonstrated in mice, showing that tumour metastasis is prevented through 

FasL expression on NK cells (76). Cell death is induced via the proteolytic activation 

of caspases which initiates the caspase cascade to induce apoptosis (Figure 2-3).  

2.2.3.2 Antibody dependent cellular cytotoxicity (ADCC) 

NK cells also expresses FcγRIIIA (CD16) receptors which binds to the Fc portion of 

human immunoglobulins (77). Upon binding to the receptor, the ITAM motif in the 
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CD3ζ and FcγR chains are phosphorylated, which generates an activating signaling 

cascade through PI3K, NF-κb and ERK pathways. This leads to a pro-inflammatory 

cytokine response and NK cell degranulation to kill targets, as described previously. 

ADCC can mediate anti-tumor activity through recognizing tumor specific antibodies, 

associated with CD16 receptor expression (Figure 2-3). Therapeutic monoclonal 

antibodies targeting tumor antigens are a current clinical tool to mediate an anti-tumor 

immune response.       
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NK cell mediate cytotoxicity towards target cells by granule-dependent killing or 

granule independent killing. Granule-dependent killing is induced by signals 

transduced by activating receptors or through FcRs (CD16). Upon stimulation 

cytotoxic granules, containing perforin and granzyme, are released by exocytosis 

which leads to the cell death of target cell. Granule-independent killing is mediated 

by death ligands (e.g. FAS and TRAIL) which induces apoptotic signals on the target 

cell.  

   

Figure 2-3 Mechanisms of NK cell killing 
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2.2.4 Tumour evasion of NK cells 

As described previously (in section 2.1.1), evolving tumour cells evade multiple 

components of the immune system, including NK cells, either directly or by co-opting 

the properties of the tumour microenvironment. Tumour cells are known to up-

regulate inhibitory signals and down-regulate activating signals of the immune system 

(78). For example, tumour cell shedding of stress induced NKG2D ligands, such as 

MICA/B and ULBP, lead to high levels of these proteins in patients’ serum with 

haematopoietic malignancies (79–81) and colorectal cancer (82). These soluble 

ligands bind to NKG2D and cause it to internalise, generating NK cells with reduced 

cell surface NKG2D and a lowered capacity to detect the tumour (82). 

Moreover, various cytokines/enzymes produced by either tumour cells or other cells 

(e.g. Tregs, dendritic cells) modulate NK cells function. These include IDO which is 

normally associated with dendritic cells for suppressing a response from immune cells 

and upregulated in the tumour microenvironment to inhibit NK and T cell activity 

through the catabolism of tryptophan which interferes with the IL-2 induced 

upregulation of NK activating receptors (e.g. NKG2D) (83). Regulatory T cells (Tregs)  

are known to play a role in this mechanism by inducing antigen presenting cells to 

express IDO.  

Notably, a component of the cyclooxygenase (COX) pathway, prostaglandin E2 

(PGE2) is also up regulated in the tumour microenvironment and has been shown to 

suppress activated NK cells by inhibiting IFN-γ production and down regulating 

activatory receptors (84,85). Ultimately, this neutralises NK cell activity and the anti-

tumour response. PGE2 has also been shown to disrupt dendritic cell development 

which leads to their dysfunction (86).  Indeed, tumour cells can suppress NK cells by 

exploiting proinflammatory or immunosuppressive molecules. This also includes 

transforming growth factor beta (TGF-β), an immunosuppressive cytokine that has 

effect on NK cell inhibition, which is discussed in the following section (2.3).  
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2.3 Transforming Growth Factor (TGF)-β   

TGF-β belong to a diverse family of proteins, known as the TGF-β superfamily. They 

have broad roles in proliferation, differentiation, death, cytoskeletal organisation, 

adhesion, migration and development (87). There are two main groups within the 

superfamily, one belonging to TGF-β and activin members, and the second belonging 

to the bone morphogenetic proteins (BMPs) which have been divided according to 

their sequence similarities (88). In mammals, there are three isoforms of TGF-β (1-3) 

that predominantly effect cell growth, differentiation and apoptosis (89). These 

ligands form dimers, which is essential for receptor activation. Activated immune 

cells secrete TGF-β to downregulate proliferation and inflammatory cytokine 

production. This acts as a feedback inhibitory mechanism, preventing self-reactivity 

(90). Secreted TGF-β1-3 is covalently linked to the latency association protein (LAP) 

and remains inactive until it dissociated from the LAP complex to bind to its receptors 

and initiate signalling (91).  

2.3.1 TGF-β  signalling 

The TGF-β receptors (TGFβR) are expressed on the plasma membrane of many cell 

types, including all cells of the immune system. They are composed of an extracellular 

domain that binds to TGF-β and an intracellular cytoplasmic domain, which contains 

serine and threonine protein kinases activity. Initially, TGF-β1/3 associates with 

TGFβR2 which activates the kinase domain in the cytoplasmic region, leading to the 

phosphorylation and activation of the juxtamembrane site on TGFβR1 (92,93). This 

forms a tetrameric receptor complex composed of two TGFβRI chains and two 

TGFβRII chains (93). The activation of TGFβRI initiates the TGF-β signalling 

cascade with the help of membrane anchor proteins, (known as SARA and Hrs/Hrg), 

via the canonical SMAD pathway or the non-canonical pathway, which utilises PI3K, 

AKT and JNK molecules (94). There is also a third receptor, TGFβR3, which 

associates with TGF-β2 and functions as an additional method for the transfer of 

ligand to TGFβR2 (95).  

2.3.1.1 SMAD proteins 

Notably, TGF-β signalling predominantly acts through the canonical SMAD 

(meaning homologies to Mothers Against Decapentaplegic ‘MAD’ and the 

Caenorhabditis elegans, SMA) family of genes) pathways. The role of SMAD 

proteins have been extensively reviewed and the proteins categorised into three groups 
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(93,96,97). One group is responsible for interacting with the receptors and acting as 

mediators of receptor activation, these are referred to as receptor regulated SMADs 

and includes SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8. The second group is 

referred to as inhibitory SMADs which inhibit the receptor SMADs from effectively 

transducing TGF-β signalling; these include SMAD6 and SMAD7. The third group 

are referred to as the common SMADs, these co-bind with the receptor SMADs to 

generate transcription factors for effective TGF-β signalling and includes SMAD4 

(Figure 2-4). 

The SMADs are well characterised, having a highly conserved N-terminal, MH1 

domain and C-terminal, MH2 domain (MAD homology domain). The MH1 domain 

is involved in DNA binding and the MH2 domain interacts with other proteins (98,99). 

For SMAD2 and SMAD3, the MH2 domain interacts with TGFβRI, which is initially 

recruited by membrane anchor proteins, and the SXS domain (a serine rich region) in 

the MH2 region is phosphorylated (94,99). Following this, SMAD2 and SMAD3 

homodimerise and are imported into the nucleus (100). This complex then associates 

with SMAD4 and binds to the DNA through their MH1 domain (101). In particular, 

SMAD3 and 4 have been shown to interact with the conserved SMAD binding 

element (102). They also associate with transcription factors that might be activating 

(including histone deacetylases) (Figure 2-4). 

Unlike the receptor and common SMADS, the inhibitory SMADs (SMAD6 and 

SMAD7) lack a SXS domain on their MH1 domain, whereas their MH2 domain is 

conserved (103). This allows inhibitory SMADs to bind to type I receptors without 

inducing signalling, effectively inhibiting the pathway. A key inhibitor of TGF-β 

signalling is SMAD7, which was first discovered to block receptor SMAD activation 

by binding to TGFβR1 (104). SMAD7 has also been shown to recruit SMURF1, 

SMURF2 and NEDD4L, E3 ubiquitin ligases, to mediate ubiquitin-dependent 

degradation of the TGF-β receptor complex by the proteasome (105). The Smad7 and 

TGFβRI complex is regulated by the salt-inducible kinase, SIK1, which is also a 

transcriptional target of TGF-β signalling, hence it functions as a negative feedback 

mechanism by cooperating with ubiquitin ligases (106). In contrast, heat-shock 

protein -90kDa has been shown to inhibit the interactions between Smad7 and 

TGFβRI by binding to the TGFβRs (107). Lastly, SMAD6 is regarded to be specific 

to inhibits bone morphogenetic signalling only (binds to SMAD4). However, there is 
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some evidence showing its association with TGFβRI, the results of this study also 

show a reduction in SMAD2 phosphorylation (108).  
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Figure 2-4 Regulation of TGF-β signalling by the SMAD dependent pathway. 

Active TGF-β binds to and phosphorylates TGFβRII which in turn leads to the  

phosphorylation and activation of TGFβRI. Phosphorylated TGFβRI activates the 

receptor SMADs to form a complex with SMAD4. This complex translocates into the 

nucleus to bind to transcription factors regulating TGF-β gene expression. This 

include the upregulation of SMAD7 gene transcription. SMAD7 functions as an 

inhibitory SMAD that binds and degrades TGFβRI, which leads to blockade of the 

receptor SMAD activation and downregulation of TGF-β driven gene expression. 
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2.3.2 TGF-β in the tumour microenvironment 

TGF-β is important in many physiological processes that include inflammation, 

immunosuppression, regulation of the extracellular matrix and proliferation (97,109). 

The inhibition of cell proliferation by TGF-β affects many cell types, including 

immune cells (20). TGF-β has been shown to mediate cell cycle arrest at the G1 phase 

by activating cell cycle inhibitors, such as CDKN1A and CDKN2A in epithelial cells 

(110). It has also been shown to repress the transcription factor MYC, a well-

characterised transcription factor that regulates genes that are important in cell 

proliferation (111). In tumours, TGF-β growth-inhibitory effects are often negated, 

for example, through the downregulating of receptor expression (112). However, 

tumour cells can continue to express TGF-β; this results in loss of control of tumour 

cell proliferation but allows, pro-tumourogenic activity to continue. A common 

characteristic of tumour promoting activity of TGF-β is the induced transition of 

epithelial to mesenchymal cells which results in reduced cell to cell adhesion, such as 

the loss of E-cadherin (113). This has consequences in enhancing cellular migration 

and enabling metastasis, and has contributed to cancer progression in patients with 

breast and skin cancer (114). The production of TGF-β by tumours has widespread 

prominent effects in suppressing immunosurveillance by inhibiting immune cells, 

including NK cells, CD8 T cells, CD4 T cells, Tregs, B cells, monocytes and 

neutrophils (115). Studies have shown that TGF-β suppresses T cell proliferation and 

induces apoptosis on B cells (116,117). For NK cells, TGF-β inhibits activation 

through down regulating production of IFN-γ and reducing expression of cytotoxic 

components and activating receptors, thereby decreasing NK cell activation and 

effector function (118,119). It is thought that SMADs repress the expression of genes 

encoding NK activating receptors, however the molecular mechanism is not clear. A 

study has shown that TGF-β opposes the activation of mTOR in response to IL-15/IL-

2, suggesting one mechanism in inhibiting the upregulation of activation signals (120). 

The repression of the transcription factor T-bet by SMAD has also been shown to 

inhibit the IFN-γ response (121). However, the genes that are upregulated by TGF-β 

and SMADs in NK cells remain unidentified. Importantly, TGF-β can also induce Treg 

cell differentiation and induce the secretion of  immunosuppressive cytokines such as 

IL-10, TGF-β itself and the expression of cytotoxic T lymphocyte antigen 4 (CTLA4) 

(122). Thus, TGF-β inhibits effector cells but promotes suppressive activity, all of 

which correlate with poor survival in breast, ovarian and adenocarcinoma cancer 
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patients (123–125). A knockdown of TGF-β using RNAi in a glioma cell line 

prevented NKG2D down regulation (126), and inhibiting TGF-β receptor signalling 

has been shown to restore the expression of NK activating receptors and IFN-γ 

synthesis (118), demonstrating that targeting of the TGF-β pathway is a therapeutic 

route for restoring NK cell anti-tumour immunity.  

2.3.3 Therapeutic targets of TGF-β signalling pathway 

TGF-β is a powerful immunosuppressive cytokine whose activity influences tumour 

growth (127–129). Hence, TGF-β plays an important role in the development of many 

solid tumours. This has fed into developing agents against TGF-β as a potential 

therapeutic approach. Strategies have been developed to combat the TGF-β 

immunosuppressive effects, including synthetic inhibitors, TGF-β neutralising 

antibodies, TGFβR kinase inhibitors and soluble forms of TGFβ receptors (109). The 

current challenge associated with synthetic inhibitors that are currently in the clinical 

trial stages is specificity in targeting the tumour promoting aspects of TGF-β alone. 

Several, monoclonal antibodies sequestering excess TGF-β have progressed through 

clinical studies, such as lerdelomimab, metelimumab and LY2382770 and several 

others have been described, however, many were discontinued due to ineffective 

outcomes on efficacy and inconvenient mode of delivery (109). Notably, mice that 

are TGF-β1 deficient display adverse effects, due to the essential role TGF-β has in 

regulating an immune response and maintaining homeostasis (130,131). However, 

disrupting TGF-β receptor expression on specific localised cells does not induce wide 

spread cytopathic effects (132). Hence, generating an immune cell that is insensitive 

to TGF-β is an appealing immunotherapeutic approach to target tumour cells that are 

secreting TGF-β and resisting immunosurveillance. NK cells expressing a truncated 

form of TGFβRII encouraged NK cell maturation in a mouse model (133). The 

expression of dominant negative TGFβRII in human NK cells from cord blood 

cultured in vitro showed that they retained their phenotype and cytolytic function in 

the presence of TGF-β (134). These studies support the rationale to evaluate 

immunotherapeutic strategies against TGF-β signalling, however only synthetic 

inhibitors or antibodies are being tested in current clinical trials. Interestingly, a 

vaccine has been developed (VigilTM) to express the protein GMCSF (Granulocyte 

macrophage colony stimulating factor), which stimulates the recruitment of immune 

cells, as well as an shRNA for furin, which is important for the expression of TGF-

β1/2; used together, stimulates migration of immune cells (135). The early phase 
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clinical trial using this vaccine is ongoing and is being used to treat patients with 

Ewing’s sarcoma, non-small cell lung cancer and liver cancer (NCT01061840).   
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2.4 Cancer immunotherapies 

According to the World Health Organisation, cancer is the second leading cause of 

death in developed countries and is mainly associated with lifestyle and the ageing of 

the population (136). Cancer survival has improved with early diagnosis, improved 

screening systems and ongoing research in developing targeted therapies (137–140). 

The most effective treatment for solid cancers is surgery of the primary tumour and 

associated lymphatics. In contrast, chemotherapy and radiotherapy alone only kill a 

portion of cells per treatment. Combining therapy and surgery has reduced the 

mortality that is associated with surgery alone, where micrometastasis or relapse from 

residual tumour cells can occur. These chemotherapeutic agents are largely DNA-

damaging agents that rapidly kill dividing cells. However the genetic instability of 

tumours and the selection placed on them by drug treatment carries a risk of inducing 

drug resistant cells, diminishing the efficacy of therapy and advancing tumour 

development (141). Studies in the last few decades have uncovered the hallmarks of 

cancer and their development. This has led to a better understanding of their 

signalling, proliferation capacity and requirements in their microenvironment (5). The 

understanding of these alterations has led to ongoing research in targeted therapeutic 

strategies. These developments, in combination with the emerging role of the immune 

system in cancer immunosurveillance, has contributed to immunotherapeutic 

strategies by directing tumour immune-cytotoxicity or stimulating the immune system 

to eliminate tumours, which has the potential for high-specificity (142).  

Approaches in cancer immunotherapy include the use of monoclonal antibodies, and 

cellular therapies (142). Successful monoclonal antibody treatments include 

trastuzumab which targets Her-2 (143,144). trastuzumab blocks interaction of the 

HER2 receptor with growth factors (e.g. epidermal growth factor-like ligands) by 

binding to the extracellular domain of HER-2, it also induces NK cell mediated cell 

death via ADCC, leading to improved survival in breast cancer patients (145). 

Monoclonal antibodies are also used to target immune inhibitory checkpoints, for 

example, ipilimunab is an anti-CTLA4 antibody which would normally regulate the 

amplitude of T cell activation (146) and pidilizumab which targets programmed cell 

death- 1 (PD-1), an inhibitor of T cell activation (147). However malignant cells 

develop mechanisms to evade immunosurveillance, and resistance to new compounds 

can emerge. The continuous investigation of cancer antigens and immune-regulatory 
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targets identifies more candidates for the development of monoclonal antibodies and 

vaccines. An alternative approach that might overcome these limitations is to use 

cellular therapies to control and eradicate tumour growth. The developments in cancer 

immunotherapy have encouraged investigations into enhancing specific immune cell 

activity in patients with malignancies.    
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2.4.1 NK cellular therapies 

Since their discovery, NK cells have been identified as key players in the anti-tumour 

immune response. As such, NK cells hold great promise for immunotherapy. Several 

strategies for NK cell based therapy have been proposed, which include the use of NK 

cells derived from the patients’ blood (autologous), or from healthy donors (allogenic) 

(148–150).          

2.4.1.1 Allogeneic derived NK cells  

Allogeneic, primary NK cells have had some success, demonstrating heightened 

cytotoxicity towards malignancies in non-small lung cancer (151), however one of the 

main problems with using these cells is rejection due to MHC mismatch. It has been 

suggested that using uneducated NK cells that might be educated by patients MHC to 

improve tolerance might overcome this issue (149). NK cell education was first 

discovered when NK cells expressing inhibitory receptors engaged with endogenous 

MHC molecules to establish self-tolerance and was termed ‘NK cell licensing’ (152). 

Alternatively, the use of NK cell lines such as NKL and NK-92MI holds promise due 

to their lack of MHC ligand expression. In particular, the cytotoxicity and 

characterisation of NKL have been well documented (153), one study showing greater 

cytotoxicity compared to NK-92MI (154). Using cell lines as a source for NK 

adoptive immunotherapy has a distinct advantage compared to autologous NK cells 

in that they are easily maintained and expanded in vitro for large scale production. 

However, their use in clinical trials has been restricted to the treatment of renal cell 

cancer and malignant melanoma (155). However, they must be used with caution due 

to their leukemic origins, which is a distinct disadvantage. Further, investigation 

required to render NK cell lines incapable of proliferation without weakening their 

activity; irradiation being an effective measure for NK-92 (156).  

2.4.1.2 Autologous derived NK cells 

Use of autologous NK cells would be favourable, having minimal toxicity and high 

viability in vivo, however administering cytokines systemically to activate NK cells 

displayed poor anti-tumour efficacy and posed a significant risk with some patients  

developing toxic shock syndrome, a side effect from administrating a high dose of IL-

2 (157). However, administrating a lower dose of IL-2 showed an improved response 

against renal cell carcinoma (158). Due to the poor outcome of indirectly enhancing 

NK cell mediated anti-tumour immunity with cytokines, current investigations focus 
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on transferring activated and modified autologous NK cells. Using ex vivo expanded 

and activated autologous NK cells has resulted in no adverse side effects, but has also 

shown little clinical impact in patients with metastatic melanoma and renal cell 

carcinomas (159). NK cells are derived from CD34+ hematopoietic stem cells (HSCs) 

in the bone marrow. These HSCs can also be found in umbilical cord blood and both 

bone marrow and cord blood provide a rich source of HSCs and an alternative method 

to generate autologous NK cells compared to PBMC-derived NK cells. This has been 

accomplished using a cell separation method enriching for CD34+ cells, followed by 

ex vivo expansion and differentiation into CD56+ NK cells (160). Cord blood-derived 

NK cells have been shown to express cytotoxic receptors, secrete IFN and target 

melanoma and haematological malignancy cell lines effectively (160,161). The NK 

cells that were differentiated from bone marrow derived HSCs were shown to be more 

effective in mediating an anti-tumour response compared to cord blood NK cells 

(162). However, maintaining NK cells in an induced active state through cytokine 

stimulation can cause cell exhaustion, eventually rendering the cell incapable of 

targeting tumour cells (163). A promising method is the use of induced pluripotent 

stem cells (IPSC), however an efficient protocol that generates NK cells consistently 

from human IPSC has yet to be established. A study has demonstrated the use of 

human peripheral blood derived IPSCs as a promising direction for NK cell generation 

on a large scale, which can be applied in both autologous and allogenic settings, 

however varying quantities of NK cell production were found (164). Preclinical 

models (where relatively small numbers of NK cells were generated from IPSC) have 

shown that NK cells differentiated from IPSC are functional (165) and that IPSC 

derived NK cells can be generated carrying chimaeric antigen receptors (CAR) that 

confer anti-tumour activity (166). In addition, the minimum NK cell expansion 

required for a clinical effect is unknown and unpredictable for the treatment of solid 

tumours due to the local immunosuppressive microenvironment. One other promising 

method in NK cell-based immunotherapy is engineering NK cells that enables them 

to be directed towards the tumour site, which can be accomplished by generating 

chimeric antigen receptors (to specifically target the tumour cells) and overexpressing 

a chemokine receptor (to localise the NK cells to the tumour (167,168). Other targets 

of NK cell genetic engineering include inhibiting the signalling induced by 

immunosuppressive cytokines generated from the tumour microenvironment, for 

example TGF-β (134). The use of genetically modified ex vivo expanded autologous 
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NK cells is a promising route by which to overcome the inhibitory effect of the tumour 

microenvironment (Figure 2-5).  
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Figure 2-5 Model for autologous NK cell immunotherapy. 

Peripheral blood is taken from the patient and NK cells isolated by negative selection. 

Cells might be activated for expansion and activation and/or genetically modified to 

express a therapeutic gene.  
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2.5 Genetic modification of NK cells 

The limitation with genetically modified, ex vivo expanded autologous NK cells is the 

lack of an efficient gene delivery system. Commonly used gene delivery systems are 

known to be ineffective (or inconsistent) for use with NK cells and are associated with 

poor NK cell survival. Hence, the success of NK cell genetic manipulation is limited 

and is likely due to the innate immune properties associated with NK cells. NK cells 

have evolved to seek out and operate within infected tissue and may harbour strong 

intrinsic anti-viral mechanisms to allow them to do this. In support of this, a study has 

shown that inhibiting intracellular anti-viral receptors, such as toll like receptors, in 

NK cells can enhance transduction efficiency (169). Despite this, a small number of 

groups have published results of NK genetic manipulation, using DNA transfection 

and viral based gene delivery systems (as reviewed (150)).    

2.5.1 Transfection systems 

Delivering DNA into NK cells by transfection has mainly been accomplished by 

electroporation (150,170). Electroporation is a technique whereby genetic material is 

delivered into cells by increasing the permeability of the cell membrane through 

administering a time and frequency controlled electrical pulse. Studies have shown 

efficient transgene expression using electroporation in up to 40% in primary NK cells 

(171) and up to 70% in NK cell lines (172), with high cell viability. In addition, one 

study showed that transfecting mRNA (as opposed to cDNA) increased transgene 

expression, with transfection efficiencies up to 90% in NK cells (173). This technique 

does not require dividing cells (unlike most viral vector systems). However, RNA 

transfection only provides transient transgene expression. Use of genome engineering 

systems, such as CRISPR/Cas9, would allow integration and modification of the 

genome and this could be accomplished via transient transfection via electroporation 

of DNA (or mRNA). However, this has not yet been accomplished in NK cells.  

2.5.2 Virus systems 

The majority of virus mediated transduction on NK cells use lentiviral or retroviral 

vector systems (150), however vaccinia virus and adenovirus vectors have also been 

used (174,175).   
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2.5.2.1 Retroviral vectors 

Retroviral vectors have several beneficial properties, such as genetic stability and high 

transgene expression directed by a retroviral promoter. Retroviruses encode three 

major proteins: Gag, Pol and Env. Gag, which is also known as group antigens, is a 

polyprotein processed during maturation into matrix protein, capsid protein, spacer 

peptides and nucleocapsid proteins that forms the viral core structure. Env is the 

envelope protein and Pol is the reverse transcriptase. Retrovirus tropism is dependent 

upon the type of envelope proteins and cellular receptor recognition. Virus-cell 

recognition leads to entry by either direct fusion to the cell membrane or low pH 

induced endosomal fusion, which leads to the injection of the nucleoprotein core. 

Viral RNA is subsequently converted into cDNA by the viral reverse transcriptase, 

which is an RNA and DNA-dependent DNA polymerase. Retroviruses utilise an 

integrase that is encoded by the pol gene to integrate the viral cDNA into the infected 

cell genome. A number of studies have shown successful transduction of NK cell lines 

and isolated primary NK cells, however the transduction efficiencies of 10-62% are 

highly variable between studies (134,167,176–179). These studies also omit 

measurements of cell viability, which could be having an impact as a result of the 

cellular DNA damage response and its association with triggering apoptosis (180). 

Despite this, retroviral transduction is not considered to alter the phenotype of NK 

cells (134,179). Notably, retroviral transduction is limited to dividing cells, therefore 

NK cells that have not been stimulated with cytokines will not be susceptible to 

retroviral transduction. Lentiviruses (a sub-group of retroviruses whose prototype is 

HIV) are capable of infecting both replicating and cells in replicative senescence, 

however higher transduction efficiency has been observed in cytokine-stimulated NK 

cells (172). Similar to retroviral transduction, lentiviral transduction efficiency of NK 

cells and cell lines is highly variable, with quoted efficiencies between 8-73% 

(172,181,182). Similar to retroviral studies, the viability of cells post-transduction 

were not reported. A common feature observed amongst these studies is the mostly 

low transduction rates and the requirement to enrich cells expressing the transgene, 

possibly through multiple rounds of transduction. Further, the difficulty in 

reproducing high transduction rates for NK cells is also concerning. Hence, studies of 

efficient and reproducible approaches for gene delivery to NK cells are ongoing.   



 
- 31 - 

2.5.2.2 Other viral vectors 

The envelope proteins of lentiviruses can be manipulated to alter their tropism (a 

procedure known as pseudo-typing). Pseudo-typing the lentivirus envelope with 

measles virus glycoproteins H and F allows for the lentivirus to target CD46 

expressing cells (183,184). The measles virus (MV) is a member of the 

paramyxoviruses. It primarily utilises signalling lymphocyte activating molecule 

(SLAM) as a receptor for cell attachment, however vaccine strains also utilises CD46 

molecule for virus entry and CD46 is expressed on all nucleated cells (185). Although, 

measles virus mediated transduction on NK or T cell have not been reported, utilising 

lentivirus pseudo-typed with the MV glycoproteins on their envelope provides 

efficient transduction of primary T cells and cell lines at ~60% (183,184). This system 

(or measles virus itself) could potentially be used in NK cells. 

Other virus systems have been tested for their ability to transduce NK cells, such as 

the vaccinia virus and adenovirus. Vaccinia virus has historically been used as a live 

vaccine against smallpox (186). It contains a large double stranded DNA genome of 

~190kb in size that encodes ~250 proteins (187). A number of replication deficient 

strains have been developed for clinical investigations, including modified vaccinia 

Ankara (MVA), Copenhagen strain (NYVAC), avipoxvirus and orthopoxvirus. Due 

to its capacity to accommodate up to 30kb of transgene, strategies have been 

developed to utilise the vaccinia virus as a gene delivery vector. Recombinant viruses 

are constructed using homologous recombination or transient dominant selection 

(188,189). Fluorescent marker genes, such as green fluorescence protein (GFP) and 

yellow fluorescent protein (YFP) have been inserted into vaccinia strains to study the 

morphology of infected cells (190,191). These reporter expressing vaccinia viruses 

have also been used to detect which organs are targeted for virus replication (190). 

Clinically, vaccinia virus vectors have also been utilised as an oncolytic therapy for 

the treatment of cancer (192). The growing interest in immunotherapy has also shown 

vaccinia virus’ ability to infect NK cells. Recombinant vaccinia virus expressing 

dominant negative SHP-1 in NK-92 has been shown, however the transduction 

efficiency was not described (193). Other studies have also used recombinant vaccinia 

vectors to express proteins that attempt to inhibit the inhibitory response on NK cells, 

such as mutated KIR, Syk and dominant negative SHIP (193–196). Studies using 

vaccinia virus vectors in NK cells are very limited, which might be due to the short 

term gene expression or the low efficiency at transduction.  
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In addition, replication defective adenoviruses have been shown to transduce 

dendritic, B, T and NK cells efficiently (175,197). NK cells were demonstrated to be 

transduced up to 60%, while cell lines NK-92 and YT were transduced up to 80%. 

Furthermore, the proliferative function of NK cells was retained post-transduction 

(175). The adenovirus vector used to demonstrate gene transfer was derived from 

adenovirus serotype 5 which had been modified to broaden its tropism to CD46 

expressing cells. The protein responsible for cell attachment originates from 

adenovirus serotype 35 which recognises CD46 (198). This system has potential as a 

tool for the delivery of genes into NK cells, however to date, only reporter genes have 

been transferred. 

2.5.3 Overview of gene targets  

Transfection and viral vectors have been utilised to deliver genes into NK cells with 

the aim of manipulating the anti-tumour response. The main targets of interest have 

focused on enhancing cytotoxicity, migration capacity and cytokine production, 

thereby improving anti-tumour activity (Table 2-2). Several pre-clinical 

investigations have focused on utilising chimeric antigen receptors (CARs) to enhance 

anti-tumour cytotoxicity. CARs are artificial receptors which contain an intracellular 

domain to  transduce activating signals (which include CD3-ζ or Fc receptor γ chains) 

(199,200). The extracellular domain is a single chain variable antibody fragment that 

recognises the antigen of interest, and upon binding will activate NK cells. For NK 

cells, CARs have been generated to target CD19 and CD20 (on B cells) and HER2 

(for breast cancer), as described in (Table 2-2) and further reviewed by Glienke (201). 

The pre-clinical studies identifying antigen associated targets, such as CD19 specific 

CARs against B cell malignancies, and CARs targeting HER2 on breast cancer cells 

have been shown to direct NK anti-tumour cytotoxicity (202,203). Another strategy 

to improve anti-tumour cytotoxicity is to introduce genes to render NK cell insensitive 

to suppressive cytokines, such as  TGF-β. Two studies using NK-92 and NK cells 

from cord blood respectively, expressed a dominant negative TGFβ receptor II; these 

studies showed that their cytotoxicity is preserved in the presence of TGF-β (134,204). 

The adoptive transfer of the TGF-β insensitive NK-92 cells into mice with lung cancer 

improved survival rates and increased IFN-γ levels. Other strategies of NK 

manipulation involve promoting the activation and expansion of NK cells by cytokine 

stimulation. In particular, IL-2 and IL-15 expressing NK cells improves the anti-

tumour response (176,205).   Hence, introducing genes encoding cytokines to improve 
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activation and expansion is promising in consideration that systemically activated NK 

cells displayed poor anti-tumour efficacy and posed a significant risk with some 

patients developing toxic shock syndrome (158). Under physiological conditions a 

potentially limiting factor is the migration capacity of adoptively transferred NK cells 

to tumour sites. A study has also shown that ex vivo expanded NK cells have reduced 

migration capabilities (206). However, expressing chemokine receptors on NK cells 

has shown to be effective in improving migration (207), and tumour infiltration by 

NK cells is associated with a good prognosis (208). Studies investigating genes that 

modify NK cell migration are limited, however expressing chemokine receptors is a 

strategy that may improve NK infiltration of tumours.  

In conclusion, a number of studies have reported the use of gene delivery tools to 

manipulate NK cells to enhance their anti-tumour activity. One challenging aspect is 

the off-target risks associated with genetically engineering or stimulating NK cells in 

vivo, such as inducing cytokine release syndrome when overstimulating with 

cytokines or inducing an autoimmune response when desensitising 

immunosuppressive cytokines. A clinical study using T cells expressing a CAR 

specific to HER2 displayed safety concerns, with one patient developing respiratory 

failure, however this might likely be resolved using ultra-low doses showing that a 

number of factors play a role in the efficacy of the adoptive transfer of genetically 

enhanced immune cells (209,210). For NK cells, reports have mainly focused on 

engineering NK cells to enhance their anti-tumour response and it is likely that a 

combination of genes enhancing stimulation, cytotoxicity and migration will be the 

best option in generating an efficient anti-tumour response.
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Table 2-2 Studies on the manipulation of NK cells 
 

Gene 

Expressed 

Tumour 

target (in 

vitro) 

Cell Type Mode of 

delivery 

Ref 

Cytokine 

production 

IL-2 Liver 

metastases 

(mouse 

model) 

NK-92 

and YT 

Retrovirus (176) 

 
Membrane 

bound IL-15 

encoding a 

CD8α 

transmembrane 

domain 

B cell 

malignancies 

Primary 

NK cells 

Retrovirus (178) 

 
IL-15 Breast 

carcinoma 

cells 

NK-92 

and NKL 

Lentivirus (205) 

Migration CXCR2 Renal cell 

carcinoma 

Primary 

NK cells 

and 

Jurkhat 

Retrovirus (207)  

 
CCR7 mRNA Lymph node-

associated 

chemokine 

CCL19 

Primary 

NK cells 

Electroporation (168) 

NK 

Cytotoxicity 

CAR: CD19 

receptor 

harbouring 

CD28-CD3ζ 

B cell 

malignancies 

NK-92 Lentivirus (203) 

 
CAR: anti-

CD19-BB-ζ 

B cell 

malignancies 

Primary 

NK cells 

Electroporation (171) 

 
Dominant 

negative TGF-β 

receptor 

Glioblastoma 

cells 

Cord 

blood NK 

cells 

Retrovirus (134) 

 
Dominant 

negative TGF-β 

receptor 

Lung 

metastasis 

(mouse 

model) 

NK-92 Amaxa 

nucleofection 

(204) 

 
CAR: ErbB2 

(HER2) antigen 

harbouring 

CD28-CD3ζ 

Breast 

carcinoma 

NK-92 Lentivirus (202) 

 
CD16 mRNA K562s Primary 

NK cells 

Electroporation (168) 
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2.6 Human adenoviruses  

Adenoviruses (Ad) are known to infect a wide range of cells over different species. In 

humans, adenoviruses were isolated from adenoids in 1953 by Rowe at al after 

identifying a degeneration of cells that were harvested from adenoidal tissue from 

children (211) and they were officially termed ‘Adenovirus’ in 1956 (212). There are 

currently 85 human adenovirus types classified according to the ‘Adenovirus Working 

Group’ (213) and they are categorised into seven species: A, B (B1, and B2), C, D, E, 

F and G, according to their genomic content, protein size and immunological criteria 

(214,215). The associated diseases of adenovirus infections vary amongst types but 

are usually mild and common in young children. For example, types from species D 

manifest keratoconjunctivitis, whereas gastrointestinal infections are common 

amongst species A, F and G, and respiratory infections are common in species C and 

B1 (216,217). Although not common amongst adults, a level of immunity might limit 

the use of adenovirus-based vectors. However, adenovirus-based vectors have been 

used in several clinical investigations, mostly in gene therapy and oncolytic 

applications due to their ability to infect a broad range of cells (218,219). The majority 

of investigations have utilised Ad5 or Ad2 as a vector and have a good biosafety 

record as they do not integrate within the host genome, i.e. reducing the likelihood 

that they will induce malignant transformation. However, Ad5 and Ad12 have been 

shown to transform rodent cells in vitro (220). Their clinical applications is discussed 

further in section 2.6.6.  

Structurally, adenoviruses are non–enveloped icosahedral viruses that harbour a linear 

double-stranded (ds) DNA genome of 30-38kb (221). The outer capsid consists of 240 

copies of homo-trimeric hexon proteins which from the facets of the icosahedral 

particle and homo-pentameric penton bases at the 12 vertices form which project 

trimeric fibre proteins, which largely determine virus tropism. Further description of 

their structural characterisation is described in in section 2.6.4. 
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A representation of the Adenovirus structure, taken from Russell (222). In brief, 

adenoviruses are non–enveloped icosahedral viruses comprising 250 trimeric hexon 

capsomers that form 20 triangular facets (221). The 12 vertex capsomers are 

comprised of single pentameric penton base proteins from which project trimeric fibre 

proteins which are involved in host cell recognition and the initiation of cell entry 

(221). Other minor proteins make up the remaining components of the capsid and 

include proteins VI, VIII, and IX and structural proteins associated with the genome 

such as protein V, VII and Mu. 

Figure 2-6 A diagrammatic representation of the structure of human 

adenovirus 5 and its capsid proteins. 



 
- 37 - 

2.6.1 Cell attachment 

Adenovirus (Ad) tropism is dependent on the expression of cellular attachment 

molecules or receptors. The fibre shaft and globular knob domain vary in length 

between Ad types and bind to different receptors (223). The N-terminus of the fibre 

consists of a motif (FNPVYPY) that binds to the interface of the penton monomer 

(224,225). The length of the shaft varies amongst types, with the shaft core having 

differences in the number of sequence repeats that intertwine to form a triple β-spiral 

(226) (Figure 2-7). For example, there are 22 repeating units in Ad5 and Ad2, whereas 

there are five in Ad35 (225–227). A repeating unit is a sequence that encodes two 

connected β elements that are entwined with a β-turn that forms a loop that composes 

the shaft domain. The number of residues within the fibre shaft determines the 

flexibility of the fibre and binding to cellular receptors. The binding of the fibre to 

cellular receptors is determined by the C-terminal globular domain, as shown in 

Figure 2-7.   

The Coxsackie and Adenovirus receptor (CAR) is the best characterised cell-surface 

molecule for adenovirus cell attachment and is mainly expressed on epithelial cells. 

Ad5 and Ad2 are well characterised types that utilise CAR, however many other Ad 

types do not interact with CAR due to structural features of the fibre protein. For 

example, the species B type Ad35 attaches to CD46 (described further in section 

2.6.1.2), Ad3 utilizes desmoglein-2 and Ad11 can utilize both for cell attachment 

(Table 2-3) (228). Following interaction between the fibre knob and the cellular 

receptor, the penton base binds to cell surface αv integrins for cell entry. At this stage, 

interaction of αv integrin with the conserved arginine-glycine-aspartate (RGD) motif 

of the penton base is important in stimulating membrane changes to allow entry. 

However, the binding of integrins to RGD on penton bases is not critical, as mutations 

in this region only slows entry (229). Overall, cell entry is a two stage process where 

the major function of the fibre protein is to determine the tropism of the virus through 

cell-surface molecule recognition, which allows the virus to be held at close proximity 

for interaction between integrin molecules and the penton base to initiate entry. As 

cell recognition varies between types their pathways of cell entry also differs, for 

example Ad5 enters via clathrin-mediated endocytosis whereas Ad35 enters via 

micropinocytosis.   
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A) An image construction of Ad5 pentameric base showing the RGD loop.  B) A 

ribbon structure representation of the fibre globular knob domain of Ad35, variations 

in amino acid numbers vary amongst other types. a and b figures were taken from 

Russell et al (217). C) A complete model of the fibre as represented by Ad5, showing 

the globular knob C-terminal, a long fibre shaft and N-terminal tail composed of 3 

subunits. Taken from Liu et al (227).  

a 

b     

c 

Figure 2-7 A representation of the fibre. 
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2.6.1.1 The Coxsackie Adenovirus Receptor (CAR) 

CAR is a transmembrane adhesion molecule that functions as the primary attachment 

protein for the entry of most adenovirus types as well as species B coxsackieviruses 

(230). CAR is expressed on epithelial cells and expression has been detected in 

organs, such as the brain, heart, lungs and skeletal muscle. CAR permits the 

attachment of adenoviruses of species A, C–F (Table 2-3). Ad5 and Ad2 from 

adenovirus species C are well-characterised types that use CAR. Adenovirus-

mediated transduction of cultured cells has been demonstrated to be directly 

dependent on the expression of CAR (231). Structural studies of the Ad5 fibre knob 

interaction with CAR have shown that the interaction occurs on the CAR N-terminal 

domain and on the outer surface of the trimeric fibre knob (232). However, the Ad5 

and the Ad2 fibre and knob proteins are also capable of interacting with cell surface 

heparan sulphate glycosaminoglycans (HSPGs), which are glycosylated 

carbohydrates that mediate CAR-independent attachment (233). Coagulation factor X 

(FX) has also been shown to mediate Ad5 transduction by acting as a bridge between 

HSPGs on target cells and the capsid protein, hexon. However in cells (such as 

lymphocytes) with small quantities of HSPGs on their surface, Ad5-mediated 

transduction is reduced in the presence of FX (234). In addition, Ad5 has also been 

shown to attach to vascular adhesion molecule-1, which is highly expressed on 

epithelial cells (Table 2-3).  

2.6.1.2 CD46 

Serotypes from species B adenoviruses, Ad11, Ad3 and Ad35, attach to CD46 (also 

known as membrane cofactor protein), a complement regulatory protein expressed as 

a transmembrane glycoprotein on all nucleated human cells. Receptors for other Ad 

types are shown in Table 2-3. CD46 functions as a receptor for other viruses and 

bacteria, such as measles virus, human herpesvirus 6 and Streptococcus pyogenes 

(235–237). CD46 functions as a receptor for complement components (C3b and C4b) 

to protect the cell from damage by the complement pathway (238). Upon activation, 

complement mediates opsonisation and lysis of cells without discriminating between 

self-cells and pathogenic cells. Hence, CD46 functions as a protective mechanism 

against complement mediated lysis. The structure of CD46 consists of four cysteine-

rich short consensus repeats, a hydrophobic transmembrane region and a cytoplasmic 

domain. The first two short consensus repeats have been shown to be important for 

the interaction between the fibre knob domain of Ad35 and CD46 (239). 
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2.6.1.3 Other receptors 

Types from species D adenoviruses, Ad8 and Ad37,  have also been shown to utilise 

sialic acid, a component of the glycoproteins and glycolipids (240,241). Ad37 can 

also bind to CD46 (Table 2-3) (242). The residues that are considered responsible for 

binding to receptors are conserved in the fibres amongst types, however the receptor 

sites of binding are not clearly defined.  
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 Table 2-3 Cell surface attachment molecules utilised by human Adenoviruses 

Species Type Receptor 

A Ad12, Ad18, Ad31 

CAR 

C Ad2, Ad5, Ad31 

D  Ad15, Ad19 

E Ad4 

F Ad41 

B1 Ad3, Ad16, Ad21, Ad50 

CD46 

B2 Ad35, Ad11, Ad14 

D Ad37 

B1 Ad11 
Desmoglein-2 

B2 Ad3, Ad7, Ad14 

C Ad2, Ad5 Heparan sulphate proteoglycans 

D Ad8, Ad19, Ad37 Sialylated glycoproteins 

C Ad5 V-CAM-1 

 

*An evaluated summary of reviewed adenovirus receptors (215,216,243) 
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2.6.2 Cell entry 

Following interaction with cell-surface attachment molecules, adenoviruses are 

internalised, in general, by endocytosis, but the mechanisms vary between types, 

which may be internalised by coated or coat-independent endocytosis (244). Ad5 and 

Ad2 enter via clathrin mediated endocytosis (244). Clathrin-mediated endocytosis 

occurs at the plasma membrane where the formation of a clathrin coat emerges 

between the attachment molecules and cytosolic adaptor proteins which reconfigures 

the membrane to produce a vesicle. In contrast, Ad35 and Ad3 enter via 

macropinocytosis triggered by integrins (245). The mechanism of macropinocytosis 

involves ruffling protrusion of the plasma membrane that fuses to form a cavity that 

engulfs extracellular material.  The process is controlled through the activation of 

PI3K which is considered to be activated by signalling through integrins (246). The 

virus is then transported into the cytoplasm via endosomes. Adenovirus-mediated 

endocytosis is initiated with the binding of integrins which triggers a signalling 

cascade to regulate vesicle trafficking (247).  

Upon entry, the virus is trafficked within the endosomal compartment before escaping 

this acidic environment into the cytoplasm (244). Ad5 and Ad2 are known to escape 

during the early stage endosome of development. The pathway of escape mediated by 

macropinosomes is less defined, however adenoviruses in these vesicles are thought 

to escape at a later endosome stage. One factor that plays a role in endosomal escape 

is the low pH which leads to conformational changes of the virus (248). Partial 

uncoating of the capsid exterior allows the release of pVI which has been shown to 

rupture the endosomal membrane, thus allowing the virus to escape into the cytoplasm 

(249). Upon cytoplasmic release, the adenovirus is trafficked to the nuclear pore 

complex by microtubules via dynein-dependent transport where it enters the nucleus 

(250,251). The docking of the virion to the nuclear pore complex is mediated by the 

interaction of the Ad capsid protein IX with kinesin which facilitates the release of 

the adenovirus genome into the nucleus where it begins transcription and replication 

(252).  

2.6.3 Genome organisation and replication 

The adenovirus genome is composed of 30-38kb linear double-stranded DNA that 

encodes approximately 45 proteins. The ends of the Ad genome contain inverted 

terminal repeats and the 5' ends are covalently attached to the terminal protein. An 
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origin of replication is located within the inverted terminal repeats, where DNA 

synthesis is initiated by the addition of a dCMP residue to the precursor of the terminal 

protein (pTP), which acts a primer for DNA synthesis (253). This leads to the 

dissociation of the adenovirus DNA polymerase from the terminal protein to allow 

polymerisation of the replicating DNA (254). The cellular transcription factors, NFI 

and OCT-1 enhance DNA replication and bind to the auxiliary region within the 

terminal repeats, dissociating from the DNA when the strands become single stranded 

at the replication fork site (255,256). The adenovirus DNA binding protein (DBP) is 

essential during elongation, unwinding the dsDNA template and enhancing Ad 

polymerase processing by removing secondary structures (257,258). The collective 

function of pTP, polymerase, DBP and transcription factors initiate the process of 

replication (259). Replication is terminated after the precursor terminal protein is 

cleaved by a viral protease (260).  

The genome is composed of immediate early (E1A), early (E1B, E2A, E2B, E3, E4) 

and late transcription units that coordinate viral replication and assembly within the 

host cell (Figure 2-8) (261,262). The immediate early and early genes are critical. In 

particular the expression of the E1A gene allows expression of the other early genes 

and induces mitogenic activity in the infected cell (263). The E1A proteins accomplish 

this by binding to key regulators of the cell cycle. In particular, E1A proteins associate 

with the retinoblastoma tumour suppressor protein (pRb) and associated proteins 

(such as p130 and p107), which function as a regulator of the G1 phase of the cell 

cycle (264,265). One group of proteins with which pRB interacts is the E2F family of 

transcription factors that regulate the expression of genes responsible for cell cycle 

progression into the S phase of the cell cycle. This G1 to S phase transition is regulated 

by mitogenic stimulation (e.g. by a growth factor), resulting in the phosphorylation of 

pRb (by cyclin dependent kinases) which triggers the dissociation of E2F and 

subsequent transcriptional activation of E2F target genes. These include genes 

encoding products important in nucleotide metabolism, DNA synthesis and cyclin 

regulators (266). E1A has been shown to inactivate pRb/E2F complexes by direct 

binding, thus allowing  the release and activation of E2F to induce mitogenic activity 

(267). E1A has also been shown to modulate chromatin remodelling factors, such as 

histone acetyltransferase and histone deacetylase to promote accessibility of the 

chromatin for the transcriptional complexes. This combination of effects induces 

DNA synthesis and cell proliferation. However, adenovirus infection activates tumour 
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protein 53 (p53). The activation of p53 is triggered in cells undergoing various forms 

of cellular stress (e.g. DNA damage) and results in growth inhibition or apoptosis 

(268,269). One of the effects of p53 on the cell cycle includes the upregulation of p21, 

which binds to and inhibits cyclin dependent kinases (270,271). This leads to the 

accumulation of phosphorylated pRb bound E2F inactive complexes and the arrest of 

the cell cycle (266). E1A-mediated E2F activation also leads to MDM2 dysregulation, 

which is associated with increased levels of p53 (272,273). However, adenovirus 

overcomes the negative effects of p53 on the cell cycle; E1B-55kDa protein blocks 

p53 induced cell cycle inhibition and apoptosis by binding to p53 (274), hence the E1 

proteins work collaboratively to allow efficient replication of the virus. E1B-55kDa 

is also known to form a complex with E4-ORF6 with p53, which leads to 

ubiquitination and degradation of p53 (216). Furthermore, E1B-55kDa is also 

required for transport of mRNA into the cytoplasm for protein synthesis (275). Other 

early gene units such as E2 mediate DNA replication, E3 proteins mediate the host 

cell immune responses and E4 proteins alter cell signalling (217,276). In contrast, the 

late transcriptional units encode proteins that include structural and packaging 

proteins which leads to the assembly of the virus.    

The early gene units encode proteins that alter the host innate immune responses, in 

particular proteins encoded by E1 and E3. Specifically, E1A blocks transcription of 

type I IFN and chemokine induced gene transcription (277,278). E3 proteins provide 

resistance against CD8 T cell killing by binding to MHC Class I molecules in the 

endoplasmic reticulum, thus preventing the trafficking of the adenovirus associated 

antigens to the cell surface (279). E3 can also form a receptor internalisation 

degradation complex which downregulates the expression of death receptor ligands 

such as TRAIL and FAS, reducing NK cell and CD8 T cell mediated killing (280). 

However, adenovirus infection activates the host innate immune response through 

other pathways and induces inflammation related cytokines, which is discussed below 

in Section 2.6.5. 
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Figure 2-8 Transcriptional map and genome organisation of Ad5.  

A general schematic model representing the organisation of the adenovirus genome. 

The orange arrows represent early transcription regions (E1-E4) and the green arrow 

represent the late transcripts (L1-L5) (281). 
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2.6.4 Virus assembly  

The translation of viral mRNA occurs in the cytoplasm over two phases; early and 

late. The translation of early phase viral mRNA transcripts occurs by ribosomal 

shunting, which is a cap-dependent process that is regulated by the 5' cap and 3'poly-

A tail on early phase transcripts (282). The early phase mRNA transcripts synthesise 

proteins that are regulatory. In contrast, the late Ad mRNA possess a 200 nucleotide 

5' non-coding region, also known as a tripartite leader sequence (TLS). The tripartite 

leader region is required for the translation of later viral mRNA by initiating ribosome 

shunting (282), and the mRNA transcripts synthesise structural virus proteins that 

package the genetic material. The translation of late phase transcripts is also 

associated with the inhibition of cellular protein synthesis.  

Following translation, viral proteins are transported to the nucleus for the final stage 

of the adenovirus infectious cycle; the assembly of virions. This stage is made up of 

two steps: assembling empty capsids and encapsidation. Empty capsids are assembled 

to form the capsid region and inner core. The viral capsid consists of major 

components (hexon, penton, fibre) and minor components (IIIa, VI, VIII and IX). 

Other virus proteins (V, VII and mu) associate with the DNA forming a virus core. 

The hexon is the most abundant viral protein, consisting of 240 hexon capsomers and 

associating with pentons at the 12 vertices and the penton base associates with a trimer 

of the fibre (221). The minor viral component, protein VI, links the capsid to the 

nuclear protein core. The nuclear protein core protein IIIa occupies a position under 

the vertices and has a role in signalling for vertex and genome release during 

uncoating. pVIII occupies an area between pIIIa and the hexon bases and its role is 

less clear, however it is considered to be involved with genome packaging due to its 

association with a packaging motor (IVa2). In contract, polypeptide IX is located on 

the outer part of the capsid between hexon trimers and its main role is stabilising the 

capsid. Adenovirus encapsidation is not fully understood, however two viral 

transcripts and protein are associated with this process: L1, L4 and IVa2 respectively. 

The IVa2 protein directly binds to the A-repeat sequence on the packaging domain in 

the left hand ITR and mutant forms have confirmed it is essential for virus assembly 

(283). The L4 and L1 protein was also found to associate with the packaging sequence, 

with L4 additionally showing an association with IVa2 in vitro (284).  

Following virion assembly, maturation is required for virions to become infective. 

During this stage the adenovirus-encoded cysteine protease processes several viral 
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proteins by proteolytic cleavage at a specific motif site (MLCGCG or MLCGGC) 

(260). Two cofactors are also required for enhanced protease activity on precursor 

proteins: a peptide released from pVII and viral DNA. This process renders the virion 

infectious. In species C adenoviruses the adenovirus death protein (ADP) promotes 

the final stage of the infectious cycle by promoting cell lysis and the release of virions 

(285). It is encoded by E3, an early region of the genome but expressed more in the 

late stages of infection by the major late promoter. The molecular mechanism by 

which ADP operates is not clear, however it has been shown to localise at the nuclear 

membrane and Golgi (286).  

2.6.5 Innate immune response to adenovirus 

In clinical studies, administration of adenovirus or adenovirus vectors is associated 

with an inflammatory response and the activation of immune cells. A well-known case 

study using an E1 deleted adenovirus construct containing a therapeutic gene for the 

treatment of ornithine transcarbamylase resulted in mortality in one patient due to an 

immune response toward the vector (287). Hence, understanding the interaction 

between adenovirus transduction and this immune response is fundamental for 

effective use as a gene therapy vector (288,289). Several key steps have been 

identified as inducing the innate response to adenovirus, including viral attachment 

and endosomal escape (289). Characteristically, adenovirus infection leads to a 

proinflammatory cytokine and chemokine response, as well as the activation of 

complement. Consequently, the activation of the immune system is associated with 

reduced efficacy in gene transfer (289).    

One of the earliest steps of adenovirus infection occurs at the binding of the fibre to 

cellular receptors. The interaction of fibre with CAR has been shown to activate PI3K, 

JNK and MAPK which leads to NF-kB activation and the upregulation of 

inflammatory cytokines (290–292). Furthermore, the binding of the penton base RGD 

motif to integrins has also been shown to induce NF-kB activation (292). Following 

adenovirus escape into the cytoplasm, detection can be as a result of recognition from 

DNA dependent activator of IFN regulatory factors (DAI) and nucleotide 

oligomerization domain like receptors (NLR) (293). The binding of NLRs in the 

cytoplasm leads to the assembly of the inflammasome (294). Specifically, the NLR 

family members NLRP1, NLRP3 and NLRPC4 assemble into inflammasome 

complexes which subsequently leads to the proteolytic cleavage of pro-IL1β and pro-

IL-18 to their respective mature forms (294,295). IL-1β  binding to the IL-1 receptor 
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leads to activation of NF-kB and the release of chemokines (296), whereas IL-18 

induces IFN-γ secretion and upregulates T cells (297). The DAI becomes activated 

upon recognition of adenovirus DNA in the cytoplasm, which leads to the activation 

of IRF3/7 and TBK1/IKK1 and the upregulation of an IFN and pro-inflammatory 

response (293).  

Upon internalisation of the virus, Toll-like receptors (TLR) in the endosome can 

detect adenovirus double stranded DNA. TLRs are pattern recognition receptors 

(PRRs) that recognise pathogen associated molecular pathogens (PAMPs). 

Adenoviruses utilising both CAR and CD46 induce TLR9 mediated activation (298). 

TLR9 is expressed on both the plasma membrane and intracellular membranes, in 

particular the inner compartment of the endosome membrane, which recognises 

adenoviral CpG-rich DNA and upon activation induces an interferon response via a 

MyD88-dependent pathway (298). The activation of the MyD88 pathway by TLR9 

leads to the activation of transcription factors NFkB and AP-1 which are responsible 

for the transcription of proinflammatory genes (e.g. IL-6, IL-12 and TNF) (299). 

TLR9 is mainly expressed in dendritic cells, B cells, with low expression in NK cells, 

which suggests one reason why the interferon response to adenovirus infection also 

varies amongst cell types (300,301). There are three types of IFN; type I IFNs have 

13 subtypes and are responsive towards viral infection. The type II IFNs are secreted 

by lymphocytes in response to adaptive immune cell activation. Much less is known 

about the type III IFNs. The pathway responsible for inducing an interferon response 

in adenovirus infection of NK cells is not clear, however it has been reported that NK 

cells respond to adenovirus dsRNA by inducing an IFNα/β response (302,303). In 

dendritic cells, adenovirus mediated binding of TLR9 leads to the secretion of IFN-α 

(304,305). This pathway is mediated by MyD88 which also recruits the IL-1 receptor 

associated kinase 1 and TNF receptor associated factor-6 which together forms a 

complex that activate MAP kinases and interferon regulatory factor-7. The 

phosphorylation of the interferon regulatory factor-7 signalling complex induces a 

type I IFN response (304,305). The expression of type I IFNs lead to the activation of 

JAK kinases and the phosphorylation and signalling of STAT. STAT1 and STAT2 

interacts with IRF9 to form ISGF3 which leads to the transcription of IFN-stimulated 

genes (306). Consequently, the activation of the host innate immune system leads to 

virus elimination, hence reducing the efficacy of gene transfer (288,289).    
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2.6.6 Clinical applications 

Adenoviruses have been used in both gene therapy and oncolytic virus clinical trials. 

Adenoviral based vectors do not integrate within the host genome, reducing the 

likelihood that they will induce malignant transformation and cancer in human cells. 

However, several Adenoviruses (including Ad5 and Ad12) have been shown to 

transform rodent cells in vitro (220). Adenovirus vectors used in gene therapy studies 

are replication deficient, but retain their packaging signals, minimising viral toxicity. 

In particular, clinical studies have used adenovirus to deliver the therapeutic gene 

CFTR for the treatment of cystic fibrosis, however participants manifested 

inflammatory responses to treatment (307), demonstrating that rapid clearance of the 

virus by the immune system is a limitation of their use. Although clinically developed 

vectors are replicative-defective, they can still trigger an immune response (308), 

resulting in the loss of the therapeutic gene (for example, via the detection of viral 

DNA and RNA species by TLRs). However, adenovirus delivery of genes and 

genome engineering systems of cells has been shown to result in prolonged transgene 

expression (309). The relative small size of the Ad genome (compared to pox or 

herpes virus) means that only relatively small transgenes can be delivered by Ad based 

vectors and non-essential viral DNA needs to be removed to accommodate larger 

genes. Indeed the deletion of early region genes in replication defective vectors does 

provide capacity for larger transgenes.  

Replication competent adenovirus vectors have been studied for oncolytic viral 

therapy (310). Many human cancers harbour mutations in TP53 (encoding p53) and 

lose pRb expression (either by mutation or gene silencing). Loss of activity of these 

key tumour suppressor functions favours dysregulated proliferation (5). The 

inactivation of these pathways also provides for efficient adenovirus replication 

(Section 2.6.3). Indeed, adenovirus E1A binds to pRb and prevents E2F inactivation, 

favouring cell cycle progression (267). In addition, the E1B-55K binds to p53 

(stabilised via E1A activity) and converts it from a transcriptional activator to a 

powerful repressor, thereby bypassing p53 mediated checkpoints that normally 

restrict cell division (311).  Adenoviruses with mutations in the early gene units which 

are responsible for inactivating these pathways are unable to replicate efficiently in 

normal cells (i.e. they cannot bypass pRb and p53 control) but retain the ability to 

replicate in cancer cells where these pathways are already dysregulated. Hence, 

mutated adenoviruses can selectively target cancer cells with aberrant cell cycle 
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regulation, endowing these adenoviruses with oncolytic virus activity (310). The 

Adenoviruses ONYX-015 is a well-studied oncolytic virus in which the p53 binding 

site on E1B-55kDa has been deleted (218,312). In principle, cells with inactive p53 

pathways will be preferentially targeted and this agent was shown to be effective in 

patients when combined with chemotherapy (312). Further studies have investigated 

mutation in the E1A gene, for example, the KD1 oncolytic vector replicates and kills 

lung adenocarcinoma cells (313). However, this vector also includes a surfactant 

protein B promoter which drives the transcription of lung-specific genes and enhanced 

tissue specificity. It is likely that additional modifications to enhance tissue specificity 

will effectively target tumours in addition to the intrinsic oncolytic characteristics.  

Replication defective adenovirus vectors have deletions in the early gene units, which 

are critical for virus replication. The first generation Ad vectors include the deletion 

of E1A, E1B and E3 (314). The deletion of these genes allow for the insertion of a 

therapeutic gene. This allows for the generation of a vector in gene therapy 

applications. Chimeric vectors have been generated to modify the tropism of 

adenovirus serotypes. As Ad5 and Ad2 are the most well characterised and used in 

clinical investigations, CAR is the primary receptor for targeted cells. However, CAR 

is often downregulated on cancer cells and expressed at very low or undetectable 

levels on lymphocytes (234,315). Hence, generating a chimeric virus for CAR-

independent cell recognition provides flexibility in vector tropism. Cell recognition 

and entry is paramount for the manipulation of NK cells for immune-cellular 

therapies. However, Ad5 cannot infect lymphocytes due to the absence of CAR (316).  

The chimeric vector, Ad5f35, is structurally similar to Ad5 but has had the Ad5 fibre 

shaft and knob domain replaced with that of Ad35 (198), and consequently uses CD46 

for cell attachment and has the ability to transduce NK cells (175). Other chimeric 

adenoviruses that target CD46 expressing cells include Ad5f11, Ad5f35 and Ad5f7 

(317–319). Other vectors include second and third generation adenovirus vectors 

which have further deletions of E2 and E4 (314). Despite using replication defective 

vectors, immune responses to these vectors are still observed, likely from the retained 

adenovirus proteins in the vector. One approach to overcome this was to generate a 

vector with all of the coding genes deleted; this has been termed a “gutless” vector 

(320). These vectors have a reduced capacity to induce an immune or inflammatory 

response due to the lack of adenovirus expression, however their efficacy in gene 

transfer and stability in replication is reduced. The concept of using adenovirus to 
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deliver genes ex vivo is one strategy to overcome some of these limitations, which has 

been demonstrated in primary epithelial cells (321). This strategy also allows for 

multiple gene targets with additional adenovirus vectors.    
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2.7 Aims of the project 

The potency of the NK cell anti-tumour response makes these cells attractive agents 

for cancer immunotherapy. There is however a need to improve the tools to enhance 

NK cell migration to tumours and to allow them to function more efficiently in the 

immunosuppressive tumour microenvironment. This can be accomplished by ex vivo 

manipulation of primary NK cells. However, this is still limited by the inefficient tools 

currently available for gene transfer. Current vehicles or methods are also difficult to 

reproduce consistently, or are not appropriate for clinical use.  

The principal aims of this work are; 

 To identify viral vectors suitable for gene delivery to primary human NK cells 

 To use this vector system to express a therapeutic gene in primary NK cells to 

enhance their activity in the tumour microenvironment.  

This will provide a novel strategy by which to engineer NK cells from patients to 

make them more potent anti-cancer agents. 
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3 Materials and Methods 

3.1 Materials 

3.1.1 Chemicals 

General chemicals were ‘Molecular Biology’ grade and were purchased from Sigma-

Aldrich (Poole, UK), unless otherwise stated. 

3.1.2 Buffers 

10X TBE: 0.89M Tris Base; 0.85M Boric Acid; 40ml 0.5M EDTA (pH 8.0). 

Dissolved in 1L ddH20 

10X Orange G: 5g Ficoll 400; 0.08mM Orange G; 2ml 1M Tris-HCl (pH 7.4); 4ml 

1M EDTA (pH8.0). Dissolved in 20ml ddH20. 

1x Loading buffer (DNA): 10% (v/v) glycerol, 0.025% (w/v) bromophenol blue in 

1xTBE. 

PBS: Tablets purchased from Oxoid Ltd (Hampshire, UK), dissolved in ddH20 (1 

tablet per 100 ml includes 140 mM NaCl, 10 mM phosphate buffer, and 3 mM KCl at 

pH 7.4) and autoclaved before use.  

RIPA: 10mM Tris-HCl (pH 8); 1mM EDTA; 0.5mM EGTA; 140mM NaCl; 1 % 

Triton X-100; 0.1 % sodium deoxycholate; 0.1 % v/v SDS. Dissolved in dH20. 

2x Loading buffer (protein): 100mM Tris HCl  (pH 6-8); 4% (w/v) SDS; 0.2% (w/v) 

bromophenol blue; 20% (v/v) glycerol; 10% β-mercaptoethanol. Dissolved in dH20. 

Running buffer: 25mM Tris base; 250mM glycine; 0.1% (w/v) SDS. Dissolved in 

ddH20. 

Transfer buffer: 12mM Tris base; 96mM glycine; 20% (v/v) methanol. Dissolved in 

ddH20.  

TBST: 25mM Tris base; 134mM sodium chloride (pH 7.5); 0.01% (v/v) Tween-20. 

Dissolved in ddH20.  

FACS buffer: 0.5% (v/v) FCS; 0.5% (w/v) sodium azide in PBS. 

MACS buffer: 0.5% BSA; 2mM EDTA (pH 8.0) in PBS.  
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M9 salts (1X): 40mM Na2HPO4; 0.2M KH2PO4; 14mM NH4Cl; 8mM NaCl. 

Dissolved in 1L ddH20 and autoclaved before use. 

LB medium: 10g/l Tryptone; 5g/l Yeast Extract;10g/l NaCl. Dissolved in ddH20 and 

autoclaved before use. 

Half-salt LB media: 10g/l Tryptone; 5g/l Yeast Extract; 5g/l NaCl. Dissolved in 

ddH20 and autoclaved before use. 

Recombineering selection cassette plates: 10g/l tryptone; 5g/l Yeast extract; 50g/l 

Sucrose; 12.5μg/ml Chloramphenicol; 80μg/ml X-gal; 0.2mM IPTG; 15g/l agar. 

Dissolved in ddH20 and autoclaved before use. 

Other plates: Initially the medium was sterilised by autoclaving and supplemented 

with the appropriate antibiotic when the medium was cooled. 

Ampicillin plates: 10g/l tryptone; 10g/l NaCl; 5g/l yeast extract; 15g/l agar; 50μg/ml 

ampicillin. Dissolved in ddH20. 

Chloramphenicol plates: 10g/l tryptone; 10g/l NaCl; 5g/l yeast extract; 15g/l agar; 

12.5μg/ml chloramphenicol. Dissolved in ddH20. 

Recombineering plates: 10g/l tryptone; 10g/l NaCl; 5g/l yeast extract; 15g/l agar; 

12.5μg/ml chloramphenicol, 0.1mg/ml X-gal, 20mg/ml IPTG. Dissolved in ddH20. 
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3.1.3 Primers 

Table 3-1 Primers 

All primers were purchased from Sigma Aldrich.  

Primers used to synthesis dominant negative TGFβRII for recombineering 

dnTGFR2_Adz_F 5'-AACCGTCAGATCGCCTGGAGACGCCATCCA 

CGCTGTTTTGACCTCCATAGAAGACACCGGGA

CCGATCCAGCCTGGATCCGTCTGCCATGGGTC

GGGGGCTGCT-3' 

Flag_Adz_R 3'-GGCGTGACACGTTTATTGAGTAGGATTACA 

GAGTATAACATAGAGTATAATATAGAGTATA

CAATAGTGACGTGGGATCCCTTGTCGTCATCG

TCTTTGTAGTC-5' 

Primers used in colony PCR and RT-PCR for dominant negative TGFβRII 

TGFBR2 small R 3'-GGAGAAGCAGCATCTTCC-5' 

TGFBR2 small F 5'-GGCTGCTCAGGGGCCTGT-3' 

Primers used to detect recombinants for sequencing 

AdZ Insert Sequencing F 5'-AATGTCGTAACAAGTCCG-3' 

AdZ Insert Sequencing R 3'-ACCTGATGGTGATAAGAAG-5' 

TGFBR2 small R 3'-GGAGAAGCAGCATCTTCC-5' 

TGFBR2 small F 5'-GGCTGCTCAGGGGCCTGT-3' 

Primers used to detect E1A  

E1a exon 1 F 5'-CGGTGTACACAGGAAGTGACAA-3' 

E1a exon 1 R 3'-GCCGTCACGTCTAAATCATACAG-5' 

Primers used in CRISPR study 

B2M Exon 1 F 5'-GTCCCTCTCTCTAACCTGGC-3' 

B2M Exon 1 R 3'-ACTTGGAGAAGGGAAGTCAC-5' 
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3.1.4 Antibodies 

Table 3-2 Western blotting antibodies 

Western Blotting 

Antibodies 

    

Primary antibodies Company Catalogue 

number 

Stock 

concentration 

Dilution 

Anti-MADH7  Abcam 

(Cambridge, UK) 

ab190987 0.3mg/ml 1/1000 

Anti-SMAD6 Abcam ab63713 0.2mg/ml 1/1000 

Anti- TGFβ Receptor 

II antibody 

Abcam ab186838 1.68mg/ml 1/500 

Anti-B-actin Sigma A1978 x 1/10000      

Secondary antibodies Company Catalogue 

number 

Stock 

concentration 

Dilution 

Anti-Rabbit IgG HRP Sigma AG154 x 1/10000 

Anti-Mouse IgG HRP Sigma A6782 x 1/10000 
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Table 3-3 Flow cytometry antibodies 

Flow cytometry 

antibodies 
Product Code Lot Number Company Dilution 

Final concentra-

tion 
Isotype 

NK Cells 

CD56-PE 130-090-755 5.15E+09 
Miltenyi biotec 

(Surrey, UK) 
10µl per 100µl 107 0.22μg/10ul IgG1 

CD3-BV421 562426 5065838 
BD Biosciences 

(Oxford, UK) 
5µl per 100µl 106 0.25μg/5ul IgG1, k 

CD56-APC 130-090-843 5.15E+09 Miltenyi biotec 10µl per 100ul 107 0.0825μg/10ul IgG1 

CD3-PerCP 130-094-905 
x 

Miltenyi biotec 10µl per 100ul 107 
x 

IgG1 

CD56-PeVio770 
130-100-673 57170809221 

Miltenyi biotec 10µl per 100ul 107 
x 

IgG1 

T Cells 

CD3-BV421 562426 6065838 BD Biosciences 5µl per 100µl 106 0.25μg/5ul IgG1, k 

CD8-APC 555369 4269814 BD Biosciences 20ul per 100ul 106 0.06μg/20ul IgG1, k 

CD4-PeVio770 130-100-452 5.15E+09 Miltenyi biotec 10µl per 100µl 107 0.22μg/10ul IgG1 

B Cells 

CD20-BUV395 563782 4255845 BD Biosciences 5µl per 100µl 106 0.5μg/5ul IgG2b, k 

Dead Cell discriminator 

Zombie NIR™ APC-Cy7    423106 B182975 
Biolegend (London, 

UK) 

5µl of 200x Diluted Zombie NIR™ dye per 100ul 1.0 x 

106 cells in PBS 

 

CD46 Staining 

CD46-FITC 555949 4059963 BD 20µl per 100µl 107 1.0μg/20ul IgG2a, κ 

NK cell receptors 

CD16-FITC 555406 3351672 BD Biosciences 20µl per 100µl 106 2.0μg/20ul IgG1, k 

NKG2D-PE 557940 4175890 BD Biosciences 20µl per 100µl 106 0.125μg/20ul IgG1, k 

DNAM-1-PE 130-092-476 5.15E+09 Miltenyi biotec 10µl per 100µl 107 0.33μg/10ul IgG1 

NKp30-PE 120-003-054 5.07E+09 Miltenyi biotec 10µl per 100µl 107 0.33μg/10ul IgG1 

NKp44-PE 558563 4038699 BD Biosciences 20µl per 100µl 106 0.125μg/20ul IgG1 

NKp46-APC 558051 4119779 BD Biosciences 20µl per 100µl 106 0.5μg/20ul IgG1 

CD69-FITC 
130-098-901 5160706378 Miltenyi biotec 10µl per 100µl 107 x IgG1 

HeLa Characterisation 

MHC Class I - APC 311410 B147481 Biolegend 5µl per 100µl 106 0.01μg/5ul IgG2a, κ 

B2M-PE 316306 B169085 Biolegend 5µl per 100µl 106 0.025μg/5ul IgG1 

Intracellular 

Hexon Clone: 2Hx2 

Antibody made by Eric Blair, University of Leeds. 

Cell line HB-8117 (ATCC) 

Alexa Fluor 647 

Donkey Anti-mouse A21447 1841382 Invitrogen (UK) x 0.2μg/1μl x 

SMAD2/3-P (clone 

072-670) 562686 7096912 
BD Biosciences 

x x 
IgG1 

Cell tracking 

Cell tracker violet-

BMQC C10094 x Invitrogen 1/10,000 2uM x 

Cell tracker green-

CMFDA C2925 x Invitrogen 1/10,000 2uM x 

NK functional assays 

CD107a-PE 555801 6083963 BD Biosciences 
1µl per 100ul 25 

x 
IgG1 

GolgiSTOP 51-209K2 5148620 BD Biosciences 1/1000 x x 

 

CD46 blocking 

CD46 H294 H294 Santa Cruz (USA) x 1ug/250μl Rabbit IgG 
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3.1.5 Cytokines 

Table 3-4 Cytokines 

Cytokine Company Catalogue 

number 

Working Concentration 

Human IL-2,  premium grade Miltenyi 

biotec 

130-097-744 50-500IU/mL 

Human IL-15,  premium grade Miltenyi 

biotec 

130-095-764 20ng/mL 

Human TGF-β1, premium grade Miltenyi 

biotec 

130-095-067 5-10ng/mL 
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3.1.6 Cell lines 

Table 3-5 Cell lines 

Cell line Medium Derivation 

911 Dulbecco's Modified Eagle's 

Medium (DMEM) and 10% 

Fetal bovine serum. 

Primary human embryonic retinoblasts that contain 

integrated Ad5 E1A and E1B genes. Source: R. 

Hoeben, University of Leiden, Netherlands. 

HeLa DMEM and 10% Fetal calf 

serum (FCS). 

Human cell line derived from a cervical 

adenocarcinoma harbouring Human Papillomavirus 

18. Source: European Collection of Authentic Cell 

Cultures (ECACC). 

A549 DMEM and 10% FCS Human line epithelial cells derived from lung 

carcinoma tissue. Source: ECACC. 

SKOV-3 Roswell Park Memorial 

Institute, 1630 series (RPMI-

1640), 10% FCS 

Human cell line derived from a patient with ovary 

adenocarcinoma. Source: Cancer Research UK Cell 

Services.  

K562 RPMI-1640, 10% FCS Human erythroleukemia cell line isolated from a 

patient with chronic myelogenous leukaemia. Source: 

ECACC.  

YT RPMI-1640, 10% FCS An NK-like lymphoid cell lines. Source: G. B. Cohen, 

Harvest University, USA. 

NKL RPMI-1640, 10% FCS Isolated from a patient with CD3-CD16+CD56+ large 

granular lymphocyte (LGL) leukaemia. This cell line 

is strictly dependent on IL-2 for sustained growth [93]. 

Source: Professor Salim Khakoo, University of 

Southampton. 

NK92MI Minimum essential medium 

(MEM), 2mM L Glutamine, 

0.2mM inositol, 0.02mM Folic 

acid, 0.1mM 2-

mercaptoethanol, 12.5% Horse 

serum, 12.5% FCS  

NK cell line isolated from a non-Hodgkin’s 

Lymphoma patient. This cell line shows IL-2 

independent growth due to integration of IL-2 gene via 

a retroviral vector. Source: American Type Culture 

Collection (ATCC).  

HEK293T DMEM and 10% FCS A highly transfectable derivative of human embryonic 

kidney 293 cells. Source: G. E. Blair, University of 

Leeds. 

HaCaT DMEM and 10% FCS In vitro spontaneously transformed keratinocytes from 

histologically normal skin. Source Miriam Wittmann, 

University of Leeds. 

Huh7 DMEM and 10% FCS A well differentiated hepatocyte derived cellular 

carcinoma cell line that was originally taken from a 

liver tumour in a 57-year-old Japanese male in 1982. 

Source: Mark Harris, University of Leeds. 

PBMCs RPMI-1640, 10% FCS PBMCs and primary NK cells were provided by NHS 

blood and transplant donations and cell isolation was 

undertaken on the same day.   
Primary 

NK cells 

DMEM and 10% Human 

serum. 
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3.1.7 Plasmids 

Table 3-6 Luciferase plasmids 

Luciferase 

plasmids 

Antibiotic 

resistance 

Size Company Catalogue     

number 

LNCX TbetaRII 

DN 

amp 600bp 

insert 

Addgene 

(Cambridge, 

UK) 

12640 

pCMV5-Smad7-

HA 

amp 4700bp 

insert 

Addgene 11733 

Flag-Smad6 amp 4100bp 

insert 

Addgene 14961 

p3TP-lux amp x Addgene 11767 

pRL-TK amp x Promega 

(UK) 

E2241 

 

Table 3-7 CRISPR plasmids 

CRISPR 

plasmids 

Antib

iotic 

Promega 

backbone 

gRNA 

Name 

gRNA target 

sequence 

Genomic 

Location of 

B2M 

pD1301-

AD:155576 

amp DNA 2.0 B2M 

118447 

TTTGACTTTCC

ATTCTCTGC 

Exon 2 

pD1301-

AD:155575 

amp DNA 2.0 B2M 

118445 

TGGAGTACCT

GAGGAATATC 

Intronic 

Sequence and 

Exon 2 

pD1301-

AD:155574 

amp DNA 2.0 B2M 

118443 

ACTCACGCTG

GATAGCCTCC 

Exon 1 and 

Intronic 

Sequence 

pD1301-

AD:155573 

amp DNA 2.0 B2M 

118441 

CTCGCGCTACT

CTCTCTTTC 

Exon 1 

pD1301-

AD:155572 

amp DNA 2.0 B2M 

118439 

GGCCACGGAG

CGAGACATCT 

5’UTR and 

Exon 1 
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3.1.8 Viruses 

Table 3-8 Viruses 

Virus Description 

Stock 

concentrations 

Ad3-EGFP  

A replication-deficient Ad3 virus with a CMV 

driven EGFP transgene. (Dr Silvio Hemmi, 

University of Zurich) 

4.58x109 

FFU/ml 

Ad5-EGFP  

A replication-deficient Ad5 virus with a CMV 

driven EGFP transgene. (Professor Aviva 

Tolkofsky, University of Cambridge)  

4.96x109 

FFU/ml 

Ad5F11-EGFP  

E1-and-E3-deleted Ad5 virus with the Ad5 

fibre replaced with the Ad11 fibre that 

expresses EGFP under the control of a CMV-

promoter. (Prof M Tagawa, Chiba, Japan) 

1.062x1010 

FFU/ml 

Ad5F35-EGFP  

E1-and-E3-deleted Ad5 virus with the Ad5 

fibre replaced with the Ad35 fibre that 

expresses EGFP under the control of a CMV-

promoter. (Prof M Tagawa, Chiba, Japan) 

8.2x1010 

FFU/ml 

Ad5f35-CFP 

E1-and-E3-deleted Ad5 virus with the Ad5 

fibre replaced with the Ad35 fibre that 

expresses CFP in place of the E3 gene. (James 

Findlay, University of Leeds) 6x106 CFU/ml 

Ad5f35-CFP- 

tdnTGFβRII.1 

E1-and-E3-deleted Ad5 virus with the Ad5 

fibre replaced with the Ad35 fibre that 

expresses the dominant negative TGFβ 

receptor II under the control of a CMV-

promoter. CFP is also expressed in place of the 

E3 gene.  

1.4x107 

CFU/ml and 

2.1x107CFU/ml 

Ad5f35-CFP- 

tdnTGFβRII.2 

E1-and-E3-deleted Ad5 virus with the Ad5 

fibre replaced with the Ad35 fibre that 

expresses the dominant negative TGFβ 

receptor II and a mixed population of flag 

under the control of a CMV-promoter. CFP is 

also expressed in place of the E3 gene.  3x107CFU/ml 

MV-GFP 

Edmonton strain of measles virus with the 

incorporation of GFP. (Dr Fiona Errington-

Mais, University of Leeds) 1x107/ml 

MVA-GFP 

Modified Vaccinia Virus Ankara stain of the 

pox viruses with the incorporation of GFP. 

(Jenner Institute, University of Oxford). 1x108PFU/ml 
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3.2 Methods 

 

3.2.1 Cell culture  

All cell lines were grown in a Sanyo 37°C humidified incubator with 5% CO2 and 

passaged every 2-4 days in 25cm2, 75cm2 or 150cm2 flasks (Corning Life Sciences) 

using standard aseptic techniques in Nuaire Class II Microbiological Safety Cabinets. 

50 ml or 15 ml sterile polypropylene tubes (BD Falcon) were used for harvesting and 

washing cells. Cells were plated in 6, 12, 24, 48 and 96 well plates (Corning Life 

Sciences) for assays as indicated. The cell culture media: DMEM with 4500mg 

glucose/L, 110mg sodium pyruvate, 2mM L-glutamine and RPMI-1640 with L-

glutamine and sodium bicarbonate and Minimum Essential Medium Eagle Alpha 

Modification, with sodium bicarbonate, without L-glutamine, ribonucleosides and 

deoxyribonucleosides were all purchased from Sigma-Aldrich. Unless otherwise 

indicated all media were supplemented with foetal calf serum (FCS) (PAA Cell 

Culture Company) and where indicated, 100 μg/mL penicillin/streptomycin solutions 

(HyClone™, distributed by GE healthcare life sciences, Buckinghamshire, UK). FCS 

was heat inactivated prior to use at 56°C for 20mins. All media were filter sterilised 

by using a bottle-top vacuum filter system (Corning Life Sciences) before use.   

3.2.1.1 Adherent Cell lines 

During passage, HeLa, A549, HaCaT, 911 and HEK293 cell lines were washed with 

PBS, detached with 1x trypsin-EDTA for 10mins and fresh medium added before cells 

passaged at a dilution ratio of 1:4.  

3.2.1.2 Suspension Cells 

NKL, YT and K562 were maintained in RPMI-1640 media and 10% FCS. NKL were 

stimulated with 100IU/mL IL-2 (3.1.5). NK-92MI was maintained in Minimum 

Essential Medium (Sigma Aldrich), 2mM L glutamine, 0.2mM inositol, 0.02mM folic 

acid, 1mM mecaptoethanol, 12.5% horse serum. NK cell lines and K562 were 

passaged at a dilution ratio of 1:3 and 1:4 respectively.  
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3.2.1.3 Cryopreservation 

Cells were harvested and pelleted by centrifugation at 300xg for 5min. The cell pellets 

were re-suspended in (90% (v/v) FCS; 10% (v/v) dimethyl sulphoxide (DMSO, 

sigma)) and stored in 1 ml cryovials (Nunc®, Fisher Scientific, Hampshire). Cryovials 

were stored at ‒80˚C in a Mr Frosty freezing container which freezes cells at a rate of 

-1˚C per min, before being transferred to liquid nitrogen within one month. Cells were 

thawed quickly in a 37˚C water bath, re-suspended in growth medium and placed into 

a culture flask. 

3.2.1.4 Isolation of human PBMC using density gradient separation 

PBMCs were isolated from healthy individuals received from NHS blood and 

transplant leucocyte cone donations. The blood was retrieved from the cone by using 

a syringe containing an equal volume of PBS to flush out the cells, 30ml of diluted 

sample was then layered on top of 15ml of lymphoprep (Axis-Shield, Oslow, 

Norway). PBMCs were separated by density gradient separation at 800xg for 20 min 

at RT, no brake. The PBMC fraction between the plasma and ficoll fraction was 

removed using a pasteur pipette (Figure 3-1). PBMCs were washed with PBS and 

centrifuged at 220xg for 15 minutes, RT, to remove platelets, before counting using a 

haemocytometer. PBMCs were re-suspended in RPMI supplemented with 10% FCS 

at 2x106 cells/ml or re-suspended in cold MACS buffer (0.5% w/v bovine serum 

albumin (BSA) and 2mM sodium EDTA in PBS) for NK cell isolation.  
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The isolation of PBMCs is carried out by density gradient centrifugation in 

combination with a specialised separation medium i.e. lymphoprep solution. 

Lymphoprep has a density of 1.077g/ml which pushes lighter cells, such as 

mononuclear cells above the solution while separating the higher density cells (e.g. 

red blood cells) to the bottom of the tube.   

Figure 3-1 PBMC isolation using lymphoprep 



 
- 65 - 

3.2.1.5 Primary Cells 

PBMCs were maintained in RPMI-1640 media, supplemented with 10% FCS and 

stimulated with 50IU/mL IL-15 (Miltenyi). Primary NK cells were maintained in 

DMEM, supplemented with 10% human AB serum and stimulated with 50-100IU/mL 

IL-2 (Miltenyi), unless otherwise stated. 

3.2.1.6 NK cell isolation by magnetic cell sorting 

NK cell isolation was carried out according to manufacturer’s instructions. Briefly, 

1.1x108 PBMCs were resuspended in 440μl MACS buffer and 110μl of biotinylated 

antibodies and incubated at 4°C for 5 mins. PBMCs were then resuspended in a further 

330μl MACS buffer and 220μl of magnetic beads and incubated at 4°C for 10 mins. 

15ml of MACS buffer was added to dilute out the excess beads and antibodies, and 

the solution was centrifuged 300xg for 10 mins. The pellet was resuspended in 500μl 

of cold MACS buffer. During centrifugation a LS column was placed on a magnet 

containing LS column stand, equilibrated with 3ml of cold MACS buffer, the cell 

suspension was then passed through the LS separation column. Labelled cells were 

retained within the column, allowing unlabelled NK cells to pass through. The column 

was washed three times with 3ml of MACS buffer. The flow through containing 

isolated NK cells were pooled and resuspended at 1x106/ml in filtered DMEM media 

supplemented with 10% human AB serum and 10% FCS. 
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3.2.2 Transfections 

3.2.2.1 Bacterial artificial chromosome (BAC)  

911 cells were seeded at a density of 1.5x106 in a T25 flask in 3ml of media the day 

before transfection. On the day of transfection cells were checked for 80-90% 

confluency. Approximately 5µg of BAC construct was diluted in a total volume of 

500µl of OptiMEM (Invitrogen), and 20µl lipofectamine 2000 (Invitrogen) was 

diluted in 480µl OptiMEM and incubated at RT for 5min before both solutions were 

mixed and incubated at RT for 20min. Cells were washed in PBS and supplemented 

with 2ml of optimem. The transfection mix was added to flasks and mixed by gently 

rocking. Cells were incubated at 37°C for 6hrs before replacing with DMEM 

containing 10% FCS. Cells were harvested 7-10 days post-transfection and stored at 

-80°C as lysates.  

3.2.2.2 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 

HeLa cells were seeded at an optimised density of 1 x105 in a 6 well plate in a volume 

of 3ml media the day before transfection. For optimising transfection, PEI 

(Polysciences Inc, Germany) transfection reagent was used. Briefly, 2µg of CRISPR 

plasmid DNA or plasmid-EGFP positive control or PBS negative control was mixed 

with 8µg PEI in 100µl DMEM serum free media and left at room temperature for 

5min before adding dropwise to the cells. Cells were incubated at 37°C 5% CO2 for 

24 hours post-transfection. 

3.2.2.3 Luciferase assay 

To determine inhibitory function of selected genes, HaCaT cells were seeded in a 24 

well plate at a density of 5x104 cells per well one day prior to transfection. In each 

transfection the luciferase gene expression was dependent on a TGFβ promotor 

response element, p3TP-lux. Each transfection was controlled for with the co 

transfection of the Renilla construct, pRL-TK Vector. The activity of the TGFβ 

promotor was determined in the presence of TGFβ stimulation, and in the presence of 

plasmid vectors expressing Smad6, Smad7 and dominant negative TGFβ receptor II 

(Table 3-6 Luciferase plasmids). Briefly, 0.3µg of p3TP-lux and pRL-TK was used, 

either together or in combination with 1µg Smad6, Smad7 or dominant negative TGFβ 

receptor II expressing plasmids. Plasmid were mixed with 5-6µg PEI in 100µl DMEM 

serum free media and left at room temperature for 5min before adding dropwise to the 

cells. After 6hrs the cells were washed and complete medium was added incubated at 
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37°C 5% CO2. At 24hrs post-transfection cells were treated with TGF-β, as specified 

and the cells analysed for luciferase output at 48hrs post-transfection. The Dual-

luciferase reporter assay system (Promega) was used to detect output according to 

manufacturer’s protocols. 

3.2.3 Virus transductions 

3.2.3.1 Adherent cell line A549 

Cells were seeded one day prior to transduction. The following day the medium was 

removed and the cells washed with PBS and replenished with DMEM serum free 

media. Variable amounts of virus was added and the cells were incubated for 1 hour 

at 37°C. After 1 hour, complete media was added and the cells incubated for a further 

24 hours or longer as required. 

3.2.3.2 Lymphoid cell lines and primary cells 

Primary NK cells were pre-activated with IL-2 the previous day. All cells were 

pelleted and washed with PBS and seeded at a density of 2.5x105 in 125µl in a 24 well 

plate. Approximately 500µl of DMEM serum free media and variable amounts of 

virus (MVA-GFP, MV-GFP and Ad viruses, see Table 3-8 ) added, mixed and 

transferred to a 24 well plate. The cells were incubated for 1hr. After this incubation 

period 125µl of complete media was added and the cells were incubated for 24-48hrs 

and analysed at 24-48hrs post-transduction by flow cytometry.  

Transduction was further optimised to include a centrifugation step, post-virus 

addition. For experiments in Chapter 5 (unless stated otherwise), cells were washed 

in PBS, seeded at 0.3-2.5x105 at 125µl in a 24 well plate. Variable amounts of 

adenovirus was added (as stated) and centrifuged at 1,600xg for 45min at RT. The 

cells were cultured for 3hrs and activated with IL-2 and 125µl of complete medium. 

EGFP/CFP expression was determined by flow cytometry between 1-7 days post-

transduction. 

3.2.4 CD46 Blocking 

A549 cells were seeded at 2x105 in a 6 well plate the day before transduction. Primary 

NK cells were isolated the day before transduction. All cells were washed in PBS and 

resuspended in serum free media. Cells were either treated with a monoclonal CD46 

antibody (see Table 3-3 Flow cytometry antibodies) or a rabbit IgG (cell signalling, 

The Netherlands). Ad5f35-EGFP was immediately added to cells and the subsequent 
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virus transduction protocol followed 3.2.3. Control samples also include a 

combination of untransduced and transduced cells, with and without the combination 

of antibodies. All cells were analysed 24hrs post-transduction by flow cytometry. 

3.2.5 Flow cytometry 

All FACS acquisition was carried out using a LSRII flow cytometer (BD) and analysis 

on  FACSDiva™ software (BD). 

3.2.5.1 Cell surface staining 

Approximately 0.03-1x106 cells were harvested into FACS tubes (BD), washed with 

1 ml PBS and pelleted by centrifugation at 300xg for 5mins. Cells were re-suspended 

in 100µl FACS buffer containing fluorescently conjugated antibody (see Table 3-3 

Flow cytometry antibodies) and incubated on ice for 20 mins. The cells were washed 

in 3ml FACS buffer and centrifuged, then re-suspended in 250µl FACS buffer. In 

experiments involving transduced cells, cells were resuspended in 250µl 1% PFA (1% 

(w/v) paraformaldehyde in PBS) and incubated at RT for 10min. Approximately 

10,000 events per sample was acquired.  

3.2.5.2 EGFP/GFP expression 

EGFP expression was determined post-transduction with Ad, MV or MVA in A549, 

NK cell lines and primary NK cells. Approximately 2.5x105 cells were harvested into 

FACS tubes, washed with 1 ml PBS and pelleted by centrifugation. Cells were re-

suspended in 100µl FACS buffer and kept on ice. A549 and NK cell lines were stained 

for cell viability alone. Primary NK cells were incubated with CD56 and CD3 

antibody on ice for 20 mins. The cells were then washed by the addition of 3ml PBS 

and centrifuged and stained for cell viability. Cells were fixed with 250µl 1% PFA 

and stored at 4ºC prior to acquisition. Approximately 10,000 events per sample was 

acquired. In analysis viable cells were gated for cell populations. Primary NK cells 

were gated for CD56 and the lack of CD3 expression (Figure 3-2). EGFP excitation 

was measured using the 488nm laser. In the no virus negative control a second gate 

was set in the GFP channel at 2% of the cell population, cells falling within this gate 

represented EGFP/GFP positive cells. 

3.2.5.3 CFP expression 

CFP expression was determined in cells transduced with Ad5f35-CFP in A549, NK 

cell lines and primary NK cells. Approximately 2.5x105 cells were harvested into 
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FACS tubes, washed with 1 ml PBS and pelleted by centrifugation at 300xg for 5mins. 

The cell pellet were re-suspended in 100µl FACS buffer and kept on ice. A549 and 

NK cell lines were stained for cell viability alone. Primary NK cells were incubated 

with CD56 and CD3 antibody on ice for 20 minutes. The cells were then washed by 

the addition of 3ml PBS and centrifuged and stained for cell viability. Cells were fixed 

with 250µl 1% PFA and stored at 4ºC prior to acquisition. Approximately 10,000 

events per sample was acquired. In analysis viable cells were gated for cell 

populations. Primary NK cells were gated for CD56 and the lack of CD3 expression 

(Figure 3-2). CFP excitation was measured using a 405nm laser. In the negative 

control (no virus) a second gate was set to include 2% of cells with EGFP/GFP 

background emission to determine the CFP fluorescence in transfected cells. 

3.2.5.4 DasherGFP expression on CRISPR transfections  

DasherGFP/EGFP expression was determined by flow cytometry at 24 and 48 hours 

post-transfection. Approximately 1x105 cells were harvested and centrifuged, re-

suspended in 250µl FACS buffer and kept on ice. Approximately 10,000 events per 

sample was acquired and analysis of DasherGFP excitation was measured using a blue 

laser. In the negative control (no plasmid) a second gate was set to include 2% of cells 

with DasherEGFP background emission to determine the GFP fluorescence in 

transfected cells. 

3.2.5.5 Cell viability  

Cell viability was determined using Live/Dead discrimination by zombie (Biolegend) 

staining which reacts with the primary amine group on proteins. Dead cells have an 

impaired cell membrane, increasing the zombie dye to bind to cytoplasmic proteins 

and producing a brighter fluorescent output compared to viable cells. Cells were 

harvested into FACS tubes, washed with 1 ml PBS and pelleted by centrifugation. 

Cells were then re-suspended in 100µl of 1/200 dilution of Zombie NIR (excited by 

the 633nm red laser, which emits into the APC-Cy7 channel). Cells were stained for 

30 mins at RT in the dark, washed once with 2 ml PBS and pelleted, before being 

washed with 2 ml PBS/1% (v/v) FCS and fixed with 250µl 1% PFA. Where indicated, 

cell viability staining was carried out on cells that were pre-stained with fluorescently-

conjugated antibodies for cell surface antigens. Prior to acquisition cells were stored 

at 4ºC. 
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3.2.5.6 Hexon Staining  

All cells were harvested and washed in PBS. Cells were resuspended in 200µl of PBS 

and split between two 1.5ml Eppendorf tubes, before centrifuged and fixing in 100µl 

of 1% PFA, and incubated for 20min at RT. The cells were subsequently centrifuged 

and the permeabilised by resuspending in 100µl 1% Triton X-100 in PBS, and 

incubated for 5min at RT. Following centrifugation, permeabilised cells were 

resuspended in 10% normal goat serum (vector labs) in PBS and incubated for 10min 

at RT. Cells were centrifuged and the pellets were either resuspended in mouse 

monoclonal antibody (clone 2Hx2) at a dilution of 1:1000 or resuspended in the 

appropriate isotype (Sigma M5409) in 1% NGS, 0.1% Triton X-100 in PBS, and 

incubated for 1hr at RT. The cells were centrifuged and the pellet was resuspended in 

50µl of Alexa 647-conjugated goat anti-mouse immunoglobulin (Invitrogen) diluted 

in 1% NGS, 0.1% Triton X-100 in PBS. Cells were washed and resuspended for 

analysis by flow cytometry. 

3.2.5.7 SMAD2/3 Staining 

Cells were pre-treated with cytokines; for TGF-β, cells were treated 30min prior to 

analysis. Cells were harvested and fixed with an equal volume of pre-warmed cytofix 

buffer (BD) and incubated at 37°C for 10min in a water bath. Cells were centrifuged 

and the supernatant discarded. The cells were permeabilised with the addition of 1ml 

of ice-chilled perm buffer III (BD). Cells were mixed and incubated for 30min. Cells 

were centrifuged and resuspended in FACS buffer containing SMAD2/3-P -PE (BD) 

or IgG isotype control and incubated in the dark for 50min. Cells were washed in 3ml 

FACS buffer and resuspended in 250µl FACS before acquisition.  
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3.2.5.8 Gating strategies 
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Figure 3-2 Gating strategy PBMCs, NK cells and NK cell 

lines. 

Figure 3-3 Gating strategy for A549 cells. 
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3.2.6 Molecular techniques 

3.2.6.1 PCR 

Table 3-9 PCR cycle setup 

PCR used in CRISPR study 

PCR Reaction PCR Cycle 

5X HF Buffer (with MgCl2)  5 µl 1) Initial step 98 °C   30s  

10mM dNTPs 0.5 µl 2) Denaturation step 98 °C 10s 

10mM Forward primer 1.25 µl 3) Annealing step 57 °C  30s 

10mM Reverse primer  1.25 µl 4) Elongation step 72 °C  30s 

DMSO 0.75 µl 5) Final elongation step 72 °C  10 min 

1 unit/25µl reaction Phusion DNA 

polymerase 0.25 µl 

Steps 2 – 4 repeated 30 cycles 

20ug/ml DNA 5 µl 

ddH20 11 µl 

Total volume 25 µl 

PCR used to generate DNTGFβRII insert 

HiFi PCR reaction PCR cycle: 

PCR reaction  1) Initial 94˚C for 2 minutes 

1 x Expand HiFi Reaction Buffer 1 

(with MgCl2) 2.5µl 

2) Denaturation step 94˚C for 15 seconds 

0.2 mM dNTPs 1µl (Invitrogen) 3) Annealing step 55-65˚C for 30 seconds 

10mM Forward primer 2µl 4) Elongation step 72˚C for 1 minute / kb 

10mM Reverse primer 2µl 5) Denaturation step 94˚C for 15 seconds 

DNA 50ng 3µl 6) Annealing step55-65˚C for 30 seconds 

1.25 units HiFi DNA polymerase 

0.2µl 

7) Elongation step 72˚C for 1 minute / kb 

( + 5 seconds/cycle) 

ddH20 14.3µl 8) Final elongation step 72˚C for 7 

minutes 

Total volume 25 µl Steps 2 – 4 repeated 10 times, steps 5 – 7 

repeated 20 cycles 

PCR used for colony PCR and generation of sequencing template for 

DNTGFβRII 

Taq PCR reaction PCR cycle: 

PCR reaction 1) 98˚C for 2 minutes 

1 x Taq Buffer (with MgCl2)  2.5μl 2) Denaturation step 98˚C for 15 seconds 

10mM dNTPs 0.1μl 3) Annealing step 55˚C for 30 seconds 

10mM Forward primer 2µl 4) Elongation step 68˚C for 1 minute / kb 

10mM Reverse primer  2µl 5) Final elongation step 68˚C for 10 

minutes 

0.625 U Taq DNA polymerase 

0.125µl 

Steps 2 - 4 repeated 35 cycles 

DNA (5µl colony mixture or 50ng 

BAC template) 

ddH20 (variable) 

Total volume 25µl 
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3.2.6.1.1 E1A PCR 

PCR was carried out according to the Taq polymerase (NEB, Hitchin, UK) 

manufacturer’s protocols for amplifying E1a exon one.  

3.2.6.1.2 PCR Generating DNTGFβRII 

A gradient PCR was carried out according to the HiFi polymerase (Roche, Burgess 

Hill, UK) manufacturer’s protocols for amplifying DNTGFβRII. 

3.2.6.1.3 Colony PCR and PCR to generate template for sanger sequencing of 

DNTGFβRII 

For colony PCR, one colony was picked and vortexed in 50µl of LB medium without 

antibiotic. 5µl of the resuspended colony was used for DNA template and PCR was 

carried out using Taq polymerase. For sequencing, a PCR was performed using Taq 

DNA polymerase to amplify DNTGFβRII and the flanking adenovirus sequence. The 

amplified product was extracted from agarose gel and used for sequencing. 

3.2.6.1.4 CRISPR study 

PCR was optimised and performed using Phusion DNA polymerase (NEB) for 

amplifying B2M exon one for Sanger sequencing. 

3.2.6.2 BAC Electroporation  

SW102 cells were grown in 5 ml half-salt LB medium (supplemented with 12.5mg/ml 

chloramphenicol) in a 32˚C shaking incubator overnight. A 0.5 ml aliquot of this 

culture was used to inoculate 25ml half-salt LB medium (supplemented with 

12.5mg/ml chloramphenicol) and incubated in a 32˚C shaking incubator until the 

OD600 was 0.6. The cells were transferred to a 50ml flacon tube and incubated in a 

42˚C water bath for 15min with frequent mixing by inverting to induce recombination 

genes. The cells were transferred to ice for 15 min and centrifuged for 5 minutes at 

4,000 rpm at 0˚C. The supernatant was removed and cells were resuspended in 1ml 

ice-cold ddH2O by gentle swirling. A further 19 ml of ice-cold ddH2O was then added 

and the cells centrifuged for 5 min at 4,000 rpm at 0˚C. The supernatant was removed 

and the washing process repeated. After this centrifugation, the supernatant was 

removed and the cells were resuspended in the residual H2O. Approximately 25μl of 

cells and >10ng of PCR product were transferred to pre-chilled 0.2 cm electroporation 

cuvettes and electroporated in a Biorad Gene Pulsar X cell electroporater at 2.5kV 
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with a time constant of approximately 5ms. The cells were recovered in 1ml half-salt 

LB for 4hrs in a 32˚C shaking incubator. The cells were then washed and resuspended 

in 1ml M9 salts before being plated on recombineering plates and incubated at 32˚C 

for 2-5 days (Figure 3-4). 

3.2.6.3 BAC isolation 

Single colonies of E. coli SW102 strain containing the BAC were picked and grown 

overnight in 5ml half-salt LB medium supplemented with 12.5μg/ml chloramphenicol 

in a 32˚C shaking incubator. Cells were then transferred to a 50ml suspension in a 

conical flask and incubated on a shaker overnight at 32°C. BAC was purified with 

Qiagen Maxi prep kit (Qiagen, Crawley, UK). Protocols were followed according to 

manufacturer’s instructions. Briefly 50ml of culture was pelleted and suspended in 

buffer and lysed with buffer. The supernatant was loaded into a spin column and 

washed several times. The DNA was eluted in 150µl and the quantity of DNA was 

measured on a NanoDrop (NanoDrop™). 
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Figure 3-4 Construction of BAC containing DNTGFβRII. 

The gene fragment was synthesised by PCR with flanking adenovirus sequence. This 

allows for successful recombination into the virus genome contained in the BAC of 

E. coli. The gene ‘recombineers’ adjacent to the CMV promotor and replaces a 

cassette of genes that encode selection for LacZa and sucrose sensitivity. Positive 

selection is determined by screening white colonies for the presence of the gene by 

PCR; which subsequently leads to propagation and purification of the virus.  
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3.2.6.4 Plasmid Isolation 

1.1.1.1.1 CRISPR plasmids 

The five CRISPR-Cas9-B2M-DasherGFP constructs were provided by Adgene 

Horizons as part of the free reagents programme (see Table 3-7 CRISPR plasmids). 

Plasmid DNA was bulked up by transformation into DH5α competent E.coli bacteria 

(NEB), cultured and purified using Qiagen plusmidiprep kits. Bacteria were 

transformed as follows: 1µg of plasmid DNA and 50µl of competent E.Coli were 

mixed in a 1.5ml Eppendorf tube and incubated on ice 20 mins, heat shocked for 45s 

in a 42°C water bath, followed by a further 2 mins on ice before the addition of 250µl 

of LB Broth and incubated in a 37°C shaker (200 rpm) for 1hr. 100µl of transformed 

bacteria were spread on agar plates containing 50µg/ml ampicillin and placed in an 

incubator at 37°C overnight. Single colonies were picked and transferred to a 3ml 

suspension of LB medium containing 50µg/ml ampicillin and incubated on a shaker 

(200rpm) at 37°C for 8 hours before being transferred to a 30ml suspension a conical 

flask and incubated on a shaker overnight at 37°C. Plasmid was purified with Qiagen 

Midi prep kit, as described in (3.2.6.4.1). 

3.2.6.4.1 Luciferase plasmids 

DNA (Table 3-6 Luciferase plasmids) was purified from expanded single cell colonies 

with Qiagen Midi prep kit. Protocols were followed according to manufacturer’s 

instructions. Briefly 30ml of transformed culture was pelleted and suspended in buffer 

and lysed with buffer. The supernatant was loaded into a spin column and washed 

several times. The DNA was eluted in 200µl and the quantity of DNA was measured 

on a NanoDrop (NanoDrop™). 

3.2.6.5 Restriction endonuclease digestion 

Purified BAC DNA was incubated with 1unit of BamHI-HF restriction endonuclease 

and 1x cut smart buffer (NEB). Reactions were incubated at 37˚C for 90min before 

separation by gel electrophoresis. 

3.2.6.6 Gel electrophoresis  

Gel electrophoresis was used to resolve PCR products, DNA digests or 

plasmids/BACs. A 0.8 to 2% (w/v) agarose gel was made by dissolving agarose 

(Bioline, London, UK) in 1x buffer TBE. In Chapter 6, in the CRISPR section, 

0.5ug/ml ethidium bromide (Alfa Aesar) was used to visualise the gel. For  
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DNTGFβRII related experiments, the DNA was loaded onto the gel with Orange-G 

loading buffer (at 1X final concentration) and SYBR green (1/10 000 dilution of 

stock) in all samples. Along with 2-log DNA ladder (NEB). All gels were placed in 

an electrophoresis tank filled with 1X TBE buffer and electrophoresis performed 

under constant voltage, 120V for small gels and 150V for large gels. For CRISPR 

related experiments 1 kb DNA ladder or 100bp DNA ladder (NEB) was used. All Gels 

were imaged on BioRad imaging Fujifilm FLA-5000.  

3.2.6.7 Gel extraction of PCR products  

PCR products were isolated from an agarose gel and purified following 

manufacturer’s instructions from the Qiagen Gel Extraction Kit. Briefly, the DNA 

fragment on the agarose gel was visualised under a UV-light box and cut out using a 

scalpel. The agarose was dissolved in Buffer QG, loaded on to a QIAprep spin 

column, washed in Buffer PE and the DNA eluted in 30µl Buffer EB. 

3.2.6.8 Sanger Sequencing 

Sanger sequencing of B2M exon 1 from HeLa cell line manipulated with CRISPR was 

carried out by Eurofins genomics, Germany. The following was sent in a SmartSeq 

pre-labelled bar code tube: 15µl of 1ng/µl PCR products, 10pmol/µl of 2µl forward 

and reverse oligonucleotides each. Sanger Sequencing of the TGF-β receptor II gene 

was carried out by GATC (Germany). Pre-labelled coded tubes containing 20µl of 

120ng of BAC DNA and a matching labelled tubes containing 10pmol/µl of 2µl 

forward and reverse oligonucleotides.  

3.2.7 Western blotting 

3.2.7.1 Sample preparation 

NK cells were either pre-treated with cytokines or transduced with Adenovirus, as 

specified. A549 were pre-transduced with adenovirus. All cells were counted and 

equal numbers of cells were harvested, washed in ice cold PBS and centrifuged at 

4°C. The supernatant was discarded and the cells were re-suspended in 50μL RIPA 

buffer supplemented with protease inhibitor (Roche, Basel, Switzerland) and 

phosphatase inhibitor (Roche) according to the manufacturer’s guidelines. Cells were 

incubated on ice for 10 mins. Where indicated, the supernatant of adenovirus 

transduced A549 cells were harvested and  concentrated by centrifugation. All 

samples had loading buffer added at equal volumes and heated to 95°C for 5-15 min 

to denature proteins before being used immediately or frozen at -20°C. 
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3.2.7.1.1 Cell membrane biotinylation 

A549 cells were pre-transduced with virus, where indicated in a 6 well-plate. Cells 

were washed in PBS three times and incubated for 45min on ice with gently shaking 

in 125µl biotin (2mM MgCl2, 2mM CaCl2, 0.3mg/ml biotin (NHS-LC-LC-Biotin, 

Thermo Fisher). Cells were washed in TBS, followed by PBS. Cells were lysed in 

RIPA buffer on ice for 1hr, harvested and centrifuged. The cell lysate was incubated 

in 40µl of streptavidin beads (Pierce Streptavidin Agarose, Thermo Fisher) on a 

rotating wheel at 40C for 3hrs and washed in PBS. Cell lysates were centrifuged and 

resuspended in loading buffer and heated to 95°C for 5-15 min to denature proteins. 

3.2.7.2 Western blotting 

Samples were separated on a 15% poly-acrylamide gel, prepared from: ddH20; 30% 

acrylamide mix; 10% (w/v) SDS; 1.5 M Tris, pH 8.8 (running gel); 1M Tris, pH 6.8 

(stacking gel); 10% (w/v) ammonium persulphate (APS) and 

tetramethylethylenediamine (TEMED). The running gel was immediately poured into 

a gel cassette and layered with 100% isopropanol to remove air bubbles and prevent 

it from drying out. Once set, the isopropanol was removed and the stacking gel was 

added to the cassette and the comb inserted. 18µl of each sample was loaded along 

with 3µl of SeeBlue®Plus prestained standard protein molecular weight marker 

(Invitrogen) to verify protein size. Gels were run in a cell tank, containing running 

buffer for approximately 90 mins at 140V until the loading dye had run to the bottom 

of the gel. The gels were then removed from the cassettes and briefly washed in 

transfer buffer. The gel was sandwiching between a sheet of polyvinylidene difluoride 

(PVDF), which had been pre-activated in methanol, and two pieces of Whatman 3 

MM Chromatography paper that had been pre-soaked in transfer buffer. The proteins 

were transferred at 15 V for 60min using a semi-dry transfer apparatus (Bio-Rad, 

Hampstead, UK). The PVDF membrane was briefly washed in PBS and then 

incubated in blocking buffer; 5% milk in TBST for 45-60min at RT. 

3.2.8 Probing and development 

Primary antibodies were added to blocking buffer and incubated for 1hr at RT or 

overnight at 4°C on a shaker, as specified. The membrane was washed for 5 min 3 

times with TBST to remove the excess primary antibodies. Secondary antibodies were 

added in blocking buffer and incubated for 1hr at RT on a shaker. The membrane was 

washed again for 5 mins 3 times with TBST to remove the excess secondary 
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antibodies. PVDF membranes were developed and analysed using a 

chemiluminescence reagent (GE Healthcare, UK), a light proof cassette, CL-XPosure 

film (Thermo-Fisher Scientific) and a Konica SRX-101A Tabletop X-ray Film 

Processor (Konica, UK). The expression of β-actin was used to assess the equal 

loading of protein samples. 

3.2.9 Adenovirus propagation and isolation 

All adenovirus vectors were propagated in 911 cells. The lysate from 3.2.2.1 was 

subjected to three cycles of freeze thawing and sonication (in a bath-type sonicator) 

and used to infect 3 x T175 flasks. Following 3-5 days post-infection, the cells and 

supernatant were harvested, lysed and used to infected 30-40 x T175 flasks (Figure 

3-4). The cell lysates were centrifuged and the pellets pooled resuspended in a total 

volume of 10 ml 0.1M Tris-HCl (pH 8.0). The cell lysates were incubated with 1 ml 

5% sodium deoxycholate for 30 minutes at room temperature until viscous, followed 

by incubation with 100µl 2M MgCl2 and 0.5mg DNase I for 30 minutes at 37°C to 

digest DNA. The cellular debris was pelleted by centrifugation at 3000 rpm for 15 

minutes at 4°C and the supernatant containing virus was harvested. The supernatant 

was layered on top of a CsCl gradient in Beckman Ultra-Clear Centrifuge Tubes 

(14x95mm, 344060). The gradient consisted of a lower phase 1ml 1.5d CsCl, middle 

phase 2.5ml 1.35d CsCl and upper phase 2.5ml 1.25d CsCl. The tubes were 

centrifuged at 35,000xg for 1hr at 10°C in a SW40 rotor in a Beckman L5-50B 

centrifuge machine with minimal acceleration and brake. The lowest band containing 

virus was removed using a sterile Pasteur pipette and diluted with 500µl 0.1M Tris-

HCl (pH 8.0). This was layered on top of 2.5ml 1.35d CsCl in a Beckman Ultra-Clear 

Centrifuge Tube (13 mm x 55 mm). This tube was centrifuged at 35,000xg for 12hrs 

at 4°C in a SW55 rotor in a Beckman L5-50B centrifuge machine with minimal 

acceleration and no brake (Figure 3-5). The virus band was removed using a sterile 

Pasteur pipette and dialysed against 10mM HEPES-KOH (pH 8.0) in Slide-a-Lyser 

dialysis cassettes 7000 MWCO at 4°C for 8 hours. Glycerol was added to 10% (v/v) 

and the virus divided into 40µl aliquots and stored at -80°C. To determine the number 

of CFP expressing virus particles, A 24-well plate of A549 cells were transfected with 

various dilutions. At 24 hours post-transduction cells were analysed for the expression 

of CFP by flow cytometry. A gate for CFP-positive cells was set up on untransfected 

cells. A virus dilution which infected around 50% of cells was used to calculate CFP 

focus forming units (CFU) per ml. The percentage of CFP positive cells was 
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multiplied by the number of cells in a well and then multiplied by the dilution factor. 

The result was presented in CFU/ml.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Jager (322). 
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Figure 3-5 CsCl purification of adenovirus.  
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3.2.10 NK cell functional assays 

3.2.10.1 CD107a degranulation assay 

NK cell degranulation was determined by cell surface expression of CD107a. NK cells 

(effectors) and K562 target tumour cells were harvested and re-suspended at 1x106/ml 

and co-cultured in a 96 U bottom plate at a ratio of 1:1 and 1:3 effector cells (E) to 

target cells (T) in a total volume of 200μl, with a total cell count of 2x105. All samples 

were conducted in triplicate. After 1hr of incubation at 37°C, golgistop (BD 

Biosciences, Oxford, UK) was added at a concentration of 1:1000 to inhibit the 

internal recycling of CD107a from the surface. The cells were incubated for 5hrs at 

37°C. Following this, the 0hr control target and effector cells were mixed and all 

samples were pelleted. They were immediately stained with CD107a-PE (BD 

Biosciences) and re-suspended in PBS before acquisition. The forward and side 

scatter parameters were used to gate on the cell population. A second gate was set to 

select on isotype control stained cells at 2%. Approximately 5000-10,000 events were 

collected for each sample. The mean of each triplicate was calculated and the 0hr 

percentage was subtracted from the 5hr percentage to establish the percentage of 

primary NK cell degranulation. 

3.2.10.2 Cytotoxic assay 

The K562 target cells were harvested and resuspended in media containing a cell 

tracker dye at a concentration of 1x106/mL and incubated for 1hr at 37°C.  Once 

stained, the cells were washed with PBS and resuspended in media. Pre-activated 

primary NK cells were pelleted by centrifugation and resuspended in NK cell media 

accordingly to E:T ratio ranging from 1:1 to 3:1. Effectors and target cells were co-

cultured with a total cell count of 2x105 cells per well in a total volume of 200μl per l 

reaction in a U-bottomed 96-well plate for four hours at 37°C 5% CO2. All samples 

were conducted in triplicate. A 0hr control was set up alongside each reaction that 

included the same number of effector and target cells and cell viability staining was 

immediately carried out to determine background levels of death. After four hours the 

cells were harvested, centrifuged and supernatant removed. Cell viability was 

determined, as described 3.2.5.5. Staining controls include target cells negative for 

cell tracker dye and NK cell markers (CD56 and CD3) and isotype matched controls 

to differentiate effector cells from target cells. After staining, the cells were washed 

with chilled FACS buffer and resuspended in FACS buffer before acquisition. 
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Approximately 5000-10,000 events were collected for each sample. The mean of each 

triplicate was calculated and the 0hr percentage was subtracted from the 5hr 

percentage to establish the percentage of primary NK cell degranulation. 

3.2.11 Statistical analysis 

Statistical analyses were performed using ratio paired t-tests. Experimental data are 

presented as the mean and/or ± standard error of the mean. A P-value >0.05 was 

considered not significant, data generated with a p value of <0.05 were given * or 

p<0.001 **. Statistical analysis was performed using GraphPad Prism software, 

version 7.0.  
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4 Assessing the ability of viral vectors to transduce Natural Killer 

cells in vitro 

4.1 Introduction 

Genetic engineering of human NK cells offer great potential for the NK cell based 

immunotherapy of cancer. Unfortunately, commonly used viral vectors that transduce 

other cell types do not typically transduce NK cells and this has greatly limited the 

development of NK cell based therapies. Transient expression of genes by transfection 

has shown some success, in particular, nucleofection, an electroporation-based system 

has achieved efficient primary NK cell transduction (323). However the viability, 

phenotype and proliferative capacity of NK cells post-transfection has yet to be 

described. In contrast, studies using retroviral and lentiviral vectors to transduce NK 

cells have been more comprehensive, demonstrating transduction efficiency and 

transgene expression on viral transduced NK cells (177,182,324). The use of lentiviral 

vectors has been investigated, with studies demonstrating transduction of primary 

murine and human NK cells with efficiencies of 15-40% (172,325). The efficiencies 

are coupled with stable transgene expression following transduction and offer the 

opportunity to manipulate the NK cells phenotype. However, cell viability analysis is 

often omitted in these studies (172,182,324,325), and repeated rounds of transduction 

are often required that inevitably reduces cell viability. There are also concerns of 

insertion mutagenesis following lentiviral vector integration that may limit their use 

(326–328). Alternative viral delivery systems, such as adenoviral and vaccinia virus 

vectors have also been used to transduce NK cell, however, again studies are limited 

(175,193). Generally, replication defective adenoviruses do not integrate within the 

human host genome, so cell transformation events are possible but rare (329,330), 

making adenovirus vectors much safer than other viral vectors. The chimeric 

adenovirus (Ad5f35) induces transduction efficiencies of 30-60% in primary NK cells 

and lymphoid cell lines (175,315), and therefore provides the opportunity to deliver 

genes into NK cells. Adenoviral transduction surpasses the efficiencies of other viral 

and transfection systems.  
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Herein I undertook a comprehensive comparison of viral vector delivery systems to 

determine the optimal conditions that retain NK cell viability following high 

efficiency transduction.  
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4.2 Results 

4.2.1 CD46 receptor expression on lymphoid cell lines and primary cells 

The complement regulatory molecule, CD46, serves as a receptor for viruses such as 

human herpesvirus 6, adenoviruses (e.g. Ad35 and Ad11) and the Edmonston measles 

virus (MV) strain (215,237,331,332). These viruses have a tropism for many cell types 

consistent with the expression of CD46. As a first step towards assessing the ability 

of candidate viral vectors to infect NK cells, the cell-surface expression of CD46 was 

analysed on a panel of human NK cell lines (NKL, YT and NK92MI), PBMCs and 

primary NK cells (isolated from PBMC) using flow cytometry (Figure 4-1a). As a 

control in viral transduction, A549 cells, a lung epithelial cell line, were also assessed 

for CD46 expression; CD46 was expressed on 96% of A549 cells. In addition, CD46 

was expressed on over 98% of primary NK cells, PBMCs, YT and NKL cell lines and 

52% on NK-92MI (Figure 4-1b), consistent with previous findings (333). The number 

of CD46 molecules expressed on different cells could be assessed using Fc receptor-

coated beads with known antibody binding capacity; fluorescence of antibodies bound 

to these beads with defined numbers of Fc molecules is then compared to the 

fluorescence of cells labelled with the same fluorochrome-conjugated antibody 

binding via the antigen binding site. This approach was previously used to quantify 

CD38 expression on cells (334). Using conventional flow cytometry, CD46 was 

expressed on NK cells suggesting that Ad35, Ad11 and MV have the potential to 

transduce these cells. 
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Figure 4-1 CD46 expression on primary cells and NK cell lines. 

A) Isolated Primary NK cells, PBMCs and the NK cell lines, NKL, NK92MI and YT 

were examined for surface expression of CD46 by flow cytometry. Histograms 

indicate cells stained with an isotype control antibody (pink) or cells stained with 

CD46-FITC antibody (blue). B) The collective percentages of CD46 expressing cells 

from (A) represented in a bar graph (n=1). 
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4.2.2 Measles virus mediated transduction of natural killer cells 

Measles virus (MV) binds to CD150, which is also known as signalling lymphocytic 

activation molecule (SLAM) and is commonly expressed on lymphocytes (332), with 

the Edmonston strain having acquired additional tropism for CD46 (335). The CD46 

molecule binds to the fusion and hemagglutinin structural proteins of MV that induce 

virus cell entry (336). The expression of CD46 on NK cells (Figure 4-1) suggest that 

they might be susceptible to MV transduction. In support of this, a study has 

demonstrated lymphocyte transduction using a lentivirus encoding MV glycoproteins 

that conserved its tropism through CD46 and CD150 receptors (183). An Edmonston 

strain of measles virus containing GFP (337) was used to test transduction of IL-2 

activated cells and compared to transduction of the lung epithelial cell line, A549. 

Transduction efficiency was determined by flow cytometry, analysing GFP 

expression in live cells compared to an untransduced control (see methods section 

3.2.3). A549 cells were transduced with 50 to 100 MOI and analysed at 24hr intervals 

up to 72hrs; transduction of A549 was at <4% (Figure 4-2a). Previous findings 

reported high transduction of B and T cells with 10 MOI using a lentivirus encoding 

measles virus tropism (183), however the transference of MOI between different 

viruses do not usually correlate, even if they use CD46. In NK cell lines, NK92MI 

(Figure 4-2b)  and NKL cells (Figure 4-2c) transduction of <8% was observed with 

10 MOI. Similar findings were observed using NK cells with only <4% transduced at 

24hrs (Figure 4-2d-e). Cell viability remained consistently high, both transduced and 

untransduced controls with all cell lines. The low transduction efficiency seen in all 

of these cell lines was in contrast to that observed in melanoma cell lines using the 

same virus stock (338,339). Due to low transduction of NK cells, MV would be a 

challenging vector to use in gene transfer studies on NK cells. I therefore decided to 

test other viruses as suitable vectors for NK cell gene transfer. 
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Figure 4-2 Transduction of primary NK cells and cell lines using the measles 

virus. 

Flow cytometry analysis of measles virus transduction in A549s, NK92-MI, NKL and 

primary NK cells MV-GFP vectors. A) A549s and B) NK92s were culture for 24, 48 

and 72hrs at different multiplicities of infection (MOI). C) NKLs were cultured for 

72hrs and D) primary NK cells were cultured for 24hrs. After each time point the cells 

were analysed for GFP expression by flow cytometry. Results are summarised from 

the percentage of GFP+ cells in histograms by flow cytometry. 
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4.2.3 Vaccinia virus mediated transduction of natural killer cells.  

Attenuated strains of vaccinia virus (such as MVA) have broad uses in gene transfer 

studies and this virus has an excellent biosafety record due to its inability to replicate 

in human cells (340). The cellular receptor responsible for virus cell entry is unknown, 

however virion protein A21 is important in cell binding and entry (341). Previously, 

studies have described vaccinia virus mediated gene transfer into the NK cell line 

NK92 (193,342) providing a precedent to study primary NK cell mediated 

transduction using vaccinia virus. I chose to use modified vaccinia virus ankara 

(MVA) containing GFP to investigate NK cell transduction, again using IL-2 

activated NK cells. This particular strain is an attenuated form of vaccinia virus, and 

it has frequently been used as a vector to express recombinant proteins in vaccine 

systems (343,344). All cells were analysed by flow cytometry using a gating strategy 

previously described (Section 3.2.5). Initially, MVA-GFP transduction was analysed 

in the A549 cell line; at 30 MOI, 91% of A549 cells were transduced and 98% of cells 

were viable 24hrs post-transduction (Figure 4-3a). For the NK cell line YT, cells were 

transduced and analysed at 24hrs and 48hrs post-transduction, with optimal 

transduction of 80% at 20 MOI after 48hrs (Figure 4-3b). However, YT cells showed 

poor viability even in the absence of transduction and this decreased further upon 

transduction (Figure 4-3b). Primary NK cell transduction was then determined in 3 

donors. The viability of untransduced primary NK cells was high (~80%). 

Transduction efficiencies of between 25-39% (n = 3 donors) at 20 MOI was observed. 

However, this useful level of transduction was offset by the poor viability of NK cells 

post-transduction; viability reduced from 80-85% in untransduced cells to 11-24% (at 

20 MOI) in transduced NK cells (Figure 4-3c). The reduced percentage of living cells 

in transduced NK cells suggests that MVA has cytopathic effects, however, this virus 

is not known to replicate in human cells (340). Here, cytotoxicity was only observed 

in NK cells and not in A549, therefore the cytopathic effects are likely caused by an 

innate response through an induced interferon and apoptotic reaction in transfected 

NK cells.  
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The MVA strain used was produced after >500 passages from vaccinia virus in 

chicken fibroblast cells, and varies from the original isolate by loss of 15% of the virus 

genome and likely the loss of the genes responsible for reduced modulation in a 

cellular response (345,346). Although NK cell transduction efficiency by MVA is 

high, low viability restricts the use of MVA-GFP as a viable vector for gene delivery 

in NK cells. Further investigations using other vaccinia strains, or making 

modifications to the genome would be required to  resolve these cytopathic effects. 

Instead, I chose to evaluate a third viral vector type based on adenovirus, an 

established vector in gene therapy clinical trials (347), warranting further 

investigation  as an agent for transduction of primary NK cells.  
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A549s, primary NK cells and YT cells were transduced with MVA-GFP vectors ((see 

methods section 3.2.3) and transduction efficiency and cell viability were analysed by 

flow cytometry. Increasing amounts of MOI was used to transduce cells and at 24hrs 

Figure 4-3 MVA-GFP transduced and induces cells death in primary NK cells. 

and YTs. 

U
n

tr
a
n

sd
u

c ed

6
 M

O
I

1
2
 M

O
I

1
8
 M

O
I

2
4
 M

O
I

3
0
 M

O
I

0

2 0

4 0

6 0

8 0

1 0 0

A 5 4 9

%
 o

f
 c

e
ll

s

T ra n sd u c e d

Living

U
n

tr
a
n

sd
u

c ed

1
 M

O
I

1
0
 M

O
I

2
0
 M

O
I

3
0
 M

O
I

0

2 0

4 0

6 0

8 0

1 0 0

Y T

%
 o

f
 c

e
ll

s

2 4 h rs  T ra n sd u c e d

4 8 h rs  T ra n sd u c e d

24hrs L iv ing

48hrs L iv ing

U
n

tr
a
n

sd
u

c ed

1
 M

O
I

5
 M

O
I

1
0
 M

O
I

2
0
 M

O
I

0

2 0

4 0

6 0

8 0

1 0 0

P r im a r y  N K  C e ll s

%

D o n o r  1  L iv in g

D o n o r  2  L iv in g

D o n o r  3  L iv in g

D o n o r  1  T r a n s d u c e d

D o n o r  2  T r a n s d u c e d

D o n o r  3  T r a n s d u c e d

a b 

c 

d 



 
- 94 - 

cells were analysed for GFP expression by flow cytometry, or at 48hrs in YT cells. 

Results are the summary of percentage GFP+ cells in histograms by flow cytometry. 

Cell viability was analysed for Zombieneg expression by flow cytometry. A) The 

results for A549, B) YT and C) Primary NK cells were summarised.  
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4.2.4 Adenovirus mediated transduction of natural killer cells 

Modification of adenovirus Ad5, replacing the fibre shaft and knob domain with that 

from Ad35 or Ad11 allows the newly generated chimeric viruses (Ad5f35 and Ad5f11 

respectively) to utilise CD46 for virus entry (instead of CAR) and has been shown to 

allow NK cell transduction (175,315). Before testing the transduction of NK cells I 

compared a series of GFP-encoding chimeric vectors for their ability to transduce 

A549 cells, providing a positive control in their utilisation of the different vectors. I 

compared transduction of the parental vector, Ad5-GFP (MOI 50), with that of the 

chimaeric vectors Ad5f35-EGFP (MOI 820) and Ad5f11-EGFP (106 MOI). 

Alongside these vectors I also tested Ad3-EGFP (MOI 45), which like Ad5f35 is a 

species group B adenovirus, however this Ad3 based vector uses desmoglein for cell 

attachment (243). A variation in MOI between vectors was used due to variations in 

virus titre during these preliminary investigations. Transduction efficiency was 

determined by GFP expression (using flow cytometry) at 24hrs (Figure 4-4a-b). The 

data show that all four of these Ad-based vectors transduced >98% of A549 cells with 

cell viability of >66%. Cell viability was reduced in transduced cells indicating that 

either transduction or virus present in the media have a cytotoxic effect on the cells.  

The ability of the adenoviral vectors to transduce NKL cells by flow cytometry was 

then determined (Figure 4-4c). As expected, there was minimal transduction of NKL 

with the parental Ad5-EGFP (MOI 20) and Ad3-EGFP (MOI 18) (<2.5%), both of 

which are known to utilise CAR and desmoglein respectively for cell attachment; the 

expression of these receptors are not detected on NK cells. However, NKL were 

highly transduced using Ad5f35-EGFP (MOI 328) and Ad5f11-EGFP (MOI 42) at 

90% and 87% respectively (Figure 4-4d). These viruses utilise CD46 which is 

expressed on NK cells (Figure 4-1). Cell viability decreased from 81% in 

untransduced cells to 46% in Ad5f35 transduced cells, indicating a cytotoxic effect 

(Figure 4-4.d), similar to the observations in A549 cells. Despite this cytotoxicity, the 

ability to transduce the NK cell line NKL at high efficiency with Ad5f35 and Ad5f11 

suggested that these vectors might prove useful in the transduction of primary NK 

cells.  



 
- 96 - 

The next step was to analyse adenovirus mediated transduction of primary NK cells 

that were purified from PBMC. Transduction using Ads vector was determined by 

flow cytometry using a gating strategy previously described (Section 3.2.5) (Figure 

4-4e). At 24hrs post-transduction, minimal NK cell transduction was observed and 

was at its highest using Ad5f35-EGFP at 7% (Figure 4-4f). At 48hrs post-transduction 

using Ad5f35-EGFP, 63% of cells were transduced in one donor. However, 

transduction efficiency was inconsistent between 3 donors suggesting that the 

conditions required optimisation (Figure 4-4g). In contrast to NKL the viability of 

primary NK cells remained acceptable (>60%) and did not differ from that of 

untransduced controls. These results are not in agreement with one study using a 

modified Ad virus which reduced T cell viability by 75% at 72 hours, and an Ad-WT 

(Wild Type) was 1.8 fold less than this (348), suggesting that a modified Adenovirus 

that boosts cell entry increases toxicity. Surprisingly, Ad transduction has a critical 

effect on cell viability in NKL and has not been described in other cell lines such as 

NK-92MI, Jurkat and YT (149),  indicating a cytopathic effect on transduced cells. 

Ad5f35 and Ad5f11 mediated transduction utilises CD46 for cell attachment, whereas 

Ad5 and Ad3 utilises CAR and Desmoglein respectively (315) which are absent from 

NK cells. This suggests that adenovirus cell attachment is critical in cell entry. 
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Figure 4-4 Fibre modified Ad5 adenoviruses 

efficiently transduces NKL cell line, A549 cells 

and requires optimisation in primary NK cells. 

Cells were transduced with either Ad5, Ad5f35, Ad5f11 

and either Ad3 (see methods section 3.2.3) and 

transduction efficiency was assessed at either 24 or 48hrs 

by flow cytometry. A) A549 were transduced with all 

chimeric adenoviruses and analysed at 24hrs post-

transduction by flow cytometry. B) The  transduction 

efficiency that was analysed by GFP expression within 

the living population of cells in A) was summarised. C) 

NKL cells were transduced with all chimeric 

adenoviruses and analysed for GFP expression by flow 

cytometry within the living population of cells at 24hrs. 

D) The flow cytometry plots of transduced cells and living 

cells were summarised from C). E) The flow cytometry 

plots of primary NK cells from one donor that was 

transduced with all chimeric adenovirus and analysed by 

gating on CD56+CD3- living cells and analysed for EGFP 

expression at 24hrs. F) The summary from E) from 2 

donors at 24hrs. G) Representative flow cytometry 

analysis from one healthy donor transduced with Ad5f35-

EGFP at 48hrs. H) The summary of Ad5f35-EGFP 

mediated transduction of primary NK cells in 3 donors at 

48hrs.  
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4.3 Discussion 

Generally, viral transduction is associated with higher degrees of transgene delivery 

in NK cells compared to transfection. Typically, most studies of viral transduction of 

NK cells have used lentiviral vectors which have been utilised with success in 

restoring tumour reactivity in NK cells (324).  More recently, studies have described 

the genetic modification using tumour specific chimeric antigen receptors (349,350). 

Similar to other studies using lentiviruses, they observed a transduction efficiency of 

<20%, with one study showed that the NK cells were fully functional (349). Using a 

lentivirus vector to deliver genes into primary NK cells is a promising option, and one 

which could also deliver shRNA. The disadvantage of using a lentivirus for gene 

delivery clinically is concerns with biosafety, such as insertion mutagenesis from 

vector integration and viral associated cell death which may cause limitations in its 

application (326–328). Here, MV-GFP, Ad5f35-EGFP and MVA-GFP were assessed 

for compatibility in transducing primary NK cells. The data identified Ad5f35-EGFP 

and MVA-GFP as promising viral vector candidates in NK gene delivery. The data 

showed that Ad5f35-EGFP transduces lymphoid cell lines and primary NK cells at 

greater levels compared to other delivery systems analysed. These data are reinforced 

by other studies that describe the ability of Ad5f35 transduction in NK cells, T cells 

and B cells (175,315,351). Despite this, I observed lower primary NK cell 

transduction efficiencies than published, and variability between donors. 

Observations of cell death also require resolving. This issue might be caused by the 

virus replicating and requires further investigation. Regardless, Adenovirus have an 

excellent biosafety record with notably no documentation of integrating within the 

host genome of human cells. Ad5 in particularly has been extensively studied as a tool 

for the infection and manipulation of cells, and therefore has the potential to be utilised 

as a tool for the purpose of immunotherapeutic strategies in NK cells. 

Surprisingly, MV-GFP transduction of NK cells was shown to be substantially low 

compared to Ad5f35-EGFP considering both viruses use CD46 as the primary 

receptor for cell binding and entry (331,332). CD46 is often upregulated on human 

malignancies, presumably as a defence against complement mediated lysis and 

reported as the oncolytic mechanism in MV (352). The importance of CD46 

expression for MV transduction is reinforced by a study showing correlation of MV 

cell entry efficiency in cell lines with varying amounts of CD46 expression (353). 
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Here low MV-GFP transduction in CD46 expressing cells was observed however, a 

study using a lentivirus vector encoding MV glycoproteins has been successful in 

mediating transduction of B and T cells (183,354). It is likely that a higher MOI was 

required to increase the capacity for MV-GFP transduction; however further 

investigations were not pursued. Evidently, MV-GFP was not a leading viral vector 

candidate due to higher transduction of NK cells by Ad5f35-EGFP and MVA-GFP.  

MVA-GFP is a well characterised viral vector for transgene delivery and has been 

successful in transducing NK cell lines, however there have been no recent studies in 

primary NK cell transgene delivery using this vector (>10years) (193,342). Here, 

MVA-GFP was shown to be compatible in primary NK cells transduction. Typically, 

wild-type vaccinia induces cytopathic effects upon infection, however modified 

vaccinia virus is considered to be non-replicative in human cells. Despite this, MVA-

GFP induced NK cell death. MVA-GFP have 15% less genomic content compared to 

wild type which renders the virus non-replicating and the cause of their loss in 

immunomodulatory functions that likely results in induced cell death of transduced 

cells (345,346). Similar findings in MVA infected dendritic cells have been observed 

and suggested to be responsible for apoptosis of infected cells (355). Consequently, 

the disadvantage of using MVA supersedes its ability to transduce primary NK cells 

effectively. 

Compared to viral transduction, transfection of NK cells is independent of receptor 

expression. Transfection techniques also have an advantage in biosafety as it does not 

involve the use of viral vectors. However, efficacy of transfection is low compared to 

virus transduction. Viral transduction might be higher compared to transfection due 

to utilising receptors to gain cell entry, and they also have an innate ability to escape 

and survive the acidic environment of the endosome upon endocytosis. Regardless, 

success of NK cell transduction is limited and likely due to the innate properties 

associated with NK cells. Speculatively, viruses that have gained cell entry might have 

direct contact with NK cytolytic granules containing granzymes that could potentially 

hinder the viral cell entry pathway. Apoptosis of transduced NK cells might also be 

triggered upon viral recognition through their pattern recognition receptors (356). 

Hence, the inherent characteristics of NK cells is the probable cause of poor efficacy 

in viral and transfection techniques of gene delivery. Despite this, viral vectors do 

provide an option in gene delivery. Generally, viral transduction is associated with 

cell death, however enrichment of NK cells post-transduction might overcome this 
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issue. Here Ad5f35-EGFP transduction of NK cells has been shown to have an 

advantage in NKL cell transduction and higher viability compared to MV-GFP and 

MVA-GFP. Provided that adenovirus transduction efficiency is optimised in primary 

NK cells, the delivery method using Ad5f35-EGFP is plausible. Achieving a viable 

approach in NK cell genetic manipulation would contribute to the direction of NK 

immunotherapeutic strategies. In conclusion, this chapter shows that transduction 

efficiency is inconsistent in primary human NK cells, however transduction is 

consistently high in cell lines. The next chapter will investigate approaches to resolve 

these variabilities between donors, and enhance NK cell transduction using Ad5f35-

EGFP.        
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5 Enhanced transduction into natural killer cells with the 

chimeric adenoviral vector Ad5f35 

5.1 Introduction 

Adenoviruses are well-characterised, with Ad5 being the most commonly used vector 

in gene therapy, not least because of the high titres possible and their low 

pathogenicity. Ad35, a subgroup B adenovirus, utilises CD46, a cell surface molecule 

that is highly expressed on NK cells, as its natural receptor. Replacement of the Ad5 

fibre and knob domain with that of Ad35 confers binding and entry into NK cells, as 

demonstrated in the previous chapter; Ad5f35 was shown to be compatible for 

primary NK cell transduction, with high transduction in NKL in the previous chapter. 

However, transduction and cell viability of primary NK cells were variable between 

donors, thus enhancing transduction efficiency for optimal levels of transgene 

delivery is fundamental in establishing a superior methodology compared to other 

viral gene transfer methods. Studying the phenotype and viability of post-transduced 

NK cells clearly requires further investigation to validate its use as a therapeutic vector 

for gene delivery. Hence, this chapter focuses on optimising the conditions to produce 

consistently high Ad5f35 mediated transduction on NK cells.  
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5.2 Results 

5.2.1 Optimisation of Ad5f35-EGFP mediated transduction of NK cells 

A previous study described enhanced lentivirus gene transfer into primary NK cells 

when using a high concentration of IL-2 and polybrene (172). Polybrene, a polycation, 

is known to enhance viral transduction by increasing virus-cell interaction by 

neutralising potentially repulsive negative charges on the cell surface (e.g. from sialic 

acid) (357). IL-2 is a cytokine that regulates NK cell activation through Jak1/3 and 

STAT3/5 signalling to induce IFN-γ secretion, cytotoxicity and promotes survival and 

proliferation (54,55). Hence, a high concentration of IL-2 will enhance survival post-

virus transduction (172). Centrifuging NK cells has also been shown to enhance 

lentiviral transduction (172), and adenovirus-mediated transduction of dendritic cells 

(358). To determine if these conditions allow for the efficient adenovirus-mediated 

transduction of NK cells, purified NK cells were transfected with 320 MOI Ad5f35-

EGFP in combination with 100 IU IL-2, 500 IU IL-2 and 5μg polybrene. All cells 

were then centrifuged at 1800g for 45 minutes (as described in section 3.2.3). All 

experiments were analysed by flow cytometry; using a gating strategy described in 

section 3.2.5, and detecting transduction efficiency by the expression of EGFP 

emission within the FITC channel. Centrifugation was not utilised in virus 

transduction in the previous chapter, in this section centrifugation enhanced Ad5f35-

EGFP transduction (Figure 5-1). The addition of five-fold more IL-2 increased 

transduction from 57% to 64% in one donor, while the polybrene additive reduced 

transduction to 37% and cell viability to 31%, compared to 62% in the untransduced 

control. This is likely due to the toxic effects of polybrene, reducing cell viability and 

transduction efficiency. Overall, viability in transduced cells with all conditions was 

reduced but highest when treated with 500 IU IL-2 at 51% (Figure 5-1a). The 

preliminary data in this donor shows that centrifugation enhanced adenovirus 

transduction when compared to cells that were not centrifuged (Chapter 4). However, 

a detailed controlled comparison of the effect of centrifugation was not made (e.g. 

transduction of NK cells from a single donor, with and without centrifugation). Such 

an experiment would have formally clarified the effect of centrifugation on 

transduction. Little is known about the mechanism responsible for enhancing viral 

transduction by centrifugation, however one study has hypothesised that centrifugal 

forces increase the interactions between adenovirus and cellular receptors (358). In 

order for this approach to be useful cell viability is important, and a high concentration 
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of IL-2 increased the percentage of living cells post-transduction. Hence, combining 

centrifugal force and a high concentration of IL-2 consistently aided good levels of 

Ad5f35-EGFP mediated transduction of NK cells. 

The optimal conditions for Ad5f35-EGFP transduction that were determined in Figure 

5-1.a was applied to increasing amount of virus to NK cells to distinguish optimal 

MOI for efficient virus transduction. Flow cytometry analysis determined EGFP 

expression at 24hrs post-transduction by flow cytometry (Figure 5-1b). NK cells were 

optimally transduced at 150 MOI at 67%, with cell viability at 42% compare to 77% 

in the untransduced control (Figure 5-1c). Transduction was also confirmed through 

detecting EGFP expression in cells by immunofluorescence microscopy (EVOS® FL 

Cell Imaging System) (appendix section 9.1).  These conditions were used to analyse 

transduction efficiency in NKL and NK92MI cell lines. NKL were optimally 

transduced at 300 MOI at 79%, however cell viability was reduced from 40% in the 

untransduced control to 10% (Figure 5-1d). Notably, the Ad5f35-EGFP vector used 

in Figure 5-1d was found to have a contamination of replicating virions with 

constructs retaining E1A/B, an issue that affects cell viability and discussed later in 

section 5.2.3. In contrast, NK92MI cell viability retained at 89%. However NK92MI 

were only transduced at 25% with 400 MOI (Figure 5-1e) and likely due to lower 

levels of CD46 expression (Figure 4-1), which has presumably restricted viral cell 

attachment. In both NK cell lines, transduction was also confirmed by detecting EGFP 

expression in cells by immunofluorescence microscopy (appendix section 9.2), where 

cells appear to clump more so compared to the untransduced controls.   

These findings suggest that NK cell lines were highly transduced using an MOI of 

between 150-300, in combination with centrifugal force and a high concentration of 

IL-2. However, high transduction efficiency in primary NK cells and cell lines was 

coupled with reducing cell viability indicating cytotoxic effects of viral transduction. 

To conclude investigations on Ad5f35-EGFP transduction, optimised conditions were 

utilised in isolated PBMCs and purified NK cells. Firstly, PBMCs were transduced 

(section 3.2.3) and transduction efficiency in primary NK cells, T cells and B cells 

were determined by analysis of EGFP expression in cells stained with characteristic 

markers at 24hrs post-transduction (section 3.2.5). A transduction efficiency of 23-

48% was observed in the NK population of PBMCs (n=3), less than as previously 

observed in isolated primary NK cells (Figure 5-1c). Analysis of T and B cells indicate 
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that they are also capable of Ad5f35-EGFP mediated-transduction, with the highest 

observed percentage of transduction of 37% and 43% respectively (Figure 5-1f). 

Similarly, other studies have shown Ad5f35-EGFP T cell transduction efficiency at 

45% at an MOI of 1000 (175) and 20-45% in B cells using Ad5f35-EYFP at an MOI 

of 500 (359). These data suggest that Ad5f35-EGFP transduction of PBMCs is a 

useful vector not only for the transduction of primary NK cells, but also of B and T 

cells.  

Transduction efficiency was then determined in purified primary NK cells of 6 healthy 

donors to determine the reproducibility of these conditions. Transduction efficiency 

was determined by flow cytometry, selecting viable cells that are CD56+CD3- and 

analysing EGFP expression 24hrs post-transduction. NK transduction efficiency 

varied between 6-67%, with a mean of 39%, results not dissimilar to those observed 

in transduced NK cells within a population of PBMCs. Cell viability was retained 

when compared to the untransduced controls indicating that a replicative defective 

vector and transduction event is not inducing cell apoptosis at 24hrs (Figure 5-1g). 

Importantly, high transduction efficiency (38-67%) was observed in four of the six 

donors. Whether this variability in transduction between donors was due to CD46 

density was not determined. However, this could be remedied by using a large panel 

of NK cell donors and determining cell surface CD46 expression (by flow cytometry) 

and Ad5f35-EGFP transduction and assessing their correlation. Interestingly, others 

have reported that the transduction efficiency of CHO cells transfected with different 

levels of CD46 showed a correlation between CD46 density and transduction 

efficiency. However, in the same study, there was no correlation between transduction 

efficiency and CD46 expression density when compared between different tumour 

cell lines (360). Nevertheless, the results indicate variability in transduction efficiency 

between donors, and has been observed elsewhere (359). These results show that 

Ad5f35-EGFP is a useful tool for gene transfer into primary NK cells and hence offers 

promise as a therapeutic options for gene delivery. However, successful exploitation 

in cancer immunotherapy requires that the transduced NK cells retain the ability to 

express a transgene for several days post-transduction and that transduction does not 

alter the key anti-tumour functions of key anti-tumour functions of NK cells. It was 

therefore essential to evaluate the functional activity of NK cells transduced with 

Ad5f35.  
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All experiments were analysed at 24hrs post-transduction. A) Primary NK cells were 

seeded at 2.5x105 in a 24 well plate in 125μl of serum free media in the presence of 

320 MOI Ad5f35-EGFP and 100 IU IL-2, 500 IU IL-2 or in combination with 5ug/ml 

polybrene and centrifuged for 45 min at 1800g, cultured for 3 hours and125μl of 

media containing serum was added before analysis at 24hrs post-transduction. The 

graph shows a summary of the percentage of transduced cells (n=1). B)  Primary NK 

cells were left untransduced or transduced at an MOI of (10-300) and transduction 

efficiently and analysed by GFP expression using flow cytometry (n=1). C) Summary 

from flow cytometry analysis from B). Collective percentages of cell viability and 

transduced cells for D) NKL at MOI 0-500 and E) NK92MI at MOI 0-400. F) The 

collective percentages of transduced PBMCs with Ad5f35-EGFP MOI 1000 (n=3). G) 

Isolated primary NK cells transduction with Ad5f35-EGFP MOI 1000 (n=6). The 

results shown the mean percentage of transduced cells. A t-test was performed on cell 

viability between untransduced and transduced cells. Statistical analysis is statistically 

significant at  P<0.05. 

Figure 5-1 Enhancement of Ad5f35-EGFP transduction by centrifugal forces 

and IL-2 
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5.2.2 Time course of transgene expression 

To determine the time period of gene expression delivered by Ad5f35 on NK cells, 

EGFP expression was analysed over a 7 day period post-transduction in isolated 

primary NK cells and in the NK cell lines; NKL and YTs. All cells were transduced 

(methods section 3.2.3) and re-suspended in fresh culture medium and IL-2 every 2 

days. Flow cytometry determined transduction efficiency by analysing EGFP 

expression within the living population of cells that were CD56+CD3-; as described 

in section 3.2.5and Figure 5-2a. Transgene expression was highest at 24hr post-

transduction (Day 1) at 67% and 78% in primary NK cells and NKL respectively. 

However, transduction was highest in YT cells at 48hrs post-transduction (Day 2) at 

95%. Adenovirus vectors are engineered to not replicate and they do not integrate into 

the host cell genome, hence the expression of EGFP was transient, such that the 

percentage of cells expressing EGFP declines rapidly from 72hrs post-transduction (3 

days) in all cell types, until levels were close to baseline at 7 days (<5%) (Figure 

5-2b). Notably, cell viability declined in primary NK cells from 43% at day 1 to 20% 

at day 7 in transduced cells compared to 51% at day 1 to 7% at day 7 in the 

untransduced control despite frequent treatment of IL-2. Similar findings were 

observed in NKL where from day 1 transduced cell viability was reduced to <5% 

compared to the untransduced control at >47% from days 1-6. Cell viability of YT 

cells also declined from day 2 with viability at 2% in transduced cells compared to 

62% in untransduced cells on day 3 (Figure 5-2c). Importantly, the results show that 

transgene expression in primary NK cells is maximal around 24-48hr post-

transduction. Furthermore, the adenoviral induced cell death is a recurring observation 

that instigates further investigation in its capability as a vector for gene delivery in 

NK cells.  
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EGFP expression following Ad5f35-EGFP transduction of primary NK cells, 

NKL and YT cells over 7 days. A) Representative flow cytometry data from 

transduced purified NK cells. B) Purified NK cell, YT and NKL were 

transduced with the Ad5f35-EGFP at an MOI of 300 MOI and transduction 

frequencies were analysed daily for 7 days by flow cytometry. C) The 

percentage of cell viability was analysed daily by flow cytometry in 

comparison to untransduced controls.  
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Figure 5-2 EGFP expression declines over 7 day period post-adenovirus 

transduction. 
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5.2.3 Virus Induced cell death 

Wild type Ad5 replicates under control of the immediate early genes. For therapeutic 

purposes (including safety), genomic modifications in replication defective 

derivatives include the deletion of the E1A/B region, interfering with the virus life 

cycle and its ability to replicate (361). During the process of virus expansion in 911 

cells (the producer cell line), trans-complementation of E1 gene region is provided to 

overcome the absence of the early region in the vector and allow viral production 

(362). However, sequence homology between the E1 region inserted into the 911 cells 

and the adenovirus vectors is known to allow a recombination event to take place in 

which the E1 region is recaptured by the vector, this recombination is responsible for 

contaminating replication-deficient adenovirus vectors with replication competent 

adenovirus (363). Due to previous observations of reduced cell viability in post-

transduced NK cells, replication competent adenovirus contamination was determined 

in Ad5f35-EGFP as a cause for these effects. First, I looked for evidence of E1A gene 

sequences in my vectors using PCR; a PCR product of E1A was synthesised using 

Ad5f35-WT, Ad5-WT, Ad5-EGFP and Ad5f35-EGFP virus stocks as templates (see 

section 3.1.8 for further details), therefore contamination with replicative competent 

adenoviruses is likely (Figure 5-3a). The expected size of the PCR product is 653bp, 

however the size of the PCR products varied between templates, suggesting several 

distinct recombination events had occurred in these stocks. To conclusively determine 

if replication is occurring, the expression of hexon, a late virus protein expressed post-

virus replication, was assessed by flow cytometry, as represented in Figure 5-3b 

showing hexon expression in transduced A549 cells. To determine the extent of this 

problem a new stock of Ad5f35-EGFP (Ad5f35-E1aneg) was analysed in transfected 

A549 cells and was found to have minimal hexon expression (2%), as shown in flow 

cytometry data in Figure 5-3b. Using the two stocks of Ad5f35 (which were 

propagated independently), hexon expression was assessed in A549, NKL and 

primary NK cells transfected cells were assessed (Figure 5-3c). The new virus stock, 

which was determined to be replication incompetent was then analysed for its effects 

on cell viability in transduced cells. There was no loss of viability in A549, primary 

NK cells or YT cells, however cell viability declined from 41% to 20% in NKL 

(Figure 5-3d). It is possible that this might be caused by the loss of an anti-apoptotic 

function in virus lacking the E1 region and that NKL cells might be particularly 

susceptible to this death pathway. However, the absence of hexon (a surrogate for viral 
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replication) was deemed to be more important, as replicating virus is a cause for 

concern for therapeutic purposes.  

The use of the new Ad5f35-EGFP stock resolved the issue of contamination with E1 

containing recombinants. However this stock must also of course be propagated using 

911 cells (or a similar helper line) and the potential exists for recombination to occur 

at any time propagation is undertaken. Thus, the potential for introducing replication-

competent contaminates should always be considered when using this type of vector. 

A helper cell line has been developed to overcome this obstacle, known as PER.C6 

(364), presenting a solution to the problem. However, use of this cell line is 

prohibitively expensive and it has not been made available for academic research.  
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A) PCR of E1A region in replicative incompetent chimaeric adenovirus and as a 

positive control; replicative competent Ad5-WT and Ad5f35-EGFP. The expected 
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Figure 5-3 Replicating competent adenovirus contamination. 
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fragment size in E1A region sequence is 653bp and shown to be at the expected size 

for Ad5f35-WT and Ad5-WT. PCR of Ad5-E1Aneg and Ad5f35-E1Aneg show a 

fragment size of 500-600bp. B) An example of hexon expression analysis by flow 

cytometry from two different stocks of Ad5f35-EGFP; the FACS plots represent one 

experiment in A549 cells at 48hrs post-transduction. C) A summary of hexon 

expression from two different stocks of Ad5f35 in transduced A549, NKL and 

primary NK cells. D) Transduction and cell viability was analysed by flow cytometry 

48hrs post-transduction using replicative incompetent Ad5f35-EGFP in A549, 

primary NK cells, NKL and YT cells. 
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5.2.4 Functional analysis of transduced primary NK cells 

The ability of Ad5f35-EGFP to transduce primary NK cells provides a new avenue 

for gene transfer, and potentially a new perspective in NK cell-based adoptive 

immunotherapy strategies. In order to understand whether Ad5f35-EGFP transduction 

affects NK activation and function, NK cell’ responses to a tumour target were 

analysed, using functional assays (e.g. cytotoxicity and degranulation), as described 

in section 3.2.10.1 - 3.2.10.2 and analysed by flow cytometry using the gating strategy 

described in Figure 5-4a. In brief, NK cells from four donors were transduced and 

analysed at 48hrs post-transduction by flow cytometry; cells were transduced between 

7 and 25% (Figure 5-4b). Initially, NK cytotoxicity towards K562 (tumor target) was 

investigated to identify impairments in protein function or expression (e.g. granzyme 

and perforin). However, this assay includes the cytotoxicity induced from the total 

population of cells post-adenovirus transduction; thus a mixed population of 

untransduced and transduced cells were included. The tumour target, K562 cells were 

identified by flow cytometry in the forward and side scatter and were distinguished 

from NK cells by a cell tracker dye. After 5hrs of co-culture, K562s were stained with 

a dead cell discriminator as described in Figure 5-4a. The results show that cells with 

up to 25% transduced cells have a higher fold difference of cytotoxicity compared to 

that of untransduced controls; with a fold difference of +0.7 and +4.7 at a 1:1 and 3:1 

effector: target ratio respectively. A t-test indicated that this difference was not 

significant (Figure 5-4c). The limiting factor to this assay is the inability to 

differentiate cytotoxicity mediated by transduced cells alone from the untransduced 

population. 

The limitation of the cytotoxicity assays can be overcome by analysing the ability of 

NK cells to degranulate in response to K562. Upon activation, NK cells rapidly release 

cytolytic granules. Lining the luminal membrane of these granules is lysosomal 

associated membrane protein-1 (LAMP-1), also known as CD107a. The granule 

fusion to the cellular membrane upon exocytosis externalises CD107a to the cell 

surface, thus allowing for the assessment of degranulation; this provides a quantitative 

measurement of NK cell response to tumour targets (365). Upon degranulation, the 

content of the granules induce perforin-mediated damage on the target cells whereby 

granzyme family members (Granzyme A and B) translocate into the target cell and 

initiate the apoptotic cascade by cleaving numerous substrates (e.g. caspases, Bid, 

Ku70 and lamins) (366).  NK cells were identified by their forward and side scatter 
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and having no cell tracker dye compared to that of the targets (Figure 5-4a). The 

expression of CD107a was determined in NK cells without target to establish the basal 

level of surface expression. It is clear that there was donor variability in their capacity 

to degranulate, however there was no significant difference in degranulation 

compared to their respective untransduced controls. The mean values being a +0.1 

fold difference in degranulation compared to that of the untransduced control at an 

effector: target ratio of 3:1 (Figure 5-4d).  

These findings reveal that NK cells retain their capacity to degranulate post-

transduction as demonstrated by their ability to recognise targets and respond by 

releasing cytotoxic granules and inducing apoptosis in target cells. It is reasonable to 

assume the induction of CD107a on the surface of NK cells and target cell lysis 

correlate, and a previous study has shown that these events correlate (367). However, 

the absence of cytolytic proteins (such as granzymes or perforin) are known to impair 

the lytic function of NK cells (368). Despite, the limitations of the cytotoxic assay in 

differentiating the killing ability from untransduced and transduced populations, the 

level of killing was not reduced compared to experiments using untransduced cells. 

The cumulative data, suggests that adenovirus mediated transduction of primary NK 

cells does not significantly affect activation and functional activity with regards to 

degranulation. Overall, the ability of NK cells to retain function at 48hrs post-

adenovirus transduction is a supportive prospect in the use of this viral vector as a 

strategy for gene transfer and NK cell-based adoptive immunotherapy.       
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Degranulation and cytotoxic assays were performed on isolated NK cells that were 

either untransduced or transduced 48 hours prior with 1000 MOI Ad5f35-EGFP. 

K562s were used a tumour target and co-incubated for 4 hours at a ratio of 1:1 or 3:1, 

NK:K562 cells. The experiments was repeated from 4 healthy donors. A) The gating 

strategy and flow cytometric analysis used for degranulation and cytototoxic assays 

of untransduced and transduced NK cells. Degranulation was quantified using cell 

surface expression of CD107a on NK cells and cytotoxicity was assessed using a dead 

cell discriminator on K562. The percentage of untransduced controls were arbitrarily 

set to a fold account of 1, which the fold difference of transduced samples were 

determined. B) Percentage of Ad5f35-EGFP transduced NK cells with 1000 MOI. C) 

Summary of degranulation assays. D) Summary of cytotoxicity assay. Statistical 

analysis was determined using a ratio paired T test conducted between untransduced 

and transduced cells P<0.05; calculated p values are not significant. 

U
n

tr
a

n
s

d
u

c
e

d

1
:1

T
ra

n
s

d
u

c
e

d

1
:1

U
n

tr
a

n
s

d
u

c
e

d

3
:1

T
ra

n
s

d
u

c
e

d

3
:1

0

2

4

6

8

R a tio  e f fe c to r :ta rg e t

F
o

ld
 d

if
f
e

r
e

n
c

e

n s

n s

U
n

tr
a

n
s

d
u

c
e

d

1
:1

T
ra

n
s

d
u

c
e

d

1
:1

U
n

tr
a

n
s

d
u

c
e

d

3
:1

T
ra

n
s

d
u

c
e

d

3
:1

0 .0

0 .5

1 .0

1 .5

R a tio  e f fe c to r :ta rg e t

F
o

ld
 d

if
fe

r
n

c
e

n s

n s

1 2 3 4

0

10

20

30

%
 T

r
a

n
s

d
u

c
e

d

D o n o rs

b 

c d 

Figure 5-4 Ad5f35-EGFP mediated transduction of NK cells do not affect 

functional properties. 
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5.2.5 CD46  is a key molecule in Ad5f35 transduction  

A previous study demonstrated that Ad5 transduction efficiency is correlated to virus 

receptor expression (CAR) on cells (369). The importance of CD46 expression for 

Ad5f35-GFP cell binding and entry was determined using an anti-CD46 antibody. 

A549 cells were transfected with 0.3 MOI Ad5f35-EGFP in the presence of a CD46 

antibody, as described in (Section 3.2.4). Transduction efficiency was determined at 

24 hours, analysing EGFP expression by flow cytometry (Figure 5-5a). The result of 

3 experiments shows a reduction of 41% in the mean value of transduced cells in the 

presence of a CD46 antibody (Figure 5-5b). The results suggest that Ad5f35-EGFP 

mediated transduction of A549 cells is partially dependent on CD46 expression, as 

shown previously (242). The importance of CD46 for Ad5f35 entry into NK cells was 

then determined. Purified NK cells were transduced with 500 MOI Ad5f35-EGFP in 

the presence of a CD46 antibody and EGFP expression was analysed 24hrs post-

transduction by fluorescent microscopy (Figure 5-5c) and quantified by flow 

cytometry at 24hrs post-transduction. The result of 3 experiments shows a reduction 

of 33% in the mean value of transduced cells in the presence of a CD46 antibody, 

suggesting that Ad5f35 entry into NK cells is also partially dependent upon CD46 

receptor expression (Figure 5-5d). However, this may have been reduced further if a 

higher concentration of antibody was used. Other factors that might be important in 

Ad5f35 transduction is cell membrane fluidity which has been suggested to influence 

endocytosis of the Ad5f35 virus in a T cell line (197). The αVβ3 and αVβ5 integrin is 

also described as a key molecule for Ad5 binding and entry through interactions of 

the viral penton base which triggers internalisation of the virus following receptor 

attachment (197,370). 
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A549 and purified NK cells were treated with IgG, CD46 polyclonal antibody or untreated 

in combination with either Ad5f35 or no virus. A) GFP-positive A549 cells was determined 

by flow cytometry and summarised in B), showing the mean of 3 experiments. C) GFP-

positive purified NK cells was determined by fluorescent microscopy and summarised in 

D), showing the mean of 3 experiments. 

Untransduced Transduced Transduced:IgG Transduced:CD46 

c 

a b 

d 

Transduced 

CD46 

Blocking 

Transduced 

Transduction Efficiency (GFP+) 

1 2 3 

  -     -     -     +    +    + Ad5f35 

  -     -    -     +    +    + Ad5f35 

Ig
G

C
D

4
6

Ig
G

C
D

4
6

0

50

100

P r im a r y  N K  C e lls

%
 d

if
fe

r
e

n
c

e
 o

f

tr
a

n
s

d
u

c
e

d
 c

e
ll

s

Ig
G

C
D

4
6

Ig
G

C
D

4
6

0

20

40

60

80

100

120

A 5 4 9

%
 d

if
fe

r
e

n
c

e
 o

f

tr
a

n
s

d
u

c
e

d
 c

e
ll

s

Figure 5-5 CD46 expression is not the only factor affecting Ad5f35 transfection of 

A549 cells. 
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5.3 Discussion 

Existing methods for gene transfer in NK cells are inefficient. Here I used the chimeric 

adenovirus, Ad5f35 to transduce human NK cells with an efficiency that surpasses 

lentiviral and other delivery systems described (172,182,323–325). These data is 

reinforced by other studies that describe the ability of Ad5f35 transduction in NK 

cells, T cells and B cells (175,315,351). To enhance Ad5f35 mediated transduction of 

NK cells the experimental conditions were evaluated, and using centrifugation (also 

referred to as spinoculation) showed that efficient transduction of primary NK cells 

was consistent. Centrifugal force is a well-established step in enhancing lentiviral 

transduction, however little is known about the mechanism. There is one study 

utilising centrifugation to enhance adenovirus mediated transduction of dendritic cells 

(358), however it is not normally used in adenoviral transduction experiments. 

Speculatively, centrifugation might force NK cells that are normally in suspension to 

temporarily adhere which might increase the interactions between Ad5f35 and the 

cellular receptor, CD46 and integrin. Prolonged centrifugal force might also affect the 

surface area or fluidity of the membrane, thus enhancing the prospect of the virus 

entering the cell through clathrin mediated endocytosis. Furthermore, a high 

concentration of 150-300 MOI was required to achieve optimal transduction at 67% 

in purified NK cells (contrasting with the <1 MOI routinely used to transduce A549 

cells with the same virus stock). However, 150-300 MOI is not excessive in 

comparison to one study that investigated increasing MOI of Ad5f35 mediated 

transduction in NK cells, which used 1,000-10,000 MOI to achieve 50-60% 

transduction (175). My initial experiments found that IL-2 enhanced transduction 

efficiency, which is unsurprising as it likely prolonged cell viability of transduced 

cells. IL-2 induces NK activation, proliferation and survival through STAT5 

signalling, which results in induced cell cycle and regulation of NK activating genes 

(371). In particular, the IL-2 mediated induction of the anti-apoptotic gene BCL2 is 

likely to enhance NK cell survival (372); hence a higher level of viable transduced 

cells are observed in IL-2 activated cells. Thus, these conditions has strengthened the 

prospect of using Ad5f35-EGFP as a tool for gene transfer in NK cells.  

The comprehensive investigation on adenovirus mediated transduction of NK cells 

established issues in cell death and clumping of cells. NK cell clumping following 

adenovirus transduction was noted in my experiments. Clumping of cells has  
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previously been observed as a cytopathic effect of Ad5, and linked to the penton base. 

Removal of the RGD motif in the penton base can help overcome cell rounding and 

clumping; however this results in delayed cell entry (229,373). Whether NK cell 

clumping is deleterious is unclear. However, it might make delivery of transduced NK 

cells to patients less efficient. Cell death was also an issue in the early experiments 

and this was linked to the contamination of virus stocks with replication competent 

viruses via recombination during propagation in the producer cells (911 cells). The 

E1 region of the adenovirus genome is essential for the expression of early and late 

genes, and for virus replication (374); deletion of this region renders the virus 

replication deficient. The producer cell line, 911 has incorporated Ad5 sequence from 

79 – 5789 (of Ad5), encoding the E1A and E1B genes to trans-complement early 

region function in vectors missing this region to enable virus expansion (375). The 

disadvantage of this system is having Ad vectors that are deleted from ~400 – 3500 

(376) (i.e. wholly within the region inserted into 911 cells), allowing recombination 

between these sequences and generation of viruses with restored early region function, 

thereby contaminating virus stocks with replicating competent vectors. The E1A 

region consists of two exons, to confirm E1A presence in the virus stock, exon 1 was 

amplified by PCR and detected, but found to be at a different size to that of the wild 

type stock. Despite this discrepancy, the expression of hexon, a protein expressed late 

in virus replication as a result of E1A activity regions of virus replication supported 

the evidence that the virus was replicating. This has been a long-established problem 

in both viral production and clinical applications. However, stocks may still be used 

if the concentration of replicating virus particles are low, according to a report by the 

FDA (377). Attempts have been made to develop producer cell lines with varying 

amounts of adenovirus sequence designed to reduce the occurrence of recombination; 

however the reports differ in their efficacy (363). One such cell line, PER.C6, like 911 

are derived from human embryonic retinoblast cells and have the E1A and E1B region 

incorporated from Ad5 genome sequence from positions 459 – 3510 (364). This cell 

line is likely the best designed cell line for the expansion of replication deficient 

adenovirus for clinical applications as it has the smallest fragment of Ad5 sequence 

incorporated, therefore restricting the levels of sequence homology and resulting 

recombination (378).  However, due to the licensing costs of working with PERC.6, 

the 911 cell line is the preferred producer cell line for virus expansion in this study 

(and most others). Regardless of these issues the occurrence of recombination is low 
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in the first passages of adenovirus (362), and this was confirmed by testing and 

utilising different stock of virus. Overcoming this issue through limiting passages 

during virus expansion and testing for replication is the best approach for restricting 

this issue from recurring. 

Evaluating the functional effects of Ad5f35 transduced purified NK cells was essential 

for using this system as a tool in manipulating NK anti-tumour activity. Investigating 

adenoviral vector-mediated gene delivery and response from the adaptive immune 

system has been demonstrated (379), however less is known concerning an NK cell 

response. One study has demonstrated NK cell induced activation from replication 

deficient adenovirus vectors in mice (302). This is unsurprising as NK cells have 

evolved to respond to viral infections and rapidly activated following infection, 

undergoing proliferation and producing IFNγ (380). NK cells have also been reported 

to respond to double stranded RNA produced during the adenovirus life cycle, 

inducing an IFNα/β response (303), however the pathway by which this occurs is 

unknown in NK cells (302,303). Nevertheless, these studies suggest that replication 

defective adenoviral vectors mediate NK activation, however the phenotype of 

Ad5f35 transduced NK cells have not been investigated (175). Furthermore, these 

studies do not distinguish the anti-viral response of the NK cell from functional 

changes that might occur as a result of transduction. Here I have demonstrated that 

NK cells have retained their ability to recognise, degranulate and kill tumour targets 

48 hours post-transduction, a key desirable feature if these vectors are to be used in 

clinical applications. These limited reports on NK cells activation in response to 

adenovirus suggest that the effects of adenoviral mediated transduction of NK cells 

might enhance activation and improve their anti-tumour capacity. Other viral vectors, 

such as the vaccinia virus, has been shown to impair NK cell cytotoxicity (381,382).  

Monitoring the expression of EGFP post-transduction in NK cells indicated that 

protein expression is best evaluated at 24 and 48 hours post-transduction, where 

subsequently cell viability is reduced. Retaining cell viability for longer periods 

permits observations of long-term transgene expression in a laboratory setting. There 

are a number of protocols currently in use to expand primary NK cells (383,384). 

Short-term NK expansion (~14 days) can be achieved by IL2 or IL15 treatment, which 

induces signals for survival, proliferation and activation. In comparison, feeder cells, 

such as K562 or Jurkat (a T cell line) have been used to achieve NK cell expansion 

for longer periods (385). The use of autologous PBMC has also been effectively 
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demonstrated in NK cell expansion, however not as effective as K562 cells (385). The 

disadvantage of these applications would be the risk of losing transgene expression 

due to the turnover of modified NK cells with NK cells that do not carry the transgene. 

Estimates of the lifespan of NK cells are variable, with some studies performed in 

vivo suggesting a half-life of 1-2 weeks in humans (386), and 7-10 days in mice (387), 

however transducing NK cells with adenovirus might have an impact on the kinetics 

of NK cells and therefore lifespan might vary. One report has used an anti-TNF 

antibody to block apoptosis in NK cells (388), which might provide a solution to NK 

cells retaining transgene expression for a longer period. Regardless of these reports, 

the results here show that the detection of EGFP rapidly declines from 3 days post-

transduction. The short term viability and detection of transgene expression in NK 

cells might be observed as an advantage under a clinical perspective whereby 

genetically modified cells do not accumulate, therefore globally enhanced NK cells 

do not cause potential long-term problems, such as induced autoimmunity. A scenario 

in which autologous NK cells are maximally expanded ex vivo, then transduced and 

reinfused within ~24 hours might allow the maximum number of transduced cells to 

be delivered to a patient. 

In conclusion, the results here describe an efficient method for transducing human NK 

cells using the chimeric adenovirus, Ad5f35. This method provides an alternative 

option to using lentiviral vectors in delivering and analysing short-term gene 

expression in primary NK cells. This vector’s ability to transduce primary NK cells 

without altering their anti-tumour cytotoxicity is a significant asset and a promising 

tool in analysing pathways in NK cells or in clinical applications in immunotherapy 

of cancers. Many cancers exploit the immunosuppressive cytokine TGFβ to evade 

anti-tumour immunity in general and NK and cytotoxic T cells in particular (118,389). 

Engineering NK cells using Ad5f35 recombinants to resist the actions of this cytokine 

might generate a more potent anti-tumour response (134,204); this is addressed in the 

next chapter. 
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6 Engineering resistance to Transforming Growth Factor (TGF)-β 

6.1 Introduction 

Tumour progression is no longer solely viewed as an intrinsic property of the 

malignant cells. It is now recognised that multiple cell types (tumour cells, blood 

vessels, immune cells and stroma cells) contribute to the disease phenotype (5). The 

ability of the tumour to evade immunity is now recognised as a hallmark of cancer 

(5), complementing the concept and importance of tumour immunosurveillance (as 

described in Chapter 1). TGF-β, a cytokine known for its anti-proliferative affects 

plays a key role in tumour progression. Tumour cells themselves lose responsiveness 

to TGF-β, for example by acquiring mutations in the TGF-β signalling pathway (112). 

However, localised TGF-β can act upon the immune cells and inhibit both their 

proliferation and activation; one major target of TGF-β is NK cells (118,120,390). 

The addition of TGF-β to NK cells activated in vitro by IL-15 or IL-2 inhibits 

proliferation, cytotoxicity and interferon-γ secretion (118,120,390). Strategies are 

being investigated to block TGF-β tumour-mediated progression, thereby protecting 

immune cells from its immunosuppressive action. These include compounds and 

antibodies that target TGF-β and its receptors. The disadvantages of these strategies 

(that affect their efficiency) include their short half-life, specificity (especially for 

kinase inhibitors) and ineffective application when used alone (391). However, when 

used in combination with an adoptive transfer of activated immune cells (e.g. T cells), 

they have a greater effect (392). Thus, exploiting the use of autologous enhanced 

immune cells that can overcome TGF-β inhibition is a novel strategy in combating 

the effect of TGF-β induced tumour immunosuppression.  

The disruption of TGF-β signalling in T cells or NK cells is known to improve anti-

tumour immune responses (120,393), thus identifying the TGF-β pathway as a viable 

target by which to enhance anti-tumour immunity. Studies have utilised the expression 

of dominant negative TGFβRII in NK-92 and primary NK cells from cord blood and 

demonstrated that this reduces the action of TGF-β (134,204). Further, the NK-92 cell 

line engineered to express dominant negative TGFβRII was adoptively transferred 

into mice with lung cancer, which resulted in a higher survival rate and an increase in 

IFN-γ levels (204). These studies provide a foundation for the use of adoptive transfer 

of genetically engineered NK cells that are insensitive to TGF-β tumour 

immunosuppression. However, TGF-β  exerts activity on many cell types and 
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blocking TGF-β activity can be deleterious; a dominant  negative TGFβRII expressed 

in mice results in an increased risk and promotion of tumorigenesis in mammary and 

lung epithelial cells (394,395), raising concerns for enhanced outgrowth of tumours. 

However, this approach has yet to be described in human NK cells isolated from 

whole blood from either healthy donors or patients.  

In this chapter, the assessment of inhibitors in the TGF-β pathway will be assessed 

and used in combination with Ad5f35 as a reliable method for gene transfer into 

primary NK cells.  
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6.2 Results 

6.2.1 TGF-β modulates the expression of  NK activating receptors and 

cytolytic activity 

The NK cell receptors NKG2D, DNAM-1, NKp46 and NKp30 play an important role 

in recognising tumour targets (396–398). In addition, the Fc receptor CD16 is 

important in antibody-dependent cell-mediated cytotoxicity (ADCC) (399), this 

includes mediating NK cell activation in response to therapeutic antibodies such as 

Herceptin (400) and Rituximab (401). These NK cell activating receptors are known 

to be downregulated by the action of TGF-β (118,119), thereby reducing NK cell 

function responses to tumour cells. As the phenotypic effect TGF-β has on NK cells 

is well known, I first confirmed that TGF-β did indeed modulate the expression of 

these cell surface molecules using isolated primary NK cells purified from one donor. 

NK cells were either left unstimulated, or treated with IL-15 alone or in combination 

of IL-15 and TGF-β treatment, for 48hrs. IL-15 was used as it is a well-characterised 

cytokine that upregulates the expression of NK cell activation receptors through JAK 

and STAT signalling (56). The results show that the cell surface expression levels of 

NKp30 and DNAM-1 were induced by IL-15 (2-3 fold) but that this induction was 

blocked by a combination of IL-15 and TGF-β (Figure 6-1a and b). Expression of 

NKp46 was weakly induced by IL-15 (consistent with previous studies (118)) but 

expression was inhibited by TGF-β treatment. Expression of CD16 was enhanced in 

this one donor by IL-15 and TGF-β. Although just performed in a single donor, these 

results agree with findings from previous studies where human NK cells treated with 

TGF-β were shown to down regulate the expression of the activating receptors 

NKp30, NKG2D and DNAM-1 (118,119). These receptors play a key role in NK cell 

recognition of tumour cells (35) and their reduced expression was predicted to reduce 

NK cell-mediated killing of tumour targets, as shown in previous studies (118). 

Cytotoxicity assays were performed using the leukemic cell line K562 as a tumour 

target. Isolated NK cells (from two donors) were pre-treated with IL-15, alone or in 

combination with TGF-β for 48hrs prior to analysis. K562 cells were labelled with a 

cell tracker dye and then co-cultured with the cytokine-treated NK cells for 4hrs at a 

ratio of 1:1 and 1:3 respectively before targets were analysed by staining with a dead 

cell discriminator and assessed by flow cytometry (Figure 6-1c). The results show that 

NK cell mediated killing was reduced when NK cells were treated with IL-15 and 
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TGF-β compared to IL-15 alone (Figure 6-1d). A control in which natural killer cells 

were treated with TGF-β alone was not included in this experiment. However, it is 

well established that TGF-β antagonises the action of IL-15, inhibiting NK cell 

activation by this cytokine (118–120); treatment with TGF-β alone has little or no 

effect, at least in vitro. Nevertheless, these results confirm that TGF-β has potent 

immunosuppressive activity towards NK cells and represents a potential 

immunotherapeutic target.  
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A) NK cells were unstimulated or stimulated with either 20 ng/ml IL-15 (15) or 5 ng/ml TGF-β or IL-15 plus 5 ng/ml TGF-β for 48hrs. Cell surface 

expression of NK cell activation receptors as indicated were analysed by flow cytometry using the representative gating strategy for NK cells. B) 

Summarised of (A) from one donor. C) A standard killing assay was performed against K562 tumour cell line at an Target: Effector ratio of 1:1 and 

1∶3 and analysed by flow cytometry using the representative gating strategy; K562s were stained with cell tracker green prior to co-culture with NK 

cells for 4hrs and stained with Zombie dye, a dead cell discriminator. D) The results from two donors were summarised, measuring the percentage of 

dead K562 cells.  

c d 

Figure 6-1 TGF-β antagonises IL-15 induced the expression of NK cell activation receptors and reduces cytotoxicity against K562 cells. 
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6.2.2 TGF-β signalling in the presence of inhibitory molecules 

The inhibitory effects of TGF-β on NK cells can be overcome by expressing dominant 

negative (dn) TGFβRII (134,204). This synthetic type II receptor lacks the 

cytoplasmic serine/threonine kinase domain, which stops the formation of the 

heteromeric complex and the phosphorylation by the type I receptor, therefore limits 

further intracellular signaling from TGF-β (134,204). TGF-β signalling induces at 

least two feedback inhibitory molecules, SMAD6 and SMAD7 (106). Ectopic 

expression of these molecules is also predicted to inhibit TGF-β signalling (22,23). 

Before attempting to manipulate these molecules, their expression was analysed. 

Primary NK cells were purified from PBMC from 3 donors and were treated with IL-

2, TGF-β and a combination of both. IL-2, and not IL-15 was used to stimulate NK 

cells in this experiment as it was the main cytokine that was used to enhance NK cell 

survival during adenovirus mediated transduction of cells (see Chapter 4). At 48hrs 

post-treatment protein expression was assessed by Western blot, as shown in Figure 

6-2a and described in the methods section 3.2.7. Quantification by densitometry from 

3 donors was performed (Figure 6-2b-d). These results showed that the levels of 

TGFβRII, SMAD7 and SMAD6 remain consistent across all conditions. TGF-β has 

been shown to downregulate transcription of its receptors and upregulate SMAD7 in 

chondrocytes (402), however these results suggest that at 48hrs post-treatment, TGF-

β does not affect expression of these molecules in NK cells. Nonetheless, these results 

show that SMAD6 and SMAD7 are expressed by NK cells.  

I next used a reporter assay system, in an attempt to prove the inhibitory actions of 

dnTGFβRII, SMAD7 and SMAD6 on TGF-β signalling. This assay utilised HaCaT 

cells, immortalised keratinocytes that are readily transfectable and which respond to 

TGF-β (403). I used a reporter construct (3TP-Lux) which fuses the TGF-β responsive 

promoter from the human PAI-I gene to firefly luciferase; TGF-β signalling thus 

induces luciferase expression which is assayed using a luminescence-based enzyme 

assay (404). HaCaT cells were transfected with 3TP-lux along with pRL-TK-Renilla, 

which was used as a transfection control, as described in the methods section 3.2.2.3. 

At 24hrs post-transfection, cells were treated with TGF-β and at 48hrs post-

transfection, cells lysates were analysed using a luminometer (Berthold Mithras). As 

expected, TGF-β exerted a dose dependent increase in luciferase activity until it 

reached a peak in the presence of 10-15ng/ml TGF-β and then reduces at 20ng/ml 

TGF-β (Figure 6-3a). Simultaneous addition of TGF-β with Galunisertib, a TGFβRI 
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inhibitor (405), prevented the TGF-β mediated induction of luciferase activity, even 

at a maximal concentration of 20ng/ml TGF-β (Figure 6-3a). This data shows that this 

assay can be used to measure TGF-β signalling in the presence of inhibitors and would 

therefore be useful in screening genes with inhibitory function in the TGF-β signalling 

pathway.  

I investigated the effects of overexpressing the inhibitory SMADs and the dnTGFβRII 

on TGF-β signalling using the luciferase assay. Plasmids encoding dnTGFβRII, 

SMAD6 and HA-tagged SMAD7 were co-transfected with the PAI-I-luciferase and 

Renilla plasmids. After 48hrs, cell lysates were used in western blots, to confirm 

expression of the co-transfected molecule and then used in luciferase assays. The blots 

show that SMAD7 (detected with the HA-tag) and SMAD6 were expressed in HaCaT 

cells (Figure 6-3b). However, only a band size equivalent to endogenous TGFβRII 

was detected, and not the transfected dnTGFβRII (Figure 6-3b). This could be due to 

several factors, for example the specificity of the antibody used to detect dnTGFβRII, 

the efficiency of transfection of HaCaT cells or expression of the dnTGFβRII 

molecule in HaCaT cells. The ability to detect TGF-β inducible luciferase activity in 

HaCat (Figure 6-3a) suggests that transfection of HaCaT is efficient. Furthermore, 

transfected SMAD6 and SMAD7 were readily detected (Figure 6-3b). It seems likely 

that the dnTGFβRII construct is either inefficiently expressed or the antibody is not 

capable of detecting this species in HaCaT cells. A dnTGFβRII with an epitope tag 

(e.g. HA, as used to detect SMAD7) at the N-terminus of the mature extracellular 

domain would be a useful control to ensure expression of this molecule. Transfection 

of either dnTGFβRII or SMAD7, led to reduced TGF-β signalling as assayed using 

the luciferase reporter system, whereas no effect was seen when SMAD6 was 

expressed (Figure 6-3c). Statistically significant impairment of TGF-β signalling was 

observed only in the case of SMAD7 (p=0.035), whereas expression of dnTGFBRII 

did not exert statistically significant effects. However, dnTGFβRII is known to hinder 

TGF-β signalling in NK cells (134) and TGF-β signalling was markedly reduced in 

the luciferase assay. It is possible that TGF-β signalling within cell lines exhibit some 

variation, thus affecting the outcome of the luciferase assay. Supporting this, 

contrasting results have been published in over-expression of SMAD7 in a luciferase 

based assay in Mv1Lu (406) and  COLO-357 p3TP-lux transfected cells (407). 

However, the results here identify dnTGFβRII and SMAD7 as candidates by which 

to inhibit TGF-β signalling. Notably, SMAD6 is traditionally known to inhibit the 
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receptor SMADs for BMP signalling, however a recent study has also shown that 

SMAD6 also inhibits TGF-β1 non-canonical signalling (408). The next step was to 

generate recombinant Ad5f35 encoding these molecules for delivery to NK cells.  
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Figure 6-2 The levels of TGFβRII, SMAD7 and SMAD6 remain consistent in 

unstimulated and IL-2 and/or TGF-β stimulated NK cells. 

A) Primary cells were treated with either 100IU/ml IL-2 and/or 5ng/ml TGF-β1 and 

cultured for 48hours before detecting by western blot as represented by one donor and 

(B) summarised by densitometry in 3 donors for the expression of TGF-β Receptor II, 

(C) Smad7 and (D) Smad6. The bands from all donors were analysed by densitometry 

and beta-actin was used as a protein control. The resting samples were arbitrarily set 

to 1 and the results are the mean and standard deviation from three donors.  
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Figure 6-3 Dominant negative TGF-β receptor II and Smad7 is involved in 

inhibiting TGF-β signalling mediated by TGF-β1 in HaCaT cells. 

A) HaCaT cells were co-transfected with 0.5μg p3TP-Lux reporter construct, along 

with 0.4ug pRL-TK as a control for transfection efficiency. At 24hrs post-transfection 

they were treated with either TGF-β1, 10μM Galunisertib or untreated. B) HaCaT 

cells were further co-transfected with either Smad6, Smad7 or dominant negative 

a 

b 

c 

ng/ml 

TGFβ 10ng/ml 
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TGF-β receptor II and a western blot was performed from one transfection to 

determine protein expression 48hrs post-transduction. C) The luciferase fold 

difference was determined in cells transfected with either Smad6, Smad7 or dominant 

negative TGF-β receptor II in cells treated with TGF-β1. The luciferase output is 

represented as fold increase, with the resting and unstimulated cells arbitrary set to 1. 

The graphs show the mean ± SD of three independent transfections conducted in 

triplicate. A t-test was performed as illustrated from the numerical figures depicted in 

(C); statistical analysis is statistically significant at  P<0.05.  
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6.2.3 Generation of Ad5f35-CFP-dnTGFβRII  

Expressing dnTGFβRII in cord blood NK cells has been shown to hinder inhibition 

from TGF-β and retain activation towards tumour targets (134). The findings from 

Figure 6-3 also suggest that expressing dnTGFβRII has the capacity to reduce TGF-β 

signalling, therefore this receptor was chosen for further investigation in isolated 

primary NK cells. Recombineering (“Recombination-mediated genetic engineering”) 

was the system used to insert the dnTGFβRII gene into Ad5f35, which was initially 

developed using a replication-deficient Ad5 vector (409). This system uses a bacterial 

artificial chromosome (BAC) that contains the Ad5f35 genome maintained as a single 

copy bacmid in the E.coli SW102 strain (410). The Ad5f35 genome used has the E3 

region deleted and replaced with CFP under control of a CMV promoter, and the E1 

region deleted and replaced with a selection cassette. This selection cassette includes 

three genes that encode ampicillin resistance, sensitivity to sucrose (SacB) and lacZ 

(to produce blue colonies when provided with the chromogenic substrate, X-gal). A 

schematic diagram of this process is explained in the methods section, Figure 3-4.  

The first step in recombineering was synthesising the dnTGFβRII fragment with 

flanking adenovirus sequence for homologous recombination events that replace the 

selection cassette (Figure 6-4a). For optimal specificity, primers were designed to add 

80bp of Ad DNA homology flanking the dnTGFβRII gene. A gradient PCR was set 

up to identify the appropriate annealing temperature that was found to be optimal at 

temperatures between 55-64°C (see methods section 3.2.6.1.2). A PCR fragment was 

purified from the agarose gel in preparation for recombineering (Figure 6-4b). The 

purified dominant negative TGFβRII gene fragment was then electroporated into 

SW102 cells containing the Ad5f35 BAC.  

Recombination was mediated by a modified λ prophage system that has enhanced 

efficiency in homologous recombination (411). This λ prophage system was modified 

by deletion of lytic genes and controlling the genes required for recombination. The 

left promoter (pL) is responsible for the expression of genes responsible for 

recombineering: Gam, Exo and Beta. The Gam gene encodes a protein that inhibits 

the host's nucleases which are involved in double-stranded break repair and would 

otherwise degrade the linear DNA of the incoming fragment. The Exo and Beta genes 

encode proteins that perform the recombination process. The Exo gene encodes a 5′-

3′ dsDNA dependent-endonuclease that binds to the end of the introduced dsDNA and 
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degrades one strand to create a 3′ overhang. The beta gene encodes a protein that binds 

to the overhang to prevent degradation of the ssDNA and facilitates the interaction 

between homologous sequences. Expression of these recombination genes is 

controlled by the cI857 gene, a temperature-sensitive mutant repressor from 

bacteriophage  that is inactivated at 42°C. Inactivation of the repressor allows the 

expression of pL that results in the expression of the genes that facilitate 

recombination (see methods section 3.2.6.2 for further details). Putative recombinants 

were selected by plating electroporated cells on agar plates containing 

chloramphenicol, sucrose, IPTG and X-gal. The LacZa encoded selection catabolises 

X-gal to produce a blue phenotype in the presence of IPTG, therefore recombinant 

should only form a white colony (circled in green in Figure 6-4.c). However, as the 

dnTGFβRII gene replaces the selection cassette, recombinants should be the only 

colonies to grow in the presence of sucrose. However, non-recombinant (blue) 

colonies were observed on the sucrose plates, suggesting that some cells were 

insensitive to sucrose (circled in red in Figure 6-4c). To confirm recombinants, colony 

PCR was performed on white colonies using primers that were specific to the 

dnTGFβRII gene (methods section 3.2.6.1.3). As a positive control, the PCR was also 

performed on the dnTGFβRII plasmid. A PCR product was formed from 3 colonies; 

11, 27 and 28 out of a total of 37 colonies screened (Figure 6-4d). This shows that the 

efficiency of recombination is approximately ~8 per 100 colonies. The three colonies 

were inoculated into larger cultures and the BAC isolated for further validation, as 

well as transfected into 911 cells for propagation of the recombinant virus.   
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The AdZ system: the gene fragment with flanking adenovirus sequence is cloned into 

the BAC containing the Ad5f35 genome by a single recombination step that replaces 

the selectable markers and permits for identification of positive recombinants (circled 

in green). A) The dominant negative TGFβ receptor II gene was amplified using HiFi 

DNA polymerase from the pLNCX-TbetaRIIDN plasmid (Addgene). Included as a 

negative control (Neg) was a PCR performed with no template DNA. A gradient PCR 

with different annealing temperatures as indicated was separated by electrophoresis 

on a 0.8% agarose gel. The arrow marks the expected PCR product. The PCR product 

from the gradient PCR was separated by electrophoresis for gel extraction for 

recombineering. B) Competent SW102 cells were electroporated with 10ng of the 

Figure 6-4 Generation of the DNRII in  the BAC containing Ad5F35-CFP genome. 
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dominant negative TGFβ receptor II PCR product and recovered in 1ml LB in 32°C 

shaking incubator. After 1 h, the cells were washed in M9 salts and plated at different 

concentrations onto chloramphenicol, X-gal and IPTG selection plates. The plates 

were then incubated at 32˚C until colonies were present. C) Potential recombinants 

were identified as white colonies (circled in green) and were screened for the presence 

of the dnTGFβRII gene by colony PCR. PCR was performed using Taq DNA 

polymerase with primers specific for the dnTGFβRII gene. A sample of the products 

of each of the PCR reactions was separated by electrophoresis on a 0.8% agarose gel. 

The pLNCX-TbetaRIIDN plasmid was included as a positive control and no template 

was included as a negative control. 
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6.2.4 DNA sequence analysis of Ad5f35-CFP- dnTGFβRII   

Following recombination, steps were made to confirm the dnTGFβRII gene insert was 

correctly cloned into the BAC at the selection cassette site. First, the BAC from the 

three constructs were isolated and incubated with the BamHI restriction endonuclease. 

Recombinants appeared correct due to the loss of the 1.7 kb and 2.5kb bands 

encompassing the selection cassette (Figure 6-5a). Secondly, Sanger sequencing was 

performed on PCR products that amplified the insert (using primers from flanking 

adenovirus sequence) which confirmed that the dominant negative TGFβRII gene was 

located at the correct site. The construct from colony 28 showed a point mutation and 

a single nucleotide deletion in the dnTGFβRII sequence, therefore was not used in 

further investigation (data not shown). The construct from colony 11 displayed the 

same nucleotide deletion as colony 28. Analysis of this deletion shows a single 

adenosine base is deleted within a cluster of ten adenosine residues, which predictably 

results in a frameshift mutation (Figure 6-5b) (Complete sequence in appendix 9.3).  

Lastly, sequencing from colony 27 shows a mixed sequence trace, the dominant trace 

is that of the expected sequence for dnTGFβRII and the minor sequence shows the 

same base deletion as colony 11 and colony 28 (Figure 6-5b) (Complete sequence in 

appendix 9.4). The frameshift mutation observed in colony 11 and 27 alters the 

reading frame and allows it to continue for a further 34 amino acids before a stop 

codon is encountered (Figure 6-5c). This generates a predicted protein product that is 

161 amino acids in length (approximately 17kDa). Furthermore, the alteration to the 

open reading frame occurs on the N-terminal side of the predicted transmembrane 

domain of the wild type protein (Figure 6-5c). This suggests that this construct, here 

denoted truncated (t) dnTGFβRII would express a protein that would not be anchored 

to the plasma membrane and might result in the receptor being secreted. 

Deletion of intracellular domains from TGFβ receptors results in mis-sorting of the 

molecules in polarised cells (412). The mixed population of sequences found in 

colony 27 will likely result in two different viruses expressing two different receptor 

variants, one being a truncated form of dominant negative TGFβRII (tdnTGFβRII 

~21kDa) and the second being the expected dnTGFβRII (~33kDa).  

Interestingly, the mutation present in tdnTGFβRII has been observed in colorectal 

cancer from Lynch syndrome patients, who have mutations in mismatch repair genes 

(112). The mutation is associated with reduced cell surface expression of TGFβRII 
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(413). This mutation predictably allows tumour cells to escape TGF-β growth control 

and aids in tumour progression. In this project, the deletion might be caused by one 

of two reasons: firstly, the initial generation of the fragment by PCR might have 

introduced the deletion through error of the polymerase or secondly, the error might 

have been caused during BAC replication when propagating the construct. The mixed 

population of sequences observed in colony 27 suggests that it is unlikely to be caused 

by the PCR that generated the insert. This would suggest that clustered adenosine 

repeats is problematic for polymerase based error during BAC replication in the E. 

coli strain used for BAC recombination. However, this system was not efficient in 

repairing the deletion which might be due to mutagenesis of the repair system or most 

likely the efficiency of recruiting the DNA repair system to the site of the deletion. 

The recurrence of the same mutation in all three colonies also suggests that this issue 

would not be resolved from repeating the recombination step. Therefore it was 

decided to investigate whether these constructs did encode a functional form of a 

dnTGFβRII. 

For simplicity, the virus constructs were termed tdnTGFβRII.1 for colony 11 and 

tdnTGFβRII.2 for colony 27. The BACs were transfected into 911 cells and the 

propagated virus was isolated and validated by electron microscopy, showing the 

presence of intact adenovirus particles (appendix section 9.5). A549 and 911 cells 

were transduced and transduction efficiency was determined by fluorescence 

microscopy at 48hrs post-transduction (Figure 6-6a). The problems experienced with 

recombination of early region genes back into the vector during propagation in 911 

cells (Chapter 4) prompted analysis of replication by these recombinants. The 

expression of hexon protein (a late gene, requiring early region gene expression) was 

determined by flow cytometry in transduced cells (and untransduced controls) (Figure 

6-6b). The 911 cells provide E1A in trans and are used as a producer cell line; 

transduction into these cells induced hexon expression whereas A549 cells lack E1A 

and no hexon expression was detected. This indicated that these preparations were not 

contaminated with replication-competent viruses generated during propagation in 911 

cells.  
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Figure 6-5 Validation of the frame shift mutation in the DNRII insert.  

A) BAC DNA from three isolated colonies and a control was isolated. Recombinants were tested by incubating the BACs with BamHI and were 

separated on a 0.8% agarose gel. Colonies were identified by the loss of the 1.7 and 2.5kb products (marked with arrows) that were present in the 

control. B) The BACs were sequenced and compared to the dnTGFβRII plasmid sequence control. A mutation is indicated in exon 3 showing a single 

adenosine base deletion on the reverse and forward strands and control sequence (shown with arrows). C) The base deletion results in a frame shift 

(shown in red) prompting a premature stop codon at the beginning of the transmembrane region (shown in bold).  

c 
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a 

b 

Figure 6-6 Virus constructs are 

replication deficient. 

A) A549 and 911 cells were 

transduced at MOI of one with 

tdnTGFβRII.1 and tdnTGFβRII.2. 

Transduction efficiency was 

determined by fluorescent 

microscopy 48hrs post-transduction. 

B) In addition, cells were assessed for 

transduction efficiency by flow 

cytometry by CFP expression. Virus 

replication was determined by hexon 

expression in untransduced and 

transduced controls.   
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6.2.5 The expression of dominant negative TGFβRII in A549 cells 

The frameshift mutation observed in both Ad5f35 tdnTGFβRII.1 and tdnTGFβRII.2 

predicts that the dnTGFβRII will be truncated due to a premature stop codon (Figure 

6-5). This frameshift mutation might result in reduced transport and expression of the 

receptor at the cell surface, thus reducing its inhibitory function. Using the protein 

sequence, which was translated from the DNA analysis using ‘ExPASY translate 

tool’, the open reading frame was analysed in TmPred, a transmembrane prediction 

tool which evaluates the hydrophilicity and hydrophobicity of the protein sequence 

(414). The results generated a plot using a ‘hydropathy scale’ which identified the 

leader sequence (also known as the signal peptide) which prompts translocation into 

the endoplasmic reticulum (Figure 6-7a). The predicted polypeptide sequence of 

tdnTGFβRII shows a cryptic transmembrane site at the C-terminus (Figure 6-7a).  

Thus, it is plausible that the tdnTGFβRII receptor will be expressed at the plasma 

membrane, however this computational approach is speculative.  

To further analyse the expression of the truncated form of dnTGFβRII at the plasma 

membrane, A549 cells were used to determine protein expression, as these cells are 

readily transduced with Ad5f35. A549 cells were transduced with Ad5f35 

tdnTGFβRII.1 and tdnTGFβRII.2 and the cell surface expression of TGFβRII 

determined by flow cytometry. The expression of virus-encoded CFP was also 

determined and compared to untransduced cells at 48hrs post-transduction. Cells that 

were transduced with tdnTGFβRII.1 showed a mean 87-fold increase in TGFβRII 

surface expression, with 87% of cells CFP positive. In contrast, cells that were 

transduced with Ad5f35 tdnTGFβRII.2 showed a mean 10-fold increase in TGFβRII 

expression, with 57% CFP positive (Figure 6-7b). This is in agreement with a previous 

study showing that A549 express TGFβRII at high levels, especially compared to 

hepatocellular carcinoma cell line (HepG2) and a lung fibroblast cell line (HFL-1) 

(415). This study suggests that overexpression of TGFβRII in A549 has a direct effect 

on the expression of metalloproteases, which aid in tumour progression (415).  Both 

constructs display the same mutation, however the mixed sequences shown in Ad5f35 

tdnTGFβRII.2 will predictably express two types of dnTGFβRII. The first type being 

the aberrantly truncated form of dominant negative TGFβRII where the frameshift 

results in a premature stop codon close to the transmembrane region. The second 

being the expected dominant negative TGFβRII protein which is known to be 

functional and expressed on the cell surface (416). Therefore, the level of CFP will 
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remain consistent with both types, however the level of dnTGFβRII being analysed 

will vary.  

To further investigate expression of TGFβRII on the cell membrane, western blot was 

used to detect dominant negative TGFβRII expression by A549 cells that were 

transduced with Ad5f35 tdnTGFβRII.1 and compared to untransduced cells at 48hrs.  

Blotting of untransduced cells and cells transduced with the parental Ad5f35 vector 

(without the dominant negative receptor) identified a single species of TGFβRII  at 

approximately 68kDa (Figure 6-7c). This corresponds to the endogenous TGFβRII 

molecule which (at 565 amino acids) has a predicted molecular weight of 65kDa. 

Importantly, TGFβRII  is N-glycosylated and the extent of these modifications varies 

between cell types, with molecular weights in the range of 65-90 kDa reported (41). 

At 65 kDa, the species identified in A549 cells in Figure 6-7c is similar to the major 

species reported in A549 cells by others (41). At 301 amino acids, the dominant 

negative TGFβRII  molecule has a predicted molecular weight of ~33 kDa (without 

glycosylation) and the truncated derivative (at 186 amino acids), ~21 kDa (calculated 

using the Compute pI/Ww tool at ExPASy). However, both the dominant negative 

and the truncated dominant negative molecules have an intact extracellular domain 

containing two predicted sites for N-linked glycosylation (Asn70 and Asn94; ref 41) 

suggesting that the dn and tdnTGFβRII molecules will have a molecular weight 

greater than 33 or 21 kDa respectively. This N-linked glycosylation on the 

extracellular domain is essential for transportation to the cell surface and efficient 

ligand binding (417). The absence of a band clearly identified as the dn and 

tdnTGFβRII species and the complications of unpredictable changes in molecular 

weight due to at N-glycosylation suggest that the glycosylation should be investigated. 

Expression using cell lines defective in specific glycosylation steps or the treatment 

of lysates with different glycosidases would help to define the molecular weight of 

the core expressed polypeptide. In addition, immunoprecipitation of expressed 

material followed by limited protease digestion and mass spectrometry would aid 

definitive identification of the species interacting with the anti-TGFβRII antibody 

used in these experiments. 

In summary, transduction of A549 cells with Ad5f35 tdnTGFβRII.1 demonstrated a 

substantial increase in TGFβRII expression and a variety of migrating species in the 

range of ~45-65 kDa (Figure 6-7c); this suggested that cells transduced with this virus 
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did express exogenous, virus-encoded TGFBRII derivative(s). Biotinylation of cell 

surface molecules followed by streptavidin pull down showed that the exogenous 

TGFβRII  was expressed at the cell surface and this approach enriched for material 

~65 kDa, with evidence of increased expression following transduction (Figure 6-7d). 

In addition, conditioned media was analysed from untransduced and transduced cells; 

both neat and concentrated supernatants showed evidence of released TGFβRII  at 

~65 kDa (Figure 6-7e).  

Collectively, the computational analysis and protein analysis suggests that 

dnTGFβRII might be expressed on the plasma membrane. However, the discrepancies 

in the molecular weight of the exogenously expressed species means that it has not 

been possible to formally detect expression of dn or tdnTGFβRII. Additional analysis, 

such as the investigation of glycosylation and use of mass spectrometry to identify the 

species would help to resolve these issues.  
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A549 cells were transduced with either Ad5f35 CFP, Ad5f35 tdnTGFβRII.1 or 

Ad5f35 tdnTGFβRII.2 and analysed for the expression of TGFβRII at 48hrs post-

transduction. A) membrane. B) A549 cells were transduced with Ad5f35 

tdnTGFβRII.1 or tdnTGFβRII.2 at 1 MOI and transduction efficiency was assessed 

by CFP emission and cell surface expression of TGFβRII was assessed by flow 

cytometry and compared to the untransduced control (n=3). C) A549 cells were 

transduced with Ad5f35 tdnTGFβRII.1 and total cell lysate (n=1) or (D) membrane 

(n=3) was isolated (Section 3.2.7.1.1) and the expression of TGFβRII was detected 

by western blot in either untransduced or transduced cells, as specified. E) The 

expression of tdnTGFβRII was analysed by western blot in the supernatant of A549 

cells that were either untransduced or transduced with Ad5f35- tdnTGFβRII .1. 

 

 

 
  

c 

Figure 6-7 Detecting tdnTGFβRII expression in A549 cells at 48hrs post-

transduction. 
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6.2.6 Truncated dominant negative TGFβRII reduces SMAD2/3 

phosphorylation in A549 cells. 

To determine the functional properties of the truncated form of dnTGFβRII, 

downstream TGF-β signalling was analysed.  As described in detail in Chapter 2 

(Figure 2-4), TGF-β  binds to TGFβRII which trans-phosphorylates TGFβRI and 

leads to the phosphorylation of SMAD2 and SMAD3, which then translocate into the 

nucleus and form a trimeric complex with SMAD4 to target TGF-β responsive genes 

(418). The dnTGFβRII lacks the cytoplasmic serine/threonine kinase domain and is 

incapable of forming a heteromeric complex with the type I receptor, therefore 

limiting further intracellular signaling from TGF-β. To quantify the functional effect 

of tdnTGFβRII.1 and tdnTGFβRII.2 in TGF-β  signalling, phosphorylated SMAD2/3 

was quantified by intracellular flow cytometry (methods section 3.2.5.7) in A549 

cells that were either untransduced or transduced, and either unstimulated or 

stimulated with TGF-β for 30 min prior to analysis by flow cytometry, as represented 

using tdnTGFβRII.1 (Figure 6-8a). A summary of the data (that includes 

tdnTGFβRII.2), suggests that there is no difference in SMAD2/3 phosphorylation in 

cells transduced with Ad5f35-CFP and Ad5f35-tdnTGFβRII.2. However there was a 

significant decrease in cells treated with TGF-β and transduced with Ad5f35-

tdnTGFβRII.1, but not in comparison to cells that were untreated and untransduced  

(Figure 6-8b). Therefore, the ability of tdnTGFβRII.1 to sequester TGF-β away from 

endogenous, functional TGFβRII, is speculative. Notably, there is no differences 

between SMAD2/3 phosphorylation in TGF-β treated and untreated untransduced 

controls, which would suggest that A549s is also not a good cell line to model this 

assay. 

Speculatively, Ad5f35-tdnTGFβRII.1 might also be producing a soluble form of the 

dnTGFβRII. To test this possibility, conditioned medium from A549 transduced cells 

with Ad5f35-tdnTGFβRII.1 was collected and used to test whether it could block 

TGF-β activity using the luciferase assay in HaCaT cells (described in Figure 6-3). 

As a positive control, an anti-TGFβ1 antibody was used. The results showed that the 

mean TGF-β induced luciferase expression was reduced when conditioned medium 

from tdnTGFβRII.1 (or the blocking antibody) was used, but this inhibition was not 

statistically significant (Figure 6-9).  One possibility is that that the amount of 

exogenous TGF-β used saturates the tdnTGFβRII (and antibody) in the conditioned 

medium. One limiting factor of this assay was the use of fresh medium, as opposed 
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to using conditioned medium from untransduced cells as an additional control. 

Unfortunately, the concentration of tdnTGFβRII in the supernatant is unknown and 

represents a limiting factor. This factor could be overcome using an ELISA to 

quantitate soluble TGFβRII. However, the lack of information on the antibodies used 

in commercially available ELISAs and the identity of their epitopes questions 

whether this would be  useful approach.  

Overall, these observations suggest a soluble form as well as membrane expression 

of tdnTGFβRII is capable of inhibiting TGF-β signalling. The next step was to 

determine whether this reduced the effect of TGF-β on NK cells. 
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   a b 

Figure 6-8 tdnTGFβRII reduces SMAD2/3 phosphorylation. 

A) A549 cells were either untransduced or transduced with 1 MOI of Ad5f35-CFP, Ad5f35-tdnTGFβRII.1 or Ad5f35-tdnTGFβRII.2 and at 48hrs 

post-transduction cells were treated with 10ng/ml TGFβ for 30min before analysis . Cells were analysed for CFP expression to determine transduction 

efficiency, and phosphorylated SMAD2/3 was determined to measure TGFβ signalling by flow cytometry. B) The MFI values was used to determine 

the fold differences in phosphorylated SMAD2/3, in comparison to the untransduced and untreated cells. The results are the mean + SD of three 

independent experiments. Statistical analysis is statistically significant at  P<0.05. 
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HaCaT cells were co-transfected with 0.5 μg p3TP-Lux reporter construct and 0.4ug 

pRL-TK as a control for transfection efficiency. 24hrs following transfection, cells 

were treated with 10ng/ml TGF-β or with the addition of 1ug/ml of anti-TGFβ1 

antibody or conditioned media containing tdnTGFβRII (from transduced A549 cells) 

diluted at 1:5. At 48hrs the luciferase output was measured. Value of samples from 

cells transfected with the constructs and left untreated was arbitrarily set to 1. The 

results are the mean of four independent transfections conducted in triplicate.  

Figure 6-9 TGF-β signalling is reduced in HaCaT cells treated with 

supernatant containing dominant negative TGFβ receptor II. 
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6.2.7 Ad5f35-tdnTGFβRII.1 and Ad5f35-tdnTGFβRII.2 mediated 

transduction of NK cells 

The effects of a soluble form of dnTGFβRII was inconclusive for TGF-β induced 

SMAD2/3 phosphorylation in A549 cells (Figure 6-8). However, a soluble form of 

dnTGFβRII might modulate TGF-β signalling by binding to TGF-β, thereby 

preventing binding to endogenous TGFβRII at the cell surface. A study in cord blood 

derived NK cells has also shown that membrane bound dnTGFβRII reduces TGF-β 

signalling (134). Combining both a membrane bound and soluble version of dominant 

negative TGFβRII is predicted to produce highly effective inhibition of TGF-β 

signalling in NK cells. In this regard, the tdnTGFβRII.2 construct might prove useful 

as it contains both the intact dnTGFβRII  and the secreted form. This construct 

(tdnTGFβRII.2) was analysed in transduced NK cells. Cells were assessed at 48hrs 

post-transduction by flow cytometry for TGFβRII surface expression and CFP 

expression (Figure 6-10a). A lower MOI of 0-20 was used to transduce cells as the 

total virus concentration was low; a higher MOI was not used due to the limited 

volume and concentration of virus and also because using a larger virus volume that 

is made up in 10% glycerol might have a  toxic effect on the NK cells. The lower titre 

of this virus might be due to reducing virus passage during production in the 911 

helper cell line in an attempt to eliminate the risk of contaminating stocks with 

replication-competent viruses (described in Chapter 4). The results obtained showed 

that NK cells expressing CFP were highest at a mean of 15% with a <0.2 mean fold 

increase of TGFβRII expression, which suggests that dnTGFβRII was not being 

highly expressed on the cell surface at 48hrs post-transduction (Figure 6-10b).  

Studies have shown that the expression of activating receptors, such as NKp30, 

NKG2D and DNAM-1, are strongly downregulated by TGF-β (118,119), and this was 

confirmed in Figure 6-1. However, a previous study showed that NK cell activating 

receptors were not modulated by TGF-β in NK cells expressing dnTGFβRII (134). 

Therefore the effect of TGF-β was determined on the expression of activating 

receptors NKp30 and CD69 in NK cells transduced with Ad5f35-tdnTGFβRII.2. NK 

cells were isolated and transduced with Ad5f35-tdnTGFβRII.2 and treated with TGF-

β 24hrs post-transduction at an  MOI of 10; the expression of activating receptors 

NKp30 and CD69, was determined 48hrs post-transduction. Transduced cells were 

distinguished by CFP expression and receptor expression was analysed within this 

population and compared to cells that were untransduced (Figure 6-10a). 
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Interestingly, the data revealed an increase in receptor expression of transduced cells, 

irrespective of the addition of exogenous TGF-β. This might result from either the 

transduction process or from tdnTGFβRII.2 inhibiting the action of endogenous TGF-

β present in the culture medium. However, these changes were not statistically 

significant (Figure 6-10b). Thus, the dnTGFβRII did not significantly affect the 

expression of NKp30 or CD69. However Ad5f35-tdnTGFβRII.2 had a general effect 

in the increase of receptor expression in NK cells.  

This therefore led to the use of the tdnTGFβRII.1 construct, which despite producing 

secreted dominant negative TGFβRII, express the receptor at high levels and showed 

functional reduction in TGF-β signalling in HaCaT cells (Figure 6-8 and Figure 6-9). 

NK cells were transduced with Ad5f35-CFP and Ad5f35-tdnTGFβRII.1 at an MOI of 

20 and analysed at 48 hours post transduction for CFP expression by flow cytometry. 

The results showed that cells were transduced at <6% (Figure 6-11a). The 

transduction efficiency is low for use in primary NK cells, again, this is likely due to 

the limited number of passages of the virus in the helper cell line during propagation. 

An alternative strategy was adopted. The conditioned medium from Ad5f35-

tdnTGFβRII.1 transduced A549 cells was harvested and the protein in the supernatant 

was concentrated by centrifugation. This conditioned medium was incubated with 

primary NK cells that were activated with IL-15 and treated with TGF-β. The resultant 

TGF-β signalling was then quantified by SMAD2/3 phosphorylation, using 

intracellular flow cytometry. The results in Figure 6-11.b show that the SMAD2/3 

phosphorylation was induced by TGF-β but there was relatively little effect of adding 

the conditioned media containing the dnTGFβRII. However, in the absence of 

conclusive evidence that soluble tdnTGFβRII is being expressed, these results must 

be considered preliminary. Further investigations to identify the soluble species, such 

as alternative anti-TGFβBRII antibodies, epitope tagging and/or the use of mass 

spectrometry and protein sequencing will help to resolve these issues. 

Following the addition of conditioned medium, the expression of NK cell activating 

receptor, NKG2D, NKp30 and DNAM-1 (Figure 6-11c) was also tested. The IL-15 

mediated increase in cell-surface expression of these molecules was significantly 

reduced by TGF-β. Furthermore, the dnTGFβRII significantly increased the 

expression of NKG2D in the presence of TGF-β compared to cells that were treated 

with IL-15 and TGF-β. The expression of NKp30 was also increased in the presence 

of the dnTGFβRII, though this did not reach statistical significance (Figure 6-11c). 
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The analysis of cell-surface receptor changes has higher sensitivity compared to 

measuring the phosphorylation of SMAD by intracellular flow cytometry due to the 

biology of the NK cell; where TGF-β directly exerts its functional suppression on NK 

cells receptor expression.  

Co-culture of IL-15 activated NK cells with the ovarian cancer cell line SKOV-3 

inhibits NK cell activity in a TGF-β dependent manner. The expression of NKG2D, 

NKp30 and DNAM-1 in NK cells can be enhanced in these co-cultures by inactivating 

TGF-β with a TGF-β antibody, or by using a TGF-β receptor signalling inhibitor 

(118). This system was used to analyse the effect of the truncated/dominant negative 

TGFβRII. The MFI values for each receptor were quantified and compared. However, 

similar to the results using recombinant TGFβ, the data did not show statistical 

significance (Figure 6-11c). 

Overall, this data suggests that, due to the mutation in the dnTGFβRII gene, a 

premature stop codon in the transmembrane region has resulted in a truncated form of 

dominant negative TGFβRII that could potentially be secreted. The secreted 

dnTGFβRII may bind to TGF-β to reduce the amount of TGF-β binding to TGFβRII. 

This truncated form of dominant negative TGFβRII here has not been used to hinder 

TGF-β previously, however studies using dominant negative TGFβRII that are 

expressed on the membrane have been shown to be effective on NK cells in retaining 

their phenotype and cytolytic activity in the presence of TGF-β (134). Altogether, the 

adenovirus system is efficient at transducing NK cells, however it has the 

disadvantage that recombination with early region genes present in the propagating 

helper cell line can produce replication-competent virions that kill NK cells. This was 

avoided by reducing the number of passages of the virus in 911 cells, however this 

has the disadvantage of producing low titres and reduced efficiency in NK 

transduction. Nevertheless, work described in this chapter has demonstrated that the 

AdZ system can be used to express transgenes, and that despite the molecular 

challenges, the recombination system utilised has potential, with capacity for 

optimisation.  Here, the dnTGFβRII  system has not been successful in NK cells. 

Evidently, the mutations occurring in dominant negative TGFβRII has made the 

system difficult to use and quantify the effects of dnTGFβRII in NK and A549 cells. 

However, expressing other candidate proteins is a possibility, such as CRISPR due to 

the advantage of stable modification of the genome. 
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A) NK cells were transduced with Ad5f35-DNRII.2 (1-20 MOI) and analysed by flow 

cytometry at 48hrs for the expression of dnTGFβRII (MFI) and CFP (%), gating on 

the living cell population. B) NK cells in up to 3 donors were transduced with Ad5f35- 

tdnTGFβRII.2 (1-20 MOI) and the expression of  TGFβRII and CFP was summarised 

at 48hrs post-transduction. C) Transduced NK cells (CFP+) were further analysed for 

the expression of Nkp30 and CD69; with and without the treatment of TGF-β (48hrs) 

and compared to the untransduced controls. D) The summary of NK cells from 3 

donors transduced with Ad5f35-tdnTGFβRII.2, analysing the expression of Nkp30 

and CD69. The results are the mean + SD, statistically significance at  P<0.05. 

 

 

 

 

 

Figure 6-10 Ad5f35- tdnTGFβRII.2 mediated transduction of NK cells  
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Figure 6-11 Soluble tdnTGFβRII treatment of NK cells.  

A) NK cells were transduced with either Ad5f35-tdnTGFβRII.1 or Ad5f35-CFP (20 

MOI) and CFP expression was analysed  at 48hrs post-transduction and summarised. 

B) A549 cells were transduced with Ad5f35-tdnTGFβRII and analysed at 48hrs post-

transduction for CFP expression. The medium was harvested in transduced samples 

and the quantity of tdnTGFβRII was concentrated and diluted at a ratio of 1:5 (a 

guideline used as described in Figure 6-9) and mixed with isolated NK cells that were 

treated with 20ng/ml IL-15 for 48hrs previously. Cells were either untreated or treated 

with 10ng TGFβ or in combination with the supernatant containing tdnTGFβRII for 

20 minutes before cells were analysed by flow cytometry for phosphorylated 

SMAD2/3. C) Isolated NK cells were pre-treated with 20ng/ml IL-15 for 48hrs before 

the addition of either, 10ng TGF-β, TGF-β + medium (containing soluble 

tdnTGFβRII). Cells were also co-cultured with SKOV-3, either on its own or with 

a b 

c 
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medium (containing soluble tdnTGFβRII). After 48hrs cells were analysed for the 

expression of NK receptors: NKG2D, NKp30 and DNAM-1 (n=5). The results are the 

mean showing statistically significance at  P<0.05; no significance was found using 

medium containing soluble tdnTGFβRII.  
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6.2.8 Utilising CRISPR/Cas9 for stable genome modification  

The CRISPR/Cas9 technology is a relatively new tool for genetic manipulation  and 

is defined by its high specificity and low risk of off target effects. It was initially 

described as a genome engineering technology in 2013 and derived from bacterial 

type II CRISPR from Streptococcus pyogenes (419–421). Briefly, the CRISPR/Cas9 

tool consists of two components, a synthetic RNA consisting of combined tracrRNA 

and crRNA, and secondly Cas9 (422) (Figure 6-12a). The gRNA targets the gene of 

interest for ‘knock out’ and the Protospacer Adjacent Motif (PAM) sequence is 

required adjacent to the sequence target for sufficient Cas9 activity which relies on 

RuvC-like and HNH-like nuclease domains (423). The system knocks out genes by 

Cas9-induced double stranded DNA breaks, resulting in host DNA repair by the 

cellular non-homologous end joining (NHEJ) pathway; this leads to 

insertions/deletions and disrupts expression or function  (424). The incidence of off-

target mutations that can occur due to Cas9 tolerance of up to 5 base pair mismatches 

within the gRNA region are relatively low. However, they are difficult to detect 

without whole exome sequencing analysis (425). This disadvantage can be overcome 

through the use of  paired ‘nickases’ which creates single DNA nicks (426), and using 

web based CRISPR tools available to identify potential off target effects.  

It was decided to utilise this system in HeLa cells to assess its efficiency in genetic 

modification and its potential use in the Ad5f35 system. HeLa cells were used as they 

are a widely used cell line for studying human cellular and molecular biology (427). 

Beta-2 microglobulin (B2M) was chosen as a proof-of-concept target for the 

CRISPR/Cas9 system as it can be analysed easily on the cell surface by flow 

cytometry. The B2M gene encodes the accessory chain for the MHC class I molecule, 

and is required for stable expression at the cell surface (428). Initially, MHC class I 

and B2M expression were confirmed on HeLa cells using flow cytometry (Figure 

6-12.b). Five CRISPR/Cas9 plasmids, each containing a different gRNA targeting 

different sites in either exon 1 or exon 2 of the B2M gene were transfected into HeLa 

cells (3.1.7). Using more than one targeting gRNA increases the chances of a ‘knock 

out’ in comparison to only using one. Each vector also contained DasherGFP which 

is detected by flow cytometry. Initially one plasmid was chosen to optimise the 

transfection efficiency into HeLa cells using PEI. The ratio of PEI to plasmid was 

varied, and transfection efficiency of >50% was achieved with a ratio of 1:4 DNA: 

PEI (data not shown). Subsequently, all five CRISPR/Cas9 plasmids were transfected 
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into HeLa cells (methods section Table 3-7 CRISPR plasmids). Each construct was 

tested for its ability to efficiently knock out B2M by gating on the transfected cells 

using DasherGFP+ and assessing B2M expression (Figure 6-12c). DasherGFP 

positive cells display a decreased level of expression of B2M (Figure 6-12d). I found 

that flow cytometry provided certainty of a knock out effect with the reduced level of 

B2M expression at 48 hours post transfection. Single cells from the same transfection 

experiment were seeded into a 96 well plate for single cell colony formation and 

manually inspected for DasherGFP expressing single cells. Colonies of cells that were 

identified were then expanded. Many wells that appeared to contain single cells did 

not form colonies, and likely died. However, I identified a colony that was 16% 

positive for B2M expression (Figure 6-12e), as opposed to the WT of 99% (Figure 

6-12b). This suggests that more than one cell had distributed into the well during 

isolation, one of which had been transfected and B2M mutated by the CRISPR/Cas9 

system. However, these data suggested that the CRISPR/Cas9 system was working in 

HeLa cells. 

In order to separate the B2M knock out cells, the expanded cells were sorted into three 

distinct populations of B2M expression being: positive, intermediate and negative 

(Figure 6-12e). Following expansion, the negative and intermediate sorted 

populations had 19-20% of B2M expression and almost absent expression of MHC 

Class I with 1.8-2.7% expression (Figure 6-12f). This clearly demonstrates 

knockdown of B2M and therefore MHC class I at the surface of the Hela cells by the 

CRISPR/Cas9 system. 

To explore the genomic effects of the CRISPR/Cas9 system, Sanger sequencing was 

performed on the target region of B2M exon 1. The gRNA target is 20 base pairs in 

length and homologous to the 5’UTR sequence and start of the exon 1 sequence of 

B2M. WT cells displayed wild type sequence at the gRNA target site. However the 

negative and intermediate population have scrambled sequences at the locus where 

the gRNA targets (Figure 6-12g). This suggests that the CRISPR/Cas9 system 

efficiently targeted the locus and disrupted the expression of B2M. The sequencing 

observations show that multiple sequence variants are being processed, therefore the 

exact sequence deletion or mutation causing the disruption in expression is unclear. 

Further investigations suggest that the cause of the scrambled sequences might be due 

to the origin of the cells that may have been generated from multiple colonies affected 

by the CRISPR/Cas9 constructs, as opposed to a single cell. This could potentially 
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generate different mutations following NHEJ DNA repair mechanism that induces 

unpredictable mutations. An additional issue was the karyotype of HeLa cells that has 

recently been described as >2n, and recorded to have three copies of chromosome 15. 

B2M location is on chromosome 15q21.1 (www.ensembl.org), as a result the 

CRISPR/Cas9 complex is likely to have targeted the B2M locus on each chromosome 

and through NHEJ DNA repair induced distinct mutations at each allele resulting in 

multiple sequence variants. A study showing B2M ‘knock out’ using the 

CRISPR/Cas9 system in HEK293T cells (normal karyotype for chromosome 15) 

show clear deletions within the target site (429). This indicates that the karyotype is 

important for the analysis of mutations using the CRISPR/Cas9 system. The 

population of cells that have an intermediate expression of B2M may have resulted 

from one chromosome remaining intact to the WT sequence of B2M, however the 

MHC Class I expression is severely affected by this (Figure 6-12g). Despite the 

variations in the mutation and expression levels, the knock out was effective in HeLa 

cells and could be used to ‘knock out’ genes, such as TGFβRII in NK cells. Moreover, 

a study has recently described the ‘knock out’ of TGFβRII with CRISPR in primary 

NK cells using a DNA-free method, in which the CAS9 protein and guide RNA is 

delivered directly by electroporation; this has certainly encouraged the direction of 

NK manipulation for strategies in NK immunotherapy (430). Furthermore, similar 

methods have now been used to target NKp46 on primary human NK cells (431); this 

study utilised FACS to sort for cells lacking the target cell surface receptor, which 

proved to be a sensitive validation tool. Similarly here, the use of flow cytometry was 

used as a screening tool to identify and isolate cells lacking the target cell surface 

molecules.  
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A) CRISPR has been developed by fusing crRNA and tracrRNA sequences to produce 

a synthetic chimeric single-guided RNA (sgRNA). The selected target sequence 

consists of a complementary 20 base pair DNA sequence to the crRNA or the chimeric 

sgRNA, followed by the trinucleotide (5'-NGG-3') protospacer adjacent motif (PAM) 

which is recognized by Cas9 itself and essential for cleavage. The Cas9 endonuclease 

is guided to a specific genomic sequence to generate double-strand break (DSB) in 

target DNA. The DSB is repaired by the error prone mechanism of NHEJ and induced 

errors in the DNA, often resulting in degenerative gene expression. B) Representative 

histograms indicate HeLa cells stained with isotype antibody staining (pink) and B2M 

and MHC Class I (blue). C) The CRISPR knock out efficiency was analysed by flow 

cytometry. Viable HeLa cells were gated on the FSC and SSC and transfection 

efficiency was analysed in the FITC channel. The levels of B2M knock out were 

analysed using a PE-conjugated monoclonal anti-B2M antibody. The representative 

Figure 6-12 B2M knock out using CRISPR. 
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histogram shows transfected cells B2M expression (green), and un-transfected cells 

B2M expression (red). Gates were set at 98% B2M expression in wild type HeLa 

expression. D) The collective MFI values on B2M expression was compared in 

transfected (green) and un-transfected (red) cells from experiments using 5 plasmids 

with variable gRNA’s targeting B2M. E) Cells were seeded as single cells in a 96 well 

plate. Colonies formed from single or multiple cells and were transferred to a larger 

container and bulked up for flow cytometry analysis. One population of cells derived 

from multiple surviving colonies producing two B2M expressing phenotypes as 

shows in the histogram and the cell population were sorted according to its B2M 

phenotype using the PE-conjugated monoclonal anti-B2M antibody. Three B2M 

variable phenotypes were targeted as either having negative, intermediate or wild 

type/positive expression. F) Proceeding cell sorting, the sorted cell populations were 

analysed by flow cytometry for B2M expression (blue) and MHC Class I expression 

(pink). G) The sorted cell populations were assessed for mutations by Sanger 

sequencing to determine specific mutation events.  
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6.3 Discussion 

This project focused on the inhibitory effects of TGF-β on NK cells. Initially, TGF-β 

mediated inhibition was confirmed using primary NK cells, which showed inhibition 

of expression of NKp30, NKp46, DNAM-1 and NKG2D receptors, in agreement with  

previously published data (118). These receptors have an established role in the killing 

of tumour-targets by NK cells, as demonstrated by reduced cytotoxicity towards K562 

target cells. However, TGF- β also inhibits the expression of the cytotoxic components 

(granzymes and perforin) and this also leads to reduced killing (4). These results 

highlight the importance of engineering NK cells to be resistant to TGF-β inhibition, 

particularly within the tumour microenvironment.  

In this chapter, an adenovirus recombination system has been used to integrate 

dnTGFβRII into the Ad5f35 genome. This investigation encountered problems within 

the gene insert, with findings of a frame shift mutation that was probably introduced 

during BAC colony expansion. This mutation was predicted to introduce a stop codon 

close to the transmembrane region which affected expression and the ability to 

antagonise TGF-β signalling in NK cells. The lack of conclusive evidence for 

expression, both at the cell membrane and secreted, was also a limiting factor for the 

progress of this investigation. Further studies need to incorporate epitope tags, new 

antibodies, glycosylation studies and the use of protein sequencing as described in the 

results section in this chapter. The functional effect on NK cells were also not 

statistically significant. However, this mutation has been described recently in patients 

with colorectal cancer with a deficiency in DNA mismatch repair (112). This suggests 

that the described microsatellite stretch of adenine repeats in TGFBR2 has a higher 

risk of mutation and, without an efficient repair mechanism in place, the mutation 

goes unchecked. Consequently, due to the molecular abnormalities, a true dnTGFβRII 

was not expressed. However, the truncated expression of dnTGFβRII might have 

resulted in a secreted form. A three dimensional structure of TGF-β3 (not TGF-β1) 

bound to TGFβRII has been determined (432). This structure suggests that the 

frameshift mutation in the extracellular domain introduced here is likely to severely 

reduce ligand binding.  

Despite the molecular challenges on this study, a soluble form of the TGFβRII 

extracellular domain might have been expressed, which has also been described 
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elsewhere to interfere with TGF-β binding to TGFβRII (433). The extracellular 

domain, fused with the Fc portion of a murine IgG1 heavy chain, reduced metastasis 

and increased apoptosis of tumour cells in mice transplanted with breast cancer (433). 

The long term clinical risks of such a treatment might include effects on the immune 

system, with possibilities in developing autoimmune disease and fostering an 

environment for tumour development (130,131,434). However, a mouse breast cancer 

model showed that long-term exposure of this soluble receptor provided extended 

protection against metastasis and the occurrence of benign malignancies in the lung, 

pancreas and kidney (435). Together, these studies support the theory that engineering 

an NK cell to secrete a soluble receptor, as opposed to using an antibody to sequester 

TGF-β, will not only provide protection against tumour progression but enhance the 

ability of NK cells to activate and kill tumour targets. This has also been demonstrated 

in T cells that have been engineered with either cell surface dnTGFβRII, soluble 

TGFβRII, or a TGFβRII-Fc chimera, in a mouse melanoma tumour model (436). The 

results suggested that T cells expressing the cell surface dnTGFβRII was most 

effective, whereas the soluble receptors showed no enhancement of T cell anti-tumour 

activity (436). This suggests that direct cellular protection of cytotoxic lymphocytes 

against TGF-β is more powerful than approaches to sequester TGF-β using soluble 

molecules.            

TGF-β blockade can also be achieved through small molecules that bind to the TGF-

β receptors and was first described for a compound known as SB-431542, that binds 

to TGFβRI to inhibit the phosphorylation of SMAD2/3 (437). Here, I have used 

galunisertib, a compound that also binds to TGFβRI (438), which was demonstrated 

in HaCaT cells using the luciferase assay. There is also a possibility that compounds 

might cause global disruption in TGF-β mediated immune homeostasis, which might 

cause complications similar to those seen in mouse models (439). Therefore, specific 

TGF-β blockade in NK cells (or T cells) appears preferable. In mice, engineered T 

cells expressing dnTGFβRII showed no difference in cytolytic activity towards 

prostate carcinomas, however tumour regression and reduced TGF-β effects were 

observed when used in combination with a modified TCR (440). Importantly, 

expressing dnTGFβR in mouse T cells resulted in CD8+ T cell lymphoproliferative 

disease, presumably due to the loss of TGF-β mediated homeostasis of T cell 

proliferation; such effects must be taken into consideration if blocking TGF-β activity 

(441). Clearly, tumour antigen recognition is critical for T cell activation, however 
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NK cell recognition of tumour cells is antigen-independent but dependent upon 

adequate stimulation of activating receptors; therefore the efficacy of this system is 

likely to be different. More recently, a study expressing dnTGFβRII in ex vivo 

expanded cord blood NK cells by retroviral transduction maintained their ability to 

recognise and kill glioblastoma cells in the presence of TGF-β, which supports its 

efficacy (134). Clinically, the risks involved with introducing dnTGFβRII highlight 

the requirement for a strategy in cell targeting and controlling gene expression. 

Despite these risks, the considerable challenge for clinical applications remains the 

difficulty in delivering exogenous genes into primary NK cells.   

A major deterrent to inhibiting the TGF-β signalling pathway is toxicity. As described 

previously, a soluble receptor expressed to sequester TGF-β has been shown to be 

effective in mouse models, however benign malignancies did form (433). Reviews of 

compounds that bind to cellular receptors have reported toxicities in mice (439) and 

one study showing no response in human clinical trials towards melanoma, 

speculatively due to low dose (442). Clinical trials are still in progress using small 

molecular inhibitors, and updated on clinicaltrials.gov website, the majority being 

sponsored by Eli Lilly and Company. Overall, these studies highlight the requirement 

in specificity and the main problem being the broad role that TGF-β plays, particularly 

on the immune system. Engineering a population of lymphocytes and in particular, 

NK cells, to become insensitive to TGF-β and maintain their ability to localise to the 

site of the tumour to kill the tumour cells is an approach that remains advantageous 

compared to antibodies and compounds. Here, the chosen gene, dnTGFβRII might 

not have been proficient at the molecular level using this adenovirus system, however, 

other genes, such as SMAD7 might have produced a different result. Therefore, 

further investigation using this adenovirus system with other gene candidates remains 

a promising approach.  

It is well known that TGF-β signal transduction is enforced by the phosphorylation of 

SMAD2/3 which accumulates in the nucleus and mediates the transcriptional effects 

of TGF-β signalling; SMAD7 is an established inhibitor of this pathway (105). 

However, a recent study has shown that PPM1A is responsible for the de-

phosphorylation of SMAD2/3 (443). PPM1A is a phosphatase that is able to cleave 

phosphorylated serine and threonine residues on the SXS motif phosphorylation sites 

on SMAD proteins (SMADs 1/5/8/2/3). This gene might also be considered as a 

candidate for overexpression in NK cells to reduce TGF-β signalling. PPM1A is also 
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only 1149bp in size, therefore it is small enough to incorporate into the Ad5f35 

genome. An alternative candidate that was considered in this project was SMAD7, 

which was shown to reduce TGF-β signalling in HaCaT cells using a luciferase assay, 

measuring TGF-β through PAI-I induction by p3TP-lux transfected cells. This is in 

agreement with another study showing that over-expression of SMAD7 inhibits TGF-

β mediated PAI-I induction in mink lung epithelial cells (Mv1Lu) (406). In contrast, 

another study showed that SMAD7 overexpression is incapable of inhibiting TGF-β 

activation in COLO-357 cells transfected with p3TP-lux (407). This highlights the 

issues that TGF-β signalling is distorted amongst cell lines and that cell type is 

important when establishing a screening assay for inhibitors of the TGF-β signalling 

pathway. In this study, the expression of dnTGFβRII reduced signalling although  not 

significantly, which agrees with previous work in which truncated TGFβRI was 

expressed in Mv1Lu, a luciferase system, and did not inhibit TGF-β mediated PAI-I 

induction (444). Even so, the expression of a dnTGFβRII has been shown to block 

TGFβ signalling. An alternative approach using the luciferase assay would have been 

to measure the ability of TGF-β to activate a different promoter element, such as 

WWp-lux, which is under the control of the p21 promoter to measure the cell cycle. 

However, again, this construct has conflicting reports in SMAD7 overexpression 

when compared to measuring p3TP-lux (407). Nonetheless, it is accepted that 

SMAD7 prevents the interaction of SMAD2/3 with the TGF-β receptor complex, thus 

blocking TGF-β signalling. SMAD7 is also 1.3kb in size, therefore a suitable size to 

integrate into the Ad5f35 genome which has a predicted cargo capacity of 2-3kb. 

Overall, PPM1A and SMAD7 are attractive as genes to overexpress in NK cells for 

future investigations.     

A disadvantage of the adenovirus system in overexpressing genes in NK cells is that 

it is transient (i.e. the viral genome neither integrates into the host genome nor 

replicates in the host cell). Using systems that can modify the NK cell genome, such 

as CRISPR/Cas9 does offer the advantage of stable genomic alteration. In this study, 

the CRISPR/Cas9 system was used in HeLa cells to target B2M, a protein component 

of cell-surface MHC Class I molecules, to demonstrate its efficiency at knocking out 

genes within the genome. The CRISPR/Cas9 was optimally transfected and 1 of 5 

gRNA targets succeeded in mutagenic activity within the B2M locus causing loss of 

MHC Class I expression on the cell surface of Hela cells. This left Hela cells 

susceptible to death by killing from activated primary NK cells and NKLs (data not 
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shown). These results highlighted the importance of the target cell karyotype, and the 

possible off-target effects this system may cause. However, to establish this system in 

NK cells, the Ad5f35 delivery system would be required to encode the S. pyogenes 

Cas9 (~4.5kb) and the single guide RNA (sgRNA) of 100-110bp in size. However, 

the adenovirus has a restrictive cargo size of 105% of its WT genome (~35kb) 

restricting genomic uptake capacity to ~2-3kb, therefore it presents an obstacle for 

packaging the CRISPR/Cas9 system. The alternative is using the Cas9 enzyme 

isolated from Staphylococcus aureus which is 1,000bp less in size, and has been 

successfully packaged into an adeno-associated virus, which is smaller than WT-Ad 

(445). Despite this obstacle, the S. pyogenes CRISPR/Cas9 tool has been used in 

adenoviruses successfully in mice, showing it is feasible (446,447). Together, this 

system could be combined with the Ad5f35 system to irreversibly knock out the 

expression of TGFβRII (or other molecules) in NK cells. However, recent studies 

utilised CRISPR to knock out TGFβRII and NKp46 in primary NK cells using 

electroporation; these studies highlight the direction of the system in use in NK cells, 

interestingly without the use of viral vectors or DNA-based transfection (430,431).   

Clinically, the CRISPR/Cas9 system has generated controversy over its use in human 

embryos by fertility specialists (448). This concern is due to the off-target and long 

term effects of passing genetic modifications down through generations. Adding to 

this controversy, cells that are insensitive to TGF-β have previously been shown to 

form malignancies, therefore combining this system to this target is a concern. A 

solution to overcome this issue might be to include a ‘suicide gene’. One well 

described suicide gene is herpes simplex virus thymidine kinase which phosphorylates 

ganciclovir, resulting in a toxic monophosphate form of the drug, thereby killing cells 

(449). Thymidine kinase can further phosphorylate ganciclovir into di- and 

triphosphate forms, the latter acts as a GTP analogue but inhibits DNA polymerase, 

resulting in apoptosis. A report also suggests that this suicide gene enhances NK cell 

killing activity in vivo (449), which would suggest that  unmodified NK cells will 

benefit from this modification. The gene insert size is also small enough to incorporate 

into the Ad5f35 genome at 1143bp, further supporting that this is a plausible 

safeguarding approach following genome modification ex vivo.   

Overall, there are many options for the manipulation of NK cells. The advantage of 

using Ad5f35 to deliver the CRISPR/Cas9, as opposed to the transfer of therapeutic 

genes alone is overcoming the transient gene expression achieved using adenovirus. 
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The CRISPR/Cas9 system can permanently modify the genome and maintain genomic 

modification after proliferation, during which the adenoviral vectors will be lost. 

Therefore transduced primary NK cells will maintain the introduced modifications 

and increase the number of effective cells against malignancies. Consequently, this 

system has the potential to be utilised for effective cancer or other immunotherapeutic 

strategies in NK cells or other cells used in cellular therapy. 
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7 General discussion  

Cancer is a major cause of death across the world and, despite many successes in 

therapy, treatment options for many cancers remain limited. For decades, the 

traditional forms of treatment include surgery, radiotherapy and chemotherapy. 

However, these treatments can be limiting in regards to specificity and often have 

severe side effects; this highlights the need for new strategies for effective 

management of this disease. Currently, immunotherapies are being investigated, as an 

alternative or in combination with traditional treatments, to improve patient outcome. 

There has been considerable interest in TGF-β blockade, however development is still 

in the early stages of clinical trials. The most promising, galunisertib, is a small 

molecule TGFβRI inhibitor, has been described as being safe for use in humans (450) 

and early stage clinical trials are promising, specifically for patients with 

glioblastomas, where results show an improved or stable disease state (451). 

Fundamentally, this approach requires the identification of tumours where TGF-β is 

implicated; solid tumours are more inclined to have a TGF-β tumour promoting 

microenvironment, however certain haematological malignancies such as chronic 

myeloid leukaemia are also implicated in this phenotype (452). Generally, the goal 

for TGF-β inhibitors in the clinic is to re-sensitize tumour cells to other therapeutic 

agents. In addition, combination therapy with enhanced or activated immune cells 

provides an alternative approach in immunotherapeutic strategies against TGF-β 

expressing tumours. In this area, pre-clinical investigations have looked at using 

synthetic inhibitors in combination with adoptive transfer of T cells in mice, which 

increased activation and infiltration of immune cells and reduced (or cured) all 

malignancies (392). However, many inhibitors have not progressed beyond early 

clinical trials due to side effects or poor efficacy (391). Hence, engineering activated 

immune cells that are TGF-β insensitive provides a dual approach for 

immunotherapies against TGF-β expressing tumours. In particular, improving the 

anti-tumour response by genetic manipulation to enhance tumour recognition and 

killing is one appealing approach. It is well known that the anti-tumour response of 

NK cells is important in cancer immunosurveillance, hence the need to develop tools 

to enhance this response in a clinical setting. Although this has not been tested in a 

clinical setting in humans, it has been accomplished by ex vivo manipulation of human 
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NK cells (134,168,171). However, this approach is limited by the tools available for 

efficient gene transfer. It is also difficult to reproduce effective methodologies; thus 

there is a demand for robust and efficient strategies by which to  transduce NK cells 

for clinical use.  

Here, virus vectors (adenovirus, measles and vaccinia) were tested for their ability to 

transduce human NK cells. An adenovirus vector system was pursued in further 

investigations and utilised to express a dominant negative TGF-β receptor 

(dnTGFβRII). The results (summarised below) highlight a novel strategy to use 

adenovirus as a vehicle to deliver genes to primary NK cells and increase the potency 

of NK cytotoxicity towards tumour targets.  

7.1 Main results 

 Initial experiments identified Ad5f35-EGFP and MVA-GFP as promising 

viral vector candidates for NK cell gene delivery. However, cell viability was 

better using Ad5f35-EGFP and this system was pursued in further 

investigations.  

 Ad5f35-EGFP mediated transduction of primary NK cells was consistently 

efficient when using a "spinoculation-like" approach (similar to that used for 

lentiviral transduction). NK cell viability was maintained by treating cells with 

IL-2.  

 Further investigations showed that CD46 is an important molecule for Ad5f35 

transduction of human NK cells. The CD46 molecule functions as the initial 

point of contact for virus attachment on NK cells. 

 Ad5f35 transduced NK cells retained their ability to degranulate towards 

tumour targets.  

 TGF-β, a well-known immunosuppressive cytokine, was demonstrated to 

hinder NK cell activation and cytotoxicity by downregulating key NK cell 

activating receptors. This data provides rationale for targeting the pathway in 

order to enhance an NK cell anti-tumour response in the presence of TGF-β. 

Henceforth, dnTGFβRII was chosen as a suitable candidate for further 

investigations to inhibit TGF-β signalling.  

 The AdZ system was utilised to insert dnTGFβRII into a BAC containing the 

genome of Ad5f35. A premature stop codon was introduced at the 
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transmembrane region due to a frame-shift deletion in an earlier region of the 

sequence. This caused truncation of the receptor and the disruption of the 

expression of the receptor on the plasma membrane. A western blot identified 

a protein species consistent with endogenous TGFβRII; this species was 

detected at the cell surface and in the supernatant of transduced A549 cells.  

 The phenotype of primary NK cells transduced with Ad5f35-tdnTGFβRII.1 

and tdnTGFβRII.2 was analysed in the presence of TGF-β, however no 

statistically-significant changes were detected.  

 CRISPR/Cas9 was identified as an effective genome engineering system in 

HeLa cells and represents a potential avenue to pursue genetic manipulation 

in NK cells. 

7.2 Summary and future work 

It is widely established that NK cells are difficult to transfect with traditional 

techniques, and virus systems are equally challenging, demonstrating poor efficacy in 

gene delivery. This is thought to be due to the inherent characteristics of NK cells. 

The technical challenges associated with transduction hinders many approaches in 

gene delivery. Thus, a need to develop a strategy to effectively transduce or transfect 

NK cells. Here, I demonstrated that a chimaeric adenovirus vector transduced NK 

cells at high efficiency. The adenovirus used is an Ad5 derivative with the fibre 

replaced by that from Ad35 (generating Ad5f35) to expand the tropism of the virus to 

include the recognition of CD46, a molecule expressed on NK cells. The adenovirus 

vector has a well-described recombination system which can be used to genetically 

modify the Ad genome to deliver chosen genes; here the target was to block TGF-β 

induced inhibition of NK cells by expression of a dominant negative TGF-β  receptor. 

It is widely known that TGF-β has a global impact on immune cells, in particular its 

direct effect on suppressing cytolytic activation of T and NK cells, and its ability to 

induce apoptosis in T and B cells (118,120). Hence, it is common for solid tumours 

(e.g. breast, ovarian and colon cancers) to secrete TGF-β in order evade anti-tumour 

immunity (453–455). For TGF-β secreting breast cancers, the metastatic potential is 

higher in patients with an elevated level of TGF-β (453).  This is due to the ability of 

TGF-β to downregulate an anti-tumour immune response and to induce epithelial to 

mesenchymal transition (EMT), which favours metastasis. Here, dnTGFβRII was 
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chosen as a tool to inhibit the TGF-β induced inhibition of NK cells. A previous study 

showed that dnTGFβRII reduced NK cell inhibition when expressed on cord blood 

NK cells (ex vivo) (134). For T cells, dnTGFβRII expression in mice resulted in 

attenuation of TGF-β signalling (456). However, after 3 months, mice exhibited 

inflammation and autoantibody secretion and displayed multiple symptoms of 

sickness (such as weight loss and diarrhoea) (456). Despite the risks of expressing 

dnTGFβRII on T cell in vivo, this study brings to the attention of a need to modulate 

expression.  

Here, the cloning of the dnTGFβRII into the Ad5f35 vector resulted in a deletion and 

introduction of a premature stop codon just prior to the transmembrane domain, 

producing an alternative form of dnTGFβRII. Interestingly, this deletion is also 

observed in tumours with microsatellite instability, due to mutations in mismatch 

repair genes (413). In particular, this has been described in colon cancer and is thought 

to result in a truncated or kinase inactive mutant form, providing a protective 

mechanism against the anti-proliferative effects of TGF-β (413). Clearly, the repair 

mechanisms within E. coli are not as efficient when sequences are mis-processed, 

showing one limitation to using the AdZ system. As a result, no major differences 

were detected in NK cells responses to TGF-β when transduced with this alternative 

form of dnTGFβRII. Other studies have shown that dnTGFβRII can be expressed in 

NK cell lines or cord blood derived NK cells and retain their phenotype and cytolytic 

activity in the presence of TGF-β (134,204). However, human blood derived NK cells, 

the cells that would be used in the clinic, are yet to be efficiently modified using viral 

vectors.  Evidently, the mutations in dnTGFβRII made this model difficult to use and 

quantify the effects in NK cells. Nevertheless, this project has demonstrated that 

human peripheral blood-derived NK cells are readily transduced by Ad5f35 and that 

the AdZ system can be used to express transgenes, in spite of the molecular challenges 

encountered here.     

There is also a need to investigate other targets to inhibit TGF-β signalling in NK 

cells. One such target might include expressing SMAD7, a SMAD inhibitor, to inhibit 

the TGF-β signalling cascade. In addition, a phosphatase within the pathway might 

also prove to have an influential effect on TGF-β signalling; in particular PPM1A has 

been shown to dephosphorylate SMAD2/3 (443). However, the AdZ/BAC system is 

at a high risk of incorrectly processing long repetitive sequence repeats, hence the 

need for caution when selecting and cloning genes using the AdZ system.  
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In addition, a further disadvantage of the AdZ system is the potential to inadvertently 

produce replication competent virions. This is a well-documented problem in both 

viral production and clinical applications. However, small amounts of replicating 

virus is acceptable according to the FDA (377). Here, adenovirus vectors that lacked 

E1A and E1B (early region genes) were used,  however, due to sequence homology 

between the E1 region inserted into the 911 cells and adenovirus vectors, a  

recombination event occurred in one of the stocks where the E1 region was recaptured 

by the vector, thus contaminating replication-deficient adenovirus vectors with 

replication competent adenovirus (363). This represents a limiting factor for this 

system, however the risks can be reduced by using a cell line such as PER.C6, which 

has reduced sequence homology (364). On this project, this was avoided by reducing 

the propagation time in 911 cells, however this resulted in the disadvantage of 

producing low titres, which might not be a problem when transducing some cell types. 

However, here it reduced the efficacy of NK transduction. Further use might include 

longer periods/multiple rounds of propagation, with frequent intervals of testing for 

replicating virus throughout propagation to avoid these limiting factors.    

This project focused on overcoming TGF-β induced inhibition on NK cells, however 

future direction using the AdZ system opens possibilities of broadening genetic 

manipulation on NK cells.  Here the possibility of introducing genome engineering 

systems, such as CRISPR/Cas9 holds potential for broadening manipulation. 

However, the capacity to integrate CRISPR/Cas9 into Ad5f35 is challenging, but not 

impossible (457). This area remains unexplored for the genetic manipulation of 

lymphocytes and, in the case of genetically enhancing NK cells, holds great promise 

for immunotherapeutic strategies in cancer patients.  

In summary, this project identifies a strategy to use a chimaeric adenovirus as a 

vehicle to deliver genes to human primary NK cells ex vivo. Future applications using 

this strategy can include genetic manipulation of NK cells to promote NK 

cytotoxicity, migration or cytokine production in order to enhance anti-tumour 

immunity.  
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9 Appendix 

9.1 Fluorescent microscopy of Ad5F35-EGFP transduced NK cells. 
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9.2 Fluorescent microscopy of Ad5F35-EGFP transduced NK cell 

lines. 
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9.3 Sequence of Ad5F35-tdnTGFβRII.1 
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9.4 Sequence of Ad5F35-tdnTGFβRII.2 
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9.5 Electron microscopy of Ad5F35-tdnTGFRII.1 

 


