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Abstract

Deoxyribonucleic acid (DNA) sequencing allows researchers to con-

duct more complete assessments of low-frequency and rare genetic

variants. In anticipation of the availability of next-generation se-

quencing data, there is increasing interest in investigating associations

between complex traits and rare variants (RVs). In contrast to asso-

ciation studies of common variants (CVs), due to the low frequencies

of RVs, common wisdom suggests that existing statistical tests for

CVs might not work, motivating the recent development of several

new tests that analyze RVs, most of which are based on the idea of

pooling/collapsing RVs.

Genome-wide association studies (GWAS) based on common SNPs

gained more attention in the last few years and have been regularly

used to examine complex genetic compositions of diseases and quanti-

tative traits. GWASs have not discovered everything associated with

diseases and genetic variations. However, recent empirical evidence

has demonstrated that low-frequency and rare variants are, in fact,

connected to complex diseases.

This thesis will focus on the study of rare variant association. Aggre-

gation tests, where multiple rare variants are analyzed jointly, have

incorporated weighting schemes on variants. However their power is

very much dependent on the weighting scheme. I will address three

topics in this thesis: the definition of rare variants and their call file

(VCF) and a description of the methods that have been used in rare

variant analysis. Finally, I will illustrate challenges involved in the

analysis of rare variants and propose different weighting schemes for

them. Therefore, since the efficiency of rare variant studies might be



considerably improved by the application of an appropriate weight-

ing scheme, choosing the proper weighting scheme is the topic of the

thesis. In the following chapters, I will propose different weighting

schemes, where weights are applied at the level of the variant, the

individual or the cell (i.e. the individual genotype call), as well as a

weighting scheme that can incorporate quality measures for variants

(i.e., a quality score for variant calls) and cells (i.e., genotype quality).



Abbreviations

GWAS Genome-Wide Association Study.

VCF Variants Call Format.

GQ Genotype Quality.

G Genotype Matrix with 0/0,1/0 and 1/1 elements.

X Genotype Matrix n× p.
Z Covariate Matrix q × p.
F Minor allele frequency (MAF).

S(γ) Score test incorporating variants weight.

S(ψ) Score test incorporating individuals weight.

S(γψ) Score test incorporating variants and individuals weight.

Ψ n× n matrix with individual weights at diagonal.

Γ p× p matrix with variant weights at diagonal.

γ Vector p× 1 for variant weights.

ψ Vector n× 1 for individual weights.

U Vector p× 1 for score function.

q The extra information based on variants level.

ω The variant weight incorporating extra information.

Ω n× p cell weights.

wj(F) Variant weights which are function of MAF.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background

The human genome consists of building blocks called base pairs, which are part

of the deoxyribonucleic acid (DNA) in the chromosomes of every person. There

are more than three billion base pairs in human DNA, and over 99% are identical

between individuals. A base pair that varies in a population and has two variants

is called a single-nucleotide polymorphism (SNP). Nucleotides are the building

blocks of nucleic acids and comprise three subunit molecules: a five-carbon sugar,

a nitrogenous base, and a phosphate.

In each person’s DNA, SNPs appear, on average, once every 300 nucleotides,

and there are nearly 10 million SNPs in the human genome. Different variations of

DNA, such as structural variants, including insertions and deletions (INDELs), in

which one or several nucleotides are added or missing in part of a DNA sequence.

Block substitutions involve several adjacent nucleotides, while inversions involve

changes in the order of nucleotides in a genomic region, and copy-number variants

(CNVs) involve DNA sequences of > 1 kb that appear in various numbers and

are similar to a reference genome. In most cases, single-nucleotide variants are

created by replacements during the replication of a nucleotide that carries a given

base to another nucleotide, which, in turn, carries a different base.

1



1. INTRODUCTION

SNPs can act as biological markers, which are known locations on chromo-

somes, and as such, SNPs help scientists determine which genes are associated

with particular diseases. However, when SNPs appear within a gene or near a

gene, they can also have a more direct function in a disease process by affect-

ing the gene’s function. SNPs have two variants, called alleles. They are often

referred to as A and a, or major and minor alleles, respectively. a minor allele

generally has a population frequency of less than 0.5. This frequency is called the

minor allele frequency (MAF). Based on MAFs, SNPs can be divided into three

groups: common SNPs with MAFs greater than 0.05, low-frequency SNPs with

MAFs between 0.01 and 0.05, and rare SNPs, or rare variants, with MAFs less

than 0.01. These thresholds differ across studies and are discussed in more detail

in section 1.1.2.

Genotype refers to the genetic composition of cells. For every trait of an indi-

vidual, such as hair colour, eye colour, height and weight, a cell has instructions

for two alleles, or alternative forms of a gene. The genotype of an individual

leads to this pair of alleles at an SNP (i.e., AA, Aa or aa). One of the alleles

comes from the person’s mother, and the other comes from the person’s father.

An individual’s genotype is his or her unique combination of these alleles, which

can be heterozygous (i.e., different)or homozygous (i.e., the same). A person’s

phenotype refers to a trait that can be physically observed, such as a morphology

or behaviour.

Many genetic studies have established that thousands of loci, or positions

on chromosomes, contribute to common polygenic human diseases, which are

diseases caused by multiple genes, as well as traits. This finding was noted in

a genome-wide association study (GWAS) catalogue (Burdett, 2017). However,

recent studies have focused mainly on common variants because they provide a

fantastic opportunity to investigate the impact of common variants on complex

diseases.

GWASs have noted that common SNPs have gained prominence in recent

years and are used routinely to examine complex genetic compositions of diseases

and quantitative traits. More than 52, 491 disease-associated common variants

have been catalogued using GWAS techniques (Duncan & Brown, 2013). Such

studies rely on systematic evaluations of common genetic variants, which usually

2



1.1 Introduction

involve high MAFs Visscher et al. (2012). The studies have been vital to advanc-

ing our knowledge concerning disease pathologies, for example, central nervous

system functioning in individuals predisposed to obesity and the pathways of

macular degeneration in cases of age-related vision loss (Klein et al., 2005).

Nonetheless, while there has been a significant amount of work completed and

progress made in this area, many genetic contributions to complex traits remain

unexplained (Teslovich et al., 2010). GWASs have not discovered all the associa-

tions between diseases and genetic variations. In fact, genetic variants discovered

to date explain only a small proportion of estimated heritability, and thus, only a

small proportion of variations in phenotypes can be currently explained based on

genetic differences. However, some studies have used indirect statistical methods

to suggest that common variants explain at least 30%, and potentially more, of

many diseases’ and traits’ heritabilityLee et al. (2012b), Yang et al. (2011).

A key example of such a study is a GWAS that explored type 2 diabetes,

or T2D (Mendelian Inheritance in Man, or MIM, number 125853). The study

examined more than 150, 000 patients and identified > 70 loci at appropriate

levels of genome-wide significance; however, its examination was only helpful in

explaining 11% of T2D’s heritability. A similar GWAS found the same trend in

Crohn’s disease patients. It examined 210, 000 subjects but was able to account

for only 23% of the estimated variation (h2) in inherited cases (Franke et al.,

2010). Loci identified in GWASs often have only modest effects on disease risk

and quantitative trait variations, and hence, a movement in this area from the-

oretical knowledge to usable knowledge and clinical applications is likely to be

slow (Figure 1.1).

3



1. INTRODUCTION

MAF

Common variants

Rare variants

penetrance

Figure 1.1: Frequencies of published association variants. Variants can be clas-

sified by the frequency (on the horizontal axis) and its effect (i.e., penetrance,

which is the proportion of individuals carrying a variant who also manifest a spe-

cific phenotype) on the vertical axis. Note that rare variants (typically < 0.1%

to < 5%) are highly penetrant and often associated with severe developmental

disorders, while common variants have modest effects.

This gap regarding heritability, which is often called ’the problem of missing

heritability’, has some potential explanations. While some sources of missing

heritability remain unclear, one hypothesis is that most of the missing heritability

is found in rare genetic variants Manolio et al. (2009), Zuk et al. (2014). The

case for the important role of rare variants relies on the idea that alleles which

predispose someone to disease are likely to be deleterious and, thus, are kept at

low frequencies via purifying selections Kryukov et al. (2007).

Indeed, rare variants play important roles in most human diseases. For exam-

ple, many Mendelian disorders and rarer types of more common diseases are

caused by highly penetrant but rare genetic variants Gibson (2012). Losses

of functional variants, which prevent the generation of functional proteins, are

known to be particularly rare.

Recent empirical evidence has demonstrated that low-frequency and rare vari-

ants are, in fact, connected to complex diseases. However, commercial genotyping

arrays have, until recently, largely ignored this part of the allele frequency spec-

4



1.1 Introduction

trum. As there is no reliable catalogue of rare variants to support array designs,

and genome-wide surveys of rare variations generally need more assays than ex-

isting arrays support, the focus of most studies remains on common variants.

Recent advances in DNA sequencing technologies have led to significant changes

in population and medical genetics. DNA sequencing allows researchers to con-

duct more complete assessments of low-frequency and rare genetic variants and

investigate how such variants influence complex traits MacArthur et al. (2012).

Next-generation sequencing (NGS) technologies offer high-throughput parallel-

sequencing approaches that can generate billions of short-sequence analyses more

cost effectively than older technologies. NGSs make short reads aligned to refer-

ence genomes, do researchers can successfully identify any genotype site at which

there are differences between individuals. As the cost of sequencing continues to

fall, exome sequencing, which transcribes portions of genomes, and whole-genome

sequencing (WGS) of complex diseases may become increasingly achievable Gud-

mundsson et al. (2012).

However, while genome sequencing provides a means of investigating low-

frequency and rare variants in complex diseases, it is not without challenges.

First, conducting deep WGS of large numbers of patients is, and will likely re-

main, expensive. This type of research sequences large numbers of replicate

reads for specific regions, so various alternative strategies, including targeted se-

quencing, exome sequencing, low-depth WGS, and extreme phenotype sampling,

have been proposed as more cost-effective options. Second, achieving statistically

significant results using classical single variant-based association tests for low-

frequency and rare variants is difficult without significantly increasing sample

sizes. Hence, costs increase unless sizes of effects are very large. Third, requisite

multiple-test corrections are poorly understood and difficult to use effectively.

Rare variants are diverse and occur infrequently, so rare-variant association stud-

ies (RVAS), which are similar to common-variant association studies (CVAS) Zuk

et al. (2014), require extensive sample collection and detailed statistical analyses

to detect genetic associations with diseases. To address these limitations, RVAS

need further development.

Some early RVAS efforts were based on the notion that rare variants related

to common diseases can be identified using a small number of samples, and some

5



1. INTRODUCTION

discoveries were made Cohen et al. (2004), Bonnefond et al. (2012). Nonetheless,

analytical methodologies for RVAS are unfixed, although many scholars have

proposed a wealth of potential methods. In light of this situation, researchers are

turning to new statistical methods designed for RVASs with the aim of increasing

the validity and power of each finding. These methods evaluate associations of

multiple variants in a biologically relevant region, such as a gene, rather than

testing the effects of single variants, which was commonplace in some GWASs

Lee et al. (2014).

1.1.2 The Definition of Rare Variants

There is little agreement among scholars as to what constitutes a genuinely rare

variant. A variant is defined as either a locus or an allele at a locus, which

was described in detail by Saint Pierre & Génin (2014). Frazer et al. (2009)

posited that rarity referred to an MAF at a locus when viewing the locus as a

variant, so the researcher described a rare variant as a genetic alternative that

has an MAF of < 1%. However, this definition varies between scholars, and

acceptability thresholds also vary. In Frazer et al. (2009), a cut-off of 1% is

recommended with rare variants that define alleles with frequencies of < 1%,

while in Gorlov et al. (2011), the threshold is 5%. Bodmer & Bonilla (2008)

relied on an upper limit of 1%, but conversely, the author suggested a lower limit

of 0.1% to distinguish genuinely rare variants from a third category of variants,

which included ’clearly deleterious mutations’. For many scientists, recognizing

that these frequency boundaries are not absolute and that there can be overlaps

between low-frequency common variants and high-frequency rare variants can be

helpful in understanding the larger debate.

Cirulli & Goldstein (2010) established four categories based on variant fre-

quencies. The first is very common variants, which have frequencies between 5%

and 50%. The second is less common variants, which have frequencies of between

1% and 5%. The third is rare but not private variants, which have frequencies

of < 1% (these are polymorphic in one or more major human populations). Fi-

nally, the fourth category is private variants, which only appear in the proband’s

immediate relatives.
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Alternatively, Zuk et al. (2014) defined common variants as those that occur

regularly enough to allow individual tests with control groups. Given actual

sample sizes, the researchers noted that variants with frequencies as low as 0.5%,

which appear at least once in every 100 human subjects, can be classified as

common variants. The researchers defined rare variants in contrast to common

variants, as less frequently than once in every 100 human subjects.

As a definition, this thesis uses rare variants of less than 0.05. It classi-

fies MAFs between 0.01 and 0.05 as rare variants and can be classified as high-

frequency rare variants. Common variants appear in between 0.05% and 0.5%

of subjects. Finally, (see Figure 1.2 for the definition) it classifies rare variants

as extremely rare, moderately rare, and common, which are explained in later

sections. Note that the number of individuals is n = 2000, so MAF = 0.005 is

the threshold for extremely rare variants. This classification of variants by MAF

will be used throughout the thesis.

Figure 1.2: Definition used for the levels of MAF in this thesis.

1.1.3 Types of variation

Genetic variants are categorized into two classes based on the composition of their

nucleotides: single nucleotide variants or structural variants. Single nucleotide

variants are created by changes at a single nucleotide position on the DNA se-

quence. In most cases, single nucleotide variants are generated by a replacement

during the replication of a nucleotide that carries a given base to a nucleotide

that carries a different base. For example, an SNP may replace the nucleotide

cytosine (C) with the nucleotide thymine (T) in a stretch of DNA. Such a re-

placement generates change in neither the DNA sequence length nor the order of
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the nucleotide. This replacement is called a point mutation and is often unique

so that only two variants can be observed at any position. SNPs are the most

obvious common type of genetic variation between people. Each SNP denotes a

difference in a single strand of DNA–the nucleotide. Structural variants represent

all other kinds of DNA variations. This is, therefore, a rather widely varied class

of variants that includes INDELs, where one or a few nucleotides are missing in

some DNA sequences, block substitutions, where a change occurs in the string of

adjacent nucleotides, CNVs, which are stretches of DNA sequences larger than 1

kb present in variable numbers that are different in the normal population, and

inversions, where the order of the nucleotides in a given genomic region is changed

(Saint Pierre & Génin, 2014).

1.2 Overview of the Thesis

1.2.1 Objective

Due to the low power, it is impossible to analyse each variant individually. In-

deed, a high proportion of rare variants appear in only one or two people in a

large sample. For this reason, standard GWAS analyses cannot produce stable

estimates of rare variants. Thus, methods were developed to combine variants

within regions. The objectives of this thesis are as follows:

• Develop statistical and inference methods to analyse rare variant associ-

ations, as association analyses of rare variants require statistical methods

that can effectively combine information across variants and estimate the

overall effect of data;

• Investigate schemes for weighting variants in analyses; and

• Consider how genotyping errors commonly occur and remain a challenge

in sequencing studies; because quality scores can be good measurements of

genotyping accuracy, and genotype quality scores are offered by automated

biotechnologies, the aim is to develop an association test that incorporates

genotyping quality scores to improve statistical power and inference.
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1.2.2 Outline of the Thesis

The thesis is divided into ten chapters. Chapter 2 introduces variant-call format

structures and explores data analysis. Chapter 3 reviews the literature on RVASs

with the aim of introducing RVA tests and examining the differences between

such tests. Chapter 4 discusses score tests and their distributions by incorporat-

ing weighting schemes. Chapters 5 and 6 introduce different weighting schemes

based on variant levels. In Chapter 5, rare variant regions are discussed, while

Chapter 6 extends that discussion to whole regions (rare and common). Chapter

6 introduces combined weighting schemes. Finally, in Chapters 7, 8 and 9, new

weighting schemes that incorporate external information regarding score tests are

examined. For example, variant measures, such as variant-based quality (quality

calls) and genotype quality, are examined. Chapter 7 develops a weighting scheme

based on variants while incorporating information based on quality calls. Chapter

8 develops an individual weighting scheme and combines it with a variant weight-

ing scheme (marginal weight). Chapter 9 develops a weighting scheme based on

variants and individual levels (cell weights). Finally, Chapter 10 summarises this

thesis’s major findings and provides suggestions for future research.
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Chapter 2

Variant Call Format and

Exploratory Data Analysis

2.1 Variant Call-Format (VCF) Files

A VCF file is a standardised file with text that represents INDELs, SNPs, and

structural variation calls. VCF files contain meta-information lines, header lines,

and data lines. The files also contain genotype information about samples for all

positions in genomes. In this chapter, VCF files are explained in detail, and some

examples are given to illustrate concepts using real VCF data. The VCF version

discussed is VCF 4.2.

2.1.1 Fixed Fields

The header line describes the eight fixed mandatory columns. The columns are

named:

1. chromosome (CHROM),

2. position (POS),

3. identification (ID),

4. reference (REF),

5. alternative (ALT),
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6. quality (QUAL),

7. filter (FILTER), and

8. information (INFO).

Descriptions of the column names are provided below.

1. CHROM: An identifier from a reference genome. All entries for a specific

CHROM should form a contiguous block within a VCF file. For CHROMs,

an alphanumeric string is required.

2. POS: A reference position; the first base is ’position 1’. Positions are sorted

numerically, in increasing order, within reference CHROMs. Integers are

required.

3. ID: A semicolon-separated list of unique variant descriptions. If an ID is

a dbSNP variant, its (rs) numbers can be used. IDs should not exist in

multiple data records, and if an ID is unavailable, a missing value should

be used. An alphanumeric string is required.

4. REF: A base that contains only the letters A, C, G, T, and N. These letters

should always be uppercase, and multiple bases can be authorised. Values

in POS fields relate to the positions of first bases in sequences. For INDELs,

a reference string, or sequence, must carry a base before an event, which

must be exhibited in a POS field. REFs require strings.

5. ALT: A comma-separated list of named non-reference alleles that are in at

least one sample. Options are base strings built from the bases A, C, G, T,

and N, and options fit the angle-bracketed ID string (“ID”). If there are

no non-reference alleles, then a missing value should be employed. Bases

should always be uppercase. Alphanumeric strings without commas, white

spaces, and angle brackets are permitted in ID strings.

6. QUAL: A numeric Phred-scaled quality score for an assertion made in an

ALT, for example, −10 log10 prob (call in ALT is wrong). If an ALT is “.”

(no variant), then it should appear as −10 log10 p (variant). However, if an
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ALT is not “.”, then it should appear as −10 log10 p (no variant). A high

QUAL score means that it is a high assurance call. It should be noted that

although integer Phred scores have traditionally been used, the QUAL field

can be a floating point to permit higher resolutions for low confidence calls

if desired.

7. FILTER: ’PASS’ indicates that a site, or POS, has passed all filters. If

a POS has not passed all filters, a list of codes for filters that fail will

be presented, and semicolons will separate items in the list; for example,

“q10; s50” symbolises that the QUAL at a POS is under 10, and the number

of samples with INFO is below 50% of the total number of samples. “0”

is reserved, and it should not be used as a filter string. If filters have not

been applied, then this field should be set to a missing value. FILTERs are

alphanumeric strings.

It should be noted that following header blocks and field names, lines or

blocks describe single variants; several properties of such variants are described

in columns.

Type of Variation Alignment VCF represent

SNP 1 2 3 4

A C G T

A T G T

POS REF ALT

2 C T

Insertion 1 2 3 4 5

A C - G T

A C T G T

POS REF ALT

2 C CT

Deletion 1 2 3 4

A C G T

A - - T

POS REF ALT

1 ACG A

Table 2.1: Type of SN variation.

Examples of different genotypes represented in VCF data are given in Table

(2.2).
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CHROM POS REF ALT ALT1 Type

1 150737433 C G SNP

1 150737444 T C SNP

1 150737565 TTCTCTCTCTCTC TTCTCTCTCTCTCTCTC INSERTION

1 150781527 CAA CA DELETION

1 150782111 A ACACAC ACAC INSERTION

1 150782176 CAGA CAGAGA INSERTION

Table 2.2: Examples of variation types taken from real VCF data (call outputs).

Only references, alternative alleles, and types are shown.

2.1.2 Genotype Field

If genotype data are included in a VCF, a FORMAT column header is needed.

The acronym ’GT’ is used to represent genotypes and encrypt them as allele values

separated by either \ or | in such headers. / means a genotype is unphased, and

| means it is phased. The expression 0 is used if they are reference alleles (alleles

in REF fields), while 1 is used if they are first alleles in ALTs, and 2 is used if

they are second alleles in ALTs.

Polyploid cells and organisms are living beings that have more than two paired

(homologous) sets of chromosomes, while triploids have three sets, and tetraploids

have four. There are many types of these organisms, and each is labelled according

to the number of chromosome sets in its nuclei. For diploid cells, example labels

include 0/1, 1 | 0, and 1/2. Additionally, for triploid calls, example labels include

0/0/1. However, for haploid calls, for instance, for Y male non-pseudoautosomal

X cells, or mitochondria, only one allele value should be given. If a call variant

cannot be made for a sample at a given locus, “.′′ should be defined for a specific

missing allele in a GT field (e.g., “./.” would be used for a diploid genotype, and

“.′′ would be used for a haploid genotype). A GT field is encoded as a typed

integer vector. It should be noted that the data used in this chapter is diploid.

1/1 and 0/0 Three samples encoded sequentially

./. Two missing alleles

0/1/2 A tetraploid with alleles
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To provide an example, if a REF is A and an ALT is T, 0/0 means AA,

1/0 means AT, and 1/1 means TT. However, sometimes one will see INDELs in

data. For instance, if one lets a REF be A in the ALT ACACAC,ACAC, the

meaning of the variation 0/0 is AA. Similarly, 2/0 means ACAC/A, 2/1 means

ACAC/ACACAC, and 2/2 means ACAC/ACAC.

Figure 2.1: An example of genotype data in the VCF format.

Using the last column in Table 2.1, the tags in the FORMAT column can be

described.

• GT: The genotype of this sample. For a diploid person, the GT field indi-

cates the two alleles given by the sample, encrypted by a 0 for the reference

allele (REF), 1 for the first alternative allele (ALT ), 2 for the second ALT

allele, and so on. In the case of a single ALT allele (by far the more common

case), GT will be either:

– 0/0, meaning that the sample is homozygous;

– 0/1, meaning that the sample is heterozygous and carries 1 copy of

each REF and ALT allele; or,

– 1/1, meaning that the sample is a homozygous ALT.

• GQ: The quality of the genotype, or Phred-scaled probability that the true

genotype is the one provided in the GT field. In a diploid situation, if GT

is 0/1, then GQ is actually L(0/1)/(L(0/0) +L(0/1) +L(1/1)); note that L

is the likelihood that the representation is 0/0, 0/1, or 1/1 under the model

built for the next generation sequence dataset.

• AD and DP: These are equivalent fields that describe two primary ways

of recording the data depth for this sample at this position or site. Data

depth is explained in the next section.
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• PL: The likelihoods of the given genotypes (here, 0/0, 0/1, and 1/1) are

presented in this field. These are the normalised, Phred-scaled likelihoods

for all of the genotypes 0/0, 0/1, and 1/1, with no priors. To illustrate, this

would be L data given that the true genotype is 0/1 for the heterozygous

case. The very likely genotype (in the GT field) is scaled; its P = 1.0 (0

when Phred-scaled), and the other likelihoods indicate their Phred-scaled

likelihoods relative to this most likely genotype. It is rounded to the nearest

integer.

A PL has three numbers. The first, second, and third numbers relate to the

probability that the site is homozygous, heterozygous, or homozygous, re-

spectively, for the alternate allele. As the number increases, the probability

that the sample is that genotype decreases. Hence, if a PL is 485, 0, 535, the

software is relatively certain that the sample is heterozygous rather than

a homozygous reference or homozygous alternate. Moreover, the GT con-

firms this by being 1/0. If the first and last numbers had been lower, then

the quality of the SNP would be reduced, and the genotype would be less

reliable. An example of a PL is given in Figure (2.2) At position 150737433,

which is the first line of the figure, the PL is 0, 205, 255 (i.e., the likelihoods

of the three given genotypes) at this position in individual number 1, which

is named X06 0006e 1 (replicate 1 for individual X06 0006e). The repli-

cate number is the last number of the individual’s name (the individuals

represented in the columns in the table here). The genotype is homozygous

in reference 0/0 based on the PL result.
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Figure 2.2: Illustration of a PL as shown in VCF output. PL (the likelihoods of

the given genotypes) is the likelihood of a GT (genotype).

• DP: this field describes the total depth of reads that passed the caller’s

internal quality control metrics (i.e., the depth of a high-quality read).

Figure 2.3: Output of DP (read depth) as shown in VCF output or a VCF file.

The rows represent the genomic position, while the columns represent individuals

with replicates.
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Figure 2.4: Read depth at each replicate in an individual based on the real

replicate data that we have, which include rare variants in many genes, such as

PARP1 and TYROSINASE.

Examples of how PLs and GQs appear in VCFs are presented in Table 2.1.

To understand the genotypes for NA12878 at chr1 : 899282 in Table 2.1, refer

to chr1 899282 rs28548431 C T [CLIPPED] GT : PL : DP : GQ 0/1 : 1, 3 : 4 :

25.92 : 103, 0, 26. At this position (site), the genotype is called GT = 0/1, which

presents REF and ALT alleles as C/T . The confidence indicated by GQ = 25.92

is low, largely because there was only a total of 4 reads at this position (DP = 4).

The reason for uncertainty is noticeable in the PL field, where PL(0/1) = 0 (the

normalised value that agrees with a likelihood of 1.0), but there is a possibility

that the subject is homozygous with the variant allele since PL(1/1) = 26, which

corresponds to the probability 10−2.6, or 0.0026. It is clear that the subject is not

homozygous with the REF allele because PL(0/0) = 103; this corresponds to a
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probability of 10−10.3, which is a very low number.

2.1.3 Phred Quality Score

A Phred quality score is an integer that represents the estimated probability of

an error (i.e., the estimated probability that a base is incorrect). Phred quality

scores are attached to every nucleotide base call in automated sequencer traces.

Moreover, they are widely accepted as they characterise the quality of DNA

sequences. Phred quality scores are represented by Q and are logarithmically

linked to the base-calling error probability P ;

Q = −10 log10 P

where P is the error probability for the base. The Phred value is rounded to the

nearest integer and enables a higher resolution for a low confidence call.

P = 10−Q/10

A low Q score can increase false-positive variant calls. A high-quality score in-

dicates high confidence calls. Applying the Q formula, Q = 10 means a 1 in 10

chance the base is wrong, and 90% accuracy of the base call and P will be 0.1.

A threshold of Q = 10 is usually applied.

2.2 Example Dataset

Sequencing data were provided from a case-control study of melanoma, including

sequence data from 61 gene subsets of 1317 cases and 697 controls. Three datasets

were used. The first set is replicate data, which were sequenced twice (technolog-

ical replication). The replicate data contains 47 samples; 23 individuals (22 pairs

and 1 trio) were sequenced at 44, 382 sites. The data was filtered, and 2785 sites

were removed due to poor quality, leaving 41, 597 sites. Most of these sites were

considered rare variants due to the low minor allele frequencies; however, some

are common variants. A total of 41, 597 biallelic variants, including nucleotide

polymorphisms (SNPs) and insertion/deletions (INDELs), have been identified.

The second set is for the region covering the gene PARP1 on chromosome 1,
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which has 547 sites. The third set is for the region covering gene TYROSINASE

(TYR1 ) on chromosome 11; this gene has 318 sites.

2.2.1 General Notation

There are three main concepts in this chapter: genotype data, the case-control

phenotype, and weight. Assume n subjects are sequenced in a region with p

variant sites observed, where n = 2014 and p is based on the gene that we are

analysing, such as the PARP1 gene p = 571 or TYR gene p = 318. For the

ith, subject yi denotes the phenotype variable, and Gi = (gi1, gi1, . . . , gip) is the

genotype design matrix. The elements of the genotype matrix are gij = 0, 1, 2 for

common homozygous, heterozygous, and rare homozygous variants, respectively.

2.3 Pilot Study to Investigate Experimental Er-

ror

2.3.1 Introduction

In the example data, there are 22 individuals; each individual has two replicates,

with the exception of one individual who has three. It is important to investigate

the differences between replicates in each individual. Across all 23 individuals,

how many loci are there where the replicates differ? We will call each individual’s

data the genotype of that individual.

In this section, studying and investigating the differences between the repli-

cates will be illustrated in the first section, followed by an investigation of the

missing values in the data. Table (2.3.1) shows the count of genotypes in the

replicate dataset.

Type ./. 0/0 1/0 1/1 2/0 2/1 2/2 3/0 3/1 3/2 3/3

Count 69404 1743946 82315 53828 836 3419 374 21 568 311 37

Table 2.3: Counts of genotypes in the replicate dataset.
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2.3.2 Notations

For i = 1 . . . , n and j = 1, . . . , p , let gijk be the genotype of individual i at locus

j for replicate k. There is one individual with 3 replicates, so k will be 1, 2, or 3.

Note that in the replicates data, p = 41597 and n = 23. Also, for i = 1 . . . , n and

j = 1, . . . , p, let Dij denote the matrix of the difference between replicates and

Mij denote the missing genotype at individual i and position j or Mijk denote

the missing genotype at individual i, position j, and replicate k.

2.3.3 Differences Between Replicates

In this section, we will identify differences between replicates for each individual.

Any difference is a result of some experimental error. Consider a new matrix: its

element is 1 when the genotype of replicate one at a position j and individual i is

different from the genotype of replicate two at the same position and individual,

and 0 otherwise. We denote the matrix of differences D as follows:

Dij =

{
0 if gij1 = gij2
1 if gij1 6= gij2

For the triple one, if all the replicates are the same, they will be denoted by 0,

otherwise 1. The total number of differences in individual i across all positions

is di. =
∑p

j=1Dij for i = 1, . . . , n. We use two methods to sum up the differences

between the positions: either ignore or consider the missing values. Let dj. be the

summation of differences between individuals at position j; d.j =
∑n

i=1 Dij.
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Individual i di. with missing di. without missing values

1 777 283

2 863 327

3 869 306

4 827 283

5 759 287

6 809 323

7 823 281

8 731 277

9 767 282

10 849 311

11 831 302

12 782 252

13 1116 369

14 839 369

15 838 293

16 851 359

17 836 282

18 733 282

19 806 257

20 900 325

21 800 277

22 849 307

23 851 290

Table 2.4: The number of differences between the replicates with and without

missing values per individual.
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Figure 2.5: Distribution of differences for individual i. The mean number of

differences per i individual is 298 (without missing values).

Figure 2.6: Summation of differences at j positions. For example, at position

number 1, 14 out of 23 individuals have different replicates at this specific position.

Thus, the percentage of positions at which replicates differ is 0.7%. Out of a

total of 956, 731 pairs (i.e., the elements Dij), 6, 860 are different. The number

of differences varies considerably at each position. For example, one position has

different replicates for just one individual, while other positions have different

replicates for more than 12 individuals. Moreover, one position differs for 21
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individuals, and 438 positions differ for just one individual. Table 2.5 illustrates

the frequencies of possible numbers of differences. For example, there are 40, 129

positions with no differences in any individuals.

Summation of different d.j Total Number of positions

0 40129

1 438

2 196

3 143

4 126

5 94

6 64

7 76

8 56

9 49

10 57

11 39

12 41

13 23

14 21

15 15

16 13

17 8

18 5

19 2

20 1

21 1

Table 2.5: Frequencies of differences among 23 individuals. There are 40, 129

positions (96%) where all the replicates in all the individuals are the same. No

replicates differ in these positions.
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Figure 2.7: An illustration of numbers of positions versus the number of differ-

ences among individuals. For example, there are 438 positions with only one

observed individual; their replications differ from one another. There is also one

position with 21 individuals; the replications of the individuals differ from one

another.
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2.4 Missing Values

In VCFs, there are many types of genotypes; one type includes symbols, such as

“./.”, which indicate missing values. The data’s genotypes, including the missing

values, are shown in Table 2.6.

Type ./. 0/0 1/0 1/1 2/0 2/1 2/2 3/0 3/1 3/2 3/3

Count 69344 1743841 82132 54143 834 3426 383 24 574 322 36

Table 2.6: A summary of genotypes in the replicate data.

The missing values can be considered two ways, or with two matrices. In

the first, which is based on 47 replicates, every individual has two copies, so the

dimensions of the matrix are 41, 597 rows (positions of SNPs) and 47 columns

corresponding to copies for individuals. The second matrix is based on 23 individ-

uals; its dimensions are 41,597 rows and 23 columns (individuals). In Table 2.6,

there are 69, 344 genotypes with the value “./.”, which means the genotype values

are missing, based on the first matrix, which is a replicate one. At a position with

this value, one cannot say whether the genotype is homozygous or heterozygous.

There are 2, 741 positions out of 41, 597 with at least one missing value, which is

6% of the positions. Based on the individual matrix (the missing values for both

replicates), the number of cells with missing values is 40, 054 out of 956, 731, or

4%. There are 2, 444 positions out of 41, 597 with at least one missing value (6%

of the positions).

Let Mij be a missing matrix with a binary value. Let1 indicate a missing value,

and let 0 indicate a value that is not missing. For i = 1, 2, . . . , n individuals, there

are j = 1, 2, . . . , p variants (positions) and k = 1, 2 replicates:

Mijk =

{
1 if gijk = “./.”
0 if gijk 6= “./.”

For replicate k of individual i, let mi.k be the total number of missing values

in each replicate, so mi.k =
∑p

j=1Mijk.

The total number of missing values in each replicate is shown in table 2.7.
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Replicate 1 Total of Missing mi.k Replicate 2 Total of Missing mi.k

1.1 1357 1.2 1353

2.1 1518 2.2 1388

3.1 1567 3.2 1648

4.1 1563 4.2 1541

5.1 1491 5.2 1465

6.1 1401 6.2 1469

7.1 1534 7.2 1494

8.1 1411 8.2 1341

9.1 1426 9.2 1445

10.1 1418 10.2 1500

11.1 1506 11.2 1453

12.1 1507 12.2 1359

13.1 1413 13.2 1530

14.1 1324 14.2 1546

15.1 1360 15.2 1561

16.1 1188 16.2 1396

17.1 1435 17.2 1587

18.1 1489 18.2 1452

19.1 1407 19.2 1486

20.1 1612 20.2 1669

21.1 1502 21.2 1479

22.1 1569 22.2 1479

23.1 1542 23.2 1675

Total m..k 69344

Table 2.7: Total of missing values in each replicate

Table 2.8 shows the number of missing values for each individual. Note that a

position is counted as having a missing value if one or both replicates are missing.
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Individuals i The total of missing values in i individuals

Ind 1 1602

ind 2 1721

ind 3 1889

ind 4 1824

ind 5 1714

ind 6 1678

ind 7 1785

ind 8 1603

ind 9 1678

ind 10 1728

ind 11 1744

ind 12 1698

ind 13 1725

ind 14 1711

ind 15 1733

ind 16 1538

ind 17 1788

ind 18 1696

ind 19 1712

ind 20 1928

ind 21 1752

ind 22 1795

ind 23 1889

Table 2.8: Total of missing values for each individual

2.4.1 Relationship Between Read Depth and Missing Val-

ues

Read depth, or the depth in a genomic position, is equal to the number of reads

aligned to a position. It describes the total depth of reads that the pass the

internal caller quality check (i.e., the depth of coverage of each position for each

sample). When there is no read at position j for individual i, (DP = 0). It is
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considered a missing value, which is denoted in VCF as “./.”.

2.4.2 Modelling Differences using Logistic Regression

This section presents model differences and read depth. As the chapter’s focus

is on read depth, the data is fit with a summation of replicate read depths, and

square roots. The predictors for the model are the differences that occur between

replicates at given positions.

Let rijk be the read depth for individual i, position j, and replicate k.

Summation =
∑p=41597

j=1

∑n=23
i=1 (rij1 + rij2)

Square Root =
∑p=41597

j=1

∑n=23
i=1

√
rij1 × rij2

The Response is the Difference Between Replicates

Let the indicator for the presence of a difference between replicates at a given

position for a given individual be the response variable y. It will be assumed that

each position is independent of the others. This assumption may not be accurate,

but it will be used for simplicity. Let Dij denote the value 0 or the value 1 for

individual i at position j, as defined in 2.3.3. The matrix is

D =


d11 d12 · · · d1p

d21 d22 · · · d2p
...

...
...

...
dn1 dn2 · · · dnp


where p = 41597 is the total number of positions, and n = 23 is the total

number of individuals. Since the response is binary, to use a generalised linear

model to fit the model, this matrix is converted to a vector y.
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y =



d11

d12

d13
...
d1p
...
d2p
...
dnp


Significant results appear when one fits y with the summation and the square

root of the product as explanatory variables. The final model is y with the

summation and square root of the product.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -3.2552 0.0157 -207.13 2e-16

summation -0.0143 0.0002 -81.87 2e-16

square root 0.0014 0.0000 38.59 2e-16

Table 2.9: The output of fitting a logistic regression model, where the response is

disagreement between replicates, and the covariates are the summation and the

square root of read depth.

This model suggests that the summation and square root of the read depth are

predictive of difference (disagreements) between replicates. It can be concluded

that as the differences between replicates increase, the read depth decreases.
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Figure 2.8: The summation of read depths between replicates at given position

j and individual 2 versus disagreement between replicates. In this example, we

choose individual 2 with its replicates.

2.5 Conclusion

In this chapter, VCF is introduced, and examples are given using real data. An

exploratory analysis shows it can be concluded that missing values from the VCF

examples are associated with read depth. If there is no read at a specific genomic

position, then there is a missing value. In addition, the analysis shows that there

are relationships between replicate differences (disagreements) and read depths;

when read depths decrease, differences (disagreement) increase.
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Chapter 3

Association Testing for Rare

Genetic Variants

3.1 Methods for Testing Rare Variants

Advances in NGS technologies have provided unprecedented opportunities to dis-

cover rare variants and evaluate their effects on disease risks and trait variations,

as rare variants are important when studying complex human diseases and traits.

However, when allele frequencies are very low, the likelihood of observing rare

variants in study samples is small. The resulting lack of variation in data usually

causes statistical tests of association to be significantly underpowered.

Recently, studies of rare variants have proposed different testing strategies for

genotype and phenotype associations that are based on aggregating association

information across multiple SNPs into single tests. It is generally recognized

that a good strategy for analysing rare variants is combining them into units

of association. The purpose of aggregation is to enrich association signals and

reduce penalties that result from conducting multiple tests.

There are two categories of the most common gene-level association tests.

The first is burden tests, which are linear tests that detect specific associations

if all variants are in one direction. They were designed for detecting associations

of genotypic burden scores summarized from sets of rare variants. Burden tests

are used by Morgenthaler & Thilly (2007), Li & Leal (2008), Morris & Zeggini

(2010), Madsen & Browning (2009), and Price et al. (2010). The second category
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3. ASSOCIATION TESTING FOR RARE GENETIC VARIANTS

is quadratic tests, which can be used across a wide range of genetic models. The

tests keep individual rare variants as individual variables and evaluate whether at

least one multiple rare variant is associated with a trait. Quadratic tests are used

by Neale et al. (2011), Wu et al. (2011), and Lee et al. (2012a). This paper theo-

retically and empirically examines both classes of tests and provides several new

insights concerning them. Additionally, novel simulation studies are conducted

that complement the empirical investigation and illuminate comparisons of the

methods.

The key feature shared by the two types of tests is that they test collective

rather than individual effects of multiple rare variants as entire groups. Therefore,

once associations between groups of rare variants are identified, further analyses

are sometimes required to determine which variants cause the associations. In-

deed, there are many methods for detecting rare variant associations, categorize

in three main categories, shown in Table 3.1.

Association methods

Category Description Tests

Burden Test Collapses rare variants into

genetic scores

CAST, CMC,

WST

Variance Component Test Tests variance of genetic

tests

SKAT, SSU,

C-alpha

Combined Test Combines Burden and Vari-

ance Component Tests

SKAT-O,

Fisher Meth-

ods

Table 3.1: A summary of the methods used for detecting rare variant associations.

Burden tests, which are also called linear tests, combine rare variant infor-

mation into single scores or variables. Quadratic tests use score functions and

evaluate distributions of the genetic effects instead of combining groups of vari-

ants (Lee et al. (2014)). In this chapter, popular tests that fall under the category

of a burden or quadratic test are discussed:

• Weighted sum statistic tests (WST)
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• Replication-based strategies Test (RBT)

• C-alpha test

• Sequence kernel association tests (SKAT)

Sections 3.3 and 3.4 discuss the mathematical details, as well as insights into

the advantages and limitations, of each method.

3.2 Data Description and Model

We consider a case-control study with a total sample size of n. Assuming we test

the association between genetic variants and phenotype in a candidate region or

gene which includes p SNPs in n individuals. For individual i, let yi = 1 or yi = 0

denote a case or control, respectively, with i = 1 . . . , n, let µi be the mean of yi,

xTi = (xi1, . . . , xip) represent allele counts xij ∈ {0, 1, 2} (assuming additive trait

model) for p variants of interest, where j = 1, . . . , p, and zTi = (zi1, . . . , zik) repre-

sent covariates, and where k = 1, . . . , q. We assume that yi follows a distribution

in the exponential-likelihood family and consider the following generalised linear

model:

h(µi) = β0 + zTi α+ xTi β, (3.1)

where h(µi) = logit(µi) for a binary phenotype, β0 is an intercept, and α =

(α1, . . . , αq)
T and β = (β1, . . . , βp)

T are regression coefficients for the covariates

zTi and allele counts xTi , respectively.

We test the association between genotype and phenotype where the null hy-

pothesis is:

H0 : β = β1 = · · · = βp = 0 (3.2)

In the simulated study, we generate a number of variants. We consider a

sample of 1000 cases and 1000 controls. For each model, we simulate 1, 000

datasets. We assume a multiplicative trait model with the odds ratio (OR) and

frequency of the minor allele at the causative SNP equal to m. We consider m in
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the 1–3 range and a multiplicative model with an OR ranging from 1 (for the type

I error rate) to 3. When the OR is greater than 1, we consider the SNP to have

a direct effect on the disease, so we call it a causal variant or SNP. Simulation of

the SNPs assumed Hardy–Weinberg equilibrium (HWE).

The simulated LD patterns are defined by ρìj, where ì and j are the location

index of markers and the trait locus on the gene, respectively. The patterns of

LD in the cases and controls are the same. We consider tow scenarios, namely

ρìj = 0.5|̀i−j|, or ρ, is randomly sampled from a uniform distribution between 0.3

and 0.9. There are 100 SNPs per gene in the simulation.

3.3 Burden Test

The burden, or linear, test creates a burden score for each subject by collapsing

the SNPs with minor allele frequencies (MAFs) below a particular threshold and

relates the score to the trait of interest. For example, the combined multivariate

and collapsing (CMC) method splits the variants into subgroups based on their

MAFs and collapses them within each subgroup. The burden test collapses in-

formation for multiple genetic variants into a single genetic score Asimit et al.

(2012), Morgenthaler & Thilly (2007), Morris & Zeggini (2010).

3.3.1 Cohort allelic sums test (CAST)

The Cohort Allelic Sums Test (CAST (Morgenthaler & Thilly (2007)) is one of

the first tests based on a collapsing technique for rare variants, which involves

collapsing genotypes across rare variants to create a super variant (random vec-

tor):

For simplicity, we will present score values or the genetic score summary as

Ci =

p∑
j=1

tjxij, (3.3)

where tj is a threshold indicator which will be equal 1 in CAST, Ci is the

score value, and xij is the genotype matrix; its elements belong to (0, 1, 2).
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3.3 Burden Test

Suppose all rare variants have the same effect, i.e.

β1 = β2 = . . . = βp = β

Then:

xTi β = (xi1 + xi2, . . .+ xip︸ ︷︷ ︸
Ci

)β

So, our new model is:

h(µi) = β0 + zTi α+ CT
i β, (3.4)

{
Ci = 1 if any xij > 0 (any rare variant present)

Ci = 0 otherwise

In CAST, it is assumed that the appearance of any rare variant increases disease

risk, and the genetic score is set to Ci = 0 given no minor alleles in a region,

and Ci = 1 otherwise (see Table 3.2 ). Then, the test is performed to detect

the association between a phenotype and new Ci. A genetic score summary (3.3)

tests the association between a phenotype and Ci, which will be used in upcoming

sections.

y x1 x2 x3 C

1 1 0 0 1

1 1 0 1 1

. . . . .

. . . . .

0 0 0 0 0

0 0 0 0 0

Table 3.2: Illustration of the pooling the SNPs in CAST.

3.3.2 Combined multivariate and collapsing (CMC) tests

This test is a modification of CAST with an extension to improve its power when

both rare and common variants are present. Therefore, if the data only has

rare variants, then CMC will be the same as CAST. Like CAST, CMC collapses
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rare variants but in different categories of MAF and evaluates the joint effect of

both common and rare variants by using Hoteling’s t-test, which is based on a

multivariate distribution comparable to the F-distribution. As a generalization,

the combined multivariate and collapsing (CMC) method splits the variants into

subgroups based on their MAFs and collapses the variants within each subgroup

Li & Leal (2008). We can express this step of the test as follows:

• Group variants based on their MAFs F.

• Collapse each group using CAST approach.

• Perform Hoteling’s t-test.

3.3.3 Weighted sum test (WST)

The Weighted sum statistic test (WST) is a burden test proposed by Madsen

& Browning (2009) that compares the number of mutations in a group of RVs

between a sample of affected individuals (case group) and an unrelated group of

unaffected individuals (the control group). For each variant j, the rarer allele is

considered the mutation, and the weight is calculated based on the MAF. Since

causal variants often have a higher MAF in cases and a lower MAF in controls,

and thus, a higher combined MAF across cases and controls, this method may

down-weight the causal variants, which will reduce the test’s effectiveness. Hence,

Madsen & Browning (2009) suggests that only the MAFs of controls should be

used to calculate weights. The weight used in this test is the inverse of the

variance of (MAF) in controls, and then summed the weighted rare variants.

The weighted-sum test (WST) of Madsen & Browning (2009) uses the Wilcoxon

rank-sum test and obtains p values by permutation.

Let n0 be the number of individuals in the control group, n1 the number of

individuals in the case group, and n the total number of individuals. Then, define

the weight as

wj =
√
n.jqj(1− qj), (3.5)
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where

qj =
m0j + 1

2n0j + 2
, (3.6)

and m0j is the number of mutant alleles observed for variant j in the unaffected

individuals (controls); n0j is the number of unaffected individuals genotyped for

variant j, and n.j is the total number of individuals (affected and unaffected)

genotyped for variant j Madsen & Browning (2009). Clearly, qj is the estimated

MAF from the control group only.

The genetic score of each individual i is calculated as

Li =

p∑
j=1

xij
ŵj

(3.7)

All individuals are ranked according to their genetics score Li. The sum of

the ranks of affected individuals is then calculated:

Twst =
∑
i∈A

rank(Li),

where A is the population of cases (affected individuals). However, Twst can be

re-written to use the genetic score summary 3.3 and be consistent with other

methods in notation:

Twst =
∑
i∈A

rank(Ci),

where Ci is the genetic score summary in (equation 3.3), and tj is equivalent to

1/wj in the WST.

Under the null-hypothesis and the assumption that the genotypes of the af-

fected individuals are independent of each other, Twst is the sum of n1 indepen-

dently and identically distributed (iid) random variables. Based on the central

limit theorem, it is approximately normally distributed since n1 is typically large.

The affected and unaffected status is permuted among the total population k

times to obtain a sample (T1, T2, . . . , Tk); here, T is the Twst. The sample’s mean

µ̂ and standard deviation σ̂ are then calculated, and the standardized score-sum

is found as

z =
Twst − µ̂

σ̂
.
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z follows an approximately standard normal distribution under the null hypothe-

sis. A p-value for the association can be obtained by comparing z to the quantiles

of the standard normal distribution.

3.3.4 Replication-based strategy (RBT)

Ionita-Laza et al. (2011)proposes a replication-based strategy (RBT) based on a

weighted sum of statistics and partitioning variants observed among cases and

controls into distinct groups according to the respective observed frequencies of

the minor allele; (m0,m1) denotes the group containing all variants that have

exactly m0 copies of the minor allele in the controls and exactly m1 copies of

the minor allele in affected cases. Let mm1
m0

be the size of the group (i.e, number

of variants) (m0,m1). Since we are interested in identifying risk variants, we

will consider only groups with m1 > m0. Table 3.3 shows the different groups

(Ionita-Laza et al., 2011).

m0/m1 1 2 3 . . .

0 m1
0 m2

0 m3
0 . . .

1 m2
1 m3

1 . . .

2 m3
2 . . .

Table 3.3: Variants are classified according to the number of times they appear

in controls (m0) and in cases (m1). Only variants that appear more frequently in

cases than in controls or those more likely to be risk variants are shown.

We define the following weighted-sum statistic S where each variant in group

(m0,m1) is assigned a weight wm1
m0

:

S =
Nr∑

m0=0

∑
m1>m0

mm1
m0
wm1
m0

(3.8)

where Nr is the upper threshold of the number of occurrences of a variant amongst

the controls.

Madsen & Browning (2009) use data-dependent weights, with
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wm1
m0

=
m1√
q(1− q)

where q = m0+1
2n0+1

is the estimated frequency based on controls only, and n0 is the

number of controls.

Since the number of changes (mutations) at a rare variant position follows

an approximate Poisson distribution, the probability P (m0,m1) of observing a

variant position with at most m0 mutations in controls and at least m1 mutations

in cases under the null hypothesis can be calculated by a probability mass function

of the Poisson distribution as

P (m0,m1) =
ef̂ f̂m0

m0!
× ef̂ f̂m1−1

(m1 − 1)!
.

where f̂ = m0+m1

2
is the estimated SNP frequency based on the observed num-

ber of appearances in both cases and controls, and P (m0,m1) is the Poisson

distribution function with parameters m0 and m1.

Note that, as the observed frequency in cases compared to controls increases

(i.e., as m1−m0 increases), the weight increases, and hence, S also increases. We

can evaluate the significance of S by applying a standard permutation procedure

to permute the control/cases case labels randomly, thereby quantifying the sig-

nificance of which S is higher than expected under the null. The power of RBT

is less sensitive to the direction of variant effects in a genetic region of interest

(Ionita-Laza et al., 2011).

3.3.5 The limitations of linear tests

The main limitation of linear tests is they assume that all tested variants influence

the phenotype in the same direction. Also, to achieve reasonable power, the tests

require large proportions of causal variants. Burden methods rest on the assump-

tion that all rare variants in a set of a group are causal variants associated with

a phenotype with the same effect direction. When this assumption is violated, it

results in a substantial loss of power (Rivas et al. (2011), Basu & Pan (2011), Lee

et al. (2014)). Moreover, some burden tests only use qualitative information such
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as CAST, CMC, WST and C-alpha, and cannot use quantitative traits; however,

most of these tests can be easily extended to quantitative traits such as WST.

Therefore, there is no adjustment for covariates for most of them such as CAST,

CMC, WST and C-alpha since they use pooling strategy, however, they can be

extended to incorporate covariates such as C-alpha test (Wu et al. (2011)).

3.4 Quadratic Tests

Based on the marginal model (3.1) for variant j, a ’score statistic’ can be defined

as

Uj =
n∑
i=1

xij(yi − µi). (3.9)

where µi is the estimated mean of yi under the null hypothesis (3.2) and obtained

by the null model h(µi) = β0 + zTi α. When disease risk is increased, the value of

Uj will be positive, and when variant j is associated with decreased risk, the value

of Uj is negative. The derivation of these score statistics is presented in a later

chapter. Quadratic tests can be used to overcome directional issues, which are

challenging in linear statistics. Therefore, covariates must be included in some

quadratic tests since the covariates can be controlling population stratification,

which is important in genetic association studies.

3.4.1 C-alpha tests

C-alpha is a well-established and powerful test for the presence of a mixture of

biased and unbiased coins (Neyman & Scott (1965), Zelterman & Chen (1988)).

Neale et al. (2011) proposes the C-alpha score test and applies it to testing the

degree of association in a group of rare variants. Under the assumption that

the rare variants are randomly distributed across the subjects, the probability of

observing a specific variant m1 times in the cases out of m total can be evalu-

ated by the binomial (m, p) distribution. This distribution (m, p) evaluates the

probability of observing a particular variant in m1 affected cases amongst a total

population of m. Under the balanced sample of cases and controls, it means

that p = 0.5 and m1 is 0, 1, and 2 for m = 2 are expected with probabilities of
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0.25, 0.5, and 0.25, respectively. We typically will observe a higher proportion of

doubletons with m1 = 2 and/or m1 = 0 than expected, if some variants are detri-

mental or protective. Because each variant cannot provide sufficient information

to draw a firm conclusion about the association, the C-alpha test is applied to

detect a pattern across the full collection of rare variants in the target region.

If the region being investigated has no alleles associated with a specific phe-

notype, then the counts should follow a binomial distribution with m being equal

to the number of copies of the observed variant. Assuming that rare variants are

distributed randomly across all individuals, a C-alpha test can be used to identify

the presence of a pattern across the full set of rare variants in the target region.

For a jth variant observed mj times, we assume that m1j follows the binomial

distribution (mj, pj) under the null hypothesis H0 : pj = p0 where p0 = m1

m
. The

C-alpha test statistic T compares the variance of each observed count with its

expected variance under the assumption of a binomial distribution.

T =
m∑
j=1

[(m1j −mjpo)−mjpo(1− po)]

where m1j is the number observations of a jth variant in affected cases out of a

total of n individuals (i.e., the number of copies of the jth variant type in the

affected cases, and mj is the number of copies of the jth variant type).

To standardize the test statistic, we require c, the variance of T :

c =
maxn∑
n=2

m(n)
n∑
u=0

[(u− npo)2 − npo(1− po)]2f(u|n, p0)

where m(n) is the number of variants with n copies, and f(u|n, p0) is the proba-

bility, assuming a binomial model, of observing u copies of a jth variant.

The resulting standardized test statistic is Z = T/
√
c. We reject the null

hypothesis if Z is larger than expected, using a standard one-tailed normal dis-

tribution as a reference (Neale et al., 2011).

The C-alpha method is only appropriate with qualitative traits since it de-

pends on testing homogeneity for a set of binomial proportions rather than logistic

regression. It cannot be adjusted to covariate, and no common variants are in-

cluded in the test since there is no weight in the test. Therefore, if we included

common variants, they would dominate the signal from rare variants.
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3.4.2 Sequence kernel association test (SKAT)

Sequence kernel association tests (SKAT) are a flexible approach to identifying

associations between variants in a region (both rare and common) and a dichoto-

mous (i.e., case-control) phenotype that also allows for covariate adjustment, for

example, to account for population stratification. SKATs analytically calculate

a p-value for each region while accommodating for covariates. Adjustments for

multiple comparisons are required for analyzing multiple regions, for example,

with the Bonferroni correction or FDR control. SKATs use a multiple-regression

model to directly regress the phenotype on both genetic variants in a given region

and covariates and allows different variants to have different magnitudes: posi-

tive, negative, and zero. SKAT does not require the selection of thresholds (Wu

et al., 2011).

SKAT was developed using a variance-component score test in a mixed-model

framework by considering rare variants. It was developed to test the regression

coefficients of variants.

Recall model (3.1); SKATs test H0 by assuming that each βj follows a ran-

dom distribution with a mean of 0 and variance of ;wjτ , where τ is a variance

component and wj is a pre-specified weight for the variant j. The null hypothesis

H0 : β1 = β2 = · · · = βp = 0 is equivalent to testing τ = 0.

Assume that n individuals are sequenced in a region where p variant sites

have been observed. For the ith subject, yi denotes the phenotype variable and

xTi = (xi1, xi2, . . . , xip) are the genotypes for the p variant sites. We assume an

additive allelic model, letting xij = 0, 1, or 2 denote the number of copies of

the minor allele, although dominant and recessive models can also be considered.

Then, we can introduce the test, which is a variance component test.

The score test’s advantage is that the null model P (yi = 1) = β0 + zTi α only

needs to be fitted for dichotomous traits. Specifically, the variance-component

score statistic is

Q = (y − µ)TK(y − µ)

where the kernel K = XWXT , µ is the predicted mean of y under H0; that is,

µ̂ = logit−1(α0 + zTi α) for dichotomous traits. We estimate α0 and α under the

null hypothesis by regressing y only on the covariates Z. Here, X is an n × p
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matrix with a (i, j)th entry equal to the genotype of variant j of subject i, with

W = diag(w1, . . . , wp) containing the weights of the p variants.

K =
∑p

j=1wjxijxi′j. K(., .) is called the weighted linear kernel function, which

is a measure of the similarity between ith and i′th subjects in the region using the

p markers. (There are also two choices of kernels to model epistatic effects.) Q

follows a mixture of chi-square distributions which can be approximated with the

method of Davies or by Satterthwaite method as a scaled chi-square distribution,

kχ2
v, in which the scale parameter,k, and the degrees of freedom, v, are calculated

via moment matching. A good choice of weights can improve power. Each weight

wj is pre-specified, using only genotype information, and no information about

the outcome.

Wu et al. (2011) set wj ∼ Beta(MAFj, a1, a2). The beta distribution density

function with pre-defined parameters a1 and a2 is evaluated at the sample MAF

(across both cases and controls) for the jth variant in the data. If rarer variants

are expected to have larger effects, then setting 0 < a1 < 1 and a2 > 1 will allow

for up-weighting rarer variants and down-weighting more common weights. (Wu

et al., 2011) recommends setting a1 = 1 and a2 = 25 as this up-weights rare

variants while still placing substantial non-zero weights for variants with MAF

1−−5% (Wu et al., 2011).

3.5 Numerical Power Comparisons

For this chapter, simulation studies were conducted to examine the performances

of burden and quadratic tests. Comparisons were made between the CMC,

CAST , WST , and C − alpha tests in terms of proportions of causal variants

with different MAFs, as well as the inclusion and exclusion of rare variants (large

frequencies) in the simulated data, the inclusion and exclusion of common vari-

ants in the simulated data, and, finally, different directions. These comparisons

illuminate differences between the two types of tests and rare variant associa-

tions. We will not cover all the explained test above, we only cover some from

each category (burden and non-burden), since our focus is just to illustrate the

difference between categories not all methods.
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3.5.1 Simulation

Genotype data for 2, 000 individuals were generated for each individual either 200

or 100 SNPs were simulated. These variants varied in the number of associations

and direction of effects. The numbers of extremely rare and moderately rare

variants, which have MAFs of 0.0005− 0.005 and 0.005− 0.01, respectively, also

varied; the default percentages are 40%, 40%, and 20% for ERV, MRV, and CV,

respectively. The percentages may have changed, and sometimes, we excluded

the common variants. This will be specified in the captions of the figures. The

effect size of causal variants varied from strong to low and was represented by an

odds ratio, so OR = 3 represented a large effect, and OR = 1.5 represented a low

effect. Also, effects were considered with different directions, namely OR = 0.3

and OR = 0.2 represented large and small effects with opposite directions. Ad-

ditionally, relationships between MAFs and effects were considered as in Figure

3.4. Each rare variant had a mutation rate or MAF uniformly distributed be-

tween 0.0005 and 0.01, while each common variant had a mutation rate or MAF

uniformly distributed between 0.05 and 0.5.

To obtain the genotype matrix X, z = (z1, z2, . . . , zp) was generated using a

multivariate normal distribution with a variance of 1 and a pairwise correlation

of zì and zj at 0.5|̀i−j|; 1 ≤ ì, j ≤ p between any two latent components. The

simulated LD patterns are defined by ρij, where ì and j are the location index of

markers in the gene, respectively. We consider two scenarios namely ρìj = 0.5|̀i−j|

or ρ is randomly sampled from a uniform distribution between 0.3 and 0.9. A

threshold was noted for each latent vector component to obtain a vector of a

binary variable, for example, (d), which represented haplotypes. Two vectors

of haplotypes d1 and d2 were generated for each individual. Then, the two

independently generated haplotypes (d) were combined by taking the sum x =

d1 + d2 with the vector X (0/1/2), which represents a genotype. The threshold

for component j, for example, cj, was obtained so that P (d = 1) was controlled

to mimic rare or common variants. Finally, given the odds vector β, the disease

status Y (0/1) was generated for each X, such that

LogitPr(Y = 1) =
ePr(Y=1)

1 + ePr(Y=1)
= β0 + xTi β,
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where β0 = log(0.05/(1− 0.05)). For the null case, OR = 1 was set; for non-null

cases (causal cases), OR = 3 was set for extremely rare variants, OR = 2 was set

for moderately rare variants, and OR = 1.5 was set for common variants.

Each allele of a haplotype is generated by dichotomizing the marginal normal

distribution, and the cut-off was determined by an allele frequency that randomly

sampled from a uniform distribution between 0.0005 and 0.005 as extremely rare

variants, 0.005 and 0.01 as moderately rare variants, 0.01 and 0.05 as large mod-

erately rare variants, and 0.05 and 0.5 as common variants.

Throughout the simulations, we fixed the test significance level at α = 0.05.

The results were based on 1000 independent replicates for each set-up. Note that

this simulation’s settings are explained in detail in Chapter 5.

3.5.2 Results

Burden (WST, CMC, and CAST) and non-burden (C-alpha) tests were compared;

the types of burden tests were not. Based on numerical calculations, it was found

that burden tests outperformed quadratic tests if all or almost all the SNPs

were causal variants. Therefore, burden tests outperformed the quadratic tests

when causal variants were in the same direction, regardless of whether they are

protective or deleterious SNPs.

However, the burden test performed poorly when there were few causal vari-

ants under consideration and when causal variants had in different directions.

Nonetheless, burden tests performed well when percentages of the causal variants

were large compared to non-causal variants.

Therefore, CMC and CAST performed poorly when causality was found in

extremely rare variants, such as in the extreme MAF range [1/n − 5/n]), even

though the OR was relatively large. The C − alpha test performed better when

there were only rare variants in the study’s data. Further, the WST was better

regarding the inclusion of common variants, which was due to the weighting

scheme (see Figure 3.1).
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Figure 3.1: The impact of MAFs of causal on statistical power. A total of 100

variants were generated with MAFs between 0.0005− 0.01, including 15% causal

variants in the simulated data with fixed effect size (OR=3) . Then we increased

MAFs of causal variants which appear on the X-axis. The top figure includes

common and rare variants with large MAFs (0.01 − 0.5), but the bottom figure

does not include them.
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The C − alpha test performed very poorly when the data contained common

variants or rare variants with large frequencies between (0.01 − 0.05) because

no weight was included in the test. Therefore, the values of common variants

dominated signals of association in rare regions. The CMC method also had

a reduction of the power when the data included common variants, but the re-

duction was not as large as that of the C − alpha test (see Figure 3.1). CAST

performed well when there were common variants; however, it performed poorly

when there were large proportions of moderately rare variants, regardless of the

effects and MAFs of causal variants (see Figure 3.2).

The CMC and CAST methods performed poorly when causal variants were

in the extreme MAF range. However, an improvement was seen when the number

of causal variants increased significantly (see Figure 3.2). Nonetheless, the WST

performed better, especially when the number of extreme causals was large, non-

causal variants randomly had rare MAFs (0.0005, 0.01), and no common variants

were included (see Figure 3.2). Increasing the number of causal variants increased

the power of the WST , CMC, and C − alpha tests.
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Figure 3.2: The impact of the increasing the percentage of causal variants on the

power. A total of 100 variants were generated with MAFs from 0.0005−0.01, and

causal variants increased on the X-axis. Fixed MAFs between 0.0005 − 0.002,

which are very low (i.e., extremely rare variants), are shown in the top figure,

and MAFs of 0.002 − 0.005 are shown in the bottom figure. The size effect is

fixed (OR=3).
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When the data contained large moderately rare variants (0.01, 0.05), the

CMC test performed poorly, but WST performed well due the inclusion of a

weighting scheme, as shown in Figure 3.3. Therefore, CMC performed poorly

even when the effect of the causal variants was increased, and the MAF of the

causal variants was increased. The C − alpha test performed poorly when the

percentage of moderately rare variants were large; the same data sample was used

for the CMC and CAST . However, when the effect increased, and the causal

variants had large MAFs, the C−alpha performed better, even though there was

a large proportion of moderately rare variants (see Figure 3.4).

Figure 3.3: The impact of including large moderately rare variants with MAFs

from 0.01 − 0.05 on the power of tests. A total of 40% of the data included

causal variants, when OR = 3, that were in the same direction and had MAFs

between 0.0005 and 0.002. Initially, data were simulated with 90% rare variants

with MAF less than 0.01. Then, the amount of large moderately rare variants in

the data (0.01− 0.05) was increased, and the amount of data less than 0.01 was

decreased.
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Figure 3.4: The impact of including moderately rare variants on the power of

tests. The causal variants fixed in this analysis were extremely rare, and 15%

of the data comprised causal variants (OR = 3). A total of 100 variants were

generated with MAFs from 0.0005− 0.005. Then, the amount of extremely rare

variants was reduced, and the number of moderately rare variants with MAFs

ranging from 0.01−0.05 was increased. The bottom figure is the same as the top

figure, except causal variants are moderately rare variants with MAFs ranging

from 0.005− 0.008 and effect size fixed at OR = 2.
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The CMC and CAST performed better when no common variants were in-

cluded in the data (see Figure 3.5). In the figures, it can be seen that the C−alpha
test performed poorly as there was a large proportion of moderately rare variants

in the analysis. This result confirms the argument that the C − alpha test per-

forms better when the data includes extremely rare variants. It should be noted

that WST was not affected by the inclusion of common variants since it has a

weighting scheme.
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Figure 3.5: The impact of including common variants while we increase the per-

centage of causal variants. Causal variants were fixed with MAFs of 0.0005, 0.002

and OR = 3, and the effects were in one direction. Data were generated between

MAFs (0.0005, 0.01). In the top figure, data were generated with common vari-

ants, and in the bottom figure, data were generated without common variants.
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WST and CMC were under-powered when causal variants of different direc-

tions (i.e., neutral and protective variants) were included (see Figure 3.6) and

when causal variants in one direction were included.
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Figure 3.6: The impact of increasing the percentage of causal variants with dif-

ferent directions(effects) on the tests, we show that when the percentage of the

causal variants increased from 2% to 17%. The causal variants were fixed with

MAFs of 0.0005, 0.002; OR = 3 and OR = 0.3, equally. Data were generated

between MAFs of 0.0005, 0.01. The top figure includes data with two directions,

and the bottom figure includes data generated with one direction.
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3.6 Conclusion

The C − alpha test performed better when there were no common variants

in the data sample. Additionally, when the causal variants were very rare, the

test performed better, especially if the effect sizes were in a different direction.

The test was robust with the inclusion of risks and neutral variants, which is

an important advantage of quadratic tests. The simulations showed that the

C − alpha test could perform better under three conditions: if the data did not

include common variants, if the number of causal variants was large, and if the

effect was large. In the simulations, we did not accommodate for covariations.

The CMC test does not accommodate for covariations, as Basu & Pan (2011)

mentions, while the SKAT and WST can accommodate covariations (see Table

3.4 for a summary of the properties of all the tests).

3.6 Conclusion

The likelihood of observing rare variants in study samples is small when allele

frequencies are very low. Consequently, statistical tests of the association become

underpowered because of variations in the data. This is a major issue with RVAS.

As previously mentioned, various statistical methods were proposed to increase

the power of such tests, and most were based on testing multiple rare variants

within genetic units, such as in (Zhang, 2015). These methods were categorised

as burden and non-burden tests. This chapter explored the limitations of these

tests and confirmed using weights is critical in RVAS, which is the main focus of

this thesis. Thus, different weight schemes were incorporated into quadratic tests

for this thesis. It should be noted that burden tests are not robust, but quadratic

methods are, in regard to the directions of effects of causal variants. In addition

to these topics, collapsing a group of rare variants in a gene or a region was also

discussed in this chapter. As previously mentioned, CAST , developed by Mor-

genthaler & Thilly (2007), collapses rare variants and then compares collapsed

allele frequencies of case and control groups. The development of CAST was a

milestone in RVASs and was built upon for many other tests that use collaps-

ing methods. The CMC method, introduced by Li & Leal (2008), is one such

extension in which rare variants are collapsed in various subgroups. Collapsing

rare and common variants is practised in tests of association. Note that CAST
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3. ASSOCIATION TESTING FOR RARE GENETIC VARIANTS

and CMC methods require a fixed MAF threshold to define common and rare

variants.

Madsen & Browning (2009) proposed the WST method, which includes both

common and rare variants, but in the test, the variants are weighted according

to their MAFs. Thus, common variants are given small weights, while rare vari-

ants are given large weights. In addition to this test, other robust methods were

introduced in this chapter; they relate to the directions of causal-variant effects.

Neale et al. (2011) developed the C − alpha test, which compares expected vari-

ances to actual variances of rare variant distributions in case and control groups.

Moreover, Wu et al. (2011) introduced SKAT , a variance-component score test

that tests for associations in given regions between variants (common and rare)

while adjusting for covariates. Both C − alpha and SKAT test the variances of

effects rather than the means of effects.

Test Two Direction AC Sen. to CV Target

CAST No No No RV

CMC No No No RV

WST No No No RV

RPT No No No RV

C alpha Yes No Yes RV

SKAT Yes Yes No RV- not all CV

Table 3.4: A summary of the properties of the tests discussed in this chapter.

They are considered in relation to rare variants. This summary includes the

tests’ sensitivity to association directions, ability to adjust for covariates (AC),

and sensitivity to common variants(CV) and target variants. This conclusion are

from the literature and it was confirmed from the simulation.
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Chapter 4

Score Test

4.1 Introduction

In this chapter, the score test, which is based on a logistic model, is used as a

global (non-SNP-based) test to determine the associations among a set of rare

variants. Existing collapsing methods, such as the burden test, have less power

than a non-burden test because they ignore heterogeneity and only evaluate the

marginal effects of SNPs. We also consider various score tests that incorporate

weighting schemes and investigate the distribution of the tests. We use a score

(quadratic) test for two reasons: it can overcome the issue of direction effects,

and it only requires fitting the model under a null hypothesis. Therefore, the

issue of estimation in rare variants can be avoided. The proposed test is built

based on a logistic model in which no covariates are included.

The purpose of this chapter is to introduce the logistic model and derive a

standard score test from its distribution, incorporate the variant weights, in-

troduce theories of the quadratic form in normal distribution, and derive the

distribution of the weighted score test on the variant level. We will evaluate the

type I error rates and power at different settings for the simulation data.
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4.2 Logistic Model

The logistic model is an example of a generalized linear model (GLM), which is an

extension of the traditional linear model. The traditional linear model assumes

that errors are normally distributed. However, since the data that we consider

in this thesis are based on a phenotype (trait) or response, as in the form of a

case-control study, a logistic model is used.

A group of p SNPs and a trait, y, are under consideration. The objective is

to test whether there is an association between y and one or more of the SNPs.

For a random sample of unrelated individuals, n, let yi be a measured trait value

for each individual, i, with y = (y1, . . . , yn)T . Let xij denote the SNP genotype

for individual i (i = 1, . . . , n) and j = 1, . . . , p with xTi = (xi1, . . . , xip). We also

assume that the coding of SNPs is based on an additive model, where xij denotes

that the variant is present in one allele (xij = 1), present in both alleles (xij = 2),

or is absent (xij = 0). We assume that there is no adjustment for covariates.

Consider the logistic model with fixed effects as

logitP (yi = 1) = log

(
P (yi = 1)

1− P (yi = 1)

)
= β0 + xTi β, (4.1)

where β is the p× 1 vector of the parameters (i.e. a fixed effect).

We want to test the null hypothesis

H0 : y and x are independent,

which is equivalent to

H0 : βj = 0 j = 1, . . . , p.

We propose a method for testing H0 based on score statistics. We assume that

y is defined so that an SNP with β > 0 is termed deleterious, while β < 0

is protective, and β = 0 is neutral; both deleterious and protective SNPs are

‘causal’ variants.

4.3 Standard Score Test

Rao’s score test is a statistical test of a simple null hypothesis; it determines

whether a parameter of interest β is equal to some particular value β0. It is the
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most powerful test when the true value of β is close to β0. The score test does

not require an estimate of the information under the alternative hypothesis. This

provides a potential advantage over other tests, such as the Wald test and the

generalized likelihood ratio test (GLRT). This makes testing practical when the

unconstrained maximum likelihood estimate is a boundary point in parameter

space.

The model is based on the logit link function 4.1, in which the likelihood is

given by

L(β) =
n∏
i=1

p(xi)
yi(1− p(xi))1−yi ,

where p(xi) is defined as eβ0+xTi β

1−eβ0+xT
i
β

. The score U(β) is defined as

U(β) =
∂ logL(β | x)

∂β
.

The Fisher information is

I(β) = −E

[
∂2

∂β2 logL(X;β)

∣∣∣∣β] .
The statistic to test H0 : β = β0 is

S(β0) =
U(β0)2

I(β0)
.

Based on that, the score test is derived from the likelihood of the binomial.

The likelihood of a phenotype, y, given data X can be derived from a GLM for

exponential family data (McCullagh & Nelder, 1989) according to the following:

L(y | X) = exp
yη − b(η)

a(φ)
− c(y, φ),

where a, b, and c are known functions. The expression η = h(xTβ) for any

function, h, which is in a logistic case, (logit)function, and φ is a dispersion

parameter.

Under the assumption that Pr(y = 1|X = x) = p(x;β) for function p, which is

parametrized by β, parameterize function β and further assume that observations

are independent of each other.
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Since the model is logistic, recall that in a sequence of Bernoulli trials, y1, . . . , yn,

where there is a constant probability of success, p(xi), the likelihood (i.e. the con-

ditional likelihood function) is calculated as follows:

L(β) =
n∏
i=1

p(xi)
yi(1− p(xi))1−yi

To derive the score function, take the first derivative of the likelihood. We

consider the log likelihood given by the following:

`(β) = logL(β) =
n∑
i=1

{yi log p(xi) + (1− yi) log(1− p(xi))}

=
n∑
i=1

log(1− p(xi)) +
n∑
i=1

yi log
p(xi)

1− p(xi)

=
n∑
i=1

log(1− p(xi)) +
n∑
i=1

yi(β0 + xTi β)

=
n∑
i=1

− log
(

1 + e(β0+xTi β)
)

+
n∑
i=1

yi(x
T
i β)

To locate the maximum likelihood estimate, we first take the derivative of log

likelihood with respect to β and then solve the first derivative after setting it to

zero. Thus, we differentiate with respect to βj

∂`

∂βj
=

n∑
i=1

− 1

1 + eβ0+xTi β
eβ0+xTi βxTi +

n∑
i=1

yix
T
i ,

which leads to
∂`

∂βj
=

n∑
i=1

(yi − p(xTi ;β))xij;

=
n∑
i=1

(yi − µi)xij,

where j = 1, . . . , p. We can re-write it in matrix form:

∂`

∂β
= XT (y − µ),

where µ is a vector, and its elements are µi = p(xi) = eβ0+xTi β

1+eβ0+xT
i
β

, which are the

estimation under null.
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4.3.1 Distribution of the Standard Score Test

The central limit theorem (CLT) is a key concept in probability theory because

it implies the probabilistic and statistical methods that work for normal distribu-

tions can be applicable to many problems involving other types of distributions.

We assume that x1, . . . , xn are independent samples from pβ(x) and that β is not

a boundary parameter (from the Lyapunov CLT in (Pawitan, 2001)). Thus,

logL(β) =
∑
i

log pβ(xi)

U(β) =
∑
i

∂

∂β
log pβ(xi)

I(β) = −
∑
i

∂2

∂β2 log pβ(xi)

I(β) = E(I(β)), (4.2)

where E represents the expectation symbol. Note that I(β) represents the

expected Fisher information, while I(β) is the observed Fisher information. From

each xi, the individual score statistic is

yi =
∂

∂β
log pβ(xi).

Then, y1, . . . , yn are identical independent samples with a zero mean and a

variance-covariance equivalent to the expected Fisher information.

Recall that the mean of U(β) = 0 and that it is based on a theorem which is

stated as follows: under the assumption of a regularity condition so that we can

take the derivative under the integral sign, we have

E(U(β)) = 0. (4.3)

To prove that we are following Pawitan (2001), we consider the continuous
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case without a loss of generality:

EU(β) =

∫
S(β)pβ(x)dx

=

∫ (
∂

∂β
logL(β)

)
pβ(x)dx

=

∫ ∂
∂β
L(β)

L(β)
pβ(x)dx

=

∫
∂

∂β
L(β)dx

=
∂

∂β

∫
pβ(x)dx = 0.

(4.4)

According to the theory given above, y1, . . . , yn are an iid sample with a mean

equal zero. We will consider one variable, y1, for simplicity.

Ey1 = 0

and variance

var(y1) ≡ I1(β).

Based on the CLT, we can get

√
n(ȳ − 0)

d→ N(0, I1(β)),

or we can re-write it as

U(β)√
n

d→ N(0, I1(β)).

When the sample size becomes large, we have approximately

(I1(β))−1/2U(β) ∼ N(0, I).

It can be written as a vector parameter:

U(β) ∼ N(0, I(β)),

where U(β) is a vector and I(β) is a matrix.
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Let g = (I1(β))−1/2U(β). Since gj is an independent standard normal vari-

able, we can write gTg as a summation notation:

gTg =

p∑
j=1

g2
j , (4.5)

which presents the sum of the squares of p standard normal variables. Thus,

gTg ∼ χ2
p.

4.4 Weighted Score Test

Rare variants may have greater effects on disease risk than common variants;

thus, using a weight that allows the rare variants to contribute more to the test

than the common ones can increase its power. Also, a suitable weight can help

reduce the influence of common variants in the set-based association. In the

burden test, which is based on the collapse technique, the underlying assumption

is that all variants have the same effect on the trait, and there is no heterogeneity.

To allow for individual variant effects, the current study uses a weighting scheme.

There are many ways to choose the weighting functions. One can use an external

weight, or another weight can be used that is estimated from the data or chosen

from estimated regression coefficients Lin & Tang (2011).

In this thesis, as previously mentioned, different weight schemes are used based

on the variant level, the individual level, both the variant and individual levels

and, finally, the cell level. These schemes may help detect an association between

rare variants and traits and may help increase the power of the test. In section

(4.7), a score test is derived, incorporating a weight based on the variant level.

The distribution and power of the test and the type I error are investigated.

Before we derive the score test with the variant weights, we will review some

theories based on the quadratic form in normal distributions.

4.5 Statistical Theories of Quadratic Form

The distributions of our method can be based on quadratic theories. We can use

two theorems:
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Theorem 4.5.1 Let W denote a matrix of rank p, and let A ∼ N(0, I). Then,

ATWA ∼ χ2
p only if W is an orthogonal projection on a space of rank p. (Box

et al., 1954)

Theorem 4.5.2 According to Box et al. (1954), if A denotes a column vector of

p random variables A1, . . . ,Ap has an expectation of zero and is distributed in a

multi-normal distribution with p× p variance covariance matrix Σ,

A ∼ N(0,Σ).

If Q = ATWA is any real quadratic form of rank r ≤ p, then Q is distributed as

X =
r∑
j=1

λjχ
2(1),

where the χ2 variate is distributed independently of every other, and the λs are

the r real non-zero latent roots of matrix WΣ.

Theorem 4.5.3 Suppose that A ∼ N(µ,Σ), where rank (Σ) = p. The ran-

dom variable q = ATWA has the same distribution as the random variable

X =
∑n

i=1 disi, where di are the latent roots of the matrix WΣ, and si are inde-

pendent non-central χ2 random variables, each with one degree of freedom.

Cochran (1934) stated that Theorems 4.5.1 and 4.5.2 are special cases of

Theorem 4.5.3.

Thus, when we incorporate the weight in the score test, as we will discuss later,

the score test does not follow the chi-square distribution with degree of freedom

p; rather, it is based on a quadratic form approximation, as stated above.

4.6 Approximation for the Distribution of the

Quadratic Form

Under the assumption that the score function follows a normal distribution with

a mean of zero and variance/covariance approximated with Fisher information

I(β), we recall section 4.3.1,

U(β) ∼ N(0, I(β)), (4.6)
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and

I(β)−1/2U(β) ∼ N(0, I). (4.7)

The score test, including weights, also has a quadratic form of normal distribution.

The distribution of linear combinations of chi-square variables has been studied

by several authors over the last four decades (Liu et al., 2008). Many methods

are used to compute the p-value; for instance, ’Davies’ is an exact method that

computes the p-value by inverting the characteristic function of the mixture chi-

square (Davies, 1980). Liu et al. (2008) gives an approximate method which

matches the first three moments.

In this section, we use the method described by Liu et al. (2009) to approx-

imate the distribution of linear combinations of chi-square variables. Let W

denote a p × p symmetric and non-negative definite matrix of rank p, and let

A ∼ N(µA, V ). Then, Q(A) = ATWA. The goal is determining how the tail

probability of Q(A) can be estimated.

P (Q(A) > t) (4.8)

Let R be an orthogonal p × p matrix which converts T = V 1/2WV 1/2 into

the diagonal form Λ = (λ1, . . . , λp) = RTRT , where λ1 ≥ · · · ≥ λp ≥ 0. Since

y = RV −1/2W is normally distributed with mean µy = RV −1/2µA, variance Ip,

Q(A) can be written as a weighted sum of independent chi-square variables, as

shown in 4.5.3.

Q(A) = ATWA = yTΛy =

p∑
j=1

λjχ
2
hj

(δj),

where hj = 1 and δj = µ2
yi. Thus, Imhof (1961) gives the cumulant generating

function of Q(A) as

K(t) =
1

2

p∑
j=1

hj log(1− 2tλj) +

p∑
j=1

δjλjt

1− 2tλj
.

The formula for the kth cumulant of Q(A) is

κk = 2k−1(k − 1)!

( p∑
j=1

λkjhj + k

p∑
j=1

λkj δj

)
.
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Then,
p∑
j=1

λj
khj = trace(Λk) = trace((RTRT )k) = trace(T k) = trace((WV )k)

and
p∑
j=1

λj
kδj = µTy Λkµy = µTA(WV )k−1WµA.

The mean and standard deviation of Q(A) are

µQ = κ1 = c1

and

σQ =
√
κ2 =

√
2c2,

where ck =
∑p

j=1 λj
khj + k

∑p
j=1 λj

kδj.

The skewness and kurtosis of Q(A) are

β1 =
√

8s1

and

β2 = 12s2,

where s1 and s2 are c3

c
3/2
2

and c4
c22

, respectively.

The non-central χ2
l (δ) given in Liu et al. (2008) is used to approximate the dis-

tribution of

Q(A) =

p∑
j=1

λjχ
2
hj

(δj).

The tail probability is then approximated by

P (Q(A) > t) = P

(
Q(A)−µQ

σQ
> t∗

)
, which is approximated to

P (Q(A) > t) = P

(
χ2
l (δ)−µA
σA

> t∗
)

= P (χ2
l (δ) > t∗σA + µA)

, where t∗ = (t − µQ)/σQ , µA = E(χ2
l (δ)) = l + δ , σA =

√
var(χ2

l (δ)) =
√

2a ,

and a =
√
l + 2δ.

The parameters l and δ are determined so that the skewnesses are equal for

both χ2
l (δ) and Q(A), and the difference between their kurtoses is minimized.

The skewness of χ2
l (δ) is

√
8(a2 + δ)/a3. Given that the skewnesses of χ2

l (δ) and

Q(A) are equal, then δ = s1a
3 − a2 (Liu et al., 2009).

68



4.7 Construction of Weighted Score Test Based on Variant Weights

4.7 Construction of Weighted Score Test Based

on Variant Weights

Here, we propose score test statistics which incorporate variant weights. We

assume that rare variants are causing the disease, so we are looking for weights

incorporated based on variants that can allow rare variants to have a greater

influence on the test statistics. To construct the weighted score test, we will start

from the likelihood of the logistic model because the dependent variable y has

two values (0 = control, 1 = case). Recall that X is an n × p genotype matrix,

and y has n× 1 phenotypes. Let γ be a vector expressed as the variant weight,

p×1, and let Γ be a diagonal matrix with the following elements: γj, j = 1, . . . , p.

The joint probability density function gives the values of y as a function of β,

which is related to µ by a logit transform:

log
( µi

1− µi
)

= β0 +

p∑
j=1

γjxijβj i = 1, 2, . . . , n, (4.9)

where µi = E(yi) = e
β0+

∑p
j=1

γjxijβj

1−eβ0+
∑p
j=1

γjxijβj
; we can re-write it with a different notation

to include the intercept in the design matrix as µi = eβ0+xTi βγ

1−eβ0+xT
i
βγ

. The likelihood

function expresses the value of β in terms of knowing the values for y. Thus,

giving the observed data the likelihood of β is;

L(β) =
n∏
i=1

µi
yi(1− µi)1−yi (4.10)

To derive the score test, we will take the derivative of the likelihood function

(4.10). We will take the log of the likelihood for simplicity.

logL(β) = `(β) =
n∑
i=1

{
yi log

(
exp

{
β0 +

p∑
j=1

γjβjxij

})
+log

(
1+exp

{
β0 +

p∑
j=1

γjβjxij

})}
(4.11)

To calculate the score function including the weight based on variants, we differ-

entiate with respect to each βj.

∂`(β)

∂βj
=

n∑
i=1

{yiγjxij − xijγjµi} =
n∑
i=1

γjxij(yi − µi), (4.12)

69



4. SCORE TEST

where j = 1, 2, . . . , p and µi are the estimation under the null model. We can

write this in matrix form:

∂`(β)

∂βj
= ΓXT (y − µ) (4.13)

Here, Γ is a p× p diagonal matrix of weight. Let us define U(γ) = ΓXT (y−µ);

then, its variance is V (γ) = ΓXTDXΓT , where D is a diagonal matrix with

elements µi(1− µi).
The score test is in the following form:

S(γ) = U(γ)TV (γ)−1U(γ). (4.14)

However, the weight in this form is cancelled since

S(γ) = (ΓXT (y − µ))T (ΓXTDXΓT )−1(ΓXT (y − µ) = UT [XT (µ(1− µ)︸ ︷︷ ︸
D

X]−1

︸ ︷︷ ︸
V

U.

Then, we can modify the score test based on variant weights after

Γ(V −1/2U) ∼ N(0,ΓΓ),

which means that

S(γ) = (V −1/2U)TΓΓV −1/2U = UTV −1/2ΓΓV −1/2U. (4.15)

Construction of the Score Test Distribution for S(γ)

Let U be a vector of dimension p, which is a score function, and let V be the

Fisher information matrix of dimension p × p. Let Γ be a diagonal matrix of

dimension p × p of weight. Recall that based on the asymptotic distribution

theory, the distribution of U is as follows:

U ∼ N(0, V ), (4.16)

where V is a covariance-variance matrix. Then, based on the properties of

the normal distribution, we can write this as follows:
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V −1/2U ∼ N(0, Ip).

Let Γ be a diagonal matrix; its dimension is p×p based on the variant weight

with rank p. Using Theorems 4.5.1 and 4.5.3, where W is ΓTΓ,

S(γ) ∼ χ2(p) (4.17)

if ΓTΓ is an orthogonal projection on a space of rank p. This is one form

of the score test which includes the variant weights. However, since the weight

matrix is not an orthogonal projection, then, according to theorem 4.5.2, S(γ)

follows a mixture of χ2 as

S(γ) ∼
p∑
j=1

λjχ
2(1), (4.18)

where λs are the p real non-zero eigenvalues of the matrix ΓTΓ, and χ2(1)

express under the summation the independent non-central χ2 random variables,

each with one degree of freedom. When there is no weight considered (ΓTΓ = Ip),∑p
j=1 λjχ

2(1) is equivalent to χ2 with one degree of freedom. In the following

sections, we will introduce variant weight scheme Γ.

4.8 Simulation

We have run simulation studies to examine the performance of the proposed

score tests. In the simulations, we generated a genotype and trait values. We

simulated p = 200 SNPs with a sample size of 1000 cases and 1000 controls:

n = 2000. Each rare variant had a mutation rate or MAF uniformly distributed

between 0.0005 and 0.05, while for a common variant, it was between 0.05 and 0.5.

First, we generated a latent vector z = (z1, . . . , zp) from a multivariate normal

distribution. Note that the setting of the MAF for common and rare variants

is changed when we evaluate the type I error and the power of the tests. For

the power, we specify some RVs as causal variants by adjusting the odds ratio

(OR). A large OR is associated with the rarest variants; the set of OR parameter

settings is provided in (Table 4.1).
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OR

Protective variants 0.66 0.5 0.4 0.33 0.25

Risk variants 1.5 2 2.5 3 4

Table 4.1: The set of parameter values for the effect size, represented by an odds

ratio (OR)

The number of causal variants in the dataset varies from 10 to 30 with different

MAFs. In a given model, 80% of the variants are rare, while the remaining 20%

are common. To evaluate the type 1 error for the proposed test and weight, we

simulated data under the null model (logit[P (yi = 1)] = β0) for n = 2000. For the

disease status, yi, of a subject i, is generated from the logistic regression model

(4.1). For the null case, we used β = 0, for non-null cases, we randomly selected

the non-zero components of β, while the remaining ones were all 0.

4.9 Variant Weights

Now, we will introduce two schemes of variant weights. More weight schemes will

be presented in detail in Chapter 5.

4.9.1 Beta as a Variant Weight

The beta function was used by Wu et al. (2011) as a variant weight. The idea

underlying its purpose is to up-weight the rare variants and down-weight the

common ones to allow the rare variants to contribute more to the test. In this

chapter, we will consider the beta used in Wu et al. (2011) while introducing the

score test with variance-covariance matrix V .

4.9.2 Cauchy Function as a Variant Weight

This recently-proposed weight scheme can be used to up-weight the rare variants

and down-weight the common ones. This function comes with a strong advantage

based on its parameters: we can use it in different ways and for different purposes.

For example, we can use a parameter-based estimate from the MAF instead of
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having an arbitrary parameter, which is required in the beta function. More

details on this weight will be presented in the next chapter. In this section, we

will apply one scheme using this weight.

4.9.3 Type I Error

For a weighted score test using both weights (i.e. beta and Cauchy), we calculate

the type I error rates for significance level α = 0.05. Type I errors were calculated

on the basis of 1000 replications. We can generate data with no genetic effects

by fixing the OR = 1. The data are divided into two groups of sets: the first

set, which includes extremely rare and moderately rare variants, has an MAF less

than 0.01, and the other has an MAF larger than 0.01.

We evaluate the type I errors with a different percentage of inclusion for the

second set, which is considered to have rare variants. We use the same scenario

with two different sets, both of which are extremely rare and include moderately

rare and common variants. The test based on variant weight S(γ) has good

control at different percentages of rare variant sets; the results are provided in

Table (4.2). There is some concern about controlling the type I error rate when

all variants in the data are considered extremely rare, with a maximum MAF of

0.005. This lack of control is likely the result of the rarity of variants among the

2000 individuals; see Table (4.3). When the MAF is very low, such as 0.0005,

this means there are two variants among the 2000 individuals (i.e. there are 1998

zeros, and two elements are 1 or 2); hence, this affects the control over the type

I error rate in the score test. The concern is when we have an MAF on the

boundary (i.e. and MAF of less than 0.002).
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Large MAF (0.01,0.5)

Tests 15% 30% 40% 50% 60% 70% 80%

S 0.05 0.05 0.04 0.04 0.03 0.05 0.04

Sw 0.05 0.05 0.04 0.035 0.05 0.04 0.05

Sw2 0.05 0.05 0.04 0.036 0.05 0.05 0.05

Table 4.2: We evaluate the type I error rates by expressing the effect of the

amount of the number of rare variants in the data. The first non-causal variant

has MAFs set to between 0.0005 and 0.01; then, we increase the amount variants

in the other set, which ranges between 0.01 and 0.5 (common variants). Where

S, Sw, and Sw2 are the standard score test, the score test with beta weight,

and the score test with Cauchy weight, respectively. The type I error rate was

evaluated at a significance level of 0.05.

We also evaluate the type I error rate at a very rare MAF 4.3:

Large MAF (0.005,0.5)

Tests 2% 20% 30% 40% 50% 60% 70%

S 0.025 0.05 0.03 0.06 0.04 0.04 0.04

Sw 0.025 0.05 0.02 0.05 0.05 0.04 0.04

Sw2 0.025 0.04 0.04 0.06 0.05 0.05 0.05

Table 4.3: We evaluate the type I error rates by expressing the effect of extreme

rareness on the data. The first column, which represents most of the data, has the

MAFs classified as an extremely rare variant; the MAFs are set between 0.0005

and 0.005. Then, we increase the amount of variants in the other set, which

ranges between 0.005 and 0.5. S, Sw, and Sw2 are the standard score test, the

score test with beta weight, and the score test with Cauchy weight, respectively.

The type I error rates were evaluated at a significance level of 0.05.

4.9.4 Power of the Test

We simulate the data using different numbers of causal variants based on an OR of

(OR = 3) while increasing the percentage of causal variants (5%, 10%, 15%, 20%, etc.).

Then, we calculate the power of the score test with variant weights. The power
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is calculated on the basis of 100 replications. Next, we can determine the power

of the score test with variant weights. The power is calculated on the basis of

100 replications, and the result is then compared with the SKAT test results. We

have many different scenarios to investigate the power of tests.

In the first scenario, we generate 60% of non-causal rare variants in the range

of (0.0005–0.005), while other variants range between 0.005 and 0.05. We fix the

causal variants at different values of MAF.

In the second scenario, we generate 60% of rare variants in a wide range

(0.005–0.05), while other variants range between 0.0005 and 0.005. We fix the

causal variants at different values of MAF. Both scenarios have 10% common

variants.

75



4. SCORE TEST

Figure 4.1: In this analysis, the MAF of non-causal variants is between 0.0005

and 0.005 and 60%, and the other 30% have an MAF between 0.005 and 0.05.

A causal variant is between 0.0005 and 0.002, which is classified as extremely

rare. On the X axis, we provide a range of the causal variant percentages in

the generated data. S, Sw, and Sw2 are the standard score test with no weight

included, with beta weight, and with Cauchy(min(f), 0.01), respectively.
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Figure 4.2: In this analysis, the MAF of non-causal variants ranges from 0.0005

to 0.005 for 30% of the generated variants. The rare variants, 60%, have an MAF

between 0.005 and 0.05, and 10% are common variants between 0.05 and 0.5.

The causal variant is between 0.0005 and 0.002, which is classified as extremely

rare. On the X axis, we provide a range of the causal variant percentages in

the generated data. S, Sw, and Sw2 are the standard score test with no weight

included, with beta weight, and with Cauchy(min(f), 0.01), respectively.
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Figure 4.3: In this analysis, we consider the SKAT test, which is based on the

variance component in the test comparison. The setting is the same as previously

described (see Figures 4.1 and 4.2). S represents the standard score test, Sw

expresses the score test with a beta weight, and Sw2 expresses the score test with

a Cauchy weight.
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4.9.5 Conclusion

When the causal variants are very rare such that they have MAF= 0.0006 and

the other variants are considered moderately rare or common, the score test

performance is more powerful than that of SKAT. Therefore, when null variants

are common with an MAF ranging between 0.05 and 0.5, the differences between

SKAT and the performed tests is small compared to above settings. Using the

Cauchy weight performs better in all settings of MAF on non-causal variants

because it weighs the rare variants highly.

To confirm the results presented above, we can observe that when the non-

causal variants tend to be moderate or common but the causal variants are ex-

tremely rare, S(λ) performs slightly better.
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Figure 4.4: This figure shows the performance of power based on different forms of

test Sw, which is the score test with variant weight S(λ). We use the same weight

here, which is beta with (1, 25), in both test Sw and SKAT. We also compare

performance of power based on different forms of test Sw with the Cauchy weight

Sw2.

The power of S = UTV −1U depends on the total of explained variation,

EV = V ar[E(y|X)]
V ar(y)

, the sample size, and rank V , and it is not sensitive to the

direction of the SNPs’ effect or the MAF. This is clear from its null distribution,

S ∼ χ2
c , where c =

∑
j cj = nEV . This observation is consistent with a literature

review by Newton-Cheh & Hirschhorn (2005).

While the weighted score test depends on the explained variation and the

weight and sample sizes, it is neither sensitive to the direction of SNPs’ effect nor

to the MAF Fj. Sw ∼
∑
λχ1, where λ represents the eigenvalues of ΓTΓ.

The introduced form of the score test suffers from a singularity in the V ma-

trix. The data must be independent. In the next section, we introduce a different
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form of test statistic based on fixed and random effects, and we demonstrate that

they are equivalent to each other in the form of the test.

4.10 Weighted Score Test Based on Score Func-

tion

4.10.1 Introduction

The proposed test in the previous section assumes independence among variants

(SNPs); however, in this section, we propose a method that can accept a cor-

relation structure in the data. Since real genetics data have a high correlation

structure, the score test in the last section has a singularity issue when we take

the inverse of the covariance-variance matrix, V . Therefore, to overcome these

issues, we avoid taking the inverse of matrix V , which is accommodated in the

reference distribution of the test. These methods perform well in terms of power

and controlling the type I error.

4.10.2 Model

We assume that a group of SNPs, p, and a trait, y, are under consideration. The

objective is to test whether there is an association between y and one or more of

the SNPs. For a random sample of n unrelated individuals, let yi be a measured

trait value for individual i, and let y = (y1, . . . , yn)T . Let Xij denote the SNP

genotype for individual i as i = 1, . . . , n and j = 1, . . . , p. For simplicity, we

assume that xij denotes whether the rare allele is present (xij = 1) or absent

(xij = 0) or present in two alleles (xij = 2); let xTi = (xi1, . . . , xip)
T . We also

assume that the coding of SNPs is based on the additive model, and there is no

adjustment for covariates. For the variant weight, as it is the first weight that we

consider, let γj represent the weight value at SNP j, where j = 1, . . . , p and Γ is

a diagonal matrix of dimension p.

logitP (yi = 1) = β0 + xTi β (4.19)
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We test the null hypothesis

H0 : y and X are independent,

which is equivalent to H0 : β = 0. We propose methods for testing H0 based

on statistics from a (weighted) score test without taking the inverse of variance-

covariance matrix V . We assume that y is defined so that an SNP with β > 0

is termed deleterious, while β < 0 is protective, and β = 0 is neutral. Both

deleterious and protective SNPs are causal variants.

4.10.3 Test

We know from the previous section that ∂`(β)
∂β

follows a normal distribution with

a mean of zero, and variance-covariance V = −E
( ∂2`(β)

∂β∂βT

)
. It is written as

U ∼ N(0, V ). Based on a normal property, the variant weight on U can be

incorporated by multiplying the diagonal matrix, Γ, by the vector, U, which will

also be incorporated into V . Thus,

ΓU ∼ N(0,ΓV ΓT ).

Take the quadratic form of the test:

T (γ) = UTΓTΓU.

4.10.4 Distribution of the Test

According to the theory of quadratic form of normal distribution mentioned in a

previous section, we can consider the distribution of the test as a linear combi-

nation of chi-squared random variables 4.5.3;

T (γ) ∼
p∑
j=1

λjχ
2
1,

where λj, as a weight of the distribution, is equal to the eigenvalues of the

variance-covariance matrix: V (γ) = ΓTV Γ. To approximate this distribution,

we use a scaled chi-square and the method of the moment to matching the first

two moments.
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E(T (γ)) = E(UTΓTΓU).

Let W = ΓTΓ. Then, we can re-write the equation as

E(T (γ)) = E(UTWU)

using the property of the expectation of the quadratic form

E(T (γ)) = tr(WV ) + µUWµU ,

where µU is the expectation of U . We can simplify it one more since µU = 0

E(T (γ)) = tr(WV )

and the variance is

var(T (γ)) = var(UTWU) = 2tr(WVWV ) + 4µTUWIWµU .

Since µU = 0,

var(T (γ)) = var(UTWU) = 2tr(WVWV ).

We use the deviance approximation to get the p-value.

4.11 Variance Component

4.11.1 Introduction

Extensions of the GLM include models with random terms in the linear predictor

and are called generalized linear mixed models (GLMMs). These are useful for

accommodating the over-dispersion which is observed among outcomes for mod-

elling the dependence between outcome variables implicit in repeated measures or

longitudinal designs Stiratelli et al. (1984);Zeger et al. (1988) and for producing

shrinkage estimates in multi-parameter problems. It is a traditional and often

reasonable approximation to assume that the random error terms have a nor-

mal distribution and that the variance components are estimated from the data.

When the outcomes are in binomial or Poisson form, a full maximum likelihood
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analysis based on their joint marginal distribution necessitates numerical integra-

tion techniques to calculate the log likelihood, score equations, and information

matrix (Breslow & Clayton, 1993).

Recent Bayesian methods avoid the need for numerical integration by using

Gibbs sampling techniques or by taking repeated samples from posterior distri-

butions. The Bayesian approach is flexible for a full evaluation of the uncertainty

in estimated random effects. However, the drawbacks of this approach include

the intensive computations and questions about when the sampling process has

achieved equilibrium (Breslow & Clayton, 1993). Approximate procedures are

exact methods for exploratory analyses and provide starting values for use with

others.

There are two closely related approximate methods of inference in GLMMs:

• The penalized quasi-likelihood (PQL) method used by Green (1987) for

semi-parametric regression analysis is available in hierarchical model infer-

ence, where the purpose is to shrink the estimation of the random effects

Robinson (1991).

• Marginal quasi-likelihood (MQL) was proposed by Goldstein (1991) as an

extension of GLMs in multilevel modelling (Goldstein, 1986). It is most

appropriate when examining the marginal relationship between covariates

and outcomes.

• PQL: The MQL and PQL methods, which were introduced by Goldstein

(1991) and Breslow & Clayton (1993), are analogous to iteratively re-

weighted least squares for GLMs in that the model is linearized.

• MQL is the method of choice when interest is focused on the marginal rela-

tionship between covariables and responses, and the random effects model

serves mainly to suggest a plausible covariance structure, as expressed in

V, which enables one to obtain reasonably efficient estimating equations for

the mean value parameters. In contrast, PQL is the procedure of choice for

estimating parameters in a random model, particularly when the concen-

tration is focused on the random effects Breslow & Clayton (1993).

84



4.11 Variance Component

The main difference between MQL and PQL is in the offset used. Since MQL

sets the random effects to zero, the fixed-effects estimates are essentially marginal

effects that are attenuated relative to the required conditional effects. The es-

sential difference between the MQL estimating equations for the marginal model

and the PQL equations for the hierarchical model is that the latter incorporate

the random effect terms, ZT b, in the linear predictor Breslow & Clayton (1993).

The simulation conducted by Rodriguez & Goldman (1995) in his paper ‘An As-

sessment of Estimation Procedures for Multilevel Models with Binary Responses’

shows that the MQL and PQL can suffer from bias. Both fixed effect and variance

components may be biased, especially when the response is binary.

4.11.2 The Score Test in GLMM

The score test can be called a variance component test. We initially introduce a

logistic model with random effects:

logitP (yi = 1) = zTi α+ xTi β (4.20)

Let xTi β = ui, where ui ∼ N(0, τ 2R). If τ = 0, then we obtain the standard

logistic model with fixed effects. The R matrix describes the dependence structure

among the ui values. We assume that the yi values are mutually independent

when the values of ui are given.

4.11.3 Deriving the Score Test

To test the null hypothesis, H0 : τ 2 = 0 versus Ha : τ 2 > 0, we use the marginal

likelihood L(α, τ) obtained by integrating out the ui values.

L(α, τ) = e

[∑n
i=1 fi(yi|ui,α,τ)

]
To derive the score test for τ = 0, it is necessary to calculate ∂`(α,τ)

∂τ
and

evaluate the resulting derivative at τ = 0. However, it is difficult to evaluate this

likelihood analytically. So, the marginal density of the i-th response vector yi

can be obtained as fyi(yi) = Eui [fyi|ui(yi|ui)], where Eui denotes the expectation

with respect to the distribution of ui. Following Cox (1983), we can expand the
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integrated log likelihood `(α, τ) (i.e.fyi|ui(yi|ui) using a Taylor series expansion

of τ = 0, taking expectations with respect to τ to obtain the marginal density of

yi using the Laplace method.

Taylor expanding L(α, τ) (quasi likelihood) with respect to vector ui yields

the following:

L(α, τ) = exp

[∏
i=1

fi(0) +
∑
i=1

ui
∂fi(0)

∂ui

∏
i 6=j

fj(0)

+
1

2

(∑
i=1

u2
i

∂2fi(0)

∂u2
i

∏
i 6=j

fj(0) +
∑
i=1

∑
i 6=j

rirj
∂fi(0)

∂ui

∂fj(0)

∂uj

∏
k 6=i,j

fk(0)

)
+ o(u2)

]
Let li(ui) be the log density; li(ui) = log[fi(ui)]. The first and second derivatives

satisfy the following:
∂fi(ui)

∂ui
= fi(ui)

[∂li(ui)
∂ui

]
∂2fi(ui)

∂u2
i

= fi(ui)

[
∂2li(ui)

∂u2
i

+

(
∂li(ui)

∂ui

)2]
Take the following expectation:

L(α, τ) =
∏
i=1

fi(0)×
(

1 +
1

2

{∑
i

Rii

[
∂2li(ui)

∂u2
i

+

(
∂li(ui)

∂ui

)2]
+

∑
i=1

∑
i 6=j

Rij
∂li(0)

∂ui

∂lj(0)

∂uj

})
+ o(τ 2) (4.21)

If α is known in our case, we do not have α, which is a fixed coefficient; the

score test for H0 : τ 2 = 0 has the form

∂logL(α,0)
∂τ2

E

[(
∂logL(α,0)

∂τ2

)]1/2
.

Let the likelihood under the null model L(α, 0) =
∏
fi(0). The first derivative

of the log likelihood with respect to τ 2 satisfies

∂logL(α, 0)

∂τ 2
=

∂

∂τ 2

{
1

2

(∑
i

Rii
∂2`i(0)

∂u2
i

+
∑
i=1

∑
i,j

Rij
∂`i(0)

∂ui

∂`j(0)

∂uj

)}
.
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The first and second derivatives of `i(ui) with respect to ui are

∂`i(ui)

∂ui
= [yi − κ1i(ui)]/a(φ)

∂2`i(ui)

∂u2
i

= −κ2i(ui)/[a(φ)]2,

where κhi(ui) is the hth moment of yi. It is a function of ui.

=
1

2[a(φ)]2

[∑
i=1

∑
i,j

Rij(yi − κ1i)(yi − κ1i)−Riiκ2i

]

U =
1

2
[y − κ1]TR[y − κ1]− tr(RV ), (4.22)

where V is the diagonal matrix of κ2i, and a(φ) = 1 in the case of a binary

response with a canonical link function. This result and that of Lin (1997) are

the same; however, in Lee’s paper, he derived a score test for GLMMs in general,

while we have y has a distribution from the exponential family with a canonical

link.

To calculate the variance of the U score, we will take the expected square:

E(U2) = E

[(
∂logL(α, 0)

∂τ 2

)2]
=

[
1

2

]2

E

[{
[y − κ1]TR[y − κ1]2

}
−
{∑

i

Riiκ2i

}]2

=
1

4
var(U2)

The variance of U2 can be expressed as a function of the second and fourth

cumulates, κ2 and κ4, of U (Kendall & Stuart, 1977). We will focus on the first

term on the right-hand side of (4.22). Let Ci = (yi − κ1i). The first moment of

Ci under the null model is equal to 0, and the other moments are equal to the

moments of yi. Thus,

E
[(
CTRC

)2]
= E

(∑
i

∑
j

∑
k

∑
l

RijRklCiCjCkCl

)
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4. SCORE TEST

Since E(Ci) = 0 and Ci are independent under the null model, we have

E
(
CiCjCkCl

)
=


κ4i if i = j = k = l

κ2iκ2k if i = j, k = l, i 6= k

κ2iκ2j if i = k, j = l or i = l, j = k, i 6= j

0 Otherwise

From this, it follows that

E
[(
CTRC

)2]
=
∑
i

R2
iiκ4i +

∑
j 6=k

RijRkkκ2iκ2k +
∑
i 6=j

R2
ijκ2iκ2j

=
∑
i

R2
iiκ4i +

∑
i

∑
k

RiiRkkκ2iκ2k + 2
∑
i

∑
j

R2
ijκ2iκ2j − 3

∑
i

R2
iiκ

2
2i

=
∑
i

R2
ii(κ4i − 3κ2

2i) + 2
∑
i

∑
j

R2
ijκ2iκ2j +

(
Riiκ2i

)2

.

Substituting this in (4.22), we obtain

E

[(
∂logL(α, 0)

∂τ 2

)2]
=

1

4

[∑
i

R2
ii(κ4i − 3κ2

2i) + 2
∑
i

∑
j

R2
ijκ2iκ2j

]
=

1

4

∑
i

R2
ii(κ4i − 3κ2

2i) + 2tr(RV RV ).

The test statistics are as follows:

S = qTH−1q,

where

q =
1

2

[
y − κ1]TR[y − κ1 − tr(RV )

]
(4.23)

and

H =
[1

4

∑
i

R2
ii(κ4i − 3κ2

2i) + 2tr(RV RV )
]
.
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4.11 Variance Component

Deriving the Variance Component Score Test (Lin 1997)

We derive the score test as suggested in Lin (1997). Recall model 4.20:

logitP (yi = 1) = zTi α+ xTi β, (4.24)

where Z is an n × q covariate matrix, and X is a genotype matrix with

dimension n×p. We assume that the random effects, β, are generated from some

distribution, F , with a mean of zero and covariance R, where τ is the variance

component. We test the null hypothesis H0 : τ = 0, which is equivalent to β = 0.

Integrated quasi-likelihood of (α, τ):

L(α, τ) = exp{`(α, τ)} =

∫
exp{

n∑
i=1

`i(α; β)}dF (β; τ),

where `(α; β) =
∫ ai(yi−u)

v(u)
.

To derive the score test for τ = 0, it is necessary to calculate ∂`(α,τ)
∂τ

and

evaluate the resultant derivative at τ = 0. However, it is difficult to evaluate this

likelihood analytically. So, the marginal density of the ith response vector, yi,

can be obtained as fyi(yi) = Eui [fyi|ui(yi|ui)], where Eui denotes the expectation

with respect to the distribution of ui. Following Cox (1983), we can expand the

integrated log likelihood `(α, τ) (i.e. fyi|ui(yi|ui)) using a Taylor series expansion

of τ = 0 and taking expectations with respect to τ to obtain the marginal density

of yi using the Laplace method. Taylor expansion gives the following:

exp
{ n∑
i=1

`i(α; β)
}

= exp
{ n∑
i=1

`i(α; 0)
}(

1+
n∑
i=1

∂`i(α; 0)

∂ηi
xTi β+

1

2
βT
[{ n∑

i=1

∂`i(α; 0)

∂ηi
xi
}

{ n∑
i=1

∂`i(α; 0)

∂ηi
xi
}

+
n∑
i=1

∂`i(α; 0)

∂ηi
xix

T
i

]
β + ε

)
. (4.25)

Write the integrated quasi-likelihood as L(α, τ) = E(exp{
n∑
i=1

`(α; β)}):

L(α; τ) = exp
{ n∑
i=1

`(α; 0)
}{

1+
{

1
2
tr
([∂`i(α;0)

∂ηi
xi
}{∂`i(α;0)

∂ηi
xTi
}

+∂`i(α;0)
∂ηi

xix
T
i

]
R
)
+

||τ ||
}

.

The marginal log likelihood `(α, τ) can then be written as
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4. SCORE TEST

`(α, τ) =
n∑
i=1

`(α; 0) +
1

2
tr
[
XT
{∂`i(α; 0)

∂ηi

∂`i(α; 0)

∂ηTi

∂2`i(α; 0)

∂ηi∂ηTi

}
XR

]
+O||τ ||.

Let ∆ and W be an n× n diagonal matrix with elements

δi = 1
ḡ(µi)

, wi =
[
V (µi){ḡ(µi)}2

]−1
, where µi = E(yi) under H0 and g(µi) =

xTi α. First, we derive ḡ(µi) as

ḡ(µi) =
∂

∂µi

[
log

µi
(1− µi)

]
=

∂

∂µi

[
log µi − log(1− µi)

]
=

1

µi
+

1

(1 + µi)
=

1− µi + µi
µi(1− µi)

=
1

µi(1− µi)
.

Thus,

δi = µi(1− µi)

and

wi =
[
V (µi){ḡ(µi)}2

]−1
=
[
µi(1− µi)×

{ 1

µi(1− µi)
}2]−1

= µi(1− µi).

Therefore,

−∂
2`(α; 0)

∂η∂ηT
= diag(wi + ei(yi − µi)),

where ei = 0 when the link function is canonical.

Uτ (β̂0) = ∂`(α,τ)
∂τ

∣∣∣
τ=0,α=β̂0

=
1

2
= tr

[{
W∆−1(y − µ)(y − µ)T∆−1W −W

}
ZZT

]

=
1

2
= tr

[
(y − µ)W∆−1XXT∆−1W (y − µ)T − tr(WXXT )

]
Since our model has a canonical link function, and based on the derivation of

∆ and W , ∆−1W = I, where I is the identity matrix.

We can re-write it as follows:

Uτ (β̂0) =
1

2
= tr

[
(y − µ)XXT (y − µ)T − tr(WXXT )

]
.
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4.11 Variance Component

Since the right-hand part does not depend on random y values, it is a constant

and can be ignored. We can simplify it one more time as

Uτ (β̂0) =
1

2
tr
[
(y − µ)XXT (y − µ)T

]
. (4.26)

E(Uτ (β̂0)) is generally an increase function of τ Zhang & Lin (2008). For

example, based on Zhang & Lin (2008), Figure 4.5 shows the expected score of

E(Uτ (β̂0)) versus τ for logistic-normal model where n = 10, xij = 1, xij = 1, and

β = 0.25. Based on the arguments above, a large value of Uτ (β̂0) gives evidence

against H0 : τ = 0; hence, H0 is only rejected if Uτ (β̂0) is large.

Figure 4.5: Expected score as a function of variance component τ (Zhang & Lin,

2008).

We can use equation (4.26) as a test statistic after omitting the trace part,

which is the proposed test that will be used in subsequent chapters.

4.11.4 The Score Test with Variant Weights

Recall the following model 4.20:

logitP (yi = 1) = zTi α+ ui, (4.27)

where ui ∼ N(0, τ 2R̃). If τ = 0, we obtain the standard logistic model with

a fixed effect. The R̃ matrix describes the dependence structure among the ui
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4. SCORE TEST

values and the variant weights, which are XΓTΓXT , where X is the genotype

matrix. Γ is the diagonal matrix representing the variant weights. It can be

expressed as β ∼ N(0, wjτ
2) under the model logitP (yi = 1) = zTi α + xTi β. We

assume that the yi values are mutually independent when the values of ui are

given.

To test the null hypothesis, H0 : τ 2 = 0 versus Ha : τ 2 > 0, we use the

marginal likelihood L(α, τ), which is obtained by integrating out the ui values.

L(α, τ) = e

[∏n
i=1 fi(yi/ui,α,τ)

]
To derive the test, we use the same derivation provided in the variance com-

ponent section. The only difference between these derivations appears on the R

matrix in the previous model, which has weight schemes here (R̃).

Thus, the score test is

E

[(
∂logL(α, 0)

∂τ 2

)2]
=

1

4

∑
i

R̃2
ii(κ4i − 3κ2

2i) + 2tr(R̃V R̃V ).

The global score test statistics are as follows:

S = qTH−1q, (4.28)

where

q =
1

2

[
(y − µ)T R̃(y − µ)− tr(R̃V )

]
,

where R̃ = XΓΓTXT and

H =
1

4

[∑
i

R̃2
ii(κ4i − 3κ2

2i) + 2tr(R̃V R̃V )
]
.

Instead of using the global test, S, it have been used only q, ignoring the trace

term because it does not involve y. All randomness of q comes from the ratio of

the quadratic form in the first term of q.

Moreover, the reason for ignoring the H part not involved in the test is the

sufficiency of q. If we assume the likelihood has only one local maximum, then

q itself is a reasonable test statistic for testing H0. A larger value of q indicates

a departure from H0. Also, using the global test, S, would treat both large and
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4.11 Variance Component

small q values indifferently, so the test would lose power Zhang & Lin (2008).

Based on the previous methods in this chapter, the score test derived from the

fixed model is

qfixed =
1

2

[
(y − µ)T R̃(y − µ)

]
,

and the score test based on the random effect is

qrandom =
1

2

[
(y − µ)T R̃(y − µ)− tr(R̃V )

]
.

Since we can ignore the trace part, qfixed is equivalent to qrandom in terms of

the test form. From this point on and in subsequent chapters, we will consider

the test to be based on q. Since it can be used with different kinds of data (i.e.

correlated or independent), there is no singularity issue.

4.11.5 Simulation

We evaluated both type I errors and the power of the proposed score tests with dif-

ferent weights, as we discussed in the context of a multi-locus association analysis

with different numbers of SNPs. To obtain the genotype matrix, X, we generated

z = (z1, z2, . . . , zp) via the multivariate normal distribution, with a variance of

1 and a pairwise correlation between zì and zj at 0.5|̀i−j|; 1 ≤ ì, j ≤ p between

any two latent components. Next, we threshold each latent vector component to

obtain a vector of binary variables, say (d), which represents the haplotype. We

generate two vectors of haplotypes d1 and d1 for each individual. Subsequently,

we combine two independently generated haplotypes (d) by taking the sum of

X = d1 +d2, given vector X (0/1/2), which represents the genotype. The details

of this simulation will be explained in Chapter 5.

The threshold for component j, say cj, was obtained such that P (d = 1) was

controlled to mimic rare or common variants.

We set p = 100 and 200 and OR = 1 in the model for type I error simulation

(4.1) and OR = 3 to determine the power. This simulation was considered by Pan

et al. (2014). To estimate the p-value, straight binomial proportions are used.

Hence, they have the same standard error as any other binomial proportion,√
(p(1− p)/n), where p means the proportion of tests rejected and n represents

the number of samples. Therefore, if p = 0.05 and n = 2000, the standard error
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4. SCORE TEST

of the observed proportion is about 0.005, and we could say the uncertainty level

is 1%.

4.11.6 Type I Errors and Power

To evaluate type I errors, we generated a genotype matrix as explained above,

while we set the OR = 1. Three types of variants were considered in the simu-

lation, based on a given MAF: extremely non-causal, moderately rare, and com-

mon. We used two scenarios to evaluate type I errors. For the first scenario, the

maximum and minimum MAF rates were the same for each type of variant. We

considered all values of MAF, from the MAF boundary of 1/n to the common

variants at 0.5 (see Figure 4.6, data not scaled and Figure 4.7, data scaled).

In the second scenario, we generated the Xp in the same manner as that

in the simulation above, so the data had different types of variants (e.g. rare

and common). We randomly generated rare variants, ranging from the MAF

boundary to MAF = 0.01, and common variants, ranging between 0.05 and

0.5. Then, we varied the second set, which considered common variants (see

Figure 4.4). We conducted 1000 simulated datasets; the genotypes were randomly

generated for each simulation. For both scenarios, we estimated the empirical

type I error rate as a proportion of p-values less than the nominal level: α = 0.05.

The tests with both weights proposed here (beta and Cauchy) seemed to have

satisfactory type I error rates that were well controlled at the specified nominal

level of α = 0.05. When the MAF is very low, such as 0.0005, this means there

are two variants among 2000 individuals (there are 1998 zeros and two elements

are 1 or 2), so this affects the control of the type I error rate in the score test.

The concern is when we have an MAF on the boundary (i.e. an MAF of less than

0.002). We can see in Figure 4.7 that when there is only one or two variant(s) in

the data set, the type I error rate is lower than the nominal level of 0.05.

94



4.11 Variance Component

Figure 4.6: Type I error rate in scenario 1 which is the maximum and minimum

MAF rates were the same for each type of variant. Data are not scaled. The

horizontal lines highlight 0.04 and 0.06.

Figure 4.7: Type I error rate in scenario 1. Data are scaled. The horizontal lines

highlight 0.04 and 0.06.

MAF (0.05,0.5)

Test 2% 20% 30% 40% 50%

Score test 0.05 0.05 0.04 0.06 0.05

Table 4.4: Type I error rate for the score test using scenario 2.
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The power of using the variance component test will be studied in detail, using

different weighting schemes, in subsequent chapters.

4.11.7 Conclusion

The score test with the proposed weight can control type I errors at different

MAFs, except when the data are extremely rare, such as 0.0005 (when n = 2000).

The simulation in this chapter shows that the weighting scheme plays an

important role. It is crucial to include weights in an analysis of rare variants

since their MAF is lower than that of common variants, which dominate the

association signal because of the difference in the MAF level. As a result of

the impact of weight, the weighting scheme plays an important role in boosting

the power (Lee et al. (2014), Wu et al. (2011)). In the following chapters, we

will propose different weight schemes based on variants, as well as other novel

schemes.
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Chapter 5

Variant Weight Functions

5.1 Introduction

In the previous chapter, we proposed different association tests based on varying

weights. We use a beta function of minor allele frequency (MAF) as a weight

of association test. We believe that an appropriate weight can boost a test’s

power. Good weight choices can easily increase power Wu et al. (2011) in rare

variant association. In this chapter, we will investigate alternative weights that

can be used for rare variants.We propose a new weighting scheme that we

believe may initiate a new direction in the analysis of rare variants. We

also propose a number of weight schemes as a function of MAF. The scenarios in

which these different schemes can be applied are explained in this chapter.

A beta function up-weights rare variants and down-weights common variants,

which increases the contribution of rare variants to the test statistics. However,

weights associated with rare variants that use a beta function with the parameters

(1, 25), such as in Wu et al. (2011), do not provide very different weights to MAF

values in the extreme region. The result is that there is no difference in the

weighting of extremely rare and moderately rare variants. The maximum weight

value will be associated with singleton variants, which is 25. For example, when

n = 2000, the rarest variant with a MAF of 0.00025 will be associated with the

value of 25, while a MAF of 0.002 will be associated with 23. The magnitude

of the difference is small. Therefore, when analysing data that are very rare

(i.e., the maximum MAF value is less than 0.003), using a beta function as a
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5. VARIANT WEIGHT FUNCTIONS

weight is almost the same as using an un-weighted scheme due to the assigned

weight values. Therefore, one limitation of the weights proposed in the literature

is that they depend on arbitrary parameters rather than on the MAF. When the

parameter is based on the MAF or a function of the MAF, it can be modified

based on the observed MAF.

In this section, we will propose a weighting scheme that addresses the above

problem by using a heavy-tailed distribution to make the differences between

different MAFs apparent even if they are very rare. Therefore, this weighting

scheme (i.e., an adaptive choice of weight) is a new type of weighting scheme

because it chooses weight parameters depending on the MAF (a function of MAF

(F)).

Another issue that arises in the association of rare variants is a large number

of singletons can arise when next-generation sequencing is used. Variants that

are observed only once in the dataset are difficult to distinguish from sequencing

errors. The idea proposed here is a new weighting scheme, which, instead of up-

weighting all rare variants so that the rarest variants are given the largest weights,

up-weights rare variants under some constraints. We also proposed, as another

property of the Gumbel function that all rare variants should be up-weighted,

that singleton variants be given smaller weights than other rare variants. For

these reasons, the smallest MAF will no longer be associated with the largest

weight.

In this chapter, we will propose three different variant weight schemes based

on the Cauchy function and two schemes based on the Gumbel function. We will

also investigate the differences between them and evaluate the type I errors and

the power of the tests. In each chapter of this thesis, we use the classification of

variants by MAF described in Figure 5.1.
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5.1 Introduction

Figure 5.1: Terminology used for the levels of MAF in this thesis. Note that

n = 2000 is the number of individuals, so a MAF of 0.005 is set as the threshold

for extremely rare variants.

The structure of variant data can contain rare and common variants after a

new technique has been implemented. In general, there are many scenarios in

which the data structure ranges between very rare and common variants. The

weight schemes that we propose in Chapters 5 and 6 can be useful in different sce-

narios by utilising either the adaptive weighting schemes or continuous weighting

schemes described in Chapter 6. Figures 5.2 and 5.3 show different data scenarios.
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5. VARIANT WEIGHT FUNCTIONS

Figure 5.2: The top figure shows the simulated data has a large proportion of

extremely rare variants, while the bottom figure shows there are large amount of

extremely and moderately rare variants.
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5.2 Simulation

Figure 5.3: This figure shows the simulated data has a large proportion of common

variants.

The causal variant distribution is unknown, so the proposed weight schemes

in Chapter 5 and 6 differ regarding the causal variants distribution models. For

example, some weighting schemes described in Chapter 5 assume causal variants

are in rare variant regions, while in Chapter 6, we present weight schemes that

can consider the distribution of causal variants within a wide range.

5.2 Simulation

We evaluated the type I errors and power of the proposed score tests with differ-

ent weights, as we discussed previously in the context of multi-locus association

analysis with a different number of SNPs. To obtain the genotype matrix X,

we generated z = (z1, z2, . . . , zp) via the multivariate normal distribution, with

variance 1 and pairwise correlation between zì and zj at 0.5|̀i−j| and 1 ≤ ì, j ≤ p

between any two latent components. Next, the threshold of each latent vector

component is used to obtain a vector of binary variables, such as (d), which

represent haplotypes. We generate two vectors of haplotypes, d1 and d2, for
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each individual. Then, we combine two independently generated haplotypes (d)

by taking the sum of X = d1 + d2 given a vector X (0/1/2), which represents

genotype. The threshold for component j, cj, was obtained using a method that

controls P (d = 1) to mimic the rare or common variants. Finally, given an odds

vector β, we generate the disease status y (0/1) for each X such that

LogitPr(yi = 1) =
ePr(yi=1)

1 + ePr(yi=1)
= β0 + xTi β, (5.1)

where β0 = log(0.05/(1 − 0.05)). For the null case, we set OR = 1; for non-

null cases (i.e., causals), we set OR = 3 for extremely rare variants, OR = 2 for

moderately rare variants, and OR = 1.5 for common ones.

Each allele of the haplotype is generated by dichotomising the marginal normal

distribution. The cut-off is determined by the allele frequency that is randomly

sampled from a uniform distribution between 0.0005 and 0.005 as extremely rare

variants, 0.005 and 0.01 as moderately rare variants, 0.01 and 0.05 as large mod-

erately rare variants, and 0.05 and 0.5 as common variants. We consider causal

variants in the 0.03% − 0.2% range and the model with OR ranging from 1 (for

the type I error rate) to 3.

We generated simulated data over a spectrum of MAFs, odds ratios, and

proportions of extremely, moderately rare, and common variants. We set the

number of variants (i.e., causal and non-causal) to p = 200 and 100 SNPs in all of

the scenarios. Causal variants are set, in most cases, between 5% and 20% of the

total variants. Each dataset will contain three types of variants (i.e., extremely

and moderately rare variants and common variants), and the default percentages

are 40% for ERV and 40% MRV and 20% CV. When these percentages change, it

will be specified in the captions of the figures. Based on the proposed weighting

schemes presented in sections (5.3.2) and (5.3.3), the percentage of variant types

will differ to express the weight scheme’s impact, and these percentages will be

provided under each figure. For example, to express the impact of having a few

extremely rare variants (ERV) compared to a large number of common ones, we

will increase the common ones from 5% to 90%; see Table (5.2). Variants with

OR = 1 are used in the standard logistic model with fixed effects (5.1) to simulate

type I errors and OR > 1 to evaluate the tests’ power.
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5.2 Simulation

Parameters Parameter Values

Sample Size n =2000 (# cases = # control = n/2)

Total Number of SNPs 100, 200

Proportion of Causal SNPs [3%-20%]

Effect Size for Non-causal SNPs OR = 1

Effect Size for Causal SNPs OR = Unif(1.5,3) or Unif(1/2,1/4)

Percentage of Common Variants Ranged from 10% to 90%

Table 5.1: The full set of parameters used in the simulation.

We generated data under various causal mechanisms and MAFs for causal

and non-causal variants, as summarised in Table (5.2).

S RE-C RE-N RM-C1 RM-N1 RM-C2 RM-N2 C-C C-N

1
0.0005-

0.005
0.0005-0.005 - 0.005-0.01 - 0.01-0.05 -

0.05-

0.5

2 - 0.0005-0.005
0.005-

0.01
0.005-0.01 - 0.01-0.05 -

0.05-

0.5

3 - 0.0005-0.005 - 0.005-0.01
0.01-

0.05
0.01-0.05 -

0.05-

0.5

4 - 0.0005-0.005 - 0.005-0.01 - 0.01-0.05
0.05-

0.5

0.05-

0.5

5
0.0005-

0.005
0.0005-0.005

0.005-

0.01
0.005-0.01

0.01-

0.05
0.01-0.05

0.05-

0.5

0.05-

0.5

Table 5.2: Summary of the four types of variants in the five scenarios utilised in

the simulation study. For each variant, the MAF value was generated uniformly

from the range given. RE-C and RE-N represent extremely rare causal and

non-causal variants, respectively, while RM-C and RM-N represent moderately

rare causal and non-causal variants, respectively, which are represented in two

ranges. Finally, C-C and C-N represent common causal and non-causal variants,

respectively.

To estimate p-values, straight binomial proportions are used. Hence, they

have the same standard error as any other binomial proportion
√

(p(1 − p)/n),
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where p here means the proportion of tests rejected and n the number of samples.

Therefore, if p = 0.05 and n = 2000, the standard error of the observed proportion

is about 0.005, and we could say the uncertainty is 1%.

Note: In some captions of the Figures that have the new simulation, we

attached a table that illustrates the used parameters in that simulation. The

following table (5.2) is an example:

Causal Non-Causal

ERV . X50%

MRV
OR=2

(0.005-0.5)
X30%

CV . X20%

Table 5.3: We have included causal and non-causal variants in the simulated data,

and these variants are classified into three categories: extremely rare variants

(ERV), moderately rare variants (MRV), and common variants (CV). ”X” means

we considered these variants, and ‘.’ means we did not. The default percentage

of non- causal variants are 50% for ERV and 30% and 20% for CV. If these

percentages are different, it will be illustrated in the Figure’s caption or in the

table as depicted above.

Also, we have used McNemar’s test to test the differences between the pro-

posed weighting schemes and SKAT weighting scheme. In the analysis, we com-

pared two proportions: the proportion of times that an association is detected

(i.e. power) using one method compared to the proportion using another method.

For example, given that the number of simulation is 1000, comparing 800/1000

with 750/1000 (if power is 80% and 75% respectively) and can test whether these

differences are statistically significant. Since we use the same simulated datasets

to analyse using both methods, and then the results are paired, an appropriate

test would be McNemar’s. We show the result of McNemar’s test in detail in

Figure 5.5 and we use that in the all figures that compared between two methods

in this chapter. The two curves can be considered different if we can identify that

the two methods differ in at least one point (such as at a MAF or percentage of

causal variants).
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Method 2

Significant Not Significant
Row Total

Significant a b a+b
Method 1

Not Significant c d c+d

Column Total a+c b+d n

McNemar’s Test

The test assesses if a statistically significant change in proportions have occurred

on a dichotomous trait at two time points on the same population. It is applied

using a 2 × 2 contingency table with the dichotomous variable at event 1 and

event 2.

The null hypothesis of marginal homogeneity states that the two marginal

probabilities for each outcome are the same, i.e. a+ b = a+ c and c+ d = b+ d.

Thus the null and alternative hypotheses are[1]

H0 : b = c

H1 : b 6= c

H0 : b = c

H1 : b 6= c

5.3 Cauchy

As mentioned in the introduction section, when using a weight function, its pa-

rameters are a function of the observed MAF, so adjusting the weight based on

the MAF is suggested. Here, using a Cauchy function as a weighting scheme can

provide this property. We will introduce three different schemes by modifying the

parameters of a Cauchy function. We will investigate the impact of these weight

schemes on different data scenarios. A general Cauchy function is given by

g(x) =
1

πs(1 + ((x− c)/s)2)
(5.2)

5.3.1 Cauchy Weight - Fixed Parameters

In this section, we introduce a weighting scheme that can manage up-weighting

rare variants and down-weighting common ones. The data’s distribution will not

have an impact on the weight (see Figure 5.8). Therefore, increasing the number
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of rare or common variants will not affect the magnitude of the weight because

the parameter is fixed on this weighting scheme, which will outperform the beta

function, especially when the causal variant is in the rare variant range.

The parameters of the weights in this scheme are functions of the MAFs. This

weighting scheme is suggested if the data consist of rare variants and no common

variants, or if only the rare variants are of interest.

The weight 5.2 is based on the Cauchy function with c = min(F) as the lo-

cation parameter of Cauchy density, where F is the MAF, and scale s = 1/
√

2n

as variants with MAF ≤ 1/
√

2n are considered rare, whereas variants with

MAF ≥ 1/
√

2n are considered common (Tony Cai et al. (2011), Jeng et al.

(2012), and Ionita-Laza et al. (2013)).

g(F) =
1

(s× (1 + ((F − c)/s)2)
. (5.3)

We can rewrite the above equation as

g(F) =
20

n
×
[
1 +

(
nF − 1

20

)2]
. (5.4)

Notably, in Figure 5.4, the Cauchy function up-weights the extremely rare

variants more than moderate and common variants.

Given that in the simulation, the standard error is 0.005, and the type I error

is controlled at a nominal level of 0.05, with 1% uncertainty, there is a difference

between the Cauchy and SKAT weighing schemes in Figure 5.5. The difference

between two weighting schemes is in the between MAF = 0.0005 to 0.005, indicat-

ing that the Cauchy weighting scheme outperforms the SKAT weighting scheme

at this range of MAF, however, there is no significant difference between them

when the MAF of the causal variants is between 0.005 and 0.03. Power estimates

are based on 1, 000 simulation replicates. The differences above were tested using

McNemar’s test and the results are shown in Table 5.4. To clarify that the un-

certainty that we calculated from McNemar’s test is accurate, we repeated this

analysis 100 times and performed the test also 100 times which gave us the same

conclusion that we concluded here.
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Figure 5.4: The weight using Cauchy function (fixed parameter) versus MAF.

MAF P.values Conclusion

0.0005 2.2e-16 Difference is significant

0.001 2.2e-16 Difference is significant

0.0015 2.2e-16 Difference is significant

0.002 2.2e-16 Difference is significant

0.0025 2.2e-16 Difference is significant

0.005 0.3832 Difference is not significant

0.0075 1 Difference is not significant

0.01 1 Difference is not significant

0.015 1 Difference is not significant

Table 5.4: The results of McNemar’s test. The test was conducted at each MAF

of causal variants.
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Figure 5.5: This figure shows the impact of increasing the MAFs of causal variants

at OR = 3. The data is randomly generated so that 80% of the data are rare

variants with a MAF between 0.0005 and 0.05, and the remainder are common

variants. The red line with the star points shows the results of the test with the

Cauchy weight, and the black line with round points shows the results of the test

with no weights.

Causal Non-Causal

ERV OR=3 X

MRV OR=2 X

CV OR=1.5 X

Given the same parameters of uncertainty, the Cauchy weighting scheme out-

performs SKAT when the causal variants located in the ERV range (0.0005 −
0.002), especially when the percentage of the causal in ERV range gets increased

as in the top of Figure 5.6, however, the difference between them becomes smaller

when the MAF of the causal variants increased as in the bottom of the Figure 5.6.

According to the McNemar’s test, the differences in both figures are significant.

In Figure 5.7 (bottom one), there is no significant difference between Cauchy

and SKAT weighting schemes in terms of the power while there is a significant

difference in the top figure between them according to the McNemar’s test.
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Figure 5.6: The analysis was conducted with ERVs as the causal variants, with

OR = 3 and MAFs between 0.0005 − 0.002 in the top figure, while the bottom

one uses OR = 2 and MAFs between 0.002− 0.005, non-causal variants ranging

between 0.0005− 0.05 as 50% between 0.0005− 0.005, 25% between 0.005− 0.01,

and 25% between 0.01− 0.05. The causal variants increased from 2% to 25%.

Causal Non-Causal

ERV OR=3 (0.0005-0.002) X

MRV . X

CV . X

Causal Non-Causal

ERV OR=2 (0.002-0.005) X

MRV . X

CV . X
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Figure 5.7: The analysis was conducted with MRVs as the causal variants, with

OR = 1.5 and MAFs between 0.005−0.02 in the top figure, while the bottom one

has OR = 2, non-causal variants ranging between 0.0005− 0.05 as 50% between

0.0005 − 0.005, 25% between 0.005 − 0.01, and 25% between 0.01 − 0.05. The

causal variants increased from 2% to 25%.

Causal Non-Causal

ERV . X

MRV OR=1.5 (0.005-0.01) X

CV . X

Causal Non-Causal

ERV . X

MRV OR=2 (0.005-0.01) X

CV . X
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Figure 5.8 shows a significant difference between Cauchy and SKAT weighting

schemes according to the McNemar’s test (the p values from McNemar’s test are

less than 0.05 at all the percentages of common variants). Figure 5.8 shows that

increasing the number of common variants in the dataset has no impact on the

power in case of the Cauchy weighting scheme while this will reduce the power

in case of SKAT weighting scheme.

Figure 5.8: The causal variant in this analysis is located in the extremely rare

data range with OR = 3, and the percentage of the causal variants is 20%. The

rare data range from 0.0005-0.05, and the common variants range from 0.05-0.5.

Rare data is fixed to 100 variants, and the number of common variants is increased

from 10 to 100.

Causal Non-Causal

ERV OR=3 (0.0005-0.002) X

MRV . X

CV . Xincreasing
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5.3.2 Cauchy Adaptive Weight (1)

One variant weight we proposed was based on the Cauchy density function and

uses fixed parameters based on MAF values. This weight assigns the largest

values of weights to the smallest MAFs; however, it is best to consider both the

MAF and the number of rare variants. Let c = min(Fj) and s =
∑p
j=1 F

r
j

pr
, where

Frj is the MAF value for rare variants excluding any MAF > 0.05, pr is the

number of rare variants in the data, and Fj is the minor allele frequency (MAF).

We can rewrite the equation as

s =

∑p
j=1 FjI[Fj ≤ 0.05]∑p
j=1 I[Fj ≤ 0.05]

,

where I represents an indicator. Thus, the weight function will be

g(F) =
1

πs(1 + ((F − c)/s)2)
(5.5)

In this weighting scheme, the weight 5.5 is based on the frequencies of rare variants

only; the common variants will not have an effect on the test’s parameters since

the parameters are based only on the data less than 0.05. Note that the common

variants will have more weight only when there are more moderately rare variants

in the data.

We evaluated the power of the score test with the Cauchy-adjusted weighting

scheme 5.5. Figure 5.9 shows an evaluation of power versus the MAF of non-

causal variants.
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Figure 5.9: We fixed the simulation parameters so that the number of causal

variants was 20 with MAFs (0.0005), OR = 3, and 100 non-causal variants, and

we varied the MAF of non-causal variants from 0.0004 to 0.02.

The data that is required to successfully detect associations are suggested to

be in the range from very rare to moderately rare (0.0004, 0.01), as in Figure

5.10. The power of the test with this weighting scheme will increase along with

the MAFs of causal variants. If there is a wide range of MAFs, it is required to

have a large proportion of large moderately rare variants (0.01− 0.05) to detect

the association when the causal is in this wide range of MAFs.
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Figure 5.10: An example of the distribution of simulated data that works with

the weight introduced in this section.

5.3.3 Cauchy Adaptive Weight (2)

Since SNP data often have different MAF distributions, a different weighting

scheme that can be adjusted (i.e., is adaptive) and used with different datasets

is needed so that if a few singleton variants are in the data, they will be asso-

ciated with a lower weight. If we have a huge amount of data with moderately

rare variants, why should we lose power just to consider one or two variants that

are classified as extremely rare variants (ERV) by making them as large as pos-

sible? Instead, we consider them, but with lower weights (i.e., down-weighting

the singletons in case they are genotype errors). As we saw in the Cauchy func-

tion with fixed parameters, the large moderately rare and common variants are

not associated with a large weight. In this weighting scheme, we will adjust the

weight based on the MAF, so the large moderately rare variants will have a large

weight in case there are a large amount of this kind of variant in the data. This
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will slightly down weight the extremely rare variants. Rare variants might have

a systematic error when the variants are identified Johnston et al. (2015); if we

worry about systematic errors in the ERV area, as is made evident in this section,

the importance of ERVs are reduced according to the percentage of moderate and

common variants in the data.

Figure 5.11 shows the difference between two simulated data sets based on

the MAFs. The weights we propose will account for the distribution of the

MAFs. Based on different simulated data, Figure 5.12 shows how Cauchy adap-

tive weighting scheme changes according to the distribution of the observed MAF.

Figure 5.11: In this figure, we show the difference between two simulated datasets.

The set on the right-hand side was comprised of more than 80% moderately rare

variants, while in the set on the left-hand side, the moderately variants were less

than 5% of the data.
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Figure 5.12: The adaptive weight, adjusted according to the distribution of the

MAF of the data. In the top one, data has a large amount of extremely rare

variants, while the figure below has a large amount of moderately rare and com-

mon variants. The red line represents the adaptive-Cauchy, while the black line

represents the SKAT-weight.
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Based on the assumption described above, we will use the Cauchy function

as a variant’s weight, with parameters c = min(Fj); s is 75% of the data (upper

quartile) divided by 10, plus 1/
√

(2n) = 0.01, where Fj is the MAF. We will not

allow the value of s to overflow 0.05; since the Cauchy weight will not up-weight

the rare variants enough, it will be dominated completely by the common ones.

Thus, we chose b to divide into 10 since the maximum of F will be 0.5, and by

dividing it into 10, a value of 0.05 will be achieved. Thus, the weighting scheme

presented in this section will account for the common variants. The s parameter

will range between 0.01and0.05.

g(F) =
1

(s× (1 + ((F − c)/s)2)
.

We can simplify it as

g(F) =
s

(s2 + (F − c)2)
, (5.6)

s = b + 0.01, where b is the Q3(F),75% percentile of the MAF dived by 10,

and 0.01 is the result from 1/
√

2n where n = 2000.

Our proposed weight 5.6 allows for the development of a new weighting scheme

in which, instead of up-weighting the rare variants only, the weights will be as-

signed after considering the frequency of the rare, moderate, and common vari-

ants. When there is a large number of extremely rare variants, they are assigned

large weights; otherwise, they will be given low weights compared to moderately

rare and common ones. Also, instead of choosing arbitrary parameters for the

functions of the weighting scheme, we set the parameters as functions of the MAF

(Fj).

The Cauchy function, in addition to up-weighting the rare variants, will not

assign the largest weights to the rarest variants like the beta function; it will assign

a lower weight after comparing them with the more moderately rare variants.

The figures (5.13) and (5.14) below show MAFs with different values of c and

s, respectively.
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Figure 5.13: We show the MAF versus the weight using the Cauchy adaptive

weight, with the s value fixed at 0.01, and the c value changed from 0.0005 to

0.005.
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Figure 5.14: We show the MAF versus the weight using the Cauchy adaptive

weight, with the c value fixed at 0.0005 and the s value changed from 0.007 to

0.05.

If there were more common variants in the sample than rare ones, then the

weights for the rare variants were lower than those associated with the common

ones if the latter’s frequency was lower. So, when the number of common variants

was much larger than the number of rare ones, the rare variants’ importance was

reduced, and the weight associated with them was also lower. This weight must

be selected while considering the frequency of the rare variants because the power

will decrease as the number of common variants increases. Note that the effect of

this scenario will be obvious on the extremely rare variants (see Figure 5.15 and

it shows there is a significant difference based on the McNemar’s test between

adaptive Cauchy and SKAT).
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Figure 5.15: A comparison between Cauchy and beta SKAT functions, which

shows the effect of increasing the common variants when the causal variants

are ERV. Fifteen percent of the variants were causal with (OR = 3), MAFs

0.0004− 0.002, and 115 variants. The common variants are increased from 0% to

60% of the variants, and we reduce the number of rare variants. The red line is

the Cauchy weight, while the SKAT beta is in black.

Causal Non-Causal

ERV OR=3 (0.0005-0.002) X

MRV . X

CV . increased from 0 to 60%

We will conduct the same analysis as above, but we are going to specify the

causal variants to be moderately rare variants with MAFs between 0.005− 0.01

rather than extremely rare ones. Then, we can see the impact of increasing

the number of common variants in the data. The effect will not be large as in

extremely rare variants. Our goal is to reduce the importance of variants with

very low minor allele frequencies (i.e., extremely rare variants) when half of the

data is common. However, the importance of variants increases as the minor

allele frequency increases.

When common variants comprise a large portion of the sample and the causal

variants are moderately rare, then the importance of the moderately rare data

are reduced somewhat only when the effect size is small. However, when the

effect size is large, the power remains strong. Figures 5.16 and 5.17 illustrate this
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relationship. Given that in the simulation, the standard error is 0.005, and the

type I error is controlled at a nominal level of 0.05, with 1% uncertainty, there

are no differences between the two weighting schemes in Figures 5.16 and 5.17,

however, there is a slightly significant difference according to the McNemar’s test

(with p-values less than 0.05) when there are few common variants in the data

while the causal variants are moderately rare with low size effect as in Figure

5.16 B.

Figure 5.16: A comparison of Cauchy and beta SKAT that shows the effect

of increasing the common variants when the causal variants are moderately rare

(MRV) (0.01−0.05). The parameters used in this analysis are 200 extremely rare

variants with (15%) causal variants with (OR = 3) in Figure A and (OR = 2)

in Figure B. The common variants increase from 5% to 90% out of 200. The

red line with star points indicates the Cauchy weight, while the SKAT beta is

represented by the black line with round points.
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Figure 5.17: A comparison of Cauchy and beta SKAT that shows the effect of

increasing the common variants when the causal variants are moderately rare.

The parameters used in this analysis are 200 ERVs, and (15%) are causal. The

MAF of causal variants is between 0.003 and 0.005 with (OR = 3) in Figure

A and (OR = 2) in Figure B. The common and moderately rare variants range

between (0.005, 0.5) and increase from 5% - 90% of the variants. The red line with

star points indicates the Cauchy weight, while the SKAT beta is represented by

the black line with round points. Notably, power decreases when the proportion

of common variants increases, especially when the effect size small.

Figure 5.18 shows that the power decreases when the proportion of common

variants increases.
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Figure 5.18: A comparison of Cauchy and beta SKAT that shows the effect of

increasing common variants when the causal variants are ERV. The parameters

used in this analysis are 200 ERVs, and (15%) are causal. The MAF values are

between 0.001 and 0.002 with (OR = 3). The common variants range from 5%

- 90% of the total variants. The red line with star points indicates the Cauchy

weight, while the SKAT beta is represented by the black line with round points.

Figure 5.18 shows that there is a significant difference according to McNemar’s

test between the Cauchy adaptive and SKAT weighting schemes. We can see from

Figure 5.18 that when common variants comprised more than 50% of the data, the

power of the test decreased, especially when the causal variants had a small effect

size. When the causal variants are ERVs in this kind of data, they contribute less

to the test since they are rare, so it might be an error.

An increase in the moderately rare variants’ frequency in the data will also

require an adjustment in the weights to reduce the importance of ERVs but not as

large as when common variants are more frequent in the data. If the percentage

of moderately rare variants is much larger than ERVs in a given dataset, then the

importance of the ERVs will be reduced and will not be as large as that of the

common ones. Hence, in Figure 5.19, we only see a small reduction in the power

because most of the data are moderately rare variants rather than common.
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Figure 5.19: A comparison of Cauchy and beta SKAT that shows the effect of in-

creasing the common variants when the causal variants are ERV. The parameters

used in this analysis are 200 ERVs, and (15%) are causal. The MAF values are

between 0.0005 and 0.001 with (OR = 3). The moderately rare variants range

between 0.005 − 0.05, increasing from 5% - 90% of variants. The red line with

star points indicates the Cauchy weight, while the SKAT beta is represented by

the black line with round points.

Causal Non-Causal

ERV OR=3 (0.0005-0.001) X

MRV . increased from 5% to 90%

CV . X

As we can see in Figure 5.19, the power starts decreasing when the proportion

of moderate variants increases to more than 50% of the total, making a significant

difference between SKAT and adaptive Cauchy according to the McNemar’s test

(all the p-values are less than 0.05). The next figure (Figure 5.20) illustrates the

impact of the MAF of increasing common non-causal variants on the common

causal variants, according to McNemar’s test (all the p-values are less than 0.05),

there is a significant difference between SKAT and adaptive Cauchy weighting

schemes when the causal variants are common and the data has a large proportion
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of the common variants. This difference becomes smaller when the size effect

become small.

Figure 5.20: A comparison of Cauchy and beta SKAT that shows the effect

of increasing the common variants when the causal variants are common. The

parameters used in this analysis are n = 2000, and 120 common variants (15%)

are causal. The MAF values are between 0.1− 0.5 with OR = 2 in Figure A and

OR = 1.5 in Figure B. The first points in the plot result from data comprised

of 90% ERVs and 5% moderately rare variants. The number of moderately rare

variants was then increased from 5− 100 while decreasing the amount of ERVs.

The common variants are also fixed as the causal ones. The red line with star

points indicates the Cauchy weight, while the SKAT beta is represented by the

black line with round points. Power decreases when the proportion of common

variants increases.

Using a fixed parameter in a Cauchy weight will not account for the causal

variants in the large moderately rare and common variant range. An adaptive

weight will give the rare variants a higher weight and increase the power when

there are more rare variants in the data. However, it will assign more weight

when there are large proportions of moderately rare variants or common variants

in the data, as expressed in Figure 5.21, since we add more moderate and rare

variants in the data while we fix the MAF of causal variants to be moderately
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rare variants, such as in Figure 5.21, and common variants, such as in Figure

5.22. Thus, according to McNemar’s test, there is a significant difference between

SKAT and adaptive Cauchy weighting schemes, when the causal variants are

moderately rare variants and the data has a low percentage of common variants

as in Figure 5.21. Therefore, under the same scenario, but when the causal

variants are in a common region, then adaptive Cauchy will outperform SKAT,

making a significant difference as in Figure 5.22.
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Figure 5.21: A comparison of Cauchy and beta SKAT that shows the effect of

increasing the common variants when the causal variants are moderately rare.

The parameters used in this analysis are n = 2000, and 120 common variants

(15%) are causal. The MAF values are between 0.01 − 0.05 in the top Figure,

and the MAF of causal variants are between (0.05 − 0.1) in the bottom Figure,

with OR = 1.5 for both scenarios. The first points in the plot result from data

comprised of 90% ERVs and MRVs and 5% common variants. The number of

common variants is then increased from 5% to 80% while decreasing the amount

of ERVs.
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Figure 5.22: A comparison of Cauchy and beta SKAT that shows the effect of

increasing the common variants when the causal variants are moderately rare.

The parameter used in this analysis is n = 2000, and 120 common variants (15%)

are causal. The MAF values are between 0.1 − 0.5 with OR = 1.5. The first

points in the plot result from data comprised of 90% ERVs and MRVs and 5%

CVs. The number of common variants is then increased from 5% − 80% while

decreasing the amount of ERVs. The common variants are also fixed as causal

ones.

5.4 Gumbel Function

We will introduce new functions that can be used for rare variant association

studies. These new functions are based on a Gumbel function. However, we made

some modifications, so they will be appropriate for up-weighting rare variants.

Additionally, an issue that arises in rare variant associations is a large number

of singletons can arise when using next-generation sequencing; there is great

concern about this kind of rareness inducing systematic errors. The idea proposed

here is a new weighting scheme, which, instead of up-weighting all rare variants

so that the rarest variants are given the largest weights, up-weights the rare

128



5.4 Gumbel Function

variants under some constraints. We also propose, as another property of the

Gumbel function, that all rare variants should be up-weighted, but singleton

variants should be given smaller weights than other rare variants. Based on this

premise, the smallest MAF will no longer be associated with the largest weight, as

shown in Table 5.5. We can also use a Gumbel function as an adjusted (adaptive)

weight for different datasets. In this section, we propose two different schemes

of variant weights based on the Gumbel function. We investigate the differences

between them and evaluate type I errors and the power of the test.

MAF 1/n 4/n 20/n 200/n

Weight 37 93 62 1

Table 5.5: The Gumbel-based weight after down weighting the singleton, which

will be discussed later in this section

5.4.1 Gumbel Fixed Parameter

A Gumbel function can be used to control how much the rare variants are up-

weighted. In the previous functions, we up-weighted these variants, but control-

ling the threshold was not clear or straightforward. In this function, by modifying

the scale parameter, we can fix the threshold, so this function can give higher

weights to the rarest variants. This is a function that can be used as a weight

based on variants.

g(F) =
1

s
e(−zez), (5.7)

where z = (F−µ)
s

,F is the MAF, µ is the location parameter, and s is the

distribution scale (s > 0). If we fix µ as the minimum of the MAF, which is

based on the data, then the smallest MAF will have the highest weight. We

can change the threshold for rare variants using the scale parameter s = 0.05 as

follows:{
MAF < s high weight
MAF > s low weight

Figure 5.23 shows the comparison between SKAT and Gumbel weighting

schemes. We can see Gumbel function put large weight in the ERV region while

lower in the common region.
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Figure 5.23: The weight of Gumbel function versus the beta-SKAT function.

The Gumbel function (5.7) performs better with a large amount of large mod-

erately rare variants (0.01− 0.05) than beta-SKAT, as shown in figure (5.24).
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Figure 5.24: This figure shows the impact of non-causal variants on the score test

using beta-SKAT and Gumbel in terms of power. The causal variants are fixed

to be 10 variants out of 100 with MAF 0.005− 0.01. The OR for causal variants

is fixed to be 1.5. We generate the MAF for non-causal variants from a uniform

distribution, and we fix the minimum parameter to be 0.0005 while we vary the

maximum as represented on the X-axis (0.002, 0.005, 0.01, 0.05, 0.1)

Figures 5.25 and 5.26 show a comparison of Gumbel and beta weight schemes

in terms of score test power when the causal variants are in different MAF set-

tings. Given that in the simulation, the standard error is 0.005, and the type I

error is controlled at a nominal level of 0.05, with 1% uncertainty, and according

to McNemar’s test, there is a significant different between SKAT and Gumbel

weighting schemes, when the causal variants are large percentage extremely rare

variants as in the top figure of the Figure 5.25. on the other hand there is no

significant difference between them when the MAF of causal variants are larger

as in the bottom figure of the Figure 5.25. According to McNemar’s test there

is no significant difference when the causal variants are moderately rare variants.
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However, there is a significant difference between these methods when the causal

variants are between 0.01 and 0.05 as in the top figure of the Figure 5.26.
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5.4 Gumbel Function

Figure 5.25: A comparison of the Gumbel function and beta-SKAT. There are

200 variants with different MAFs of extremely and moderately rare and common

variants. We fixed the causal variants at MAF 0.0005 − 0.002 with OR = 3 in

the top figure, while in the bottom one, the causal variants are fixed at MAF

0.002− 0.005 with OR = 2.
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Figure 5.26: A comparison of the Gumbel function and beta-SKAT. There are

200 variants with different MAFs of extremely and moderately rare and common

variants. We fixed the causal variants at MAF 0.005 − 0.01 with OR = 2 in

the top figure, while in the bottom one, the causal variants are fixed at MAF

0.01− 0.05 with OR = 2.
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5.4 Gumbel Function

5.4.2 Adaptive Gumbel

Since the data structure sometimes has few common variants, and the weights

proposed in the literature cover most of the MAF region, we have to pay a cost;

we must lower the detection of causality in the rare regions to detect the signal

elsewhere. The question is why we have to pay this cost when there are few

common variants in the data. This is the same idea a Cauchy, meaning more

weight will be associated with the most frequent MAFs in the data. Based on

this kind of data, we propose a weighting scheme that can be adjusted based on

the data:

g(F) =
1

a
e−ze−e

−zn
(5.8)

where z = F−c
a

, F is the MAF, c is the minimum of MAF, a = t + b
2
, b is the

75% quartile of the data Q3(Fj), and t is the threshold for the extremely rare

variants t = (
√

2n)−1/2 and n number of individuals.

This weighting scheme (5.8) is suggested if the data are mostly rare or ex-

tremely rare with a low proportion of common variants. However, if there is a

large number of common variants or rare variants greater than 0.01 are included

in the data, the detection of causal variants in extremely rare areas will be low

unless there is a large number of them in the data; then, the detection will re-

main high. Thus, the adaptive Gumbel weighting scheme is changing based on

the distribution of the observed MAF (see Figures ).

This weight is adjusted according to the distribution of the observed MAF. It

focuses on the extremely rare and rare region by up-weighting them significantly

(see Figures 5.28 and 5.29). This up-weight is not applied to the singleton variants

and gives more weight to the moderately rare variants if there is a large proportion

of them in the data (see Figure 5.27 ).
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Figure 5.27: The weight using the un-singleton Gumbel function, which shows a

singleton SNP that occurs one time among 2000
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5.4 Gumbel Function

Figure 5.28: A distribution of MAFs (F) showing most of the data is in the ERV

range.
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Figure 5.29: A distribution of MAFs (F) showing data ranges in the different

areas of MAF.

We evaluate the power of the test statistic using this weight with two datasets:

one with a large proportion of ERVs and one with many moderately rare variants

and some common. The figure illustrates the difference between these two data

sets based on the strength of their detection of the extremely rare variants. When

the data is 75% rare SNPs, the detection of extremely rare variants will be large,

and it will be reduced when the number of common variants reaches 75% of the

data; see (Figure 5.30).

Given that, in the simulation, the standard error is 0.005, and the type I error

is controlled at a nominal level of 0.05, with 1% uncertainty, there is significant

difference between SKAT and adaptive Gumbel weighting schemes, Figure 5.30

illustrates the impact of changing the parameter a in the Gumbel function, which

is responsible for adjusting the weight. Parameter a, as illustrated here, is es-

timated based on 75% of the data. Figure 5.31 shows the impact of the weight

when a large proportion of the data is less than 0.01 and few common variants
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5.4 Gumbel Function

are included; these weighting schemes make a significant difference in terms of

the power between the score test with these different weighting schemes. When

the causal is in the extremely rare region and non-causal data are all moderately

rare, the importance of these extremely rare causal variants will decrease, as is

shown in Figure 5.32. However, if the moderately rare or common variants are

present but represent a low proportion of the data and the causal variants are in

the extreme region, then the power of the test will increase compared to SKAT

since the SKAT weight gives a very large weight to moderate variants even if they

are a very small portion of the dataset; see Figure 5.33.

Figure 5.30: We show the impact of parameter a, which will measure the fre-

quency of data. In this figure, the analysis is conducted using 200 SNPs classified

as 33% for extremely and moderately rare variants and common ones. We fix the

parameter a at 0.007,0.01 and 0.02. The effect size is fixed at 3 with 7% causal

rare variants.
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Figure 5.31: This is a comparison of a beta weight and the adaptive-Gumbel

weight. 80% percent of the data is less than 0.01, and 20% is between 0.01 and

0.5. Then, we change the MAF of causal variants on X-axis while we fixed the

percentage of causal variants to be 7% and the effect size to be OR = 3.

Causal Non-Causal

ERV OR=3 (0.0005-0.005) X40%

MRV . X40%

CV . X20%
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5.4 Gumbel Function

Figure 5.32: In this figure, we fix the causal variants to be in the extremely rare

variants region at MAFs between 0.0005-0.0025 and fix the number of non-causal

variants to be 200; then, we change the non-causal variants’ MAF.
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Figure 5.33: In this figure, we fix the causal variants to be in the extreme region;

the number of SNPs is 200, and 8% are causal variants with MAFs ranging

between 0.001-0.003. The X axis represents the non-causal MAFs; we change

the cutoff of the non-causal variants. To clarify, the first points generate non-

causal variants between 0.0005 − 0.001, while the last one generates non-causal

between 0.0005− 0.05. There are 10% common variants.

When most of the data is extremely rare, using this weight can help detect

the association with a large effect size in the moderately rare region, as shown in

Figure 5.34.
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Figure 5.34: In this analysis, we fix the percentage of the rare variants with MAFs

less than 0.01 to be 80% of the data. The percentage of causal variants is 7%.

Then, we change the MAF of the causal variants.

Causal Non-Causal

ERV OR=3 (0.0005-0.005) X40%

MRV OR=3 (0.005-0.01) X40%

CV . X20%

5.5 Relationship Between the U Vector and Vari-

ants’ Weights

The score test statistics will reject the null hypothesis when the value of U is

large. To illustrate, let Xj′ be the positions of causal variants, the values of the

vector Uj that correspond to the position of causal variants be Uj′ , and δ be a

threshold that can identify the largest values of Uj. We will choose the causal

variants to be 10 rare variants, so we will take the ten largest values of Uj. Thus,
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5. VARIANT WEIGHT FUNCTIONS

if
p′∑
j′=1

I(uj′ > δ) =

p∑
j=1

I(uj > δ),

all the causal variants contribute to the score test, and the null hypothesis will be

rejected, which is the ideal case. Hence, the weighting scheme that can address

this scenario by up-weighting the data that is assumed to be causal while down-

weighting the other data is preferable. Moreover, this is the golden point that

can explain the difference between varying weights (see Figure 5.35). Figures 5.36

and 5.37 and Table 5.6 shows the different between Cauchy weighting scheme and

SKAT weighting schemes.

Figure 5.35: The difference between U vectors with and without weights, which

expresses the impact of the weights on the causal rare variants that cause the

weighting schemes to differ in terms of their impact on the U vector.
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MAF

Weight 0.0005 0.001 0.005 0.5

Beta(1,25) 24.7 24.4 22 0

Cauchy(min(MAF),0.01) 31.8 31.7 26.4 0.01

Table 5.6: Illustration of the difference between weights based on the beta and

Cauchy functions. In rare regions (e.g., 0.0005, 0.001), we can see the differences

between weight values for the MAFs using beta are small, while the differences

between values using Cauchy are large.

Figure 5.36: The shape of the beta function versus the distribution of the data and

the causal variants in terms of MAF. The red line indicates the MAF = 0.002.
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Figure 5.37: The shape of the Cauchy function with an 3/n parameter versus the

distribution of the data and the causal variants in terms of MAF. The red line

indicates the MAF = 0.002.

Type I Errors

To evaluate type I errors, we begin by generating a genotype matrix as explained

above in the simulation section and setting the OR = 1. We consider three types

of variants in the simulation based on a given MAF: non-causal extremely rare,

moderately rare, and common variants. We use two methods to evaluate type

I errors. First, we fix the maximum and minimum MAFs to be the same for

each type of variant; see Figures 5.38 and 5.39. We consider all MAF values

from 1/n (the boundary of MAF) up to (0.5n)/n. Then, we generate the Xp via

the scenario above so that the data has different types of variants (i.e., rare and

common). We randomly generate rare variants ranging from the MAF boundary

to MAF = 0.01 and common variants ranging between 0.05-0.5. Next, we fix

the percentage of rare and common variants to be 50% for each set and modified

the rare dataset by changing the threshold of rare variants from 1/n to 30/n; see

Table (5.7). For each scenario, we conduct 1000 simulated datasets with randomly

generated genotypes for each simulation and estimate the empirical type I error
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5.5 Relationship Between the U Vector and Variants’ Weights

rate as the proportion of p-values less than the nominal level α = 0.05. The

results show the test using this weighting scheme had satisfactory type I error

rates except when all the variants have very low minor allele frequency. Rarity is

a concern in the control of type I errors; see Figures 5.38 and 5.39. We can also

see in Table 5.7 that when the threshold equals 1/n, which means we generate

a dataset and divide it to two sets, one is considered a common set with MAFs

between 0.05−0.5 and the other between 1/n−1/n, meaning half of the datasets

have very low MAF. The Cauchy density is a good function to use to avoid the

issue in beta functions; in a beta function, the ERVs’ weighting is not as large

as it should be. Also, the parameters can be based on the data, and they can be

fixed.

Figure 5.38: Type I error for tests using the Cauchy density as a variant weight

function 1. The green and red lines highlight the following values: 0.04, 0.05, and

0.06.
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Figure 5.39: Type I error for a score test using the Cauchy density adjusted

function. The green and red lines highlight the following values: 0.04, 0.05, and

0.06.

Threshold of rare

1/n 4/n 20/n 30/n

Cauchy 1 0.035 0.05 0.06 0.05

Cauchy 2 0.04 0.05 0.05 0.05

Cauchy 3 0.05 0.045 0.035 0.045

Gumbel 1 0.035 0.045 0.06 0.05

Gumbel 2 0.045 0.05 0.045 0.05

Table 5.7: Type I errors for a score test with different weights.

5.6 Conclusion

In this chapter, we expressed new ideas based on variant weight schemes designed

for use in rare variant association studies. The adjusted weights can be adjusted

depending on the data (i.e., they are adaptive weights). They down-weight SNPs

that occur once in the sample, and the weight with fixed parameters can anal-

yse moderately rare and extremely variants more effectively than common ones.

However, the weighting schemes presented in this chapter cannot detect associa-

tions when the causal is within a large MAF range, especially when the weight

has a fixed parameter. Furthermore, the proposed weight schemes presented in
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5.6 Conclusion

this chapter focus on rare variants only (i.e., less than 0.01), which is not as ef-

fective at detecting causal variants in the common range; see Figure (5.40). In

the next chapter, we will introduce new weighting schemes that can be extended

to the proposed weight scheme and detect causal variants in rare and common

MAF ranges.

Figure 5.40: This figure shows the proposed weight and SKAT-beta weight, which

cannot detect causal variants when they are in the MAF common range. We

simulate 100 variants, all distributed equally according to their MAF, so we have

extremely rare, moderately rare, and large frequency rare variants and common

variants of 25% for each category; the causal variants are fixed at OR = 2 and

are all located in the common range.
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Chapter 6

Weight Functions for the

Continuous Spectrum of MAF

6.1 Introduction

In Chapter 5, we proposed different weighting schemes. Most of these schemes

allow for signal of association detection within a range of minor allele frequencies

(F). For example, using the parameter (1, 25), the beta function is effective for

rare data up to MAF = 0.05, and some Cauchy functions have good power for

rare data up to MAF = 0.03. In these cases, the focus is on signals in the rare

MAF range rather than the complete range of MAFs. We divide the MAF range

into extremely rare, moderately rare, and common variants. In this chapter,

we extend the weighting scheme to consider the entire range of MAFs (F); by

using these weights, we are able to detect the causality across the whole MAF

range from extremely rare to common variants (i.e., causal variants uniformly

distributed within the MAF range; see Figure 6.1).
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OF MAF

Figure 6.1: Examples of the distribution of the causal variants that can be de-

tected using the weighting schemes described in Chapter 5 (left Figure) and this

chapter (right Figure).

When data contain rare and common variants, prior research has largely used

methods that use the beta function as a weight and focus only on rare variants

while ignoring common regions (the functions are not continuous for the entire

range of MAFs), such as the VT method of Price et al. (2010) and the SKAT

method (Wu et al., 2011). In this chapter, we propose functions that can ad-

dress this limitation; we use continuous functions because they may be able to

detect associations in any range of MAFs. Specifically, we include the common

range by using different weighting schemes and exploring the possibility of ap-

plying Cauchy (with adjustment), Levy, beta, and Burr functions. Many of these

weights perform well in the extremely rare and moderately rare ranges, as well

as in common regions with small effect sizes. Notably, we compare our proposed

weighting scheme with that of the beta function proposed by Wu et al. (2011).
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6.2 Simulation 1

This chapter is separated into two parts. The first part introduces different

weighting schemes that can help detect associations across the whole range of

MAFs. We consider a combined weighting scheme in the second part that can

improve the detection of the association signal by taking advantage of two weight-

ing schemes. This score test method is applicable when p > n. However, in this

thesis, we do not discuss the issue of high dimensionality; we only consider cases

where p < n.

6.1.1 Motivation

In this section, we introduce four functions used as weighting schemes at the

variant level in the analysis of rare variant association. All these functions share

the concept of up-weighting rare variants and down-weighting common variants.

However, the down-weighting of common variants does not dominate the signal

of association. We introduce a Cauchy function that has two properties. The

first property is that it has two parameters that need to be specified, and both

are functions of MAF. The second property is that the weight can be adaptive

depending on the MAF distribution. We also introduce a Levy function in which

only one parameter is specified and consider a weighting scheme that can up-

weight rare variants, especially extremely rare ones.

6.2 Simulation 1

For the simulation, we follow the same settings used in Chapter 5. We set p =

200 and 100 SNPs in all of the scenarios. Each dataset contains three types of

variants (i.e., extremely rare, moderately rare, and common) simulated based on

pre-specified threshold values using a uniform distribution. Based on weighting

schemes proposed in section (6.3.2) and (6.3.3), the percentage of variant types

vary to express the weighting scheme’s impact. These percentages are provided

under each Figure. For example, to express the impact of having a low number

of extremely rare variants (ERV) compared to a large number of common ones,

we increase the common ones from 5% to 90%. The variants’ effect sizes are

OR = 1 to simulate a type I error and OR > 1 to evaluate the tests’ power.
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See Table (6.2) for additional details. To estimate p-values, straight binomial

proportions are used. Hence, they have the same standard error as any other

binomial proportion
√

(p(1−p)/n), where p means the proportion of tests rejected

and n the number of samples. Therefore, if p = 0.05 and n = 2000, the standard

error of the observed proportion is about 0.005, and we could say the uncertainty

is 1%.

Parameters Parameter Values

Sample Size n =2000 (cases = control = n/2)

Total Number of SNPs 100, 200

Proportion of Causal SNPs [3%-20%]

Effect Size of Non-causal SNPs OR = 1

Effect size of Causal SNPs OR = Unif(1.5,3) or Unif(1/2,1/4)

Percentage of Common Variants Ranged from 10% to 90%

Table 6.1: The full set of parameters used in the simulation.

We generated data under various causal mechanisms and MAFs for causal

and non-causal variants, as summarised in Table (5.2).

In the section related to combining weights (6.8), we set the number of variants

to be (100 − 200), classified as extremely rare, moderately rare, and common

variants; the percentages are 40% for both extremely and moderately rare and

20% for common variants, but the causal variants are fixed at 7%.

We evaluate power using different weighting schemes and show the impact

of each weighting scheme on the power of score test outcomes among the minor

allele frequencies from extremely rare to common variants.
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Weighting Schemes
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6.3 Cauchy Function

6.3 Cauchy Function

6.3.1 Adjusted Cauchy Weight

The adjusted Cauchy weight is based on the ratio between the different MAFs,

with the previously proposed weight up-weighting low MAFs and down-weighting

high ones. However, by doing so, the common variants have low weights (some-

times even approaching zero) as in Wu et al. (2011), which dominate any signals

of association in the common variant region. When the weights for low and high

MAFs are applied, the ratio between the maximum and minimum weights be-

comes very large. Unfortunately, the signals of association are not detectable if

some causal variants are more common.

It is well known that if we divide the weight into its sum, there will be no

impact on the test. The weight depends on the ratio between its values for

different variants.

Figure 6.2: The weight in different values; the first one is the original weight w,

and the second one is divided into its sum w/
∑

(w).

The U vector, which is the score function, is affected by the weight, so if the

ratio between the weights of the rare and common variants is large, the ratio

between the U values for the rare and common variants will also be large. By
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using the previous weight discussed in Chapter 5 or the weight introduced by Wu

et al. (2011), if the causal variants are in the common range, it will not be possible

to detect it because it will be dominated by the non-causal variants in the rare

region. To overcome this limitation, we made a weight adjustment so that we can

detect associations in the common variant range. We added a constant, which

was a function of the weight, to the weight itself. To calculate this adjustment,

let w be a weight, m the maximum of w, and a = 0.05 to control the magnitude

of the constant. Then, the adjusted weight will be

wadj = am+ w. (6.1)

Figure 6.3: An illustration of the U vector versus the MAF; the left panel shows

the U with no adjustment to the Cauchy weight; the right shows the Cauchy

weight with the adjustment. The red dots indicate the U values associated with

common causal variants. In these Figures, we simulate 100 variants with different

MAFs ranging between 0.0005 and 0.5, while we fix the causal variants to be

common (0.1− 0.5).

If the constant in equation 6.1 is large, it will dominate the association signal in

the rare range; we find that a 0.05 multiple of the maximum weight is optimal for

various proposed Cauchy weights. This value balances the weight and facilitates
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the detection of the signal in different MAF ranges; see Figure (6.4) for additional

details. Therefore, by using this adjustment, the causal variants can be detected

at any range of MAF (F); Figure (6.4) shows the benefit of using an adjustment

when the causal variants are in the MAF common range.

Figure 6.4: Illustration of the impact of the adjusted weight when the MAFs

of the causal variants are greater than 0.01 (i.e., common variants). The red

line represents Cauchy with an adjustment, and the black line represents no

adjustment.
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Figure 6.5: Illustration of the difference between the adjusted weights when a is

equal to 0.05 and 0.5, including a comparison with no adjustment. The red dots

are the causal variants.

6.3.2 Cauchy Adaptive Weight Scheme 1

In Chapter 5, we proposed a weighting scheme based on the distribution of the

MAF by fixing one parameter of the Cauchy function and varying the other

parameter based on MAF. In this section, we consider the same idea but include

the Cauchy adjustment, so the common region can be included in the region that

can have a non-zero weight.

Let g(F) = cauchy(F,min(F), b + 0.01), where F is the MAF, min(F) is the

minimum possible MAF, and b is the third quartile (Q3(F)) divided by 10 as

illustrated in detail in the previous chapter 5.3.3. Then, take the adjusted weight

as in equation 6.1;

w(F)adj = g(F) + 0.05 max(g(F)) (6.2)

If we assume the causal variants have very low MAFs (i.e., extremely rare

variants), then if there are more rare variants than common ones, the associa-

tion signal increases, and if there are more common variants than rare ones, the

association signal decreases, especially in the extremely rare variant region since
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the frequency of extremely rare variants in the data is low. The idea behind

this weighting scheme is reducing the weight in the extremely rare variant re-

gion (range) of MAF when the number of variants in this region is very low (few

variants), which may occur due to a systematic error.

Figure 6.6: The weight based on MAF. The red line shows the weight based on

data has 50% common variants between 0.05 − 0.5 so that b = 0.05, while the

black line shows the weight for data with only 5% common variants (b = 0.01).

In Figure 6.7, the impact of having a large proportion of common variants on

the association’s detection will be larger when the causal variants are extremely

rare in terms of MAF and reduced when the MAF increases. Figure 6.7 shows

the impact of increasing the number of common variants in the data, which will

lower the detection rate for signals of association.
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Figure 6.7: This Figure shows the impact of increasing numbers of common

variants in the data, which lowers the ability to detect the signal of association.

The causal variants (10%) in this analysis are located in the extremely rare range;

in the top Figure, causal variants have MAFs between 0.0005−0.0015 and OR =

3, and in the lower one, the MAFs are 0.002 − 0.005 and OR = 2. The number

of rare variants is fixed to 100, while we increase the number of common variants

from 1% to 80%. Therefore, the endpoint in the horizontal axis shows 70% of the

data are common.
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When the causal variants are in the extremely rare range and most of the data

are rare, this weighting scheme is very effective at detecting association signals.

When the causal is still in the moderately rare range but with a large MAF, then

the importance of causality is not the same as when the causal variants are in

the extreme range of MAF (see Figure 6.8 ). In short, this weighting scheme can

be adjusted based on the frequency of the data. For example, the variant x1 at

MAF f1 has a large weight w1 when a large proportion of variants have MAFs

close to f1.

Figure 6.8: The Figure shows the impact of increasing the proportion of common

variants in the data, which increases the signal of the association since the causal

variants are in the moderate range of MAF. The causal in this analysis is located

in the moderately (large MAF) rare data range between 0.005 and 0.01, and the

percentage of the causal variants is 10%. The number of variants is fixed at 100.

In the first analysis, all the data are rare, and then we increase the number of

common variants from 1 to 80 and decrease the number of rare variants.

Causal Non-Causal

ERV . X

MRV OR=1.5 [0.005-0.01] X

CV . XCommon variants increased from 1%-70%.
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6.3.3 Cauchy Adaptive Weight Scheme 2

The third function considered is similar to the previous one. It is also based on a

Cauchy function. However, the two parameters of the Cauchy are related to the

data, and it is not fixed. Both of them are based on the distribution of the MAF,

so the rarest variants do not have the largest weight. Let F represent the minor

allele frequency, and F∗ is the minor allele frequency excluding the common one

(more than 0.05). Then, the weight function is g(F) = Cauchy(F, a, b+c), where

a is the 25% quartile (Q2(F∗)) of MAF less than 0.05, b is the 75% quartile of

MAF less than 0.05 (Q3(F∗)) and c =
√

(2n)−1/2. Thus, the weight after the

adjustment, as in equation 6.1, is

wadj = g(F) + 0.05 max(g(F)) (6.3)

This weighting scheme can be adjusted based on the type of data available.

In this scheme, we do not give the highest weights to the extremely rare vari-

ants (ERVs); instead, we assign weights to rare SNPs in the order of frequency,

weighing the most frequently occurring rare data the highest. We adjust these

weights by adding a constant, which helps give the common variants a small

weight, facilitating detection if the causal variants are located in the common

region.

The next Figures show the changes in weight based on the data and MAFs.
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Figure 6.9: The top Figure shows the data distribution where most of the variants

are extremely rare in terms of MAF. The bottom one presents a data distribution

where most of the variants have moderately rare MAFs, and some are close to

the common range. The weights are indicated by the red dots.

When most of the data are rare, having a causal variant in the same range

is most detectable as a real association; however, if the causal variant is in a

different range, then the association is less detectable. Therefore, if the data

sample has more common variants compared to the number of rare variants,
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then the association is not easily detectable. Having more common and fewer

rare variants thus reduces the importance of causal variants that we assume are

extremely rare (see Figure 6.10).
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Figure 6.10: Impact of having a larger number of common variants in the data

when causality is located in the extremely rare range, fixed at MAF (0.0005, 0.002)

with OR = 3 for the top Figure and MAF (0.002, 0.005) with OR = 2 for the

bottom one. The horizontal axis line represents the number of common variants,

increasing from 10% to 70%; there are 100 rare variants. The vertical axis shows

the power of the test, which equates to the detection of association.

Causal Non-Causal

ERV OR=3 [0.0005-0.002] X

MRV . X

CV . increase from 1%-70%.

Causal Non-Causal

ERV OR=2 [0.002-0.005] X

MRV . X

CV . increase from 1%-70%.
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Figure 6.11 shows the impact of the parameter a in the weighting scheme,

which is associated with the 25 quartile of the data. In Figure 6.11, we fix the

causal’s MAF to be 0.001 and vary the parameter a, so on the horizontal axis,

we can see that when the 25th quartile of data is between 0.0005 − 0.0035, the

power is higher than when it is less. Thus, when extremely rare variants occur

more often in the data, they have a higher weight.

Figure 6.11: In this analysis, we generate 200 variants: 50% extremely rare, 30%

moderately rare, and 20% common variants. We fix the causal to be extremely

rare variants (0.001). We change the parameter a of Cauchy to take values be-

tween (0.0005− 0.006).

However, if the causal variants are in the ERV range when the amount of

extremely rare data increases, then the detectability of the association likewise

increases.
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6.3 Cauchy Function

Figure 6.12: Impact of having a larger number of rare variants in the data when

the causality is located in the extremely rare range, fixed at MAF (0.0005, 0.002)

for the top Figure and at MAF (0.002, 0.005) for the lower one. The horizontal

axis line represents the number of rare variants, increasing from 20% to 100%;

100 variants are included in the analysis. The vertical axis shows the power of

the test, which equates to the detection of an association.

Causal Non-Causal

ERV OR=3 [0.0005-0.002] increased 20%-100%

MRV . X

CV . X

Causal Non-Causal

ERV OR=2 [0.002-0.005] increased 20%-100%

MRV . X

CV . X

169



6.3.4 Cauchy (Fixed)

In this section, we modify the Cauchy function to accommodate all MAF regions.

It performs well with extremely rare variants and can detect association signals

throughout the MAF scale. The parameters a and s are fixed.

g(F) =
[
(s(0.5 +

(F − a)

s
))
]−1

=
[s
2

+ (F − a)
]−1

,

where s = 1√
(n)

, so that when n = 2000 then s = 0.02; this threshold classifies the

rare and common variants the same way as in other works, such as Tony Cai et al.

(2011), Jeng et al. (2012), and Ionita-Laza et al. (2013), and a is the minimum

MAF (F). Then, the weight is

g(F) + 0.05 max(g(F)) (6.4)

This weighting scheme (6.4) can cover the entire MAF range (F) when the

effect size is small, except for the (0.4, 0.5) region. Hence, by using the Cauchy

adjustment explained above, we can say it covers all MAF regions under these

circumstances. When s is small, the extremely rare variants are highly weighted,

meaning the association signal is easily detected when the causal variants are in

the extremely rare region; however, this reduces the power of detection when the

causal variants are less rare (0.01− 0.05).

We consider another weight function that is based on fixed parameters. The

weighting scheme is based on a Cauchy function with an adjustment to put reason-

able non-zero weights on the common variants. Let g(F) = cauchy(F,min(F), 1√
(2n)

),

where min(F) is the minimum possible of the MAF. Then, let

wadj = g(F) + 0.05 max(g(F)) (6.5)

This weighting scheme is not affected by increasing the number of common vari-

ants in the data and can detect signals of association in any MAF region. Figure

6.13 shows that increasing common variants in the data has no impact.
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6.3 Cauchy Function

Figure 6.13: The causal in this analysis is located in the extremely rare data

range 0.0005 − 0.0025 with OR = 3, and the percentage of causal variants is

9%. The rare data is fixed to be 100 variants, and we increase the percentage

of common variants from 6% to 56%. The MAF of rare variants ranges between

0.0005 to 0.05, while the common ones are between 0.05and0.5.

Causal Non-Causal

ERV OR=3 [0.0005-0.0025] X

MRV . X

CV . Increase from 6% to 56%

Figure 6.14: Comparing beta (A) and Cauchy-fixed1 weight (B).
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Figure 6.15 shows the impact of this weight scheme in terms of test power.

The Cauchy-fixed (1) and Cauchy-fixed (2) weight schemes clearly perform better

than beta when the causal variants have extremely rare MAFs.
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6.3 Cauchy Function

Figure 6.15: The Figure depicts a comparison of beta-SKAT, Cauchy-fixed1 and

Cauchy-fixed2 when causal variants are in the extremely rare region. There are 10

causal variants with MAFs ranging between (0.0005− 0.0025) with OR=3 in the

top Figure and 0.003−0.005 with OR=2 in the bottom one, among 200 non-causal

variants. The data contains 40% non-causal extremely rare, 40% moderately rare,

and 20% common variants.
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With moderately rare variants and common variants, we see small differences

between beta and Cauchy-fixed 1; however, Cauchy-fixed 1 is still able to detect

the association in the common region using the Cauchy adjustment. The bottom

Figure in 6.16 shows the weights with no adjustment, but by using the Cauchy

adjustment, the detection of association in common areas is larger (see the top

Figure in 6.16). Additionally, Cauchy-fixed (2) is more powerful than beta-SKAT

in most of the MAF regions except 0.02-0.1.
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6.3 Cauchy Function

Figure 6.16: The Figure shows a comparison of beta-SKAT, Cauchy-fixed 1, and

Cauchy-fixed 2 when the causal variants are in moderately rare and common

regions. The top Figure includes the Cauchy adjustment, and in the bottom one,

there is no Cauchy adjustment. There are 10 causal variants with MAFs ranging

between (0.0045 − 0.5) among 200 non-causal variants; the data contains 40%

non-causal extremely rare, 40% moderately rare, and 20% common variants.

Causal Non-Causal

ERV OR=1.5 [0.0005-0.005] 40%

MRV OR=1.5 [0.005-0.05] 40%

CV OR=1.5 [0.05-0.5] 20%
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This weighting scheme performs well when the causal variants are extremely

rare. Figure 6.17 shows the impact of increasing the number of extremely rare

causal variants (1/n− 3/n).

Figure 6.17: The Figure presents a comparison of beta-SKAT, Cauchy-fixed 1,

and Cauchy-fixed 2 when the causal variants are extremely rare. The MAF

of causal variants is fixed at (0.0005 − 0.003), and we increase the amount of

these variants as shown on the X-axis. In the analysis, there are 200 non-causal

variants, 40% non-causal extremely rare, 40% moderately rare, and 20% common

variants. The OR is fixed at 3 for causal variants.

Causal Non-Causal

ERV OR=3 [0.0005-0.003] Increase 3% to 17% X40%

MRV . X40%

CV . X20%
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6.4 Levy Weight Scheme

6.4 Levy Weight Scheme

Choosing the right parameters in weighting scheme functions is critical. In Chap-

ter 5, the Cauchy weight and Gumbel use parameters that are estimated from

the data (i.e., MAF), so all the parameters are a function of the observed MAFs.

Each function has at least two parameters. It is a good idea to reduce the number

of parameters to avoid choosing arbitrary parameters.

In the Levy function, we only use one parameter, and it is also a function of

the observed MAF, which is the minimum observed MAFs. Therefore, this kind

of weighting scheme reduces the number of parameters, and it is a function of

the observed MAF. The Levy weighting scheme is a recommended weight for rare

variants since it can be used to up-weight rare variants and down-weight common

ones. This weight up-weights the extremely rare variants more than Cauchy. It

has fixed parameters, so it is not adjustable for different data distributions. A

Levy weighting scheme function with some modification is introduced as follows:√
s

F
exp{−s

2F
}, (6.6)

where s = 1/n and F = MAF .

This function (6.6) can be used to up-weight rare variants; we suggest setting

s = 1/n, which is a function of MAF because it increases the weight of rare

variants while still giving acceptable non-zero weights to variants with MAF 1%−
5%. Care must be taken that the end of the weight range does not get too close

to zero (i.e., no lower than 0.01). As mentioned previously in this chapter, one

limitation of using the beta function is that since the weights for variants with

MAFs of 1% − 5% are close to zero (less than 0, 01), the ratio between rare

variants and common variants is very large, so it is difficult to detect any signals

of common variants. Another advantage of this weight is that by modifying s,

we can down-weight the singleton, so when s = 1/n, the smallest MAF 0.0005 is

associated with a large weight, and when s = 2/n, 1/n has a low weight as shown

in Figure 6.18.

The weights of variants with MAFs between 1% − 5% are not affected when

the sample size increases. For example, when we increase the sample size to
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50, 000, the ratio of the minimum to maximum MAFs is 0.01; however, in the

beta weight, it will be close to zero.

We show a comparison of the beta and Levy weight schemes (6.6) below using

a MAF range from 0.0005 − 0.5. We will illustrate the Levy weight scheme’s

performance when the causal variants are extremely rare and the performance of

this weight for MAFs with different effect sizes.

Figure 6.18: Levy comparisons using different s values: s = 0.0005, 0.001, 0.0015,

and 0.002, respectively.
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6.4 Levy Weight Scheme

Figure 6.19: Comparison of the beta proposed by Wu et al. (2011)(right) and

Levy weight (left) in terms of the U vector. We sample the effect size of the

causal variants between 1.2-3; the red dots show the U values associated with

causal variants. The left Figure shows the U values can take large values across

the MAF, while it is penalised to be very small in the beta weight.

Here, we demonstrate the effect of weights on the U vector and differences

between the beta function by Wu et al. (2011) and with a Cauchy adjustment in

terms of U. First, we show that the weight affects the U vector. For simplicity,

consider a model in which y is normal:

yi = β0 + β1xi1 + · · ·+ βpxip + ei for i = 1, . . . , n, (6.7)

where ei ∼ (0, σ2), and X is a matrix with the elements xij = 0 and 1, which

correspond to independent variants (SNPs).

Let P (xij = 1) = pj and mj =
∑n

i=1 xij. Consider the score statistics S =

(S1, . . . , Sp)
T with

Sj =
n∑
i=1

(yi − ȳ)xij =
n∑
i=1

(xij − x̄j)yi,

which arises from the maximum likelihood theory for testing H0 : β = 0. Since

y is normal, the distribution of Sj given the genotypes X is Sj ∼ N(mj(1 −
mj/n)βj,mj(1−mj/n)σ2), where mj =

∑n
i=1 xij. For any given sample, the mj
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are treated as fixed values, and for simplicity, we consider the case where mj is

equal to its expected value npj so that

S ∼ N(µ,Σ),

where µ = (np1(1−p1)β1, . . . , npp(1−pp)βp) and Σ = diag(np1(1−p1)σ2, . . . , npp(1−
pp)σ

2). Considering the model (6.7), the total variation of y explained by set of

SNPs p is

Υ =
var(E(yi|x))

var(y)
=

p∑
j=1

pj(1− pj)β2
j /σ

2 =

p∑
j=1

Υj

Where Υj is the explained variation by a set of SNPs p. We will introduce

the effect on power. Consider the test by Madsen & Browning (2009). Let w be

a weighting scheme. The distribution of

Tw = wTS.

is

Tw ∼ N(

p∑
j=1

wjpj(1− pj)βj, n
p∑
j=1

w2
jpj(1− pj)σ2)

T 2
w/(

p∑
j=1

w2
jpj(1− pj)σ2) ∼ χ2

1,s

where

s =
n(
∑p

j=1wjpj(1− pj)βj/σ)2∑p
j=1 w

2
jpj(1− pj)

Based on the result above, the power of a linear statistic, as one can see in

the result above, depends on signs of effects (effect directions of β) and weights.

So, the optimal weight may boost power.

Next, we focus on the effect of different weighting schemes on the vector U. In

the Figure 6.19 above, we can see the difference between two weighting schemes;

the first one is the beta function used by Wu et al. (2011), and the second one is

a Cauchy function with the adjustment proposed in this thesis.

Let w be the weight and w1 the weight proposed by Wu et al. (2011), and w2

is a Cauchy function with the adjustment proposed in this thesis. We define the

U vector, as well as the weights and their effect;

U1 = W1X
T (y− µ)
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6.4 Levy Weight Scheme

U2 = W2X
T (y− µ)

where W1 and W2 are the diagonal matrixes for the beta weight by Wu et al.

(2011) and a Cauchy weight with the adjustment, respectively. To illustrate the

effect of weighting schemes on vector U, we consider a matrix X 3 × 2000, so

we have three values of MAF (F) fixed at 0.0005, 0.005, and0.5 to express the

extremely rare, moderately rare, and common variants, respectively.

Using the weighting schemes w1 and w2,{
min(w1) ≈ 0
min(w2) > 0

Then, U has three values according to the given MAF. By using w1, the U values

are defined as 
| U1 |> 0 if F = 0.0005
| U1 |> 0 if F = 0.005
| U1 |≈ 0 if F = 0.5

Using w2, the U values are defined as
| U2 |> 0 if F = 0.0005
| U2 |> 0 if F = 0.005
| U2 |> 0 if F = 0.5

Thus, by using the Cauchy weighting scheme, we are putting a weight greater

than zero on the common region, which will allow us to detect the signal of

association.
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Figure 6.20: Comparison of U values using Cauchy with no adjustments to include

common variants and Cauchy with an adjustment. We sample the effect size of

the causal variants between 1.2-3. w1 is the beta-SKAT weight, and w2 is the

proposed weight that can consider the common region.

182



6.4 Levy Weight Scheme

Figure 6.21: The weight for both SKAT-beta with parameters (1, 25) (black line)

and the Levy function (red line).

When the causal variants are in the extremely rare range, the Levy weight

function performs better than the beta weight, as shown in Figure 6.22.
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Figure 6.22: In this Figure, we show the Levy weight scheme’s performance when

the causal variants are very rare (i.e., extremely rare variants). We generate

100 SNPs ranging from extremely rare to common variants with causal variants

classified as extreme, which have MAFs between 0.0005 and 0.002 with OR = 3.

Then, we vary the percentage of causality along the horizontal axis.

Causal Non-Causal

ERV OR=3 [0.0005-0.002] Increase from 2% to 19% X40%

MRV . X40%

CV . X20%

In Figure 6.23, we show the performance of the Levy compared to the beta

function in the ERV region when MAFs are between 0.0005 and 0.005 with OR =

3. When we reduce the OR to 2, then we can see that in the top Figure in

Figure 6.24, the Levy weight scheme still outperforms the SKAT weight scheme,

especially in the extreme region; SKAT also appears to be worse in the common

area compared to Figure 6.24.
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6.4 Levy Weight Scheme

Figure 6.23: In this Figure, we show a comparison of the Levy function and

beta-SKAT in terms of the MAF of causal variants. There are 10 causal variants

among 100 variants. The OR of the causal variants is fixed at 3, and the causal

variants are in the MAF extreme range. The non-causal variants are extremely

rare, moderately rare, and common with percentages of 60%, 30%, and 10%,

respectively.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X60%

MRV . X30%

CV . X10%
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Figure 6.24: This Figure presents a comparison of the Levy function and beta-

SKAT in terms of the MAF of causal variants. There are 10 causal variants

among 100 variants. The OR of the causal variants is fixed at 3 in the top Figure

and OR= 2 in the bottom Figure; the causal variants range between extremely

rare and common. The non-causal variants are extremely rare, moderately rare,

and common with percentages of 60%, 30%, and 10%, respectively.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X60%

MRV OR=3 [0.005-0.05] X30%

CV OR=3 [0.05-0.5] X10%

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X60%

MRV OR=2 [0.005-0.05] X30%

CV OR=2 [0.05-0.5] X10%
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6.4 Levy Weight Scheme

The beta weight scheme performs slightly better than the Levy weight under

very small effect sizes and when the causal variants happen to be between 0.01

and 0.04, but the SKAT weight scheme is worse in common regions when effect

sizes are smaller: (OR = 1.5) and (OR = 1.3) in the top and bottom of Figure

(6.25), respectively.

Finally, the Levy weight function performs better in the area of common

variants greater than MAF= 0.05. Hence, we can say that this Levy function

weighting scheme can detect association signals in all MAF regions; see Figure

(6.25).
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Figure 6.25: In this Figure, we show a comparison of the Levy function and beta-

SKAT in terms of the MAF of causal variants. There are 10 causal variants among

100 variants. The OR of causal variants is fixed at 1.5 for the top Figure and 1.3

for the bottom one, and the causal variants range between largely moderately rare

to common (0.01− 0.5). The non-causal variants are extremely rare, moderately

rare, and common with percentages of 60%, 30%, and 10%, respectively.

Causal Non-Causal

ERV . X60%

MRV OR=1.5 [0.01-0.05] X30%

CV OR=1.5 [0.05-0.5] X10%

Causal Non-Causal

ERV . X60%

MRV OR=1.3 [0.01-0.05] X30%

CV OR=1.3 [0.05-0.5] X10%
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6.5 Beta Weight Scheme

6.5 Beta Weight Scheme

In the previous weighting scheme, we saw that there is a drawback when the

data has a large percentage of moderately rare variants. The Cauchy and beta

functions(with parameters 1 and 25) have a low rate of association signal detection

when the causal variants are extremely rare and when the data contains a large

number of moderately rare variants.

If we review the Cauchy and beta weights, we see that these weighting schemes

assign large weights to the moderately rare variants, so they detect any associa-

tion in moderately rare regions with very small effect sizes. However, they dom-

inate the signal of extremely rare variants and require more attention because it

is difficult to detect the signal even with large effect sizes. Thus, by assigning

large weights to the moderately rare variants, they dominate the signal in the ex-

tremely rare range, especially if the data contains a large amount of moderately

rare variants. The moderately rare variants with a high probability of detect-

ing association signals with a reasonable effect size need sufficient weights but

not large enough that they will affect the association of extremely rare variants

(ERVs).

As stated previously, if the number of moderately rare variants is low in

comparison to ERVs, the Cauchy and Levy functions effectively detect association

signals in the extremely rare region. However, when the data contains a large

number of moderately rare variants, the distribution of MAFs (F) can be uniform.

In this scenario, we must use another weighting scheme that can address the

domination of the signal in the ERV region if the causal variant happens to be

there. This will also adequately address the detection of the association signals

in the moderately rare and common variant regions.

We propose two weighting scheme functions that perform better in the above

scenario: (1) beta with 0.5 and 1 and (2) the Burr function introduced in the

next section. The weighting scheme that we propose performs very well in the

above situation by extending the difference between the largest value (associated

with the smallest MAF, F) and the moderately rare variants, as shown in Figure

6.26. Therefore, when the data are distributed equally across all three MAF

ranges (i.e., extremely rare, moderately rare, and common) or the proportion of
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extremely rare variants is low compared to that of the moderately rare variants,

we use the beta function proposed in this section.

The function of beta with parameter 0.5 and 1;

g(F) = F(0.5−1) × (1− F)(1−1) × 1 (6.8)

We can re-write 6.8 as;

g(F) = F)(−0.5) (6.9)

Figure 6.26: The beta function with parameter 0.5 and 1 (red line) versus 1 and

25 (dashed black line). The red dashed horizontal lines are the MAF at 0.01 and

0.05, respectively. The dots indicate the weight at MAFs of 0.01 and 0.05 for

both weights.

Figure 6.27: Comparison of beta-SKAT and (F)(−0.5) weighting schemes.
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6.5 Beta Weight Scheme

Figure 6.28: Comparison of beta-SKAT and (F)(−0.5) in all MAF regions. There

are 10% causal variants with an OR fixed at 2 and 200 extremely rare, moderately

rare, and common variants with percentages of 50%, 40%, and 10%, respectively.

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X50%

MRV OR=2 [0.005-0.05] X40%

CV OR=2 [0.05-0.5] X10%

In cases where the causal variants are rare, when the number of causal ERVs

increases, the power of the proposed beta also increases.
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Figure 6.29: Comparison of beta-SKAT and (F)(−0.5) where the causal variants

are in the extremely rare variant region. There are 10% causal variants with

OR fixed at 3 and MAF fixed at 0.0005 − 0.001. There are 100 extremely rare,

moderately rare, and common variants with percentages of 50%, 40%, and 10%,

respectively. The causal variants are increased from 5 to 60 (i.e., (4%− 33%)).

Causal Non-Causal

ERV OR=2 [0.0005-0.002] Increased from 4% to 33% X50%

MRV . X40%

CV . X10%

6.30 shows the weight impact under small effect size OR = 1.5 when the

causal is moderately rare.
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6.5 Beta Weight Scheme

Figure 6.30: Comparison of beta-SKAT and (F)(−0.5) when the causal variants

are in the moderately rare variant region. There are 10% causal variants with

OR fixed at 2 in the top Figure and OR = 1.5 in the bottom one, and the MAF

varies between 0.006 and 0.5. There are 100 extremely rare, moderately rare, and

common variants with percentages of 50%, 25%, and 25%, respectively.

Causal Non-Causal

ERV . X50%

MRV OR=2 [0.006-0.05] X25%

CV OR=2 [0.05-0.5] X25%

Causal Non-Causal

ERV . X50%

MRV OR=1.5 [0.006-0.05] X25%

CV OR=1.5 [0.05-0.5] X25%
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When the data are distributed uniformly, as in, for example, Figure 6.31,

and the causal variants are in the extreme region, this weighting scheme (6.9)

outperforms other weights. Figure 6.32 shows the power of the test using this

weight when the causal variant happened to be within the boundaries of MAF

(0.0005− 0.002).

Figure 6.31: This an example of the MAF distribution (F); there are many

variants distributed along the MAF scale.
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6.6 Burr Weight Scheme

Figure 6.32: This Figure presents a comparison of our proposed beta-function,

beta-SKAT, and a Cauchy fixed weight. There are 100 variants in total. The

OR of causal variants are fixed at 3, and the MAF of causal variants are fixed at

0.0005−0.002. The non-causal variants are extremely rare, moderately rare, and

common with percentages of 33%, 33%, and 33%, respectively.

Causal Non-Causal

ERV OR=3 [0.0005-0.002] Increase from 4% to 25% X33%

MRV . X33%

CV . X33%

6.6 Burr Weight Scheme

In this section, we introduce the Burr weight scheme. The one limitation of the

beta function, introduced by Wu et al. (2011), is that it gives moderately rare

variants larger weights, which affects the signal of association in ERVs and reduces

the power of detection. The Burr function is based on up-weighting rare variants

so that the smallest MAFs (F) are given the largest weights, while the moderately

rare variants are assigned weights that can detect the signal of association and

still keep an adequate non-zero in the common ranges.
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g(F) =
0.5F0.5

F[1 + F0.5]2
(6.10)

Figure 6.33: The Burr weight versus the MAF.

The weight given to the moderately rare variants’ range is not very large

compared to the weight assigned to the same area in the beta function by Wu

et al. (2011), as we can see in Figure 6.34. Therefore, the weight given to ERVs is

larger than the weight of the moderately rare variants, so there is a large difference

between them (i.e., a small ratio).
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6.6 Burr Weight Scheme

Figure 6.34: Beta with 1,25 and the Burr function applied on data have variants

in most of the MAF range. We reduce the impact of moderately rare variants

on the signal of extremely rare variants, so the signal of moderately rare variants

can be detected.

Figure 6.35: The behaviour of the beta function and Burr weight among MAFs.

The impact of having moderately rare variants can be seen in the plot of vector

U versus MAFs with different weights using the SKAT and Burr functions.
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Figure 6.36: Comparison of U values on the score test using two weighting

schemes: beta-SKAT and Burr. The causals are indicated by red dots, while

non-causal variants are represented by black dots.

The Burr weight scheme (6.10) outperforms the beta function because the

moderately rare variants are assigned sufficient but not outsized weights; see

Figure (6.37).
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6.6 Burr Weight Scheme

Figure 6.37: The power of detecting association in the extremely rare variants

range. The analysis is conducted using data with 80% rare variants (most of

them extremely rare) and 20% common variants.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X50%

MRV . X30%

CV . X20%

The Burr weight performs well in the moderately rare and common variant

range; see Figure (6.38).
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Figure 6.38: The power of detecting the association in the moderately rare and

common variant range. The analysis is conducted using data with 80% rare

variants (most of them extremely rare) and 20% common variants.

Causal Non-Causal

ERV . X50%

MRV OR=2 [0.005-0.05] X30%

CV OR=2 [0.05-0.5] X20%

However, when the effect size is very small (OR = 1.3), the beta function is a

more effective choice with MAFs of 1% and 5%; see Figure (6.39).
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6.6 Burr Weight Scheme

Figure 6.39: The power of detecting the association in the moderately rare and

common variant range. The analysis is conducted using data with 80% rare

variants (most of them extremely rare) and 20% common variants. The black

line represents SKAT, and the red line with stars is the Burr weight.

Causal Non-Causal

ERV . X50%

MRV OR=1.5 (0.005-0.05) X30%

CV OR=1.5 (0.05-0.5) X20%

When the number of ERVs increases, the test power also increases, so tests

using this weighting scheme still outperform tests using the beta function; see

Figure (6.40).

201



Figure 6.40: The power of detecting the association in the extremely rare variant

region with MAF (0.0005− 0.002) and OR fixed at 3. The analysis is conducted

using data with 80% rare variants (50% of them extremely rare) and 20% common

variants.

The next two Figures, 6.41, and 6.42, illustrate improvements in the test power

when the data is distributed across the range of MAFs rather than clustered in

the extremely rare range. It is the reason for considering this kind of weighting

scheme.
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6.6 Burr Weight Scheme

Figure 6.41: When the data is distributed as shown in Figure 6.31 (i.e., 40%

ERV, 40% MRV, and CV 20%), and the causal variants have MAFs fixed at

0.0005−0.001 with OR=3, the X-axis is the percentage of these kinds of variants

in the data. The red line is the test using the Burr weight, the black one is the

SKAT weight, and the green line is with no weight.

Figure 6.42: When the data is distributed as depicted in Figure 6.31 (i.e., 40%

ERV, 40% MRV and CV 20%), and the causal variants have MAF 0.001− 0.004

with OR=3, the X-axis is the percentage of these kinds of variants in the data.

The red line is the test using Burr weight, the black one is the SKAT weight, and

the green line is no weight.
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6.7 Type I Errors

To evaluate type I error rates for score tests using these weights, we conduct

different simulations with varying settings. The first one uses data that contains

differing amounts of rare variants: 30%, 50%, and 80%. The second scenario

involves fixing the MAF for a specific value and conducting an evaluation of

extremely rare to common MAFs. To evaluate the type I error rate for the

proposed score test with all weight schemes included in this chapter, we conduct

simulations under the null model (logitP (yi = 1) = β0) using various settings.

First, we use data that has different proportions of rare variants: 30%, 50%,

and 80%. Second, we fix the MAFs for specific values and evaluate each one,

beginning with extremely rare MAFs and progressing to the most common ones.

We use 1000 simulated data to evaluate the type I error rate, and the results based

on significance level α = 0.05 are shown in Tables (6.2) and (6.3), which show

the tests using the weighting schemes had satisfactory Type I error rates except

when the all the variants have very low minor allele frequencies. Controlling type

I errors is a concern due to rarity; see Table 6.3.

MAF
Weight Function

30% 50% 80%

Cauchy Fixed 1 0.05 0.05 0.035

Cauchy Fixed 2 0.05 0.055 0.05

Cauchy adap. 1 0.055 0.045 0.05

Cauchy adap. 2 0.04 0.05 0.04

Levy 0.05 0.05 0.035

Beta (0.5,1) 0.045 0.05 0.045

Burr 0.05 0.06 0.05

Table 6.2: Type I error results of the first scenario. We change the percentage of

rare data with MAF [0.0005− 0.002] from 30% to 80%
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6.7 Type I Errors

MAF
Weight Function

0.0005 0.005 0.01 0.05 0.1 0.2 0.3 0.4 0.5

Cauchy Fixed 1 0.015 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05

Cauchy Fixed 2 0.01 0.035 0.04 0.045 0.05 0.05 0.05 0.05 0.06

Cauchy adap. 1 0.02 0.04 0.045 0.06 0.05 0.05 0.06 0.05 0.05

Cauchy adap. 2 0.015 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.045

Levy 0.02 0.04 0.05 0.05 0.045 0.05 0.05 0.05 0.05

Beta (0.5,1) 0.02 0.035 0.045 0.05 0.05 0.05 0.05 0.045 0.05

Burr 0.025 0.045 0.05 0.05 0.06 0.045 0.05 0.05 0.05

Table 6.3: Results of the second scenario of Type I errors. The MAF fixed at all

the SNPs in the sample are from 0.0005 to 0.5.
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Combined Weighting Schemes
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6.8 Combined Effects of Two Different Weighting Schemes

6.8 Combined Effects of Two Different Weight-

ing Schemes

Both rare and common genetic variants have been discovered due to recent

progress in sequencing technologies. Genome-wide association studies (GWASs)

can be used to test for the effect of common variants, while sequence-based asso-

ciation studies can test the cumulative effect of both rare and common variants

on disease risk. Many group-wise association tests, including burden tests and

variance-component tests, have been proposed for this purpose. Although such

tests do not exclude common variants from their evaluation, they focus mostly on

testing the effect of rare variants by up-weighting rare-variant effects and down-

weighting common-variant effects and can, therefore, lose serious power when

both rare and common variants in a region affect trait susceptibility. There is

some evidence that the allelic range of risk variants at a given locus might include

rare, novel, low-frequency, and common variants.

In this chapter, we proposed different weighting schemes that can include

most of the MAF range. However, we can improve the weighting schemes by

combining two of them. Here, we introduce a variance component score test to

evaluate the cumulative effect of two different weights that can be effective on

rare and common variants. The proposed tests are computationally efficient. We

evaluate these tests on data simulated under comprehensive scenarios and show

that when compared to different weights, they can achieve substantial increases

in power.

6.8.1 Description of the Combination Method

To test for the joint effect of two weights for variants in a genetic region, we

combine score test statistics as a weighted sum. Recall model 8.1; then, as we

defined in Chapter (4), the score statistic will be

S(γ) = UTΓΓU (6.11)

Next, we define the combined test statistics as

T (γ) = φS1(γ) + (1− φ)S2(γ) (6.12)
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where S1(γ) is the score test with the first variant’s weight, and S2(γ) is the

score test with the second variant’s weight.

Because both S1(γ) and S2(γ) follow a mixture of chi-square distributions,

the distribution of T (γ) will be

T (γ) ∼
p∑
j=1

λjχ
2
1 (6.13)

where the λ eigenvalues of Γ1X
TDXΓ1 + Γ2X

TDXΓ2 according to the theorems

4.5.1 and 4.5.3.

Since the S1(γ) and S2(γ) share the same matrix X, the combined test statis-

tics given in equation 6.12 are equivalent to score test S(γ) with the combined

weight as

w∗ = φw1 + (1− φ)w2 (6.14)

We select φ such that the two weights contribute equally to the test statistic,

so we choose φ = 0.5.

A combination of two variant weights will have the advantages of these two

weights. If the first weight performs better in the extremely rare variant region

than the moderately rare variant region, it is helpful to combine it with another

variant weight scheme that performs better in the moderate region. We illustrate

the performance of this type of combination in the next two Figures. We combine

Cauchy (fixed parameters) and beta weight schemes, which combines the benefits

of two weights, taking advantage of the Cauchy weight’s performance in the

extremely rare variant region and the beta weight’s performance in the moderately

rare variant region; see Figures (6.43, 6.44)
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6.9 Power

6.9 Power

1. Cauchy and beta-SKAT

Figure 6.43: We generate data with extremely and moderately rare variants and

common variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of

variants was fixed at 200; 7% of the variants are causal with OR = 3. We combine

beta-SKAT and Cauchy weights. The MAF of causal variants is between 0.0005

and 0.005.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X40%

MRV . X40%

CV . X20%
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Figure 6.44: We generate data with extremely rare, moderately rare, and common

variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of variants is

fixed at 200; 7% of the variants are causal with OR = 2. We combine beta-SKAT

and Cauchy weights. The MAF of causal variants is between 0.006 and 0.05.

Causal Non-Causal

ERV . X40%

MRV OR=2 [0.006-0.05] X40%

CV . X20%
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6.9 Power

Figure 6.45: We generate data with extremely rare, moderately rare, and common

variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of variants is

fixed at 200, and 7% are causal variants with OR = 1.5. We can see the combined

weight schemes outperform the Cauchy weight, and the beta weight outperforms

the combined weight scheme and Cauchy. The MAF of causal variants is between

0.01 and 0.05.

Causal Non-Causal

ERV . X40%

MRV OR=1.5 [0.01-0.05] X40%

CV . X20%
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2. Cauchy and Burr

Figure 6.46: We generate data with extremely rare, moderately rare, and common

variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of variants

is fixed at 200, and 7% of the variants are causal with OR = 3. We combine Burr

and Cauchy weight schemes. The MAF of causal variants is between 0.0005 and

0.003.

Causal Non-Causal

ERV OR=3 [0.0005-0.0025] X40%

MRV . X40%

CV . X20%
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6.9 Power

Figure 6.47: We generate data with extremely rare, moderately rare, and common

variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of is variants

fixed at 200, and 7% of the variants are causal with OR = 2. We combine Burr

and Cauchy weight schemes. The MAF of causal variants is between 0.002 and

0.01.

Causal Non-Causal

ERV . X40%

MRV OR=2 [0.0025-0.01] X40%

CV . X20%
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3. Cauchy Fixed 1,2

We introduce two functions of Cauchy that have fixed parameters (Cauchy

fixed weight schemes). Cauchy 1 is suggested for rare variants, and Cauchy

2 is suggested for the whole MAF range, but it has low detection in the rare

region, especially for extremely rare variants when compared to Cauchy 1.

Combining them will reduce the limitations of both functions as shown in

Figures (6.48, 6.49 and 6.50)

216



6.9 Power

Figure 6.48: We generate data with extremely rare, moderately rare, and common

variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of variants

is fixed at 200, and 7% of the variants are causal with OR = 3. We combine the

Cauchy fixed 1 and 2 weight schemes. The MAF of causal variants is between

0.0005 and 0.005.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X40%

MRV . X40%

CV . X20%
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Figure 6.49: We generate data with extremely rare, moderately rare, and common

variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of variants

is fixed at 200, and 7% of the variants are causal variants with OR = 2. We

combine Cauchy fixed 1 and 2 weight schemes. The MAF of causal variants is

between 0.005 and 0.05.

Causal Non-Causal

ERV . X40%

MRV OR=2 [0.006-0.05] X40%

CV . X20%
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6.9 Power

Figure 6.50: We generated data with extremely rare, moderately rare, and com-

mon variants (i.e., 40% ERV, 40% MRV, and CV 20%) where the number of

variants is fixed at 200, and 7% of the variants are causal with OR = 1.5. We

combine Cauchy fixed 1 and 2 weight schemes. The MAF of causal variants is

between 0.05 and 0.5.

Causal Non-Causal

ERV . X40%

MRV . X40%

CV OR=1.5 [0.05-0.5] X20%

6.9.1 Type I Errors

To evaluate the type I error rate for the proposed score test with all weight

schemes included in this chapter, we conduct simulations under the null

model (logitP (yi = 1) = β0) using various settings. We use data that

has different proportions of rare variants: 30%, 50%, and 80%. We conduct
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1000 simulated data to evaluate the type I error rate, and the results, based

on significance level α = 0.05, are shown in Table (6.4)

MAF [0.0005-0.002]

Weights 30% 50% 80%

Cauchy and Beta 0.04 0.05 0.05

Cauchy and Burr 0.035 0.05 0.04

Cauchy Fixed 1 and 2 0.045 0.04 0.04

Table 6.4: Type I error results for the first scenario. We change the percentage

of rare data with MAF [0.0005− 0.002] from 30% to 80%

6.10 Conclusion

Weighting schemes proposed in some studies only focus on rare variants. In

this chapter, we have studied new weighting schemes that can be used for a

continuous spectrum of MAFs. The chapter introduced two main points. It

first introduced some functions that can be used for a continuous spectrum

of MAFs. Then, it introduced the idea of combining two weighting schemes

to combine the benefits and help avoid any weakness in these functions.
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Chapter 7

Incorporating Information into

the Variant Weight

7.1 Introduction

In the previous chapters, we introduced a variant weighting scheme. The main

idea is to up-weight the rare variants while down-weighting the common variants.

Therefore, we also proposed a new variants weighting scheme which performs this

task to a degree that allows detecting the association of both rare and common

variants -continues function-. There is a concern about genotyping errors in rare

variant association due to low minor allele frequencies Daye et al. (2012). The

accuracy of association study depends on the quality of variant calling. Subopti-

mal variant calling will affect the true association, and it will reduce the power to

identify them. The threshold criteria to filter out low-quality variants is crucial

because it depends on the choice of threshold, and every removed variant is a po-

tentially missed causal variant. In this chapter, we will introduce a new weighting

scheme to accommodate new information such as sequencing information on the

variants level. This weight scheme has the same idea of up-weighting the rare

variants and down-weighting the common ones; however, the weight will not only

be a function of MAF but also a function of extra information. In previous chap-

ters, we covered a weight based on MAF (F) only g(F). In this chapter, we will

extend the weighting scheme to be a function of MAF (F) and extra information
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7. INCORPORATING INFORMATION INTO THE VARIANT
WEIGHT

q, so instead of g(F), we will extend it to be g(F, q). We will consider two dif-

ferent functions. The first one can take any weighting scheme from the previous

method and adjust the weight that is associated with any variants based on extra

information, such as quality based on the variants level. The second one is a

function that can up-weight the rare variants and down-weight the common one

and incorporate the other information -quality- in the same function using the

Burr function.

The first function would be in this form:

ω = g1(F)× g2(q) (7.1)

while the second one would be in this form:

ω = g(F, q) (7.2)

where F is the MAF, and q represents the extra information based on the

variant level. We will introduce both functions in the following sections.

This is one example of sequencing information which is a Phred quality score;

it is related to the error in the figure 7.1. Phred quality scores Q are related to

the base-calling error probabilities P via

Q = −10logP

and

P = 10−Q10
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7.2 Simulation

Figure 7.1: The Phred quality score versus the probability of error.

7.2 Simulation

We assume that there are n individuals and p genotypes. We simulate a genotype

data X to mimic the allele frequencies in a different scenario dataset which is

explained in detail in Chapter 5. Note that the number of variants used in the

simulations are fixed at 200 SNPs, unless we specified another scenario in the

caption. These SNPs are classified as 60% for ERV 30% MRV and 10% for CV.

The variant quality scores are simulated based on sampling with replacement

from real data (not filtered) by using the vcfR package in R program Knaus &

Grünwald (2017).

We simulate causal variants and assume, in most scenarios, all the causal

variants are risk variants (one direction). Therefore, we simulate causal with

risk and protective variants. We assign an identical OR for each variant and set

OR = 1 if we need to evaluate the type I error probability. The quality score

simulation has three scenarios. First, we permit all positive Phred-scaled quality

scores in the simulation. However, the causal variants’ Phred-scaled quality score
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will be restricted to values greater than 10 and refer to this filter as Q10. This

scenario is equivalent to causal variants associated with correct variant calls with

a probability of 90% or larger.

In the second scenario, variants are simulated in the usual manner such that

quality scores are not restricted to any Phred-scaled score (i.e. the correct variant

call probability can be any value—relaxed filtering of variants), and the quality

scores of causal variants follow the same distribution as those non-causal variants.

In the third scenario, variants are filtered in the usual manner such that

quality scores are restricted to Phred-scaled scores > 10 (correct variant call

probability > 90%), and the quality scores of causal variants follow the same

distribution as those non-causal ones (i.e. we remove all the data that are less than

a threshold [say Q10]). To estimate p-values, straight binomial proportions are

used. Hence, they have the same standard error as any other binomial proportion√
(p(1 − p)/n), where p here means the proportion of tests rejected and n the

number of samples. Therefore, if p = 0.05 and n = 2000, the standard error of

the observed proportion is about 0.005, and we could say the uncertainty 1%.

Figure 7.2: Example of the distribution of the observed MAFs that we use in the

simulation.
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7.2 Simulation

Figure 7.3: The distribution of the quality that is associated with the causal

variants, which has the same distribution of the original Phred-scaled quality

scores from a real VCF output call.

Figure 7.4: The Phred-scaled quality score from unfiltered data.
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Figure 7.5: The sample phred-scaled quality score from the original unfiltered

Phred-scaled quality score.

7.3 Weight Scheme I

As previously mentioned, we will incorporate new information such as sequencing

information to take part in the weighting scheme which is based on the variant

level. Since the previous weighting schemes are based only on MAF, it will

not be helpful to decide or distinguish whether this site has an accurate variant

allele. Combining and incorporating other information can help increase the

probability that the site is correct to call variants or SNPs. This weighting scheme

is designed especially for rare variants. We can incorporate extra information into

the variant’s weight using the following function. We will use the quality measure

as the extra information.

ω1 = g1(F)× g2(q) (7.3)

Then, we will assign g1(F) to be any of the variant functions as we described

in previous chapters and g2(q) to be the new information measure which ranges

between [0 : 1]. Thus, the function will be

ωj = wj(F) ∗ qbj (7.4)
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7.3 Weight Scheme I

where wj(F) is the variant weight that can be used to up-weight rare vari-

ants and down-weight common ones, and qj is any extra normalized information

normalized (i.e. its values range between 0 and 1). b is pre-specified.

ωj =

{
wj(F), b = 0

wj(F) ∗ qbj, and b > 0
where j is the index for variant j.

Figure 7.6: The weight can be adjusted using the b parameter, which will allow

for acceptable sequencing information. For example, if b = 1, we will accept

q < 0.5 to contribute large in the weight. Another way involves using b = 7 to

down-weight any variants which have q < 0.5. In this figure, we chose w = 24, as

we can see if q = 1, and then γ = 24

.

The following figures, 7.7 and 7.8, illustrate the impact of parameter b on

the test. When b increases, we are increasing the threshold of accepted level

from the quality. When the b increases, we down-weight more variants which are

associated with low quality. At this figures, the simulation was conducted based
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on the setting that the causal variants are extreme between (0.0005, 0.001). Then,

we fixed the quality for the figure 7.7 to be between (0.7, 1), and for figure 7.8,

the quality is fixed at a high level between (0.9, 1).

Figure 7.7: This figure shows the impact of b on the power. In this analysis,

there are 100 variants, and 15% of them are causal. The causal variants are

associated with high quality (0.7−1). Note that the quality of some of the causal

variants will be low so that as b increases, some of the causal variants which are

associated with low quality will be down-weighted. The horizontal and vertical

axes represents the b value and the power, respectively.

As we can see in Figure 7.8, since the quality of causal variants are large, the

impact of b is low.
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Figure 7.8: This figure shows the impact of b. In this analysis, there are 100

variants, and 15% of them are causal. The causal variants associated with high

quality (0.9− 1).
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Figure 7.9: In this figure, we show the impact of quality on the power of the test.

The first weight (Q high) considered 50% of causal variants and has high quality

(q > 0.6), and (Q random) represents the quality without specifying any values of

the causal variants that range [0, 1]; the last one was when we removed the SNPs

that are associated with low quality. The horizontal axis reflects the minimum

points of a uniform parameter from which we generate the quality. As we can

see, when the value of q = 1, it means all the SNPs have high quality, and when

q = 0.1, it means we are allowing low quality in the simulation. In this analysis,

there are 200 non-causal SNPs (variants), 10% of which are causal.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] 10% X60%

MRV . X30%

CV . X10%

In Figures 7.10 and 7.11, we show the impact of incorporating quality with

three scenarios that were illustrated in simulation section. We can see the variants

with high quality will be equal or higher than variants’ weight without including

quality information. The variant weight that we use for comparison is Burr

function, which was presented in chapter 6; however, we can choose any variant

weight. In Figure 7.10, the causal variants are in the same direction and in

different directions in Figure 7.11.
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7.3 Weight Scheme I

(a) (b)

(c)

Figure 7.10: In this figure, we illustrate the impact of incorporating a quality

score on the power of the test. We evaluate it in the three scenarios. There are

200 variants of the data including common and rare. We increase the percentage

of causal variants from 4% to 24%. The causal variant in the first figure (a) is

from the extremely rare range (0.0005−0.005) with OR = 3; the second one (b)is

from the moderately rare range (0.005 − 0.05) with OR = 2; and the last figure

(c) is from common variants ranging (0.05− 0.5) with OR = 1.5.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] in Figure A X60%

MRV OR=2 [0.005-0.05] in Figure B X30%

CV OR=1.5 [0.05-0.5] in Figure C X10%
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(a) (b)

(c)

Figure 7.11: In this figure, we illustrate the impact of incorporating a quality

score on the power of the test. We evaluate it in the three scenarios. There are

200 variants of the data including common and rare. We increase the percentage

of causal variants from 4% to 24%. The causal variant in the first figure (a) is

from the extremely rare range (0.0005− 0.005) with OR = 3 and OR = 0.33; the

second one (b) is from the moderately rare range (0.005−0.05) with OR = 2 and

OR = 0.5; and the last figure (c) is from the common variants range (0.05− 0.5)

with OR = 1.5 and OR = 0.5.

Causal Non-Causal

ERV OR=3 and 0.33 [0.0005-0.005] in Figure A X60%

MRV OR=2 and 0.5 [0.005-0.05] in Figure B X30%

CV OR=1.5 and 0.5 [0.05-0.5] in Figure C X10%
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Figure 7.12: In this figure, we illustrate the impact of associating different values

of quality with the causal variants. We compare the variants’ weight in three

scenarios to incorporate quality based on variants: 200% restrict the causal to

have a high-quality score; 50% of the causals will have high quality; and the

remainder can take very low to high quality same as 20%. Also, we compare it

with data after removing the variants which are associated with low quality (i.e.

less than q = 0.4).

7.4 Weight Scheme II (Burr Function)

In the previous weight scheme (7.3), we used separate functions, g1(F) and g2(q),

to incorporate two weight schemes which are the variants’ weight based on any

previously-described function and quality information. In this section, we can

use the Burr function as a weight function that can take into account the quality

measure or any extra information. This weighting scheme not only up-weights

the rare variants based on MAF but also takes into account quality information

based on variants or any prior sequencing.

ω2 = q s
(F/m)(s−1)

(m(1 + (F/m)s)(q+1))
(7.5)

where equation 7.5 define as Burr(F,m, s, q), F is the MAF, and q is the

extra information. m is fixed at 1 and s = 0.5; these two parameters were chosen
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to meet the following requirements: up-weight the rare variants, down-weight the

common variants, and incorporate the extra information. Since m = 1, we can

re-write the equation 7.5 with some modification:

ω2 = (q) s
(F)(s−1)

((1 + (F)s)((q)+1))
(7.6)

The impact of q will be large when the MAF is very rare, so we ensure that

the common variants associated with high quality will not dominate the signal of

association in the rare variants region. Figure 7.13 and Table 7.4 illustrate the

impact of q on the weight (7.6) under different values of MAF. In other words,

when the variants are considered to be extremely rare (which has very low MAF),

the ratio between weights with high quality and low quality is larger than if the

variants are common 7.14, which shows the impact of q value and ratio between

weights with large and low quality.

Figure 7.13: The impact of q on the weight with three values of MAF

(0.00025, 0.05, 0.5). We can see that when the data is common, the impact is

smaller than when the MAF is rare.

As we can see in Figure 7.13, rare variants with low quality has lower weight

than common variants with low quality. In other hand, rare variants with high

quality has larger weight than common variants with high quality and this is the
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other benefit from this weighting scheme and the reason to consider this weighting

scheme.

MAF 0.0005 0.005 0.05 0.4

q = 1 21 6 1.4 0.29

q = 0.5 15 5 1.1 0.26

q = 0.01 2 0.7 0.2 0.06

Table 7.1: The different values that will be associated with the variants based on

MAF and q.

Figure 7.14: The impact of MAF on the weight in terms of the ratio between

weights with large and low quality (Burr weight relative to q = 1). Relative ratio

= Burr wight with q= (0-1]
Burr wight with q= 1

, and the last points in all of the scenarios equal 1 (lines

end up with 1) since all of them equal to = Burr wight with q= 1
Burr wight with q= 1

. We can see that

when the data is common, the impact is smaller than when the MAF is rare. The

x-axis is the value of q, and the y-axis is the Burr weight relative to q = 1; the

final point equals 1.

This weighting scheme (7.6) takes into the account the quality on the variants’

level. Figure 7.15 shows the impact of quality call on the power of the test; when
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the quality is high the, power increases and decreases when the quality is low.

The low quality decreases the power more when the variants are extremely rare.
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(a) (b)

(c)

Figure 7.15: In this figure, we fixed the causal variants to be in the extreme range,

which will be less than 0.005 in (a), moderate rare in (b), and common variants

in (c). Then, we express the impact of q on the power to detect the signal. There

are 200 variants containing rare and common variants and, and 10% of them are

causal variants with OR = 3 in (a), OR = 2 in (b), and OR = 1.5 in (c). Thus,

we vary the quality from 0.1 to 1.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] in Figure A X60%

MRV OR=2 [0.005-0.05] in Figure B X30%

CV OR=1.5 [0.05-0.5] in Figure C X10%
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Therefore, we can see the impact of q based on the MAF of the causal variants.

Low quality will affect the power when the causal variant is extremely rare, which

is acceptable because our concern is in the extreme range of MAF. We can say

that as the MAF increases, the impact of q decreases (see Figure 7.15). In Figure

7.16, we show a comparison of the Burr weight with high quality and with low

quality. Since the impact of q is large in extremely rare variants, we show in

Figure 7.17the comparison of three scenarios which are presented in the simulation

section where the MAF of causals are in extremely rare variants as in Figure 7.17

(a), moderately rare variants in (b), and common variants in (c).

Figure 7.16: The impact of q when the MAF of the causal variants gets larger

from extremely rare to common variants, fixing the OR=2 at all the type of

variants. The black line is the result with q = 1, and the red line is the result

with low quality fixed at q = 0.5. Thus, we compare the result of the test using

high quality and low quality in term of MAF of causal variants.

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X60%

MRV OR=2 [0.005-0.05] X30%

CV OR=2 [0.05-0.5] X10%
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(a) (b)

(c)

Figure 7.17: The causal variants are fixed to be extremely rare variants (0.0005−
0.002) with odds ratio 3. The data has a 60% range between 0.0005− 0.005 and

30% moderately rare variants and 10% common variants. The three simulation

scenarios are presented in this figure. (Q high) means all the causal variants

have high quality, while (Q high 50%) means 50% have high quality. (Q random)

means the causal variants have the same distribution as the non-causal variants.

Causal Non-Causal

ERV OR=3 [0.0005-0.002] in Figure A X60%

MRV OR=2 [0.005-0.05] in Figure B X30%

CV OR=1.5 [0.05-0.5] in Figure C X10%
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The result above is applicable to any MAF of a causal. The quality not only

helps detect a true association but also improves the detection of the signal of

association when effect sizes are small. Figure 7.18 shows the impact of incorpo-

rating the quality under the three scenarios when we change the MAF of causal

from extremely rare to moderate and common variants.

Figure 7.18: The causal variants are 10% and their MAFs vary from extremely

rare variants to common with odd ratio fixed at 2. The data has 60% range

between 0.0005 − 0.005 and 30% moderately rare variants and 10% common

variants . The three simulation scenarios are presented in this figure. (Q high)

means all the causal variants have high quality while (Q random) means the

causal have the same distribution as the non-causal have.

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X60%

MRV OR=2 [0.005-0.05] X30%

CV OR=2 [0.05-0.5] X10%
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Figure 7.19: In this figure, we illustrate the impact of associating different values

of quality to the causal variants. We compare the variants’ weight in three scenar-

ios to incorporate quality based on variants as follows: 200% restrict the causals

to have a high-quality score, and 50% of the causals will have high quality, while

the remaining causals can take very low to high quality same as 20%. Also, we

compare it with the data after removing the variants which are associated with

low quality (i.e. less than q = 0.4).

Type I Error

Based on the above simulation, we generate data in no genetic effects by fixing

the OR = 1 for causal variants. We split the data into two sets; the first one

has a MAF between 0.0005–0.02, and we have data which is rarer and have MAF

between 0.0005–0.002 for the other percentage of the data. Then, we will vary the

percentage of the first data set which considered rare but not very low frequency.
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MAF (0.0005,0.01)

Tests 2% 20% 30% 40% 50%

High Quality 0.05 0.05 0.04 0.06 0.05

Random Quality 0.05 0.05 0.05 0.05 0.05

Filtering Low quality 0.05 0.04 0.04 0.06 0.05

Burr Function as variant weight (q=1) 0.05 0.04 0.04 0.05 0.04

Table 7.2: Type I error for the score test using the Burr function in different

scenarios.

7.5 Conclusion

In this chapter, we introduced a new weighting scheme that can incorporate se-

quencing information based on variant j. The weighting scheme in this chapter

not only incorporates sequencing information on the variant level but can also

up-weight the rare variants and down-weight common variants. We use differ-

ent simulation settings to show the impact of including the Phred-quality score

measure of variant call (QUAL) in the test, which will help keep information and

avoid removing information based on a pre-specified threshold such as thresholds

that we apply to filter out the genotype with low quality.

As we can see in the results of the simulation, the variant weight which is

based on the SKAT weight is dropped in when the causal variants are in the

common region, while using the Burr function with its specified parameters will

help detect the causal variants even in common regions, especially when the

effect size is large. The simulation can be improved in future work so that we can

simulate the distribution of errors.
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Chapter 8

Score Test with Individual

Weights

8.1 Introduction

Using next-generation sequencing technologies, it is now possible to efficiently

sequence individuals at a sufficient depth of coverage to determine rare variants.

Nevertheless, each sequencing platform has characteristic error profiles, and sam-

ple collection, target amplification, and library preparation are additional pro-

cesses whereby errors are introduced and propagated. Many studies account for

these errors by using ad hoc quality thresholds McCrone & Lauring (2016).

Next-generation sequencing studies have a significant number of systematic

artifacts that lead to sequencing errors. Therefore, because rare variants are, by

definition, seen infrequently, it is difficult to distinguish between errors and real

variants (Johnston et al., 2015). Few researchers have addressed this problem.

The remedy seen in different sequencing methods uses an ad hoc method

based on a threshold quality control (QC) procedure to reduce the error rate in

variant calls; for example, Phred scores are filtered when Q < 20 or 30 as part

of the quality control process. However, choosing the threshold is important,

and it introduces some problems. A high threshold will lead to losing important

information and remove correctly called variants. Conversely, a large number of

incorrectly called variants will remain if the threshold is too low. Incorporating
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more information related to the sequencing or quality in the score test is a new

weighting scheme that will help up-weight high-quality variants.

In this chapter, we propose a new weighting scheme for use in rare variant

association studies. Since these studies have not previously dealt with incorporat-

ing individual-level weighting schemes, the weighting scheme is a novel approach.

All the weighting schemes considered in the literature are based on up-weighting

rare variants to contribute more to the test relative to common variants. Thus,

research has tended to focus on weighting schemes based on variants rather than

individual-level weights. We incorporate individual and variant weights to have

the benefit of down-weighting common variants since only using an individual

weight will result in common variants dominating the results, which is demon-

strated in the first section of this chapter.

This chapter is organised as follows. First, we derive the score test by incorpo-

rating the individual weighting scheme. Next, we demonstrate the limitations of

only using the individual weight and how these are resolved when we incorporate

both an individual and a variant weighting scheme. Finally, 8.2 introduces the

novel individual-variant weighting scheme.

8.1.1 Derive The Score Test with Individual Weight and

Its Distribution

Consider the model;

logit
{
P (yi = 1)

}
= β0 + xTi β i = 1, . . . , n (8.1)

Where y is n × 1 vector of response 0 and 1, and xTi is n × 1 rows of genotype

matrix xTi = (xi1, . . . , xip).

To derive the score test based on the individual weight, we derive the score

test from the log likelihood of model 8.1. Let ψ = (ψ1, . . . , ψn) represent a n× 1

vector of weight and Ψ represent an n × n diagonal matrix; its elements are ψ.

The standard likelihood function is given by

L(β | yi) =
n∏
i=1

µyii (1− µi)1−yi (8.2)
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where

µi =
eβ0+

∑p
j=1 xijβj

1 + eβ0+
∑p
j=1 xijβj

. (8.3)

Next, we introduce the individual-level weight. Let ψi be the weight for

individual i, where i = (1, . . . , n). In this case, the individual likelihood becomes

L(β | y) =
n∏
i=1

[µyii (1− µi)1−yi ]ψi . (8.4)

It is more convenient to work with a log-likelihood.

`(β | y) =
n∑
i=1

ψi[yi log µi + (1− yi) log(1− µi)]

=
n∑
i=1

[
ψiyi

(
log

µi
(1− µi)

)
+ ψi log(1− µi)

]
.

(8.5)

The substitution for µi can be written as

`(β | yi) =
n∑
i=1

{
ψiyi

(
β0 +

p∑
j=1

xijβj

)
+ ψi log

(
1− eβ0+

∑p
j=1 xijβj

1 + eβ0+
∑p
j=1 xijβj

)}
(8.6)

To find the critical points of the log-likelihood function, we differentiate with

respect to each βj.

∂`(β | y)

∂βj
=

n∑
i=1

ψiyixij + ψi
∂

∂βj
log

[
1 + eβ0+

∑p
j=1 xijβj

1 + eβ0+
∑p
j=1 xijβj

− eβ0+
∑p
j=1 xijβj

1 + eβ0+
∑p
j=1 xijβj

]

=
n∑
i=1

ψiyixij − ψi
eβ0+

∑p
j=1 xijβj

1 + eβ0+
∑p
j=1 xijβj

∂

∂βj

(
β0 +

p∑
j=1

xijβj

)
(8.7)

Given that ∂
∂βj

(
β0 +

∑p
j=1 xijβj

)
= xij, Equation (8.7) simplifies to

n∑
i=1

ψiyixij −
eβ0+

∑p
j=1 xijβj

1 + eβ0+
∑p
j=1 xijβj

xijψi. (8.8)

Using equation (8.3), (8.8) will be

∂`(β | y)

∂βj
=

n∑
i=1

ψiyixij − µixijψi (8.9)
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We can simplify it as follows:

∂`(β | y)

∂βj
=

n∑
i=1

ψixij(yi − µi) j = 1, . . . , p

which can be written in a matrix form

∂`(β | y)

∂βj
= XTΨ(y − µ). (8.10)

Let U(ψ) = XTΨ(y−µ), and its covariance-variance is the fisher information

(minus the second derivative of the likelihood) V (ψ) = XTΨTDΨX where Ψ is

the weight diagonal matrix n × n, and D is a diagonal matrix with elements

µi(1− µi).
If we assume the score function follows a normal distribution as in Pawitan

(2001),

XTΨ(y − µ) ∼ N(0, XTΨTDΨX)

then

(XTΨTDΨX)−1/2XTΨ(y − µ) ∼ N(0, Ip)

Since the left part is equal to UV 1/2, and we need to prove that the square of

it follows a chi-square distribution with p degree of freedom, we will work on the

left side of the equation above and square them.

{
(XTΨTDΨX)−1/2(XTΨ(y − µ))

}T{
(XTΨTDΨX)−1/2(XTΨ(y − µ))

}
Then;{

[XTΨ(y − µ)]T [XTΨTDΨX]−1/2T
}{

[XTΨTDΨX]−1/2[XTΨ(y − µ)]

}
We can say

[XTΨTDΨX]−1/2 × [XTΨTDΨX]−1/2 = [XTΨTDΨX]−1, if [XTΨTDΨX]−1 is

symmetric . Because Ψ is a diagonal matrix, it is symmetrical. D is also a

diagonal matrix and symmetrical, and ΨTDΨ is diagonal since it is just a multi-

plication of diagonal matrices, so it is symmetrical. Any matrix multiplied by its

transpose is symmetrical XTX. Then we can say that this part XTΨTDΨX is
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symmetrical. Since this part [XTΨTDΨX]−1/2T is symmetrical, we can say these

two parts [XTΨTDΨX]−1/2[XTΨTDΨX]−1/2 are equal to [XTΨTDΨX]−1.

(y − µ)TΨTX(XTΨTDΨX)−1XTΨ(y − µ) ∼ χ2
p

which can be written as

UT (ψ)V (ψ)−1U(ψ) ∼ χ2
p (8.11)

Hence, the test in equation 8.11 will follow a χ2
p with p degrees of freedom.

This form of test can be written in another form when we treat β as a random

effect, which is discussed in Chapter 4.

Recall that U ∼ N(0, V ); we know that from a previous chapter that U =

XT (y − µ) and V = XTDX where D is a diagonal matrix with elements µi ×
(1 − µi). By including an individual weight, U(ψ) = XTΨ(y − µ) and V (ψ) =

XTΨDΨX. From the normal distribution properties and the theorem in Chapter

4, we can construct the test based on an individual weight as follows:

S(ψ) = U(ψ)TU(ψ) (8.12)

Which will be equivalent in form to the variance component test (y−µ)TΨXΨTDΨXΨ(y−
µ). Using theorems 4.5.1 and 4.5.2, the distribution of the S(ψ) is a mixture of

χ2 as

S(ψ) ∼
p∑
j=1

λjχ
2
1 (8.13)

where the χ2 variate is distributed independently of every other variate, and the

λ’s are the p real non-zero latent roots of the matrix V (ψ).

8.1.2 Individual Weighting Scheme

In variant weights, the weight is usually a function of the MAF, which can be used

to up-weight rare variants and down-weight common ones. To incorporate the

individual weighting scheme, we will build this weighting scheme using a function

that can relate high quality to individuals who have extremely rare variants. The

individual weight is not associated with parameters (variants); it is associated
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with individuals. Consequently, we need to identify individuals who have one or

more rare variants among p positions. In this weight, we will take into account

the weight of all the positions for i individuals. Therefore, we are interested in

external information based on individuals or will take a marginal weight based

on external information, for example, quality data, via a matrix n× p. Because

the individual weight will contribute to the test statistics, choosing a weighting

scheme or function to meet the following conditions is critical. The individual

weight is associated with all individuals, and then a weight function is applied

that up-weights individuals who have extremely rare variants. We also use a

threshold to identify the extremely rare variants and up-weight these individuals.

The weight function has to set a threshold between rare and extremely rare

variants. We choose the threshold in this function 1/2
√

2n since it can be the

threshold between large minor allele frequency or moderately rare variants and

extremely rare variants; if we have 2000 individuals, the threshold will be 0.007

so that any individual with an extremely rare variant will be up-weighted using

a beta function with parameters 2, and 1. Based on these conditions, we use

intensive simulations that evaluate type I errors and power of test, as well as the

signal of causality at different MAFs to arrive at the following function:

ψi =

{
wi

2(υ−1)Γ(υ+1))
Γ(υ))

if
∑p

j=1 xij < 1/2
√

2n, i = (1, . . . , n)

wi otherwise

where υ = 2 and wi is the quality based on individuals; its values are between

0 and 1. It can be expressed as the row sums of genotype quality. If the quality

equals 1, then the individual who has extremely rare variants will be associated

with the weight equal to 2, which is the result of a beta function with parame-

ters (2, 1), and the other individuals will have only the quality weight, which is

between (0, 1).

The value υ associated with the individual who has extremely rare variants

will not change the power when we increase it from 2 to a larger number because

the contribution to the test using this weight will be the same. However, there

will be an effect when the causal is in the moderately rare variant region. Hence,

to minimise this cost while benefitting from the individual weight, we will use the
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value υ = 2. Figure 8.1 shows the difference in power with different values of υ

(up-weighting value). This component expresses the threshold that can be used

to express extremely rare variants.

Figure 8.1: In this figure, we show the impact of increasing the value associated

with individuals who have one or more extremely rare variants. The causal vari-

ants are extreme 0.0005− 0.001, and the individuals who have these variants are

up-weighted.

8.1.3 Simulation

We evaluate type I errors and the power of the proposed score tests with different

weights as discussed previously in the context of multi-locus association analysis

with a different number of SNPs. To obtain a genotype matrix X, we follow the

same simulation setting explained in section (1) of Chapter 5.

In most scenarios, we generate 100 variants. Each dataset will contain three

types of variants (i.e., extremely rare, moderately rare, and common). The

amount of each type of variant will vary depending on the context. In this

chapter, we generate 100 variants with different MAFs, which are presented in

Table 8.1. Each dataset contains extremely rare, moderately rare, and common

variants (40%, 40%, and 20%, respectively).
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Variants Type MAF (n=2000)

Extreme Rare Variants [0.0005 - 0.005]

Moderate Rare Variants [0.005 - 0.01]

Large Moderate Rare Variants [0.01 - 0.05]

Common Variants [0.05 - 0.5]

Table 8.1: The complete set of types of variants in the simulated data.

For the individual weight, we simulate a quality based on an individual using

a beta distribution with two different scenarios of the parameter: (0.5, 0.2) to

include low, moderate, and high quality and (1, 0.03) for high quality in most of

the individuals. The second scenario mimics the distribution of genotype quality

from real data in VCF output, which is explained in Chapter 2, and mimic the

distribution of genotype quality in Patel et al. (2014). In some scenarios, we

specify high quality for individuals who have extremely rare variants.

To incorporate individual-level information as a weight, we have three scenar-

ios to simulate. Based on the individual weighting scheme explained in section

8.1.2, the simulation will be separated into two parts, first using an individual

who has extremely rare variants (ERV) and then using an individual who does

not. The simulation setting is based on two pieces of information associated with

each individual, which is the simulated quality and read depth based on each

genotype sampled from real data.

First, we simulate a quality based on individuals using a beta distribution

with two different scenarios of parameters. Scenario (A) is beta with (0.5, 0.2) to

allow the inclusion of low, moderate, and high quality. Scenario (B)is beta with

(1, 0.03) for high quality in most of the individuals. The details are shown in

Table (8.2). In the third scenario, we sample the read depth from real data, the

TYR gene, which was introduced in Chapter 2. The read depth distribution from

23 individuals at 40, 727 positions is shown in Figure (8.2). Then, we sum up the

rows of the read depth matrix and use it for the simulation after normalization.

The power when using a read depth simulation will be discussed in section (8.2).

To estimate p-values, straight binomial proportions are used. Hence, they

have the same standard error as any other binomial proportion
√

(p(1 − p)/n),

where p means the proportion of tests rejected and n the number of samples.
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Therefore, if p = 0.05 and n = 2000, the standard error of the observed proportion

is about 0.005, and we could say the uncertainty is 1%.

Figure 8.2: The histogram of read depth values at each genotype in Figure A and

after we sum up all read depth at each individual and normalised them, which is

shown in Figure B.
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Weight
Scenario

Individual without ERV Individual with ERV

A1 beta(0.5,0.2)
A

A2
beta(0.5,0.2)

beta(1,0.03)

B1 beta(1,0.03)
B

B2
beta(1,0.03)

beta(0.5,0.2)

C1 Read Depth (Real Data)

C2 Unif(0.8,1)C

C3

Read Depth (Real Data)

Unif(0.2,0.5)

Table 8.2: The three scenarios that we use in this chapter to simulate the indi-

viduals’ information.

8.1.4 Type I Errors

To test for type I errors, we first generate datasets under the null model (logit[P (Yi =

1)] = β0) . We use two settings to test for type I errors. First, we fix the MAF

at each variant. We consider all MAF values, starting from the boundary of the

MAF, which is 1/n, to the MAF of common variants, which is 0.5; see Figure

(8.3). Second, we generate X via the scenario described above so that the data

have different types of variants (extremely rare, moderately rare, and common

variants), we randomly generate extremely rare variants ranging from the bound-

ary of MAF to MAF = 0.005, moderately rare variants between 0.005 − 0.05,

and common variants ranging between 0.01 to 0.5. We conduct 1000 simulated

datasets; the genotypes are randomly generated for every single simulation. Since

the common range controls type I errors because of a large MAF, and we sep-

arated the data into two parts: (1) moderately rare and common variants and

(2) extremely rare variants. Then, we increase the extremely rare variants in the

data from 6% to 50% while we decrease the first part using the same percentage;

see Table (8.3).

Generating the individual weight for type I error is randomly chosen using

beta a distribution with parameters 0.09 and 0.03 so that all the individuals will

be associated with a value from 0 to 1. For both scenarios, we estimate the type

I error rate as the proportion of p-values less than the nominal level α = 0.05.
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We can see type I errors are controlled at level 0.05 for both scenarios. However,

for extremely rare variants, controlling type I errors is a concern.

Figure 8.3: Type I error in the individual weight test S(ψ)

MAF [0.0005,0.005]

Tests 6% 10% 20% 30% 40% 50%

S(γ) 0.05 0.05 0.04 0.06 0.05 0.045

S(ψ) 0.04 0.035 0.04 0.05 0.04 0.04

Table 8.3: Type I error for test with the variant weight (S(γ)), and the individual

weight (S(ψ)).

8.1.5 Power

To evaluate the power with the individual weight, we use three types of variants

in the simulation based on a given MAF: non-causal rare variants, causal rare

variants, and non-causal common variants, which will be excluded only in the

individual weighting scheme.
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First, we generate a genotype matrix as explained above (simulation 1). Then,

we set the OR = 3 for extremely rare causal variants, which is appropriate for

the detection of extremely rare variants and set OR = 2 for causal moderately

rare variants. For non-causal variants, we generate non-causal variants with no

effect (OR = 1) at different MAFs. In the individual weight only, we exclude

common variants since they will dominate the power.

To include the individual weight, we randomly generate it three ways: (1) use

the row sum of a genotype matrix from real data (we use the TYR gene’s quality

matrix, (2) base it on a uniform distribution with parameter 0 and 1, and (3)

base it on a beta distribution with parameters 1 and 0.03. Next, we apply the

individual weight function, which is assigned the weight after applying the beta

function with parameters 2 and 1 as a weight to any individual who has rare

variants (the individual can be one case or a control group).
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Figure 8.4: Evaluate the power of score test with the individual weight applied.

This is the result of scenario A2. All individual quality levels follow a beta with

parameters (0.5, 0.2), and the quality for an individual who has extremely rare

variants are associated with high quality and follow the beta distribution with

parameters (1, 0.03) to allow high quality in these individuals. Only extremely

and moderately rare variants are included in this analysis. The horizontal axis

represents the MAF of causal variants, which is between (0.0005− 0.005) and in

the extremely rare variant range (ERV).
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Figure 8.5: Evaluate the power of score test with the individual weight applied.

This is the result of scenario A1. All individual quality levels follow beta with

parameters (0.5, 0.2), and the quality for an individual who has extremely rare

variants are associated with quality levels following the beta distribution with

parameters (1, 0.03) to allow high quality in these individuals. Only extremely

and moderately rare variants are included in this analysis. The horizontal axis

represents the MAF of causal variants, which is between (0.0005− 0.005) and in

the extremely rare variant range (ERV).
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Figure 8.6: Evaluate the power of score test with the individual weight applied.

This is the result of scenario A2. All individual quality levels follow beta with

parameters (0.5, 0.2), and the quality for an individual who has extremely rare

variants is associated with quality following the beta distribution with param-

eters (1, 0.03) to allow high quality in these individuals. We also specify that

an individual with a causal variant has quality between (0.8, 1). Only extremely

and moderately rare variants are included in this analysis. The horizontal axis

represents the MAF of causal variants, which is between (0.0005− 0.005) and in

the extremely rare variant range (ERV).
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Figure 8.7: Evaluate the power of score test with the individual weight applied.

This is the result of scenario A2. All individual quality levels follow beta with

parameters (0.5, 0.2), and the quality for an individual who has extremely rare

variants is associated with quality following the beta distribution with parameters

(1, 0.03) to allow high quality in these individuals. Only extremely and moder-

ately rare variants are included in this analysis. The horizontal axis represents

the MAF of causal variants, which is between (0.005−0.05) and in the moderately

rare variant range (MRV).

8.1.6 Discussion

The test can control type I errors at different MAFs except in the case of extreme

rarity (i.e., the boundary of MAF, such as 0.0005 when the n = 2000). In

the second simulation, when we generate the genotype randomly and use the

individual weight, we find that type I errors are controlled at a nominal level,

0.05. However, when the data has extremely rare variants such that 0.0005 when

n = 2000, then we have a conservativeness issue for the type I error. Thus, the
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estimated type I error rates for these two approaches is the same.

The simulation shows that the power can be increased if the individuals’ rare

variants are casual, which already have a high weight. One major drawback

of this approach is that using an individual weight alone will not help down-

weight common variants, so the signal of association in rare variants will be

lowered. Data with large MAFs will contribute significantly to the test and

dominate the signal from the rare region. Therefore, for a better result, the

common variants should be excluded from the data or individual and variant

weighting schemes should both be applied, which is discussed in the next section

where we incorporate variant and individual weights into the score test.

8.2 Variants and Individuals Weight.

8.2.1 Introduction

The benefit of incorporating an individual weight into the test is that extremely

rare variants can be identified more confidently. However, including common

variants in the test will decrease the power. We can resolve this issue by incorpo-

rating variant and individual weights into the score test. By including the variant

weight, we down-weight the common variants with a high probability of detecting

signals of association in the common variants region yet retain the benefits gained

from the individual weight.

8.2.2 Derive the Test with Variant and Individual Weights.

Recall that U ∼ N(0, V ). When we multiply the variant weight Γ on U, then we

have

ΓU ∼ N(0,ΓV ΓT ) (8.14)

Take the quadratic form of the test

UTΓTΓU ∼
∑
j

λjχ
2
1 (8.15)
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Considering the individual weight Ψ, the test statistic’s components (score and

covariance-variance matrix) are

U(ψ) = XTΨ(y − µ) (8.16)

V (ψ) = XTΨDΨX

Then, combining equations 8.14 and 8.15 with the equation 8.16 result in the

following test;

ΓU(ψ) ∼ N(0,ΓV (ψ)ΓT ) (8.17)

So, the distribution of this test is a mixed chi-square;

U(ψ)TΓTΓU(ψ) ∼
∑
j

λjχ
2
1

Where λj is the eigenvalues of ΓV (ψ)ΓT .

8.2.3 Type I Errors and Power

To test for type I errors, we follow the same simulation settings as for the indi-

vidual weight. The results, which are shown in Figure (8.8) and in Table (8.4),

these weighting schemes have satisfactory Type I error rates except when all the

variants have very a low minor allele frequency.
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Figure 8.8: Type I error rates for variant and individual weights S(γψ).

MAF [0.0005,0.005]

Tests 6% 10% 20% 30% 40% 40%

S(γ) 0.05 0.05 0.04 0.06 0.05 0.04

S(ψ) 0.04 0.035 0.04 0.05 0.04 0.035

S(γψ) 0.05 0.04 0.04 0.06 0.05 0.05

Table 8.4: Type I error for S(γ), S(ψ), S(γψ) score test with a variant weight,

individual weight, and combined variant and individual weight, respectively.

To evaluate the power, we generate a genotype matrix as explained above in

section 8.1.3 and set OR = 3, which is appropriate for the detection of very rare

variants. We use three types of variants in the simulation based on a given MAF,

which are extremely rare, moderately rare, and common variants; all of them

can be causal or non-causal. We also follow same individual weight simulation

discussed in the previous section.

Assuming all individuals have a large weight will boost the power of test when

the causal happens to be an extremely rare variant (ERV); see Figures (8.9,8.10).
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Figure 8.9: This figure shows the individual weight’ impact on the power when the

causal is in the extremely rare region. We generate 100 extremely rare, moderately

rare, and common variants. We fix the percentage of causals at 10% and vary

the MAF of causal variants from 0.0005 to 0.0035. We generate the individual

weight from beta with 1 and 0.03 as parameters. We generate the individual high

weight that is associated with the extremely rare region (MAF < 0.007) from

beta with 1 and 0.03.

262



8.2 Variants and Individuals Weight.

Figure 8.10: We generate 100 extremely rare, moderately rare, and common

variants. We fix the percentage of causals at 10% and vary the MAF of causal

variants from 0.0005 to 0.005. We generate the individual weight from beta with 1

and 0.03 as parameters. We generate the individual high weight that is associated

with the extremely region (MAF < 0.007) from beta with 1 and 0.03.

In Figures 8.11, 8.12, and 8.13, we compare tests with low and high weights

for individuals according to the previously explained scenarios. In Figure 8.11,

individual quality is simulated according to scenario A1 and A2; A1 means the

quality of individuals is simulated using beta with parameters 0.2 and 0.5, which

allows some individuals to have low quality and most to have high quality. How-

ever, in scenario A2, the quality of individuals who have extremely rare variants

is simulated from beta with parameters 1 and 0.03, which allows most of the

specified individuals to have high quality. In Figure 8.12, the quality for all in-

dividuals will be simulated from beta with parameters 1 and 0.03 (scenario B1),

although in B2, an individual with an ERV will have quality simulated from beta

with parameters 0.2 and 0.5.
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Figure 8.11: We generate the individual weight from beta with 0.5 and 0.2

as parameters. We generate the individual weight is that associated with the

extreme region (MAF < 0.007) from beta with 0.5 and 0.2 (scenario A1), which

is the same distribution used for other individuals, or from beta with 1 and 0.03

(scenario A2). We generate 100 extremely rare, moderately rare, and common

variants. For the top figure, we fix the percentage of causals at 10% with OR = 3

and vary the MAF of causal variants from 0.0005 to 0.005, and for the bottom

one, we fix the percentage of causals at 5% with OR = 2 and vary the MAF of

causal variants from 0.007 to 0.05.
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Figure 8.12: We generate the individual weight from beta with 1 and 0.03 as

parameters. We generate the individual weight that is associated with extreme

region (MAF < 0.007) from beta with 1 and 0.03 (scenario B1), which is the same

distribution used for other individuals, or from beta with 0.5 and 0.2 (scenario

B2). We generate 100 extremely rare, moderately rare, and common variants.

For the top figure, we fix the percentage of causals at 10% with OR = 3 and

vary the MAF of causal variants from 0.0005 to 0.005, and for the bottom one,

we fix the percentage of causals at 5% with OR = 2 and vary the MAF of causal

variants from 0.007 to 0.05.

265



8. SCORE TEST WITH INDIVIDUAL WEIGHTS

In Figure 8.13, we use the read depth from real data. We study the impact

of having a low read depth on the individuals who have ERVs at one or more

positions (scenario C3) and compare the power with individuals who have high

read depth values (scenario C2). In Figure 8.14, we show an increased percentage

of causal variants when the causal occurs in ERV under the scenarios C1− C3.
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Figure 8.13: We sample the individual weight from a real read depth. We generate

the individual weight that is associated with the extreme range (MAF < 0.007)

from the same distribution of read depths (sampled from real read depth) (sce-

nario C1) or from a uniform distribution with parameters (0.8, 1) (scenario C2).

For scenario C3, we generate the weight for individuals who are associated with

extremely rare variants from a uniform distribution (0.2, 0.5) . We generate 100

extremely rare, moderately rare, and common variants. For the top figure, we

fix the percentage of causals at 10% with OR = 3 and vary the MAF of causal

variants from 0.0005 to 0.005, and for the bottom one, we fix the percentage of

causals at 5% with OR = 2 and vary the MAF of causal variants from 0.007 to

0.05.
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Figure 8.14: We sample the individual weight from a real read depth. We generate

the individual weight that is associated with the extreme range (MAF < 0.007)

from the same distribution of read depths (sampled from real read depth) (sce-

nario C1) or from a uniform distribution with parameters (0.8, 1) (scenario C2).

For scenario C3, we generate the weight for individuals who are associated with

extremely rare variants from a uniform distribution (0.2, 0.5) . We generated 100

extremely rare, moderately rare, and common variants. We fix the MAF of causal

variants to be in the ERV range 0.0005− 0.0025 and vary the percentage of them

from 7% to 27%.

8.2.4 Conclusion

The test controls type I errors; however, there is concern regarding its very low-

frequency control. Incorporating individual-level information in the association

study is a new weighting scheme that can help up-weight true causal variants.

The test is becoming more powerful, and it outperforms the SKAT-weight when

causals are in the extremely rare variant range, and individuals with these variants

also have high quality. We conclude that the individual weight based on up-

weighting individuals that have extremely rare variants will increase the power

and reduce the type I error rate to a nominal level. This is the first study to

investigate an individual weighting scheme. However, further research should be
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undertaken to explore which functions or information can be used in individual

weighting schemes.
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Chapter 9

Score Test with Cell Weight

9.1 Introduction

Rare variants are statistically challenging due to limited sampling and possible

sequencing errors for low-frequency alleles, producing spurious singletons. The

inflated singleton count seriously affects statistical analysis and inference in asso-

ciation studies. Genotyping errors commonly occur and could reduce the power

and bias of statistical inference in genetics studies. In addition to genotypes,

some automated biotechnologies also provide a quality measurement of each in-

dividual genotype (GQ-genotype quality) and provide quality for variant calls.

These kinds of measurements can be found in the different outputs of variant

calls such as VCF output.

A genotype quality score can serve as a good measurement of genotyping

accuracy. It cannot tell us whether the genotype call is correct, but as we defined

genotype quality in Chapter 2, it gives an estimate of the likelihood of error. We

will use genotype quality (GQ) scores rather than simple quality (QUAL) scores,

which were introduced in chapter 7. The QUAL scores in VCF output reflect the

SNP caller’s estimate of how likely there is to be a polymorphism at a given site,

while GQ scores are an estimate of how likely the called genotype is to be correct.

Since error rates also correlate with the minor allele frequencies of SNPs,

with rare or novel variants much harder to call correctly than common ones

Wall et al. (2014), it is important to incorporate such quality information in the

weighting scheme. Furthermore, we develop here a weight at individual i and
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variant j; we call this weighting scheme a cell weight since it is based on the

matrix cell. This is the first time we incorporate a quality measure based on the

cell weighting scheme. In chapters 5 and 6, we only weighted the variants based

on MAF with different functions (i.e. up-weight rare variants and down-weight

the common ones), and we extended it in Chapter 7 to include and incorporate

other information based on variant quality. Then, in Chapter 8, we introduced

joint weight (i.e. individual and variants’ weight). In this Chapter, we will

consider the use of quality information based on genotype. The idea behind the

new weighting scheme as the novel scheme is that we account for both MAF

and individual genotyping quality. The difference between cell weighting and the

other weighting scheme is that variant weight is based only on up-weighting rare

variants and down-weighting common ones, and in chapter 7 in addition to the

up-weighting and down-weighting scenario, we incorporated external information

based on variant quality. We can say that all the weight schemes in Chapters 5, 6,

and 7 are based only on the variant level, so the information in the genotype cell

is not taken into account. In this chapter, we account for the information based

on the cell level. This information can be any information, such as read depth or

genotype quality.

9.2 Model and Test

Recall the logistic model;

logitP (yi = 1) = β0 + xTi β (9.1)

Where yi = 1, . . . , n and Xi is the row of genotypes. Let X̃ = X × Ω, then

U(Ω) = X̃(y − µ). The test statistics with cell weight is

S(Ω) = U(Ω)TU(Ω) (9.2)

where Ω represents the weights based on individuals i and variants j where i =

(1, . . . , n)and j = (1, . . . , p). Using the theorem 4.5.1 and 4.5.3, the distribution

of the test (9.2) will be a scaled chi-square as

S(Ω) ∼
p∑
j=1

λjχ
2
1 (9.3)
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where λj is the eigenvalues of the matrix X̃TDX̃ where X̃ = X × Ω, and D is a

diagonal matrix with elements µi(1− µi).

9.2.1 Cell Weight Scheme

We are creating a weight which is a function of MAF and all genotype quality

levels. The cell weight will be based on two parameters. The first parameter is

related to the MAF, and the second parameter related to the genotype quality at

individual i and position (SNP) j. This weight will give low-frequency SNPs high

weight conditional on the value of genotype quality and at the same time down-

weight common SNPs. The Pareto function is one of the functions that work well,

for two reasons. First, it up-weights rare variants and down-weights common

ones. Second, it will be effective at detecting the association in low frequency

(rare) and large frequency (common) variants. Although it up-weights the rare

regions, it can still detect the association in the common regions (continuous

spectrum of MAF), which was covered in chapter 6. Finally, the impact of lower

quality at rare SNPs will be larger than the lower quality at the common SNPs to

avoid down-weighting the common variants more when they are associated with

moderate quality. To achieve this, we found Pareto is the appropriate function.

Let F be the MAF, q the shape parameter, and b the scale parameter of the

Pareto distribution function, and then the function of Pareto is

Ω = g(F) =
qbq

(F + b)q+1
. (9.4)

Where F, the MAF ranges between 1/n–0.5, q lies between 0−1 and represents

the quality of the genotype, and b is a scale parameter which is fixed at 0.08 +F.

We choose 0.08 because it is the appropriate number for up-weighting the rare

variant and down-weighting the common one (without 0.08, the very rare variants

will have a very large weight; see Figure 9.1). We choose plus MAF because we

need to keep the value of g(F) increasing as the MAF increases in the rare and

common regions so that the largest value for the scale will be 0.58 when the minor

allele frequency is 0.5. Equation 9.4 can be simplified as

Ω = g(F) =
q(0.08 + F)q

(2F + 0.08)q+1
(9.5)
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Figure 9.1: The MAF versus the weight using the Pareto function with the in-

clusion of 0.08 and without. The quality is fixed at 0.9.

Figure 9.2: The quality versus the weight (g) with respect to the MAF.
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Figure 9.3: The MAF versus the weight using the Pareto function with respect

to the quality.

9.3 Simulation

For the genotype, we generated simulated data over a spectrum of MAFs and

odds ratios. We also provided scenarios where non-causal variants and variants

having effects with different magnitudes are included. As in chapter 5, we first

generated d latent variables from the multivariate normal distribution with the

autoregressive covariance structure Σ = ρ|i−j|, where ρ = 0 was used to gen-

erate independent variants. The latent variables were then used to produce a

haplotype at a given MAF by dichotomizing variables at a specified quantile.

Two independent haplotypes thus generated were combined to obtain the un-

derlying genotypes xij, with which we generated dichotomous phenotypes for a

case-control study under the logistic regression model

logitP (yi = 1) = β0 +

p∑
j=1

βjxij
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at given effect sizes βj or odds ratios exp(βj). More details regarding this simu-

lation are illustrated in Chapter 5.

We conducted simulation studies to evaluate the performance of the test while

incorporating the quality measure. The simulation study is based on ten scenar-

ios. All of these scenarios are presented in Table 9.1.

• In the first scenario, using the weighting scheme introduced in this Chapter,

we compare the score test with genotype data assuming large genotype

quality and the same genotype with low quality.

• In the second scenario, we simulate genotype quality dependent on the

MAF.

• Then, we compare data that has low and high quality with the same data

that filters the low-quality genotype (i.e. remove genotypes with quality

less than 20%).

• Finally, we sample the genotype quality from the real genotype quality that

is associated with the gene PARP. The study provides sequencing data for

2014 individuals over 300 rare variant sites, amounting to 604200 genotype

quality scores. We sampled from these empirical quality scores directly to

generate simulated data.

We will use these simulations to assess the power and evaluate the impact of

the quality (i.e. whether it is large or low). First, for high quality, we simulate

quality Qij from the beta distribution with parameters 1 and 0.03 as shape1 and

shape2, respectively A1. We choose these parameters to mimic the distribution

of genotype quality in Patel et al. (2014) and to associate high quality with

most of the data. The cells that have causal variants will be associated with high

quality which is distributed from uniform with parameters 0.8 and 1 to insure high

quality will be associated with causal variants; although it is unrealistic, it is just

for comparison. We also simulate low-quality associated with a large proportion

of cells, from a beta distribution with parameters 0.09 and 0.03 as shape 1 and 2

of beta distribution, respectively A2, to allow more cells with moderate to very

low quality, and the cells that have causal variants will be associated with low

276



9.3 Simulation

quality distributed from uniform with parameters 0.2 and 0.6 see; see Figure 9.4

for both scenarios. Additionally, we simulate the same as above, but the causal

variants will follow the same distribution as other cells; scenario A4 and scenario

A5 respectively represent large and low quality.

Figure 9.4: Differences between quality simulation in scenarios A1 for left figure

and A2 for the right one.

Then, we present another simulation to assess the power and evaluate the

impact of the quality whether large or low. In the above scenarios, we generate

quality independently from the MAF. In this scenario, we generated a quality

dependent on the MAF. Thus, we will have two scenarios: when the MAF gets

small, the quality increases B1, and conversely, when the MAF gets small, the

quality gets small B2. We use a gamma function with parameter 1 and 20 for

the first scenario to link the MAF to the quality.

In the next scenario (C), we simulate the genotype with low quality using beta

distribution and remove the lowest quality (we use threshold 20%), so scenario C1

represents the power with low quality and the C2 while filtering lower genotype

with very low quality.
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Lastly, we sampled genotype quality from real genotype quality and compared

it with other scenarios. Additionally, To estimate p-values, straight binomial

proportions are used. Hence, they have the same standard error as any other

binomial proportion
√

(p(1 − p)/n), where p here means the proportion of tests

rejected and n the number of samples. Therefore, if p = 0.05 and n = 2000, the

standard error of the observed proportion is about 0.005, and we could say the

uncertainty 1%.

Quality for Cell

Scenario Non Causal Causal

A1 Beta (1,0.03) Unif(0.8,1)

A2 Beta (0.09,0.03) Unif(0.2,0.6)

A3 Beta (1,0.01)

A4 Beta (1,0.03)

A5 Beta(0.09,0.03)

B1 Gamma(1,20)/20

B2 Beta (0.09,0.03) all variants less than 0.005 Unif(0.2,0.6)

C1 Beta (0.09,0.03)

C2 Beta (0.09,0.03) Filter GQ > 0.2 >20%

D Real quality

Table 9.1: Scenario simulations considered in this Chapter. See text for details.

Type I error

To evaluate type I errors, we first generate datasets under the null model (logit[P (yi =

1)] = β0). We fix the MAF at each variant as shown in Table 9.2. We use dif-

ferent scenarios to evaluate Type I errors. As we can see, when all the variants

have very low minor allele frequency, controlling type I errors is a concern due

to rarity. When the MAF is very low such as 0.0005 which means there are two

variants among 2000 individual ( there are 1998 zeros and two elements are 1 or

2), then this will effect controlling the type I error rate in score test. The concern

is when we have MAF on the boundary (MAF less than 0.002).
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MAF Fixed at 100 variants
Scenario

0.0005 0.002 0.004 0.006 0.008 0.01 0.05 0.1 0.3 0.5

A1 0.035 0.045 0.04 0.05 0.05 0.045 0.05 0.05 0.05 0.05

A2 0.025 0.04 0.06 0.045 0.06 0.05 0.04 0.05 0.05 0.05

A3 0.03 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05

A4 0.03 0.04 0.05 0.03 0.06 0.04 0.04 0.04 0.04 0.05

A5 0.02 0.03 0.05 0.03 0.04 0.06 0.04 0.05 0.05 0.05

D 0.03 0.04 0.03 0.04 0.03 0.04 0.06 0.05 0.04 0.04

B1 0.035 0.035 0.05 0.035 0.04 0.05 0.06 0.05 0.05 0.05

C1 0.02 0.035 0.04 0.035 0.045 0.05 0.05 0.05 0.05 0.05

Table 9.2: Type I error for score test with cell weight and significance level of

0.05.

Power

We compare variant weights by Wu et al. (2011) (Beta-SKAT) and the cell-

weighting scheme that we proposed here. We can see that the cell-weighting

scheme under the assumption that there is high quality in the data has an ad-

vantage over the weighting scheme by Wu et al. (2011) because it can detect the

association among the MAFs (see Figure 9.5). We can see the drop in variants

weight based on SKAT. In this Chapter, we will compare cell weights with the

variant weights, which is based on the Beta-SKAT weighting scheme, and we will

frequently see that SKAT does not cover all MAFs (the power of the test drop

in the common region).
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Figure 9.5: There are 200 variants used in this analysis, 80% are rare (40% ERV

and 40% MRV), and 20% are common. We ranged the MAF of causal variants

between 0.0005− 0.4, and the percentage of these is 7% where the OR is fixed at

2.

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X40%

MRV OR=2 [0.005-0.05] X40%

CV OR=2 [0.05-0.4] X20%

We show the results of the simulations in different scenarios above. We will

apply the simulations above with different MAFs and effect sizes represented by

OR. The first result is the comparison of cells that have large and low quality,

especially at the cell that is considered to be causal. In Figure 9.7, we show

the result of scenarios A1 and A2; the causal variants in scenario A1 have high

quality, while in scenario A2, they have low quality. We consider in Figure 9.6,

OR = 3 and the MAF for causal variants between (0.0005 − 0.01) to focus on

extremely and moderately rare variants, while in Figure 9.7, OR = 2 for top

figure and OR = 1.5 for bottom figure and MAF for the causal variant are

between 0.0005− 0.5 for both figures.
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Figure 9.6: This figure shows the differences between causal variants with low and

large cell-quality. In this figure, we associate all the causals with high quality in

Scenario A1, and we associate them with low quality in Scenario A2. There are

200 variants used in this analysis 30% for each category (i.e. ERV, MRV, and

large MRV), and 10% are common variants. The effect size for causal variants is

fixed at OR = 3, and the horizontal axis represents the MAF for causal variants

(0.0005− 0.01).

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X30%

MRV OR=3 [0.005-0.01] X30%

large MRV . X30%

CV . X10%
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Figure 9.7: This figure shows the difference between causals with low and large

cell-quality. In this figure, we associate all the causals with high quality in Sce-

nario A1, and in Scenario A2, we associate them with low quality. There are

200 variants used in this analysis 30% for each category (ERV, MRV, and large

MRV), and 10% are common variants. The effect size for causal variants is fixed

at OR = 2 for the top figure and for OR = 1.5 for the bottom one. The horizontal

axis represents the MAF for causal variants, which are between (0.0005− 0.5).
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In Figures 9.8 and 9.9, we follow the same strategy as in scenario A1 and A2.

However, in scenarios A4 and A5, we did not specify the causal cells to be large

or low; it follow the same distribution for all cells.

Figure 9.8: This figure shows the differences between causal variants with low

and large cell-quality. In this figure, we associate all the causal and non causal

variants with high quality in Scenario A4, and we associate them with low quality

in Scenario A5. There are 200 variants used in this analysis 30% for each category

(i.e. ERV, MRV,and large MRV ), and 10% are common variants. The effect size

for causal variants is fixed at OR = 2, and the horizontal axis represents the

MAF for causal variants (0.0005− 0.5).

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X30%

MRV OR=2 [0.005-0.01] X30%

large MRV OR=2 [0.01-0.05] X30%

CV OR=2 [0.05-0.5] X10%
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Figure 9.9: This figure shows the differences between causal variants with low

and large cell-quality. In this figure, we associate all the causal and non causal

variants with high quality in Scenario A4, and we associate them with low quality

in Scenario A5. There are 200 variants used in this analysis 30% for each category

(i.e. ERV, MRV, and large MRV), and 10% are common variants. The effect size

for causal variants is fixed at OR = 1.5, and the horizontal axis represents the

MAF for causal variants (0.005− 0.5).

Causal Non-Causal

ERV OR=1.5 [0.0005-0.005] X30%

MRV OR=1.5 [0.005-0.01] X30%

large MRV OR=1.5 [0.01-0.05] X30%

CV OR=1.5 [0.05-0.5] X10%

Figures in 9.10 show the result of the B scenario simulation. As we can see,

the high qualities are associated with the cell that is considered rare, and low

qualities are at the common variants.
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Figure 9.10: In this figure, we show the impact of low quality on the signal

of association. There are 200 variants used in this analysis 80% are rare (40%

ERV and 40% MRV), 20% are common. We ranged the causal variants between

0.0005 − 0.5. The odds ratio is fixed at 2, and the quality is dependent on the

MAF (scenarios B1 and B2); when MAF gets small, the quality increases.

Causal Non-Causal

ERV OR=2 [0.0005-0.005] X40%

MRV OR=2 [0.005-0.05] X40%

CV OR=2 [0.05-0.5] X20%

Figure 9.11 shows the results of scenario C1 and C2. We can see that filtering

or removing information (e.g., genotypes) from the data may cause the loss of

important information. In these two figures, we randomly assign the causal to

be in the ERV with random quality, and then we remove the genotype with low

quality and keep the genotype with high quality (greater than 20%). We reduce

the OR from 3 in 9.11 (top figure) to 2 in the bottom figure to illustrate the

difference between all the scenarios.
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Figure 9.11: We generated 200 variants: 30% for each category (extremely and

moderately rare and large moderate) and 10% common variants. The causal

variants are 7% and for top figure OR = 3 and bottom one OR = 2. We vary the

MAF of causal variants along the horizontal axis; it is between 0.0005− 0.005 in

the top figure and 0.005 − 0.5 in the bottom one. In this Figure is the result of

the scenarios (C1 and C2) compared to A1.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X30%

MRV . X30%

large MRV . X30%

CV . X10%

Causal Non-Causal

ERV . X30%

MRV OR=2 [0.005-0.01] X30%

large MRV OR=2 [0.01-0.05] X30%

CV OR=2 [0.05-0.5] X10%
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9.3 Simulation

Figure 9.12 shows the comparison between simulated data from scenario A3

and sampled quality from real genotype quality. In both scenarios (simulated

quality and sampled quality), we see that the genotype quality can affect the

signal of association. When the causal variants have high quality so that the

likelihood of mistyping is low, it can help boost the power. We zoom in on Figure

9.13, so the causal variants is between (0.0005–0.005), and we can see the drop

in in SKAT weight.
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Figure 9.12: We generated 200 variants, 30% for each category (extremely and

moderately rare and large moderate) and 10% common variants. The causal

variants are 7%, and OR = 1.5 for the top figure, and OR = 2 for the bottom

one. We vary the MAF of causal variants along the horizontal axis. In this Figure

is the result of the scenarios (D) compared to A3 and A5.

Causal Non-Causal

ERV . X30%

MRV OR=1.5 [0.005-0.01] X30%

large MRV OR=1.5 [0.01-0.05] X30%

CV OR=1.5 [0.05-0.5] X10%

Causal Non-Causal

ERV . X30%

MRV OR=2 [0.005-0.01] X30%

large MRV OR=2 [0.01-0.05] X30%

CV OR=2 [0.05-0.5] X10%
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9.4 Conclusion

Figure 9.13: We generated 200 variants, 30% for each category (extremely and

moderately rare and large moderate) and 10% common variants. The causal

variants are 7% and OR = 3. We vary the MAF of causal variants along the

horizontal axis. In this Figure is the result of the scenarios (D) compared to A3

and A5.

Causal Non-Causal

ERV OR=3 [0.0005-0.005] X30%

MRV . X30%

large MRV . X30%

CV . X10%

9.4 Conclusion

In this chapter, we introduced a new weighting scheme that can incorporate

information based on individual i and variant j. The weighting scheme in this

chapter can incorporate information on the cell level as well as up-weight the rare

variants and down-weight common variants. We use different simulation settings

to show the impact of including the quality measure of genotypes in the test,

which will help to keep information and avoid removing information based on
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pre-specified thresholds such as thresholds that we apply to filter out genotypes

with low quality.

As we can see from the results of the simulation study, the variant weight

which is based on the SKAT weight drops when the causal variants are in common

regions. Using the Pareto function with its specified parameters will help detect

causal variants even in common regions, especially when the effect size is large.

Using SKAT-beta and Pareto assumes high quality variants will be close to each

other when the causal variant is rare, and when the causal is common, Pareto

appears more powerful than SKAT-beta.
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Chapter 10

Conclusion and Future Research

10.1 Summary

In Chapters 2 and 3 of this thesis, we have described VCF data files and reviewed

existing methods for rare variant analysis. A score test with different weight

schemes was derived, as well as its distribution. Then, we proposed different

variant-, individual-, and cell-level weight schemes. We have investigated the ef-

fect of different variant weight schemes and the differences between them. The

empirical investigation focused on rare variants; however, we also proposed vari-

ant weights that are applicable to the joint analysis of multiple rare and common

variants. Additionally, we proposed a weighting scheme that can incorporate

different types of information, such as quality, in two scenarios: incorporating

quality scores (QUALs) based on variant levels, which is explained in Chapter

7, and incorporating genotype quality (GQ) based on the cell level, which is

explained in Chapter 9. In Chapter 8, we incorporated individual weights and

combined individual variant weights.

In chapter 5, we introduced different weighting schemes based on variant

weight. These weighting schemes focus on rare variants. We also introduced an

adaptive weighting scheme that can be adjusted according to the data.

Previous studies of rare variants using weighting schemes have included both

rare and common variants. Most studies in this field have only focused on rare

variants. In Chapter 6, we extended the weighting scheme to cover common vari-

ants and present the current investigation’s principal findings regarding weighting
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schemes that cover the whole MAF range. When the data has more ERVs (com-

pared to moderately rare variants), we recommend using the Cauchy adjusted

or Levy weight schemes since these schemes up-weight ERVs more than others.

However, if the MAFs of the data are uniformly distributed, or there is a large

number of moderately rare variants (compared to ERVs), then we recommend

using the Burr or beta functions.

In Chapters 7, 8, and 9, we explored an exciting opportunity to advance our

knowledge of incorporating external information on the score test. In Chapter

7, we incorporated quality based on the variant level (quality call) and con-

cluded that incorporating such information could help eliminate errors by down-

weighting low-quality variants instead of removing them or up-weighting them

because they are rare. We also incorporated an individual weight in Chapter 8

and a cell weight in Chapter 9 for the same reasons explained above.

This research extends our knowledge of weighting schemes in rare variant

association studies to incorporate information that can help detect real variants

and shed new light on weighting schemes that can eliminate possible errors and

may boost the power of the tests. The present study makes several noteworthy

contributions to rare variant association studies and will serve as a basis for future

studies in this field.

10.2 Future Research

To develop a full picture of rare variant association studies, additional studies will

be needed. Three areas regarding rare variant association are in need of further

research. One area involves combining two different weights based on the variant

level or combining an individual weight and variants, as well as a cell weight. For

example, a grid search could be used as the weight value in the test to find an

optimal value that will maximize the power.

Additionally, in many types of medical research, the main interest lies in

testing whether a random effect variance component is equal to zero within a

mixed-effect model framework. The variance component test has been a statisti-

cal challenge for a long time and has received considerable attention in the liter-

ature (see, for example, Self & Liang (1987) and Stram & Lee (1994)). However,
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little work has been conducted on a likelihood-ratio based variance component

test in generalized linear mixed models (GLMM) where the response is discrete,

and the log-likelihood cannot be precisely computed. The motivation to propose

the use of LRT in rare variant association to determine whether type I errors can

be controlled by using a permutation test arose when Fitzmaurice et al. (2007)

examined the variance component test using permutation in GLMM to detect the

cluster effect in binary datasets and demonstrated that type I errors were con-

trolled effectively and had a higher sensitivity than the variance component test

based on scaled chi-square distributions. The hypothesis is that the LRT might

produce better results than the permutation variance component test. Before ap-

plying the LRT to the variance component in GLMM, several difficulties need to

be overcome, including the computation of the log-likelihood, parameter estima-

tion, and the derivation of the null distribution of the LRT statistic. To overcome

these problems, we can make use of the penalized quasi-likelihood (PQL), which

is the most common estimation procedure for GLMM, and calculate the LRT

statistic based on the resulting working response and quasi-likelihood so that the

LRT in GLMM will be computationally feasible. The permutation procedure

could possibly be used to obtain the null distribution of the LRT statistic, or we

could have the opportunity to propose a mixed chi-square.

Furthermore, incorporating additional functional information in the weighting

scheme is still an open area of research, and finding an optimal weight still needs

more attention. Using Bayesian statistics, such as the Bayes factor, is another

method that we can consider in the near future. Therefore, the weighting scheme

could be incorporated in a similar Bayesian manner as prior.

Finally, the simulation conducted in chapter 7 and 9 can be extended to

generate data with some errors and compare the performance of the proposed

down-weighting of the low-quality calls or variants with the usual practice of

excluding calls with quality levels below an arbitrary threshold. In addition,

randomness in the data could be investigated in the near future since we incor-

porate the weighting scheme, especially in the cell weight. The study would have

been more interesting if it had included this kind of simulation. The inclusion of

the weighting scheme in rare variant association analysis is important, especially

for incorporating sequencing information. If the objective of the future research
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above can be tamed and understood it will offer an entirely new way of thinking

in rare variant association studies.
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