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Abstract

Functional outcomes of ongoing thought show both costs and benefits. Yet, the

reason for its heterogeneity remains unclear. The executive failure and repres-

entational accounts stemmed from different psychological research approaches

to understand ongoing thought. The executive failure account examines why

changes in ongoing thought happen, while the representational account seeks

to explain how humans generate ongoing thought. The attentional system and

the default mode network are the common neural processes of both theoretical

accounts, but interacting in a contradicting manner. The two accounts can be

seen as competing theories of ongoing thought. However, in the family resemb-

lance view (Seli et al., 2018), the two theoretical accounts potentially serve as

two component processes of one phenomenon. One possible solution to this con-

flict could be that under different global neural configurations, the two networks

support different cognitive functions. The thesis sets out to present evidence

supporting of the family resemblance view and to begin research on the ontology

of the component processes in ongoing thought. Neural cognitive hierarchy is the

potential explanation of the heterogeneity. The current thesis adopts sparse ca-

nonical correlation analysis to incorporate the neural and behavioural aspects of

ongoing thought. The data suggests ongoing thought is a collective phenomenon

with many types of experience driven by the connectivity patterns in the default

mode network. Each type of experience associated with their unique functional

outcomes and neural hierarchies at the whole-brain level. Cognitive flexibility

and the balance of segregation and integration between the transmodal systems

and the rest of the cortex determines the immersive details. The current findings

suggested the importance of whole-brain neural hierarchies to ongoing thought.

The confirmation of these trait level findings at a state level are necessary to

gain more insights into the architecture of the component processes.
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Chapter 1

Introduction

With the advance of functional magnetic resonance imaging (fMRI) and other

neuroimaging techniques, the study of ongoing thought has gained wider interest

in psychology and neuroscience in the past decade. The increasing research

has given rise to heterogeneous views on how and why mind-wandering occurs,

however, the detailed neural basis of the heterogeneity remains largely unclear.

The current thesis explores the patterns of ongoing thought extending from well-

studied off-task thought—mind-wandering—to task-related thought. The aim is

to gain an understanding of the component processes of ongoing thought at task

and rest. A flexible family resemblance view (Seli et al., 2018) of ongoing thought

will jointly identify patterns of the shared similarities, as well as unique features

that drive the heterogeneity.

In this chapter, I walk through the conflicting behavioural literature of mind-

wandering and discuss the theoretical accounts of ongoing thought. Next, I intro-

duce the emerging neural evidence on the hierarchical organisation of cognition

(Margulies et al., 2016; Mesulam, 1998) and argue how overlapping component

processes might facilitate ongoing thought. In closing, I introduce the overall

methods used in the current research and how a multivariate approach helps to

examine the family resemblance view of ongoing thought.

1.1 Heterogeneity of ongoing thought

Mind-wandering is particularly well-studied among all phenomena related to on-

going thoughts. Researchers aim to understand how the mind shifts between the

1



1.1 Heterogeneity

external environment and internal thoughts unrelated to the here-and-now. The

executive failure account is concerned with why some mind-wandering episodes

occur to the detriment of the integrity of an ongoing task (McVay & Kane, 2010).

In contrast to the executive failure view, the representational account seeks an

understanding of how the mental content is generated (Smallwood et al., 2016).

The two approaches have led to conflict in the mind-wandering literature. Seli

et al. (2018) has recently proposed a family resemblance view to incorporate dif-

ferent theoretical accounts under a common framework. In a family resemblance

view, members of the ongoing thought family can have shared similarities along

with unique features resulting in heterogeneity. The following section will intro-

duce the evidence for construct overlap and shared processes of ongoing thought

at task and rest.

1.1.1 Heterogeneity in definitions

Among types of ongoing thought, mind-wandering attracted the most interest as

it concerns the ability to focus on the task at hand. Mind-wandering has been

studied in a variety of related psychological domains, such as cognition, emotion,

and neuroscience. Various lines of research have addressed the basic phenomenal

characteristics of mind-wandering—

a shift in the contents of thought away from an ongoing task and/or

from events in the external environment to self-generated thoughts

and feelings.

(Smallwood & Schooler, 2006, 2015).

We are all familiar with moments when the train of thought shift away from

the tasks at hand, and sometimes get annoyed by the mind-wandering epis-

ode. This intuition has lead to researches describing mind-wandering as an

‘attentional lapse’ (McVay & Kane, 2009, 2012a), implying the occurrence of

mind-wandering is an unintended failure. When a study explicitly instructs the

participant to perform a task, the time not focused on the task is considered as

‘mind-wandering’. Such research designs dismissed the possibility of voluntary

engagement in the mind-wandering state.

Recent investigations have found that mind-wandering can occur with or

without intention (see the review from Seli, Risko, Smilek, & Schacter, 2016).

2



1.1 Heterogeneity

The participant can intentionally mind wander if they lack a motivation to en-

gage in the experiment. When a simple yes/no question is asked about the mind-

wandering state, the response cannot access the nature of the occurrence. When

participants are asked about the nature of mind-wandering periods in a laborat-

ory scenario, less than half of the mind-wandering is intentional (Seli, Cheyne,

Xu, Purdon, & Smilek, 2015) due to the lack of motivation to complete the task

(Seli, Cheyne, et al., 2015), or the task is not mentally demanding enough to

have all attentional resources allocated to the task (Seli, Risko, & Smilek, 2016).

The occurrence of intended and unintended mind-wandering can also be down to

individual differences. Intentional and unintentional mind-wandering have been

found to be differentially associated with attention-deficit/hyperactivity disorder

(ADHD; Seli, Smallwood, Cheyne, & Smilek, 2015) and obsessive-compulsive

disorder (OCD; Seli, Risko, Purdon, & Smilek, 2017). The work on the inten-

tion of mind-wandering demonstrates that there is indeed overlap in the various

definitions and other components that contribute to the heterogeneity.

1.1.2 Heterogeneity in functional outcomes

The family resemblance view suggests that complex thought can emerge from

the combination of multiple overlapping processes. A myriad of mind-wandering

research concerns functional outcomes. The current thesis proposes that the het-

erogeneous functional outcomes are evidence in support of a variety of component

processes underlying ongoing thought.

Mind-wandering has been associated with poor executive control during work-

ing memory tasks (McVay & Kane, 2009). Individuals who mind-wandered more

during fluid intelligent testing perform less well (Mrazek et al., 2012). Mind-

wandering leads to bad reading comprehension due to failure in the construction

of the mental models of ongoing events (Smallwood, McSpadden, & Schooler,

2008). Comprehension ability is related to working memory capacity and me-

diated by the ability to suppress mind-wandering (McVay & Kane, 2012b; Un-

sworth & McMillan, 2013). Mind-wandering has been linked to unhappiness

(Killingsworth & Gilbert, 2010) and is an indicator of depression (Smallwood,

O’Connor, Sudbery, & Obonsawin, 2007). The evidence above supports the

highly disruptive nature of mind-wandering and its potential costs to cognitive

3



1.1 Heterogeneity

performance.

In addition to exploring the costs of mind-wandering, researchers have dis-

covered its potential benefits. Mind-wandering may facilitate a creative solution

to an old problem (Baird et al., 2012; Smeekens & Kane, 2016) and recov-

ery from negative emotional states (Ruby, Smallwood, Engen, & Singer, 2013;

Poerio, Totterdell, Emerson, & Miles, 2016). Mind-wandering relies on men-

tal time travel—the metal capacity of remembering the past and imagining

the future (Stawarczyk & D’Argembeau, 2015)—and relies on neural mechan-

isms associated with the memory function (D’Argembeau & Van der Linden,

2006; D’Argembeau, Jeunehomme, Majerus, Bastin, & Salmon, 2015). Mind-

wandering can also refine personal goals (Medea et al., 2016), potentially through

mental time travel.

In summary, different functional associations arise from the same type of

experience—mind-wandering. To reconcile this contradictory evidence, research-

ers have suggested that mind-wandering may encompass multiple states with dif-

ferential contents and underlying cognitive architectures (Smallwood & Andrews-

Hanna, 2013). Complex thought can emerge from the combination of multiple

overlapping processes.

1.1.3 Heterogeneity in experiential profiles

Self-report is commonly used to understand the content of mind-wandering

thoughts and ongoing experience. The content of mind-wandering covers a wide

variety of topics and modalities. The questions in the report address a number

of dimensions of the ongoing experience, ranging from the state of attention,

temporal content, social content and modality (i.e. thinking in words or im-

ages). Principle component analysis (PCA) formalised the statistically shared

association between different aspects of the reports.

Studies using PCA on such experience reports have revealed detailed exper-

iential profiles. Temporal information is one common theme (Ruby, Smallwood,

Sackur, & Singer, 2013; Ruby, Smallwood, Engen, & Singer, 2013). The con-

tent of mind-wandering is mainly future-focused (Baird, Smallwood, & Schooler,

2011), therefore mind-wandering often involves planning for the future goals of

the individual. On the contrary, when the mind wanders in an unhappy mood,

4



1.2 Theoretical accounts of mind-wandering

the content is drawn to events from its past (Smallwood & O’Connor, 2011).

The form of spontaneous thoughts is likely to be imagery or verbal (Gorgolewski

et al., 2014; Smallwood et al., 2016).

In conclusion, the positive/negative-valence of the emotion of thought has

the tendency to accompany with different temporal directions. These unique

associations discovered through PCA suggested component processes at an ex-

periential level. Investigation in experiential profiles is the first step to explore

the commonality of various type of ongoing thought.

1.2 Theoretical accounts of mind-wandering

The heterogeneity of mind-wandering has been formalised into two theoretical

accounts. The executive failure account aims to understand the conditions that

trigger or associate with ongoing thought (Kane & McVay, 2012; McVay & Kane,

2010). The representational account examines the mechanisms that give rise to

different patterns of ongoing thought (Smallwood et al., 2016). In other words,

the executive failure account examines why changes in ongoing thought happen,

while the representational account seeks to explain how humans generate ongoing

thought while mind-wandering. The two accounts can be seen as competing

theories of mind-wandering. However, in a family resemblance view, the two

theoretical accounts potentially support a singular phenomenon that is composed

of multiple underlying component processes.

1.2.1 Executive failure account

The executive failure account is concerned with a single aspect of mind-wandering,

namely understanding why some mind-wandering episodes occur to the detri-

ment of the integrity ongoing task. Mind-wandering occurs during attention-

demanding tasks when control processes are insufficient to deal with the interfer-

ence created by off-task thoughts (Kane & McVay, 2012; McVay & Kane, 2010).

Under this view, mind-wandering results from a failure of attention to external

tasks, rather than from the consumption of executive resources by internally gen-

erated thoughts. This research focuses on the negative effect of mind-wandering

on the development of negative mood and task performance. Mind-wandering
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thoughts are mostly unhappy in ecologically valid scenario (Killingsworth & Gil-

bert, 2010). Depressive thinking correlates with the frequency of mind-wandering

(Smallwood et al., 2007).

In the executive failure view, mind-wandering reflects the momentary lapse

in attention. The definition of attention lapse is a relatively slow response time

to the task at hand, which is consistent with the mind-wandering indicator used

in working memory capacity research (McVay & Kane, 2012a). Mind-wandering

has been considered the consequence of poor executive control during work-

ing memory task (McVay & Kane, 2009). Executive deficits and slow reaction

times correlate with individual differences in working memory capacity and mind-

wandering (McVay & Kane, 2012a). The capacity to avoid mind-wandering dur-

ing demanding tasks is a potentially important source of success on measures of

fluid intelligence (Mrazek et al., 2012).

Task-based fMRI studies of attentional lapses have contributed to the func-

tional neural processes to support the executive failure account. Weissman,

Roberts, Visscher, and Woldorff (2006) have described the neural mechanism

associated with attentional lapses during a global/local selective-attention task.

Brief attentional lapses are related to early activity in frontal control region

including anterior cingulate cortex (ACC), right middle frontal gyrus (MFG),

and right inferior frontal gyrus (IFG). Attentional lapses also suggest a fail-

ure to maintain perceptual representations. Reduced activity is found in the

primary visual area. Activation of the default mode network (DMN; Raichle et

al., 2001; Shulman et al., 1997) has also been observed during a brief attention

lapse. DMN is a set of brain regions composed of the medial prefrontal cor-

tex(MPFC), posterior cingulate cortex (PCC) and angular gyrus (AG) as the

core, plus subsystems within medial and lateral temporal lobe (Andrews-Hanna,

Reidler, Sepulcre, Poulin, & Buckner, 2010). DMN is commonly referred as a

task-negative network (M. D. Fox et al., 2005), associating with task-unrelated

thought and mind-wandering (Mason et al., 2007; Christoff, Gordon, Smallwood,

Smith, & Schooler, 2009). The lapses increase demands on the frontal-parietal

control network to redirect attention. Ventral frontal-parietal regions, including

right temporal-parietal junction (TPJ) and right IFG, respond during recovery

from lapses (Corbetta & Shulman, 2002; Weissman et al., 2006).
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1.2.2 Representational account

The representational account concerns the generation of content during mind-

wandering, suggesting that mind-wandering is not merely a mindless state. The

ability to generate information without task constrains are consistent with the

productive functional outcomes of mind-wandering, such as creativity (Baird et

al., 2012; Smeekens & Kane, 2016) and social-temporal problem-solving (Ruby,

Smallwood, Engen, & Singer, 2013; Poerio et al., 2016; Medea et al., 2016).

The internal representation of semantics and episodic memory is associated

with brain regions highly overlapping with DMN. The brain regions involved in

semantic processing include left AG, lateral and ventral temporal cortex, left

dorsal MPFC, left IFG, left ventral MPFC, and PCC (Binder, Desai, Graves, &

Conant, 2009; Lambon-Ralph et al., 2017). Dorsal and ventral MPFC show high

activity at rest and are associated with personally relevant information (Gusnard,

Akbudak, Shulman, & Raichle, 2001). Studies of spontaneous thought suggest

that PCC is an integrational hub of information from medial and lateral temporal

lobes (Smallwood et al., 2016). Integration of the hippocampus with the DMN

facilitates mental time travel (Karapanagiotidis, Bernhardt, Jefferies, & Small-

wood, 2017). This representational process is not unique to mind-wandering.

Vatansever, Menon, and Stamatakis (2017) demonstrated that the application

of a newly acquired rule is associated with memory representation related brain

regions such as hippocampus and PCC.

DMN demonstrates both integrative and segregating pattern with the sens-

ory systems to support the representational process, such as semantic processing

(Binder et al., 2009; Krieger-Redwood et al., 2016), episodic recollection (Rugg &

Vilberg, 2013), mental time travel (Schacter, Addis, & Buckner, 2007). A com-

mon requirement of these cognitive processes is the focus on previously-encoded

knowledge, as opposed to information in the external environment. The integ-

rative and segregating modes of DMN are closely allied to perception-decoupling

and conceptually-guided cognition (Murphy et al., 2018). The ability of DMN to

functionally decouple from perceptual dominant systems allows DMN to operate

in an offline manner dissociated from the external input (Smallwood, 2013). This

is consistent with recent observations of the functional organisation of the cor-

tical surface (Margulies et al., 2016) where the DMN is far from primary visual
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and motor cortex in terms of Euclidean distance and functional connectivity. In

addition, the integrative pattern between DMN and sensorimotor regions might

be supported by increased abstraction and integration along the ventral visual

system, ending in a conceptual hub in the ATL (Lambon-Ralph et al., 2017).

This view is also consistent with the observation that a gradient from unimodal

to transmodal cortex (Margulies et al., 2016) corresponds to increasingly abstract

and complex cognitive tasks, where the influence of specific features linked to

stimuli in the immediate environment is reduced (Mesulam, 1998; Buckner &

Krienen, 2013; Margulies et al., 2016).

1.3 Neural hierarchies

The executive failure and representational accounts stemmed from distinctively

different psychological research approaches to understand mind-wandering. The

attentional system and the DMN are the common neural processes of both the-

oretical accounts, but interacting in a seemly contradicting manner. In the ex-

ecutive failure account, the attention-related system deactivates with poor task

performance, accompanied by the activation in the DMN; while in the represent-

ational account, the attention system and the DMN work together to maintain

the internal representation of memory. One possible reason for this conflict could

be that under different global neural configurations, DMN might support differ-

ent cognitive functions. In the current section, I discuss the progress of functional

neuroimaging study towards a hierarchical view of neural systems corresponding

to the family resemblance account.

1.3.1 Historical perspective

Research on brain organisation has been dominated by two opposing views—

functional specialisation and functional integration. Functional specialisation

emphasises that small, distinguishable brain regions are solving distinct problems

(Kanwisher, 2010). Studies of cognitive impairments in people with focal brain

lesions provides the extensive evidence for the localisation of some functions

in the human brain, such as the role of mid-fusiform gyrus in processing faces

(Iaria, Fox, Waite, Aharon, & Barton, 2008) and left Brodmann areas 44 and
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45 (left IFG) in speech production (Broca, 1861). Single-cell recordings and

microscopic tissue examination revealed the segregation of occipital visual cortex

(Zeki, 1978). Overall, the approach used to yield localise brain function shares

one important similarity. The methodology leads to interpretations based on

non-overlapping, discrete region as the basic compartments of brain organisation.

The recent focus in neuroscience has shifted from restricted regions to net-

work organisation. Functional integration emphasises that cognitive function is

enabled by a complex interplay between these distinct brain regions (Sporns,

2014). Biological neural network properties are an important source of electro-

physiological oscillations. Independent component analysis (ICA) became the

workhorse of network discovery in neuroimaging(Beckmann, DeLuca, Devlin,

& Smith, 2005). Functional connectivity (Friston, 1994) and graph theory

(Rubinov & Sporns, 2010) application to functional neuroimaging provided non-

biophysical models of brain organisation. Recent advances in the field of human

connectomics have revealed multiple large-scale networks, each characterised by

distinct functional profiles (e.g. Yeo et al., 2011). In contrast to the specialisation

of regions, cross-regional integration is the central approach to understanding the

basic architecture of brain organisation.

Discovery from functional specialisation and integration has both revealed

spatial gradients in brain organisation. Advances in mapping local streams such

as vision (Zeki, 1978) have revealed spatial gradients extending along adjacent

cortical regions. Stepwise functional connectivity analysis demonstrated trans-

itions from primary sensory cortices to higher-order brain systems for percep-

tual integration in the human brain (Sepulcre, Sabuncu, Yeo, Liu, & Johnson,

2012). The diffusion embedding analysis on connectivity data in humans and

the macaque monkey reveals the principal gradients of whole brain topograph-

ical organisation (Margulies et al., 2016). The discovery of multiple whole-brain

functional configurations provides speculations on hierarchical relations among

inter-plays of large-scale networks.

1.3.2 Abstract rule governing

Duncan (2010) discovered a common pattern of activity in the prefrontal and

parietal activity of the human brain in response to a diverse cognitive challenge.
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He revealed that the governance of cognitive control is the multiple-demand

network (MDN) covering regions in the attention system and the frontoparietal

network (FPN). This involves cortices in and around the posterior part of the

inferior frontal sulcus (IFS), in the anterior insula (AI) and adjacent frontal

operculum (FO), in the pre-supplementary motor area (pre-SMA) and adjacent

dorsal ACC, and in and around the intraparietal sulcus (IPS). Similar multiple-

demand patterns are identified in resting state data described as ‘task-positive’

(M. D. Fox et al., 2005), as opposed to the ‘task negative’ pattern—the DMN.

The MDN activity is consistent with the neural model (Weissman et al., 2006)

proposed to explain the executive failure account of mind-wandering (McVay &

Kane, 2012a). The antagonistic roles of DMN and MDN seem to be essential to

abstract rule governing.

The past research paradigms segregated complex cognition into isolated oper-

ations such as working memory capacity (Vogel & Machizawa, 2004) and response

inhibition (Aron, Robbins, & Poldrack, 2004). Complex, multi-component be-

haviour should be examined to understand the central role of control in realistic

behaviours. Tasks with multiple-demand properties, such as intelligence tasks,

examine abstract thinking, multi-modal or feature integration skills, and working

memory. The current thesis speculates that the multiple-demand neural patterns

exhibit family resemblance property in executive control.

1.3.3 Sensory integration/segregation

Mesulam (1998) observed that the primary visual and auditory cortices form a

spatially continuous organisation towards the hetermodal cortices of the frontal

and parietal lobes. He hypothesised that the hetermodal regions are selectively

converging the input from unimodal regions to form abstract information, form-

ing a hierarchical polarity. This viewpoint was examined by Margulies et al.

(2016) through a meta-analysis of cognitive function of the first principle gradi-

ent of the human brain. The first gradient anchors the unimodal regions at one

end and the transmodal regions in FPN and DMN at the other. The continuum

characterises a spectrum from unimodal to transmodal activity in a meta-analysis

on cognitive function tasks, with sensory-driven tasks on the unimodal end and

the abstract reasoning task on the transmodal end.
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In this sensory integration/segregation view, the FPN and DMN are func-

tionally adjacent. Empirical research in cognitive neuroscience has found a sim-

ilar hierarchy in mental scene construction (Villena-Gonzalez et al., 2018) and

higher-order conceptual representations (Murphy et al., 2018), which are essen-

tial functions supporting the representational account of mind-wandering. Re-

cent research on the role of DMN has provided support for a global integrative

view in which DMN forms the highest level in a neural hierarchy (Margulies

et al., 2016). Investigation of the activity of DMN indicates major revisions of

cognitive context when conducting an explicit task. Vatansever, Menon, and

Stamatakis (2017) recently demonstrated that the integrative role of DMN with

primary visual cortices and hippocampus facilitate a rapid and adaptive rule

learning. Patterns of cognition with neural activity located along the gradient

between the sensorimotor system and DMN will tend to share key characterist-

ics, giving rise to a family resemblance in memory-guided and perception-guided

representations.

1.3.4 Integration of hierarchical configurations

The neural hierarchy of abstract rule governing and sensory integration/segregation

have described contradictory views of the organisation of DMN and FPN. In the

sensory integration/segregation view, reflecting sensory integration/segregation,

these two networks are near-neighbours. Yet in the abstract rule governing view,

they tend to be in opposition. The commonality of the two views lies in the atten-

tion regulation role of FPN. DMN represents the lack of control in the abstract

rule governing, while it serves as the integrational hub of information from FPN

in the sensory integration view. Interestingly, these two neural hierarchies are

consistent with the contradictions between the executive failure and representa-

tional account in ongoing thought, where mind-wandering results from poor task

performance in executive failure account, but the representational account can

explain the benefits and generation of mental representations in ongoing thought.

The two neural hierarchies may describe the complementary whole-brain activity

of these two theoretical accounts of ongoing thoughts.

The study of ongoing thought is in need of an integrative approach to pool

related cognitive functions and whole brain patterns under a cohesive narrative.
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The hidden family resemblance may resolve the conflict in theoretical views of

ongoing thought. Recent studies of the MDN supports the family resemblance

view that a component can possess multiple states. Crittenden, Mitchell, and

Duncan (2015, 2016) demonstrated the involvement of both MDN and DMN

in a rule switching task. Using multi-voxel pattern analysis, two tightly knit-

ted subprocesses with distinct role have been revealed in multiple-demand tasks

(Crittenden et al., 2015), while the coupling of the two networks has shown a

board representation of abstract rules (Crittenden et al., 2016). The context

dependency of the function of DMN implies the importance of the whole brain

pattern to understand complex behaviour. Further development of the neuro-

cognitive model is crucial to achieving a more granular view of ongoing thought

(Mittner, Hawkins, Boekel, & Forstmann, 2016; Smallwood & Andrews-Hanna,

2013).

1.4 The current thesis

The conflicts in the mind-wandering literature arise from the heterogeneous,

unconstrained nature of ongoing thought. To date, research on ongoing thought

consists of investigations on three important aspects: experience, neural profile,

and cognition (Figure 1.1). A detailed description of spontaneous thought is

needed to confirm the experience of ongoing thought. The neural organisation

serves as the intrinsic biological basis of cognition. Finally, established cognitive

measures link functional outcomes to the experiential profiles.
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Figure 1.1. Schematic of the thesis

Studies targeting relationships within a single aspect of ongoing thought (i.e.

experiential, neural or cognitive) might only capture few potential members of

the family of ongoing thought. When the family members sampled possess non-

prototypical features, the discovery could be presented as rival theories. For

instance, the study of ongoing thought associated with creativity and working

memory are presented as conflicts of mind-wandering profiles. With an under-

standing of the component processes composing the family property, the het-

erogeneity of ongoing thought may be interpreted as exemplars of component

processes rather than conflicts.

The current thesis adapts a multivariate approach as the first step towards

a family resemblance view of ongoing thought. A multivariate approach can

include observations on a wider variety of behavioural profiles, thus prevent-

ing over-representing an exemplar as the whole category. Multidimensional ex-

perience sampling (MDES; Medea et al., 2016; Ruby, Smallwood, Engen, &

Singer, 2013; Smallwood et al., 2016) is the main technique of experience pro-

file assessment to capture the various aspects of thought. Resting-state func-

tional connectivity is used to describe the trait-like neural feature of each indi-

vidual. The tasks selected measure cognitive functions documented in the past

mind-wandering literature, including executive control, fluid intelligence, epis-

odic memory, semantic memory, and information generation. Finally, canon-
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ical correlation analysis (CCA; Hotelling, 1936) is the conjoined-decomposition

method of choice to explore the multivariate patterns of mind-wandering. Here

I present the overview of the ongoing thought measure and the benefit of CCA

used in the thesis.

1.4.1 Method of acquiring experience

In the current thesis, both online and retrospective method is used to acquire

the content of ongoing thought in laboratory scenario. In the online measure,

MDES uses thought probes to record participants’ experiences during a given

task. Thought probes appear during the task in a semi-random fashion. The

online measure captures spontaneous thought in, possibly, both off-task and

task-focused moments. In the first and third empirical studies, the averaged

momentary report from MDES is used to capture the trait-like features of spon-

taneous cognition. In the second empirical study, New York Cognition Question-

naire (Gorgolewski et al., 2014) is used to acquire the trait-like multidimensional

mind-wandering thought content during a 9-minute resting state fMRI session.

The retrospective method measures the summary of the mind-wandering experi-

ence during a specified time period. The benefit of retrospective measure is that

no interruption during the given task or the ongoing thoughts will happen. The

trait-level features of mind-wandering are accessed in the retrospective report.

A hybrid of go/no-go task and n-back task was used to manipulate working

memory capacity while recording online experiences (Konishi, McLaren, Engen,

& Smallwood, 2015; Medea et al., 2016). The earlier version has used numbers

as the test items (Smallwood, Tipper, et al., 2013; Smallwood et al., 2011). The

majority of the experiment consists of nontarget presented in neutral colour and

a small proportion of targets. Participants are instructed to judge whether the

target number is odd or even. In the choice reaction time (i.e. 0-back) condi-

tion, the judgement is made when the number changes colour; in the working

memory (i.e. 1-back) condition, participants judge the number on the previous

screen when presented with a question mark. The improved version is proposed

by Konishi and colleagues (2015), replacing numbers with two 2-dimensional

geometric shapes separated by a vertical line. Each pair consists of two shapes

among a circle, a triangle, and a square, each in two different left/right config-
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urations. In the 0-back condition, the target is flanked by one of two shapes,

and participants indicate which shape matches the target shape. In the 1-back

condition, the target is flanked by two question marks, and participants match

the target shape to the prior trial.

1.4.2 Content of experience

For the purpose of capturing the momentary evolution of thoughts during exper-

iments, experience sampling (Kahneman, Krueger, Schkade, Schwarz, & Stone,

2004) is a commonly used technique. Experience sampling is conducted dur-

ing an external task, such as reading (Franklin, Smallwood, & Schooler, 2011),

go/no-go task (Christoff et al., 2009), and n-back task(Kane, Conway, Miura,

& Colflesh, 2007). The list of questions needs to be short and concise to min-

imize interruption of the external task. To access the complex, heterogeneous

content of spontaneous thoughts, the current thesis employs MDES (Medea et

al., 2016; Ruby, Smallwood, Engen, & Singer, 2013; Smallwood et al., 2016).

MDES expanded the thought probe from an on/off task question to a collection

of dimensions related to a wide range of questions about the form and content of

thoughts. The idea of MDES is based on various questionnaires to understand

the content of mind-wandering thoughts retrospectively, such as the Dundee

Stress State Questionnaire (Matthews et al., 1999), Amsterdam Resting-State

Questionnaire (Diaz et al., 2013), the resting state questionnaire (Delamillieure

et al., 2010), and the New York Cognition Questionnaire (Gorgolewski et al.,

2014). The questionnaires above include more than 20 items, providing compre-

hensive coverage of thought content. Direct implementation of the retrospective

questionnaires listed above is not practical for experience sampling.

The current version of MDES is based on the 10-question set used in Medea

et al. (2016) and Smallwood et al. (2016). In the previous work, the questions

are separated into content and form aspects of the ongoing experience. PCA was

used to extract latent linear structure in the spontaneous thought report. Each

participant has a set of identified principle components concluding the average

momentary state of all the sampled time period. The current version includes

both form and content questions in one set with three extra questions. The

average score of each thought dimension indicates the average momentary state
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of ongoing thought. Unique associations among the questions are expected to

capture the family resemblance at an experiential level.

1.4.3 Conjoined decomposition of brain and cognition

Despite being invented in the 30s, until fairly recently CCA has not aroused re-

searchers’ interests due to the lack of practicality. With the advance in comput-

ing resource and enriched data size, CCA has gained popularity in neuroimaging

research. Three characteristics of CCA make it the method of choice. Firstly,

CCA can be understood as a natural extension of PCA to two variable sets,

but mutually linked by a joint correlation criterion (see 2.3.1 Joint informa-

tion compression). Such extension enables the exploration of neuro-experiential

component processes of the ongoing thought family. Secondly, CCA does not

distinguish between the two variable sets during the information compression

process (see 2.3.2 Symmetry). The identified dual-component dimensions cor-

relate two aspects of the data together without indication of causality between

neural function and cognition. Finally, CCA is capable of estimating more than

one corresponding component pair from the two variable sets (see 2.3.3 Multipli-

city). More than one pair of meaningful decomposition can be found, giving it

the potential to examine the heterogeneity of mind-wandering content and their

functional outcome.

While CCA provided useful features to explore ongoing thought, its sparsity

variation overcomes two technical issues of CCA application. Performing fea-

ture selection with sparsity improves the interpretability of the data and model

fit. Data with a higher number of features than samples is accompanied with

consequences of the so-called curse of dimensionality—the more dimensions are

added to a data set, the less explanatory value a sample would have (Domingos,

2012). The number of functional connectivity measure can easily exceed the

number of samples. In sum, SCCA allows decomposition on functional con-

nectivity measures without sacrificing data richness or introducing difficulties in

interpretation following data compression. The advantage and disadvantage of

CCA and its variation are discussed in the next chapter.

The current thesis adopts the sparse variation of CCA (SCCA; Witten & Tib-

shirani, 2009) to resolve arguments related to the component processes under the
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family resemblance view. Most studies of ongoing thought have only focused on

its relationship with one cognitive outcome at a time. As a consequence, mind-

wandering is treated as a singular construct of all off-task ongoing thought.

Studies on contents of ongoing experience have shown the diversity of informa-

tion using self-report methods. Based on the heterogeneity of content, ongoing

thought can be a collection of various type of spontaneous thoughts. Adopting

a multivariate method has the potential to identify family resemblance among

the heterogeneity of ongoing thought, and to begin the research on the ontology

of the component processes of ongoing thought.

1.5 Summary and thesis outline

Human cognition has the capacity to generate thoughts loosely related to the ex-

ternal world. However, researchers have not understood the mechanism behind

the consequences of ongoing thought. The heterogeneity of functional outcomes

has been a controversial and much disputed subject within the field of mind wan-

dering research. Extensive research has shown that both costs and benefits to

cognitive functions are associated with mind wandering. Negative consequences

include reduced attention, poor task performance, unhappiness, and depression.

The related positive outcomes include creative problem solving, planning per-

sonal goals, and recovery from negative emotion.

Most studies of mind wandering have only focused on one cognitive outcome

at a time. Mind-wandering is treated as a singular construct. Studies of the

contents of spontaneous ongoing thoughts have shown the diversity of informa-

tion using self-report methods. The temporal content of ongoing thoughts can

be future- or past-focused. The topic can be on personal issues or task related.

Based on the heterogeneity of content, ongoing thoughts can be a family of

various type of spontaneous thoughts with essential shared features. The lack

of understanding of family resemblance results in conflicts in ongoing thought

literature.

In the past decade, the neural basis of unconstrained processes has become

the centre of the topic. DMN is the commonly engaged large-scale network.

The extensive literature has documented the task-negative trait of DMN. The

executive failure account of mind-wandering is in line with the task-negative
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view of DMN. However, the role of DMN in the memory representation account

of ongoing thought is unresolved. Recent literature on neural hierarchy has

cast a different light on the function of DMN. The highest-level abstract and

heteromodal cognitive functions are associated with DMN, whereas perception

and motor-related regions are related to sensory processing. This new view

provides a clue to investigate the representational account of ongoing thought.

The conflict in the mind-wandering literature is related to the one-to-one

matching between ongoing thought and the brain or behaviour. To paint the

full picture of ongoing thought, a multivariate method will help incorporate the

three aspects mentioned above: cognition, experience, and neural basis. The

current thesis adopts SCCA to resolve arguments related to heterogeneity in

mind wandering. With advances in computing resources and enriched data size,

CCA has gained popularity in neural imaging research. The motivation of the

current thesis is to resolve the conflict in the ongoing thought literature. Based

on recent research on neural hierarchies of cognition, the current thesis argues

that regions beyond DMN contribute to the cognitive process underlying ongoing

thought. The analysis, therefore, incorporates the functional organisation of

large-scale neural networks as the main neural measure. The aim is to present

evidence supporting of the family resemblance view and to begin research on

the ontology of the component processes in ongoing thought. An outline of the

remaining chapters is listed below:

Chapter 2: Canonical correlation analysis

Canonical correlation analysis is introduced as the main method of the thesis.

This review focuses on the potential applications in neuroimaging research. The

features and applications of this multivariate method are outlined, followed by

a discussion of the methods’ interpretations and limitations.

This chapter is under preparation for publication.

Chapter 3: Exploring the heterogeneity of ongoing thought

Heterogeneity of mind-wandering leads to conflicting views about its functional

outcomes in behavioural studies. Default mode network is commonly associated

with the emergence of mind-wandering. SCCA conjointly decomposed functional
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connectivity patterns of DMN and thought reports, revealing unique neuro-

experiential components. The study then revealed that the neuro-experiential

components each associated with unique cognitive task measures. The various

connectivity configurations within DMN are associated with different types of

ongoing thought and specific functional outcomes.

This chapter is published in Psychological Science.

Chapter 4: Population variation in the associations between large-

scale networks and experiences

Unconstrained cognitive processes have two faces. The representational account

argues that the primary sensory brain regions decouple from DMN to facilit-

ate memory representation; whereas the executive failure account shows lapses

in attention are related to the demands on attention system and activation of

DMN. We used SCCA to extract related whole-brain functional connectivity

patterns, profiling the neuro-experiential components of unconstrained cognitive

processes. Examining the association between demanding cognitive tasks and

neuro-experiential components, the study revealed evidence supporting both the

representational and executive failure accounts.

This chapter is published in NeuroImage.

Chapter 5: Inhibition of prior information contributes to internal

content representation

Various cognitive functions are involved in the generation of internal experi-

ences. The study of the functional outcomes is often conducted in a manner of

one-to-one mapping. The heterogeneous cognitive outcomes are discussed as con-

flicts rather than the complex details driving the diversity of ongoing thought.

In Chapter 5, we explore the intrinsic whole-brain neural basis of the cognit-

ive functions supporting the unconstrained generation of spontaneous thoughts.

With SCCA we describe the conjoined decomposition of cognitive function and

resting state functional connectivity. Similar to Chapter 4, this study explored

the unconstrained neuro-cognitive mechanism underlying the various dimensions

of ongoing thought.
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Chapter 6: General discussion

The overarching themes of the thesis are discussed and linked to specific results

throughout the thesis. Future research directions are inspired by the findings

and limitations of the current thesis based upon the key questions which this

thesis attempted to answer:

• Why does ongoing thought show both costs and benefits?

• Can functional neural hierarchy explain the heterogeneity?

• Is the family resemblance view viable for ongoing thought?
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Chapter 2

Canonical Correlation Analysis

The following chapter has been adapted from: Wang, H.-T., Smallwood, J., &

Bzdok, D. (2018). Finding the needle in high dimensions: A tutorial on CCA in

biomedicine. Manuscript preparing for publication. 1

2.1 Abstract

Since the beginning of the 21st century, the sample size of studies in medicine

and neuroscience has grown rapidly. For example, data sets with thousands of

subjects are becoming more common and they often entail extensive neural and

behavioural phenotyping yielding datasets with tens of thousands of variables.

The size and complexity of these big data sets pose new challenges to researchers

hoping to use them to understand relationships between brain, cognition and

disease. Canonical correlation analysis (CCA) is a promising method for dealing

with and harvesting insight from these large data sets. CCA allows two input

variable sets to be simultaneously considered and extracted, such as descriptions

of the brain and behaviour. The present tutorial paper introduces rationale,

promises, and pitfalls of CCA.

1D. Bzdok and H.-T. Wang planned the structure of the manuscript. H.-T. Wang. drafted

the manuscript under the supervision of D. Bzdok and J. Smallwood.
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2.2 Motivation

2.2 Motivation

Large biomedical data sets and increasing computational power have opened up

novel ways to conceive of understanding the relationships among brain, cogni-

tion and disease. Similar to the advent of microarrays in genetics, brain-imaging

and extensive behavioural phenotyping yield datasets with tens of thousands of

variables. Since the beginning of the 21st century, the popularity and feasibil-

ity of technologies, such as functional magnetic resonance imaging, (fMRI) have

made it more practical to collect large neuroscience data sets. At the same time,

problems in reproducing the results of key studies in neuroscience and psycho-

logy have highlighted the importance of these large data sets. Accordingly, there

has been a staggering increase in the collection of large cohort datasets (Efron,

2010). For instance, UK Biobank is a prospective population study with 500,000

participants and comprehensive imaging data, genetic information and envir-

onmental measures on mental disorders and other diseases (Allen et al., 2012;

R. L. Miller et al., 2016). The Human Connectome Project (HCP; van Essen

et al., 2013) has recently completed brain-imaging of more than 10,000 young

adults, with 4 hours of body scanning per subject, and utilising vast improve-

ments in the spatial and temporal resolutions of the acquired data. Both the

Enhanced Nathan Kline Institute Rockland Sample (Nooner et al., 2012) and the

Cambridge Centre for Aging and Neuroscience (Cam-Can; Taylor et al., 2017;

Shafto et al., 2014) reflect large (N >= 700), cross-sectional adult lifespan (18–87

years old) population-based samples. These datasets describe changes in cogni-

tion and brain structure and function, with raw and preprocessed brain imaging

data and cognitive behavioural experiments and demographic and neuropsycho-

logical data. While extensive phenotypes and big sample size provide oppor-

tunities for more robust descriptions of key population variation, these are not

without associated costs. Classical statistical tools struggle to resolve datasets

with more variables than observations, and even large samples of participants

are smaller than the number of voxels that are possible in state of the art high-

resolution brain imaging scans. On the other hand, in large samples, standard

statistical techniques often yield highly significant associations that only account

for a very small fraction of the variance to be explained. The growing interest

in big data sets, therefore, requires that researchers must seek alternative tools
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to gain the benefit provided by big data sets.

The present tutorial paper considers the suitability of Canonical correlation

analysis (CCA) as a tool for charting and generating understanding from big

data sets. One key feature of CCA is that it can simultaneously evaluate two

matrices of information, such as many brain measurements and many beha-

vioural measurements. In particular, CCA simultaneously identifies the main

sources of variation that are common to both sources of variation. CCA is a

multivariate statistical method that was introduced in 1936 (Hotelling, 1936).

However, CCA is computationally expensive and so has only become a useful

tool for biomedicine relatively recently. One important feature of CCA is that

it describes dimensions that unravel the correspondence between two different

sets of variables. In cognitive neuroscience, this often allows the determina-

tion of variation that links patterns of brain activity to patterns of behaviour.

Moreover, the multivariate nature of CCA allows the identification of patterns

that describe many-to-many relations and so provides a utility that goes bey-

ond techniques that map one-to-one relationships (e.g., Pearson correlation) or

many-to-one relationships (e.g., linear support vector machines). With the ad-

vent of larger datasets, researchers in neuroscience have begun to take advantage

of these features of CCA to address novel questions regarding the links between

brain, cognition and disease (Marquand, Haak, & Beckmann, 2017; Smith et al.,

2015; Tsvetanov et al., 2016; Vatansever, Bzdok, et al., 2017; Wang, Poerio, et

al., 2018; Wang, Bzdok, et al., 2018).

Our guide to CCA proceeds in four parts. We first introduce the model in

detail and the circumstances of use with recent applications of CCA in existing

research. Next, we consider the quantitative conclusions that can be drawn from

the application of the CCA algorithm, with special attention to the limitations

of this technique. Finally, we provide a set of practical guidelines about how the

analysis can be used moving forward.

2.3 Modelling intuitions

One way to appreciate the idea behind CCA is by viewing this procedure as an

extension of the widely applied principal component analysis (PCA). PCA pro-

duces a set of dimensions that act as a close approximation of the variance in the
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original data set, except in a compressed form. In other words, PCA converts a

set of correlated variables into a smaller number of hidden factors that were not

directly observable in the original data, but explain the structure of the obser-

vations in an efficient way. As a prominent example, the Big Five personality is

a psychological construct of human personality traits discovered through PCA

(Barrick & Mount, 1991). In this case, personality survey data is entered into

a PCA, which produces five components that explain a substantial amount of

meaningful variation within the data. The advantage of decomposition methods

such as PCA is its ability to reduce the original data sets to fewer dimensions

that are more amenable to psychological interpretation. Such re-expression of

the original data in a compressed, more parsimonious form has computational-

statistical and interpretational appeal, while still capturing a large amount of

the variability in the original large variable array. Unlike PCA, CCA maximises

the linear correspondence between linear combinations of two variable sets, by

seeking dimensions of variance that described shared variance across both sets.

CCA, therefore, is particularly useful when describing observations that bridge

two domains, for example, (i) genetics and behaviour, (ii) brain and behaviour,

or (iii) brain and genetics. There are three characteristics for modelling data

using CCA: joint-information compression, symmetry and multiplicity.
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Figure 2.1. An example of CCA on behavioural data.

Figure from Bailey et al. (2013). Consider a case of exploring the relations between
movie genre and personality with CCA. On the left-hand side, we can input the data
related to the movies the participants watched, such as the number of action/ docu-
mentary/comedy etc. movies watched. The right-hand side is the personality rating of
the participants, for example, extrovert vs not, openness vs not etc. The CCA can then
find the related personality traits with the type of movies they are likely to watch.

2.3.1 Joint information compression

The purpose of CCA is to find sources of variability that are common to two sets

of variables. The relations of a pair of factors across sets of variables, their canon-

ical correlation, indicates the conjoined explained variance across both domains.

In a similar manner to PCA, CCA aims to find the most compact linear patterns,

canonical variates, based on the variance explained under the contained of un-

correlated hidden dimensions. Also, similar to PCA these dimensions are ranked

by their explained variance, with earlier dimensions accounting for more variance

than later dimensions. An example of the application of CCA to behavioural

data is presented in Figure 2.1.

2.3.2 Symmetry

CCA does not distinguish between the left and right variable sets during the

information compression process. Instead, the canonical correlation indicates

that a unit change in a component in one set of observations is consistently
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associated with an equivalent change in the other set of observations. As CCA

does not privilege one of the variable sets, numerically identical decomposition

results are returned regardless of the input order of the variable sets. This

feature of CCA is known as symmetry and is a key feature that distinguishes

CCA from other linear regression methods. The symmetrical nature of CCA can

be contrasted with linear-regression models, in which dependent and independent

variables play different roles in the analysis. Regression indicates the impact of

a unit change in the independent variable on the dependent variables, therefore

dependent and independent variables cannot be exchanged to obtain an identical

result. As CCA is a correlation-based method, it describes the co-relationship

of the two variable sets, thus the exchange of the two variable sets produces

identical results.

2.3.3 Multiplicity

In CCA, a pair of dimensions that share variance in both sets of observations is

known as a mode. A mode contains a pair of canonical variates that describe

the linear structure of the two variable domains. After finding the mode that

describes the most variation, CCA will next determine the next pair of dimen-

sions that remains in the unexplained variance of both data sets. Since every

new mode was found in the residual variance, the modes are optimised to be

uncorrelated with each other. In this manner, CCA produces a set of mutually

orthogonal modes naturally ranked by explained variance. The orthogonality

constraint ensures the modes represent unique linear patterns that describe dif-

ferent features in the data. When the modes are theoretically meaningful, the

researchers can potentially use these to formulate a component process approach

to interpret the data.

2.3.4 Interim summary

In conclusion, CCA uncovers effective, symmetric linear relations that compactly

summarize doubly-multivariate data. We introduced three important character-

istics of CCA. First, CCA provides more effective hidden representation that

captures most variance in original variables. Next, the CCA model is symmet-

rical in the sense that no numerical difference happens in the exchange of the two
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variable sets. Finally, we can estimate several modes of correspondence between

the two variable sets. In the next section, we would like to explore examples of

CCA applications.

Figure 2.2. The analysis pipeline of Smith et al. (2015). The arrows represent analysis

performed.

2.4 Examples

Smith et al. (2015) employed CCA to uncover brain-behaviour modes of popula-

tion co-variation in the HCP (van Essen et al., 2013). Smith et al. (2015) aimed

to discover whether any specific patterns of functional brain connectivity, on the

one hand, are associated with specific sets of correlated demographics and be-

haviour on the other hand (see Figure 2.2 for the analysis pipeline). Functional

brain connectivity was retrieved from resting state functional scans which meas-

ure the brain activity in the absence of a task or stimulus (Biswal, Zerrin Yetkin,

Haughton, & Hyde, 1995). Independent component analysis (ICA; Beckmann

et al., 2005) was used to identify 200 networks from the resting state scans. ICA

identifies independent networks by separating the spatial sources of the rest-

ing state data. Next, functional connectivity matrices were calculated based on

the pair-wise correlation of the 200 networks. The behavioural measures ran-

ging from cognitive function to demographic information were entered into the

CCA as one set of observations and the functional connectivity matrices were
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the second set. The robustness of the modes was determined via permutation

tests on the canonical correlations. One significant mode demonstrated strong

population-level co-variation of network connectivity and behavioural measures.

The behavioural measures varied along a positive-negative axis with intelligent,

memory and cognition tests and life-satisfactory on the positive end and negative

lifestyle measures anchoring the other end. The brain regions highly contribut-

ing to the connectivity resembles the default mode network (DMN; Buckner,

Andrews-Hanna, & Schacter, 2008). The positive-negative dimensions in the be-

havioural component and the emergence of DMN in the brain component may

seem trivial on their own, however, CCA formalised the relation of the under-

lying biology and the correlation among the general behavioural measures that

captures intelligence. Regions composing DMN has been associated with epis-

odic and semantic memory, scene construction, and complex social reasoning

such as the theory of mind (Andrews-Hanna, Smallwood, & Spreng, 2014). The

finding of Smith et al. (2015) provided evidence that the DMN is important for

higher-level cognition, especially intelligence—one of the perhaps most important

indices so far identified by psychologists.

Figure 2.3. The analysis pipeline of Wang, Poerio et al. (2018). The arrows represent

analysis performed.

Another use of CCA has been to understand the relationship between pat-

terns of brain activity and variations of experience. Wang, Poerio, et al. (2018,
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see Figure 2.3 for the analysis pipeline) used CCA to examine links between

the DMN and patterns of ongoing thought. In both the laboratory and in daily

life, ongoing though can often shift from the task at hand, a phenomenon that is

characterised by the experience of mind-wandering (Smallwood & Schooler, 2006,

2015). These shifts have been associated with poorer performance on attention-

demanding tasks (McVay & Kane, 2009; Mrazek et al., 2012), yet studies of

problem-solving suggest that mind wandering may promote creativity (Baird et

al., 2012; Smeekens & Kane, 2016) and future planning (Baird et al., 2011; Medea

et al., 2016). Despite the heterogeneity of functional outcomes, task-unrelated

thoughts during mind wandering are linked to changes in DMN activity (see the

review from Smallwood & Schooler, 2015). Wang, Poerio, et al. (2018) used CCA

to examine the hypothesis that the reason why patterns of off-task thought can

have opposing links with behaviour is that there are distinct patterns of the pop-

ulation of variance that link different types of ongoing thought to activity in the

DMN. Their analysis used patterns of connectivity within the DMN as one set of

observations and self-reported descriptions recorded in the laboratory, recorded

across multiple days, as the second set. The connectivity among 16 DMN regions

and 13 self-report questions on thoughts were entered using a sparse version of

CCA (Witten & Tibshirani, 2009). Two stable modes corresponded to traits of

positive-habitual thoughts and spontaneous task-unrelated thoughts both with

unique patterns of neural connectivity patterns within the DMN. Importantly,

subsequent analyses identified that the modes were uniquely related to aspects

of cognition, such as executive control and the ability to generate information in

a creative fashion, and independently distinguished well-being measures. These

data suggest that the DMN can contribute to ongoing thought in multiple ways,

each which have unique behavioural associations. Wang, Poerio, et al. (2018),

therefore, suggest that mind wandering is a collective term for various types of

spontaneous thought (see Seli et al., 2018). The different configurations of DMN

also demonstrated its possible role as an integrator in cognition, rather than a

task-unrelated network (Margulies et al., 2016).
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2.5 Interpretations

The symmetrical data compression feature of CCA makes it particularly useful to

help researchers handle the complexity of two sets of variables. However, whether

the process of the analysis is an exploration of hidden structures or mutually

constrained predictive component remains a matter of debate. CCA can be

viewed as a supervised predictive algorithm or as an unsupervised exploratory

algorithm. A supervised algorithm relies on the predefined labels/relationships in

the data to form prediction; whereas an unsupervised algorithm aims to extract

patterns in the data with unlabelled data. CCA has some properties of both

supervised and unsupervised modelling approach. The more the dimensionality

of one of the variable sets resembles the single output of linear-regression-type

methods, the more CCA application approaches output is similar to a supervised

modelling approach. In contrast, with larger variable sets on both sides, the more

CCA resembles an unsupervised modelling approach.

The main difference between supervised and unsupervised method depends

on whether there is a set of determined variables as the goal of modelling. To

examine whether the models prediction matches the desired result, a super-

vised learning method contains a learning target or loss function. The difference

between the prediction generated by the model and the real label is the object-

ive of a so-called loss function. CCA has the objective to maximise the linear

correlation between the latent dimensions from two variable sets. While most su-

pervised learning methods estimate loss between real data and predictions, CCA

has an unusual objective that we rarely see in supervised estimators. Symmetry

is another reason that makes CCA an unusual case of supervised learning. In

supervised learning, the model learns the pattern in the data to predict a set of

targets. The symmetrical nature of CCA does not distinguish the two sets of in-

put variables. The data compression and hidden structure inspection aspect put

CCA in line with unsupervised methods. The conjoined decomposition, there-

fore, captures the relations among the variables. The found relations are used to

construct fewer factors that capture the variance of the original data. CCA has

the strength of both supervised and unsupervised methods. Like unsupervised

methods, CCA can search through candidate patterns to find structure in data.

The accurate predictions formed by CCA highlights the trait of a supervised
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method. In conclusion, CCA is a special case that sits in-between the super-

vised and unsupervised methods. The flexibility in interpretation offers people

multiple ways to utilise CCA in research.

Statistical methods can be categorised into three categories based on their

goals: estimation, prediction, and inference. Estimation represents ways or a pro-

cess of learning and determining the population parameter based on the model

fitted to the data. Prediction is making an inference of an unknown data points

based on information obtained from a sample. Inferential statistical analysis util-

ises hypothesis testing to draw conclusions about populations or scientific truths

from data. CCA falls into the family of estimation. The focus of CCA is to

establish statistical associations (i.e. the latent linear relations among variables,

the association between the two latent linear relations). Predicting some vari-

ables based on other variable is not the optimisation goal. CCA does not seek to

establish ‘statistically significant links between variables’. The null hypothesis

that is really tested around the robustness of the latent space correlation (i.e.,

the canonical correlations of the latent variables extracted from the two variable

sets) across modes, not so much particular variable-variable links. CCA is often

used to rigorously evaluate whether overall linked covariation patterns can be

found in two variable sets, rather than pinpointing and ‘putting the finger on’

certain specific relations that should be interpreted with more caution.

2.5.1 Utility of CCA

CCA does not come without limitations and here we discuss several issues that

researchers should keep in mind when evaluating whether the data set is suitable

for CCA. We summarise these choices in the form of a flowchart (see Figure 2.4).

As with many statistical approaches, the sample size is an important factor

when considering whether CCA is appropriate. CCA can handle data with more

observations than the number of variables of the smaller variable set (i.e. p <

min(m,n)). However, smaller data set does not fully utilise the strength of CCA

since they tend to have less variability. Relationships in areas like neuroscience

are often small, and so a large number of samples is required to correctly infer the

variability in data. On the other hand, if the number of variables of either side

of the equation exceeds the sample size, CCA does not generate unique linear
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combinations for each variable set. In such a scenario, a PCA rank-reduction

preprocessing step is commonly performed before applying CCA (Smith et al.,

2015). The use of CCA, therefore, is more appropriate when samples sizes are

reasonably large relative to the sets of variables being analysed.

Figure 2.4. A flowchart illustrating the choices when considering the application of

CCA to a dataset.

A second issue is the nature of the relationships that CCA describes in the

underlying data. CCA is essentially a linear model, and so makes a set of as-

sumptions regarding the normality of the distribution of the observed data, as

well as the linearity of the underlying relationships. CCA can accommodate any

metric variable without the strict assumption of normality. However, normality is

desirable as it allows for the highest correlation among variables, and this makes

the task of identifying the underlying dimensions easier. It is recommended to

evaluate the normality of all variables and apply data transformation where ap-

propriate before CCA is applied to the data. CCA also assumes that relationships

within the data are linear and this introduces two limitations. Since only linear

effects can be captured, any patterns within the data that are non-linear (e.g.

quadratic or cubic relationships) will not be captured by this analysis. Finally,

in CCA relationships are optimised in terms of how effectively they describe

linear correlations between variables within the observed data. Relationships

discovered by CCA, therefore, should not be considered as predictive accounts
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of relationships with future data. Any interpretation and application related to

predictability of the canonical components in new data should be treated with

caution. If the prediction of future observations is important, a small fraction

(20 − 25%) of the full data can be left out as a test data set when the sample

size is sufficiently big. The analysis will be applied on the training set first to

retrieve the canonical modes. The predictability of the canonical variates from

the modes will be examined by calculating the explained variance on the test

set.

2.5.2 Relation to other commonly used methods

CCA can be framed as a general example of other statistical procedures that are

derived from the general linear model (GLM). Virtually all of the paramet-

ric tests most often used by behavioural scientists (e.g., ANOVA, MANOVA,

multiple regression, Pearson correlation, t-test) can be subsumed by CCA as

special cases in the GLM (Knapp, 1978; Thompson, 2015). Because these tech-

niques are intricately related and fundamentally the same in many respects of

CCA, learning CCA may help facilitate conceptual understanding of statistical

methods throughout the GLM.

CCA is related to other feature learning methods in neuroscience. As men-

tioned in the modelling intuition section, PCA is a similar method performed

on one set of variables only. The objective of PCA is a transformation of sev-

eral possibly correlated variables into a smaller number of uncorrelated variables

known as principal components. PCA compresses data into a smaller number of

factors that carry most of the variance of the data.

Independent component analysis (ICA) performs a linear transform that

makes the resulting variables as statistically independent from each other as pos-

sible. The basic assumption behind ICA is that the data is composed of inde-

pendent sources of information. In contrast to PCA and CCA, all components

are equally important. ICA helps when you want to find a representation of your

data as independent sub-elements

Partial least squares (PLS) regression and CCA are both techniques for

feature extraction from two sets of multidimensional variables. The fundamental

difference between CCA and PLS is that CCA maximizes the correlation while
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PLS maximizes the covariance. PLS is a supervised approach that attempts to

find directions that help explain both the response and the predictors. Most

of the comparison between PLS and CCA is focused on the generation of the

first components. There is no one way to compute the other components in PLS

(De Bie, Cristianini, & Rosipal, 2005).

Several useful extensions of CCA has emerged in the past decade to overcome

the limitation of the linear version of CCA. The first was the nonlinear version

of CCA, with kernelization of CCA (KCCA; Hardoon, Szedmak, & Shawe-

Taylor, 2004) as the representative. Kernels are methods of implicitly mapping

data into a higher-dimensional feature space with kernel function, a method

known as the kernel trick. KCCA first projects the data into a higher-dimensional

feature space before performing CCA in the new feature space. While KCCA

allows learning of nonlinear representations, the drawback is that the represent-

ation is limited by the fixed kernel. KCCA is a nonparametric method, hence,

the time required to train KCCA or compute the representations of new data

points scales poorly with the size of the training set.

Sparse CCA (SCCA; Witten & Tibshirani, 2009) is a method for identi-

fying sparse linear combinations of the two sets of variables that are highly

correlated with each other. It has been shown to be useful in the analysis of

high-dimensional data when the variable number of either array is higher than

the number of samples. The sparse feature reduces some coefficients to 0 in the

linear structure depending on the penalty parameters. The benefit of sparsity is

an improvement in interpretation and feature selection. However, sparsity viol-

ates the orthogonality of CCA, meaning the components in different modes can

correlate with each other. The explained variance of each mode will not follow

the rank order either. Recently, we have used k-fold cross-validation to identify

the ideal level of sparsity in a study that explores the relationship between pat-

terns of thought at rest and the associated brain organization (Wang, Bzdok, et

al., 2018).

With the recent advance in the deep neural network, deep CCA (DCCA;

Andrew, Arora, Bilmes, & Livescu, 2013) has been proposed as an alternative to

KCCA as a non-linear method for CCA. A deep neural network is an algorithm

that learns the representation of data through multiple non-linear transforma-
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tions. The name came from the architecture that loosely follows the connections

of neurons. DCCA simultaneously learns two deep neural network mappings

of two variable sets that are maximally correlated. The main advantage is the

faster performance over KCCA because DCCA directly learns the data without

re-mapping data into a higher dimension.

2.6 Practical considerations

Having introduced the features and interpretations of CCA, we close by consid-

ering the practical considerations that determine how it should be implemen-

ted. The computation of CCA is available in the in-built library of MATLAB

(canocorr) and R (cancor), and Python machine-learning library scikit-learn

(sklearn.cross decomposition.CCA). All implementations above provides com-

prehensive documentation for how to implement CCA and we describe the ad-

ditional steps that a researcher may wish to consider before applying CCA to

their data.

2.6.1 Preprocessing

Some minimal data preprocessing is usually required for most machine-learning

methods. CCA is scale-invariant in that applying some standardising data

transformation on the columns of the variable sets should not change the result-

ing canonical correlations. This property is inherited from Pearson’s correlation

defined by the degree of simultaneous unit change between two variables, with

implicit standardisation of the data. Nevertheless, z-scoring of each variable of

the measurement sets is still recommended before performing CCA to facilitate

the model estimation process and to enhances interpretability. To avoid outliers

skewing the results, application of outlier detection techniques and outlier

cleaning are recommended before the analysis, such as imputation with the

mean or median of the variables. Aside from outliers, some confound variables

can also introduce unwanted effects. Confound variable removal is recommended

as a preprocessing step to reduce the risk of finding non-meaningful associations.

The same rules are also commonly applied for the GLM in the neuroimaging

data. The subsequent analysis would reflect the data without influences of the
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confound. In neuroimaging, for example, motion is thought to be an important

confound (Power et al., 2014) and as consequence, it is common to remove the

influence of this variable prior to conducting CCA (see Wang, Bzdok, et al.,

2018).

When the number of variables exceeds the number of samples, PCA is recom-

mended as a preliminary dimension reduction step before performing CCA.

An example is work by Smith et al. (2015). The application of PCA compresses

the number of variables in each matrix to the most explanatory dimension of

variation. However, a downside of this method is the difficulty to directly map

the resulting dimensions to the original data. To interpret the CCA solutions

in the original data, Smith et al. (2015) correlate the canonical variates to the

original data to recover the relevant variate captured by the CCA component

pair.

CCA component can be challenging to interpret, especially when a PCA di-

mension reduction is applied. An alternative solution is a CCA+ICA method

in addition to the PCA (K. L. Miller et al., 2016; Sui et al., 2010) has been pro-

posed to overcome the issue of projecting the PCA-compressed data back to the

original space. In the original CCA+ICA approach, the assumption is that CCA

extracted components are an incomplete decomposition with multiple possible

sources (i.e. patients vs controls). CCA first finds the correlated variance of the

two variable set. After CCA, the canonical components are concatenated into

one array. ICA is then applied to the canonical components to recover the source

of the variance. The ICA step can be done in the full feature space by projecting

the CCA components to the PCA components (K. L. Miller et al., 2016). The

CCA+ICA approach achieves both high estimation accuracy and provides the

correct connection between two variable sets. The ICA step is especially use-

ful in the detection of independent components that contribute to the common

solution extracted from the two variable sets.

2.6.2 Model selection

CCA allows multiple modes to be calculated from the observed data, however, it

is necessary to specify the appropriate number of these latent sources of variation.

To select the number of modes (canonical component pair, see Section 2.3), we
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can use explained variance metrics to determine a useful number of modes.

Since the canonical components are the compressed information of the original

data, the canonical component would be expected to be related to the original

data. The calculation can be done by predicting the canonical components with

the original scores. Another solution is to calculate the family-wise error rate

through permutation tests. The incentive of a permutation test is to access

the robustness of results when comparing to results from randomly re-arranged

data. The permutation is done by randomising one of the variable sets to break

the unique relationship between the two variable sets in each observation in-

stance. The extracted modes from the randomised sample will serve as the

chance level results. Permutation tests establish robust above-chance corres-

pondences between variable sets, but no null hypothesis significance testing for

an individual variable is tested this way. The first canonical correlation of the

permuted sample is compared with all the CCA modes extracted from the real

data . The p-value for each mode is calculated as the number of permuted sample

canonical correlation higher than the given mode from the real sample, divided

by the number of permutation.

The variations of CCA might need an extra step for hyperparameters se-

lection, such as the knobs of kernel type and penalty in KCCA, penalty strengths

in SCCA, and layer number in DCCA. A permutation or cross-validation scheme

is recommended for hyperparameters selection. The permutation test on hyper-

parameter selection is set up in the same way as model selection, but focusing

on the first canonical correlation only(For example, see Appendix A in Witten

& Tibshirani, 2009). In terms of cross-validation, the objective function for

model selection can be the out-of-sample explained variance or the variance loss

between the training set and the testing set.

2.7 Summary

In biomedicine research, the relationships among brain, cognition and disease

are often complicated. Focusing on a small selection of measures will risk in

ignoring potential factors. CCA is a doubly multivariate pattern analysis on two

variable sets. With no directionality implied on either variable set, CCA enables

more flexibility on the research questions. As the interest in multitask data and
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rich cognitive phenotyping in large datasets grows, CCA fulfills the need of a

method that can considers a large set of possible variables in one analysis. With

its ability to reduce the data to meaningful and concise information, CCA is a

promising method for scientists who are interested in exploration of multivariate

patterns in large data sets.
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Chapter 3

Exploring the Heterogeneity of

Ongoing Thought

The following chapter has been adapted from: Wang, H.-T., Poerio, G. L.,

Murphy, C. E., Bzdok, D., Jefferies, E., & Smallwood, J. (2018). Dimensions of

Experience: Exploring the Heterogeneity of the Wandering Mind. Psychological

Science, 29 (1), 56-71. doi:10.1177/09567976177287271

3.1 Abstract

The tendency for the mind to wander to concerns other than the task at hand

is a fundamental feature of human cognition, yet the consequences of vari-

ations in its experiential content for psychological functioning are not well under-

stood. Here, we adopted multivariate pattern analysis to simultaneously decom-

pose experience-sampling data and neural functional-connectivity data, which

revealed dimensions that simultaneously describe individual variation in self-

reported experience and default-mode-network connectivity. We identified di-

1 J. Smallwood, E. Jefferies, H.-T. Wang, and C. Murphy designed the study. H.-T. Wang,

C. Murphy, and G. Poerio collected the data. The connection-strength and sparse canonical-

correlation analysis pipeline was constructed by D. Bzdok and H.-T. Wang. Data were analyzed

by H.-T. Wang, C. Murphy, and G. Poerio under the supervision of D. Bzdok, J. Smallwood,

and E. Jefferies. H.-T. Wang and J. Smallwood drafted the manuscript. G. Poerio and D.

Bzdok provided critical revisions. All the authors approved the final version of the manuscript

prior to submission.
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3.2 Introduction

mensions corresponding to traits of positive-habitual thoughts and spontaneous

task-unrelated thoughts. These dimensions were uniquely related to aspects of

cognition, such as executive control and the ability to generate information in

a creative fashion, and independently distinguished well-being measures. These

data provide the most convincing evidence to date for an ontological view of the

mind-wandering state as encompassing a broad range of different experiences and

show that this heterogeneity underlies mind wandering’s complex relationship to

psychological functioning.

3.2 Introduction

Although people’s minds frequently wander from events in the here and now,

or any task being performed, the functional consequences of this state remain

poorly understood (Mittner et al., 2016; Seli, Risko, Smilek, & Schacter, 2016;

Smallwood & Andrews-Hanna, 2013). Some studies link mind wandering to un-

happiness (Killingsworth & Gilbert, 2010); others suggest it facilitates recovery

from negative emotional states (Poerio et al., 2016; Ruby, Smallwood, Engen, &

Singer, 2013). Mind wandering is associated with poorer performance on tasks

that place high demands on executive functions (McVay, Kane, & Kwapil, 2009;

Mrazek et al., 2012), yet studies of problem solving suggest that mind wandering

may promote creativity (Baird et al., 2012; Smeekens & Kane, 2016). This wide

range of associated functional outcomes is puzzling–if mind wandering is a ho-

mogeneous construct, then it is unclear why it should be associated with such a

complex array of often opposing outcomes. To reconcile this contradictory evid-

ence, researchers have suggested that mind wandering may be heterogeneous,

encompassing multiple states with differential contents and underlying cognitive

architectures (Smallwood & Andrews-Hanna, 2013). According to this onto-

logical perspective, different functional associations arise from different ‘types’

of experience, which explains the range of functional outcomes observed in the

literature.

In the current study, we recruited 165 participants and obtained data on

(a) the organization of the brain at rest using functional MRI (fMRI), (b) the

content and form of experience recorded across different days, (c) cognitive func-

tions assessed by a comprehensive battery of tasks (including memory, creativity,
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and executive control), and (d) psychological well-being via questionnaires. Our

procedure is presented in Figure 3.1. These data allowed us to use novel mul-

tivariate analysis methods to test the hypothesis that there are different types

of mind wandering, with unique neural and experiential patterns accounting for

unique variance in the psychological profile of our sample.

We used functional connection strength to characterize the neural organ-

ization of each individual. We selected regions for our analysis on the basis

of evidence that task-unrelated thoughts are linked to concurrent increases in

activity in medial prefrontal cortex (mPFC), posterior cingulate cortex (pCC),

and lateral parietal cortex (for meta-analyses, see K. C. R. Fox, Spreng, El-

lamil, Andrews-Hanna, & Christoff, 2015; Stawarczyk & D’Argembeau, 2015).

regions that make up the core of the default mode network (DMN; Buckner et

al., 2008). During mind wandering, it is believed that these regions interact with

other areas of the cortex, in particular, temporal lobe regions associated with

memory representation that are also allied to the DMN. For example, the hip-

pocampus activates early during mind wandering (Ellamil et al., 2016). whereas

connectivity between lateral and medial aspects of the temporal lobe and the

DMN core predicts individual variation in features of mind wandering, such as

its episodic content (Karapanagiotidis et al., 2017). Contemporary accounts of

mind wandering posit that the DMN may be important for automatic aspects of

cognition (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016). Other stud-

ies have highlighted links with the lateral prefrontal cortex, which is important

for executive control when mind wandering is more deliberate (e.g., Golchert et

al., 2017).

We applied multivariate pattern analysis to the neurocognitive and experien-

tial data to identify different types of mind wandering. If the DMN is important

for automatic aspects of cognition (Christoff et al., 2016), states linked to high

levels of connectivity within this system may have experiential features reflecting

more automatic types of cognition. Our a priori decision to focus on the DMN

core to derive patterns of experience limited our ability to observe interactions

with regions outside of this system, so we used whole-brain functional connectiv-

ity to characterize these links for each type of experience. On the basis of prior

studies (e.g., Ellamil et al., 2016; Golchert et al., 2017; Smallwood et al., 2016),
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we expected this analysis to identify connections with regions in the temporal

lobe or the executive system. This pattern would confirm the hypothesised ac-

counts of the DMN as important in integrating neural information (Margulies et

al., 2016; Smallwood et al., 2016). Having characterised different types of mind

wandering in both brain and experience, we used these to test the hypothesis

that different categories of experience are related to different functional out-

comes. We performed an individual differences analysis to understand whether

our characterised types of mind wandering have unique functional associations,

including better creativity, worse executive control, and lower levels of well-being.

We expected different patterns of experience to capture different psychological

profiles explaining the heterogeneous pattern of functional outcomes that have

been linked to the mind-wandering state in previous studies (Smallwood, Ruby,

& Singer, 2013).

3.3 Method

3.3.1 Participants

One hundred sixty-five healthy participants were recruited from the University

of York (99 females, 66 males; age range = 18–31 years, M = 20.43, SD =

2.63). We preselected a sample size approximately double those used in our

prior studies (e.g. Smallwood et al., 2016).A sample size of at least 125 is re-

commended in order to have 95% confidence that a correlation of typical size

(r = .20–.30) is present and greater than 0 (Hemphill, 2003). Participants were

right-handed native English speakers with normal or corrected-to-normal vision

and no history of psychiatric or neurological illness. Participants underwent MRI

scanning, completed an online questionnaire, and then attended three 2-hr beha-

vioural testing sessions to complete a battery of cognitive tasks. The behavioural

sessions took place within a week of the scan. Eight participants were excluded

from the multivariate pattern analysis because they failed to complete all of the

behavioural testing sessions. In total, 157 participants were included in the mul-

tivariate pattern analysis and the comparison with cognitive performance. One

hundred forty-two participants completed both the behavioural testing sessions

and questionnaires and were included in the analysis associated with well-being.
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Participants were rewarded with either a payment of £80 or a commensurate

amount of course credit. All participants provided written consent prior to the

fMRI session and the first behavioural testing session. Approval for the study

was obtained from the ethics committee of the University of York Department

of Psychology and the University of York Neuroimaging Centre.

3.3.2 MRI acquisition

Structural and functional data were acquired using a 3T HDx Excite MRI scan-

ner (GE Healthcare, Little Chalfont, United Kingdom) utilising an eight-channel

phased-array head coil tuned to 127.4 MHz at the York Neuroimaging Centre,

University of York. Structural MRI acquisition in all participants was based on

a T1-weighted 3-D fast-spoiled gradient-echo sequence repetition time (TR) =

7.8 s, echo time (TE) = minimum full, flip angle = 20◦, matrix size = 256 × 256,

176 slices, voxel size = 1.13× 1.13× 1 mm3. Resting-state activity was recorded

from the whole brain using single-shot 2-D gradient-echo-planar imagingTR = 3

s, TE = minimum full, flip angle = 90◦, matrix size = 64 × 64, 60 slices, voxel size

= 3× 3× 3 mm3, 180 volumes. Participants viewed a fixation cross for the dura-

tion of the 9-min fMRI resting-state scan. A fluid-attenuated inversion-recovery

(FLAIR) scan with the same orientation as the functional scans was collected to

improve co-registration between subject-specific structural and functional scans.

3.3.3 Questionnaires

We administered a battery of questionnaires to comprehensively assess a diverse

range of trait-level individual differences that have been previously related to

mind wandering. These questionnaires captured the trait-like features of parti-

cipants’ psychological states, particularly aspects of well-being. The complete

details of the questionnaires are presented in Appendix A.1.

3.3.4 Behavioural testing sessions

The trait profiles captured by the questionnaires were complemented by measures

of performance on a range of cognitive tasks. Behavioural tasks were selected to

measure a broad range of cognitive attributes, including semantic and episodic

memory, executive control, fluency, and creativity. These measures were assessed
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in three sessions. Each session began with a task to index the content and form

of mind wandering (0-back/ 1-back task), followed by the other cognitive meas-

ures. The order of sessions and the order of tasks was counterbalanced across

individuals. Details of the 0-back/ 1-back task are presented in the following

paragraph. The complete details of the other cognitive tasks are described in

Appendix A.2.

Using a block design, we assessed the contents of experience during mind

wandering in the context of a simple task that manipulated working memory

load (see Konishi et al., 2015; Medea et al., 2016, for prior published examples of

this task). This task was performed at the beginning of each laboratory session to

minimise participant fatigue. Measuring experience over 3 days provided us with

a more comprehensive description of participants’ trait-level mind wandering

than would have been possible in a single experimental session.

In both tasks, participants completed target and nontarget trials. In nontar-

get trials, a pair of shapes appeared on screen; the two shapes were separated by

a vertical line. The pairs consisted of a circle and a square, a circle and a triangle,

and a square and a triangle, each in two different left/right configurations for

a total of six possible pairs. Following an unpredictable sequence of nontarget

trials, a target trial was presented in which participants had to make a manual

response. The target was a small stimulus presented in either blue or red across

conditions, with the colour counterbalanced across participants. In the 0-back

condition, the target was flanked by one of two shapes, and participants had

to indicate which shape matched the target shape by pressing the appropriate

button. In the 1-back condition, the target was flanked by two question marks,

and participants had to respond depending on which side the target shape had

been on during the prior trial. Responses were made using the left and right

arrow keys. Presentation times for fixation crosses ranged from 1.3 to 1.7 s in

steps of 0.05 s, and nontarget presentation times varied from 0.8 to 1.2 s in steps

of 0.05 s. Target presentation times always ranged from 2.1 to 2.5 s in steps of

0.05 s, and a response from participants did not end the target presentation.

There were eight blocks in one session, and each block consisted of two to

four miniblocks. Each block contained either the 0-back or 1-back condition.

The change of task was signalled by the presentation of the word SWITCH,
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which remained on screen for 5 s. The order of the tasks was counterbalanced

across participants, and the eight blocks lasted around 25 min. In each mini-

block, there was one target trial, and the number of nontarget trials preceding

the targets varied between one and six. Participants’ performance was measured

by their efficiency, which was calculated by dividing their average response time

by their accuracy. For ease of interpretation, efficiency scores were reversed, so

that higher scores indicated better performance.

In order to sample different features of participants’ ongoing experiences, we

used multidimensional experience sampling (MDES; Medea et al., 2016; Ruby,

Smallwood, Engen, & Singer, 2013; Smallwood et al., 2016). This technique uses

self-report data to assess the contents of experience on a number of dimensions.

The first thought probe asked participants to rate their level of task focus (My

thoughts were focused on the task I was performing) on a sliding scale from 0

(completely off task) to 1 (completely on task). Participants then answered 12

randomly presented questions regarding the content and form of their experience

at the moment just before they answered the first thought probe (on level of task

focus). These questions (described in Table 3.1) were based on those used in prior

studies adopting this approach to measure self-generated thought (Medea et al.,

2016; Ruby, Smallwood, Engen, & Singer, 2013; Smallwood et al., 2016). At

the moment of target presentation, there was a 20% chance of a thought probe

being presented instead of a target, with a maximum of one probe per block of

the 0-back/1-back task. In each session, an average of 14.07 (SD = 3.30, range

= 6–25) MDES probes occurred; in the 0-back condition, an average of 7.02 (SD

= 2.36, range = 2–14) MDES probes occurred; and in the 1-back condition, an

average of 7.04 (SD = 2.24, range = 1–15) occurred. In total, we sampled 7,006

examples of experience in this study. We calculated the mean scores of each

question across the three sessions for each participant. The MDES scores were

first transformed into z scores for mean-centring and univariance scaling. The

scores described the average momentary experience in each dimension. We used

this score in the multivariate analysis later.
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Table 3.1. Experience-Sampling Questions in the 0-Back/1-Back Task.

Response scale

Dimension Question 0 1

Focus My thoughts were focused on the task I was performing. Not at all Completely
Future My thoughts involved future events. Not at all Completely
Past My thoughts involved past events. Not at all Completely
Self My thoughts involved myself. Not at all Completely
Other My thoughts involved other people. Not at all Completely
Emotion The content of my thoughts was: Negative Positive
Images My thoughts were in the form of images. Not at all Completely
Words My thoughts were in the form of words. Not at all Completely
Vividness My thoughts were vivid as if I was there. Not at all Completely
Detail My thoughts were detailed and specific. Not at all Completely
Habit This thought has recurrent themes similar to those I have had before. Not at all Completely
Evolving My thoughts tended to evolve in a series of steps. Not at all Completely
Deliberation My thoughts were: Spontaneous Deliberate

3.3.5 Neuroimaging data preprocessing and analysis

3.3.5.1 Resting-state fMRI.

Functional and structural data were preprocessed and analysed using the Ox-

ford Centre for Functional MRI of the Brain’s (FMRIB’s) Software Library (FSL

Version 4.1, http://www.fmrib.ox.ac.uk/fsl). Individual FLAIR and T1-

weighted structural brain images were extracted using FSL’s Brain Extraction

Tool (BET). Structural images were linearly registered to the MNI152 template

using FMRIB’s Linear Image Registration Tool (FLIRT). The resting-state func-

tional data were preprocessed and analysed using FSL’s FMRI Expert Analysis

Tool (FEAT). The individual-subject analysis involved motion correction using

FSL’s MCFLIRT, slice-timing correction using Fourierspace time-series phase

shifting, high-pass temporal filtering (Gaussian-weighted least-squares straight-

line fitting, σ= 200 s), and Gaussian low-pass temporal filtering (σ = 2.8 s). In

addition, we regressed out six motion parameters (as estimated by MCFLIRT)

and regressing out cerebrospinal fluid and white-matter signal (top five compon-

ents in the principal component analysis, PCA; CompCor method). No spatial

smoothing and no global signal regression were applied.

3.3.5.2 Network-strength analysis.

To describe the functional architecture of the DMN, we transformed the resting-

state blood-oxygen-level-dependent time series into connection strength values

of the selected regions for each participant. The regions of interest (ROIs) were

obtained from connectivity-based functional parcellation studies of the DMN
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by Bzdok and colleagues (Bzdok, Langner, et al., 2013; Bzdok et al., 2015,

2016; Eickhoff, Laird, Fox, Bzdok, & Hensel, 2016; Eickhoff et al., 2016). There

were 16 selected target network nodes, including subregions located in the bilat-

eral temporoparietal junction (TPJ), ventromedial prefrontal cortex (vmPFC),

dorsomedial prefrontal cortex (dmPFC), and posteromedial cortex (PMC; see

Figure 3.2a). The ROI masks and the related functional-connectivity network

produced with Neurosynth core tools (http://github.com/neurosynth/neuro

synth) can be found on NeuroVault (http://neurovault.org/collections/

2275/). First, we extracted and then averaged the time series of all voxels within

the 6-mm sphere masks of the given regions. Second, we created 16 × 16 sym-

metrical correlation matrices representing the network of the regions that was

computed for all the individual subjects. The off-diagonal of each correlation

matrix contained 120 unique region-region connection strengths. This approach

provided a measure of connection strength of the region-region coupling of the

DMN for each participant.

3.3.5.3 Multivariate pattern analysis.

We performed a sparse canonical-correlation analysis (SCCA) on the connection

strength data and MDES scores to yield different dimensions that simultaneously

described neural organisation and experience. Canonical correlation analysis

(CCA) is an advanced multivariate technique that identifies distinct components

between two variables spaces (Hardoon et al., 2004)–in our case, brain-region

connection-strength values and experiential reports obtained through MDES.

This modelling approach allows linear combinations of the two variable vectors

with correlations among variables to be determined and, unlike in PCA and in-

dependent component analysis, produces dimensions in which the biological data

are simultaneously constrained by psychological measures (and vice versa). To

enhance the interpretability of the decomposition solutions, we used a variant

of CCA penalised by L1 regularisation, SCCA (see Hastie, Tibshirani, & Wain-

wright, 2015). This was achieved by setting a maximum number of brain or

behaviour variables to exactly zero, which resulted in a regularised version of

the singular value decomposition. A reliable and robust implementation of the

SCCA method was retrieved as an R package from CRAN (penalized multivari-
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ate analysis, or PMA). In the current analysis, the L1 penalty was set to 0.3

on resting-state functional connectivity and to 0.5 for the MDES results. Other

parameters were set to the default. In this way, our analysis performed low-rank

(i.e., described an overall network pattern by a parsimonious set of connectiv-

ity causes), conjoint (i.e., respected variance in brain and behaviour at once),

and sparse (i.e., automatically found unimportant variables) decomposition of

experiential and neural data.

3.3.5.4 Stability analyses.

We performed two analyses to assess the stability of the solutions produced by

SCCA. First, for each participant, we excluded the MDES data of 1 random

day and then recalculated the average scores for these questions. We repeated

the decomposition on this new set of MDES data and the network connection

strength. This corroborative quantitative assessment provided insight into the

robustness of the obtained findings by a permutation analysis that left 1 day out

at a time. In particular, this procedure addressed whether either the first day

(when participants may be learning how to respond to the experience-sampling

method) or the last day (when participants may have lower levels of motivation)

might unduly bias the decomposition solutions. We reasoned that if the average

momentary MDES responses are stable across three sessions, then they should

yield similar latent components. Second, we acquired bootstrap samples as a

permutation analysis to estimate the variance and generalisability of the sample

to the population. The bootstrap resamples, each reflecting an alternative data

sample that we could have obtained from the same distribution, was created

by random sampling with replacement. The identical SCCA computation was

then reiterated individually on each of the 1,000 perturbed versions of the actual

data sample. This approach enables quantitative assessment of the quality of

the original SCCA estimates by inferring confidence intervals (see Figure A.1 in

Appendix A.3 for the distributions). We selected latent components that were

consistent across the decomposition of the original sample, a leave-1-day-out

sample, and a bootstrap sample, as those are the stable components that were

less biased by the session effect and closer to our best estimation of population.

We formalised the similarity of these two types of resampling by conducting a
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formal conjunction of the solutions generated through these different methods of

resampling. To quantify the similarity between the components, we performed a

conjunction that highlights the common elements of each solution. The feature

conjunctions were calculated as follows:

conjunction =


1, when

√
weightLODO × weightBOOTS > 0.1

0, otherwise.

(3.1)

where LODO refers to leave 1 day out and BOOTS refers to bootstrapping. In

addition, because bootstrapping produces a population estimation of our sample,

we used the latent component weights produced by this method to compute

component scores. This set of scores was used in all subsequent analyses. The

source code for this analysis is available at https://github.com/htwangtw/

DimensionsOfExperience.

3.3.5.5 Whole-brain analysis.

A limitation in our analysis is that we focused on the DMN to describe patterns

of thought. To overcome this limitation, we generalised the types of experi-

ence provided by the SCCA by assessing their associations with areas outside

of the DMN using a process conceptually similar to dual regression (Beckmann,

Mackay, Filippini, & Smith, 2009). To perform these analyses, we preprocessed

and analysed the resting-state functional data using FEAT. For the individual-

subject preprocessing procedure, see the Resting-State fMRI section.

Following these preprocessing steps, we used a mask produced by the average

of the DMN ROIs to determine the time series that described this neural sys-

tem. This time series was used in a whole-brain functionality analysis for each

participant. This allowed us to produce a subject-specific spatial map based

on the selected ROIs, and these maps were used as dependent measures in our

group-level analysis. To test whether the functional connectivity of the DMN

ROIs was associated with the canonical components, we conducted a group-level

analysis using FMRIB’s Local Analysis of Mixed Effects Stage 1 (FLAME 1). To

control for spurious correlations that might emerge from movement, we included

the two canonical components on thought reports only, group mean and Jenkin-

son’s mean framewise displacement (FD Jenkinson, Bannister, Brady, & Smith,

51

https://github.com/htwangtw/DimensionsOfExperience
https://github.com/htwangtw/DimensionsOfExperience


3.3 Method

2002), as explanatory variables in the full model. The Jenkinson’s mean FD

was calculated by the motion power statistic function in Configurable Pipeline

for the Analysis of Connectomes (C-PAC; https://fcp-indi.github.io/). A

50% probabilistic gray-matter mask was applied to the results maps, and the

results were thresholded at the whole-brain level using cluster-based Gaussian

random-field theory, with a cluster-forming threshold (Z ) of 2.6 and a familywise-

error-corrected cluster significance level (p) of .05. Unthresholded maps were

uploaded onto Neurovault (http://neurovault.org/images/43189/).

3.3.5.6 PCA.

To summarise the questionnaire and task data, we performed an initial data-

reduction step using PCA in SPSS (Version 24). This analysis was performed

separately for the questionnaires and task measures. One hundred forty-five

participants’ data were included in the analysis of the questionnaire items, and

157 participants’ data were included in the analysis of the behavioural tasks. The

behavioural-task measures were converted into z scores to avoid data distortions

derived from the difference in score means. Missing data were imputed by mean

scores in both analyses. The Kaiser-Meyer-Olkin (KMO) measure and Bartlett’s

test of sphericity were used to measure the sampling adequacy of the model.

Components were selected on the basis of the elbow in a scree plot (see Figure A.2

in Appendix A.3), and varimax rotation was used to maximise the distinctiveness

of each solution.

In the PCA of the phenotypical variation measured by behavioural tasks,

Bartlett’s test of sphericity was significant, χ2(210) = 775.01, p < .001, which

indicates that it is appropriate to apply PCA to these data. The KMO measure

of sampling adequacy indicated that the current sample was acceptable for PCA

(KMO = 0.79). The PCA of task performance revealed three principal compon-

ents with a clear elbow after the third component observed in the scree plot.

The three orthogonal components accounted for 40.7% of the total variance; the

component loading patterns are shown in Figure 3.3a. The three components,

which accounted for 24.9%, 8.3%, and 7.5% of the variance, respectively, can be

interpreted as the three aspects of cognitive functioning: (a) semantic memory,

(b) executive control, and (c) the generation of information (including letter or
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category fluency and the generation of creative solutions).

In the PCA of the questionnaire data, Bartlett’s test of sphericity was signi-

ficant, χ2(105) = 919.78, p < .001, which indicates that PCA is an appropriate

model for the data. The KMO measure of sampling adequacy indicated that

there were strong relationships among the variables (KMO = 0.82). The applic-

ation of PCA to the questionnaire data revealed four components with a clear

elbow after the fourth component observed in the scree plot in Fig. S2. The

four orthogonal components accounted for 65% of the total variance (produced

component loading patterns are shown in Figure 3.3b). The four components

accounted for 35%, 14%, 9%, and 7% of the variance, respectively. The first

component, affective disturbance, was anchored at one end by high levels of de-

pression and rumination and at the other by high levels of well-being. The second

component was associated with high scores on four of the five autism subscales,

excluding the attention-to-detail subscale. The third component loaded on com-

ponents of both attention-deficit/hyperactivity disorder (ADHD) and dyslexia.

The fourth component loaded on trait anxiety and high levels of attention to

detail, as measured by the Autism Spectrum Quotient (Baron-Cohen, Wheel-

wright, Skinner, Martin, & Clubley, 2001). We analysed these data using a

multivariate analysis of variance (MANOVA) in which the dependent variables

were the PCA loadings produced by the decomposition of the questionnaires,

and the independent variables were the canonical component loadings.

3.4 Results

3.4.1 Determining consistent categories of experience

We applied SCCA to the network-connection-strength values among ROIs in the

DMN and the average scores on the experiential reports gained in the laboratory.

We accepted 13 canonical components generated by SCCA (see Figure A.3 in

Appendix A.3 for the complete set). Of these initial components, two were con-

sistent when we randomly removed the MDES reports of 1 day per participant

and when bootstrapping was used to provide a more comprehensive descrip-

tion of the sample (see Section 3.3). The consistency of these patterns across

the three different analyses indicates that, in qualitative terms, they were not
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Figure 3.3. Results from principal component analyses of (a) behavioural tasks and

(b) questionnaires.

In the analysis of behavioural tasks, the components were semantic memory (SEM), executive

control (EXE), and the generation of information (GEN). In the analysis of questionnaire data,

the components were affective disturbance (AD), social interaction (SOC), dyslexia (DYSL),

and attention to detail (ATT). The heat map indicates the loadings of each measure. In (a),

an asterisk indicates that measures were relatedness tasks from a semantic battery. In (b), a

single asterisk indicates measures drawn from the World Health Organization Quality of Life

assessment (WHO, 2002), and two asterisks indicate measures drawn from the Autism Spectrum

Quotient (Baron-Cohen et al., 2001). ADHD = attention-deficit/hyperactivity disorder; RAPM

= Raven’s Advanced Progressive Matrices (Raven et al., 1998). For the scree plots describing

the eigenvalues for each dimension, refer to Figure A.2 in Appendix A.3.
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unduly biased by a particular session of our study and were likely to provide

adequate estimation of the population (Figure 3.2b). These stable components

are presented in Figure 3.2b, in which we show both the bootstrapping results,

the analysis that randomly excluded one session (restricted temporal sampling),

and the common elements of each solutions.

Canonical Component 1 reflects a pattern of stronger coupling within the

mPFC, as well as between the left inferior parietal cortex (subregion 2 in the

TPJ; see Figure 3.2a). This pattern of integration within key nodes of the DMN

was associated with descriptions of experience as positive, evolving, and habitual.

We will refer to this as positive-habitual experiences. Canonical Component 2 was

associated with relatively weak patterns of coupling between the pCC bilaterally

(subregions 2 and 4 in the TPJ; see Figure 3.2a) and regions of the mPFC

(subregions 1, 5, and 6 in the vmPFC; see Figure 3.2a). This component was

associated with thoughts that were task unrelated and nondeliberate. We will

refer to this component as spontaneous off-task experiences.

3.4.2 Validating the categories of experience

Having identified two reliable dimensions of neurocognitive experience, we tested

whether these patterns accounted for additional variance in the measures that we

collected in our experiment. We first conducted a whole-brain analysis to determ-

ine whether the different patterns of experience were associated with differential

communication from the DMN to other areas of the brain. In this analysis, we

first employed dual regression to calculate the subject-specific spatial maps de-

scribing the correlation of the DMN and the whole brain and then used these

spatial maps as dependent measures in a group-level multiple regression in which

participants’ variation in positive-habitual and spontaneous off-task experiences

were both explanatory variables of interest (see Section 3.3). This analysis re-

vealed a pattern of regions in which connectivity was differentially related to the

dimensions of positive-habitual and spontaneous off-task experiences. These re-

gions were the left temporoparietal cortex, left hippocampus/entorhinal cortex,

left lateral middle temporal gyrus, and the left pre-supplementary region. Ex-

tracting the connectivity in this network and plotting these against the different

types of experience revealed that these regions showed a pattern of connectivity

55



3.4 Results

that was linked to the expression of positive-habitual experiences but was unre-

lated to levels of spontaneous off-task experiences. These data are consistent with

those found in previous studies that show that medialtemporal connectivity with

the DMN is linked to aspects of spontaneous experience, such as episodic thought

(Karapanagiotidis et al., 2017), and on-line studies that show that activity in

this region is important during mind-wandering states (e.g., Ellamil et al., 2016).

It also confirms theoretical accounts of states of mind wandering as relying on

regions that fall outside of the core of the DMN, such as the pre-supplementary

motor area (pre-SMA; Christoff et al., 2016).

Next, we explored whether the different canonical components had specific

implications for performance on the tasks in which we assessed experience (i.e.,

the 0-back/1-back task). Because the SCCA depends on resting-state data re-

corded independently of the task, we were unable to estimate the canonical com-

ponents separately for each task. Consequently, in these analyses, we explored

whether overall differences in canonical component loadings across participants

were associated with performance efficiency on the 0-back/ 1-back task. We

used a repeated measures analysis of variance in which the dependent variable

was the efficiency with which participants performed the 0-back/ 1-back task,

respectively. This analysis revealed a significant interaction between task effi-

ciency and variation in our spontaneous-off task component, F (1, 154) = 6.43,

p = .012, η2p = .04. Decomposition of this interaction showed that parti-

cipants who scored higher on spontaneous off-task experience performed better

on the 0-back condition, b = 0.06, 95% confidence interval (CI) = [0.01, 0.11],

t(151) = 2.38, p = .019, η2p = .04, and worse on the 1-back condition, b = −0.09,

95% CI = [−0.15,−0.02], t(151) = −2.55, p = .012, η2p = .04. The differential

relationship between the levels of spontaneous off-task experience and perform-

ance on the 0-back/1-back task is shown in Figure 3.4. These data confirm

accounts that suggest that attentional lapses linked to mind wandering are con-

text dependent, tending to have more negative effects as tasks become more

demanding (Smallwood, Ruby, & Singer, 2013); they are also consistent with

prior studies suggesting that context regulation may be more problematic for

spontaneous than deliberate mind wandering (see also Seli, Risko, Smilek, &

Schacter, 2016).
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Finally, we used MANOVA to determine how the patterns of experience re-

vealed by SCCA were related to the decompositions of the battery of cognitive

performance and questionnaire measures. In this analysis, PCA scores describing

either phenotypical variation or questionnaire measures on each of the compon-

ents of cognitive function were the independent variables, and the individual

loadings for each of the two canonical components describing experience from

the SCCA were the dependent variables. For the analysis of phenotypical vari-

ation, this produced two significant results with the executive-control compon-

ent, F (2, 152) = 5.84, p = .006, η2p = .065, and the generation-of-information

component, F (2, 152) = 3.41, p = .007, η2p = .065. Higher loadings on the

positive-habitual component, F (1, 153) = 9.84, p = .002, η2p = .060, were asso-

ciated with worse performance on tasks requiring executive control, b = 0.19,

95% CI = [0.32, 0.07], t(153) = 3.14, p = .002, η2p = .060, and higher loadings

on the spontaneous-off task experience component, F (1, 153) = 10.15, p = .002,

η2p = .062, were associated with better performance on tasks involving the gen-

eration of information (such as creativity), b = 0.20, 95% CI = [0.08, 0.33],

t(153) = 3.19, p = .002, η2p = .062. This indicates that two of the experi-

ential components identified by the SCCA were uniquely associated with poor

performance on executively demanding tasks and better performance on meas-

ures of creativity: both aspects of psychological functioning that have previously

been linked to mind wandering (e.g., Baird et al., 2012; McVay et al., 2009).

The relationships for both neurocognitive dimensions are shown in Figure 3.4.

In terms of the relationship to the questionnaire decomposition, we found

a significant association with the first principal component, F (1, 151) = 3.76,

p = .026, η2p = .05, which captured affective disturbance. This revealed two signi-

ficant relationships: (a) a strong association with the positive-habitual compon-

ent, F (1, 152) = 6.13, p = .014, η2p = .04, which suggests a negative association

between positive-habitual thought and levels of affective disturbance, b = 0.16,

95% CI = [−0.29, 0.03], t(152) = 2.48, p = .04, η2p = .062, and (b) an association

with the spontaneous-off-task-experience component, F (1, 152) = 4.55, p = .035,

η2p = .03, which suggests that higher loadings on this component were associ-

ated with higher levels of affective disturbance, b = 0.15, 95% CI = [0.11, 0.28],

t(152) = 2.13, p = .035, η2p = .03. This analysis demonstrates that the dif-
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ferent canonical components have dissociable associations with respect to well-

being, capturing aspects of the bidirectional relationship between the mind-

wandering state and affective disturbance highlighted by prior research (e.g.,

Killingsworth & Gilbert, 2010; Ruby, Smallwood, Engen, & Singer, 2013). Im-

portantly, our analysis demonstrates that the different canonical components

have dissociable associations with respect to well-being, which shows that our

method captured both elements of the apparently contradictory analysis link-

ing the mind-wandering state to well-being that has been highlighted by prior

research.

One concern with resting-state functional connectivity arises from the pos-

sibility that the connectivity matrices are unduly affected by individual differ-

ences in motion (Power et al., 2014). Consistent with this possibility, our results

showed a correlation at the group level between the positive-habitual component,

r(155) = .363, p < .001, but not the spontaneous-off-task-experience component,

r(155) = .097, p = .229. Hence, we assessed the contribution of this association

to our results linking positive-habitual thought to our measured phenotypes. We

performed a series of stepwise analyses to identify the contribution that motion

made to the phenotypical associations with positive-habitual thought. In these

analyses, the canonical component was the dependent variable. We entered the

principal components describing cognition or well-being in the first step and

Jenkinson’s mean FD in the second step. Including motion significantly im-

proved the predictive value of the model for well-being– Model 1: R2 = .06,

F (4, 152) = 2.21, p = .07, η2p = .06; Model 2: R2 = .19, F (5, 151) = 6.95,

p < .001, η2p = .19; model change: R2 = .13, F (1, 151) = 24.51, p < .001 –as

well as of the model for cognition: Model 1: R2 = .07, F (3, 153) = 3.92, p = .010,

η2p = .07; Model 2: R2 = .18, F (4, 152) = 8.22, p < .001, η2p = .18; model change:

R2 = .11, F (1, 152) = 19.65, p < .001. In the case of well-being, the explained

variance of the affective disturbance component was not improved with the inclu-

sion of motion— Model 1: affective-disturbance β = −0.20, t(152) = 2.48, p =

.014, η2p = .04, 95% CI = [0.29, 0.03]; Model 2: affective-disturbance β = 0.20,

t(151) = 2.59, p = .011, η2p = .05, 95% CI = [0.28, 0.03], Model 2: mean-FD

β = 0.36, t(151) = 4.94, p < .001, η2p = .14, 95% CI = [3.29, 7.67]. Thus, the re-

lationship between affective disturbance and positive-habitual thought remained
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largely unchanged by the inclusion of motion as a nuisance variable. In the case

of cognition, executive control accounted for less variance in the positive-habitual

component when mean FD was included— Model 1: executive-control β = 0.24,

t(153) = 3.14, p = .002, η2p = .06, 95% CI = [0.32, 0.07]; Model 2: executive-

control β = 0.16, t(152) = 2.17, p = .032, η2p = .03, 95% CI = [0.25, 0.01]; Model

2: β = 0.34, t(152) = 4.43, p < .001, η2p = .11, 95% CI = [4.82, 12.56].

Unlike in the well-being analysis, motion explained a substantial amount

of variance that was shared in the relationship between executive control and

positive-habitual thought. To explore whether the positive-habitual component

reflected an artefact of motion, we selected participants for whom movement

greater than 0.2 mm occurred on less than 5% of the resting-state data (N = 134)

and reran the SCCA with the identical pipeline. This produced similar solutions

for both positive-habitual and spontaneous off-task thought (see Figure A.4 in

Appendix A.3). Importantly, positive-habitual thought was not significantly

correlated with motion, r(132) = .10, p = .236, but was correlated with poor

executive control, r(155) = −.26, p = .001 (see Table A.1 in Appendix A.3 for

the full set of correlations). This final analysis shows that in a more restricted

sample in which motion did not correlate with either latent component, we still

observed a relationship between positive-habitual thought and poor executive

control.

3.5 Discussion

Using multivariate pattern analysis, our study demonstrated that the content of

the mind-wandering state is heterogeneous and confirmed hypotheses that differ-

ent types of experience have differing functional associations (Smallwood, Ruby,

& Singer, 2013). Using a novel analysis strategy, we simultaneously decomposed

self-reports of experience with descriptions of neural organisation, revealing di-

mensions of experience with unique phenotypical associations: positive-habitual

experiences and spontaneous off-task thoughts.

Poor executive control, a well-documented association of mind wandering

(McVay et al., 2009), predicted variation in positive-habitual thoughts. This

pattern of thinking was linked to coupling in the mPFC, a region important

for assigning value to neural signals (Roy, Shohamy, & Wager, 2012). It is
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possible that deficits in executive control during mind wandering emerge be-

cause of problems in assigning value to an external task, a view supported by

evidence that financial motivation limits the impact of mind wandering on per-

formance (Mrazek et al., 2012). We found that spontaneous off-task experiences

simultaneously underlie the association between mind wandering and tasks of

creativity (Baird et al., 2012), as well as problems in performing tasks requiring

continuous monitoring of external information. Finally, while positive-habitual

experiences are linked to improved well-being, spontaneous off-task experiences

are associated with increased affective disturbance, which captures the apparent

contradiction that mind wandering can be associated with both negative (e.g.,

Killingsworth & Gilbert, 2010) and positive (e.g., Poerio et al., 2016) emotional

states. Together, these data provide the most convincing evidence to date that

experience during mind wandering unfolds along a set of underlying dimensions

and that these explain many of the phenotypical associations that have hitherto

been associated with the mind-wandering state (Smallwood, Ruby, & Singer,

2013).

Our study also demonstrates the complex contribution that the DMN makes

to cognition. Strong DMN connectivity at rest was associated with an increased

tendency for positive-habitual thoughts about the future, which corroborates

previous research linking the DMN to mental time travel (Karapanagiotidis et

al., 2017; Schacter et al., 2007). Participants also rated these experiences as

habitual, a pattern that supports accounts of the role of the DMN in cognition

as emphasising automatic influences during mind wandering (Christoff et al.,

2016). Spontaneous off-task thoughts, in contrast, showed weaker integration

between core DMN regions and were linked to poor performance in the 1-back

condition, a context in which task performance depends on the DMN function-

ing as a coherent network (Konishi et al., 2015). More generally, we found that

states of high connectivity within the DMN (positive-habitual thoughts) were

associated with more functional coupling to regions outside of the core networka

key prediction of the view that activity within the DMN reflects the integration

of information from across the cortex (Margulies et al., 2016). It is important

to note that our analysis shows that the behavior of the DMN at rest contains

information about individual variation in the type of experiences that emerge
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during mind wandering. These data should not be taken as evidence that this

system is exclusive in its role in mind wandering. Indeed, our whole-brain re-

gression provides quantitative evidence that the interactions of the DMN with

other regions, including those in the medial temporal lobe and the executive sys-

tem (e.g., pre-SMA), are also important. In this way, our study supports recent

theoretical perspectives (e.g., Christoff et al., 2016; Margulies et al., 2016), as

well as prior empirical results (e.g., Ellamil et al., 2016; Golchert et al., 2017;

Smallwood et al., 2016) highlighting that regions other than the DMN core are

important for mind wandering.

There are a number of limitations of the current analysis. First, our study

focused on describing mind wandering as a trait. Prior work has shown sim-

ilarities between state and trait measures of mind wandering in terms of (a)

neural processing (e.g., trait: Smallwood et al., 2016; state: Christoff et al.,

2009; Stawarczyk, Majerus, Maquet, & D’Argembeau, 2011) and (b) psycholo-

gical processes such as working capacity (e.g., trait: McVay et al., 2009; state:

Mrazek et al., 2012) and happiness (e.g., trait: Ruby, Smallwood, Engen, &

Singer, 2013; state: Killingsworth & Gilbert, 2010). Nonetheless there are cer-

tain aspects of mind wandering that can be understood only by treating it as a

state, such as its temporal features (Christoff et al., 2016). Second, our study

measured mind wandering in the laboratory. Although there is a correspondence

between mind wandering in laboratory and naturalistic settings (e.g., McVay et

al., 2009), its form and content may depend on the contexts in which the exper-

ience emerges. Consequently, our findings should be supplemented by studies

examining the occurrence of different types of experience in ecologically valid

settings. Finally, our study did not find evidence for links with tasks that rely

on semantic memory or for links to psychological traits other than well-being.

This may have been due to our selection of neural regions or from our selection of

questions. Prior studies have linked regions in the temporal lobe to the contents

of thought (e.g., Smallwood et al., 2016), a pattern of data that is consistent

with a role of the semantic system in spontaneous thought (Binder et al., 2009).

Other work has highlighted awareness of mind wandering as important in traits

such as hyperactivity (Franklin et al., 2017). We anticipate that extending the

selected regions of the cortex and the aspects of experience measured may extend
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our understanding of the mind wandering state to encompass forms of semantic

processing and additional psychological traits.

In closing, our study provides the strongest evidence to date that the mind-

wandering state is heterogeneous in its content, neural basis, and functional

associations. We describe two neurocognitive dimensions capturing associations

with attentional lapses, creativity and well-being, confirming much of the re-

search on mind wandering conducted over the last decade. However, we also

provide an explanation for why scientific accounts of mind wandering have been

dominated by controversy, such as its relationship to happiness (Killingsworth &

Gilbert, 2010), creativity (Smeekens & Kane, 2016), executive control (McVay et

al., 2009), and the DMN (Gilbert, Dumontheil, Simons, Frith, & Burgess, 2007).

Our data suggest that these debates emerge from an erroneous assumption that

mind wandering is a unitary psychological construct, when it is in fact made

up of distinct states with unique neural correlates and functional associations.

This ontological uncertainty has led to artificial controversies that hinder the

development of a mature science of internal experience. Although our findings

do not capture the full range of experiential dimensions on which the mind can

wander, they convincingly demonstrate that it is untenable to characterise mind

wandering as a uniform experience. As a discipline, we must embrace method-

ologies and analytical techniques that capture the complex nature of internal

experiences, allowing researchers to accurately determine the contribution that

they make to people’s lives.
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Chapter 4

Population Variation in the

Associations Between

Large-Scale Networks and

Experiences at Rest

The following chapter has been adapted from: Wang, H.-T., Bzdok, D., Mar-

gulies, D., Craddock, C., Milham, M., Jefferies, E., & Smallwood, J.(2018). Pat-

terns of thought: Population variation in the associations between large-scale

network organisation and self-reported experiences at rest. NeuroImage, 176

(1), 518–527. doi: 10.1016/j.neuroimage.2018.04.064 1

4.1 Abstract

Contemporary cognitive neuroscience recognises unconstrained processing varies

across individuals, describing variation in meaningful attributes, such as intel-

ligence. It may also have links to patterns of ongoing experience. This study

1 J. Smallwood, and H.-T. Wang designed the study. The data was provided from C.

Cameron and M. Milham. The analysis pipeline was constructed by H.-T. Wang under the

supervision of D. Bzdok and J. Smallwood. Data were analyzed by H.-T. Wang, under the

supervision of D. Bzdok, J. Smallwood, and E. Jefferies. H.-T. Wang and J. Smallwood drafted

the manuscript. D. Bzdok, D. Margulies and E. Jefferies provided critical input to the inter-
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examined whether dimensions of population variation in different modes of un-

constrained processing can be described by the associations between patterns

of neural activity and self-reports of experience during the same period. We

selected 258 individuals from a publicly available data set who had measures of

resting-state functional magnetic resonance imaging, and self-reports of experi-

ence during the scan. We used machine learning to determine patterns of asso-

ciation between the neural and self-reported data, finding variation along four

dimensions. ‘Purposeful’ experiences were associated with lower connectivity—

in particular default mode and limbic networks were less correlated with atten-

tion and sensorimotor networks. ‘Emotional’ experiences were associated with

higher connectivity, especially between limbic and ventral attention networks.

Experiences focused on themes of ‘personal importance’ were associated with re-

duced functional connectivity within attention and control systems. Finally,

visual experiences were associated with stronger connectivity between visual

and other networks, in particular the limbic system. Some of these patterns

had contrasting links with cognitive function as assessed in a separate laborat-

ory session—purposeful thinking was linked to greater intelligence and better

abstract reasoning, while a focus on personal importance had the opposite re-

lationship. Together these findings are consistent with an emerging literature

on unconstrained states and also underlines that these states are heterogeneous,

with distinct modes of population variation reflecting the interplay of different

large-scale networks.

4.2 Introduction

Unconstrained processing reflects important population level variation in meas-

ures of cognition, affect, and demographic lifestyle factors. Psychological studies

show that almost a third of ongoing thought is unconstrained by events in the

here-and-now (Killingsworth & Gilbert, 2010) with important links to cognitive

and affective processing (Mooneyham & Schooler, 2013). In neuroscience, met-

rics defined from the brain during wakeful rest, describe the organisation of neural

function at both the micro and macro scale (Glasser et al., 2016; Margulies et

al., 2016). They also reflect individual differences in cognitive function (Finn et

al., 2015), psychiatric conditions (Nooner et al., 2012) and demographic lifestyle
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factors (Smith et al., 2015). These findings establish unconstrained neurocog-

nitive processing as a core element of human cognition, highlighting the need

to formally understand the underlying neural architecture, and the associated

patterns of experience.

One perspective on unconstrained processing emphasises the role of memory,

with contributions of conceptual and episodic representations to ongoing thought

(Binder et al., 2009; Gusnard et al., 2001). Psychological studies have shown that

patterns of unconstrained processing have links with memory retrieval, creativity

and planning (Baird et al., 2012; Leszczynski et al., 2017; Medea et al., 2016;

Poerio et al., 2017). Such evidence raises the possibility that episodic repres-

entations anchored in the medial temporal lobe (Moscovitch, Cabeza, Winocur,

& Nadel, 2016) or conceptual representation anchored in anterior temporal lobe

(Lambon-Ralph et al., 2017) contribute to ongoing thought (Smallwood et al.,

2016). It is hypothesised that these systems’ contribution to unconstrained states

may be linked to the ability for these regions to become functionally decoupled

from systems more directly involved in action and perception, allowing them to

operate in an offline manner (Smallwood, Ruby, & Singer, 2013). This process

of decoupling may also be important in neural systems closely allied to those

involved in memory the default mode network (Raichle et al., 2001). These

regions of transmodal cortex are relatively distant in functional and structural

space from systems involved in perception and action, potentially facilitating

their role in stimulus independent aspects of cognition (Buckner & Krienen,

2013; Margulies et al., 2016; Mesulam, 1998). Together these representational

accounts of unconstrained processing highlight default mode and limbic networks

as important candidate neural systems, especially when decoupled from systems

directly involved in perception and action.

Alternative perspectives on unconstrained thought emerge from links between

types of ongoing experience and problems maintaining a task relevant goal in

mind. This executive-failure view (Kane & McVay, 2012; McVay et al., 2009)

takes as a starting point evidence that patterns of ongoing thought, such as

the experience of mind-wandering, are linked to problems on tasks including

sustained attention (McVay et al., 2009) and measures of general aptitude and

executive control (Mrazek et al., 2012). Task-based neuroimaging investigations
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highlight a network of regions that increase their activity across many differ-

ent task situations, so called multiple demand regions (Duncan, 2010). These

regions broadly correspond to three well described intrinsic networks: ventral

attention, dorsal attention, and frontal-parietal networks. Since these systems

are important for the effective performance of many different tasks then dys-

regulation within these systems could reflect the hypothesised executive-failure

contribution to aspects of ongoing thought (McVay et al., 2009; Weissman et al.,

2006).

Other aspects of unconstrained processing could reflect the importance of af-

fective processes, or different modalities of processing. Ongoing thought is linked

to mood state: Experimental inductions of mood (Smallwood, Fitzgerald, Miles,

& Phillips, 2009; Smallwood & O’Connor, 2011) as well as natural fluctuations

(Poerio, Totterdell, & Miles, 2013; Ruby, Smallwood, Engen, & Singer, 2013)

impact on ongoing thought. Contemporary accounts of emotional processing em-

phasise the role of limbic regions including the amygdala (Bzdok, Laird, Zilles,

Fox, & Eickhoff, 2013; Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012)

and anterior aspects the insula (Touroutoglou, Hollenbeck, Dickerson, & Barrett,

2012), suggesting these regions may be important in determining affective aspects

of ongoing thought. Psychological studies of ongoing thought also suggest that

another important dimension of unconstrained processing may reflect the differ-

ent modalities of processing (Konishi, Brown, Battaglini, & Smallwood, 2017;

Smallwood et al., 2016). It has been shown, for example, that the visual system

plays an important role in the expression of visual imagery (Ganis, Thompson, &

Kosslyn, 2004; Kosslyn, Ganis, & Thompson, 2001). Recent work has extended

this evidence to shown patterns of activity with visual regions are linked to the

emergence of visual, non-verbal, elements of ongoing thought (Raij & Riekki,

2017). It is also possible that sensorimotor processes may be implicated in lan-

guage processing during unconstrained processing, given that a role for these

regions in langauge processing extends beyond production (Bzdok et al., 2016;

Pulvermüller & Fadiga, 2010; Pulvermüller, 2010).

Our study aimed to identify patterns of intrinsic connectivity associated with

different patterns of unconstrained states and examines their neurocognitive fea-

tures from the perspectives outlined above. We used a large publicly available
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dataset, containing measures of resting-state functional magnetic resonance ima-

ging (fMRI), and an accompanying self-report instrument describing cognition

experienced during the resting state (Gorgolewski et al., 2014; Nooner et al.,

2012). We previously explored the relationships between patterns of ongoing

thought and measures of neural activity, such as the fractional amplitude of low

frequency oscillations, as well as the regional homogeneity of neural activity, in

a sub sample of this data set (Gorgolewski et al., 2014). In this study we fo-

cused on connectivity, we applied sparse canonical correlation analysis (SCCA)

to obtain a conjoined decomposition of self-reports of experience with matrices

of whole brain connectivity data. This analysis produces multivariate patterns

that reflect dimensions of variation that are mutually constrained by both brain

and experience. In this way we capitalise on the fact that self-reports of ex-

perience during scanning and descriptions of ongoing neural processing provide

complementary descriptions of unconstrained cognition. Our analysis, there-

fore, helps define, at a population level, the shared links between brain patterns

and different types of experience. Moreover, respecting the multivariate nature

of brain and behaviour space, as our analysis does, can accommodate complex

many-to-many relationships between patterns of connectivity and self-reports,

and therefore is sensitive to the possibility of degeneracy in the underlying data.

As a final validation step we established whether these neurocognitive dimen-

sions are associated with performance on a battery of available cognitive tasks,

including measures of executive control and intelligence.

We use the dimensions our analysis produces, and their links with cognit-

ive function to evaluate the perspectives on unconstrained thought outlined

earlier. Representational accounts emphasise links with neural systems involved

in memory, such as the limbic system, and regions of transmodal cortex, such

as the default mode network. They highlight states with lower levels of func-

tional communication between these regions and those more directly involved in

external action. In contrast, executive-failure accounts emphasise dysregulation

in attention and control networks as contributing to patterns of ongoing thought

that are linked to problems in domain general task performance. Affective ac-

counts highlight limbic regions as important hubs in aspects of ongoing thoughts

linked to emotion. Finally, modality specific influences on unconstrained thought
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may depend on information codes represented in regions that specialise in that

particular type of information, such as a role of visual cortex in experiences

dominated by images. Notably, some views lead to dissociable predictions with

respect to cognitive performance. For example, executive-failure accounts pre-

dict patterns of thoughts linked to worse performance on measures of cognitive

function, while representational accounts make the opposite prediction.

4.3 Method

4.3.1 Participants

We analysed 258 participants (females = 162; age range 18 - 55, M = 34.97, SD

= 12.24) obtained from the enhanced Nathan Kline Institute-Rockland sample

(NKI-RS; http://fcon 1000.projects.nitrc.org/indi/enhanced/). Full de-

tails of the acquisition of this sample can be found in Nooner et al. (2012). We

selected participants between 18 and 55 years old as our sample, this choice al-

lowed us to maximise the cohesive nature of our sample. All the participants

have the MRI data and less than 5 missing data points among the selected as-

sessments.

4.3.2 Cognitive measures and questionnaires

Based on prior studies examining the links between spontaneous thought and

cognitive performance (see Mooneyham & Schooler, 2013), we selected estab-

lished neuropsychological measures linked to executive control, abstract reason-

ing and intelligence. The measures included the Delis-Kaplan Executive Func-

tion System (D-KEFS; Swanson, 2005), Wechsler Abbreviated Scale of Intelli-

gence (WASI-II; Wechsler, 1999), and Wechsler Individual Achievement Test-

Second Edition Abbreviated (WIAT-IIA; Wechsler, 2005). In D-KEFS we selec-

ted the tower test (move accuracy ratio), colour-word interference test (errors

inhibition/switching), verbal fluency test (letter fluency − category fluency),

design fluency test (design accuracy), trail making test (sequencing errors score

+ set-loss errors score + time-discontinue errors score), and the proverb test (a

measure of abstract semantic reasoning). We used the rescaled score (M = 10,

SD = 3) in our analysis. Tasks measures that reflected error rates (i.e. the
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colour-word interference test and trail making test) were reversed, so that high

rescaled scores indicated better task performance. All the scores were trans-

formed to z-scores.

4.3.3 ongoing cognition measure

The New York Cognition Questionnaire (NYC-Q) is a self-report tool used to as-

sess the thoughts experienced at rest (Gorgolewski et al., 2014; Sanders, Wang,

Schooler, & Smallwood, 2017). It assesses thoughts and feelings experienced

during the resting-state period. The first section contains 23 questions about

the content of thought. These questions covers the temporal, social, emotional

aspects of spontaneous thoughts that have been shown to be important by prior

studies (e.g. Ruby, Smallwood, Engen, & Singer, 2013). Participants rated

each question on a scale of 1 (Completely did not describe my thoughts) to 9

(Completely did describe my thoughts). The second section contains 8 ques-

tions about the forms thoughts take, capturing aspects of experience such as

modality and detail associated with experience that prior studies suggest as im-

portant for spontaneous thoughts (Smallwood et al., 2016). Participants rated

each question on a scale of 1 (Completely did not characterise my experience) to

9 (Completely did characterise my experience). In the current study we analysed

the two sections together to provide single solutions that combined information

on both the content form of experience. The full list of questions and the corres-

ponding labels are presented in Table 4.1. The questionnaire was administrated

once after the resting-state scan in order to assess experiences during the scan-

ning session. For the full details of the NYC-Q, please refer to Gorgolewski et

al. (2014). We have placed the questionnaire measure used in this study along

with an example self-report collection task on GitHub at the following address:

https://github.com/htwangtw/restingstate thoughtreports.

4.3.4 MR data processing

4.3.4.1 Resting-state fMRI

We used resting-state fMRI to describe the general functional organisation of

the brain. We selected resting-state multiband functional magnetic resonance

imaging (R-mfMRI; TR = 1400msec; voxel size = 2mm isotropic; duration =
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Table 4.1. The New York Cognition Questionnaire (NYC-Q).

Questions Labels

I thought about things I am currently worried about Concerns
I thought about people I have just recently met People
I thought of people I have known for a long time (friends) Friend
I thought about members of my family Family
I thought about an event that took place earlier today Today - Past
I thought about an interaction I may possibly have in the future Social - Future
I thought about an interaction with somebody that took place in the past Social - Past
I thought about something that happened at a place very close to me Near Location
I thought about something that made me feel guilty Guilt
I thought about an event that may take place later today Today - Plan
I thought about something that happened in the recent past (last couple of days but not today) Recent Past
I thought about something that happened a long time ago in the past Distant Past
I thought about something that made me angry Anger
I thought about something that made me happy Happiness
I thought about something that made me cheerful Cheerfulness
I thought about something that made me calm Calm
I thought about something that made me sad Sadness
I thought about something that is important to me Importance
I thought about something that could still happen today Today - Future
I thought about something that may take place in the distant future Distant Future
I thought about something that could take place in the near future (days or weeks but not today) Near Future
I thought about personal worries Worries
I thought about something that happened in a place far away from where I am now Distant Location
In the form of images: Image
In the form of words: Words
Like an inner monologue or audiobook: Monologue
Like a television program or film: Film
Had a strong and consistent personal narrative: Narrative
Had a clear sense of purpose: Purpose
Vague and non-specific: Vague
Fragmented and disjointed: Fragment

10 minutes) for our analysis. Functional and structural data were pre-processed

using Configurable Pipeline for the Analysis of Connectomes (C-PAC; https://

fcp-indi.github.io/) to interface with FMRIBs Software Library (FSL version

5.0, www.fmrib.ox.ac.uk/fsl). Individual FLAIR and T1 weighted structural

brain images were extracted using Brain Extraction Tool (BET). Structural im-

ages were linearly registered to the MNI-152 template using FMRIB’s Linear

Image Registration Tool (FLIRT). The resting-state functional data were pre-

processed and analysed using the FMRI Expert Analysis Tool (FEAT). X, Y, Z

displacement and the three axis rotations were used to calculate the mean frame

displacement (FD), characterising movement of each participant during the scan-

ning session (Power et al., 2014). Mean of the absolute values for FD were later

used to account for subject specific head motion. No global signal regression

was applied. The individual subject analysis involved: motion correction using

MCFLIRT; slice-timing correction using Fourier space time series phase-shifting;

spatial smoothing using a Gaussian kernel of FWHM 6mm; bandpass filtering

(0.1 Hz < f < 0.009 Hz); six motion parameters (as estimated by MCFLIRT)

regressed out; cerebrospinal fluid and white matter signal regressed out (top five
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PCA components, CompCor method).

4.3.4.2 Connectivity matrices

To describe the functional architecture of the whole brain, we transformed the

resting-state BOLD time series into connection strength values of the different

networks for each participant. The whole brain parcellation was obtained from

connectivity-based functional parcellation created by Yeo and collegues (2011).

The 7 network parcellation was used in the current study. We split the networks

into two hemispheres and extracted clusters. Two voxels are considered connec-

ted only if they are adjacent within the same x, y, or z direction. This yielded

57 clusters from the Yeo 7 networks parcellation. The implementation of spatial

clusters extraction was retrieved from python library Nilearn (Abraham et al.,

2014, http://nilearn.github.io/, version 0.3.1) Next, we extracted and then

averaged the time series of all voxels within each cluster to create a cluster spe-

cific time series. We used these time series to create region-to-region symmetrical

correlation matrices representing the correlations of the network signal that was

computed for all the individual subjects. The off-diagonal of each correlation

matrix contained 1596 unique region-region connection strengths (i.e., the upper

or lower triangle of the network covariance matrix). This approach provided a

measure of connection strength of the whole brain for each participant. Finally,

Fishers r-to-z transformation was applied to each network covariance matrix.

4.3.5 Conjoint decomposition of connectivity and experience

4.3.5.1 Decomposition methods

We performed a sparse canonical correlation analysis (SCCA; see Hastie et al.,

2015) on the functional connectomes and the NYC-Q reports, to yield latent com-

ponents that reflect multivariate patterns across neural organisation and experi-

ence (For similar application, see Wang, Poerio, et al., 2018). SCCA maximised

the linear correlation between the low-rank projections of two sets of multivariate

data sets with sparse model to regularise the decomposition solutions a process

that helps maximise the interpretability of the results. The regularisation func-

tion of choice is L1 penalty, which produces ’sparse’ coefficients, meaning that

the canonical vectors (i.e., translating from full variables to a data matrix’s low-
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rank components of variation) will contain a number of exactly zero elements. L1

regularisation conducted (i) feature selection (i.e., select only relevant compon-

ents) and (ii) model estimation (i.e., determine what combination of components

best disentangles the neurocognitive relationship) in an identical process. This

way we handle adverse behaviours of classical linear models in high-dimensional

data. A reliable and robust open-source implementation of the SCCA method

was retrieved as R package from CRAN (PMA, penalized multivariate analysis,

version 1.0.9 Witten, Tibshirani, & Hastie, 2009). The amount of L1 penalty

for the functional connectomes and the NYC-Q reports were chosen by cross-

validation. The procedure is described below.

4.3.5.2 Model selection

We employed cross-validation (CV) to select the most useful model across pop-

ulation samples and avoid overfitting (Bzdok & Yeo, 2017). The amount of the

two L1 penalty terms for the functional connectomes and the NYC-Q reports,

respectively, were chosen by a nested K-fold CV, where the coefficient for the

penalty were chosen using a grid search to maximise the quality of CV objective

metric. The objective metric of choice was cumulative explained variances. The

explained variance of each latent component was calculated using the squared

canonical correlation. High explained variance suggests a high pattern recovery

rate between the two data set. The sparse assumption is fundamentally in con-

flict with the statistical goal of finding components with high explained variance.

Therefore we decided the number of components in the model before searching

for the best parameter.

We performed confound removal on functional connectomes and the NYC-

Q reports as suggested by prior studies (Smith et al., 2015). We removed the

effects of nuisance variables from the dataset. These confound variables were

sex, age, and head motion indicated by Jenkinsons mean FD (Jenkinson et al.,

2002). The removal steps was performed on the training set in each CV fold.

We standardized the confound by calculating the z-score, and also squared the

three confound measures to account for potentially nonlinear effects of these

confounds. The 6 resulting confounds were regressed out of both data matrices.

The implementation of the confound removal method (Friston et al., 1994) was
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Figure 4.1. A diagram of the nested k-fold cross-validation with model selection.

retrieved from python library Nilearn (Abraham et al., 2014, http://nilearn

.github.io/, version 0.3.1).

The number of latent components was determined by a preliminary analysis

with no sparsity and calculated the explained variances for the two datasets (i.e.,

brain network correlations and questionnaire ratings). The explained variance in-

creased with the number of components and growth stabilised at 10 components.

We selected the number of components based on the point where the tangent

stabilised. This led to a model of 4 components, and it accounted for a total of

78% of the variance in connection strength and 29% of the variance in the self-

report data. Next, we determined the two coefficients for the L1 penalty terms

that was associated with the best model performance with 4 latent components.

We searched for the best L1 penalty values between 0.1 and 0.9 in 0.1 increments,

which resulted in 81 set of parameters. For the nested K-Fold CV, we first separ-

ate the data into 5 consecutive folds after shuffling the data and retained one fold

as the evaluation set (N ≈ 50); the other four folds were used as the development

set. The development set was further separated into 5 folds for parameter selec-

tion and each fold (N ≈ 40) was used as the validation set once. The model was

estimated on the training folds with all parameter sets, and after completion,

we trained the model with the winning parameter on the whole development set

and the finally tested the performance on the independent, unseen evaluation

set. We selected the final parameters according to the best performance on the

evaluation set across all folds of the outer CV loop (Figure 4.1). This parameter

set is used to train on the full development set and tested on the evaluation set.

The parameter grid search and k-fold CV was conducted by the implementation

in a Python library scikit-learn (http://scikit-learn.org/stable/, version

0.18.2 Pedregosa et al., 2011). The detailed algorithm for selecting the penalty

values are presented in Appendix B: Nested K-Fold CV.
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The model with the best test performance was selected as the final model.

The final models sparsity coefficient are 0.8 (functional connectivity) and 0.5

(self-reports), and the out-of-sample explained variance was 48%. We used the

ensuing canonical vectors of the winning SCCA model to compute the latent

component scores. There are two sets of canonical scores in a latent component,

a weighted sum of variables forms the canonical vectors. For each latent compon-

ent, we averaged the z-score of the canonical scores of the connection strength

and NYC-Q as the combined scores. These scores described the summary of the

experience with both the neural basis and the content reports.

4.3.6 Test of component robustness

After identifying the well performed components in compressing the brain-experience

data, we examined the robustness of the four components in two different ways.

The permutation test is a purely data-driven strategy that access the chance of

discovering components in null samples. We also leveraged the brain-experience

components to explain the cognitive functions, so that we can identify meaningful

patterns by well-established cognitive measurements.

4.3.6.1 Permutation test

We used permutation testing to assess the robustness of the components identi-

fied through our analysis. We constructed a null distribution for each canonical

component by holding the functional connectivity data in place and randomising

the subject-wise order of self-reports data. This permutation scheme broke the

link of individual differences in the dataset, therefore testing the robustness of the

components in the hypothetical population. By calculating the false-discovery

rate in the null distribution, we can conclude the possibility of discovering our

components by chance with the given penalty coefficients. Hypotheses that are

accepted with a 5% level of significance. In the current analyses we adopt the

permutation test with the FWE-corrected p-value by Smith et al. (2015) with

data argumentation to increase the size of the resampling datasets to 1000. The

four components were compared to the first sparse canonical correlation of the

permuted sample. The low-rank components are more relevant that the rest,

therefore we yield more conservative p-value by comparing to the first canonical
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correlation only. We performed 5000 permutation tests to get enough estimates

for 4 decimal places.

4.3.6.2 Group analysis

To determine how patterns of unconstrained neurocognitive activity related to

performance on the battery of cognitive tests, we conducted an independent

statistical analysis on the identical subjects. A Type III multivariate multiple

regression with Pillai’s trace test was applied to 4 individual scores for each of

the latent components describing experience from the SCCA were the independ-

ent variables, and the original 8 measures of cognitive performance were the

dependent variables that we hoped to described by the linear combination of the

latent components. Pillai’s trace test is considered to be the most powerful and

robust statistic for general use (Huberty & Olejnik, 2006). The p-values reported

were based on Bonferroni correction. We also performed a principal components

analysis (PCA) to identify the patterns of covariance among the 8 measures of

cognitive performance and compressed the data. The relation between the prin-

ciple score and the 4 brain-experience dimensions identified through SCCA was

examined in a linear regression model with Pillai’s trace test. The analysis was

conducted in R (version 3.3.1). The multivariate multiple regression was con-

ducted in R (version 3.3.1) using function Manova in R package car (companion

to applied regression, version 2.1-5).

4.3.7 Code availability

The full analysis pipeline is freely available at https://github.com/htwangtw/

patterns-of-thought.

4.4 Results

4.4.1 Determining constituent category of experience

We used Sparse Canonical Correlation Analysis (SCCA) to determine connectome-

wide dimensions that describe common variance shared by descriptions of brain

and experience. This took as input individual scores for the connections between
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Figure 4.2. Unique neurocognitive dimensions of population variation revealed by

sparse canonical correlation analysis of measures of whole brain connectivity and self-

reported descriptions of ongoing experience.

The heat map describes the canonical variate of the network-to-network connectivity between

different Yeo networks. The connectivity matrices describes the coefficients from the model,

separated into within and between network relationships. The word clouds reflect the coeffi-

cients on the relevant self-report items. In both cases the colour bars indicate the magnitudes

of the coefficients. A detailed version of the canonical variates and alternative presentation of

the self-report coefficients can be found in Online Supplementary Material Figure S1–S5

each of the regions extracted from Yeo’s 7 networks parcellation and the scores

of each item of the New York Cognition Questionnaire (NYC-Q).

We applied SCCA with nested 5-fold CV as the model selection strategy. We

obtained a model of 4 canonical components with penalty levels of 0.8 on the

functional connectivity and 0.5 on the NYC-Q that indicated the best out-of-

sample prediction on our data (see Section 4.3.5.2). The canonical correlations

of the 4 latent components were 0.28, 0.19, 0.16, and 0.07. The latent com-

ponents yielded by the best model are presented in Figure 4.2. For the ease

of presentation and interpretation, we summarised the components as network-

network connectivity instead of 57-by-57 connectivity matrices. The heat maps

describe the network-to-network correlations while the word clouds describe the

loadings on the self-report items. The components in full and the heat map for

the self-report items can be found in Online Supplementary Materials2.

Component 1, describes patterns of reduced within network connectivity

2Supplementary data related to this article can be found at https://doi.org/10.1016/

j.neuroimage.2018.04.064
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within all of the networks studied, with this pattern most prominent in the

dorsal attention network. Between network connections are generally reduced,

with the exception of visual to limbic. Sensorimotor was decoupled from all the

other systems, and, in addition, the default and limbic were most decoupled from

the attention networks. Experiential themes in Component 1 are dominated by

themes related to deliberate planning with a verbal component (high loadings

on ‘words’, ‘monologue’, ‘today-plan’, ‘social-future’, ‘purpose’ and ‘deliberate’).

We refer to this pattern of reports as reflecting thoughts with ‘purpose’.

Component 2 is dominated by relatively higher within and between network

connections. Connectivity within each network was strong with the exception

of the limbic network. Between network connections were stronger, with this

pattern most apparent in the connections between limbic and ventral attention.

In addition, the visual network was strongly correlated with the other networks.

This component is dominated by emotional responses (high loadings on ‘anger’,

‘guilt’, ‘cheerfulness’ and ‘happiness’) and social content (‘friends’ and ‘people’).

We refer to this pattern of reports as reflecting ‘emotional’ experience.

Component 3 emphasises reduced connections both between and within net-

works. Within network connectivity is weakest for the dorsal and ventral atten-

tion networks. Edge-to-edge connections are low, with the ventral and dorsal

attention and frontoparietal networks showing reduced correlations with each

other as well as the visual and sensorimotor systems. This component was char-

acterised by themes linked to personal ‘importance’ with social temporal contents

(‘distant future’, ‘near future’, ‘social past’, ‘family’ and ‘recent past’). We refer

to this pattern of reports as reflecting ‘personal importance’.

Component 4 has the most heterogeneous pattern of within and between

network connectivity. It is associated with stronger connections within networks

with the exception of the limbic system. In addition, the visual system was

strongly connected to all other networks, with this pattern most apparent for

the limbic network. In contrast, lower network-to-network connectivity was ob-

served between the default mode and sensorimotor and attention networks. This

component is characterised by experiential patterns reflecting a modality differ-

ence in experience, with the highest loadings on ‘images’ and lowest on ‘inner

monologue’. We refer to this pattern of reports as describing ‘modality’.

78



4.4 Results

4.4.2 The relationship between neuroexperiential components

and cognitive functions

Having documented four neurocognitive dimensions, we next examined the ro-

bustness of the components using two complementary approaches. We first used

a permutation test to identify the chance of discovering components in null

samples as employed by Smith and colleagues (2015). The top three components

passed the permutation test and the 4th component showed variance that was

similar to that produced in a null sample (Component 1: p = 0.0002, Component

2: p = 0.0010, Component 3: p = 0.0204, Component 4: p = 0.998, α = 0.05).

This analysis suggests that Components 1–3 are unlikely to have occurred by

chance. Component 4 may be a Type II error and so we discuss this component

in only a limited manner moving forward. Our next test of the robustness of our

components is whether they explained unique patterns of expertise in our bat-

tery of cognitive tasks. We used multiple multivariate regression model in which

performance on the battery of selected tasks was the dependent variables and

the individual scores for each of the canonical components describing experience

from the SCCA were the independent variables. In this analysis two of the four

canonical components described significant variance in our battery of tasks at

multivariate level: Component 1 (F (8, 246) = 2.21, p = .027, η2p = .067) and

Component 3 (F (8, 246) = 2.56, p = .024, η2p = .068).

In the univariate results of the significant component, Component 1 was

linked to good performance in proverb test (b = 0.48, 95% CI = [0.1910.766],

t(251) = 3.27, p = .006) and both fluid intelligent tests WASI (b = 0.39,

95% CI = [0.1110.677], t(251) = 2.74, p = .033) and WIAT (b = 0.45, 95% CI =

[0.1670.724], t(251) = 3.15, p = .009). Component 3 showed a reversed pattern

of the cognitive functions related to Component 1: proverb test (b = −0.45,

95% CI = [−0.176 − 0.727], t(251) = −0.14, p = .007); WASI (b = −0.42,

95% CI = [−0.151 − 0.693], t(251) = −3.10, p = .012) and WIAT (b = −0.41,

95% CI = [−0.148 − 0.682], t(251) = −3.06, p = .012). The relationships

between the neurocognitive dimensions and the pattern of relationships on the

full cognitive battery and the adjusted variable scatter plots of the significant

results are summarized in the form of a heat map in Figure 4.3.

Finally, we performed a simple principle component analysis on the eight

79



4.4 Results

Figure 4.3. The relationship between the different neural-cognitive components and

the measures assessed in the cognitive battery.

The components 1 and 3 were significant at the multivariate level determined by multiple

multivariate regression, indicated by the asterisk outside of the heat map. The cells with as-

terisk(s) indicates the significant results from the univariate test (bonferroni corrected) and

the parameter estimates for each variable. CWI: Colour-word interference, DF: Design fluency,

Pro: Proverbs, TOW: Tower of London, TMT: Trail making task, VF: Verbal Fluency, WASI:

Wechseler Adult Intelligence Test, WIAT: Weschler Individual Attainment Test. P-value sig-

nificant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ .

Figure 4.4. The principle component and its relationship to the different neurocognitive

components.

The heat map describes the principle component of the task battery, and the scatter plots

describe the association with the components identified in our study. Component 1 and 3

passed the permutation test for component robustness significantly contributed in explaining

the principle component of the task. Component 4 showed a significant contribution in the

regression model, but it did not pass the permutation test. The related results should be

treated cautiously.
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task measures to explore the associations between experience and the structure

of the laboratory data. The aim of this analysis was to see if the pattern re-

trieved from the univariate level in the previous multiple multivariate regression

was related to the internal structure of the data. Component selection was de-

termined based on the scree plot, and we accepted one component explaining

39% of the variance. The principle component loaded on the intelligence meas-

ures and the proverb test. We fitted a linear model to this data to understand the

relationship to the four canonical components. The results are reported in Fig-

ure 4.4. The overall linear model was significant (F (4, 253) = 5.43, p = .00003).

In the linear regression model, Component 1 (b = 0.82, 95% CI = [0.361.29],

t(253) = 3.5, p = .001) showed significant contribution to explaining the task

principle component. Component 3 showed a negative correlation to the task

components (b = −0.69, 95% CI = [−1.13 − 0.24], t(253) = −3.04, p = .003).

The relationships between tasks and the neurocognitive components here were

similar to the ones uncovered by the multiple multivariate regression. In this

analysis Component 4 (b = 0.442, 95% CI = [0.160.72], t(253) = 3.09, p = .002)

showed a significant contribution in the regression model, but it did not pass

the permutation test of robustness (p = 0.998). The related results should be

treated cautiously. Together with our prior analysis, these results suggest that

Components 1 and 3 are the most robust components identified in our study.

4.5 Discussion

We set out to describe different modes of neurocognitive patterns derived through

the simultaneous decomposition of whole brain connectivity data with self-reports

of ongoing experience. We used a whole brain parcellation that describes cortical

function in seven independent networks (Yeo et al., 2011). We combined this data

with self-reports of the experience of our participants at rest, using a multivari-

ate approach that allows for the possibility of many-to-many mappings between

neural patterns and ongoing cognition. Our analyses identified four stable canon-

ical components, describing unique dimensions of neural-experiential variation.

Permutation testing demonstrated the statistical robustness of Components 1-3.

Furthermore, two components (1 and 3) described independent patterns of per-

formance in a battery of commonly used cognitive measures. This association
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with cognitive performance that establishes a source of independent validity for

these neurocognitive components since they are related to independent meas-

ures of cognitive performance. We next consider the fit between the dimensions

produced by our analysis and theoretical views of unconstrained neurocognitive

processing.

We found evidence broadly consistent with contemporary representational

accounts of unconstrained processing. The neural patterns described by Com-

ponent One reflect a pattern of reduced correlation between regions with links

to memory and representation (e.g. limbic, default mode) from those with links

to external behaviour (e.g. visual and sensorimotor cortex and attention net-

works). This pattern was associated with experiences characterised by a sense

of purposefulness, and with verbally mediated content that was social and tem-

poral in nature. Participants high on this dimension were proficient at generating

abstract semantic links and performed well on measures of reasoning and intelli-

gence. Together the features of Component One support the hypothesis that the

functional decoupling of systems important for memory and representation are

important for aspects of unconstrained cognition (Smallwood & Andrews-Hanna,

2013). This capacity may arise from the topographical organisation of the cor-

tex, in which neural systems that can take on more transmodal properties tend

to be located in regions that are more distant in functional and structural terms

(Buckner & Krienen, 2013; Margulies et al., 2016; Mesulam, 1998). This spatial

location may allow neural signals in these regions to take on properties that are

discrepant from the neural signal more closely tethered to inputs describing the

external world (Buckner & Krienen, 2013; Friston, 2013). The pattern identi-

fied by Component One, therefore, may reflect a pattern of population variation

describing the hypothesised role of functional decoupling of memory and repres-

entational systems plays in the generation of more abstract aspects of human

cognition (Margulies et al., 2016; Mesulam, 1998). Importantly, in our prior

work, limbic and default mode networks were the most distant in functional con-

nectivity terms from unimodal systems (Margulies et al., 2016). Our data also

highlights neural patterns that capture the hypothesised influence of attention

and control on ongoing thought (McVay et al., 2009). Component 3 highlights

links between reduced connectivity within attention and control systems and pat-
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terns of thought that emphasise personal importance. This is associated with

worse performance on measures of intelligence and reasoning. The combina-

tion of a focus on personally important themes linked to poor performance on

measures of general aptitude, captures the hallmark psychological features of the

‘current concerns–executive-failure‘ accounts of ongoing thought (McVay et al.,

2009). This view suggests that failures in attentional control lead to highly per-

sonally relevant cognition to intrude into ongoing thought, leading to lapses in

task performance. Importantly, the neural pattern described by this component

emphasises dysregulated connectivity both within and between networks implic-

ated in attention and control by task-based studies (Duncan, 2010). Our prior

work established that spontaneous mind-wandering is linked to cortical thinning

within regions linked to attention and control, such as the intra-parietal sulcus

(Golchert et al., 2017). Spontaneous mind-wandering has been linked to worse

cognitive control (Robison & Unsworth, 2018), as well as showing stronger links

with attention related problems, including ADHD (Seli, Smallwood, et al., 2015).

Together with these prior studies, our data suggests that population variation

in the intrinsic neural functioning within networks with an established role in

external task performance captures the hypothesised contribution of executive-

failure to patterns of ongoing thought.

The method of decomposition used in the current study also highlighted pat-

terns related to affective processing and the modality of the experience that

are similar to those seen in our prior work that applied principal components

analysis (PCA) to self-reported data only. Component Four places experiences

with visual features (‘images’) in opposition to experiences with verbal features

(‘monologue’), capturing dissociations between visual and verbal thinking ob-

served in our prior studies (Konishi et al., 2015; Medea et al., 2016; Smallwood

et al., 2016). The accompanying neural pattern were associated with higher con-

nectivity between the visual network with other networks, in particular the limbic

system. It is important to note that our permutation analysis failed to validate

this component, so despite its association with task performance using the PCA

analysis it should be treated with relative caution. Component Two loads on

emotional experiences (‘cheerfulness’, ‘anger’, ‘guilt’ and ‘happiness’) with the

exception of those that are unhappy (‘sad’). In neural terms this component was
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characterised by high levels of connectivity, however, unlike Component Four,

this was highest between limbic and ventral attention networks. This pattern

of coupling is consistent with accounts that emphasise interactions between sa-

liency and limbic systems in affective processing (Touroutoglou et al., 2012). In

the case of Component Two permutation testing indicated this component was

likely to be robust in statistical terms, however, we did not observe associations

with task performance. As with Component Four, interpretations of Component

Two should be made with caution in lieu of more empirical work.

Before closing it is worth considering several important limiting factors of our

study. We focused on patterns of population variance in unconstrained neuro-

cognitive processing that were measured once in each individual. Our study,

therefore, cannot separate the influences of state and traits on our observed

components. Treating patterns of unconstrained processing as a trait is com-

mon in both the psychological (McVay et al., 2009; Smallwood, Ruby, & Singer,

2013) and neural domains (Smith et al., 2015). Nonetheless, it remains an open

question how consistent these components will be across individuals over time,

as well as which aspects may be better described as traits. Importantly, by its

very nature there are dimensions of experience that our study cannot adequately

address. We cannot, for example, identify brain-experience associations that are

highly dynamic in nature and in particular those that change rapidly within

an individual. Insight into this issue could be achieved by a focus on dynamic

rather than static connectivity (Kucyi, Hove, Esterman, Hutchison, & Valera,

2017). For example, the application of techniques such as sliding window analysis

(Chang & Glover, 2010)or Hidden Markov models (Vidaurre, Smith, & Woolrich,

2017) to fMRI could provide information that would complement our analyses.

However, it may also be more important to examine these across multiple ses-

sions within the same individuals, as this would also make it most possible to

dissociate state from trait related influences on neural activity (Mueller et al.,

2013). There are also types of experience that may be difficult to assess using

the measure of retrospective experience sampling we have employed (Smallwood

& Schooler, 2015). For important features of experience, such as whether it has

evolving features (Mills, Raffaelli, Irving, Stan, & Christoff, 2018), or when the

participant is unaware of the content of their experience (Schooler, 2002)these
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experiential features may be best assessed using experience sampling techniques

that capture momentary elements of experience (Smallwood, 2013).

There are a number of methodological improvements that could enhance

future studies of brain-experience association. A recent benchmark study by

Ciric et al. (2017) shows that scrubbing can improve the performance of resting

state analyses. Regarding to the analysis pipeline, we gained hyper-parameters

and best model with nested-CV an approach that can help prevent overfitting

(Bzdok & Yeo, 2017). There are also alternative ways that could provide bet-

ter tests of the robustness of the components we identified. We assessed the

validity of the components in three different ways; (i) with a data-driven, non-

parametric permutation test (Smith et al., 2015)that establishes the statistical

validity of the identified components and (ii) by establishing the relationship

between the laboratory cognitive measures and (iii) by consideration of their

links with contemporary theoretical accounts of ongoing cognition. In our study,

Components 1 and 3 were statistically significant in both cases and fitted well

with contemporary accounts of ongoing cognition. Accordingly we place encour-

age readers to focus on these patterns from our data. There are alternative

strategies that could help validate the robustness of patterns of brain-experience

association. One approach could be to compare the relationship between mul-

tiple sessions within the same individual (Poldrack et al., 2015) and to have

a larger sample that would allow the reproducibility of these results through

a formal split-half validation procedure. To achieve this latter aim for future

studies, we have placed the questionnaire measure used in this study along

with an example self-report collection task on GitHub at the following address:

https://github.com/htwangtw/restingstate thoughtreports. We encour-

age interested investigators to apply these measures in their resting-state invest-

igation and to also upload the resultant data onto open fMRI. These studies

could be used in conjunction with the openly access data used in this study to

enable future investigations the opportunity to cross validate experiential ana-

lyses in a more sophisticated manner than we have been able to achieve in this

study. The analysis pipeline of the current study can be further unified into one

frame work that benefits from both validation strategies. We can include the

number of components along with penalty coefficients in the hyper-parameters
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determined in the CV process, or determine the best penalty terms with the first

component. The permutation test will then identify the reliable components oc-

curring above chance level. After all the data-driven component selection, we can

examine the survived components through their relations with well-documented

cognitive measures and conclude the meaningful patterns. Finally, it is likely

that our measure of ongoing thought lacks important questions regarding the

content of experience. It will be important, therefore, in the future to examine

the relationships of the type described in this study with a more exhaustive de-

scription of ongoing experience. We hope that by publishing our questionnaire

collection task in a GitHub repository we will be able to harness the power of

the broader community to help generate and test plausible questions for use in

future studies.
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Chapter 5

Inhibition of Prior Information

Contributes to Internal

Content Representation

5.1 Abstract

Although the patterns of ongoing thought that make up our day to day lives are

important, we know relatively little about how these experiences are constrained

by an individuals’ neurocognitive architecture. In the current study we used

machine learning to identify stable patterns describing shared variance between

performance on a battery of cognitive tasks in the laboratory, and intrinsic neural

architecture observed at rest. Next we explored whether these dimensions ex-

plained variance in measures of ongoing thought recorded in the laboratory. We

identified five neurocognitive dimensions characterised at the cognitive level as

creative association, fluid intelligence, temporally specified cognition, and, sep-

arate dimensions of episodic memory linked to visual and verbal codes of rep-

resentation. Variation in temporally specified cognition—the ability to inhibit a

prior mental set during task switching—predicted substantial variance in ongoing

experience recorded in the lab, accounting for reduced variance in two principle

dimensions identified by principal component analysis—less off-task thought and

less immersive detail. In neural terms temporally specified cognition was char-

acterised by patterns of high within-network limbic connectivity coupled with
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relative isolation between this system and other regions of cortex. Together this

analysis suggests that whether an individuals thoughts are a pristine represent-

ation of the moment, or an immersive experience generated via imagination,

depends cognitively on the ability to inhibit prior mental sets, and neurally on

the balance of segregation and integration between the limbic system and the

rest of the cortex.

5.2 Introduction

Human cognition is not always tethered to the events in the here now. Phenom-

ena such as mind-wandering highlight that we can become immersed in experi-

ences generated from memories, rather than information in the immediate envir-

onment (Smallwood & Schooler, 2015). Although understanding self-generated

experiences may ultimately inform theoretical accounts of both normal cogni-

tion and disease states, we currently lack a comprehensive understanding of how

these experiences are constrained by an individuals’ neurocognitive architecture.

Contemporary studies have shown that ongoing thought shares important

links with both brain and behaviour. For example, the occurrence of off-task

thought can jeopardise the integrity of tasks depending on executive control

(McVay & Kane, 2009; Mrazek et al., 2012). On the other hand, states of off-task

thought and daydreaming can be associated with better performance on tasks

of memory and creativity (Ruby, Smallwood, Engen, & Singer, 2013; Poerio et

al., 2017; Wang, Poerio, et al., 2018; Baird et al., 2012). Neuroimaging stud-

ies have highlighted important roles for a number of large-scale brain networks

(see meta-analysis from K. C. R. Fox et al., 2015; Stawarczyk & D’Argembeau,

2015). These networks include the default mode network (Mason et al., 2007;

Christoff et al., 2009), the frontoparietal and attention networks (Wang, Bzdok,

et al., 2018; Golchert et al., 2017) and the limbic system (Ellamil et al., 2016;

Smallwood et al., 2016; Golchert et al., 2017).

Associations between patterns of ongoing thought with objective metrics

defined from brain and behaviour, raise the possibility that these metrics of indi-

vidual difference could be used to gain traction on the architecture that underlies

patterns of ongoing thought. In the current study, a large cohort of participants

(n = 197) performed a battery of neurocognitive tasks in the laboratory, and, on
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a separate session, we measured their intrinsic brain activity using resting-state

functional magnetic resonance imaging (fMRI). These individuals also provided

descriptions of their experience while they performed a simple laboratory task

across several days.

Using these data we build on our prior work that used sparse canonical cor-

relation analysis to reveal neurocognitive dimensions that relate to patterns of

ongoing experience (Wang, Poerio, et al., 2018; Wang, Bzdok, et al., 2018). In

this study, we used sparse canonical correlation analysis to identify dimensions

that linked brain organisation to behaviour and used these as explanatory vari-

ables in analyses predicting patterns of ongoing thought in the laboratory. This

allows us to test the view that ongoing thought is an emergent property of an

individuals’ neural architecture (i.e. Gratton et al., 2018).

5.3 Method

5.3.1 Participants

Two hundred and seven healthy participants were recruited from the University

of York (132 females, 65 males; age range = 18-31 years, M = 20.21, SD = 2.36).

This analysis included two data sets with some shared measurements and the

same MRI protocol as Chapter 3. Participants were right-handed native English

speakers with normal or corrected-to-normal vision and no history of psychiatric

or neurological illness. Participants underwent MRI scanning, completed a 1-hr

online questionnaire. The first cohort is identical to the sample in Chapter 3.

Participant attended three (165 participants; 99 females, 66 males; age range =

18-31 years, M = 20.43, SD = 2.63) 2-hr behavioural testing sessions to complete

a battery of cognitive tasks. The second cohort (42 participants; 33 females, 9

males; age range = 18-23 years, M = 19.79, SD = 1.37) underwent two 2-hr

behavioural testing sessions to complete a battery of cognitive tasks. The be-

havioural sessions took place within a week of the scan. Ten participants were

excluded from the multivariate pattern analysis because they failed to complete

all of the behavioural testing sessions. In total, 197 participants (126 females,

71 males; age range = 18-31 years, M = 20.11, SD = 2.24) were included in the

multivariate pattern analysis and the comparison with cognitive performance.
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Participants were rewarded with either a payment of £10 per hour or a com-

mensurate amount of course credit. All participants provided written consent

prior to the fMRI session and the first behavioural testing session. Approval

for the study was obtained from the ethics committee of the University of York

Department of Psychology and the University of York Neuroimaging Centre.

5.3.2 MRI acquisition

The MRI acquisition protocol was identical to the study documented in Chapter 3.

Please refer to Section 3.3.2 for details.

5.3.3 Resting state data preprocessing

All preprocessing and denoising steps for the MRI data were carried out using the

SPM software package (Version 12.0) and Conn functional connectivity toolbox

(Version 17.f), based on the MATLAB platform (Version 17.a). The first three

functional volumes were removed in order to achieve steady-state magnetisation.

The remaining data were first corrected for motion using six degrees of freedom

(x, y, z translations and rotations), and adjusted for differences in slice-time.

Subsequently, the high-resolution structural images were co-registered to the

mean functional image via rigid-body transformation, segmented into grey/white

matter and cerebrospinal fluid probability maps and all functional volumes were

spatially normalized to Montreal Neurological Institute (MNI) space using the

segmented images and a priori templates. This indirect procedure utilises the

unified segmentationnormalization framework, which combines tissue segment-

ation, bias correction, and spatial normalization in a single unified model. No

smoothing was employed, complying with recent studies that report the negative

influence of this procedure on the construction of connectivity matrices analysis.

Moreover, a growing body of literature indicates the potential influence of

participant motion inside the scanner on the subsequent estimates of functional

connectivity. To ensure that motion and other artefacts did not confound our

data, we have employed an extensive motion-correction procedure and denois-

ing steps, comparable to those reported in the literature. In addition to the

removal of six realignment parameters and their second-order derivatives using

the general linear model (GLM), a linear detrending term was applied as well
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as the CompCor method that removed five principal components of the signal

from white matter and cerebrospinal fluid. Moreover, the volumes affected by

motion were identified and scrubbed based on the conservative settings of motion

greater than 0.5 mm and global signal changes larger than z = 3. Though recent

reports suggest the ability of global signal regression to account for head motion,

it is also known to introduce spurious anti-correlations and was thus not utilised

in our analysis. Finally, a band-pass filter between 0.009 Hz and 0.08 Hz was

employed in order to focus on low-frequency fluctuations.

5.3.4 ROI-ROI functional connectivity.

We adopted a set of 57 regions based on the Yeo 7 networks. We split the net-

works into two hemispheres and extracted clusters. Two voxels are considered

connected only if they are adjacent within the same x, y, or z-direction. This

yielded 57 clusters from the Yeo 7 networks parcellation. The implementation of

spatial clusters extraction was retrieved from python library Nilearn (Abraham

et al., 2014, http://nilearn.github.io/, version 0.3.1). Fully-connected, un-

directed and weighted matrices of bivariate correlation coefficients (Pearson’s r)

were constructed for each participant using the average BOLD signal time series

obtained from all the 57 ROIs described above. The off-diagonal of each cor-

relation matrix contained 1596 unique region-region connection strengths (i.e.,

the upper or lower triangle of the network covariance matrix). This approach

provided a measure of the connection strength of the whole brain for each par-

ticipant. Finally, Fisher’s r-to-z transformation was applied to each network

covariance matrix.

5.3.5 Behavioural data

5.3.5.1 Cognitive tasks

We selected 9 cognitive tasks that are common across the two cohorts. The

selected tasks measures cognitive functions that have been examined in previ-

ous mind-wandering literature, using the same or similar tasks adopted by pre-

vious mind-wandering research, including executive control (digit span: (from

Wechsler, 1999), task switching task: Handy and Kam (2015)), generation of in-

formation (unusual uses task: Mrazek et al. (2012), verbal fluency task: Adlam,
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Patterson, Bozeat, and Hodges (2010) and Balota and Coane (2008)), semantic

memory (semantics relatedness judgement tasks and feature matching task, both

developed by Krieger-redwood (2012)), episodic memory (paired-associate task:

Cairney, Lindsay, Paller, and Gaskell (2016), four mountains task: Hartley et al.

(2007)), and fluid intelligence (Raven Advanced Progressive Matrices; RAPM:

Baird et al. (2012)). Please refer to Appendix A.2 for the detailed descriptions

and references of the tasks.

Thirteen cognitive scores were calculated from the selected tasks. Perform-

ance of the digit span task was represented as the average of digit span in the

forward and backward recall conditions. The verbal fluency score is the contrast

of the letter condition and the category condition (letter–category). Picture

naming tasks, the four mountains tasks, RAMP were summarised with accuracy

scores. The task switching tasks provided two scores (a) flexibility 1 as the ability

to switch from a different condition and (b) inhibition as the ability to suppress

information from the previous trial. The calculation of the task switching con-

trast can be found in Appendix A.2.7. All the semantics related judgement

tasks, feature mating task and the paired associate task were summarised using

efficiency scores. The efficiency scores were calculated as reaction time divided

by accuracy. A smaller score indicates better performance, thus the scores were

reversed to ease the interpretation. For the semantics tasks, we calculated three

reaction contrasts based on the semantics modules tested: (a) strength (strong–

week), modality (picture–word), and (c) specificity (specific–general). All the

scores were standardised as z-scores in the subsequent analysis. We defined out-

liers as scores greater than 3. The identified outliers were then imputed with

medians of each variable.

5.3.5.2 Experience sampling

Multi-dimensional experience sampling (MDES) was used to collect thoughts

during a 0-back/1-back working memory task. Please refer to Chapter 3 Sec-

tion 3.3.4 for the MDES data collection and Table 3.1 for the detailed questions.

1 In the original contrast ‘switch cost’, smaller values indicates a better ability to switch

away from the previous condition. For the ease of interpretation, we reversed the scores and

re-named the contrast as flexibility.
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The MDES questions were aggregated (a) across all conditions, (b) within the

0-back condition, and (c) within the 1-back condition. All the scores were stand-

ardised as z-scores in the subsequent analysis. We defined outliers as scores

greater than 3. The identified outliers were then imputed with medians of each

variable.

5.3.5.3 Dimensions of ongoing thought

For the purpose of analyses, the scores on the 13 MDES questions were entered

into a PCA to describe the underlying structure of the participants’ responses.

Following prior studies (Konishi et al., 2017; Medea et al., 2016; Ruby, Small-

wood, Engen, & Singer, 2013) we concatenated the responses of each participant

in each task into a single matrix and employed a principal components reduction

with varimax rotation (see the top panel of Figure 5.1). We selected the number

of components based on the elbow in the scree plot.

5.3.6 Multivariate pattern analysis

5.3.6.1 SCCA

We performed a sparse canonical correlation analysis (SCCA; see Hastie et al.,

2015) on the functional connectomes and the cognitive tasks, to yield latent com-

ponents that reflect multivariate patterns across neural organisation and cogni-

tion (For similar application, see Wang, Poerio, et al., 2018). SCCA maximised

the linear correlation between the low-rank projections of two sets of multivari-

ate data sets with a sparse model to regularise the decomposition solutions a

process that helps maximise the interpretability of the results. The regularisa-

tion function of choice is the L1 penalty, which produces ‘sparse’ coefficients,

meaning that the canonical vectors (i.e., translating from full variables to a data

matrix’s low-rank components of variation) will contain a number of exactly zero

elements. L1 regularisation conducted (a) feature selection (i.e., select only rel-

evant components) and (b) model estimation (i.e., determine what combination

of components best disentangles the neurocognitive relationship) in an identical

process. This way we handle adverse behaviours of classical linear models in

high-dimensional data. A reliable and robust open-source implementation of the

SCCA method was retrieved as R package from CRAN (PMA, penalized mul-
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tivariate analysis, version 1.0.9 Witten et al., 2009). The amount of L1 penalty

for the functional connectomes and cognitive task performance were chosen by

cross-validation. The procedure is described below.

5.3.6.2 Model Selection

The model selection process was conducted with two parts: the L1 penalty

coefficient selection and component selection. For the L1 penalty coefficient

selection, we performed a grid search combined with cross-validation (CV) to

avoid over-fitting (Bzdok & Yeo, 2017). Of each penalty pair on the search

grid, a 10-fold CV was performed to search for the best out-of-sample the rank-1

canonical correlation (see the middle panel of Figure 5.1). We then decomposed

the full dataset with the selected L1 penalty coefficients. The K-Fold CV was

conducted by the implementation in Python library scikit-learn (http://scikit

-learn.org/stable/, version 0.18.2 Pedregosa et al., 2011).

Confound removal was performed on the functional connectomes and the

cognitive scores as suggested by prior study (Smith et al., 2015). The confound

variables were sex, age, and head motion indicated by mean frame-wise displace-

ment (Jenkinson et al., 2002). The removal steps were performed on the training

set in each CV fold. The z-scores of the confound variables were calculated, and

also squared the three confound measures to account for potentially nonlinear

effects of these confounds. The 6 resulting confounds were regressed out of both

data matrices. The implementation of the confound removal method (Friston

et al., 1994) was retrieved from Python library Nilearn (Abraham et al., 2014,

http://nilearn.github.io/, version 0.3.1).

After finding the optimal hyper-parameters, 1000 permutation tests with

family-wise error (FWE) correction was applied to access the component(s) that

occur above chance (see the bottom panel of Figure 5.1). We constructed a null

distribution for each canonical component by holding the functional connectiv-

ity data in place and randomising the subject-wise order of self-report data.

This permutation scheme broke the link of individual differences in the dataset,

therefore testing the robustness of the components in the hypothetical popu-

lation. By calculating the false-discovery rate in the null distribution, we can

conclude the possibility of discovering our components by chance with the given
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penalty coefficients. Hypotheses that are accepted with a 5% level of significance.

In the current analyses, we adopt the permutation test with the FWE-corrected

p-value by Smith and colleagues (2015). All components were compared to the

first sparse canonical correlation of the permuted sample. The low-rank com-

ponents are more relevant than the rest, therefore we yield more conservative

p-value by comparing to the first canonical correlation only.

Figure 5.1. Analysis pipeline.

Top: PCA on MDES (Section 5.3.5.2). Middle: sparsity parameter selection (Section 5.3.6.2).

Bottom: permutation test procedure (Section 5.3.6.2).

5.3.7 Group analysis

To determine how patterns of unconstrained neurocognitive activity related to

performance on the self-report experience summarised in three different ways

(see section 5.3.5.2), we conducted three independent statistical analysis on the
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identical subjects. A Type III multivariate multiple regression with Pillai’s trace

test was applied to the data. Each of the latent components describing the neuro-

cognitive mechanism from the SCCA was the independent variables, and the 13

measures from MDES were the dependent variables. We hoped to described the

neurocognitive components by the linear combination of the self-report questions

collected via MDES. The p-values reported were based on Bonferroni correction.

The analysis was conducted in R (version 3.3.1). The multivariate multiple re-

gression was conducted in R (version 3.3.1) using function Manova in R package

car (companion to applied regression, version 2.15).

5.4 Results

5.4.1 Dimensions of ongoing thought

Figure 5.2. Dimensions of ongoing though.

The result from the PCA is presented as

a heatmap. The colour bar represents the

value of the principal component loading.

Experience sampling probes revealed

four unique dimensions of ongo-

ing thought during the 0-back/1-

back task. PCA of the 13 exper-

ience sampling questions resulted in

four principle components of thought

presented in Figure 5.2. Consistent

with our prior study (Poerio et al.,

2017), the components were charac-

terised as: detailed thought, off-task

thought, modality of thought, and

emotional thought.

5.4.2 Neurocognitive compon-

ent selection

Sparse Canonical Correlation Ana-

lysis (SCCA) was used to determ-

ine connectome-wide dimensions that

describe common variance shared by

descriptions of brain and experience.
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This took as input individual scores

for the connections between each of

the regions extracted from Yeo’s 7 networks parcellation and the 13 cognitive

task scores.

Figure 5.3. Grid search result.

This heatmap represents the rank-1 canon-

ical correlations of each sparsity coefficient

pairs determined by the CV. The red square

indicates the best result.

We applied SCCA with 10-fold CV

and permutation tests as the model

selection strategy. We obtained pen-

alty levels of 0.6 on both the func-

tional connectivity and cognitive tasks

indicated the best out-of-sample pre-

diction on our data through the grid

search (Figure 5.3), obtaining 0.70 on

the rank-1 canonical correlation. Five

significant canonical components were

identified through FWE-corrected p-

value through permutation tests. The

p-values of the 5 components are

0.028, 0.042, 0.041, 0.012, 0.033. The

canonical correlations of the 5 signific-

ant latent components were 0.68, 0.68, 0.68, 0.70, and 0.68. Since the sparsity

turns CCA into a convex optimisation problem, the modes didn’t come out in

the descending order of their canonical correlations.

5.4.3 Determining constituent category of cognitive functions

The latent components yielded by the best model are presented in Figure 5.4.

Using SCCA we identified five neurocognitive dimensions characterised at the

cognitive level as the creative association (Component 1), fluid intelligence (Com-

ponent 9), temporally specified cognition (Component 7), and, separate dimen-

sions of episodic memory linked to visual (Component 8) and verbal (Component

12) codes of representation. For the ease of presentation and interpretation, we

summarised the components as network-network connectivity instead of 57-by-57

connectivity matrices. The heat maps describe the network-to-network correla-

tions and the cognitive tasks.
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Figure 5.4. Significant components from SCCA.

The colour in the heatmap indicates the value of the canonical coefficients of each

components. VIS: visual network, S-M: somatomotor network, VAN: ventral atten-

tion network, DAN: dorsal attention network, LIM: limbic network, FPN: frontoparietal

network, DMN: default mode network.

Component 1 emphasis semantic control with the picture-naming task and

the unusual uses task, along with intelligence in the cognition component. The

negative coefficient in semantic strength indicated the ability to detect weaker

semantics relationships. The functional connectivity pattern shows a general

dissociation among all networks, except between the unimodal systems. Network

segregation was especially pronounced between the sensorimotor network and the

limbic system, and a general dissociation between the unimodal sensory system

and the attention and transmodal regions. Component 1 demonstrated semantic

control ability to generate mental representation and semantic associations.

Component 7 reflects better performance on task switching tasks, both in

terms of a reduced switch cost, and the ability to suppress prior mental sets. The

performance was better for both visual semantic decisions and specific semantic

imagery. In addition, participants performed better on the four mountains task

and had a larger digit span. This pattern of performance was linked to the better
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performance of tasks that requires mental representations to be controlled across

time (task switching, four mountains task and digit span) particularly with a

particular emphasis on visual processing. The connectivity pattern shows strong

connectivity between sensory systems. In addition, the visual system showed

reduced connectivity between the attention systems, while the limbic system was

less correlated with all systems other than the FPN. Within network connectivity

was strong for the limbic, frontoparietal and default mode networks. Overall,

this component demonstrates the ability to control representations over time

and is linked to integrity within limbic and transmodal systems and separation

between visual and attention systems.

Component 8 pits executive tasks against verbal episodic memory systems

since it is linked to better paired-associate memory, verbal semantic memory

and feature matching and worse task switching, digit span and verbal fluency.

The functional connectivity pattern shows a general pattern of reduced network

connectivity. Exceptions to this include the unimodal networks the visual net-

work shows stronger connections to attention and default mode networks, while

the sensorimotor network shows stronger coupling to the ventral attention and

limbic networks. Within network connectivity is higher in the ventral attention,

limbic and default mode networks.

Component 9 is composed of tasks that rely on controlled processing (fluid

intelligence, task switching, fluency and controlled semantic retrieval). It is

also linked to worse picture naming. In connectivity terms, the default mode

network shows stronger connectivity with unimodal and attention networks, and

the dorsal attention network is linked to stronger connectivity with the visual

network. Within network connectivity is low within the visual, dorsal attention

and default mode networks and high in the ventral attention network.

Component 12 highlights the between episodic memory (better paired-associate

memory) and worse visual semantic memory (worse verbal semantics and poor

figure matching). Fluency was better when organised alphabetically rather than

by categories. The default mode network and the visual system showed a gen-

eral coupling pattern with the other networks, while a strong dissociation of the

limbic with the attention systems and the sensorimotor system. The compon-

ent demonstrates a strong ability to retain and recall information that does not
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benefit from the semantic organisation.

5.4.4 The relationship between neurocognitive components and

self-reports on thoughts

Three regression models were performed to evaluate the relationship between

neurocognitive components and self-reports on thoughts: average scores of all

thought probes thought probes in 0-back and 1-back conditions (Figure 5.5).

We first examined the relations of the neurocognitive components and the

overall thought reports. In the model of all thought probes, we got multivari-

ate main effect in component 7 (F (13, 160) = 2.239, p = .010, η2p= .154) and

12 (F (13, 160) = 1.946, p = .029, η2p= .137). There was only one significant

univeriate effect after Bonferroni correction, which is the negative correlation

on self-question under component 7 (b = 0.25, 95% CI = [0.40, 0.10], t(172) =

-3.369, p = .005). The results revealed two types of thought patterns. Compon-

ent 7 focuses on information maintenance in cognitive tasks and the integration

within the separated transmodal systems. The related thought patterns shows

a low tendency in reporting personal issues. Although there were no significant

contributing univariate pattern in component 12, we see a trend of deliberate,

focused thought pattern with low imagery information related to retrieval of

semantically novel associations.

Two models examined the average scores of thought probes during the 0-back

and 1-back condition separately. The aim is to uncover potential differences in

thought reports under the two conditions. In the 0-back condition, only com-

ponent 7 (F (13, 160) = 1.924, p = .031, η2p= .135) showed the main effect in

multivaraite level. There was only one significant univeriate effect after Bonfer-

roni correction, which is the self-question under the model for component 7 (b

= 0.23, 95% CI = [0.37, 0.79], t(172) = -3.03, p = .017). In the 0-back condi-

tion, the participants perform a visual matching task. The focused state during

the 0-back condition is associated with more cognitive mechanism that sustains

ongoing thought.

The 1-back condition model showed significant results in component 7 (F (13,

160) = 2.192, p = .012, η2p= .151) and component 12 (F (13, 160) = 2.312, p

= .008, η2p= .158). There was only significant univeriate effect in the model
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for component 7 after Bonferroni correction. The significant variable is the self

question (b = 0.26, 95% CI = [0.40, 0.11], t(172) = -3.51, p = .003) and the

habit question (b = 0.22, 95% CI = [0.37, 0.75], t(172) = -2.97, p = .020). The

1-back condition required participants to maintain meaningless associations of

the two shapes presented on the screen.

Figure 5.5. Group level analysis on neurocognitive components and self-report on

thoughts.

The codes next to the component number indicate the significant level of the mutivariate results,

and those in the coloured cells are for the univariate results. The colour represent the univariate

b value. P-value significant codes: ‘***’: < 0.001; ‘**’: ‘*’: < 0.05; ‘.’: < 0.01

5.4.5 The relationship between neurocognitive components and

ongoing thought patterns

Pearson’s correlations were calculated to explore the relationships between the

neurocognitive components and the dimensions of ongoing thought. The tem-

porally specific cognition component (Component 7) is negatively correlated to

details and off-task components (Figure 5.6).
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Figure 5.6. The relationships between the neurocognitive components and the ongoing

thought.

This heatmap represents correlation between the principal components and the univari-

ate level predictions in Section 5.4.4.

5.5 Discussion

We set out to identify patterns that described the association between different

aspects of cognition and the intrinsic organisation of the cortex and to explore

whether these accounted for variations in patterns of ongoing thought. Using

SCCA we identified five neurocognitive dimensions characterised at the cognitive

level as the creative association (Component 1), fluid intelligence (Component

9), temporally specified cognition (Component 7), and, separate dimensions of

episodic memory linked to visual (Component 8) and verbal (Component 12)

codes of representation. In our subsequent analysis, we identified that variation

in temporally specified cognition was associated with substantial variance in

patterns of ongoing thought recorded in the laboratory. In particular, we found

that this neurocognitive dimension was associated with variation in both the

task relatedness of cognition and its level of immersive details. In the discussion,

we consider the implications of these data for theoretical accounts of ongoing

thought.

In neural terms, our CCA analysis suggests that the relative degree of integ-

ration/segregation of the limbic system is at the core of whether an individuals

experience is a pristine reflection of their current external goal, or instead, they

are immersed in thoughts generated through imagination. We found that indi-
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viduals who maintained attention on the task in hand, tended to show a pattern

of brain activity dominated by whether the limbic system was coupled to itself,

but decoupled from other cortical areas, while individuals who reported off-task

experiences with immersive qualities showed the reverse pattern (low within

network coupling, and high between network coupling for the limbic system).

These data add to a growing body of evidence that highlights limbic regions

as critical for patterns of spontaneous thought. For example, lesions to the

hippocampus are associated with reductions in off-task thinking (McCormick,

Rosenthal, Miller, & Maguire, 2018) and episodic future thinking as part of a

task (Maguire & Hassabis, 2011; Race, Keane, & Verfaellie, 2011). Likewise,

semantic dementia, which targets the lateral and medial aspects of the temporal

pole, reduced the capacity to imagine the future (Irish, Addis, Hodges, & Piguet,

2012; Viard et al., 2014). Furthermore, hippocampus activity has been shown

to be important for spontaneous thought during the occurrence of spontaneous

thought (Ellamil et al., 2016), while its connectivity with regions of the default

mode network is important for both episodic features of spontaneous experience

(Karapanagiotidis et al., 2017) as well as its immersive features (Smallwood et

al., 2016). Based on our results, the contribution of limbic structures to spontan-

eous experience may depend on their coupling with other regions, allowing these

hub regions to integrate information from across the cortex to create a mental

scene (Hassabis & Maguire, 2009). This account is broadly consistent with views

of limbic structures, such as the hippocampus (Moscovitch et al., 2016) and the

anterior temporal lobe (Lambon-Ralph et al., 2017) which are both thought to

share a hub and spoke architecture in which their contribution to cognition arise

from their capacity to integrate information from across the cortical mantle.

In our analysis, participants with whom the limbic system was relatively

isolated within the cortical mantle, performed well in a task switching context

that required them to suppress representations of a previous task set. Prior uses

of this task paradigm have documented that this ability is linked to the tendency

to ruminate. Whitmer and Banich (2007) found that individuals who were high

on trait rumination were better than non-ruminators when switching back to

a prior task. This pattern is broadly consistent with our data which shows

that people who show the smallest cost from inhibiting a prior mental set, were
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more likely to reports patterns of ongoing thought that were characterised by

immersive experiences characterised by self-relevant, social and episodic content.

Building on our study a promising area for future study would be to examine how

limbic connectivity supports the recurrence of negative self-relevant experiences

that are thought to be important in rumination (Kleckner et al., 2017; Peters,

Burkhouse, Feldhaus, Langenecker, & Jacobs, 2016; Cooney, Joormann, Eugène,

Dennis, & Gotlib, 2010).

Our data suggest that the default mode network shows a similar, albeit less

pronounced pattern, to the limbic system. Given evidence of a role for the

DMN in both immersive experiences in task states (Sormaz et al., 2018; Richter,

Cooper, Bays, & Simons, 2016) as well as in off-task states (Mason et al., 2007;

Christoff et al., 2009; Stawarczyk et al., 2011). It is possible that these two

networks work in tandem when cognition is focused on self-relevant information

with the limbic systems providing the episodic and conceptual content, and the

default mode network allowing this content to be represented at a relatively

abstract level. This interpretation is consistent with the observation that the

default mode network is spatially located at the top of a hierarchy and most dis-

tant from unimodal inputs, while limbic regions occupy an intermediate position

(Margulies et al., 2016).

Finally, it is worth considering a number of limitations of this study. First,

we did not measure patterns of ongoing thought while individuals performed

the battery of cognitive tasks. It is, therefore, possible that part of the shared

variance that our analyses capture emerges because of the patterns of ongoing

thought occur during the cognitive tasks (see Mrazek et al., 2012, for evidence of a

similar point in the context of executive control or intelligence tasks). However,

this interpretation of our data is unlikely since individuals who were off-task

tended to perform better on the tasks when they returned to a mental set that

had recently been active. Second, our neural data was only measured on a

single occasion, raising the possibility that this measure of brain function reflects

a state rather than a trait. While this remains a possibility, recent studies

have shown that individual patterns of functional connectivity remain relatively

consistent across tasks and time (Gratton et al., 2018). Nonetheless, future

studies could benefit from measuring an individuals architecture across multiple
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points to provide a more robust indication of its trait like features.
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Chapter 6

General discussion

Contemporary research on patterns of self-generated thought, such as those oc-

curring during states of mind-wandering, is riddled with contradictions. The

content of ongoing thought varies from future-orientated planning thoughts that

may help refine personal goals (Medea et al., 2016) to negative past concerns

that can maintain unpleasant affective states (Killingsworth & Gilbert, 2010).

Likewise, research has highlighted the disadvantage of off-task thought during

tasks that demand continuous external attention (McVay & Kane, 2009, 2012a),

whereas research on creativity and problem solving suggests evidence of benefi-

cial influence from off-task thought(Smeekens & Kane, 2016; Baird et al., 2012).

The conflict presented above is thought to emerge because of variability in the

nature of ongoing thought. Heterogeneous ongoing thought may be composed of

a set of experiences with overlapping features—the so-called family resemblance

account of mind-wandering (Smallwood, 2013; Seli et al., 2018). One aim of

this thesis was to develop an empirical approach sensitive to possible similarities

among the heterogeneous patterns of thought. In particular, the goal was to

identify multiple patterns of ongoing experience that share common and distinct

features that can be empirically measured. To implement this goal, this thesis

examined the intersection between subjective reports and objective measures—

in this case patterns of resting-state functional connectivity and performance

on cognitive tests. The current thesis employed SCCA (Witten & Tibshirani,

2009)—a multivariate approach that measures similarities of linear patterns in

two domains of data. SCCA identifies various patterns of thought while reflecting

the covariance between both brain and cognition. The overarching aim of this
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thesis is to provide evidence in support of the family resemblance view of ongoing

thought, and facilitate a more constrained theoretical account of how different

patterns of ongoing thought emerge.

6.1 Empirical findings

The current thesis comprised three studies focusing on resolving the heterogen-

eous features of ongoing thought by considering its intersection with measures of

neural function—in this case intrinsic functional connectivity at rest. Chapter 3

revealed that mind-wandering is a collection of different ongoing thoughts that

are derived from the connectivity patterns in DMN. Chapter 4 found that the

population variance in intelligence is related to different whole-brain neural hier-

archies and ongoing thoughts. Chapter 5 showed that either momentary or longer

mental representation is associated with the ability to inhibit prior mental sets

and the balance of segregation and integration between the limbic system and

the rest of the cortex. Describes in detail two themes that emerged from this

work—the heterogeneity of patterns of ongoing thought and the integration and

segregation of transmodal networks.

6.1.1 Heterogeneity

In mind-wandering literature, converging evidence highlights heterogeneity in the

variety of functional outcome linked to off-task thought (Smallwood & Andrews-

Hanna, 2013), the definitions that researchers have used to study different types

of ongoing thought (Seli, Risko, Smilek, & Schacter, 2016), and the number of

competing theoretical accounts (e.g. Smallwood, 2010; McVay & Kane, 2010).

The current thesis aimed to systematically explore whether this conflicted liter-

ature is a consequence of the emergence of distinct patterns of ongoing thought

with different experiential features and associated outcomes. This question was

explored by focusing on a single candidate neural system—the DMN (Chapter 3)

and at the whole-brain level (Chapter 4).

It is a widely held view that the DMN is important in certain types of ongo-

ing thought, such as mind-wandering (see a review from Smallwood & Schooler,

2015). The aim of Chapter 3 was to explore whether associations between pat-
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terns of DMN connectivity and measures of experience yielded unique patterns

with distinctive patterns of functional outcomes. In this study we found two

reliable neuroexperiential patterns, each with distinct functional outcomes (see

Figure 3.4). Internal connectivity in the mPFC was related to positive habitual

experience and was predicted by poor executive control (see Figure 3.2), sug-

gesting that this may correspond to patterns of executive failure linked to the

mind-wandering state (McVay et al., 2009). The relationship between ongoing

thought and deficits in executive control could be a result of failure to allocate

cognitive resource to an external task. In addition, patterns of PCC-TPJ-mPFC

decoupling (see Figure 3.2), associated with off-task experience, provided a link

to better performance on tasks requiring the generation of information. The

continuous content generation associated with an external task is similar to the

association between patterns of off-task thought and creativity (Baird et al.,

2012). Together, Chapter 3 provided evidence that ongoing thoughts unfold

along a set of heterogeneous dimensions. Critically, Chapter 3 explained how

the conflicts between the representational and executive failure accounts could

be a consequence of different configurations in the DMN.

Since the brain works as a distributed system when engaging in tasks, a nat-

ural question following Chapter 3 is how regions other than DMN contribute to

the heterogeneity of ongoing thought. Recent works on the hierarchical func-

tional cortical organisation suggest variability in relationships among large-scale

networks (e.g. Margulies et al., 2016). In Chapter 4, the focus shifted from

the DMN to the whole brain in order to explore the contribution of other brain

networks to the heterogeneity of ongoing experience. The identified neuroexper-

iential components suggested that different patterns of ongoing thought may be

linked to distinctive neural hierarchies. For example, experiences characterised

as purposeful monologue (see component 1 in Figure 4.2) were linked to sens-

ory segregation—dissociation between the DMN and unimodal networks—at the

whole-brain level. This pattern of decoupling is a well-documented element of

ongoing thought (see Smallwood, 2013; Smallwood & Andrews-Hanna, 2013)

and is thought to reduce the interference between patterns of self-generated

thought and events in the external environment (Murphy et al., 2018). Con-

sistent with the adaptive view on the sensory segregation process, this pattern
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of experience was linked to better performance on measures of cognition and

intelligence (Figure 4.3). The study also highlighted that dysfunctions within

a second hierarchy—the MDN (Duncan, 2010)—may also make an important

contribution to patterns of ongoing thought (see component 3 in Figure 4.2).

Individuals whose thoughts were directed towards their personal concerns had

low levels of connectivity within both the ventral and dorsal attention networks,

as well as the FPN. Critically, these individuals tended to show poor perform-

ance at measures of intelligence and control. This phenotypical pattern provides

evidence for the hallmarks of executive failure (i.e. McVay & Kane, 2010). In

contrast to data present in Chapter 3, where a singular system gives rise to

different patterns of thoughts and behaviour, the data presented in Chapter 4

shows that heterogeneous patterns of ongoing thought emerge from functional

connectivity that reflects previously documented neurocognitive associations.

Multiple overlapping patterns of ongoing thought can be realised by combin-

ing experiential data with objective neurocognitive measures. The demonstra-

tions in this thesis suggest that some of the theoretical controversy surrounding

the nature of ongoing thought can be explained as relating to distinct patterns

of ongoing thought. For example, in both Chapters 3 and 4, we found certain

patterns of ongoing experience that have beneficial features (such as better cre-

ativity or intelligence) and others with less beneficial correlates (such as lower

intelligence or worse executive control). Based on these findings, some of the

controversies regarding whether mind-wandering should be considered a failure

of executive control (e.g. McVay & Kane, 2010; Smallwood, 2010) result from

prior studies lumping together experiential states with different features into

a single category. In other words, one important contribution of this thesis is

providing a synthesis to resolve the competing theoretical positions of the same

phenomenon. The competing elements highlighted in the theoretical accounts

can be seen to reflect independent aspects of ongoing thought. The capacity to

identify these overlapping patterns of experience is made possible in part because

of the use of a biological marker (i.e. functional connectivity) as well as assess-

ments on multiple aspects of ongoing thought and task performance. Moving

forward, studies of ongoing thought would, therefore, benefit from measuring

multiple dimensions of experience, as well as measures of covert function such as
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neuroimaging measures, pupillometry (Konishi et al., 2017), or other biological

measures (Engert, Smallwood, & Singer, 2014).

6.1.2 Integration and segregation in transmodal networks

A second theme emerging from this thesis lies in the function of transmodal

networks. Patterns of heterogeneity emerge through differential patterns of in-

tegration and segregation between and within large-scale neural systems. In-

tegration and segregation have been both assumed to be an important principle

in brain organisation. For example, hierarchical integration of sensory informa-

tion is thought to support more abstract aspects of cognition (Mesulam, 1998).

In contrast, segregating neural systems are thought to provide flexibility in the

operations that can be performed (Buckner & Krienen, 2013). A hierarchical

organisation implicating both integration and segregation is captured by the

primary gradient which stretches from the unimodal to the transmodal networks

(Margulies et al., 2016). Other examples of cognitive hierarchies that depend on

integration and segregation include the MDN (Duncan, 2010). The integrated

activity of large-scale network concerned with integration and segregation is im-

portant whenever individuals perform complex goal-directed tasks. Notably, the

principal gradient and the MDN are differentiable in terms of the degree of separ-

ation between the DMN and FPN. The differences in functional distance indicate

how patterns of integration within transmodal cortex is a defining feature of the

neurocognitive hierarchies. The other hierarchy emerges from the limbic system.

This limbic system hierarchy is composed of visceromotor regions that connect

with DMN, and salience network (Kleckner et al., 2017). These authors suggest

that this forms an allostatic-interoceptive system, segregated from the unimodal

and attention systems. This hierarchy is assumed to emerge because the limbic

system can selectively integrate information from systems involved in attention

and cognition, as well as those important for emotion and affect. These past

studies illustrate that at the core of different neural hierarchies are patterns of

integration and segregation between distributed neural regions.

This thesis underscores the implication of the importance of integration and

segregation in the neural hierarchies that support patterns of ongoing thought.

Chapter 3 demonstrated that the role of the DMN in distinct patterns of ongoing
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thought emerges because of differences in the integration and segregation within

DMN, with spontaneous off-task thought linked to lower connectivity within this

system, while the positive habitual thought was linked to integration within the

same system. Importantly, this latter pattern of experience was also linked to

stronger coupling with a number of regions outside of the DMN including left

temporoparietal cortex, left hippocampus/entorhinal cortex, left lateral middle

temporal gyrus, and the left pre-SMA (see Section 3.4.2 and Figure 3.4). We also

found evidence for integration and segregation in Chapter 4 (see Section 4.4.1

and Figure 4.2). The pattern of purposeful future planning thought was linked to

segregation between DMN and the primary sensory systems. The second pattern

of thoughts reflected ongoing thoughts of personal importance and was linked

to reduced connectivity (i.e. lower integration) within many regions of attention

and control systems. Within both Chapters 3 and 4 patterns of ongoing thought

were differentiable based on the patterns of integration and segregation between

neural systems.

The most powerful evidence for integration and segregation within this thesis

is provided by Chapter 5. This analysis highlighted the integration and segrega-

tion in the limbic system as a core determinant of patterns of ongoing thought.

The limbic system has been previously argued to form a hierarchy integrating

the transmodal system while simultaneously segregating the unimodal system to

facilitate attention inhibition (Kleckner et al., 2017). In Chapter 5 we found a

pattern of population variation anchored at one end by a highly inter-connected

limbic system, integrating with the other transmodal area and segregated from

the sensorimotor system (component 7 in Section 5.4.3). Such segregation pat-

tern was predictive of behaviour that entailed the flexibility of retaining mental

content. At the other extreme, the limbic system was highly coupled with neural

system and individuals were unable to inhibit their prior mental set. Import-

antly, we found that this pattern of population variation was linked to patterns

of ongoing thought that varied from task-focused thought at one end to per-

sonal, habitual content at the other. This analysis not only suggests that the

degree of integration and segregation between the limbic system is important for

attentional control (i.e. Kleckner et al., 2017). Moreover, it also suggests that

the degree to which this system is coupled or decoupled from other aspects of
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the cortex is a primary determinant of whether patterns of ongoing thought are

focused on the task, or are instead focused on personally relevant matters in a

detailed manner.

Together the three studies presented in this thesis show that at the core of

different patterns of ongoing thought are the integration and segregation between

neural systems. Moving forward studies should formally consider how patterns

of integration and segregation between neural systems can give rise to the het-

erogeneity of patterns of ongoing thought that make up our daily lives.

6.2 Limitations

The primary limitation of this work is how it dealt with the temporal elements

of cognition. For example, the studies focused exclusively on individual differ-

ences within a population rather than a state level of ongoing thought. Studies

exploring the associations between static functional connectivity and psycholo-

gical traits have brought fruitful results to ongoing thought (Smallwood et al.,

2016; McVay et al., 2009; Ruby, Smallwood, Engen, & Singer, 2013). However,

it is import to bear in mind that these studies confound traits with states since

a defining feature of patterns of ongoing thought is their intermittent nature.

While individual traits allow a way to understand links between cognition and

the brain, it remains to be seen whether the patterns discovered at the population

level will be applicable in the momentary state.

There are two ways that future studies could provide a more valid temporal

perspective on patterns of ongoing thought. One approach would be to measure

experience and neural activity on multiple occasions. One potential strategy is

collecting multiple examples of experience using online probes while the neural

function is recorded. Recently using the same 0-back/1-back task in conjunction

with measures of neural function provided by fMRI we found that different di-

mensions of experience can have unique neural representations (Sormaz et al.,

2018). It would be possible to apply CCA to data collected in this manner which

would allow neurocognitive patterns to emerge that describe momentary states

rather than population variation. A second approach would be to explore the

association between patterns of dynamic neural function and ongoing experience.

The recent discovery of temporal dynamic using hidden Markov models (HMM;
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Vidaurre et al., 2017) demonstrated that time spent in brain states predicts be-

havioural traits including measures of inhibition control and attention. HMM

allow the identification of temporally re-occurring states that are defined by a

similarity between neural data across time. It is possible that the application of

HMM to neural data would resolve covert patterns of neural function that reflect

momentary changes in patterns of ongoing thought.

Another limitation emerges from the statistical technique that was applied

in this thesis in terms of both model selection strategy employed. The three

studies in the current thesis explored and improved the model selection strategy

of SCCA. The analysis in Chapter 3 did not select the hyper-parameters in a

data-driven manner. With formal hyper-parameter selection, Chapter 4 is more

transparent and data-driven in the model selection. A nested cross-validation

scheme was adopted to simultaneously select the hyper-parameter and the final

model. With the motivation to construct a pipeline that can be generalised

to the basic version of linear CCA, Chapter 5 separates the hyper-parameter

selection step and the mode selection. The final canonical correlations of the

principle mode improved from 0.28 in Chapter 4 to 0.70 in Chapter 5 with a

simpler pipeline. The scope of the current thesis focuses on the psychological

question of ongoing thought, hence the two pipelines presented in Chapters 4

and 5 are not formally bench-marked on the same data set. Future works on

a structurally simple and well-performed pipeline would be important for the

application of CCA and its variation on biomedical data.

The other concern is the choice of optimisation target for model selection.

The current thesis uses out-of-sample explained variance as the learning tar-

get. The rationale is to maximise the potential of predictability in a wider

unknown sample with the limited sample size. The alternative choice would be

the out-of-sample prediction error, which minimises the mistake when applied

to an unknown sample. This thesis did not explore the second option, hence the

performance is unknown. These two optimisation targets are asking two funda-

mentally different questions—explained variance provides a more optimistic view

of the model, while prediction error is more conservative. It is uncertain whether

the choice of learning target should be question-driven or performance-driven.

Again, a bench-marking study would be helpful to clarify the potential of the
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options.

6.3 Future directions

Before concluding it is worth considering the implications for two specific areas

of the study of ongoing thought. Much debate has been around the intermittent

disruption caused by experience sampling methods when intending to measure

the train of thought in a concurrent task (Smallwood & Schooler, 2006). This

problem is especially concerning with MDES, where participants spend around a

minute to report the thought rather than one or two questions that can be done

in seconds. A covert marker would allow studying the ongoing thought while not

interrupting the natural flow of thought.

This thesis shows that the variation in whole-brain functional hierarchy po-

tentially supports different types of ongoing thought. If, as this thesis suggests,

patterns of integration and segregation in neural activity are important aspects

of different features of ongoing thought, then the covert marker could be based

on patterns of functional connectivity. However, the calculation of connectiv-

ity depends on the processing of time-series data making the determination of

rapid temporal changes problematic. This is compounded by the low temporal

resolutions of fMRI. The application of magnetoencephalography (MEG) is pos-

sibly helpful for the determination of an online marker, given its ability to reveal

neural processes at the level of milliseconds superior to fMRI.

In conclusion, the current thesis provided a proof of principle on the util-

ity of whole-brain functional connectivity in exploring ongoing thought. It has

the potential to be the covert online marker for spontaneous thought. However,

with the current limitation in fMRI temporal resolution, functional connectivity

calculation would be the main challenge of such application. MEG is the pos-

sible candidate method for understanding the dynamic of ongoing thought and

underlying neural pattern.

6.4 Concluding remarks

This thesis set out to examine the neurocognitive mechanism of ongoing thought

and establish the basic component processes to incorporate the heterogeneity of
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ongoing thought. Three major questions were posed at the start of the thesis.

These will now be revisited in light of the work performed.

Why does ongoing thought show both costs and benefits? Ongoing

thought is a collective phenomenon with multiple types of experience each with

their own associated functional outcomes at the trait level. This thesis suggests

that pattern of costs and benefits related to mind-wandering may be usefully

conceptualised as characterising overlapping but distinct aspects of the ongo-

ing experience. Further work will be important to understand the underlying

mechanisms that explain why these different states emerge.

Can functional neural hierarchy explain the heterogeneity? This

thesis demonstrates that ongoing thoughts with different experimental profiles

are associated with different neural hierarchy. Further work is suggested to

incorporate the neural basis with the ongoing thought profiles at the state level

to understand the dynamic of ongoing thought.

Is the family resemblance view viable for ongoing thought? Overall

this thesis supports the contention that ongoing thought can be conceived of

as a family of experiences with similar and overlapping features. The current

thesis finds common component processes that determine population variation.

Further work is necessary on the application of these findings at a state level to

improve the understanding of the architecture of the component processes.
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Appendix A

Chapter 3 Supplemental

Materials

Adapted from the online supplemental material of:

Wang, H.-T., Poerio, G. L., Murphy, C. E., Bzdok, D., Jefferies, E., & Small-

wood, J. (2018). Dimensions of Experience: Exploring the Ontology of the Wan-

dering Mind. Psychological Science, 29 (1), 56-71. doi: 10.1177/0956797617728727

A.1 Questionnaires

A.1.1 Health Organization Adult ADHD Self-Report Scale

This is a self-report screening scale of adult ADHD, developed by the world health

organisation(Kessler et al., 2005). This questionnaire comprises 18 questions to

access the frequency of DSM-IV Criterion A symptoms of adult ADHD. We

take the average scores across all 18 questions to access the participants ADHD

tendency.

A.1.2 Autism Spectrum Quotient

The Autism Spectrum Quotient (Baron-Cohen et al., 2001) comprises 50 ques-

tions, included 10 questions measuring 5 different dimensions: social skills, at-

tention switching, attention to detail, communication, and imagination. For each

questions the participant has four options: definitely agree, slightly agree, defin-

itely disagree, and slightly disagree. Definitely agree or slightly agree responses
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scored 1 point on half of the designated questions. Definitely disagree or slightly

disagree responses scored 1 point on the other half of the questions. The scores

of each dimension is calculated with the sum of the scores of designated the

questions.

A.1.3 British Dyslexia Association Dyslexia checklist

The British Dyslexia Association Dyslexia checklist (Smythe & Everatt, 2001)

comprises 15 questions to access the tendency of dyslexic. Each answer of the

questions have a designated scores. Individuals scoring less than 45 are probably

non-dyslexic; individual scoring 45 60 shows a mild level of dyslexia; scoring

above 60 suggests moderate or severe dyslexia. The score in the current study

is the sum of the scores.

A.1.4 World Health Organization Quality of Life

The World Health Organization Quality of Life (WHO, 2002) assessment meas-

ures the quality of life cross-culturally. In the current study, a shorter version

of the original instrument, WHOQOL-BREF, was used, as it is recommended

for large research studies. WHOQOL-BREF comprises 26 questions. The as-

sessment measure the following broad domains: physical health, psychological

health, social relationships, and environment. The official scoring system can be

obtained on request from the official website.

A.1.5 CES-Depression scale

The CES-Depression scale (Radloff, 1977) is a self-report scale designed to meas-

ure the symptoms of depression in the general population. The scale contains 20

questions accessing the frequency of depressive symptoms in the past one week.

In the current study we used the sum of the scores as an indicator of depression.

A.1.6 State-Trait Anxiety Inventory

The State-Trait Anxiety Inventory (Spielberger, 1983) is a measure of trait and

state anxiety, composing with 20 state anxiety questions and 20 trait anxiety

questions. The state anxiety questions measure the level of anxiety when taking

the questionnaire; the trait anxiety questions measure the general level of anxiety.
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The questions are rated on a 4-point scale. Mean scores of the state and trait

questions were taken as our measurement, where higher scores indicates a greater

level of anxiety.

A.1.7 Ruminative Response Scale

The Ruminative Response Scale (Treynor, Gonzalez, & Nolen-Hoeksema, 2003)

is a 22-question self-report measure of rumination. Rumination involves intro-

verted focus on negative mood and was found associating with depressive symp-

toms and stress (Moberly & Watkins, 2008). The questions are rated on a 4-point

scale. Mean scores of the questions were taken as our measurement, where higher

scores indicates a greater level of rumination.

A.2 Cognitive tasks

The behavioural tasks were allocated into three sessions based on apparatus

needed. Visual attention and generative semantic tasks were in session A, and

semantic and episodic memory tasks were in session B and C. In each session,

the first and second tasks were the mind-wandering task and the flanker task. In

session B and C, the third task was the encoding and the delayed-recall phases

of the word pair memory task respectively. The rest of the tasks were performed

based on a pre-allocated order.

A.2.1 General apparatus of the laboratory session

In session B and C, the participants were in a sound proofed booth with a big

glass window for the testers to monitor them. There were four testing spaces

separated by office screen dividers. The tasks were delivered on Windows 7 com-

puters and presented on 21 inches LCD monitors. Headsets were given to par-

ticipants to deliver audio stimulus and blocking distracting noises. Participants

were instructed to view the screen from a distance of 65 cm. The participants

raised their hand to inform the experimenter to start each task. In session A, the

visual attention tasks were delivered on a Windows 7 computer and presented

on a 21 inches CRT monitor in a small room with light switch. The generative

semantic tasks were delivered on a Windows 7 computer and presented on a
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21 inches LCD monitor and a headset with microphone attached were used to

recording verbal responses.

A.2.2 Semantic tasks

The tasks employed a 3 alternative force choice (3AFC) paradigm with the probe

presented alongside the three choices among which the target was selected.

There are four tasks: Relatedness Task (Word-to-Picture Matching; Word-to-

Word Matching; Picture-to-Picture Matching), Identity Matching Task(Word-

to-Picture Matching), Feature Matching Task, and Scrambled Picture Matching

as the control task.

The unrelated distracters of each trial were selected among the targets from

other trials ensuring that they were not linked to the probe. Except for the

Feature Matching Task, all the tasks contain the same trial structure. Each trial

started with 500ms blank screen. The three choices were subsequently presented

on the bottom of the screen for 900ms. Finally the probe was presented on the

top middle section of the screen. Probe and choices remained visible until parti-

cipants response or for a maximum of 3 seconds. In the Feature Matching Task,

the 500ms blank screen was replaced by the probe with, in bracket, the feature

(cue) as criterion for the matching (colour, size, shape or texture). Probe and

cue were presented for 1000ms. The three choices were subsequently presented

on the bottom of the screen. Probe, cue and choices were presented as written

words and remained visible until participants response or for a maximum of 3

seconds.

The stimuli employed in the tasks were selected from a larger dataset of

words and photographs used in previous experiment (Davey et al., 2015; Krieger-

redwood, 2012; Krieger-redwood, Teige, Davey, Hymers, & Jefferies, 2015; Whit-

ney, Kirk, O’Sullivan, Lambon-Ralph, & Jefferies, 2012). The pictures were col-

oured photographs collected on internet and re-sized to fit the trial structure

(200pixel, 72 dpi). All the coloured pictures and words were rated for famili-

arity and imageability using 7-point Likert scales. Lexical frequency count for

the words was obtained by the SUBTLEX-UK database (van Heuven, Mandera,

Keuleers, & Brysbaert, 2014).

For the details of the design, please refer to the online supplementary material
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of (Wang, Poerio, et al., 2018).

A.2.3 Fluency Task

During Verbal Fluency (Adlam et al., 2010; Balota & Coane, 2008), participants

had 1 minute to generate as many unique words as possible belonging to a

semantic category (category fluency) or starting with a specific letter (letter

fluency). Semantic fluency was assessed for six categories split in two blocks

(Block A: fruits, vehicles, type of dogs; Block B: animals, tools, type of boats).

Letter fluency was assessed for three letter cues (Block C: A, F, S). Block order

was counterbalanced across participants and the order of cues within each block

was randomized. Participants verbal responses were collected and the audio

recordings were transcribed and scored off-line.

A.2.4 Word pair memory task

Participants also undertook a Word Pair Memory Task (WPMT) to assess epis-

odic memory (Cairney et al., 2016). 80 words were selected from an adapted

version of The University of South Florida (USF) word association, rhyme, and

word fragment norms (Nelson, McEvoy, & Schreiber, 2004) to create 40 semantic-

ally unrelated cue and target word pairs (e.g. owl frame). Both the cue and

target words were singular and they were matched for concreteness (t(39) =

0.39; p = .696), lexical frequency (t(39) = -4.71; p =.640), word length (t(39)

= 0.09; p =.933) and number of syllables (t(39) = -0.73; p = .472). There were

no pre-existing forward or backward associated relationships between any of the

words, reducing the likelihood of erroneous associations between words in separ-

ate pairs.

During an initial learning phase, participants were presented with the unrelated

words pairs, one at a time for 5 seconds each. This encoding phase was followed

by a recall phase during which they attempted to recall the second word from the

first word in the pair, they had 12 seconds for each trial and received a feedback

after each response. In case of no response or error the feedback included the

correct match. Participants were required to reach a performance criterion of

60% correct responses, with a maximum of three repetitions of the recall phase

for the entire list of word pairs. In the subsequent behavioral testing session
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that took place at least one day apart, participants attempted to recall the pairs

immediately (without feedback) and provided a confidence rate about each of

their responses using a 7-point Likert scale.

A.2.5 Digit span

For the Forward and Backward Digit Span Test we used the stimuli and the

score procedure described in the WASI battery. For each trial, audio files of each

digit were played in the sequential order reported in the WASI battery. The

Forward and Backward Digit Span versions were tested in separate blocks and

instructions were presented at the beginning of each block asking participants

to listen to the sequence of numbers and type them in the same order, for the

Forward block, or in reverse order for the Backward block.

A.2.6 Flanker task

We used the flanker task paradigm developed by (Eriksen & Eriksen, 1974) as a

baseline executive measure in this study. This task is conducted at the beginning

of each laboratory sessions. The target was an arrowhead at the centre, pointing

to the left or right direction. This target was flanked on either side by two to four

items. The items were arrows in the same direction (congruent condition), or in

the opposite direction (incongruent condition), or lines (neutral condition). The

participants task was to identify the direction of the centrally presented arrow

by pressing the left arrow key for the left direction and the right arrow key for

the right direction. The stimuli were white and displayed on a black background.

Each trial lasted for 4000 msec. A trial started with a fixation period of 900 - 2100

msec and then the target and the flankers appeared simultaneously. The target

and the flankers were presented until the participant responded but for no longer

than 1700 msec. After the participant made a response, the target and flankers

disappeared immediately and then a post-target fixation cross was presented.

The duration of the post-target fixation period was based on the duration of the

first fixation and RT (4000 ms minus duration of the first fixation minus RT).

After this interval, the next trial began.
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A.2.7 Task-switching task

We used the task-switching paradigm developed by (Mayr & Keele, 2000) and

the design and task materials were constructed based on (Whitmer & Banich,

2007). This task measured executive control on inhibiting previously relevant

information. In this task, the participant identified the spatial location of a

deviant object with a verbal instruction cue. The participant used a number

pad to respond. Number 1,2,4, and 5 were used. Each of them responded to the

spatial location of the designated rectangle. In each trial, four blue rectangles

arranged into a two-by-two matrix were displayed on screen. The rectangles can

vary from each other on one of three dimensions: size, motion, or orientation.

Before a set time interval of 100ms or 900ms, a verbal cue on dimensions appeared

on the centre of the screen. There were one practice block and two experiment

blocks. The cue-stimuli interval in the practice is 500 msec, and 900 msec and

100 msec respectively in the two experiment blocks. The trials are categorised

into four: control, inhibitory, uncategorised switch and repeat, see (Whitmer &

Banich, 2007) for details.

A.2.8 Four mountains task

We used the four mountains task developed by (Hartley et al., 2007) as a measure

of spatial scene construction memory. In this task, the participant identified the

target image that match the topography of the sample image across 30 trials.

The participant was presented with a sample image of four mountains for 10

seconds, and then a four-choice of landscapes arranged in a two-by-two grid

shown on the screen. The participant had no limit on thinking time for each

trial, and they pressed number 1 to 4 to select the image. The target image is

the same landscape as the sample image, but the perspective and environment

(lighting, weather and vegetation) is changed.

A.2.9 Ravens advanced progressive matrices

The Ravens Advanced Progressive Matrices (RAPM Raven et al., 1998) meas-

ured educative ability that is the ability to make sense and meaning out of

complex non-verbal stimuli. In order to complete the task participants were

tasked with finding new patterns and relationships between the stimuli. The
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RAPM used in the current study contained two tests: (i) practice test - contain-

ing 2 problems and (ii) the full test containing 36 problems. For each problem

a set of 9 boxes (ordered in a 3x3 design) were shown on the screen. All but one

box contained a pattern. At the bottom of the screen were 4 additional boxes,

each containing a unique pattern. Participants were required to select out of

these 4 potential boxes which pattern should go in the empty box. During the

practice phase participants were given online feedback outlining whether their

response was correct and, if not, how they should decide which box was the cor-

rect answer. If participants had any further questions, then they were instructed

to ask the experimenter before starting the main experiment. During the full

test no feedback was given. Participants were given 20 minutes to complete as

many problems as they could, the problems got progressively more difficult.

A.2.10 Unusual uses task

The Unusual Uses Task (Guilford, 1967) assessed divergent thinking and cre-

ativity. Participants were instructed to list as many unusual uses as they can

for a familiar object. Three objects were selected (newspaper, brick and shoe).

Uses were considered unusual if they were not the original use of the item. For

example, saying crosswords for newspaper would not be considered unusual, how-

ever saying animal bedding would. For each object, the object name appeared

on screen for two minutes and participants were required to type as many un-

usual uses as they could. The total number of unique uses they listed for each

item was calculated. Repetition of uses was not included (e.g., saying animal

bedding and bedding for animal cage would only count as one unusual use). The

participants creativity score was based upon the mean number of unusual uses

across the three objects.
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A.3 Supplementary analysis and figures

Table A.1. Correlation between motion parameter (Mean FD Jenkinson) and variable

of interests

1-back 0-back SEM EXE GEN AD SOC DYSL ATT Positive/Habit Spontaneous off task

r −0.140 0.161 −0.186 −0.234 −0.046 0.002 −0.007 0.043 −0.007 0.057 −0.096

p 0.080 0.044 0.020 0.003 0.566 0.981 0.931 0.597 0.928 0.514 0.271

N 157 157 157 157 157 157 157 157 157 134 134

We selected participants for whom movement greater than .2mm occurred on less than 5% of the resting state data (N = 134) and

re-ran the SCCA.

Figure A.1. Restricted temporal sampling and bootstrapping resampling distribution

with 1000 iteration.

Figure A.2. Scree plots of the principle component analysis.
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See Online Supplemental Material http://journals.sagepub.com/doi/suppl/

10.1177/0956797617728727

Figure A.3. Full set of components.

Figure A.4. Decomposition with motion outlier subjects excluded.
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Appendix B

Nested K-Fold

Cross-Validation

Algorithm 1 : Nested k-fold cross-validation

1: for Each outer fold k do
2: for Each parameter set do
3: Separate the development set into j folds.
4: for Each inner fold j do
5: Train the model on the training set
6: Calculate test error in the validation set j
7: end for
8: Compute the average inner cross-validation test error
9: end for

10: Choose the best parameter set with minimum average test error.
11: Use this parameter set to train on the development set.
12: Calculate test error in the test set
13: end for
14: Determine the optimal model based on the outer fold test error
15: Train the full dataset on the optimal model
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