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Abstract 

 

Background: Radiotherapy is a mainstay of sarcoma treatment, but can cause fibrosis, 

characterized by production of extra-cellular matrix proteins such as collagen by 

cancer-associated fibroblasts (CAFs) in the cancer stroma and surrounding normal 

tissues, which makes tumours more aggressive and resistant to further treatment.  

Mesenchymal stem cells (MSCs) can be recruited to irradiated tumours and can 

differentiate into CAF-like cells but the mechanisms of these effects remain unclear.                                    

Aim: Determine the mechanisms of radiation effects on the recruitment of MSCs to 

tumours and their differentiation into CAF-like cells.                                                        

Methods: Mouse MSCs were irradiated directly or exposed to irradiated mouse 

fibrosarcoma cells (FS120 or FS188) or their conditioned media (CM) and/or irradiated 

endothelial cells. Expression of CAF/fibrosis markers (collagen, fibronectin, PDGF 

receptor-β and α-SMA) by MSCs was assessed 3-4 days’ post radiation. Trans-well 

migration assays were also performed. Candidate proteins were investigated for their 

ability to stimulate migration and maturation of MSCs to CAF-like cells and for the 

ability of radiation to stimulate their production in fibrosarcoma cells. Irradiated FS120 

and FS188 solid tumours were analysed for collagen, using Masson’s trichrome 

staining, and α-SMA using IHC and immunofluorescence.                                                

Results: Direct irradiation of MSCs had limited effects on their expression of CAF 

markers and migration, but exposure to irradiated tumour cells or CM and/or 

endothelial cells increased these effects. Candidate proteins TGF-β1, MCP-1, and SDF-

1α all significantly enhanced the migration of MSCs, and radiation increased their 

production in fibrosarcoma cells. FS188 cells produced more MCP-1 than FS120 cells 

and FS188 and FS120 cells and their CM increased MSC migration in a radiation-

dependent manner. Migration could be at least partially blocked by an MCP-1 blocking 

antibody. MSC expression of the MCP-1 receptor, CCR2, was increased after exposure 

to irradiated FS188 cells or their CM. In vivo, irradiated fibrosarcomas showed 

significant increases in collagen content, with more collagen in FS188 than in FS120 

tumours.             

Conclusion: Results support the notion that MSCs play an important role in radiation-

induced CAF activity and fibrosis in sarcoma. MCP-1 was identified as an important 

mediator of these effects. Moreover, endothelial cells were shown to play an important 

role in the recruitment of MSCs in response to radiation. In vitro results identifying 

FS188 cells as being more pro-fibrotic than FS120 cells were consistent with in vivo 

results. Further work to understand these processes should help to develop novel 

treatment strategies for combination with radiotherapy.  
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1. Introduction 

1.1 Clinical aspects of soft tissue sarcoma (STS) 
 

Soft tissue sarcomas (STSs) are a group of rare malignant tumours that arise from 

mesenchymal cells. Although STSs are relatively rare, they constitute a higher 

proportion of cancer morbidity and mortality in paediatric and adolescent practice than 

in adults (Gronchi and Casali, 2013). STSs account for 0.5-1% of all adult cancers 

(Lahat et al., 2008) and 6-7% in children and young adults which are relatively more 

common than most other types of solid malignancies (Grimer et al., 2010, Sultan et al., 

2010). The most common locations of STS are the extremities (50%), trunk (15%), 

retroperitoneum (15%) and the abdominal cavity (15%) (Clark et al., 2005, Gronchi 

and Casali, 2013). According to the World Health Organization (WHO) tumour 

classification, there are more than 50 subtypes of STS that can present in any age group 

and any location in the body (Fletcher, 2014, Fletcher et al., 2002). The diversity in 

sarcoma subtypes and their rarity make sarcomas very difficult to study.  

There is a link between the histopathological subtype and the age of the patient; the 

most common types in adults are liposarcoma and leiomyosarcoma (Fletcher, 2014), 

while in the elderly, the most common type is undifferentiated pleomorphic sarcoma 

which was previously known as malignant fibrous histiocytoma (MFH) (Sharon and 

Weiss, 2008). Out of all STS in children, around 50% are rhabdomyosarcomas (Kapoor 

and Das, 2012) (Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The relation between age and sarcoma incidence (Sharon 

and Weiss, 2008). 
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Figure 1.1 The relation between age and sarcoma incidence 

 

Figure 1.2 The relation between age and sarcoma 

incidence. 

 

Figure 1.3 The relation between age and sarcoma 

incidence. 
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1.2 Standard treatment of STS 

1.2.1 Surgery 

 

The standard treatment for localized STS is surgical excision, ideally aiming for a 

radical resection margin and preserving function if possible (Mendenhall et al., 2009). 

Al-Refaie and colleagues showed that for extremity tumors > 3 cm in largest diameter 

patients should also be treated with adjuvant radiotherapy (Al-Refaie et al., 2010), 

while, for larger tumours or small tumours with marginal or involved resection margins, 

combinations of surgery followed by radiotherapy are preferred (Mendenhall et al., 

2009). Surgical treatment of STS entails a fine balance between preserving function 

and minimizing the risk of local tumour recurrence (Grimer et al., 2010). The type of 

surgical resection is determine by the tumour size and depth, the anatomical location of 

the tumour, the performance status of the patient, and the involvement of nearby 

structures. 10–20% of tumours recur locally, despite improvements in local control but 

in most cases, can still be controlled.  

 

1.2.2 Radiotherapy 

 

Although various studies have shown a relation between radiotherapy (RT) treatment 

and an increase in the risk of angiosarcoma and bone sarcoma (Lagrange et al., 2000, 

Virtanen et al., 2006), RT is still one of the standard effective treatment for intermediate 

and high grade STS (Grimer et al., 2010). 

RT can be given either pre or postoperatively. Some selected patients who have widely 

negative margins may not require radiation (Pisters et al., 2007b). Advances in RT 

technology, such as intensity-modulated radiation therapy (IMRT), brachytherapy and 

intraoperative radiation therapy (IORT), have led to improved treatment outcomes in 

patients with STS (DeLaney et al., 2005).  It has been demonstrated that post-operative 

or adjuvant RT achieves local control and survival similar to radical resection (Yang et 

al., 1998). Various studies have shown that neo-adjuvant RT has better long-term 

functional effects and decreases the risk of joint stiffness (O'Sullivan et al., 2002, Davis 

et al., 2005, Zagars et al., 2003). However, despite these benefits, Cannon et al and 

O'Sullivan et al have showed a high wound complication rate (34%-35%) in patients 
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treated with neo-adjuvant RT compared with patients treated with adjuvant RT (16%-

17%) (Cannon et al., 2006, O'Sullivan and Levin, 2003, O'Sullivan et al., 2002).  

Furthermore, a recent study by Folkert and colleagues has demonstrated that treatment 

by IMRT caused less skin toxicity than using conventional RT (Folkert et al., 2014). 

Despite the effectiveness of RT in the treatment of STS, RT has acute and chronic 

toxicities (El-Bared et al., 2015). Acute toxicities occur within 120 days and include 

skin toxcicity and problems with wound healing. Whereas chronic RT toxicities occur 

after 120 days and include problems such as joint stiffness, oedema and fibrosis (El-

Bared et al., 2015). Recently, a novel study by Alqathami and colleagues called 

SMART (Sensitivity Modulated Advanced Radiotherapy) involving multi-

compartment phantom radio-chromic dosimetry, showed that it may be possible to 

reduce the complications caused by radiotherapy (Alqathami et al., 2012). 

Generally, the recommended neo-adjuvant RT dose is 50 Gy with daily 1.8-2 Gy 

fractions, while for adjuvant RT the dose should be 60-66 Gy in two Gy fractions 

(Kepka et al., 2005, Zagars and Ballo, 2003). 

1.2.3 Chemotherapy 

 

Distant metastases from STSs remain a significant problem with a high mortality 

(Torres et al., 2007). The importance of systemic chemotherapy for most histological 

subtypes in adult STS patients remains controversial, except for some rare, 

predominantly paediatric and young adult types such as rhabdomyosarcoma, 

osteosarcoma, and Ewing`s sarcoma. Chemotherapy is given either as neo-adjuvant 

(preoperative) and/or adjuvant (postoperative) for patients with tumours (Grimer et al., 

2010) belonging to these sub-types.  For other subtypes in the non-metastatic setting, 

the use of chemotherapy is controversial.  One important study was conducted by 

Penella Woll and colleagues in 2012 (Woll et al., 2012). This study represents the 

second largest trial for sarcoma adjuvant therapy after the first EORTC (European 

Organisation for Research and Treatment of Cancer) trial by (Bramwell et al., 1994). 

The Woll et al study consisted of 351 patients followed up for a long time and divided 

into control and patients treated by ifosfomide plus high dose doxorubicin after tumour 

resection (Woll et al., 2012). Radiotherapy given to both groups if the resection margin 

was positive. The results were in agreement with previous studies in which unselected 

patients with sarcoma showed no benefit from doxorubicin and ifosfomide (Petrioli et 
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al., 2002). However, this study has some weakness such as including some patients 

(24%) with small tumours (<5 cm), which are usually treated by surgery and 

radiotherapy alone without chemotherapy. Furthermore, the dose of ifosfomide used in 

the Woll study is lower than that were used in the previous trial by (Frustaci et al., 2001) 

who used a conventional chemotherapy dose. 

Doxorubicin and ifosfomide are the most active chemotherapy agents in the treatment 

of STSs (Elias et al., 1989). A previous study by Frustaci and colleagues has shown an 

increase in disease-free survival for sarcoma patients treated by epirubicin and 

ifosfomide (Frustaci et al., 2001). While other studies have shown improvement in local 

control and disease free survival but no improvement in overall survival (Bramwell et 

al., 1994, Petrioli et al., 2002). Different STS histopathological sub-types have shown 

variation in their chemo-sensitivity. The most chemo-sensitive sarcomas are synovial 

sarcoma, myxoid/ round cell liposarcoma, extra-skeletal Ewing`s tumour and childhood 

rhabdomyosarcoma (Grimer et al., 2010), while the most chemo-resistant sarcoma are 

alveolar soft part sarcoma, dedifferentiated liposarcoma, GIST (gastrointestinal stromal 

tumours), low grade liposarcoma and clear cell sarcoma (Grimer et al., 2010). Pisters 

and colleagues showed that there is no need for routine chemotherapy for low-grade 

resectable tumours or small size high-grade STS (Pisters et al., 2007a). The benefits of 

preoperative chemo-radiotherapy include early treatment of subclinical tumour spread 

and assessment of response, but its importance on survival in STS patients remains 

unknown. For metastatic STS, chemotherapy is used with palliative intent but response 

rates are generally poor (Clark et al., 2005). 
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1.3 Angiogenesis and vascular targeted therapies in STS 

 

Angiogenesis can be defined as the growth of new blood vessels from existing vessels 

(Carmeliet, 2000). It is a physiological and pathological event which occurs in normal 

development and reproduction in early life (as in organogenesis), or in adulthood (as in 

wound healing and menstruation) in which vascular endothelial growth factor (VEGF) 

and its receptors play a central role (Fox et al., 2001). Formation of these new blood 

vessels is important for most solid tumours (Folkman, 1986), as it provides tumour cells 

with nutrition and oxygen which help cells to survive and they represent the primary 

route for metastatic spread. 

Moreover, the tumour microenvironment is affected by these new blood vessels, and 

hence the response of the tumour to the therapy is also affected (Vaupel, 2004). 

Angiogenesis is an important target in sarcoma because it is responsible for tumour 

growth and metastasis. Many studies have been focused on anti-angiogenic treatment 

in sarcoma. Angiogenesis occurs when tumours switch to an angiogenic state during 

tumour development (Bergers and Benjamin, 2003). Many studies have shown that the 

level of pro angiogenic factors is high in malignant tumours, and this leads to growth 

and metastases of tumours (Grunstein et al., 1999, Holash et al., 1999). Using vascular 

targeting agents (VTAs) for cancer treatment was described by Juliana Denekamp 

through her work on mouse blood vessels obstruction (Denekamp, 1982, Denekamp, 

1993, Denekamp, 1999). There are two types of VTAs; those called antiangiogenic 

agents (AAs), or angiogenesis-inhibiting agents (AIAs), which inhibit new blood 

vessels formation, and those that act against already existing tumour vasculature, called 

vascular-disrupting agents (VDAs).  

1.3.1 Anti-angiogenic agents  

 

The action of antiangiogenic agents (AAs) is through the inhibition of new blood vessel 

formation by affecting the various stages involved in angiogenesis. It had been 

documented that tumour cells secrete angiogenic factors that are up regulated by 

different factors like hypoxia, activation of oncogenes, or loss of tumour suppressor 

gene function (Holash et al., 1999, Denekamp and Hill, 1991). These angiogenic factors 

were shown to play an important role in neovascularization and are the chief targets for 

AAs (Ferrara et al., 2003). The most specific and potent angiogenic factor is VEGF, 
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which stimulates the proliferation and migration of endothelial cells and leads to an 

increase in vascular permeability (Ferrara et al., 2003, Pugh and Ratcliffe, 2003, 

Dvorak, 2000). When VEGF ligands bind to their tyrosine kinases receptors (VEGFR1, 

VEGFR2 and VEGFR3), this leads to activation of downstream signalling. 

Bevacizumab (Avastin) is the first AA (anti-VEGF) agent approved for clinical uses. It 

is a humanized anti-VEGF monoclonal antibody that produces angiogenesis inhibition 

through preventing VEGF from binding to its receptors (Wong et al., 2014). Clinical 

trials by Hurwitz and his colleagues for patients with metastatic colorectal cancer 

showed that using bevacizumab combined with fluorouracil chemotherapy 

significantly improved overall survival when compared with chemotherapy alone 

(Hurwitz et al., 2004).  

This improvement in overall survival after combination therapies was also shown in 

patients with non-small lung cancer (NSCLC), renal cell carcinoma and metastatic 

breast cancer (Miller et al., 2007, Sandler et al., 2006). Anti-angiogenic agents are also 

being tested or used in the treatment of STS. In a prospective study done by (Agulnik 

et al., 2013) for patients with angiosarcoma (unresectable or metastatic), showed there 

were responses to bevacizumab as a single agent (Agulnik et al., 2013). In addition, a 

combination of both bevacizumab with doxorubicin was used in the treatment of 17 

patients with metastatic STS as phase II trial by (D'Adamo et al., 2005). However, the 

response rate was 12% in comparison with doxorubicin alone but the overall survival 

was promising (16 months) (D'Adamo et al., 2005). 

Tyrosine kinase inhibitors (TKIs) are another type of AAs that inhibit the tyrosine 

kinase activity of VEGF receptors. The approval of using Imatinib mesylate (IM) in the 

treatment of GISTs in 2002 was the base for using TKIs in the treatment of cancer 

(Demetri et al., 2002). IM is an oral tyrosine kinase inhibitor (TKI) acts in patients with 

positive cKit tumours by inhibition of cKit (CD117). Imatinib also used in the treatment 

of dermatofibrosarcoma protuberance because it also inhibits platelet-derived growth 

factor receptor beta (PDGFR-β). Some GIST patients who cannot tolerate IM, are 

treated with another TKI called sunitinib malate (SM) which inhibits VEGF-R2, cKit 

and PDGFR-β (Demetri et al., 2006).  

It was also shown that SM had activity in liposarcomas and leiomyosarcomas according 

to phase II study was done by Mahmood et al (Mahmood et al., 2011). Interestingly SM 

also showed anti-tumour effects in advanced alveolar soft part sarcoma (Stacchiotti et 
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al., 2011). Sorafenib is another TKI which inhibits VEGF-R2, VEGF-R3, PDGFR and 

cKit, and has effects on advanced angiosarcomas according to a phase II trial (Maki et 

al., 2009). Pazopanib, an oral AA drug that inhibits multiple tyrosine kinases, was 

approved for treatment of STS by the FDA (Food and Drug Administration) and EMA 

(European Medicines Agency). A randomized phase III trial called PALETTE had 

shown the significant improvement in progression free survival of STS patients 

excluding liposarcoma (van der Graaf et al., 2012). Moreover, it has been shown that 

Pazopanib plus bevacizumab and sunitinib was more effective in the treatment of 

metastatic alveolar soft part sarcoma than bevacizumab and sunitinib alone (Read and 

Williams, 2016). 

1.3.2 Vascular-disrupting agents  

 

Vascular-disrupting agents (VDAs) selectively target already established tumour 

vasculature leading to the death of cancer cells secondary to an extensive and rapid 

decrease in tumour blood perfusion. There are two types of VDAs, ligand-directed 

(biological) VDAs and small molecule VDAs. The work of ligand-directed VDAs is 

through using peptides, antibodies, or growth factors which bind to tumour endothelium, 

and death of these endothelial cells by targeting toxins like ricin or pro-coagulants to 

the tumour endothelium (Thorpe, 2004). Small molecule VDAs include flavonoids and 

tubulin binding agents (Siemann et al., 2005). 

On flavonoid derivative is 5, 6-dimethyl-xanthenone-4-acetic acid (DMXAA). It’s 

action is through the production of vasoactive factors and cytokines like tumour 

necrosis factor alpha (TNF-α) which causes damage and necrosis of endothelial cells 

of the tumour vasculature (Baguley, 2003).  The combination of DMXAA with 

radiation had been studied in preclinical mouse models by Murata et al (2001) using 

the C3H mammary carcinoma and the KHT sarcoma. Although this study showed some 

improvement of tumour response compared to radiation alone, this was highly 

dependent on the dose of both DMXAA and radiation gave, and the time interval 

between the drug and radiation (Murata et al., 2001). 

Tubulin-binding agents include colchicine; vinblastine and vincristine, and the newer 

agent combretastatin A-4 disodium phosphate (CA4P). The active component of CA4P, 

CA4, binds to the colchicine binding site on tubulin and works by disrupting tumour 

endothelial cells causing a decrease in blood flow and tumour necrosis (Tozer et al., 
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2001). Tozer and her colleagues (2008) tested CA4P in a mouse fibrosarcoma model. 

They found that mouse fibrosarcomas expressing only the VEGF120 isoform of VEGF 

(FS120 tumours) responded well to CA4P, whereas those expressing VEGF188 

isoform (FS188 tumours) responded less well (Tozer et al., 2008). This was thought to 

be because FS188 tumours have more stable blood vessels than FS120 tumours (Tozer 

et al., 2008). Another combretastatin derivative, ombrabulin, is a pro-drug, which 

showed a synergistic activity with cisplatin through the rapid destruction of tumour 

blood vessels and subsequent necrosis when tested in animal models (Morinaga et al., 

2003). In 2015, a big phase III randomized trial compared ombrabulin plus cisplatin 

against placebo plus cisplatin in patients having advanced soft-tissue sarcomas who 

failed to respond to ifosfomide and anthracycline chemotherapy (Blay et al., 2015). The 

results of this study showed a significant improvement in progression-free survival in 

patients treated with ombrabulin and cisplatin compared to patients treated with 

cisplatin alone. However, this drug failed to show meaningful clinical benefit for 

patients with advanced STS, to support its routine uses in the clinic. 

In a subcutaneous Ewing’s sarcoma mouse model, it has been shown that treatment of 

mice with OXi4503/CA1P (second generation tubulin binding agent) caused a 

shutdown of vasculature completely within 24 hours, and haemorrhage with necrosis 

after 48 hours (Dalal and Burchill, 2009). Furthermore, the effects of OXi4503/CA1P 

were enhanced when doxorubicin was used concurrently and tumour growth delay was 

observed. These studies demonstrate that VDAs have potential therapeutic agents for 

cancer treatment. Eribulin mesylate (Halaven), a synthetic drug derived from marine 

sponge Halichondria okadai, was approved by the FDA in 2016 for treatment of 

liposarcoma. Eribulin works via disrupting the microtubule irreversibly by prevent the 

formation of the mitotic spindle and subsequently cell cycle arrest that cause apoptosis 

(Smith et al., 2010). In a randomised open-label phase 3 trial, Schffoeffski and his 

colleagues showed a significant improvement in overall survival (from 8.4 months to 

15.6 months) for patients with advanced liposarcoma treated by eribulin versus 

dacarbazine (Schffoeffski et al., 2016). 
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1.4 Tumour microenvironment  
 

Stephen Paget’s theory in 1889 was to propose the concept of the tumour 

microenvironment (TME). It suggests that metastases need a suitable tissue 

environment (soil) to help tumour cells (seeds) to grow (Paget, 1989). Thus the TME 

is currently considered as a network of tumour cells as seeds, and the stromal tissue 

(fibroblasts, immune cells, cytokines and vascular tissue) and the extracellular matrix 

(ECM) as the soil (Balkwill et al., 2012). The TME is produced as a result of the 

communication between cancer cells and non-malignant cells, the latter having tumour 

promoting function at all stages of carcinogenesis (Hanahan and Coussens, 2012). The 

communications between cells are determined by many chemokines and cytokines, 

inflammatory enzymes, growth factors, and matrix remodeling enzymes. Multiple 

studies have indicated the similarities between the process of wound healing with the 

cells of TME in their structure, activities and development (Grivennikov et al., 2010, 

Hanahan and Weinberg, 2011). 

1.4.1 Tumour cells 

 

Tumour cells promote their own survival, proliferation and spread through many 

mechanisms, including suppression of apoptosis, evasion of the host immune response, 

deregulated proliferation, induction of neovascularization and mobility (Hanahan and 

Weinberg, 2000). Cancer cells in the TME suffer from genetic and epigenetic instability 

making them more aggressive and out of control. Hypoxia and hypoxia/reoxygenation 

caused by rapid tumour cell proliferation and vascular abnormalities are major drivers 

of genomic instability (Pires et al., 2010, Harding et al., 2011). Reactive oxygen species 

(ROS) that are formed due to the hypoxic environment within the TME cause damage 

to the DNA such as single or double strand breaks, DNA aberrations, and point 

mutations, and so on. Moreover, hypoxia by itself impairs DNA damage repair (Chang 

et al., 2002) which contributes to genetic instability. 
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1.4.2 Stromal tissue 

 

Stroma is the connective and supportive tissue. Balkwill and colleagues (Balkwill et 

al., 2012) described TME stromal cells as fibroblasts, myofibroblasts, immune cells, 

pericytes, and vascular endothelial cells. The main cells within cancer stroma are 

fibroblasts. They are spindle shaped and metabolically active cells that are responsible 

for the production and turnover of ECM. These cells cause fibrosis through their 

differentiation into myofibroblasts during tissue injury (Li and Wang, 2011). 

Fibroblasts within cancer stroma are called cancer-associated fibroblasts (CAFs), 

activated myofibroblasts, or tumour-associated fibroblasts (Li et al., 2007, Kalluri, 

2016). CAFs express α-smooth muscle actin (α-SMA), fibroblast specific protein 

(FSP)-1, and platelet-derived growth factor receptors-β (PDGFR-β) (Sugimoto et al., 

2006, Anderberg et al., 2009). CAFs are a source of matrix metalloproteases (MMPs), 

plasminogen activators, and cathepsins, which all have protease activity and induce 

invasiveness (Roy et al., 2009, Boire et al., 2005, Xing et al., 2010). MMPs were shown 

to be essential in the growth of tumours, angiogenesis and metastasis (Stetlerstevenson 

et al., 1993, Boire et al., 2005), as MMPs release growth factors such as angiogenic 

factors and chemokines that bind to the matrix which then stimulate tumour cells to 

grow and endothelial cells to form new blood vessels (Rundhaug, 2003, Bergers et al., 

2000, Iozzo et al., 2009, Ebrahem et al., 2010). Despite the fact that CAFs are thought 

to be tumour promoting, a study conducted by Oezdemir and his colleagues have shown 

the opposite. They showed that depletion of CAFs from pancreatic cancer in mice leads 

to increase tumour invasiveness and hypoxia with a decrease in the immunity and 

survival (Oezdemir et al., 2014). More information about CAFs will be discussed in 

detail later in this chapter.  

Another important stromal cell in the TME (Figure 1.2) is the vascular endothelial cell. 

During cancer growth certain chemokines and growth factors like VEGFs, fibroblast 

growth factors (FGFs) and PDGFs stimulate endothelial cells and pericytes to drive the 

process of neovascularization (Carmeliet and Jain, 2011). Pericytes are another 

important stromal cells which have stem cell-like properties and may constitute a source 

of myofibroblasts progenitors in addition to their functions such as induction of 

angiogenesis, sustaining tumour growth, metastasis and immune-suppression (Armulik 

et al., 2011). Pericytes are found surrounding blood vessels and express markers like 
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PDGF receptor-β, NG2 and desmin, and recruitment and differentiation of pericytes 

depend on signaling pathways of PDGF, transforming growth factor beta (TGF-β) and 

angiopoietin (Gaengel et al., 2009). Pericytes limit tumour metastasis through their 

desensitization effects on the endothelium to VEGF and making blood vessels more 

stable; consequently, tumour cells find it more difficult to get through them to 

metastasis (Gerhardt and Semb, 2008, Armulik et al., 2011). 

Tumour-associated macrophages (TAMs) are important innate immune cells within the 

TME. Different cytokines, chemokines, and growth factors play a role in the 

recruitment of macrophages/monocytes cells into the TME such as monocyte 

chemoattractant protein-1 (MCP-1) (Qian et al., 2011), VEGF (Valkovic et al., 2002), 

PDGF (Solinas et al., 2009) and plasminogen (Phipps et al., 2011). These recruited 

monocytes differentiate into M1 macrophages (pro-inflammatory) and M2 

macrophages (pro-tumorigenic). In the TME, macrophages that related to tumour 

development have an M2-like phenotype (Sica and Mantovani, 2012, Mantovani and 

Locati, 2013). Presence of TAMs in the tumour stroma causes the resistance of a tumour 

to treatment with anti-angiogenic agents. Firstly, as hypoxia is a major feature of the 

TME, TAMs secrete multiple pro-angiogenic factors (in response to hypoxia) that 

activate endothelial cells and enhance angiogenesis (Murdoch et al., 2008, Schmidt and 

Carmeliet, 2010, Mantovani et al., 2013). Moreover, treatment of tumours with anti-

VEGF therapy can cause tumour hypoxia, potentially resulting in recruitment of TAMs 

to the a tumour, leading to the supply of pro-angiogenic factors to re-start angiogenesis 

(Tripathi et al., 2014).  

TAMs also aid in the degradation of ECM via secretion of different MMPs, which can 

contribute to metastasis (Huang et al., 2002, Murdoch and Lewis, 2005). The important 

role of immune system to control or prevent cancer has been studied since years. 

Nevertheless, cancer immunotherapy has become a reality only within the last two 

decades. For cancer immunotherapy, two approaches are currently in progress: direct 

targeting of the tumour and indirect targeting the tumour (via activation of immune 

cells) (Sathyanarayanan and Neelapu, 2015). The response to immunotherapy depends 

on the interactions between cancer cells and the immunomodulators within the TME. 

This means that the key role in the activation or reduction of the immune responses is 

the TME (Tang et al., 2016). 
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Understanding the communications between the TME and immunotherapy is critical to 

provide new methods in improving the effectiveness of current immunotherapies.  

 

1.4.3 Extracellular matrix  

 

ECM is a non-cellular element of tissue that provides physical support and regulates 

the function and homeostasis of all eukaryotic cells (Lu et al., 2011). The main 

components of the tumour ECM are elastin, collagen, proteoglycans and other essential 

proteins, which are synthesized mainly by CAFs. Cell surface receptors called integrins 

bind components of the ECM and promote cancer angiogenesis, growth and metastasis 

(Alphonso and Alahari, 2009). The spread and progression of cancers depend mainly 

on the ECM, as the adhesion of a cell to the ECM is a key to the movement of cancer 

cells out of and into the TME.   

Because of increased ECM deposition and remodeling as a consequence of altered gene 

expression of CAFs, tumours are stiffer than the surrounding normal tissues. It has been 

shown that the lysyl oxidase (LOX) enzyme causes cross-linking of collagen fibers and 

contribute to stiffening of the matrix (Levental et al., 2009). The cells adhere to the 

matrix through integrins and produce enzymes that can degrade matrix and therefore 

allow them to move/migrate through it which is an important step in tumour metastasis 

(Taddei et al., 2013). 
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Figure 1.2 Tumor Microenvironment cell : TME consist of the parenchymal cells 

(malignant cells, and cancer stem cells) which are responsible of tumor recurrence 

and metastases, and the stromal cells like endothelial cells, mesenchymal stem cells, 

cancer cells, pericytes, immune cells, inflammatory cells, and fibroblasts. When 

fibroblasts activated and accumulated in tumor area, they called Cancer-Associated 

Fibroblasts (CAFs), which cause fibrosis. This Figure based on figure from 

(Hanahan and Weinberg, 2000). 
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1.4.4 Hypoxia and TME 

 

Hypoxia is a very common feature in solid tumours and, as mentioned above, it occurs 

because tumour cells proliferate avidly, with alteration of tumour metabolism and 

development of abnormal tumour blood vessels that cause a decrease in oxygen and 

nutrients (Vaupel and Harrison, 2004). Studying tumour hypoxia is very important 

because is strongly related to many factors that support tumour growth as well as 

radioresistance in malignant tumours, recurrence of a tumour after radiotherapy and 

even in determining the prognosis of cancer patients after RT (Brown and William, 

2004, Aebersold et al., 2001).  

Hypoxia in tumours is classified into two types; acute perfusion-limited hypoxia and 

chronic diffusion-limited hypoxia, this division was according to the duration of 

exposure to hypoxia and the causative factors (Brown and William, 2004). In chronic 

hypoxia, there is a gradient of oxygenation that surrounds the perfused vessels; this 

means that within this oxygen gradient, there are cells with different oxygen 

concentrations (normoxic cells near the vessels and cells anoxic in distal areas). In acute 

perfusion limited hypoxia, the instability in blood flow inside the vessels may cause 

rapid fluctuations in oxygenation levels in a tumour (Lanzen et al., 2006).  

It was establish that cancer cells become more invasive, aggressive and metastasize in 

hypoxic conditions. For example, culturing of multiple myeloma cells in hypoxic 

conditions in vitro and then injecting them into mice allowed these cells to metastasise 

into other bone marrow (BM) compared to the same cells cultured within normal 

oxygen condition (Azab et al., 2012, Muz et al., 2015). Moreover, in vivo studies by 

Cairns et al. showed that mouse sarcoma tumours exposed to acute hypoxia enhanced 

their metastasis to the lungs (Cairns et al., 2001).  

Hypoxia leads to the formation of the transcription factor, hypoxia-inducible factor 1 

(HIF-1), which is positively related to the degree of hypoxia inside a tumour (Semenza, 

2000). There are three types of HIF with their oxygen-sensitive α subunit, HIF-1-α, 

HIF-2-α and HIF-3-α (Wang et al., 1995), which are stabilised under hypoxia. It has 

been shown that HIF-1 plays a role in the regulation of paracrine signalling molecules, 

such as TGF-β, PDGF-β and basic fibroblast growth factor (bFGF), secreted by hypoxic 

tumour cells (Caniggia et al., 2000, Moeller et al., 2004, Schito et al., 2012). These 

paracrine signalling molecules enhance changes of progenitor cells into CAFs (Gilkes 

et al., 2014).  
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Moreover, hypoxia was shown to enhance the expression of CXCL12, stromal derived 

factor 1 alpha (SDF1-α) receptor in many cells (Schioppa et al., 2003), and SDF1-α has 

been shown to promote the growth of cancer (Orimo et al., 2005).  

Regarding effects of hypoxia on ECM, it has been shown that HIF-1 enhanced fibrosis 

in the liver, kidney and adipose tissue via its remodelling effects on ECM (Moon et al., 

2009, Halberg et al., 2009, Higgins et al., 2007). Moreover, HIF-1 and HIF-2 have been 

shown to enhance breast cancer metastasis through the transcription of integrin subunits 

α5 and β1 (Ju et al., 2017). In addition to integrins, the synthesis of ECM proteins such 

as collagen and fibronectin can regulate by hypoxia. It has been shown that secretion 

of collagen can be regulated by HIF at different stages (Bentovim et al., 2013, Eisinger-

Mathason et al., 2013). Beside these effects, hypoxia causes ECM degradation through 

the activity of MMP2, MMP9 and MMP15 via HIF-1 (Krishnamachary et al., 2003, 

Choi et al., 2011). 

It is well known that endothelial cells, which are crucial for the structure of blood 

vessels, play a key role in the migration of tumour cells (Franses et al., 2011). It was 

shown that using endothelial cells depleted of HIF-1α caused decreased migration of 

cancer cells via endothelial cells. These results were opposite if using HIF-2 α depletion, 

in which the migration of cancer cells was enhanced. This differences between HIF-1α 

and HIF-2α could be due to their abilities to differentially regulate nitric oxide, that 

regulates endothelial cell function (Branco-Price et al., 2012). Many studies showed the 

involvement of HIF-1α and HIF-2α at all stages of blood vessels formation (Semenza 

and Wang, 1992, Conway et al., 2001, Carmeliet, 2005).  

HIFs are also involved in the recruitment of endothelial progenitor cells from BM into 

tumour tissue and cause their differentiation into endothelial cells via VEGF, 

stimulation of VEGF-R2, and PDGF (Conway et al., 2001, de la Puente et al., 2013). 

Hypoxia also enhances tumour metastasis via epithelial-mesenchymal transition (EMT) 

(Thiery and Sleeman, 2006). EMT in hypoxia is associated with a decrease of 

epithelial-associated gene expression (β-catenin and E-cad) and increase in 

mesenchymal-like gene expression (SMA, vimentin, N-cad, and CXCR4) (Kim et al., 

2002, Hsu et al., 2000, Manotham et al., 2004, Muz et al., 2015). Furthermore, hypoxia 

increased TGF-β that regulates EMT (Azab et al., 2012).  



                                                                                              

 

17 
 

It was demonstrated that inhibition of the hypoxia-inducible enzyme, carbonic 

anhydrase IX (CAIX), caused decreased growth and metastasis of tumours (Lou et al., 

2011).  

Although severe hypoxia is ultimately toxic for cells, many tumour cells are adapted 

for a hypoxic environment, for instance by upregulation of enzymes involved in 

glycolysis, and hypoxia is even involved in tumour cells becoming resistant to 

treatment with RT and chemotherapy (Rohwer and Cramer, 2011). The mechanisms of 

hypoxia-induced resistance of tumour cells to treatment include cell cycle arrest, 

reduced apoptosis and senescence and, control p53, autophagy and mitochondrial 

activity (Das et al., 2008, Rohwer and Cramer, 2011). Moreover, hypoxia affects the 

delivery of drugs and cellular uptake of the chemotherapy via drug efflux pump 

expression like permeability glycoprotein (P-gp) (Abraham et al., 2015). 

 

1.5 Cancer-Associated Fibroblasts (CAFs) 
 

1.5.1 Characteristics and activation of CAFs 

 

CAFs are large heterogenous spindle-shape cells that represent major components of 

stromal cells within the TME. The most common origin of CAFs are resident fibroblasts, 

but it is thought that they can also originate from pericytes, adipocytes, epithelial cells, 

endothelial cells, and mesenchymal stem cells MSCs (Anderberg and Pietras, 2009). 

Early studies did not show any effects of CAFs on tumour progression, but later studies 

have shown that CAFs are important cells in cancer development and progression (Cirri 

and Chiarugi, 2012, Franco et al., 2010).  It has been shown that cancer proliferation 

and survival in the TME depends on CAFs that maintain the microenvironment (Cirri 

and Chiarugi, 2012, Marsh et al., 2013). Some studies showed that targeting cancer 

cells therapeutically using anti-cancer therapies is not enough without targeting CAFs 

that maintain the TME (Sun, 2015). Although activated CAFs generally express 

fibroblast activation protein α (FAP-α), PDGF receptor α and β, and vimentin, α-SMA 

is the most common markers used to recognise CAFs (Sugimoto et al., 2006, Park et 

al., 1999, Kim et al., 2015).  
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1.5.2 Role of CAFs in cancer  

1.5.2.1 CAFs and tumour growth 

 

It has been shown that CAFs enhance tumour growth and survival, migration, and 

invasiveness of tumours by secreting paracrine and/or autocrine cytokines, chemokines 

and growth factors like hepatocyte growth factor (HGF), epidermal growth factor 

(EGF), insulin-like growth factor (IGF 1 & 2), and the receptor integrin α11 (Oestman 

and Augsten, 2009). These cytokines and chemokines secreted by CAFs contribute to 

the recruitment of BM-derived MSCs and immune cells into the TME (Servais and Erez, 

2013). It has been shown that CCL5, CCL14, and CCL12 or SDF-1α play roles as pro-

metastatic factors (Luker et al., 2012, Augsten et al., 2014, Mi et al., 2011). These 

factors (especially SDF-1α) and TGF-β cause recruitment of BM-derived CAFs into 

tumour stroma (Quante et al., 2011).  

Mi et al, 2011 showed in oral cancer that chemokine, MCP-1, expression were up 

regulated in CAFs (Li et al., 2014). This increase in MCP-1 level promoted the 

secretion of ROS in the cancer cells which later cause proliferation, migration, and 

invasion of the tumour cells (Li et al., 2014). 

CAFs also cause ECM degradation through secretion of MMPs such as MMP3 which 

enhances tumour invasiveness (Lochter et al., 1997). MMP3 enhanced cleavage of E-

cadherin protein of epithelial cells (mammary), which then undergo an epithelial-to-

mesenchymal transition that enhances cancer invasiveness. 

1.5.2.2 CAFs and tumour angiogenesis 

 

VEGF has been shown to play a crucial role in angiogenesis and lymphangiogenesis 

and subsequent cancer progression and metastasis (Shibuya and Claesson-Welsh, 2006). 

In addition to tumour cells, a primary source of VEGF in the TME is CAFs which 

increase their expression of VEGF due to cancer-stromal cell signalling interactions 

(Gomes et al., 2013). It has been shown that production of VEGF within TME depends 

on PDGF derived from CAFs. PDGF activates VEGF via its receptor (PDGFR) that 

plays an important role in angiogenesis through recruitment of resident fibroblasts and 

BM stromal cells (Gomes et al., 2013, Ferrara, 2010). BM stromal cells can differentiate 

into smooth muscle cells and endothelial cells that proliferate and migrate in response 
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to PDGF (Ferrara, 2010). Endothelial cells produce PDGF-BB that cause recruitment 

of pericytes to the vessel wall and subsequent angiogenesis (Zhang and Liu, 2013, 

Bergers and Song, 2005). Another study suggested that colon cancer cells stimulate 

fibroblasts to secrete IL-6 that then causes angiogenesis (Nagasaki et al., 2014). 

Moreover, when IL-6 receptor was blocked using a neutralizing antibody, angiogenesis 

was inhibited.  

1.5.2.3 CAFs and tumour metastasis 

 

Many studies showed the role of CAFs in tumour metastasis (Karagiannis et al., 2012, 

Pavlides et al., 2012). Some studies have suggested that the CAFs have mesenchymal-

like phenotype that might cause enhancement of cancer metastasis (Dumont et al., 

2013). A recent study by Wang et al, 2017 showed that conditioned media (CM) from 

CAFs that were isolated from lung cancer increased the migration of lung cancer cells 

in vitro (Wang et al., 2017). Moreover, in this study, CAFs caused EMT (increase 

vimentin level and decreased E-cadherin level) that promoted lung cancer cells 

metastasis. 

It has been shown in gastric cancer that the expression of SRF (serum response factor) 

was high in fibroblasts causing cancer cell metastasis via increasing SDF-1α/CXCR4 

signalling (Qiao et al., 2016). CAFs secrete SDF-1α that might cause EMT as shown in 

breast cancer studies and oral squamous cell carcinoma (Soon et al., 2013, Onoue et al., 

2006). 

In addition, CAFs may cause metastasis by enhancing angiogenesis within the stroma 

of tumours. A study by Guo et al, 2008, in a gastric cancer mouse model, showed that 

after activation of cancer cells, the stromal fibroblasts secrete VEGF-A which enhances 

angiogenesis (Guo et al., 2008). These studies suggest the important role of CAFs in 

the mediation of cancer metastasis. 

1.5.2.4 CAFs and cancer therapy 

 

In cancer cells, resistance to treatment not only depends on genetic or epigenetic 

modifications but also on the TME. Although CAFs are more stable genetically than 

cancer cells, many studies suggested that CAFs make cancer cells more resistant to 

therapies (Correia and Bissell, 2012, Kerbel, 1997, Li et al., 2015, Kharaishvili et al., 
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2014). Some studies showed that the cancer stroma contains cytokines or chemokines 

that play a role in tumour drug-resistance.  

CAFs modulate ECM-cancer cell interaction pathways and chemokines and/or cytokine 

signaling that cause anti-cancer drug resistance (Paraiso and Smalley, 2013). In BRAF-

mutant melanoma cells, a study by Hirata et al., 2015 showed that CAFs play an 

important role in increasing resistance to BRAF inhibitors (PlLX4720). BRAF is a 

human gene encoding a protein B-Raf involved in cell growth. Melanoma-associated 

fibroblasts generate a fibronectin-rich TME, which can sustain cancer cells via 

fibronectin-activating β1-integrin-FAK-ERK signaling (Hirata et al., 2015). Moreover, 

culturing melanoma cell lines with CM from tumour fibroblasts caused resistance to 

treatment.  In head and neck cancer, it has been shown that CAFs enhanced anti EGFR 

drug resistance (Cetuximab) via secretion of MMP-1 (Johansson et al., 2012). In 

prostatic cancer, Kharaziha and colleagues have shown that culturing of primary CAFs 

with prostatic cancer cells protected cancer cells from sorafenib cytotoxic effect via 

over-expression of Bcl-xL (anti-apoptotic protein) (Kharaziha et al., 2012). In ovarian 

cancer, it has been shown that the level of MCP-1 expression in paclitaxel-resistant 

ovarian cancer cell lines was increased. Moreover, blocking of MCP-1 caused 

enhancement of carboplatin and paclitaxel drugs in ovarian cancer (Moisan et al., 2014). 

MCP-1 was induced by CAFs via activation and phosphorylation of transcription 3 

(STAT3). This CAF-derived MCP-1 regulated cancer stem cells via activation of 

NOTCH signalling and in turn, enhanced cancer progression (Tsuyada et al., 2012). 

NOTCH signalling regulates apoptosis and cell proliferation and differentiation 

(Artavanis-Tsakonas et al., 1999). 

In the cancer stroma, CAFs are the common source of SDF-1α (CXCL12). It has been 

shown that SDF-1α and its receptor (CXCR4) signalling activate Akt, ERK, and 

adhesion kinase signalling pathways that caused resistance to cancer therapies in 

pancreatic cancer (Weekes et al., 2012, Singh et al., 2010). Moreover, any disruption 

of SDF-1α/ CXCR4 signalling pathways caused sensitisation of prostate, lung, and 

colon cancer cells to chemotherapy (Domanska et al., 2012, Burger et al., 2011, 

Heckmann et al., 2013). In conclusion, as CAFs play a key role in cancer growth, 

metastasis, invasiveness, and angiogenesis, it is very important to find new anti-cancer 

therapies that target them. 
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1.6 Role of mesenchymal stem cells in cancer 
 

Friedenstein and colleagues in 1970 described a group of BM originating cells that have 

fibroblast features, the ability to differentiate and showed clonal growth (Friedenstein 

et al., 1970). They called these cells “colony-forming cells”. Caplan used the name 

“mesenchymal stem cells” later for the population of BM-derived cells that were able 

to differentiate into cartilage and bone (Caplan, 1991). MSCs are multipotent (can 

produce multiple types of specialized cells) being able to differentiate into muscle, 

cartilage, bone and connective tissues (Prockop, 1997, Pittenger et al., 2000). MSCs 

have an important characteristic, namely being able to migrate to sites of tissue injury 

like heart, kidney and skin, primarily due to inflammatory mediators which are 

produced locally as a result of tissue damage and remodelling (Wu et al., 2003, Morigi 

et al., 2004, Li et al., 2006). They express surface markers like CD90, CD105, and 

CD73 with the absence of hematopoietic markers (Lama et al., 2007).  

In wound healing, MSCs recruited to the wound helps in homeostasis, tissue repair, and 

immune modulation. In cancer, tumour cells that proliferate permanently and 

invasively produce an inflammatory microenvironment (a wound that never heals) 

(Karnoub et al., 2007). Once in the TME, MSCs play important roles through their 

special cellular interactions by either promoting or inhibiting tumour cell growth 

(Klopp et al., 2011). As inhibitors for tumour growth, MSCs block Akt and Wnt 

signalling, suppress angiogenesis, and apoptosis through cell cycle arrest (Hass and 

Otte, 2012, Rhee et al., 2015). Suppression of tumour development has been shown in 

different cancer types such as colon cancer, lymphoma, and melanoma (Nakamizo et 

al., 2005, Loebinger et al., 2009, Grisendi et al., 2010). As tumour promoters, MSCs 

can be recruited to a tumour and activated by TGF-β to form CAFs that play a key role 

in tumour growth, as described above (Barcellos-de-Souza et al., 2016). Moreover, 

Karnoub et al and Shinagawa et al showed that MSCs caused immune modulation and 

stimulation of tumour development (Karnoub et al., 2007, Shinagawa et al., 2010). 

Local MSCs can secrete bioactive molecules that play an important role in tissue injury 

by stimulation of angiogenesis and can have immune modulatory effects to maintained 

homeostasis (Lazennec and Jorgensen, 2008, Uccelli et al., 2008). It has been shown 

that MSCs enhanced angiogenesis and tumour growth through their abilities to 

differentiate into pericyte-like, and endothelial cell-like cells (Oswald et al., 2004, Ball 

et al., 2004, Suzuki et al., 2011). Moreover, co-culture of adipose-derived MSCs with 
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prostate cancer was shown to cause differentiation of MSC into endothelial-like cells 

and increased tumour vascularity and enhancement of the tumour growth (Lin et al., 

2010, Prantl et al., 2010). Many studies have shown that MSCs enhanced cancer 

progression via promoting the metastatic ability of cancer cells together with their role 

in EMT (Karnoub et al., 2007, Kabashima-Niibe et al., 2013). By contrast, other studies 

have shown that MSCs caused suppressive effects on the tumour growth. Ho and his 

colleagues have shown that the human glioma tumour volume and vascularity were 

reduced after administered human BM-derived MSCs with glioma cells (Ho et al., 

2013). In Ho et al study, MSCs caused suppression of a tumour through modification 

of Akt signalling and inhibition of angiogenesis. Furthermore, a study by Otsu et al. 

showed that MSCs were potentially cytotoxic (anti-angiogenic) by generating ROS that 

inhibited tumour growth (Otsu et al., 2009).  

These opposing results may be because experiments were done under different 

conditions like differences in the sources of MSCs used; some used BM-derived and 

other used adipose-derived MSC. In addition, each study used different timing 

schedules and different cell administration methods. Moreover, culture media for in 

vitro experiments do not have all the active factors that are present in the real stem cell 

niche (Watt and Hogan, 2000). In murine gastric cancer due to chronic inflammation, 

it has been reported that 20% of CAFs originated from resident BM-derived MSCs 

(Quante et al., 2011). These MSC-derived CAFs were recruited to a tumour in response 

to TGF-β and SDF-1α. These results suggested that epithelial dysplasia due to chronic 

inflammation leads to relocation of the BM-niche to a tumour and consequent increases 

in MSC numbers promote cancer progression. 

1.6.1 Direct communication of MSC with tumour cells 

 

One of the important ways in which MSCs interact with tumour cells is NOTCH 

signalling that regulates immune cell functions, cell proliferation, differentiation and 

tissue repair (Kopan and Ilagan, 2009). It has been shown that the addition of MSCs 

enhanced breast cancer cells growth both in vivo and in vitro via NOTCH pathway 

signalling (Mandel et al., 2013). Moreover, blocking of NOTCH signalling caused 

decreased CD90 expression by MSCs and inhibited the growth of tumour cells (Mandel 

et al., 2013, Geling et al., 2002). CD90 (Thy-1) is a cell surface protein expressed by 



                                                                                              

 

23 
 

MSCs, hematopoietic cells, endothelial cells, fibroblasts, and myofibroblasts (Haeryfar 

and Hoskin, 2004, Craig et al., 1993, Saalbach et al., 1999). CD90 helps to regulate 

cancer cell proliferation, migration, angiogenesis, apoptosis, metastasis and fibrosis 

(Rege and Hagood, 2006, Saalbach et al., 1999, Saalbach et al., 1996).  

MSCs can also communicate with tumour cells by gap junctions that connect 

neighbouring cells through gap junctional intercellular communication (GJIC). GJIC 

maintain tissue homeostasis, and control cell growth and differentiation (Kandouz and 

Batist, 2010). It has been shown that breast cancer cells can gain CD90 via GJIC 

signalling when co-cultured with MSC. The expression of CD90 by breast cancer cells 

was decreased when gap junction inhibitors were used such as carbenoxolone (Mandel 

et al., 2013). 

Another way of communication between MSCs and tumour cells is through nanotubes, 

which enable neighbouring cells to exchange molecules, organelles, and glycoproteins 

(Gurke et al., 2008). Breast cancer cells have been reported to use nanotubes to obtain 

mitochondria from BM-derived MSCs resulting in increased tumour cells proliferation 

and invasiveness (Caicedo et al., 2015). Formation of fusion between MSC and cancer 

cells is also a way of communication that is rare and its molecular mechanisms are still 

poorly understood. 

1.6.2 Indirect communication of MSC with tumour cells 

 

This occurs through secretory mediators from tumour cells such as growth factors, 

chemokines and cytokines that trigger intra-cellular signalling pathways via attaching 

to receptors of neighbouring MSCs. MSCs activate and secrete different bioactive 

compounds that regulate adjacent cells such as tumour cells (Melzer et al., 2016). It has 

been shown that MSCs secrete CC-chemokine ligand 5 (CCL5) or RANTES that 

interact with receptors (chemotactic cytokine) like CCR5, CCR3, CCR1 (Karnoub et 

al., 2007). In breast cancer, the G-protein coupled receptor (GPR75) is activated via 

MSC-derived CCL2 in a paracrine manner, which resulted in enhancement of 

migration, invasiveness and metastatic ability of breast cancer cells (Karnoub et al., 

2007). 
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Another way of the indirect interplay of MSC with tumour cells is via metabolites. 

Many metabolites like indoleamine2, 3-dioxygenase or prostaglandins secreted into the 

tumour stroma motivate other cells in the TME in a paracrine way (Li et al., 2012, Yuan 

et al., 2013). These metabolites affect tumour growth and lead to an alteration in cancer 

cell properties such as invasion, self-renewal and survival. 

Studies by Bonuccelli et al. (2004) on osteosarcoma cells suggested that human adipose 

MSC increased production of lactate in response to oxidative stress induced by cancer 

cells. Subsequently, the lactate efflux receptor expression was increased by 

osteosarcoma cells that increased their ATP production which enhanced the migratory 

ability of the tumour cells (Bonuccelli et al., 2014). 

MSCs can also interact with tumour cells via microparticles such as microvesicles (50-

100 nm in diameter, plasma membrane origin) and exosomes (40-100 nm in diameter, 

endocytic origin) (Lee et al., 2012). The cellular interaction between cancer cells and 

MSCs in the TME occurred through microvesicles and exosomes proteins, micro-

RNAs, and functional mRNAs (Yang et al., 2015a). It has been shown that MSC-

derived exosomes produce MMP-2 and ecto-5’-nucleotidase that modify tumour cell 

function in TME (Yang et al., 2015a, Friedl and Alexander, 2011). Moreover, in 

prostatic cancer, differentiation of BM-derived MSC into CAFs was enhanced by 

cancer cells-derived exosomes and subsequent tumour growth (Chowdhury et al., 

2015). 

Regarding anti-tumour effects of microvesicles, Wu and his colleagues showed, both 

in vitro and in vivo that the growth of bladder cancer cells (T24) was inhibited in 

response to microvesicles derived from MSCs from human umbilical cords. These 

cause tumour cell cycle arrest and apoptosis (Wu et al., 2013). 
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1.7 Tumour microenvironment and radiation 
 

Ionizing radiation is an important modality of curative and palliative cancer treatment. 

More than half of cancer patients need treatment by radiation therapy (Owen et al., 

1992, Delaney et al., 2006). DNA is the main target of radiation leading to cytotoxicity. 

Radiation effects are either directly through DNA damage, or indirectly by forming free 

radicals inside cells from interactions with tissue water. These are highly reactive and 

themselves damaging to DNA. The direct and indirect effects of radiation depend on 

the linear energy transfer (LET), which is the energy transferred per unit length of track 

(Eric and Hall, 2006). Moreover, tumour hypoxic cells during RT treatment are about 

three times more radiation-resistant than normoxic cells (Brown and William, 2004). 

Apart from the tumour cells themselves, tumour endothelial cells are relatively 

radiosensitive, at least partly due to their rapid proliferation (Barker et al., 2015). 

Tumour blood vessels differ from those in normal tissues, for instance in that, they are 

tortuous and more permeable (due to structural abnormalities of the basement 

membrane, a relative paucity of pericytes and stretching of endothelial cells). These 

features may make them particularly susceptible to radiation damage (Fajardo, 2005, 

Jain, 2003). The radiation effects on the tumour vasculature depend on many factors 

such as radiation dose, fractionation, site and size of the tumour, and tumour types (Park 

et al., 2012, Karam and Bhatia, 2015).  

In fact, low dose radiation (<5 Gy) can enhance tumour growth via increased VEGF 

secretion promoting angiogenesis (Heissig et al., 2005, Vala et al., 2010). Moreover, 

Lerman and his colleagues showed that low-dose radiation (5 Gy) causes stimulation 

of HIF-1α in endothelial cells that upregulate SDF-1α and endothelial cell migration 

(Lerman et al., 2010). In contrast, high dose radiation has been shown to cause severe 

vascular damage and disruption of the TME (Song et al., 2015, Maeda et al., 2017). 

Solesvik et al. showed that within a week of irradiation of melanoma xenografts (human) 

with single doses of 10-15 Gy there was damage to nearly half of all the tumour blood 

vessels (Solesvik et al., 1984). Another study showed that vascular density of human 

ovarian cancer xenograft was decreased to a half of control after irradiation with 20 Gy 

(5 Gy/ fraction) (Dings et al., 2005). 

Vascular damage caused by radiation can lead to tumour hypoxia and release of HIF-

1α (Figure 1.3). As discussed in section 1.4.4, HIF-1α enhances secretion of cytokines 

and chemokines to recruit immune cells like BM-derived cells. These BM-derived cells 
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can differentiate into endothelial cells by VEGF and PDGF (Ahn and Brown, 2009, 

Maeda et al., 2017, Conway et al., 2001). Multiple studies have indicated the activation 

of several genes by HIF-1 during hypoxia, such as erythropoietin, glucose transporters, 

glycolytic enzymes and VEGF (Sutherland, 1998, Blouin et al., 2004, Williams et al., 

2005). 

These activated genes make tumour cells more aggressive, radioresistant and able to 

survive in adverse conditions. RT can cause angiogenesis and radio-resistance 

(Koukourakis et al., 2001), because radiation makes endothelial cells produce many 

cytokines that work as proangiogenic factors like PDGF, TGF-β, TNF-α, b FGF, IFN-

γ and VEGF (Wachsberger and Burd, 2004, McBride et al., 2004). Moreover, radiation 

causes sprouting of endothelial cells (the first step in angiogenesis) through stimulation 

of nitric oxide pathways inside these cells (Sonveaux et al., 2003) (Figure 1.3). Gorski 

and colleagues reported VEGF up-regulation after radiation in several cancer cell lines 

(Gorski et al., 1999). 

Radiation can also affect CAFs. As mentioned earlier (see section 1.5), CAFs represent 

the most common cells within the TME that play a role in cancer growth, metastasis, 

and angiogenesis. CAFs have the ability to recruit endothelial cells via secretion of 

SDF-1; in addition, CAFs enhance secretion of ECM-degrading enzymes (MMPs). It 

has been found that CAFs and normal fibroblasts are radioresistant (Hawsawi et al., 

2008, Papadopoulou and Kletsas, 2011, Tachiiri et al., 2006). However, most of these 

studies were on fibroblasts rather than CAFs. Irradiation can cause senescence in 

fibroblasts and release of cytokines, proteolytic enzymes, growth factors and ROS, 

which all enhance tumour formation (Rodier et al., 2009, Papadopoulou and Kletsas, 

2011, Velarde et al., 2013, Liu and Hornsby, 2007). Interestingly, senescence occurs 

more clearly after single dose radiation of lung CAFs rather than fractionated irradiation 

with the same dose (Hellevik et al., 2012). 

Radiation causes inflammation in the TME and subsequent recruitment of fibroblasts 

to the site of injury. Fibroblasts differentiate into CAFs via TGF-β that is released in 

response to inflammation. CAFs secrete ECM proteins like collagen, fibronectin and 

laminin which cause fibrosis in the long term (Yarnold and Brotons, 2010). 
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 Figure 1.3 The effect of hypoxia on tumour gro      : During tumour growth 

or after radiation, tumour hypoxia increases and this leads to initiation of 

Hypoxia Inducible Factor 1 (HIF-1), which then cause vascularisation in 

hypoxic areas through VEGF upregulation, and angiogenesis formation. 

 

 

Figure 1.28 The effect of hypoxia on tumour growth : Figure 1.3 The effect of 

hypoxia on tumour gro      : During tumour growth or after radiation, tumour 

hypoxia increases and this leads to initiation of Hypoxia Inducible Factor 1 

(HIF-1), which then cause vascularisation in hypoxic areas through VEGF 

upregulation, and angiogenesis formation. 

 

 

Figure 1.29 The effect of hypoxia on tumour growth : 

 

Figure 1.30 Origin of Myofibroblasts (CAFs) in cancerFigure 1.31 The effect of 

Figure 1.3 The effect of hypoxia on tumour growth: 

 

Figure 1.46 Origin of Myofibroblasts (CAFs) in 

cancerFigure 1.47 The effect of hypoxia on tumour 

growth : 

 

Figure 1.48 Origin of Myofibroblasts (CAFs) in 

cancer 

 

Figure 1.4 Origin of Myofibroblasts (CAFs) in 

cancerFigure 1.49 Origin of Myofibroblasts (CAFs) 

in cancerFigure 1.50 The effect of hypoxia on 

tumour growth : 

 

Figure 1.51 Origin of Myofibroblasts (CAFs) in 

cancerFigure 1.52 The effect of hypoxia on tumour 

growth : 
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1.8 Radiation effect on MSC biology and subsequent fibrosis 
 

Although radiation therapy is an essential component of cancer therapy, side effects are 

inevitable. Radiation side effects are either acute, like skin erythema and desquamation, 

mucositis, nausea and diarrhoea or chronic (long term) affecting patient’s quality of life 

such as radiation fibrosis, and vascular damage (Bentzen, 2006). The severity of 

radiation long-term effects depends on radiation-dose, treatment volume, and fraction 

size. One of the important and life-threatening radiation late effects is radiation-induced 

fibrosis (RIF). The development of RIF is a complicated process that involves different 

growth factors, cytokines, inflammation, fibroblast differentiation, and remodelling of 

the ECM (Wynn, 2008). 

In regards to the response of MSCs to irradiation in human and mouse, it has been 

shown in vitro that MSC survival after high dose irradiation was higher than for other 

stem cells derived from the BM (Chen et al., 2006, Nicolay et al., 2014). A study by 

Islam et al. showed that adult human MSCs were more radioresistant than embryonic 

stem cells (Islam et al., 2015). Fractionated or hyperfractionated radiotherapy of 0.5-2 

Gy has been shown to cause radioresistance in MSCs (Tomuleasa et al., 2010, Clavin 

et al., 2008). 

In hypoxic conditions, Sugrue et al. showed that hypoxia increased radioresistance of 

mouse MSCs in vitro by increasing their proliferation, DNA damage repair, and long-

term survival after irradiation (Sugrue et al., 2014). Moreover, another study confirmed 

these results in vivo and showed that after irradiation of porcine mandibular bone with 

single doses of up to 18 Gy, MSCs that survived maintained their proliferation and 

differentiation abilities (Singh et al., 2012). 
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1.8.1 Radiation and fibrosis  

 

Fibrosis and tissue repair are strongly related to myofibroblasts, which commonly 

originate from local fibroblasts. Within normal connective tissue, fibroblasts are 

considered the most common cell type responsible for the synthesis, remodelling, and 

degradation of ECM in disease and health (Evans et al., 2003). Fibroblasts differentiate 

into myofibroblasts (in cancer called CAFs) as a consequence of fibrogenic cytokines 

secreted by inflammatory cells and other cells (Hinz et al., 2007). This differentiation 

is called activation and at this stage, α-SMA appears associated with coarse fibres 

responsible for the contractile properties of myofibroblasts (Hinz et al., 2007). 

Myofibroblasts are responsible for the production of collagens type I, III, IV and V, 

fibronectins and other matrix proteins (Sime and O'Reilly, 2001, Wynn, 2008). 

Myofibroblasts compared to fibroblasts secrete large amounts of collagen and they 

represent the main source of collagen in tissues (Ramos et al., 2001). Moreover, 

myofibroblasts represent the main sources of pro-fibrotic cytokines such as TGF-β and 

MCP-1 in idiopathic pulmonary fibrosis (Goodwin and Jenkins, 2009, Phan, 2002). 

Presence of myofibroblasts within fibrotic lesions in animal models and in human 

fibrotic diseases proved them as key cells in the pathogenesis of fibrosis (Zhang et al., 

1994). Myofibroblasts play a key role in wound healing through regulation of tissue 

repair. However, if their extra cellular matrix secretion becomes uncontrolled, it can 

cause severe impairment of organ function (Hinz et al., 2007, Yarnold and Brotons, 

2010). Normally, fibroblasts (that express little or no α-SMA) produce low ECM, while 

after tissue injury; fibroblasts become activated through cytokines released from 

epithelial cells in response to the injury. The activated fibroblasts (myofibroblasts) 

migrate to damaged tissue to synthesise and deposit ECM. To prevent excessive ECM 

deposition and tissue restoration, apoptosis is activated (Wynn, 2008). It has been 

shown that myofibroblasts are resistant to apoptosis, which causes excessive ECM 

production and scar formation (Ramos et al., 2001). 

RIF is one of the commonest long-term side effects of radiotherapy treatment that 

develops by complex molecular processes involving different growth factors, cytokines, 

chemokines, inflammation, and ECM degradation. The molecular mechanisms of RIF 

are similar to other fibrotic diseases (Yarnold and Brotons, 2010, Cheresh et al., 2013). 

The first step in fibrosis is the remodelling of ECM in connective tissue and production 

of myofibroblasts from different cell-types via fibroblast activation, or EMT (Zvaifler, 
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2006, Krenning et al., 2010). In healthy tissue, the injury response and wound healing 

depend on activation of fibroblasts and remodelling of ECM (Bielefeld et al., 2013). In 

fibrotic diseases, the activity of myofibroblasts remains even after damage repair 

(Wynn, 2008). Moreover, different types of cells are involved in regulation of tissue 

such as epithelial and endothelial cells in addition to immune cells (Krenning et al., 

2010, Milliat et al., 2006, Xiao et al., 2012). Several growth factors, hormones, and 

mediators drive or suppress the fibrotic process. TGF-β, connective tissue growth factor 

(CTGF), and interleukin-6 (IL6) act as radiation fibrosis inducers (Kruse et al., 2009, 

Haydont et al., 2008, Gaugler et al., 2005), whereas fibrosis suppressors include gamma 

interferon, hepatocyte growth factor, and thrombomodulin (Hu et al., 2009, Gottlober 

et al., 2001, Yarnold and Brotons, 2010). A cascade of active cytokines persists after 

irradiation, which is responsible for long-term radiation tissue damage effects (Devalia 

and Mansfield, 2008). The initiation of this cascade is still unclear, but may be radiation 

leads to activation of macrophages and monocytes that secrete cytokines like IL-1, IL-

6, and tumour necrosis factor alpha (TNFα), which attract other macrophages, and 

monocytes. These activated macrophages synthesize cytokines (fibrogenic) such as 

CTGF, TGF-β, and PDGF which are responsible for the synthesis of ECM proteins, 

MMPs and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs) (Haase and 

Rodemann, 2004, Bentzen, 2006). 

RIF is a complex process that is driven by multiple intracellular signalling pathways 

including Smad signalling related to TGF-β, rho/ROCK kinase signalling, integrin 

signalling, DNA damage response (DDR), and stress response signalling (Milliat et al., 

2006, Puthawala et al., 2008, Haydont et al., 2008). Both DDR and stress response are 

important in radiotherapy treatment of cancer as they determine the normal tissue side 

effects from irradiation and the effectiveness of the treatment (Moding et al., 2013). 

Radiation leads to ROS, and different DNA cell-cycle arrest through activation of 

checkpoints and subsequent apoptosis (Cheresh et al., 2013, Moding et al., 2013). 

Long-term radiation response leads to delayed onset genomic instability with loss of 

ability of the tissue to regenerate that caused tissue dystrophy and radiation fibrosis 

(Koturbash et al., 2006, Sperk et al., 2012, Westbury and Yarnold, 2012). Radiation 

causes damage to the DNA of the cells within the irradiated areas but cells also secrete 

factors that cause DNA damage of distant cells through a bystander effect (Koturbash 

et al., 2006, Dickey et al., 2009). Many studies suggest that long-term radiation effects 
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rely on loss of stem cells, persistent DNA damage, changes in cellular signalling, and 

genetic/epigenetic deviations (Koturbash et al., 2006, Dickey et al., 2009, Coppes et al., 

2009, Kuhmann et al., 2011, Yarnold and Brotons, 2010). In summary, inflammation 

plays a key role in the development of RIF.  

1.8.2 Origin of myofibroblasts (CAFs) in cancer 

 

There are different types of cells from which CAFs can originate in cancer (Figure 1.4). 

The main source of CAFs is from resident fibroblasts that become 

activated/differentiated by TGF-β (Postlethwaite et al., 2004). As described previously, 

in response to the tissue injury, epithelial cells secrete TGF-β that induces 

differentiation of fibroblasts to CAFs. However, evidence from research have 

suggested alternative sources that CAFs may originate from. It was shown that 

epithelial cells, macrophages and pericytes undergo phenotypic differentiation to form 

CAFs (Flier et al., 2010, Lamouille et al., 2014, Zeisberg et al., 2007b). Epithelial cells 

can differentiate into CAFs through EMT in the presence of TGF-β. Moreover, it has 

been suggested that CAFs can derive from endothelial cells through endothelial-

mesenchymal transition (En-MT) (Kalluri and Neilson, 2003). In the En-MT process, 

endothelial cells gain mesenchymal properties and expresses CAFs differentiation 

markers like α-SMA, collagens and vimentin and decrease endothelial cell markers 

such as vascular endothelial cadherin (VE-cadherin) (Zeisberg et al., 2007a). Jimenez 

et al and Kong et al have shown the involvement of En-MT in the development of 

pulmonary fibrosis (in systemic sclerosis), cardiac fibrosis and intestinal fibrosis in 

humans (Jimenez, 2016, Kong et al., 2014). It is not yet understood why En-MT plays 

a role in the pathogenesis of fibrosis in humans. Understanding of molecular 

mechanisms of En-MT involvement in fibrosis should help in the development of novel 

anti-fibrotic drugs. 

Another source of CAFs is from BM stem cells or tumour MSCs. It has been shown 

that circulating fibroblasts derived from BM can differentiate into CAFs (Bucala et al., 

1994, Ebihara et al., 2006). These mesenchymal stem cell progenitors (fibrocytes) have 

the phenotype of fibroblast/myofibroblasts and they express collagen I, CD34, and 

CD35 (Ebihara et al., 2006, Brittan et al., 2002, Forbes et al., 2004). Although it appears 

that CAFs derive from differentiation of many cellular types, the main source of CAFs 

remains the resident fibroblasts. 
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Figure 1.4 Origin of Myofibroblasts (CAFs) in cancer: CAFs originate from 

different sources such as: resident fibroblasts, circulating bone marrow progenitors 

(fibrocytes), endothelial cells experiencing endothelial-mesenchymal transition (En-

MT), pericytes, macrophages, MSCs and epithelial cells experiencing epithelial-

mesenchymal transition (EMT). 
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1.8.3 Role of TGF- β in RIF  

 

1.8.3.1 TGF-β overview and superfamily 

 

TGF-β is 25-kDa multi-functional polypeptide cytokine that plays an important role in 

fibrosis. It regulates differentiation and proliferation of cells, development and growth 

of organs, immune response, apoptosis, tumour growth and suppression (O'Sullivan 

and Levin, 2003, Bentzen, 2006). TGF-β belongs to a superfamily of more than 60 

proteins (29 of them encoded by the human genome) that regulate homeostasis, 

embryonic development, control of cell cycle, and wound healing in multicellular 

organisms, (Feng and Derynck, 2005, Leask and Abraham, 2004). TGF-β is present as 

three isoforms (TGF-β1-3) that have similar biological activities (Gorelik and Flavell, 

2002). Although in humans all three isoforms are expressed, the TGF-β1 isoform is 

most prevalent and is associated with tissue fibrosis (Wynn, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Pro-fibrotic effects of TGF-β1 
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1.8.3.2 TGF-β signalling 

 

The secretion of the TGF-β from most cells (like CAFs and macrophages) occurs in a 

latent form, which needs to be activated in the extracellular space in order to bind to 

the receptor. TGF-β is stored inside cells as an inactive homodimer form that is bound 

to latency-associated peptide (LAP) that keeps TGF-β inactive. Its activation occurs by 

dissociation of the LAP (Lawrence, 2001). This means that after exposure to triggering 

factors including ionising radiation, the large amount of latent TGF-β in the 

extracellular space can be mobilized. It has been shown that within a few minutes or 

hours after exposure to ionizing radiation with 0.1 Gy, TGF-β becomes activated 

(Ehrhart et al., 1997, Ewan et al., 2002). When TGF-β becomes activated, it can bind 

to its receptors TGF-β R1 and TGF-β R2, which then activate a family of transcription 

factors called Smads. Through Smads, TGF-β signalling transmitted downstream from 

the receptor to the nucleus. In addition, an alternative non-Smad pathway has been 

described including p38, MAPK, m-TOR, RAS, P42/p44 MAPK (Zhang, 2009). 

Smad pathways regulate translation, transcription, microRNA biogenesis, post-

translational modifications and protein synthesis (Hussey et al., 2011, Mu et al., 2012). 

Within the Smad family, there are three sub-types: inhibitory Smads (I-Smads), 

receptors that regulate Smads (R-Smads), and common partner Smads (Co-Smads). 

The phosphorylation of R-Smads, Smad-2 and Smad-3 occur after activation of TGF-

β receptor I kinase. Then, a heteromeric complex is formed from Smad-2 and -3 with 

co-Smad (Smad-4). The resultant complex then imported into the nucleus to regulate 

gene transcription (Attisano and Wrana, 2002, Verrecchia and Mauviel, 2002). Smad-

6 and -7 work as inhibitors for signalling by inhibiting gene induction through 

preventing phosphorylation of R-Smad (Nakao et al., 1997) (Figure 1.6). 
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Figure 1.6 Role of TGF-β in radiation fibrosis:  

TGF-β activated by ionizing radiation that leads to dissociation from the latency-

associated peptide (LAP). Moreover, radiation causes damage to endothelial 

cells, which in turn leads to the secretion of chemokines and pro-fibrotic 

cytokines such as TGF-β. EC-derived chemokines recruit macrophages or 

monocytes, which cause apoptosis and further release of growth factors and 

cytokines like TGF-β. These extracellular actions cause TGF-β signaling 

pathway activation through Smad pathways. The phosphorylation of Smad-2 

and Smad-3 occur after activation of TGF-β receptor I kinase. Then, a 

heteromeric complex formed from Smad-2 and -3 with co-Smad (Smad-4). This 

resultant complex transmitted into the nucleus to regulate gene transcription. 

Smad-7 works as an inhibitor for signalling by inhibiting gene induction through 

preventing phosphorylation of R-Smad and Smad-3. The final result from this 

process is increased ECM proteins like collagens. 
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1.8.3.3 TGF-β and fibrosis 

 

As previously mentioned, TGF-β has strong pro-fibrotic effects on epithelial cells and 

fibroblasts, so it plays an important role in the development of fibrosis. It has been 

shown, both in vitro and in vivo, that TGF-β induces fibroblast differentiation into 

myofibroblasts (Desmouliere et al., 1993, Sime et al., 1997). There are three ways by 

which TGF-β enhances fibrogenesis. Firstly, TGF-β causes remodelling of the ECM 

via suppression of the MMPs, enhancing production of tissue inhibitor of 

metalloproteinases gene (TIMP3), and subsequently inhibits ECM degradation (Martin 

et al., 2000, Eddington et al., 2007).  

Secondly, through Smad signalling, TGF-β leads to the formation of myofibroblasts 

through EMT. During EMT, the epithelial markers like E-cadherin and cytokeratins are 

down-regulated while mesenchymal markers like vimentin and α-SMA are up-

regulated (Xu et al., 2009). Through EMT, epithelial cells gain invasive and migratory 

properties of cancer stem cells that can differentiate into different types of cells (Jain et 

al., 2007, Mani et al., 2008). It has been shown that in adult tissue, both fibrinogenesis 

and wound healing displaying EMT (Kalluri and Neilson, 2003). Thirdly, TGF-β 

enhances production of the matrix via Smad-3 dependent or non-Smad mechanism (Lan, 

2003). It has been shown that the Smad-3 levels increased in many fibrotic models, 

moreover, mice with Smad-3 knockout were protected from lung fibrosis induced by 

bleomycin drug (Liu et al., 2003). A study by (Roberts et al., 2006) showed that 

fibrinogenesis was reduced in mice after deletion of Smad-3 that blocks EMT. 
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1.8.4 Connective tissue growth factor in cancer and fibrosis 

 

Connective tissue growth factor (CTGF) or CNN2 is a matricellular protein that plays 

a role in fibroblast proliferation, and production of matrix and granulation tissue (Leask 

and Abraham, 2004, Yarnold and Brotons, 2010). It is a 36-38 kDa protein and was 

discovered in 1991 as a secreted protein in the CM from HUVEC (Human umbilical 

vascular endothelial cells) (Bradham et al., 1991). Tumour growth and progression is 

related to CTGF expression. For example, CTGF expression in breast cancer increased 

in bone metastasis (Kang et al., 2003) and was associated with bad prognosis in 

oesophageal cancer (Koliopanos et al., 2002), and increased invasiveness in pancreatic 

cancer (Wenger et al., 1999). On the other hand, some studies showed the reverse. 

Shakunaga and his colleagues showed, in chondrosarcoma, that the expression of 

CTGF was negatively related to tumour growth and grade (Shakunaga et al., 2000). 

Moreover, another study showed that over expression of CTGF was related to 

decreased oral squamous cell carcinoma tumour growth (Moritani et al., 2003). Lee and 

his colleagues showed that CTGF was responsible for differentiation of human BM-

MSCs into fibroblasts that expressed increased collagen-I, or into myofibroblasts in the 

presence of TGF-β (Lee et al., 2010). 

It has been shown that, in fibroblasts, CTGF enhanced the mRNA expression of α1 

collagen-I, fibronectin, and α5 integrin (Frazier et al., 1996). CTGF also mediates   

endothelial cell migration, proliferation, differentiation and enhanced angiogenesis 

(Shimo et al., 1999, Babic et al., 1999). 

Regarding the role of CTGF in fibrosis, the fibrotic activity of TGF-β is dependent on 

CTGF activities (Mori et al., 1999, Parada et al., 2013). Moreover, in fibrosis and 

wound healing the CTGF expression is increased alongside that of TGF-β (Barrientos 

et al., 2008). Leask and Abraham suggested that some of TGF-β’s functions, like 

secretion of ECM (collagen and fibronectin) and fibroblast proliferation, are mediated 

by CTGF (Leask and Abraham, 2004). It has been reported that after being secreted 

from cells, CTGF interacts with different growth factors and cytokines like VEGF, 

TGF-β, IGF1, BMP-4 and BMP-7 (Yang et al., 2010, Liu et al., 2007). In human skin 

fibroblasts, previous studies have shown that TGF-β caused a huge increase in the 

expression of CTGF mRNA (Igarashi et al., 1993). Moreover, TGF-β required CTGF 
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to activate Smad1-ERK1/2 signalling (no effects on Smad-3 phosphorylation) 

(Nakerakanti et al., 2011). Through the Smad-3 binding site at the CTGF promotor, 

TGF-β caused fibroblasts to express CTGF (Verrecchia and Mauviel, 2007).  

The up-regulation of CTGF in fibrosis was evident in different studies. A study by 

Nguyen et al. (2008) in diabetic kidney disease showed that CTGF inhibits BMP-7 

signalling that caused altered gene transcription and subsequent reduction in MMP 

activity (Nguyen et al., 2008).  BMP-7 plays a role in neutralizing the pro-fibrotic 

effects of TGF-β (Wahab and Mason, 2006, Mitu and Hirschberg, 2008). Mori and his 

colleagues reported that when a single administration of CTGF or TGF-β was injected 

subcutaneously in new born mice, a transient fibrosis occurred represented by 

granulation tissue formation (Mori et al., 1999). Furthermore, if CTGF was injected 

together with TGF-β, a fibrotic response happened and continued for a week. These 

results suggested that CTGF plays an essential role in the development of fibrosis. 

Although most studies have shown the positive correlation between TGF-β and CTGF, 

other studies showed the reverse. A study by Diziadzio et al. (2005) showed that in 

systemic sclerosis the level of CTGF was increased in the circulation compared to 

normal levels of TGF-β in the serum from both control healthy and diseased patients 

(Dziadzio et al., 2005). However, a study by Okada et al. (2005) showed that animals 

treated by CTGF antisense oligodeoxynucleotide did not affect the levels of TGF-β 

while it inhibited the expression of CTGF and reduced fibrosis (Okada et al., 2005). 

These studies are consistent with other studies suggesting that when the activity or 

synthesis of CTGF was blocked, inhibition of many TGF-β-responding transcriptions 

such as synthesis of collagen, adhesion, proliferation of fibroblasts and differentiation 

of myofibroblasts occurred (Frazier et al., 1996, Duncan et al., 1999, Grotendorst et al., 

2004, Shi-Wen et al., 2006). Ma et al. suggested that CTGF, TGF-β2, and gremlin 

(BMPs antagonist) were involved in EMT of lens epithelial cells to form myofibroblasts 

and synthesis of ECM via Smad pathways (Ma et al., 2014). In summary, CTGF is both 

a mediator and marker for fibrosis in health and disease. A further understanding of the 

cellular mechanisms involved in the influence of CTGF on fibrosis is required. CTGF 

and CTGF-related pathways are also potential targets for the treatment of fibrosis. 
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1.9 MSCs homing toward cancer 
 

How MSCs migrate to sites of tissue injury or into tumours is not fully understood. 

However, various different mediators like growth factors, cytokines, and chemokines 

have been described to be involved in the MSC homing mechanisms to inflammatory 

sites. 

1.9.1 Growth factors involved in ‘homing’ of MSCs 

 

Growth factors are polypeptide molecules that stimulate cell proliferation 

/differentiation, migration, and survival through their extracellular signalling (Vanden 

Berg-Foels, 2014). Growth factors play roles in wound healing and during 

embryogenesis (Cohn et al., 1995, Cross and Mustoe, 2003). One of the critical factors 

that play a role in the migration of MSCs is VEGF. It has been shown that MSC 

migration was enhanced by VEGF secreted by breast cancer cells. Moreover, receptors 

for VEGF are expressed on MSCs, and blocking of VEGF can cause a reduction in 

MSC migration (Ritter et al., 2008). PDGF also plays a role in the homing of MSCs. 

PDGF has been shown to play roles in wound healing and in embryogenesis (Alvarez 

et al., 2006).  It is a polypeptide dimer that has four homo-dimers with their receptors 

such as PDGF-AA, PDGF-BB, PDGF-CC, and PDGF-DD. Each PDGF dimer has two 

receptors,  and . PDGF-AA binds / receptors and PDGF-BB binds /,  /, and 

/ receptors (Fang et al., 2004). It has been shown in vitro that migration and 

recruitment of human MSCs were enhanced by PDGF-AA, and PDGF-BB (strongest 

response) (Fiedler et al., 2004). On the other hand, studies by (Ruster et al., 2005) and 

(Nedeau et al., 2008) have shown that only a minimal number of MSCs migrated in 

response to PDGF-BB. The differences in the effects of PDGF-BB on the recruitment 

of MSCs might be due to using different MSCs and culture conditions.  

Other growth factors that have a role in MSC homing are shown in Table 1.1. 

1.9.2 Chemokines 

 

Chemokines are families of chemotactic cytokines with small molecular size (8-10 

kDa) which induce chemotaxis of leukocyte cells (Baggiolini, 1998). Based on their 

cysteine residues number, chemokines are divided into four groups: C, CC, CXC, and 
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CX3C (Clarklewis et al., 1995). They play key roles in wound healing, tissue 

homeostasis, and immune response through regulation of cell migration. 

1.9.2.1 Stromal cell derived factor 1α  

 

Stromal cell derived factor 1α (SDF-1α) is CXC chemokine 12 (CXCL12) that is 

expressed at injury sites and is involved in wound healing, embryogenesis, and in 

response to hypoxia (Gillitzer and Goebeler, 2001, Rezzoug et al., 2011, Abbott et al., 

2004). SDF-1α is an 8-12 kDa peptide that enhances the progression of cancer and 

promotes angiogenesis by recruitment of endothelial cells to the tumour site (Kryczek 

et al., 2007, Diomedi-Camassei et al., 2008, Meier et al., 2007, Sung et al., 2008). 

CXCR4 is a protein encoded by the CXCR4 gene and acts as a receptor for SDF-1 α. 

SDF-1α works on cancer cells through enhancing proliferation via CXCR4 that is 

expressed on cancer cells.  

It has been shown that SDF-1α induces recruitment of human MSCs in vitro (Schmidt 

et al., 2006, Sordi et al., 2005). Moreover, Kitaori et al showed that, in vivo, SDF-1α 

recruited MSCs to a fracture site in mouse and helped the regeneration of the bone. On 

the other hand, using anti-SDF-1 antibody and anti-CXCR4 caused inhibition of MSC 

recruitment (Kitaori et al., 2009). Some studies have demonstrated, in mouse models, 

that in the presence of tissue injury, the migration of MSCs to the area of injury, where 

SDF-1α was expressed, was increased (Abbott et al., 2004, Ji et al., 2004). It has been 

shown that tumour cells secreted soluble factors that caused MSCs to secrete SDF-1α 

that, in turn, activates their migration (Gao et al., 2009). 

These studies indicate the importance of SDF-1α chemokine in the recruitment of 

MSCs.  

1.9.2.2 Monocyte chemoattractant protein-1  

 

During tissue injury, myofibroblasts, macrophages, and other active cells that are 

recruited to the injury site via chemokines work together with pro-fibrotic cytokines. 

Chemokines allow leukocytes to interact with fibroblasts by recruiting them into tissue 

across endothelial barriers (Hasegawa and Sato, 2008). One of the important chemokine 

signalling pathways that play a role in the recruitment of MSCs and fibrosis is the CC- 

and CXC-chemokine receptor families (Wynn, 2008). (Carulli et al., 2005, Distler et 

al., 2009, Ong et al., 2003) have demonstrated monocyte chemoattractant protein-1 
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(MCP-1) or CCL-2 and MCP-3 (CCL-7) as pro-fibrotic mediators. MCP-1 is 

responsible for recruitment of monocytes to the injury site and its receptor (CCR2) is 

expressed on the MSCs (Ringe et al., 2007, Ponte et al., 2007). In vitro, it has been 

shown that MCP-1 causes direct and indirect expression of collagen through 

endogenous signalling of TGF-β or IL-4 (Distler et al., 2006). Moreover, when MCP-

1 was neutralized using anti-MCP-1 antibodies, a reduction in fibrosis resulted (Lloyd 

et al., 1997, Belperio et al., 2001). Similar results were obtained in mice deficient to 

chemokine receptor 1 and 2 (CCR1, and CCR2) confirming their important roles in 

fibrosis (Tokuda et al., 2000, Anders et al., 2002, Moore et al., 2001). It has been shown 

that the migration of human and mice BM-derived MSCs were enhanced by MCP-1 

chemokine in vivo and in vitro (Boomsma and Geenen, 2012, Dwyer et al., 2007, 

Belema-Bedada et al., 2008). Using anti-CCR2 antibodies caused inhibition of MSC 

migration via blocking of CCR2 downstream signalling (Belema-Bedada et al., 2008). 

Conversely, studies by Ringe et al and Takano et al showed that MCP-1 had no 

significant migratory effect on BM-derived MSCs (Ringe et al., 2007, Takano et al., 

2014). A study by Dwyer et al showed that MCP-1 secreted from breast cancer cells 

enhanced the migration effects of MSCs (Dwyer et al., 2007). Moreover, Klopp et al 

and Baek et al showed that cytokines and growth factors such as TGF-β, PDGF, and 

VEGF that were secreted from tumour cells and enhanced MSCs migration were 

increased post irradiation (Klopp et al., 2007, Baek et al., 2011). 

These variations in the MSC migratory response to MCP-1 chemokine need an 

additional investigation to study the role of MCP-1 in MSCs homing. 

Other chemokines are in Table 1.1. 
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Growth factors 

Ligands Receptors Reference 

VEGF-A VEGFR-1, -2 (Sorrentino et al., 2008) 

PDGF-AA PDGF-α (Ponte et al., 2007) 

PDGF-BB PDGF-β (Sorrentino et al., 2008) 

EGF EGFR (Ponte et al., 2007) 

TGF TGFR (Baek et al., 2011) 

BMP-2, -4 BMPR-1a, -1b, -2 (Lavery et al., 2008) 

HGF HGFR (Neuss et al., 2004) 

IGF-1, -2 IGF-1R (Ponte et al., 2007) 

Ang-1 TIE-2 (Sorrentino et al., 2008) 

FGF-2 FGFR-1, -2, -3, -4 (Walsh et al., 2000) 

Chemokines 

MCP-1 (CCL2) CCR2 (Ringe et al., 2007) 

RANTES (CCL5) CCR5 (Ponte et al., 2007) 

MCP-2, MCP-3, 

MCP-4 

CCR1 (Sordi et al., 2005) 

CCL20 (MIP-3α) CCR6 (CD196) (Ringe et al., 2007) 

CCL25 (TECK) CCR9 (CDw199) (Honczarenko et al., 

2006) 

CCL27 (CTACK), 28 

(MEC) 

CCR10 (Brooke et al., 2008) 

CXCL12 (SDF-1) CXCR4 (CD184) (Ponte et al., 2007) 

CXCL13 (BLC) CXCR5 (CD185) (Ringe et al., 2007) 

Others 

HMGB-1 RAGE; TLR2, (Meng et al., 2008) 

LPA LPA-1 (Edg2) (Song et al., 2010) 

TNF-α TNFR1 (Croitoru-Lamoury et 

al., 2007) 

Lipoproteins, 

peptidoglycans 

TLR1 (CD281) (Tomchuck et al., 2008) 
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Table 1.1 Growth factors, chemokines and other chemoattractant ligands 

and receptors expressed by human bone marrow MSCs.  

Adapted from (Vanden Berg-Foels, 2014). VEGF, vascular endothelial growth 

factor; PDGF, platelet-derived growth factor; EGF, epidermal growth factor; 

TGF, transforming growth factor; BMP, bone morphogenetic protein; HGF, 

hepatocyte growth factor; IGF, insulin-like growth factor; FGF, fibroblast 

growth factor; MCP, monocyte chemoattractant protein; RANTES, regulated on 

activation normal T-cell expressed and secreted; MIP, macrophage 

inflammatory protein; MDC, macrophage-derived chemokine; SLC, secondary 

lymphoid tissue chemokine; IL, interleukin; SDF, stromal cell derived factor; 

TNF, tumour necrosis factor; RAGE, receptor for advanced glycation end 

products; HMGB, high mobility group box; LPA, lysophosphatic acid; S1P, 

sphingosine 1-phosphate; TLR, Toll-like receptor. 
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1.9.3 Radiation and MSCs homing toward cancer 

 

It has been shown that radiation induces the expression of many cytokines like EGF, 

pro-inflammatory cytokines and fibroblast growth factor (Wang et al., 1998). Moreover, 

in tissues exposed to high or low doses of ionizing radiation, there is early and persistent 

activation of TGF-β1 (Anscher et al., 1990, Wang et al., 1998). Klopp et al. studied the 

effects of radiation on the migratory ability of MSC. They showed, both in vitro and in 

vivo, that radiation enhanced MSC migration through inflammation cytokines and 

chemokines that released after tissue injury in response to radiation (Klopp et al., 2007). 

Furthermore, they were able to identify the chemokines and cytokines responsible for 

the recruitment of MSC toward irradiated tumours. They showed that after irradiation 

of the tumour cells, their ability to produce cytokines that recruit MSCs (like VEGF, 

TGF-β1, and PDGF) were increased (Klopp et al., 2007). Also, they found that the level 

of chemokine receptor CCR2 (MCP-1 receptor) was up-regulated in irradiated MSCs. 

Ren et al. demonstrated that blocking of CCR2 in vitro caused decreased MSC 

migration (Ren et al., 2012). These studies indicate that the post inflammation 

mediators were increased in response to irradiation, which enhanced MSCs migration 

toward tumour microenvironment.  

However, there is still more to be studied about the molecular mechanisms behind the 

recruitment of MSCs to the tumour site post-irradiation, and whether MSCs play a key 

role in the fibrotic changes that occur post-irradiation via their differentiation into CAF-

like cells. 
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1.10 Aims of the study 
 

As described earlier, radiotherapy is one of the standard treatments for patients with 

intermediate and high-grade soft tissue sarcoma. Some studies have shown that 

radiation recruits MSCs to tumours (Klopp et al., 2007, Fenton and Paoni, 2007), but 

the mechanism behind this event is still unclear. MSCs can differentiate into CAFs, 

which is responsible for ECM secretion and deposits of collagen and other matrix 

proteins with subsequent fibrosis (Azorin-Vega et al., 2015). CAFs play a key role in 

cancer initiation, invasion and metastasis (Luo et al., 2015) and the exact origin of 

CAFs in irradiated tumours has not been established. In normal tissues, growth factors 

such as PDGF and TGF-β play a key role in the differentiation of myofibroblasts, so 

similar factors may be involved in response to radiation in the tumour. 

The general hypothesis to test in this project is that radiation alters MSC protein 

expression and behaviour, either directly or indirectly via radiation effects on other cell 

types present in solid tumours. These alterations have the potential to play a significant 

role in radiation-induced changes within the TME linked to CAF-induced tumour 

progression.   

The aims of this project were, therefore: 

- Using in vitro models, determine whether radiation induces migration of MSCs and 

differentiation of MSCs into CAF-like cells. 

- Determine the influence of irradiated tumour cells and/or endothelial cells on these 

processes, utilizing mouse fibrosarcoma cells (FS120 and FS188) previously shown to 

have differential effects on the composition of the TME, when propagated in vivo 

(Tozer et al., 2008)*. 

- Investigate the role of specific cytokines/chemokines previously shown to be induced 

by irradiation of tumour cells on the above processes and determine the effect of 

irradiation on expression/secretion of these factors in FS120 and FS188 cells. 

- Identify the differences between FS120 and FS188 tumour cells and solid tumours 

(i.e. in vitro and in vivo) that could potentially influence the recruitment /differentiation 
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of MSCs.  

* FS188 tumour sections showed more positive cellular staining for -SMA than FS120 

tumour sections. A proportion of these -SMA-positive cells were closely associated 

with blood vessels, suggestive of pericytes.   
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CHAPTER TWO: 

Materials and methods 
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2.1 Materials  

Reagents for cell culture Supplier 

Cells 

Balb/c Mouse Mesenchymal Stem Cells  Purchased from Cyagen 

Biosciences Cat. No. 

MUCMX-01001 

C3H/10T1/2, clone 8  Mouse Mesenchymal Stem 

Cells 

Purchased from ATCC® 

(ATCC® CCL-226TM) 

HDMEC (Human Dermal Microvascular 

Endothelial Cells) 

PromoCell® 

H5V mouse cardiac endothelial cell A kind gift from Dr 

Annuciatta Vecchi (Garlanda 

et al, 1994, PNAS, 91) 

Mouse fibrosarcoma cells These cells were developed in 

our laboratory (Tozer et al., 

2008). 

Antibodies 

PDGF Receptor β Rabbit mAb (Cat. 3169) Cell Signalling Technology® 

Monoclonal Anti- β Tubulin mAb (Cat. T4026) SIGMA-ALDRICH®  

Anti-Actin, α-Smooth Muscle mAb (A 2547) SIGMA-ALDRICH® 

GAPDH (14C10) Rabbit mAb (Cat. 2118) Cell Signalling Technology® 

Anti-Mouse Collagen Type I pAb (Cat.AB765P) Millipore® 

Anti-TGF beta antibody pAb (ab 66043) Abcam® 

Anti-Fibronectin antibody pAb (ab 2413) Abcam® 

MCP-1 Antibody pAb (Cat. 2029) Cell Signalling Technology® 

Mouse TGF-β2 Antibody mAb (Cat. MAB73461) R & D systems® 

Purified Rat Anti-Mouse CD31 (Cat. 553370) BD Pharmingen TM 

Anti-TGF beta 1 antibody pAb (ab 155264) Abcam® 

Anti-alpha smooth muscle actin antibody mAb (ab 

124964) 

Abcam® 

Anti-CCR2 antibody mAb (ab 203128) Abcam® 

Anti-CTGF antibody pAb (ab 6992) Abcam® 

SDF1 Antibody pAb (Cat. 3740) Cell Signalling Technology® 

Recombinant Murine JE/MCP-1 (CCL2) (Cat. 250-

10) 

Peprotech® 
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Recombinant Murine SDF-1 (CXCL12) (Cat. 250-

20A) 

Peprotech® 

Recombinant Human TGF-β2 (Cat. 100-35B) Peprotech® 

Recombinant Human TGF-β1 PeproTech® 

DuoSet® ELISA kits 

Mouse CCL2/JE/MCP-1 Antibody (Cat. AB-479-

NA) 

R & D systems® 

Normal Goat IgG Control (Cat. AB-108-C) R & D systems® 

Goat Anti-Mouse JE Capture Antibody (Cat. 

DY479-05) 

R & D systems® 

Biotinylated Goat Anti-Mouse JE Detection 

Antibody (Cat. DY479-05) 

R & D systems® 

Recombinant Mouse JE Standard (Cat. DY479-05) R & D systems® 

Wash buffer (Cat. WA126) R & D systems® 

Reagent Diluent (Cat. DY008) R & D systems® 

Streptavidin-HRP (Cat. DY479-05) R & D systems® 

Colour Reagent A & B (Cat. DY999) R & D systems® 

Coating buffer (Cat. DY479-05) R & D systems® 

Stop solution (Cat. DY994) R & D systems® 

Masson's trichrome reagents 

Weigert`s Iron Hematoxylin Set Sigma-Aldrich® 

Ponceau Xylidine Sigma-Aldrich® 

Light Green SF Yellowish Sigma-Aldrich® 

Acid Fuchsin Sigma-Aldrich® 

Phosphotungstic acid solution Sigma-Aldrich® 

Phosphomolybdic acid hydrate  Sigma-Aldrich® 

Western blotting, IHC and IF materials 

Cell Extraction Buffer (Cat.FNN0011) Invitrogen® 

Ultra Pure ProtoGel® National Diagnostics 

ProtoGel® Resolving Buffer National Diagnostics 

ProtoGel® Stacking Buffer National Diagnostics 

Ammonium persulfate  Sigma-Aldrich® 

M.O.M ™ Immunodetection kit Vector® 

Nitrocellulose membrane Hybond® ECL™  
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PVDF membrane Immobilon®-P Polyvinylidene 

difluoride membranes 

Thick blotting paper Invitrogen™  

Laemmli Sample Buffer (4X) Bio-Rad 

NuPAGE™ Sample Reducing Agent (10X) Fisher Scientific 

Centrifugal filter tube amicon Ultra-4 ultracel 3KD Millipore® 

Bovine serum albumin  Sigma-Aldrich® 

Immun-Blot® PVDF Membranes for Protein Blotting Bio-Rad 

Nitrocellulose Membranes, 0.2 µm Bio-Rad 

Dimethyl sulfoxide Sigma-Aldrich® 

Texas Red® Streptavidin (Cat. SA-5006) Vector® 

Goat Anti-Rat IgG H&L (FITC) (ab 97056) Abcam® 

Precision Plus ProteinTM Standards Bio-Rad® 

TEMED Sigma-Aldrich® 

Tween 20 Bio-Rad 

Isopropanol Fisher Scientific 

Ethanol 96% vol Fisher Scientific 

Methanol Fisher Scientific 

Triton X-100  Fisher Scientific 

Bovine serum albumin  Sigma-Aldrich® 

Glycerol  Fisher Scientific 

DAB                                       Vector Laboratories 

Avidin–biotinylated enzyme complex (ABC) Vector Laboratories 

Cell culture reagent 

Dulbecco’s Phosphate Buffered Saline BioWhittaker® 

Cell culture insert 8.0 µm Falcon® 

Multiwell 24 well Falcon® 

Cell Scraper Fisherbrand® 

DMEM BioWhittaker® 

HDMEC growth media (Endothelial cell medium 

MV Catalogue No. C-39220) 

PromoCell® 

Minimum essential medium eagle  Sigma-Aldrich® 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cell lines 

 

All cells were cultured and subcultured using pre-warmed (37°C) growth media, PBS 

and trypsin. A biosafety cabinet was used to perform all cell culture work.  

A) C3H/10T1/2 Clone 8 (ATCC® CCL-226™) cell line 

 

C3H/10T1/2 cells subsequently referred to as C3H10 cells, are a multipotent 

mesenchymal stem cell line derived from C3H mouse embryos (Reznikof.Ca et al., 

1973), often used in research as a model of differentiation in vitro. The morphology of 

these cell lines is fibroblast-like; they are flat and polygonal with long cytoplasmic 

processes (Figure 2.1). These cells grown in the following medium: Eagle's Minimum 

Essential Medium (EMEM) that is modified to contain Earle's Balanced Salt Solution, 

non-essential amino acids and 1500 mg/L sodium bicarbonate (Sigma M5650). 500 ml 

of Sigma M5650 MEM was supplemented with 2mM L-glutamine (5 ml glutamine 

aliquot), 5 ml Penicillin/Streptomycin, 1mM sodium pyruvate (5 ml of 100 mM 

solution Sigma S8636), and 50 ml FCS (final concentration of 10%). It is important to 

trypsinise and subculture C3H10 cells before they become confluent otherwise they can 

start differentiation. 

B) OriCell TM Strain Balb/c Mouse Mesenchymal Stem Cells 

 

Subsequently referred to as Balb/c MSCs, these cells are multipotent mesenchymal 

stem cells that derived from Balb/c mouse BM. They have the ability to differentiate 

into different types of cells such as chondrocytes, osteocytes, and adipocytes (Prockop, 

1997) (Figure 2.2). Moreover, these cells have abilities to migrate to the injury-site of 

tissue like skin, heart and kidney (Li et al., 2006, Wu et al., 2003, Morigi et al., 2004) 

For regular use, Balb/c MSCs were cultured in Eagle’s Minimum Essential Medium 

(Sigma, M8042), 20% foetal bovine serum supplemented with the penicillin-

streptomycin mixture, and L-glutamine (Klopp et al., 2007). 
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Figure 2.1 Early passage C3H/10T1/2 Clone 8 in their 

media.    

They are flat and polygonal with long cytoplasmic 

processes. Also they have fibroblasts-like morphology.  
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processes. Also they have fibroblasts-like morphology. 

 

Figure 2.2 Early passage C3H/10T1/2 Clone 8 in their 

media. 

 They are flat and polygonal with long cytoplasmic 

processes. Also they have fibroblasts-like morphology. 

Figure 2.2 Balb/c Mouse Mesenchymal Stem cells,      

BM- derived cells passage 9 

 

 

Figure 2.3 Balb/c Mouse Mesenchymal Stem cells,      

BM- derived cells passage 9 

 

 

Figure 2.4 Balb/c Mouse Mesenchymal Stem cells,      

BM- derived cells passage 9 
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C) Mouse fibrosarcoma cells 

 

Mouse fibrosarcoma (FS) cells that express single isoforms of VEGF, either VEGF 188 

or VEGF 120 were used. These cells were developed in our laboratory through 

separation of primary mouse embryo fibroblasts that express a single isoform of VEGF 

(VEGF 120, or VEGF 188) from mouse embryos. These fibroblasts were genotyped, 

immortalised, and transformed to cancer cells using retroviral transduction with Simian 

Virus 40 HRAS. The tumour cell lines (fibrosarcoma) which resulted were sustained in 

a medium made of DMEM (high glucose), L-glutamine, FCS, and the antibiotics 

puromycin, and G-418 (Tozer et al., 2008). 

In vivo, fibrosarcomas that express VEGF 188 have been shown to recruit more 

pericytes and CAFs than fibrosarcoma cells which express VEGF 120 (Tozer et al., 

2008). Moreover, Kanthou et al have shown that tumour cell expression of VEGF 188 

is linked to increasing apoptosis levels and slower proliferation rate compared with 

tumour cells expressing VEGF 120, proliferate rapidly and have increased survival 

(Kanthou et al., 2014).  

Kanthou and colleagues also showed that FS188 cells display typical mesenchymal 

features (spindle-shaped cells with extended processes and ruffles) compared to FS120 

cells, which display less mesenchymal features (a mixture of rounded-elongated cells 

with less extended processes)  (Kanthou et al., 2014). Recently, English et al. (2017) 

showed (in mouse) that tumour cells expressing VEGF 120 (FS120) metastasised to the 

lungs and produced lung colonies more than tumour cells expressing VEGF 188 

(FS188). Likewise,  these FS120 tumour cells that metastasised to the mice lungs 

showed more sensitivity to anti-VEGFA therapy than that FS188 (English et al., 2017). 

These features made these cells good models to study the indirect response of MSCs to 

radiation, as each line potentially provides a different array of growth factors affecting 

the differentiation of MSCs to CAF-like cells.  

The culture media for these cells was DMEM (high glucose), supplemented with Foetal 

calf serum (FCS) final concentration 10%, 5 ml Glutamine (stock 200 mM; final 

concentration 2mM), 3ml G-418 (stock 100 mg/ml; final concentration 600 μg/ml), and 

1 ml puromycin (stock 1mg/ml; final concentration 2 μg/ml). 
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D) H5V (mouse cardiac endothelial cells) 

 

H5V are immortalized transformed endothelial cells which were derived from hearts of 

C57BL/6 mouse and were a kind gift from Dr Annuciatta Vecchi (Garlanda et al., 1994). 

They were grown in DMEM (Dulbecco’s Modified Eagle’s Medium) with L-glutamine 

(2mM), 10 % FCS, Streptomycin (100µg/ml), and penicillin (100U/ml) (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

E) Human Dermal Microvascular Endothelial Cells (HDMEC) 

  

HDMEC are primary microvascular endothelial cells of the blood and lymphatic origin 

derived from human adult skin (PromoCell Catalogue number C-12210). They express 

vascular endothelial growth factor (VEGF), which plays an important role in 

angiogenesis, cell migration and vasculogenesis (Nor et al., 1999, Bernatchez et al., 

1999) (Figure 2.4). 

HDMEC were used up to passage 10 and were grown in their media (Endothelial cell 

medium MV Catalogue No. C-39220). The MV growth medium supplemented with 

10 %FCS-DMEM: (Dulbecco’s Modified Eagle’s Medium) supplemented with 10 % 

FCS, 2mM L-glutamine, 100 U/ml penicillin and 100 μg/ml Streptomycin. 

 

 

 

 

 

  

 

Figure 2.3 Mouse cardiac endothelial cells (H5V) 

 

Figure 2.10 Mouse cardiac endothelial cells 

(H5V)Figure 2.3 Mouse cardiac endothelial cells 

(H5V) 

 

Figure 2.11 Mouse cardiac endothelial cells 

(H5V) 

 

 

Figure 2.12 Mouse cardiac endothelial cells 

(H5V)Figure 2.3 Mouse cardiac endothelial cells 

(H5V) 

 

Figure 2.13 Mouse cardiac endothelial cells 

(H5V)Figure 2.3 Mouse cardiac endothelial cells 

(H5V) 
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(H5V)Figure 2.3 Mouse cardiac endothelial cells 

Figure 2.3 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.18 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.19 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.20 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.3 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.21 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.22 Mouse cardiac endothelial cells (H5V) 

 
 

Figure 2.23 Mouse cardiac endothelial cells (H5V) 
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2.2.1.2 Freezing cells in liquid nitrogen 

 

For additional experiments, early passage and healthy cells were frozen using liquid 

nitrogen. Before freezing cells, their media were changed the day before, in order to 

ensure that the cells would be healthy.  

First, the freezing solution (10% DMSO) was prepared by adding 1ml of DMSO to 9 

ml of the full fresh medium. Then, the freezing solution was mixed and filtered by 0.22-

μm filters, before placing on ice. The early passaged cells (75-80% confluent) were 

washed with PBS, trypsinsed and centrifuged. The pellet was suspended in a suitable 

volume of ice-cold freezing medium (106 cells/ml). Thereafter, cells were aliquoted in 

1ml aliquots and placed in pre-labelled cryovials. The vials were labelled with cell type, 

a number of passage, and date. After that, the cryovials were placed immediately into a 

freezing container (Mr Frosty™, Thermo Fisher Scientific™) which was transferred to 

-80°C freezer overnight. The cryovials were then stored in liquid nitrogen. 

 

 

 

 

 

 

 

 

Figure 2.4 Human Dermal Microvascualar 
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Figure 2.4 Human Dermal Microvascualar 

Endothelial Cells (HDMEC) passage 5Figure 2.24 

Human Dermal Microvascualar Endothelial Cells 

(HDMEC) passage 5 

 

Figure 2.4 Human Dermal Microvascualar 

Endothelial Cells (HDMEC) passage 5 

 

Figure 2.4 Human Dermal Microvascualar 

Endothelial Cells (HDMEC) passage 5Figure 2.25 

Human Dermal Microvascualar Endothelial Cells 

(HDMEC) passage 5 

 

Figure 2.4 Human Dermal Microvascualar 

Endothelial Cells (HDMEC) passage 5Figure 2.26 

Human Dermal Microvascualar Endothelial Cells 

(HDMEC) passage 5 

 

Figure 2.4 Human Dermal Microvascualar 

Endothelial Cells (HDMEC) passage 5 

 

Figure 2.4 Human Dermal Microvascualar 

Endothelial Cells (HDMEC) passage 5 

 

Figure 2.4 Human Dermal Microvascualar 
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2.2.1.3 Thawing cells 

 

Cryovials were removed from liquid nitrogen and thawed quickly in a 37°C water bath. 

After complete thawing of the cells, the outside of the cryovial was disinfected using 

70% ethanol. The cells were then transferred to a T-75 flask that contains a cell-growing 

medium. The flask was incubated at 37°C in a 5% CO2 humidified incubator. To 

remove the effects of DMSO, the medium was changed with fresh, pre-warmed 

medium the next day. After the confluence of the cells reached 80-90%, they were 

trypsinised, aliquoted (1 x 106 cells/mL) and stored in liquid nitrogen (1x 106 cells/ml) 

for long-term use. 

2.2.1.4 Cell counting 

 

Cell counting is a critical step to determine the number of cells within a given volume 

of a sample. A haemocytometer was used as an accurate tool to calculate cell number. 

Trypan blue was used to colour the dead cells since live cells have intact cell membranes 

and exclude the dye. 1:1 ratio was used (one volume cell suspension to one volume 

Trypan Blue) to be loaded into the haemocytometer chamber. Subsequently, the cells 

were counted inside four outer squares plus the central striped square using a Nikon 

phase contrast microscope (Figure 2.5). 

In order to calculate the total number of cells/ml: 

Total number of viable cells counted/square X                         X 104 

 

Number of squares  

Figure 2.5 The Counting chamber 

of haeocytometer (grid The cells 

were counted in 1, 2, 3, 4 and 5 

squares. Cells touching the outer 

lines on two sides of each square 

were excluded from counting. 

(Adapted from The 

Hemocytometer, 2010). 

 

Figure 2.51 The AGO X-Ray machine 

and its chamberFigure 2.5 The 

Counting chamber of 

haeocytometer (grid The cells were 

Dilution Factor (2) 

 

Figure 2.31 The 

Counting 

chamber 

of 

haeocyto

meter 

(grid 

layout).Di

lution 

Factor (2) 

 

Figure 2.32 The 

Counting 

chamber of 

haeocytometer 

(grid layout). 

Figure 2.5 The Counting chamber 

of haeocytometer (grid layout). 

 

Figure 2.5 The Counting chamber of 

haeocytometer (grid Figure 2.39 The 

Counting chamber of 

haeocytometer (grid layout). 

 

Figure 2.5 The Counting chamber 

of haeocytometer (grid The cells 

were counted in 1, 2, 3, 4 and 5 

squares. Cells touching the outer lines 

on two sides of each square were 
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2.2.1.5 Sub-culturing of the cells 

 

In order to prevent overgrowth of cells, the cells were subcultured every 3 days. Cell 

flasks were maintained in the incubator with routine daily observation to evaluate the 

density of the cells. When the cells reached ~80% confluence, they were subcultured. 

For routine sub-culturing of the cells, their media were changed by discarding the old 

medium and washing the monolayer with PBS twice. In order to dislodge cells from 

the flask surface, a pre-warmed trypsin solution was added to the cells before incubating 

the cells for 3-4 minutes. Next, when the cells were dislodged completely from the flask, 

they were collected in a 5 ml tube that contained a pre-warmed full medium. The cells 

were syringed to make them a single-cell suspension before they were counted by either 

haemocytometer (see above), or by a ViCell cell counter machine (Bio-Rad TC20™ 

Automated Cell Counter). Then, cells were subcultured to a new T25 flask by adding 

25x 104 cells to 5 ml pre-warmed fresh medium and placed in the incubator. 

2.2.1.6 In vitro irradiation of the cells 

 

All cells were irradiated using an AGO 250 kV X-ray machine (Model No. CP160/1, 

Gulmay LTD) (Figure 2.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 The AGO X-Ray machine and its 

chamber 

 

Figure 2.59 Schematic representatives of 

concentration of CM.Figure 2.6 The AGO X-Ray 

machine and its chamber 

 

Figure 2.60 Schematic representatives of 

Figure 2.6 The AGO X-Ray machine and its chamber 
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Each sample of cells in the T25 flask was positioned at 40 cm distance from the 

radiation source. Cells were irradiated at a dose rate of 537.6 mGy per minute (200kV 

and 12.8 mA). Different radiation doses were used that ranged from 0.5 to 4 Gy (Table 

2.1).  

 

 

 

 

 

 

 

 

 

 

 

2.2.1.7 Collection and concentration of conditioned media (CM) 

 

Tumour cells (FS120 cells and FS188 cells) were plated in T75 flasks (5 x 105 /ml) and 

when they reached 80% confluence the cells were washed carefully with PBS twice 

(2X) and with pre-warmed serum-free medium three times (3X).  

Then the cells were incubated with serum-free medium for 2-3 hours in the incubator 

before irradiation. After irradiation of the cells with 0, 0.5 Gy, or 4 Gy, they were 

incubated as above. 3-4 days’ post-irradiation, the conditioned media were collected 

and cells were counted (as described above). In order to eliminate any debris or dead 

cells, the CM was centrifuged at 2000 r.p.m. for 5 minutes and the supernatant stored 

at -80 oC. The CM was normalised according to the counted cells as follow: 

lowest cell number value

cell number value
 X CM amount in μl 

 

Table 2.1 The radiation dose used by AGO X-ray machine 

Kv mA Dose (Gy) Time (minutes) 

200 12.8 0.5 0.7 

200 12.8 1 1.5 

200 12.8 4 6 
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Therefore, if we decided to use 200 μl as a total volume, the amount of CM needed will 

be 130 μl, see an example below: 

 

To concentrate the CM, 4 ml of CM sample were added to an Amicon Ultra-4 ultracel 

centrifugal filter tube (3 KD, Millipore®). The device was spun at 4000 r.p.m. for 30 

minutes. The concentrated solute (1 ml) collected in the filter was extracted and stored 

at -80 oC (Figure 2.7). 

 

 

 

 

 

 

 

 

 

Total amount Laemmli buffer (4X) Reducing agent (10X) CM amount 

200 μl 50 μl 20 μl 130 μl 
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Figure 2.7 Schematic representatives of concentration of CM. First, tumour 

cells were plated in T75 flask. When the cells reach 80 % confluence, they were 

washed with PBS (2X), and pre-warmed serum-free medium (3X). 3 hours later, 

the cells were irradiated and incubated for 4 days in serum-free medium. 

Subsequently, CM was collected and centrifuged at 2000 r.p.m. for 5 minutes and 

stored at -80 oC.  Later, 4 ml of CM sample were added to Amicon Ultra-4 ultracel 

centrifugal filter tube (3 KD). The device was spun at 4000 r.p.m. for 30 minutes. 

The concentrated solute (1 ml) collected from the filter was extracted and stored at 

-80 oC. 

 

Table 2.8 Cells number per radiation dose used for clonogenic assayFigure 2.7 

Schematic representatives of concentration of CM. First, tumour cells were 

plated in T75 flask. When the cells reach 80 % confluence, they were washed with 

PBS (2X), and pre-warmed serum-free medium (3X). 3 hours later, the cells were 

Figure 2.7 Schematic representatives of concentration of CM. 

 

Figure 2.7 Schematic representatives of concentration of 

CMFigure 2.67 Schematic representatives of concentration of 

CM. 

 

Figure 2.7 Schematic representatives of concentration of CM. 

First, tumour cells were plated in T75 flask. When the cells reach 

80 % confluence, they were washed with PBS (2X), and pre-

warmed serum-free medium (3X). 3 hours later, the cells were 

irradiated and incubated for 4 days in serum-free medium. 

Subsequently, CM was collected and centrifuged at 2000 r.p.m. for 

5 minutes and stored at -80 oC.  Later, 4 ml of CM sample were 

added to Amicon Ultra-4 ultracel centrifugal filter tube (3 KD). 

The device was spun at 4000 r.p.m. for 30 minutes. The 
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2.2.2 Clonogenic assay 

 

The aim of doing this in vitro biological technique is to study the radiation effects on 

the proliferation and survival of tumour cells (fibrosarcoma), and MSCs (Balb/c & 

C3H10 cells). First, cells were plated in several T-25 flasks at a density of 250,000 cells 

per flask. When the cells became almost confluent (80%), their media were removed 

and changed with a pre-warmed medium to 37°C in a water bath. Then, the cells were 

incubated for one hour before irradiation with 0, 0.2, 0.5,1, 2 and 4 Gy. Afterwards, the 

cells were returned to the cell culture incubator until ready to start the clonogenic assay 

(about one hour). Cells were trypsinised using 1ml trypsin and re-suspended in 4 ml of 

full serum-containing medium. The cell suspension was then syringed using 21 gauge 

needles to achieve a single-cell suspension. Viable cells per ml were counted using a 

haemocytometer (as described earlier).  

Because there were differences in the smallest number of cells required to form colonies 

and to survive after irradiation between each cell line, different cell numbers were used 

for each radiation dose (Table 2.2). The cells were plated in 6-well plates, then the 

plates were left in the incubator at 37°C without moving them for 10-14 days. One 6-

well plate was used for each radiation dose per experiment (triplicate for each group). 

 

 

 

 0 Gy 0.2 Gy 0.5 Gy 1 Gy 2 Gy 4 Gy 

FS120 cells 

& FS188 

cells 

50/100  50/100 100/150 150/200 200/400 

C3H10 

MSCs 

50/100 100/150 100/150 150/200 150/200 300/400 

Balb/c 

MSCs 

50/100 100/150 100/150 150/200 150/200 300/400 

Table 2.2 Cells number per radiation dose used for clonogenic assay. 
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Table 2.2 Cells number per radiation dose used for clonogenic assay. 

 

Table 2.2 Cells number per radiation dose used for clonogenic assay. 

 

Table 2.2 Cells number per radiation dose used for clonogenic assay. 

 

Table 2.2 Cells number per radiation dose used for clonogenic assay. 

 

Table 2.2 Cells number per radiation dose used for clonogenic assay. 

Table 2.2 Cells number per radiation dose used for clonogenic assay 

 

Table 2.16 Cells number per radiation dose used for clonogenic assay 

 

Table 2.17 Cells number per radiation dose used for clonogenic assay 

 

Table 2.18 Cells number per radiation dose used for clonogenic assay 

 

Table 2.2 Cells number per radiation dose used for clonogenic assay 

 

Table 2.19 Cells number per radiation dose used for clonogenic assay 

 

Table 2.20 Cells number per radiation dose used for clonogenic assay 
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It is important not to do any movement of the plates during these 10-14 days, as any 

movement may disturb colony formation through dislodging them.  

After 10-14 days, and when the colonies were formed, the plates were taken out from 

the incubator and their media were removed. The colonies were fixed in 100% iced 

cold methanol in a freezer for 15 minutes. Subsequently, the methanol was removed 

and the cells were stained with 0.25% crystal violet in 25% methanol. The stain was 

left for 10 minutes before it was washed off in tap water, and the plates were left to dry 

at room temperature to be ready for counting the next day manually (Figure 2.8). 

Lastly, all colonies (a colony is a group of approximately 50 cells or more) in all plates 

were counted manually. Plating efficiency (PE) with survival fraction (SF) was 

calculated using the following equations: 

PE =
Number of colonies formed

Number of cells seeded
 X 100 

 

                                                    SF =
PE  after irradiation

PE of control (0Gy)
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Figure 2.73 Diagram of clonogenic assay steps: 

 

Figure 2.74 Diagram of clonogenic assay steps: 

 

Figure 2.8 Diagram of clonogenic assay steFigure 2.75 Diagram of clonogenic 

assay steps: 

 

Figure 2.76 Diagram of clonogenic assay steps: 

 

Figure 2.8 Diagram of clonogenic assay steps: 

 

Figure 2.77 Diagram of clonogenic assay steps: 

 

Figure 2.78 Diagram of clonogenic assay steps: 

 

Figure 2.8 Diagram of clonogenic assay steFigure 2.79 Diagram of clonogenic 

assay steps: 

 

Figure 2.80 Diagram of clonogenic assay steps: 

 

 

 

 

 

 

 

 

Figure 2.8 Diagram of clonogenic assay ste A-The confluent cells (~80%) inside 

T-25 flasks were irradiated (except for 0 Gy as a control) with different radiation 

doses. B- After irradiation, the cells were trypsinised, and different cells number 

were seeded in each well of the 6-well plates. The plates were incubated for 10-14 

days (without movement or changing media). C- After 10-14 days, and when the 

colonies were formed, the colonies were fixed in 100% iced cold methanol in a 

freezer for 15 minutes. Subsequently, methanol was removed and the cells were 

stained with 0.25% crystal violet in 25% methanol. The stain was left for 10 

minutes then washed off in tap water, and the plates were left to dry at room 

temperature. A colony is described as 50 cells or more. 

  

 

Figure 2.93 Schematic demonstrative of cell extraction buffer preparation.Figure 2.8 

Diagram of clonogenic assay ste A-The confluent cells (~80%) inside T-25 flasks 

were irradiated (except for 0 Gy as a control) with different radiation doses. B- 

After irradiation, the cells were trypsinised, and different cells number were seeded 

in each well of the 6-well plates. The plates were incubated for 10-14 days (without 
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Figure 2.8 Diagram of clonogenic assay 

steFigure 2.81 Diagram of clonogenic assay 

steps: 

 

Figure 2.8 Diagram of clonogenic assay ste A-

The confluent cells (~80%) inside T-25 flasks 

were irradiated (except for 0 Gy as a control) 

with different radiation doses. B- After 

irradiation, the cells were trypsinised, and 

different cells number were seeded in each well 

of the 6-well plates. The plates were incubated 

for 10-14 days (without movement or changing 

media). C- After 10-14 days, and when the 

colonies were formed, the colonies were fixed in 

100% iced cold methanol in a freezer for 15 

minutes. Subsequently, methanol was removed 
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2.2.3 Growth Curve assay 

 

The viability and proliferation of the cells can be determined through counting of the 

cells. In order to measure the growth rates of cells, Balb/c MSCs and C3H10 MSCs 

were plated individually at a density of 3x 104 cells/well in triplicate at 6-well plate (4 

plates were used). Three wells of each plate were treated with TGF-β1 (human TGF-β 

1, Cat. No.100-21). The viability of the cells was evaluated on a daily basis. Each day, 

one plate was rinsed twice with PBS after removal of the medium. Then, the cells were 

trypsinised, and collected in a tube, centrifuged for 5 minutes at 1000 rpm. Next, media 

from the pellet were removed and the full medium was added to the pellet, mixed well 

and cells were counted. 

2.2.4 Radiation effects on MSC differentiation  

 

2.2.4.1 Irradiation of cells 

 

Cells were plated in two wells of 6 well-plates. The cells were left in the incubator for 

3 days to become ~80% confluent. One hour before radiation, the medium was changed 

to a pre-warmed medium. After that, the plates were irradiated (as described above, 

2.2.1.5) with different radiation doses (0-4 Gy). The plates were placed in the incubator 

3-4 days’ post-irradiation.  

2.2.4.2 Collection of cell extracts and sample preparation for western blotting 

 

Protease inhibitors and working on the ice were used to minimise protein degradation. 

To extract proteins from cells, the monolayer of the cells was washed twice with ice-

cold PBS. The cold PBS was pipetted to the side of the well without detaching the cells. 

After that, tilting the plate and aspirating any traces of PBS from the corner. The cells 

in each well were lysed with an appropriate volume of ice-cold cell extraction buffer 

(Cat. No. FNN0011, Invitrogen®) that contained 10 mM Tris, 100 mM NaCl, 1 mM 

EDTA, 1 mM NaF, 20 mM NaPO, 2 mM NaVO, 1% Triton X-100, 10% glycerol, 0.1% 

SDS, 0.5% deoxycholate. I supplemented this cell extraction buffer with protease 

inhibitor and 1 mM PMSF before use. 
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The volume of lysis buffer used to lyse the cells depending on the size of the plate used 

and how dense the cells were. 250 µl was used for each well of a six-well plate. To 

prepare the lysis buffer, a complete protease inhibitor tablet (Roche) was dissolved in 

200 µl of PBS. Then, 100 µl of the dissolved complete tablet was added to 5 ml of 

lysing buffer that was inside a tube in the ice. The rest of the dissolved tablet stored at 

-20 oC to be used later.  

PMSF (Phenyl Methyl Sulfonyl Fluoride) stock was a 0.3 M solution in DMSO and is 

an irreversible inhibitor of serine proteinases. For every 5 ml of the total, 17 µl was 

added to lysing buffer tube (final concentration ~1 mM). This ice-cold cell extraction 

buffer was kept on the ice and used within 30 minutes of preparation to lyse the cells 

(Figure 2.9). The cell monolayer was scraped using a cell scraper and the lysates were 

collected in pre-cooled Eppendorf tubes. Tubes were then centrifuged for 10 minutes 

at 10,000 rpm in a micro-centrifuge after it was cooled down to 4oC. Supernatants were 

aliquoted for each sample into three Eppendorf tubes and immediately stored in -80oC 

freezer.  
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Figure 2.9 The Schematic demonstrative of cell extraction buffer preparation. First, 

5 ml lysis buffer was added to the tube on the ice (total volume of the buffer 

depends on the size of plate was used and how dense the cells were). After that, a 

Complete Mini Protease Inhibitor Tablet was dissolved in 200 µl PBS (each tablet 

is enough for 10 ml = 200 µl 10 ml), and 100 µl was taken and added to the tube. 

Finally, 17 µl from PMSF stock was added to the mixture and put on ice. 

 

Table 2.28 BCA standard preparationsFigure 2.9 The Schematic demonstrative of cell 

extraction buffer preparation. First, 5 ml lysis buffer was added to the tube on the 

ice (total volume of the buffer depends on the size of plate was used and how dense 

the cells were). After that, a Complete Mini Protease Inhibitor Tablet was dissolved 

in 200 µl PBS (each tablet is enough for 10 ml = 200 µl 10 ml), and 100 µl was 

taken and added to the tube. Finally, 17 µl from PMSF stock was added to the 

mixture and put on ice. 

 

Table 2.29 BCA standard preparations 

Figure 2.9 Schematic demonstrative of cell extraction buffer preparation. 

 

Figure 2.9 The Schematic demonstrative of cell extraction buffer 

preparationFigure 2.101 Schematic demonstrative of cell extraction buffer 

preparation. 

 

Figure 2.9 The Schematic demonstrative of cell extraction buffer preparation. First, 5 

ml lysis buffer was added to the tube on the ice (total volume of the buffer depends 

on the size of plate was used and how dense the cells were). After that, a Complete 

Mini Protease Inhibitor Tablet was dissolved in 200 µl PBS (each tablet is enough 

for 10 ml = 200 µl 10 ml), and 100 µl was taken and added to the tube. Finally, 

17 µl from PMSF stock was added to the mixture and put on ice. 

 

Table 2.22 BCA standard preparationsFigure 2.9 The Schematic demonstrative 

of cell extraction buffer preparationFigure 2.102 Schematic demonstrative of 

cell extraction buffer preparation. 
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2.2.4.3 Pierce Micro BCA™ Protein Assay 

 

The Thermo Scientific™ Micro BCA Protein Assay Kit (Product No. 23225) is a 

detergent-compatible bicinchoninic acid (BCA) formulation for the colourimetric 

detection and quantitation of total protein. The principle of this assay is the detection 

of cuprous ion (Cu+1) through BCA reagent to form a purple-coloured solution. Cu+1 is 

formed by reduction of cupric ion (Cu+2) by protein in an alkaline environment (Smith 

et al., 1985). This water-soluble complex exhibits a strong absorbance at 562 nm that 

is linear with increasing protein concentrations. From the provided stock solution of 

standard BSA that is 2 mg/ml, a 1:10 dilution in dH2O was done to obtain a stock of 

0.2 mg/ml (or 200 g /ml) (100 l stock plus 900 l dH2O). 

Further standards of 20, 15, 10, 7.5, 5, 2.5 and 0 g/ml were set up (Table 2.3). 

The unknown samples were prepared by diluting into 1 ml of dH2O 

 10 l sample + 990 dH2O (1:100) 

 5 l sample + 995 dH2O  (1:200)    

Further dilutions were prepared if the readings were not on the standard curve. 150 l 

of standards and diluted samples were put into wells of a 96 well plate. Triplicates of 

each were used.  150 l of working reagent, prepared following the manufacturer’s 

instructions, was added to each well and mixed. The 96 well-plates was covered with 

the lid and incubated at 37oC for 2 hours. The absorbance was measured at 562 nm 

using a spectrophotometer. Linear regression analysis was done using GraphPad Prism 

software to interpolate concentrations of protein samples from BSA standards. 
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2.2.4.4 SDS-PAGE and western blotting  

 

Western blotting, also known as immunoblotting or protein blotting, is an important 

technique in cell and molecular biology. It is used to detect the presence of a specific 

protein in a complex mixture extracted from cells. 

In order to analyse equal amounts of protein by western blotting, the samples that were 

already quantified by BCA protein assay were kept on ice and prepared in sample buffer 

as described below. So the aim is to make each sample contain the same amount of total 

protein in a similar volume and a final concentration of 1X sample buffer. The stock 

Laemmli sample buffer was 4X (Laemmli Sample buffer, Biorad, USA, catalogue 

#161-0747). The reducing agent (NuPAGE® Sample reducing agent 10X, Cat. No. 

NP0005) was added and the remaining volume was made up with dH20.  

Single-use cassettes (Invitrogen™) and Handcasting Systems (Bio-Rad) were used for 

casting gels. Each cassette takes approximately 10 ml of gel volume. For large 

molecular weight proteins (>100 kDa), a low percentage acrylamide gel (8%) with large 

pores was used. While for smaller proteins (< 20 kDa), a higher percentage gel (12%) 

was used. The reagents used are shown in (Table 2.4).  

Standard 

(g/ml) 

l of 200 g 

/ml stock 

l dH2O 

0 0 1000 

2.5 12.5 987.5 

5.0 25 975 

7.5 37.5 962.5 

10 50 950 

15 75 925 

20 100 900 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

Table 2.3 BCA standard preparations 

 

Table 2.36 BCA standard preparations 

 

Table 2.37 BCA standard preparations 

 

Table 2.38 BCA standard preparations 

 

Table 2.3 BCA standard preparations 

 

Table 2.39 BCA standard preparations 

 

Table 2.40 BCA standard preparations 

 

Table 2.41 BCA standard preparations 
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A gel cassette was placed upright on a rack and the gel solution was prepared by adding 

the ingredients in the order given in Table 2.5. The APS was added first and the 

TEMED was the last and immediately the solution was mixed gently then poured 

carefully into the cassette leaving enough space for the stack. 

The stacking gel was then prepared according to the recipe in Table 2.5 and poured. 

Immediately the comb was put in the slot to form wells and left for 30 minutes at room 

temperature to polymerize.  

 

 

 

 

 

 

ProtoGel 30% (acrylamide with bis-

acrylamide) 

National Diagnostics, Geneflow, 

UK 

10% glycerol solution Made by measuring out 10 ml of 

glycerol using a graduated cylinder 

and adding 90 ml of dH20                  

Resolving buffer 4X concentrate, National 

Diagnostics, Geneflow 

Stacking gel buffer 4X concentrate, National 

Diagnostics, Geneflow 

10% Ammonium persulphate APS SIGMA-ALDRICH® 

TEMED (Tetramethylethylenediamine) SIGMA-ALDRICH® 

Isopropanol SIGMA-ALDRICH®, UK 

Table 2.4 Reagents used for casting gels in western blotting 
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The reagents used for loading the gels were as in Table 2.6. 

 

 

 

 

Table 2.42 Different gel and ingredients concentrations used in 

experiments for a total 10 ml gel (single gel) 

Table 2.5 Different gel and ingredients concentrations used in 

experiments for a total 10 ml gel (single gel) 

 8% 10% 15% Stack 

Protogel 2.7 ml 3.3 ml 5 ml 1.3 ml 

dH2O 4.7 ml 4.1 ml 2.4 µl 6.1 ml 

10% glycerol 100 µl 100 µl 100 µl 50 µl 

Resolving buffer 2.5 ml 2.5 ml 2.5 ml  

Stacking buffer    2.5 ml 

10% APS 50 µl 50 µl 50 µl 50 µl 

TEMED 5 µl 5 µl 5 µl 10 µl 

Total volume 10 ml 10 ml 10 ml 10 ml 

Table 2.43 Reagents used for loading the gels in western blotting Table 2.6 Reagents used for loading the gels in western blotting 

Tris/Glycine/SDS 

PAGE Buffer 

10 X, National Diagnostics, Geneflow, UK 

Sample buffer 4X Laemmli Sample buffer, Biorad, USA, catalog 

#161-0747 

Reducing agent NuPAGE® Sample Reducing Agent (10X), Cat. No. 

NP0005 

Protein molecular 

weight markers 

Precision Plus Protein™ Prestained Standards 

BioRad, USA, Cat. #161-0374  
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The gel cassette was assembled in the tank and 600 ml 1X Tris-Glycine-SDS running 

buffer was added to the outer chamber (prepared from a 10X stock by diluting 1:10, ie 

100 ml buffer plus 900 ml dH2O).  20 g of protein samples were loaded into each well 

and a similar volume (30 l) of 1X Laemmli reducing sample buffer was also loaded 

in the unused wells. 6 l of Precision plus protein™ standards (Bio-Rad) was mixed 

with 24 l of 1X Laemmli LDS reducing sample buffer and this was loaded in the last 

well.  

The gel was run at 150 V (constant voltage). The running time was around 60 minutes 

until the bromophenol blue dye has reached the bottom of the gel. After running, 

proteins on the gel were transferred to a PVDF or nitrocellulose membrane using Bio-

Rad transfer machine (Trans-Blot® Turbo™ Transfer System). The transfer was done 

according to the manufacturer`s instructions.  

One time transfer buffer was prepared by adding 100 ml Tris Glycine 10X transfer 

buffer to 700 ml dH20 and 200 ml methanol to make up to 1 Litre. The flat gel placed 

in a dish containing 10-20 ml of cold 1X transfer buffer. PVDF membrane needs to be 

soaked in methanol first for 3-5 minutes. 

Electro-blotting was for 30 minutes at 150 volts. After the transfer of proteins was 

finished, the membrane placed (protein side up) in TBS containing 0.1% Tween-20 

(TBS-T) buffer. 

The membrane incubated with PBS-T or TBS-T buffer containing blocking agent, 

which was 5% dried milk and was prepared by dissolved 2.5 g dry-powdered milk in 

50 ml of TBS-T. This was used as a blocking solution and an antibody-binding buffer 

(5% milk solution).  

The membrane was blocked for one hour at room temperature on a shaker. The blocking 

agent removed and the antibody was added. The antibodies concentrations were used 

as in Table 2.7. 
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Table 2.7 Primary antibodies used in western blotting 

Primary 

antibody 

Molecular 

Weight  

Dilution Catalogue 

No. 

Secondary 

antibody 

Gel 

concentration 

Anti-

Fibronectin 

285 kDa (1:2000) in 5% 

non-fat milk in 

TBS-Tween 

(ab2413) Anti-rabbit 8% 

Anti-

Mouse 

Collagen 

Type I 

140-210 

kDa 

(1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(Cat.ABP) Anti-rabbit 8% 

α-SMA 42 kDa (1:3000) in 5% 

non-fat milk in 

TBS-Tween 

(ab12496) Anti-rabbit 10% 

Anti-TGF 

beta 

antibody 

13 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(ab6604) Anti-rabbit 15% 

PDGFR-β 190 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(Cat.316) Anti-rabbit 8 % 

Monoclon

al Anti-β 

Tubulin 

55 kDa (1:2000) in 5% 

non-fat milk in 

TBS-Tween 

(Cat.T42) Anti-mouse 10 % 

MCP-1 

Antibody 

13 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(Cat.2029) Anti-rabbit 15% 

Mouse 

TGF-β2 

Antibody 

25 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(Cat.MAB7

3461) 

Anti-rat 15% 

Anti-CCR2 

antibody 

43 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(ab20312) Anti-Rabbit 15% 

Anti-CTGF 

antibody 

36 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(ab 6992) Anti-Rabbit 15% 

SDF1 

Antibody 

9 kDa (1:1000) in 5% 

non-fat milk in 

TBS-Tween 

(Cat.3740) Anti-Rabbit 15% 
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Antibody incubations were performed on a shaker at 4oC overnight. After that, the 

antibody was removed and the membrane rinsed with TBS-T buffer 4 x 5 minutes’ 

washes. The secondary HRP-coupled antibody was prepared in buffer containing the 

same blocking agent used for blocking primary antibody. DAKO HRP coupled 

antibodies was used at 1:2000 dilution and incubated for one hour at room temperature 

on the shaker.   

Then, the membrane rinsed 4 x 5 minutes. The membrane was left in the buffer to be 

used for ECL detection. The work was done in the darkroom to detect the proteins 

through chemiluminescence (ECL). The ECL reagent was left on the membrane for 

three minutes and exposed to ECL film for 1-5 minutes. The membrane was developed 

and fixed by Kodak X-ray developer and fixer reagents. The developed film then rinsed 

in water and dried. To analyse western blotting results through densitometric 

quantification, the x-ray films were scanned using a scanner (HP Scanjet 4850).  

Then, the scanned picture where uploaded to Fiji image j software where the density of 

peak area of the band was quantified. The percentage value of the target protein was 

divided by the value of the loading control to get a relative intensity. In order to re-

probe the membrane with another antibody, the membrane was stripped for 15 minutes 

on the shaker at RT with 20 ml of Pierce stripping buffer (Thermo Scientific, Cat.no. 

21059). Subsequently, the membrane was washed with TBS-T and then incubates with 

the antibody as above. 

2.2.5 Radiation effects on the migration of MSCs  

2.2.5.1 Trans-well migration assay 

 

The aim of this assay is to see whether the secreted factor(s) from irradiated tumour 

cells mediate MSCs migration. This assay is sometimes named the Boyden chamber 

assay, as Boyden originally introduced it (Boyden, 1962). In this assay, media in two 

chambers (upper and lower) are separated by a filter membrane through which cells can 

migrate.  For the migration assay, C3H10 MSCs, and Balb/c MSCs were cultured 

separately on trans-well plates (Falcon® 8.0 μm pore size), while the chemo-attractant 

was in the lower compartment.  

Thus, vertical cell migration was expected toward the attractant. Different laboratory 
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techniques and radiation doses were used (Figure 2.10). After the incubation period (8-

16 hours), the MSCs located in the upper compartment (Falcon® 8.0 μm pore size filter) 

were fixed by ice-cold methanol for 10 minutes. Then, the filters were washed with 

PBS and stained with haematoxylin staining for 20 minutes. Next, the filters were 

washed with PBS and left to dry at room temperature. The cells from the topside of the 

inserts were wiped off using a damp cotton bud. The filters were removed from the 

filter cup using a sharp razor blade and mounted on a glass slide using DPX. The cells, 

which were migrated to the bottom of the filter, were counted using the microscope 

(40X objectives). All migration experiments were done in duplicates, and cells were 

counted in 10 random views per filter at 40 X objective lens. 

- Direct irradiation: MSCs were cultured on trans-well plates and irradiated directly 

using an Ago x-ray machine (see above) with 0, 0.5 Gy, and 4 Gy. The migration of 

MSCs was calculated after fixation and staining of the migrated cells. 

- Incubation with conditioned media (neat or concentrated) from irradiated 

tumour cells: MSCs were cultured on trans-well plates. A CM obtained from irradiated 

tumour cells (FS120 cells or FS188 cells) was moved to the lower compartment. 

Migration of cells was assessed as above. 

- Co-culture of MSCs with irradiated tumour cells: Tumour cells (FS120 cells or 

FS188 cells) were plated in the lower chamber. When they became ~80% confluent, 

they were irradiated with different radiation doses. 24 hours later, MSCs were seeded 

into the insert and their migration was assessed. 

- Co-culture of MSCs with irradiated mouse endothelial cells (H5V): Mouse 

endothelial cells were seeded in the lower chamber and irradiated after they became 

confluent. After 24 hours, MSCs were seeded into the insert and their migration was 

evaluated as above. 

- Co-culture of MSCs with irradiated human endothelial cells (HDMEC): The 

method was the same as for H5V, except the incubation time was different. 

- Co-culture of MSCs with irradiated HDMEC+ FS: Both tumour cells (FS120 cells 

or FS188 cells) and human endothelial cells (HDMEC) were plated together (with 

HDMEC medium) at the lower chamber. As the tumour cells were growing faster than 

HDMEC, a 1:4 ratios were used to seed them together. Two days later, the media were 

changed to MSCs media and irradiated. 24 hours post radiation the MSCs were seeded 

into the insert and their migration was assessed as described above. 
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- Effects of TGF-β1, MCP-1, and SDF1 on the migration assay: MSCs were 

stimulated with TGF-β1, MCP-1 and SDF-1α.  

 

 

 

 

 

 

 

Figure 2.10 Schematic representatives of different C3H10 MSCs, and Balb/c 

MSCs migration assay procedures.  

A- Direct irradiation of MSCs B- Incubation of MSCs with conditioned media (neat 

and concentrated) from irradiated FS 120 cells, and FS188. C- Co-culture of MSCs 

with irradiated FS120 cells, and FS188 cells. D- Co-culture of MSCs with irradiated 

moues endothelial cells (H5V). E- Co-culture of MSCs with irradiated HDMEC. F- 

Co-culture of MSCs with irradiated FS120 cells, FS188 cells and HDMEC. The 

radiation doses used was 0, 0.5 Gy, and 4 Gy. The time under each scheme, represent 

incubation period after seeding of MSCs.  
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Figure 2.121 Preparation of ELISA standards by serial dilution.D 
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Figure 2.10 Schematic representatives of different C3H10 MSCs, and Balb/c MSCs 

migration assay proceduresFigure 2.115 Schematic representatives of different 

C3H10 MSCs and Balb/c MSCs migration assay procedures. 

 

Figure 2.10 Schematic representatives of different C3H10 MSCs, and Balb/c 

MSCs migration assay procedures.  

A- Direct irradiation of MSCs B- Incubation of MSCs with conditioned media (neat 

and concentrated) from irradiated FS 120 cells, and FS188. C- Co-culture of MSCs 

with irradiated FS120 cells, and FS188 cells. D- Co-culture of MSCs with irradiated 

moues endothelial cells (H5V). E- Co-culture of MSCs with irradiated HDMEC. F- 

Co-culture of MSCs with irradiated FS120 cells, FS188 cells and HDMEC. The 

radiation doses used was 0, 0.5 Gy, and 4 Gy. The time under each scheme, represent 

incubation period after seeding of MSCs.  
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2.2.5.2 Trans-well migration assay using neutralizing antibodies to MCP-1 

 

Neutralizing antibody was used to block the activity of MCP-1 in certain experiments. 

A fresh CM extracted from irradiated tumour cells (FS120 cells or FS188 cells) was 

concentrated first (as in section 2.2.1.7). Then, the concentrated CM was tested using 

western blotting to check that the MCP-1 protein is present. Before starting the assay, 

the concentrated CM was incubated with the non-immune IgG or antibodies in 

polypropylene tubes for 2 hours on a roller at room temperature. Using a 24-well plate, 

the migration assay was performed. Therefore, 3x 104 Balb/c MSCs in 200-μl medium 

were cultured on trans-well plates (Falcon® 8.0 μm pore size) and then incubated for 

16 hours in the incubator. Fixation, staining, and counting of the migrated cells were 

done as previously explained. 

2.2.6 Measuring MCP-1 release from irradiated tumour cells via enzyme-linked 

immunosorbent assay (ELISA) 

Sandwich ELISA was done to detect and quantify mouse MCP-1 chemokine in the CM. 

The DuoSet® development system was used to detect mouse MCP-1 in the CM from 

irradiated fibrosarcoma tumours. Firstly, a 96-well plate was coated with the capture 

antibody (goat anti-mouse) that was diluted to the working concentration (Table 2.8). 

100 μl per well of the diluted capture antibody was used, and then the plate was sealed 

and incubated at room temperature overnight. 

 

Table 2.8 Working concentration and preparation of reagents for ELISA 

Reagent Amount 

per vial 

Working 

concentration 

Preparation 

Capture antibody 50 μg 200 ng/ml Reconstitute in 0.5 ml PBS 

Detection 

antibody 

3 μg 50 ng/ml Reconstitute in 1 ml Reagent diluent 

Standard 45 ng 3.91-250 pg/ml Reconstitute in 0.5 ml Reagent 

diluent 

Streptavidin-HRP N/A 40-fold Dilute in Reagent diluent 
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Next day, the wells were washed 3 times with 400 μl washing buffer after removal of 

the capture antibody and put to dry on a paper towel. Then, the wells were blocked for 

one hour with 300-μl reagent diluent at room temperature before washing with 400 μl 

washing buffer as earlier explained. 

Standards were prepared as described in (Figure 2.11), while CM samples were diluted 

1:10, 1:50, 1:100, 1:150 and 1:200 with the reagent diluent. Each sample 100 μl was 

tested in duplicate and incubated for 2 hours at room temperature followed by three 

washings with 400 μl washing buffer. 100 μl of the detection antibody (biotinylated 

goat anti-mouse JE) diluted in reagent diluent was added to each well and left for 2 

hours at room temperature prior to washing 3 times with washing buffer (as above).  

 

 

 

Figure 2.11 Preparation of ELISA standards by serial dilution. Initially, the 

recombinant mouse JE Standard was reconstituted with 0.5 mL of reagent diluent. 

According to manual instructions, a standard curve as prepared starting from 250 

pg/mL to 3.9 pg/mL. 2.77 μl of standard was added to 1 mL of diluent reagent (first 

tube), and was mixed well. Next, 500 μl was taken from the first tube and added to 

the second tube (which already contained 500 μl of reagent diluent) followed by the 

same for the next tubes. One tube was without standard, and was used as a negative 

control for the curve (only reagent diluent). 

Figure 2.11 Preparation of ELISA standards by serial dilution. 
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Subsequently, 100 μl of Streptavidin-HRP diluted to 40-fold with reagent diluent was 

added to the wells and incubated for 20 minutes at room temperature away from light. 

Washing with washing buffer was repeated as above and 100 μl of substrate solution 

(1:1 mixture of colour reagent A and colour reagent B) was added to each well and 

incubated for 20 minutes at room temperature (in the dark). When enough yellow colour 

was detected in each well, the reaction was stopped by adding 50 μl of stop solution to 

each well and the plate was tapped smoothly to ensure full mixing. 

Using a plate reader, the optical density of each well was determined immediately at 

450 nm with background correction at 570 nm. To remove the background, the 

absorbance at 450 nm was subtracted from the absorbance at 570 nm. GraphPad Prism 

(Linear regression test) was used to determine the concentrations of the unknown 

protein samples from the standard curve. 

2.2.7 Staining procedures for tumour sections from an in vivo experiment 

 

All tumour sections (paraffin and frozen) that were used to analyse fibrosis and CAFs 

in vivo were provided by Mr Matthew Fisher, Senior Technician, Department of 

Oncology and Metabolism. These sections were taken from an experiment done by Dr 

Debayan Mukherjee who injected the fibrosarcoma cells (FS120 cells or FS188 cells) 

subcutaneously in CD1 nude mice.  

After tumours had grown to ~100 mm3 in volume, they were irradiated in situ with 20 

Gy over 4 days (8 x 2.5 Gy fractions) starting from day 1. When they reached ~1000-

1200 mm3
, they were excised, embedded in paraffin and sectioned by a microtome. Mrs 

Maggie Glover, Histology Technician, Department of Oncology and Metabolism did 

tumours sectioning and embedding in paraffin. While, Mr Matthew Fisher, Senior 

Technician prepared tumours frozen sections. 
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2.2.7.1 Immunohistochemical staining of formalin-fixed, paraffin-embedded 

fibrosarcoma tumour sections 

 

IHC is a method for demonstrating the presence and location of proteins in tissue 

sections. It analyses and identifies cell types based on the binding of antibodies to 

specific components of the cell.  Before starting with the staining protocol, the slides 

were deparaffinised and rehydrated, as incomplete removal of paraffin can lead to poor 

staining of the section.  

The IHC protocol was given to me by Mr Matthew Fisher, which I then optimised. The 

sections were dewaxed by placing the slides in a rack, and performed the following 

washes: 

 

 Xylene 2 X 10 minutes. 

 100% ethanol 2 X 5 minutes. 

 95% ethanol for 5 minutes. 

 70% ethanol for 5 minutes. 

 Distilled water for one minute. 

 Rinse slides in PBS for 2 minutes. 

 

The next step was antigen retrieval, which is important due to the formation of 

methylene bridges during fixation, which cross-links proteins and therefore masks 

antigenic sites. Heat-mediated retrieval by pressure cooker was used with target 

retrieval solution (DAKO® Target Retrieval Solution, 10X concentrate, Code No. S 

1699) which was diluted at 1:10 in dH2O.  

700 ml of dH2O were added inside the pressure cooker while the slides were put in the 

target retrieval solution. Heating with pressure cocker was for 2 hours, then, the slides 

were removed and rinsed once in PBS. Sections were circled by wax pen and left for 

10 minutes to dry at room temperature before rinsing with PBS. 

In order to block endogenous peroxidase activity, the slides were blocked with 3% 

H2O2/PBS for 20 minutes (dilution was 1:10 dilution from 30% H2O2 stock solution). 

Subsequently, the slides were rinsed with PBS and blocked with the mouse on mouse 

(M.O.M. ™) IgG for 60 minutes at room temperature (Vector®M.O.M ™ 

Immunodetection kit, Cat. No. BMK-2202) to prevent non-specific antibody binding 
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to tissue. The primary antibody (α-SMA 2 mg/ml anti-mouse, made in mouse) was 

diluted 1: 10,000 in PBS plus M.O.M. ™ diluent. The blocking solution was removed 

and the primary antibody was added on the slides and incubated at 4 oC overnight. 

Next day, the primary antibody was removed and slides were rinsed three times in PBS. 

The secondary antibody (biotinylated anti-mouse IgG reagent 1:250) was put over the 

sections and incubated for 10 minutes. The slides were rinsed twice in PBS and then 

incubated with avidin-biotin complex (ABC) for 60 minutes and washed three times 

with PBS. Incubation with DAB (3, 3'-diaminobenzidine) from 1-10 minutes 

(visualised under a microscope) was the next step.  

The slides then washed with tap water and counterstained with Mayer`s haematoxylin 

stain for 30 seconds to visualize the nuclei, and then washed in tap water for 5 minutes. 

The slides finally dehydrated with 70% ethanol for 5 minutes, 95% ethanol for 5 

minutes, 100% ethanol 2 X 5 minutes, and Xylene 2 X 5 minutes. The slides were then 

mounted with DPX (distyrene, plasticizer, and xylene) and cover slipped then left to 

dry at room temperature. 

2.2.7.2 Collagen staining (Masson’s trichrome staining) of paraffin-embedded 

fibrosarcoma tumour sections 

 

Masson’s trichrome consists of three-colour staining; dark brown-black for cell nuclei, 

orange-red for cytoplasm and green-blue for collagen. Samuel F Harding, Research 

Technician at the Diabetes, Endocrinology & Metabolism Unit, Department of 

Oncology and Metabolism, provided me with a basic protocol which I then optimised. 

Fibrosarcoma tumour sections were dewaxed in xylene for 10 minutes (X2), followed 

by ethanol 100%, 95%, 75%, and water for 2 minutes each.  Then, the slides were 

incubated for 10 minutes in Weigert’s iron haematoxylin staining, followed by one-

minute washing in tap water, and one minute blue in Scott’s tap water. The slides were 

then placed in Ponceau stain (Fucshin 2:1 0.5% Ponceau 2R in 1% Acetic acid, 0.5% 

Acid fucshin in 1% Acetic acid) for 10 minutes, followed by washing in tap water. 

Phosphomolybdic acid-phosphotungstic acid (2.5%) was used for 2 minutes and the 

slides were transferred quickly to tap water to remove the acid. After that, the sections 

were stained with 2% light green in 2% acetic acid for 4 minutes, rinsed in tap water 

(one dip only).  
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Dehydration of the samples was through ethanol 75%, 95%, and 100% (very quickly) 

followed by xylene for 5 minutes (X2). Finally, the slides were mounted using DPX. 

To prepare solutions: 

- Ponceau:Fucshin 2:1 (0.5% Ponceau 2R in 1% Acetic acid, 0.5% Acid fucshin in1% 

Acetic acid) 

 1% Acetic acid: 10 ml of glacial acetic acid was added to 1000 ml of distilled 

water. 

 2.5 g of Fuschin was weighted and added to 500 ml of 1% acetic acid. 

 2.5 g of Ponceau 2R was weighted and added to 500 ml of 1% acetic acid. 

 Fuscin and Ponceau red solutions were mixed at a ratio of 2:1 (200 ml Fuschin 

and 100 ml Ponceau). 

- 5% Phosphomolybdic acid: (5% Phosphotungstenic acid in 2% Acetic acid) 

 2% Acetic acid solution was prepared by adding 20 ml of glacial acetic acid to 

1000 ml of dH2O. 

 100 ml of the 10% Phosphomolybdic acid was mixed with 100 ml of the 10% 

Phosphotungstenic acid and then 200 ml of 2% acetic acid was added. 

- 2% light green in 2% acetic acid  

 10 g of light green powder was weighed and dissolved in 500 ml of 2% acetic 

acid. 

To analyse images from Masson’s trichrome staining: 

Two ways were used, the first method was via Aperio ImageScope software (version 

12.2), in which eight images were taken from each stained tumour section (16 tumour 

sections were used, 4 for FS120 CTR, 4 FS120 irradiated, 4 FS188 CTR and 4 FS180 

irradiated) using a 10X objective and a Nikon microscope (Nikon Optiphot-2). First, 

the image to be analysed was uploaded to the Aperio ImageScope software by clicking 

the “File” menu and selecting “Open Image”. In order to analyse the image on a 

spectrum, an algorithm was created. The parameters were adjusted (Hue value, Hue 

width, colour saturation threshold, Iwp, and Isp) of the algorithm and saved the setting 

to apply for all subsequent images. To do that, from the “View” menu “Analyse” was 
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chosen and “Select Algorithm”, another window opened with three choices. “Positive 

Pixel count V9 Parameters” was selected followed by “Run”.  

The parameters were adjusted according to what wanted to analyse (analyse the green-

blue collagen area) by clicking it in the list and selecting the parameter. These 

parameters were set as the default parameters and were used for all slides images. After 

achieving the analysis, from the ImageScope “View” menu, “Annotations” was 

selected. Next to each parameter, the number of positive pixels for the chosen colour 

for that analysed section result appeared. Results were exported to an Excel spreadsheet 

for further analysis. A schematic representation of images analysis via Aperio 

ImageScope is shown in Figure 2.12. The results from the analysis were divided into 

either positive areas (presence of collagen), or negative areas (no collagen). In the 

positive areas, there were three areas, weakly positive, positive or strongly positive. 

The positivity was calculated by summation of all the positive areas (weak positive + 

positive + strong positive) then divided by the total area (all positive areas + negative 

areas). The percentage of positivity was estimated by multiplying positivity by 100 

(Figure 2.12). 

The positivity was calculated by summation of all the positive areas (weak positive + 

positive + strong positive) then divided by the total area (all positive areas + negative 

areas). The percentage of positivity was estimated by multiplying positivity by 100 

(Figure 2.12). 
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Figure 2.12 Schematic representative of analysing Masson’s trichrome staining 

analysis of paraffin embedded fibrosarcoma tumour sections using Aperio 

ImageScope software version 12.2.  

Aperio ImageScope version 12.2 software was used for the analysis. After the image 

has been uploaded, from “View” menu “Analyse” and “Select Algorithm” were 

chosen (A & B). “Positive Pixel count V9 Parameters” was selected followed by 

Run (C). The parameters were adjusted according to what we wanted to analyse (we 

wanted to analyse the green-blue collagen area) by clicking it in the list and select 

the parameter. These parameters were used as default parameters for all other 

images later. After finishing the analysis, from ImageScope “View” menu, 

“Annotations” was selected (D). Next to each parameter, the colour for that analysed 

section result will appear (E). To save the results, “Export Grid to Excel 

Spreadsheet” was chosen. The results from the analysis were divided into either 

positive area (presence of collagen), or negative area (no collagen). Within the 

positive areas, there were three areas, weak positive, or positive, or strong positive. 

The positivity was calculated by summation of whole positive areas (weak positive 

+ positive + strong positive) then divided by the total number (all positive areas + 

negative areas). The percentage of the positivity was estimated by multiplying 

positivity by 100 (F). 

 

Figure 2.12 Schematic representative of analysing Masson’s trichrome staining 

analysis of paraffin embedded fibrosarcoma tumour sections using Aperio 

ImageScope software version 12.2. 
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The second method used to analyse Masson’s trichrome staining in paraffin sections 

was by scanning sections with the TissueGnostics Confocal Slide scanner (TISSUE 

FAX 200, Tissue Gnostics Vienna, Austria) (Figure 2.13) and using HistoQuest 

software analysis system V4.0. Using this more sensitive method of analysis allows us 

to analyse more tumour sections in less time. The system is a multi-colour high-

resolution slide scanner with 5 μm confocal sectioning, and up to 50 μm optical slice 

in sample thickness. Dr Maya Boudiffa, a post-doctoral research associate, Bone 

Biology Unit, Department of Oncology and Metabolism, scanned the sections using the 

Slide Scanner and provided training in data analysis using the HistoQuest software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 TissueGnostics Confocal Slide Scanner with the TissueFAXS 200 

autoloader. 

Figure 2.13 TissueGnostics Confocal Slide Scanner with the TissueFAXS 200 

autoloader. 
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The high-resolution images from the scanned slides were sent to the computer-assisted 

analysis HistoQuest software system (TissueGnostics GmbH). All images were 

analysed using specific protocol in the software. 

As shown in Figure (2.14 C), for each tissue sections the total area was first measured 

followed by necrotic and non-necrotic (viable) area measurements. Each area was 

measured as mm2. The green area (collagen) was measured within the total tissue area, 

necrotic area, and non-necrotic (viable) areas. The percentage of the green areas 

(collagen) in each tissue section was calculated as follows: 

Green area (mm2)

Total tissue area (mm2)
 X 100 
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Figure 2.14 Analysis collagen content of the Masson’s trichrome stained 

paraffin sections using HistoQuest software.  

The stained slides were scanned via TissueGnostics Confocal Slide Scanner 

(TISSUEFAXS 200). Then the high-resolution images were analysed by HistoQuest 

software V 4.0. Multiple shades segmentation was applied to the images and area 

measurements were performed (A). The viable or necrotic areas within the section 

were outlined (B). The results of the analysis measured the total tissue area, and the 

green area (collagen) in mm2 (C). For each sample the whole tissue area, the necrotic 

areas and viable areas were analysed. The green area (collagen) was measured 

within the total tissue area, necrotic area, and non-necrotic (viable) areas. The % of 

the green areas (collagen) in each tissue section was calculated:     

𝐆𝐫𝐞𝐞𝐧 𝐚𝐫𝐞𝐚 (𝐦𝐦𝟐)

𝐓𝐨𝐭𝐚𝐥 𝐭𝐢𝐬𝐬𝐮𝐞 𝐚𝐫𝐞𝐚 (𝐦𝐦𝟐)
 X 100. 

 

Figure 2.14 Analysis collagen content of the Masson’s trichrome stained 

paraffin sections using HistoQuest software. 
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2.2.7.3 Immunofluorescence staining of frozen fibrosarcoma tumour sections 

 

Tumour sections (frozen) were left to dry at room temperature for 15 minutes. Then, 

they were circled with a wax pen and allowed to dry for 10 minutes at room temperature. 

The sections were fixed in ice-cold acetone for 10 minutes before they were washed 

twice with PBS. 

Blocking was with MOM IgG (Vector®M.O.M ™ Immunodetection kit, Cat. No. BMK-

2202) for one hour at room temperature. Thereafter, incubation with the antibody (α-

SMA 2 mg/ml anti-mouse, made in mouse) was done overnight at 4°C and was diluted 

1: 10,000 in PBS plus M.O.M. ™ diluent. Next day, the slides were washed with PBS 

X3 and incubated with the secondary antibody (1:250 biotinylated anti-mouse IgG 

reagent) for 10 minutes at room temperature. The slides then were incubated with Texas 

Red® Streptavidin (diluted 1:200 in 1% BSA/PBS) for one hour at room temperature, 

after washing the slides with PBS X3. 

Blocking the slides with 10% goat serum in 1% BSA/PBS for one hour was done at 

room temperature followed by incubation with the CD31 antibody (diluted 1:200 in 1% 

BSA/PBS) overnight at 4°C. 

Washing the slides with PBS X3 was done next day, and then the slides were incubated 

for one hour with goat anti-rat IgG H&L (FITC) diluted 1:200 in 1% BSA/PBS. After 

washing the slides with PBS X3, they were mounted with Vector shield hard set with 

DAPI (4', 6-diamidino-2-phenylindole). 

 

2.3 Statistical analyses 
 

Statistical analyses were achieved using GraphPad Prism 7.0 Software. To compare 

between two groups, unpaired two-tailed t-test was used. While one-way analysis of 

variance (ANOVA) was used to see whether there are any significant differences 

(statistically) between the means of two or more independent groups. 

For clonogenic assay, the linear-quadratic model was used to analyse data. This was 

done in GraphPad Prism via changing in the Format Axis dialog.  
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CHAPTER THREE: 

The effects of radiation on the differentiation of 

MSCs into cells with CAF-like characteristics 

and its consequences on MSC 

migration/recruitment 
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3.1 Introduction & aims 
 

Radiotherapy is one of the standard effective treatments for intermediate and high-soft 

tissue sarcoma. Around 60% of patients with cancer will receive radiotherapy as a part 

of their treatment (Robbins et al., 2012). More importantly, as discussed formerly, 

radiotherapy can cause fibrosis, which is characterised by deposits of collagen and other 

matrix proteins and presence of activated fibroblasts known as CAFs, which are major 

producers of collagen in tumours (Azorin-Vega et al., 2015). CAF play a key role in 

cancer initiation, invasion and metastasis (Luo et al., 2015). The underlying cellular 

mechanisms of radiation fibrosis in tumours are not fully understood. MSCs can 

differentiate into CAF-like cells (Mishra et al., 2008), but the exact origin of CAFs in 

irradiated tumours has not been established. In normal tissues, growth factors such as 

PDGF and TGF-β1 play a key role in the differentiation of MSCs to CAFs, therefore, 

similar factors may be involved in response to radiation in a tumour. Moreover, Klopp 

et al and Fenton and Paoni showed that irradiation induced recruitment of MSCs to 

tumours (Klopp et al., 2007, Fenton and Paoni, 2007). The mechanisms that rule 

migration of MSCs into the sites of injury have not been fully explained (Karp and 

Teol, 2009). Some studies have shown that chemotaxis is a mode of recruitment for 

MSCs in response to chemoattractants like chemokines or growth factors (Vanden 

Berg-Foels, 2014). Presence of the MSCs in the tumour microenvironment will 

promote tumour angiogenesis, suppress the immune response, enhance the stemness of 

tumour cells, induce chemotherapy resistance and endorse EMT (Sun et al., 2014). 

The aims of this chapter are: 

- To determine whether radiation induces the differentiation of MSCs into cells with 

CAF-like characteristics using sarcoma cells in vitro to model the tumour 

microenvironment. 

- Use in vitro models, to investigate the role of post-radiation injury cytokines and 

chemokines in radiation-enhanced MSC recruitment to tumours.  
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3.2 Results 

3.2.1 Effects of radiation on tumour cells and MSC colony formation  
 

It has long been established that radiation causes DNA damage and cell death (Nikjoo 

et al., 2001, Warters and Hofer, 1977). In order to choose appropriate radiation doses 

for later experiments, the radio-sensitivities of tumour cells and MSCs were tested. The 

clonogenic assay was used as a cellular response technique to test the effectiveness of 

radiation on the proliferation and survival of cells. A colony means a group of at least 

50 cells.  

Cells were irradiated with different radiation doses (0-4 Gy), plus a non-irradiated 

group, which was used as a control. Next, the cells were trypsinised and counted by 

haemocytometer, before being sub-cultured into 6-well plates and incubated for 12 days. 

Table 2.2 shows cell numbers plated for each radiation dose condition. Fixation and 

staining of the cells with crystal violet was done followed by manual counting of the 

colonies. The plating efficiency (PE) with survival fraction (SF) was calculated as 

described in chapter two (section 2.2.2). 

Cell survival curves were fitted with Linear Quadratic modelling and plotted as a 

logarithm of the surviving fraction versus radiation dose in Gray (Gy) (Figure 3.1). 

The survival fraction for all cells was decreased in a dose-dependent manner. At 4 Gy, 

both Balb/c and C3H10 MSCs were more radio-resistant than fibrosarcoma cells (P = 

0.014 for Balb/c, and 0.020 for C3H10 cells, using Linear regression test). In addition, 

at 4 Gy FS120 cells were more radioresistant than FS188 cells (P = 0.0123, Linear 

regression test). The results were averages of 5 independent experiments each plated in 

triplicate (Figure 3.1). The survival fraction at 4 Gy were 40.0%, 25.6%, 3.1%, and 

0.98% for Balb/c MSCs, C3H10 MSCs, FS120 cells, and FS188 cells respectively.  

Although 4 Gy was lethal-sublethal for tumour cells and there was moderate cell killing 

for MSCs, it was chosen for subsequent experiments as the upper limit dose to mimic 

the radiation dose used in the clinic. The data presented in Figure 3.1.  
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Figure 3.1 Radiation effects on survival of FS 120 cells, FS 188 cells, C3H10 

MSCs, and Balb/c MSCs cells.   

Representative images of colonies from FS 120 cells (A), and FS 188 cells (B). 

Cells were seeded after irradiation with 0, 0.5, 1, 2 and 4 Gy (0 represent control 

un-irradiated cells). Colonies were fixed, stained and counted 12 days after 

radiation. 50 cells or more were representing a colony. The survival fraction (SF) 

was calculated and plotted for each cell line as a logarithm of the survival fraction 

versus radiation dose in Gray using Linear Quadratic model. At 4 Gy, both Balb/c 

(P = 0.014) and C3H10 MSCs (P = 0.020) were more radio-resistant than 

fibrosarcoma cells. In addition, at 4 Gy FS120 cells were more radioresistant than 

FS188 cells (P = 0.0123). The data points are the averages of 5 independent 

experiments each plated in triplicate. The dose-response curves were fitted by linear 

regression analysis, the mean ± SEM is presented *P < 0.05. The survival fraction 

for all cells was decreased in a dose-dependent manner. The survival fractions at 4 

Gy were 40.0%, 25.6%, 3.1%, and 0.98% for Balb/c MSCs, C3H10 MSCs, FS120 

cells, and FS188 cells respectively.  

 

Figure 3.2 Radiation effects on survival of FS 120 cells, FS 188 cells, C3H10 

MSCs, and Balb/c MSCs cells.   

Representative images of colonies from FS 120 cells (A), and FS 188 cells (B). 

Cells were seeded after irradiation with 0, 0.5, 1, 2 and 4 Gy (0 represent control 

un-irradiated cells). Colonies were fixed, stained and counted 12 days after 

radiation. 50 cells or more were representing a colony. The survival fraction (SF) 

was calculated and plotted for each cell line as a logarithm of the survival fraction 

versus radiation dose in Gray (Gy). At 4 Gy, both Balb/c (P = 0.014) and C3H10 

MSCs (P = 0.020) were more radio-resistant than fibrosarcoma cells. In addition, at 

4 Gy FS120 cells were more radioresistant than FS188 cells (P = 0.0123). The data 

points are the averages of 5 independent experiments each plated in triplicate. The 

Figure 3.1 Radiation effects on survival of FS 120 cells, FS 188 cells, C3H10 

MSCs, and Balb/c MSCs cells. 

 

Figure 3.5 Radiation effects on survival of FS 120 cells, FS 188 cells, C3H10 MSCs, 

and Balb/c MSCs cells.   

Representative images of colonies from FS 120 cells (A), and FS 188 cells (B). 

Cells were seeded after irradiation with 0, 0.5, 1, 2 and 4 Gy (0 represent control 

un-irradiated cells). Colonies were fixed, stained and counted 12 days after 

radiation. 50 cells or more were representing a colony. The survival fraction 

(SF) was calculated and plotted for each cell line as a logarithm of the survival 

fraction versus radiation dose in Gray (Gy). At 4 Gy, both Balb/c (P = 0.014) 

and C3H10 MSCs (P = 0.020) were more radio-resistant than fibrosarcoma 

cells. In addition, at 4 Gy FS120 cells were more radioresistant than FS188 cells 

(P = 0.0123). The data points are the averages of 5 independent experiments 

each plated in triplicate. The dose-response curves were fitted by linear 

regression analysis, the mean ± SEM is presented *P < 0.05. The survival 

fraction for all cells was decreased in a dose-dependent manner. The survival 

fractions at 4 Gy were 40.0%, 25.6%, 3.1%, and 0.98% for Balb/c MSCs, 

C3H10 MSCs, FS120 cells, and FS188 cells respectively.Figure 3.2 Radiation 

effects on survival of FS 120 cells, FS 188 cells, C3H10 MSCs, and Balb/c MSCs 

cells. 

 

Figure 3.6 Radiation effects on survival of FS 120 cells, FS 188 cells, C3H10 MSCs, 

and Balb/c MSCs cells.   

Representative images of colonies from FS 120 cells (A), and FS 188 cells (B). Cells 

were seeded after irradiation with 0, 0.5, 1, 2 and 4 Gy (0 represent control un-

irradiated cells). Colonies were fixed, stained and counted 12 days after radiation. 50 
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3.2.2 Effects of TGF-β1 on the growth, morphology and differentiation of MSCs 

 

TGF-β1, a pro-fibrotic cytokine, plays a key role in post-radiation injury (Martin et al., 

2000) and in the growth of MSCs (Ng et al., 2008). It has been shown that TGF-β1 

induced morphological changes in MSCs into cells with a CAF-like morphology and 

leads to an increase in collagen and fibronectin production (Desai et al., 2014). First, to 

establish whether TGF-β1 is playing a role in the growth of C3H10 and Balb/c MSCs, 

in vitro growth curve assays were done. MSCs were cultured in triplicate in the 

presence of TGF-β1 (10 ng/ml) and left for 24 hours in the incubator to allow cells to 

adhere to the plate. Untreated cells acted as controls. 

Counting cells was done on a daily basis (days 1, 2, 3 and 4) as explained in section 

2.2.3. The results show that there was no significant effect of TGF-β on the growth of 

either C3H10 or Balb/c MSCs (Figure 3.2). However, altered cell morphology 

displaying elongated spindle-shaped and compacted cells in contrast to control cells 

that were flat, polygonal, and less spindle-shaped was observed. These results 

suggested that TGF-β induced differentiation of both MSCs into CAF-like cells (Figure 

3.2 A-D). These morphological changes were associated with changes in the expression 

of α-SMA (see later in this chapter), which support that MSCs differentiated into CAF-

like cells in the presence of TGF-β1. Presence of CAF cells in the TME is strongly 

associated with excessive ECM deposition and later fibrosis (De Wever et al., 2008).  
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   Balb/c MSCs control without TGF-β                     Balb/c MSCs treated with 10ng/ml TGF-β  

 

   Balb/c MSCs control without TGF-β                     Balb/c MSCs treated with 10ng/ml TGF-β  

 

   Balb/c MSCs control without TGF-β                     Balb/c MSCs treated with 10ng/ml TGF-β  

 

   Balb/c MSCs control without TGF-β                     Balb/c MSCs treated with 10ng/ml TGF-β  
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   C3H10 MSCs control without TGF-β                   C3H10 MSCs treated with 10ng/ml TGF-β  

 

   C3H10 MSCs control without TGF-β                   C3H10 MSCs treated with 10ng/ml TGF-β  

 

   C3H10 MSCs control without TGF-β                   C3H10 MSCs treated with 10ng/ml TGF-β  

 

   C3H10 MSCs control without TGF-β                   C3H10 MSCs treated with 10ng/ml TGF-β  

C) 

 

C) 

 

C) 

 

C) 

D) 

 

D) 

 

D) 

 

D) 

           Growth curve for Balb/c MSCs                                      Growth curve for C3H10 MSCs  

 

Figure 3.5 Effects of TGF-β on the growth and morphology of Balb/c and C3H10 MSCs.           

Growth curve for Balb/c MSCs                                      Growth curve for C3H10 MSCs  

 

Figure 3.6 Effects of TGF-β on the growth and morphology of Balb/c and C3H10 

MSCs.  

 

Figure 3.7 Effects of TGF-β on the growth and morphology of Balb/c and C3H10 MSCs.           
Growth curve for Balb/c MSCs                                      Growth curve for C3H10 MSCs  

 

Figure 3.8 Effects of TGF-β on the growth and morphology of Balb/c and C3H10 MSCs.           
Growth curve for Balb/c MSCs                                      Growth curve for C3H10 MSCs  
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Figure 3.2 Effects of TGF-β on the growth and morphology of Balb/c and 

C3H10 MSCs.  

MSCs were plated in 6-well-plates, and either treated with TGF-β (10 ng/ml), or 

control cells (no TGF-β). MSCs grown under normal conditions without TGF-β 

displayed a flattened fibroblastic morphology (A & C), while MSCs grown in the 

presence of TGF-β displayed distinct spindle morphology (B & D). (E) Starting at 

24 hours after plating, and then at daily intervals (for total of 4 days) cells were 

trypsinised and counted. The result revealed that TGF-β had no effects on the 

growth of Balb/c or C3H10 MSCs. Results are expressed as mean cell counts ± 

SEM of three individual experiments (each done in triplicate). N0= the number of 

the cells that were seeded (3 x 104 cells/well). N= number of the cells counted on a 

daily basis whether controls or after treatment with TGF-β.  

 

 

Figure 3.2 Effects of TGF-β on the growth and morphology of Balb/c and 

C3H10 MSCs.  

MSCs were plated in 6-well-plates, and either treated with TGF-β (10 ng/ml), or 

control cells (no TGF-β). MSCs grown under normal conditions without TGF-β 

displayed a flattened fibroblastic morphology (A & C), while MSCs grown in the 

presence of TGF-β displayed distinct spindle morphology (B & D). (E) Starting at 

24 hours after plating, and then at daily intervals (for total of 4 days) cells were 

trypsinised and counted. The result revealed that TGF-β had no effects on the 

growth of Balb/c or C3H10 MSCs. Results are expressed as mean cell counts ± 

SEM of three individual experiments (each done in triplicate). N0= the number of 

the cells that were seeded (3 x 104 cells/well). N= number of the cells counted on a 

daily basis whether controls or after treatment with TGF-β.  

Figure 3.2 Effects of TGF-β1 on the growth and morphology of Balb/c and 

C3H10 MSCs.  

 

Figure 3.9 Effects of TGF-β on the growth and morphology of Balb/c and 

C3H10 MSCs.  

 

Figure 3.10 Effects of TGF-β on the growth and morphology of Balb/c and 

C3H10 MSCs.  

 

Figure 3.11 Effects of TGF-β on the growth and morphology of Balb/c and 

C3H10 MSCs.  
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3.2.3 Radiation effects on C3H10 and Balb/c MSC morphology and expression of 

CAF-like cells differentiation markers  

 

MSCs can differentiate into activated fibroblasts or CAFs (as discussed earlier) 

(Sugimoto et al., 2006, Mishra et al., 2008). CAFs are large spindle-shaped cells, which 

express -SMA and, PDGFR-β (Sugimoto et al., 2006, Anderberg et al., 2009). 

Moreover, CAFs secrete collagen, fibronectin and other ECM proteins which 

contribute to tissue fibrosis (Miles and Sikes, 2014). With respect to radiation effects 

on the MSCs’ differentiation ability, western blotting was done on the cell lysates that 

were extracted from both C3H10, and Balb/c MSCs. As shown in section 3.2.2, TGF-

β1 altered the morphology of both MSCs into CAF-like cells. These changes suggested 

that TGF-β1 induced differentiation of both MSCs into CAF-like cells. So, TGF-β1 

was used as a positive control of MSCs differentiation in subsequent experiments. 

3.2.3.1 Effects of direct irradiation on the expression of CAF markers by mouse 

MSCs 

 

Both C3H10 MSCs and Balb/c MSCs were seeded in 6-well plates individually until 

they became ~80% confluent. Then, they were X-ray irradiated directly with 0-4 Gy 

(section 2.2.1.6). One well was treated with 10 ng/ml TGF-β1 alone without radiation 

used as a positive control for differentiation. Another well was left un-irradiated as a 

control. A further well was irradiated with 4 Gy and also treated with TGF-β1 (10 

ng/ml). Plates were incubated for 3 days before extraction of proteins using cell 

extraction buffer (section 2.2.4.2). 20 μg (30 μl/lane) of proteins was loaded in the 

western blotting. Normalisation was done through calculating the ratio of target protein 

to internal control (i.e., dividing or “normalizing” by the loading control).  

As seen in Figure 3.3, only TGF-β1 had a significant effect in the expression of 

collagen-I, fibronectin, PDGFR-β and -SMA in C3H10 MSCs. However, in Balb/c 

cells 0.5 Gy also increased the expression of collagen-I (one-way ANOVA, Dunnett’s 

multiple comparisons test, P = 0.037) (Figure 3.4). Some of the markers showed a 

tendency to increase after low doses of radiation and decrease after high dose radiation 

(2-4 Gy), although these effects were not significant. 
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  Direct irradiation of C3H10 MSCs 

 

Figure 3.12 Effects of direct radiation on the 

expression of CAF markers by C3H10 

MSCs.Direct irradiation of C3H10 MSCs 

 

Figure 3.13 Effects of direct radiation on 

the expression of CAF markers by 

C3H10 MSCs.  

 

Figure 3.14 Effects of direct radiation on the 

expression of CAF markers by C3H10 

MSCs.Direct irradiation of C3H10 MSCs 

 

Figure 3.15 Effects of direct radiation on the 

expression of CAF markers by C3H10 

MSCs.Direct irradiation of C3H10 MSCs 
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Figure 3.3 Effects of direct radiation on the expression of CAF markers by 

C3H10 MSCs.  

Cells were irradiated and/or treated with TGF-β (10 ng/ml). Protein extracts were 

prepared three days’ post-irradiation and analysed for expression of various markers 

expressed by CAFs (collagen-I, fibronectin, PDGFR-β and α-SMA). 20 μg (30 

μl/lane) of proteins were loaded. Radiation had no effect on the expression of all 

markers tested although collagen-I, fibronectin and PDGFR-β tended to increase 

after low radiation doses (0.2, and 0.5 Gy) (A, B, C, and D). There was also a 

tendency of the expression markers to decrease after higher radiation doses (1, 2, 

and 4 Gy). TGF-β1 caused a significant increase in the expression of collagen-I, 

fibronectin, PDGFR-β and α-SMA in un-irradiated cells, with similar effects when 

administered in combination with radiation (A, B, C, and D). One-way ANOVA test 

followed by a Dunnett's multiple comparisons test was used to analyse data. Results 

expressed as means ± SEM and were considered statistically significant when P ≤ 

0.05 (* P<0.05, ** P<0.01). Each graph represents 4 independent experiments 

(N=4). 

 

 

  

 

Figure 3.3 Effects of direct radiation on the expression of CAF markers by 

C3H10 MSCs.  

Cells were irradiated and/or treated with TGF-β (10 ng/ml). Protein extracts were 

prepared three days’ post-irradiation and analysed for expression of various markers 

expressed by CAFs (collagen-I, fibronectin, PDGFR-β and α-SMA). 20 μg (30 

μl/lane) of proteins were loaded. Radiation had no effect on the expression of all 

Figure 3.3 Effects of direct radiation on the expression of CAF markers by 

C3H10 MSCs.  

 

Figure 3.16 Effects of direct radiation on the expression of CAF markers by 

C3H10 MSCs.  

 

Figure 3.17 Effects of direct radiation on the expression of CAF markers by 

C3H10 MSCs.  

 

Figure 3.18 Effects of direct radiation on the expression of CAF markers by 

C3H10 MSCs.  
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Direct irradiation of Balb/c MSCs 

 

Figure 3.19 Effects of direct 

radiation on the expression CAF 

markers by Balb/c MSCs.Direct 

irradiation of Balb/c MSCs 

 

Figure 3.20 Effects of direct 

radiation on the expression CAF 

markers by Balb/c MSCs. 

 

Figure 3.21 Effects of direct 

radiation on the expression CAF 

markers by Balb/c MSCs.Direct 

irradiation of Balb/c MSCs 

 

Figure 3.22 Effects of direct 

radiation on the expression CAF 

markers by Balb/c MSCs.Direct 

irradiation of Balb/c MSCs 
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Figure 3.4 Effects of direct radiation on the expression CAF markers by Balb/c 

MSCs. 

Cells were irradiated and/or treated with TGF-β (10 ng/ml). Protein extracts were 

prepared three days post-irradiation and analysed for expression of various markers 

expressed by CAFs (collagen-I, fibronectin, PDGFR-β and α-SMA). 20 μg (30 

μl/lane) of proteins were loaded. Low radiation dose (0.5 Gy) caused a significant 

increase in the collagen-I expression significantly 3-4 days after radiation (A). 

Collagen-I, fibronectin, PDGFR-β and α-SMA were also increased significantly 

after treatment of the MSCs with TGF-β (A, B, C, and D). 4 Gy tended to decreased 

the expression of differentiation markers, while TGF-β1 caused a significant 

increase in the expression of collagen-I, fibronectin, PDGFR-β and α-SMA in un-

irradiated cells, with similar effects when administered in combination with 

radiation (A, B, C, and D). One-way ANOVA test followed by a Dunnett's multiple 

comparisons test was used to analyse data. Results expressed as means ± SEM and 

were considered statistically significant when P ≤ 0.05 (* P<0.05, ** P<0.01). Each 

graph represents four independent experiments (N=4). 

 

 

 

  

 

Figure 3.4 Effects of direct radiation on the expression CAF markers by Balb/c 

MSCs. 

Cells were irradiated and/or treated with TGF-β (10 ng/ml). Protein extracts were 

prepared three days post-irradiation and analysed for expression of various markers 

Figure 3.4 Effects of direct radiation on the expression CAF markers by Balb/c 

MSCs. 

 

Figure 3.23 Effects of direct radiation on the expression CAF markers by Balb/c 

MSCs. 

 

Figure 3.24 Effects of direct radiation on the expression CAF markers by Balb/c 

MSCs. 

 

Figure 3.25 Effects of direct radiation on the expression CAF markers by Balb/c 

MSCs. 
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3.2.3.2 Effects of irradiated tumour cells on the expression of CAF markers by 

mouse MSC  

 

In the previous experiments, the direct irradiation of the MSCs caused only very modest 

effect on the expression of CAF markers. For a further understanding of the 

development of the radiation fibrosis within a tumour, it is essential to understand the 

interaction of individual components of the TME with the MSCs, as the development 

and progression of the tumours are determined by the interaction between the cells 

within the TME (Bissell and Hines, 2011). The aim of this experiment was to see 

whether irradiated tumour cells (FS120 cells & FS188 cells) secreted growth factors or 

cytokines that could affect both C3H10 and Balb/c MSCs differentiation marker 

expression. Therefore, FS188 cells, as well as FS120 cells, were cultured in 24-well 

plates and when they became 80% confluent, their media were changed and then 

irradiated with 0, 0.5 and 4 Gy.  

24 hours later, C3H10 MSCs and Balb/c MSCs were seeded separately (3 x 104 in 200 

μl medium) in filter inserts (Falcon®
 1.0 μm pore size) and were co-cultured with the 

tumour cells for 3-4 days before cell lysates were prepared. 20 μg of sample protein (30 

μl/lane) was loaded for each lane of the gel in the western blotting. Normalisation done 

by calculating the ratio of target protein to internal control. 

As can be seen from Figure 3.5, the irradiated tumour cells had no significant effects 

on the expression of the various differentiation markers in C3H10 cells (Figure 3.5). 

However, when Balb/c MSCs were co-cultured with irradiated FS188 cells (0.5 Gy), 

there were significant increase in the expression of collagen-I, PDGFR-β and α-SMA 

(but not fibronectin) (Figure 3.6) (One-way ANOVA, Tukey’s multiple comparisons 

test, P = 0.021, 0.036, and 0.022 respectively). Additionally, irradiation of FS188 by 4 

Gy caused an increase in the expression of collagen-I (P = 0.016) and PDGFR-β (P = 

0.026) in co-cultured Balb/c MSCs. On the other hand, co-culture with FS120 cells did 

not cause a significant increase in Balb/c MSC differentiation markers, although there 

was a tendency towards such an increase (Figure 3.6).  
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C3H10 MSCs + tumour cells  

 

Figure 3.26 Effects of 

irradiated tumour cells (FS120 

cells, and FS 188 cells) on the 

expression of CAF markers by 

C3H10 MSCs.C3H10 MSCs + 

tumour cells  

 

Figure 3.27 Effects of 

irradiated tumour cells 

(FS120 cells, and FS 188 

cells) on the expression of 

CAF markers by C3H10 

MSCs. 

 

Figure 3.28 Effects of 

irradiated tumour cells (FS120 

cells, and FS 188 cells) on the 

expression of CAF markers by 

C3H10 MSCs.C3H10 MSCs + 

tumour cells  

 

Figure 3.29 Effects of 

irradiated tumour cells (FS120 

cells, and FS 188 cells) on the 

expression of CAF markers by 

C3H10 MSCs.C3H10 MSCs + 

tumour cells  
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Figure 3.5 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by C3H10 MSCs.  

Tumour cells were cultured in 24-well plates and when they became 80% confluent, 

their media were changed and then irradiated with 0, 0.5, and 4 Gy. 24 hours later, 

the C3H10 MSCs were seeded (3 x 104 in 200 μl medium) in filter inserts (Falcon®
 

1.0 μm pore size) and were co-cultured with the tumour cells for 4 days before 

extraction of their cell lysates. 20 μg of sample protein (30 μl/lane) was loaded for 

each lane of the gel. Normalisation was done by calculating the ratio of target 

protein to internal control. Presence of irradiated tumour cells (FS120 cells, and 

FS188 cells) with the C3H10 MSCs did not cause any changes in the MSCs 

differentiation markers. One-way ANOVA test followed by a Tukey's multiple 

comparisons test was used to analyse data. Results expressed as means ± SEM. Each 

graph represents three independent experiments (N=3). 
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their media were changed and then irradiated with 0, 0.5, and 4 Gy. 24 hours later, 

the C3H10 MSCs were seeded (3 x 104 in 200 μl medium) in filter inserts (Falcon®
 

1.0 μm pore size) and were co-cultured with the tumour cells for 4 days before 

extraction of their cell lysates. 20 μg of sample protein (30 μl/lane) was loaded for 

each lane of the gel. Presence of irradiated tumour cells (FS120 cells, and FS188 

Figure 3.5 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by C3H10 MSCs. 

 

Figure 3.30 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by C3H10 MSCs. 

 

Figure 3.31 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by C3H10 MSCs. 

 

Figure 3.32 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by C3H10 MSCs. 
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Balb/c MSCs + tumour cells  

 

Figure 3.33 Effects of irradiated 

tumour cells (FS120 cells, and 

FS 188 cells) on the expression 

of CAF markers by Balb/c 

MSCs.Balb/c MSCs + tumour 

cells  

 

Figure 3.34 Effects of 

irradiated tumour cells 

(FS120 cells, and FS 188 cells) 

on the expression of CAF 

markers by Balb/c MSCs. 

 

Figure 3.35 Effects of irradiated 

tumour cells (FS120 cells, and 

FS 188 cells) on the expression 

of CAF markers by Balb/c 

MSCs.Balb/c MSCs + tumour 

cells  

 

Figure 3.36 Effects of irradiated 

tumour cells (FS120 cells, and 

FS 188 cells) on the expression 

of CAF markers by Balb/c 

MSCs.Balb/c MSCs + tumour 

cells  
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Figure 3.6 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by Balb/c MSCs.  

Tumour cells were cultured in 24-well plates and when they became 80% confluent, 

their media were changed and then irradiated with 0, 0.5, and 4 Gy. 24 hours later, 

the MSCs were seeded (3 x 104 in 200-μl medium) in filter inserts (Falcon®
 1.0 μm 

pore size) and were co-cultured with the tumour cells for 4 days before extraction 

of their cell lysates. 20 μg of sample protein (30 μl/lane) was loaded for each lane 

of the gel. Normalisation was done through calculating the ratio of target protein to 

internal control (tubulin). From the results, the presence of irradiated FS188 cells 

significantly increased the expression of collagen-I, and PDGFR-β after 0.5 Gy, and 

4 Gy (A and C), and α-SMA after 0.5 Gy (D), while it has no effects on fibronectin 

expression (B). There were no significant effects of FS120 cells on MSCs 

differentiation markers. One-way ANOVA test followed by a Tukey's multiple 

comparisons test was used to analyse data. Results expressed as means ± SEM, and 

were considered statistically significant when P ≤ 0.05 (* P<0.05, ** P<0.01). All 

experiments were accomplished in triplicate and repeated three times and analysed 

using GraphPad Prism 7.0 software. 
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the expression of CAF markers by Balb/c MSCs.  

Tumour cells were cultured in 24-well plates and when they became 80% confluent, 

their media were changed and then irradiated with 0, 0.5, and 4 Gy. 24 hours later, 

the MSCs were seeded (3 x 104 in 200 μl medium) in filter inserts (Falcon®
 1.0 μm 

pore size) and were co-cultured with the tumour cells for 4 days before extraction 

of their cell lysates. 20 μg of sample protein (30 μl/lane) was loaded for each lane 

of the gel. From the results, the presence of irradiated FS188 cells significantly 
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Figure 3.6 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by Balb/c MSCs. 

 

Figure 3.37 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by Balb/c MSCs. 

 

Figure 3.38 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by Balb/c MSCs. 

 

Figure 3.39 Effects of irradiated tumour cells (FS120 cells, and FS 188 cells) on 

the expression of CAF markers by Balb/c MSCs. 
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3.2.3.3 Effects of secreted factor(s) produced by irradiated tumour cells on the 

expression of CAF markers by MSCs 

 

In the previous experiment (section 3.2.3.2), the presence of irradiated FS cells 

(especially FS188 cells) was shown to cause an increase in the expression of Balb/c 

MSCs differentiation markers, which implies that secreted factors produced by 

irradiated tumour cells might be responsible. It was important to confirm that, by testing 

conditioned media (both neat and concentrated) from irradiated tumour cells. In the 

light of that, serum-free conditioned media were collected from control and irradiated 

FS cells and concentrated using Amicon Ultra-4 centrifugal filters as described in 

section 2.2.1.7. In the lower chamber of the 24-well plate, either neat or concentrated 

CM was placed, and in the upper chamber filters C3H10 MSCs or Balb/c MSCs (3 x 

104 / 200 μl medium) were seeded in their corresponding media. Incubation was for 3 

days before extraction of the cell lysate. 20 μg of sample protein (30 μl/lane) was loaded 

for each lane of the gel in the western blot. Normalisation was done through calculating 

the ratio of target protein to internal control (tubulin). 

As the neat medium had no effect of the expressions of CAF markers by MSCs, I 

focused on the concentrated CM data. Data from three experiments is shown in Figure 

3.7 and 3.8. There was no effect of the CM (neat or concentrated) extracted from 

irradiated tumour cells on the C3H10 expression markers (Figure 3.7). Concentrated 

CM from irradiated FS120 and FS188 cells had no significant effect on -SMA 
expression in Balb/c MSCs, However, concentrated CM from irradiated (0.5 and 4 Gy) 

FS188 cells, caused a significant increase in the expression of collagen-I (P = 0.0014, 

and 0.0067) and fibronectin (P = 0.038, and 0.031). A similar increase in the expression 

of collagen-I (P = 0.047) and PDGFR-β (P =0.033) was observed using concentrated 

CM from irradiated FS120 cell with 4 Gy (Figure 3.8 A and C). In this experiment, I 

missed to use a non-irradiated medium alone to see whether presence of tumour cells 

was the cause of the increase in the CAFs expression markers expressed by MSCs.   

This work will be done in the future.  

One-way ANOVA followed by Tukey’s multiple comparisons test was used.  
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 C3H10 MSCs + concentrated CM from irradiated tumour cells 

 

Figure 3.40 Effects of factors (s) produced from irradiated tumour 

cells on the expression of CAF markers by C3H10 MSCs.C3H10 

MSCs + concentrated CM from irradiated tumour cells 

 

Figure 3.41 Effects of factors (s) produced from irradiated 

tumour cells on the expression of CAF markers by C3H10 MSCs.  

 

 

Figure 3.42 Effects of factors (s) produced from irradiated tumour 

cells on the expression of CAF markers by C3H10 MSCs.C3H10 

MSCs + concentrated CM from irradiated tumour cells 

 

Figure 3.43 Effects of factors (s) produced from irradiated tumour 

cells on the expression of CAF markers by C3H10 MSCs.C3H10 

MSCs + concentrated CM from irradiated tumour cells 
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Figure 3.7 Effects of factors (s) produced from irradiated tumour cells on the 

expression of CAF markers by C3H10 MSCs.  

C3H10 MSCs were exposed to concentrated CM from irradiated FS120 cells and 

FS188 cells for 3 days. Normalisation was done through calculating the ratio of 

target protein to internal control (i.e., dividing or “normalizing” by the loading 

control). No effects of the concentrated CM extracted from irradiated tumour cells 

were seen on the expression of collagen-I, PDGFR-β, fibronectin or α-SMA. One-

way ANOVA test followed by a Tukey's multiple comparisons test was used to 

analyse data. Results expressed as means ± SEM of 3 experiments, each done in 

triplicate and were considered statistically significant when P ≤ 0.05. 
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Figure 3.7 Effects of factors (s) produced from irradiated tumour cells on the 

expression of CAF markers by C3H10 MSCs.  

C3H10 MSCs were exposed to concentrated CM from irradiated FS120 cells and 

Figure 3.7 Effects of factors (s) produced from irradiated tumour cells on the 

expression of CAF markers by C3H10 MSCs.  

 

 

Figure 3.44 Effects of factors (s) produced from irradiated tumour cells on the 

expression of CAF markers by C3H10 MSCs.  

 

 

Figure 3.45 Effects of factors (s) produced from irradiated tumour cells on the 

expression of CAF markers by C3H10 MSCs.  

 

 

Figure 3.46 Effects of factors (s) produced from irradiated tumour cells on the 

expression of CAF markers by C3H10 MSCs.  
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Balb/c MSCs + concentrated CM from irradiated tumour cells 

 

Figure 3.47 Effects of factors (s) produced from irradiated tumour 

cells on expression of CAF markers by Balb/c MSCs.Balb/c MSCs + 

concentrated CM from irradiated tumour cells 

 

Figure 3.48 Effects of factors (s) produced from irradiated 

tumour cells on expression of CAF markers by Balb/c MSCs. 

 

Figure 3.49 Effects of factors (s) produced from irradiated tumour 

cells on expression of CAF markers by Balb/c MSCs.Balb/c MSCs + 

concentrated CM from irradiated tumour cells 

 

Figure 3.50 Effects of factors (s) produced from irradiated tumour 

cells on expression of CAF markers by Balb/c MSCs.Balb/c MSCs + 

concentrated CM from irradiated tumour cells 
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Figure 3.8 Effects of factors (s) produced from irradiated tumour cells on 

expression of CAF markers by Balb/c MSCs.  

Balb/c MSCs were incubated with concentrated CM extracted from irradiated 

FS120 cells, and FS188 cells for 3 days. The results showed an increase in the 

expression of collagen-I, and fibronectin in cells treated with concentrated CM from 

0.5 Gy and 4 Gy- treated FS188 cells. Likewise, a significant increase in collagen-I 

and PDGFR-β for MSCs treated with concentrated CM from irradiated FS120 cells 

with 4 Gy. One-way ANOVA test followed by a Tukey's multiple comparisons test 

was used to analyse data. Results expressed as means ± SEM of 3 experiments, each 

done in triplicate and were considered statistically significant when P ≤ 0.05 (* 

P<0.05, ** P<0.01). 

 

Figure 3.54 Effects of irradiated HDMEC on the expression of CAF markers 

by Balb/c MSCs.Figure 3.8 Effects of factors (s) produced from irradiated 

tumour cells on expression of CAF markers by Balb/c MSCs.  

Balb/c MSCs were incubated with concentrated CM extracted from irradiated 

FS120 cells, and FS188 cells for 3 days. The results showed an increase in the 

expression of collagen-I, and fibronectin in cells treated with concentrated CM from 

0.5 Gy and 4 Gy- treated FS188 cells. Likewise, a significant increase in collagen-I 

and PDGFR-β for MSCs treated with concentrated CM from irradiated FS120 cells 

with 4 Gy. One-way ANOVA test followed by a Tukey's multiple comparisons test 

was used to analyse data. Results expressed as means ± SEM of 3 experiments, each 

done in triplicate and were considered statistically significant when P ≤ 0.05 (* 

P<0.05, ** P<0.01). 

 

Figure 3.8 Effects of factors (s) produced from irradiated tumour cells on 

expression of CAF markers by Balb/c MSCs. 

 

Figure 3.51 Effects of factors (s) produced from irradiated tumour cells on 

expression of CAF markers by Balb/c MSCs. 

 

Figure 3.52 Effects of factors (s) produced from irradiated tumour cells on 

expression of CAF markers by Balb/c MSCs. 

 

Figure 3.53 Effects of factors (s) produced from irradiated tumour cells on 

expression of CAF markers by Balb/c MSCs. 
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3.2.3.4 Effects of irradiated HDMEC on the expression of differentiation markers 

by Balb/c MSCs  

 

Endothelial cells are important tumour-stromal cells (Hanahan and Weinberg, 2011). It 

has been shown that pro-inflammatory mediators (chemokines and cytokines) were 

increased in the supernatant of irradiated HDMEC (Haubner et al., 2013b). Moreover, 

the presence of endothelial cells co-cultured with MSCs significantly affected their 

differentiation and proliferation (Saleh et al., 2011). Firstly, HDMEC were cultured in 

their standard medium in 24 well plates. Then, when they became 80% confluent, their 

medium was changed to Balb/c medium and incubated for 2 hours and then irradiated. 

24 hours after radiation, Balb/c MSCs were seeded at 3 x 104 / 200 μl medium in the 

1.0 μm pore size filter inserts (upper chamber). Inserts containing the Balb/c MSCs 

were incubated with HDMEC for 3 days and then the cell lysates were extracted. For 

the western blotting, the amount of sample protein loaded in each lane was 20 μg (30 

μl/lane). To normalise the samples, the ratio of target protein was divided by internal 

control (i.e., dividing or “normalizing” by the loading control). 

Fibronectin and PDGFR-β were significantly increased after radiation (0.5 Gy and 4 

Gy) whilst, neither collagen-I nor α-SMA showed any significant changes after 0.5 Gy 

and 4 Gy (although they showed the tendency to increase) (Figure 3.9). 

Because the results from C3H10 MSCs were not robust and not promising (as shown 

in previous experiments), I stopped working with them and continue with Balb/c MSCs 

as a model of stem cells. 
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Figure 3.9 Effects of irradiated HDMEC on the expression of CAF 

markers by Balb/c MSCs.  

Balb/c MSCs co-cultured with irradiated HDMEC (0.5 Gy & 4 Gy) for 3 days 

showed increased expression of fibronectin and PDGFR-β (B & C). There 

were no significant changes in the expression of collagen-I & α-SMA (A & 

D). One-way ANOVA test (Tukey's multiple comparisons test) was used to 

analyse data. Quantitative data represent mean value ± SEM of 3 experiments, 

each done in triplicate and were considered statistically significant when P ≤ 

0.05.  

 

 

 

 

Figure 3.9 Effects of irradiated HDMEC on the expression of CAF 

markers by Balb/c MSCs. 

 

Figure 3.58 Effects of irradiated HDMEC on the expression of CAF 

markers by Balb/c MSCs. 

 

Figure 3.59 Effects of irradiated HDMEC on the expression of CAF 

markers by Balb/c MSCs. 

 

Figure 3.60 Effects of irradiated HDMEC on the expression of CAF 

markers by Balb/c MSCs. 
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3.2.3.5 Effects of irradiated HDMEC co-cultured with the irradiated tumour cells 

on the MSCs differentiation markers 

 

To model the TME further, FS120 & FS188 cells were co-cultured with HDMECs. As 

described previously, FS tumour cells were established from transgenic mouse embryos 

by immortalisation with SV40 and H-ras transformation. The cells are routinely 

cultured in medium containing G418, and pyromycin to maintain transgene selection. 

When the cells became 80% confluent, they were trypsinised, centrifuged and re-

suspended with HDMEC medium (without G418 and pyromycin in which HDMEC do 

not survive). At the same time, HDMEC were trypsinised and re-suspended with their 

media. Since endothelial cells were growing slower than FS cells, they were mixed 

together at a ratio of 1:4 (12 x 103 FS + 48 x 103 HDMEC) (Figure 3.10).  

The cell mixture was placed in the lower chamber of 24 well plates and incubated for 

2 days. Then, the media were changed to Balb/c media and incubated for 2 hours before 

they were irradiated with (0.5 Gy or 4 Gy). The cells were incubated for 24 hours, then 

Balb/c MSCs were seeded at 3 x 104 / 200 μl medium into 1.0 μm pore size filter and 

co-cultured with the fibrosarcoma/endothelial cultures for 3 days. For the western 

blotting, the amount of sample protein loaded in each lane was 20 μg (30 μl/lane). 

Normalisation was done by dividing the ratio of target protein to internal control (i.e., 

dividing or “normalizing” by the loading control). Western blot analyses showed that 

collagen-I, fibronectin, and PDGFR-β but not -SMA were significantly increased after 

incubation of MSCs with HDMEC + FS188 cells irradiated with 0.5 Gy and 4 Gy 

(Figure 3.11). In contrast, only collagen-I and PDGFR-β were significantly 

upregulated in Balb/c MSCs that were incubated with HDMEC + irradiated FS120 cells 

(Figure 3.11 A and C). 
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A) 

 

Figure 3.61 Co-culture of HDMEC with tumour cells.A) 

 

Figure 3.62 Co-culture of HDMEC with tumour cells. 
 

Figure 3.63 Co-culture of HDMEC with tumour cells.A) 

 

Figure 3.64 Co-culture of HDMEC with tumour cells.A) 

B) 

 

B) 

 

B) 

 

B) 

Figure 3.10 Co-culture of HDMEC with tumour cells.  

Both tumour cells (FS120 cells & FS188 cells) and early passage HDMEC 

were co-cultured together at ratio of 1:4 respectively using HDMEC 

medium. A) FS 120 cells co-cultured with HDMEC. B) FS 188 cells co-

cultured with HDMEC.  

             Represent FS cells and               represent HDMEC 

 

Figure 3.65 Co-culture of Balb/c MSCs with both irradiated HDMEC 

plus tumour cells.Figure 3.10 Co-culture of HDMEC with tumour cells.  

Both tumour cells (FS120 cells & FS188 cells) and early passage HDMEC 

were co-cultured together at ratio of 1:4 respectively using HDMEC 

medium. A) FS 120 cells co-cultured with HDMEC. B) FS 188 cells co-

Figure 3.10 Co-culture of HDMEC with tumour cells. 
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Figure 3.11 Co-culture of Balb/c MSCs with both irradiated HDMEC plus 

tumour cells.  

Balb/c MSCs that were incubated with irradiated HDMEC + FS188 cells showed a 

significant increase in the expression of collagen-I, fibronectin, and PDGFR-β 

(except α-SMA) compared to cells co-cultured with non-irradiated HDMEC and 

FS188 cells (A, B, and C). In contrast, there were no changes in fibronectin and α-

SMA expression in Balb/c MSCs that were incubated with irradiated HDMEC + 

FS120 cells, only significantly increased in collagen-I after 0.5 Gy and 4 Gy and for 

PDGFR-β after 0.5 Gy (A and C). One-way ANOVA test (Tukey's multiple 

comparisons test) was used to analyse data. Quantitative data represent mean value 

± SEM and were considered statistically significant when P ≤ 0.05. 
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FS120 cells, only significantly increased in collagen-I after 0.5 Gy and 4 Gy and for 

PDGFR-β after 0.5 Gy (A and C). One-way ANOVA test (Tukey's multiple 

comparisons test) was used to analyse data. Quantitative data represent mean value 

± SEM and were considered statistically significant when P ≤ 0.05. 

 

Figure 3.11 Co-culture of Balb/c MSCs with both irradiated HDMEC plus 

Figure 3.11 Co-culture of Balb/c MSCs with both irradiated HDMEC plus 

tumour cells.  

 

Figure 3.69 Co-culture of Balb/c MSCs with both irradiated HDMEC plus 

tumour cells.  

 

Figure 3.70 Co-culture of Balb/c MSCs with both irradiated HDMEC plus 

tumour cells.  

 

Figure 3.71 Co-culture of Balb/c MSCs with both irradiated HDMEC plus 

tumour cells.  
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3.2.3.6 Effects of chemokines and cytokines on the differentiation markers 

expressed by Balb/c MSCs 

 

It was reported by Klopp et al, that irradiation of tumour cells caused an increase in the 

secretion of cytokines like VEGF, TGF-β1, and PDGF. Moreover, exposure of MSCs 

to irradiated tumour cells caused up-regulation of CCR2, a receptor for MCP-1) (Klopp 

et al., 2007). Some studies have demonstrated that tumour cells secrete stromal cell-

derived factor 1α (SDF-1α) that enhance MSCs migration (Kitaori et al., 2009, Abbott 

et al., 2004). Moreover, I showed that both irradiated tumour cells and their 

concentrated CM increased the expression of differentiation markers by MSCs (see 

section 3.2.3.2, and 3.2.3.3). Therefore, the effects of MCP-1 and SDF-1 on the 

differentiation markers expressed by Balb/c MSCs were important to determine.  

For this experiment, 1 x 105 /ml Balb/c MSCs were seeded in 6-well plates, and when 

the cells reached 80% confluently, cells were treated with either TGF-β1 (10 ng/ml), 

MCP-1 (10 ng/ml), or SDF-1 (100 ng/ml) or left untreated as controls. Cells were 

incubated for 3 days prior to protein extraction. 20 μg of cell lysates were analysed by 

western blotting as described previously. The value of the target protein was divided 

by the loading control to get a relative intensity (target/loading).  

From the western blot analysis, TGF-β1 was the only cytokine that significantly up-

regulated all differentiation markers (Figure 3.12). The morphological changes which 

were seen in both MSCs (C3H10, and Balb/c) (towards CAFs-like cells) after treatment 

with TGF-β1 (see section 3.2.2) in addition to increasing in the expression of α-SMA, 

together indicated that MSCs were acquiring characteristics of CAF cells but only after 

TGF-β1 treatment.  
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Figure 3.12 Effects of TGF-β, MCP-1, and SDF-1 on the differentiation 

markers expressed by Balb/c MSCs.  

Balb/c MSCs were seeded in 6-well plates, each well was treated with either TGF-

β (10 ng/ml), or MCP-1 (10 ng/ml), or SDF-1 (100 ng/ml) and incubated for 3 

days. Cell lysates were extracted and run for western blot. Analyses using one-way 

ANOVA test followed by a Tukey's multiple comparisons test showed that TGF-

β was the only cytokine that significantly up-regulated all differentiation markers 

(A, B, C, and D). Results expressed as means ± SEM of 3 experiments, each done 

in triplicate and were considered statistically significant when P ≤ 0.05 (* P<0.05, 

** P<0.01). 

 

 

Figure 3.72 Effects of TGF-β, MCP-1, and SDF-1 on the differentiation 

markers expressed by Balb/c MSCs.Figure 3.12 Effects of TGF-β, MCP-1, 

Figure 3.12 Effects of TGF-β, MCP-1, and SDF-1 on the differentiation 

markers expressed by Balb/c MSCs. 

 

Figure 3.77 Direct irradiation does not increase MSCs migration in 

vitro.Figure 3.78 Effects of TGF-β, MCP-1, and SDF-1 on the differentiation 

markers expressed by Balb/c MSCs. 

 

Figure 3.79 Direct irradiation does not increase MSCs migration in vitro. 

 

Figure 3.80 Direct irradiation does not increase MSCs migration in 

vitro.Figure 3.81 Effects of TGF-β, MCP-1, and SDF-1 on the differentiation 

markers expressed by Balb/c MSCs. 
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3.2.4 In vitro radiation effects on Balb/c MSCs migration (transwell migration 

assay) 

 

Migration in biology usually describes the movement of the cells directly through 

substrates like ECM fibers or basal membranes (Kramer et al., 2013). Recently, there 

has been increased relevance into the migration and homing ability of MSCs into 

tumours (De Becker and Van Riet, 2016). The interaction between MSC and the TME 

play an important role in the development and progression of tumours. It has been 

shown that recruitment of the MSC to the injury sites is important to support tissue 

repair, angiogenesis, immune modulation and stem cell homeostasis (Karnoub et al., 

2007, Mandel et al., 2013). Moreover, migration of MSC to the site of injury or 

inflammation causes either direct or indirect interaction between MSC and tumour cells 

(Melzer et al., 2016). The direct interaction occurs via membrane receptors and gap 

junctions while the indirect interaction is through secretion of cytokines, chemokines 

and growth factors (Mandel et al., 2013, Yang et al., 2015b) (see chapter one).  

MSCs can stimulate neighbouring cells with pro-tumorigenic and/or anti-tumorigenic 

behaviours by releasing these cytokines, chemokines and growth factors. Furthermore, 

tumour cells in the TME have the abilities to stimulate MSCs to develop a tumour-

associated phenotype (Hass and Otte, 2012).  It has been shown that MSCs have the 

ability to migrate to sites of tissue injuries like kidney, skin, and heart as a result of 

inflammatory mediators that are produced locally due to tissue damage (Morigi et al., 

2004, Li et al., 2006). Moreover, Mouiseddine et al showed that the migration of MSCs 

to the radiation-injured tissues was enhanced by local irradiation of the mouse abdomen 

(Mouiseddine et al., 2007). One of the potential methods to induce inflammation and 

tissue injury is local irradiation. Therefore, I tested the effect of irradiation (directly and 

indirectly) on the recruitment of the MSCs using an in vitro transwell migration assay 

model. In addition, I tested the role of the inflammatory cytokines and chemokines in 

radiation-induced MSC migration. 
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3.2.4.1 Effects of direct irradiation on the migration of MSCs in vitro 

 

To investigate the ability of direct radiation to induce migration of MSCs, the in vitro 

transwell migration model was used. C3H10 and Balb/c MSCs were seeded 

individually as 3 x 104 cells / 200-μl medium in transwell dishes (Falcon® 8.0 μm pore 

filters). Next, the cells were irradiated with 0.5 Gy and 4 Gy, with the un-irradiated 

group as control. Migration was observed 8 hours’ post-irradiation as explained in 

section 2.2.5.1. As shown in Figure 3.13, direct radiation of the C3H10 MSCs and 

Balb/c MSCs did not show a significant increase in the migration of these cells. 

3.2.4.2 Irradiated tumour cells increase the migration of Balb/c MSCs in vitro 

 

Our aim was to detect paracrine factor(s) secreted by tumour cells that influence the 

migration of C3H10 and Balb/c MSCs in vitro. So, the in vitro co-culture assay was 

carried out using tumour cells (FS120 cells, and FS188 cells) seeded at the lower 

chamber of the 24-well plate with 2 wells left with medium alone (no tumour cells) 

serving as a negative control. When the cells became 80% confluent, they were 

irradiated with 0.5 and 4 Gy, with the non-irradiated group as a positive control. After 

24 hours, the upper chamber (8.0 μm filter) was seeded with either C3H10 MSCs or 

Balb/c MSCs (3 x 104 cells / 200μl medium) and incubated for 8 hours. Migrated cells 

were then fixed, stained and counted.  Results of this experiment are shown in Figure 

3.14. Regarding the migration of the C3H10 MSCs, there were no effects of irradiated 

tumour cells on the recruitment of the C3H10 MSCs. Also, the presence of un-irradiated 

tumour cells in the lower transwell section did not show any effects on the migration 

of the C3H10 MSCs (Figure 3.14 A).   On the other hand, the presence of un-irradiated 

FS120 cells or FS188 cells in the lower transwell compartment increased the migration 

of Balb/c MSCs compared to medium alone. In addition, irradiation of a tumour cells 

with low-dose (0.5 Gy), and high dose (4 Gy) enhanced the migratory capacity of 

Balb/c MSCs (Figure 3.14 B). These results suggest that tumour cells secreted growth 

factors in their media that positively enhanced Balb/c MSCs migration. This means that 

the growth factors produced by tumour cells were potentially upregulated and secreted 

as a consequence of irradiation. Therefore, studying the effects of these growth factors 

within the conditioned medium from irradiated FS cells on the migration of MSCs was 

the next step. 
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Figure 3.13 Direct irradiation does not increase MSCs migration in vitro. 

C3H10 MSCs and Balb/c MSCs were seeded separately in the 8.0-μm pore 

filters, before they were irradiated with 0, 0.5, and 4 Gy. Migrated cells were 

fixed, stained and counted 8 hours after irradiation. The average number of 

migrated cells per 10 fields of view (40 X objective) were counted. Analyses 

using one-way ANOVA test followed by a Tukey's multiple comparisons test 

showed that there was no significant increase in the migrated cells after direct 

radiation. Results expressed as means ± SEM of 3 experiments. 
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Figure 3.13 Direct irradiation does not increase MSCs migration in vitro. 
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Figure 3.14 Migration capacity of C3H10 and Balb/c MSCs exposed to 

irradiated tumour cells. 

In vitro migration assay for C3H10, and Balb/c MSCs was measured through 

transwells. Co-culture of C3H10 MSCs with FS120 cells and FS188 cells for 8 

hours had no effect on the migration of these cells (compared to cells that migrated 

in the absence of tumour cells) (A). Balb/c MSCs co-cultured with tumour cells for 

8 hours increased their migration compared to medium alone. Irradiation of FS 120, 

and FS 188 cells with 0.5 Gy, and 4 Gy significantly increased the migration of 

Balb/c cells further. Statistical analysis was done using one-way ANOVA test 

followed by Tukey`s multiple comparisons test. Results expressed as means ± SEM, 

of 6 experiments, each done in triplicate and were considered statistically significant 

when P ≤ 0.05 (* P<0.05, ** P<0.01). 
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Figure 3.14 Migration capacity of C3H10 and Balb/c MSCs exposed to 

irradiated tumour cells. 

 

Figure 3.88 Migration capacity of C3H10 and Balb/c MSCs exposed to 

irradiated tumour cells. 

 

Figure 3.89 Migration capacity of C3H10 and Balb/c MSCs exposed to 

irradiated tumour cells. 

 

Figure 3.90 Migration capacity of C3H10 and Balb/c MSCs exposed to 

irradiated tumour cells. 
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3.2.4.3 Fibrosarcoma cell-conditioned media enhance Balb/c MSCs migration 

 

Presence of irradiated tumour cells caused an increase in migration of Balb/c MSCs as 

shown in section 3.2.4.2. Therefore, CM (neat and concentrated) from irradiated 

tumour cells were used to see whether growth factor(s) secreted from irradiated 

fibrosarcoma cells accelerated MSCs chemotaxis. Conditioned media from irradiated 

FS120 cells and FS188 cells were extracted and concentrated as described in section 

2.2.1.7. For this experiment, 3 x 104 C3H10 MSCs or Balb/c MSCs were plated onto 

transwell filters (8.0 μm filter) with CM (neat or concentrated) at the lower chamber 

and incubated for 16 hours. In the previous experiments, the incubation time after 

irradiation was 8 hours and so, in this experiment, the MSCs were initially incubated 

with the CM for 8 hours. However, at this time, not enough cells had migrated and so 

it was decided to double the time to 16 hours.  

Neither neat nor concentrated CM had significant effects on the migration of C3H10 

MSCs (Figure 3.15 A). While both neat and concentrated CM from irradiated tumour 

cells caused significant migration of the Balb/c MSCs (Figure 3.15 B). There were 

significant differences between the groups for neat CM (comparing FS120 cells and FS 

188 cells), i.e. more MSCs were migrated when they were treated with CM from FS188 

cells (control and irradiated) than treated with CM from FS120 cells. Moreover, there 

was a significant increase in migrated MSCs treated with CM from FS188 cells 

compared to MSCs treated with their medium alone or with concentrated DMEM alone 

(Figure 3.15 A). Likewise, concentrated CM from irradiated tumour cells enhanced the 

migration of Balb/c MSCs, although effects were similar for FS120 and FS188 cells. 

The presence of concentrated CM caused a significant increase in the migrations of 

MSCs compared to using media alone. All experiments were done using duplicate 

filters and were repeated three times.  
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3.2.4.4 Effects of irradiated endothelial cells on the migration of Balb/c MSCs 

 

Figure 3.15 Effects of CM (neat and concentrated) on the migration of C3H10 

MSCs (A), and Balb/c MSCs (B).  

In vitro migration of both C3H10 MSCs and Balb/c MSCs was measured through 

transwells. Both MSCs were treated individually with CM (neat & concentrated) from 

irradiated FS120 cells and FS188 cells for 16 hours. CM (neat or concentrated) had 

no effect on the migration of C3H10 MSCs (A). However, the presence of CM (neat 

or concentrated) increased the migration of Balb/c MSCs compared to medium or 

DMEM alone (B). Moreover, concentrated CM from control and irradiated with 0.5 

Gy, and 4 Gy tumour cells significantly increased migration of Balb/c MSCs 

compared to non-concentrated CM. One-way ANOVA test followed by Tukey`s 

multiple comparisons test was done using GraphPad Prism 7 software. Results 

expressed as means ± SEM, of 3 experiments, each done in duplicates and were 

considered statistically significant when P ≤ 0.05 (* P<0.05, ** P<0.01). 

 

 

Figure 3.91 Effects of CM (neat and concentrated) on the migration of C3H10 

MSCs (A), and Balb/c MSCs (B).Figure 3.15 Effects of CM (neat and 

Figure 3.15 Effects of CM (neat and concentrated) on the migration of C3H10 

MSCs (A), and Balb/c MSCs (B). 

 

Figure 3.95 Effects of CM (neat and concentrated) on the migration of C3H10 

MSCs (A), and Balb/c MSCs (B). 

 

Figure 3.96 Effects of CM (neat and concentrated) on the migration of C3H10 

MSCs (A), and Balb/c MSCs (B). 

 

Figure 3.97 Effects of CM (neat and concentrated) on the migration of C3H10 

MSCs (A), and Balb/c MSCs (B). 
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3.2.4.4 Effects of irradiated endothelial cells on the migration of Balb/c MSCs 

 

It has been shown that endothelial cells increased the migration of MSCs cells (Yuan 

et al., 2015, Kamprom et al., 2016). Additionally, co-culture of MSCs with endothelial 

cells affect their proliferation and differentiation (Saleh et al., 2011).  The effect of two 

types of irradiated endothelial cells (H5V, and HDMEC) on the migration of Balb/c 

MSCs was determined by transwell assays. H5V cells and HDMEC were seeded 

separately in 24 well plates with their media and incubated to become confluent. Then, 

2 hours before irradiation, their media were changed to Balb/c medium and irradiated 

with 0.5 and 4 Gy. Two wells were left without irradiation as a positive control, and 

another two wells left with only Balb/c medium (no cells) as a negative control. 24 

hours after irradiation, Balb/c MSCs were cultured into the insert and incubated for 16 

hours as before.  

The result revealed that there were no effects of the irradiated H5V endothelial cell on 

the migration of Balb/c MSCs (Figure 3.16 A). However, exposure of Balb/c MSCs to 

HDMEC for 8 hours caused significantly increased in the migration of MSCs compared 

to Balb/c medium alone (Figure 3.16 B). Additionally, irradiation of the endothelial 

cells with 0.5 Gy and 4 Gy caused more MSCs migration compared to control non-

irradiated cells. These results indicated that the presence of the HDMEC enhanced the 

migration of the Balb/c MSCs, while irradiation increased this migration ability of these 

cells.  
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Figure 3.16 Migration ability of Balb/c MSCs increased when co-cultured 

with irradiated A) H5V cells, and B) HDMEC.  

Transwell migration assay was done for Balb/c MSCs co-cultured with control 

(no irradiation), and irradiated H5V (for 16 hours) or HDMEC (for 8 hours). There 

were no effects of the irradiated H5V on the balb/c MSCs migration (A). While, 

enhancement of MSCs migration by HDMEC was shown, compared to MSCs 

incubated with medium alone (no HDMEC). Besides, low and high dose radiation 

(0.5, and 4 Gy) significantly increased the migration of MSCs (B). The results 

were statistically analysed using one-way ANOVA test (Tukey`s multiple 

comparisons test) with GraphPad Prism 7. All data are presented as mean ± SEM, 

of 3 experiments, each done in duplicates and were considered statistically 

significant when P ≤ 0.05 (* P<0.05, ** P<0.01). 

 

 

Figure 3.98 Migration ability of Balb/c MSCs increased when co-cultured 

with irradiated A) H5V cells, and B) HDMEC.Figure 3.16 Migration ability 

of Balb/c MSCs increased when co-cultured with irradiated A) H5V cells, and 

B) HDMEC.  

Figure 3.16 Migration ability of Balb/c MSCs increased when co-cultured 

with irradiated A) H5V cells, and B) HDMEC. 

 

Figure 3.102 Migration ability of Balb/c MSCs increased when co-cultured 

with irradiated A) H5V cells, and B) HDMEC. 

 

Figure 3.103 Migration ability of Balb/c MSCs increased when co-cultured 

with irradiated A) H5V cells, and B) HDMEC. 

 

Figure 3.104 Migration ability of Balb/c MSCs increased when co-cultured 

with irradiated A) H5V cells, and B) HDMEC. 
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3.2.4.5 Co-cultured tumour cells and endothelial cells stimulate migration of 

Balb/c MSCs in vitro 

 

In the tumour microenvironment, cross-talk between tumour cells and endothelial cells 

is essential for angiogenesis (Folkman, 1995, Zeng et al., 2005). Angiogenesis is 

mediated by soluble factors secreted from tumour cells which enhance migration and 

proliferation of endothelial cells (Lutsenko et al., 2003). As the interactions between 

endothelial cells and tumour cells are complicated, and to better understand the 

intercellular interactions between tumour cells and endothelial cells, and whether 

irradiation modifies it, I modelled an in vitro co-culture assay consisting of tumour cells 

(FS120 cells and FS188 cells) and HDMEC. By this assay, I studied if tumour cells 

cultured with HDMEC produce factor(s) that increase recruitment of the Balb/c MSCs 

and whether irradiation modified this factor(s). 

To further evaluate the synergistic effect of both tumour cells and HDMEC on the 

migration of the MSCs (as they have shown significant effects on the migration of the 

MSCs as discussed in section 3.2.4.2, and 3.2.4.4), both cells were co-cultured together 

(as described in section 3.2.3.5). The mixture of cells (FS120 cells + HDMEC) or 

(FS188 cells + HDMEC) were seeded at the lower chamber of 24 well plates and 

incubated till the cells became confluent. Next, their media were changed to MSCs 

medium and incubated for 2 hours before irradiated with 0.5, and 4 Gy with non-

irradiated cells used as controls. The cells were incubated for 24 hours after irradiation, 

and then Balb/c MSCs were seeded at 3 x 104/ 200 μl medium on the filter (8.0 μm 

pores) and incubated for 8 hours. A group of MSCs were seeded with their medium 

only (no tumour cells or HDMEC) to see whether the migration occurs due to the 

presence of cells of via factors present in the medium itself. After 8 hours’ incubation, 

the migrated cells were fixed, stained and counted.  

As shown in Figure 3.17, presence of both endothelial cells and tumour cells together, 

caused significantly more Balb/c MSC to migrate through the transwell filter compared 

to cells were exposed to medium alone (Figure 3.17). Furthermore, irradiation of the 

co-cultures resulted in further significant increases in migration (Figure 3.17). The 

table below (Table 3.1) compares the results from MSCs exposed to irradiated tumour 

cells alone (Figure 3.15), to irradiated HDMEC alone (Figure 3.16) with the results 
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shown in Figure 3.17. It can be seen that the number of migrated Balb/c MSCs were 

further increased after co-culture tumour cells with HDMEC than alone. This 

observation suggests that the presence of both tumour cells + endothelial cells enhanced 

the migratory ability of the Balb/c MSCs. 
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Figure 3.17 Effects of tumour cells co-cultured with endothelial cells on the 

migration ability of Balb/c MSCs.  

Tumour cells (FS120 cells, and FS188 cells) were co-cultured with HDMEC at 

a ratio of 1:4. Then, the co-culture mixture was irradiated by 0, 0.5, and 4 Gy. 

After 24 hours, Balb/c MSCs were seeded on the filter and incubated for 8 hours 

with the control and irradiated co-cultures. Enhancement of MSCs migration by 

both endothelial cells and tumour cells was shown, compared to MSCs 

incubated with medium alone. Low and high dose radiation (0.5 and 4 Gy) also 

significantly increased the migration of MSCs. The results were statistically 

analysed using one-way ANOVA test (Tukey`s multiple comparisons test) with 

GraphPad Prism 7. All data are presented as mean ± SEM, of 3 experiments, 

each done in duplicates and were considered statistically significant when P ≤ 

0.05 (* P<0.05, ** P<0.01, ***P<0.001, ****P<0.0001). 

 

 

Figure 3.105 Effects of tumour cells co-cultured with endothelial cells on 

the migration ability of Balb/c MSCs.Figure 3.17 Effects of tumour cells co-

Figure 3.17 Effects of tumour cells co-cultured with endothelial cells on the 

migration ability of Balb/c MSCs. 

 

Figure 3.109 Effects of tumour cells co-cultured with endothelial cells on 

the migration ability of Balb/c MSCs. 

 

Figure 3.110 Effects of tumour cells co-cultured with endothelial cells on 

the migration ability of Balb/c MSCs. 

 

Figure 3.111 Effects of tumour cells co-cultured with endothelial cells on 

the migration ability of Balb/c MSCs. 
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3.2.4.6 Role of cytokines and chemokines enhanced MSCs migration 

 

In the previous experiments, it was successfully shown that MSCs exposed to irradiated 

endothelial cells co-cultured with irradiated tumour cells resulted in increased numbers 

of migrated MSCs. These results imply that factors secreted from tumour cells and/or 

endothelial cells facilitate MSCs migration. It was reported by Abbott et al and Kitaori 

et al that tumour cells secreted SDF-1α, which enhance MSCs migration, and the 

migration of MSCs was decreased when SDF-1α was blocked by the relevant antibody 

(Abbott et al., 2004, Kitaori et al., 2009). Also, Dwyer et al revealed that primary breast 

cancer cells secreted MCP-1 that caused migration of the MSCs (Dwyer et al., 2007). 

Furthermore, Baek et al and Klopp et al determined that the tumour cells secreted 

cytokines that enhanced the migration of MSCs, like TGF-β1, PDGF, and VEGF, 

which were increased after irradiation (Baek et al., 2011, Klopp et al., 2007).   

In this study, an in vitro migration assay was used (as described previously) using 

transwell filters. In the lower chamber of the transwells, there was Balb/c medium 

 FS120 cells FS188 cells HDMEC HDMEC + 

FS120 cells 

HDMEC + 

FS188 cells 

Control 5.25 6.6 12.48 30 33.7 

0.5 Gy 10 13 18.8 41 44.3 

4 Gy 9 12.58 20.8 45.5 51.6 

one-way ANOVA test (Tukey`s multiple comparisons test) 

FS120 vs. 

HDMEC 

FS188 vs. 

HDMEC 

FS120 vs. 

HDMEC+F

S120 

FS188 vs. 

HDMEC+F

S188 

HDMEC vs. 

HDMEC + 

FS120 

HDMEC vs. 

HDMEC + 

FS188 

P=0.0373 

* 

P=0.0486 

* 

P<0.0001 

**** 

P<0.0001 

**** 

P<0.0002 

*** 

P<0.0001 

**** 

Table 3.1 Average numbers of migrated Balb/c MSCs after exposed to 

different cells types with their statistical significance. 

 

 

Table 3.1 Average numbers of migrated Balb/c MSCs after exposed to 

different cells types. 

 

 

Table 3.2 Average numbers of migrated Balb/c MSCs after exposed to 

different cells types. 

 

 

Table 3.3 Average numbers of migrated Balb/c MSCs after exposed to 

different cells types. 
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treated with TGF-β1 (20 ng/ml), MCP-1 (20 ng/ml), or SDF-1α (100 ng/ml, or 200 

ng/ml). The non-treated cells were used as controls. MSCs were incubated with growth 

factor for 16 hours (the time was optimized) before the cells were fixed, stained, and 

counted. The results (Figure 3.18) showed that all these factors enhanced stem cell 

migration significantly. The next step was to test for these growth factors in the CM 

from irradiated tumour cells and establish their involvement in the recruitment of MSCs 

towards them (see chapter 4). 
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Figure 3.18 Cytokines and chemokines in enhanced MSCs migration.  

Balb/c MSCs were treated for 16 hours with 20 ng/ml TGF-β1, 20 ng/ml MCP-1 

(A), or 100 ng/ml, or 200 ng/ml SDF-1α (B). Enhancement of MSCs migration by 

these cytokines or chemokines was shown compared to MSCs with medium alone 

(no treatment). One-way ANOVA test (Tukey`s multiple comparisons test) for (A), 

while unpaired t-test (two-tailed) for (B), were used with GraphPad Prism 7.0. All 

data are presented as mean ± SEM, of 3 experiments, each done in duplicates and 

were considered statistically significant when P ≤ 0.05. 

 

 

Figure 3.112 Cytokines and chemokines in enhanced MSCs migration.Figure 

3.18 Cytokines and chemokines in enhanced MSCs migration.  

Balb/c MSCs were treated for 16 hours with 20 ng/ml TGF-β1, 20 ng/ml MCP-1 

A) 

 

A) 

 

A) 

 

A) 

B) 

 

B) 

 

B) 

 

B) 

Figure 3.18 Cytokines and chemokines in enhanced MSCs migration. 
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3.3 Summary of results 

 

In this chapter, the radiation sensitivity of tumour cells and MSCs were tested using a 

clonogenic assay. Then, the effect of TGF-β1 on the growth and differentiation of 

tumour cells and MSCs was done using a growth curve assay. The western blotting 

technique was used for both C3H10 and Balb/c MSCs to study the expression of the 

MSC differentiation markers collagen-I, fibronectin, PDGFR-β and α-SMA. Different 

techniques were used to determine direct and indirect effects of irradiation on MSCs: 

i) direct irradiation, ii) incubation with CM (neat or concentrated) from irradiated 

tumour cells, iii) co-culture with irradiated tumour cells, iv) co-culture with irradiated 

endothelial cells or v) co-culture with both irradiated tumour cells + irradiated 

endothelial cells. While both C3H10 and Balb/c MSCs expressed high basal levels of 

CAFs-like cell expression markers, still the results from C3H10 MSCs were not robust. 

Therefore, Balb/c MSCs used instead for subsequent experiments. The direct 

irradiation of both C3H10 MSCs and Balb/c MSCs caused minimal changes in the 

expression of various proteins associated with differentiated CAFs. The response of 

Balb/c MSCs to irradiated tumour cells and/or their CM was clearer. The results showed 

that direct irradiation had no significant effects on the differentiation markers of MSCs, 

except for collagen I (significant increase after 0.5 Gy). However, irradiation of tumour 

cells and/or endothelial cells did increase the expression of some differentiation 

markers in MSCs, under certain conditions. This encouraged further study into the roles 

of specific cytokines and chemokines on the differentiation and migration of MSCs. 

TGF-β1, MCP-1, and SDF-1α were studied. The results showed that only TGF-β1 

significantly increased all differentiation markers (collagen-I, fibronectin, PDGFR-, 

and -SMA). However, TGF-β1, MCP-1, and SDF-1α all significantly enhanced the 

migration of MSCs through trans-well plates in vitro. Although there were no effects 

of the direct irradiation on the MSC migration, indirect radiation showed significant 

effects on the migration ability of the MSCs in vitro. Presence of tumour cells or 

endothelial cells (non-irradiated or irradiated) increased the migration of the MSCs 

compared to incubation of MSCs with medium alone. 
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3.4 Discussion 

 

The main objectives of this chapter were to study the in vitro effects of radiation 

(directly or indirectly) on the expression of CAF differentiation markers by MSCs, and, 

to investigate radiation effects on the homing and migration of MSCs. 

First, models of mesenchymal stem cells and tumour cells were developed. 

Fibrosarcoma cells that expressed a single isoform of VEGF were used as models of 

soft tissue sarcoma. Pathologist has checked these mouse tumours and she agreed that 

they are similar to human fibrosarcoma but she did not classified them into grades like 

in humans. In vivo, FS188 cells express only VEGF 188 and produce tumours with 

more CAF-like cells and perivascular pericytes than those produced by FS120 cells 

(Tozer et al., 2008). Collagen I levels are also higher in FS188 tumours versus FS120 

tumours and this correlates with the higher abundance of CAFs in the FS188 tumours 

(English et al, 2017). The differences between these tumour cells make them a good 

model to study the indirect response of MSCs to radiation, by potentially providing 

different growth factors to drive the differentiation of MSCs to CAFs. As discussed in 

chapter two, FS188 cells are more apoptotic and proliferate slower than FS120 cells 

that proliferate rapidly and apoptose less (Kanthou et al., 2014). Furthermore, FS188 

cells showed spindle-shape features with extended processes and ruffles (typical 

mesenchymal features) compared to FS120 cells which area rounded to elongated cells 

with less extended processes (Kanthou et al., 2014). A recent study by English et al has 

shown that FS120 cells have the ability to metastasise in mice to lung and these cells 

form micrometastases in lung more readily than the FS188 cells These metastasised 

FS120 tumours colonies were more sensitive to anti-VEGFA therapy than colonies of 

FS188 (English et al., 2017).  

At the beginning of this research project, C3H10 MSCs were used, which are a cell line 

established in 1973 and were used by many researchers as a stem cell model of MSCs 

that can differentiate into CAF-like cells (Reznikof.Ca et al., 1973). Although both 

C3H10 and Balb/c MSCs expressed high basal levels of CAFs-like cell expression 

markers, still the results from C3H10 MSCs were not as expected. Therefore, Balb/c 

MSCs were used instead. Balb/c MSCs were used by Klopp et al. and have shown a 

good response to radiation as seen by an increase in expression of CCR2, a receptor for 
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MCP-1, and enhancement of Balb/c MSCs migration by cytokines secreted by 

irradiated tumour cells (Klopp et al., 2007). Although direct irradiation of both C3H10 

MSCs, and Balb/c MSCs caused minimal changes in the expression of various proteins 

associated with differentiated CAFs (see section 3.2.3.1), the response of Balb/c MSCs 

to irradiated tumour cells and/or their CM was more robust. Neither irradiated tumour 

cells, nor their CM had any effects on the differentiation markers of the C3H10 MSCs 

(Figure 3.5 & 3.7). On the other hand, Balb/c MSCs showed promising results after 

exposure to irradiated tumour cells (especially irradiated FS188) or their CM such as 

an increase in collagen-I, fibronectin, PDGFR-β, and α-SMA expression as shown in 

Figures 3.6 & 3.8. Compared with the above study, a study by Barcellose-de-Souza 

showed that treatment of MSC with CM from human prostatic cancer cells caused 

enhancement the expression of α-SMA (CAF marker) (Barcellos-de-Souza et al., 2016). 

Furthermore, C3H10 MSCs, unlike Balb/c MSCs, did not respond to either direct 

irradiation, or to treatment with irradiated tumour cells and/or their CM in terms of 

migration (Figure 3.13, 3.14, and 3.15). Since C3H10 cells were rather unresponsive, 

subsequent experiments were performed using only the Balb/c MSC model. 

An in vitro clonogenic cell survival assay was chosen to assess viability and to enable 

a selection of appropriate radiation doses to expose the cells to. In this study, the 

radiation sensitivity of mouse fibrosarcoma cells (FS120 cells, and FS188 cells), 

C3H10 MSCs, and Balb/c MSCs were tested. The results showed no differences in 

radiation sensitivity between FS120 cells and FS188 cells, except at 4 Gy, where FS188 

cells were more radiosensitive than FS120 cells (Figure 3.1). Many studies showed 

that normal fibroblasts and CAFs could tolerate high radiation doses (radioresistant 

cells) (Hawsawi et al., 2008, Papadopoulou and Kletsas, 2011, Tachiiri et al., 2006). 

Similarly, both C3H10 MSCs and Balb/c MSCs were more radio-resistant than the 

tumour cells (Figure 3.1). These results support a study by Islam et al in which adult 

human MSCs were more radioresistant than embryonic stem cells (Islam et al., 2015). 

Furthermore, it has been shown that fractionated or hyperfractionated radiotherapy of 

0.5-2 Gy causes radioresistance in MSCs (Tomuleasa et al., 2010, Clavin et al., 2008). 

Data from clonogenic assays might suggest that most cells die at higher radiation doses. 

However, irradiated endothelial cells and fibrosarcoma cells still produce growth 

factors and cytokines that enhanced MSCs migration and differentiation. The 
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explanation of this could be because irradiation caused senescence of the tumour cells 

and endothelial cells. Senescent cells exhibit increased inflammatory cytokines and 

ROS, decreased nitric oxide production and increased ECM protein production through 

stimulation of TGF-β1 (Wang et al., 2016, Davalos et al., 2010). Several studies showed 

that senescent cells play an important role in radiation fibrosis. Schafer et al showed, in 

lung tissue, that fibrogenesis was enhanced via senescent fibroblasts (Schafer et al., 

2017). Moreover, Beach et al showed that radiotherapy of the lungs caused cellular 

senescence via DNA damage and an inflammatory response which later caused 

pulmonary fibrosis (Beach et al., 2017). Radiation can also cause senescence of the 

endothelial cells (Korpela and Liu, 2014). On the other hand, a study by Krizhanovsky 

et al showed the reverse, in which senescent hepatic stellate cells limit fibrotic processes 

in acute liver damage (Krizhanovsky et al., 2008). It is well known that senescent cells 

secrete growth factors and chemokines such as TGF-β1 and MCP-1 as a part of 

senescence-associated secretory phenotype (SASP) (Acosta et al., 2013). Radiation 

also induces senescence of MSCs (Wang et al., 2010, Wang et al., 2011). 

In the current study, doses between 0.2 and 4 Gy were chosen for either irradiating 

MSCs directly or irradiating tumour and endothelial cells to stimulate MSCs. Although 

4 Gy was a lethal/sublethal dose on tumour cells (SF was 3.1%, and 0.98% for FS120 

cells, and FS188 cells respectively) and a moderate dose for MSCs (SF was 40.0%, and 

25.6% for Balb/c MSCs, and C3H10 MSCs respectively) it was selected to mimic 

radiation doses used in clinical treatment.  

In vitro clonogenic assays may not reflect the actual in vivo radiosensitivity of the cells 

within the TME, for instance because the TME is more hypoxic. It has been shown that 

hypoxia increased radioresistance of MSCs, both in vitro and in vivo, by increasing 

their proliferation, DNA damage repair, and maintained their proliferation and 

differentiation abilities after irradiation (Sugrue et al., 2014, Singh et al., 2012). 

In this chapter, TGF-β1 growth factor was tested for both growth and differentiation of 

MSCs. TGF-β1 has been shown to be an important pro-fibrotic cytokine (Yarnold and 

Brotons, 2010) involved in organ growth and development, differentiation and 

proliferation of the cells, and immune modulation (Lewis et al., 2004).  While TGF-β1 

growth factor has been shown to have a significant effect on MSCs growth (Ng et al., 

2008) in this study, an in vitro growth curve showed no significant effect of TGF-β1 on 
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the proliferation of C3H10 and Balb/c MSCs. A possible explanation of this may be 

because in the previous study, human MSCs were used while in this study mouse MSCs 

were used.  

Also, in both previous studies and this study 10 ng/ml of recombinant TGF-β1 were 

used, however, the technique, MSCs seeding densities, passage number, and the time 

limit were different (Ng et al., 2008). Moreover, while TGF-β1 is an important cytokine 

for the growth of MSCs it can also act as a negative growth regulator in some cell types 

(Datto et al., 1995, Hannon and Beach, 1994). Kulterer et al and Ng et al showed that 

TGF-β1 is important growth factors in the differentiation of the MSCs (Kulterer et al., 

2007, Ng et al., 2008). In this study, it was demonstrated that TGF-β1 induced 

morphological differentiation of both C3H10 and Balb/c MSCs so that the cells became 

more spindle shaped, which is a characteristic of CAFs. This observation was further 

supported by a western blot study through up-regulation of extracellular matrix proteins 

such as collagen-I, fibronectin, and -SMA (Figure 3.12), and was also supported by 

a trans-well migration assay, where TGF-β enhanced the migration of the MSCs 

significantly (Figure 3.18). Similarly, a recent study by Barcellose-de-Souza has 

shown that MSCs were recruited to the tumour site and differentiated into CAF-like 

cells through TGF-β1 (Barcellos-de-Souza et al., 2016). In this study, higher expression 

of collagen-I, fibronectin, PDGFR-β and -SMA was evident after treatment of MSCs 

with 10 ng/ml TGF-β for 4 days.  

Despite a substantial amount of research in this area, still the role MSCs in cancer 

growth and metastasis is not fully understood. It has been shown that MSCs enhance 

cancer growth and metastasis, while other studies showed the reverse (Karnoub et al., 

2007, Secchiero et al., 2010, Clarke et al., 2015, Shinagawa et al., 2010). Moreover, 

MSCs also play a key role in the TME via their special cellular interactions to cause 

either promotion or inhibition of tumour growth (Klopp et al., 2011). As tumour 

inhibitors, MSCs block AKT and Wnt signalling, suppress angiogenesis, and apoptosis 

through cell cycle arrest (Hass and Otte, 2012, Rhee et al., 2015). As tumour promoters, 

MSCs can be recruited to a tumour and activated by TGF-β1 to form CAFs that play a 

key role in tumour growth, as described above (Barcellos-de-Souza et al., 2016). It has 

been shown that MSCs enhanced angiogenesis and tumour growth through their 

abilities to differentiate into pericyte-like and endothelial-like cells (Oswald et al., 2004, 
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Ball et al., 2004, Suzuki et al., 2011). Moreover, co-culture of adipose-derived MSCs 

with prostate cancer was shown to cause differentiation of MSC into endothelial-like 

cells and increased tumour vascularity and enhancement of the tumour growth (Lin et 

al., 2010, Prantl et al., 2010).  

So, in order to further understand the relation between individual cells of the TME with 

the MSCs, and because the development of tumours determined by the interaction and 

cross talk between the cells within TME, MSCs were co-cultured with irradiated 

tumour cells and/or endothelial cells. Our study demonstrated that co-culture of Balb/c 

MSCs with tumour cells (especially FS188 cells) irradiated by 0.5 Gy, and 4 Gy caused 

a significant increase in the ECM protein (collagen-I, PDGFR-β and -SMA), which 

suggested that the tumour cells are induced to secrete factors in response to irradiation 

that work in a paracrine manner to cause differentiation of MSCs into CAF-like cells.  

Our results were supported by a transwell migration assay with either, tumour cells, or 

with their concentrated CM, where more MSCs were migrated in the presence of the 

tumour cells (controls or irradiated) compared to medium alone suggesting that 

irradiated tumour cells produce factors that stimulate MSCs to home towards the 

tumour. Paracrine factors were also established to cause migration of MSCs into 

parenchyma of irradiated tumours in previous studies (Klopp et al., 2007). Moreover, I 

have found that FS188 cells caused MSCs to express higher levels of differentiation 

markers and they recruited more MSCs than FS120 cells. These results might explain 

the ability of FS188 cells to produce more α-SMA positive cells (CAFs) in vivo as 

shown by Tozer et al, 2008 (Tozer et al., 2008), by potentially producing and secreted 

more cytokines or chemokines in response to radiation. 

In this chapter, the effect of irradiated endothelial cells on the MSC expression markers 

was also studied. Endothelial cells display a high sensitivity to irradiation but also 

cross-talk with MSCs therefore studying the cellular events due to endothelial radiation 

injury is crucial (Barker et al., 2015). It has been shown that co-culture of endothelial 

cells (HUVEC) with MSCs significantly affected their differentiation and proliferation, 

suggesting presence of cross-talk between endothelial cells and MSCs, which regulate 

MSCs in the TME (Saleh et al., 2011). Moreover, Saleh et al showed that HUVECs 

secreted paracrine factors in their CM that induced enhancement of the MSCs 

proliferation when MSCs treated by this CM. Furthermore, an in vitro study showed 
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that low dose radiation (<5 Gy) increases VEGF secretion and enhances tumour growth 

(Heissig et al., 2005, Vala et al., 2010). In this study, Balb/c MSCs co-cultured with 

irradiated HDMEC (0.5, and 4 Gy) displayed an upregulated expression of fibronectin 

and PDGFR-.  

The effects of radiation on the C3H10 MSCs and Balb/c MSCs migration were assessed 

using an in vitro transwell migration assay. C3H10 MSCs did not show significant 

migration after direct radiation, or co-cultured with irradiated tumour cells or with their 

CM, whereas using irradiated tumour cells or their CM strongly enhanced MSCs 

migration at 0.5 and 4 Gy after 8-16 hours. These results are in agreement with Klopp 

et al (2007). In our results, Balb/c MSCs migrated more if they were treated with CM 

extracted from irradiated FS188 cells (see Figure 3.15 B). 

Two models of endothelial cells were used to study recruitment of MSCs, H5V mouse 

endothelial cells, and HDMEC. Both control and irradiated HDMEC recruited Balb/c 

MSCs, while H5V did not. This is might be because H5V cells are endothelial cells that 

were immortalised using Polyoma virus (Garlanda et al., 1994), while HDMEC were 

primary cells taken from the human adult skin. This study was able to show that co-

culture of both; irradiated HDMEC with irradiated tumour cells caused a significant 

increase in the migration of MSCs in a dose-dependent manner as shown in Table 3.1. 

It has been shown that MSC can be recruited to inflammatory sites by crossing the 

endothelium via a multistep process (Henschler et al., 2008, Aldridge et al., 2012). 

Moreover, Luu et al showed that the cross-talk between endothelial cells and MSCs 

caused a decrease in the cytokine-induced leukocyte recruitment (Luu et al., 2013). 

The effects of cytokines and chemokines (TGF-β1, MCP-1, and SDF-1α) on the 

migration of MSCs were reported by (Baek et al., 2011, Wang et al., 2002, Kitaori et 

al., 2009) respectively. Several studies demonstrated MCP-1 as pro-fibrotic mediator 

(Carulli et al., 2005, Distler et al., 2009, Ong et al., 2003). Moreover, studies have 

shown that the MCP-1 chemokine enhance the migration of MSCs, both in vitro and in 

vivo (Boomsma and Geenen, 2012, Dwyer et al., 2007, Belema-Bedada et al., 2008). 

Klopp et al showed that TGF-β1 that secreted from tumour cells and enhanced MSCs 

migration was increased post irradiation (Klopp et al., 2007, Baek et al., 2011). In 

addition, studies demonstrated that MSCs were recruited by SDF-1α in vitro (Schmidt 

et al., 2006, Sordi et al., 2005). Furthermore, Gao et al showed that tumour cells 
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secreted soluble factors that cause MSCs to secrete SDF-1α that, in turn, activates their 

migration (Gao et al., 2009). Similar results were observed in this study, where TGF-

β1, MCP-1, and SDF-1α enhanced the migration of MSCs after 16 hours. 

In summary, the results presented here suggest that radiation caused a significant 

increase in the expression of MSC differentiation markers and enhanced the migration 

of MSCs through secreted factors from tumour cells and endothelial cells.  

In the next chapter, factors produced by irradiated tumour and endothelial cells were 

investigated further for their potential contribution towards MSC recruitment. 
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CHAPTER FOUR: 

Analysis of factor(s) responsible for MSC 

differentiation/migration within the tumour 

microenvironment 
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4.1 Introduction and Aims 

 

In the previous chapter, it was shown that radiation significantly increased the 

expression of several differentiation markers in Balb/c MSCs. Specifically, co-culture 

of Balb/c MSCs with irradiated fibrosarcoma cells or incubation with fibrosarcoma CM 

significantly increased the expression of proteins such as collagen-I, fibronectin, 

PDGFR-β, and α-SMA suggesting that MSCs were induced to acquire CAF-like 

characteristics. In addition, co-culture of Balb/c MSCs with irradiated endothelial cells 

or a mixed culture of irradiated tumour cells and endothelial cells, significantly 

increased the expression of collagen-I, fibronectin and PDGFR-β proteins. In chapter 

three, Balb/c MSC migration was shown to be enhanced by co-culture with 

fibrosarcoma cells or by incubation with fibrosarcoma cell CM. Migration was further 

enhanced by prior fibrosarcoma irradiation. Moreover, incubation of Balb/c MSCs 

either with endothelial cells alone, or with both endothelial cells and tumour cells 

increased their migration. Recombinant growth factors like MCP-1, TGF-β1, and SDF-

1α that might be secreted from tumour cells were tested and found to significantly 

increase migration of Balb/c MSCs in vitro (Figure 3.18).  

In this chapter, the expression of cytokines including MCP-1, TGF- and SDF-1α by 

fibrosarcoma cells and their potential involvement in MSC recruitment and 

differentiation were studied in more detail. Multiple studies have shown that the MCP-

1 receptor CCR2 is expressed on MSC (Ringe et al., 2007, Ponte et al., 2007, Shen et 

al., 2016, Klopp et al., 2007). Moreover, it has been shown that radiation can up-

regulate the expression of CCR2 in MSCs (Klopp et al., 2007, Connolly et al., 2016). 

Therefore, the CCR2 expression by MSC was studied in order to investigate whether 

its expression is altered after radiation.  

Because of potential differences in the ability of FS120 and FS188 cell to enhance the 

migration of MSCs, data obtained from a previous study involving RNA sequencing of 

FS 120 and FS188 solid tumours was analysed further.  RNA sequencing using NGS is 

a technique used to analyse and quantify millions of RNA transcripts in cells and tissues. 

The RNA sequencing data from un-irradiated FS120 and FS188 tumours was checked 

for differences in the expressions of specific genes that might be involved in MSC 
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recruitment and differentiation, which might clarify the development of more CAF-like 

cells in FS188 compared with FS120 tumours (Tozer et al, 2008). 

Subsequently, quantification of MCP-1 chemokine was done using an ELISA assay in 

order to quantify the amount of MCP-1 secreted from tumour cells in response to 

irradiation. Finally, to confirm that MCP-1 chemokine is an important factor that 

mediates MSCs migration to TME, blocking of MCP-1 activity by neutralizing anti-

MCP-1 antibody was performed.  

Thus, the aims of this chapter were: 

- Establish whether radiation modifies the expression of chemokines & cytokines 

involved in chemotaxis of MSCs toward irradiated tumour cells. 

- Study the effect of radiation (direct and indirect) on the expression of 

chemokine receptor CCR2 by Balb/c MSCs. 

- Identify any differences between FS120 and FS 188 tumours that could cause 

differential recruitment of the MSCs 

- Study whether MCP-1 chemokine that is secreted by tumour cells (control, and 

irradiated) plays a key role in the recruitment of MSCs to TME. 
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4.2 Results 

4.2.1 Radiation enhanced the expression/secretion of cytokines and chemokines by 

irradiated tumour cells. 

In the previous chapter, cytokines including TGF-β1, MCP-1 and SDF-1α were shown 

to enhance the migration of MSCs in vitro (see section 3.2.4.6). The aim of this 

experiment was to study the role of cytokines and chemokines involved in radiation-

enhanced MSC migration and whether they were up-regulated in the conditioned media 

from irradiated tumour cells.  To do that, two methods were used, western blot 

technique and an ELISA assay. For analysis of secreted TGF-β1, MCP-1, and SDF-1α 

by western blotting, I tested both neat and concentrated CM. The CM samples (whether 

neat or concentrated) were mixed with reducing Laemmli buffer and heated at 70°C for 

10 minutes. The amount of CM was adjusted according to cell numbers (see 2.2.1.7), 

so that 30 μl of each sample was analysed per lane (30 μl /0.5 x 106 cells). As shown in 

Figure 4.1, FS120 and FS188 cells produced MCP-1, TGF-β1, and SDF-1α, and 

furthermore, radiation significantly increased their expression/secretion.  

This increase was radiation dose-dependent. There was a tendency for higher levels of 

growth factors within concentrated CM from FS188 cells (Figure 4.1). These results 

agreed with previous array work that showed MCP-1 from FS188 cells was more than 

from FS120 cells (unpublished data from our group) and were confirmed by us using 

an ELISA assay (see later). Within the neat CM, these factors could not be detected, so 

only results from concentrated CM are shown. One-way ANOVA test followed by 

Tukey’s multiple comparisons test was used to analyse data, and were considered 

statistically significant when P ≤ 0.05 (* P<0.05, ** P<0.01). 
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Figure 4.1 Radiation up-regulated the expression of cytokines and chemokines 

in the serum-free concentrated CM from fibrosarcoma cells.  

Serum-free CM collected from control and irradiated tumour cells (4 days after 

irradiation) was concentrated and mixed with reducing Laemmli sample buffer. 30 

μl (corresponding to /0.5 x 106 cells) was analysed by western blotting to detect 

MCP-1, TGF-β, and SDF-1α. A significant increase in the expression of the 

cytokines and chemokines was revealed for both CM extracted from irradiated 

FS120 cells or from irradiated FS188 cells. One-way ANOVA test followed by a 

Tukey's multiple comparisons test was used to analyse data. Results expressed as 

means ± SEM of 3 experiments, each done in triplicate and were considered 

statistically significant when P ≤ 0.05 (* P<0.05, ** P<0.01).  
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4.2.2 Radiation increased levels of MCP-1 secreted from tumour cells in a dose-

dependent manner  

 

As established in the previous work (see chapter 3), MCP-1 plays a key role in the 

migration and differentiation of the Balb/c MSCs. In order to quantify the amount of 

MCP-1 chemokine (chemotactic cytokine) that was secreted from irradiated tumour 

cells, an ELISA was performed as described in chapter two (section 2.2.6). Serum-free 

CM from irradiated FS120 and FS188 tumour cells 4 days’ post-irradiation was 

analysed to detect mouse MCP-1 protein. At the beginning, both concentrated and neat 

serum-free CM were tested, but as the results from concentrated CM were too high 

(above the range of the standards), so only neat CM were analysed. Different dilutions 

were tested for CM samples with the reagent diluent (1:10, 1:50, 1:100, 1:150, and 

1:200) as described in section 2.2.6. Dilutions of the neat CM were performed until the 

values were within the linear range of the standard curve. Results from two dilutions 

(1:150 and 1:200) were found to be within the range of the assay and were used to 

calculate the amount of MCP-1 (pg/ml) in CM using GraphPad Prism software (Linear 

regression test). The values obtained were multiplied by the dilution factor (150 or 200) 

and divided by the number of the cells from which the CM was extracted (in millions). 

As shown in Figure 4.2, FS188 tumour cells secreted significantly more MCP-1 than 

FS120 tumour cells as established by analysing the values obtained from both dilutions. 

MCP-1 secreted from irradiated FS188 cells significantly increased after 4 days of 

irradiation compared to control un-irradiated FS188 cells in a dose-dependent manner. 

There was no significant induction of MCP-1 production by irradiation in FS120 cells 

although there was a trend for an increase (Figure 4.2).  

One-way ANOVA test followed by Tukey’s multiple comparisons test was used to 

analyse data, and were considered statistically significant when P ≤ 0.05 (* P<0.05, ** 

P<0.01). To compare between two controls groups, unpaired t-test (two-tailed) was 

used. 
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Figure 4.2 MCP-1 proteins production from tumour cells under normal (un-

irradiated) and irradiated conditions.  

The R&D ELISA assay kit for MCP-1 was used to analyse CM from FS120 and 

FS188 cells. The results were obtained from two dilution sets, 1:150 (A) and 1:200 

(B). MCP-1 produced from irradiated FS188 tumour cells increased in a radiation 

dose-dependent manner 4 days after irradiation. Furthermore, FS188 tumour cells 

secreted significantly more MCP-1 than FS120 tumour cells as established using 

both dilutions. One-way ANOVA test followed by Tukey’s multiple comparisons 

test was used to analyse data and unpaired t-test (two-tailed) was used to compare 

between control FS188 cells and control FS120 cells. All data are presented as mean 

± SEM of 3 experiments, each done in duplicate and were considered statistically 

significant when P ≤ 0.05 (* P< 0.05, ** P< 0.01). 
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4.2.3 MCP-1 secreted from tumour cells plays a role in enhancing MSC migration 

toward TME  

 

I hypothesized that the chemokine MCP-1 secreted from tumour cells is a potential 

mediator of MSC migration. In Chapter 3, it was shown that the fibrosis and 

differentiation markers (collagen-I, PDGFR-β, and α-SMA) expressed by MSCs were 

increased after co-culture of MSCs with irradiated tumour cells (especially FS188 cells) 

(Figure 3.5). Additionally, presence of tumour cells (control & irradiated) or their CM 

significantly increased MSC migration (Figure 3.14, & 3.15). Also, I showed that 

migration was significantly enhanced by 20 ng/ml recombinant MCP-1 protein (section 

3.2.4.6). In this chapter, ELISA revealed that radiation significantly increased the 

amount of MCP-1 secreted from irradiated FS188 tumour cells. In the light of that, and 

to determine whether MCP-1 is a potential mediator of Balb/c MSCs migration, MCP-

1 activity was blocked using a neutralizing antibody.  

Serum-free concentrated CM from irradiated tumour cells (FS188 cells & FS 120 cells) 

was used. Before starting the assay, the concentrated CM was tested using western 

blotting to make sure that MCP-1 is present. As the results from ELISA assay showed 

that FS188 tumour cells produce more MCP-1 protein than FS120 tumour cells, 

concentrated CM extracted from FS188 cells were tested only. Using the 24-well plate, 

the following samples were used: 

 Concentrated CM from control Fs188 cells (un-irradiated). 

 Concentrated CM from irradiated Fs188 cells (4 Gy). 

 Concentrated CM from control FS188 cells + non-immune IgG (10 μg/ml). 

 Concentrated CM from irradiated FS188 cells (4 Gy) + non-immune IgG (10 

μg/ml). 

 Concentrated CM from control FS188 cells + anti-MCP-1 antibody (10 μg/ml). 

 Concentrated CM from irradiated FS188 cells (4 Gy) + anti-MCP-1 antibody 

(10 μg/ml). 

 Recombinant MCP-1 in serum-free medium (20 ng/ml). 

 Recombinant MCP-1 in serum-free medium (20 ng/ml) + non-immune IgG (10 

μg/ml). 

 Recombinant MCP-1 in serum-free medium (20 ng/ml) + anti-MCP-1 antibody 
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(10 μg/ml). 

 Control (just serum-free medium). 

Non-immune IgG was used to ensure that the results are specific and not caused by 

non-specific effects on the cells by any immunoglobulin. Neutralizing antibody to 

MCP-1 was used to show that this protein is involved in driving the migration of the 

cells after incubation with CM. The trans-well migration assay was done as previously 

explained (see section 2.2.5.2).  

As shown before (Figure 3.15) there was a significant increase in the Balb/c MSCs 

migration after treatment with concentrated CM from FS188 cells irradiated with 4 Gy 

whether alone or with non-immune IgG compared to CM from un-irradiated tumour 

cells (Figure 4.3). However, blocking the activity of MCP-1 using anti-MCP-1 

antibody (ab203128) prevented the radiation-induced increase in the migration of the 

Balb/c MSCs (Figure 4.3). Likewise, recombinant MCP-1 protein either alone or 

combined with non-immune IgG significantly enhanced the migration of Balb/c MSCs. 

As a control for recombinant MCP-1, its activity was blocked with an anti-MCP-1 

antibody, which resulted in suppression in the migration of MSCs. 

MSCs exposed to concentrated CM from un-irradiated tumour cells significantly 

increased their migration compared with MSCs treated with serum-free medium alone. 

These results agreed with our previous results in which presence of tumour cells or their 

concentrated CM enhanced the migratory ability of Balb/c MSCs (see 3.2.4.2, and 

3.2.4.3). Blocking the activity of MCP-1 had no effect on MSC migration, where cells 

were exposed to CM from un-irradiated tumour cells. These results strongly suggest 

that MCP-1 chemokine secreted from FS188 tumour cells is an important mediator of 

radiation-induced Balb/c MSCs migration toward TME. For statistical analysis, One-

way ANOVA test followed by Tukey’s multiple comparisons test was used to analyse 

data and were considered statistically significant when P ≤ 0.05 (* P<0.05, ** P<0.01, 

*** P< 0.001). 
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Figure 4.3 MCP-1 produced by FS188 cells enhanced Balb/c MSCs migration. 

 A significant increase in the MSCs migration was seen after treatment with 

concentrated CM from FS188 cells irradiated with 4 Gy whether alone or with non-

immune IgG compared to CM from unirradiated tumour cells. However, blocking 

the activity of MCP-1 by anti-MCP-1 antibody produced no increase in the 

migration of the MSCs. Likewise, recombinant MCP-1 protein either alone or 

combined with non-immune IgG significantly enhanced the migration of MSCs. As 

a control for recombinant MCP-1, its activity was blocked with anti-MCP-1 

antibody, which resulted in suppression in the migration of MSCs. Interestingly, 

MSCs exposed to concentrated CM (no radiation) significantly showed migration 

ability more than those treated with free-serum alone.  These results strongly suggest 

that MCP-1 chemokine secreted from FS188 tumour cells is an important mediator 

of Balb/c MSCs migration toward TME and it is significantly increased after 

irradiation. The statistical test was done using One-way ANOVA test followed by 

Tukey’s multiple comparisons test. Unpaired t-test (two-tailed) was used to compare 

the results from concentrated CM from control FS188 cells with serum-free medium 

only. Quantitative data represent mean value ± SEM of 3 experiments, each done in 

duplicates and were considered statistically significant when P ≤ 0.05 (* P< 0.05, 

** P< 0.01, *** P< 0.001, **** P< 0.0001). 
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4.2.4 Radiation effects on the expression of the chemokine receptor CCR2 by 

Balb/c MSCs. 

 

There are many chemokines associated with cancer progression and fibrosis. Among 

them, MCP-1 and its receptor (CCR2) signalling has been recognised as a key player 

in stimulating tumour formation and metastasis (Zhang et al., 2010, Borsig et al., 2014). 

So far, this project has shown that MCP-1 plays an essential role in the increased 

migration of the Balb/c MSCs when exposed to CM from irradiated tumour cells. Here, 

I investigate the effects of radiation (direct & indirect) on the expression of the 

chemokine receptor CCR2 by Balb/c MSCs. Cell lysates from Balb/c MSCs were 

collected from different experimental conditions, 3-4 days after: 

 Direct irradiation of the Balb/c MSCs. 

 Co-culture of Balb/c MSCs with irradiated tumour cells. 

 Incubation of Balb/c MSCs with concentrated CM from irradiated tumour cells. 

Anti-CCR2 antibody (1:1000 concentration) was used. MSCs treated with Balb/c 

medium alone or with no radiation, were regarded as control cells. 

Normalisation was done by dividing the ratio of target protein to internal control (i.e., 

dividing or “normalizing” by the loading control). Western blotting analysis revealed a 

main band present in all samples at ~ 45 kDa, which is the predicted molecular size of 

CCR2. There was no significant increase in the expression of CCR2 in Balb/c MSCs 

exposed to direct irradiation (Figure 4.4, A). In contrast, MSCs co-cultured with FS188 

tumour cells irradiated with 0.5 Gy or their concentrated CM showed a significant 

increase in the expression of CCR2 (Figure 4.4, B & C). On the contrary, there was no 

effect of the irradiated FS120 tumour cells or their concentrated CM on the expression 

of CCR2 by MSCs. One-way ANOVA test followed by Tukey’s multiple comparisons 

test was used to analyse data and were considered statistically significant when P ≤ 

0.05. 
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Figure 4.4 Effects of (A) direct radiation, (B) co-culture with concentrated CM 

from irradiated tumour cells, and (C) co-culture of MSCs with irradiated 

tumour cells on the chemokine receptor CCR2 expressed by Balb/c MSCs.   

Cell lysates from different experiments (A, B and C) were tested for CCR2 using 

western blot technique. Direct irradiation of the Balb/c MSCs did not show an 

increase in the expression of the chemokine receptor CCR2 (A). In contrast, Balb/c 

MSCs co-cultured with FS188 tumour cells irradiated with 0.5 Gy or their 

concentrated CM showed a significant increase in the expression of CCR2 (B & 

C). There was no effect of the FS120 tumour cells or their concentrated CM on the 

expression of CCR2 by Balb/c MSCs. Statistical analysis was done using one-way 

ANOVA test followed by Tukey’s multiple comparisons test. Results expressed as 

means ± SEM of 3 experiments, each done in triplicate and were considered 

statistically significant when P≤ 0.05 (* P<0.05). 

Tubulin 

CCR2 
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4.2.5 Searching for genes that might explain the variations between FS120 and 

FS188 tumours using NGS information. 

 

Tumour samples from an experiment carried out by a post-doctoral scientist, Dr 

Debayan Mukherjee, were used. He injected FS120 and FS188 cells tumour cells 

subcutaneously into separate groups of CD1 nude mice. When the tumours reached 

~1000-1200 mm3
, they were excised and frozen. Dr Will English extracted the RNA 

from the un-irradiated tumour sections for sequencing by the NGS service at the 

Sheffield Children's Hospital. Dr James Bradford, carried out the bioinformatics 

analysis.  

Through literature searching, a list of all factors (chemokine receptors & ligands) that 

might be involved in recruitment or differentiation of MSCs to tumours was prepared 

(see chapter one, Table 1.1). Using this list, the NGS database was explored in order 

to find whether gene expression levels of any of these factors was significantly different 

between FS120 and FS188 tumours. The highlighted genes that showed significant 

differences between the two groups are shown in Figure 4.4. The results considered 

statistically significant when P ≤ 0.05. 

Although this project is interested in growth factors MCP-1, TGF-β1, and SDF-1α and 

have shown that they were significantly increased the migration of the MSCs in vitro, 

the NGS results did not show significant differences between FS120 and FS188 

tumours in regard to those factors. 

From the data shown in Figure 4.4, CTGF and TGF-β2 were chosen for further study, 

as both of them play an important role in radiation fibrosis (Hill et al., 2001, Westbury 

et al., 2014, Bonniaud et al., 2004). Thus, CTGF and TGF-β2 were tested in both 

concentrated CM and cell lysates from irradiated tumour cells. The CM was 

concentrated as described in section 2.2.1.7. For western blotting, a 15% SDS-PAGE 

gel was prepared as explained in section 2.2.4.4. Recombinant Human TGF-beta2 

protein was used as a positive control and run at 2 μg/lane and resolved with the gel 

under reducing conditions. Each membrane was blocked by either anti-CTGF antibody 

(ab 6992) or anti-TGF-β2 antibody. Western blotting results from cell lysates were 

normalised by calculating the ratio of target protein to internal control (i.e., dividing or 

“normalizing” by the loading control). 
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The western blot analysis for CTGF showed a significant increase in the expression of 

CTGF for cell lysate samples from FS120 cells versus FS188 cells (unpaired t-test, P = 

0.041) (Figure 4.5, A). This means that FS120 cells produce more CTGF than FS188 

cells. Moreover, irradiation of FS120 cells with 0.5 Gy caused an increase in the 

expression of CTGF in both cell lysates and concentrated CM (One-way ANOVA, 

Tukey’s multiple comparisons test, P = 0.027) (Figure 4.5, A & B). In contrast, there 

was no increase in the expression of CTGF for both concentrated CM and cell lysates 

extracted from irradiated FS188 tumour cells.  

Regarding TGF-β2 expression, as noticed in Figure 4.5 C, TGF-β2 protein is expressed 

at its expected molecular weight size (~50 kDa) for the cell lysate samples. There was 

also a large band running at ~37 kDa, and a very faint lower molecular weight bands at 

~25 kDa. No TGF-β2 was detected in the CM (neat & concentrated) extracted from 

irradiated tumour cells (FS120 and FS188 cells) as shown in Figure 4.5.D whereas the 

positive control (Recombinant Human TGF-beta 2) protein was expressed at its 

molecular size, 13 kDa for the monomer, and 25 kDa for the dimer (Figure 4.5 D).  

Western blot analysis for TGF-β2 was done for the band at ~50 kDa, which is the 

expected molecular size of the target protein. There was no difference in the expression 

of TGF-β2 between FS120 and FS188 cells. In addition, there was no expression of 

TGF-β2 in the concentrated CM extracted from irradiated tumour cells (positive control 

expressed only) (Figure 4.5, D). 
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Figure 4.5 NGS database results for chemokine receptors and ligands 

expressed by control (non-irradiated) mouse fibrosarcoma tumours (FS120 

tumours & FS188 tumours).  

A) Quadruplicate data from NGS analysis of murine fibrosarcoma control sections. 

The genes that showed significant differences between the two tumour types are 

highlighted. The results considered statistically significant when P≤ 0.05. B) CTGF 

and TGF-β2 were examples of two genes that were significantly different between 

FS188 and FS120 tumours values from the RNAseq analysis are plotted for 

comparison (B). 
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Figure 4.6 Expressions of CTGF, and TGF-β2 proteins in the concentrated CM 

and cell lysates obtained from irradiated tumour cells.  

The expression of the CTGF protein is significantly increased in the cell lysates 

from FS120 cells versus from FS188 cells (un-paired t-test, P = 0.041) (A). 

Moreover, the expression of the CTGF protein (cell lysates & concentrated CM) is 

significantly increased after irradiation of the FS120 cells with 0.5 Gy (One-way 

ANOVA, Tukey’s multiple comparisons test, P = 0.027) (A & B). On the other 

hand, TGF-β2 was expressed in the cell lysates extracted from FS188 cells and 

FS120 cells (no differences between the two groups) (C). No expression of the TGF-

β2 in the concentrated CM extracted from irradiated tumour cells (positive control 

expressed only) (D). TGF-β2 antibody detected in the cell lysate samples showed a 

big band at ~37 kDa, in cell lysates as well as very faint lower molecular weight 

bands at ~25 kDa. Western blot analysis was done for TGF-β2 band at ~50 kDa (real 

molecular weight). One-way ANOVA test followed by Tukey’s multiple 

comparisons test was done to analyse data from each group individually. While 

unpaired, two-tailed t-test was used to analyse two control groups (control FS12, 

and control FS188). Results expressed as means ± SEM of 3 experiments, each done 

in triplicate and were considered statistically significant when P ≤0.05. 

 



                                                                                              

 

162 
 

4.3 Summary of results 

 

Radiation up-regulated the expression and secretion of cytokines and chemokines 

(TGF-β1, MCP-1, and SDF-1α) by fibrosarcoma cells. This up-regulation of MCP-1 

and its ability to enhance the migration of MSCs (as previously shown) was followed 

by a study of the expression of its receptor (CCR2) by MSCs. CCR2 expression by 

Balb/c MSCs was increased significantly after exposure to FS188 tumour cells 

irradiated by 0.5 Gy or their concentrated CM. While exposure of MSCs to FS120 

tumour cells or their concentrated CM did not show any significant changes in the 

CCR2 expression.  

Because of potential differences in the ability of FS120 and FS188 cell to enhance the 

migration of MSCs, data obtained from a previous study involving RNA sequencing of 

FS 120 and FS188 solid tumours was analysed further.  NGS analysis was done using 

control unirradiated tumours from in vivo experiment. The NGS analysis showed 

significant differences in the expressions of certain genes (chemokine receptors & 

ligands) between FS120 and FS188 tumour sections. The expression of CTGF and 

TGF-β2 were studied in cell lysates and concentrated CM from irradiated tumour cells. 

CTGF protein levels were higher in the extracts and CM from FS120 cells versus FS188 

cells. These results are in the agreement with the NGS database results for gene 

expression in un-irradiated solid tumours. On the other hand, the TGF-β2 protein was 

expressed in cell lysates of both FS188 and FS120 tumour cells at similar levels, with 

no expression in their CM, as assessed by western blotting. In order to quantify the 

amount of the MCP-1 protein secreted from tumour cells in their CM, an ELISA assay 

was used. The results showed that FS188 tumour cells secreted significantly more 

MCP-1 protein than FS120 cells. Likewise, irradiation of the FS188 tumour cells 

increased the secretion of MCP-1 in a dose-dependent manner. Finally, the migration 

assay using blocking antibodies suggested that MCP-1 chemokine secreted from 

tumour cells (especially FS188 cells) is an important factor that facilitates radiation-

induced MSC migration toward TME. 
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4.4 Discussion 

 

In the previous chapter, it was successfully shown on the basis of western blotting 

analysis, that irradiation modifies the secreted factor(s) produced from tumour cells that 

caused an increase in the expression of CAF-like differentiation factors expressed by 

Balb/c MSCs. It was also seen, in vitro, that Balb/c MSCs display a particular tendency 

to migrate after exposure to irradiated tumour cells or their concentrated CM (Figure 

3.14, and 3.15). Moreover, this Balb/c MSCs migration mediated by paracrine factors 

secreted by irradiated tumour cells.  

It has long been thought that radiation causes tissue injury and subsequent local 

inflammation. As a consequence of radiation-responding inflammation, a number of 

paracrine mediators including inflammatory cytokines secreted from fibroblasts, 

macrophages, and epithelial cells are up-regulated (Chen et al., 2002). It has been 

shown that the level of serum cytokines and their receptors (TNF-, IL-6, IL-8, VEGF, 

M-CSF and bFGF) were elevated in STS patients compared to healthy controls 

(Rutkowski et al., 2002). The next step was to study whether irradiation of fibrosarcoma 

cells could modify the expression/secretion of paracrine factors such as MCP-1, TGF-

β1, and SDF-1α in their CM. To investigate that, these cytokines were first analysed in 

the CM from control and irradiated tumour cells using a western blotting technique. 

The results showed that the expression of MCP-1, TGF-β1, and SDF-1α was increased 

significantly in the concentrated CM of irradiated tumour cells in a radiation dose-

dependent manner (Figure 4.1). However, the amount of these factors was undetected 

in the neat CM possibly due to their low levels.  

In the previous chapter (see section 3.2.4.6), it was demonstrated that after 16 hours 

treatment of Balb/c MSCs either with MCP-1, or TGF-β1 or SDF-1α their migration 

abilities significantly increased compared to control (Figure 3.18). Because many 

studies have already been performed on TGF-β1 and its role in recruitment/ 

differentiation of MSC, MCP-1 cytokine was chosen to study further here. MCP-1 

protein is expressed and upregulated in CAFs (Li et al., 2014). Furthermore, studies 

showed that MCP-1 expressed by human ovarian cancer cells (Furukawa et al., 2013) 

and by human endometrial cancer cells and affect their treatment with chemotherapy 

(Wang et al., 2006). Recently, it has been shown that MCP-1 is upregulated in triple-
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negative breast cancer cells with enhanced its metastasis and invasiveness (Dutta et al., 

2018). Moreover, the role of MCP-1 in fibrosis and recruitment of MSC to the site of 

injury is still controversy; some studies support its role in recruitment of MSCs while 

others not (Tokuda et al., 2000, Anders et al., 2002, Moore et al., 2001, Ringe et al., 

2007, Takano et al., 2014). 

Many methods are available to detect and quantify the amount of the MCP-1 chemokine 

secreted from tumour cells in response to radiation such as ELISA (sandwich), cytokine 

bead arrays and microarrays, antibody array and flow-cytometry. ELISA (sandwich) 

was chosen because it is a reliable, less expensive, colorimetric method that requires 

less time to set up and optimize than some other methods. ELISA results showed that 

the secretion of MCP-1 chemokine by tumour cells increased significantly after 4 days 

of irradiation. Moreover, ELISA assays revealed that the increase in the secretion of 

MCP-1 chemokine was in a radiation dose-dependent manner (Figure 4.2). This dose-

dependent increase in the amount of MCP-1 chemokine was only with the CM from 

irradiated FS188 tumour cells and not FS120 tumour cells (although there was a 

tendency to increase in the amount of MCP-1).  

These results are different from the data obtained from the western blotting analysis in 

which both tumour cell types were shown to produce MCP-1 cytokine to similar levels 

and increased in a radiation dose-dependent manner (Figure 4.1). Proteins in the 

western blot methods are denatured using SDS-PAGE, while in ELISA, the proteins in 

its native form. This big difference in the amount of MCP-1 measured by the above two 

methods could be due to the sensitivity of ELISA assays in quantification of proteins 

compared to the western blot. Also, for ELISA, a neat non-concentrated CM was used 

while in the western blot, a concentrated CM was used, so it is possible that proteins 

were lost or degraded during the concentration of the CM.  Our previous results showed 

an enhancement of MSC migration in a radiation-dependent manner after treatment 

with cell lysates or CM from control and irradiated tumour cells (Figure 3.14, and 3.15). 

This dose-dependent increase in MCP-1 levels in the CM from FS188 cells might 

explain the ability of these cells to recruite more α-SMA positive cells (CAFs) than 

FS120 cells (Tozer et al., 2008). Moreover, the differences between the two-

fibrosarcoma isoforms, FS188 and FS120, might explain this, independent of radiation.  
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CAFs are responsible for the synthesis of ECM components like collagen (Bentzen, 

2006) and MCP-1 was shown to be expressed and upregulated in CAFs (Li et al., 2014). 

ELISA confirmed that tumour cells secrete MCP-1 in response to irradiation. As shown 

in chapter three, MCP-1 caused migration of MSCs in vitro (see section 3.2.4.6). 

Moreover, it has been shown that inhibition of MCP-1 caused a decrease in the 

migration of MSCs (Ren et al., 2012, De Becker and Van Riet, 2016). To address this 

issue, migration assays were done using a blocking MCP-1 antibody in order to 

establish whether it is the potential mediator of Balb/c MSCs migration or not. The 

same time scale that was used before (see section 3.2.4.6) were used for incubation (16 

hours). As ELISA assays showed that FS188 produce more MCP-1 than FS120 tumour 

cells, concentrated CM from FS188 was tested. The results showed that the anti-MCP-

1 antibody significantly suppressed Balb/c MSCs migration and suggest that MCP-1 is 

potentially a major chemokine that caused the migration of MSCs in the co-culture 

systems that were used in this study. These results (Figure 4.3) supported the results 

obtained from the migration assay that was done before (see section 3.2.4.2, and 3.2.4.3) 

in which presence of the tumour cells or their CM cause a significant increase in the 

migration of MSCs compared with using serum-free medium alone. To establish the 

differences between FS188 and FS120 tumour cells, blocking the activity of MCP-1 

using concentrated CM from FS120 needs to be done in the future. Moreover, it has 

been shown, in chapter three, that TGF- and SDF-1 also enhanced the migration of 

MSCs significantly. Therefore, the next step was to test both TGF- and SDF-1 

using the migration assay with blocking antibody and if they show significant effects, 

ELISA assays would be the next step. This work will be done in the future to establish 

the differences between the two fibrosarcoma tumour cells in vitro and whether MCP-

1, TGF- or SDF-1play a role in the migration/recruitment of MSCs. 

Because chemotaxis involves the release of signals or chemokines recognised by 

receptors expressed on the migrating cells, and as it was established in this chapter that 

tumour cells up-regulated MCP-1 chemokine signalling in their concentrated CM in 

response to radiation, it was important to establish whether MCP-1 receptor (CCR2) 

was also expressed by the MSCs cells. It has been shown that CCL2-CCR2 signalling 

plays an important role in cancer progression, fibrosis and metastasis (Zhang et al., 

2010, Borsig et al., 2014). In this chapter, it established that treatment of Balb/c MSCs 

with either irradiated FS188 tumour cells (0.5 Gy) or their concentrated CM cause a 
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significant increase in the expression of the CCR2 by Balb/c MSCs. These results are 

in agreement with Klopp et al and Connolly et al, who showed that chemokine receptor 

CCR2 was expressed by MSCs and its levels of expression increased after irradiation 

(Klopp et al., 2007, Connolly et al., 2016). These finding could indicate that after 

irradiation, the tumour cells secrete MCP-1 cytokine that leads to up-regulation of its 

receptor (CCR2) on MSC, and eventually cause recruitment of the MSC to the MCP-1 

ligand-bearing tumour. To prove that, migration assay using anti-CCR2 antibody needs 

to be done to see whether that blocking of CCR2 will suppress MSCs migration after 

irradiation in vitro. Inflammatory cytokines like TNF-, and other growth factors 

secreted by tumour cells can also up-regulate CCR2 (Ringe et al., 2007, Ponte et al., 

2007). 

NGS analysis was done using control unirradiated tumours from in vivo experiment 

done by Dr Mukherjee (as discussed in chapter 2). The NGS analysis showed 

significant differences in the expressions of certain genes (chemokine receptors & 

ligands) between FS120 and FS188 tumour sections. Multiple studies have shown that 

CTGF and TGF-β2 play an important role in radiation fibrosis (Hill et al., 2001, 

Westbury et al., 2014, Bonniaud et al., 2004, Ihn, 2002). Moreover, the fibrotic activity 

of TGF-β depends on the CTGF activities (Mori et al., 1999, Liu et al., 2013, Parada et 

al., 2013). Recently, it has been shown that blockage of the CTGF activities can reverse 

the fibrotic process in the lungs (Bickelhaupt et al., 2017). In the light of that, I decided 

to study the expression of CTGF and TGF-β2 in cell lysates and concentrated CM from 

irradiated tumour cells. Although the results were against what expected (FS188 cells 

produce more CTGF), it was in agreement with the NGS data analysis, in which the 

expression of CTGF was greater in FS120 cells than FS188 cells.  

Comparing our results with previous results, Tozer et al showed that FS188 tumours 

produce more α-SMA positive cells (more fibrotic) than FS120 tumours in vivo (Tozer 

et al., 2008). However, in vitro results in this work were controversial. This project 

showed, using ELISA, that FS188 produce more MCP-1 than FS120 tumour cells. 

However, in contrast, it is shown in this work that FS120 secreted more CTGF than 

FS188 cells. Furthermore, NGS data showed complex differences between FS188 and 

FS120 tumours, and the ability of fibrosarcoma tumours to recruit CAF-like cells and 

pericytes depends not only on one factor, but it is a combination of many factors such 
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as TGF- and SDF-1. Many studies showed that tumour cells growth, migration and 

metastasis depends mainly on cross-talk between tumour cells and local TME which is 

more complex in vivo than in in vitro models (Chambers et al., 2002, Fidler, 2003, 

Steeg, 2006, Wirtz et al., 2011).  

On the other hand, TGF-β2 was expressed in the cell lysates from both tumour cells, 

with no radiation modification of its expression (Figure 4.5). There was no expression 

of TGF-β2 in the CM (neat or concentrated), although the positive control (recombinant 

human TGF-β2 protein) was detected at its correct molecular size, 13 kDa for the 

monomer, and 25 kDa for dimer (Figure 4.5 D). This might be either because the TGF-

β2 isoform is secreted as a latent precursor large molecule (Roberts, 1998) or it was 

cleaved by ionising radiation. 

In summary, this work found that MCP-1 chemokine and its receptor CCR2 play a key 

role in the recruitment of Balb/c MSCs toward the irradiated tumour environment, with 

a dose-dependent manner, as the MCP-1 amount was increased. Moreover, this work 

also demonstrated that CTGF secretion from FS120 tumour cells was more than FS188 

tumour cells in vitro. In the next chapter, staining and analysing of the fibrosarcoma 

tumour sections from an in vivo experiment for fibrosis markers was done and analysed. 
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CHAPTER FIVE: 

In vivo fibrosarcoma model 
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5.1 Introduction & aims 

 

In the previous work, it was shown that radiation significantly increased the expression 

of differentiation markers in Balb/c MSCs in vitro such as collagen-I, fibronectin, 

PDGFR-β, and α-SMA suggesting that the cells were induced to acquire CAF-like 

characteristics. ELISA assay showed that FS188 tumour cells secreted more MCP-1 

protein than FS120 cells. Likewise, irradiation of the FS188 tumour cells increased the 

secretion of MCP-1 in a dose-dependent manner. It was also shown that MCP-1 induced 

migration of MSCs toward tumour cells in vitro.  As detailed in chapter one, CAFs are 

the primary source of ECM proteins such as collagen and fibronectin in TME. So, it 

was important to investigate levels of CAFs within FS188 and FS120 tumours in vivo 

and the response to irradiation. 

Paraffin-embedded and frozen tumour sections (control and irradiated) from an 

experiment done by a post-doctoral scientist, Dr Debayan Mukherjee were used. 

Immunohistochemical staining for α-SMA, as a marker for CAF-like cells, was carried 

out in paraffin-embedded tumour sections. Masson’s trichrome staining, originally used 

in smooth muscle tissue (Puchtler and Isler, 1958), was used to detect collagen fibres 

within tumour sections. Masson’s trichrome staining is still used to detect collagen 

fibres in cardiac, renal, and liver fibrosis (de Jong et al., 2012, Zhou et al., 2013, Lo 

and Kim, 2017).  

Analysis of Massson’s staining in images of tumour sections was done using 

Imagescope and HistoQuest software after scanning of the slides with a TissueGnostics 

confocal slide scanner. Many studies have used Imagescope or HistoQuest to quantify 

tissue injury and inflammation (Daunoravicius et al., 2014, Hernandez-Morera et al., 

2016, Vranceanu et al., 2014, Chen et al., 2016). In this chapter, immunofluorescent 

staining with CD31 and α-SMA was used to study radiation effects on the TME. 

Moreover, vascular staining with CD31 enabled us to study vascular differences 

between two tumour types expressing single isoforms of VEGF (FS188 and FS120 

tumours) and to identify whether radiation increased ECM produced from CAF-like 

cells (α-SMA staining).  
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Accordingly, the aims of this chapter were to: 

- Analyse α-SMA expression within control and irradiated paraffin-embedded 

mouse fibrosarcoma tumour sections using immunohistochemistry to see 

whether radiation enhances the CAF-like cells and if there are any differences 

in the α-SMA expression between FS188 and FS120 tumours. 

- Establish whether radiation modifies the expression of collagen in both FS120 

and FS188 tumours using Masson’s trichrome staining on paraffin tumour 

sections. 

- Identify any differences in vasculature and ECM contents post-irradiation 

between FS120 and FS188 tumours in vivo that could explain their abilities to 

recruit MSCs using immunofluorescent staining with CD31 and α-SMA for 

frozen tumour sections. 
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5.2 Results 

5.2.1 Immunohistochemical staining of fibrosarcoma tumour sections 

 

In the previous chapters, the results from in vitro experiments verified that irradiation 

of the tumour cells caused them to secrete factor(s) that enhanced the migration of the 

Balb/c MSCs. Moreover, it was shown that irradiation (indirectly) increased the CAF-

like differentiation markers expressed by Balb/c MSCs. The aim of this experiment was 

to study the radiation effects on the recruitment of CAF-like cells in fibrosarcomas, 

using expression of α-SMA. As discussed in chapter two section 2.2.7, Dr Debayan 

Mukherjee performed the in vivo experiments and Mrs Maggie Glover provided 

formalin-fixed, paraffin-embedded tumour sections, while Mr Matthew Fisher prepared 

frozen tumour sections. 

Mr Matthew Fisher provided the original IHC protocol. Formalin-fixed and paraffin-

embedded fibrosarcoma sections were deparaffinised and rehydrated as discussed in 

chapter two, section 2.2.7.1. Randomly assigned fields were chosen with different 

magnifications (10X and 20X objectives) and captured using a Nikon microscope 

(Nikon Optiphot-2). A positive reaction for α-SMA was observed, but unfortunately, 

there was a lot of background, which made identification of truly α-SMA positive cells 

difficult. In order to decrease the background (Menon and Fisher, 2015), the followings 

were done: 

 Increased the incubation period with IgG blocking from 60 minutes to 90 

minutes at room temperature. 

 Decreased the concentration of primary antibody (α-SMA) from 1:10,000 to 1: 

20,000. 

 Decreased the concentration of secondary antibody (biotinylated anti-mouse 

IgG) from 1:250 to 1:300 and 1:350. 

 Increased washing time with PBS and decreased incubation with DAB staining. 

However, the background staining did not disappear. 
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Figure 5.1 α-SMA distributions within irradiated and un-irradiated 

fibrosarcoma tumour sections.   

FS120 and FS188 tumour cells were implanted subcutaneously into CD1 nude mice. 

Once tumours had grown to ~100 mm3
 
in diameter, they were irradiated in situ with 

20 Gy over 4 days (8 X 2.5 Gy fractions). Tumours were excised when they reached 

~1000-1200 mm3, and were embedded in paraffin, sectioned and stained for α-SMA. 

Random fields were chosen with different magnifications (10X and 20X objectives) 

using a Nikon microscope. A positive reaction for α-SMA was observed. Stromal 

spindle cells, which were positive for α-SMA, were regarded as CAF-like cells 

(yellow arrows). Perivascular cells positively reacted α-SMA were regarded as 

pericytes (white arrow). Unfortunately, there was a lot of background for most of 

the slides, which made identification of α-SMA positive cells difficult.  

 

 

 

Figure 5.2 α-SMA distributions within irradiated and un-irradiated 

fibrosarcoma tumour sections.   

FS120 and FS188 tumour cells were implanted subcutaneously into CD1 nude mice. 

Once tumours had grown to ~100 mm3
 
in diameter, they were irradiated in situ with 

20 Gy over 4 days (8 X 2.5 Gy fractions). Tumours were excised when they reached 

~1000-1200 mm3, and were embedded in paraffin, sectioned and stained for α-SMA. 

Random fields were chosen with different magnifications (10X and 20X objectives) 

using a Nikon microscope. A positive reaction for α-SMA was observed. Stromal 

spindle cells, which were positive for α-SMA, were regarded as CAF-like cells 

(yellow arrows). Perivascular cells positively reacted α-SMA were regarded as 
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5.2.2 Collagen staining (Masson’s trichrome staining) of paraffin-embedded 

fibrosarcoma tumour sections 

 

This technique detects collagen fibres tissues and it consists of three-colour staining, 

dark brown-black for cell nuclei, orange-red for cytoplasm, and green-blue for collagen 

(Puchtler and Isler, 1958). Through this triple staining, Masson’s can provide a clear 

morphology of stroma (normal and reactive). To measure collagen deposition/fibrosis 

within the tissues, FS120 and FS188 paraffin tumour sections were de-waxed, fixed, 

and stained as explained in Chapter two, section 2.2.7.2. The stain worked well after 

optimising the protocol (Figure 5.2). 

The ways of analysis of images from Masson’s trichrome staining was described in 

chapter two (section 2.2.7.2) using both, Aperio Imagescope and HistoQuest software 

analysis system V 4.0. 

The difference in percentage collagen staining areas between viable and necrotic areas 

within the control and irradiated tumour sections is shown in Figure 5.3. The results 

revealed that there was a significant increase in the average collagen positivity areas 

within the viable regions after irradiation of the tumours in vivo (FS188 & FS120 

tumours) (Figure 5.3 A). Moreover, within the necrotic areas, the percentage area 

stained positive for collagen was significantly higher in the irradiated FS188 tumours 

compared to control (un-irradiated) tumours (Figure 5.3 B). There were no significant 

differences in collagen staining between FS188 and FS120 tumours, although there was 

a tendency for it to be higher in FS188 tumours for both unirradiated and irradiated 

tumours.  

To analyse data, one-way ANOVA test followed by Tukey’s multiple comparisons test 

was used. Results expressed as means ± SEM and were considered statistically 

significant when P ≤ 0.05. 
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Figure 5.2 Masson’s trichrome staining for paraffin-embedded fibrosarcoma 

tumour sections (irradiated FS188 tumour) showing collagen deposition 

(magnification A- 10X and B- 20X).  

Note that green-blue fine and coarse fibres represent collagen, which is clearly 

visible. Abundant amount of collagen surrounding blood vessels (arrow). 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

A 

 

B 

 

F

i

g

u

r

e 

5

.

1

7 

M

a

s

s

o

n

’

s 

t

r

i

c

h

r

o

m

e 

s



                                                                                              

 

176 
 

 

 

 

188 CTR 188 IR 120 CTR 120 IR
0

5

10

15

20

25

A
v
e
ra

g
e
 C

o
ll
a
g

e
n

 p
o

s
it

iv
it

y
 a

re
a

Collagen in necrosis
Masson Trichr.

24-8-16

*

CTR 188 IR 188 CTR 120 IR 120
0

5

10

15

20

25

A
v
e
ra

g
e
 C

o
ll
a
g

e
n

 p
o

s
it

iv
it

y
 a

re
a

Collagen in live cells
Masson Analysis

3 Exp.

*

*

Imagescope Results 

 

FS188
FS120FS188
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B) Percentage of viable tumour 

regions stained for collagen  
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Figure 5.3 Differences in collagen staining (Masson’s trichrome) within viable 

and necrotic regions of control and irradiated fibrosarcoma FS188 and FS120 

the section established using Aperio ImageScope software.  

Eight images were taken from each stained tumour section (16 tumour sections were 

used) using a 10X objective and a Nikon microscope (Nikon Optiphot-2). Collagen 

stained areas were significantly increased within the viable regions of the tumours 

(FS188 & FS120 tumours) after irradiation compared to control areas (non-

irradiated) (A). Likewise, the collagen stained areas were significantly increased 

within the necrotic areas in the irradiated FS188 tumour sections compared to 

control (un-irradiated) areas of the tumour (B). The positivity was calculated by 

summation of all the positive areas (weak positive + positive + strong positive) then 

divided by the total area (all positive areas + negative areas). The percentage of 

positivity was estimated by multiplying positivity by 100. One-way ANOVA test 

followed by Tukey’s multiple comparisons test was used for data analysis. Results 

expressed as means ± SEM, and were considered statistically significant when P ≤ 

0.05. 

 

 

Figure 5.3 Differences in collagen staining (Masson’s trichrome) within viable 

and necrotic regions of control and irradiated fibrosarcoma FS188 and FS120, 

the section established using Aperio ImageScope software.  

 



                                                                                              

 

178 
 

The second method used to analyse Masson’s trichrome staining in paraffin sections 

was by scanning sections with the TissueGnostics Confocal Slide scanner (TISSUE 

FAX 200, Tissue Gnostics Vienna, Austria) (see Chapter two, Figure 2.13 and 2.14) 

and using HistoQuest software analysis system V4.0.  

By HistoQuest software, 38 stained tumour-sections were analyzed (10 sections for 

control FS188, 10 sections for control FS120, 9 sections for irradiated FS188, and 9 

sections for irradiated FS120 tumours). Radiation significantly increased the collagen 

content of the FS188 tumours and FS120 tumours (Figure 5.4). Furthermore, there was 

more collagen within the control (non-irradiated) FS188 tumours than within control 

FS120 tumours (A, B & C).  Irradiated FS188 tumours showed more collagen 

percentage than irradiated FS120 tumours in both, viable and necrotic areas (Figure 

5.4, A, B and C). One-way ANOVA test followed by Tukey’s multiple comparisons test 

was used to analyse the data.   
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Figure 5.4 Percentage of collagen staining (Masson’s trichrome) within the 

viable and necrotic regions of the paraffin embedded fibrosarcoma tumour 

sections using HistoQuest software analysis system.  

Thirty-eight stained tumours sections (10 sections for control FS188, 10 sections for 

control FS120, 9 sections for irradiated FS188, and 9 sections for irradiated FS120 

tumours) were analyzed using HistoQuest software. The graphs showed the 

percentage of green stained (collagen) areas within viable regions of the tumour (A), 

within necrotic regions (B) and as a fraction of the total tumour area (C). Radiation 

caused a significant increase in collagen for both FS188 tumours and FS120 

tumours. Furthermore, the percentage of collagen content within the control (non-

irradiated) FS188 tumours was more than within control FS120 tumours (A, B & 

C). There was a significant difference between irradiated FS188 and irradiated 

FS120 (more collagen content within irradiated FS188). One-way ANOVA test 

followed by Tukey’s multiple comparisons test was used to analyse data.  Results 

expressed as means ± SEM and were significant when P≤0.05 (* P≤0.05, ** P≤0.01, 

*** P≤0.001). 

 

Figure 5.4 Percentage of collagen staining (Masson’s trichrome) within the 

viable and necrotic regions of the paraffin embedded fibrosarcoma tumour 

sections using HistoQuest software analysis system. 
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5.2.3 Immunofluorescence staining of frozen fibrosarcoma tumour sections using 

CD31 & α-SMA  

 

Frozen tumour sections (see section 2.2.7) were provided by Mr Matthew Fisher. The 

tumour sections were dried at room temperature, fixed and stained for 

immunofluorescence as discussed previously (see section 2.2.7.3). Slides were 

visualised using an Olympus BX61 microscope that has an Olympus laser-based 

autofocus unit (Figure 5.5). First, areas with high cell density were identified under 

bright field. Then, sections were observed using microscope filters of different 

excitation and emission wavelengths to detect DAPI stained nuclei (excitation 350/50 

and emission 460/50 nm), FITC for CD31 (excitation 470/40 and emission 620/60 nm), 

and TX-RED filter for α-SMA (excitation 545/30 and emission 525/50 nm). Fourteen 

tumour sections were stained (3 FS188 control, 2 FS120 control, 4 FS188 irradiated, 

and 5 FS120 irradiated), and eight images were taken per each tumour section. CD31-

positive cells represent endothelial cells. The red colour α-SMA-positive cells either 

represent CAF-like cells if they were within the stroma or pericytes if surrounding the 

blood vessels. Images from each tumour are shown in Figure 5.6. Because of time 

issues and problems with scanning the slides, quantification of staining was not possible. 

Instead, subjective visual assessment of α-SMA and CD31 positivity was performed.  

Images were processed and merged using Adobe Photoshop CS6 software.  

 

 

 

 

 

 

 

 

Figure 5.5 Olympus BX61 microscope used to visualise IF slides 

 

Figure 5.5 Olympus BX61 microscope used to visualise IF slides 
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On observation, it appeared that irradiated FS188 and FS120 tumours had an abundance 

of pericytes and CAFs. In some tumour sections, numerous CAFs were located around 

the tumour edges (tumours 4, 6, and 10). CD31 staining in all tumour sections shows 

that all tumours were well vascularised (especially FS188 tumours). Because of the 

small number of tumours that were included in this analysis it is not possible to say 

whether irradiation caused any changes in α-SMA-stained cells or blood vessels, 

although in irradiated tumours perivascular α-SMA stained cells (pericytes) appeared 

particularly abundant (see tumour 4, 5, 6, 10, and 13). 

More tumour sections need to be stained and analysed with specific quantification of 

blood vessels and α-SMA stained cells to establish if radiation recruited CAFs and 

pericytes to these tumours. 
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Tumour 1 

FS 188 control 
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Tumour 2 

FS 188 control 
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Tumour 3 

FS 188 control 
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Tumour 4 

FS 188 irradiated 
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Tumour 5 

FS 188 irradiated 
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Tumour 6 

FS 188 irradiated 
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Tumour 7 

FS 188 irradiated 
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Tumour 8 

FS 120 control 
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Tumour 9 

FS 120 control 
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Tumour 10 

FS 120 irradiated 
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Tumour 11 

FS 120 irradiated 
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Tumour 12 

FS 120 irradiated 



                                                                                              

 

195 
 

 

 

Tumour 13 

FS 120 irradiated 
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Tumour 14 

FS 120 irradiated 
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Figure 5.6 Immunofluorescence staining for mouse fibrosarcoma frozen 

tumour sections (control and irradiated) using CD31, and α-SMA stain.  

Blood vessels were stained for CD31 (green), CAFs or pericytes were stained for α-

SMA (red), and nuclei stained with DAPI (blue). In some but not all tumour sections 

we can see that irradiated FS188 tumors expressed more α-SMA than irradiated 

FS120 tumor sections, some of which were associated with CD31-positive blood 

vessels (see tumour sections 4, 5, and 6). Moreover, irradiation of FS188 and FS120 

tumours appeared to increase the number of pericytes and CAF-like cells in the 

tumours. Radiation seems to enhance the perivascular pericytes cells especially in 

FS188 tumours compared to FS120 tumours (see tumour sections 4, 5, 6, 10, and 

13). 

               Represent pericytes, and                 represent CAF-like cells. 

 

 

 

 

Figure 5.6 Immunofluorescence staining for mouse fibrosarcoma frozen 

tumour sections (control and irradiated) using CD31, and α-SMA stain. 
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5.3 Summary of the results 

 

After showing in vitro that radiation enhanced MSC migration and their differentiation 

into CAF-like cells, it was important to study these radiation effects in vivo. Paraffin 

tumour sections were stained for Masson’s trichrome staining while frozen tumour 

sections were stained for immunofluorescence with CD31 and α-SMA. Results from 

analysis of the stained images showed that radiation enhanced collagen content within 

viable and necrotic areas of the tumours. In addition, collagen content within irradiated 

FS188 was more than within FS120 tumours. Unfortunately, results from 

immunofluorescence staining were inconclusive, although they were suggestive of an 

increase in CAF-like and pericyte-like cells post-irradiation in both tumour types.  

5.4 Discussion 

 

It has been observed in previous chapters that radiation caused differentiation of MSCs 

into CAF-like cells in vitro in response to growth factors secreted by tumour cells. 

Furthermore, FS188 tumour cells secreted more MCP-1 than FS120 cells which were 

responsible for migration of MSCs toward TME in vitro.  MCP-1 has been shown to 

cause expression of collagen through enhancing TGF-β1 or IL-4 endogenous signalling 

(Distler et al., 2006). 

In order to confirm that radiation could modify TME and increase ECM protein 

deposition within the tumour-stromal tissue, paraffin and frozen tumour sections from 

an in vivo experiment were stained and analysed for ECM protein. Since the most 

common marker used to detect CAFs is α-SMA (Park et al., 1999, Sugimoto et al., 2006, 

Kim et al., 2015), IHC staining for α-SMA was performed for paraffin tumour sections. 

Unfortunately, although some slides showed a positive reaction to staining, there was a 

lot of background for most of the slides. Efforts were made to decrease the background 

but failed (see section 5.2.1). One explanation for this background could be because 

the tumours were excised from mice that have been treated with lectin and 

pimonidazole (as a marker for hypoxia).  

As a suggestion from Dr William English, a research fellow, I asked Mr Matthew Fisher, 

our technician, to optimise the protocol for future use by pre-adsorbing the secondary 
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antibody with mouse serum. Although other members of the team tested this, again the 

problem was not resolved and the background remained.  

As previously reported, many types of collagen are present in fibrotic conditions that 

make their quantifications difficult by immunohistochemical staining (Katsuda et al., 

1992, Mostaco-Guidolin et al., 2013). Therefore, staining that works for different 

collagen types, namely Masson’s trichrome were used. Masson’s trichrome staining 

was used to stain perivascular and interstitial collagen within fibrosarcoma tumours. 

The protocol was optimised until clear staining was achieved (see Figure 5.2). The key 

steps were, firstly, to use Weigert’s iron haematoxylin staining instead of Mayer’s 

haematoxylin (advice from colleagues on the ResearchGate website), in which 

Weigert’s has iron that is mordant and resistant to acid. Secondly, to decrease the 

incubation time with phosphomolybdic acid-phosphotungstic acid to 2 minutes insteade 

of 5 minutes. Many studies have used this staining technique to detect collagen fibres 

in fibrotic conditions such as liver, renal or cardiac fibrosis (Lo and Kim, 2017, Zhou 

et al., 2013, de Jong et al., 2012).  

The difficulty in analysing or quantification tissues stained with Masson’s trichrome 

stain is due to three colours of the stain that co-localise or overlap to the same areas 

(Miot and Brianezi, 2010). An Aperio Imagescope and HistoQuest software were used 

to analyse images of tumour sections stained with Masson’s trichrome. The results are 

in the agreement with our previous results in vitro in which radiation significantly 

increased the expression of ECM proteins such as collagen and fibronectin by MSCs 

(see chapter 3). The high collagen contents of FS188 tumours compared to FS120 

reflect the ECM differences between the two tumours in vivo, which could be due to 

the ability of this tumour to recruit more CAF-like cells than FS120 tumours (Tozer et 

al., 2008, Kalluri and Zeisberg, 2006). This result, also supports a recent study by 

English et al showed that FS188 tumour expressed more collagen-I compared to FS120 

tumours, both in vitro and in vivo while it was the reverse for laminin (English et al., 

2017). 

Failure to quantify α-SMA staining due to background staining led to testing an 

immunofluorescence method on frozen sections. To examine FS188 and FS120 

tumours for vascularity differences and distribution of CAF-like cells (α-SMA +ve 

cells), immunofluorescent staining with CD31 and α-SMA was done. Dual staining for 



                                                                                              

 

200 
 

both CD31 and α-SMA indicated the presence of pericyte-like cells. No cross-reactivity 

with primary antibody occurred; otherwise, the whole tissue would have stained with 

each antibody. Presence of dim red fluorescence in certain tumour sections could be 

due to poor washing after incubation with the secondary antibody. Although the plan 

was to scan the stained slides and quantify images, time constraints and problems with 

some slides breaking during scanning meant that images could only be assessed by eye. 

However, the results were in agreement with the Masson’s trichrome staining results, 

in which radiation increased the deposition of α-SMA positive cells (CAF-like cells) in 

the tumour stroma. IF staining showed, in both tumour types, that α-SMA positive cells 

lining blood vessels (pericytes) was more intense with FS188 tumours than with FS120 

tumours (Figure 5.6, tumours 2, 3, 4, 6, 9,13). This was also in agreement with the 

English et al study, where IF for laminin staining was more intense for FS188 tumours 

than for FS120 tumours regarding α-SMA positive cells lining blood vessels (pericytes) 

(English et al., 2017). For future work, using different markers for ECM protein 

expression like laminin, FSP-1 and FAB-α is mandatory as recently Dr English showed 

that both fibrosarcoma tumours expressed α-SMA (unpublished data). This could be 

also a cause for background staining of α-SMA in IHC for tumour sections done in this 

project. 

In summary, our results represent progress in understanding the role of radiation in 

mouse fibrosarcoma tumours that expressed VEGF 120, and VEGF 188. This study 

was able to show that FS188 tumours expressed more CAF-like cells than FS120 

tumours in vivo using different laboratory techniques. Furthermore, our results suggest 

that radiation increased the ECM content of fibrosarcoma tumours significantly. This 

result has an important impact on the future treatment outcome of sarcoma with anti-

VEGF drugs as presence of CAF-like cells lead to fibrosis and make vessels 

impermeable to macromolecules and resistant to further treatment with drugs and 

chemotherapy. Furthermore, these results suggest that blocking CCR2, a receptor for 

MCP-1 expressed on the MSCs could decrease the recruitment and/ or differentiation 

of MSCs into CAF-like cells that cause fibrosis and make the tumour more aggressive. 
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CHAPTER SIX: 

General discussion, future work and conclusion 
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Table 6.1 Outline of the approach used in this PhD. study with the limitations 

and future work. 

 

 

Laboratory 

techniques 

Aim cells Limitation and future 

work 

Clonogenic 

assay 

-To select an 

appropriate 

radiation doses for 

the cells. 

-Tumour cells  

-MSCs 

- To do it for endothelial 

cells (HDMEC) 

-Do it in hypoxic 

condition. 

Western 

blotting 

-To study CAFs 

differentiation 

markers expressed 

by MSCs 3-4 days 

after irradiation. 

-Tumour cells 

-MSCs 

-Endothelial 

cells 

- Tumour cells + 

endothelial cells 

-To increase the time 

post irradiation. 

-Culture same numbers 

of tumour cells and 

endothelial cells for co-

culture assay to exactly 

study their cytokines and 

chemokines secretion in 

response to radiation. 

-To repeate experiment 

in hypoxic condition. 

Transwell 

migration 

assay 

-To study whether 

direct or indirect 

radiation cause 

recruitment of the 

MSCs. 

-Tumour cells 

-MSCs 

-Endothelial 

cells 

- Tumour cells + 

endothelial cells 

- To study why C3H10 

did not cause migration 

as Balb/c did. 

ELISA -To detect and 

quantify mouse 

MCP-1 chemokine 

in the serum-free 

- Serum-free CM 

from both, 

control (un-

irradiated) and 

-To test other cytokines 

and chemokines such as, 

SDF-1α and TGF-β1 in 

the serum-free CM from 

irradiated tumour cells.  

In vitro 
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CM from irradiated 

tumour cells. 

irradiated FS188 

and FS120 cells. 

Transwell 

migration 

assay with 

blocking 

antibody 

-To determine 

whether MCP-1 is a 

potential mediator 

of Balb/c MSCs 

migration. 

-Serum-free CM 

from un-

irradiated and 

irradiated (4 Gy) 

FS 188 cells. 

-To test serum-free CM 

from FS120 cells (un-

irradiated and 

irradiated). 

-To test other cytokines 

and chemokines such as, 

SDF-1α and TGF-β1 in 

the serum-free CM from 

tumour cells. 

 

 

Laboratory 

techniques 

Aim Tumour Limitation and future 

work 

IHC -To Study whether 

α-SMA content of 

the tumours 

increased in 

response to 

irradiation that 

reflect more CAFs 

cells. 

-Control (un-

irradiated) and 

irradiated FS 

188 and FS120 

tumours. 

-Need to repeat the in 

vivo experiment to get 

fresh tumour sections 

that can stained easily 

with better expectation. 

Mason’s 

trichrome 

staining 

-To detect collagen 

fibres in tissues. 

- Control (un-

irradiated) and 

irradiated FS 

188 and FS120 

tumours. 

-As above. 

IF -To study whether 

α-SMA content of 

the tumours 

increased in 

response to 

irradiation that 

reflect more CAFs 

cells. 

-Control (un-

irradiated) and 

irradiated FS 

188 and FS120 

tumours. 

-As above 

-Needs more sections to 

stain and analyse. 

-Analysing staining 

using proper slide 

scanning with proper 

image analysis.  

 

In vivo 
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6.1 General discussion 

Radiotherapy is one of the standard treatments for patients with intermediate and high-

grade soft tissue sarcoma. One of the major complications from radiation therapy in the 

treatment of STS is fibrosis (Delanian and Lefaix, 2004, Martin et al., 2000). Radiation-

induced fibrosis is life-threatening and a very complicated process that involves many 

growth factors, inflammatory cytokines, differentiation of fibroblasts and remodelling 

of ECM (Wynn, 2008). Fibrosis is represented by the presence of CAFs (activated 

myofibroblasts), which are responsible for secretion of extracellular matrix proteins 

such as collagen and fibronectin. The origin of CAFs in irradiated tumours has not been 

clearly established.  Some studies showed that MSCs were recruited to irradiated 

tumours (Klopp et al., 2007, Fenton and Paoni, 2007). MSCs can differentiate into 

pericytes and CAF-like cells but the effects of radiation on their recruitment or 

differentiation remain unclear. CAFs can be derived from circulating BM-derived 

MSCs according to animal models and human breast cancer studies (Ishii et al., 2003, 

Direkze et al., 2004, Direkze et al., 2006, Allinen et al., 2004, Chauhan et al., 2003). 

Moreover, a study by LaRue et al, using mice that had been transplanted with cells 

derived from a single enhanced green fluorescent protein (EGFP)-positive 

hematopoietic stem cells, supports that theory that CAFs can originate from circulating 

BM-derived MSCs (LaRue et al., 2006). The focus of this project was to investigate 

whether radiation influences MSCs and triggers their differentiation into CAF-like cells 

either directly or indirectly via effects on other cell types present within the TME. 

Moreover, the radiation effects on recruitment/ migration of MSC towards the TME 

were also investigated. These alterations of MSCs in response to radiation have the 

potential to play a significant role in radiation-induced changes within the tumour 

microenvironment linked to CAF-induced tumour progression as well as the 

development of fibrosis.   

Using in vitro models, and on the basis of western blotting analysis, this project showed 

that direct irradiation of MSCs produced some small effects in terms of the induction 

of expression of proteins such as collagen-I, which are associated with differentiated 

CAFs. Similarly, direct irradiation of MSCs had no effect on their migration. However, 

the indirect effects of radiation were prominent suggesting that it is the interactions 

between components of the TME and radiation that are important in recruiting and 

differentiating MSCs in tumours. This project was able to demonstrate that 
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fibrosarcoma cells are induced to secrete factors in response to irradiation, such as 

MCP-1, SDF-1 and TGF-β1, that can work in a paracrine manner to cause the migration 

and differentiation of MSCs into cells with CAF-like characteristics. These factors were 

identified by western blotting analysis of FS188 and FS120 CM. Direct evidence for a 

specific involvement of MCP-1 in MSC recruitment was obtained from migration 

experiments where MCP-1 was neutralised in the CM of fibrosarcoma cells. These 

experiments showed that MSC migration was inhibited by blocking MCP1 activity, 

suggesting that MCP-1 produced by fibrosarcoma cells was responsible, at least in part, 

for triggering MSC migration. These experiments point to potentially a key role for 

tumour-derived MCP-1 in radiation-mediated recruitment of MSCs in vivo. Further 

studies are needed to confirm if MCP1 is involved in the recruitment of MSCs towards 

solid fibrosarcomas following radiotherapy.  

In this project, the MCP-1 receptor CCR2 was upregulated by MSCs exposed to 

irradiated FS188 tumour cells or their concentrated CM. Klopp et al showed that CCR2 

was expressed by MSCs and its levels of expression increased after irradiation (Klopp 

et al., 2007). Many factors, including growth factors produced from tumour cells and 

inflammatory cytokines like TNF-α can up-regulate CCR2 (Ringe et al., 2007, Ponte et 

al., 2007). Klopp et al confirmed the involvement of the CCR2 receptor in the 

recruitment of MSCs towards irradiated tumour cells by using an anti-CCR2 that 

decreased MSC migration markedly. It will be interesting to see if blocking CCR2 

could inhibit migration of MSCs induced by irradiated fibrosarcoma cells and their CM.  

In this project, when MSCs were incubated with irradiated fibrosarcoma tumour cells 

or their CM for 3-4 days, some changes in expression of proteins characteristic of 

differentiated CAFs were noted but these changes were small. Mishra et al showed that 

human MSCs exposed to tumour-conditioned medium for long periods of time (30 

days), enhanced their CAF-like myofibroblast phenotype (Mishra et al., 2008). It is 

possible therefore that if MSCs were incubated for longer with CM from irradiated 

fibrosarcoma cells more prominent effects might have been observed. The biological 

differences between FS188 and FS120 tumours cells and solid tumours (i.e. in vitro and 

in vivo) in response to radiation that could potentially affect migration and 

differentiation of MSCs were studied. Irradiated FS188 cells have a tendency to cause 

MSCs to expressed higher levels of differentiation markers and to recruit more MSCs 
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than irradiated FS120 cells (although not significant). However, the in vivo analysis 

established that radiation enhanced fibrosis in FS188 tumours more than FS120 

tumours, which could potentially derive from more MSCs differentiated into CAF-like 

cells. The behavioural difference between two tumour cells (Kanthou et al., 2014) and 

the ability of FS188 cells to produce more CAF-like cells in vivo (Tozer et al., 2008) 

could be explained on the basis that FS188 cells secreted more cytokines such as MCP-

1 than FS120. This was evident from ELISA quantification of MCP-1 in CM from 

control and irradiated FS188 and FS120 cells. Moreover, some studies showed, both in 

vitro and in vivo, that MCP-1 enhanced the migration of MSCs (Boomsma and Geenen, 

2012, Dwyer et al., 2007, Belema-Bedada et al., 2008). Also MCP-1 has been shown 

to be expressed by human ovarian cancer cells (Furukawa et al., 2013), human 

endometrial cancer cells (Wang et al., 2006) and triple-negative breast cancer cells 

(Dutta et al., 2018).  

Although MCP-1 was identified as a factor capable of inducing MSC migration, other 

cytokines are also likely to be involved. The migration of MSCs in response to other 

cytokines and chemokines was also studied in this project. TGF-β1, and SDF-1α 

significantly enhanced the migration of MSCs in vitro. The RNA sequencing of solid 

tumours by NGS confirmed that several factors that are known to be involved in 

differentiating fibroblasts and CAFs were differentially expressed by the fibrosarcomas. 

FS188 cells were found to express TGF-β2 transcripts more abundantly than FS120 

cells. Similar to TGF-β1, TGF-β2 or TGF-β3 could also be involved in the recruitment 

of MSCs to tumours (Deng et al., 2017). However, FS120 cells produced more CTGF 

than FS188 cells which might suggest that FS120 cells had more capacity to induce 

fibroblast/CAF differentiation. It is likely that in vivo the recruitment of MSCs/CAF-

like cells by fibrosarcoma cells is dependent on a complex array of different growth 

factors and chemokines and not a single factor, thus reflecting the cross-talk between 

cells within the TME. 

Another important and novel finding of this study, was that irradiated endothelial cells 

induced the migration of MSCs in a radiation dose-dependent manner. Most studies in 

the literature refer to effects of MSCs on endothelial cells (Haubner et al., 2013a, Luu 

et al., 2013, Liang et al., 2017, Burlacu et al., 2013, Chen et al., 2015). To my 

knowledge, this is the first work establishing that endothelial cells induced the 
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migration of MSCs in vitro and furthermore radiation enhanced their migration further. 

Many studies showed that irradiation of endothelial cells affected their cytokine 

production (Schroder et al., 2018, Haubner et al., 2013a) that could therefore drive the 

effects on MSC migration seen here. 

To translate this work into the in vivo setting, analysis of solid fibrosarcomas was also 

performed. In this thesis, α-SMA, the most common CAF marker (Park et al., 1999, 

Sugimoto et al., 2006, Kim et al., 2015), was used to stain sections of control and 

irradiated fibrosarcomas. Masson’s trichrome staining was used also to stain 

perivascular and interstitial collagen within fibrosarcoma tumours. Many studies have 

used this staining technique to detect collagen fibres in fibrotic conditions such as liver, 

renal or cardiac fibrosis (Lo and Kim, 2017, Zhou et al., 2013, de Jong et al., 2012). 

This analysis showed more abundant collagen production within the FS188 tumours 

than FS120 tumours, which is in accordance to previous findings showing more 

abundant α-SMA stained cells in FS188 tumours. Furthermore, in irradiated tumours 

the levels of collagen were significantly higher compared to controls (especially in the 

FS188 tumours). Although analysis of α-SMA staining was inconclusive, the data taken 

together imply that radiation resulted in recruitment and/or activation of more CAFs 

producing more collagen within the tumour.  

Together, in vivo data presented in this thesis suggest that radiation enhanced the ECM 

protein deposition within the stroma and perivascular areas of the tumours (especially 

FS188 tumours). Recently, English et al showed, both in vitro and in vivo, that FS188 

tumours expressed more collagen-I than FS 120 tumours while the reverse was so for 

laminin (English et al., 2017). 

The in vitro models in this project were done in two-dimensional (2D) models. This 

means that cells plated and growing directly on a flat , adherent surfaces (glass or plastic) 

with coated substrate to enhance their adhesion and behaviour like differentiation and 

proliferation (Morrison et al., 2011). 2D models are important, especially they are 

reasonably cheap, homogenous culture and reproducible tool to be used in similar with 

animal models. The problems in 2D models are they do not mimic real in vivo 

microenvironment (real microenvironment is more complex, hypoxic and organised), 

limitation in cell-cell interaction (only side-by-side contact), lack of interactions 

between cells and ECM and the oxygen diffusion with waste removal dynamics is 
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lacked (Antoni et al., 2015, Morrison et al., 2011). The limitations of the 2D models 

can affect cell survival, morphology, differentiation and proliferation that make three -

dimensional (3D) models more important. A 3D cell culture models play an important 

role in cell and cancer biology as it offers an effective way to study the dynamics of 

cell in in vivo-mimicking conditions (Centeno et al., 2018). Moreover, 3D models allow 

cells to interact with each other and with ECM, provide better spatial organisation and 

more relevant in vivo environment models (Edmondson et al., 2014, Knight and 

Przyborski, 2015). However, 3D models have some disadvantages such as they are an 

expensive method, need special technique for visualisation/ microscopy, problems in 

homogenous distribution of the oxygen and nutrients (leads to necrosis and cell death); 

and require an expensive equipment (such as bioreactors) and expert optimisation and 

handling (Breslin and O'Driscoll, 2013, Rimann and Graf-Hausner, 2012). 

 

6.2 Future work 

While this thesis has established several effects of radiation on MSC biology and 

behaviour using a fibrosarcoma model, opportunities to extend the scope of this work 

remain.  

6.2.1 In vitro  

It will be important in the future to analyse in detail the factors secreted from endothelial 

cells in response to radiation that enhanced migration of MSCs in vitro. As highlighted 

in this project,  MSCs migrated towards endothelial cells  (Figure 3.16) as well as 

endothelial cells co-cultured with fibrosarcoma cells (Figure 3.17). Furthermore,  

irradiation of endothelial cells further increased migration of MSCs in a dose-dependent 

manner. Some studies showed that endothelial cells produce cytokines such as PDGF, 

TGF-β1, TNF-α, bFGF, and VEGF  (Wachsberger and Burd, 2004, McBride et al., 

2004) which could potentially induce recruitment of MSCs to tumours. It will also be 

important to investigate the role of factors other than MCP-1 in the recruitment of 

MSCs towards the fibrosarcomas. Both TGF-β1 and SDF-1α were found to induce the 

migration of MSCs (as shown in Figure 3.18) and were produced by irrdiated 

fiborasrcomas. It will be interesting to study the role of these cytokines in MSC 

migration in similar experiments to those performed with MCP-1 and using neutralizing 

anti-TGF-β1 or anti-SDF-1α antibodies.   
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As stated above, CCR2 expression was increased after co-culture of MSCs with 

irradiated tumour cells or their concentrated CM (Figure 4.4). To confirm that MCP-1 

and its receptor was responsible for MSCs migration in vitro and not other 

inflammatory cytokines (Ringe et al., 2007, Ponte et al., 2007), blocking of CCR2 using 

anti-CCR2 antibody can also be done (Klopp et al., 2007). 

6.2.2 In vivo  

RNA sequencing of control non-irradiated fibrosarcoma tumours revealed differences 

in the expression of genes that are involved in fibroblast and CAF differentiation. To 

study the differences between FS188 tumours and FS120 tumours in response to 

radiation in vivo, it will be important for similar analyses to be performed using 

irradiated tumours. The information from such a study will be extremely useful in 

identifying factors that might be involved in radiation-mediated fibrosis and radiation 

mediated MSC recruitment into tumours.  

6.3 Conclusion   

The results of this study increased our understanding of the interactions between 

radiation and cells within the TME and their consequences on MSC biology. The results 

represent progress in understanding the role of radiation in a model of fibrosarcoma. 

The project was able to demonstrate that fibrosarcomas are influenced by radiation to 

recruit MSCs that can potentially acquire CAF-like characteristics and increase the 

ECM content of the tumour leading to fibrosis. This result has an important impact on 

the future treatment outcome of sarcoma, as presence of CAF can make tumours more 

aggressive and trigger fibrosis potentially making vessels impermeable to 

macromolecules and resistant to further treatment with drugs and chemotherapy. A 

better understanding of the interaction between MSCs and cells within tumour stroma 

will help to develop strategies to improve tumour therapies taking into account radiation 

effects on TME that influence tumour proliferation and metastasis. Further studies are 

needed to establish the best way to deliver radiation therapy to tumours with fewer 

negative consequences and taking into account patient survival and quality of life. 
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