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Abstract

This thesis deals primarily with type-theoretic interpretations of constructive

set theories using notions and ideas from homotopy type theory.

We introduce a family of interpretations J·Kk,h for 2 ≤ k ≤ ∞ and 1 ≤ h ≤ ∞
of the set theory BCS into the type theory H, in which sets and formulas are inter-

preted respectively as types of homotopy level k and h. Depending on the values

of the parameters k and h we are able to interpret different theories, like Aczel’s

CZF and Myhill’s CST. We relate the family J·Kk,h to the other interpretations of

CST into homotopy type theory already studied in the literature in [Uni13] and

[Gyl16a].

We characterise a class of sentences valid in the interpretations J·Kk,∞ in terms

of the ΠΣ axiom of choice, generalising the characterisation of [RT06] for Aczel’s

interpretation.

We also define a proposition-as-hproposition interpretation in the context of

logic-enriched type theories. The formulas valid in this interpretation are then

characterised in terms of the axiom of unique choice.

We extend the analysis of Aczel’s interpretation provided in [GA06] to the in-

terpretations of CST into homotopy type theory, providing a comparative analysis.

This is done formulating in the logic-enriched type theory the key principles used

in the proofs of the two interpretations.

We also investigate the notion of feasible ordinal formalised in the context of

a linear type theory equipped with a type of resources. This type theory was

originally introduced by Hofmann in [Hof03]. We disprove Hofmann’s conjecture

on the definable ordinals, by showing that for any given k ∈ N the ordinal ωk is

definable.
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Introduction

Background

The topic of this thesis belongs to the general area of the study of the found-

ations of mathematics, and focuses on how different foundational frameworks are

related. The expression ‘foundations of mathematics’ suggests often a reductionist

approach in which some concepts are seen as fundamental and all other mathem-

atical concepts ought to be defined in their terms.

Here, however, we consider foundations in the sense of an approach and lan-

guage for the development of mathematics. From a pragmatic viewpoint, different

languages and concepts are suited to study and be applied to different areas of

mathematics.

The three main options for developing the foundations of mathematics are set

theory, category theory and type theory, with a lot of diversity within each one.

Other foundational theories are systems of arithmetic used in reverse mathematics

[Sim09] and untyped formal systems, for example Feferman’s system of explicit

mathematics [Fef75].

When using the language and techniques of set theory, category theory or type

theory, the mathematics developed there has distinct flavours, different ideas come

into play and different questions arise naturally. In other words, the mathemat-

ics we do and the way we do it depend on the foundational framework. One can

argue that any single perspective has a blind spot, from which comes the import-

ance of having available different foundational frameworks, and to understand their

relationships.

Despite the diversity of different foundational theories nearly all of what is used

by the working mathematician can be developed in these different frameworks and

to a large extent also in subsystems of second order arithmetic. This underlines the

interconnectedness of these quite different foundational frameworks. In particular

there are various ways to relate set theory, category theory and type theory with

each other. See [Fef88] for the foundational and conceptual implications of inter-

preting a theory into another one. See also [MP02] and [Awo11] for more details

on relating set theory, category theory and type theory.
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2 INTRODUCTION

In this thesis we interpret constructive set theories into type theories taking

inspiration from concepts and ideas from homotopy type theory. We are also in-

terested in understanding how these different interpretations relate to each other.

Constructive set theories and type theories

Here we give some context and an introduction to the theories we consider in

this thesis.

Set theories. The set theories we consider are Myhill’s constructive set theory

CST [Myh75] and Aczel’s Constructive Zermelo-Fraenkel CZF [Acz78]. We also

consider for convenience the theory that we call Basic Constructive Set Theory,

BCS for short, which comprises of the axioms shared by both CST and CZF. See

appendix A for their axioms. The only difference between CST and CZF is that

the Replacement and Exponentiation axioms of CST are replaced in CZF by the

Strong Collection and Subset Collection axioms, which are stronger (see [AR10,

Section 5.1]).

The theories CST and CZF are constructive at two levels: in the sense that the

underlying logic is intuitionistic rather than classical, and also because they are

predicative theories. At the first level, one can see them intuitively as the result

of the process that starts from ZFC and either removes or reformulates the axioms

that are incompatible with intuitionistic logic. The axiom of choice is removed and

the Foundation axiom is reformulated as the ∈-induction axiom, since they both

imply the law of excluded middle.

Moreover, CST and CZF are predicative, meaning that sets are conceived as

being constructed from already constructed sets. Definitions of a set that use a

collection to which the set belongs are prevented by further restrictions on the

axioms. For example the usual definition of closure in a topological space is im-

predicative: ‘given a subset of a space S ⊆ X, the closure S̄ is the smallest closed

set containing S’. Instead, in a predicative theory expressions like ‘the smallest set

such that’ appear only as a shorthand for an explicit construction that generates

the set from ones that are already constructed.

The axioms that need restriction in order to guarantee predicativity are the

Power Set and the Separation axioms. The former is weakened to either the Ex-

ponentiation axiom in CST or the Subset Collection axiom in CZF. The latter is

weakened to the Bounded Separation axiom, which is like the usual Separation

axiom but applies only to bounded formulas. See appendix A for the details.

Type theories. Type theories comprise types and terms. Types are defined

together with their terms by deduction rules that introduce terms and govern how
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terms interact. The rules of type theory allow one to derive a judgement, say J , in

a type-theoretic context, say Γ, which is written as Γ ` J . Judgements are expres-

sions of the form A : type or A = B : type for types or a : A or a = b : A for terms.

A context is a finite list of declarations of variables Γ = { x1 : A1 , . . . xn : An }
that appear in the body of the judgement.

The types of a type theory can either be base types, e.g. the type of natural num-

bers N (see table A7), or be formed from already constructed types via a type-

constructor, e.g. given types A and B we can form their disjoint union A+B (see

table A10).

The type theories we consider are all variants or extensions of Martin-Löf type

theory (see [ML84] for a readable introduction to the extensional theory). Martin-

Löf type theory is a dependent type theory, i.e. types can depend on terms. This

means that in context x : A one may derive the judgement B(x) : type, which is

formally expressed as x : A ` B(x) : type, and one may construct a dependent term

x : A ` b(x) : B(x). The dependency of types on terms allows one to express a

family of types internally as x : A ` B(x) : type and to introduce type constructors

that take as input a family and return a type. The main examples are Π-types,

Σ-types and W -types that construct the dependent function type, the dependent

product type and the type of well-founded trees, respectively. See appendix B for

the rules.

The rules of Martin-Löf type theory are a decoration with proof terms of the

rules of natural deduction, which specify for each formula A its proofs a : A. The

correspondence between type theory, set theory and proof theory can be depicted

as follows:

type theory set theory logic

type A set A formula A

term a : A element a ∈ A proof of A

(Πx : A)B(x) dependent function space universal quantification

(Σx : A)B(x) disjoint union existential quantification

type N set N formula (∃x ∈ N)>

This correspondence also extends to category theory, in a locally cartesian

closed category, and to computation in the context of functional programming

languages.

One key feature of type theory, highlighted in the table above is the correspond-

ence with logical systems, which is called propositions-as-types or Curry-Howard

correspondence (see [SU06] for an introduction to the subject). This allows one to

treat formulas and types uniformly, unlike what happens in set theory where there

are two layers of the theory: the underlying logic and the set-theoretic axioms.
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However, in chapter 4 we consider logic-enriched type theories, which are type the-

ories with primitive judgements expressing formulas φ : prop and φ1, . . . , φn ⇒ φ

within the type theory. In this respect logic-enriched type theories gain more flex-

ibility while preserving the good proof theoretic properties of type theories.

One of the most notable features of type theories are normalisation theor-

ems which are proved analysing the structure of terms and how they interact,

and provide syntactic proofs of consistency without any use of models, therefore

providing a strong justification for such theories. See [ML75, Theorem 3.3] for a

normalisation theorem for Martin-Löf type theory.

Another important aspect of Martin-Löf type theories are identity types. Among

the primitive judgements of a type theory there are equality judgements, for ex-

ample A = B : type and a = b : A. These are called definitional or judgemental

equalities, and they are proved by syntactic manipulation of terms. One may want

to introduce alongside them a propositional equality, i.e. a type constructor follow-

ing the propositions-as-types correspondence that represents the equality proposi-

tion within type theory. In other words, a constructor that given a type A : type

and two terms a, b : A returns a new type IdA(a, b). Its terms are understood as

proofs that the terms a, b : A are equal.

There are two approaches to identity types, both due to Martin-Löf. One is to

consider extensional identity types, in which the type IdA(a, b) reflects internally as

a type the judgemental equality a = b, as a consequence all terms of IdA are equal

(see [ML84]). On the other hand, one can introduce intensional identity types in

which the type IdA is defined as the least reflexive relation on A (see table A12

for the rules). In this way one does not have anymore that all terms of IdA are

propositionally nor judgementally equal, which was proved in [HS94] and [HS98].

Intensional identity types turn out to be remarkably more complex giving a higher

categorical structure on every type (see [Lum09]). In this thesis we deal mostly

with type theories with intensional identity types.

Homotopy type theories. Homotopy type theory is a type theory that deep-

ens this connection with abstract homotopy theory arising from intensional iden-

tity types. It extends Martin-Löf type theory with two new main features: the

univalence axiom and higher inductive types, which are inspired by homotopical

notions and constructions. Homotopy type theory is closely connected to Voevod-

sky’s idea of univalent foundations, which is an approach to the foundations of

mathematics based on homotopy types and the univalence axiom. The standard

reference for homotopy type theory and univalent foundations is [Uni13].

The univalence axiom describes the identity type of the universe between two small



CONSTRUCTIVE SET THEORIES AND TYPE THEORIES 5

types IdU(A,B) as the type of equivalences between A and B (see chapter 1 for

details). As a consequence of univalence and the elimination rule for Id-types, all

the properties expressible in type theory through the propositions-as-types corres-

pondence become invariant under equivalence of types.

The univalence axiom presents a different approach for the investigation of the

meaning of equality. Type theory, differently from set theory, with its distinction

between judgement and proposition, invites a distinction between judgemental and

propositional equality, which in turn allows for a deeper analysis of equality. With

intensional identity types one can keep track of different ways to prove the equal-

ity between two terms. And in homotopy type theory in particular, the notion of

equality is made in correspondence with the notion of equivalence, which is inter-

preted in homotopy theory as homotopy equivalence between homotopy types.

Thus, taking homotopy type theory as a foundation of mathematics means tak-

ing homotopy types as the intended model for the primitive objects of the theory

and homotopy equivalence as the natural notion of equality. Only logical properties

that are invariant under homotopy equivalence can be expressed internally through

the propositions-as-types correspondence.

Then one can define the notion of set in homotopy type theory as a discrete

homotopy type, which is called a homotopy sets (or hset for short). Another

important notion is the one of hproposition (or hprop for short), which is a type

such that all its terms are related by an identity, so classically a hprop is either

empty or contractible. Hprops and hsets are special cases of a general definition

of homotopy level of a type, which is due to Voevodsky [Voe15]. We recall the

definitions of hsets and hprops in chapter 1. In chapter 1 and chapter 4 we use

hprops to model formulas of set theory. 1

The other distinguishing feature of homotopy type theory are higher inductive

types. In type theory a new type is defined by specifying inductively its terms

and how they behave (see for example the natural numbers in table A7). But

the idea that a type comes together with its identity type suggests the definition

of new kinds of inductive types in which terms of the type are defined together

with terms of its identity type and of its iterated identity types. For example this

approach allows one to define spheres in type theory [Uni13, Section 6.4]. A higher

inductive type that we use often is truncation, which for each natural number h is

an operation that given a type A returns a new type ‖A‖h such that all towers of

iterated identity types of length h or more are trivial (see table 1.1).

It is worth noting that a drawback of the homotopy type theories present up

to now is that the univalence axiom and higher inductive types in their current

1Note that when counting the homotopy level of a type we diverge from the usual convention and
start to count from 0 for contractible types, 1 for hprops, 2 for hsets, and so on.
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formulation break the proof of the normalisation theorem. The recent proof of

canonicity for cubical type theory [Hub16] is a step towards solving this problem.

Linear type theories. We also consider a different topic, namely the applic-

ation of type theory to the study of feasible ordinals.

Our starting point is [Hof03], in which Hofmann designed a system called Linear

Functional Programming Language, LFPL for short, designed to capture polytime

non-size increasing computation. See Section 6.1 for the rules of the system. This

is achieved by introducing a resource type � which provides tokens that have to

be used to type size increasing functions. With regard to the structural rules,

weakening is allowed but not contraction. This ensures that resources cannot be

duplicated but can be discarded. Hofmann in [Hof03, Corollary 5.5.1], and Aehlig

and Schwichtenberg in [AS02, Corollary 4.10], prove that the closed terms of type

N ( N are non-size increasing polytime functions. In Section 6.1 we introduce a

type of ordinal notations on top of LFPL and study lower and upper bounds for

the definable ordinals.

This is an example application of linear logic as a logic of knowability and

feasibility. There are many applications of linear logic to the field of implicit

computational complexity in which linear logic is used to model and control the

use of resources in order to provide logical characterisations of complexity classes.

See for example bounded linear logic [GSS92] and soft linear logic [Laf04].

One way to see linear logic is indeed as a refinement of intuitionistic logic that takes

into account resources and their relevance for the notions of proof and knowledge.

The conceptual relevance of this kind of investigation into feasible mathematics

in general, and feasible ordinals in particular, comes from the observation that truth

is not an absolute concept, independent from the knower of that truth. As human

beings our resources, both in terms of computational time and space are finite,

hence there is an epistemological boundary to the length of proofs and arguments

that we can check. So one can envision a development of feasible mathematics

alongside the one of constructive mathematics, [BS13].

In this thesis we equate feasible computation with polytime computation, as it

is commonly done. We do not investigate its adequacy and limitations.

The state of the literature

The first interpretation of constructive set theory into type theory dates back to

[Acz78]. The idea is to interpret sets as trees where nodes represent sets and edges

the membership relation so that the root represents the given set. This intuition

is formalised by interpreting the universe of sets as the W -type of all small types

over the universe, i.e. V := (Wx : U)T(x).
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The notion of equivalence between trees that makes them extensional is a bisim-

ulation relation, so that trees are identified up to permutation and repetition of

their branches. Then to every set-theoretic formula φ one associates a type JφK
using the propositions-as-types correspondence, and for every axiom of CZF one

constructs a term inhabiting its interpretation.

More work has been done since then in order to understand this interpretation.

For our purposes [RT06] and [GA06] are relevant, since we generalise some of their

results. Rathjen and Tupailo in [RT06] give a characterisation of Aczel’s interpret-

ation in terms of the choice principle ΠΣ-AC (see Axiom 2.1.5). In Theorem 2.2.2

we state their result. Aczel and Gambino in [AG00, Theorem 2] characterise the

propositions-as-types interpretation J·KPT from the logic-enriched type theory LE,

defined in Section 4.1, into Martin-Löf type theory. Then in [GA06] they con-

struct a generalised type-theoretic interpretation of CZF using logic-enriched type

theories.

We address the same questions for a number of new interpretations of con-

structive set theories into type theories: for the proof-theoretic characterisation

by Rathjen and Tupailo in chapter 2, and for the analysis of interpretations using

logic-enriched type theories in chapter 4 and chapter 5.

Since the introduction of homotopy theory there has been work to interpret set

theories into homotopy type theory. The paper [RS15] studies the category of hsets

in homotopy type theory. In the HoTT book [Uni13, Section 10.5] there is also

an interpretation of set theory directly into type theory, along the lines of Aczel’s

interpretation. Set-theoretic formulas are interpreted as hpropositions by apply-

ing the operation of propositional truncation to type formers that do not respect

hprops. This interpretation uses a higher inductive type VH defined for the purpose

of interpreting set theory, its identity type interprets set-theoretic equality. See Sec-

tion 3.3 for the details. This interpretation validates the axioms of CST, see [Uni13,

Theorem 10.5.8]. Then adding the axiom of choice formulated in type theory for

the logic of hpropositions they interpret full ZFC, [Uni13, Theorem 10.5.11].

Another interpretation of set theory into type theory appeared in the paper

by Gylterud [Gyl16b]. Univalence is used there to construct a model of a theory

of multisets2 into type theory. In the other paper [Gyl16a], it is shown how to

construct a model of CST into homotopy type theory from the multisets model.

Sets are interpreted as terms of a type VG which is a subtype of the one used by

Aczel. We recall its definition in Section 3.2. Gylterud’s interpretation takes place

in the theory that in this thesis is called HoTT (see Section 1.1 for the definition).

It uses univalence, propositional truncations and set quotients.

2Multisets are sets in which elements are counted with multiplicites.
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In [Gyl16a, Proposition 8:5 and Remark 8:6] the equivalences between the types

VG ' V∞/≈1 and the types V∞/≈1 ' VH are stated, providing a connection with

the HoTT book interpretation. In stating the equivalence we used the notation

used in this thesis.

The situation however does not look completely clear, some features of homo-

topy type theory come into play, most prominently hprops being used to interpret

formulas of set theory. In the HoTT book the higher inductive type VH is used but

there is no need for univalence nor set-quotients as we observe in Remark 3.3.1. On

the other hand in Gylterud’s work univalence and set quotients are used. Also it

is not clear what role hsets play in Gylterud’s and the HoTT book interpretations.

Both the types of sets VG and VH are hsets themselves, but the types that interpret

sets are arbitrary types and are not hsets in general.

Outline of the thesis and main results

Considering the situation described so far one may be interested in investigating

the following questions.

(1) Is it possible to construct an interpretation in which sets are interpreted

as hsets and formulas as hprops?

(2) What is the role played by hsets and more in general by homotopy levels

in the interpretations?

(3) How do the HoTT book and Gylterud’s interpretations relate to the new

interpretations we introduce and to Aczel’s original interpretation?

This thesis provides some answers to these questions. In chapter 1 we investig-

ate the first question. Our aim is to construct interpretations that use the notions

of hset and hprop from homotopy type theory, but that are as close as possible to

Aczel’s original interpretation, so that it is easier to understand what is essential.

We also want to understand what are the properties of hsets and hprops that

make the interpretations work, and check if the same result can be obtained with

differnet homotopy levels. For these reasons we develop a hierarchy of interpreta-

tions J·Kk,h, for 1 ≤ h ≤ ∞ and 2 ≤ k ≤ ∞, of set theory into the type theory H

(see Section 1.2). The idea is to interpret sets as trees with indices for the branches

coming only from types of fixed homotopy level k, and to interpret formulas as

types of homotopy level h by using truncations. Aczel’s original interpretation co-

incides with the interpretation J·K∞,∞. We show in Theorem 1.3.14 that depending

on the values of the parameters k and h we can interpret certain set theories in

certain type theories, starting to address the second question of the list.

Chapter 2 is devoted to looking more deeply at the role played by homo-

topy levels. Our starting point is the characterisation of Aczel’s interpretation by
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Rathjen and Tupailo in [RT06]. We extend their result to the family of interpreta-

tions J·Kk,∞, for 2 ≤ k ≤ ∞, in which sets are interpreted as k-types but formulas

are not truncated. We show that all the interpretations J·Kk,∞ for 2 ≤ k ≤ ∞,

validate the same CC sentences, which are defined in Definition 2.2.1. Morally

speaking, CZF cannot distinguish between the interpretations J·Kk,∞.

Chapter 3 investigates the relation between on the one hand the interpretations

in the HoTT book and by Gylterud and on the other hand the family J·Kk,h that we

have introduced. Already in [Gyl16a, Proposition 8:5 and Remark 8:6] it is stated

that the types VG, VH and V∞/≈1 are equivalent as types. We show that there is

a logical equivalence between the J·Kk,1 interpretations, Gylterud’s interpretation

and the HoTT book interpretation. This equivalence is induced by an equivalence

between the setoids (VG, IdVG
), (VH, IdVH

) and (V∞,≈1). In chapter 3 we recall the

relevant details of Gylterud’s work and fill the details of the proofs, then we use

the logical equivalence between interpretations to validate the Replacement and

Exponentiation axioms in our interpretations J·Kk,1.

In chapter 4, we investigate the interpretation of formulas as hprops, which is

key to all the equivalent interpretations of CST into HoTT. For this purpose, we

introduce the tool of logic-enriched type theories. We introduce an appropriate

logic-enriched type theory LEH in Section 4.1 and define abstractly in that context

a propositions-as-hprops interpretation into the type theory H using truncations.

This interpretation mirrors the structure of the interpretations J·Kk,1. Then we pro-

ceed to adapt to our situation the characterisation of [AG00, Theorem 2]. We prove

in Theorem 4.3.4 the characterisation of the formulas valid in the propositions-as-

hprop interpretation by using the axiom of unique choice formulated in the logic-

enriched type theory LEH, see table 4.5.

The rest of chapter 4 and chapter 5 are devoted to understanding the similar-

ities and differences between the equivalent interpretations of CST into HoTT on

one hand and Aczel’s interpretation on the other hand. We follow the example of

[GA06], where the generalised type-theoretic interpretation of CZF is introduced

and logic-enriched type theories are used to factor the interpretation into inter-

mediate steps. In this way different aspects of the interpretation are isolated and

captured by principles expressed within the logic-enriched type theory.

In Section 4.4 we introduce a second propositions-as-hprops interpretation from

the logic-enriched type theory LE to HoTT. The inductive definition of the inter-

pretation is the same as the other propositions-as-hprops interpretation defined in

Section 4.2, but the domain and codomain theories are different. We also formulate

the two choice principles AUCV in table 4.7 and AUCEl(β) in table 4.8, which are

then used in chapter 5 for the analysis of the interpretation J·K∞,1. The principles
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AUCV and AUCEl(β) are validated in the propositions-as-hprops interpretation into

HoTT in Theorem 4.4.1 and Theorem 4.4.2, and are therefore justified.

Chapter 5 addresses the third question of the list. It provides a comparative

analysis of Aczel’s interpretation J·K∞,∞ on one hand, and of the interpretation

J·K∞,1 on the other hand. The interpretation J·K∞,1 is the best suited for this

kind of analysis among the equivalent interpretations of CST into HoTT. The

first step of the analysis is the factorisation through the propositions-as-hprops

interpretations of LE(PU + AUCV + AUCEl(β)) into HoTT of Theorem 5.1.6. The

propositions-as-types principle PU, defined in table 4.6, and two forms of the Axiom

of Unique Choice AUCV and AUCEl(β) allow us to validate respectively the Bounded

Separation, Replacement and Exponentiation axioms of CST.

Then following the example of [GA06], we factor further the interpretation of CZF

into LE(PU+AUCV+AUCEl(β)) via another logic-enriched type theory LE(Rep+Exp)

in which there are Exponentiation and Replacement rules that mirror the set-

theoretic axioms in the logic-enriched type theory. The rule Exp is defined in

table 5.4 and Rep in table 5.3 . Under the assumption of PU the Replacement and

Exponentiation Rules follow from AUCV and AUCEl(β), respectively.

The main result of this chapter is Theorem 5.3.5, which can be depicted in the

following commutative diagrams:

LE(Exp + Rep)
J·Kl
//LE(PU + AUCV + AUCEl(β))

J·K′PHP

**
CST

J·Kh
77

J·K∞,1
//HoTT

LE(COLL)
J·Kl

//LE(PU + AC)
J·KPT

**
CZF

J·Kh
77

J·K∞,∞
//ML1W

The two factorisations of J·K∞,∞ and J·K∞,1 follow the same structure very

closely in the first two steps. These are the hybrid interpretation J·Kh and an in-

terpretation of one logic-enriched type theory into the other J·Kl. The differences

are isolated in the last step of the interpretation where the propositions-as-types

J·KPT and the propositions-as-hprops J·K′PHP interpretations take place.

Thus, we obtain a precise parallel analysis of all the known interpretations of CST

into homotopy type theory on one hand and of CZF into Martin-Löf type theory

on the other hand.
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Chapter 6 deals with the application of linear type theory to the study of feas-

ible ordinals. We introduce a type of ordinal notations O in table 6.9 in the context

of Hofmann’s LFPL. We investigate what ordinals can be typed in the system in

Section 6.3. The main result is Theorem 6.3.7, in which we disprove Hofmann’s

conjecture on the definable ordinals of LFPL by proving that all ordinals less than

ωω can be defined in LFPL + O. The rest of chapter 6 consists in a discussion on

possible approaches for proving upper bounds and what are the issues that arise

in doing so.

Summarising the discussion above, the main results of this thesis are:

• the new interpretations of Theorem 1.3.14;

• the proof-theoretic characterisation of Theorem 2.5.1 and Corollary 2.5.2;

• the characterisation of the propositions-as-hprops interpretation of The-

orem 4.3.4;

• the factorisation of the interpretation J·K∞,1 of Theorem 5.3.5;

• Theorem 6.3.7, disproving Hofmann’s conjecture.





CHAPTER 1

Homotopy type-theoretic interpretations

In this chapter we construct a hierarchy of interpretations J·Kk,h, for 1 ≤ h ≤ ∞
and 2 ≤ k ≤ ∞, of set theory in type theory. This hierarchy arises naturally when

we investigate the relationship between sets and formulas of set theory and the

homotopic notions of a hset and a hproposition (see Definition 1.1.3).

For our construction we take inspiration from Aczel’s interpretation of CZF into

Martin-Löf type theory [Acz78] and from the more recent interpretations of Myhill’s

constructive set theory CST in homotopy type theory developed in the HoTT book

[Uni13] and by Gylterud [Gyl16a]. A starting point is the observation that although

the latter two interpretations interpret formulas as hprops they do not interpret

sets as hsets. Then a natural question is whether the existing interpretations can

be adapted to interpret sets as hsets. As we see in Proposition 1.3.7, the answer

turns out to be positive. A second question can be posed of how much of the

interpretations of constructive set theories depends on homotopy levels. To answer

this question we introduce the family of interpretations J·Kk,h for 2 ≤ k ≤ ∞ and

1 ≤ h ≤ ∞ (see Section 1.2). We follows Aczel’s original interpretation as closely

as possible, but also interpret sets as k-types1 and formulas as h-types. This is

achieved for sets by restricting to k-types in the formation of the type of well-

founded trees Vk (defined in table 1.2) which represents the universe of sets, and

for formulas by using the truncation operation ‖ · ‖h.

In our interpretations J·Kk,h the identity type IdVk plays a subtle, indirect role.

Indeed, it is not itself used to interpret formulas nor sets, but it is used in the

definitions of k-types and of truncations. Identity types are used as a technical tool

in the proof that the ΠΣ axiom of choice is valid in J·Kk,∞ (see Corollary 2.4.10).

Moreover, observe that Vk has the same homotopy level of the universe U, hence

if univalence is assumed then Vk is not a hset.

A notable interpretation is J·K2,1 which interprets sets as hsets and formulas as

hprops. Note that the interpretation J·K∞,∞ where no restrictions are imposed on

the homotopy levels coincides with Aczel’s interpretation. In chapter 3 we apply

some results by Gylterud to our context to compare our interpretation J·Kk,h with

1More precisely, we interpret sets as well-founded trees in which branches are indexed by k-types.

13
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the ones by Gylterud and the HoTT book. In chapter 5 we compare them with

Aczel’s interpretation.

The main result of this chapter is Theorem 1.3.14 which summarises the results

on the interpretations in which different constructive set theories are interpreted

in type theories depending on the values of the parameters k, h. We leave open the

question if stronger set theories can be interpreted by J·Kk,h. In particular whether

additional axioms for CZF like choice principles or the Regular Extension axiom

are valid. In chapter 2 we prove that the ΠΣ axiom of choice is valid in the inter-

pretations J·Kk,∞ for 2 ≤ k ≤ ∞, see Corollary 2.4.10.

Outline. In Section 1.1 we introduce the type theories H and HoTT that are

used in the chapter as well as in the rest of the thesis. Then in Section 1.2 we

define the family of interpretations J·Kk,h, and in Section 1.3 we validate the ax-

ioms of the constructive set theories CZF and CST via the interpretations J·Kk,h.

Finally, Section 1.4 present an alternative interpretation of equality that gives rise

to variant interpretations J·K′k,h.

1.1. Type-theoretic preliminaries

All the type theories we consider in this thesis are extensions of Martin-Löf

type theory. We always assume the propositional η-rule for Π-types (see appendix

B.1).

The type theory H. Here we introduce the type theory H, which extends

Martin-Löf type theory. It is given by the following:

• MLId
1 W Martin-Löf type theory with one universe, intensional identity

types and W types;

• the axiom of function extensionality FE (see Axiom 1.1.2)

• ‖ · ‖n truncations for each homotopy level n ∈ N (see table 1.1);

We refer the reader to appendix B for the complete list of rules.

First, we recall some notions that are used to state the function extensionality

axiom.

Definition 1.1.1. Given a function f : A→ B the type isEquiv(f) is defined asking

the existence of a left and a right inverse for f following the propositions-as-types

correspondence:

(Σg : B → A)(Πx : B)IdB(fg(x), x)× (Σh : B → A)(Πx : A)IdA(hf(x), x).
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The function f is an equivalence if and only if the type isEquiv(f) is inhabited, in

which case we write A ' B.

The type Equiv(A,B) is defined as a pair consisting of a function and a proof

that the function is an equivalence:

Equiv(A,B) := (Σf : A→ B)isEquiv(f).

The above definition of isEquiv may look unnecessarily complicated since we

are requiring two inverses g and h. The extra complexity is needed to ensure that

for any two terms p, q : isEquiv(f) we have IdisEquiv(f)(p, q), which would not be

necessarily true for the obvious definition of equivalence. For more details on the

notions of equivalence in homotopy type theory see [Uni13, chapter 4].

Now we are ready to introduce the function extensionality axiom which can be

summarised informally as saying that two functions are equal if and only if they

are point-wise equal. Note that we can define the map:

(1.1) happly : Id(Πx:A)B(x)(f, g)→ (Πx : A)IdB(x)(f(x), g(x))

by using the elimination rule for Id(Πx:A)B(x). Indeed, suppose we have the reflexiv-

ity path reflf : Id(Πx:A)B(x)(f, f). Then we can define the term λx.reflf(x) inhabiting

the codomain (Πx : A)IdB(x)(f(x), f(x)). So if two functions are equal in the sense

of the identity types then they are also point-wise equal.

Axiom 1.1.2. The function extensionality axiom (FE) requires the canonical map

happly of (1.1) to be an equivalence, or in other words it requires the existence of

a term:

funext : isEquiv(happly)

Next we recall the notion of homotopy level of a type.

Definition 1.1.3. For any type A and every natural number n ∈ N we define

inductively the types is-n-type(A) by letting:is-0-type(A) := (Σa : A)(Πx : A)IdA(a, x)

is-(n+ 1)-type(A) := (Πx, y : A)is-n-type(IdA(x, y))

A type A is called an n-type if and only if is-n-type(A) is inhabited. We call a

0-type contractible, a 1-type a hproposition, and finally a 2-type a hset.

We also define the types isHProp(A) as is-1-type(A) and the type isHSet(A) as

is-2-type(A).

Note that our notation for homotopy levels follows Voevodsky and differs from

the one in [Uni13]. An n-type in our notation is an (n− 2)-type in their notation.

In [Uni13] one starts counting from −2 to fit the terminology of n-types already
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established in homotopy theory where a set (i.e. discrete homotopy type) is called

a 0-type.

Now we recall the truncation type constructor that given a type A produces an

n-type ‖A‖n. The 0-truncation is easily defined as:

‖A‖0 := 1

Before we state the rules for general truncations, let us first introduce the

following notation for iterated identity types:

Id0
A(x, y) is defined as A

Idn+1
A (x, y) is defined as IdIdnA

(x, y)

The rules defining truncations add terms to ‖A‖n from terms of A, and freely

add terms in its iterated identity types, so that ‖A‖n is an n-type by construction.

The last two rules express a recursion principle for truncations. Namely, given

a : A and a family of n-types B(x) for x : ‖A‖n, in order to construct a term in

B(a) it is enough to do so assuming one has a term in A.

A : type

‖A‖n : type
a : U
‖a‖n : U T(‖a‖n) = ‖T(a)‖n

a : A
|a|n : ‖A‖n

x, y : A

i(x, y) : Id‖A‖n(x, y) . . .

p, q : Idn−1
‖A‖n

i(p, q) : Idn‖A‖n(p, q)

a : ‖A‖n x : ‖A‖n ` e(x) : is-n-type(B(x)) y : A ` b(y) : B(|y|n)

c(a, e, b) : B(a)

a : ‖A‖n x : ‖A‖n ` e(x) : is-n-type(B(x)) y : A ` b(y) : B(|y|n)

c(|a|n, e, b) = b(a) : B(|a|n)

Table 1.1. Rules for truncations

We simply write ‖ · ‖ to refer to propositional truncation ‖ · ‖1.

Functions between types induce functions between their truncations as detailed

in the following lemma.
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Lemma 1.1.4. Every function f : A → B induces a function on the truncations

|f |n : ‖A‖n → ‖B‖n such that |f |n(|a|n) = |f(a)|n for all a : A.

Proof. Given f : A→ B consider the function g := λa.|f(a)|Bn : A→ ‖B‖n, where

| · |Bn : B → ‖B‖n is the projection from B to its truncation. Since the type ‖B‖n is

an n-type, applying the elimination rule for ‖A‖n gives the desired function |f |n.

A
f

//

|·|An
��

g

$$

B

|·|Bn
��

‖A‖n
|f |n
//‖B‖n

�

Remark 1.1.5. Note that the operators Π and ‖ · ‖n do not commute in general.

[Uni13, Section 3.8, on the axiom of choice].

Now let us recall some basic properties of intensional identity types.

Lemma 1.1.6. In ML1W, consider a family of types B(x) for x : A. If there is

a term p : IdA(x, y), then we have a function called transport p∗ : B(x) → B(y),

which is an equivalence of types.

Proof. See [Uni13, Lemma 2.3.1]. �

Lemma 1.1.7. Given a dependent function f : (Πx : A)B(x), it induces a function

on the identity types:

apdf : (Πp : IdA(x, y))IdB(y)(p∗f(x), f(y)).

In case of non-dependent function the statement simplifies to:

apdf : IdA(x, y)→ IdB(f(x), f(y)).

Proof. See [Uni13, Lemma 2.3.4]. �

The following lemma gives closure properties of homotopy levels.

Theorem 1.1.8. In H we can prove the following properties of homotopy levels:

(i) the types 0 and 1 are hprops;

(ii) the types 2 and N are hsets;

(iii) given any type A and a family of n-types B(x) for x : A, then (Πx : A)B(x)

is an n-type;

(iv) given an n-type A and a family of n-types B(x) for x : A, then the Σ-type

(Σx : A)B(x) is an n-type;
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(v) given two n-types A and B, then A×B is an n-type;

(vi) given two (n+ 2)-types A and B, then A+B is an (n+ 2)-type;

(vii) given an (n + 1)-type A, and any family of types B(x) for x : A, then

(Wx : A)B(x) is an (n+ 1)-type;

(viii) a k-type is also a (k + 1)-type.

Proof. (i)−(ii) The cases of 0, 1 and 2 are straightforward. For the type of natural

numbers N the claim follows from the characterisation of the identity type IdN:

IdN(0, 0) ' 1

IdN(s(n), 0) ' 0

IdN(0, s(m)) ' 0

IdN(s(n), s(m)) ' IdN(n,m)

See [Uni13, Section 2.13] for the proof.

(iii) Follows from function extensionality.

(iv) Follows from the fact that the identity type Id(Σx:A)B(x)(z, w) is equivalent

to:

(Σp : IdA(z.1, w.1))IdB(w.2)(p∗(z.2), w.2),

where p∗ is transport, introduced in Lemma 1.1.6. See [Uni13, Theorem 2.7.2] for

the proof.

(v)− (vi) Follow from (iv) by recalling that × is a non-dependent Σ and that

A+B is equivalent to the Σ-type of A and B over 2.

(vii) Follows from (iii), (iv) and the fact that the identity type

Id(Wx:A)B(x)(sup(a, t), sup(a′, t′)),

is equivalent to the type:

(Σp : IdA(a, a′))(Πb : B(a))Id(Wx:A)B(x)(t(b), t
′(p∗b)).

(viii) It is a straightforward induction on k. �

Remark 1.1.9. The following examples show the need for the restrictions on the

homotopy levels that appear in Theorem 1.1.8.

(a) There are two hpropositions A and B, such that the type A+B is not a

hprop. Indeed, take A = B = 1 which is a hprop, but 1 + 1 ' 2 which is

a hset but not a hprop.

(b) There are contractible types A and B(x) for x : A such that (Wx : A)B(x)

is not contractible. Indeed, take A = 1 and B(x) = 1, then (Wx : 1)1 ' 0

which is not contractible.
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(c) There is a type A and a family of hprops over it B(x) for x : A, such that

the type (Σx : A)B(x) is not a hprop. Indeed, take A = N and B(x) = 1,

then (Σx : N)1 ' N which is a hset and not a hprop.

The theory H can be seen as a ‘type theory for homotopy levels’, since it has

a well-behaved notion of homotopy levels thanks to the function extensionality

axiom, and truncation operations to turn any type into a type of a given homo-

topy level.

An easy but useful fact is the following lemma that we recall from [Uni13], it

is called the principle of unique choice.

Recall that we use ‖A‖ as a shorthand for the propositional truncation ‖A‖1.

Lemma 1.1.10 (Principle of Unique Choice). In the type theory H, given a family

of types x : A ` P (x) : type such that:

(i) for each x : A the type P (x) is a hproposition;

(ii) for each x : A we have ‖P (x)‖.

Then we have (Πx : A)P (x).

Proof. Immediate from the observation that if P (x) is a hproposition, then there

is an equivalence P (x) ' ‖P (x)‖. �

The type theory HoTT. Here we define the type theory HoTT that is used

to strengthen H for some of the interpretations J·Kk,h of constructive set theories.

It consists of the following:

• the type theory H;

• the univalence axiom UA (see Axiom 1.1.11);

• A/R set-quotients for families of hprops x, y : A ` R(x, y) : type (see

page 20 in this section).

See the appendix B for the complete list of rules. This theory is the background

theory for chapter 3.

Firstly, we recall the univalence axiom, which has been formulated by Voevodsky

(see [Voe15]). Note that we have a canonical map:

idtoeqv : IdU(a, b)→ Equiv(a, b).

Indeed, by the elimination rule of the identity type we can assume refla : IdU(a, a),

which we can map to the identity function 1a, which is an equivalence.
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Axiom 1.1.11. The univalence axiom asks that the canonical map idtoeqv is an

equivalence. In other words that we have a term:

ua : isEquiv(idtoeqv).

Adding the univalence axiom to Martin-Löf type theory allows to reconstruct

in type theory a number of homotopical concepts, for example some calculations

of homotopy groups of spheres. See [Uni13, part II] for more details.

Also recall that the univalence axiom plus the propositional η-rule imply the

function extensionality axiom (see [Uni13, Section 4.9]).

The last ingredient of the type theory HoTT are set-quotients. Recall from

[Uni13, Section 6.10] that we can introduce a new type constructor that given a

type A, and a family of types x : A, y : A ` R(x, y) : type such that isHprop(R(x, y))

for all x, y : A, forms the type A/R given by:

(i) a function q : A→ A/R;

(ii) for each x, y : A such that R(x, y) we have a term in the identity type

IdA/R(q(x), q(y));

(iii) for all x, y : A/R and r, s : IdA/R(x, y) we have a term in IdIdA/R(r, s).

It is possible to write down explicit rules for set-quotients that follow the pattern

of introduction, elimination and computation common to the other higher induct-

ive types. In particular the elimination term RA/R : (Πx : A/R)B(x) satisfies a

definitional computation rule when applied to points x : A/R, and a propositional

computation rule when applied to paths in IdA/R(x, y).

We omit these details since we use the elimination and computation rules only

via the universal property detailed in Lemma 1.1.13.

We now recall a lemma that is useful in proving some properties of the quotient

A/R, including its universal property.

Lemma 1.1.12. The function q is surjective, i.e. (Πx : A/R)
∥∥∥(Σα : A)IdA/R(x, q(α))

∥∥∥.

Proof. See [Uni13, Lemma 6.10.2]. �

The set-quotient satisfies the following universal property.

Lemma 1.1.13. For any hset B, precomposing with q gives an equivalence:

(A/R→ B) ' (Σ f : A→ B)(Πx, y : A)[R(x, y)→ IdB(f(x), f(y)) ]

Proof. See [Uni13, Lemma 6.10.3]. �
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1.2. The homotopy type-theoretic interpretations

Here we define a hierarchy of interpretations J·Kk,h of the language of set theory

into the type theory H.

Firstly, we define the types Vk that interpret the universe of sets, so that sets

are interpreted as terms of Vk. Aczel’s interpretation of CZF into Martin-Löf type

theory uses the W -type of all small types over the universe as a type of sets,

i.e. (Wx : U)T(x). Here we define in a similar way types Vk for 2 ≤ k ≤ ∞ by

using all small types of fixed homotopy level k.

Definition 1.2.1.

k-TypesU := (Σx : U)is-k-Type(T(x))

∞-TypesU := U

Then for any 2 ≤ k ≤ ∞ we form the W -type over k-TypesU:

Vk := (Wy : k-TypesU)T(y.1)

The explicit rules for these types Vk are special cases of the rules for W -types

and Σ-types for the specific type family x : k-TypesU ` T(x) : type. The elimination

and the computation rules for this type simply express induction on Vk.

a : k-TypesU b : T(a.1)→ Vk
sup(a, b) : Vk

c : Vk
x : k-TypesU, y : T(x.1)→ Vk, z : (Πv : T(x.1))C(y(v)) ` d : C(sup(x, y))

R(c, d(x, y, z)) : C(c)

a : k-TypesU f : T(a.1)→ Vk

x : k-TypesU, y : T(x.1)→ Vk, z : (Πv : T(x.1))C(y(v)) ` d : C(sup(x, y))

R(sup(a, f), d(x, y, z)) = d(a, f, λv.R(f(v), d(x, y, z))) : C(c)

Table 1.2. Rules for the types of sets Vk

The terms of the type Vk are well-founded trees sup((a, p), f) such that T(a) is a

k-type. The idea is that only types with a certain level of homotopical information

can be used to form its terms, so that the resulting Vk has fewer terms for smaller

values of k.
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For example, V2 does not have terms constructed from the fundamental group-

oid of a type, defined as Π1(X,x, y) := ‖IdX(x, y)‖3.

Since any k-type is also a (k + 1)-type thanks to Theorem 1.1.8, there are

canonical embedding maps of Vk into Vk′ for each k ≤ k′. Hence, we can represent

these Vk pictorically as:

V2VkV∞

. . . . . .. . .. . .

Here V2 is the type constructed from homotopy sets, and V∞ is Aczel’s type,

in which terms are constructed from arbitrary small types.

Lemma 1.2.2. There is a function Vk → (Σt : k-TypesU)(T(t.1)→ Vk) assigning

to every α : Vk the following terms: a small type el(α) : U, a term witnessing its

homotopy level pα : is-k-Type(el(α)) and the function α : T(el(α))→ Vk.

They are such that given sup((a, p), f) with (a, p) : k-TypesU and f : T(a)→ Vk,

we have el(sup((a, p), f)) = a, and psup((a,p),f) = p, and sup((a, p), f)x = f(x).

Proof. By recursion on Vk, for α = sup((a, p), f) we can define el(sup((a, p), f)) =

a, and psup((a,p),f) = p and sup(a, f)x = f(x). �

For a given α : Vk we introduce the notation El(α) := T(el(α)).

In order to make the interpretation of variables simpler we consider the follow-

ing extension of the language of set theory. Let L be the language of set theory

and LVk the language obtained by adding to L a constant for each term α : Vk.

Now we define the interpretation of set-theoretic equality as a bisimulation re-

lation given by Π and the h-th truncation of Σ. The reason for this definition is

that we want to follow the structure of Aczel’s interpretation as closely as possible,

but we also want to interpret formulas as types of homotopy level h, hence the

need of truncations.

Given two sets α, β : Vk we define the type α ≈h β as follows:

(Πx : El(α))
∥∥∥(Σy : El(β))(αx ≈h βy)

∥∥∥
h
× (Πy : El(β))

∥∥∥(Σx : El(α))(αx ≈h βy)
∥∥∥
h

Note that by convention we consider ‖ · ‖∞ to be the identity operator.

Finally, we give the interpretation of the other set-theoretic formulas. Formulas

are interpreted as types following the propositions-as-types correspondence, but any
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type which may not be a h-type is truncated with ‖ · ‖h.

Jα .
= βKk,h := (α ≈h β)

J⊥Kk,h := 0

Jφ⇒ ψKk,h := JφKk,h → JψKk,h

Jφ ∧ ψKk,h := JφKk,h × JψKk,h

Jφ ∨ ψKk,h :=
∥∥∥JφKk,h + JψKk,h

∥∥∥
h

J(∀x ∈ α)φ(x)Kk,h := (Πx : El(α))Jφ(αx)Kk,h

J(∃x ∈ α)φ(x)Kk,h :=
∥∥∥(Σx : El(α))Jφ(αx)Kk,h

∥∥∥
h

J∀xφ(x)Kk,h := (Πα : Vk)Jφ(α)Kk,h

J∃xφ(x)Kk,h :=
∥∥∥(Σα : Vk)Jφ(α)Kk,h

∥∥∥
h

Jα ∈ βKk,h :=
∥∥∥(Σy : El(β))(α ≈h βy)

∥∥∥
h

Note that the interpretations of all bounded formulas are k-types, due to the

closure properties of k-types. All formulas, including unbounded ones, are inter-

preted as h-types thanks to the truncation operations.

Definition 1.2.3. We say that a set-theoretic formula φ(x1, . . . , xn) is valid in

the type-theoretic interpretation if and only if the type of the interpretation of its

universal closure J∀x1, . . . , xn φ(x1, . . . , xn)Kk,h is inhabited.

Remark 1.2.4. Note that for certain values of k and h truncations are not neces-

sary:

(i) for h =∞, no truncation is performed;

(ii) for h > 1, the truncation for the +-type is unnecessary because (n + 1)-

types are closed under +, (see Theorem 1.1.8);

(iii) for h ≥ k, the truncations in the definitions of J(∃x ∈ α)φ(x)Kk,h and

Jα ∈ βKk,h are unnecessary. Indeed, in these cases El(β) is a k-type, hence

a h-type, and h-types are closed under Σ (see Theorem 1.1.8).

1.3. Interpreting constructive set theories

In this section we investigate which axioms have a valid J·Kk,h interpretation

into the type theories H and HoTT. Depending on the values of the parameters

k, h we are able to validate different axioms of constructive set theories.
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Our proof follows the structure of Aczel’s proof of the interpretation J·K∞,∞
from [Acz78]. The idea of Aczel’s interpretation is that by interpreting sets as

well-founded trees in V∞ one can use recursion on V∞ to prove the ∈-Induction

axiom. Extensionality follows from the interpretation of set-theoretic equality as

the bisimulation relation ≈∞. The validity of Pairing, Union, Bounded Separation

and Infinity follows from the type-theoretic rules of +, Σ and the types 0, 1, 2 and

N. The Collection axioms are validated using the type-theoretic axiom of choice,

in particular for the Subset Collection axiom function types are used.

In our context we construct sets using k-types and interpret formulas using

h-types. Therefore we need to keep track of the homotopy levels involved in the

constructions and rework Aczel’s proof accordingly.

Note that in our notation the base types and type constructors 0, 1, 2, N, Π,

→, Σ, ×, +, W , IdA are represented in the universe using the corresponding terms

and term constructors: 0, 1, 2, n, π, exp, σ, times, plus,w, ia. For more details on the

type-theoretic rules see appendix B

Some lemmas on equality and formulas. We start with some lemmas that

take care of basic properties of equality and set-theoretic formulas.

Lemma 1.3.1. The interpretation of set-theoretical equality is an equivalence re-

lation, i.e. for all α, β, γ : Vk the following formulas are valid:

(i) α
.
= α;

(ii) α
.
= β ⇒ β

.
= α;

(iii) α
.
= β ∧ β .

= γ ⇒ α
.
= γ.

Proof. (i) We apply the elimination rule of Vk to the family of types C(α) :=

Jα .
= αKk,h so that we can assume α = sup((a, v), f), with a : U and

v : is-k-Type(T(a)).

We want to find a term in the type:

(Πx : T(a))
∥∥∥(Σy : T(a))(f(x) ≈h f(y))

∥∥∥
h
×(Πy : T(a))

∥∥∥(Σx : T(a))(f(x) ≈h f(y))
∥∥∥
h
.

By inductive hypothesis we have d(x) : (f(x) ≈h f(x)), then the desired

term is (λx.|(x, d(x))|h, λx.|(x, d(x))|h).

(ii) Similarly, we first reduce to the case α = sup((a, v), f) and β = sup((b, w), g)

by recursion on Vk. Then, given p : (sup((a, v), f) ≈h sup((b, w), g)), we

want to construct a term in the type (sup((b, w), g) ≈h sup((a, v), f)).

By inductive hypothesis we have a term

F : (f(x) ≈h g(y))→ (g(y) ≈h f(x)),
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so we can consider the term p.1(x) :
∥∥∥(Σy : T(b))(f(x) ≈h g(y))

∥∥∥
h
. Now

observe that we have a function G := λt.(t.1, F (t.2)) that works for the

untruncated types:

G : (Σy : T(b))(f(x) ≈h g(y))→ (Σy : T(b))(g(y) ≈h f(x)),

which induces a function |G| with truncated domain and codomain by

Lemma 1.1.4. Therefore we get a term:

λx.|G|(p.1(x)) : (Πx : T(a))
∥∥∥(Σy : T(b))(g(y) ≈h f(x))

∥∥∥
h
.

We argue similarly for the second component p.2, and pairing the terms

obtained from the two components we obtain the thesis.

(iii) As before we proceed by recursion on Vk, so we consider terms α =

sup((a, v), f), and β = sup((b, w), g) and γ = sup((c, u), h).

Given x : T(a), let us consider the following types:

A(x) :=
∥∥∥(Σy : T(b))(f(x) ≈h g(y))

∥∥∥
h
,

B := (Πy : T(b))
∥∥∥(Σz : T(c))(g(y) ≈h h(z))

∥∥∥
h
,

C(x) :=
∥∥∥(Σz : T(c))(f(x) ≈h h(z))

∥∥∥
h
.

By reasoning separately on the two conjuncts of the interpretation of

equality our goal reduces to showing that assuming given a term in:

(Πx : T(a))A(x)×B,

we can construct a dependent function inhabiting the type:

E := (Πx : T(a))C(x).

So given x : T(a), it suffices to find a function of type:

A(x)×B → C(x).

To find a term in A(x)×B → C(x) is equivalent to find a term inhabiting

A(x)→ (B → C(x)), which is in turn equivalent to find one in:

(1.1) (Σy : T(b))(f(x) ≈h g(y))→ (B → C(x)),

by the elimination rule of truncation applied to A(x).

To do so notice that by inductive hypothesis we have a function:

F : (f(x) ≈h g(y))× (g(y) ≈h h(z))→ (f(x) ≈h h(z)),
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which we can use together with p : (Σy : T(b))(f(x) ≈h g(y)) to construct

the function G(p) := λt.(t.1, F (p.2, t.2)) inhabiting the following type:

(Σz : T(c))(g(y) ≈h h(z))→ (Σz : T(c))(f(x) ≈h h(z)).

The function G(p) induces a function |G(p)| with truncated domain and

codomain by Lemma 1.1.4. Therefore

λp.λf.|G(p)|(f(p.1)) : (Σy : T(b))(f(x) ≈h g(y))→ (B → C(x)),

gives us the required term inhabiting the type in (1.1).

�

Lemma 1.3.2. If φ1, . . . φn ` φ is derivable in intuitionistic logic and φ1, . . . φn

are valid in the interpretation then so is φ.

Proof. Straightforward. The only points that need care are the rules for ∨ and

∃ which follow from the definition of the interpretation J·Kk,h and the rules for

truncation. Observe that given the requirement that we eliminate into a h-type in

the elimination rule for ‖ · ‖h ( see table1.1), it is important that in the definition

of J·Kk,h we ensure that all formulas are h-types, including unbounded ones. �

Definition 1.3.3. A family of types B(x) over Vk satisfies the Leibniz rule with

respect to ≈h if and only if the following type is inhabited:

(Πx, y : Vk)((x ≈h y)×B(x)→ B(y)).

Lemma 1.3.4. For every formula φ(x1, . . . , xn) of the language LVk , the family

Jφ(x1, . . . , xn)Kk,h satisfies in every variable the Leibniz rule with respect to ≈h.

Proof. The proof proceeds by induction on the structure of the formula. First of

all consider the case of atomic formulas: (α ≈h β) satisfies the Leibniz rule because

of transitivity that we proved in Lemma 1.3.1.

Next we consider the formula β ∈ γ, we want to prove that it satisfies the

Leibniz rule in the first variable, i.e. construct a function of type:

(α ≈h β)×
∥∥∥(Σx : El(γ))(γx ≈h β)

∥∥∥
h
→
∥∥∥(Σx : El(γ))(γx ≈h α)

∥∥∥
h
.

So suppose we have a term t : (α ≈h β), and recall from Lemma 1.3.1 that we

have a term Tr witnessing transitivity, which we use to construct the function

F (t) := λp.(p.1,Tr(p.2, t)) inhabiting the following type, where Σ-types are not

truncated:

(Σx : El(γ))(γx ≈h β)→ (Σx : El(γ))(γx ≈h α).

The function F induces a function |F (t)| : Jβ ∈ γKk,h → Jα ∈ γKk,h. We conclude

by lambda-abstraction on t.
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Regarding the Leibniz rule in the other variable, we want to construct a function

inhabiting the type:

(γ ≈h δ)× Jα ∈ γKk,h → Jα ∈ δKk,h,

which we can rewrite as follows by swapping the types in the domain, currying,

and recalling the definition of Jα ∈ γKk,h:∥∥∥(Σx : El(γ))(α ≈h γx)
∥∥∥
h
→ ((γ ≈h δ)→ Jα ∈ δKk,h).

Since the codomain ((γ ≈h δ)→ Jα ∈ δKk,h) is a h-type, by the elimination rule of

truncation it is enough to construct an inhabitant of:

(Σx : El(γ))(α ≈h γx)→ ((γ ≈h δ)→ Jα ∈ δKk,h).

Assuming only the first conjunct of the definition of the equality (γ ≈h δ) is enough,

so at this point our goal is to construct an inhabitant of the type:

(1.2)

(Σx : El(γ))(α ≈h γx)→ ((Πx : El(γ))
∥∥∥(Σy : El(δ))(γx ≈h δy)

∥∥∥
h
→ Jα ∈ δKk,h).

Its construction is similar to the one for transitivity in Lemma 1.3.1. Suppose to

have a term in the domain p : (Σx : El(γ))(α ≈h γx), we use it to construct the

function G(p) defined as λt : (t.1,Tr(p.2, t.2)), where Tr is the term witnessing

transitivity of equality. The function G(p) inhabits the type:

G(p) : (Σy : El(δ))(γx ≈h δy)→ (Σy : El(δ))(δy ≈h α).

By Lemma 1.1.4, G(p) induces a function |G(p)| with truncated domain and codo-

main, and finally: λp.λf.|G(p)|(f(p.1)) inhabits the type in (1.2).

The inductive steps for the non-atomic formulas are straightforward. �

Lemma 1.3.5. The structural defining axioms for the bounded quantifiers are

valid, i.e. the types

J(∀x ∈ y)φ(x)⇔ ∀x(x ∈ y ⇒ φ(x))Kk,h,

and

J(∃x ∈ y)φ(x)⇔ ∃x(x ∈ y ∧ φ(x))Kk,h,

are inhabited.

Proof.

We have that Jφ(x)Kk,h satisfies the Leibniz rule in x by Lemma 1.3.4. Let

Leib : (Πx, y : Vk)((x ≈h y)× Jφ(x)Kk,h → Jφ(y)Kk,h)

be the term constructed in that proof.
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(∃) For the existential quantifier, firstly we want to prove that there is a type-

theoretic function with domain:∥∥∥(Σx : El(α))Jφ(αx)Kk,h
∥∥∥
h
,

and codomain:∥∥∥(Σz : Vk)
(∥∥∥(Σy : El(α))(z ≈h αy)

∥∥∥
h
× Jφ(z)Kk,h

)∥∥∥
h
.

Thanks to Lemma 1.1.4 it is enough to construct a function with untrun-

cated domain and codomain.

Given p : (Σx : El(α))Jφ(αx)Kk,h the term that we want to construct

is a pair where the first component has to be in Vk, so we choose αp.1 to

inhabit that type. The second component of the pair has to inhabit the

cartesian product:∥∥∥(Σy : El(α))(z ≈h αy)
∥∥∥
h
× Jφ(z)Kk,h.

For the first component of the cartesian product we use the term |(p.1, r(αp.1))|h,

where r(αp.1) is the term witnessing the reflexivity of (αp.1 ≈h αp.1)

constructed in Lemma 1.3.1. Finally, for the second component of the

cartesian product we choose Leib(r(αp.1), p.2). It is straightforward to

check that these terms are well-typed and give the desired function.

Now we want to prove the converse, i.e. that there is a type-theoretic

function with domain:∥∥∥(Σz : Vk)
(∥∥∥(Σy : El(α))(z ≈h αy)

∥∥∥
h
× Jφ(z)Kk,h

)∥∥∥
h
,

and codomain: ∥∥∥(Σx : El(α))Jφ(αx)Kk,h
∥∥∥
h
.

Since the codomain is a h-type, it is enough to show that there is a function

G with untruncated domain. In order to construct G we assume given

t : Jφ(z)Kk,h and consider the function F (t) defined as λp.(p.1, ext(p.2, t)),

which inhabits the type:

F (t) : (Σy : El(α))(z ≈h αy)→ (Σx : El(α))Jφ(αx)Kk,h.

The function F (t) induces a function |F (t)|h with truncated domain and

codomain. Then G := λs.|F (s.2.2)|h(s.2.1) is the desired term.

(∀) For the universal quantifier we first want to prove that there is a type-

theoretic function with domain:

(Πx : El(α))Jφ(αx)Kk,h,
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and codomain:

(Πz : Vk)
(∥∥∥(Σy : El(α))(z ≈h αy)

∥∥∥
h
→ Jφ(z)Kk,h

)
.

So given f : (Πx : El(α))Jφ(αx)Kk,h and z : Vk we want to construct a

term F (z, f) :
∥∥∥(Σy : El(α))(z ≈h αy)

∥∥∥
h
→ Jφ(z)Kk,h and conclude by

λ-abstraction on f and z. Since Jφ(z)Kk,h is a h-type, the function F (z, f)

is induced by the term:

λp.Leib(p.2, f(p.1)) : (Σy : El(α))(z ≈h αy)→ Jφ(z)Kk,h.

The other direction is straightforward.

�

Note that the proofs of Lemma 1.3.1, Lemma 1.3.4 and Lemma 1.3.5 simplify

considerably for h ≥ k since in that case truncations of ∨ and bounded ∃ are un-

necessary. Even more for h =∞, since no truncation takes place and the proofs of

the corresponding lemmas of [Acz78] carry over to J·Kk,∞.

Now let us gather one last preliminary remark before moving to the validity of

set-theoretic axioms.

Remark 1.3.6. The formulas stating that any set is a subset of itself α ⊆ α, is

valid in the interpretation J·Kk,h. We use this fact in Proposition 1.3.7.

Indeed, for every set α there is a term α∗ : J(∀x ∈ α)(x ∈ α)Kk,h. It is enough

to define α∗ := λx.|(x, r(αx))|h, where r(β) : (β ≈h β) witnesses reflexivity.

Validity of the set-theoretic axioms. We can now prove the validity of

some of the axioms of set theory in the interpretations J·Kk,h. Recall from ap-

pendix A that BCS (Basic Constructive Set theory) is the constructive set theory

given by following axioms: Extensionality, Set-Induction, Pairing, Union, Bounded

Separation and Infinity.

Proposition 1.3.7. The axioms of BCS are valid in the interpretation J·Kk,h.

Proof.

(i) For Extensionality and Set Induction no changes are required with respect

to the proof of the original interpretation [Acz78]. However, note that

for the proof of Extensionality we use Lemma 1.3.1, Lemma 1.3.4 and

Lemma 1.3.5, which needed to be reproved for the interpretation J·Kk,h
so the actual work needed to establish Extensionality for J·Kk,h lies in the

proof of these three lemmas.
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(ii) Pairing: given sets α, β : Vk, we know from Theorem 1.1.8 that 2 is a

hset, hence it is a k-type for all k ≥ 2. Let p : is-k-Type(2) be the term

witnessing this fact. We now define g : 2 → Vk using the elimination

rule for 2 as g(1) := α and g(2) := β. Then we define the pair as γ :=

sup((n2, p), g).

Then |(γ, (γ∗(1), γ∗(2)))|h : J∃z(α ∈ z ∧ β ∈ z)Kk,h.

(iii) Union: given the set α : Vk let us consider the type (Σx : El(α))El(αx)

which is a small type since it is definitionally equal to T(σ) where σ :=

σ(el(α), el(αx)). We know by hypothesis that El(α) and all El(αx) are

k-types. By Theorem 1.1.8 there is a term p : is-k-Type(T(σ)).

Consider the function g : (Σx : El(α))El(αx) → Vk given by the elim-

ination rule for Σ as g((x, y)) := (αx)y for x : El(α) and y : El(αx). Define

the union set as γ := sup((σ, p), g).

Then the term |(γ, λy.λx.γ∗((x, y)))|h which inhabits the type:

J∃z(∀x ∈ α)(∀y ∈ x)(y ∈ z)Kk,h,

shows that Union is valid.

(iv) Bounded Separation: given a bounded formula φ(x) ∈ LVk with at most x

free, we want to show that the instance of the Bounded Separation axiom

for φ

∃γ[(∀x ∈ γ)(x ∈ α ∧ φ(x)) ∧ (∀x ∈ α)(φ(x)⇒ x ∈ γ)],

is valid.

Given a set α : Vk we form the type A := (Σx : El(α))Jφ(αx)Kk,h.

Given our definition of J·Kk,h and the fact that φ(x) is bounded, we have

that A is a small k-type, even when h ≥ k. Namely, A = T(σ) for some

σ : U, and we have a term p : is-k-Type(T(σ)) witnessing the fact that

T(σ) is a k-type.

Next we define g : A→ Vk using the elimination rule for Σ, as follows:

g((x, v)) := αx, where x : El(α) and v : Jφ(αx)Kk,h. The set obtained by

separation is γ := sup((σ, p), g).

Then we have the following terms:

t1 := λt.(α∗(t), t.2) : J(∀x ∈ γ)(x ∈ α ∧ φ(x))Kk,h,

and

t2 := λt.λv.γ∗((t, v)) : J(∀x ∈ α)(φ(x)⇒ x ∈ γ)Kk,h.

Hence |(γ, (t1, t2))|h is a term witnessing the validity of the instance of the

Bounded Separation axiom for φ.
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(v) Infinity is also straightforward but longer, the key point is to use the fact

that 0, 1, 2 and N are hsets, and hence k-types for all 2 ≤ k ≤ ∞, and to

apply the constructor | · |h appropriately during the construction of the

terms.

First of all we construct internally in Vk the sets corresponding to the

empty-set, to the successor α ∪ {α}, and to the set of natural numbers.

We know by Theorem 1.1.8 that 0, 1 and N are small k-types so that

there are terms p0 : is-k-Type(0), p1 : is-k-Type(1) and p2 : is-k-Type(N)

witnessing these facts. Since they are small types we also have 0 = T(n0),

1 = T(n1) and N = T(n). Now let f0 : 0 → Vk be the function given by

the elimination rule for 0, and define ∅ := sup((n0, p0), f0).

Then given a set α : Vk consider the small type A := El(α) + 1 which

is definitionally equal to T(plus(el(α), n1)). Since by hypothesis El(α) is

a k-type, then by Theorem 1.1.8 A is also a k-type and we have a term

p3 : is-k-Type(A) witnessing this fact. Then we define the function h(α) :

El(α) + 1 → Vk using the elimination rule for + as h(α)(i(x)) := αx and

h(α)(j(1)) := α. Finally we define:

S(α) := sup((plus(el(α), n1), p3), h(α)).

For the set of natural numbers we consider ∆ : N→ Vk defined using

the elimination rule for N as ∆(0) := ∅ and ∆(s(n)) := S(∆(n)). Then

we define the term ω := sup((n, p2),∆) in Vk that interprets the set of

natural numbers.

Now recall that Zero(α) is the formula (∀x ∈ α)⊥, and Succ(α, β) is

the following formula:

(∀x ∈ α)(x ∈ β) ∧ (α ∈ β) ∧ (∀x ∈ β)(x ∈ α ∨ x .
= α).

Firstly, we want to show that the following formulas are valid: Zero(∅) and

Succ(α, S(α)). Observe that the canonical function g0 : 0→ 0 provides a

witness for JZero(∅)Kk,h, then from g0 we can construct the term |(0, g0)|h :

J(∃x ∈ ω)Zero(x)Kk,h.

For the other formula, we have a term inhabiting the following type:

g1(α) := λx.S(α)∗(i(x)) : J(∀x ∈ α)(x ∈ S(α))Kk,h.

Moreover, given x : El(α) we define g2(α)(i(x)) := |i(α∗(x))|h, and g2(α)(j(1)) :=

|j(r0(α))|h, where r0(α) witnesses the reflexivity of equality. So that we

have:

g2(α) : J(∀x ∈ S(α))(x ∈ α ∨ x .
= α)Kk,h.



32 1. HOMOTOPY TYPE-THEORETIC INTERPRETATIONS

Then it follows that:

g(α) := (g1(α), S(α)∗(j(1)), g2(α)) : JSucc(α, S(α))Kk,h.

At this point the only things left to check in order to validate the Axiom

of Infinity are the validity of the formulas:

(∀x ∈ ω)(Zero(x) ∨ (∃y ∈ x)Succ(y, x)),

and

(∀y ∈ ω)(∃x ∈ ω)Succ(y, x).

The first is witnessed by the term defined by

f(0) := |i(g0)|h,

and

f(s(n)) := |j(|(j(1), g(∆(n)))|h)|h.

Whereas the second is witnessed by the term h := λy.|(s(y), g(∆(y)))|h.

�

When dealing with the Collection axioms of CZF we use the notation ∀∃x∈αy∈βφ(x, y)

to abbreviate the formula:

(∀x ∈ α)(∃y ∈ β)φ(x, y) ∧ (∀y ∈ β)(∃x ∈ α)φ(x, y).

Before moving to the validity of the Collection axioms of CZF we state this

preliminary remark that is used in the proofs of Lemma 1.3.9 and Lemma 1.3.10.

Remark 1.3.8. In the proofs of validity of the Collection axioms we use the fol-

lowing construction from [Acz78].

Consider a formula φ(x, y) ∈ LVk , with at most x and y free, and consider

terms α, β : Vk such that el(α) = el(β). If there is a term f(x) : Jφ(αx, βx)Kk,h for

x : El(α), then we construct the term K(f) := (λx.(x, f(x)), λx.(x, f(x))).

The term K(f) witnesses the validity of the formula ∀∃x∈αy∈βφ(x, y).

Note that we crucially use that el(α) = el(β).

Lemma 1.3.9. Strong Collection is valid in the interpretations J·Kk,∞, for the

values 2 ≤ k ≤ ∞.

Proof. Recall the formulation of the Strong Collection axiom:

(∀x ∈ α)∃y φ(x, y)⇒ ∃z(∀∃x ∈ α
y ∈ z

φ(x, y)).
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The proof is analogous to the one of the original interpretation [Acz78]. In order

to show its validity we assume the existence a term witnessing the premiss:

a : J(∀x ∈ α)∃yφ(x, y)Kk,∞.

Since we want to prove the existence of the set z in the conclusion, we consider

the function b := λx.(a(x).1) : El(α)→ Vk, and then define β := sup((el(α), pα), b)

that provides a witness for the existential quantifier, where pα : is-k-Type(El(α)).

Observe that c := λx.(a(x).2) : (Πx : El(α))Jφ(αx, β)Kk,∞. Now the preliminary

Remark 1.3.8 applies and we have a term K(c) : J∀∃x∈αy∈βφ(x, y)Kk,∞ that together

with the term β witnesses the validity of the conclusion.

�

Lemma 1.3.10. The Subset Collection axiom is valid in the interpretations J·Kk,h
for the following values of the parameters: 2 ≤ k ≤ h ≤ ∞.

Proof. Recall the formulation of the Subset Collection axiom from appendix A:

∃γ∀u[(∀x ∈ α)(∃y ∈ β)φ(x, y, u)⇒ (∃z ∈ γ)(∀∃x ∈ α
y ∈ z

φ(x, y, u))].

Given sets α, β : Vk we consider the type A := El(α) → El(β). It is a small type

since A = T(exp(el(α), el(β))), where exp represents function types internally in U.

Moreover, A is a k-type by Theorem 1.1.8, so that we have a term p : is-k-Type(A)

witnessing this fact.

Now consider the function G : A→ Vk defined as:

G(z) := sup((el(α), pα), β ◦ z),

for z : El(α) → El(β), and where β is the function introduced in Lemma 1.2.2.

Here pα : is-k-Type(El(α)) and β : El(β)→ Vk. Then we define the set:

γ := sup((exp(el(α), el(β)), p), G),

which is a witness for the existential quantifier.

Next, suppose we have a term in the interpretation of the premiss of the im-

plication:

a : J(∀x ∈ α)(∃y ∈ β)φ(x, y, u)Kk,h,

since h ≥ k, the Σ-type interpreting the existential quantifier is already a h-type,

so that the truncation is unnecessary. Thus we have:

a : (Πx : El(α))(Σy : El(β))Jφ(αx, βy, u)Kk,h,
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from the term a(x) we can project to the two components of the Σ-type, to get the

term b := λx.(a(x).1) : El(α)→ El(β) and the term:

c := λx.a(x) : (Πx : El(α))Jφ(αx, βb(x), u)Kk,h.

Then the preliminary Remark 1.3.8 applies to c and we get a term in the conclusion

of the implication:

(b,K(c)) : J(∃z ∈ γ)(∀∃x ∈ α
y ∈ z

φ(x, y, u))Kk,h.

�

Observe that the same proofs of Proposition 1.3.7, Lemma 1.3.9 and Lemma 1.3.10

that involve Vk and the family k-TypesU , use only some of the properties of those

types. It can be easily generalised to any class of types that is definable internally

in type theory, contains N, 0,1, 2 and is closed under +, Σ and Π.

We are not able to show that Strong Collection is not provable in the interpret-

ations J·Kk,h for h < ∞ and Subset Collection for 1 ≤ h < k. But we can indicate

that the proof we used fails.

Remark 1.3.11. The standard way to construct terms validating the Strong Col-

lection axiom fails in the interpretations J·Kk,h for h < ∞, and for the Subset

Collection axiom it fails for 1 ≤ h < k.

(i) Recall from Lemma 1.3.9 that in trying to validate this axiom we start with

a term in the premiss a : J(∀x ∈ α)∃yφ(x, y)Kk,h and consider the function

b := λx.(a(x).1) : El(α) → V , and then define β := sup((el(α), p), b) that

provides a witness for the existential quantifier in the conclusion. However,

when we work with the interpretation J·Kk,h with h <∞ we cannot define b

by taking the first projection of a(x) because of the presence of truncations:

a(x) :
∥∥∥(Σy : Vk)Jφ(x, y)Kk,h

∥∥∥
h
,

and Vk is not a h-type in general;

(ii) For Subset Collection the situation is similar. Recall that in the proof

of Lemma 1.3.10 we start with a term in the premiss of the implication

a : J(∀x ∈ α)(∃y ∈ β)φ(x, y, u)Kk,h, which we use to construct the term

b := λx.(a(x).1) by using the first projection of a Σ-type. However, when

using J·Kk,h for 1 ≤ h < k we cannot take the projection a(x).1 since Σ-

types are truncated.
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Remark 1.3.12. Similarly, we can indicate how the standard proofs fail for the

Replacement axiom for h <∞, and for the Exponentiation axiom for 1 ≤ h < k.

(i) Replacement: the problem with this axiom is similar to the one of Strong

Collection. The extra hypothesis of the uniqueness of y in the premiss

fails to give enough information to extract the witness for the existential

quantifier in the conclusion. Indeed, recall that set-theoretic equality is

interpreted as the bisimulation relation with truncations (Section 1.2);

(ii) The Exponentiation axiom:

∀α, β ∃γ[∀f(α
f→ β)⇒ f ∈ γ],

in CZF it follows from the Subset Collection axiom, but it can easily be

validated directly in J·Kk,h for 2 ≤ k ≤ h ≤ ∞. Here we recall how to do

so. The type-theoretic axiom of choice is used in the proof, but it cannot

be applied in the interpretation J·Kk,h for 1 ≤ h < k due to the presence

of truncations.

Given α, β : Vk we construct γ as follows: consider the function type

El(α) → El(β) which is definitionally equal to T(exp(el(α), el(β))). Then

let us define the function:

γ := λz.sup((el(α), p), λx.〈αx, βz(x)〉),

inhabiting the type:

(El(α)→ El(β))→ Vk.

Then γ := sup((exp(el(α), el(β)), p), γ ). In order to validate the axiom

we are given f : Vk and a term witnessing the premiss of the implication.

Our aim is to validate:

Jf ∈ γKk,h = (Σt : El(γ))(f ≈h γt).

The function t : El(γ), where El(γ) = El(α) → El(β), is provided by the

type-theoretic axiom of choice applied to the part of the premiss:

J(∀x ∈ α)(∃!y ∈ β)(〈α, β〉 ∈ f)Kk,h.

We can apply the type-theoretic axiom of choice here because there are

no truncations for k ≤ h ≤ ∞, whereas we cannot apply it in presence

of truncations for 1 ≤ h < k. Then the only thing left to prove is that

(γt ≈h f) is inhabited, which is straightforward.

However, in contrast to Remark 1.3.12, for h = 1 it is possible to remedy via a

different proof so that both Replacement and Exponentiation are valid, as we shall
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see in chapter 3.

Lemma 1.3.13. The Replacement and Exponentiation axioms are valid in the

interpretations J·Kk,1 of CST into the type theory HoTT, for 2 ≤ k ≤ ∞.

Proof. See Corollary 3.5.3 of chapter 3. �

We can summarise the results obtained in this section by saying that we have

hierarchies of interpretations indexed by homotopy levels as detailed in the follow-

ing theorem.

Theorem 1.3.14. For 2 ≤ k ≤ ∞ we have the following validity results for J·Kk,h:

(i) for h = 1, J·Kk,1 : CST −→ HoTT;

(ii) for 1 < h < k, J·Kk,h : BCS −→ H;

(iii) for k ≤ h <∞, J·Kk,h : BCS + SubColl −→ H;

(iv) for h =∞, J·Kk,∞ : CZF −→ H.

Proof. (i) for h = 1, use Lemma 1.3.13 and Proposition 1.3.7;

(ii) for 1 < h < k, use Proposition 1.3.7;

(iii) for k ≤ h <∞, use Lemma 1.3.10 and Proposition 1.3.7;

(iv) for h =∞, use Proposition 1.3.7, Lemma 1.3.10, Lemma 1.3.9.

�

To understand informally this result, note that we consider 2 ≤ k ≤ ∞ fixed.

Then, for any 1 ≤ h ≤ ∞, we have that all the axioms of BCS are valid under

J·Kk,h. When h = 1, we are able to validate also Replacement and Exponentiation,

see chapter 3 for more details. When 1 < h < k, we cannot say anything due to

the presence of truncations. When k ≤ h < ∞, some truncations disappear (see

Remark 1.2.4) and we are able to validate Subset Collection. Finally, when h =∞,

no truncations are necessary and we can use the type-theoretic axiom of choice to

validate all the axioms of CZF.

1.4. An alternative interpretation of equality

Here we explore a natural variant of the interpretations J·Kk,h where set-theoretic

equality is interpreted differently but formulas are still interpreted as in J·Kk,h (see

Section 1.2 for the definition). We denote the variant interpretation as J·K′k,h. The

interpretation J·K′k,h is defined so that instead of truncating the Σ-types inside the

definition of bisimulation (as defined in Section 1.2), we first form the whole bisim-

ulation relation and then truncate it:∥∥∥(Πx : El(α))(Σy : El(β))(αx ≈′h βy)× (Πy : El(β))(Σx : El(α))(αx ≈′h βy)
∥∥∥
h
.
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The rest of the inductive definition of J·K′k,h is the same as the one of J·Kk,h.

We give some details on the differences between the two interpretations of

equality. In short, in J·K′k,h the proof of the Extensionality axiom fails, on the other

hand the proofs of the preliminary Lemma 1.3.1 on equality is simplified.

In order to make some of the next proofs more readable we introduce the

following notation (α
.
= β)′, defined as the following type:

(Πx : El(α))(Σy : El(β))(αx ≈′h βy)× (Πy : El(β))(Σx : El(α))(αx ≈′h βy),

so that (α ≈′h β) = ‖(α .
= β)′‖h.

Lemma 1.4.1. For α, β : Vk, the family of types (α ≈′h β) is an equivalence

relation.

Proof. The type (α ≈′h α) is inhabited since it is the truncation of an inhabited

type.

The type (α ≈′h β) → (β ≈′h α) is inhabited by Lemma 1.1.4 since it is of the

form ‖(α .
= β)′‖h → ‖(β

.
= α)′‖h and (α

.
= β)′ → (β

.
= α)′ is inhabited.

For transitivity we want to construct a term inhabiting the type:

‖(α .
= β)′‖h → (‖(β .

= γ)′‖h → ‖(α
.
= γ)′‖h).

Since the codomain (‖(β .
= γ)′‖h → ‖(α

.
= γ)′‖h) is a h-type we can remove the

truncation from the domain and equivalently construct a term inhabiting the type

(α
.
= β)′ → (‖(β .

= γ)′‖h → ‖(α
.
= γ)′‖h). By Lemma 1.1.4, it is enough to find a

term inhabiting (α
.
= β)′ → ((β

.
= γ)′ → (α

.
= γ)′) which is straightforward. �

Lemma 1.4.2. The interpretation J·K′k,h of every formula satisfies the Leibniz rule

with respect to ≈′h, i.e. given a formula φ(x) we have:

(Πx, y : Vk)((x ≈′h y)× Jφ(x)K′k,h → Jφ(y)K′k,h).

Proof. By induction on the structure of the formula. The only case we consider is

the one of atomic formulas of the form α ∈ β since the others are straightforward.

We want to construct terms inhabiting the type:

(α ≈′h β)× Jβ ∈ γK′k,h → Jα ∈ γK′k,h.

The proof for this case is as the one of Lemma 1.3.4, but using transitivity of

(α ≈′h β).

The Leibniz rule in the other variable is:

(γ ≈′h δ)× Jα ∈ γK′k,h → Jα ∈ δK′k,h,
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which by definition of the interpretation is:

‖(γ .
= δ)′‖h →

(∥∥∥(Σx : El(γ))‖(γx
.
= α)′‖h

∥∥∥
h
→
∥∥∥(Σy : El(δ))‖(δy

.
= α)′‖h

∥∥∥
h

)
.

By the universal property of truncation and Lemma 1.1.4, it is enough to construct

a term inhabiting the following type:

(γ
.
= δ)′ →

(
(Σx : El(γ))‖(γx

.
= α)′‖h → (Σy : El(δ))‖(δy

.
= α)′‖h

)
.

Recall that the first conjunct of the definition of (γ
.
= δ)′ gives a term:

F : (Πx : El(γ))(Σy : El(δ))(γx ≈′h δy),

applying it to x : El(γ) in the premiss of the implication gives F (x) : El(δ) which

provides the first component of (Σy : El(δ))‖(δy
.
= α)′‖h. The second component

is provided by transitivity by the two equalities (γx ≈′h δy) and (γx ≈′h α). �

Lemma 1.4.3. The structural axioms for defining the quantifiers are valid, i.e. the

types:

J(∀x ∈ y)φ(x)⇔ ∀x(x ∈ y ⇒ φ(x))Kk,h,

and

J(∃x ∈ y)φ(x)⇔ ∃x(x ∈ y ∧ φ(x))Kk,h,

are inhabited.

Proof. The proof is analogous to the one of Lemma 1.3.5. �

Remark 1.4.4.

(i) In the interpretations J·K′k,h the standard proof of the validity of Exten-

sionality fails. We leave open the question to prove that it is not valid

in J·K′k,h. Recall that thanks to Lemma 1.4.3 we have the validity of the

following set-theoretic formula:

(α ⊆ β ∧ β ⊆ α)⇔ ∀x (x ∈ α⇔ x ∈ β).

Therefore, in order to validate the Extensionality axiom it is enough to

show that (α
.
= β) ⇔ (α ⊆ β ∧ β ⊆ α) is valid. It is straightforward

to validate the implication that from the premiss ‖(α .
= β)′‖h gives the

conclusion:

(Πx : El(α))
∥∥∥(Σy : El(β))(αx ≈′h βy)′

∥∥∥
h
× (Πy : El(β))

∥∥∥(Σx : El(α))(αx ≈′h βy)′
∥∥∥
h
.

But given how the truncations are positioned in the types above, we do

not see any way to validate the converse implication;
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(ii) the standard proofs of the validity of the Strong Collection, Subset Col-

lection, Replacement and Exponentiation axioms presented in Proposi-

tion 1.3.7 have the same probles as for J·Kk,h, that we have detailed in

Remark 1.3.11 and Remark 1.3.12.

Theorem 1.4.5. The following axioms of set theory are valid in the interpretation

J·K′k,h: Set-Induction, Pairing, Union, Bounded Separation and Infinity.

Proof. The proof is analogous to the one of Proposition 1.3.7. �





CHAPTER 2

A characterisation of the interpretations J·Kk,∞

This chapter is devoted to a more in depth analysis of the family of inter-

pretations J·Kk,∞ for 2 ≤ k ≤ ∞. Recall that in these interpretations sets are

interpreted as k-types whereas formulas are interpreted without introducing trun-

cations, simply following the propositions-as-types correspondence.

Since the family of interpretations J·Kk,∞ is very close in its definition to Aczel’s

interpretation J·K∞,∞, comparing these families of interpretations can shed light on

the role of homotopy levels in the interpretation of set theory.

As we show in Theorem 2.5.1 and Corollary 2.5.2, the interpretations J·Kk,∞
and J·K∞,∞ contain the same relevant set-theoretic information, in other words we

may say that CZF is not able to distinguish between the different interpretations

J·Kk,∞.

To do this, we follow the characterisation of Aczel’s interpretation J·K∞,∞ by

Rathjen and Tupailo in [RT06]. Their starting point is the observation that some

additional axioms are valid in type theory, for example certain forms of the axiom

of choice like the Dependent Choice axiom. A natural question is to determine

what is the strongest set theory interpreted by J·K∞,∞ in Martin-Löf type theory.

As it turns out in their work this amounts to find the strongest choice axiom valid

in the interpretation J·K∞,∞.

They introduce the notion of CC formulas (see Definition 2.2.1), which is a

technical condition that they use in their proof. As they show in [RT06, Section 5.1]

it is a natural notion of formula, and most formulas used in mathematical practice

satisfy that condition. Then they characterise the class of CC sentences valid in

the interpretation J·K∞,∞ as the ones provable in CZF from the ΠΣ axiom of choice

(see Axiom 2.1.5 for its formulation).

Here, we apply their machinery to our context, showing that all the interpreta-

tions J·Kk,∞ that model CZF via the types of sets Vk validate the same CC sentences.

So we can describe the situation as having a hierachy of models V2, . . . ,Vk, . . .V∞

that satisfy the same CC sentences.

Outline. Section 2.1 introduces some set-theoretic preliminaries in CZF, and

Section 2.2 gives a sketch of the proof of the characterisation theorem of [RT06].

41
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Then in order to prove one direction of the characterisation of J·Kk,∞ we apply

the result of Rathjen and Tupailo to our context. For that we just need to factor

the interpretation J·K∞,∞ through J·Kk,∞, which is done in Section 2.3. Then in

Section 2.4 we prove the other direction of the characterisation by adapting Aczel’s

proof of the validity of the ΠΣ-AC in the interpretations J·Kk,∞. Section 2.5 states

the theorem of the characterisation and draws some conclusions. Finally, Sec-

tion 2.6 explores a side question related to the ΠΣI axiom of choice which is an

equivalent formulation of the ΠΣ axiom of choice.

2.1. Set-theoretic preliminaries

Let us recall from [Acz82] some set-theoretic preliminaries within CZF that

allow us to formulate the ΠΣ axiom of choice.

Definition 2.1.1. In CZF, given a family of sets B indexed by a set A, we define:

• Π(A,B) := {f ∈ CA | (∀x ∈ A) f(x) ∈ B(x)}, where C :=
⋃
x∈AB(x);

• Σ(A,B) :=
⊔
x∈AB(x) is the disjoint union of the family B.

Definition 2.1.2. In CZF we say that a class X is ΠΣ-closed if and only if:

• ω ∈ X;

• Π(A,B) ∈ X for all families B of sets in X indexed by a set A ∈ X;

• Σ(A,B) ∈ X for all families B of sets in X indexed by a set A ∈ X.

Theorem 2.1.3 (Aczel). In CZF there is a smallest ΠΣ-closed class, called the

class of ΠΣ-generated sets.

Proof. See [Acz82, Section 4.2]. �

Definition 2.1.4. In CZF a set A is called a base if and only if for every relation R

from A to B such that for all x ∈ A there is a y ∈ B, there is a function f : A→ B

such that for all a ∈ A we have f(a) ∈ R(a).

The ΠΣ axiom of choice informally states that one can apply the axiom of

choice to a class of basic sets. The notion of basic set that is required is that of

being inductively generated from ω by using the set-theoretic operations of Π and

Σ. More succinctly:

Axiom 2.1.5 (ΠΣ-AC). Every ΠΣ-generated set is a base.
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2.2. Proof-theoretic preliminaries

In order to characterise the formulas of set theory validated in the interpreta-

tions J·Kk,∞ of CZF in Vk we use the proof-theoretic machinery developed in [RT06],

which was originally devised in order to characterise the formulas validated in

Aczel’s interpretation J·K∞,∞. The characterisation is limited to a class of formulas

satisfying a technical condition that is used to make the realizability techniques

work.

Definition 2.2.1. A formula of set theory is called a CC formula if and only if

whenever an unbounded quantifier appears in an implication, it can only appear

in the conclusion of the implication.

The notion of CC formula may seem somewhat arbitrary, but [RT06, Sec-

tion 5.1] provides arguments to convince the reader that this is a natural and rich

notion.

This section presents a sketch of the proof of the main theorem of [RT06], which

we represent with the diagram:

(2.1) L∈
J·K∞,∞

//

J·Kcl

((

MLe
1V∞

(·)̂
��

Lclass

\\

In the diagram, L∈ is the language of set theory and Lclass represents informally

sets and classes of set theory. The arrow J·Kcl : L∈ → Lclass is a formulas-as-classes

interpretation of CZF + ΠΣ-AC into itself.

Here, V∞ is Aczel’s type (Wx : U)T(x), meaning that the type theory MLe
1V∞

does not have general rules for W -types but only for the single W -type V∞. The

superscript ‘e’ in MLe
1V∞ indicates that the theory is endowed with extensional

identity types. In the sequel we use the superscript ‘i’ to indicate that the theory

has intensional identity types. The rules for extensional identity types can be found

in [ML84].

There are three key points to the proof that can be depicted as in the diagram

above. They are performed in the meta-theory CZF + ΠΣ-AC.

(i) one constructs a formulas-as-classes interpretation of CZF + ΠΣ-AC into

itself using the machinery of set-recursion theory. See [RT06, Section 4].

This interpretation is represented in the diagram as the arrow L∈
J·Kcl
//Lclass ;
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(ii) one constructs a realizability interpretation (·)̂ of the type theory MLe
1V∞

into Lclass such that CZF proves that if (t : JφK∞,∞)̂ then ∃u(u ∈ JφKcl).
See [RT06, Section 6];

(iii) finally, by constructing an inner model H(Y ∗) of CZF+ΠΣ-AC and proving

an absoluteness result of CC sentences for H(Y ∗) one obtains that for

such a sentence φ we have CZF + ΠΣ-AC ` (∃i ∈ JφKcl) ⇒ φ. See [RT06,

Section 5]. This step is represented in the diagram by the dashed arrow.

Combining these three steps together one gets the following result.

Theorem 2.2.2 (Rathjen and Tupailo). Let φ be a CC sentence, then we have

that CZF + ΠΣ-AC ` φ if and only if MLe
1V∞ ` t : JφK∞,∞ for some term t.

Proof. If CZF + ΠΣ-AC ` φ then MLe
1V∞ ` t : JφK∞,∞ for some term t be-

cause ΠΣ-AC is valid in the type-theoretic interpretation of CZF. See [Acz82,

Theorem 6.8].

Conversely, given MLe
1V∞ ` t : JφK∞,∞, we first apply the interpretation (·)̂

obtaining a formula of CZF say (t : JφK∞,∞)̂. Then by point (ii) of 2.1 we have that

∃u(u ∈ JφKcl). Finally, we apply point (iii) of 2.1 and obtain CZF+ΠΣ-AC ` φ. �

The underlying idea for the formulas-as-classes interpretation J·Kcl is to interpret

formulas as classes mirroring the structure of the interpretation J·K∞,∞ of CZF in

the type theory MLe
1V∞.

However, there is a problem when we come to define the class interpreting

an implication φ ⇒ ψ with φ unbounded, or the class interpreting an unbounded

universal quantification. In the bounded cases we can consider the class of functions

with appropriate domain and codomain, but when the domain is a proper class we

cannot use functions. An alternative would be to use class functions instead but

we then have the issue of collecting these class functions into a single class.

As a workaround a set-recursion machinery is developed in [Rat06] (which is

then used in [RT06]) providing meaning to expressions of the form {e}(x) ' y with

x, y sets, and providing indices for well-behaved class functions (the EP -recursive

functions defined in [RT06, Definition 4.5]).

The interpretation of an unbounded universal quantifier is the class of indices

of the class functions with prescribed domain and codomain. This set-recursion

machinery is used also to construct the interpretation (·)̂ of MLe
1V∞ into CZF.

Definition 2.2.3. Given a class A such that B(x) is a class for every x ∈ A, we

define:

(Π̃x ∈ A)B(x) := {s | ∀x ∈ A {s}(x) ∈ B(x)}.
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Then →̃ is the non-dependent version of Π̃, where the family of classes B(x) is

constant.

Similarly to the construction of J·Kcl, the interpretation (·)̂ uses functions to

interpret terms of (Πx : A)B(x) when A is small, and uses indices of EP -recursive

functions for the case of a large A.

2.3. Relating the interpretations J·K∞,∞ and J·Kk,∞

In this section we prove one implication of the characterisation of Theorem 2.5.1.

Our aim is to prove that every CC sentence φ valid in the interpretation J·Kk,∞ is

provable in CZF + ΠΣ-AC.

First of all, observe that the interpretations J·Kk,∞ do not make use of trun-

cations since formulas are interpreted using the propositions-as-types correspond-

ence. Moreover, for the whole family of interpretations J·Kk,h, not all W -types are

needed, and for fixed values of k and h only the rules for the type Vk are actu-

ally used. Hence the interpretations J·Kk,∞ can be carried out in the type theory

Hk := MLi
1Vk + FE.

In chapter 1 we have chosen to include all W -types since it is convenient for

the characterisation of Theorem 4.3.4 of chapter 4.

In order to characterise the image of the interpretation J·Kk,∞ of CZF in the type

theory Hk, as in Theorem 2.2.2, we aim to extend the diagram in 2.1 as follows:

Hk

(·)∗
��

L∈
J·K∞,∞

//

J·Kcl

((

J·Kk,∞
66

MLe
1V∞

(·)̂
��

Lclass

\\

This amounts to establish the following steps:

(i) construct a sound interpretation (·)∗ of the type theory Hk into MLe
1V∞;

(ii) prove that (·)∗ maps the interpretation J·Kk,∞ to J·K∞,∞ (in the precise

sense of Lemma 2.3.3).

We could have made a different choice defining directly a new interpretation of

Hk into Lclass along the lines of (·)̂ and reproving the relevant lemmas. Our choice

to interpret Hk into MLe
1V∞ minimises the amount of details to check, and it turns

out to be straightforward given the results of [RT06].
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The next lemma is essentially folklore. Since we were not able to find a reference

we give a sketch of the proof.

Lemma 2.3.1. In presence of extensional identity types, function extensionality

is equivalent to the (definitional) η-rule:

` f = λx.f(x) : (Πx : A)B(x).

Proof. Assume function extensionality, we want to prove the η-rule. By the com-

putation rule for Π-types we can derive the judgement x : A ` f(x) = (λy.f(y))x.

Then the thesis follows by using the introduction rule for Ide, function extension-

ality, and the elimination rule for Ide.

Conversely, assume the η-rule and the premiss of function extensionality, i.e. the

existence of a term t : (Πx : A)IdB(x)(f(x), g(x)). Applying in sequence the elim-

ination rule for Ide, a λ-abstraction on both sides and the η-rule we derive the

judgement x : A ` f = g : (Πx : A)B(x). We conclude applying the introduction

rule for Ide.

�

Now we construct an interpretation (·)∗ of Hk into MLe
1V∞ that maps terms to

terms, types to types, contexts to contexts and judgements to judgements, with the

only exception of terms of the (Tarski) universe of Hk that are mapped to terms

of the (Russell) universe of MLe
1V∞ which are types themselves. For the sake of

clarity in this construction we refer to types and term constructors of MLe
1V∞ using

the superscript e and the ones of Hk using the superscript i.

Recall that in our notation the base types and type constructors 0, 1, 2, N, Π,

→, Σ, ×, +, W , IdA are represented in the universe using the corresponding terms

and term constructors: 0, 1, 2, n, π, exp, σ, times, plus,w, ia.

The construction of this interpretation is straightforward, the extra complica-

tion of Tarski vs Russell style universes comes merely from our choice to use the

former, whereas [RT06] uses the latter.

In order to take care of the difference between the Tarski and Russell universes

we construct (·)∗ as follows:

• (Ui)∗ := Ue;

• for t : Ui we define t∗ := T(t)∗;

• for a variable x : Ui we define T(x)∗ := A, a type variable A : type;

• T(n)∗ := Ne;

• T(0)∗ := 0e;

• T(1)∗ := 1e;

• T(2)∗ := 2e;

• T(plus(a, b))∗ := T(a)∗ +e T(b)∗;
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• T(π(a, b))∗ := (Πex : T(a)∗)T(b(x))∗;

• T(σ(a, b))∗ := (Σex : T(a)∗)T(b(x))∗;

• T(ia(x, y))∗ := IdeT(a)∗(x
∗, y∗).

Regarding the identity type, they only non-trivial point is to interpret the

elimination term J of intensional identity types. Formally:

• (Idi)∗ := Ide;

• (refli)∗ := refle;

• J(a, b, i, d)∗ := d∗(a∗), where a, b : A and i : IdiA(a, b) and for x : A we have

d(x) : C(x, x, reflx) as in the premiss of the elimination rule for Idi.

A reference for the fact that the term J is definable in extensional type theory is

[NPS90, Section 8.2].

The interpretation of the types of iterative sets V∞ and Vk is straightforward:

since the rules defining Vk require more structure in the premiss than the ones of

V∞ we just need to forget that structure.

• V∗k := V∞;

• supi(a, f)∗ := supe(a.1∗, f∗), where we have a : (Σx : U)is-k-Type(T(x))

and f : T(a.1)→ Vk;

• Ri(α, d)∗ := Re(α∗, d∗), where α : Vk and d(x, y, z) : C(supi(x, y)) which

depends on x : k-TypesU and y : T(x.1)→ Vk and z : (Πiv : T(x.1))C(v(y)).

Finally, since in MLe
1V∞ function extensionality is equivalent to the definitional

η-rule which is one of the rules of the system (see the previous Lemma 2.3.1), we

require that the interpretation maps the term witnessing function extensionality in

one theory to the corresponding term in the other theory:

• (funext)∗ := funexte.

Then the interpretation (·)∗ is extended homomorphically to all other types,

terms, contexts and judgements.

Lemma 2.3.2. The interpretation (·)∗ of Hk into MLe
1V∞ is sound, i.e. if Hk ` J

for some judgement J , then MLe
1V∞ ` J ∗.

Proof. This proof is a straightforward induction on the derivation of the judge-

ment. If J is derived using one of the rules for the universe Ui, either introduction

or computation, then J ∗ by construction is derived respectively by an introduction

rule for Ue or it is a judgemental equality of the form A = A : Ue.

For the identity type the only thing to check is the case of the computation

rule as the others are immediate by construction. We apply the interpretation (·)∗

to both sides of the equality in the computation rule J(a, a, refla, d) = d(a). By
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definition J(a, a, refla, d)∗ = d∗(a∗), on the other hand d(a)∗ = d∗(a∗). Therefore

the computation rule for Idi is sound.

The interpretation of the types of iterative sets V∞ and Vk is straightforward

since the rules for Vk differ from those of V∞ only for the requirement of the

homotopy level of T(x) for x : Ui. Therefore by applying (·)∗, the premisses of the

rules for V∞ can be obtained projecting the terms x : is-k-Type onto Ui.

All other rules and the axiom of function extensionality are immediate. �

Lemma 2.3.3. For all formulas φ of CZF and all α1, . . . , αN : Vk, if we have

that MLe
1V∞ ` (t : Jφ(α)Kk,∞)∗ is derivable for some term t, then MLe

1V∞ ` t∗ :

Jφ(α∗)K∞,∞.

Proof. Recalling the definition of the interpretations J·K∞,∞ and J·Kk,∞ we notice

that the inductive clauses of the definitions are the same, the only difference being

in the type Vk that appears in the interpretation of unbounded quantifiers and

equality instead of V∞. The conclusion follows immediately since by construction

the translation (·)∗ maps Vk to V∞ and terms of Vk to terms of V∞ while respecting

all the other type-theoretic constructors that appear in the definitions of J·K∞,∞
and J·Kk,∞. �

We can put together the results of this section with the ones by Rathjen and

Tupailo [RT06].

Theorem 2.3.4. Let φ be a CC sentence of set theory. If Hk ` t : JφKk,∞ for some

term t of Hk, then CZF + ΠΣ-AC ` φ.

Proof. By Lemma 2.3.2 Hk ` t : JφKk,∞ implies MLe
1V∞ ` (t : JφKk,∞)∗. Thus by

Lemma 2.3.3, we have MLe
1V∞ ` t∗ : JφK∞,∞, and we conclude using the implication

from right to left of Theorem 2.2.2. �

2.4. ΠΣ-AC is valid in the interpretations J·Kk,∞

In this section our goal is to show that ΠΣ-AC holds in our type theory Hk,

which provides the other implication of the characterisation of Theorem 2.5.1. The

proof that ΠΣ-AC holds in MLe
1V∞ is due to Aczel ( see [Acz82, Theorem 6.8]).

When we adapt a proof from MLe
1V∞ to Hk we have to check that:

(i) all constructions done in V∞ with arbitrary small types can be performed

in Vk with small k-types;

(ii) all proofs that involve extensional identity types can be performed with

intensional identity types.
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For the rest of this section we work in Hk and prove a series of lemmas following

closely Aczel’s article [Acz82] that lead to the proof that ΠΣ-AC holds in Vk in

Corollary 2.4.11.

The idea of the proof is to introduce the notion of strong base which is a

strengthening of the notion of base (see Definition 2.4.6). The next step is to show

that the class of strong bases is ΠΣ-closed, which implies that the class of ΠΣ-

generated sets is contained in the class of strong bases.

Definition 2.4.1. Given terms in the type of sets α, β : Vk such that el(α) = el(β).

We can define type-theoretically the set S(α, β) : Vk of pairs of elements of α and

β, as follows:

sup((el(α), pα), λx.〈αx, βx〉),

where 〈·, ·〉 is the set-theoretic pair, and pα : is-k-Type(el(α)) witnesses that α is a

k-type.

One can then prove that S(α, β) is a relation with domain α and codomain β.

See [Acz82, Lemma 5.1(i)] for the details.

Injectively presented sets.

Definition 2.4.2. A set α : Vk is called injectively presented if and only if for all

x1, x2 : El(α) we have:

(αx1 ≈∞ αx2)→ IdEl(α)(x1, x2).

Here ≈∞ is the bisimulation relation defined in Section 1.2.

The next lemma establishes some properties of S(α, β) under the assumption

that α is injectively presented.

Here we use A ↔ B as a shorthand for (A → B) × (B → A), where A and B

are types.

Lemma 2.4.3. Let α : Vk be injectively presented.

(i) Given δ : Vk and β : El(α)→ Vk, consider the set β := sup((el(α), pα), β ).

Then for all x : El(α) we have the following characterisation for elements

of S(α, β):

J〈αx, δ〉 ∈ S(α, β)Kk,∞ ↔ (δ ≈∞ βx).
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(ii) the term γ : Vk is a set-theoretic function with domain α if and only if

there exists a function β : El(α) → Vk such that (γ ≈∞ S(α, β)), where

β := sup((el(α), pα), β );

(iii) given (β1) , (β2) : El(α) → Vk define the sets β1 := sup((el(α), pα), (β1) )

and β2 := sup((el(α), pα), (β2) ), then we have the following characterisa-

tion of the interpretation of equality between the relations S(α, β1) and

S(α, β2)

(S(α, β1) ≈∞ S(α, β2))↔ (Πx : El(α))((β1)x ≈∞ (β2)x).

Proof. For (i), given α : Vk injectively presented and β as above, we have the

following chain of equivalences:

J〈αx, δ〉 ∈ S(α, β)Kk,∞ ↔

(Σy : El(α))(〈αx, δ〉 ≈∞ 〈αy, βy〉)↔ (by definition of S(α, β)),

(Σy : El(α))(αx ≈∞ αy)× (δ ≈∞ βy)↔ (since 〈·, ·〉 is the set-theoretic pair),

(Σy : El(α))IdEl(α)(x, y)× (δ ≈∞ βy) (since α is injectively presented).

Now recall from Lemma 1.1.7 that a function f : A→ B, induces a function on the

identity types IdA(a, b)→ IdB(f(a), f(b)). Therefore we have IdVk(βx, βy) which in

turn implies (βx ≈∞ βy), which gives (δ ≈∞ βx) by transitivity.

For (ii) and (iii) the adaptation of the proof of [Acz82, Lemma 5.3] is straight-

forward. �

Theorem 2.4.4. Every injectively presented set is a base.

Proof. The adaptation of this proof is straightforward, for the details see [Acz82,

Theorem 5.4]. The proof uses Lemma 2.4.3. �

Lemma 2.4.5. The set of natural numbers ω : Vk is injectively presented.

Proof. The aim is to prove that given n1, n2 : N we have:

(ωn1 ≈∞ ωn2)→ IdN(n1, n2).

The proof proceeds by a straightforward double induction on n1, n2 : N, and it uses

the characterisation of IdN that we used in the proof of Theorem 1.1.8. See [Acz82,

Lemma 5.5] for the details. �

Strong bases. One drawback of the notion of injectively presented set is that

it is not compatible with respect to the type-theoretic equivalence relation ≈∞,

meaning that there could be two sets α, β : Vk with (α ≈∞ β), and α injectively

presented, but not β. Therefore [Acz82, Definition 6.1] introduces the following
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strengthening of the notion of base.

Definition 2.4.6. We say that α : Vk is a strong base if and only if there exists a

β : Vk injectively presented such that (α ≈∞ β) holds.

We now define operations Π and Σ in Vk corresponding to the respective set-

theoretic operations introduced in Definition 2.1.1.

Given sets α, β : Vk, with el(α) = el(β) we define C := (Σx : El(α))El(βx), which

is a small k-type C = T(c). Thus by Theorem 1.1.8 we have a term witnessing the

homotopy level p1 : is-k-Type(T(c)). Then, for z : C, let us consider the function

F (z) := (βz.1)z.2, so that we can define:

Σ(α, β) := sup((c, p1), λz.〈αz.1, F (z)〉).

Similarly, we define the Π-type D := (Πx : El(α))El(βx) which is also a small

k-type D = T(d). Thus we have a proof p2 : is-k-Type(T(d)). Let z : D, and

consider the function G : T(d) → Vk given by G(z) := sup((el(α), pα), λx.(βx)z(x))

so that we can define:

Π(α, β) := sup((d, p2), S(α,G)).

Given the closure properties of k-types of Theorem 1.1.8 we have that Σ(α, β) and

Π(α, β) are also terms in Vk.

It can be proved that Σ(α, β) is the disjoint union and Π(α, β) is the cartesian

product of the family of sets S(α, β). See [Acz82, Theorem 6.4] for more details.

Now we have two key lemmas regarding Π(α, β) and Σ(α, β).

Lemma 2.4.7. Let α : Vk be injectively presented, given any β : El(α) → Vk,

consider β := sup((el(α), pα), β ). If βx is injectively presented for all x : El(α),

then Σ(α, β) is injectively presented.

Proof. Let γ := Σ(α, β) and consider z1, z2 : C := (Σx : El(α))El(βx), such that

(γz1 ≈∞ γz2) is inhabited. We want to prove that IdC(z1, z2) is inhabited.

Consider the projections x1 := z1.1, and x2 := z2.1, and y1 := z1.2, and

y2 := z2.2. By definition (γz1 ≈∞ γz2) equals (〈αx1 , (βx1)y1〉 ≈∞ 〈αx2 , (βx2)y2〉).
By definition of the set-theoretic pair we have terms inhabiting the types:

(αx1 ≈∞ αx2),
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and

(2.1) ((βx1)y1 ≈∞ (βx2)y2).

Since α is injectively presented we have p : IdEl(α)(x1, x2), which implies that

IdU(el(βx1), el(βx2)) is inhabited.

Then, by applying the dependent case of Lemma 1.1.7 to the functionλδ.(δ) :

(Πδ : Vk)El(δ)→ Vk we have a term inhabiting the type:

IdEl(βx2 )→Vk(p∗(βx1) , (βx2) ).

Now we apply the two functions p∗(βx1) and (βx2) to the same term p∗(y1). Hence,

we get a term in:

IdVk((βx1)p−1
∗ p∗(y1), (βx2)p∗(y1)).

Which in turn by the elimination rule for Id-types gives a term in:

((βx1)y1 ≈∞ (βx2)p∗(y1)).

By transitivity of ≈∞, this together with eq. (2.1) gives a term inhabiting:

((βx2)y2 ≈∞ (βx2)p∗(y1)).

Since by hypothesis βx2 is injectively presented we have:

IdEl(βx2 )(p∗(y1), y2).

Combining this with the previously established IdEl(α)(x1, x2) we obtain that the

identity type IdC((x1, y1), (x2, y2)) is inhabited by the characterisation of IdΣ we

used in the proof of Theorem 1.1.8. Thus we have that IdC(z1, z2) is inhabited.

�

Similarly, Π(α, β) also preserves injectively presented sets.

Lemma 2.4.8. Let α : Vk be injectively presented, given any β : El(α) → Vk,

consider β := sup((el(α), pα), β ). If βx is injectively presented for all x : El(α),

then Π(α, β) is injectively presented.

Proof. Consider γ := Π(α, β), and let z1, z2 be terms of D := (Πx : El(α))El(βx)

such that (γz1 ≈∞ γz2), we want to show that IdD(z1, z2).

By definition of Π(α, β) we have that γzi equals S(α,G(zi)), which in turn

equals:

sup((el(α), pα), λx.〈αx, G(zi)x〉),

where G has been defined together with Π(α, β) in Section 2.4.

By hypothesis Jγz1 ⊆ γz2Kk,∞, which unfolds as:

(2.2) (Πx1 : El(α))(Σx2 : El(α))(〈αx1 , G(z1)x1〉 ≈∞ 〈αx2 , G(z2)x2〉).
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Since α is injectively presented we get IdEl(α)(x1, x2), which in turn implies:

IdVk(G(z2)x1 , G(z2)x2).

Then by the elimination rule for Id-types:

(G(z2)x1 ≈∞ G(z2)x2).

This together with (2.2) implies by transitivity of ≈∞ that the following type is

inhabited:

(G(z1)x1 ≈∞ G(z2)x1),

which is (definitionally) equal to:

((βx1)z1(x1) ≈∞ (βx1)z2(x1)).

Since by hypothesis βx1 is injectively presented we have that the following type is

inhabited:

(Πx1 : El(α))IdEl(βx1 )(z1(x1), z2(x1)).

Therefore we can conclude using function extensionality that z1 and z2 are propos-

itionally equal.

�

Aczel uses the constructions of Π(α, β) and Σ(α, β) in [Acz82] to prove the

following property of strong bases, which we can easily adapt to the case of the

interpretations J·Kk,∞.

Theorem 2.4.9. In Vk the class of strong bases is ΠΣ-closed.

Proof. The adaptation of this proof is straightforward, see [Acz82, Theorem 6.7].

�

Corollary 2.4.10. ΠΣ-AC is valid in the interpretations J·Kk,∞ into Hk.

Proof. Recall that the class of ΠΣ-generated sets is the smallest ΠΣ-closed class.

Since the class of strong bases is ΠΣ-closed, we have that every ΠΣ-generated set

is a strong base. Finally, recall that every strong base is a base. �

Corollary 2.4.11. Let φ be a CC sentence. If MLe
1V∞ ` tφ : JφK for some term

tφ of MLe
1V∞, then Hk ` t′φ : JφKk,∞, for some term t′φ of Hk.

Proof. Immediate from Corollary 2.4.10 and Theorem 2.2.2. �

2.5. The proof-theoretic characterisation

We can finally put together the results of Section 2.3 and Section 2.4 and give

the full characterisation of the interpretations J·Kk,∞ with respect to CC sentences.
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Theorem 2.5.1. Given a CC sentence φ of CZF, and 2 ≤ k ≤ ∞. We have that

CZF + ΠΣ-AC ` φ if and only if Hk ` t : JφKk,∞ for some term t of Hk.

Proof. (⇒) This was proved in Corollary 2.4.10.

(⇐) This was proved in Theorem 2.3.4. �

In particular we have the following corollary expressing precisely the intuition that

for the purposes of interpreting set theory the homotopy levels interpreting sets do

not matter.

Corollary 2.5.2. Given a CC sentence of CZF and 2 ≤ k1, k2 ≤ ∞ we have that

Hk1 ` JφKk1,∞ if and only if Hk2 ` JφKk2,∞.

Proof. Immediate consequence of Theorem 2.5.1. �

The interpretations J·Kk,∞ interpret formulas in the same way, as arbitrary

types. They differ in using the types Vk to interpret sets. Recall from Defini-

tion 1.2.1 that terms of Vk are constructed only from types of fixed homotopy level

k. The idea is that the definition of Vk imposes a restriction on the amount of

homotopical information of the type of elements El(α) of a term α : Vk.

We can summarise the results of this chapter saying that we have a countable

hierarchy of models of CZF in type theory defined by the homotopy level of the types

used to interpret sets. These models approximate V∞ which is the one originally

developed by Aczel. However CZF is not able to distinguish any two of these models

as they validate the same CC sentences of set theory. Hence we can argue that

the essential set-theoretic content of Aczel’s type-theoretic interpretation is already

captured by V2, where sets are interpreted as homotopy sets.

V2VkV∞

. . . . . .. . .. . .

We leave open the question if CZF can distinguish the models via non-CC sen-

tences.

Observe that adding the univalence axiom to Hk would break the proof presen-

ted here, since our proof relies on the interpretation (·)∗ of Hk into MLe
1V∞. The

interpretation (·)∗ is incompatible with univalence because it interprets the inten-

sional identity type Idi of Hk as the extensional identity type Ide of MLe
1V∞. See
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[Uni13, Example 3.1.9 and Section 7.2] for more details on the incompatibility of

univalence with extensional identity types.

The interpretation (·)∗ then allows us to use the proof-theoretic machinery

of Rathjen and Tupailo, namely the interpretation J·Kcl and the internal model

H(Y ∗) (see point (iii) of 2.1). If a result similar to Theorem 2.5.1 holds for a type

theory with the univalence axiom it is reasonable to expect that the proof-theoretic

machinery developed in [RT06] would need to be rebuilt from scratch taking into

account univalence.

2.6. A side question: ΠΣI-AC and hsets

A natural question arises regarding the role played throughout this section by

the hypothesis of types having a fixed homotopy level.

There is an interesting remark regarding the ΠΣI axiom of choice, which is an

equivalent version of ΠΣ-AC. If we are working in V2 with hsets, we can follow

Aczel (see [Acz82, Lemma 6.6]) and give a direct proof that ΠΣI-AC is valid in V2

making actual use of the restriction on the homotopy level.

Let us give the necessary preliminary definitions in order to introduce ΠΣI-AC.

Definition 2.6.1. In CZF, given a family of sets B indexed by a set A, we define

I(a, b) := {z ∈ {∅} | a .
= b}.

Definition 2.6.2. In CZF we say that a class X is ΠΣI-closed if and only if it is

ΠΣ-closed and also enjoys the property that I(a, b) ∈ X for all a, b ∈ A and all

A ∈ X.

Theorem 2.6.3 (Aczel). In CZF there is a smallest ΠΣI-closed class, called the

class of ΠΣI-generated sets.

Proof. See [Acz82, Section 4.2]. �

The ΠΣI axiom of choice has the same structure as the ΠΣ axiom of choice

but it considers more general basic sets, i.e. the ones generated from ω via the

set-theoretic operations of Π, Σ and I.

Axiom 2.6.4 (ΠΣI-AC). every ΠΣI-generated set is a base.

However, this does not add strength to the axiom.

Theorem 2.6.5 (Aczel). In CZF, ΠΣI-AC is equivalent to ΠΣ-AC
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Proof. See [Acz86, Theorem 3.7].

�

Now we arrive at the direct proof that ΠΣI-AC is valid in V2, where we are

taking advantage of the fact we are using hsets.

Definition 2.6.6. Given α : V2 and a, b : El(α), since el(α) is a small hset the

identity type IdEl(α)(a, b) = T(id(el(α), a, b)) is also a small hset. Therefore we have

a term witnessing this fact p : isHSetU(IdEl(α)(a, b)). Thus we can define:

Îα(a, b) := sup((id(el(α)), p), λx.∅).

Lemma 2.6.7. Given α : V2 we have that Îα(a, b) is always injectively presented.

Proof. Let γ := Îα(a, b) and consider z1, z2 : IdEl(α)(a, b) such that (γz1 ≈∞ γz2).

Since el(α) is a small hset we have that IdEl(α)(a, b) is a hproposition, and since

it is inhabited by z1, z2 by hypothesis, it is contractible, i.e. IdIdEl(α)(a,b)(z1, z2) is

inhabited. �

Note that Aczel in [Acz82, Lemma 6.6] can deduce that IdIdEl(α)(a,b)(z1, z2) is

inhabited thanks to the properties of extensional identity types. Here we can do it

using the properties of hsets for the type V2.

Theorem 2.6.8. The class of strong bases is ΠΣI-closed. Therefore ΠΣI-AC is

valid in V2.

Proof. Given α : V2 a strong base and β1, β2 : V2 elements of α, we want to show

that there is a strong base γ : V2 such that for all η : V2 we have:

Jη ∈ γKk,∞ ↔ (η ≈∞ ∅)× (β1 ≈∞ β2).

Without loss of generality we can assume α injectively presented, and that βi is αai
for ai : El(α). Given Lemma 2.6.7, it is enough to show the following equivalence:

Jη ∈ Îα(a1, a2)Kk,∞ ↔ (η ≈∞ ∅)× (αa1 ≈∞ αa2).

Since α is injectively presented we have the (logical) equivalence:

(αa1 ≈∞ αa2)↔ IdEl(α)(a1, a2).

Hence, applying it to the definition Jη ∈ Îα(a1, a2)Kk,∞ = IdEl(α)(a1, a2)× (η ≈∞ ∅)
we obtain the thesis. �



CHAPTER 3

Equivalence between some interpretations

This chapter presents definitions and results from [Gyl16b] and [Uni13] on the

interpretations J·KG and J·KH of Myhill’s CST into the theories HoTT and H + VH,

with some adaptations and extensions on our part. The definition of Gylterud’s

interpretation J·KG and the one of the HoTT book J·KH are given in Section 3.2

and Section 3.5 respectively. They follow the same general structure as J·Kk,1, with

few differences the main one being that set-theoretic equality is interpreted as the

identity type Id of the type of sets.

In Gylterud’s interpretation sets are interpreted as terms of the subtype of

V∞ given by the trees in which there are no repetitions of branches. Formally,

VG := (Σx : V∞)itset(x), where itset is defined in Section 3.2. In the HoTT book

interpretation sets are interpreted as terms of the higher inductive type VH which

is constructed in such a way that terms of IdVH
come from a truncated bisimulation

relation on VH, see Section 3.3 for the definition.

The aim of the chapter is to prove that the interpretations J·KG, J·KH and J·Kk,1
are equivalent for 2 ≤ k ≤ ∞. The equivalence between the types VG and V∞/ ≈1

is stated in [Gyl16a, Proposition 8:5] and the one between V∞/ ≈1 and VH is stated

in [Gyl16a, Remark 8:6]. However, the details of the proofs are left to the reader.

We give details of the equivalence considering not only these types of sets, but

also the setoids (V∞,≈1), (VG, IdVG
) and (VH, IdVH

), as well as the ones (Vk,≈1)

for 2 ≤ k < ∞ in Section 3.4. Moreover, we prove that the equivalence between

setoids induces a logical equivalence between the interpretations in Theorem 3.5.1,

which is the main theorem of the chapter.

In this way we start to understand the relationships between some of the inter-

pretations of the family J·Kk,h and the ones already existing in the literature J·KG
and J·KH . An interesting consequence of Theorem 3.5.1 is that Replacement and

Exponentiation are valid in the interpretations J·Kk,1 for 2 ≤ k ≤ ∞, see Corol-

lary 3.5.3. Hence, for these values of k we can interpret CST into the type theory

HoTT, which is a fact that we stated without proof in Lemma 1.3.13.

The equivalences proved in this chapter then form the basis for the analysis

between the interpretations J·K∞,1 and J·K∞,∞ of chapter 5.

57
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In this chapter, for notational convenience when dealing with projection func-

tions, we use the notation π0(t) and π1(t) for the two projections of a Σ-type, rather

than the notation t.1 and t.2 which are used in the rest of the thesis.

Unless stated otherwise, throughout this chapter we work in the type theory

HoTT.

Outline. Section 3.1 recalls some notions and lemmas on setoids and on the

epi-mono factorisation. Section 3.2 presents Gylterud’s work from [Gyl16a]. The

main theorem of the section is Theorem 3.2.9 which proves that there is an equi-

valence between the setoids (V∞,≈1) and (VG, IdVG
). Then Section 3.3 deals with

the HoTT book interpretation and expands the details of [Gyl16a, Remark 8:6].

Theorem 3.3.2 proves that there is an equivalence between the setoids (V∞,≈1)

and (VH, IdVH
). Section 3.4 relates the other types of sets Vk for 2 ≤ k < ∞.

Theorem 3.4.1 proves that there is an equivalence of setoids between (Vk,≈1) and

(VG, IdVG
). Finally, Section 3.5, puts together the equivalences obtained in the

previous sections, and Theorem 3.5.1 shows that the equivalence between setoids

extends to a logical equivalence between the interpretations J·KG, J·KH and J·Kk,1 for

2 ≤ k ≤ ∞. The validity of Replacement and Exponentiation in J·Kk,1 are discussed

in this section.

3.1. Preliminaries on setoids and the epi-mono factorisation

Before moving to the main content of the chapter we briefly recall from [PW14]

some notions on setoids. We also recall the epi-mono factorisation of a type-

theoretic map. In this chapter we use the notation (∃x : A)B(x) to refer to the

truncation of the Σ-type
∥∥∥(Σx : A)B(x)

∥∥∥ as doing so makes some expressions more

readable.

Definition 3.1.1.

(a) A setoid is a pair (A,R), where A is a type and R an equivalence relation

on A;

(b) A map of setoids, also called an extensional function, F : (A,R)→ (B,Q)

is a map F : A→ B that is compatible with the relations, i.e.

(Πx, y : A)R(x, y)→ Q(F (x), F (y));

(c) given two setoids (A,R) and (B,Q) we say that they are equivalent (as

setoids), written (A,R) ∼= (B,Q), if and only if there are maps of setoids

F : A → B and G : B → A such that for all x : A we have R(GF (x), x)

and for all y : B we have Q(FG(y), y).
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Notice that given setoids of the form (A, IdA) and (B, IdB), equivalence of set-

oids implies that the type Equiv(A,B) is inhabited.

Lemma 3.1.2. Given setoids (A,R) and (B, IdB) such that the type B is a hset, an

equivalence between them induces an equivalence between the set-quotient (A/R, IdA/R)

and (B, IdB).

Proof. The claim follows from the fact that an equivalence between the setoids

(A,R) and (B,Q) induces an equivalence between the set quotients (A/R, IdA/R)

and (B/Q, IdB/Q). Moreover, if B is a hset we have that the trivial set quotient

B/IdB is equivalent to B. �

Now recall the construction of the epi-mono factorisation in type theory.

Definition 3.1.3. Given a map f : X → Y , its epi-mono factorisation is the

factorisation of f as:

X
f

//

e

"" ""

Y

Im(f)
<<

m
<<

where the image is defined as:

Im(f) := (Σy : Y )(∃x : X)IdY (f(x), y),

and the maps e and m are:

e(x) := (f(x), |(x, reflf(x))|),

m(t) := π0(t).

It is straightforward to check that e is an epi and m a mono in the sense that

the following types are inhabited:

(Πx : Im(f))(∃y : X)IdIm(f)(e(y), x),

and

(Πx, y : X)IdIm(f)(f(x), f(y))→ IdX(x, y).

Now we give a useful sufficient condition for Im(f) being equivalent to a small

type, that is one of the key lemmas that allow to prove the equivalence between

setoids in Theorem 3.2.9, Theorem 3.3.2 and Theorem 3.4.1. We briefly recall the

notion of a locally small type that is used in the proof of Lemma 3.1.5.

Definition 3.1.4. A type A is locally small if and only if its identity types

are equivalent to small types, i.e. for all x, y : A there are i(x, y) : U such that
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IdA(x, y) ' T(i(x, y)).

The following lemma is folklore, we could not find a reference for it in the form

we stated it, so we provide details for the proof. Our proof is based on the one of

[Uni13, Lemma 10.5.6].

Lemma 3.1.5. Assume U closed under set quotients. Let f : A→ B with A small

and B a locally small hset. Then the image factorisation Im(f) is equivalent to a

small type.

Proof. Since B is locally small, and Im(f) = (Σb : B)(∃a : A)IdB(f(a), b) then for

any two terms x, y : Im(f) we have an equivalence with a small type IdIm(f)(x, y) '
T(i(x, y)). Consider the small relation R on A given by:

x, y : A ` R(x, y) := T(i(e(x), e(y))),

where e : A→ Im(f) is the epi of the epi-mono factorisation.

Since B is a hset R(x, y) is a family of hproposition, so that we can take the

set-quotient A/R which is small by hypothesis. Let q : A→ A/R be the projection

onto the set quotient, see Section 1.1.

Now we prove that the image Im(f) is equivalent to A/R. We construct a

map Im(f)→ A/R using the principle of unique choice (Lemma 1.1.10). One first

proves that the following type is inhabited:

(3.1) (Πz : Im(f))(∃!α : A/R)(∃x : A)IdIm(f)(e(x), z)× IdA/R(q(x), α).

In this context the uniqueness condition (∃!x : A)B(x) is defined in terms of the

identity type of A as:

(∃x : A)B(x)× (Πz1, z2 : A)B(z1)×B(z2)→ IdA(z1, z2).

The uniqueness condition in eq. (3.1) comes from the definition of IdA/R of the

set-quotient. Then by defining:

P (z) := (∃α : A/R)(∃x : A)IdIm(f)(e(x), z)× IdA/R(q(x), α),

we can apply the principle of unique choice to the family z : Im(f) ` P (z) and have

a function Im(f)→ A/R.

Similarly for the other direction one proves:

(Πα : A/R)(∃!z : Im(f))(∃x : A)IdIm(f)(e(x), z)× IdA/R(q(x), α),

by using the universal property of the quotient Lemma 1.1.13.

Then it is straightforward to check that this gives an equivalence of types. �
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Given our definition of the type theory HoTT, given in Section 1.1, we can

always perform the operation of set-quotients, and moreover the universe is closed

under set-quotients.

3.2. Equivalence with Gylterud’s interpretation

In this section we recall definitions and results from [Gyl16a] that lead to The-

orem 3.2.9, also proved in [Gyl16a].

Observe that the bisimulation relation ≈∞ in V∞ allows us to identify trees,

recursively, up to permutation and repetition of their branches. This is the reason

why ≈∞ is used to interpret set-theoretic equality, precisely because this makes the

Extensionality axiom valid.

If we just consider the type V∞ with its identity type IdV∞ instead, we are not

able to identify extensionally equal trees. However, in presence of univalence we

have the following lemma.

Lemma 3.2.1 (Gylterud). Given x, y : V∞, the identity type IdV∞(x, y), is equi-

valent to the type (x ∼ y), where the type ∼ is defined as follows:

(sup(a, f) ∼ sup(b, g)) := (Σα : T(a) ' T(b))(Πx : T(a))(f(x) ∼ g(α(x))).

Proof. See [Gyl16b, Theorem 3.9], note that this proof uses the propositional

η-rule. �

This lemma gives a description of the identity type IdV∞ that thanks to the

condition that asks for an equivalence α : T(a) ' T(b), it allows to identify trees

up to a permutation of their branches. Indeed, given sup(a, f) : V∞, the type T(a)

gives indices for the branches and the function f : T(a) → V∞ assigns a sub-tree

to every branch. Since there is an equivalence T(a) ' T(b) on the indices for the

branches, trees are identified up to permutations of their branches.

If we want to validate Extensionality we just need to deal with repetitions,

and this can be done by simply restricting to the type VG of trees that have no

repetitions of branches. The following definition makes this idea precise.

Definition 3.2.2. Recall that a function f : A → B is an embedding if and only

if the map induced on the identity types apf : IdA(x, y) → IdB(f(x), f(y)) is an

equivalence. The type Embedding(f) is defined as follows:

(Πx, y : A)isequiv(apf ).
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With the notion of embedding we can require the branches of a tree sup(a, f)

in V∞ to have no repetitions, simply by asking that the function f selecting the

branches is an embedding, iteratively. More formally, consider the family of types

itset(x) constructed by recursion on x : V∞ as:

itset(sup(a, f)) := Embedding(f)× (Πi : T(a))itset(f(a)).

Then the type VG is defined as (Σx : V∞)itset(x).

Remark 3.2.3.

(i) If we assume FE function extensionality then Embedding(f) is always a

hproposition. Thus itset(x) is a hproposition for any x : V∞;

(ii) in the presence of FE embeddings have propositional fibres [Uni13, Lemma 7.6.2].

Recall that the fibre of f : A → B over b : B is defined as the type

Fibf(b) := (Σx : A)IdB(f(x), b).

Gylterud’s interpretation of the membership relation in V∞ and VG is defined

by recursion as follows. Consider α, β : V∞ with β = sup(b, g), and terms b : U,

g : T(a)→ V∞. Then one defines:

Jα ∈ βKG := (Σi : T(b)IdV∞(g(i), α)).

The interpretation J·KG is extended from V∞ to VG, so given x, y : VG one defines:

Jx ∈ yKG := Jπ0(x) ∈ π0(y)KG;

Jx .
= yKG := IdVG

(x, y).

Note that the Σ-type in the interpretation of ∈ is not truncated, while that is the

case for the interpretation J·K∞,1. However, as we see in Lemma 3.2.4 below, the

type Jx ∈ yKG is always a hproposition.

The rest of the interpretation has the same structure as J·K∞,1:

J⊥KG := 0;

Jφ⇒ ψKG := JφKG → JψKG;

Jφ ∧ ψKG := JφKG × JψKG;

Jφ ∨ ψKG :=
∥∥∥JφKG + JψKG

∥∥∥;

J∀xφ(x)KG := (Πα : VG)Jφ(α)KG;

J∃xφ(x)KG :=
∥∥∥(Σα : VG)Jφ(α)KG

∥∥∥.
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We now present some lemmas that are useful in relating the types of sets V∞

and VG.

Lemma 3.2.4 (Gylterud). For α : V∞ and x : VG the type Jα ∈ π0(x)KG is a

hproposition.

Proof. Suppose x = (sup(a, f), p). By definition:

Jα ∈ sup(a, f)KG = (Σi : T(a))Id(f(i), α).

Observe that the right hand side is Fibf(α) i.e. the fibre of f over α. By Re-

mark 3.2.3 embeddings have propositional fibres. �

Lemma 3.2.5 (Gylterud). We have the following facts about IdVG
:

(i) for all x, y : VG we have an equivalence:

IdVG
(x, y) ' (Πz : VG)(Jz ∈ xKG ↔ Jz ∈ yKG),

(ii) VG is a hset;

(iii) the Extensionality axiom is valid in (VG, IdVG
, J·KG).

Proof. (i) See [Gyl16a, extensionality 6.1]. The proof uses [Gyl16b, Theorem 3:14]

and Lemma 3.2.4.

(ii) Note that Lemma 3.2.4 and point (i) together imply that IdVG
is equivalent

to a hprop.

(iii) Immediate consequence of (i).

�

Lemma 3.2.6 (Gylterud). Given a small type a : U and a function f : T(a)→ VG

there is image(a, f) : VG such that:

(i) for each i : T(a) we have a term in the type Jf(i) ∈ image(a, f)KG;

(ii) for any P : VG → U such that P (α) are all hprops, given (Πi : T(a))P (f(i))

we have that (Πz : VG)(Jz ∈ image(a, f)KG → P (z)).

Proof. To construct image(a, f), take the epi-mono factorisation of f : T(a)→ VG

as e : T(a)→ Im(f) followed by m : Im(f)→ VG.

Since itset(x) is always a hproposition, we have that IdVG
and IdV∞ are equival-

ent, and that in presence of univalence the latter can be described as the following

type (see [Gyl16b, Theorem 3.9]):

(sup(a, f) ∼ sup(b, g)) := (Σα : T(a) ' T(b))(Πx : T(a))(f(x) ∼ g(α(x))).

Hence VG is locally small.
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Then Lemma 3.1.5 guarantees that Im(f) is equivalent to a small type T(b). So

we can define image(a, f) := (sup(b,m′), p), where m′ := π0 ◦m, and π0 : VG → V∞

and p : itset(sup(b,m′)). It is straightforward to check the other properties of

image(a, f). �

By recursion on V∞ we construct the iterative image map F : V∞ → VG. For

a canonical term sup(a, f) : V∞ we define:

F (sup(a, f)) := image(a, F ◦ f).

Lemma 3.2.7 and Lemma 3.2.8 are key in proving that the map F : V∞ → VG

and the projection π0 : VG → V∞ give us an equivalence of setoids.

Lemma 3.2.7 (Gylterud). For each x : V∞, the type (x ≈1 π0F (x)) is inhabited.

Proof. Same proof as [Gyl16a, Lemma 8.3]. Given sup(a, f) : V∞, we have that

F (sup(a, f)) = (sup(b,m′), p), where b and m are given by the epi-mono factorisa-

tion of f , and p : itset(sup(b,m′)), and m′ := π0 ◦m, as in the following diagram:

T(a)
f

//

e

��

V∞
F
//VG

T(b) = T(a)/R

m′
88

m

44

Then we can prove (Πx : T(a))(Σy : T(b))(f(x) ≈1 m
′(y)) by simply taking y :=

e(x). On the other hand we can prove (Πy : T(b))(∃y : T(a))(f(x) ≈1 m
′(y)), by

surjectivity of the projection e : T(a)→ T(a)/R = T(b). �

Lemma 3.2.8 (Gylterud). There is a function inhabiting the following type:

(Πx, y : V∞)itset(x)× itset(y)× (x ≈1 y)→ IdV∞(x, y).

Proof. We expand some details in the proof of [Gyl16a, Lemma 8.4].

By W -recursion suppose we have (sup(a, f) ≈1 sup(b, g)) and s : itset(sup(a, f))

and t : itset(sup(b, g)).

In order to show that IdV∞(sup(a, f), sup(b, g)) is inhabited it is enough to show

that this type:

IdVG
((sup(a, f), s), (sup(b, g), t)),

is inhabited, because itset(x) is always a hproposition.

Since the extensionality axiom is valid in (VG, IdVG
) (see Lemma 3.2.5) in order

to prove that there is an identity in VG between x and y it is enough to show that

for any z : VG we have that Jz ∈ xKG ↔ Jz ∈ yKG.
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In one direction, given Jz ∈ sup(a, f)KG, by definition of ∈, we have that the type

(Σi : T(a))IdV∞(z, f(i)) is inhabited. Since y is an iterative set, the type Jz ∈ yKG
is a hproposition by Lemma 3.2.4. Hence, the hypothesis (sup(a, f) ≈1 sup(b, g))

gives by the universal property of the propositional truncation that

(Σj : T(b))(f(i) ≈1 g(j)),

is also inhabited. Then by inductive hypothesis (f(i) ≈1 g(j))→ IdV∞(f(i), g(j)).

Similarly for the other direction.

�

We can finally state and prove the following equivalence.

Theorem 3.2.9. The setoids (V∞,≈1) and (VG, IdVG
) are equivalent.

Proof. We are going to prove that the function iterative image F : V∞ → VG and

the projection π0 : VG → V∞ are mutually inverse.

One direction is given by Lemma 3.2.7. For the other direction we want to prove

that (Πt : VG)IdVG
(F (π0t), t). Recall that by definition VG = (Σx : V∞)itset(x).

Given t : VG, we apply Lemma 3.2.7 to π0(t) : V∞ and we get a term inhabiting

the type:

(π0Fπ0(t) ≈1 π0(t)).

Then we apply Lemma 3.2.8 to x := π0Fπ0(t) and y := π0(t) so that we have

a term inhabiting:

IdV∞(π0Fπ0(t), π0(t)).

Since itset(x) is a hproposition, an identity in V∞ between iterative sets gives

an identity in VG. As a result we have a term in IdVG
(Fπ0(t), t) as desired. �

Corollary 3.2.10 (Gylterud). The setoids (V∞/≈1 , IdV∞/≈1
) and (VG, IdVG

) are

equivalent.

Proof. Immediate consequence of Lemma 3.1.2 and Theorem 3.2.9. �

3.3. Equivalence with the HoTT book interpretation

In this section we work in the type theory HoTT + VH. Let us recall the

definition of the higher inductive type VH used in [Uni13, Section 10.5]. We prove

in Corollary 3.3.3 that the setoids (VH, IdVH
) and (V∞/ ≈1, IdV∞/≈1

) are equivalent

(which is stated in [Gyl16a, Remark 8.6]).

In order to make the definition of the higher inductive type VH more readable

we introduce an auxiliary definition. Consider set(a, f), set(b, g) : VH two canonical

terms of VH, given by the introduction rule below. Then we define the following

type:
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Bisim Id(set(a, f), set(b, g)) :=

(Πx : T(a))
∥∥∥(Σy : T(b))IdVH

(f(x), g(y))
∥∥∥×(Πy : T(b))

∥∥∥(Σx : T(a))IdVH
(f(x), g(y))

∥∥∥.
The informal idea behind the definition of VH is to start from the type V∞ and

to add identities corresponding to the terms of the truncated bisimulation ≈1, and

we also make VH into a hset by adding terms into IdIdVH
.

The type VH is generated by the following constructors:

(i) for every a : U and f : T(a)→ VH a term set(a, f);

(ii) for every a, b : U and f : T(a) → VH and g : T(b) → VH such that

Bisim Id(set(a, f), set(b, g)), a path in IdVH
(set(a, f), set(b, g));

(iii) for all x, y : VH and p, q : IdVH
(x, y) a term in IdIdVH

(p, q).

Given a family of hsets P (x) for x : VH, the elimination rule gives a way to

construct a dependent function h : (Πx : VH)P (x), provided that the following

clauses are satisfied. We write the elimination rule, so that these clauses also

express the computation rule.

(1) for any a : U and f : T(a) → VH construct h(set(a, f)) assuming given

h(f(x)) for all x : T(a);

(2) verify that if we have a, b : U and f : T(a)→ VH and g : T(b)→ VH such

that Bisim Id(set(a, f), set(b, g)) holds, then:

IdP (set(b,g))(q∗(h(set(a, f))), h(set(b, g))),

where q is the path arising from the second constructor (ii) and the

type Bisim Id(set(a, f), set(b, g)). Assuming inductively that h(f(x)) and

h(g(y)) are defined for all x : T(a) and y : T(b), and that the following

two conditions holds:

(3.1) (Πx : T(a))(∃y : T(b))(∃p : IdVH
(f(x), g(y)) IdP (h(g(y)))(p∗h(f(x)), h(g(y))),

(3.2) (Πy : T(b))(∃x : T(a))(∃p : IdVH
(f(x), g(y)) IdP (h(g(y)))(p∗h(f(x)), h(g(y))).

Remark 3.3.1. Observe that in the section on the interpretation of set theory

of the HoTT book [Uni13, Section 10.5] univalence is used, but only in the proof

of Lemma 10.5.6 and Lemma 10.5.9. We claim that these lemmas can be proved

without univalence.

Lemma 10.5.6 of the HoTT book states that given u : VH there is a small type

au : U and a monicm : T(au)→ VH such that one has IdVH
(u, set(au,m)). The proof
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describes a construction of the small image factorisation of a map f : T(a)→ VH,

which is unique up to equivalence and hence by univalence up to identity. This

fact is used to construct explicit terms au and m. However, the construction itself

provides explicitly the terms au and m as we have seen in Lemma 3.1.5 of the

previous section and there is no need to prove their uniqueness.

Lemma 10.5.9 of the HoTT book shows that a ∆0 class C : VH → HPropU is small.

Univalence is used in the proof to deduce an identity from a logical equivalence

between propositions. But there is no need for such identity if the lemma is re-

phrased directly in terms of a set-theoretic interpretations J·KH : CST → HoTT,

stating that given φ a ∆0 formula of CST its interpretation JφKH is equivalent to a

small type.

Now we construct the equivalence with the HoTT book interpretation. Recall

from Definition 3.1.1 that in order to construct an equivalence between the setoids

(V∞,≈1) ∼= (VH, IdVH
) we need to construct a map out of VH, but for that we need

to eliminate into a hset. So we first construct a map K ′ : VH → VG, since VG

is a hset thanks to Lemma 3.2.5. Then we define H : V∞ → VH and prove in

Theorem 3.3.2 that H and

K = π0 ◦K ′ : VH → V∞,

give an equivalence of setoids. Here π0 : VG → V∞ is the projection on the first

component. To do this we use the equivalence of setoids (V∞,≈1 ) ∼= (VG, IdVG
)

proved in Theorem 3.2.9.

We define K ′ by recursion on VH: suppose we are given set(a, f) for a map

f : T(a) → VH and the map K ′ : VH → VG already defined on the terms f(x) for

x : T(a).

Recall from Theorem 3.2.9 that we have maps F : V∞ → VG and π0 : VG → V∞

giving an equivalence of setoids. We define the map K ′ : VH → VG as follows:

K ′(set(a, f)) := F (sup(a, π0K
′f)).

This definition respects the clauses 3.1 and 3.2. Indeed, suppose given a term in

Bisim Id(set(a, f), set(b, g)), we want to construct a term inhabiting:

IdVG
(F (sup(a, π0K

′f)), F (sup(b, π0K
′g))),

recalling that F forms an equivalence of setoids, it is enough to show that we have:

sup(a, π0K
′f) ≈1 sup(b, π0K

′g) which follows from the hypothesis that the type

Bisim Id(set(a, f), set(b, g)) is inhabited.
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The map H : V∞ → VH is readily defined by recursion as follows:

H(sup(a, f)) := set(a,H ◦ f),

for f : T(a)→ V∞. Note that an induction on V∞ gives that H is a map of setoids

H : (V∞,≈1)→ (VH, IdVH
).

Theorem 3.3.2. The functions H : V∞ → VH and K = π0 ◦K ′ : VH → V∞ give

an equivalence of setoids (V∞,≈1) ∼= (VH, IdVH
).

Proof. First, we want to prove that (KH(α) ≈1 α) for α. By induction on α =

sup(a, f) we have that:

KH(sup(a, f)) = π0 ◦K ′ ◦H(sup(a, f)) (by definition of K)

= π0 ◦K ′(set(a,H ◦ f)) (by definition of H)

= π0 ◦ F (sup(a, π0 ◦K ′ ◦H ◦ f)). (by definition of K ′)

Since π0 and F form an equivalence of setoids we have:

(π0 ◦ F (sup(a, π0 ◦K ′ ◦H ◦ f)) ≈1 sup(a, π0 ◦K ′ ◦H ◦ f)),

and we conclude using the inductive hypothesis.

Then we want to construct a term d(x) : IdVH
(HK(x), x) for x : VH, so that we

can conclude that H and K form an equivalence. Since IdVH
is a hprop it is also a

hset, we can apply the elimination rule of VH to prove it by induction.

So, consider set(a, f) for f : T(a)→ VH. We have:

HK(set(a, f)) = H ◦ π0 ◦K ′(set(a, f)) (by definition of K)(3.3)

= H ◦ π0 ◦ F (sup(a, π0 ◦K ′ ◦ f)), (by definition of K ′)(3.4)

then recall that (π0 ◦ F (α)) ≈1 α for any α : V∞ and since H is a map of setoids

we have a term in the identity type:

(3.5) IdVH
(H ◦ π0 ◦ F (α), H(α)).

Recall that by definition of H we have the definitional equality:

(3.6) H(sup(a, π0 ◦K ′ ◦ f)) = set(a,H ◦ π0 ◦K ′ ◦ f).

Concatenating the previous identities eq. (3.4), eq. (3.5) and eq. (3.6) and apply-

ing the inductive hypothesis we obtain d(a, f) : IdVH
(HK(set(a, f)), set(a, f)) as

desired.

Lastly, we need to check that this induction respected the clauses 3.1 and 3.2 of

the elimination rule of VH. But this is immediate since given set(a, f), set(b, g) : VH

the terms d(a, f) and d(b, g) are terms in IdVH
and VH is a hset. �
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Corollary 3.3.3 (Gylterud). There is an equivalence of setoids between (VH, IdVH
)

and (V∞/≈1 , IdV∞).

Proof. Applying Lemma 3.1.2 to the equivalence of setoids (V∞,≈1) ∼= (VH, IdVH
)

of Theorem 3.3.2 we obtain the equivalence (V∞/≈1 , IdV∞/≈1
) ∼= (VH, IdVH

).

�

3.4. Equivalence with the interpretations J·Kk,1

In this section we prove the equivalence between the setoids (VG, IdVG
) and

(Vk,≈1). This section was inspired by the comment in [Led14, Section 3.2] that

taking the epi-mono factorisation of the map f : T(a)→ VH produces a small hset

Im(f). The results of this section combined with the ones of Theorem 3.3.2 on the

HoTT book interpretation make precise and fully explicit the link between VH and

hsets observed in [Led14].

Given 2 ≤ k < ∞ we can easily define a map Fk : Vk → VG by recursion on

Vk by simply forgetting the extra information on the hlevel: Fk(sup((a, p), f)) :=

sup(a, Fk ◦ f).

In order to define a map in the other direction consider a canonical term

(sup(a, f), i) : VG and consider the function f ′ : T(a) → VG induced by f that

maps x : T(a) to (f(x), i(f(x))). Then take its epi-mono factorisation:

T(a)
f ′

//

e

## ##

VG

Im(f)
<<

f ′
<<

Due to Lemma 3.1.5, the type Im(f) is equivalent to T(a)/R which is a small

hset, i.e. there is a code h(a) : U such that T(h(a)) = T(a)/R, and p : isHSet(T(h(a))).

So we can define the map Gk : VG → Vk as:

Gk(sup(a, f)) := sup((h(a), p), Gk ◦ f̄ ′).

Note that for k =∞ we have F∞ = F and G∞ = π0.

Theorem 3.4.1. For any given integer 2 ≤ k < ∞ the functions Fk and Gk give

an equivalence of setoids between (VG, IdVG
) and (Vk,≈1).

Proof. Given a canonical term sup((a, p), f) : Vk, and supposing by inductive

hypothesis that we already have Gk ◦ (Fk ◦ f)(y) ≈1 f(y), we want to prove that:

(3.1) GkFk(sup((a, p), f)) ≈1 sup((a, p), f).
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Looking at the left-hand side and expanding the definitions of Gk and Fk, we

have GkFk(sup(a, p), f) = sup((h(a), p′), Gk ◦(Fk ◦ f)). The truncated bisimulation

relation ≈1 of eq. (3.1) is made of two conjuncts, the first one is:

(3.2) (Πx : T(h(a)))(∃y : T(a))Gk ◦ (Fk ◦ f)(x) ≈1 f(y),

which is what we want to prove. Since the function e : T(a)→ T(h(a)) is epi (see

the remark after Definition 3.1.3) we have a term inhabiting the type:

(Πx : T(h(a)))(∃y : T(a))IdT(h(a))(x, e(y)).

We now apply the function Gk ◦ (Fk ◦ f) to the terms x and e(y). By applying

a function to two propositionally equal terms we get propositionally equal terms,

thanks to Lemma 1.1.7. Moreover, Id is the smallest reflexive relation, so we get a

term inhabiting the type:

Gk ◦ (Fk ◦ f)(x) ≈1 Gk ◦ (Fk ◦ f)(e(y)).

Then notice that Gk ◦ (Fk ◦ f)(e(y)) is definitionally equal to Gk ◦ (Fk ◦ f)(y) by

construction of the epi-mono factorisation. And the inductive hypothesis:

Gk ◦ (Fk ◦ f)(y) ≈1 f(y),

gives the desired (3.2).

The second conjunct of the bisimulation is:

(Πy : T(a))(∃x : T(h(a)))Gk ◦ (Fk ◦ f)(x) ≈1 f(y),

which is easier to prove, since for a given y : T(a) it is enough to consider the term

e(y) as a witness for the existential quantifier.

For the other direction, we are given a term (sup(a, f), i) : VG, where we have

i : itset(sup(a, f)). Our aim is to prove that the following type is inhabited:

IdVG
(Fk ◦Gk(sup(a, f), i), (sup(a, f), i)).

Then observe that in order to construct a path in VG it is enough to construct a

path in V∞ between the corresponding projections since itset is always a hprop. So

it is enough to prove that:

(3.3) IdVG
(π0 ◦ Fk ◦Gk(sup(a, f), i), sup(a, f)),

is inhabited. The two terms that we want to prove identical are terms in V∞ that

are iterative sets, so thanks to Lemma 3.2.8 it is enough to prove that the following

type is inhabited:

π0 ◦ Fk ◦Gk((sup(a, f), i)) ≈1 sup(a, f).
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This proof is analogous to the proof of eq. (3.1). �

Corollary 3.4.2. The setoids (Vk/≈1 , IdVk/≈1
) and (VG, IdVG

) are equivalent.

Proof. Immediate consequence of Lemma 3.1.2 and Theorem 3.4.1. �

3.5. Logical aspects

In Section 3.2, Section 3.3 and Section 3.4 we showed that the setoids (V∞,≈1),

(Vk,≈1), (VG, IdVG
) and (VH, IdVH

) are all equivalent, for any k ≥ 2. In this section

we relate the interpretations J·Kk,1, J·KG and J·KH of formulas of CST, for 2 ≤ k ≤
∞. We show that the equivalence of setoids induces a logical equivalence of the

interpretations.

We then look in more detail at the Replacement and Exponentiation axioms,

and what are the key facts that allow to prove their validity in each of the three

interpretations.

Firstly, recall the interpretation of formulas in the HoTT book. Set-theoretic

equality is interpreted using the identity type:

Jx .
= yKH := IdVH

(x, y),

for α : VH and a : U, f : T(a)→ VH the interpretation of the membership relation

is defined by recursion on VH as:

Jα ∈ set(a, f)KH := (∃i : T(a))IdVH
(f(i), α)).

This definition is by recursion on set(a, f) : VH so one has to check the validity of

the clauses 3.1 and 3.2 which is straightforward. The rest of the interpretation is

as usual:

J⊥KH := 0;

Jφ⇒ ψKH := JφKH → JψKH ;

Jφ ∧ ψKH := JφKH × JψKH ;

Jφ ∨ ψKH :=
∥∥∥JφKH + JψKH

∥∥∥;

J∀xφ(x)KH := (Πα : VH)Jφ(α)KH ;

J∃xφ(x)KH :=
∥∥∥(Σα : VH)Jφ(α)KH

∥∥∥.
The equivalence of setoids induces an equivalence of the interpretations, as we

see in the following theorem.
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Theorem 3.5.1. Given assignments of terms to variables α and β:

V ar(CST)
α

xx

β

''

(A,R)

g
--
(V∞,≈1)

f

mm

where the setoid (A,R) is either (VG, IdVG
), (VH, IdVH

) or (Vk,≈1), and the maps

f, g the respective equivalences of setoids (see Theorem 3.2.9, Theorem 3.3.2 and

Theorem 3.4.1).

Suppose that the assignments α and β are compatible with the equivalence

of setoids, in the sense that we have terms inhabiting (g(α(x)) ≈1 β(x)) and

R(α(x), f(β(x))).

Then for all formulas φ(x) of CST, we have a logical equivalence between the

interpretations:

Jφ(α(x))K∗ ↔ Jφ(β(x))K∞,1,

where J·K∗ is either J·KG, J·KH or J·Kk,1.

Proof. We prove the equivalence for J·K∞,1 and J·KG, the other cases are similar.

The proof is a straightforward induction on the structure of φ:

• if φ is x
.
= y then the logical equivalence follows from the fact that

π0, F,H,K are maps of setoids, so for example if IdVG
(α(x), α(y)), then

also:

(π0(α(x)) ≈1 π0(α(y))),

and we conclude using the compatibility between α and β.

• If φ is x ∈ y, notice that by definition of Jx ∈ yKG we have that Jx ∈ yKG
is a Σ-type not truncated, whereas Jx ∈ yK∞,1 truncates the Σ-type (see

the definition of J·K∞,1 in Section 1.2). However, since Jx ∈ yKG is always

a hproposition due to Lemma 3.2.4, we can remove the truncation when

proving the logical equivalence. The equivalence follows from inspecting

the definitions and using the hypothesis of compatibility between assign-

ments α, β, γ, e.g. (π0(α(x)) ≈1 β(x)) and IdVG
(α(x), F (β(x))).

• The cases for ∧,∨,→ are straightforward.

• If φ is ∀xψ(x), the aim is to prove that there are functions in both dir-

ections between the type (Πx : VG)Jψ(x)KG and (Πx : V∞)Jψ(x)K∞,1. We

construct a function of type:

(Πt : VG)Jψ(t)KG → (Πs : V∞)Jψ(s)K∞,1,

by taking a dependent function f in the domain and mapping it to one

in the codomain as follows. Given s : V∞ we map it to VG using the
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map F : V∞ → VG, then we can apply the given dependent function f ,

obtaining f(F (s)) : Jψ(F (s))KG. Now notice that we have a map:

I : Jψ(F (s))KG → Jψ(π0F (s))K∞,1,

given by the first conjunct of the logical equivalence coming from the

inductive hypothesis. Applying I to our term to get:

I ◦ f ◦ F (s) : Jψ(π0F (s))K∞,1,

and recalling that the interpretations of formulas satisfy the Leibniz rule

with respect to ≈1, we have a function Leib : Jψ(π0F (s))K∞,1 → Jψ(s)K∞,1.

Combining these steps together gives the desired term:

λs.Leib ◦ I ◦ f ◦ F (s) : (Πs : V∞)Jψ(s)K∞,1.

• If φ is ∃xψ(x), let us prove that J∃xψ(x)K∞,1 is logically equivalent to

J∃xψ(x)KG. Since both these types are truncated, in order to construct

a logical equivalence it is enough to consider untruncated types. So we

want a function of type:

(Σs : V∞)Jψ(s)K∞,1 → (Σt : VG)Jψ(t)KG.

Given a term p in the domain, we get a term F (π0(p)) : VG. By inductive

hypothesis there is a function I : Jψ(π0(p))K∞,1 → Jψ(F (π0(p)))KG, which

we can apply to the second projection obtaining I(π1(p)) : Jψ(F (π0(p)))KG,

so that we have (F (π0(p)), I(π1(p))) the desired term. The other direction

of the logical equivalence is similar.

�

Observe that we could have stated the previous theorem with only one assign-

ment of terms to variables, say β, and stated the logical equivalence as:

Jφ(β(x))K∞,1 ↔ Jφ(F (β(x)))KG ↔ Jφ(H(β(x)))KH ↔ Jφ(N(β(x)))Kk,1.

A consequence of the previous Theorem 3.5.1 is that the Replacement and Ex-

ponentiation axioms that are valid in J·KG and J·KH are also valid in J·Kk,1. We now

give a brief sketch of the proof of their validity in the first two interpretations.

The key point is that in J·KG and J·KH , since set-theoretic equality is interpreted

as the identity type, we can use the uniqueness conditions contained in the Replace-

ment and Exponentiation axioms to infer information about the homotopy levels
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of certain types and then apply the principle of unique choice (see Lemma 1.1.10)

to extract a type-theoretic function.

Theorem 3.5.2. The Replacement and the Exponentiation axioms are valid in the

interpretations J·KH and J·KG.

Proof. We prove the statement for J·KH , the case of J·KG being similar.

• Recall the statement of Replacement:

(∀x ∈ α)∃!y φ(x, y)⇒ (∃β)(∀x ∈ α)(∃!y ∈ β)φ(x, y).

Suppose (Πx : El(α))J∃!y φ(x, y)KH . Then for all x : El(α) the Σ-type

(Σy : VH)Jφ(x, y)KH is a hprop, since by definition of the quantifier ∃! we

have that J∃!y φ(x, y)KH is definitionally equal to:

(Σy : VH)Jφ(x, y)KH × (Πs, t : VH)Jφ(x, s)KH × Jφ(x, t)KH → IdVH
(s, t),

and Jφ(x, y)KH is always a hproposition.

We apply the principle of unique choice (see Lemma 1.1.10) to the

family of hpropositions (Σy : VH)Jφ(x, y)KH . By hypothesis we have a

term inhabiting the type (Πx : El(α))J∃y φ(αx, y)KH , hence we have a

function:

f : (Πx : El(α))(Σy : VH)Jφ(αx, y)KH ,

which we can use to construct the term set(el(α), f) : VH. It is then

straightforward to check that this term provides a witness for the exist-

ential quantifier in the conclusion of Replacement.

• Recall the statement of Exponentiation:

∀α, β ∃γ[∀f(α
f→ β)⇒ f ∈ γ].

Given α, β : VH we construct γ by first considering the type El(α)→ El(β)

which is definitionally equal to T(exp(el(α), el(β))), where exp is the term

representing in U the function type. Then we define the function γ :=

λz.set(el(α), λx.〈αx, βz(x)〉), which inhabits the type:

T(exp(el(α), el(β)))→ VH,

so that we can define the term γ := set(exp(el(α), el(β)), γ ).

In order to validate the axiom we are given f : VH and a term wit-

nessing the premiss of the implication and our thesis is to validate:

Jf ∈ γKH = (Σt : El(α)→ El(β))Jf .
= γtKH .
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Similarly to what we did for the Replacement axiom, consider the premiss:

J(∀x ∈ α)(∃!y ∈ β)(〈α, β〉 ∈ f)KH ,

which allows us to apply the principle of unique choice (see Lemma 1.1.10).

Thus we obtain the desired type-theoretic function t : El(α) → El(β). It

is then straightforward to check that Jf ∈ γKH follows, which validates

Exponentiation.

�

Corollary 3.5.3. The Replacement and Exponentiation axioms are valid in the

interpretations J·Kk,1 for 2 ≤ k ≤ ∞.

Proof. Immediate consequence of Theorem 3.5.2 and Theorem 3.5.1 on the logical

equivalence of the interpretations. Note that univalence is used in proving the

equivalence between the setoids and the interpretations.

In the proof of Theorem 3.5.2 we have that the type (Σy : V∞)Jφ(x, y)Kk,1,

although not being necessarily a hproposition, is logically equivalent to the type

(Σy : VH)Jφ(x, y)KH . On the other hand (Σy : VH)Jφ(x, y)KH is both a Σ-type and

a hproposition.

Using the principle of unique choice and the logical equivalence of Theorem 3.5.1

once again, we can validate the interpretation of Replacement in J·Kk,1. A similar

argument proves the Exponentiation axiom. �

Recall that we used Corollary 3.5.3 in chapter 1 to establish Lemma 1.3.13 and

Theorem 1.3.14.

Remark 3.5.4. A case worth a specific mention is when k = 2, where we have

J·K2,1 and the set-quotient V2/≈1 , interpreting Myhill’s Constructive Set Theory.

Sets are interpreted as hsets and formulas as hpropositions, the type V2/≈1 is itself a

hset, and set-theoretic equality is interpreted as the identity type. Moreover V2/≈1

is defined as a set-quotient of a W -type, and hence is a standard and relatively well

understood higher inductive type. So we can see this model as combining many of

the desirable features one might want in a model of set theory in homotopy type

theory.

The only drawback of this model is that being a set-quotient some technicalities

may arise in working within that model. Especially when one wants to apply the

elimination rule one has to check that the type in which one eliminates is a hset.

Therefore one may look at the type VkG := (Σx : Vk)itset(x) in general and more

specifically at the type V2
G.
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Observe that thanks to Theorem 3.4.1 we have, as in the case of J·Kk,∞ a hier-

archy of models of CST given by (Vk,≈1, J·Kk,1) for 2 ≤ k ≤ ∞. Indeed, the proof

of the validity of the axioms of CST in the interpretations J·Kk,1 is not affected by

the hlevel of the indices of the W -types Vk. This is another indication that set

theories do not detect any difference when sets are interpreted as k-types.

Note that among these equivalent interpretations J·KH , J·KG, J·Kk,1 and J·K∞,1,

the first two interpret set-theoretic equality as the identity type, which allowing

one to validate easily Replacement and Exponentiation. On the other hand in

J·K∞,1 and J·Kk,1 equality is interpreted as a truncated bisimulation relation and

the validity of Replacement and Exponentiation is established using the equivalence

with the other two interpretations. A direct proof would face the issues described

in Remark 1.3.12.

However, among them the interpretation J·K∞,1 is more amenable to an ana-

lysis using a logic-enriched type theory, a line of investigation that we pursue in

chapter 5. Indeed, the interpretation of set-theoretic equality follows closely Aczel’s

interpretation J·K∞,∞.



CHAPTER 4

A characterisation of the J·KPHP interpretation

This chapter and chapter 5 are devoted to a more in depth analysis of the

interpretations considered in chapter 1 and chapter 3. We are interested in un-

derstanding not only how different foundational settings such as constructive set

theories or type theories relate via different interpretations, but also how these

interpretations themselves relate to each other. Following [GA06], in this chapter

we introduce a tool for the study of the interpretations, namely logic-enriched type

theories. These are type theories that have primitive judgements to express lo-

gical formulas (see Section 4.1). In chapter 5 we use logic-enriched type theories

to perform a comparative analysis of the interpretation J·K∞,1 : CST→ HoTT and

Aczel’s interpretation J·K∞,∞ : CZF→ ML1W.

The purpose of this chapter is twofold. The first is to introduce the propositions-

as-hpropositions interpretation J·KPHP from an appropriate logic-enriched type the-

ory LEH (see Section 4.1) into the homotopy type theory H. This interpretation

J·KPHP captures one of the key ingredients of the interpretations J·Kk,1, J·KG and

J·KH , namely the fact that propositions are interpreted as hprop by means of pro-

positional truncations.

The main result of this chapter is Theorem 4.3.4, in which we characterise

the formulas valid in J·KPHP as those provable in the logic-enriched type theory

LEH using the axiom of unique choice AUC (see table 4.5). This characterisation

parallels the one of [AG00, Theorem 2] where it is shown that a formula is valid in

the propositions-as-types interpretation if and only if it is provable using the axiom

of choice AC (see table 4.4). In this way we have a perfectly parallel characterisation

of the propositions-as-types and the propositions-as-hprops interpretations in terms

of their corresponding choice principles. This is an example of how one can use

logic-enriched type theories to clearly isolate key aspects of a proof or a construction

allowing for a more careful and detailed analysis.

It is worth noting that the logic-enriched type theory LEH comprises of both

the identity types IdA and equality propositions EqA, in a fashion similar to [PL15]

but with some differences since our propositions do not have proof terms inhabiting

77
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them. Theorem 4.3.4 is an example of application of a notion of equality proposi-

tion that may be fruitful in other contexts.

Secondly, since the full axiom of unique choice AUC is unnecessarily strong for

the analysis of the interpretation J·K∞,1 of chapter 5, we introduce new principles

for the logic-enriched type theory LE. Namely, we introduce a propositions-as-

types principle (PU) and two forms of the axiom of unique choice (AUCV,AUCEl(β))

for specific types V and El(β) for β : V , with specific equality propositions. See

table 4.6 on page 87, table 4.7 on page 89 and table 4.8 on page 89. These principles

are then used in chapter 5 to provide an analysis of the interpretation J·K∞,1. We

show in Theorem 4.4.1 and Theorem 4.4.2 that these new principles are valid in

the propositions-as-hproposition J·KPHP interpretation of LE into HoTT.

An important part of the work in providing the comparative analysis of chapter 5

consists in isolating the right principles that factor the interpretation J·K∞,1. This

has to be done in the clearest and most informative way, and at the same time

highlight the similarities and differences between the two interpretations J·K∞,1
and J·K∞,∞.

This and the next chapter are indebted to [Acz16] where Aczel suggests logic-

enriched dependent type theories as frameworks for the analysis of different philo-

sophical foundations of mathematics.

Outline. In Section 4.1 we give a concise introduction to logic-enriched type

theories and review some of the basic notions introduced in [GA06]. In Section 4.2

we define the propositions-as-hprops interpretation J·KPHP of the logic-enriched

type theory LEH into the type theory H. Section 4.3 is devoted to the character-

isation of the interpretation J·KPHP . In Section 4.4 we introduce the logic-enriched

type theory LE(PU + AUCV + AUCEl(β)), which is then used in chapter 5 to provide

an analysis of the interpretation J·K∞,1.

4.1. Logic-enriched type theories

In a logic-enriched type theory, in addition to its pure type-theoretic part, there

are new forms of judgements for logical formulas:

Γ ` φ : prop

Γ ` φ1, . . . , φn ⇒ φ.

where Γ is an ordinary type-theoretic context. We use Γ ` φ as a shorthand for

Γ `⇒ φ. Note that the symbol ‘⇒’ appearing here is a structural symbol for the

judgement and is not to be confused with the logical implication, which in this
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chapter and chapter 5 we denote as ⊃. Accordingly, in this chapter and chapter 5

we use the symbol ≡ for logical equivalence between formulas.

There are standard natural deduction rules in sequent calculus style for logical

connectives and quantifiers. We consider only logic-enriched type theories with

intuitionistic logic. For example the rules for the universal quantifier are:

A : type x : A ` φ(x) : prop

(∀x : A)φ(x) : prop

x : A ` φ(x)

(∀x : A)φ(x)

(∀x : A)φ(x) t : A

φ(t)

Table 4.1. Rules for the universal quantifier

Logic-enriched type theories are rich systems that share the advantages of type

theory with the extra flexibility of not necessarily fixing an interpretation of logic.

This is a feature that may or may not be added. For more examples of the uses of

logic-enriched type theories see [PL15], where a logic-enriched type theory is used

to give a construction of semi simplicial types in homotopy type theory.

The base logic-enriched type theory that we consider, which we name LE, is

given by the following:

• ML1W as its pure part;

• IL1, i.e. intuitionistic logic with a type of small propositions P, with an

elimination rule that given p : P returns a proposition τ(p) : prop;

• IND, i.e. induction rules for the inductive types 0, 1, 2,N, and Σ,+ and

W -types formulated using the logic.

See appendix B for the rules. This logic-enriched type-theory was originally intro-

duced in [GA06].

We consider also other logic-enriched type theories that have other rules in

addition to the ones of LE. We introduce an equality proposition EqA(x, y) for

x, y : A. Its rules are simply the reformulation of the usual rules for intensional

identity types IdA(x, y) in the context of the logic-enriched type theory.
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A : type x, y : A

EqA(x, y) : prop

A : type x : A

EqA(x, x)

a, b : A EqA(a, b) x : A ` φ(x, x)

φ(a, b)

Table 4.2. Rules for Eq

The paper [PL15] introduces a similar notion of equality proposition for a logic-

enriched type theory, and the papers [MS05] and [Mai08] for a minimalist type

theory. However, in both approaches propositions are inhabited by proof terms, so

that their theories are more alike two-level type theories than logic-enriched type

theories.

We also consider the theory LEH, which can be thought of as a logic-enriched

type theory for homotopy levels. It is defined as LEH := H + ILEq
1 + IND. Where

its components are:

• H = MLId
1 W + ‖ · ‖+ FE as its pure part;

• ILEq
1 , i.e. intuitionistic logic with one type of propositions P and equality

proposition Eq;

• IND, i.e. inductive rules for inductive types, including the intensional iden-

tity type IdA and propositional truncations ‖ · ‖ (see table A17).

Definition 4.1.1. For a type A we define the formula:

isHPropEq(A) := (∀x, y : A)EqA(x, y).

We say that the type A is an Eq-hprop if and only if the formula isHPropEq(A) is

provable.

We always refer to the usual notion of Id-hprops unless stated explicitly.

The two notions of hproposition are related by the following lemma.

Lemma 4.1.2. In LEH, the existence of a term inhabiting isHPropId(A) implies

the formula isHPropEq(A). More formally, we can derive the following judgement:

(∃t : isHPropId(A))> ⇒ isHPropEq(A)
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Proof. Consider that by definition isHPropId(A) is the type (Πx, y : A)IdA(x, y),

and that isHPropEq(A) is the formula (∀x, y : A)EqA(x, y). Therefore, it is enough

to show that given a term in IdA(x, y) one can deduce the formula EqA(x, y). This

follows from the induction rule INDId applied to the formula EqA(x, y):

x, y : A, z : IdA(x, y) ` φ(x, y, z) : prop e : IdA(a, b) w : A ` φ(w,w, reflw)

φ[a, b, e/x, y, z]

�

Remark 4.1.3. Observe that the identity type IdA and the equality proposition

EqA interact. Indeed, we can form the usual tower of identity types: IdA, IdIdA ,

IdIdIdA
, . . . , but also for each type we have an equality proposition, so that we have

EqA , EqIdA , EqIdIdA
, . . . .

In the following sections we consider a propositions-as-types principles that

provide a map pu( ) : P → U, which then generates an infinite binary tree of the

iterations of Id and Eq, since at any given point we have a type so we can form

either its identity type or its equality proposition.

Note that if the propositions-as-types map pu( ) : P → U by construction al-

ways gives a hproposition, then iterated towers of Id over an equality proposition

Eq become trivial, hence part of the structure simplifies. This is the case for the

propositions-as-hprops interpretation.

4.2. The propositions-as-hprops interpretation

Here we introduce the propositions-as-hpropositions interpretation:

J·KPHP : LEH→ H.

In formulating this interpretation we look at J·KH , J·KG and J·Kk,1 and we isolate one

aspect that they share, namely the way in which they interpret formulas. Then

we give a definition of J·KPHP with the same structure as J·KH , J·KG and J·Kk,1, but

in the more general context of the logic-enriched type theory LEH, so that we can

better analyse this aspect of the interpretations.

The interpretation J·KPHP leaves intact the pure part of the logic-enriched type

theory. Logical connectives and quantifiers are interpreted as the corresponding

type-theoretic operators, the equality proposition is interpreted as the identity type.

Additionally the type constructors that do not necessarily preserve hpropositions,

namely + and Σ, are propositionally truncated using ‖ · ‖ :
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J⊥KPHP := 0

Jφ ⊃ ψKPHP := JφKPHP → JψKPHP

Jφ ∧ ψKPHP := JφKPHP × JψKPHP

Jφ ∨ ψKPHP :=
∥∥∥ JφKPHP + JψKPHP

∥∥∥
J(∀x : A)φ(x)KPHP := (Πx : A)Jφ(x)KPHP

J(∃x : A)φ(x)KPHP :=
∥∥∥(Σx : A)Jφ(x)KPHP

∥∥∥
JEqA(x, y)KPHP := IdA(x, y)

JPKPHP := HPropU

For this, recall that HPropU in the type theory H is the type of small hprops,

formally defined as (Σx : U)isHPropId(x). For the interpretation of small proposi-

tion we define:

Jτ(p)KPHP := T(JpKPHP ) for p : P.

Here the interpretation J·KPHP associates to p : P a small type JpKPHP : U following

the same structure as in the interpretation of large propositions. The operators τ

and T are the decodings for small propositions and small types respectively (see

appendix B).

This interpretation is studied in more depth in Section 4.3.

In Section 4.4 and in chapter 5 we consider the propositions-as-hprops inter-

pretation J·K′PHP : LE→ HoTT which has the same inductive structure on formulas

as J·KPHP , but different domain and codomain theories. Notice that the character-

isation of Theorem 4.3.4 is stated only for the interpretation J·KPHP : LEH→ H.

4.3. Characterisation of the formulas valid in J·KPHP

We proceed to characterise the formulas valid in the propositions-as-hprops

interpretation J·KPHP : LEH → H. The proof of the characterisation follows the

same structure of the characterisation of the propositions-as-type interpretation

J·KPT : LE → ML1W of [AG00, Theorem 2]. Firstly, we introduce a propositions-

as-hprop principle PaHP (see table 4.3) that is crafted in such a way that a for-

mula is valid in J·KPHP if and only if it is provable in LEH + PaHP, as detailed in

Lemma 4.3.1.



4.3. CHARACTERISATION OF THE FORMULAS VALID IN J·KPHP 83

Having moved from the interpretation J·KPHP to a single logical principle PaHP

within the logic-enriched type theory, it is then easier to characterise it more expli-

citly using other logical principles. We show in Theorem 4.3.4 that over LEH the

principle PaHP is equivalent to an axiom of unique choice AUC (see table 4.5).

From the interpretation J·KPHP to the PaHP principle. The principle

PaHP states internally in the logic-enriched type theory that a formula φ holds

if and only if its interpretation under J·KPHP is valid, i.e. if and only if the type

JφKPHP is inhabited.

φ : prop

φ ≡ (∃ : JφKPHP )>

Table 4.3. Propositions-as-HPropositions (PaHP)

The following theorem is essentially a reformulation in the context of LEH of

[AG00, Theorem 2].

We write H ` JφKPHP meaning that H ` t : JφKPHP for some term t of H.

Lemma 4.3.1. For a judgement J of LEH we have the following characterisation

of the formulas valid in the J·KPHP interpretation:

H ` JJ KPHP if and only if LEH + PaHP ` J .

Proof. The direction from right to left is straightforward: given a proof of J we

apply the propositions-as-hprops interpretation J·KPHP to every step in that proof.

Since every logical rule of the logic-enriched type theory, as well as PaHP, translates

into a derived rule of H we obtain a term inhabiting JJ KPHP .

For the direction from left to right, suppose we have derived in the pure type

theory H the judgement y1 : Jφ1KPHP , . . . , yn : JφnKPHP ` t : JφKPHP . Since H is

a subtheory of LEH we can perform the same derivation in LEH, then by applying

the rules for ∃ and > we derive the following judgement:

(∃y1 : Jφ1KPHP )>, . . . , (∃yn : JφnKPHP )> ⇒ (∃y : JφKPHP )>.

Now recall that PaHP asserts that φ ≡ (∃y : JφKPHP )>, so that we obtain the

judgement φ1, . . . , φn ⇒ φ. �
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Characterisation of the principle PaHP. Now we make the characterisation

of Lemma 4.3.1 more explicit and informative by proving that PaHP is equivalent

to the axiom of unique choice AUC over the logic-enriched type theory LEH.

First recall the axiom of choice AC for a logic-enriched type theory. The axiom

of choice is a simple translation of the usual statement using the language of the

logic-enriched type theory and the quantification over types.

A : type x : A ` B(x) : type x : A, y : B ` φ(x, y) : prop

(∀x : A)(∃y : B)φ(x, y) ⊃ (∃f : (Πx : A)B(x))(∀x : A)φ(x, f(x))

Table 4.4. Type-theoretic axiom of choice (AC)

The axiom of unique choice stated in table 4.5 has the same structure of the

axiom of choice but it strengthens the premiss of the implication by requiring the

formula φ(x, y) to be functional in x and y. This involves the unique existential

quantifier (∃!y : B(x))φ(x, y), which is defined using the equality proposition Eq

as:

(∃y : B(x))φ(x, y) ∧ (∀z1, z2 : B(x))φ(x, z1) ∧ φ(x, z2) ⊃ EqB(x)(z1, z2).

The conclusion of the implication is the same.

A : type x : A ` B(x) : type x : A, y : B(x) ` φ(x, y) : prop

(∀x : A)(∃!y : B(x))φ(x, y) ⊃ (∃f : (Πx : A)B(x))(∀x : A)φ(x, f(x))

Table 4.5. Axiom of unique choice (AUC)

We proceed to characterise the propositions-as-hprops principle PaHP.

Lemma 4.3.2. Over the base theory LEH the principle PaHP implies AUC. Thus,

the rule AUC is valid in the interpretation J·KPHP : LEH→ H.
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Proof. Suppose we have the premiss (∀x : A)(∃!y : B(x))φ(x, y), which by PaHP

is equivalent to:

(4.1) (∃ : J(∀x : A)(∃!y : B(x))φ(x, y)KPHP )>.

Unfolding the definition of the interpretation J·KPHP in the previous formula 4.1 we

have on the one hand (Πx : A)
∥∥∥(Σy : B(x))JφKPHP

∥∥∥. On the other hand, from the

interpretation of the uniqueness condition we have isHPropId((Σy : B(x))JφKPHP ),

since JφKPHP is always a hprop by construction.

So now we can apply the principle of unique choice (see Lemma 1.1.10) to the

family of types P (x) := (Σy : B(x))Jφ(x, y)KPHP . Note that the principle of unique

choice holds in LEH because it holds in H, which is contained in LEH. So we get a

term:

f : (Πx : A)(Σy : B(x))JφKPHP ,

from which the conclusion of AUC follows.

For the second claim, since PaHP is valid in the J·KPHP interpretation, the

principle AUC is also valid. �

Lemma 4.3.3. Over the base theory LEH we have that AUC implies PaHP.

Proof. Recall that PaHP states that φ ≡ (∃ : JφKPHP )>. We prove PaHP by

induction on the structure of the formula φ. The rule IND0 is used for the case of

⊥, the axiom of unique choice AUC for the cases of ⊃ and ∀, and the induction

rules IND+, INDΣ and IND‖·‖ for the cases of ∨ and ∃.
For ⊥, notice that from ⊥ we can deduce everything. Conversely applying the

inductive rule IND0 (see table A17) we have that from the existence of a term t : 0

we can deduce ⊥. For > the required logical equivalence is immediate.

For φ∧ψ, by inductive hypothesis we have the equivalences φ ≡ (∃ : JφKPHP )>
and ψ ≡ (∃ : JψKPHP )>. The result follows from the fact that the formula:

(∃ : JφKPHP )> ∧ (∃ : JψKPHP )>,

is equivalent to (∃ : JφKPHP × JψKPHP )>.

For φ ⊃ ψ, we need to show:

(∃ : JφKPHP → JψKPHP )> ≡ (∃ : JφKPHP )> ⊃ (∃ : JψKPHP )>.

The implication left-to-right follows easily from the elimination rules for ∃ and

⊃. For the other direction assume (∃ : JφKPHP )> ⊃ (∃ : JψKPHP )>. So given

any x : JφKPHP we can prove (∃ : JφKPHP )> from which (∃ : JψKPHP )> fol-

lows. Thus we have derived (∀x : JφKPHP )(∃ : JψKPHP )>. Now notice that since

JψKPHP is always an Id-hproposition by definition hence it is an Eq-hproposition by
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Lemma 4.1.2. Thus we have that (∀x : JφKPHP )(∃! : JψKPHP )>. Hence applying

the AUC rule to the last formula we deduce: (∃ : JφKPHP → JψKPHP )>.

For (∀x : A)φ(x), the proof is similar to the one for ⊃ with the use of the axiom

of unique choice AUC.

For (∃x : A)φ(x), we want to prove the judgement:

(∃x : A)(∃ : Jφ(x)KPHP )> ≡
(
∃ :

∥∥∥(Σx : A)Jφ(x)KPHP
∥∥∥)>.

For the implication left-to-right, note that in order to derive the conclusion it

suffices to do so assuming one has terms a : A and t : Jφ(a)KPHP . We can then use

them to construct a witness |(a, t)| :
∥∥∥(Σx : A)Jφ(x)KPHP

∥∥∥ so that we can conclude

by applying the introduction rule for ∃.
For the other direction we want to prove:(

∃ :
∥∥∥(Σx : A)Jφ(x)KPHP

∥∥∥)> ⇒ (∃x : A)(∃ : Jφ(x)KPHP )>.

In order to show the conclusion it suffices to do so assuming one has a term:

t :
∥∥∥(Σx : A)Jφ(x)KPHP

∥∥∥.
We use the induction rule for truncation IND‖·‖ (see table A17) to get another term

t′ : (Σx : A)Jφ(x)KPHP , which we use to provide the witnessing terms t′.1 : A and

t′.2 : Jφ(t.1)KPHP so that we can apply the introduction rule for ∃ twice.

For φ ∨ ψ, the proof is analogous to the one of ∃ with the use of the induction

rules IND‖·‖ and IND+ (see table A17). �

Theorem 4.3.4. Given a judgement J of LEH, we have the following character-

isation of the interpretation J·KPHP of LEH into H:

H ` JJ KPHP if and only if LEH + AUC ` J .

Proof. Immediate combining Lemma 4.3.1, Lemma 4.3.2 and Lemma 4.3.3. �

Theorem 4.3.4 is not only of interest in its own right, but also for the analysis

of the interpretations of chapter 5. Indeed, two of the principles used to analyse the

interpretation J·K∞,1 are AUCV and AUCEl(β), which are two particular cases of AUC

(see table 4.7 and table 4.8). Moreover, Theorem 5.3.5 isolates the propositions-as-

hprops and the propositions-as-types interpretations as the key difference between

the interpretations J·K∞,1 and J·K∞,∞.

The proof of the characterisation of PaHP that we have obtained is similar

to the proof of the corresponding characterisation for the propositions-as-types

interpretation. In that context it is proved in [AG00, Theorem 2] that, for a

judgement, J we have: LE + AC ` J if and only if ML1W ` JJ KPT .
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The statement in [AG00] uses an additional principle (0⊥) asserting that we

can deduce ⊥ from the existence of a term t : 0. However, the principle (0⊥) follows

from the rule IND0 which is one of the rules of the logic-enriched type theories LE

and LEH (see table A17).

Thus we have a parallel characterisation of the propositions-as-hprops and the

propositions-as-types interpretations in terms of the choice principles AUC and AC.

4.4. A logic-enriched type theory for J·K∞,1

In this section we introduce other principles PU,AUCV and AUCEl(β) (see table 4.6,

table 4.7 and table 4.8) for the logic-enriched type theory LE that we use in chapter 5

to provide an analysis of the interpretation J·K∞,1. They are designed to obtain a

factorisation of that interpretation through an intermediate step by isolating the

key steps of the proof of Theorem 1.3.14 of the soundness of the interpretation

J·K∞,1 : CST→ HoTT.

The principles AUCV and AUCEl(β) are inspired by the characterisation of The-

orem 4.3.4 of Section 4.3, as well as from the analysis of Aczel’s original inter-

pretation in [GA06]. The principle PU is a propositions-as-types principle whereas

AUCV and AUCEl(β) are principles that have the form of the axiom of unique choice

for specific types and for specific equality propositions.

Other principles for a logic-enriched type theory. The propositions-as-

types principle PU gives a function assigning a small type to every small proposition

pu( ) : P→ U . Then it further requires that the proposition τ(p) : prop correspond-

ing to p : P is equivalent to the corresponding type being inhabited. This principle

is introduced in [GA06, Section Propositions-as-types of §2 and Lemma 2.1], where

it is used in the analysis of Aczel’s interpretation.

p : P

pu(p) : U

p : P

τ(p) ≡ (∃ : pu(p))>

Table 4.6. Propositions-as-types principle (PU)

Notice that the principle PaHP we introduced in table 4.3 implies PU and is

actually stronger since it applies to arbitrary propositions and not only small ones.
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Moreover PaHP gives information about the map pu( ) : P→ U, which in that case

is induced by the propositions-as-hprops interpretation J·KPHP : LEH → H. One

could see PaHP as requiring further computation rules for the map pu( ) on small

propositions.

Also observe that in Lemma 4.3.3 we proved PaHP using the rules AUC and

IND0, and hence constructed a map P→ U. However, in the context of this section

and of chapter 5 the full axiom of unique choice AUC is unnecessarily strong so we

restrict to the special cases AUCV, AUCEl(β) and its consequence PU.

Another reason to prefer this formulation of PU is that by not imposing any

other condition on the map pu( ) we gain in flexibility. Indeed, we can use the

same principle for the analysis of both the interpretations J·K∞,1 and J·K∞,∞, and

possibly others.

The other two principles AUCV and AUCEl(β) have the general form of the

axiom of unique choice AUC (see table 4.5) but for specific types and with specific

propositions taking the role of the equality proposition Eq. The principle AUCV

applies only to the type of sets V and AUCEl(β) only for the types of elements of a

set El(β) for β : V.

Before presenting the principle AUCV we define the type of sets V. The same

construction of the type V := (Wx : U)T(x) of Martin-Löf type theory carries over

in the logic-enriched type theory LE. Quantification over a set α : V is defined as:

(∇x ∈ α)φ(x) := (∇x : El(α))φ(αx),

here ∇ is either ∀ or ∃. However, when defining equality for V as a bisimulation

relation, we do not define it as a type, but as a formula of the logic. One can define

for α, β : V, a formula satisfying:

(4.1) α ≈V β ≡
(
∀∃x ∈ α
y ∈ β

)
x ≈V y.

Where the notation (∀∃x∈αy∈β )φ(x, y) is a shorthand for

(∀x ∈ α)(∃y ∈ β)φ(x, y) ∧ (∀y ∈ β)(∃x ∈ α)φ(x, y).

For the details of the definition of ≈V in LE see [GA06, Lemma 3.10].

The principles AUCV and AUCEl(β) both make use of a unique existential quan-

tification. For AUCV, the formula (∃!y : V)ψ(y) expresses the unique quantification

for y : V. It is defined using the bisimulation relation ≈V as follows:

(4.2) (∃y : V)ψ(y) ∧ (∀z, z′ : V)ψ(z) ∧ ψ(z′) ⊃ z ≈V z
′.
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On the other hand, for AUCEl(β), the formula (∃!y ∈ β)ψ(y) expressing the

unique existential quantification for β : V is defined as:

(4.3) (∃y : El(β))ψ(βy) ∧ (∀z, z′ : El(β))ψ(βz) ∧ ψ(βz′) ⊃ βz ≈V βz′ .

We now present the principle AUCV. Consider a formula φ(x, y) with x : A

and y : V such that φ satisfies a functionality condition in x and y expressed using

the unique existential quantification of (4.2). Then there exists a type-theoretic

function f : A→ V that for x : A ‘chooses’ the unique element y : V satisfying the

formula φ(x, y).

(∀x : A)(∃!y : V)φ(x, y)

(∃f : A→ V)(∀x : A)φ(x, f(x))

Table 4.7. Axiom of unique choice for V (AUCV)

The third principle AUCEl(β) is similar to AUCV. Given a formula φ(x, y) with

x : A and y : V, if φ satisfies a functional condition with respect to a set β : V, i.e.

(∀x : A)(∃!y ∈ β)φ(x, y),

where the unique existential quantifier is defined in (4.3). Then we can deduce the

existence of a type-theoretic function f : A → El(β) ‘choosing’ the unique terms

determined by the formula.

β : V (∀x : A)(∃!y ∈ β)φ(x, y)

(∃f : A→ El(β))(∀x : A)φ(x, βf(x))

Table 4.8. Axiom of unique choice for terms of V (AUCEl(β))

Despite the similarities between AUCV and AUCEl(β) we had to formulate them

as separate principles since the functions that are obtained in the conclusions have

different codomains, namely V and El(β). Furthermore, the proofs of their validity

in HoTT are also different (see Theorem 4.4.1 and Theorem 4.4.2).
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Nevertheless, they are both instances of AUC for specific type families and

specific reinterpretations of the equality proposition Eq as detailed in the table

below.

family of types x : A ` B(x) equality proposition EqB(x)(a, b)

AUCV V a ≈V b

AUCEl(β) El(β) βa ≈V βb

Validity of the principles under J·K′PHP . Now we consider the other propositions-

as-hprops interpretation J·K′PHP : LE → HoTT. With the exception of the inter-

pretation of equality J·K′PHP has the same inductive definition on formulas as the

interpretation J·KPHP : LEH→ H of Section 4.2, this is because LE does not have

the equality proposition Eq. The crucial difference between J·KPHP and J·K′PHP is

that they have different domain and codomain theories.

Since we have introduced the principles PU,AUCV and AUCEl(β), we wish to

establish their relative consistency with respect to the type theory HoTT via the

propositions-as-hprops interpretation J·K′PHP : LE → HoTT. In Lemma 4.3.2 we

have already proved that AUC is valid in the other propositions-as-hprops inter-

pretation J·KPHP : LEH → H, but the interpretation of the equality propositions

differs in the two propositions-as-hprops interpretations.

Note that the proofs of the following Theorem 4.4.1 and Theorem 4.4.2 use the

equivalence between the setoids (V∞,≈1) ∼= (VG, IdVG
) of Theorem 3.2.9 that we

proved in chapter 3.

Theorem 4.4.1. The principles PU and AUCV are valid in the propositions-as-

hprops interpretation J·K′PHP : LE→ HoTT.

Proof. The rules of PU are an immediate consequence of the definition of the

interpretation J·K′PHP .

The proof of the validity of AUCV is essentially a reformulation in this context

of Theorem 3.5.2 of the validity of Replacement in J·KH and J·KG of chapter 3. Note

that the type V of LE is interpreted as the type V∞ of HoTT under J·K′PHP . Given

the premiss of AUCV, unfolding the definition of its interpretation we have:

(Πx : A)
∥∥∥(Σy : V∞)Jφ(x, y)K′PHP

∥∥∥,
together with the uniqueness condition which is

(Πz, z′ : V∞)Jφ(x, z)K′PHP × Jφ(x, z′)K′PHP → (z ≈1 z
′).

We claim that from these two conditions we can derive the corresponding ones for

J·KG eq. (4.5) and eq. (4.4) below. For this observe that the inductive definition
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of J·K′PHP (see Section 4.2) is the same as the one of J·KG (see Section 3.2). Hence

following the same reasoning of Theorem 3.5.1 we have a logical equivalence between

the interpretations J·K′PHP and J·KG.

Therefore we have

(4.4) (Πx : A)
∥∥∥(Σy : VG)Jφ(x, y)KG

∥∥∥,
and

(4.5) (Πz, z′ : VG)Jφ(x, z)KG × Jφ(x, z′)KG → IdVG
(z, z′).

Analogously to Theorem 3.5.2, the uniqueness condition in (4.5) implies that the

type (Σy : VG)Jφ(x, y)KG is a hproposition so that we can apply the principle of

unique choice (Lemma 1.1.10) obtaining a dependent function:

(Πx : A)(Σy : VG)Jφ(x, y)KG.

Then applying the type-theoretic axiom of choice and using again the logical equi-

valence between the interpretations J·K′PHP and J·KG we have the interpretation of

the conclusion of the rule AUCV. �

Theorem 4.4.2. The principle AUCEl(β) is valid in the propositions-as-hprops in-

terpretation J·K′PHP : LE→ HoTT.

Proof. The proof for AUCEl(β) is similar to the one for AUCV. Since the inductive

definition of J·K′PHP is the same as the one of J·KG Theorem 3.5.1 extends to J·K′PHP
giving a logical equivalence between the interpretations J·K′PHP and J·KG.

Let us consider the interpretation of the premiss J(∀x : A)(∃!y ∈ β)φ(x, y)K′PHP ,

which is logically equivalent to (Πx : A)J(∃!y ∈ β)φ(x, y)KG.

Unfolding the interpretation we have

(Πx : A)
∥∥∥(Σy : El(β))Jφ(x, βy)KG

∥∥∥,
together with the uniqueness condition:

(Πz, z′ : El(β))Jφ(x, βz)KG × Jφ(x, βz′)KG → IdVG
(βz, βz′).

Now recall that, by definition of VG, given a term β : VG we have that the map

β : El(β)→ VG is an embedding, therefore from the uniqueness condition we obtain

a term inhabiting the type IdEl(β)(z, z
′). Hence, an application of the principle of

unique choice gives:

(Πx : A)(Σy : El(β))Jφ(x, βy)KG.

Applying the type-theoretic axiom of choice and the logical equivalence between

J·KG and J·K′PHP we have the conclusion of the rule AUCEl(β), as required. �





CHAPTER 5

Analysis of the interpretations via logic-enriched type

theories

In chapter 3 we showed that for 2 ≤ k ≤ ∞ the interpretations:

J·KH , J·KG, J·Kk,1 : CST→ HoTT + VH,

are equivalent, in the sense that there are equivalences of setoids

(Vk,≈1) ∼= (VH, IdVH
) ∼= (VG, IdVG

),

which induce a logical equivalence of the interpretations of formulas, as detailed in

Theorem 3.5.1.

A natural question is then to relate these interpretations to Aczel’s original

interpretation J·K∞,∞ of CZF. The aim of this chapter is to answer this question by

giving a uniform account of these interpretations via logic-enriched type theories.

For this purpose we focus on the interpretation J·K∞,1 which is the only one among

the ones above where the type interpreting sets is the same as Aczel’s V∞. This

makes the comparative analysis technically easier.

Our analysis parallels the one done in [GA06] for Aczel’s interpretation of CZF

into Martin-Löf type theory. There, the interpretation J·K∞,∞ is factored through

the logic-enriched type theory LE(AC + PU)1, as the combinatorial interpretation

J·Kc followed by the propositions-as-types interpretation J·KPT (see [GA06] for more

details). In the factorisation the type-theoretic axiom of choice AC (see table 4.4)

and the propositions-as-types principle PU (see table 4.6) allow one to derive in

the logic-enriched type theory the Collection axioms, as in the following diagram:

LE(PU + AC)
J·KPT

''

CZF

J·Kc
88

J·K∞,∞
//ML1W

We factor the interpretation J·K∞,1 in two steps. The first step the combinatorial

interpretation J·Kc of CST into LE(PU + AUCV + AUCEl(β)) that we introduced in

1Note that we use a slightly different notation: in [GA06] our theory LE(PU + AC) is denoted as
ML(PU + AC).

93
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Section 4.4. The second step is the propositions-as-hprops interpretation J·K′PHP
of Section 4.4 into HoTT.

LE(PU + AUCV + AUCEl(β))
J·K′PHP

**
CST

J·Kc 55

J·K∞,1
//HoTT

As an additional part of the analysis, in [GA06], the combinatorial interpret-

ation of CZF into LE(PU + AC) is factored further through another logic-enriched

type theory LE(COLL) where the Collection axioms are validated using the Collec-

tion Principles COLL (see tables 5.1 and 5.2). Then the logic-enriched type theory

LE(COLL) is interpreted into LE(AC + PU), where the axiom of choice AC (see

table 4.4) and the propositions-as-types principle PU (see table 4.6) allow to derive

the Collection principles COLL.

LE(COLL)
J·Kl
//LE(PU + AC)

J·KPT

''

CZF

J·Kh
99

J·K∞,∞
//ML1W

The interpretation J·Kl of one logic-enriched type theory into the other is defined

in (5.1) in Section 5.3, and J·Kh is the hybrid interpretation that we present in

Section 5.2.

Similarly, we further factor the interpretation of CST into the logic-enriched

type theory LE(PU + AUCV + AUCEl(β)). First, CST is interpreted via the hybrid

interpretation J·Kh in a different logic-enriched type theory LE(Rep + Exp) with

two rules Rep and Exp (see tables 5.3 and 5.4) that directly allow to validate

Replacement and Exponentiation. This is followed by the interpretation J·Kl of

LE(Rep + Exp) into LE(PU + AUCV + AUCEl(β)), which is induced by Lemma 5.3.2.

This further step clarifies what is the role of the principles PU, AUCV and AUCEl(β)

in the interpretation of set theory. Indeed, Theorem 5.3.4 and Theorem 5.3.3 show

that in presence of PU the principles Rep and Exp follow from AUCV and AUCEl(β),

respectively.

The main result of this chapter is Theorem 5.3.5 which summarises the situation

with the following diagram of interpretations:



5.1. THE COMBINATORIAL INTERPRETATION 95

LE(Exp + Rep)
J·Kl
//LE(PU + AUCV + AUCEl(β))

J·K′PHP

**
CST

J·Kh
77

J·K∞,1
//HoTT

In this way we have a step-by-step parallel analysis of the two interpretations

J·K∞,∞ and J·K∞,1.

Outline. In Section 5.1 we develop the combinatorial interpretation of CST

into the logic-enriched type theory LE(PU + AUCV + AUCEl(β)) which factors the

interpretation J·K∞,1 through the propositions-as-hprops interpretation J·K′PHP . In

Section 5.2 we further factor the combinatorial interpretation through the hybrid

interpretation of CST into the logic-enriched type theory LE(Rep+Exp). Section 5.3

relates the different logic-enriched type theories considered in this chapter. Finally,

Section 5.4 summarises the comparative analysis and the results obtained.

5.1. The combinatorial interpretation

In LE the logical and type-theoretic structure is sufficiently rich for us to define

different notions of ‘collection of objects of a given type’. See [GA06, Section 3] for

a detailed discussion of different notions of collection. In this section we focus on

the case where collections are given by families, i.e. a family of terms of a type A

indexed by a small type. This notion gives rise to the combinatorial interpretation

of CST, whereas the notion of subclass (see Definition 5.2.1) gives rise to the hybrid

interpretation of CST of Section 5.2.

The interpretation J·Kc is called combinatorial interpretation since it is based

on the combinatorial notion of family. The terminology is chosen to stress the

difference with the logical notion of collection given by Cla(A) := A→ P. For more

details on the combinatorial, logical and hybrid notions of collection we refer the

reader to [GA06, Section 3].

Definition 5.1.1. Given a type A, a family over A is a term of the type:

Fam(A) := (Σa : U)T(a)→ A.

Given a family α : Fam(A), we define El(α) := T(α.1) and for x : El(α) we define

αx := α.2(x) : A.

We define quantification over families in the expected way. Namely, given a

family α : Fam(A) and a judgement x : A ` φ(x) : prop with a free variable ranging
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over A we define quantification over the family α as:

(∀x ∈ α)φ(x) := (∀x : El(α))φ[αx],

(∃x ∈ α)φ(x) := (∃x : El(α))φ[αx].

Using these and the decoding function τ for the proposition universe P, we define

quantification over α for a family of small propositions x : A ` p : P in the evident

way.

We develop the combinatorial interpretation of CST into the logic-enriched type

theory LE(PU + AUCV + AUCEl(β)). We show that using PU, the notion of family

allows us to validate the Bounded Separation axiom. Moreover, the principles

AUCV and AUCEl(β) imply the validity of the Replacement and Exponentiation

axioms respectively.

The combinatorial interpretation J·Kc of CST into LE(PU + AUCV + AUCEl(β))

interprets sets as terms of the type V, set-theoretic equality as the bisimulation

relation ≈V (introduced in (4.1)) and the logical structure of set theory with the

corresponding structure of the logic-enriched type theory, where quantification is

defined in terms of families.

Jα .
= βKc := (α ≈V β)

Jφ ? ψKc := JφKc ? JψKc

J(∇x ∈ α)φ(x)Kc := (∇x ∈ α)Jφ(x)Kc

J∇xφ(x)Kc := (∇x : V)Jφ(x)Kc

Where ∇ is a quantifier and ? a logical connective.

The proof of the following theorem does not involve the principles PU,AUCV

nor AUCEl(β).

Theorem 5.1.2 (Gambino and Aczel). The following axioms of CST are valid

in the combinatorial interpretation: Extensionality, Set-Induction, Pairing, Union

and Infinity.

Proof. For the proof see [GA06, Theorem 4.5]. �

Now we see how the Bounded Separation, Replacement and Exponentiation

axioms follow respectively from PU,AUCV and AUCEl(β).

Theorem 5.1.3 (Gambino and Aczel). The rule PU implies the validity of Bounded

Separation in the combinatorial interpretation.
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Proof. Given a type A, a family α : Fam(A) and a proposition x : A ` p(x) : P

with a free variable ranging over A, then we can define {x : A | p(x)} as the family

γ : Fam(A) determined by

el(γ) := (σx : el(α))pu(p(αx)),

γz := αz.1 : A.

Checking that γ has the desired properties is straightforward.

This definition is possible thanks to PU (see table 4.6), that for any p : P gives

pu(p) : U. �

Theorem 5.1.4. The rule AUCV implies the validity of Replacement in the com-

binatorial interpretations.

Proof. We want to validate the Replacement axiom:

(∀x ∈ α)∃!yφ(x, y)⇒ ∃β(∀x ∈ α)(∃y ∈ β)φ(x, y).

Consider the combinatorial interpretation of the premiss of Replacement. Unfold-

ing the definition of the combinatorial interpretation we have:

(∀x : El(α))(∃!y : V)Jφ(αx, y)Kc.

Then we can apply the rule AUCV (see table 4.7) obtaining:

(5.1) (∃f : El(α)→ V)(∀x : El(α))Jφ(αx, f(x))Kc.

Now that we have the function f : El(α) → V we can define β by El(β) := El(α)

and βx := f(x). Then the goal is to prove the interpretation of the conclusion of

Replacement, i.e.

(5.2) (∀x ∈ α)(∃y ∈ β)Jφ(x, y)Kc.

Unfolding the definition of the bounded quantifiers and the definition of β, (5.2)

becomes:

(∀x : El(α))(∃y : El(α))Jφ(αx, f(y)Kc.

For a given x : El(α) the witness for the existential quantifier is then provided by

x itself, using the conclusion of the rule AUCV. �

Theorem 5.1.5. The rule AUCEl(β) implies the validity of the Exponentiation ax-

iom in the combinatorial interpretation.

Proof. For Exponentiation, recall that in CST we define α
F→ β as a shorthand for

the formula stating that F is a set of pairs with the first component in α and the

second in β and that F is functional, i.e.

(5.3) (∀z ∈ F )(∃x ∈ α)(∃y ∈ β)(z
.
= 〈x, y〉) ∧ (∀x ∈ α)(∃!y ∈ β)(〈x, y〉 ∈ F ).
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Recall the Exponentiation axiom: ∀α, β ∃γ ∀F [(α
F→ β) ⇒ F ∈ γ]. So given

two terms α, β : V we define a term γ : V playing the role of the set of functions,

so we let El(γ) := El(α) → El(β). The map γ : (El(α) → El(β)) → V is defined

by mimicking type-theoretically a set-theoretic function as a set of pairs. Given a

function z : El(α)→ El(β), its image is given by

El(γz) := El(α),

γzx := 〈αx, βz(x)〉.

Now given an F : V satisfying Jα F→ βKc we want to prove that F ∈ γ. For this

purpose consider part of the hypothesis: (∀x ∈ α)(∃!y ∈ β)(〈x, y〉 ∈ F ), recalling

the definition of the universal quantifier in the combinatorial interpretation, it

unfolds as:

(∀x : El(α))(∃!y ∈ β) 〈αx, y〉 ∈ F.

Here we can apply the rule AUCEl(β) (see table 4.8) obtaining:

(5.4) (∃f : El(α)→ El(β))(∀x : El(α)) 〈αx, βf(x)〉 ∈ F.

Now we want to use f to prove that F is an element of γ, i.e. JF ∈ γKc, which by

definition is equal to (∃x : El(γ))(F ≈V γx). The term f : El(α) → El(β) provides

the witness to prove this existential quantifier. Then to prove the equality F ≈V γf

we have to prove the two conjuncts of the bisimulation relation F ≈V γf . The first

is:

(5.5) (∀s ∈ F )(∃t ∈ γx)(Fs ≈V γft).

Recall from (5.3) that F is a set made of pairs, i.e.

(5.6) (∀z ∈ F )(∃x ∈ α)(∃y ∈ β) z ≈V 〈x, y〉,

therefore combining (5.6) with the uniqueness condition

(∀x ∈ α)(∃!y ∈ β)〈x, y〉 ∈ F,

we have that given a term x : El(α) the function f : El(α) → El(β) provides the

second component of the pair f(αx):

(∀z : El(F ))(∃x : El(α)) z ≈V 〈αx, f(αx)〉.

This gives the first conjunct of the bisimulation relation of (5.5).

The second conjunct of the bisimulation relation is:

(5.7) (∀v ∈ γf )(∃w ∈ F )Fv ≈V γfw .
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then using the definition of γf , (5.7) is equivalent to:

(∀v : El(α))(∃w ∈ F )Fv ≈V 〈αw, βf(w)〉.

This follows from (5.4), which is the conclusion of the rule AUCEl(β). �

We conclude this first part of our analysis of the interpretation J·K∞,1 with the

following theorem.

Theorem 5.1.6. The interpretation J·K∞,1 : CST → HoTT factors as the com-

binatorial interpretation J·Kc followed by the propositions-as-hprops interpretation

J·K′PHP .

LE(PU + AUCV + AUCEl(β))

J·K′PHP

&&

CST

J·Kc

99

J·K∞,1
//HoTT

Proof. This follows by induction on the formula of CST that one is interpreting,

and inspecting the definitions of the three interpretations: J·K∞,1 in Section 1.2,

and J·Kc in Section 5.1 and J·K′PHP in Section 4.2.

To illustrate, we consider the case of set-theoretic equality
.
=. It is interpreted

under J·Kc as the bisimulation relation α ≈V β. This relation is then interpreted

under J·K′PHP as the bisimulation relation ≈1 on the type V∞, which is the inter-

pretation of set-theoretic equality under J·K∞,1.

Similarly for the other formulas.

�

Remark 5.1.7. The method and guiding principles that we have used in this

chapter are quite general and could be applied to other contexts.

Suppose one has an interpretation (or a model) I of the system S into the

theory T, and a similar interpretation I ′ of system S′ into the theory T′. By a

careful analysis of the proofs one can isolate the key principles P and P′ used in
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these interpretations. Then one can factor the interpretations as:

T(P)

##
S

<<

I
//T

T′(P′)

""
S′

<<

I′
//T′

One can strive to formulate the principles P and P′ so that the factorisation of

the interpretations I and I ′ isolate all the aspects that are similar, which are

then treated in exactly the same way by the arrows on the left hand side of the

factorisation. What is different between I and I ′ is neatly isolated on the right

hand side of the factorisation.

Then one can analyse further the interpretations T(P) → T and T′(P′) → T′

that encode the differences between I and I ′.

To a certain extent, this is what we have done in the characterisation of the

propositions-as-hprops interpretation J·KPHP of Theorem 4.3.4, with the caveat

that the interpretations J·KPHP and J·K′PHP have different domain and codomain

theories.

Moreover, if in the interpretations I and I ′ more constructions are happening at

the same time one can factor the interpretations step by step, formulating principles

that encode what is used at each stage. This is what we do in Section 5.2 where

we factor further the combinatorial interpretation.

5.2. The hybrid interpretation

In this section we follow [GA06, §4] and refine the analysis of Section 5.1 factor-

ing further the combinatorial interpretation J·Kc. First, we define the hybrid in-

terpretation of CST into the logic-enriched type theory LE(Rep + Exp), then an

interpretation of LE(Rep + Exp) into LE(PU + AUCV + AUCEl(β)). The Replacement

and Exponentiation rules Rep and Exp (see tables 5.3 and 5.4) are formulated so

that they are natural principles for a logic-enriched type theory and also allow us to

validate the Replacement and Exponentiation axioms in the hybrid interpretation.

One reason for our interest in this further step is that in the combinatorial

interpretation the validity of Bounded Separation uses crucially the propositions-

as-types principle PU. Instead, the hybrid interpretation J·Kh uses a different notion

of collection, the one of subclass (see Definition 5.2.1 below). A subclass of a type

A consists of a family of terms of A indexed by a small type i : U with the extra
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structure of a formula x : T(i) ` φ(x) : prop. The objects of a subclass are the

terms in A indexed by x : T(i) such that φ(x) holds. The name ‘hybrid’ comes

precisely from the idea of combining the notion of family with logical aspects.

Using the hybrid interpretation, the Bounded Separation axiom follows directly

from the structure of the interpretation without the need of any additional principle.

Before moving to the new features that we introduce in order to factor the

combinatorial interpretation J·Kc, we first present what is in common between

LE(Rep + Exp) and LE(COLL) of [GA06, §3] and give a review of their rules COLL.

Definition 5.2.1. Given a type A, a subclass of A is a term of the type:

Sub(A) := (Σx : U)[(T(x)→ P)× (T(x)→ A)].

Given a subclass α : Sub(A) we use the following notation: El(α) := T(α.1),

and αx := α.2.2(x) : A, and dom(α, x) := α.2.1(x) : P.

We can then introduce quantification over a subclass. Given a subclass α :

Sub(A) and a family of propositions x : A ` φ(x) : prop, quantification over α

means:

(∀x ∈ α)φ(x) := (∀x : El(α))(dom(α, x) ⊃ φ[αx/x] ),

(∃x ∈ α)φ(x) := (∃x : El(α))(dom(α, x) ∧ φ[αx/x] ).

Similarly for a family of small propositions x : A ` p : P.

The definition of the type of iterative sets has to be adapted to match the new

notion of subclass:

(5.1) V := (Wz : (Σx : U)(T(x)→ P))T(z.1).

As a consequence of this definition we have a correspondence between the terms

of V and Sub(V). Firstly, we define the function set : Sub(V) → V that given

a subclass (a, (p, f)) with a : U and p : T(a) → P and f : T(a) → V returns

sup((a, p), f) : V.

Secondly, we define the function sub : V→ Sub(V) that given a set sup((a, p), f)

returns the subclass (a, (p, f)).

Lemma 5.2.2 (Gambino and Aczel). Given two formulas x : V ` φ(x) : prop and

y : Sub(V) ` ψ(y) : prop we have the following judgements:

(∇x : V)φ(x) ≡ (∇y : Sub(V))φ(set(y)),

(∇y : Sub(V))ψ(y) ≡ (∇x : V)ψ(sub(x)).

Where ∇ is ∀ or ∃.
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Proof. Straightforward, see [GA06, Lemmas 3.8 and 3.9] for details. �

Using the rules for W -types we can define a bisimulation relation ≈V on the

type of sets V such that the following judgement is derivable (see [GA06, equation

25] for details):

α ≈V β ≡
(
∀∃x ∈ α
y ∈ β

)
x ≈V y.

The inductive structure of the hybrid interpretation and the bisimulation≈V are

the same as the ones for the combinatorial ones, but the definition of quantification

is different, being defined in terms of subclasses rather than families.

Jα .
= βKh := (α ≈V β)

Jφ ? ψKh := JφKh ? JψKh

J(∇x ∈ α)φ(x)Kh := (∇x ∈ α)Jφ(x)Kh

J∇xφ(x)Kh := (∇x : V)Jφ(x)Kh

Where ∇ is a quantifier and ? a logical connective.

Note that in the following theorem Bounded Separation can be validated without

any need for a propositions-as-types principle.

Theorem 5.2.3 (Gambino and Aczel). The basic axioms of CST, namely Exten-

sionality, Set-Induction, Pairing, Union, Infinity and Bounded Separation are valid

in the hybrid interpretation in LE.

Proof. For the proof see [GA06, Lemmas 3.14 and 3.15]. �

In [GA06, §3] CZF is interpreted in the logic-enriched type theory LE(COLL)

via the hybrid interpretation. Here we recall the Strong Collection and Subset

Collection rules COLL. These two rules recast in the context of logic-enriched type

theory and subclasses the familiar Collection axioms. More precisely the axioms

are refined while maintaining their logical structure: instead of a set we have either

a type A, a subclass Sub(A) or a subclass of subclass of types Sub2(A) depending

on the role played by that set within the axiom.

A,B : type α : Sub(A) x : A, y : B ` φ(x, y) : prop

(∀x ∈ α)(∃y : B)φ(x, y) ⊃ (∃v : Sub(B))(∀∃x∈αy∈v φ(x, y))

Table 5.1. Strong Collection rule (StrCOLL)
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A,B,C : type α : Sub(A) β : Sub(B) x : A, y : B, z : C ` φ : prop

(∃u : Sub2(B))(∀z : C)((∀x ∈ α)(∃y ∈ β)φ(x, y) ⊃ (∃v ∈ u)(∀∃x∈αy∈v )φ(x, y))

Table 5.2. Subset Collection rule (SubCOLL)

Now we move to our logic-enriched type theory where we introduce a Replace-

ment and Exponentiation rules that allow us to validate the corresponding axiom

of Myhill’s Constructive Set Theory CST. The Replacement rule Rep is designed

like the Collection rules, maintaining the structure of the axiom while adapting it

to the logic-enriched type theory.

A : type α : Sub(A) x : A, y : V ` φ(x, y) : prop

(∀x ∈ α)(∃!y : V)φ(x, y) ⊃ (∃β : V)(∀x ∈ α)(∃y ∈ β)φ(x, y)

Table 5.3. Replacement rule (Rep)

Notice that in the premiss of the implication we insist in using the type V in

(∃!y : V), defined using ≈V, rather than allowing an arbitrary type B. This is

because we have a uniqueness quantification that we can express in terms of ≈V

for the type V, but do not have for arbitrary types. Using the identity types or

the equality propositions of LEH is not the desired option since our overall aim is

to factor the interpretation J·K∞,1 in which set-theoretic equality is interpreted as

a truncated bisimulation relation.

The Exponentiation rule Exp is a direct reformulation of the Exponentiation

axiom in this new context.

Let us define the formula (α
F−→ β) for given sets α, β : V, within the logic-

enriched type theory, stating that F is a functional relation from α to β.

(∀x ∈ α)(∃!y ∈ β) 〈x, y〉 ∈ F ∧ (∀z ∈ F )(∃x ∈ α)(∃y ∈ β) z ≈V 〈x, y〉

The Exponentiation rule can now be stated more easily.
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α, β : V

(∃γ : V)(∀F : V)[(α
F−→ β) ⊃ F ∈ γ]

Table 5.4. Exponentiation rule (Exp)

This rule is a direct reformulation of the Exponentiation axiom with only the

type V appearing. It could not have been more general since in the formula (α
F→ β)

we have the uniqueness quantification (∃!y ∈ β) which forces β : V, and the equality

(z ≈V 〈α, β〉) which also forces F, α : V. Moreover, in order to have F ∈ γ being

well-typed we also have to have γ : V.

Having stated these rules we can finally use them to interpret CST into LE(Rep+

Exp).

Theorem 5.2.4. The Replacement rule Rep implies the validity of the Replacement

axiom in the hybrid interpretation. Similarly, the Exponentiation rule Exp implies

the validity of the Exponentiation axiom in the hybrid interpretation.

Proof. For Replacement let us apply the rule Rep of table 5.3 to the case A = V.

Using the correspondence between V and Sub(V) of Lemma 5.2.2 without loss of

generality we can consider α : V in the premiss. Then the conclusion of Rep gives

the interpretation of the Replacement axiom.

For the Exponentiation axiom it is enough to observe that the Exponentiation

rule Exp is equivalent to the hybrid interpretation of the Exponentiation axiom. �

5.3. Relating logic-enriched type theories

In this section we have three goals. First we relate the notions of family and

subclass via the propositions-as-hprops principle PU and relate the two types of sets

V and V. Recall that V = (Wx : U)T(x), and that V is defined in (5.1) as an adapt-

ation of V for the hybrid interpretation. Secondly, we show that the logic-enriched

type theory LE(Rep + Exp) can be reinterpreted in LE(PU + AUCV + AUCEl(β)).

These first two parts are an adaptation to this context of the analogous results of

[GA06, §4]. Finally, we compare the principles Rep,Exp,AUCV and AUCEl(β) used

here for CST with the principles COLL and AC introduced in [GA06] for CZF.

As a first step we recall some notions and results from [GA06, §4] on the rela-

tionship between families and subclasses. We use PU to introduce two comparison
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maps between families and subclasses of a given type. These allow us to relate the

combinatorial and the hybrid interpretations of set theory.

We need to introduce a preliminary construction. For a subclass α : Sub(A),

the construction gives a subtype of el(α) on which the formula dom(α) holds, as

follows:

comp(α) := (σx : el(α))pu(dom(α, x)) : U,

and

Comp(α) := T(comp(α)).

We then define i : Sub(A)→ Fam(A) which simply forgets the logical structure, by

i(α) := (comp(α), λz.αz.1),

for α : Sub(A).

On the other hand, j : Fam(A)→ Sub(A), is defined by

j(σ) := (el(σ), (λ .>, λx.σx)).

Using these comparison maps we can state and prove the following lemma.

Lemma 5.3.1 (Gambino and Aczel). Given a proposition x : A ` φ(x) : prop, a

subclass α : Sub(A) and a family σ : Fam(A), the rule PU implies the validity of

the following judgements:

(∇x ∈ α)φ(x) ≡ (∇x ∈ i(α))φ(x),

(∇x ∈ σ)φ(x) ≡ (∇x ∈ j(σ))φ(x).

Where ∇ is ∃ or ∀.

Proof. See [GA06, Lemma 4.6] for details. �

We have similar comparison maps J : V → V and I : V → V for the types

of sets of the combinatorial and hybrid interpretations. Given a canonical term

sup(a, f) : V with f : T(a)→ V we define:

J(sup(a, f)) := sup((a, λ .>), J ◦ f).

In the other direction we have a canonical term α = sup((a, p), f) where the terms

p and f have types p : T(a) → P and f : T(a) → V. The set α gives rise to

its corresponding subclass sub(α) : Sub(V). Then we consider comp(sub(α)), which

is the code in the universe U corresponding to the Σ-type (Σx : T(a))T(pu(p(x))).

Finally, we define the function I on canonical terms as:

I(sup((a, p), f)) := sup(comp(sub(α)), I ◦ f).
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Then we have the following comparison lemma.

Lemma 5.3.2 (Gambino and Aczel). Assuming PU, the comparison maps J :

V → V and I : V → V give an isomorphism of setoids (V,≈V) ∼= (V,≈V). Thus,

given two judgements x : V ` φ(x) : prop and x : V ` ψ(x) : prop, we have logical

equivalences:

(∇x : V)φ(x) ≡ (∇x : V)φ(J(x)),

(∇x : V)ψ(x) ≡ (∇x : V)ψ(I(x)).

Where ∇ is ∃ or ∀.
In particular, assuming PU, we have that for a given sentence φ of CST there

is a logical equivalence of the combinatorial and hybrid interpretations JφKc ≡ JφKh.

Proof. It is straightforward to check by recursion that the functions I and J are

inverses of each other in the sense of ≈V and ≈V.

The logical equivalence between formulas quantified over V and V follows dir-

ectly from the isomorphism of setoids. �

The comparison maps i, j, I and J induce an interpretation of the logic-enriched

type theory LE(Rep + Exp) into LE(PU + AUCV + AUCEl(β)) that interprets the type

V as the type V, and quantification over a subclass of V, as quantification over the

corresponding family of V.

(5.1) J·Kl : LE(Rep + Exp) −−−−→ LE(PU + AUCV + AUCEl(β))

Note that no other part of the logic-enriched type theory is changed by this inter-

pretation. In other words, J·Kl acts only on the type V and on formulas quantified

over V.

Now we use the previous lemmas to prove that this interpretation is sound.

Theorem 5.3.3. Assuming PU we have that AUCEl(β) implies Exp.

Proof. Note that validating Exp is equivalent to validate the Exponentiation axiom

in the hybrid interpretation. Since the Exponentiation axiom is a sentence of CST

its hybrid interpretation is equivalent to its combinatorial interpretation thanks to

Lemma 5.3.2 (which uses PU). So the result follows from Theorem 5.1.5 where

we proved that the rule AUCEl(β) implies the combinatorial interpretation of the

Exponentiation axiom. �

The case of the Replacement rule is not as easy since the rule involves arbitrary

types, hence it is more general than the hybrid interpretation of the Replacement

axiom.
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Theorem 5.3.4. Assuming PU we have that AUCV implies Rep.

Proof. The proof is similar to the proof of Theorem 5.1.4 where we validated the

Replacement axiom in the combinatorial interpretation. The premiss of the Rep

rule gives α : Sub(A) and a formula x : A, y : V ` φ(x, y) : prop. The conclusion

is an implication, so let us consider its antecedent. We have the following chain of

logical equivalences:

(∀x ∈ α)(∃!y : V)φ(x, y) ≡

(∀x ∈ i(α))(∃!y : V)φ(x, y) ≡ (by Lemma 5.3.1)

(∀x ∈ i(α))(∃!y : V)φ(x, J(y)) ≡ (by Lemma 5.3.2)

(∀x : Comp(α))(∃!y : V)φ(αx.1, J(y)) (expanding the definition of i(α)).

Then applying AUCV we have the following formula:

(∃f : Comp(α)→ V)(∀x : Comp(α)) φ(αx.1, J ◦ f(x)).

Next we construct a witness β for the existential quantifier in the consequent

of the implication of Exponentiation as J(sup(comp(α), f)) : V. This term can be

made more explicit expanding the definition of J as sup((comp(α), λ .>), J ◦f). So

we get that

(∃β : V)(∀x : Comp(α))φ(αx.1, J ◦ f(x)),

which implies (∃β : V)(∀x ∈ i(α))(∃y ∈ i(β))φ(x, y), as desired. �

Theorem 5.3.5. The combinatorial interpretation J·Kc factors as the hybrid inter-

pretation J·Kh followed by the interpretation J·Kl. The situation can be summarised

by the following diagram:

LE(Exp + Rep)

J·Kl

''

CST

J·Kh

==

J·Kc
//LE(PU + AUCV + AUCEl(β))

Proof. The claim follows using Lemma 5.3.1 and Lemma 5.3.2 and inspecting the

definitions of the three interpretations. Recall that the combinatorial interpretation

is given in Section 5.1, the hybrid interpretation is given in Section 5.2 and the

interpretation J·Kl in Section 5.3 in (5.1). �

In the remainder of this section we look at the relationships between the rules

AUCV,AUCEl(β),Rep,Exp introduced here to analyse the interpretation J·K∞,1 and

the related rules AC,COLL of [GA06] used to analyse Aczel’s interpretation J·K∞,∞.
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Theorem 5.3.6. In the basic logic-enriched type theory LE we have the following

implications:

(i) StrCOLL implies Rep;

(ii) SubCOLL implies Exp;

(iii) AC implies both AUCV and AUCEl(β).

Proof. (i) Immediate taking B := V in the Strong Collection rule, and recalling

the correspondence between V and Sub(V) of Lemma 5.2.2.

(ii) By construction, and using the correspondence between V and Sub(V), the

Subset Collection rule SubCOLL implies the hybrid interpretation of the Subset Col-

lection axiom. Recall that the Subset Collection axiom implies the Fullness axiom

which implies Exponentiation (see Theorem A.2). Hence, the hybrid interpretation

of Exponentiation follows, which is in turn equivalent to the rule Exp.

(iii) Both AUCV and AUCEl(β) are immediate consequences of AC where we just

ignore the uniqueness condition for the existential quantifiers. �

5.4. Conclusions

We can summarise the results obtained in this chapter in the following diagram

of interpretations.

LE(Exp + Rep) //LE(PU + AUCV + AUCEl(β))

**
CST

77

J·K∞,1
//HoTT

LE(COLL) //LE(PU + AC)

**
CZF

77

J·K∞,∞
//ML1W

We can see that J·K∞,1 interprets a weaker set theory into a stronger type theory

when compared with Aczel’s interpretation J·K∞,∞. However, in J·K∞,1 propositions

of the language of set theory are interpreted as hpropositions in homotopy type

theory, an additional requirement on the structure of the interpretation itself.

Our analysis in this chapter gives a precise and clear comparison between the

principles used to factor the interpretations J·K∞,1 and J·K∞,∞ at the level of the

hybrid interpretation as well as the combinatorial interpretation. The propositions-

as-types principle PU and the two axioms of unique choice AUCV and AUCEl(β) are

natural principles for a logic-enriched type theory that we have distilled from the

proof of the equivalence between interpretations of Theorem 3.5.2.
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Since the interpretations J·KH , J·KG as well as the whole family of interpretations

J·Kk,1 for 2 ≤ k ≤ ∞ are logically equivalent, the comparative analysis of J·K∞,1 and

J·K∞,∞ provided in this chapter relates all the known interpretations of constructive

set theory in homotopy type theory to Aczel’s interpretation.





CHAPTER 6

Feasible ordinals

This chapter contributes to the area of ‘feasible mathematics’, since we are

concerned with reworking classical areas of mathematics focusing on the computa-

tional content of their notions and proofs. This means we also take into account the

computational complexity of the algorithms involved rather than merely reducing

the notion of computational content to the one of computable function.

More specifically, we deal with a notion of feasible ordinals, and this chapter

can be seen as a step in the direction of a study of feasible ordinals reminiscent of

the description of the computable ordinals as the ones smaller than the Church-

Kleene ordinal ωCK1 . For a reference on this classical result see [Gir87, annex 5.A].

In order to study feasible ordinals one has to find a suitable setting and a suit-

able characterisation of polynomial time functions, which are used to formalise the

notion of feasible computation. Given the wide variety of characterisations and

formalisms one can expect quite diverse proposals for feasible ordinals.

One of the most important characterisations of polytime functions is the one

given by Bellantoni and Cook [BC92] in terms of predicative recursion. However,

many natural polytime algorithms like insertion sort do not fall into that char-

acterisation. The key observation, dating back to Caseiro [Cas97], is that those

algorithms are non-size-increasing. With the aim to represent those algorithms Hof-

mann developed a type theory called Linear Functional Programming Language,

LFPL for short [Hof03].

LFPL is an affine linear type theory with a special resource type � called ‘dia-

mond’ used to control the typing of size-increasing functions. The combination of

linearity and the resource type restricts the typable closed terms of type N( N to

be polytime non-size-increasing. We review the theory in Section 6.1.

One of the main reasons for choosing LFPL, in addition to being a technic-

ally neat and expressive type theory, is that the question of definable ordinals in

the theory is posed by Hofmann himself as a comment on future directions for

research, he conjectured that the upper bound for the definable ordinals of LFPL

111
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is ω2. However, note that in [Hof03, Section 10] the conjecture is not formulated

in technical terms. Our definition of O in table 6.9 provides a precise formulation

of the conjecture.

The main contribution of this chapter consists of Theorem 6.3.7 which disproves

Hofmann’s conjecture1 showing that for any k ∈ N the ordinal ωk is definable. We

leave open the problem to finding a sharp upper bound for the definable ordinals,

and the characterisation of the definable functions in the theory LFPL +O.

We remark that what we call definable ordinals in a type theory can actually

be called provably well-founded ordinals as it is more customarily done in the con-

text of ordinal analysis [Rat99]. Indeed, the definition of an ordinal in type theory

is nothing more than the construction of a term which itself provides a proof of

well-foundedness.

Outline. In Section 6.1 we review the syntax of the system LFPL and introduce

a linear version of Kleene’s O, next in Section 6.2 we study some of the relation-

ships between variants of the system. Section 6.3 deals with definable ordinals and

presents the main result. Finally, in Section 6.4 we discuss some approaches for

characterising the definable functions and for proving upper bounds for the defin-

able ordinals of LFPL +O.

6.1. Ordinal notations in LFPL

LFPL is an affine linear type theory, meaning that it is a linear type theory

with the structural rule of weakening, but not contraction.

It is given by a core theory (,⊗ and &, and by a collection of base types namely

Booleans and naturals and a collection of type operators namely lists and trees

which involve the resource type �. Variations of the system may involve different

base types and type constructors.

Since the system is used to study polytime algorithms, the rules for the natural

numbers correspond to the ones of binary lists. Indeed, there are algorithms that

are polytime in their unary input but exponential in their binary input. So the

type of natural numbers N has two successor functions, appending respectively 0

and 1 at the end of the list.

Note that we use Hofmann’s LFPL as presented in [Hof03] in which there is a

redundancy since the types of naturals N and the one of binary lists L(2) have the

1We thank Martin Hofmann for a useful discussion that helped to disprove the conjecture.
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same rules.

A distinctive feature of this type theory is the presence of a resource type �
which has no rules on its own but appears in the rules for other types. Its intended

meaning is to provide ‘pointers to free memory’ which have to be used every time

we want to type a size-increasing function. For example the successor functions

for binary lists are typed as follows: s0, s1 : � ( N ( N. On the other hand

a function that increases the binary length of its input by 2 has to be typed as

�( �( N( N, and so on.

We add to the theory a type of ‘linear ordinal notations’ in the style of Kleene’s

O. We remark that although we colloquially refer to it as a type of ordinals, we

are actually dealing with ordinal notations throughout this chapter, i.e. the limit

ordinals come with a specified fundamental sequence as part of their structure.

We refer to the type theory as LFPL + O. We give to O the same structure of

the natural numbers type, with two successor operators, working on binary lists,

since doing so gives immediately the natural embedding map from N to O, for the

details see the proof of Lemma 6.3.1.

The binary digits appearing in an ordinal representation give the binary encoding

of natural numbers only, so for example the string sup(f)10 represents the ordinal

sup(f) + 2.

Syntax of LFPL +O. For the syntax we follow the style of the original article

where LFPL was introduced [Hof03], rather than the ones of [DLH05] or [AS02].

[DLH05] presents a version of LFPL with polymorphic quantification and the

type operations + and !, but it has the shortcoming of using a notion of type de-

pendency that is not fully formalised (see the last lines of Section 7.2). Whereas

[AS02] provides a syntax optimised for a normalisation proof.

Note that whenever we write Γ,∆ to mean the union of contexts we implicitly

assume that Γ and ∆ are disjoint.

We conventionally assume that bracketing of function types associates on the right,

i.e. A1 ( A2 ( · · ·( An := A1 ( (A2 ( . . . (An−1 ( An)).

The rules of the system are as follows:
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(Ax)
x : A ` x : A

Γ ` J
(W )

Γ, y : B ` J
Γ, x : A, y : B,∆ ` J

(Ex)
Γ, y : B, x : A,∆ ` J

Table 6.1. Structural rules

Γ, x : A ` t : B
((+)

Γ ` λx.t : A( B
Γ ` t : A( B ∆ ` s : A ((−)

Γ,∆ ` ts : B

Γ ` λx.t : A( B ∆ ` s : A ((=)
Γ,∆ ` (λx.t)s = t[s/x] : B

Table 6.2. Rules for linear implication

Notice the difference between the definitions of the two kinds of conjunction.

Additive conjunction & is defined using projections, whereas multiplicative con-

junction ⊗ is defined via an elimination rule that follows the same pattern of

elimination rules for inductive types.

Also observe the difference in the handling of contexts in the rules for the two

conjunctions: in the rule (&+) the same context Γ appears in both the branches of

the premiss and in the conclusion. On the other hand, in all rules for ⊗ we have

two disjoint contexts Γ and ∆ for each of the two branches of the premiss, and

their disjoint union Γ,∆ in the conclusion.

The effect of these differences is that one can access both components of a

tensor product, whereas one can access only one of an additive pair.

Γ ` t : A ∆ ` s : B (⊗+)
Γ,∆ ` t⊗ s : A⊗B

Γ ` t : A⊗B ∆, x : A, y : B ` r : C
(⊗−)

Γ,∆ ` lett be x⊗ y in r : C

Γ ` t⊗ s : A⊗B ∆, x : A, y : B ` r : C
(⊗=)

Γ,∆ ` (let t⊗ s be x⊗ y in r) = r[t, s/x, y] : C

Table 6.3. Rules for multiplicative conjunction
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Γ ` t1 : A1 Γ ` t2 : A2 (&+)
Γ ` 〈t1, t2〉 : A1&A2

Γ ` t : A1&A2 (&−1 )
Γ ` t.1 : A1

Γ ` t : A1&A2 (&−2 )
Γ ` t.2 : A2

Γ ` 〈t1, t2〉 : A1&A2
(&=

1 )
Γ ` 〈t1, t2〉.1 = t1 : A1

Γ ` 〈t1, t2〉 : A1&A2
(&=

2 )
Γ ` 〈t1, t2〉.2 = t2 : A2

Table 6.4. Rules for additive conjunction

The rules for Booleans are straightforward:

(2+
0 )

ff : 2
(2+

1 )
tt : 2

(2−)
if : 2( (A&A)( A

(2=
0 )

if(ff, e) = e.1 : A
(2=

1 )
if(tt, e) = e.2 : A

Table 6.5. Rules for Booleans

Now we move to the presentation of the rules for lists, trees, natural numbers

and ordinals. They may appear complicated at first sight, but the elimination and

computation rules follow the structure of inductive types stating that the type in

consideration (lists, trees, naturals, ordinals) is the initial type with appropriate

structure.

Moreover, notice that for a given type the premisses of the elimination and com-

putation rules are the same.

Observe that these elimination and computation rules need to have closed terms

in the premiss, i.e. the terms appearing in the premiss are typed in the empty con-

text. This is required in order to prevent the duplication of resources (i.e. terms of

type �) in the premiss of an elimination rule, which would lead beyond the class of

polytime functions.
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(L(X)+
0 )

nil : L(X)
(L(X)+

1 )
cons : �( X ( L(X)( L(X)

∅ ` a : A ∅ ` h : �( X ( A( A
(L(X)−)

∅ ` itAL(X)(a, h) : L(X)( A

∅ ` a : A ∅ ` h : �( X ( A( A (L(X)=
0 )

∅ ` itAL(X)(a, h)(nil) = a : A

∅ ` a : A ∅ ` h : �( X ( A( A (L(X)=
1 )

∅ ` itAL(X)(a, h)(cons(d, x, l)) = h(d, x, itAL(X)(l)) : A

Table 6.6. Rules for lists

(T (X)+
0 )

leaf : X ( T (X)

(T (X)+
1 )

node : �( X ( T (X)( T (X)( T (X)

∅ ` g : X ( A ∅ ` k : �( X ( A( A( A
(T (X)−)

∅ ` itAT (X)(g, k) : T (X)( A

∅ ` g : X ( A ∅ ` k : �( X ( A( A( A
(T (X)=

0 )
∅ ` itAT (X)(g, k)(leaf(x)) = g(x) : A

∅ ` g : X ( A ∅ ` k : �( X ( A( A( A
(T (X)=1 )

∅ ` itAT (X)(g, k)(node(d, x, l, r)) = k(d, x, itAT (X)(g, k)(l), itAT (X)(g, k)(r)) : A

Table 6.7. Rules for binary labelled trees

The rules for natural numbers correspond to the ones of binary lists L(2) where

instead of one function cons : � ( 2 ( L(2) ( L(2) we have two functions

s0, s1 : � ( N ( N corresponding to cons(tt) and cons(ff). And similarly for the

elimination and computation rules.
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(N+
0 )

0 : N
(N+

1 )
s0, s1 : �( N( N

∅ ` a : A ∅ ` h0, h1 : �( A( A
(N−)

∅ ` itAN(a, h0, h1) : N( A

∅ ` a : A ∅ ` h0, h1 : �( A( A
(N=

0 )
∅ ` itAN(a, h0, h1)(0) = a : A

∅ ` a : A ∅ ` h0, h1 : �( A( A
(N=

1 )
∅ ` itAN(a, h0, h1)(si(d, n)) = hi(d, it

A
N(n)) : A

Table 6.8. Rules for the type of natural numbers

The rules for O are the same as the ones for N except for one extra piece of

structure, namely the supremum operation sup.

(O+
0 )

0 : O (O+
1 )

S0,S1 : �( O( O (O+
2 )

sup : �( (N( O)( O

∅ ` a : A ∅ ` h0, h1 : �( A( A ∅ ` σ : �( (N( A)( A
(O−)

∅ ` itAO(a, h0, h1, σ) : O( A

∅ ` a : A ∅ ` h0, h1 : �( A( A ∅ ` σ : �( (N( A)( A
(O=

0 )
∅ ` itAO(a, h0, h1, σ)(0) = a : A

∅ ` a : A ∅ ` h0, h1 : �( A( A ∅ ` σ : �( (N( A)( A
(O=

1 )
∅ ` itAO(a, h0, h1, σ)(Si(d, α)) = hi(d, it

A
O(α)) : A

∅ ` a : A ∅ ` h0, h1 : �( A( A ∅ ` σ : �( (N( A)( A
(O=

2 )
∅ ` itAO(a, h0, h1, σ)(sup(d, x)) = σ(d, itAO ◦ x) : A

Table 6.9. Rules for the type of ordinal notations
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6.2. Comparing systems

In this section we study the relation between three systems: Gödel’s system

T augmented with a type of ordinal notations, the type theory LFPL + O and its

variant (LFPL + O)succ. In the latter theory the types of natural numbers and

ordinals are defined with one successor instead of two, which corresponds to a

unary representation of natural numbers instead of a binary one.

We show that, as expected, adding the structural rule of contraction to LFPL+O
and (LFPL + O)succ makes these systems bi-interpretable with the system T + O.

However, the direct relationship between the two linear type theories is more com-

plex: (LFPL +O)succ is trivially interpretable in LFPL +O, but it doesn’t seem the

case for the converse. We leave this last question open.

Throughout this section we use the notation L(2) for the type of natural num-

bers of the system LFPL +O as defined in table 6.8, and we use L(1) for the type

of natural numbers of (LFPL +O)succ.

We abuse notation by denoting with the same symbol O the type of ordinal

notation in the three different systems. The rules for the type of ordinal notations

of (LFPL +O)succ are as follows:

0 : O S : �( O( O sup : �( (N( O)( O

∅ ` a : A ∅ ` h : �( A( A ∅ ` σ : �( (N( A)( A

∅ ` itAO(a, h, σ) : O( A

∅ ` a : A ∅ ` h : �( A( A ∅ ` σ : �( (N( A)( A

∅ ` itAO(a, h, σ)(0) = a : A

∅ ` a : A ∅ ` h : �( A( A ∅ ` σ : �( (N( A)( A

∅ ` itAO(a, h, σ)(S(d, α)) = h(d, itAO(α)) : A

∅ ` a : A ∅ ` h : �( A( A ∅ ` σ : �( (N( A)( A

∅ ` itAO(a, h, σ)(sup(d, x)) = σ(d, itAO ◦ x) : A

Table 6.10. Rules for the type of ordinal notations for (LFPL +O)succ



6.2. COMPARING SYSTEMS 119

We adapt to our context Feferman’s definition of proof-theoretical reducibility.

See [Fef88, Definition 2.1] for the details.

Definition 6.2.1. We say that a type theory T1 is interpretable in a type theory

T2 if and only if for each type and term of T1 we can associate a type and a term

of T2 such that the rules of T1 are admissible in T2 after having interpreted each

type and term.

For Gödel’s system T we consider a type of ordinal notations with the same

rules as the ones presented in table 6.9, but where the linear arrow ( has been

replaced by the standard intuitionistic one → and the resource type � has been

removed.

0 : O S : O → O sup : (N→ O)→ O

a : A h : A→ A σ : (N→ A)→ A

itAO(a, h, σ) : O → A

a : A h : A→ A σ : (N→ A)→ A

itAO(a, h, σ)(0) = a : A

a : A h : A→ A σ : (N→ A)→ A

itAO(a, h, σ)(S(α)) = h(itAO(α)) : A

a : A h : A→ A σ : (N→ A)→ A

itAO(a, h, σ)(sup(x)) = σ(itAO ◦ x) : A

Table 6.11. Rules for the type of ordinal notations for T +O

Let CON stand for the contraction rule.

Γ, x : A, x : A ` J
Γ, x : A ` J

Table 6.12. Contraction rule
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Before the main theorem that compares the systems we represent ordinal ad-

dition in the theory T +O.

Note that the set-theoretic semantics J·K of LFPL+O defined in appendix C also

gives a semantics for the systems T+O, LFPL+O+CON and (LFPL+O)succ+CON.

Lemma 6.2.2. In the theory T +O there is a term + : O → O → O representing

ordinal addition (for which we use the infix notation), i.e. such that given α, β : O
we have Jα+ βK = JβK + JαK.

Proof. Notice that we can lift the structure of successor and supremum from O to

the function type X := O → O by defining it point-wise. So that we have λx.x : X,

and S′ := λf.S ◦ f : X → X and sup′ := λu.λx.sup(λn.u(n)(x)) : (N→ X)→ X.

Ordinal sum is definable by the following application of the elimination rule:

λx.x : X S′ : X → X sup′ : (N→ X)→ X

+ : O → (O → O)

It is straightforward to check that the computation rules give the recursive

definition of ordinal sum. �

Theorem 6.2.3. The systems LFPL + O + CON and (LFPL + O)succ + CON are

both bi-interpretable with T +O.

Proof. Notice that we can interpret the resource type � as the unit type 1. The

contraction rule allows to ignore the restriction in the elimination and computation

rules that the contexts in the premisses has to be empty.

So our task is simply to check that Gödel’s T with L(2) and O defined with

two successors is bi-interpretable with T with L(1) and O with one successor.

We can interpret the rules for unary lists L(1) if we are given the ones for

binary lists L(2). Indeed, it is enough to encode a unary list representing n as the

binary list given by the concatenation of n zeros. The case of O is analogous.

Conversely, since the semantics of the two binary successors is Js0(x)K = 2JxK
and Js1(x)K = 2JxK + 1, is is enough to define the functions s0, s1 : L(1)→ L(1).

For the elimination and computation rules, observe that the semantics of itL(2)

is:

JitAL(2)(a, h0, h1)K(n) =


JaK if n = 0

Jh0K(JitAL(2)(a, h0, h1)K(x)) if n = 2x

Jh1K(JitAL(2)(a, h0, h1)K(x)) if n = 2x+ 1
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So that we need to type a function f : L(1)→ A such that JfK = JitAL(2)(a, h0, h1)K
and f satisfies the computation rules of itAL(2)(a, h0, h1). Such a function f can be

represented in Gödel’s system T using double recursion, which in turn can be

defined using the predecessor function and case distinctions.

The treatment of O reduces to the case of natural numbers after few simple

definitions, as we see now. In Lemma 6.2.2, we have established that ordinal

addition is representable in the system T +O.

We can then define two functions L : O → O and N : O → L(1) that given

α respectively return the greatest limit ordinal smaller or equal than α and the

difference between the two, which is a natural number. These functions are easily

defined by recursion as: L(0) = 0, L(S(α)) = L(α) and L(sup(f)) = sup(f). The

definition of the other function is as follows: N(0) = 0, N(S(α)) = s(N(α)) and

N(sup(f)) = 0.

Using the functions L and N we can extend the definitions of predecessor, case

distinction and the double recursion to O in order to interpret the elimination

rule with two successors in the theory where O is defined with one successor.

For example the binary predecessor of an ordinal can be defined as PO(α) :=

L(α) +P (N(α)) where P is the usual binary predecessor for natural numbers. �

As we can see from the first lines of the proof of Theorem 6.2.3, (LFPL +

O)succ is trivially interpretable in LFPL + O. The approach used for the converse

interpretation in the proof of Theorem 6.2.3 does not work in this case. Indeed,

we would need to type the binary successor function S0 : � ( L(1) ( L(1), but

one term d : � is not enough since lg(2x) = 2 · lg(x) where lg is the unary length,

opposed to the situation with binary lengths |2x| = |x|+ 1.

At present we cannot prove that there is no interpretation of LFPL + O into

(LFPL + O)succ but it seems likely that linearity together with the resource type

prevents any such interpretation if the type of natural numbers in one system is

interpreted as the type of natural numbers in the other.

6.3. Definable ordinals

In Theorem 6.3.7 we show that for any ordinal α < ωω there is a term tα of O
which has free variables (if any) of type �, such that JtαK = α. Thus we disprove

Hofmann’s conjecture.

The set-theoretic semantics J·K is defined in appendix C. Our methodology

follows in the context of linear type theory the one of [CHS] for Gödel’s system T.
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We present a sequence of lemmas that show how to represent the ordinals: k,

ω, ω · k, ω2, ωk, for k ∈ N a natural number given externally. Along the way we

construct the operation of ordinal addition for terms of type O.

The question if the upper bound ωω is sharp is left open. Theorem 6.3.8 gives a

conditional result for the definability of ωω assuming the typability of the function

that performs the ordinal multiplication of an ordinal with a natural number.

For the rest of this section we work in LFPL +O. We use the notation Ak for

the tensor product of A iterated k times A⊗ · · · ⊗A.

Lemma 6.3.1.

(i) For any natural number n ∈ N with binary expansion i1 . . . ik there is a

term of the form tn := λd1, . . . , dk.Si1(d1,Si2(d2, . . .Sik(dk, 0))) : �k ( O
that represents that number, i.e. JtnK = n.

(ii) There is a term tω representing ω, i.e. such that JtωK = ω. It is given by

tω = λd.sup(d, itON (0, S0,S1)) : �( O.

Proof. The claim for natural numbers is obvious.

We represent ω as the supremum of the function itON (0,S0, S1) : N ( O that

sends each natural number to itself, just seen as an ordinal. We obtain this function

applying the elimination rule for N:

∅ ` 0 : O ∅ ` S0,S1 : �( O( O
∅ ` itON (0, S0, S1) : N( O

So that taking the supremum and λ-abstracting on d gives the desired term tω :=

λd.sup(d, itON (0,S0, S1)) : �( O. Therefore we have:

JtωK = Jsup(d, itON (0, S0,S1))K

= supn(f),

where f : N→ JOK is given by n 7→ n. �

Lemma 6.3.2. For all k ∈ N, given externally, we can construct a term tω·k of

type �k ( O such that Jtω·kK = ω · k.

Proof. By induction on k in the meta-theory. We have just shown the case k = 1 in

Lemma 6.3.1. For k > 1, suppose we have a term tω·k : �k ( O with Jtω·kK = ω · k,

we want to construct tω·(k+1).

Notice that we have a function Ŝ0 : � ( (�k ( O) ( (�k ( O) induced by S0.

For d : �, α : �k ( O and D : �k we define Ŝ0 := λd.λα.λD.S0(d, α(D)). Notice

that we can discard d since we have allowed the rule of weakening in the theory.

Similarly for Ŝ1.
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We construct a function by induction as in Lemma 6.3.1 but rather than starting

from 0 we start from tω·k.

∅ ` tω·k : �k ( O ∅ ` Ŝ0, Ŝ1 : �( (�k ( O)( (�k ( O)

∅ ` it�
k(O

N (tω·k, Ŝ0, Ŝ1) : N( (�k ( O)

Then we rearrange the types N and �k of the function just defined by recursion

F := λd1, . . . dk.λn.it
�k(O
N (tω·k, Ŝ0, Ŝ1)(n, d1, . . . , dk) : �k ( (N ( O). And we

take the supremum obtaining the desired term:

tω·(k+1) := λd1, . . . , dk+1.sup(dk+1, F (d1, . . . , dk)).

The semantics of the term is Jtω·(k+1)K = supn(ω · k + n) = ω · (k + 1). �

Before we move on to the construction of the term representing ω2 we first

construct the function representing ordinal addition of an ordinal and a natural

number.

Lemma 6.3.3. There is a function + : N( O( O representing ordinal addition

of an ordinal and a natural number (for which we use the infix notation), i.e. given

n : N and α : O it satisfies Jn+ αK = JαK + JnK.

Proof. For i = 0, 1 we define the functions that are used in the iteration:

hi := λdλFλx.Si(d, F (x)) : �( (O( O)( (O( O).

We obtain + as the term in the conclusion of this application of the elimination

rule for N:

∅ ` λx.x : O( O ∅ ` h0, h1 : �( (O( O)( (O( O)

∅ ` itO(ON (λx.x, h0, h1) : N( (O( O)

Given n : N and α : O it is straightforward to prove by induction on JnK ∈ N that

the term + represents ordinal addition, i.e. Jn+ αK = JαK + JnK. �

Lemma 6.3.4. There is a term tω2 : �( O such that Jtω2K = ω2.

Proof. The idea is to define the fundamental sequence {ω · |n|}n for ω2, where |n|
is the binary length of n. We begin by defining H : N ( O by recursion on N as

follows:

∅ ` 0 : O ∅ ` λdλx.sup(d, λm.x+m) : �( O( O
∅ ` H := itON (0, λd.λx.sup(d, λm.x+m)) : N( O

By construction we have that H(0) = 0 and H(Si(d, n)) = sup(d, λm.H(n)+m),

therefore its interpretation is JH(Si(d, n))K = supm(JH(n)K +m) = JH(n)K + ω. A

straightforward induction on k ∈ N then gives JHK(k) = ω · |k|.
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Finally, tω2 = λd.sup(d,H) : �( O, which is interpreted as Jtω2K = supk(JHK(k)) =

supk(ω · |k|) = ω2. �

Now we represent the operation of ordinal addition between two arbitrary or-

dinals in O. We shall abuse notation by denoting both terms by +.

Lemma 6.3.5. There is a term + : O ( O ( O representing ordinal addition

(for which we use the infix notation), i.e. such that given α, β : O we have Jα+βK =

JβK + JαK.

Proof. Let X = O( O. We define + via one application of the elimination rule

for O.

Given i = 0, 1, consider the following terms:

S′i := λd�λFXλxO.Si(d, F (x)) : �( X ( X,

and

sup′ := λd�λuN(XλxO.sup(d, λn.u(n)(x)) : �( (N( X)( X.

Then we can apply the elimination rule for O over the structure (X,S′i, sup′):

∅ ` λx.x : X ∅ ` S′i : �( X ( X ∅ ` sup′ : �( (N( X)( X

∅ ` itXO (λx.x, S′i, sup′) : O( X

The computation rules give 0 + α = α, and Si(d, β) + α = Si(d, β + α), and

sup(d, u) + α = sup(d, λn.u(n) + α), which correspond under J·K to the definition

of ordinal sum by transfinite recursion, so the claim follows. �

Finally we prove that all ordinals ωk for k ∈ N are definable.

Lemma 6.3.6. For any integer k ≥ 2 there is a function Hk : N( O and a term

tωk = λd.sup(d,Hk) : �( O such that JHkK(n) = ωk−1 · |n|, hence JtωkK = ωk.

Proof. We prove the claim by induction on k (externally). The base case k = 2 has

been proven in Lemma 6.3.4. Inductive step: suppose we have already constructed

tωk by means of Hk(n), we shall construct a function Hk+1 such that JHk+1K(n) =

ωk · |n| then tωk+1 is its supremum.

So we appropriately apply the elimination rule for N:

∅ ` 0 : N ∅ ` λd.λx.sup(d, λm.x+Hk(m)) : �( O( O
∅ ` itON (0, λd.λx.sup(d, λm.x+Hk(m))) : N( O

then we can define our term tωk+1 := λd.sup(d,Hk+1).
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The computation rules for Hk+1 give Hk+1(0) = 0 and for the successors

Hk+1(Si(d, n)) = sup(d, λm.Hk+1(n) + Hk(m)). Therefore its interpretation sat-

isfies:

JHk+1(Si(d, n))K = supm(JHk+1(n)K + ωk−1 · |m|) = JHk+1(n)K + ωk

therefore JHk+1K(m) = ωk · |m|, which in turn gives that the interpretation of tωk+1

is:

Jtωk+1K = supm(JHk+1K(m)) = supm(ωk · |m|) = ωk+1

�

The following theorem summarises the lemmas of this section and disproves

Hofmann’s conjecture that the supremum of the definable ordinals of LFPL +O is

ω2.

Theorem 6.3.7. For every ordinal α < ωω there is a natural number n ∈ N and

a term tα : �n( O such that JtαK = α.

We are left with the open question if the lower bound ωω is sharp.

Let us consider possible definitions of ωω in LFPL + O. It can be seen easily

that a general definition of exponentiation of ordinals, e.g. as it is done in [Sim00,

Definition 9.22] violates linearity. However, different constructions may a priori

work. For example one can try to define a function K : N( O such that JKK(n) =

ω|n|. The best we can offer in this direction is the following conditional result.

Theorem 6.3.8. Let (an) be a diverging sequence of natural numbers. If there is

a typable function µ : N ( O ( O such that given n ∈ N and α ∈ JOK we have

JµK(n, α) = α · an. Then there is a term tωω : �2 ( O representing ωω.

Proof. We want to represent the function N→ JOK given by n 7→ ω|n|, the idea is

to iterate the operation supm(α · am) on the length of n starting from the base 1

which is represented as λd.S1(d, 0) : �( O.

Consider the following term:

Ŝ := λd�0λα
�(Oλd�1.sup(d0, λn.µ(α(d1), n)).

We can apply the elimination rule for N over the structure �( O, with successor

operator Ŝ:

∅ ` λd.S1(d, 0) : �( O ∅ ` Ŝ : �( (�( O)( (�( O)

∅ ` it�(ON (λd.S1(d, 0), Ŝ) : N( (�( O)
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Then we rearrange the types N and � of the function just defined by recursion to

get the function K:

K := λd0.λn.it
�(O
N (λd1.S1(d1, 0), Ŝ)(n, d) : �( (N( O).

Then the desired term is constructed by taking the supremum and then a λ-

abstraction on the tokens utilised, i.e. tωω := λd1, d2.sup(d2,K(d1)) : �2 ( O.

Now we prove that tωω represents ωω. By construction JtωωK = supn(JKK(n)).

The only thing to prove is that JKK(n) = ω|n|.

We claim that JKK(n) = ω|n|, which we prove by induction on the binary length

of n. The base case is JKK(0) = Jλd.S1(d, 0)K = 1. Inductive step: we write ni

for the number given by writing n in binary notation and adding i ∈ {0, 1} at the

right of the binary representation. If JKK(n) = ω|n| then:

JKK(ni) = supm(JµK(JKK(n), am)) by definition of K

= supm(ω|n| · am) by inductive hypothesis

= ω|n|+1.

�

To investigate if the function µ : N( O( O of Theorem 6.3.8 is representable,

a strategy may be to generalise to the context of ordinals what is done to represent

the multiplication function on naturals. However, the usual recursive definition of

multiplication cannot be reproduced since it involves the duplication of a variable

in the recursive step. A general result of [Hof02] guarantees that every polytime

non-size-increasing function is representable in the system, so is the multiplication

function.

We do not pursue this question here, leaving it for future investigations.

6.4. Conclusions

We conclude this chapter by discussing the problems left open and some ap-

proaches for solving them. We leave open the problem of characterising the defin-

able function in LFPL+O, for which we consider the possibility to try to generalise

the results of [Hof03] and [AS02] on the definable functions of LFPL.

The other main question left open is to prove sharp upper bounds for the

definable ordinals. In this section we discuss approaches based on:

(i) formalising a realizability model in a weak theory of arithmetic;

(ii) using a hierarchy of functions like Hardy’s hierarchy;

(iii) adapting the ordinal analysis of Gödel’s T to the case of LFPL +O.
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For all of these strategies we highlight the issues we encountered when trying to

implement them.

At the moment we cannot settle the question of whether adding the type of

ordinals O increases the computational power to the theory, i.e. if it is possible

to represent functions that are not computable in polynomial time. By definable

function we always mean a closed term of type N( N.

Giving a negative answer to this question would properly justify the name ‘feasible

ordinals’. A characterisation of the definable functions could also help to determine

an upper bound for the definable ordinals of the theory.

A possible approach for this question is to try to extend the proof of [Hof03,

Theorem 5.3], in which the characterisation of the definable functions is obtained

via a resource sensitive realizability model. The key case is the construction of the

realizer for the term itO of the elimination rule of O.

However, the construction of such realizer does not seem straightforward when

it comes to the case of limit ordinals sup(d, f). In that case one knows by inductive

hypothesis that all computations f(n) for n : N terminate in polynomial time, but

one needs to find a uniform bound for the family of polynomials in order to extract

the desired realizer.

Another possibility consists in taking the syntactic point of view of Aehlig and

Schwichtenberg [AS02] and trying to extend their result from LFPL to LFPL +O.

They associate a polynomial θ(t)(x) to any term t. Then for each term t one

considers the natural number N(t) := θ(t)(|FV (t)|) + |t|, where |t| is the syntactic

length of t, and FV (t) the set of its free variables.

Their main result is [AS02, Theorem 4.8], which states that if t reduces to t′

then N(t) > N(t′). Therefore each term normalises in a finite number of steps

bounded by N(t) and applying this result to an application f(n) : N for a natural

number n : N and f : N ( N provides a proof that the definable functions are

polytime (non-size-increasing) functions.

Again, we have a problem in giving the right definition of bounding polynomial

θ(sup(d, f)) for a limit ordinal. Indeed, in this case the problem boils down to

finding a definition for θ(sup(d, f)) which is bigger than θ((fn)) for all n : N.

Regarding the problem of proving upper bounds for the definable ordinals, we

have explored the strategy of formalising Hofmann’s realisability model of [Hof03]

in a weak theory of arithmetic, hoping to extract information on the strength of the
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theory. For such a strategy one would also needs to solve the problem of extending

the realizability model to the case of O.

The basic type-theoretic structure used to interpret LFPL, with the exception

of the elimination rules for inductive types, can be easily formalised in Elementary

Arithmetic. See [SW11, chapter 3] for the definition of the theory, where it is called

I∆0(exp).

However, when it comes to interpret the elimination rules for inductive types,

the proof of [Hof03, Theorem 5.3] proceeds by induction on formulas of arbitrary

logical complexity. Therefore it cannot be formalised in Elementary Arithmetic,

but only in PA, which does not give new information on the strength of LFPL.

Indeed, we formalise the function type in arithmetic as the formula JA( BKAr(x)

defined as:

∀n ∃m JAKAr(n) ∧ JBKAr(m) ∧ φx(n) = m,

where φx is the x-th recursive function, and J·KAr the interpretation of types as for-

mulas of arithmetic. Hence, the formulas formalising the interpretation of iterated

function types have arbitrary logical complexity.

The second approach consists in trying to characterise the definable functions

first and then study how the types O and N ( N interact. The simplest way to

study their interaction is to look at the type O( (N( N) which can be seen as

a type of ‘hierarchies of functions’ indexed by the ordinal notations in O.

The hope would be to type in O( (N( N) an appropriate hierarchy of functions

like the slow growing hierarchy or the Hardy hierarchy. Then one could use it to

prove that if a certain ordinal is definable then one can type in N( N a function

that grows too fast to be polytime computable.

There are some issues related to this approach in addition to the obvious one

to characterise the definable functions in the first place. The definitions of the

slow growing and Hardy hierarchies for limit ordinals are done by diagonalisation,

e.g. for the latter one:

Hα(n) =


n if α = 0

Hβ(n+ 1) if α = β + 1

Hλn(n) if α = supn(λn)

Defining H using this scheme is not possible in LFPL+O because of the duplication

of the variable n in the limit step.

In the third approach one tries to generalise the characterisation of ordinals

definable in Gödel’s T to the case of LFPL +O.
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In the ordinal analysis of Gödel’s T one proves that ε0 is an upper bound for the

definable ordinals of T. It has been carried out by various authors, e.g. [How70],

[Tai65], [Vod97], [Wei98]. The neater and conceptually clearer in our opinion is

Martin-Löf’s paper [ML72].

The idea in [ML72] is to embed T in an infinitary system T∞ where it is possible

to unwind terms defined by primitive recursion and give an ordinal analysis of the

normalisation process from which the upper bound follows. The system T∞ is given

by some unspecified base types among which there is a type for natural numbers N

with no elimination nor computation rules and two type constructors: → the usual

function type constructor and Πn a type corresponding to an infinitary conjunction.

One can represent ordinals in T even without a specific type of ordinal notations,

using what are sometimes called Church’s ordinals (see [Sim00, chapter 9]): given

any type α ordinals can be represented as functions that map ‘ordinal notation

structures on A’ to terms of A.

So, given any type A we form the type:

O(A) := [A→ (A→ A)→ ((N → A)→ A)]→ A,

in which we can type ordinals less than ε0.

However, note that the same strategy of interpreting the system in an infintary

one cannot work for linear type theories in the same way as the usual one does.

Indeed, we would type the number 2 in O(A) as λx, s, l.s(s(x)) which is not an

affine λ-term. So we would need a proper type of ordinal notations O rather than

the relativised version O(A). Then we would need to interpret LFPL + O into an

appropriate infinitary system, and it is not obvious how one would interpret the

elimination rule for O without having already characterised the definable ordinals.

Remark 6.4.1. An obvious consequence of the ordinal analysis of Gödel’s T is

that ε0 is also an upper bound for the definable ordinals of LFPL + O since the

latter can be easily interpreted in the former.

In conclusion, we disproved Hofmann’s conjecture, showing that ω2 can be

reached by the rather slow fundamental sequence {ω · |n|}n in Lemma 6.3.4, and

similarly we showed in Lemma 6.3.6 that for any given k ∈ N the ordinal ωk ca be

defined. We have also determined a sufficient condition for carrying on the same

idea to ωω in Theorem 6.3.8.
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The question of what is the sharp upper bound for the definable ordinals is still

open. At this point our opinion is that the upper bound is either ωω or ε0.

If there is a way to code an ordinal multiplication function µ(α, n) = α · n as

in Theorem 6.3.8 using a construction analogous to the one detailed in [Hof02] for

ordinary multiplication, then ωω would be definable. In such a situation we expect

all finite towers of powers of ω to be definable in a similar way.

If it is not possible to construct µ and ωω is indeed the supremum of the

definable ordinals, this may be proved by using the ideas exposed in this section.



CHAPTER 7

Future research

Some questions are still left open and may be object of future work. In

chapter 1, Theorem 1.3.14 leaves open the question if stronger set-theoretic ax-

ioms can be validated in the interpretations J·Kk,h, possibly using stronger type

theories. Moreover, in the interpretations J·Kk,h of chapter 1 we used closure prop-

erties of k-types to prove that they can validate set-theoretic axioms. One may

try to show that this proof works for any locally cartesian closed category of types

containing N, 0, 1 and 2. We expect this to be the easiest among the questions left

open for future research.

Recall that Whitehead’s principle asserts that if a continuous map between

CW -complexes f : X → Y induces an isomorphism on all homotopy groups, then

it is an equivalence. The translation of this principle in homotopy type theory

is not provable. One may then introduce in homotopy type theory a notion of

∞-truncation that given a type X returns a type ‖X‖∞ for which Whitehead’s

principle holds. Then, this notion of truncation may be used to construct variants

of the interpretations J·Kk,h1.

For chapter 2, note that Theorem 2.5.1 uses the fact that the type theory Hk

can be interpreted into the extensional theory MLe
1V∞. This interpretation cannot

take place for a type theory with the univalence axiom, hence a possibility to extend

Theorem 2.5.1 to homotopy type theory is to try to construct the groupoid model

internally in the theory of classes of CZF + ΠΣ-AC so that one can reconstruct the

proof of Rathjen and Tupailo in this context.

Regarding chapter 3, one may want to look at the type VkG := (Σx : Vk)itset(x)

for the interpretation of sets as a hybrid version between Gylterud’s type VG and

our Vk.

Chapter 6 leaves open a number of questions. Primarily, the characterisation

of the definable functions of type N ( N in the system LFPL + O. Proving that

the definable functions are polytime is needed in order to properly justify the claim

that this is the study of feasible ordinals.

Then, some investigation is required to see if techniques of encoding similar to the

ones of [Hof02] can be used to define ordinal multiplication between an ordinal and

1We thank Nicolai Kraus for suggesting this question.
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a natural number. This would allow one to define the ordinal ωω in LFPL +O, as

detailed in Theorem 6.3.8. If that is not the case we believe it is likely that the

upper bound for the definable ordinals of LFPL +O is ωω. Then one may try use

the observations laid out in Section 6.4 to prove an upper bound for the definable

ordinals.



Appendix

A. Constructive set theories

Here we introduce BCS, recall the axioms of CST and CZF and some basic

properties of CZF. All the set theories we consider in this thesis are constructive

theories, meaning that the underlying logic is intuitionistic. We use the symbol
.
=

for set-theoretic equality.

Axioms of BCS. We call basic constructive set theory, BCS for short, the the-

ory given by the following axioms: Extensionality, ∈-Induction, Pairing, Union,

Bounded Separation and Infinity.

Extensionality:

∀α ∀β [∀x (x ∈ α⇔ x ∈ β)⇒ (α
.
= β)]

Set-Induction, or ∈-Induction:

∀α [(∀x ∈ α)φ(x)⇒ φ(α)]⇒ ∀xφ(x)

Pairing:

∀α ∀β ∃z (α ∈ z ∧ β ∈ z)

Union:

∀α ∃z (∀x ∈ α)(∀y ∈ x)(y ∈ z)

Bounded Separation:

∀α ∃γ[(∀x ∈ γ)(x ∈ α ∧ φ(x)) ∧ (∀x ∈ α)(φ(x)⇒ x ∈ γ)]

for all bounded formulas φ(x), in which y is not free in φ(x). Recall that a

bounded formula is one such that all quantifiers are bounded, i.e. (∀x ∈ α)φ(x)

and (∃x ∈ α)φ(x).

Infinity:

∃z[(∃x ∈ z)Zero(x)∧(∀y ∈ z)(∃x ∈ z)Succ(y, x)∧(∀x ∈ z)(Zero(x)∨(∃y ∈ x)Succ(y, x))]

133



134 APPENDIX

where the expression Zero(x) is the formula (∀y ∈ x)⊥, and the expression

Succ(α, β) is the following formula:

(∀x ∈ α)(x ∈ β) ∧ (α ∈ β) ∧ (∀x ∈ β)(x ∈ α ∨ x .
= α).

Axioms of CST. Myhill’s CST consists of the axioms of BCS plus Exponenti-

ation and Replacement. The Exponentiation axiom guarantees that we can form

the set of functions between two given sets.

Replacement:

(∀x ∈ α)∃!y φ(x, y)⇒ ∃z(∀x ∈ α)(∃y ∈ z)φ(x, y)

for all formulas φ(x, y) in which z is not free in φ(x, y).

Exponentiation:

∀α, β ∃γ[∀f(α
f→ β)⇒ f ∈ γ],

where the expression (α
f→ β) is a shorthand for the formula stating that f is

a set-theoretic function, i.e. a set of pairs satisfying a functional relation:

(∀x ∈ α)(∃!y ∈ β) 〈x, y〉 ∈ f ∧ (∀z ∈ f)(∃x ∈ α)(∃y ∈ β) z
.
= 〈x, y〉.

Axioms of CZF. Aczel’s CZF consists of the axioms of BCS plus Strong Col-

lection and Subset Collection. Strong Collection strengthens Replacement since

it has a weaker premiss and a stronger conclusion. The Subset Collection axiom

strictly implies the Exponentiation axiom and is strictly implied by the Power Set

axiom.

We use the notation ∀∃x∈αy∈βφ(x, y) to abbreviate the following formula:

(∀x ∈ α)(∃y ∈ β)φ(x, y) ∧ (∀y ∈ β)(∃x ∈ α)φ(x, y).

Strong Collection:

(∀x ∈ α)∃yφ(x, y)⇒ ∃z
(
∀∃x ∈ α

y ∈ z
φ(x, y)

)
for all formulas φ(x, y) in which z is not free in φ(x, y).

Subset Collection:

∃γ∀u
[
(∀x ∈ α)(∃y ∈ β)φ(x, y, u)⇒ (∃z ∈ γ)

(
∀∃x ∈ α

y ∈ z
φ(x, y, u)

)]
.

Note that the universal quantification over u ensures that the construction of

the set γ is uniform with respect to the variable u appearing in φ. This is a technical

condition that is used for example in Theorem A.2 to show that Subset Collection

implies Exponentiation.

The Fullness axiom. The formulation of the Subset Collection axiom may

obscure its content, for this reason we recall that Subset Collection is equivalent
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to the Fullness axiom. The following definition gives some notions used in the

formulation of the Fullness axiom.

Definition A.1.

(a) We denote by mv(βα) the class of total relations (i.e. multi-valued func-

tions) from α to β. Formally:

mv(βα) := {R ⊆ α× β | ∀x ∈ α ∃y ∈ β 〈x, y〉 ∈ R};

(b) given sets α and β, and a set γ ⊆ mv(βα) we say that γ is full in α and

β if and only if every total relation from α to β has an approximation in

γ, i.e. ∀R ∈ mv(βα) ∃S ∈ γ : S ⊆ R.

Note that neither CZF nor CST prove that mv(βα) is a set [AR10, Proposi-

tion 5.1.6(ii)].

Fullness:

∀α ∀β∃z[z is full in α and β]

The Fullness axiom is related to the Subset Collection and the Exponentiation

axioms as follows.

Theorem A.2 (Aczel). Consider a basic constructive set theory consisting of the

following axioms: Extensionality, Pairing, Union, Replacement, and Bounded Sep-

aration. In such a theory one can prove that Subset Collection implies Fullness and

Fullness in turn implies Exponentiation.

Proof. See [AR10, Theorem 5.1.2] for the details, here we provide a sketch of the

proof. For the first implication the idea is that given sets α, β, to find a set γ full in

α and β one can consider the formula φ(x, y, u) given by y ∈ u∧(∃z ∈ β)(y
.
= 〈x, z〉),

and apply Subset Collection. The implication from Fullness to Exponentiation is

straightforward. �

Remark A.3.

(i) In a base theory consisting of Extensionality, Pairing, Union, Replacement,

Bounded Separation and Strong Collection, we have that the Fullness

axiom implies the Subset Collection axiom. See [AR10, Theorem 5.1.2(ii)].

(ii) Fullness does not imply Power Set, see [AR10, Proposition 5.1.6].

(iii) Exponentiation does not imply Fullness, see [Lub05].
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B. Type-theoretic rules

Martin-Löf type theory. Here we recall the rules of Martin-Löf type theory,

this is the theory that we referred as ML1W in the thesis. The rules for ML1W can

be found in [ML84], with the exception of the ones for intensional identity types

Id.

In order to simplify the presentation of the rules we omit mention of a context

that is common to both the premisses and the conclusion.

We assume the propositional η-rule for Π-types, i.e. a term inhabiting the type:

(B.1) Id(Πx:A)B(x)(f, λx.fx).

We start with the presentation of the structural rules and the rules governing

definitional equality.

A : type
Variable declaration

x : A ` x : A

x : A,∆ ` J a : A
Substitution

∆[a/x] ` J [a/x]

Γ,∆ ` J A : type
Weakening

Γ, x : A,∆ ` J
Γ, x : A, x : A,∆ ` J

Contraction
Γ, x : A,∆ ` J

Γ, x : A, y : B,∆ ` J
Exchange

Γ, y : B, x : A,∆ ` J

Table A1. Structural rules

A : type

A = A : type

A1 = A2 : type

A2 = A1 : type

A1 = A2 : type A2 = A3 : type

A1 = A3 : type

a : A
a = a : A

a1 = a2 : A
a2 = a1 : A

a1 = a2 : A a2 = a3 : A
a1 = a3 : A

a : A1 A1 = A2

a : A2

a1 = a2 : A1 A1 = A2

a1 = a2 : A2

Table A2. Rules for the definitional equality
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x : A,∆ ` C(x) : type a1 = a2 : A

∆[a1/x] ` C[a1/x] = C[a2/x] : type

x : A,∆ ` c(x) : C(x) a1 = a2 : A

∆[a1/x] ` c[a1/x] = c[a2/x] : C[a1/x]

x : A ` B1(x) = B2(x) : type

(∇x : A)B1(x) = (∇x : A)B2(x) : type

x : A ` b1(x) = b2(x) : B(x)

λx.b1(x) = λx.b2(x) : (Πx : A)B(x) . . .

Table A3. Congruence and conversion rules

In the rule of table A3 the symbol ∇ stands for any type constructor: Π,Σ,W .

There are also analogous congruence and conversion rules for the identity types

and for all canonical terms. We omit them for brevity.

Here we present the rules for the base types: 0, 1, 2 and N.

0 : type

c : 0 C : type

R0(c) : C

Table A4. Rules for 0

1 : type 0 : 1

c : 1 c0 : C(0)

R1(c, c0) : C(c)

c : 1 c0 : C(0)

R1(0, c0) = c0 : C(0)

Table A5. Rules for 1
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2 : type 0, 1 : 2

c : 2 c0 : C(0) c1 : C(1)

R2(c, c0, c1) : C(c)

c : 2 c0 : C(0) c1 : C(1)

R2(i, c0, c1) = ci : C(0) for i = 0, 1

Table A6. Rules for 2

N : type 0 : N
n : N

s(n) : N

d : C(0) x : N, y : C(x) ` e(x, y) : C(s(x)) c : N

RN(c, d, e(x, y)) : C(c)

d : C(0) x : N, y : C(x) ` e(x, y) : C(s(x))

RN(0, d, e(x, y)) = d : C(0)

a : N d : C(0) x : N, y : C(x) ` e(x, y) : C(s(x))

RN(s(a), d, e(x, y)) = e(a,RN(a, d, e(x, y))) : C(s(a))

Table A7. Rules for natural numbers N

Here we present the rules for the type constructors: Π,Σ,+,W , and Id.

A : type x : A ` B(x) : type

(Πx : A)B(x) : type

x : A ` b(x) : B(x)

λx.b(x) : (Πx : A)B(x)

a : A c : (Πx : A)B(x)

c(a) : B(a)

a : A x : A ` b(x) : B(x)

(λx.b(x))(a) = b[a/x] : B(a)

Table A8. Rules for Π-types
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The function type constructor A→ B is obtained as the non dependent version

of Π, i.e. for a constant family of types x : A ` B : type.

Note that we abuse notation for the application of a type-theoretic function, so

that we write c(a), rather than ap(c, a). We do so in order to simplify the notation.

A : type x : A ` B(x) : type

(Σx : A)B(x) : type

a : A b : B(a)

(a, b) : (Σx : A)B(x)

x : A, y : B(x) ` d(x, y) : C((x, y)) c : (Σx : A)B(x)

E(c, d(x, y)) : C(c)

a : A b : B(a) x : A, y : B(x) ` d(x, y) : C((x, y))

E((a, b), d(x, y)) = d(a, b) : C(c)

Table A9. Rules for Σ-types

The cartesian product constructor A × B is obtained as the non dependent

version of Σ, i.e. for a constant family of types x : A ` B : type.

From the rules for Σ-types one can obtain the ones for projections as derived

rules. For t : (Σx : A)B(x) we use the notation t.1 : A and t.2 : B(t.1) for the

projections.

A : type B : type

A+B : type
a : A

i(a) : A+B
b : B

j(b) : A+B

x : A ` d(x) : C(i(x)) y : B ` e(y) : C(j(y)) c : A+B

D(c, d(x), e(y)) : C(c)

a : A x : A ` d(x) : C(i(x)) y : B ` e(y) : C(j(y))

D(i(a), d(x), e(y)) = d(a) : C(c)

b : B x : A ` d(x) : C(i(x)) y : B ` e(y) : C(j(y))

D(j(b), d(x), e(y)) = e(b) : C(c)

Table A10. Rules for +-types
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A : type x : A ` B(x) : type

(Wx : A)B(x) : type

a : A b : B(a)→ (Wx : A)B(x)

sup(a, b) : (Wx : A)B(x)

c : (Wx : A)B(x)

x : A, y : B(x)→ (Wx : A)B(x), z : (Πv : B(x))C(y(v)) ` d : C(sup(x, y))

RW (c, d(x, y, z)) : C(c)

a : A b : B(a)→ (Wx : A)B(x)

x : A, y : B(x)→ (Wx : A)B(x), z : (Πv : B(x))C(y(v)) ` d : C(sup(x, y))

RW (sup(a, b), d(x, y, z)) = d(a, b, λv.RW (b(v), d(x, y, z))) : C(sup(a, b))

Table A11. Rules for W -types

A : type a, b : A

IdA(a, b) : type

A : type a : A

refla : IdA(a, a)

x, y : A, u : IdA(x, y) ` C(x, y, u) : type z : A ` d(z) : C(z, z, reflz)

Jz,d(x, y, u) : C(x, y, u)

x, y : A, u : IdA(x, y) ` C(x, y, u) : type z : A ` d(z) : C(z, z, reflz)

Jz,d(x, x, reflx) = d(x) : C(x, x, reflx)

Table A12. Rules for Id-types

U : type
a : U

T(a) : type

a : U x : T(a) ` b(x) : U

π(a, b(x)) : U

a : U x : T(a) ` b(x) : U

T(π(a, b(x))) = (Πx : T(a))T(b(x))

n : U T(n) = N . . .

Table A13. Rules for the universe U
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Table A13 gives only the rules for Π-types and natural numbers in the uni-

verse. There are similar rules for all other base types and constructors of the

theory. We omit them for brevity. In our notation the base types and type con-

structors 0, 1, 2,N,Π,→,Σ,×,+,W, IdA are represented in the universe using the

corresponding terms and term constructors: 0, 1, 2, n, π, exp, σ, times, plus,w, ia.

Logic-enriched type theories. The rules of a logic-enriched type theory con-

sist in rules for its pure type-theoretic part, plus logical rules for formulas. We refer

to IL1 as the rules for intuitionistic predicate logic plus a type of small propositions

P. The rules for intuitionistic logic are the usual natural deduction rules in sequent

calculus style. We give the rules for the quantifiers as an illustration.

Recall that in the context of logic-enriched type theories we use the notation

⇒ for the structural symbol in a logical context φ1, . . . , φn ⇒ φ, and we use the

symbol ⊃ for material implication.

A : type x : A ` φ(x) : prop

(∀x : A)φ(x) : prop

x : A ` φ(x)

(∀x : A)φ(x)

(∀x : A)φ(x) t : A

φ(t)

Table A14. Rules for the universal quantifier

A : type x : A ` φ(x) : prop

(∃x : A)φ(x) : prop

x : A ` φ(x) : prop a : A φ[a/x]

(∃x : A)φ(x)

(∃x : A)φ(x) ψ : prop x : A ` φ(x)⇒ ψ

ψ

Table A15. Rules for the existential quantifier
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Next we recall the rules for the type of small propositions P. Note that rather

than a definitional equality, the computation rules for propositions ask for a logical

equivalence ≡.

P : type

p : P

τ(p) : prop

p1 : P p2 : P

p1 ∧ p2 : P

p1 : P p2 : P

τ(p1 ∧ p2) ≡ τ(p1) ∧ τ(p2)

a : U x : T(a) ` p(x) : P

(∀x : a)p(x) : P

a : U x : T(a) ` p(x) : P

τ((∀x : a)p(x)) ≡ (∀x : T(a))τ(p(x))

. . .

Table A16. Rules for the type of small propositions P

Following [GA06], in the logic-enriched type theories we consider any inductive

type C is endowed with its induction rule INDC .

z : C ` φ(z) : prop e : C IndC
φ[e/z]

Table A17. Induction rule for inductive types INDC

Here IndC is the induction premiss, as given in the following table.
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C IndC

0

1 φ(0)

2 φ(0) φ(1)

N φ(0) x : N ` φ(x)⇒ φ(s(x))

(Σx : A)B(x) x : A, y : B ` φ((x, y))

A+B x : A ` φ(i(x)) y : B ` φ(j(y))

(Wx : A)B(x) x : A, u : B → C ` (∀y : B)φ(u(y))⇒ φ(sup(x, u))

‖A‖ x : A ` φ(|x|)

The induction rule for identity types INDId is slightly more complex.

x, y : A, p : IdA(x, y) ` φ(x, y, p) : prop e : IdA(a, b) z : A ` φ(z, z, reflz)

φ[a, b, e/x, y, p]

Table A18. Induction rule for identity types INDId

C. Set-theoretic semantics of LFPL +O

Here we recall from [Hof03, Section 2.1] a set-theoretic semantics for terms and

types of LFPL and we extend it to LFPL+O, giving the definition in full details. We

work informally in Kripke-Platek set theory (KPω, [Poh09, Section 11.4]) which is

more than enough for our purposes. The definition proceeds by induction on their

derivation.

• J2K := {0, 1};
• JNK := N;

• JOK := {α ∈ On |α < ε0}, where On is a set of ordinals;

• JA⊗BK := JAK× JBK;
• JA&BK := JAK× JBK;
• JA( BK := JAK→ JBK;
• JL(X)K :=

⋃
n∈NJXKn;

• JT (X)K := {T |T is a tree with leaves and nodes labelled by elements of X};
• J�K := {0}.



144 APPENDIX

Notice that by Remark 6.4.1 we know that ε0 is an upper bound for the inter-

pretation of the ordinals of LFPL +O.

Given a context Γ = {x1 : A1, . . . , xn : An} we define an environment to be

a function, say η, mapping variables from {x1, . . . , xn} to elements η(xi) ∈ JAiK,
equivalently an environment is an n-tuple 〈η(x1), . . . , η(xn)〉 ∈ JA1K × · · · × JAnK.
Then the interpretation of a judgement Γ ` e : A is a function JeK mapping envir-

onments for Γ to elements of JAK.

The set-theoretic semantics for terms is given by induction on the derivation

of the term in the natural way.

Affine type theory:

((+): if e = Jx : A ` t : BK is a function mapping environments for the

context x : A to elements of JBK, then e itself is the interpretation of the

λ-abstraction Jλx.tK := e : JAK→ JBK;
((−): if f : A( B and a : A then JfaK := JfK(JaK) ∈ JBK;
(⊗+): Jt1 ⊗ t2K := 〈Jt1K, Jt2K〉 ∈ JA⊗BK;
(⊗−): given t : A ⊗ B and e = Jx : A, y : B ` r : CK a function mapping

environments for the context x : A, y : B to elements of JCK, then e can

be seen as a function JAK× JBK→ JCK. So we define Jlet t bex⊗ y in rK :=

e(JtK) ∈ JCK;
(&+): J〈t1, t2〉K = 〈Jt1K, Jt2K〉 ∈ JA&BK;
(&−): given t : A&B we define Jt.1K = π1(JtK) ∈ JAK, where π1 is the first

projection, and similarly for Jt.2K = π2(JtK) ∈ JBK.

Booleans:

(2+
0 ): JffK := 0;

(2+
1 ): JttK := 1;

(2−): the function JifK : {0, 1} → JAK→ JAK→ JAK is defined by JifK(0, a, b) =

a and JifK(1, a, b) = b.

Natural numbers:

(N+
0 ): J0K = 0 ∈ N;

(N+
1 ): given n ∈ JNK then Js0K(∗, n) = 2n and Js1K(∗, n) = 2n+ 1;

(N−): given a ∈ JAK and u0, u1 : {∗} → JAK→ JAK we write:

ItN (a, u0, u1) : N→ JAK,

for the function defined by recursion using a, u0 and u1:
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ItN (a, u0, u1)(m) :=


a if m = 0,

u0(∗, ItN (a, u0, u1)(n)) if m = 2n,

u1(∗, ItN (a, u0, u1)(n)) if m = 2n+ 1.

Then given t : A and h0, h1 : �( A( A we define JitAN(t, h0, h1)K :=

ItN (JtK, Jh0K, Jh1K).

Ordinals:

(O+
0 ): J0K = 0 ∈ JOK;

(O+
1 ): if α = λ + n ∈ JOK where λ is a limit ordinal or zero and n a finite

ordinal then JS0K(∗, α) = λ+ 2n and JS1K(∗, α) = λ+ 2n+ 1;

(O+
2 ): if f : JNK → JOK then JsupK(∗, f) = supn∈N{f(n)} where sup is the

set-theoretic supremum of ordinals;

(O−): given a ∈ JAK and functions u0, u1 : {∗} → JAK→ JAK and a function

v : {∗} → (N→ JAK)→ JAK we write ItO(a, u0, u1, v) : JOK→ JAK for the

function defined by recursion using a, u0, u1 and v:

ItO(a, u0, u1, v)(α) :=


a if α = 0,

u0(∗, ItO(a, u0, u1, v)(λ+ n)) if α = λ+ 2n and λ limit,

u1(∗, ItO(a, u0, u1, v)(λ+ n)) if α = λ+ 2n+ 1 and λ limit,

v(∗, n 7→ ItO(a, u0, u1, v)(f(n))) if α = supn(f(n)).

Then given t : A and h0, h1 : �( A( A and l : �( (N( A)( A

we define JitAO(t, h0, h1, l)K := ItO(JtK, Jh0K, Jh1K, JlK).

Lists:

(L(X)+
0 ): JnilK := ∅ ∈ JXK0;

(L(X)+
1 ): if x ∈ JXK and l ∈ JXKn, then JconsK(∗, x, l) := 〈x, l〉;

(L(X)−): given a ∈ JAK and u : {∗} → JXK → JAK → JAK we write

ItL(X)(a, u) : JL(X)K→ JAK for the function defined by recursion using a

and u:

ItL(X)(a, u)(l) :=

a if l = ∅,

u(∗, x, ItL(X)(a, u)(l′)) if l = 〈x, l′〉.

Then given t : A and h : � ( A ( A we define JitAL(X)(t, h)K :=

ItL(X)(JtK, JhK).

Trees:
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(T (X)+
0 ): JleafK : JXK→ JT (X)K is the function that given x ∈ JXK returns

the tree consisting of only one leaf labelled by x. We denote such a tree

by 〈x〉;
(T (X)+

1 ): JnodeK : {∗} → JXK → JT (X)K → JT (X)K is the function that

given an x ∈ JXK, and two trees t1, t2 returns the binary tree with root

labelled by x, and t1 and t2 as the subtrees with the root as parent. We

denote such a tree by 〈x, t1, t2〉;
(T (X)−): given a function f : JXK→ JAK and a function:

u : {∗} → JXK→ JAK→ JAK→ JAK,

we write ItT (X)(f, u) : JT (X)K→ JAK defined by recursion using f and h

as follows:

ItT (X)(f, u)(t) :=

f(x) if t = 〈x〉,

u(∗, x, ItT (X)(f, u)(t1), ItT (X)(f, u)(t2)) if t = 〈x, t1, t2〉.

Then given terms g : X ( A and k : �( X ( A( A( A we define

JitAT (X)(g, k)K := ItT (X)(JgK, JkK).

Given the construction of the semantics J·K, it is immediate to check that if we have

a definitional equality t1 = t2 : A then Jt1K = Jt2K ∈ JAK.
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